1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct btf_field *kptr_field; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool type_is_ptr_alloc_obj(u32 type) 455 { 456 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 457 } 458 459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 460 { 461 struct btf_record *rec = NULL; 462 struct btf_struct_meta *meta; 463 464 if (reg->type == PTR_TO_MAP_VALUE) { 465 rec = reg->map_ptr->record; 466 } else if (type_is_ptr_alloc_obj(reg->type)) { 467 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 468 if (meta) 469 rec = meta->record; 470 } 471 return rec; 472 } 473 474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 475 { 476 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 477 } 478 479 static bool type_is_rdonly_mem(u32 type) 480 { 481 return type & MEM_RDONLY; 482 } 483 484 static bool type_may_be_null(u32 type) 485 { 486 return type & PTR_MAYBE_NULL; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 522 { 523 return func_id == BPF_FUNC_dynptr_data; 524 } 525 526 static bool is_callback_calling_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_for_each_map_elem || 529 func_id == BPF_FUNC_timer_set_callback || 530 func_id == BPF_FUNC_find_vma || 531 func_id == BPF_FUNC_loop || 532 func_id == BPF_FUNC_user_ringbuf_drain; 533 } 534 535 static bool is_storage_get_function(enum bpf_func_id func_id) 536 { 537 return func_id == BPF_FUNC_sk_storage_get || 538 func_id == BPF_FUNC_inode_storage_get || 539 func_id == BPF_FUNC_task_storage_get || 540 func_id == BPF_FUNC_cgrp_storage_get; 541 } 542 543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 544 const struct bpf_map *map) 545 { 546 int ref_obj_uses = 0; 547 548 if (is_ptr_cast_function(func_id)) 549 ref_obj_uses++; 550 if (is_acquire_function(func_id, map)) 551 ref_obj_uses++; 552 if (is_dynptr_ref_function(func_id)) 553 ref_obj_uses++; 554 555 return ref_obj_uses > 1; 556 } 557 558 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 559 { 560 return BPF_CLASS(insn->code) == BPF_STX && 561 BPF_MODE(insn->code) == BPF_ATOMIC && 562 insn->imm == BPF_CMPXCHG; 563 } 564 565 /* string representation of 'enum bpf_reg_type' 566 * 567 * Note that reg_type_str() can not appear more than once in a single verbose() 568 * statement. 569 */ 570 static const char *reg_type_str(struct bpf_verifier_env *env, 571 enum bpf_reg_type type) 572 { 573 char postfix[16] = {0}, prefix[64] = {0}; 574 static const char * const str[] = { 575 [NOT_INIT] = "?", 576 [SCALAR_VALUE] = "scalar", 577 [PTR_TO_CTX] = "ctx", 578 [CONST_PTR_TO_MAP] = "map_ptr", 579 [PTR_TO_MAP_VALUE] = "map_value", 580 [PTR_TO_STACK] = "fp", 581 [PTR_TO_PACKET] = "pkt", 582 [PTR_TO_PACKET_META] = "pkt_meta", 583 [PTR_TO_PACKET_END] = "pkt_end", 584 [PTR_TO_FLOW_KEYS] = "flow_keys", 585 [PTR_TO_SOCKET] = "sock", 586 [PTR_TO_SOCK_COMMON] = "sock_common", 587 [PTR_TO_TCP_SOCK] = "tcp_sock", 588 [PTR_TO_TP_BUFFER] = "tp_buffer", 589 [PTR_TO_XDP_SOCK] = "xdp_sock", 590 [PTR_TO_BTF_ID] = "ptr_", 591 [PTR_TO_MEM] = "mem", 592 [PTR_TO_BUF] = "buf", 593 [PTR_TO_FUNC] = "func", 594 [PTR_TO_MAP_KEY] = "map_key", 595 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 596 }; 597 598 if (type & PTR_MAYBE_NULL) { 599 if (base_type(type) == PTR_TO_BTF_ID) 600 strncpy(postfix, "or_null_", 16); 601 else 602 strncpy(postfix, "_or_null", 16); 603 } 604 605 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 606 type & MEM_RDONLY ? "rdonly_" : "", 607 type & MEM_RINGBUF ? "ringbuf_" : "", 608 type & MEM_USER ? "user_" : "", 609 type & MEM_PERCPU ? "percpu_" : "", 610 type & MEM_RCU ? "rcu_" : "", 611 type & PTR_UNTRUSTED ? "untrusted_" : "", 612 type & PTR_TRUSTED ? "trusted_" : "" 613 ); 614 615 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 616 prefix, str[base_type(type)], postfix); 617 return env->type_str_buf; 618 } 619 620 static char slot_type_char[] = { 621 [STACK_INVALID] = '?', 622 [STACK_SPILL] = 'r', 623 [STACK_MISC] = 'm', 624 [STACK_ZERO] = '0', 625 [STACK_DYNPTR] = 'd', 626 }; 627 628 static void print_liveness(struct bpf_verifier_env *env, 629 enum bpf_reg_liveness live) 630 { 631 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 632 verbose(env, "_"); 633 if (live & REG_LIVE_READ) 634 verbose(env, "r"); 635 if (live & REG_LIVE_WRITTEN) 636 verbose(env, "w"); 637 if (live & REG_LIVE_DONE) 638 verbose(env, "D"); 639 } 640 641 static int get_spi(s32 off) 642 { 643 return (-off - 1) / BPF_REG_SIZE; 644 } 645 646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 647 { 648 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 649 650 /* We need to check that slots between [spi - nr_slots + 1, spi] are 651 * within [0, allocated_stack). 652 * 653 * Please note that the spi grows downwards. For example, a dynptr 654 * takes the size of two stack slots; the first slot will be at 655 * spi and the second slot will be at spi - 1. 656 */ 657 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 658 } 659 660 static struct bpf_func_state *func(struct bpf_verifier_env *env, 661 const struct bpf_reg_state *reg) 662 { 663 struct bpf_verifier_state *cur = env->cur_state; 664 665 return cur->frame[reg->frameno]; 666 } 667 668 static const char *kernel_type_name(const struct btf* btf, u32 id) 669 { 670 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 671 } 672 673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 674 { 675 env->scratched_regs |= 1U << regno; 676 } 677 678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 679 { 680 env->scratched_stack_slots |= 1ULL << spi; 681 } 682 683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 684 { 685 return (env->scratched_regs >> regno) & 1; 686 } 687 688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 689 { 690 return (env->scratched_stack_slots >> regno) & 1; 691 } 692 693 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 694 { 695 return env->scratched_regs || env->scratched_stack_slots; 696 } 697 698 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 699 { 700 env->scratched_regs = 0U; 701 env->scratched_stack_slots = 0ULL; 702 } 703 704 /* Used for printing the entire verifier state. */ 705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 706 { 707 env->scratched_regs = ~0U; 708 env->scratched_stack_slots = ~0ULL; 709 } 710 711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 712 { 713 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 714 case DYNPTR_TYPE_LOCAL: 715 return BPF_DYNPTR_TYPE_LOCAL; 716 case DYNPTR_TYPE_RINGBUF: 717 return BPF_DYNPTR_TYPE_RINGBUF; 718 default: 719 return BPF_DYNPTR_TYPE_INVALID; 720 } 721 } 722 723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 724 { 725 return type == BPF_DYNPTR_TYPE_RINGBUF; 726 } 727 728 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 729 enum bpf_dynptr_type type, 730 bool first_slot); 731 732 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 733 struct bpf_reg_state *reg); 734 735 static void mark_dynptr_stack_regs(struct bpf_reg_state *sreg1, 736 struct bpf_reg_state *sreg2, 737 enum bpf_dynptr_type type) 738 { 739 __mark_dynptr_reg(sreg1, type, true); 740 __mark_dynptr_reg(sreg2, type, false); 741 } 742 743 static void mark_dynptr_cb_reg(struct bpf_reg_state *reg, 744 enum bpf_dynptr_type type) 745 { 746 __mark_dynptr_reg(reg, type, true); 747 } 748 749 750 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 751 enum bpf_arg_type arg_type, int insn_idx) 752 { 753 struct bpf_func_state *state = func(env, reg); 754 enum bpf_dynptr_type type; 755 int spi, i, id; 756 757 spi = get_spi(reg->off); 758 759 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 760 return -EINVAL; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(&state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 id = acquire_reference_state(env, insn_idx); 777 if (id < 0) 778 return id; 779 780 state->stack[spi].spilled_ptr.ref_obj_id = id; 781 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 782 } 783 784 return 0; 785 } 786 787 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 788 { 789 struct bpf_func_state *state = func(env, reg); 790 int spi, i; 791 792 spi = get_spi(reg->off); 793 794 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 795 return -EINVAL; 796 797 for (i = 0; i < BPF_REG_SIZE; i++) { 798 state->stack[spi].slot_type[i] = STACK_INVALID; 799 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 800 } 801 802 /* Invalidate any slices associated with this dynptr */ 803 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 804 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 805 806 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 807 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 808 return 0; 809 } 810 811 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 812 { 813 struct bpf_func_state *state = func(env, reg); 814 int spi, i; 815 816 if (reg->type == CONST_PTR_TO_DYNPTR) 817 return false; 818 819 spi = get_spi(reg->off); 820 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 821 return true; 822 823 for (i = 0; i < BPF_REG_SIZE; i++) { 824 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 825 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 826 return false; 827 } 828 829 return true; 830 } 831 832 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 833 { 834 struct bpf_func_state *state = func(env, reg); 835 int spi; 836 int i; 837 838 /* This already represents first slot of initialized bpf_dynptr */ 839 if (reg->type == CONST_PTR_TO_DYNPTR) 840 return true; 841 842 spi = get_spi(reg->off); 843 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 844 !state->stack[spi].spilled_ptr.dynptr.first_slot) 845 return false; 846 847 for (i = 0; i < BPF_REG_SIZE; i++) { 848 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 849 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 850 return false; 851 } 852 853 return true; 854 } 855 856 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 857 enum bpf_arg_type arg_type) 858 { 859 struct bpf_func_state *state = func(env, reg); 860 enum bpf_dynptr_type dynptr_type; 861 int spi; 862 863 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 864 if (arg_type == ARG_PTR_TO_DYNPTR) 865 return true; 866 867 dynptr_type = arg_to_dynptr_type(arg_type); 868 if (reg->type == CONST_PTR_TO_DYNPTR) { 869 return reg->dynptr.type == dynptr_type; 870 } else { 871 spi = get_spi(reg->off); 872 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 873 } 874 } 875 876 /* The reg state of a pointer or a bounded scalar was saved when 877 * it was spilled to the stack. 878 */ 879 static bool is_spilled_reg(const struct bpf_stack_state *stack) 880 { 881 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 882 } 883 884 static void scrub_spilled_slot(u8 *stype) 885 { 886 if (*stype != STACK_INVALID) 887 *stype = STACK_MISC; 888 } 889 890 static void print_verifier_state(struct bpf_verifier_env *env, 891 const struct bpf_func_state *state, 892 bool print_all) 893 { 894 const struct bpf_reg_state *reg; 895 enum bpf_reg_type t; 896 int i; 897 898 if (state->frameno) 899 verbose(env, " frame%d:", state->frameno); 900 for (i = 0; i < MAX_BPF_REG; i++) { 901 reg = &state->regs[i]; 902 t = reg->type; 903 if (t == NOT_INIT) 904 continue; 905 if (!print_all && !reg_scratched(env, i)) 906 continue; 907 verbose(env, " R%d", i); 908 print_liveness(env, reg->live); 909 verbose(env, "="); 910 if (t == SCALAR_VALUE && reg->precise) 911 verbose(env, "P"); 912 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 913 tnum_is_const(reg->var_off)) { 914 /* reg->off should be 0 for SCALAR_VALUE */ 915 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 916 verbose(env, "%lld", reg->var_off.value + reg->off); 917 } else { 918 const char *sep = ""; 919 920 verbose(env, "%s", reg_type_str(env, t)); 921 if (base_type(t) == PTR_TO_BTF_ID) 922 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 923 verbose(env, "("); 924 /* 925 * _a stands for append, was shortened to avoid multiline statements below. 926 * This macro is used to output a comma separated list of attributes. 927 */ 928 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 929 930 if (reg->id) 931 verbose_a("id=%d", reg->id); 932 if (reg->ref_obj_id) 933 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 934 if (t != SCALAR_VALUE) 935 verbose_a("off=%d", reg->off); 936 if (type_is_pkt_pointer(t)) 937 verbose_a("r=%d", reg->range); 938 else if (base_type(t) == CONST_PTR_TO_MAP || 939 base_type(t) == PTR_TO_MAP_KEY || 940 base_type(t) == PTR_TO_MAP_VALUE) 941 verbose_a("ks=%d,vs=%d", 942 reg->map_ptr->key_size, 943 reg->map_ptr->value_size); 944 if (tnum_is_const(reg->var_off)) { 945 /* Typically an immediate SCALAR_VALUE, but 946 * could be a pointer whose offset is too big 947 * for reg->off 948 */ 949 verbose_a("imm=%llx", reg->var_off.value); 950 } else { 951 if (reg->smin_value != reg->umin_value && 952 reg->smin_value != S64_MIN) 953 verbose_a("smin=%lld", (long long)reg->smin_value); 954 if (reg->smax_value != reg->umax_value && 955 reg->smax_value != S64_MAX) 956 verbose_a("smax=%lld", (long long)reg->smax_value); 957 if (reg->umin_value != 0) 958 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 959 if (reg->umax_value != U64_MAX) 960 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 961 if (!tnum_is_unknown(reg->var_off)) { 962 char tn_buf[48]; 963 964 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 965 verbose_a("var_off=%s", tn_buf); 966 } 967 if (reg->s32_min_value != reg->smin_value && 968 reg->s32_min_value != S32_MIN) 969 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 970 if (reg->s32_max_value != reg->smax_value && 971 reg->s32_max_value != S32_MAX) 972 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 973 if (reg->u32_min_value != reg->umin_value && 974 reg->u32_min_value != U32_MIN) 975 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 976 if (reg->u32_max_value != reg->umax_value && 977 reg->u32_max_value != U32_MAX) 978 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 979 } 980 #undef verbose_a 981 982 verbose(env, ")"); 983 } 984 } 985 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 986 char types_buf[BPF_REG_SIZE + 1]; 987 bool valid = false; 988 int j; 989 990 for (j = 0; j < BPF_REG_SIZE; j++) { 991 if (state->stack[i].slot_type[j] != STACK_INVALID) 992 valid = true; 993 types_buf[j] = slot_type_char[ 994 state->stack[i].slot_type[j]]; 995 } 996 types_buf[BPF_REG_SIZE] = 0; 997 if (!valid) 998 continue; 999 if (!print_all && !stack_slot_scratched(env, i)) 1000 continue; 1001 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1002 print_liveness(env, state->stack[i].spilled_ptr.live); 1003 if (is_spilled_reg(&state->stack[i])) { 1004 reg = &state->stack[i].spilled_ptr; 1005 t = reg->type; 1006 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1007 if (t == SCALAR_VALUE && reg->precise) 1008 verbose(env, "P"); 1009 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1010 verbose(env, "%lld", reg->var_off.value + reg->off); 1011 } else { 1012 verbose(env, "=%s", types_buf); 1013 } 1014 } 1015 if (state->acquired_refs && state->refs[0].id) { 1016 verbose(env, " refs=%d", state->refs[0].id); 1017 for (i = 1; i < state->acquired_refs; i++) 1018 if (state->refs[i].id) 1019 verbose(env, ",%d", state->refs[i].id); 1020 } 1021 if (state->in_callback_fn) 1022 verbose(env, " cb"); 1023 if (state->in_async_callback_fn) 1024 verbose(env, " async_cb"); 1025 verbose(env, "\n"); 1026 mark_verifier_state_clean(env); 1027 } 1028 1029 static inline u32 vlog_alignment(u32 pos) 1030 { 1031 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1032 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1033 } 1034 1035 static void print_insn_state(struct bpf_verifier_env *env, 1036 const struct bpf_func_state *state) 1037 { 1038 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1039 /* remove new line character */ 1040 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1041 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1042 } else { 1043 verbose(env, "%d:", env->insn_idx); 1044 } 1045 print_verifier_state(env, state, false); 1046 } 1047 1048 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1049 * small to hold src. This is different from krealloc since we don't want to preserve 1050 * the contents of dst. 1051 * 1052 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1053 * not be allocated. 1054 */ 1055 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1056 { 1057 size_t bytes; 1058 1059 if (ZERO_OR_NULL_PTR(src)) 1060 goto out; 1061 1062 if (unlikely(check_mul_overflow(n, size, &bytes))) 1063 return NULL; 1064 1065 if (ksize(dst) < ksize(src)) { 1066 kfree(dst); 1067 dst = kmalloc_track_caller(kmalloc_size_roundup(bytes), flags); 1068 if (!dst) 1069 return NULL; 1070 } 1071 1072 memcpy(dst, src, bytes); 1073 out: 1074 return dst ? dst : ZERO_SIZE_PTR; 1075 } 1076 1077 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1078 * small to hold new_n items. new items are zeroed out if the array grows. 1079 * 1080 * Contrary to krealloc_array, does not free arr if new_n is zero. 1081 */ 1082 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1083 { 1084 size_t alloc_size; 1085 void *new_arr; 1086 1087 if (!new_n || old_n == new_n) 1088 goto out; 1089 1090 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1091 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1092 if (!new_arr) { 1093 kfree(arr); 1094 return NULL; 1095 } 1096 arr = new_arr; 1097 1098 if (new_n > old_n) 1099 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1100 1101 out: 1102 return arr ? arr : ZERO_SIZE_PTR; 1103 } 1104 1105 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1106 { 1107 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1108 sizeof(struct bpf_reference_state), GFP_KERNEL); 1109 if (!dst->refs) 1110 return -ENOMEM; 1111 1112 dst->acquired_refs = src->acquired_refs; 1113 return 0; 1114 } 1115 1116 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1117 { 1118 size_t n = src->allocated_stack / BPF_REG_SIZE; 1119 1120 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1121 GFP_KERNEL); 1122 if (!dst->stack) 1123 return -ENOMEM; 1124 1125 dst->allocated_stack = src->allocated_stack; 1126 return 0; 1127 } 1128 1129 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1130 { 1131 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1132 sizeof(struct bpf_reference_state)); 1133 if (!state->refs) 1134 return -ENOMEM; 1135 1136 state->acquired_refs = n; 1137 return 0; 1138 } 1139 1140 static int grow_stack_state(struct bpf_func_state *state, int size) 1141 { 1142 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1143 1144 if (old_n >= n) 1145 return 0; 1146 1147 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1148 if (!state->stack) 1149 return -ENOMEM; 1150 1151 state->allocated_stack = size; 1152 return 0; 1153 } 1154 1155 /* Acquire a pointer id from the env and update the state->refs to include 1156 * this new pointer reference. 1157 * On success, returns a valid pointer id to associate with the register 1158 * On failure, returns a negative errno. 1159 */ 1160 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1161 { 1162 struct bpf_func_state *state = cur_func(env); 1163 int new_ofs = state->acquired_refs; 1164 int id, err; 1165 1166 err = resize_reference_state(state, state->acquired_refs + 1); 1167 if (err) 1168 return err; 1169 id = ++env->id_gen; 1170 state->refs[new_ofs].id = id; 1171 state->refs[new_ofs].insn_idx = insn_idx; 1172 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1173 1174 return id; 1175 } 1176 1177 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1178 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1179 { 1180 int i, last_idx; 1181 1182 last_idx = state->acquired_refs - 1; 1183 for (i = 0; i < state->acquired_refs; i++) { 1184 if (state->refs[i].id == ptr_id) { 1185 /* Cannot release caller references in callbacks */ 1186 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1187 return -EINVAL; 1188 if (last_idx && i != last_idx) 1189 memcpy(&state->refs[i], &state->refs[last_idx], 1190 sizeof(*state->refs)); 1191 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1192 state->acquired_refs--; 1193 return 0; 1194 } 1195 } 1196 return -EINVAL; 1197 } 1198 1199 static void free_func_state(struct bpf_func_state *state) 1200 { 1201 if (!state) 1202 return; 1203 kfree(state->refs); 1204 kfree(state->stack); 1205 kfree(state); 1206 } 1207 1208 static void clear_jmp_history(struct bpf_verifier_state *state) 1209 { 1210 kfree(state->jmp_history); 1211 state->jmp_history = NULL; 1212 state->jmp_history_cnt = 0; 1213 } 1214 1215 static void free_verifier_state(struct bpf_verifier_state *state, 1216 bool free_self) 1217 { 1218 int i; 1219 1220 for (i = 0; i <= state->curframe; i++) { 1221 free_func_state(state->frame[i]); 1222 state->frame[i] = NULL; 1223 } 1224 clear_jmp_history(state); 1225 if (free_self) 1226 kfree(state); 1227 } 1228 1229 /* copy verifier state from src to dst growing dst stack space 1230 * when necessary to accommodate larger src stack 1231 */ 1232 static int copy_func_state(struct bpf_func_state *dst, 1233 const struct bpf_func_state *src) 1234 { 1235 int err; 1236 1237 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1238 err = copy_reference_state(dst, src); 1239 if (err) 1240 return err; 1241 return copy_stack_state(dst, src); 1242 } 1243 1244 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1245 const struct bpf_verifier_state *src) 1246 { 1247 struct bpf_func_state *dst; 1248 int i, err; 1249 1250 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1251 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1252 GFP_USER); 1253 if (!dst_state->jmp_history) 1254 return -ENOMEM; 1255 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1256 1257 /* if dst has more stack frames then src frame, free them */ 1258 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1259 free_func_state(dst_state->frame[i]); 1260 dst_state->frame[i] = NULL; 1261 } 1262 dst_state->speculative = src->speculative; 1263 dst_state->active_rcu_lock = src->active_rcu_lock; 1264 dst_state->curframe = src->curframe; 1265 dst_state->active_lock.ptr = src->active_lock.ptr; 1266 dst_state->active_lock.id = src->active_lock.id; 1267 dst_state->branches = src->branches; 1268 dst_state->parent = src->parent; 1269 dst_state->first_insn_idx = src->first_insn_idx; 1270 dst_state->last_insn_idx = src->last_insn_idx; 1271 for (i = 0; i <= src->curframe; i++) { 1272 dst = dst_state->frame[i]; 1273 if (!dst) { 1274 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1275 if (!dst) 1276 return -ENOMEM; 1277 dst_state->frame[i] = dst; 1278 } 1279 err = copy_func_state(dst, src->frame[i]); 1280 if (err) 1281 return err; 1282 } 1283 return 0; 1284 } 1285 1286 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1287 { 1288 while (st) { 1289 u32 br = --st->branches; 1290 1291 /* WARN_ON(br > 1) technically makes sense here, 1292 * but see comment in push_stack(), hence: 1293 */ 1294 WARN_ONCE((int)br < 0, 1295 "BUG update_branch_counts:branches_to_explore=%d\n", 1296 br); 1297 if (br) 1298 break; 1299 st = st->parent; 1300 } 1301 } 1302 1303 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1304 int *insn_idx, bool pop_log) 1305 { 1306 struct bpf_verifier_state *cur = env->cur_state; 1307 struct bpf_verifier_stack_elem *elem, *head = env->head; 1308 int err; 1309 1310 if (env->head == NULL) 1311 return -ENOENT; 1312 1313 if (cur) { 1314 err = copy_verifier_state(cur, &head->st); 1315 if (err) 1316 return err; 1317 } 1318 if (pop_log) 1319 bpf_vlog_reset(&env->log, head->log_pos); 1320 if (insn_idx) 1321 *insn_idx = head->insn_idx; 1322 if (prev_insn_idx) 1323 *prev_insn_idx = head->prev_insn_idx; 1324 elem = head->next; 1325 free_verifier_state(&head->st, false); 1326 kfree(head); 1327 env->head = elem; 1328 env->stack_size--; 1329 return 0; 1330 } 1331 1332 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1333 int insn_idx, int prev_insn_idx, 1334 bool speculative) 1335 { 1336 struct bpf_verifier_state *cur = env->cur_state; 1337 struct bpf_verifier_stack_elem *elem; 1338 int err; 1339 1340 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1341 if (!elem) 1342 goto err; 1343 1344 elem->insn_idx = insn_idx; 1345 elem->prev_insn_idx = prev_insn_idx; 1346 elem->next = env->head; 1347 elem->log_pos = env->log.len_used; 1348 env->head = elem; 1349 env->stack_size++; 1350 err = copy_verifier_state(&elem->st, cur); 1351 if (err) 1352 goto err; 1353 elem->st.speculative |= speculative; 1354 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1355 verbose(env, "The sequence of %d jumps is too complex.\n", 1356 env->stack_size); 1357 goto err; 1358 } 1359 if (elem->st.parent) { 1360 ++elem->st.parent->branches; 1361 /* WARN_ON(branches > 2) technically makes sense here, 1362 * but 1363 * 1. speculative states will bump 'branches' for non-branch 1364 * instructions 1365 * 2. is_state_visited() heuristics may decide not to create 1366 * a new state for a sequence of branches and all such current 1367 * and cloned states will be pointing to a single parent state 1368 * which might have large 'branches' count. 1369 */ 1370 } 1371 return &elem->st; 1372 err: 1373 free_verifier_state(env->cur_state, true); 1374 env->cur_state = NULL; 1375 /* pop all elements and return */ 1376 while (!pop_stack(env, NULL, NULL, false)); 1377 return NULL; 1378 } 1379 1380 #define CALLER_SAVED_REGS 6 1381 static const int caller_saved[CALLER_SAVED_REGS] = { 1382 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1383 }; 1384 1385 /* This helper doesn't clear reg->id */ 1386 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1387 { 1388 reg->var_off = tnum_const(imm); 1389 reg->smin_value = (s64)imm; 1390 reg->smax_value = (s64)imm; 1391 reg->umin_value = imm; 1392 reg->umax_value = imm; 1393 1394 reg->s32_min_value = (s32)imm; 1395 reg->s32_max_value = (s32)imm; 1396 reg->u32_min_value = (u32)imm; 1397 reg->u32_max_value = (u32)imm; 1398 } 1399 1400 /* Mark the unknown part of a register (variable offset or scalar value) as 1401 * known to have the value @imm. 1402 */ 1403 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1404 { 1405 /* Clear off and union(map_ptr, range) */ 1406 memset(((u8 *)reg) + sizeof(reg->type), 0, 1407 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1408 reg->id = 0; 1409 reg->ref_obj_id = 0; 1410 ___mark_reg_known(reg, imm); 1411 } 1412 1413 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1414 { 1415 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1416 reg->s32_min_value = (s32)imm; 1417 reg->s32_max_value = (s32)imm; 1418 reg->u32_min_value = (u32)imm; 1419 reg->u32_max_value = (u32)imm; 1420 } 1421 1422 /* Mark the 'variable offset' part of a register as zero. This should be 1423 * used only on registers holding a pointer type. 1424 */ 1425 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1426 { 1427 __mark_reg_known(reg, 0); 1428 } 1429 1430 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1431 { 1432 __mark_reg_known(reg, 0); 1433 reg->type = SCALAR_VALUE; 1434 } 1435 1436 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1437 struct bpf_reg_state *regs, u32 regno) 1438 { 1439 if (WARN_ON(regno >= MAX_BPF_REG)) { 1440 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1441 /* Something bad happened, let's kill all regs */ 1442 for (regno = 0; regno < MAX_BPF_REG; regno++) 1443 __mark_reg_not_init(env, regs + regno); 1444 return; 1445 } 1446 __mark_reg_known_zero(regs + regno); 1447 } 1448 1449 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1450 bool first_slot) 1451 { 1452 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1453 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1454 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1455 */ 1456 __mark_reg_known_zero(reg); 1457 reg->type = CONST_PTR_TO_DYNPTR; 1458 reg->dynptr.type = type; 1459 reg->dynptr.first_slot = first_slot; 1460 } 1461 1462 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1463 { 1464 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1465 const struct bpf_map *map = reg->map_ptr; 1466 1467 if (map->inner_map_meta) { 1468 reg->type = CONST_PTR_TO_MAP; 1469 reg->map_ptr = map->inner_map_meta; 1470 /* transfer reg's id which is unique for every map_lookup_elem 1471 * as UID of the inner map. 1472 */ 1473 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1474 reg->map_uid = reg->id; 1475 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1476 reg->type = PTR_TO_XDP_SOCK; 1477 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1478 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1479 reg->type = PTR_TO_SOCKET; 1480 } else { 1481 reg->type = PTR_TO_MAP_VALUE; 1482 } 1483 return; 1484 } 1485 1486 reg->type &= ~PTR_MAYBE_NULL; 1487 } 1488 1489 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1490 { 1491 return type_is_pkt_pointer(reg->type); 1492 } 1493 1494 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1495 { 1496 return reg_is_pkt_pointer(reg) || 1497 reg->type == PTR_TO_PACKET_END; 1498 } 1499 1500 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1501 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1502 enum bpf_reg_type which) 1503 { 1504 /* The register can already have a range from prior markings. 1505 * This is fine as long as it hasn't been advanced from its 1506 * origin. 1507 */ 1508 return reg->type == which && 1509 reg->id == 0 && 1510 reg->off == 0 && 1511 tnum_equals_const(reg->var_off, 0); 1512 } 1513 1514 /* Reset the min/max bounds of a register */ 1515 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1516 { 1517 reg->smin_value = S64_MIN; 1518 reg->smax_value = S64_MAX; 1519 reg->umin_value = 0; 1520 reg->umax_value = U64_MAX; 1521 1522 reg->s32_min_value = S32_MIN; 1523 reg->s32_max_value = S32_MAX; 1524 reg->u32_min_value = 0; 1525 reg->u32_max_value = U32_MAX; 1526 } 1527 1528 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1529 { 1530 reg->smin_value = S64_MIN; 1531 reg->smax_value = S64_MAX; 1532 reg->umin_value = 0; 1533 reg->umax_value = U64_MAX; 1534 } 1535 1536 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1537 { 1538 reg->s32_min_value = S32_MIN; 1539 reg->s32_max_value = S32_MAX; 1540 reg->u32_min_value = 0; 1541 reg->u32_max_value = U32_MAX; 1542 } 1543 1544 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1545 { 1546 struct tnum var32_off = tnum_subreg(reg->var_off); 1547 1548 /* min signed is max(sign bit) | min(other bits) */ 1549 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1550 var32_off.value | (var32_off.mask & S32_MIN)); 1551 /* max signed is min(sign bit) | max(other bits) */ 1552 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1553 var32_off.value | (var32_off.mask & S32_MAX)); 1554 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1555 reg->u32_max_value = min(reg->u32_max_value, 1556 (u32)(var32_off.value | var32_off.mask)); 1557 } 1558 1559 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1560 { 1561 /* min signed is max(sign bit) | min(other bits) */ 1562 reg->smin_value = max_t(s64, reg->smin_value, 1563 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1564 /* max signed is min(sign bit) | max(other bits) */ 1565 reg->smax_value = min_t(s64, reg->smax_value, 1566 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1567 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1568 reg->umax_value = min(reg->umax_value, 1569 reg->var_off.value | reg->var_off.mask); 1570 } 1571 1572 static void __update_reg_bounds(struct bpf_reg_state *reg) 1573 { 1574 __update_reg32_bounds(reg); 1575 __update_reg64_bounds(reg); 1576 } 1577 1578 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1579 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1580 { 1581 /* Learn sign from signed bounds. 1582 * If we cannot cross the sign boundary, then signed and unsigned bounds 1583 * are the same, so combine. This works even in the negative case, e.g. 1584 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1585 */ 1586 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1587 reg->s32_min_value = reg->u32_min_value = 1588 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1589 reg->s32_max_value = reg->u32_max_value = 1590 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1591 return; 1592 } 1593 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1594 * boundary, so we must be careful. 1595 */ 1596 if ((s32)reg->u32_max_value >= 0) { 1597 /* Positive. We can't learn anything from the smin, but smax 1598 * is positive, hence safe. 1599 */ 1600 reg->s32_min_value = reg->u32_min_value; 1601 reg->s32_max_value = reg->u32_max_value = 1602 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1603 } else if ((s32)reg->u32_min_value < 0) { 1604 /* Negative. We can't learn anything from the smax, but smin 1605 * is negative, hence safe. 1606 */ 1607 reg->s32_min_value = reg->u32_min_value = 1608 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1609 reg->s32_max_value = reg->u32_max_value; 1610 } 1611 } 1612 1613 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1614 { 1615 /* Learn sign from signed bounds. 1616 * If we cannot cross the sign boundary, then signed and unsigned bounds 1617 * are the same, so combine. This works even in the negative case, e.g. 1618 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1619 */ 1620 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1621 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1622 reg->umin_value); 1623 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1624 reg->umax_value); 1625 return; 1626 } 1627 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1628 * boundary, so we must be careful. 1629 */ 1630 if ((s64)reg->umax_value >= 0) { 1631 /* Positive. We can't learn anything from the smin, but smax 1632 * is positive, hence safe. 1633 */ 1634 reg->smin_value = reg->umin_value; 1635 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1636 reg->umax_value); 1637 } else if ((s64)reg->umin_value < 0) { 1638 /* Negative. We can't learn anything from the smax, but smin 1639 * is negative, hence safe. 1640 */ 1641 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1642 reg->umin_value); 1643 reg->smax_value = reg->umax_value; 1644 } 1645 } 1646 1647 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1648 { 1649 __reg32_deduce_bounds(reg); 1650 __reg64_deduce_bounds(reg); 1651 } 1652 1653 /* Attempts to improve var_off based on unsigned min/max information */ 1654 static void __reg_bound_offset(struct bpf_reg_state *reg) 1655 { 1656 struct tnum var64_off = tnum_intersect(reg->var_off, 1657 tnum_range(reg->umin_value, 1658 reg->umax_value)); 1659 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1660 tnum_range(reg->u32_min_value, 1661 reg->u32_max_value)); 1662 1663 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1664 } 1665 1666 static void reg_bounds_sync(struct bpf_reg_state *reg) 1667 { 1668 /* We might have learned new bounds from the var_off. */ 1669 __update_reg_bounds(reg); 1670 /* We might have learned something about the sign bit. */ 1671 __reg_deduce_bounds(reg); 1672 /* We might have learned some bits from the bounds. */ 1673 __reg_bound_offset(reg); 1674 /* Intersecting with the old var_off might have improved our bounds 1675 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1676 * then new var_off is (0; 0x7f...fc) which improves our umax. 1677 */ 1678 __update_reg_bounds(reg); 1679 } 1680 1681 static bool __reg32_bound_s64(s32 a) 1682 { 1683 return a >= 0 && a <= S32_MAX; 1684 } 1685 1686 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1687 { 1688 reg->umin_value = reg->u32_min_value; 1689 reg->umax_value = reg->u32_max_value; 1690 1691 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1692 * be positive otherwise set to worse case bounds and refine later 1693 * from tnum. 1694 */ 1695 if (__reg32_bound_s64(reg->s32_min_value) && 1696 __reg32_bound_s64(reg->s32_max_value)) { 1697 reg->smin_value = reg->s32_min_value; 1698 reg->smax_value = reg->s32_max_value; 1699 } else { 1700 reg->smin_value = 0; 1701 reg->smax_value = U32_MAX; 1702 } 1703 } 1704 1705 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1706 { 1707 /* special case when 64-bit register has upper 32-bit register 1708 * zeroed. Typically happens after zext or <<32, >>32 sequence 1709 * allowing us to use 32-bit bounds directly, 1710 */ 1711 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1712 __reg_assign_32_into_64(reg); 1713 } else { 1714 /* Otherwise the best we can do is push lower 32bit known and 1715 * unknown bits into register (var_off set from jmp logic) 1716 * then learn as much as possible from the 64-bit tnum 1717 * known and unknown bits. The previous smin/smax bounds are 1718 * invalid here because of jmp32 compare so mark them unknown 1719 * so they do not impact tnum bounds calculation. 1720 */ 1721 __mark_reg64_unbounded(reg); 1722 } 1723 reg_bounds_sync(reg); 1724 } 1725 1726 static bool __reg64_bound_s32(s64 a) 1727 { 1728 return a >= S32_MIN && a <= S32_MAX; 1729 } 1730 1731 static bool __reg64_bound_u32(u64 a) 1732 { 1733 return a >= U32_MIN && a <= U32_MAX; 1734 } 1735 1736 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1737 { 1738 __mark_reg32_unbounded(reg); 1739 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1740 reg->s32_min_value = (s32)reg->smin_value; 1741 reg->s32_max_value = (s32)reg->smax_value; 1742 } 1743 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1744 reg->u32_min_value = (u32)reg->umin_value; 1745 reg->u32_max_value = (u32)reg->umax_value; 1746 } 1747 reg_bounds_sync(reg); 1748 } 1749 1750 /* Mark a register as having a completely unknown (scalar) value. */ 1751 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1752 struct bpf_reg_state *reg) 1753 { 1754 /* 1755 * Clear type, off, and union(map_ptr, range) and 1756 * padding between 'type' and union 1757 */ 1758 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1759 reg->type = SCALAR_VALUE; 1760 reg->id = 0; 1761 reg->ref_obj_id = 0; 1762 reg->var_off = tnum_unknown; 1763 reg->frameno = 0; 1764 reg->precise = !env->bpf_capable; 1765 __mark_reg_unbounded(reg); 1766 } 1767 1768 static void mark_reg_unknown(struct bpf_verifier_env *env, 1769 struct bpf_reg_state *regs, u32 regno) 1770 { 1771 if (WARN_ON(regno >= MAX_BPF_REG)) { 1772 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1773 /* Something bad happened, let's kill all regs except FP */ 1774 for (regno = 0; regno < BPF_REG_FP; regno++) 1775 __mark_reg_not_init(env, regs + regno); 1776 return; 1777 } 1778 __mark_reg_unknown(env, regs + regno); 1779 } 1780 1781 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1782 struct bpf_reg_state *reg) 1783 { 1784 __mark_reg_unknown(env, reg); 1785 reg->type = NOT_INIT; 1786 } 1787 1788 static void mark_reg_not_init(struct bpf_verifier_env *env, 1789 struct bpf_reg_state *regs, u32 regno) 1790 { 1791 if (WARN_ON(regno >= MAX_BPF_REG)) { 1792 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1793 /* Something bad happened, let's kill all regs except FP */ 1794 for (regno = 0; regno < BPF_REG_FP; regno++) 1795 __mark_reg_not_init(env, regs + regno); 1796 return; 1797 } 1798 __mark_reg_not_init(env, regs + regno); 1799 } 1800 1801 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1802 struct bpf_reg_state *regs, u32 regno, 1803 enum bpf_reg_type reg_type, 1804 struct btf *btf, u32 btf_id, 1805 enum bpf_type_flag flag) 1806 { 1807 if (reg_type == SCALAR_VALUE) { 1808 mark_reg_unknown(env, regs, regno); 1809 return; 1810 } 1811 mark_reg_known_zero(env, regs, regno); 1812 regs[regno].type = PTR_TO_BTF_ID | flag; 1813 regs[regno].btf = btf; 1814 regs[regno].btf_id = btf_id; 1815 } 1816 1817 #define DEF_NOT_SUBREG (0) 1818 static void init_reg_state(struct bpf_verifier_env *env, 1819 struct bpf_func_state *state) 1820 { 1821 struct bpf_reg_state *regs = state->regs; 1822 int i; 1823 1824 for (i = 0; i < MAX_BPF_REG; i++) { 1825 mark_reg_not_init(env, regs, i); 1826 regs[i].live = REG_LIVE_NONE; 1827 regs[i].parent = NULL; 1828 regs[i].subreg_def = DEF_NOT_SUBREG; 1829 } 1830 1831 /* frame pointer */ 1832 regs[BPF_REG_FP].type = PTR_TO_STACK; 1833 mark_reg_known_zero(env, regs, BPF_REG_FP); 1834 regs[BPF_REG_FP].frameno = state->frameno; 1835 } 1836 1837 #define BPF_MAIN_FUNC (-1) 1838 static void init_func_state(struct bpf_verifier_env *env, 1839 struct bpf_func_state *state, 1840 int callsite, int frameno, int subprogno) 1841 { 1842 state->callsite = callsite; 1843 state->frameno = frameno; 1844 state->subprogno = subprogno; 1845 state->callback_ret_range = tnum_range(0, 0); 1846 init_reg_state(env, state); 1847 mark_verifier_state_scratched(env); 1848 } 1849 1850 /* Similar to push_stack(), but for async callbacks */ 1851 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1852 int insn_idx, int prev_insn_idx, 1853 int subprog) 1854 { 1855 struct bpf_verifier_stack_elem *elem; 1856 struct bpf_func_state *frame; 1857 1858 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1859 if (!elem) 1860 goto err; 1861 1862 elem->insn_idx = insn_idx; 1863 elem->prev_insn_idx = prev_insn_idx; 1864 elem->next = env->head; 1865 elem->log_pos = env->log.len_used; 1866 env->head = elem; 1867 env->stack_size++; 1868 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1869 verbose(env, 1870 "The sequence of %d jumps is too complex for async cb.\n", 1871 env->stack_size); 1872 goto err; 1873 } 1874 /* Unlike push_stack() do not copy_verifier_state(). 1875 * The caller state doesn't matter. 1876 * This is async callback. It starts in a fresh stack. 1877 * Initialize it similar to do_check_common(). 1878 */ 1879 elem->st.branches = 1; 1880 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1881 if (!frame) 1882 goto err; 1883 init_func_state(env, frame, 1884 BPF_MAIN_FUNC /* callsite */, 1885 0 /* frameno within this callchain */, 1886 subprog /* subprog number within this prog */); 1887 elem->st.frame[0] = frame; 1888 return &elem->st; 1889 err: 1890 free_verifier_state(env->cur_state, true); 1891 env->cur_state = NULL; 1892 /* pop all elements and return */ 1893 while (!pop_stack(env, NULL, NULL, false)); 1894 return NULL; 1895 } 1896 1897 1898 enum reg_arg_type { 1899 SRC_OP, /* register is used as source operand */ 1900 DST_OP, /* register is used as destination operand */ 1901 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1902 }; 1903 1904 static int cmp_subprogs(const void *a, const void *b) 1905 { 1906 return ((struct bpf_subprog_info *)a)->start - 1907 ((struct bpf_subprog_info *)b)->start; 1908 } 1909 1910 static int find_subprog(struct bpf_verifier_env *env, int off) 1911 { 1912 struct bpf_subprog_info *p; 1913 1914 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1915 sizeof(env->subprog_info[0]), cmp_subprogs); 1916 if (!p) 1917 return -ENOENT; 1918 return p - env->subprog_info; 1919 1920 } 1921 1922 static int add_subprog(struct bpf_verifier_env *env, int off) 1923 { 1924 int insn_cnt = env->prog->len; 1925 int ret; 1926 1927 if (off >= insn_cnt || off < 0) { 1928 verbose(env, "call to invalid destination\n"); 1929 return -EINVAL; 1930 } 1931 ret = find_subprog(env, off); 1932 if (ret >= 0) 1933 return ret; 1934 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1935 verbose(env, "too many subprograms\n"); 1936 return -E2BIG; 1937 } 1938 /* determine subprog starts. The end is one before the next starts */ 1939 env->subprog_info[env->subprog_cnt++].start = off; 1940 sort(env->subprog_info, env->subprog_cnt, 1941 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1942 return env->subprog_cnt - 1; 1943 } 1944 1945 #define MAX_KFUNC_DESCS 256 1946 #define MAX_KFUNC_BTFS 256 1947 1948 struct bpf_kfunc_desc { 1949 struct btf_func_model func_model; 1950 u32 func_id; 1951 s32 imm; 1952 u16 offset; 1953 }; 1954 1955 struct bpf_kfunc_btf { 1956 struct btf *btf; 1957 struct module *module; 1958 u16 offset; 1959 }; 1960 1961 struct bpf_kfunc_desc_tab { 1962 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1963 u32 nr_descs; 1964 }; 1965 1966 struct bpf_kfunc_btf_tab { 1967 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1968 u32 nr_descs; 1969 }; 1970 1971 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1972 { 1973 const struct bpf_kfunc_desc *d0 = a; 1974 const struct bpf_kfunc_desc *d1 = b; 1975 1976 /* func_id is not greater than BTF_MAX_TYPE */ 1977 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1978 } 1979 1980 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1981 { 1982 const struct bpf_kfunc_btf *d0 = a; 1983 const struct bpf_kfunc_btf *d1 = b; 1984 1985 return d0->offset - d1->offset; 1986 } 1987 1988 static const struct bpf_kfunc_desc * 1989 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1990 { 1991 struct bpf_kfunc_desc desc = { 1992 .func_id = func_id, 1993 .offset = offset, 1994 }; 1995 struct bpf_kfunc_desc_tab *tab; 1996 1997 tab = prog->aux->kfunc_tab; 1998 return bsearch(&desc, tab->descs, tab->nr_descs, 1999 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2000 } 2001 2002 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2003 s16 offset) 2004 { 2005 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2006 struct bpf_kfunc_btf_tab *tab; 2007 struct bpf_kfunc_btf *b; 2008 struct module *mod; 2009 struct btf *btf; 2010 int btf_fd; 2011 2012 tab = env->prog->aux->kfunc_btf_tab; 2013 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2014 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2015 if (!b) { 2016 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2017 verbose(env, "too many different module BTFs\n"); 2018 return ERR_PTR(-E2BIG); 2019 } 2020 2021 if (bpfptr_is_null(env->fd_array)) { 2022 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2023 return ERR_PTR(-EPROTO); 2024 } 2025 2026 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2027 offset * sizeof(btf_fd), 2028 sizeof(btf_fd))) 2029 return ERR_PTR(-EFAULT); 2030 2031 btf = btf_get_by_fd(btf_fd); 2032 if (IS_ERR(btf)) { 2033 verbose(env, "invalid module BTF fd specified\n"); 2034 return btf; 2035 } 2036 2037 if (!btf_is_module(btf)) { 2038 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2039 btf_put(btf); 2040 return ERR_PTR(-EINVAL); 2041 } 2042 2043 mod = btf_try_get_module(btf); 2044 if (!mod) { 2045 btf_put(btf); 2046 return ERR_PTR(-ENXIO); 2047 } 2048 2049 b = &tab->descs[tab->nr_descs++]; 2050 b->btf = btf; 2051 b->module = mod; 2052 b->offset = offset; 2053 2054 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2055 kfunc_btf_cmp_by_off, NULL); 2056 } 2057 return b->btf; 2058 } 2059 2060 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2061 { 2062 if (!tab) 2063 return; 2064 2065 while (tab->nr_descs--) { 2066 module_put(tab->descs[tab->nr_descs].module); 2067 btf_put(tab->descs[tab->nr_descs].btf); 2068 } 2069 kfree(tab); 2070 } 2071 2072 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2073 { 2074 if (offset) { 2075 if (offset < 0) { 2076 /* In the future, this can be allowed to increase limit 2077 * of fd index into fd_array, interpreted as u16. 2078 */ 2079 verbose(env, "negative offset disallowed for kernel module function call\n"); 2080 return ERR_PTR(-EINVAL); 2081 } 2082 2083 return __find_kfunc_desc_btf(env, offset); 2084 } 2085 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2086 } 2087 2088 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2089 { 2090 const struct btf_type *func, *func_proto; 2091 struct bpf_kfunc_btf_tab *btf_tab; 2092 struct bpf_kfunc_desc_tab *tab; 2093 struct bpf_prog_aux *prog_aux; 2094 struct bpf_kfunc_desc *desc; 2095 const char *func_name; 2096 struct btf *desc_btf; 2097 unsigned long call_imm; 2098 unsigned long addr; 2099 int err; 2100 2101 prog_aux = env->prog->aux; 2102 tab = prog_aux->kfunc_tab; 2103 btf_tab = prog_aux->kfunc_btf_tab; 2104 if (!tab) { 2105 if (!btf_vmlinux) { 2106 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2107 return -ENOTSUPP; 2108 } 2109 2110 if (!env->prog->jit_requested) { 2111 verbose(env, "JIT is required for calling kernel function\n"); 2112 return -ENOTSUPP; 2113 } 2114 2115 if (!bpf_jit_supports_kfunc_call()) { 2116 verbose(env, "JIT does not support calling kernel function\n"); 2117 return -ENOTSUPP; 2118 } 2119 2120 if (!env->prog->gpl_compatible) { 2121 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2122 return -EINVAL; 2123 } 2124 2125 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2126 if (!tab) 2127 return -ENOMEM; 2128 prog_aux->kfunc_tab = tab; 2129 } 2130 2131 /* func_id == 0 is always invalid, but instead of returning an error, be 2132 * conservative and wait until the code elimination pass before returning 2133 * error, so that invalid calls that get pruned out can be in BPF programs 2134 * loaded from userspace. It is also required that offset be untouched 2135 * for such calls. 2136 */ 2137 if (!func_id && !offset) 2138 return 0; 2139 2140 if (!btf_tab && offset) { 2141 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2142 if (!btf_tab) 2143 return -ENOMEM; 2144 prog_aux->kfunc_btf_tab = btf_tab; 2145 } 2146 2147 desc_btf = find_kfunc_desc_btf(env, offset); 2148 if (IS_ERR(desc_btf)) { 2149 verbose(env, "failed to find BTF for kernel function\n"); 2150 return PTR_ERR(desc_btf); 2151 } 2152 2153 if (find_kfunc_desc(env->prog, func_id, offset)) 2154 return 0; 2155 2156 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2157 verbose(env, "too many different kernel function calls\n"); 2158 return -E2BIG; 2159 } 2160 2161 func = btf_type_by_id(desc_btf, func_id); 2162 if (!func || !btf_type_is_func(func)) { 2163 verbose(env, "kernel btf_id %u is not a function\n", 2164 func_id); 2165 return -EINVAL; 2166 } 2167 func_proto = btf_type_by_id(desc_btf, func->type); 2168 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2169 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2170 func_id); 2171 return -EINVAL; 2172 } 2173 2174 func_name = btf_name_by_offset(desc_btf, func->name_off); 2175 addr = kallsyms_lookup_name(func_name); 2176 if (!addr) { 2177 verbose(env, "cannot find address for kernel function %s\n", 2178 func_name); 2179 return -EINVAL; 2180 } 2181 2182 call_imm = BPF_CALL_IMM(addr); 2183 /* Check whether or not the relative offset overflows desc->imm */ 2184 if ((unsigned long)(s32)call_imm != call_imm) { 2185 verbose(env, "address of kernel function %s is out of range\n", 2186 func_name); 2187 return -EINVAL; 2188 } 2189 2190 desc = &tab->descs[tab->nr_descs++]; 2191 desc->func_id = func_id; 2192 desc->imm = call_imm; 2193 desc->offset = offset; 2194 err = btf_distill_func_proto(&env->log, desc_btf, 2195 func_proto, func_name, 2196 &desc->func_model); 2197 if (!err) 2198 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2199 kfunc_desc_cmp_by_id_off, NULL); 2200 return err; 2201 } 2202 2203 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2204 { 2205 const struct bpf_kfunc_desc *d0 = a; 2206 const struct bpf_kfunc_desc *d1 = b; 2207 2208 if (d0->imm > d1->imm) 2209 return 1; 2210 else if (d0->imm < d1->imm) 2211 return -1; 2212 return 0; 2213 } 2214 2215 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2216 { 2217 struct bpf_kfunc_desc_tab *tab; 2218 2219 tab = prog->aux->kfunc_tab; 2220 if (!tab) 2221 return; 2222 2223 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2224 kfunc_desc_cmp_by_imm, NULL); 2225 } 2226 2227 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2228 { 2229 return !!prog->aux->kfunc_tab; 2230 } 2231 2232 const struct btf_func_model * 2233 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2234 const struct bpf_insn *insn) 2235 { 2236 const struct bpf_kfunc_desc desc = { 2237 .imm = insn->imm, 2238 }; 2239 const struct bpf_kfunc_desc *res; 2240 struct bpf_kfunc_desc_tab *tab; 2241 2242 tab = prog->aux->kfunc_tab; 2243 res = bsearch(&desc, tab->descs, tab->nr_descs, 2244 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2245 2246 return res ? &res->func_model : NULL; 2247 } 2248 2249 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2250 { 2251 struct bpf_subprog_info *subprog = env->subprog_info; 2252 struct bpf_insn *insn = env->prog->insnsi; 2253 int i, ret, insn_cnt = env->prog->len; 2254 2255 /* Add entry function. */ 2256 ret = add_subprog(env, 0); 2257 if (ret) 2258 return ret; 2259 2260 for (i = 0; i < insn_cnt; i++, insn++) { 2261 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2262 !bpf_pseudo_kfunc_call(insn)) 2263 continue; 2264 2265 if (!env->bpf_capable) { 2266 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2267 return -EPERM; 2268 } 2269 2270 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2271 ret = add_subprog(env, i + insn->imm + 1); 2272 else 2273 ret = add_kfunc_call(env, insn->imm, insn->off); 2274 2275 if (ret < 0) 2276 return ret; 2277 } 2278 2279 /* Add a fake 'exit' subprog which could simplify subprog iteration 2280 * logic. 'subprog_cnt' should not be increased. 2281 */ 2282 subprog[env->subprog_cnt].start = insn_cnt; 2283 2284 if (env->log.level & BPF_LOG_LEVEL2) 2285 for (i = 0; i < env->subprog_cnt; i++) 2286 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2287 2288 return 0; 2289 } 2290 2291 static int check_subprogs(struct bpf_verifier_env *env) 2292 { 2293 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2294 struct bpf_subprog_info *subprog = env->subprog_info; 2295 struct bpf_insn *insn = env->prog->insnsi; 2296 int insn_cnt = env->prog->len; 2297 2298 /* now check that all jumps are within the same subprog */ 2299 subprog_start = subprog[cur_subprog].start; 2300 subprog_end = subprog[cur_subprog + 1].start; 2301 for (i = 0; i < insn_cnt; i++) { 2302 u8 code = insn[i].code; 2303 2304 if (code == (BPF_JMP | BPF_CALL) && 2305 insn[i].imm == BPF_FUNC_tail_call && 2306 insn[i].src_reg != BPF_PSEUDO_CALL) 2307 subprog[cur_subprog].has_tail_call = true; 2308 if (BPF_CLASS(code) == BPF_LD && 2309 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2310 subprog[cur_subprog].has_ld_abs = true; 2311 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2312 goto next; 2313 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2314 goto next; 2315 off = i + insn[i].off + 1; 2316 if (off < subprog_start || off >= subprog_end) { 2317 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2318 return -EINVAL; 2319 } 2320 next: 2321 if (i == subprog_end - 1) { 2322 /* to avoid fall-through from one subprog into another 2323 * the last insn of the subprog should be either exit 2324 * or unconditional jump back 2325 */ 2326 if (code != (BPF_JMP | BPF_EXIT) && 2327 code != (BPF_JMP | BPF_JA)) { 2328 verbose(env, "last insn is not an exit or jmp\n"); 2329 return -EINVAL; 2330 } 2331 subprog_start = subprog_end; 2332 cur_subprog++; 2333 if (cur_subprog < env->subprog_cnt) 2334 subprog_end = subprog[cur_subprog + 1].start; 2335 } 2336 } 2337 return 0; 2338 } 2339 2340 /* Parentage chain of this register (or stack slot) should take care of all 2341 * issues like callee-saved registers, stack slot allocation time, etc. 2342 */ 2343 static int mark_reg_read(struct bpf_verifier_env *env, 2344 const struct bpf_reg_state *state, 2345 struct bpf_reg_state *parent, u8 flag) 2346 { 2347 bool writes = parent == state->parent; /* Observe write marks */ 2348 int cnt = 0; 2349 2350 while (parent) { 2351 /* if read wasn't screened by an earlier write ... */ 2352 if (writes && state->live & REG_LIVE_WRITTEN) 2353 break; 2354 if (parent->live & REG_LIVE_DONE) { 2355 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2356 reg_type_str(env, parent->type), 2357 parent->var_off.value, parent->off); 2358 return -EFAULT; 2359 } 2360 /* The first condition is more likely to be true than the 2361 * second, checked it first. 2362 */ 2363 if ((parent->live & REG_LIVE_READ) == flag || 2364 parent->live & REG_LIVE_READ64) 2365 /* The parentage chain never changes and 2366 * this parent was already marked as LIVE_READ. 2367 * There is no need to keep walking the chain again and 2368 * keep re-marking all parents as LIVE_READ. 2369 * This case happens when the same register is read 2370 * multiple times without writes into it in-between. 2371 * Also, if parent has the stronger REG_LIVE_READ64 set, 2372 * then no need to set the weak REG_LIVE_READ32. 2373 */ 2374 break; 2375 /* ... then we depend on parent's value */ 2376 parent->live |= flag; 2377 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2378 if (flag == REG_LIVE_READ64) 2379 parent->live &= ~REG_LIVE_READ32; 2380 state = parent; 2381 parent = state->parent; 2382 writes = true; 2383 cnt++; 2384 } 2385 2386 if (env->longest_mark_read_walk < cnt) 2387 env->longest_mark_read_walk = cnt; 2388 return 0; 2389 } 2390 2391 /* This function is supposed to be used by the following 32-bit optimization 2392 * code only. It returns TRUE if the source or destination register operates 2393 * on 64-bit, otherwise return FALSE. 2394 */ 2395 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2396 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2397 { 2398 u8 code, class, op; 2399 2400 code = insn->code; 2401 class = BPF_CLASS(code); 2402 op = BPF_OP(code); 2403 if (class == BPF_JMP) { 2404 /* BPF_EXIT for "main" will reach here. Return TRUE 2405 * conservatively. 2406 */ 2407 if (op == BPF_EXIT) 2408 return true; 2409 if (op == BPF_CALL) { 2410 /* BPF to BPF call will reach here because of marking 2411 * caller saved clobber with DST_OP_NO_MARK for which we 2412 * don't care the register def because they are anyway 2413 * marked as NOT_INIT already. 2414 */ 2415 if (insn->src_reg == BPF_PSEUDO_CALL) 2416 return false; 2417 /* Helper call will reach here because of arg type 2418 * check, conservatively return TRUE. 2419 */ 2420 if (t == SRC_OP) 2421 return true; 2422 2423 return false; 2424 } 2425 } 2426 2427 if (class == BPF_ALU64 || class == BPF_JMP || 2428 /* BPF_END always use BPF_ALU class. */ 2429 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2430 return true; 2431 2432 if (class == BPF_ALU || class == BPF_JMP32) 2433 return false; 2434 2435 if (class == BPF_LDX) { 2436 if (t != SRC_OP) 2437 return BPF_SIZE(code) == BPF_DW; 2438 /* LDX source must be ptr. */ 2439 return true; 2440 } 2441 2442 if (class == BPF_STX) { 2443 /* BPF_STX (including atomic variants) has multiple source 2444 * operands, one of which is a ptr. Check whether the caller is 2445 * asking about it. 2446 */ 2447 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2448 return true; 2449 return BPF_SIZE(code) == BPF_DW; 2450 } 2451 2452 if (class == BPF_LD) { 2453 u8 mode = BPF_MODE(code); 2454 2455 /* LD_IMM64 */ 2456 if (mode == BPF_IMM) 2457 return true; 2458 2459 /* Both LD_IND and LD_ABS return 32-bit data. */ 2460 if (t != SRC_OP) 2461 return false; 2462 2463 /* Implicit ctx ptr. */ 2464 if (regno == BPF_REG_6) 2465 return true; 2466 2467 /* Explicit source could be any width. */ 2468 return true; 2469 } 2470 2471 if (class == BPF_ST) 2472 /* The only source register for BPF_ST is a ptr. */ 2473 return true; 2474 2475 /* Conservatively return true at default. */ 2476 return true; 2477 } 2478 2479 /* Return the regno defined by the insn, or -1. */ 2480 static int insn_def_regno(const struct bpf_insn *insn) 2481 { 2482 switch (BPF_CLASS(insn->code)) { 2483 case BPF_JMP: 2484 case BPF_JMP32: 2485 case BPF_ST: 2486 return -1; 2487 case BPF_STX: 2488 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2489 (insn->imm & BPF_FETCH)) { 2490 if (insn->imm == BPF_CMPXCHG) 2491 return BPF_REG_0; 2492 else 2493 return insn->src_reg; 2494 } else { 2495 return -1; 2496 } 2497 default: 2498 return insn->dst_reg; 2499 } 2500 } 2501 2502 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2503 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2504 { 2505 int dst_reg = insn_def_regno(insn); 2506 2507 if (dst_reg == -1) 2508 return false; 2509 2510 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2511 } 2512 2513 static void mark_insn_zext(struct bpf_verifier_env *env, 2514 struct bpf_reg_state *reg) 2515 { 2516 s32 def_idx = reg->subreg_def; 2517 2518 if (def_idx == DEF_NOT_SUBREG) 2519 return; 2520 2521 env->insn_aux_data[def_idx - 1].zext_dst = true; 2522 /* The dst will be zero extended, so won't be sub-register anymore. */ 2523 reg->subreg_def = DEF_NOT_SUBREG; 2524 } 2525 2526 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2527 enum reg_arg_type t) 2528 { 2529 struct bpf_verifier_state *vstate = env->cur_state; 2530 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2531 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2532 struct bpf_reg_state *reg, *regs = state->regs; 2533 bool rw64; 2534 2535 if (regno >= MAX_BPF_REG) { 2536 verbose(env, "R%d is invalid\n", regno); 2537 return -EINVAL; 2538 } 2539 2540 mark_reg_scratched(env, regno); 2541 2542 reg = ®s[regno]; 2543 rw64 = is_reg64(env, insn, regno, reg, t); 2544 if (t == SRC_OP) { 2545 /* check whether register used as source operand can be read */ 2546 if (reg->type == NOT_INIT) { 2547 verbose(env, "R%d !read_ok\n", regno); 2548 return -EACCES; 2549 } 2550 /* We don't need to worry about FP liveness because it's read-only */ 2551 if (regno == BPF_REG_FP) 2552 return 0; 2553 2554 if (rw64) 2555 mark_insn_zext(env, reg); 2556 2557 return mark_reg_read(env, reg, reg->parent, 2558 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2559 } else { 2560 /* check whether register used as dest operand can be written to */ 2561 if (regno == BPF_REG_FP) { 2562 verbose(env, "frame pointer is read only\n"); 2563 return -EACCES; 2564 } 2565 reg->live |= REG_LIVE_WRITTEN; 2566 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2567 if (t == DST_OP) 2568 mark_reg_unknown(env, regs, regno); 2569 } 2570 return 0; 2571 } 2572 2573 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2574 { 2575 env->insn_aux_data[idx].jmp_point = true; 2576 } 2577 2578 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2579 { 2580 return env->insn_aux_data[insn_idx].jmp_point; 2581 } 2582 2583 /* for any branch, call, exit record the history of jmps in the given state */ 2584 static int push_jmp_history(struct bpf_verifier_env *env, 2585 struct bpf_verifier_state *cur) 2586 { 2587 u32 cnt = cur->jmp_history_cnt; 2588 struct bpf_idx_pair *p; 2589 size_t alloc_size; 2590 2591 if (!is_jmp_point(env, env->insn_idx)) 2592 return 0; 2593 2594 cnt++; 2595 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2596 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2597 if (!p) 2598 return -ENOMEM; 2599 p[cnt - 1].idx = env->insn_idx; 2600 p[cnt - 1].prev_idx = env->prev_insn_idx; 2601 cur->jmp_history = p; 2602 cur->jmp_history_cnt = cnt; 2603 return 0; 2604 } 2605 2606 /* Backtrack one insn at a time. If idx is not at the top of recorded 2607 * history then previous instruction came from straight line execution. 2608 */ 2609 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2610 u32 *history) 2611 { 2612 u32 cnt = *history; 2613 2614 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2615 i = st->jmp_history[cnt - 1].prev_idx; 2616 (*history)--; 2617 } else { 2618 i--; 2619 } 2620 return i; 2621 } 2622 2623 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2624 { 2625 const struct btf_type *func; 2626 struct btf *desc_btf; 2627 2628 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2629 return NULL; 2630 2631 desc_btf = find_kfunc_desc_btf(data, insn->off); 2632 if (IS_ERR(desc_btf)) 2633 return "<error>"; 2634 2635 func = btf_type_by_id(desc_btf, insn->imm); 2636 return btf_name_by_offset(desc_btf, func->name_off); 2637 } 2638 2639 /* For given verifier state backtrack_insn() is called from the last insn to 2640 * the first insn. Its purpose is to compute a bitmask of registers and 2641 * stack slots that needs precision in the parent verifier state. 2642 */ 2643 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2644 u32 *reg_mask, u64 *stack_mask) 2645 { 2646 const struct bpf_insn_cbs cbs = { 2647 .cb_call = disasm_kfunc_name, 2648 .cb_print = verbose, 2649 .private_data = env, 2650 }; 2651 struct bpf_insn *insn = env->prog->insnsi + idx; 2652 u8 class = BPF_CLASS(insn->code); 2653 u8 opcode = BPF_OP(insn->code); 2654 u8 mode = BPF_MODE(insn->code); 2655 u32 dreg = 1u << insn->dst_reg; 2656 u32 sreg = 1u << insn->src_reg; 2657 u32 spi; 2658 2659 if (insn->code == 0) 2660 return 0; 2661 if (env->log.level & BPF_LOG_LEVEL2) { 2662 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2663 verbose(env, "%d: ", idx); 2664 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2665 } 2666 2667 if (class == BPF_ALU || class == BPF_ALU64) { 2668 if (!(*reg_mask & dreg)) 2669 return 0; 2670 if (opcode == BPF_MOV) { 2671 if (BPF_SRC(insn->code) == BPF_X) { 2672 /* dreg = sreg 2673 * dreg needs precision after this insn 2674 * sreg needs precision before this insn 2675 */ 2676 *reg_mask &= ~dreg; 2677 *reg_mask |= sreg; 2678 } else { 2679 /* dreg = K 2680 * dreg needs precision after this insn. 2681 * Corresponding register is already marked 2682 * as precise=true in this verifier state. 2683 * No further markings in parent are necessary 2684 */ 2685 *reg_mask &= ~dreg; 2686 } 2687 } else { 2688 if (BPF_SRC(insn->code) == BPF_X) { 2689 /* dreg += sreg 2690 * both dreg and sreg need precision 2691 * before this insn 2692 */ 2693 *reg_mask |= sreg; 2694 } /* else dreg += K 2695 * dreg still needs precision before this insn 2696 */ 2697 } 2698 } else if (class == BPF_LDX) { 2699 if (!(*reg_mask & dreg)) 2700 return 0; 2701 *reg_mask &= ~dreg; 2702 2703 /* scalars can only be spilled into stack w/o losing precision. 2704 * Load from any other memory can be zero extended. 2705 * The desire to keep that precision is already indicated 2706 * by 'precise' mark in corresponding register of this state. 2707 * No further tracking necessary. 2708 */ 2709 if (insn->src_reg != BPF_REG_FP) 2710 return 0; 2711 2712 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2713 * that [fp - off] slot contains scalar that needs to be 2714 * tracked with precision 2715 */ 2716 spi = (-insn->off - 1) / BPF_REG_SIZE; 2717 if (spi >= 64) { 2718 verbose(env, "BUG spi %d\n", spi); 2719 WARN_ONCE(1, "verifier backtracking bug"); 2720 return -EFAULT; 2721 } 2722 *stack_mask |= 1ull << spi; 2723 } else if (class == BPF_STX || class == BPF_ST) { 2724 if (*reg_mask & dreg) 2725 /* stx & st shouldn't be using _scalar_ dst_reg 2726 * to access memory. It means backtracking 2727 * encountered a case of pointer subtraction. 2728 */ 2729 return -ENOTSUPP; 2730 /* scalars can only be spilled into stack */ 2731 if (insn->dst_reg != BPF_REG_FP) 2732 return 0; 2733 spi = (-insn->off - 1) / BPF_REG_SIZE; 2734 if (spi >= 64) { 2735 verbose(env, "BUG spi %d\n", spi); 2736 WARN_ONCE(1, "verifier backtracking bug"); 2737 return -EFAULT; 2738 } 2739 if (!(*stack_mask & (1ull << spi))) 2740 return 0; 2741 *stack_mask &= ~(1ull << spi); 2742 if (class == BPF_STX) 2743 *reg_mask |= sreg; 2744 } else if (class == BPF_JMP || class == BPF_JMP32) { 2745 if (opcode == BPF_CALL) { 2746 if (insn->src_reg == BPF_PSEUDO_CALL) 2747 return -ENOTSUPP; 2748 /* BPF helpers that invoke callback subprogs are 2749 * equivalent to BPF_PSEUDO_CALL above 2750 */ 2751 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2752 return -ENOTSUPP; 2753 /* regular helper call sets R0 */ 2754 *reg_mask &= ~1; 2755 if (*reg_mask & 0x3f) { 2756 /* if backtracing was looking for registers R1-R5 2757 * they should have been found already. 2758 */ 2759 verbose(env, "BUG regs %x\n", *reg_mask); 2760 WARN_ONCE(1, "verifier backtracking bug"); 2761 return -EFAULT; 2762 } 2763 } else if (opcode == BPF_EXIT) { 2764 return -ENOTSUPP; 2765 } 2766 } else if (class == BPF_LD) { 2767 if (!(*reg_mask & dreg)) 2768 return 0; 2769 *reg_mask &= ~dreg; 2770 /* It's ld_imm64 or ld_abs or ld_ind. 2771 * For ld_imm64 no further tracking of precision 2772 * into parent is necessary 2773 */ 2774 if (mode == BPF_IND || mode == BPF_ABS) 2775 /* to be analyzed */ 2776 return -ENOTSUPP; 2777 } 2778 return 0; 2779 } 2780 2781 /* the scalar precision tracking algorithm: 2782 * . at the start all registers have precise=false. 2783 * . scalar ranges are tracked as normal through alu and jmp insns. 2784 * . once precise value of the scalar register is used in: 2785 * . ptr + scalar alu 2786 * . if (scalar cond K|scalar) 2787 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2788 * backtrack through the verifier states and mark all registers and 2789 * stack slots with spilled constants that these scalar regisers 2790 * should be precise. 2791 * . during state pruning two registers (or spilled stack slots) 2792 * are equivalent if both are not precise. 2793 * 2794 * Note the verifier cannot simply walk register parentage chain, 2795 * since many different registers and stack slots could have been 2796 * used to compute single precise scalar. 2797 * 2798 * The approach of starting with precise=true for all registers and then 2799 * backtrack to mark a register as not precise when the verifier detects 2800 * that program doesn't care about specific value (e.g., when helper 2801 * takes register as ARG_ANYTHING parameter) is not safe. 2802 * 2803 * It's ok to walk single parentage chain of the verifier states. 2804 * It's possible that this backtracking will go all the way till 1st insn. 2805 * All other branches will be explored for needing precision later. 2806 * 2807 * The backtracking needs to deal with cases like: 2808 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2809 * r9 -= r8 2810 * r5 = r9 2811 * if r5 > 0x79f goto pc+7 2812 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2813 * r5 += 1 2814 * ... 2815 * call bpf_perf_event_output#25 2816 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2817 * 2818 * and this case: 2819 * r6 = 1 2820 * call foo // uses callee's r6 inside to compute r0 2821 * r0 += r6 2822 * if r0 == 0 goto 2823 * 2824 * to track above reg_mask/stack_mask needs to be independent for each frame. 2825 * 2826 * Also if parent's curframe > frame where backtracking started, 2827 * the verifier need to mark registers in both frames, otherwise callees 2828 * may incorrectly prune callers. This is similar to 2829 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2830 * 2831 * For now backtracking falls back into conservative marking. 2832 */ 2833 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2834 struct bpf_verifier_state *st) 2835 { 2836 struct bpf_func_state *func; 2837 struct bpf_reg_state *reg; 2838 int i, j; 2839 2840 /* big hammer: mark all scalars precise in this path. 2841 * pop_stack may still get !precise scalars. 2842 * We also skip current state and go straight to first parent state, 2843 * because precision markings in current non-checkpointed state are 2844 * not needed. See why in the comment in __mark_chain_precision below. 2845 */ 2846 for (st = st->parent; st; st = st->parent) { 2847 for (i = 0; i <= st->curframe; i++) { 2848 func = st->frame[i]; 2849 for (j = 0; j < BPF_REG_FP; j++) { 2850 reg = &func->regs[j]; 2851 if (reg->type != SCALAR_VALUE) 2852 continue; 2853 reg->precise = true; 2854 } 2855 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2856 if (!is_spilled_reg(&func->stack[j])) 2857 continue; 2858 reg = &func->stack[j].spilled_ptr; 2859 if (reg->type != SCALAR_VALUE) 2860 continue; 2861 reg->precise = true; 2862 } 2863 } 2864 } 2865 } 2866 2867 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2868 { 2869 struct bpf_func_state *func; 2870 struct bpf_reg_state *reg; 2871 int i, j; 2872 2873 for (i = 0; i <= st->curframe; i++) { 2874 func = st->frame[i]; 2875 for (j = 0; j < BPF_REG_FP; j++) { 2876 reg = &func->regs[j]; 2877 if (reg->type != SCALAR_VALUE) 2878 continue; 2879 reg->precise = false; 2880 } 2881 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2882 if (!is_spilled_reg(&func->stack[j])) 2883 continue; 2884 reg = &func->stack[j].spilled_ptr; 2885 if (reg->type != SCALAR_VALUE) 2886 continue; 2887 reg->precise = false; 2888 } 2889 } 2890 } 2891 2892 /* 2893 * __mark_chain_precision() backtracks BPF program instruction sequence and 2894 * chain of verifier states making sure that register *regno* (if regno >= 0) 2895 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 2896 * SCALARS, as well as any other registers and slots that contribute to 2897 * a tracked state of given registers/stack slots, depending on specific BPF 2898 * assembly instructions (see backtrack_insns() for exact instruction handling 2899 * logic). This backtracking relies on recorded jmp_history and is able to 2900 * traverse entire chain of parent states. This process ends only when all the 2901 * necessary registers/slots and their transitive dependencies are marked as 2902 * precise. 2903 * 2904 * One important and subtle aspect is that precise marks *do not matter* in 2905 * the currently verified state (current state). It is important to understand 2906 * why this is the case. 2907 * 2908 * First, note that current state is the state that is not yet "checkpointed", 2909 * i.e., it is not yet put into env->explored_states, and it has no children 2910 * states as well. It's ephemeral, and can end up either a) being discarded if 2911 * compatible explored state is found at some point or BPF_EXIT instruction is 2912 * reached or b) checkpointed and put into env->explored_states, branching out 2913 * into one or more children states. 2914 * 2915 * In the former case, precise markings in current state are completely 2916 * ignored by state comparison code (see regsafe() for details). Only 2917 * checkpointed ("old") state precise markings are important, and if old 2918 * state's register/slot is precise, regsafe() assumes current state's 2919 * register/slot as precise and checks value ranges exactly and precisely. If 2920 * states turn out to be compatible, current state's necessary precise 2921 * markings and any required parent states' precise markings are enforced 2922 * after the fact with propagate_precision() logic, after the fact. But it's 2923 * important to realize that in this case, even after marking current state 2924 * registers/slots as precise, we immediately discard current state. So what 2925 * actually matters is any of the precise markings propagated into current 2926 * state's parent states, which are always checkpointed (due to b) case above). 2927 * As such, for scenario a) it doesn't matter if current state has precise 2928 * markings set or not. 2929 * 2930 * Now, for the scenario b), checkpointing and forking into child(ren) 2931 * state(s). Note that before current state gets to checkpointing step, any 2932 * processed instruction always assumes precise SCALAR register/slot 2933 * knowledge: if precise value or range is useful to prune jump branch, BPF 2934 * verifier takes this opportunity enthusiastically. Similarly, when 2935 * register's value is used to calculate offset or memory address, exact 2936 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 2937 * what we mentioned above about state comparison ignoring precise markings 2938 * during state comparison, BPF verifier ignores and also assumes precise 2939 * markings *at will* during instruction verification process. But as verifier 2940 * assumes precision, it also propagates any precision dependencies across 2941 * parent states, which are not yet finalized, so can be further restricted 2942 * based on new knowledge gained from restrictions enforced by their children 2943 * states. This is so that once those parent states are finalized, i.e., when 2944 * they have no more active children state, state comparison logic in 2945 * is_state_visited() would enforce strict and precise SCALAR ranges, if 2946 * required for correctness. 2947 * 2948 * To build a bit more intuition, note also that once a state is checkpointed, 2949 * the path we took to get to that state is not important. This is crucial 2950 * property for state pruning. When state is checkpointed and finalized at 2951 * some instruction index, it can be correctly and safely used to "short 2952 * circuit" any *compatible* state that reaches exactly the same instruction 2953 * index. I.e., if we jumped to that instruction from a completely different 2954 * code path than original finalized state was derived from, it doesn't 2955 * matter, current state can be discarded because from that instruction 2956 * forward having a compatible state will ensure we will safely reach the 2957 * exit. States describe preconditions for further exploration, but completely 2958 * forget the history of how we got here. 2959 * 2960 * This also means that even if we needed precise SCALAR range to get to 2961 * finalized state, but from that point forward *that same* SCALAR register is 2962 * never used in a precise context (i.e., it's precise value is not needed for 2963 * correctness), it's correct and safe to mark such register as "imprecise" 2964 * (i.e., precise marking set to false). This is what we rely on when we do 2965 * not set precise marking in current state. If no child state requires 2966 * precision for any given SCALAR register, it's safe to dictate that it can 2967 * be imprecise. If any child state does require this register to be precise, 2968 * we'll mark it precise later retroactively during precise markings 2969 * propagation from child state to parent states. 2970 * 2971 * Skipping precise marking setting in current state is a mild version of 2972 * relying on the above observation. But we can utilize this property even 2973 * more aggressively by proactively forgetting any precise marking in the 2974 * current state (which we inherited from the parent state), right before we 2975 * checkpoint it and branch off into new child state. This is done by 2976 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 2977 * finalized states which help in short circuiting more future states. 2978 */ 2979 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 2980 int spi) 2981 { 2982 struct bpf_verifier_state *st = env->cur_state; 2983 int first_idx = st->first_insn_idx; 2984 int last_idx = env->insn_idx; 2985 struct bpf_func_state *func; 2986 struct bpf_reg_state *reg; 2987 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2988 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2989 bool skip_first = true; 2990 bool new_marks = false; 2991 int i, err; 2992 2993 if (!env->bpf_capable) 2994 return 0; 2995 2996 /* Do sanity checks against current state of register and/or stack 2997 * slot, but don't set precise flag in current state, as precision 2998 * tracking in the current state is unnecessary. 2999 */ 3000 func = st->frame[frame]; 3001 if (regno >= 0) { 3002 reg = &func->regs[regno]; 3003 if (reg->type != SCALAR_VALUE) { 3004 WARN_ONCE(1, "backtracing misuse"); 3005 return -EFAULT; 3006 } 3007 new_marks = true; 3008 } 3009 3010 while (spi >= 0) { 3011 if (!is_spilled_reg(&func->stack[spi])) { 3012 stack_mask = 0; 3013 break; 3014 } 3015 reg = &func->stack[spi].spilled_ptr; 3016 if (reg->type != SCALAR_VALUE) { 3017 stack_mask = 0; 3018 break; 3019 } 3020 new_marks = true; 3021 break; 3022 } 3023 3024 if (!new_marks) 3025 return 0; 3026 if (!reg_mask && !stack_mask) 3027 return 0; 3028 3029 for (;;) { 3030 DECLARE_BITMAP(mask, 64); 3031 u32 history = st->jmp_history_cnt; 3032 3033 if (env->log.level & BPF_LOG_LEVEL2) 3034 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3035 3036 if (last_idx < 0) { 3037 /* we are at the entry into subprog, which 3038 * is expected for global funcs, but only if 3039 * requested precise registers are R1-R5 3040 * (which are global func's input arguments) 3041 */ 3042 if (st->curframe == 0 && 3043 st->frame[0]->subprogno > 0 && 3044 st->frame[0]->callsite == BPF_MAIN_FUNC && 3045 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3046 bitmap_from_u64(mask, reg_mask); 3047 for_each_set_bit(i, mask, 32) { 3048 reg = &st->frame[0]->regs[i]; 3049 if (reg->type != SCALAR_VALUE) { 3050 reg_mask &= ~(1u << i); 3051 continue; 3052 } 3053 reg->precise = true; 3054 } 3055 return 0; 3056 } 3057 3058 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3059 st->frame[0]->subprogno, reg_mask, stack_mask); 3060 WARN_ONCE(1, "verifier backtracking bug"); 3061 return -EFAULT; 3062 } 3063 3064 for (i = last_idx;;) { 3065 if (skip_first) { 3066 err = 0; 3067 skip_first = false; 3068 } else { 3069 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3070 } 3071 if (err == -ENOTSUPP) { 3072 mark_all_scalars_precise(env, st); 3073 return 0; 3074 } else if (err) { 3075 return err; 3076 } 3077 if (!reg_mask && !stack_mask) 3078 /* Found assignment(s) into tracked register in this state. 3079 * Since this state is already marked, just return. 3080 * Nothing to be tracked further in the parent state. 3081 */ 3082 return 0; 3083 if (i == first_idx) 3084 break; 3085 i = get_prev_insn_idx(st, i, &history); 3086 if (i >= env->prog->len) { 3087 /* This can happen if backtracking reached insn 0 3088 * and there are still reg_mask or stack_mask 3089 * to backtrack. 3090 * It means the backtracking missed the spot where 3091 * particular register was initialized with a constant. 3092 */ 3093 verbose(env, "BUG backtracking idx %d\n", i); 3094 WARN_ONCE(1, "verifier backtracking bug"); 3095 return -EFAULT; 3096 } 3097 } 3098 st = st->parent; 3099 if (!st) 3100 break; 3101 3102 new_marks = false; 3103 func = st->frame[frame]; 3104 bitmap_from_u64(mask, reg_mask); 3105 for_each_set_bit(i, mask, 32) { 3106 reg = &func->regs[i]; 3107 if (reg->type != SCALAR_VALUE) { 3108 reg_mask &= ~(1u << i); 3109 continue; 3110 } 3111 if (!reg->precise) 3112 new_marks = true; 3113 reg->precise = true; 3114 } 3115 3116 bitmap_from_u64(mask, stack_mask); 3117 for_each_set_bit(i, mask, 64) { 3118 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3119 /* the sequence of instructions: 3120 * 2: (bf) r3 = r10 3121 * 3: (7b) *(u64 *)(r3 -8) = r0 3122 * 4: (79) r4 = *(u64 *)(r10 -8) 3123 * doesn't contain jmps. It's backtracked 3124 * as a single block. 3125 * During backtracking insn 3 is not recognized as 3126 * stack access, so at the end of backtracking 3127 * stack slot fp-8 is still marked in stack_mask. 3128 * However the parent state may not have accessed 3129 * fp-8 and it's "unallocated" stack space. 3130 * In such case fallback to conservative. 3131 */ 3132 mark_all_scalars_precise(env, st); 3133 return 0; 3134 } 3135 3136 if (!is_spilled_reg(&func->stack[i])) { 3137 stack_mask &= ~(1ull << i); 3138 continue; 3139 } 3140 reg = &func->stack[i].spilled_ptr; 3141 if (reg->type != SCALAR_VALUE) { 3142 stack_mask &= ~(1ull << i); 3143 continue; 3144 } 3145 if (!reg->precise) 3146 new_marks = true; 3147 reg->precise = true; 3148 } 3149 if (env->log.level & BPF_LOG_LEVEL2) { 3150 verbose(env, "parent %s regs=%x stack=%llx marks:", 3151 new_marks ? "didn't have" : "already had", 3152 reg_mask, stack_mask); 3153 print_verifier_state(env, func, true); 3154 } 3155 3156 if (!reg_mask && !stack_mask) 3157 break; 3158 if (!new_marks) 3159 break; 3160 3161 last_idx = st->last_insn_idx; 3162 first_idx = st->first_insn_idx; 3163 } 3164 return 0; 3165 } 3166 3167 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3168 { 3169 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3170 } 3171 3172 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3173 { 3174 return __mark_chain_precision(env, frame, regno, -1); 3175 } 3176 3177 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3178 { 3179 return __mark_chain_precision(env, frame, -1, spi); 3180 } 3181 3182 static bool is_spillable_regtype(enum bpf_reg_type type) 3183 { 3184 switch (base_type(type)) { 3185 case PTR_TO_MAP_VALUE: 3186 case PTR_TO_STACK: 3187 case PTR_TO_CTX: 3188 case PTR_TO_PACKET: 3189 case PTR_TO_PACKET_META: 3190 case PTR_TO_PACKET_END: 3191 case PTR_TO_FLOW_KEYS: 3192 case CONST_PTR_TO_MAP: 3193 case PTR_TO_SOCKET: 3194 case PTR_TO_SOCK_COMMON: 3195 case PTR_TO_TCP_SOCK: 3196 case PTR_TO_XDP_SOCK: 3197 case PTR_TO_BTF_ID: 3198 case PTR_TO_BUF: 3199 case PTR_TO_MEM: 3200 case PTR_TO_FUNC: 3201 case PTR_TO_MAP_KEY: 3202 return true; 3203 default: 3204 return false; 3205 } 3206 } 3207 3208 /* Does this register contain a constant zero? */ 3209 static bool register_is_null(struct bpf_reg_state *reg) 3210 { 3211 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3212 } 3213 3214 static bool register_is_const(struct bpf_reg_state *reg) 3215 { 3216 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3217 } 3218 3219 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3220 { 3221 return tnum_is_unknown(reg->var_off) && 3222 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3223 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3224 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3225 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3226 } 3227 3228 static bool register_is_bounded(struct bpf_reg_state *reg) 3229 { 3230 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3231 } 3232 3233 static bool __is_pointer_value(bool allow_ptr_leaks, 3234 const struct bpf_reg_state *reg) 3235 { 3236 if (allow_ptr_leaks) 3237 return false; 3238 3239 return reg->type != SCALAR_VALUE; 3240 } 3241 3242 static void save_register_state(struct bpf_func_state *state, 3243 int spi, struct bpf_reg_state *reg, 3244 int size) 3245 { 3246 int i; 3247 3248 state->stack[spi].spilled_ptr = *reg; 3249 if (size == BPF_REG_SIZE) 3250 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3251 3252 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3253 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3254 3255 /* size < 8 bytes spill */ 3256 for (; i; i--) 3257 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3258 } 3259 3260 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3261 * stack boundary and alignment are checked in check_mem_access() 3262 */ 3263 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3264 /* stack frame we're writing to */ 3265 struct bpf_func_state *state, 3266 int off, int size, int value_regno, 3267 int insn_idx) 3268 { 3269 struct bpf_func_state *cur; /* state of the current function */ 3270 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3271 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3272 struct bpf_reg_state *reg = NULL; 3273 3274 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3275 if (err) 3276 return err; 3277 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3278 * so it's aligned access and [off, off + size) are within stack limits 3279 */ 3280 if (!env->allow_ptr_leaks && 3281 state->stack[spi].slot_type[0] == STACK_SPILL && 3282 size != BPF_REG_SIZE) { 3283 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3284 return -EACCES; 3285 } 3286 3287 cur = env->cur_state->frame[env->cur_state->curframe]; 3288 if (value_regno >= 0) 3289 reg = &cur->regs[value_regno]; 3290 if (!env->bypass_spec_v4) { 3291 bool sanitize = reg && is_spillable_regtype(reg->type); 3292 3293 for (i = 0; i < size; i++) { 3294 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3295 sanitize = true; 3296 break; 3297 } 3298 } 3299 3300 if (sanitize) 3301 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3302 } 3303 3304 mark_stack_slot_scratched(env, spi); 3305 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3306 !register_is_null(reg) && env->bpf_capable) { 3307 if (dst_reg != BPF_REG_FP) { 3308 /* The backtracking logic can only recognize explicit 3309 * stack slot address like [fp - 8]. Other spill of 3310 * scalar via different register has to be conservative. 3311 * Backtrack from here and mark all registers as precise 3312 * that contributed into 'reg' being a constant. 3313 */ 3314 err = mark_chain_precision(env, value_regno); 3315 if (err) 3316 return err; 3317 } 3318 save_register_state(state, spi, reg, size); 3319 } else if (reg && is_spillable_regtype(reg->type)) { 3320 /* register containing pointer is being spilled into stack */ 3321 if (size != BPF_REG_SIZE) { 3322 verbose_linfo(env, insn_idx, "; "); 3323 verbose(env, "invalid size of register spill\n"); 3324 return -EACCES; 3325 } 3326 if (state != cur && reg->type == PTR_TO_STACK) { 3327 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3328 return -EINVAL; 3329 } 3330 save_register_state(state, spi, reg, size); 3331 } else { 3332 u8 type = STACK_MISC; 3333 3334 /* regular write of data into stack destroys any spilled ptr */ 3335 state->stack[spi].spilled_ptr.type = NOT_INIT; 3336 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3337 if (is_spilled_reg(&state->stack[spi])) 3338 for (i = 0; i < BPF_REG_SIZE; i++) 3339 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3340 3341 /* only mark the slot as written if all 8 bytes were written 3342 * otherwise read propagation may incorrectly stop too soon 3343 * when stack slots are partially written. 3344 * This heuristic means that read propagation will be 3345 * conservative, since it will add reg_live_read marks 3346 * to stack slots all the way to first state when programs 3347 * writes+reads less than 8 bytes 3348 */ 3349 if (size == BPF_REG_SIZE) 3350 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3351 3352 /* when we zero initialize stack slots mark them as such */ 3353 if (reg && register_is_null(reg)) { 3354 /* backtracking doesn't work for STACK_ZERO yet. */ 3355 err = mark_chain_precision(env, value_regno); 3356 if (err) 3357 return err; 3358 type = STACK_ZERO; 3359 } 3360 3361 /* Mark slots affected by this stack write. */ 3362 for (i = 0; i < size; i++) 3363 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3364 type; 3365 } 3366 return 0; 3367 } 3368 3369 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3370 * known to contain a variable offset. 3371 * This function checks whether the write is permitted and conservatively 3372 * tracks the effects of the write, considering that each stack slot in the 3373 * dynamic range is potentially written to. 3374 * 3375 * 'off' includes 'regno->off'. 3376 * 'value_regno' can be -1, meaning that an unknown value is being written to 3377 * the stack. 3378 * 3379 * Spilled pointers in range are not marked as written because we don't know 3380 * what's going to be actually written. This means that read propagation for 3381 * future reads cannot be terminated by this write. 3382 * 3383 * For privileged programs, uninitialized stack slots are considered 3384 * initialized by this write (even though we don't know exactly what offsets 3385 * are going to be written to). The idea is that we don't want the verifier to 3386 * reject future reads that access slots written to through variable offsets. 3387 */ 3388 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3389 /* func where register points to */ 3390 struct bpf_func_state *state, 3391 int ptr_regno, int off, int size, 3392 int value_regno, int insn_idx) 3393 { 3394 struct bpf_func_state *cur; /* state of the current function */ 3395 int min_off, max_off; 3396 int i, err; 3397 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3398 bool writing_zero = false; 3399 /* set if the fact that we're writing a zero is used to let any 3400 * stack slots remain STACK_ZERO 3401 */ 3402 bool zero_used = false; 3403 3404 cur = env->cur_state->frame[env->cur_state->curframe]; 3405 ptr_reg = &cur->regs[ptr_regno]; 3406 min_off = ptr_reg->smin_value + off; 3407 max_off = ptr_reg->smax_value + off + size; 3408 if (value_regno >= 0) 3409 value_reg = &cur->regs[value_regno]; 3410 if (value_reg && register_is_null(value_reg)) 3411 writing_zero = true; 3412 3413 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3414 if (err) 3415 return err; 3416 3417 3418 /* Variable offset writes destroy any spilled pointers in range. */ 3419 for (i = min_off; i < max_off; i++) { 3420 u8 new_type, *stype; 3421 int slot, spi; 3422 3423 slot = -i - 1; 3424 spi = slot / BPF_REG_SIZE; 3425 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3426 mark_stack_slot_scratched(env, spi); 3427 3428 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3429 /* Reject the write if range we may write to has not 3430 * been initialized beforehand. If we didn't reject 3431 * here, the ptr status would be erased below (even 3432 * though not all slots are actually overwritten), 3433 * possibly opening the door to leaks. 3434 * 3435 * We do however catch STACK_INVALID case below, and 3436 * only allow reading possibly uninitialized memory 3437 * later for CAP_PERFMON, as the write may not happen to 3438 * that slot. 3439 */ 3440 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3441 insn_idx, i); 3442 return -EINVAL; 3443 } 3444 3445 /* Erase all spilled pointers. */ 3446 state->stack[spi].spilled_ptr.type = NOT_INIT; 3447 3448 /* Update the slot type. */ 3449 new_type = STACK_MISC; 3450 if (writing_zero && *stype == STACK_ZERO) { 3451 new_type = STACK_ZERO; 3452 zero_used = true; 3453 } 3454 /* If the slot is STACK_INVALID, we check whether it's OK to 3455 * pretend that it will be initialized by this write. The slot 3456 * might not actually be written to, and so if we mark it as 3457 * initialized future reads might leak uninitialized memory. 3458 * For privileged programs, we will accept such reads to slots 3459 * that may or may not be written because, if we're reject 3460 * them, the error would be too confusing. 3461 */ 3462 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3463 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3464 insn_idx, i); 3465 return -EINVAL; 3466 } 3467 *stype = new_type; 3468 } 3469 if (zero_used) { 3470 /* backtracking doesn't work for STACK_ZERO yet. */ 3471 err = mark_chain_precision(env, value_regno); 3472 if (err) 3473 return err; 3474 } 3475 return 0; 3476 } 3477 3478 /* When register 'dst_regno' is assigned some values from stack[min_off, 3479 * max_off), we set the register's type according to the types of the 3480 * respective stack slots. If all the stack values are known to be zeros, then 3481 * so is the destination reg. Otherwise, the register is considered to be 3482 * SCALAR. This function does not deal with register filling; the caller must 3483 * ensure that all spilled registers in the stack range have been marked as 3484 * read. 3485 */ 3486 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3487 /* func where src register points to */ 3488 struct bpf_func_state *ptr_state, 3489 int min_off, int max_off, int dst_regno) 3490 { 3491 struct bpf_verifier_state *vstate = env->cur_state; 3492 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3493 int i, slot, spi; 3494 u8 *stype; 3495 int zeros = 0; 3496 3497 for (i = min_off; i < max_off; i++) { 3498 slot = -i - 1; 3499 spi = slot / BPF_REG_SIZE; 3500 stype = ptr_state->stack[spi].slot_type; 3501 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3502 break; 3503 zeros++; 3504 } 3505 if (zeros == max_off - min_off) { 3506 /* any access_size read into register is zero extended, 3507 * so the whole register == const_zero 3508 */ 3509 __mark_reg_const_zero(&state->regs[dst_regno]); 3510 /* backtracking doesn't support STACK_ZERO yet, 3511 * so mark it precise here, so that later 3512 * backtracking can stop here. 3513 * Backtracking may not need this if this register 3514 * doesn't participate in pointer adjustment. 3515 * Forward propagation of precise flag is not 3516 * necessary either. This mark is only to stop 3517 * backtracking. Any register that contributed 3518 * to const 0 was marked precise before spill. 3519 */ 3520 state->regs[dst_regno].precise = true; 3521 } else { 3522 /* have read misc data from the stack */ 3523 mark_reg_unknown(env, state->regs, dst_regno); 3524 } 3525 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3526 } 3527 3528 /* Read the stack at 'off' and put the results into the register indicated by 3529 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3530 * spilled reg. 3531 * 3532 * 'dst_regno' can be -1, meaning that the read value is not going to a 3533 * register. 3534 * 3535 * The access is assumed to be within the current stack bounds. 3536 */ 3537 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3538 /* func where src register points to */ 3539 struct bpf_func_state *reg_state, 3540 int off, int size, int dst_regno) 3541 { 3542 struct bpf_verifier_state *vstate = env->cur_state; 3543 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3544 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3545 struct bpf_reg_state *reg; 3546 u8 *stype, type; 3547 3548 stype = reg_state->stack[spi].slot_type; 3549 reg = ®_state->stack[spi].spilled_ptr; 3550 3551 if (is_spilled_reg(®_state->stack[spi])) { 3552 u8 spill_size = 1; 3553 3554 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3555 spill_size++; 3556 3557 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3558 if (reg->type != SCALAR_VALUE) { 3559 verbose_linfo(env, env->insn_idx, "; "); 3560 verbose(env, "invalid size of register fill\n"); 3561 return -EACCES; 3562 } 3563 3564 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3565 if (dst_regno < 0) 3566 return 0; 3567 3568 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3569 /* The earlier check_reg_arg() has decided the 3570 * subreg_def for this insn. Save it first. 3571 */ 3572 s32 subreg_def = state->regs[dst_regno].subreg_def; 3573 3574 state->regs[dst_regno] = *reg; 3575 state->regs[dst_regno].subreg_def = subreg_def; 3576 } else { 3577 for (i = 0; i < size; i++) { 3578 type = stype[(slot - i) % BPF_REG_SIZE]; 3579 if (type == STACK_SPILL) 3580 continue; 3581 if (type == STACK_MISC) 3582 continue; 3583 verbose(env, "invalid read from stack off %d+%d size %d\n", 3584 off, i, size); 3585 return -EACCES; 3586 } 3587 mark_reg_unknown(env, state->regs, dst_regno); 3588 } 3589 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3590 return 0; 3591 } 3592 3593 if (dst_regno >= 0) { 3594 /* restore register state from stack */ 3595 state->regs[dst_regno] = *reg; 3596 /* mark reg as written since spilled pointer state likely 3597 * has its liveness marks cleared by is_state_visited() 3598 * which resets stack/reg liveness for state transitions 3599 */ 3600 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3601 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3602 /* If dst_regno==-1, the caller is asking us whether 3603 * it is acceptable to use this value as a SCALAR_VALUE 3604 * (e.g. for XADD). 3605 * We must not allow unprivileged callers to do that 3606 * with spilled pointers. 3607 */ 3608 verbose(env, "leaking pointer from stack off %d\n", 3609 off); 3610 return -EACCES; 3611 } 3612 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3613 } else { 3614 for (i = 0; i < size; i++) { 3615 type = stype[(slot - i) % BPF_REG_SIZE]; 3616 if (type == STACK_MISC) 3617 continue; 3618 if (type == STACK_ZERO) 3619 continue; 3620 verbose(env, "invalid read from stack off %d+%d size %d\n", 3621 off, i, size); 3622 return -EACCES; 3623 } 3624 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3625 if (dst_regno >= 0) 3626 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3627 } 3628 return 0; 3629 } 3630 3631 enum bpf_access_src { 3632 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3633 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3634 }; 3635 3636 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3637 int regno, int off, int access_size, 3638 bool zero_size_allowed, 3639 enum bpf_access_src type, 3640 struct bpf_call_arg_meta *meta); 3641 3642 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3643 { 3644 return cur_regs(env) + regno; 3645 } 3646 3647 /* Read the stack at 'ptr_regno + off' and put the result into the register 3648 * 'dst_regno'. 3649 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3650 * but not its variable offset. 3651 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3652 * 3653 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3654 * filling registers (i.e. reads of spilled register cannot be detected when 3655 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3656 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3657 * offset; for a fixed offset check_stack_read_fixed_off should be used 3658 * instead. 3659 */ 3660 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3661 int ptr_regno, int off, int size, int dst_regno) 3662 { 3663 /* The state of the source register. */ 3664 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3665 struct bpf_func_state *ptr_state = func(env, reg); 3666 int err; 3667 int min_off, max_off; 3668 3669 /* Note that we pass a NULL meta, so raw access will not be permitted. 3670 */ 3671 err = check_stack_range_initialized(env, ptr_regno, off, size, 3672 false, ACCESS_DIRECT, NULL); 3673 if (err) 3674 return err; 3675 3676 min_off = reg->smin_value + off; 3677 max_off = reg->smax_value + off; 3678 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3679 return 0; 3680 } 3681 3682 /* check_stack_read dispatches to check_stack_read_fixed_off or 3683 * check_stack_read_var_off. 3684 * 3685 * The caller must ensure that the offset falls within the allocated stack 3686 * bounds. 3687 * 3688 * 'dst_regno' is a register which will receive the value from the stack. It 3689 * can be -1, meaning that the read value is not going to a register. 3690 */ 3691 static int check_stack_read(struct bpf_verifier_env *env, 3692 int ptr_regno, int off, int size, 3693 int dst_regno) 3694 { 3695 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3696 struct bpf_func_state *state = func(env, reg); 3697 int err; 3698 /* Some accesses are only permitted with a static offset. */ 3699 bool var_off = !tnum_is_const(reg->var_off); 3700 3701 /* The offset is required to be static when reads don't go to a 3702 * register, in order to not leak pointers (see 3703 * check_stack_read_fixed_off). 3704 */ 3705 if (dst_regno < 0 && var_off) { 3706 char tn_buf[48]; 3707 3708 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3709 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3710 tn_buf, off, size); 3711 return -EACCES; 3712 } 3713 /* Variable offset is prohibited for unprivileged mode for simplicity 3714 * since it requires corresponding support in Spectre masking for stack 3715 * ALU. See also retrieve_ptr_limit(). 3716 */ 3717 if (!env->bypass_spec_v1 && var_off) { 3718 char tn_buf[48]; 3719 3720 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3721 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3722 ptr_regno, tn_buf); 3723 return -EACCES; 3724 } 3725 3726 if (!var_off) { 3727 off += reg->var_off.value; 3728 err = check_stack_read_fixed_off(env, state, off, size, 3729 dst_regno); 3730 } else { 3731 /* Variable offset stack reads need more conservative handling 3732 * than fixed offset ones. Note that dst_regno >= 0 on this 3733 * branch. 3734 */ 3735 err = check_stack_read_var_off(env, ptr_regno, off, size, 3736 dst_regno); 3737 } 3738 return err; 3739 } 3740 3741 3742 /* check_stack_write dispatches to check_stack_write_fixed_off or 3743 * check_stack_write_var_off. 3744 * 3745 * 'ptr_regno' is the register used as a pointer into the stack. 3746 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3747 * 'value_regno' is the register whose value we're writing to the stack. It can 3748 * be -1, meaning that we're not writing from a register. 3749 * 3750 * The caller must ensure that the offset falls within the maximum stack size. 3751 */ 3752 static int check_stack_write(struct bpf_verifier_env *env, 3753 int ptr_regno, int off, int size, 3754 int value_regno, int insn_idx) 3755 { 3756 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3757 struct bpf_func_state *state = func(env, reg); 3758 int err; 3759 3760 if (tnum_is_const(reg->var_off)) { 3761 off += reg->var_off.value; 3762 err = check_stack_write_fixed_off(env, state, off, size, 3763 value_regno, insn_idx); 3764 } else { 3765 /* Variable offset stack reads need more conservative handling 3766 * than fixed offset ones. 3767 */ 3768 err = check_stack_write_var_off(env, state, 3769 ptr_regno, off, size, 3770 value_regno, insn_idx); 3771 } 3772 return err; 3773 } 3774 3775 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3776 int off, int size, enum bpf_access_type type) 3777 { 3778 struct bpf_reg_state *regs = cur_regs(env); 3779 struct bpf_map *map = regs[regno].map_ptr; 3780 u32 cap = bpf_map_flags_to_cap(map); 3781 3782 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3783 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3784 map->value_size, off, size); 3785 return -EACCES; 3786 } 3787 3788 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3789 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3790 map->value_size, off, size); 3791 return -EACCES; 3792 } 3793 3794 return 0; 3795 } 3796 3797 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3798 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3799 int off, int size, u32 mem_size, 3800 bool zero_size_allowed) 3801 { 3802 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3803 struct bpf_reg_state *reg; 3804 3805 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3806 return 0; 3807 3808 reg = &cur_regs(env)[regno]; 3809 switch (reg->type) { 3810 case PTR_TO_MAP_KEY: 3811 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3812 mem_size, off, size); 3813 break; 3814 case PTR_TO_MAP_VALUE: 3815 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3816 mem_size, off, size); 3817 break; 3818 case PTR_TO_PACKET: 3819 case PTR_TO_PACKET_META: 3820 case PTR_TO_PACKET_END: 3821 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3822 off, size, regno, reg->id, off, mem_size); 3823 break; 3824 case PTR_TO_MEM: 3825 default: 3826 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3827 mem_size, off, size); 3828 } 3829 3830 return -EACCES; 3831 } 3832 3833 /* check read/write into a memory region with possible variable offset */ 3834 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3835 int off, int size, u32 mem_size, 3836 bool zero_size_allowed) 3837 { 3838 struct bpf_verifier_state *vstate = env->cur_state; 3839 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3840 struct bpf_reg_state *reg = &state->regs[regno]; 3841 int err; 3842 3843 /* We may have adjusted the register pointing to memory region, so we 3844 * need to try adding each of min_value and max_value to off 3845 * to make sure our theoretical access will be safe. 3846 * 3847 * The minimum value is only important with signed 3848 * comparisons where we can't assume the floor of a 3849 * value is 0. If we are using signed variables for our 3850 * index'es we need to make sure that whatever we use 3851 * will have a set floor within our range. 3852 */ 3853 if (reg->smin_value < 0 && 3854 (reg->smin_value == S64_MIN || 3855 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3856 reg->smin_value + off < 0)) { 3857 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3858 regno); 3859 return -EACCES; 3860 } 3861 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3862 mem_size, zero_size_allowed); 3863 if (err) { 3864 verbose(env, "R%d min value is outside of the allowed memory range\n", 3865 regno); 3866 return err; 3867 } 3868 3869 /* If we haven't set a max value then we need to bail since we can't be 3870 * sure we won't do bad things. 3871 * If reg->umax_value + off could overflow, treat that as unbounded too. 3872 */ 3873 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3874 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3875 regno); 3876 return -EACCES; 3877 } 3878 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3879 mem_size, zero_size_allowed); 3880 if (err) { 3881 verbose(env, "R%d max value is outside of the allowed memory range\n", 3882 regno); 3883 return err; 3884 } 3885 3886 return 0; 3887 } 3888 3889 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3890 const struct bpf_reg_state *reg, int regno, 3891 bool fixed_off_ok) 3892 { 3893 /* Access to this pointer-typed register or passing it to a helper 3894 * is only allowed in its original, unmodified form. 3895 */ 3896 3897 if (reg->off < 0) { 3898 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3899 reg_type_str(env, reg->type), regno, reg->off); 3900 return -EACCES; 3901 } 3902 3903 if (!fixed_off_ok && reg->off) { 3904 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3905 reg_type_str(env, reg->type), regno, reg->off); 3906 return -EACCES; 3907 } 3908 3909 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3910 char tn_buf[48]; 3911 3912 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3913 verbose(env, "variable %s access var_off=%s disallowed\n", 3914 reg_type_str(env, reg->type), tn_buf); 3915 return -EACCES; 3916 } 3917 3918 return 0; 3919 } 3920 3921 int check_ptr_off_reg(struct bpf_verifier_env *env, 3922 const struct bpf_reg_state *reg, int regno) 3923 { 3924 return __check_ptr_off_reg(env, reg, regno, false); 3925 } 3926 3927 static int map_kptr_match_type(struct bpf_verifier_env *env, 3928 struct btf_field *kptr_field, 3929 struct bpf_reg_state *reg, u32 regno) 3930 { 3931 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 3932 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 3933 const char *reg_name = ""; 3934 3935 /* Only unreferenced case accepts untrusted pointers */ 3936 if (kptr_field->type == BPF_KPTR_UNREF) 3937 perm_flags |= PTR_UNTRUSTED; 3938 3939 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3940 goto bad_type; 3941 3942 if (!btf_is_kernel(reg->btf)) { 3943 verbose(env, "R%d must point to kernel BTF\n", regno); 3944 return -EINVAL; 3945 } 3946 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3947 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3948 3949 /* For ref_ptr case, release function check should ensure we get one 3950 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3951 * normal store of unreferenced kptr, we must ensure var_off is zero. 3952 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3953 * reg->off and reg->ref_obj_id are not needed here. 3954 */ 3955 if (__check_ptr_off_reg(env, reg, regno, true)) 3956 return -EACCES; 3957 3958 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3959 * we also need to take into account the reg->off. 3960 * 3961 * We want to support cases like: 3962 * 3963 * struct foo { 3964 * struct bar br; 3965 * struct baz bz; 3966 * }; 3967 * 3968 * struct foo *v; 3969 * v = func(); // PTR_TO_BTF_ID 3970 * val->foo = v; // reg->off is zero, btf and btf_id match type 3971 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3972 * // first member type of struct after comparison fails 3973 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3974 * // to match type 3975 * 3976 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3977 * is zero. We must also ensure that btf_struct_ids_match does not walk 3978 * the struct to match type against first member of struct, i.e. reject 3979 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3980 * strict mode to true for type match. 3981 */ 3982 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3983 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 3984 kptr_field->type == BPF_KPTR_REF)) 3985 goto bad_type; 3986 return 0; 3987 bad_type: 3988 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3989 reg_type_str(env, reg->type), reg_name); 3990 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3991 if (kptr_field->type == BPF_KPTR_UNREF) 3992 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3993 targ_name); 3994 else 3995 verbose(env, "\n"); 3996 return -EINVAL; 3997 } 3998 3999 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4000 int value_regno, int insn_idx, 4001 struct btf_field *kptr_field) 4002 { 4003 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4004 int class = BPF_CLASS(insn->code); 4005 struct bpf_reg_state *val_reg; 4006 4007 /* Things we already checked for in check_map_access and caller: 4008 * - Reject cases where variable offset may touch kptr 4009 * - size of access (must be BPF_DW) 4010 * - tnum_is_const(reg->var_off) 4011 * - kptr_field->offset == off + reg->var_off.value 4012 */ 4013 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4014 if (BPF_MODE(insn->code) != BPF_MEM) { 4015 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4016 return -EACCES; 4017 } 4018 4019 /* We only allow loading referenced kptr, since it will be marked as 4020 * untrusted, similar to unreferenced kptr. 4021 */ 4022 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4023 verbose(env, "store to referenced kptr disallowed\n"); 4024 return -EACCES; 4025 } 4026 4027 if (class == BPF_LDX) { 4028 val_reg = reg_state(env, value_regno); 4029 /* We can simply mark the value_regno receiving the pointer 4030 * value from map as PTR_TO_BTF_ID, with the correct type. 4031 */ 4032 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4033 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4034 /* For mark_ptr_or_null_reg */ 4035 val_reg->id = ++env->id_gen; 4036 } else if (class == BPF_STX) { 4037 val_reg = reg_state(env, value_regno); 4038 if (!register_is_null(val_reg) && 4039 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4040 return -EACCES; 4041 } else if (class == BPF_ST) { 4042 if (insn->imm) { 4043 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4044 kptr_field->offset); 4045 return -EACCES; 4046 } 4047 } else { 4048 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4049 return -EACCES; 4050 } 4051 return 0; 4052 } 4053 4054 /* check read/write into a map element with possible variable offset */ 4055 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4056 int off, int size, bool zero_size_allowed, 4057 enum bpf_access_src src) 4058 { 4059 struct bpf_verifier_state *vstate = env->cur_state; 4060 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4061 struct bpf_reg_state *reg = &state->regs[regno]; 4062 struct bpf_map *map = reg->map_ptr; 4063 struct btf_record *rec; 4064 int err, i; 4065 4066 err = check_mem_region_access(env, regno, off, size, map->value_size, 4067 zero_size_allowed); 4068 if (err) 4069 return err; 4070 4071 if (IS_ERR_OR_NULL(map->record)) 4072 return 0; 4073 rec = map->record; 4074 for (i = 0; i < rec->cnt; i++) { 4075 struct btf_field *field = &rec->fields[i]; 4076 u32 p = field->offset; 4077 4078 /* If any part of a field can be touched by load/store, reject 4079 * this program. To check that [x1, x2) overlaps with [y1, y2), 4080 * it is sufficient to check x1 < y2 && y1 < x2. 4081 */ 4082 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4083 p < reg->umax_value + off + size) { 4084 switch (field->type) { 4085 case BPF_KPTR_UNREF: 4086 case BPF_KPTR_REF: 4087 if (src != ACCESS_DIRECT) { 4088 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4089 return -EACCES; 4090 } 4091 if (!tnum_is_const(reg->var_off)) { 4092 verbose(env, "kptr access cannot have variable offset\n"); 4093 return -EACCES; 4094 } 4095 if (p != off + reg->var_off.value) { 4096 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4097 p, off + reg->var_off.value); 4098 return -EACCES; 4099 } 4100 if (size != bpf_size_to_bytes(BPF_DW)) { 4101 verbose(env, "kptr access size must be BPF_DW\n"); 4102 return -EACCES; 4103 } 4104 break; 4105 default: 4106 verbose(env, "%s cannot be accessed directly by load/store\n", 4107 btf_field_type_name(field->type)); 4108 return -EACCES; 4109 } 4110 } 4111 } 4112 return 0; 4113 } 4114 4115 #define MAX_PACKET_OFF 0xffff 4116 4117 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4118 const struct bpf_call_arg_meta *meta, 4119 enum bpf_access_type t) 4120 { 4121 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4122 4123 switch (prog_type) { 4124 /* Program types only with direct read access go here! */ 4125 case BPF_PROG_TYPE_LWT_IN: 4126 case BPF_PROG_TYPE_LWT_OUT: 4127 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4128 case BPF_PROG_TYPE_SK_REUSEPORT: 4129 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4130 case BPF_PROG_TYPE_CGROUP_SKB: 4131 if (t == BPF_WRITE) 4132 return false; 4133 fallthrough; 4134 4135 /* Program types with direct read + write access go here! */ 4136 case BPF_PROG_TYPE_SCHED_CLS: 4137 case BPF_PROG_TYPE_SCHED_ACT: 4138 case BPF_PROG_TYPE_XDP: 4139 case BPF_PROG_TYPE_LWT_XMIT: 4140 case BPF_PROG_TYPE_SK_SKB: 4141 case BPF_PROG_TYPE_SK_MSG: 4142 if (meta) 4143 return meta->pkt_access; 4144 4145 env->seen_direct_write = true; 4146 return true; 4147 4148 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4149 if (t == BPF_WRITE) 4150 env->seen_direct_write = true; 4151 4152 return true; 4153 4154 default: 4155 return false; 4156 } 4157 } 4158 4159 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4160 int size, bool zero_size_allowed) 4161 { 4162 struct bpf_reg_state *regs = cur_regs(env); 4163 struct bpf_reg_state *reg = ®s[regno]; 4164 int err; 4165 4166 /* We may have added a variable offset to the packet pointer; but any 4167 * reg->range we have comes after that. We are only checking the fixed 4168 * offset. 4169 */ 4170 4171 /* We don't allow negative numbers, because we aren't tracking enough 4172 * detail to prove they're safe. 4173 */ 4174 if (reg->smin_value < 0) { 4175 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4176 regno); 4177 return -EACCES; 4178 } 4179 4180 err = reg->range < 0 ? -EINVAL : 4181 __check_mem_access(env, regno, off, size, reg->range, 4182 zero_size_allowed); 4183 if (err) { 4184 verbose(env, "R%d offset is outside of the packet\n", regno); 4185 return err; 4186 } 4187 4188 /* __check_mem_access has made sure "off + size - 1" is within u16. 4189 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4190 * otherwise find_good_pkt_pointers would have refused to set range info 4191 * that __check_mem_access would have rejected this pkt access. 4192 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4193 */ 4194 env->prog->aux->max_pkt_offset = 4195 max_t(u32, env->prog->aux->max_pkt_offset, 4196 off + reg->umax_value + size - 1); 4197 4198 return err; 4199 } 4200 4201 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4202 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4203 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4204 struct btf **btf, u32 *btf_id) 4205 { 4206 struct bpf_insn_access_aux info = { 4207 .reg_type = *reg_type, 4208 .log = &env->log, 4209 }; 4210 4211 if (env->ops->is_valid_access && 4212 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4213 /* A non zero info.ctx_field_size indicates that this field is a 4214 * candidate for later verifier transformation to load the whole 4215 * field and then apply a mask when accessed with a narrower 4216 * access than actual ctx access size. A zero info.ctx_field_size 4217 * will only allow for whole field access and rejects any other 4218 * type of narrower access. 4219 */ 4220 *reg_type = info.reg_type; 4221 4222 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4223 *btf = info.btf; 4224 *btf_id = info.btf_id; 4225 } else { 4226 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4227 } 4228 /* remember the offset of last byte accessed in ctx */ 4229 if (env->prog->aux->max_ctx_offset < off + size) 4230 env->prog->aux->max_ctx_offset = off + size; 4231 return 0; 4232 } 4233 4234 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4235 return -EACCES; 4236 } 4237 4238 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4239 int size) 4240 { 4241 if (size < 0 || off < 0 || 4242 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4243 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4244 off, size); 4245 return -EACCES; 4246 } 4247 return 0; 4248 } 4249 4250 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4251 u32 regno, int off, int size, 4252 enum bpf_access_type t) 4253 { 4254 struct bpf_reg_state *regs = cur_regs(env); 4255 struct bpf_reg_state *reg = ®s[regno]; 4256 struct bpf_insn_access_aux info = {}; 4257 bool valid; 4258 4259 if (reg->smin_value < 0) { 4260 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4261 regno); 4262 return -EACCES; 4263 } 4264 4265 switch (reg->type) { 4266 case PTR_TO_SOCK_COMMON: 4267 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4268 break; 4269 case PTR_TO_SOCKET: 4270 valid = bpf_sock_is_valid_access(off, size, t, &info); 4271 break; 4272 case PTR_TO_TCP_SOCK: 4273 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4274 break; 4275 case PTR_TO_XDP_SOCK: 4276 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4277 break; 4278 default: 4279 valid = false; 4280 } 4281 4282 4283 if (valid) { 4284 env->insn_aux_data[insn_idx].ctx_field_size = 4285 info.ctx_field_size; 4286 return 0; 4287 } 4288 4289 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4290 regno, reg_type_str(env, reg->type), off, size); 4291 4292 return -EACCES; 4293 } 4294 4295 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4296 { 4297 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4298 } 4299 4300 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4301 { 4302 const struct bpf_reg_state *reg = reg_state(env, regno); 4303 4304 return reg->type == PTR_TO_CTX; 4305 } 4306 4307 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4308 { 4309 const struct bpf_reg_state *reg = reg_state(env, regno); 4310 4311 return type_is_sk_pointer(reg->type); 4312 } 4313 4314 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4315 { 4316 const struct bpf_reg_state *reg = reg_state(env, regno); 4317 4318 return type_is_pkt_pointer(reg->type); 4319 } 4320 4321 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4322 { 4323 const struct bpf_reg_state *reg = reg_state(env, regno); 4324 4325 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4326 return reg->type == PTR_TO_FLOW_KEYS; 4327 } 4328 4329 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4330 { 4331 /* A referenced register is always trusted. */ 4332 if (reg->ref_obj_id) 4333 return true; 4334 4335 /* If a register is not referenced, it is trusted if it has the 4336 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4337 * other type modifiers may be safe, but we elect to take an opt-in 4338 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4339 * not. 4340 * 4341 * Eventually, we should make PTR_TRUSTED the single source of truth 4342 * for whether a register is trusted. 4343 */ 4344 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4345 !bpf_type_has_unsafe_modifiers(reg->type); 4346 } 4347 4348 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4349 { 4350 return reg->type & MEM_RCU; 4351 } 4352 4353 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4354 const struct bpf_reg_state *reg, 4355 int off, int size, bool strict) 4356 { 4357 struct tnum reg_off; 4358 int ip_align; 4359 4360 /* Byte size accesses are always allowed. */ 4361 if (!strict || size == 1) 4362 return 0; 4363 4364 /* For platforms that do not have a Kconfig enabling 4365 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4366 * NET_IP_ALIGN is universally set to '2'. And on platforms 4367 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4368 * to this code only in strict mode where we want to emulate 4369 * the NET_IP_ALIGN==2 checking. Therefore use an 4370 * unconditional IP align value of '2'. 4371 */ 4372 ip_align = 2; 4373 4374 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4375 if (!tnum_is_aligned(reg_off, size)) { 4376 char tn_buf[48]; 4377 4378 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4379 verbose(env, 4380 "misaligned packet access off %d+%s+%d+%d size %d\n", 4381 ip_align, tn_buf, reg->off, off, size); 4382 return -EACCES; 4383 } 4384 4385 return 0; 4386 } 4387 4388 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4389 const struct bpf_reg_state *reg, 4390 const char *pointer_desc, 4391 int off, int size, bool strict) 4392 { 4393 struct tnum reg_off; 4394 4395 /* Byte size accesses are always allowed. */ 4396 if (!strict || size == 1) 4397 return 0; 4398 4399 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4400 if (!tnum_is_aligned(reg_off, size)) { 4401 char tn_buf[48]; 4402 4403 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4404 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4405 pointer_desc, tn_buf, reg->off, off, size); 4406 return -EACCES; 4407 } 4408 4409 return 0; 4410 } 4411 4412 static int check_ptr_alignment(struct bpf_verifier_env *env, 4413 const struct bpf_reg_state *reg, int off, 4414 int size, bool strict_alignment_once) 4415 { 4416 bool strict = env->strict_alignment || strict_alignment_once; 4417 const char *pointer_desc = ""; 4418 4419 switch (reg->type) { 4420 case PTR_TO_PACKET: 4421 case PTR_TO_PACKET_META: 4422 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4423 * right in front, treat it the very same way. 4424 */ 4425 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4426 case PTR_TO_FLOW_KEYS: 4427 pointer_desc = "flow keys "; 4428 break; 4429 case PTR_TO_MAP_KEY: 4430 pointer_desc = "key "; 4431 break; 4432 case PTR_TO_MAP_VALUE: 4433 pointer_desc = "value "; 4434 break; 4435 case PTR_TO_CTX: 4436 pointer_desc = "context "; 4437 break; 4438 case PTR_TO_STACK: 4439 pointer_desc = "stack "; 4440 /* The stack spill tracking logic in check_stack_write_fixed_off() 4441 * and check_stack_read_fixed_off() relies on stack accesses being 4442 * aligned. 4443 */ 4444 strict = true; 4445 break; 4446 case PTR_TO_SOCKET: 4447 pointer_desc = "sock "; 4448 break; 4449 case PTR_TO_SOCK_COMMON: 4450 pointer_desc = "sock_common "; 4451 break; 4452 case PTR_TO_TCP_SOCK: 4453 pointer_desc = "tcp_sock "; 4454 break; 4455 case PTR_TO_XDP_SOCK: 4456 pointer_desc = "xdp_sock "; 4457 break; 4458 default: 4459 break; 4460 } 4461 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4462 strict); 4463 } 4464 4465 static int update_stack_depth(struct bpf_verifier_env *env, 4466 const struct bpf_func_state *func, 4467 int off) 4468 { 4469 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4470 4471 if (stack >= -off) 4472 return 0; 4473 4474 /* update known max for given subprogram */ 4475 env->subprog_info[func->subprogno].stack_depth = -off; 4476 return 0; 4477 } 4478 4479 /* starting from main bpf function walk all instructions of the function 4480 * and recursively walk all callees that given function can call. 4481 * Ignore jump and exit insns. 4482 * Since recursion is prevented by check_cfg() this algorithm 4483 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4484 */ 4485 static int check_max_stack_depth(struct bpf_verifier_env *env) 4486 { 4487 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4488 struct bpf_subprog_info *subprog = env->subprog_info; 4489 struct bpf_insn *insn = env->prog->insnsi; 4490 bool tail_call_reachable = false; 4491 int ret_insn[MAX_CALL_FRAMES]; 4492 int ret_prog[MAX_CALL_FRAMES]; 4493 int j; 4494 4495 process_func: 4496 /* protect against potential stack overflow that might happen when 4497 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4498 * depth for such case down to 256 so that the worst case scenario 4499 * would result in 8k stack size (32 which is tailcall limit * 256 = 4500 * 8k). 4501 * 4502 * To get the idea what might happen, see an example: 4503 * func1 -> sub rsp, 128 4504 * subfunc1 -> sub rsp, 256 4505 * tailcall1 -> add rsp, 256 4506 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4507 * subfunc2 -> sub rsp, 64 4508 * subfunc22 -> sub rsp, 128 4509 * tailcall2 -> add rsp, 128 4510 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4511 * 4512 * tailcall will unwind the current stack frame but it will not get rid 4513 * of caller's stack as shown on the example above. 4514 */ 4515 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4516 verbose(env, 4517 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4518 depth); 4519 return -EACCES; 4520 } 4521 /* round up to 32-bytes, since this is granularity 4522 * of interpreter stack size 4523 */ 4524 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4525 if (depth > MAX_BPF_STACK) { 4526 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4527 frame + 1, depth); 4528 return -EACCES; 4529 } 4530 continue_func: 4531 subprog_end = subprog[idx + 1].start; 4532 for (; i < subprog_end; i++) { 4533 int next_insn; 4534 4535 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4536 continue; 4537 /* remember insn and function to return to */ 4538 ret_insn[frame] = i + 1; 4539 ret_prog[frame] = idx; 4540 4541 /* find the callee */ 4542 next_insn = i + insn[i].imm + 1; 4543 idx = find_subprog(env, next_insn); 4544 if (idx < 0) { 4545 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4546 next_insn); 4547 return -EFAULT; 4548 } 4549 if (subprog[idx].is_async_cb) { 4550 if (subprog[idx].has_tail_call) { 4551 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4552 return -EFAULT; 4553 } 4554 /* async callbacks don't increase bpf prog stack size */ 4555 continue; 4556 } 4557 i = next_insn; 4558 4559 if (subprog[idx].has_tail_call) 4560 tail_call_reachable = true; 4561 4562 frame++; 4563 if (frame >= MAX_CALL_FRAMES) { 4564 verbose(env, "the call stack of %d frames is too deep !\n", 4565 frame); 4566 return -E2BIG; 4567 } 4568 goto process_func; 4569 } 4570 /* if tail call got detected across bpf2bpf calls then mark each of the 4571 * currently present subprog frames as tail call reachable subprogs; 4572 * this info will be utilized by JIT so that we will be preserving the 4573 * tail call counter throughout bpf2bpf calls combined with tailcalls 4574 */ 4575 if (tail_call_reachable) 4576 for (j = 0; j < frame; j++) 4577 subprog[ret_prog[j]].tail_call_reachable = true; 4578 if (subprog[0].tail_call_reachable) 4579 env->prog->aux->tail_call_reachable = true; 4580 4581 /* end of for() loop means the last insn of the 'subprog' 4582 * was reached. Doesn't matter whether it was JA or EXIT 4583 */ 4584 if (frame == 0) 4585 return 0; 4586 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4587 frame--; 4588 i = ret_insn[frame]; 4589 idx = ret_prog[frame]; 4590 goto continue_func; 4591 } 4592 4593 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4594 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4595 const struct bpf_insn *insn, int idx) 4596 { 4597 int start = idx + insn->imm + 1, subprog; 4598 4599 subprog = find_subprog(env, start); 4600 if (subprog < 0) { 4601 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4602 start); 4603 return -EFAULT; 4604 } 4605 return env->subprog_info[subprog].stack_depth; 4606 } 4607 #endif 4608 4609 static int __check_buffer_access(struct bpf_verifier_env *env, 4610 const char *buf_info, 4611 const struct bpf_reg_state *reg, 4612 int regno, int off, int size) 4613 { 4614 if (off < 0) { 4615 verbose(env, 4616 "R%d invalid %s buffer access: off=%d, size=%d\n", 4617 regno, buf_info, off, size); 4618 return -EACCES; 4619 } 4620 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4621 char tn_buf[48]; 4622 4623 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4624 verbose(env, 4625 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4626 regno, off, tn_buf); 4627 return -EACCES; 4628 } 4629 4630 return 0; 4631 } 4632 4633 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4634 const struct bpf_reg_state *reg, 4635 int regno, int off, int size) 4636 { 4637 int err; 4638 4639 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4640 if (err) 4641 return err; 4642 4643 if (off + size > env->prog->aux->max_tp_access) 4644 env->prog->aux->max_tp_access = off + size; 4645 4646 return 0; 4647 } 4648 4649 static int check_buffer_access(struct bpf_verifier_env *env, 4650 const struct bpf_reg_state *reg, 4651 int regno, int off, int size, 4652 bool zero_size_allowed, 4653 u32 *max_access) 4654 { 4655 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4656 int err; 4657 4658 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4659 if (err) 4660 return err; 4661 4662 if (off + size > *max_access) 4663 *max_access = off + size; 4664 4665 return 0; 4666 } 4667 4668 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4669 static void zext_32_to_64(struct bpf_reg_state *reg) 4670 { 4671 reg->var_off = tnum_subreg(reg->var_off); 4672 __reg_assign_32_into_64(reg); 4673 } 4674 4675 /* truncate register to smaller size (in bytes) 4676 * must be called with size < BPF_REG_SIZE 4677 */ 4678 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4679 { 4680 u64 mask; 4681 4682 /* clear high bits in bit representation */ 4683 reg->var_off = tnum_cast(reg->var_off, size); 4684 4685 /* fix arithmetic bounds */ 4686 mask = ((u64)1 << (size * 8)) - 1; 4687 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4688 reg->umin_value &= mask; 4689 reg->umax_value &= mask; 4690 } else { 4691 reg->umin_value = 0; 4692 reg->umax_value = mask; 4693 } 4694 reg->smin_value = reg->umin_value; 4695 reg->smax_value = reg->umax_value; 4696 4697 /* If size is smaller than 32bit register the 32bit register 4698 * values are also truncated so we push 64-bit bounds into 4699 * 32-bit bounds. Above were truncated < 32-bits already. 4700 */ 4701 if (size >= 4) 4702 return; 4703 __reg_combine_64_into_32(reg); 4704 } 4705 4706 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4707 { 4708 /* A map is considered read-only if the following condition are true: 4709 * 4710 * 1) BPF program side cannot change any of the map content. The 4711 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4712 * and was set at map creation time. 4713 * 2) The map value(s) have been initialized from user space by a 4714 * loader and then "frozen", such that no new map update/delete 4715 * operations from syscall side are possible for the rest of 4716 * the map's lifetime from that point onwards. 4717 * 3) Any parallel/pending map update/delete operations from syscall 4718 * side have been completed. Only after that point, it's safe to 4719 * assume that map value(s) are immutable. 4720 */ 4721 return (map->map_flags & BPF_F_RDONLY_PROG) && 4722 READ_ONCE(map->frozen) && 4723 !bpf_map_write_active(map); 4724 } 4725 4726 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4727 { 4728 void *ptr; 4729 u64 addr; 4730 int err; 4731 4732 err = map->ops->map_direct_value_addr(map, &addr, off); 4733 if (err) 4734 return err; 4735 ptr = (void *)(long)addr + off; 4736 4737 switch (size) { 4738 case sizeof(u8): 4739 *val = (u64)*(u8 *)ptr; 4740 break; 4741 case sizeof(u16): 4742 *val = (u64)*(u16 *)ptr; 4743 break; 4744 case sizeof(u32): 4745 *val = (u64)*(u32 *)ptr; 4746 break; 4747 case sizeof(u64): 4748 *val = *(u64 *)ptr; 4749 break; 4750 default: 4751 return -EINVAL; 4752 } 4753 return 0; 4754 } 4755 4756 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4757 struct bpf_reg_state *regs, 4758 int regno, int off, int size, 4759 enum bpf_access_type atype, 4760 int value_regno) 4761 { 4762 struct bpf_reg_state *reg = regs + regno; 4763 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4764 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4765 enum bpf_type_flag flag = 0; 4766 u32 btf_id; 4767 int ret; 4768 4769 if (!env->allow_ptr_leaks) { 4770 verbose(env, 4771 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4772 tname); 4773 return -EPERM; 4774 } 4775 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 4776 verbose(env, 4777 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 4778 tname); 4779 return -EINVAL; 4780 } 4781 if (off < 0) { 4782 verbose(env, 4783 "R%d is ptr_%s invalid negative access: off=%d\n", 4784 regno, tname, off); 4785 return -EACCES; 4786 } 4787 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4788 char tn_buf[48]; 4789 4790 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4791 verbose(env, 4792 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4793 regno, tname, off, tn_buf); 4794 return -EACCES; 4795 } 4796 4797 if (reg->type & MEM_USER) { 4798 verbose(env, 4799 "R%d is ptr_%s access user memory: off=%d\n", 4800 regno, tname, off); 4801 return -EACCES; 4802 } 4803 4804 if (reg->type & MEM_PERCPU) { 4805 verbose(env, 4806 "R%d is ptr_%s access percpu memory: off=%d\n", 4807 regno, tname, off); 4808 return -EACCES; 4809 } 4810 4811 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 4812 if (!btf_is_kernel(reg->btf)) { 4813 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 4814 return -EFAULT; 4815 } 4816 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4817 } else { 4818 /* Writes are permitted with default btf_struct_access for 4819 * program allocated objects (which always have ref_obj_id > 0), 4820 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 4821 */ 4822 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 4823 verbose(env, "only read is supported\n"); 4824 return -EACCES; 4825 } 4826 4827 if (type_is_alloc(reg->type) && !reg->ref_obj_id) { 4828 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 4829 return -EFAULT; 4830 } 4831 4832 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4833 } 4834 4835 if (ret < 0) 4836 return ret; 4837 4838 /* If this is an untrusted pointer, all pointers formed by walking it 4839 * also inherit the untrusted flag. 4840 */ 4841 if (type_flag(reg->type) & PTR_UNTRUSTED) 4842 flag |= PTR_UNTRUSTED; 4843 4844 /* By default any pointer obtained from walking a trusted pointer is 4845 * no longer trusted except the rcu case below. 4846 */ 4847 flag &= ~PTR_TRUSTED; 4848 4849 if (flag & MEM_RCU) { 4850 /* Mark value register as MEM_RCU only if it is protected by 4851 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 4852 * itself can already indicate trustedness inside the rcu 4853 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 4854 * it could be null in some cases. 4855 */ 4856 if (!env->cur_state->active_rcu_lock || 4857 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 4858 flag &= ~MEM_RCU; 4859 else 4860 flag |= PTR_MAYBE_NULL; 4861 } else if (reg->type & MEM_RCU) { 4862 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 4863 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 4864 */ 4865 flag |= PTR_UNTRUSTED; 4866 } 4867 4868 if (atype == BPF_READ && value_regno >= 0) 4869 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4870 4871 return 0; 4872 } 4873 4874 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4875 struct bpf_reg_state *regs, 4876 int regno, int off, int size, 4877 enum bpf_access_type atype, 4878 int value_regno) 4879 { 4880 struct bpf_reg_state *reg = regs + regno; 4881 struct bpf_map *map = reg->map_ptr; 4882 struct bpf_reg_state map_reg; 4883 enum bpf_type_flag flag = 0; 4884 const struct btf_type *t; 4885 const char *tname; 4886 u32 btf_id; 4887 int ret; 4888 4889 if (!btf_vmlinux) { 4890 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4891 return -ENOTSUPP; 4892 } 4893 4894 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4895 verbose(env, "map_ptr access not supported for map type %d\n", 4896 map->map_type); 4897 return -ENOTSUPP; 4898 } 4899 4900 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4901 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4902 4903 if (!env->allow_ptr_leaks) { 4904 verbose(env, 4905 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4906 tname); 4907 return -EPERM; 4908 } 4909 4910 if (off < 0) { 4911 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4912 regno, tname, off); 4913 return -EACCES; 4914 } 4915 4916 if (atype != BPF_READ) { 4917 verbose(env, "only read from %s is supported\n", tname); 4918 return -EACCES; 4919 } 4920 4921 /* Simulate access to a PTR_TO_BTF_ID */ 4922 memset(&map_reg, 0, sizeof(map_reg)); 4923 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 4924 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 4925 if (ret < 0) 4926 return ret; 4927 4928 if (value_regno >= 0) 4929 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4930 4931 return 0; 4932 } 4933 4934 /* Check that the stack access at the given offset is within bounds. The 4935 * maximum valid offset is -1. 4936 * 4937 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4938 * -state->allocated_stack for reads. 4939 */ 4940 static int check_stack_slot_within_bounds(int off, 4941 struct bpf_func_state *state, 4942 enum bpf_access_type t) 4943 { 4944 int min_valid_off; 4945 4946 if (t == BPF_WRITE) 4947 min_valid_off = -MAX_BPF_STACK; 4948 else 4949 min_valid_off = -state->allocated_stack; 4950 4951 if (off < min_valid_off || off > -1) 4952 return -EACCES; 4953 return 0; 4954 } 4955 4956 /* Check that the stack access at 'regno + off' falls within the maximum stack 4957 * bounds. 4958 * 4959 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4960 */ 4961 static int check_stack_access_within_bounds( 4962 struct bpf_verifier_env *env, 4963 int regno, int off, int access_size, 4964 enum bpf_access_src src, enum bpf_access_type type) 4965 { 4966 struct bpf_reg_state *regs = cur_regs(env); 4967 struct bpf_reg_state *reg = regs + regno; 4968 struct bpf_func_state *state = func(env, reg); 4969 int min_off, max_off; 4970 int err; 4971 char *err_extra; 4972 4973 if (src == ACCESS_HELPER) 4974 /* We don't know if helpers are reading or writing (or both). */ 4975 err_extra = " indirect access to"; 4976 else if (type == BPF_READ) 4977 err_extra = " read from"; 4978 else 4979 err_extra = " write to"; 4980 4981 if (tnum_is_const(reg->var_off)) { 4982 min_off = reg->var_off.value + off; 4983 if (access_size > 0) 4984 max_off = min_off + access_size - 1; 4985 else 4986 max_off = min_off; 4987 } else { 4988 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4989 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4990 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4991 err_extra, regno); 4992 return -EACCES; 4993 } 4994 min_off = reg->smin_value + off; 4995 if (access_size > 0) 4996 max_off = reg->smax_value + off + access_size - 1; 4997 else 4998 max_off = min_off; 4999 } 5000 5001 err = check_stack_slot_within_bounds(min_off, state, type); 5002 if (!err) 5003 err = check_stack_slot_within_bounds(max_off, state, type); 5004 5005 if (err) { 5006 if (tnum_is_const(reg->var_off)) { 5007 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5008 err_extra, regno, off, access_size); 5009 } else { 5010 char tn_buf[48]; 5011 5012 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5013 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5014 err_extra, regno, tn_buf, access_size); 5015 } 5016 } 5017 return err; 5018 } 5019 5020 /* check whether memory at (regno + off) is accessible for t = (read | write) 5021 * if t==write, value_regno is a register which value is stored into memory 5022 * if t==read, value_regno is a register which will receive the value from memory 5023 * if t==write && value_regno==-1, some unknown value is stored into memory 5024 * if t==read && value_regno==-1, don't care what we read from memory 5025 */ 5026 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5027 int off, int bpf_size, enum bpf_access_type t, 5028 int value_regno, bool strict_alignment_once) 5029 { 5030 struct bpf_reg_state *regs = cur_regs(env); 5031 struct bpf_reg_state *reg = regs + regno; 5032 struct bpf_func_state *state; 5033 int size, err = 0; 5034 5035 size = bpf_size_to_bytes(bpf_size); 5036 if (size < 0) 5037 return size; 5038 5039 /* alignment checks will add in reg->off themselves */ 5040 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5041 if (err) 5042 return err; 5043 5044 /* for access checks, reg->off is just part of off */ 5045 off += reg->off; 5046 5047 if (reg->type == PTR_TO_MAP_KEY) { 5048 if (t == BPF_WRITE) { 5049 verbose(env, "write to change key R%d not allowed\n", regno); 5050 return -EACCES; 5051 } 5052 5053 err = check_mem_region_access(env, regno, off, size, 5054 reg->map_ptr->key_size, false); 5055 if (err) 5056 return err; 5057 if (value_regno >= 0) 5058 mark_reg_unknown(env, regs, value_regno); 5059 } else if (reg->type == PTR_TO_MAP_VALUE) { 5060 struct btf_field *kptr_field = NULL; 5061 5062 if (t == BPF_WRITE && value_regno >= 0 && 5063 is_pointer_value(env, value_regno)) { 5064 verbose(env, "R%d leaks addr into map\n", value_regno); 5065 return -EACCES; 5066 } 5067 err = check_map_access_type(env, regno, off, size, t); 5068 if (err) 5069 return err; 5070 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5071 if (err) 5072 return err; 5073 if (tnum_is_const(reg->var_off)) 5074 kptr_field = btf_record_find(reg->map_ptr->record, 5075 off + reg->var_off.value, BPF_KPTR); 5076 if (kptr_field) { 5077 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5078 } else if (t == BPF_READ && value_regno >= 0) { 5079 struct bpf_map *map = reg->map_ptr; 5080 5081 /* if map is read-only, track its contents as scalars */ 5082 if (tnum_is_const(reg->var_off) && 5083 bpf_map_is_rdonly(map) && 5084 map->ops->map_direct_value_addr) { 5085 int map_off = off + reg->var_off.value; 5086 u64 val = 0; 5087 5088 err = bpf_map_direct_read(map, map_off, size, 5089 &val); 5090 if (err) 5091 return err; 5092 5093 regs[value_regno].type = SCALAR_VALUE; 5094 __mark_reg_known(®s[value_regno], val); 5095 } else { 5096 mark_reg_unknown(env, regs, value_regno); 5097 } 5098 } 5099 } else if (base_type(reg->type) == PTR_TO_MEM) { 5100 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5101 5102 if (type_may_be_null(reg->type)) { 5103 verbose(env, "R%d invalid mem access '%s'\n", regno, 5104 reg_type_str(env, reg->type)); 5105 return -EACCES; 5106 } 5107 5108 if (t == BPF_WRITE && rdonly_mem) { 5109 verbose(env, "R%d cannot write into %s\n", 5110 regno, reg_type_str(env, reg->type)); 5111 return -EACCES; 5112 } 5113 5114 if (t == BPF_WRITE && value_regno >= 0 && 5115 is_pointer_value(env, value_regno)) { 5116 verbose(env, "R%d leaks addr into mem\n", value_regno); 5117 return -EACCES; 5118 } 5119 5120 err = check_mem_region_access(env, regno, off, size, 5121 reg->mem_size, false); 5122 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5123 mark_reg_unknown(env, regs, value_regno); 5124 } else if (reg->type == PTR_TO_CTX) { 5125 enum bpf_reg_type reg_type = SCALAR_VALUE; 5126 struct btf *btf = NULL; 5127 u32 btf_id = 0; 5128 5129 if (t == BPF_WRITE && value_regno >= 0 && 5130 is_pointer_value(env, value_regno)) { 5131 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5132 return -EACCES; 5133 } 5134 5135 err = check_ptr_off_reg(env, reg, regno); 5136 if (err < 0) 5137 return err; 5138 5139 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5140 &btf_id); 5141 if (err) 5142 verbose_linfo(env, insn_idx, "; "); 5143 if (!err && t == BPF_READ && value_regno >= 0) { 5144 /* ctx access returns either a scalar, or a 5145 * PTR_TO_PACKET[_META,_END]. In the latter 5146 * case, we know the offset is zero. 5147 */ 5148 if (reg_type == SCALAR_VALUE) { 5149 mark_reg_unknown(env, regs, value_regno); 5150 } else { 5151 mark_reg_known_zero(env, regs, 5152 value_regno); 5153 if (type_may_be_null(reg_type)) 5154 regs[value_regno].id = ++env->id_gen; 5155 /* A load of ctx field could have different 5156 * actual load size with the one encoded in the 5157 * insn. When the dst is PTR, it is for sure not 5158 * a sub-register. 5159 */ 5160 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5161 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5162 regs[value_regno].btf = btf; 5163 regs[value_regno].btf_id = btf_id; 5164 } 5165 } 5166 regs[value_regno].type = reg_type; 5167 } 5168 5169 } else if (reg->type == PTR_TO_STACK) { 5170 /* Basic bounds checks. */ 5171 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5172 if (err) 5173 return err; 5174 5175 state = func(env, reg); 5176 err = update_stack_depth(env, state, off); 5177 if (err) 5178 return err; 5179 5180 if (t == BPF_READ) 5181 err = check_stack_read(env, regno, off, size, 5182 value_regno); 5183 else 5184 err = check_stack_write(env, regno, off, size, 5185 value_regno, insn_idx); 5186 } else if (reg_is_pkt_pointer(reg)) { 5187 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5188 verbose(env, "cannot write into packet\n"); 5189 return -EACCES; 5190 } 5191 if (t == BPF_WRITE && value_regno >= 0 && 5192 is_pointer_value(env, value_regno)) { 5193 verbose(env, "R%d leaks addr into packet\n", 5194 value_regno); 5195 return -EACCES; 5196 } 5197 err = check_packet_access(env, regno, off, size, false); 5198 if (!err && t == BPF_READ && value_regno >= 0) 5199 mark_reg_unknown(env, regs, value_regno); 5200 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5201 if (t == BPF_WRITE && value_regno >= 0 && 5202 is_pointer_value(env, value_regno)) { 5203 verbose(env, "R%d leaks addr into flow keys\n", 5204 value_regno); 5205 return -EACCES; 5206 } 5207 5208 err = check_flow_keys_access(env, off, size); 5209 if (!err && t == BPF_READ && value_regno >= 0) 5210 mark_reg_unknown(env, regs, value_regno); 5211 } else if (type_is_sk_pointer(reg->type)) { 5212 if (t == BPF_WRITE) { 5213 verbose(env, "R%d cannot write into %s\n", 5214 regno, reg_type_str(env, reg->type)); 5215 return -EACCES; 5216 } 5217 err = check_sock_access(env, insn_idx, regno, off, size, t); 5218 if (!err && value_regno >= 0) 5219 mark_reg_unknown(env, regs, value_regno); 5220 } else if (reg->type == PTR_TO_TP_BUFFER) { 5221 err = check_tp_buffer_access(env, reg, regno, off, size); 5222 if (!err && t == BPF_READ && value_regno >= 0) 5223 mark_reg_unknown(env, regs, value_regno); 5224 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5225 !type_may_be_null(reg->type)) { 5226 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5227 value_regno); 5228 } else if (reg->type == CONST_PTR_TO_MAP) { 5229 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5230 value_regno); 5231 } else if (base_type(reg->type) == PTR_TO_BUF) { 5232 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5233 u32 *max_access; 5234 5235 if (rdonly_mem) { 5236 if (t == BPF_WRITE) { 5237 verbose(env, "R%d cannot write into %s\n", 5238 regno, reg_type_str(env, reg->type)); 5239 return -EACCES; 5240 } 5241 max_access = &env->prog->aux->max_rdonly_access; 5242 } else { 5243 max_access = &env->prog->aux->max_rdwr_access; 5244 } 5245 5246 err = check_buffer_access(env, reg, regno, off, size, false, 5247 max_access); 5248 5249 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5250 mark_reg_unknown(env, regs, value_regno); 5251 } else { 5252 verbose(env, "R%d invalid mem access '%s'\n", regno, 5253 reg_type_str(env, reg->type)); 5254 return -EACCES; 5255 } 5256 5257 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5258 regs[value_regno].type == SCALAR_VALUE) { 5259 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5260 coerce_reg_to_size(®s[value_regno], size); 5261 } 5262 return err; 5263 } 5264 5265 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5266 { 5267 int load_reg; 5268 int err; 5269 5270 switch (insn->imm) { 5271 case BPF_ADD: 5272 case BPF_ADD | BPF_FETCH: 5273 case BPF_AND: 5274 case BPF_AND | BPF_FETCH: 5275 case BPF_OR: 5276 case BPF_OR | BPF_FETCH: 5277 case BPF_XOR: 5278 case BPF_XOR | BPF_FETCH: 5279 case BPF_XCHG: 5280 case BPF_CMPXCHG: 5281 break; 5282 default: 5283 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5284 return -EINVAL; 5285 } 5286 5287 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5288 verbose(env, "invalid atomic operand size\n"); 5289 return -EINVAL; 5290 } 5291 5292 /* check src1 operand */ 5293 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5294 if (err) 5295 return err; 5296 5297 /* check src2 operand */ 5298 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5299 if (err) 5300 return err; 5301 5302 if (insn->imm == BPF_CMPXCHG) { 5303 /* Check comparison of R0 with memory location */ 5304 const u32 aux_reg = BPF_REG_0; 5305 5306 err = check_reg_arg(env, aux_reg, SRC_OP); 5307 if (err) 5308 return err; 5309 5310 if (is_pointer_value(env, aux_reg)) { 5311 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5312 return -EACCES; 5313 } 5314 } 5315 5316 if (is_pointer_value(env, insn->src_reg)) { 5317 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5318 return -EACCES; 5319 } 5320 5321 if (is_ctx_reg(env, insn->dst_reg) || 5322 is_pkt_reg(env, insn->dst_reg) || 5323 is_flow_key_reg(env, insn->dst_reg) || 5324 is_sk_reg(env, insn->dst_reg)) { 5325 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5326 insn->dst_reg, 5327 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5328 return -EACCES; 5329 } 5330 5331 if (insn->imm & BPF_FETCH) { 5332 if (insn->imm == BPF_CMPXCHG) 5333 load_reg = BPF_REG_0; 5334 else 5335 load_reg = insn->src_reg; 5336 5337 /* check and record load of old value */ 5338 err = check_reg_arg(env, load_reg, DST_OP); 5339 if (err) 5340 return err; 5341 } else { 5342 /* This instruction accesses a memory location but doesn't 5343 * actually load it into a register. 5344 */ 5345 load_reg = -1; 5346 } 5347 5348 /* Check whether we can read the memory, with second call for fetch 5349 * case to simulate the register fill. 5350 */ 5351 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5352 BPF_SIZE(insn->code), BPF_READ, -1, true); 5353 if (!err && load_reg >= 0) 5354 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5355 BPF_SIZE(insn->code), BPF_READ, load_reg, 5356 true); 5357 if (err) 5358 return err; 5359 5360 /* Check whether we can write into the same memory. */ 5361 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5362 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5363 if (err) 5364 return err; 5365 5366 return 0; 5367 } 5368 5369 /* When register 'regno' is used to read the stack (either directly or through 5370 * a helper function) make sure that it's within stack boundary and, depending 5371 * on the access type, that all elements of the stack are initialized. 5372 * 5373 * 'off' includes 'regno->off', but not its dynamic part (if any). 5374 * 5375 * All registers that have been spilled on the stack in the slots within the 5376 * read offsets are marked as read. 5377 */ 5378 static int check_stack_range_initialized( 5379 struct bpf_verifier_env *env, int regno, int off, 5380 int access_size, bool zero_size_allowed, 5381 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5382 { 5383 struct bpf_reg_state *reg = reg_state(env, regno); 5384 struct bpf_func_state *state = func(env, reg); 5385 int err, min_off, max_off, i, j, slot, spi; 5386 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5387 enum bpf_access_type bounds_check_type; 5388 /* Some accesses can write anything into the stack, others are 5389 * read-only. 5390 */ 5391 bool clobber = false; 5392 5393 if (access_size == 0 && !zero_size_allowed) { 5394 verbose(env, "invalid zero-sized read\n"); 5395 return -EACCES; 5396 } 5397 5398 if (type == ACCESS_HELPER) { 5399 /* The bounds checks for writes are more permissive than for 5400 * reads. However, if raw_mode is not set, we'll do extra 5401 * checks below. 5402 */ 5403 bounds_check_type = BPF_WRITE; 5404 clobber = true; 5405 } else { 5406 bounds_check_type = BPF_READ; 5407 } 5408 err = check_stack_access_within_bounds(env, regno, off, access_size, 5409 type, bounds_check_type); 5410 if (err) 5411 return err; 5412 5413 5414 if (tnum_is_const(reg->var_off)) { 5415 min_off = max_off = reg->var_off.value + off; 5416 } else { 5417 /* Variable offset is prohibited for unprivileged mode for 5418 * simplicity since it requires corresponding support in 5419 * Spectre masking for stack ALU. 5420 * See also retrieve_ptr_limit(). 5421 */ 5422 if (!env->bypass_spec_v1) { 5423 char tn_buf[48]; 5424 5425 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5426 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5427 regno, err_extra, tn_buf); 5428 return -EACCES; 5429 } 5430 /* Only initialized buffer on stack is allowed to be accessed 5431 * with variable offset. With uninitialized buffer it's hard to 5432 * guarantee that whole memory is marked as initialized on 5433 * helper return since specific bounds are unknown what may 5434 * cause uninitialized stack leaking. 5435 */ 5436 if (meta && meta->raw_mode) 5437 meta = NULL; 5438 5439 min_off = reg->smin_value + off; 5440 max_off = reg->smax_value + off; 5441 } 5442 5443 if (meta && meta->raw_mode) { 5444 meta->access_size = access_size; 5445 meta->regno = regno; 5446 return 0; 5447 } 5448 5449 for (i = min_off; i < max_off + access_size; i++) { 5450 u8 *stype; 5451 5452 slot = -i - 1; 5453 spi = slot / BPF_REG_SIZE; 5454 if (state->allocated_stack <= slot) 5455 goto err; 5456 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5457 if (*stype == STACK_MISC) 5458 goto mark; 5459 if (*stype == STACK_ZERO) { 5460 if (clobber) { 5461 /* helper can write anything into the stack */ 5462 *stype = STACK_MISC; 5463 } 5464 goto mark; 5465 } 5466 5467 if (is_spilled_reg(&state->stack[spi]) && 5468 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5469 env->allow_ptr_leaks)) { 5470 if (clobber) { 5471 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5472 for (j = 0; j < BPF_REG_SIZE; j++) 5473 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5474 } 5475 goto mark; 5476 } 5477 5478 err: 5479 if (tnum_is_const(reg->var_off)) { 5480 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5481 err_extra, regno, min_off, i - min_off, access_size); 5482 } else { 5483 char tn_buf[48]; 5484 5485 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5486 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5487 err_extra, regno, tn_buf, i - min_off, access_size); 5488 } 5489 return -EACCES; 5490 mark: 5491 /* reading any byte out of 8-byte 'spill_slot' will cause 5492 * the whole slot to be marked as 'read' 5493 */ 5494 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5495 state->stack[spi].spilled_ptr.parent, 5496 REG_LIVE_READ64); 5497 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5498 * be sure that whether stack slot is written to or not. Hence, 5499 * we must still conservatively propagate reads upwards even if 5500 * helper may write to the entire memory range. 5501 */ 5502 } 5503 return update_stack_depth(env, state, min_off); 5504 } 5505 5506 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5507 int access_size, bool zero_size_allowed, 5508 struct bpf_call_arg_meta *meta) 5509 { 5510 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5511 u32 *max_access; 5512 5513 switch (base_type(reg->type)) { 5514 case PTR_TO_PACKET: 5515 case PTR_TO_PACKET_META: 5516 return check_packet_access(env, regno, reg->off, access_size, 5517 zero_size_allowed); 5518 case PTR_TO_MAP_KEY: 5519 if (meta && meta->raw_mode) { 5520 verbose(env, "R%d cannot write into %s\n", regno, 5521 reg_type_str(env, reg->type)); 5522 return -EACCES; 5523 } 5524 return check_mem_region_access(env, regno, reg->off, access_size, 5525 reg->map_ptr->key_size, false); 5526 case PTR_TO_MAP_VALUE: 5527 if (check_map_access_type(env, regno, reg->off, access_size, 5528 meta && meta->raw_mode ? BPF_WRITE : 5529 BPF_READ)) 5530 return -EACCES; 5531 return check_map_access(env, regno, reg->off, access_size, 5532 zero_size_allowed, ACCESS_HELPER); 5533 case PTR_TO_MEM: 5534 if (type_is_rdonly_mem(reg->type)) { 5535 if (meta && meta->raw_mode) { 5536 verbose(env, "R%d cannot write into %s\n", regno, 5537 reg_type_str(env, reg->type)); 5538 return -EACCES; 5539 } 5540 } 5541 return check_mem_region_access(env, regno, reg->off, 5542 access_size, reg->mem_size, 5543 zero_size_allowed); 5544 case PTR_TO_BUF: 5545 if (type_is_rdonly_mem(reg->type)) { 5546 if (meta && meta->raw_mode) { 5547 verbose(env, "R%d cannot write into %s\n", regno, 5548 reg_type_str(env, reg->type)); 5549 return -EACCES; 5550 } 5551 5552 max_access = &env->prog->aux->max_rdonly_access; 5553 } else { 5554 max_access = &env->prog->aux->max_rdwr_access; 5555 } 5556 return check_buffer_access(env, reg, regno, reg->off, 5557 access_size, zero_size_allowed, 5558 max_access); 5559 case PTR_TO_STACK: 5560 return check_stack_range_initialized( 5561 env, 5562 regno, reg->off, access_size, 5563 zero_size_allowed, ACCESS_HELPER, meta); 5564 case PTR_TO_CTX: 5565 /* in case the function doesn't know how to access the context, 5566 * (because we are in a program of type SYSCALL for example), we 5567 * can not statically check its size. 5568 * Dynamically check it now. 5569 */ 5570 if (!env->ops->convert_ctx_access) { 5571 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5572 int offset = access_size - 1; 5573 5574 /* Allow zero-byte read from PTR_TO_CTX */ 5575 if (access_size == 0) 5576 return zero_size_allowed ? 0 : -EACCES; 5577 5578 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5579 atype, -1, false); 5580 } 5581 5582 fallthrough; 5583 default: /* scalar_value or invalid ptr */ 5584 /* Allow zero-byte read from NULL, regardless of pointer type */ 5585 if (zero_size_allowed && access_size == 0 && 5586 register_is_null(reg)) 5587 return 0; 5588 5589 verbose(env, "R%d type=%s ", regno, 5590 reg_type_str(env, reg->type)); 5591 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5592 return -EACCES; 5593 } 5594 } 5595 5596 static int check_mem_size_reg(struct bpf_verifier_env *env, 5597 struct bpf_reg_state *reg, u32 regno, 5598 bool zero_size_allowed, 5599 struct bpf_call_arg_meta *meta) 5600 { 5601 int err; 5602 5603 /* This is used to refine r0 return value bounds for helpers 5604 * that enforce this value as an upper bound on return values. 5605 * See do_refine_retval_range() for helpers that can refine 5606 * the return value. C type of helper is u32 so we pull register 5607 * bound from umax_value however, if negative verifier errors 5608 * out. Only upper bounds can be learned because retval is an 5609 * int type and negative retvals are allowed. 5610 */ 5611 meta->msize_max_value = reg->umax_value; 5612 5613 /* The register is SCALAR_VALUE; the access check 5614 * happens using its boundaries. 5615 */ 5616 if (!tnum_is_const(reg->var_off)) 5617 /* For unprivileged variable accesses, disable raw 5618 * mode so that the program is required to 5619 * initialize all the memory that the helper could 5620 * just partially fill up. 5621 */ 5622 meta = NULL; 5623 5624 if (reg->smin_value < 0) { 5625 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5626 regno); 5627 return -EACCES; 5628 } 5629 5630 if (reg->umin_value == 0) { 5631 err = check_helper_mem_access(env, regno - 1, 0, 5632 zero_size_allowed, 5633 meta); 5634 if (err) 5635 return err; 5636 } 5637 5638 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5639 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5640 regno); 5641 return -EACCES; 5642 } 5643 err = check_helper_mem_access(env, regno - 1, 5644 reg->umax_value, 5645 zero_size_allowed, meta); 5646 if (!err) 5647 err = mark_chain_precision(env, regno); 5648 return err; 5649 } 5650 5651 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5652 u32 regno, u32 mem_size) 5653 { 5654 bool may_be_null = type_may_be_null(reg->type); 5655 struct bpf_reg_state saved_reg; 5656 struct bpf_call_arg_meta meta; 5657 int err; 5658 5659 if (register_is_null(reg)) 5660 return 0; 5661 5662 memset(&meta, 0, sizeof(meta)); 5663 /* Assuming that the register contains a value check if the memory 5664 * access is safe. Temporarily save and restore the register's state as 5665 * the conversion shouldn't be visible to a caller. 5666 */ 5667 if (may_be_null) { 5668 saved_reg = *reg; 5669 mark_ptr_not_null_reg(reg); 5670 } 5671 5672 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5673 /* Check access for BPF_WRITE */ 5674 meta.raw_mode = true; 5675 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5676 5677 if (may_be_null) 5678 *reg = saved_reg; 5679 5680 return err; 5681 } 5682 5683 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5684 u32 regno) 5685 { 5686 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5687 bool may_be_null = type_may_be_null(mem_reg->type); 5688 struct bpf_reg_state saved_reg; 5689 struct bpf_call_arg_meta meta; 5690 int err; 5691 5692 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5693 5694 memset(&meta, 0, sizeof(meta)); 5695 5696 if (may_be_null) { 5697 saved_reg = *mem_reg; 5698 mark_ptr_not_null_reg(mem_reg); 5699 } 5700 5701 err = check_mem_size_reg(env, reg, regno, true, &meta); 5702 /* Check access for BPF_WRITE */ 5703 meta.raw_mode = true; 5704 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5705 5706 if (may_be_null) 5707 *mem_reg = saved_reg; 5708 return err; 5709 } 5710 5711 /* Implementation details: 5712 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 5713 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 5714 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5715 * Two separate bpf_obj_new will also have different reg->id. 5716 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 5717 * clears reg->id after value_or_null->value transition, since the verifier only 5718 * cares about the range of access to valid map value pointer and doesn't care 5719 * about actual address of the map element. 5720 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5721 * reg->id > 0 after value_or_null->value transition. By doing so 5722 * two bpf_map_lookups will be considered two different pointers that 5723 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 5724 * returned from bpf_obj_new. 5725 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5726 * dead-locks. 5727 * Since only one bpf_spin_lock is allowed the checks are simpler than 5728 * reg_is_refcounted() logic. The verifier needs to remember only 5729 * one spin_lock instead of array of acquired_refs. 5730 * cur_state->active_lock remembers which map value element or allocated 5731 * object got locked and clears it after bpf_spin_unlock. 5732 */ 5733 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5734 bool is_lock) 5735 { 5736 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5737 struct bpf_verifier_state *cur = env->cur_state; 5738 bool is_const = tnum_is_const(reg->var_off); 5739 u64 val = reg->var_off.value; 5740 struct bpf_map *map = NULL; 5741 struct btf *btf = NULL; 5742 struct btf_record *rec; 5743 5744 if (!is_const) { 5745 verbose(env, 5746 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5747 regno); 5748 return -EINVAL; 5749 } 5750 if (reg->type == PTR_TO_MAP_VALUE) { 5751 map = reg->map_ptr; 5752 if (!map->btf) { 5753 verbose(env, 5754 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5755 map->name); 5756 return -EINVAL; 5757 } 5758 } else { 5759 btf = reg->btf; 5760 } 5761 5762 rec = reg_btf_record(reg); 5763 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 5764 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 5765 map ? map->name : "kptr"); 5766 return -EINVAL; 5767 } 5768 if (rec->spin_lock_off != val + reg->off) { 5769 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 5770 val + reg->off, rec->spin_lock_off); 5771 return -EINVAL; 5772 } 5773 if (is_lock) { 5774 if (cur->active_lock.ptr) { 5775 verbose(env, 5776 "Locking two bpf_spin_locks are not allowed\n"); 5777 return -EINVAL; 5778 } 5779 if (map) 5780 cur->active_lock.ptr = map; 5781 else 5782 cur->active_lock.ptr = btf; 5783 cur->active_lock.id = reg->id; 5784 } else { 5785 struct bpf_func_state *fstate = cur_func(env); 5786 void *ptr; 5787 int i; 5788 5789 if (map) 5790 ptr = map; 5791 else 5792 ptr = btf; 5793 5794 if (!cur->active_lock.ptr) { 5795 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5796 return -EINVAL; 5797 } 5798 if (cur->active_lock.ptr != ptr || 5799 cur->active_lock.id != reg->id) { 5800 verbose(env, "bpf_spin_unlock of different lock\n"); 5801 return -EINVAL; 5802 } 5803 cur->active_lock.ptr = NULL; 5804 cur->active_lock.id = 0; 5805 5806 for (i = fstate->acquired_refs - 1; i >= 0; i--) { 5807 int err; 5808 5809 /* Complain on error because this reference state cannot 5810 * be freed before this point, as bpf_spin_lock critical 5811 * section does not allow functions that release the 5812 * allocated object immediately. 5813 */ 5814 if (!fstate->refs[i].release_on_unlock) 5815 continue; 5816 err = release_reference(env, fstate->refs[i].id); 5817 if (err) { 5818 verbose(env, "failed to release release_on_unlock reference"); 5819 return err; 5820 } 5821 } 5822 } 5823 return 0; 5824 } 5825 5826 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5827 struct bpf_call_arg_meta *meta) 5828 { 5829 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5830 bool is_const = tnum_is_const(reg->var_off); 5831 struct bpf_map *map = reg->map_ptr; 5832 u64 val = reg->var_off.value; 5833 5834 if (!is_const) { 5835 verbose(env, 5836 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5837 regno); 5838 return -EINVAL; 5839 } 5840 if (!map->btf) { 5841 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5842 map->name); 5843 return -EINVAL; 5844 } 5845 if (!btf_record_has_field(map->record, BPF_TIMER)) { 5846 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 5847 return -EINVAL; 5848 } 5849 if (map->record->timer_off != val + reg->off) { 5850 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5851 val + reg->off, map->record->timer_off); 5852 return -EINVAL; 5853 } 5854 if (meta->map_ptr) { 5855 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5856 return -EFAULT; 5857 } 5858 meta->map_uid = reg->map_uid; 5859 meta->map_ptr = map; 5860 return 0; 5861 } 5862 5863 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5864 struct bpf_call_arg_meta *meta) 5865 { 5866 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5867 struct bpf_map *map_ptr = reg->map_ptr; 5868 struct btf_field *kptr_field; 5869 u32 kptr_off; 5870 5871 if (!tnum_is_const(reg->var_off)) { 5872 verbose(env, 5873 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5874 regno); 5875 return -EINVAL; 5876 } 5877 if (!map_ptr->btf) { 5878 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5879 map_ptr->name); 5880 return -EINVAL; 5881 } 5882 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 5883 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5884 return -EINVAL; 5885 } 5886 5887 meta->map_ptr = map_ptr; 5888 kptr_off = reg->off + reg->var_off.value; 5889 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 5890 if (!kptr_field) { 5891 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5892 return -EACCES; 5893 } 5894 if (kptr_field->type != BPF_KPTR_REF) { 5895 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5896 return -EACCES; 5897 } 5898 meta->kptr_field = kptr_field; 5899 return 0; 5900 } 5901 5902 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 5903 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 5904 * 5905 * In both cases we deal with the first 8 bytes, but need to mark the next 8 5906 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 5907 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 5908 * 5909 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 5910 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 5911 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 5912 * mutate the view of the dynptr and also possibly destroy it. In the latter 5913 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 5914 * memory that dynptr points to. 5915 * 5916 * The verifier will keep track both levels of mutation (bpf_dynptr's in 5917 * reg->type and the memory's in reg->dynptr.type), but there is no support for 5918 * readonly dynptr view yet, hence only the first case is tracked and checked. 5919 * 5920 * This is consistent with how C applies the const modifier to a struct object, 5921 * where the pointer itself inside bpf_dynptr becomes const but not what it 5922 * points to. 5923 * 5924 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 5925 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 5926 */ 5927 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 5928 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 5929 { 5930 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5931 5932 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 5933 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 5934 */ 5935 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 5936 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 5937 return -EFAULT; 5938 } 5939 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 5940 * check_func_arg_reg_off's logic. We only need to check offset 5941 * alignment for PTR_TO_STACK. 5942 */ 5943 if (reg->type == PTR_TO_STACK && (reg->off % BPF_REG_SIZE)) { 5944 verbose(env, "cannot pass in dynptr at an offset=%d\n", reg->off); 5945 return -EINVAL; 5946 } 5947 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 5948 * constructing a mutable bpf_dynptr object. 5949 * 5950 * Currently, this is only possible with PTR_TO_STACK 5951 * pointing to a region of at least 16 bytes which doesn't 5952 * contain an existing bpf_dynptr. 5953 * 5954 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 5955 * mutated or destroyed. However, the memory it points to 5956 * may be mutated. 5957 * 5958 * None - Points to a initialized dynptr that can be mutated and 5959 * destroyed, including mutation of the memory it points 5960 * to. 5961 */ 5962 if (arg_type & MEM_UNINIT) { 5963 if (!is_dynptr_reg_valid_uninit(env, reg)) { 5964 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 5965 return -EINVAL; 5966 } 5967 5968 /* We only support one dynptr being uninitialized at the moment, 5969 * which is sufficient for the helper functions we have right now. 5970 */ 5971 if (meta->uninit_dynptr_regno) { 5972 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 5973 return -EFAULT; 5974 } 5975 5976 meta->uninit_dynptr_regno = regno; 5977 } else /* MEM_RDONLY and None case from above */ { 5978 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 5979 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 5980 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 5981 return -EINVAL; 5982 } 5983 5984 if (!is_dynptr_reg_valid_init(env, reg)) { 5985 verbose(env, 5986 "Expected an initialized dynptr as arg #%d\n", 5987 regno); 5988 return -EINVAL; 5989 } 5990 5991 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 5992 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 5993 const char *err_extra = ""; 5994 5995 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 5996 case DYNPTR_TYPE_LOCAL: 5997 err_extra = "local"; 5998 break; 5999 case DYNPTR_TYPE_RINGBUF: 6000 err_extra = "ringbuf"; 6001 break; 6002 default: 6003 err_extra = "<unknown>"; 6004 break; 6005 } 6006 verbose(env, 6007 "Expected a dynptr of type %s as arg #%d\n", 6008 err_extra, regno); 6009 return -EINVAL; 6010 } 6011 } 6012 return 0; 6013 } 6014 6015 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6016 { 6017 return type == ARG_CONST_SIZE || 6018 type == ARG_CONST_SIZE_OR_ZERO; 6019 } 6020 6021 static bool arg_type_is_release(enum bpf_arg_type type) 6022 { 6023 return type & OBJ_RELEASE; 6024 } 6025 6026 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6027 { 6028 return base_type(type) == ARG_PTR_TO_DYNPTR; 6029 } 6030 6031 static int int_ptr_type_to_size(enum bpf_arg_type type) 6032 { 6033 if (type == ARG_PTR_TO_INT) 6034 return sizeof(u32); 6035 else if (type == ARG_PTR_TO_LONG) 6036 return sizeof(u64); 6037 6038 return -EINVAL; 6039 } 6040 6041 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6042 const struct bpf_call_arg_meta *meta, 6043 enum bpf_arg_type *arg_type) 6044 { 6045 if (!meta->map_ptr) { 6046 /* kernel subsystem misconfigured verifier */ 6047 verbose(env, "invalid map_ptr to access map->type\n"); 6048 return -EACCES; 6049 } 6050 6051 switch (meta->map_ptr->map_type) { 6052 case BPF_MAP_TYPE_SOCKMAP: 6053 case BPF_MAP_TYPE_SOCKHASH: 6054 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6055 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6056 } else { 6057 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6058 return -EINVAL; 6059 } 6060 break; 6061 case BPF_MAP_TYPE_BLOOM_FILTER: 6062 if (meta->func_id == BPF_FUNC_map_peek_elem) 6063 *arg_type = ARG_PTR_TO_MAP_VALUE; 6064 break; 6065 default: 6066 break; 6067 } 6068 return 0; 6069 } 6070 6071 struct bpf_reg_types { 6072 const enum bpf_reg_type types[10]; 6073 u32 *btf_id; 6074 }; 6075 6076 static const struct bpf_reg_types sock_types = { 6077 .types = { 6078 PTR_TO_SOCK_COMMON, 6079 PTR_TO_SOCKET, 6080 PTR_TO_TCP_SOCK, 6081 PTR_TO_XDP_SOCK, 6082 }, 6083 }; 6084 6085 #ifdef CONFIG_NET 6086 static const struct bpf_reg_types btf_id_sock_common_types = { 6087 .types = { 6088 PTR_TO_SOCK_COMMON, 6089 PTR_TO_SOCKET, 6090 PTR_TO_TCP_SOCK, 6091 PTR_TO_XDP_SOCK, 6092 PTR_TO_BTF_ID, 6093 PTR_TO_BTF_ID | PTR_TRUSTED, 6094 }, 6095 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6096 }; 6097 #endif 6098 6099 static const struct bpf_reg_types mem_types = { 6100 .types = { 6101 PTR_TO_STACK, 6102 PTR_TO_PACKET, 6103 PTR_TO_PACKET_META, 6104 PTR_TO_MAP_KEY, 6105 PTR_TO_MAP_VALUE, 6106 PTR_TO_MEM, 6107 PTR_TO_MEM | MEM_RINGBUF, 6108 PTR_TO_BUF, 6109 }, 6110 }; 6111 6112 static const struct bpf_reg_types int_ptr_types = { 6113 .types = { 6114 PTR_TO_STACK, 6115 PTR_TO_PACKET, 6116 PTR_TO_PACKET_META, 6117 PTR_TO_MAP_KEY, 6118 PTR_TO_MAP_VALUE, 6119 }, 6120 }; 6121 6122 static const struct bpf_reg_types spin_lock_types = { 6123 .types = { 6124 PTR_TO_MAP_VALUE, 6125 PTR_TO_BTF_ID | MEM_ALLOC, 6126 } 6127 }; 6128 6129 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6130 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6131 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6132 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6133 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6134 static const struct bpf_reg_types btf_ptr_types = { 6135 .types = { 6136 PTR_TO_BTF_ID, 6137 PTR_TO_BTF_ID | PTR_TRUSTED, 6138 PTR_TO_BTF_ID | MEM_RCU, 6139 }, 6140 }; 6141 static const struct bpf_reg_types percpu_btf_ptr_types = { 6142 .types = { 6143 PTR_TO_BTF_ID | MEM_PERCPU, 6144 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6145 } 6146 }; 6147 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6148 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6149 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6150 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6151 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6152 static const struct bpf_reg_types dynptr_types = { 6153 .types = { 6154 PTR_TO_STACK, 6155 CONST_PTR_TO_DYNPTR, 6156 } 6157 }; 6158 6159 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6160 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6161 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6162 [ARG_CONST_SIZE] = &scalar_types, 6163 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6164 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6165 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6166 [ARG_PTR_TO_CTX] = &context_types, 6167 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6168 #ifdef CONFIG_NET 6169 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6170 #endif 6171 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6172 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6173 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6174 [ARG_PTR_TO_MEM] = &mem_types, 6175 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6176 [ARG_PTR_TO_INT] = &int_ptr_types, 6177 [ARG_PTR_TO_LONG] = &int_ptr_types, 6178 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6179 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6180 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6181 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6182 [ARG_PTR_TO_TIMER] = &timer_types, 6183 [ARG_PTR_TO_KPTR] = &kptr_types, 6184 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6185 }; 6186 6187 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6188 enum bpf_arg_type arg_type, 6189 const u32 *arg_btf_id, 6190 struct bpf_call_arg_meta *meta) 6191 { 6192 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6193 enum bpf_reg_type expected, type = reg->type; 6194 const struct bpf_reg_types *compatible; 6195 int i, j; 6196 6197 compatible = compatible_reg_types[base_type(arg_type)]; 6198 if (!compatible) { 6199 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6200 return -EFAULT; 6201 } 6202 6203 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6204 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6205 * 6206 * Same for MAYBE_NULL: 6207 * 6208 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6209 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6210 * 6211 * Therefore we fold these flags depending on the arg_type before comparison. 6212 */ 6213 if (arg_type & MEM_RDONLY) 6214 type &= ~MEM_RDONLY; 6215 if (arg_type & PTR_MAYBE_NULL) 6216 type &= ~PTR_MAYBE_NULL; 6217 6218 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6219 expected = compatible->types[i]; 6220 if (expected == NOT_INIT) 6221 break; 6222 6223 if (type == expected) 6224 goto found; 6225 } 6226 6227 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6228 for (j = 0; j + 1 < i; j++) 6229 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6230 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6231 return -EACCES; 6232 6233 found: 6234 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6235 /* For bpf_sk_release, it needs to match against first member 6236 * 'struct sock_common', hence make an exception for it. This 6237 * allows bpf_sk_release to work for multiple socket types. 6238 */ 6239 bool strict_type_match = arg_type_is_release(arg_type) && 6240 meta->func_id != BPF_FUNC_sk_release; 6241 6242 if (!arg_btf_id) { 6243 if (!compatible->btf_id) { 6244 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6245 return -EFAULT; 6246 } 6247 arg_btf_id = compatible->btf_id; 6248 } 6249 6250 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6251 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6252 return -EACCES; 6253 } else { 6254 if (arg_btf_id == BPF_PTR_POISON) { 6255 verbose(env, "verifier internal error:"); 6256 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6257 regno); 6258 return -EACCES; 6259 } 6260 6261 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6262 btf_vmlinux, *arg_btf_id, 6263 strict_type_match)) { 6264 verbose(env, "R%d is of type %s but %s is expected\n", 6265 regno, kernel_type_name(reg->btf, reg->btf_id), 6266 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6267 return -EACCES; 6268 } 6269 } 6270 } else if (type_is_alloc(reg->type)) { 6271 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6272 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6273 return -EFAULT; 6274 } 6275 } 6276 6277 return 0; 6278 } 6279 6280 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6281 const struct bpf_reg_state *reg, int regno, 6282 enum bpf_arg_type arg_type) 6283 { 6284 u32 type = reg->type; 6285 6286 /* When referenced register is passed to release function, its fixed 6287 * offset must be 0. 6288 * 6289 * We will check arg_type_is_release reg has ref_obj_id when storing 6290 * meta->release_regno. 6291 */ 6292 if (arg_type_is_release(arg_type)) { 6293 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6294 * may not directly point to the object being released, but to 6295 * dynptr pointing to such object, which might be at some offset 6296 * on the stack. In that case, we simply to fallback to the 6297 * default handling. 6298 */ 6299 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6300 return 0; 6301 /* Doing check_ptr_off_reg check for the offset will catch this 6302 * because fixed_off_ok is false, but checking here allows us 6303 * to give the user a better error message. 6304 */ 6305 if (reg->off) { 6306 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6307 regno); 6308 return -EINVAL; 6309 } 6310 return __check_ptr_off_reg(env, reg, regno, false); 6311 } 6312 6313 switch (type) { 6314 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6315 case PTR_TO_STACK: 6316 case PTR_TO_PACKET: 6317 case PTR_TO_PACKET_META: 6318 case PTR_TO_MAP_KEY: 6319 case PTR_TO_MAP_VALUE: 6320 case PTR_TO_MEM: 6321 case PTR_TO_MEM | MEM_RDONLY: 6322 case PTR_TO_MEM | MEM_RINGBUF: 6323 case PTR_TO_BUF: 6324 case PTR_TO_BUF | MEM_RDONLY: 6325 case SCALAR_VALUE: 6326 return 0; 6327 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6328 * fixed offset. 6329 */ 6330 case PTR_TO_BTF_ID: 6331 case PTR_TO_BTF_ID | MEM_ALLOC: 6332 case PTR_TO_BTF_ID | PTR_TRUSTED: 6333 case PTR_TO_BTF_ID | MEM_RCU: 6334 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6335 /* When referenced PTR_TO_BTF_ID is passed to release function, 6336 * its fixed offset must be 0. In the other cases, fixed offset 6337 * can be non-zero. This was already checked above. So pass 6338 * fixed_off_ok as true to allow fixed offset for all other 6339 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6340 * still need to do checks instead of returning. 6341 */ 6342 return __check_ptr_off_reg(env, reg, regno, true); 6343 default: 6344 return __check_ptr_off_reg(env, reg, regno, false); 6345 } 6346 } 6347 6348 static u32 dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6349 { 6350 struct bpf_func_state *state = func(env, reg); 6351 int spi; 6352 6353 if (reg->type == CONST_PTR_TO_DYNPTR) 6354 return reg->ref_obj_id; 6355 6356 spi = get_spi(reg->off); 6357 return state->stack[spi].spilled_ptr.ref_obj_id; 6358 } 6359 6360 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6361 struct bpf_call_arg_meta *meta, 6362 const struct bpf_func_proto *fn) 6363 { 6364 u32 regno = BPF_REG_1 + arg; 6365 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6366 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6367 enum bpf_reg_type type = reg->type; 6368 u32 *arg_btf_id = NULL; 6369 int err = 0; 6370 6371 if (arg_type == ARG_DONTCARE) 6372 return 0; 6373 6374 err = check_reg_arg(env, regno, SRC_OP); 6375 if (err) 6376 return err; 6377 6378 if (arg_type == ARG_ANYTHING) { 6379 if (is_pointer_value(env, regno)) { 6380 verbose(env, "R%d leaks addr into helper function\n", 6381 regno); 6382 return -EACCES; 6383 } 6384 return 0; 6385 } 6386 6387 if (type_is_pkt_pointer(type) && 6388 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6389 verbose(env, "helper access to the packet is not allowed\n"); 6390 return -EACCES; 6391 } 6392 6393 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6394 err = resolve_map_arg_type(env, meta, &arg_type); 6395 if (err) 6396 return err; 6397 } 6398 6399 if (register_is_null(reg) && type_may_be_null(arg_type)) 6400 /* A NULL register has a SCALAR_VALUE type, so skip 6401 * type checking. 6402 */ 6403 goto skip_type_check; 6404 6405 /* arg_btf_id and arg_size are in a union. */ 6406 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6407 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6408 arg_btf_id = fn->arg_btf_id[arg]; 6409 6410 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6411 if (err) 6412 return err; 6413 6414 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6415 if (err) 6416 return err; 6417 6418 skip_type_check: 6419 if (arg_type_is_release(arg_type)) { 6420 if (arg_type_is_dynptr(arg_type)) { 6421 struct bpf_func_state *state = func(env, reg); 6422 int spi; 6423 6424 /* Only dynptr created on stack can be released, thus 6425 * the get_spi and stack state checks for spilled_ptr 6426 * should only be done before process_dynptr_func for 6427 * PTR_TO_STACK. 6428 */ 6429 if (reg->type == PTR_TO_STACK) { 6430 spi = get_spi(reg->off); 6431 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 6432 !state->stack[spi].spilled_ptr.ref_obj_id) { 6433 verbose(env, "arg %d is an unacquired reference\n", regno); 6434 return -EINVAL; 6435 } 6436 } else { 6437 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6438 return -EINVAL; 6439 } 6440 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6441 verbose(env, "R%d must be referenced when passed to release function\n", 6442 regno); 6443 return -EINVAL; 6444 } 6445 if (meta->release_regno) { 6446 verbose(env, "verifier internal error: more than one release argument\n"); 6447 return -EFAULT; 6448 } 6449 meta->release_regno = regno; 6450 } 6451 6452 if (reg->ref_obj_id) { 6453 if (meta->ref_obj_id) { 6454 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6455 regno, reg->ref_obj_id, 6456 meta->ref_obj_id); 6457 return -EFAULT; 6458 } 6459 meta->ref_obj_id = reg->ref_obj_id; 6460 } 6461 6462 switch (base_type(arg_type)) { 6463 case ARG_CONST_MAP_PTR: 6464 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6465 if (meta->map_ptr) { 6466 /* Use map_uid (which is unique id of inner map) to reject: 6467 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6468 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6469 * if (inner_map1 && inner_map2) { 6470 * timer = bpf_map_lookup_elem(inner_map1); 6471 * if (timer) 6472 * // mismatch would have been allowed 6473 * bpf_timer_init(timer, inner_map2); 6474 * } 6475 * 6476 * Comparing map_ptr is enough to distinguish normal and outer maps. 6477 */ 6478 if (meta->map_ptr != reg->map_ptr || 6479 meta->map_uid != reg->map_uid) { 6480 verbose(env, 6481 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6482 meta->map_uid, reg->map_uid); 6483 return -EINVAL; 6484 } 6485 } 6486 meta->map_ptr = reg->map_ptr; 6487 meta->map_uid = reg->map_uid; 6488 break; 6489 case ARG_PTR_TO_MAP_KEY: 6490 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6491 * check that [key, key + map->key_size) are within 6492 * stack limits and initialized 6493 */ 6494 if (!meta->map_ptr) { 6495 /* in function declaration map_ptr must come before 6496 * map_key, so that it's verified and known before 6497 * we have to check map_key here. Otherwise it means 6498 * that kernel subsystem misconfigured verifier 6499 */ 6500 verbose(env, "invalid map_ptr to access map->key\n"); 6501 return -EACCES; 6502 } 6503 err = check_helper_mem_access(env, regno, 6504 meta->map_ptr->key_size, false, 6505 NULL); 6506 break; 6507 case ARG_PTR_TO_MAP_VALUE: 6508 if (type_may_be_null(arg_type) && register_is_null(reg)) 6509 return 0; 6510 6511 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6512 * check [value, value + map->value_size) validity 6513 */ 6514 if (!meta->map_ptr) { 6515 /* kernel subsystem misconfigured verifier */ 6516 verbose(env, "invalid map_ptr to access map->value\n"); 6517 return -EACCES; 6518 } 6519 meta->raw_mode = arg_type & MEM_UNINIT; 6520 err = check_helper_mem_access(env, regno, 6521 meta->map_ptr->value_size, false, 6522 meta); 6523 break; 6524 case ARG_PTR_TO_PERCPU_BTF_ID: 6525 if (!reg->btf_id) { 6526 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6527 return -EACCES; 6528 } 6529 meta->ret_btf = reg->btf; 6530 meta->ret_btf_id = reg->btf_id; 6531 break; 6532 case ARG_PTR_TO_SPIN_LOCK: 6533 if (meta->func_id == BPF_FUNC_spin_lock) { 6534 err = process_spin_lock(env, regno, true); 6535 if (err) 6536 return err; 6537 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6538 err = process_spin_lock(env, regno, false); 6539 if (err) 6540 return err; 6541 } else { 6542 verbose(env, "verifier internal error\n"); 6543 return -EFAULT; 6544 } 6545 break; 6546 case ARG_PTR_TO_TIMER: 6547 err = process_timer_func(env, regno, meta); 6548 if (err) 6549 return err; 6550 break; 6551 case ARG_PTR_TO_FUNC: 6552 meta->subprogno = reg->subprogno; 6553 break; 6554 case ARG_PTR_TO_MEM: 6555 /* The access to this pointer is only checked when we hit the 6556 * next is_mem_size argument below. 6557 */ 6558 meta->raw_mode = arg_type & MEM_UNINIT; 6559 if (arg_type & MEM_FIXED_SIZE) { 6560 err = check_helper_mem_access(env, regno, 6561 fn->arg_size[arg], false, 6562 meta); 6563 } 6564 break; 6565 case ARG_CONST_SIZE: 6566 err = check_mem_size_reg(env, reg, regno, false, meta); 6567 break; 6568 case ARG_CONST_SIZE_OR_ZERO: 6569 err = check_mem_size_reg(env, reg, regno, true, meta); 6570 break; 6571 case ARG_PTR_TO_DYNPTR: 6572 err = process_dynptr_func(env, regno, arg_type, meta); 6573 if (err) 6574 return err; 6575 break; 6576 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6577 if (!tnum_is_const(reg->var_off)) { 6578 verbose(env, "R%d is not a known constant'\n", 6579 regno); 6580 return -EACCES; 6581 } 6582 meta->mem_size = reg->var_off.value; 6583 err = mark_chain_precision(env, regno); 6584 if (err) 6585 return err; 6586 break; 6587 case ARG_PTR_TO_INT: 6588 case ARG_PTR_TO_LONG: 6589 { 6590 int size = int_ptr_type_to_size(arg_type); 6591 6592 err = check_helper_mem_access(env, regno, size, false, meta); 6593 if (err) 6594 return err; 6595 err = check_ptr_alignment(env, reg, 0, size, true); 6596 break; 6597 } 6598 case ARG_PTR_TO_CONST_STR: 6599 { 6600 struct bpf_map *map = reg->map_ptr; 6601 int map_off; 6602 u64 map_addr; 6603 char *str_ptr; 6604 6605 if (!bpf_map_is_rdonly(map)) { 6606 verbose(env, "R%d does not point to a readonly map'\n", regno); 6607 return -EACCES; 6608 } 6609 6610 if (!tnum_is_const(reg->var_off)) { 6611 verbose(env, "R%d is not a constant address'\n", regno); 6612 return -EACCES; 6613 } 6614 6615 if (!map->ops->map_direct_value_addr) { 6616 verbose(env, "no direct value access support for this map type\n"); 6617 return -EACCES; 6618 } 6619 6620 err = check_map_access(env, regno, reg->off, 6621 map->value_size - reg->off, false, 6622 ACCESS_HELPER); 6623 if (err) 6624 return err; 6625 6626 map_off = reg->off + reg->var_off.value; 6627 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6628 if (err) { 6629 verbose(env, "direct value access on string failed\n"); 6630 return err; 6631 } 6632 6633 str_ptr = (char *)(long)(map_addr); 6634 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6635 verbose(env, "string is not zero-terminated\n"); 6636 return -EINVAL; 6637 } 6638 break; 6639 } 6640 case ARG_PTR_TO_KPTR: 6641 err = process_kptr_func(env, regno, meta); 6642 if (err) 6643 return err; 6644 break; 6645 } 6646 6647 return err; 6648 } 6649 6650 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6651 { 6652 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6653 enum bpf_prog_type type = resolve_prog_type(env->prog); 6654 6655 if (func_id != BPF_FUNC_map_update_elem) 6656 return false; 6657 6658 /* It's not possible to get access to a locked struct sock in these 6659 * contexts, so updating is safe. 6660 */ 6661 switch (type) { 6662 case BPF_PROG_TYPE_TRACING: 6663 if (eatype == BPF_TRACE_ITER) 6664 return true; 6665 break; 6666 case BPF_PROG_TYPE_SOCKET_FILTER: 6667 case BPF_PROG_TYPE_SCHED_CLS: 6668 case BPF_PROG_TYPE_SCHED_ACT: 6669 case BPF_PROG_TYPE_XDP: 6670 case BPF_PROG_TYPE_SK_REUSEPORT: 6671 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6672 case BPF_PROG_TYPE_SK_LOOKUP: 6673 return true; 6674 default: 6675 break; 6676 } 6677 6678 verbose(env, "cannot update sockmap in this context\n"); 6679 return false; 6680 } 6681 6682 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6683 { 6684 return env->prog->jit_requested && 6685 bpf_jit_supports_subprog_tailcalls(); 6686 } 6687 6688 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6689 struct bpf_map *map, int func_id) 6690 { 6691 if (!map) 6692 return 0; 6693 6694 /* We need a two way check, first is from map perspective ... */ 6695 switch (map->map_type) { 6696 case BPF_MAP_TYPE_PROG_ARRAY: 6697 if (func_id != BPF_FUNC_tail_call) 6698 goto error; 6699 break; 6700 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6701 if (func_id != BPF_FUNC_perf_event_read && 6702 func_id != BPF_FUNC_perf_event_output && 6703 func_id != BPF_FUNC_skb_output && 6704 func_id != BPF_FUNC_perf_event_read_value && 6705 func_id != BPF_FUNC_xdp_output) 6706 goto error; 6707 break; 6708 case BPF_MAP_TYPE_RINGBUF: 6709 if (func_id != BPF_FUNC_ringbuf_output && 6710 func_id != BPF_FUNC_ringbuf_reserve && 6711 func_id != BPF_FUNC_ringbuf_query && 6712 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6713 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6714 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6715 goto error; 6716 break; 6717 case BPF_MAP_TYPE_USER_RINGBUF: 6718 if (func_id != BPF_FUNC_user_ringbuf_drain) 6719 goto error; 6720 break; 6721 case BPF_MAP_TYPE_STACK_TRACE: 6722 if (func_id != BPF_FUNC_get_stackid) 6723 goto error; 6724 break; 6725 case BPF_MAP_TYPE_CGROUP_ARRAY: 6726 if (func_id != BPF_FUNC_skb_under_cgroup && 6727 func_id != BPF_FUNC_current_task_under_cgroup) 6728 goto error; 6729 break; 6730 case BPF_MAP_TYPE_CGROUP_STORAGE: 6731 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6732 if (func_id != BPF_FUNC_get_local_storage) 6733 goto error; 6734 break; 6735 case BPF_MAP_TYPE_DEVMAP: 6736 case BPF_MAP_TYPE_DEVMAP_HASH: 6737 if (func_id != BPF_FUNC_redirect_map && 6738 func_id != BPF_FUNC_map_lookup_elem) 6739 goto error; 6740 break; 6741 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6742 * appear. 6743 */ 6744 case BPF_MAP_TYPE_CPUMAP: 6745 if (func_id != BPF_FUNC_redirect_map) 6746 goto error; 6747 break; 6748 case BPF_MAP_TYPE_XSKMAP: 6749 if (func_id != BPF_FUNC_redirect_map && 6750 func_id != BPF_FUNC_map_lookup_elem) 6751 goto error; 6752 break; 6753 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6754 case BPF_MAP_TYPE_HASH_OF_MAPS: 6755 if (func_id != BPF_FUNC_map_lookup_elem) 6756 goto error; 6757 break; 6758 case BPF_MAP_TYPE_SOCKMAP: 6759 if (func_id != BPF_FUNC_sk_redirect_map && 6760 func_id != BPF_FUNC_sock_map_update && 6761 func_id != BPF_FUNC_map_delete_elem && 6762 func_id != BPF_FUNC_msg_redirect_map && 6763 func_id != BPF_FUNC_sk_select_reuseport && 6764 func_id != BPF_FUNC_map_lookup_elem && 6765 !may_update_sockmap(env, func_id)) 6766 goto error; 6767 break; 6768 case BPF_MAP_TYPE_SOCKHASH: 6769 if (func_id != BPF_FUNC_sk_redirect_hash && 6770 func_id != BPF_FUNC_sock_hash_update && 6771 func_id != BPF_FUNC_map_delete_elem && 6772 func_id != BPF_FUNC_msg_redirect_hash && 6773 func_id != BPF_FUNC_sk_select_reuseport && 6774 func_id != BPF_FUNC_map_lookup_elem && 6775 !may_update_sockmap(env, func_id)) 6776 goto error; 6777 break; 6778 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6779 if (func_id != BPF_FUNC_sk_select_reuseport) 6780 goto error; 6781 break; 6782 case BPF_MAP_TYPE_QUEUE: 6783 case BPF_MAP_TYPE_STACK: 6784 if (func_id != BPF_FUNC_map_peek_elem && 6785 func_id != BPF_FUNC_map_pop_elem && 6786 func_id != BPF_FUNC_map_push_elem) 6787 goto error; 6788 break; 6789 case BPF_MAP_TYPE_SK_STORAGE: 6790 if (func_id != BPF_FUNC_sk_storage_get && 6791 func_id != BPF_FUNC_sk_storage_delete) 6792 goto error; 6793 break; 6794 case BPF_MAP_TYPE_INODE_STORAGE: 6795 if (func_id != BPF_FUNC_inode_storage_get && 6796 func_id != BPF_FUNC_inode_storage_delete) 6797 goto error; 6798 break; 6799 case BPF_MAP_TYPE_TASK_STORAGE: 6800 if (func_id != BPF_FUNC_task_storage_get && 6801 func_id != BPF_FUNC_task_storage_delete) 6802 goto error; 6803 break; 6804 case BPF_MAP_TYPE_CGRP_STORAGE: 6805 if (func_id != BPF_FUNC_cgrp_storage_get && 6806 func_id != BPF_FUNC_cgrp_storage_delete) 6807 goto error; 6808 break; 6809 case BPF_MAP_TYPE_BLOOM_FILTER: 6810 if (func_id != BPF_FUNC_map_peek_elem && 6811 func_id != BPF_FUNC_map_push_elem) 6812 goto error; 6813 break; 6814 default: 6815 break; 6816 } 6817 6818 /* ... and second from the function itself. */ 6819 switch (func_id) { 6820 case BPF_FUNC_tail_call: 6821 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6822 goto error; 6823 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6824 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6825 return -EINVAL; 6826 } 6827 break; 6828 case BPF_FUNC_perf_event_read: 6829 case BPF_FUNC_perf_event_output: 6830 case BPF_FUNC_perf_event_read_value: 6831 case BPF_FUNC_skb_output: 6832 case BPF_FUNC_xdp_output: 6833 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6834 goto error; 6835 break; 6836 case BPF_FUNC_ringbuf_output: 6837 case BPF_FUNC_ringbuf_reserve: 6838 case BPF_FUNC_ringbuf_query: 6839 case BPF_FUNC_ringbuf_reserve_dynptr: 6840 case BPF_FUNC_ringbuf_submit_dynptr: 6841 case BPF_FUNC_ringbuf_discard_dynptr: 6842 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6843 goto error; 6844 break; 6845 case BPF_FUNC_user_ringbuf_drain: 6846 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6847 goto error; 6848 break; 6849 case BPF_FUNC_get_stackid: 6850 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6851 goto error; 6852 break; 6853 case BPF_FUNC_current_task_under_cgroup: 6854 case BPF_FUNC_skb_under_cgroup: 6855 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6856 goto error; 6857 break; 6858 case BPF_FUNC_redirect_map: 6859 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6860 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6861 map->map_type != BPF_MAP_TYPE_CPUMAP && 6862 map->map_type != BPF_MAP_TYPE_XSKMAP) 6863 goto error; 6864 break; 6865 case BPF_FUNC_sk_redirect_map: 6866 case BPF_FUNC_msg_redirect_map: 6867 case BPF_FUNC_sock_map_update: 6868 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6869 goto error; 6870 break; 6871 case BPF_FUNC_sk_redirect_hash: 6872 case BPF_FUNC_msg_redirect_hash: 6873 case BPF_FUNC_sock_hash_update: 6874 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6875 goto error; 6876 break; 6877 case BPF_FUNC_get_local_storage: 6878 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6879 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6880 goto error; 6881 break; 6882 case BPF_FUNC_sk_select_reuseport: 6883 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6884 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6885 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6886 goto error; 6887 break; 6888 case BPF_FUNC_map_pop_elem: 6889 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6890 map->map_type != BPF_MAP_TYPE_STACK) 6891 goto error; 6892 break; 6893 case BPF_FUNC_map_peek_elem: 6894 case BPF_FUNC_map_push_elem: 6895 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6896 map->map_type != BPF_MAP_TYPE_STACK && 6897 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6898 goto error; 6899 break; 6900 case BPF_FUNC_map_lookup_percpu_elem: 6901 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6902 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6903 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6904 goto error; 6905 break; 6906 case BPF_FUNC_sk_storage_get: 6907 case BPF_FUNC_sk_storage_delete: 6908 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6909 goto error; 6910 break; 6911 case BPF_FUNC_inode_storage_get: 6912 case BPF_FUNC_inode_storage_delete: 6913 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6914 goto error; 6915 break; 6916 case BPF_FUNC_task_storage_get: 6917 case BPF_FUNC_task_storage_delete: 6918 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6919 goto error; 6920 break; 6921 case BPF_FUNC_cgrp_storage_get: 6922 case BPF_FUNC_cgrp_storage_delete: 6923 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 6924 goto error; 6925 break; 6926 default: 6927 break; 6928 } 6929 6930 return 0; 6931 error: 6932 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6933 map->map_type, func_id_name(func_id), func_id); 6934 return -EINVAL; 6935 } 6936 6937 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6938 { 6939 int count = 0; 6940 6941 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6942 count++; 6943 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6944 count++; 6945 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6946 count++; 6947 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6948 count++; 6949 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6950 count++; 6951 6952 /* We only support one arg being in raw mode at the moment, 6953 * which is sufficient for the helper functions we have 6954 * right now. 6955 */ 6956 return count <= 1; 6957 } 6958 6959 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6960 { 6961 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6962 bool has_size = fn->arg_size[arg] != 0; 6963 bool is_next_size = false; 6964 6965 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6966 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6967 6968 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6969 return is_next_size; 6970 6971 return has_size == is_next_size || is_next_size == is_fixed; 6972 } 6973 6974 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6975 { 6976 /* bpf_xxx(..., buf, len) call will access 'len' 6977 * bytes from memory 'buf'. Both arg types need 6978 * to be paired, so make sure there's no buggy 6979 * helper function specification. 6980 */ 6981 if (arg_type_is_mem_size(fn->arg1_type) || 6982 check_args_pair_invalid(fn, 0) || 6983 check_args_pair_invalid(fn, 1) || 6984 check_args_pair_invalid(fn, 2) || 6985 check_args_pair_invalid(fn, 3) || 6986 check_args_pair_invalid(fn, 4)) 6987 return false; 6988 6989 return true; 6990 } 6991 6992 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6993 { 6994 int i; 6995 6996 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6997 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 6998 return !!fn->arg_btf_id[i]; 6999 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 7000 return fn->arg_btf_id[i] == BPF_PTR_POISON; 7001 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7002 /* arg_btf_id and arg_size are in a union. */ 7003 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7004 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7005 return false; 7006 } 7007 7008 return true; 7009 } 7010 7011 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7012 { 7013 return check_raw_mode_ok(fn) && 7014 check_arg_pair_ok(fn) && 7015 check_btf_id_ok(fn) ? 0 : -EINVAL; 7016 } 7017 7018 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7019 * are now invalid, so turn them into unknown SCALAR_VALUE. 7020 */ 7021 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7022 { 7023 struct bpf_func_state *state; 7024 struct bpf_reg_state *reg; 7025 7026 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7027 if (reg_is_pkt_pointer_any(reg)) 7028 __mark_reg_unknown(env, reg); 7029 })); 7030 } 7031 7032 enum { 7033 AT_PKT_END = -1, 7034 BEYOND_PKT_END = -2, 7035 }; 7036 7037 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7038 { 7039 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7040 struct bpf_reg_state *reg = &state->regs[regn]; 7041 7042 if (reg->type != PTR_TO_PACKET) 7043 /* PTR_TO_PACKET_META is not supported yet */ 7044 return; 7045 7046 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7047 * How far beyond pkt_end it goes is unknown. 7048 * if (!range_open) it's the case of pkt >= pkt_end 7049 * if (range_open) it's the case of pkt > pkt_end 7050 * hence this pointer is at least 1 byte bigger than pkt_end 7051 */ 7052 if (range_open) 7053 reg->range = BEYOND_PKT_END; 7054 else 7055 reg->range = AT_PKT_END; 7056 } 7057 7058 /* The pointer with the specified id has released its reference to kernel 7059 * resources. Identify all copies of the same pointer and clear the reference. 7060 */ 7061 static int release_reference(struct bpf_verifier_env *env, 7062 int ref_obj_id) 7063 { 7064 struct bpf_func_state *state; 7065 struct bpf_reg_state *reg; 7066 int err; 7067 7068 err = release_reference_state(cur_func(env), ref_obj_id); 7069 if (err) 7070 return err; 7071 7072 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7073 if (reg->ref_obj_id == ref_obj_id) { 7074 if (!env->allow_ptr_leaks) 7075 __mark_reg_not_init(env, reg); 7076 else 7077 __mark_reg_unknown(env, reg); 7078 } 7079 })); 7080 7081 return 0; 7082 } 7083 7084 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7085 struct bpf_reg_state *regs) 7086 { 7087 int i; 7088 7089 /* after the call registers r0 - r5 were scratched */ 7090 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7091 mark_reg_not_init(env, regs, caller_saved[i]); 7092 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7093 } 7094 } 7095 7096 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7097 struct bpf_func_state *caller, 7098 struct bpf_func_state *callee, 7099 int insn_idx); 7100 7101 static int set_callee_state(struct bpf_verifier_env *env, 7102 struct bpf_func_state *caller, 7103 struct bpf_func_state *callee, int insn_idx); 7104 7105 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7106 int *insn_idx, int subprog, 7107 set_callee_state_fn set_callee_state_cb) 7108 { 7109 struct bpf_verifier_state *state = env->cur_state; 7110 struct bpf_func_info_aux *func_info_aux; 7111 struct bpf_func_state *caller, *callee; 7112 int err; 7113 bool is_global = false; 7114 7115 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7116 verbose(env, "the call stack of %d frames is too deep\n", 7117 state->curframe + 2); 7118 return -E2BIG; 7119 } 7120 7121 caller = state->frame[state->curframe]; 7122 if (state->frame[state->curframe + 1]) { 7123 verbose(env, "verifier bug. Frame %d already allocated\n", 7124 state->curframe + 1); 7125 return -EFAULT; 7126 } 7127 7128 func_info_aux = env->prog->aux->func_info_aux; 7129 if (func_info_aux) 7130 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7131 err = btf_check_subprog_call(env, subprog, caller->regs); 7132 if (err == -EFAULT) 7133 return err; 7134 if (is_global) { 7135 if (err) { 7136 verbose(env, "Caller passes invalid args into func#%d\n", 7137 subprog); 7138 return err; 7139 } else { 7140 if (env->log.level & BPF_LOG_LEVEL) 7141 verbose(env, 7142 "Func#%d is global and valid. Skipping.\n", 7143 subprog); 7144 clear_caller_saved_regs(env, caller->regs); 7145 7146 /* All global functions return a 64-bit SCALAR_VALUE */ 7147 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7148 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7149 7150 /* continue with next insn after call */ 7151 return 0; 7152 } 7153 } 7154 7155 /* set_callee_state is used for direct subprog calls, but we are 7156 * interested in validating only BPF helpers that can call subprogs as 7157 * callbacks 7158 */ 7159 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) { 7160 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n", 7161 func_id_name(insn->imm), insn->imm); 7162 return -EFAULT; 7163 } 7164 7165 if (insn->code == (BPF_JMP | BPF_CALL) && 7166 insn->src_reg == 0 && 7167 insn->imm == BPF_FUNC_timer_set_callback) { 7168 struct bpf_verifier_state *async_cb; 7169 7170 /* there is no real recursion here. timer callbacks are async */ 7171 env->subprog_info[subprog].is_async_cb = true; 7172 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7173 *insn_idx, subprog); 7174 if (!async_cb) 7175 return -EFAULT; 7176 callee = async_cb->frame[0]; 7177 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7178 7179 /* Convert bpf_timer_set_callback() args into timer callback args */ 7180 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7181 if (err) 7182 return err; 7183 7184 clear_caller_saved_regs(env, caller->regs); 7185 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7186 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7187 /* continue with next insn after call */ 7188 return 0; 7189 } 7190 7191 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7192 if (!callee) 7193 return -ENOMEM; 7194 state->frame[state->curframe + 1] = callee; 7195 7196 /* callee cannot access r0, r6 - r9 for reading and has to write 7197 * into its own stack before reading from it. 7198 * callee can read/write into caller's stack 7199 */ 7200 init_func_state(env, callee, 7201 /* remember the callsite, it will be used by bpf_exit */ 7202 *insn_idx /* callsite */, 7203 state->curframe + 1 /* frameno within this callchain */, 7204 subprog /* subprog number within this prog */); 7205 7206 /* Transfer references to the callee */ 7207 err = copy_reference_state(callee, caller); 7208 if (err) 7209 goto err_out; 7210 7211 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7212 if (err) 7213 goto err_out; 7214 7215 clear_caller_saved_regs(env, caller->regs); 7216 7217 /* only increment it after check_reg_arg() finished */ 7218 state->curframe++; 7219 7220 /* and go analyze first insn of the callee */ 7221 *insn_idx = env->subprog_info[subprog].start - 1; 7222 7223 if (env->log.level & BPF_LOG_LEVEL) { 7224 verbose(env, "caller:\n"); 7225 print_verifier_state(env, caller, true); 7226 verbose(env, "callee:\n"); 7227 print_verifier_state(env, callee, true); 7228 } 7229 return 0; 7230 7231 err_out: 7232 free_func_state(callee); 7233 state->frame[state->curframe + 1] = NULL; 7234 return err; 7235 } 7236 7237 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7238 struct bpf_func_state *caller, 7239 struct bpf_func_state *callee) 7240 { 7241 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7242 * void *callback_ctx, u64 flags); 7243 * callback_fn(struct bpf_map *map, void *key, void *value, 7244 * void *callback_ctx); 7245 */ 7246 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7247 7248 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7249 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7250 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7251 7252 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7253 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7254 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7255 7256 /* pointer to stack or null */ 7257 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7258 7259 /* unused */ 7260 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7261 return 0; 7262 } 7263 7264 static int set_callee_state(struct bpf_verifier_env *env, 7265 struct bpf_func_state *caller, 7266 struct bpf_func_state *callee, int insn_idx) 7267 { 7268 int i; 7269 7270 /* copy r1 - r5 args that callee can access. The copy includes parent 7271 * pointers, which connects us up to the liveness chain 7272 */ 7273 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7274 callee->regs[i] = caller->regs[i]; 7275 return 0; 7276 } 7277 7278 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7279 int *insn_idx) 7280 { 7281 int subprog, target_insn; 7282 7283 target_insn = *insn_idx + insn->imm + 1; 7284 subprog = find_subprog(env, target_insn); 7285 if (subprog < 0) { 7286 verbose(env, "verifier bug. No program starts at insn %d\n", 7287 target_insn); 7288 return -EFAULT; 7289 } 7290 7291 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7292 } 7293 7294 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7295 struct bpf_func_state *caller, 7296 struct bpf_func_state *callee, 7297 int insn_idx) 7298 { 7299 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7300 struct bpf_map *map; 7301 int err; 7302 7303 if (bpf_map_ptr_poisoned(insn_aux)) { 7304 verbose(env, "tail_call abusing map_ptr\n"); 7305 return -EINVAL; 7306 } 7307 7308 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7309 if (!map->ops->map_set_for_each_callback_args || 7310 !map->ops->map_for_each_callback) { 7311 verbose(env, "callback function not allowed for map\n"); 7312 return -ENOTSUPP; 7313 } 7314 7315 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7316 if (err) 7317 return err; 7318 7319 callee->in_callback_fn = true; 7320 callee->callback_ret_range = tnum_range(0, 1); 7321 return 0; 7322 } 7323 7324 static int set_loop_callback_state(struct bpf_verifier_env *env, 7325 struct bpf_func_state *caller, 7326 struct bpf_func_state *callee, 7327 int insn_idx) 7328 { 7329 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7330 * u64 flags); 7331 * callback_fn(u32 index, void *callback_ctx); 7332 */ 7333 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7334 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7335 7336 /* unused */ 7337 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7338 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7339 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7340 7341 callee->in_callback_fn = true; 7342 callee->callback_ret_range = tnum_range(0, 1); 7343 return 0; 7344 } 7345 7346 static int set_timer_callback_state(struct bpf_verifier_env *env, 7347 struct bpf_func_state *caller, 7348 struct bpf_func_state *callee, 7349 int insn_idx) 7350 { 7351 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7352 7353 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7354 * callback_fn(struct bpf_map *map, void *key, void *value); 7355 */ 7356 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7357 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7358 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7359 7360 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7361 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7362 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7363 7364 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7365 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7366 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7367 7368 /* unused */ 7369 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7370 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7371 callee->in_async_callback_fn = true; 7372 callee->callback_ret_range = tnum_range(0, 1); 7373 return 0; 7374 } 7375 7376 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7377 struct bpf_func_state *caller, 7378 struct bpf_func_state *callee, 7379 int insn_idx) 7380 { 7381 /* bpf_find_vma(struct task_struct *task, u64 addr, 7382 * void *callback_fn, void *callback_ctx, u64 flags) 7383 * (callback_fn)(struct task_struct *task, 7384 * struct vm_area_struct *vma, void *callback_ctx); 7385 */ 7386 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7387 7388 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7389 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7390 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7391 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7392 7393 /* pointer to stack or null */ 7394 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7395 7396 /* unused */ 7397 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7398 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7399 callee->in_callback_fn = true; 7400 callee->callback_ret_range = tnum_range(0, 1); 7401 return 0; 7402 } 7403 7404 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7405 struct bpf_func_state *caller, 7406 struct bpf_func_state *callee, 7407 int insn_idx) 7408 { 7409 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7410 * callback_ctx, u64 flags); 7411 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7412 */ 7413 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7414 mark_dynptr_cb_reg(&callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7415 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7416 7417 /* unused */ 7418 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7419 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7420 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7421 7422 callee->in_callback_fn = true; 7423 callee->callback_ret_range = tnum_range(0, 1); 7424 return 0; 7425 } 7426 7427 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7428 { 7429 struct bpf_verifier_state *state = env->cur_state; 7430 struct bpf_func_state *caller, *callee; 7431 struct bpf_reg_state *r0; 7432 int err; 7433 7434 callee = state->frame[state->curframe]; 7435 r0 = &callee->regs[BPF_REG_0]; 7436 if (r0->type == PTR_TO_STACK) { 7437 /* technically it's ok to return caller's stack pointer 7438 * (or caller's caller's pointer) back to the caller, 7439 * since these pointers are valid. Only current stack 7440 * pointer will be invalid as soon as function exits, 7441 * but let's be conservative 7442 */ 7443 verbose(env, "cannot return stack pointer to the caller\n"); 7444 return -EINVAL; 7445 } 7446 7447 caller = state->frame[state->curframe - 1]; 7448 if (callee->in_callback_fn) { 7449 /* enforce R0 return value range [0, 1]. */ 7450 struct tnum range = callee->callback_ret_range; 7451 7452 if (r0->type != SCALAR_VALUE) { 7453 verbose(env, "R0 not a scalar value\n"); 7454 return -EACCES; 7455 } 7456 if (!tnum_in(range, r0->var_off)) { 7457 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7458 return -EINVAL; 7459 } 7460 } else { 7461 /* return to the caller whatever r0 had in the callee */ 7462 caller->regs[BPF_REG_0] = *r0; 7463 } 7464 7465 /* callback_fn frame should have released its own additions to parent's 7466 * reference state at this point, or check_reference_leak would 7467 * complain, hence it must be the same as the caller. There is no need 7468 * to copy it back. 7469 */ 7470 if (!callee->in_callback_fn) { 7471 /* Transfer references to the caller */ 7472 err = copy_reference_state(caller, callee); 7473 if (err) 7474 return err; 7475 } 7476 7477 *insn_idx = callee->callsite + 1; 7478 if (env->log.level & BPF_LOG_LEVEL) { 7479 verbose(env, "returning from callee:\n"); 7480 print_verifier_state(env, callee, true); 7481 verbose(env, "to caller at %d:\n", *insn_idx); 7482 print_verifier_state(env, caller, true); 7483 } 7484 /* clear everything in the callee */ 7485 free_func_state(callee); 7486 state->frame[state->curframe--] = NULL; 7487 return 0; 7488 } 7489 7490 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7491 int func_id, 7492 struct bpf_call_arg_meta *meta) 7493 { 7494 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7495 7496 if (ret_type != RET_INTEGER || 7497 (func_id != BPF_FUNC_get_stack && 7498 func_id != BPF_FUNC_get_task_stack && 7499 func_id != BPF_FUNC_probe_read_str && 7500 func_id != BPF_FUNC_probe_read_kernel_str && 7501 func_id != BPF_FUNC_probe_read_user_str)) 7502 return; 7503 7504 ret_reg->smax_value = meta->msize_max_value; 7505 ret_reg->s32_max_value = meta->msize_max_value; 7506 ret_reg->smin_value = -MAX_ERRNO; 7507 ret_reg->s32_min_value = -MAX_ERRNO; 7508 reg_bounds_sync(ret_reg); 7509 } 7510 7511 static int 7512 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7513 int func_id, int insn_idx) 7514 { 7515 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7516 struct bpf_map *map = meta->map_ptr; 7517 7518 if (func_id != BPF_FUNC_tail_call && 7519 func_id != BPF_FUNC_map_lookup_elem && 7520 func_id != BPF_FUNC_map_update_elem && 7521 func_id != BPF_FUNC_map_delete_elem && 7522 func_id != BPF_FUNC_map_push_elem && 7523 func_id != BPF_FUNC_map_pop_elem && 7524 func_id != BPF_FUNC_map_peek_elem && 7525 func_id != BPF_FUNC_for_each_map_elem && 7526 func_id != BPF_FUNC_redirect_map && 7527 func_id != BPF_FUNC_map_lookup_percpu_elem) 7528 return 0; 7529 7530 if (map == NULL) { 7531 verbose(env, "kernel subsystem misconfigured verifier\n"); 7532 return -EINVAL; 7533 } 7534 7535 /* In case of read-only, some additional restrictions 7536 * need to be applied in order to prevent altering the 7537 * state of the map from program side. 7538 */ 7539 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7540 (func_id == BPF_FUNC_map_delete_elem || 7541 func_id == BPF_FUNC_map_update_elem || 7542 func_id == BPF_FUNC_map_push_elem || 7543 func_id == BPF_FUNC_map_pop_elem)) { 7544 verbose(env, "write into map forbidden\n"); 7545 return -EACCES; 7546 } 7547 7548 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7549 bpf_map_ptr_store(aux, meta->map_ptr, 7550 !meta->map_ptr->bypass_spec_v1); 7551 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7552 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7553 !meta->map_ptr->bypass_spec_v1); 7554 return 0; 7555 } 7556 7557 static int 7558 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7559 int func_id, int insn_idx) 7560 { 7561 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7562 struct bpf_reg_state *regs = cur_regs(env), *reg; 7563 struct bpf_map *map = meta->map_ptr; 7564 u64 val, max; 7565 int err; 7566 7567 if (func_id != BPF_FUNC_tail_call) 7568 return 0; 7569 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7570 verbose(env, "kernel subsystem misconfigured verifier\n"); 7571 return -EINVAL; 7572 } 7573 7574 reg = ®s[BPF_REG_3]; 7575 val = reg->var_off.value; 7576 max = map->max_entries; 7577 7578 if (!(register_is_const(reg) && val < max)) { 7579 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7580 return 0; 7581 } 7582 7583 err = mark_chain_precision(env, BPF_REG_3); 7584 if (err) 7585 return err; 7586 if (bpf_map_key_unseen(aux)) 7587 bpf_map_key_store(aux, val); 7588 else if (!bpf_map_key_poisoned(aux) && 7589 bpf_map_key_immediate(aux) != val) 7590 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7591 return 0; 7592 } 7593 7594 static int check_reference_leak(struct bpf_verifier_env *env) 7595 { 7596 struct bpf_func_state *state = cur_func(env); 7597 bool refs_lingering = false; 7598 int i; 7599 7600 if (state->frameno && !state->in_callback_fn) 7601 return 0; 7602 7603 for (i = 0; i < state->acquired_refs; i++) { 7604 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7605 continue; 7606 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7607 state->refs[i].id, state->refs[i].insn_idx); 7608 refs_lingering = true; 7609 } 7610 return refs_lingering ? -EINVAL : 0; 7611 } 7612 7613 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7614 struct bpf_reg_state *regs) 7615 { 7616 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7617 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7618 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7619 struct bpf_bprintf_data data = {}; 7620 int err, fmt_map_off, num_args; 7621 u64 fmt_addr; 7622 char *fmt; 7623 7624 /* data must be an array of u64 */ 7625 if (data_len_reg->var_off.value % 8) 7626 return -EINVAL; 7627 num_args = data_len_reg->var_off.value / 8; 7628 7629 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7630 * and map_direct_value_addr is set. 7631 */ 7632 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7633 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7634 fmt_map_off); 7635 if (err) { 7636 verbose(env, "verifier bug\n"); 7637 return -EFAULT; 7638 } 7639 fmt = (char *)(long)fmt_addr + fmt_map_off; 7640 7641 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7642 * can focus on validating the format specifiers. 7643 */ 7644 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 7645 if (err < 0) 7646 verbose(env, "Invalid format string\n"); 7647 7648 return err; 7649 } 7650 7651 static int check_get_func_ip(struct bpf_verifier_env *env) 7652 { 7653 enum bpf_prog_type type = resolve_prog_type(env->prog); 7654 int func_id = BPF_FUNC_get_func_ip; 7655 7656 if (type == BPF_PROG_TYPE_TRACING) { 7657 if (!bpf_prog_has_trampoline(env->prog)) { 7658 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7659 func_id_name(func_id), func_id); 7660 return -ENOTSUPP; 7661 } 7662 return 0; 7663 } else if (type == BPF_PROG_TYPE_KPROBE) { 7664 return 0; 7665 } 7666 7667 verbose(env, "func %s#%d not supported for program type %d\n", 7668 func_id_name(func_id), func_id, type); 7669 return -ENOTSUPP; 7670 } 7671 7672 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7673 { 7674 return &env->insn_aux_data[env->insn_idx]; 7675 } 7676 7677 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7678 { 7679 struct bpf_reg_state *regs = cur_regs(env); 7680 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7681 bool reg_is_null = register_is_null(reg); 7682 7683 if (reg_is_null) 7684 mark_chain_precision(env, BPF_REG_4); 7685 7686 return reg_is_null; 7687 } 7688 7689 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7690 { 7691 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7692 7693 if (!state->initialized) { 7694 state->initialized = 1; 7695 state->fit_for_inline = loop_flag_is_zero(env); 7696 state->callback_subprogno = subprogno; 7697 return; 7698 } 7699 7700 if (!state->fit_for_inline) 7701 return; 7702 7703 state->fit_for_inline = (loop_flag_is_zero(env) && 7704 state->callback_subprogno == subprogno); 7705 } 7706 7707 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7708 int *insn_idx_p) 7709 { 7710 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7711 const struct bpf_func_proto *fn = NULL; 7712 enum bpf_return_type ret_type; 7713 enum bpf_type_flag ret_flag; 7714 struct bpf_reg_state *regs; 7715 struct bpf_call_arg_meta meta; 7716 int insn_idx = *insn_idx_p; 7717 bool changes_data; 7718 int i, err, func_id; 7719 7720 /* find function prototype */ 7721 func_id = insn->imm; 7722 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7723 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7724 func_id); 7725 return -EINVAL; 7726 } 7727 7728 if (env->ops->get_func_proto) 7729 fn = env->ops->get_func_proto(func_id, env->prog); 7730 if (!fn) { 7731 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7732 func_id); 7733 return -EINVAL; 7734 } 7735 7736 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7737 if (!env->prog->gpl_compatible && fn->gpl_only) { 7738 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7739 return -EINVAL; 7740 } 7741 7742 if (fn->allowed && !fn->allowed(env->prog)) { 7743 verbose(env, "helper call is not allowed in probe\n"); 7744 return -EINVAL; 7745 } 7746 7747 if (!env->prog->aux->sleepable && fn->might_sleep) { 7748 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 7749 return -EINVAL; 7750 } 7751 7752 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7753 changes_data = bpf_helper_changes_pkt_data(fn->func); 7754 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7755 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7756 func_id_name(func_id), func_id); 7757 return -EINVAL; 7758 } 7759 7760 memset(&meta, 0, sizeof(meta)); 7761 meta.pkt_access = fn->pkt_access; 7762 7763 err = check_func_proto(fn, func_id); 7764 if (err) { 7765 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7766 func_id_name(func_id), func_id); 7767 return err; 7768 } 7769 7770 if (env->cur_state->active_rcu_lock) { 7771 if (fn->might_sleep) { 7772 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 7773 func_id_name(func_id), func_id); 7774 return -EINVAL; 7775 } 7776 7777 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 7778 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 7779 } 7780 7781 meta.func_id = func_id; 7782 /* check args */ 7783 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7784 err = check_func_arg(env, i, &meta, fn); 7785 if (err) 7786 return err; 7787 } 7788 7789 err = record_func_map(env, &meta, func_id, insn_idx); 7790 if (err) 7791 return err; 7792 7793 err = record_func_key(env, &meta, func_id, insn_idx); 7794 if (err) 7795 return err; 7796 7797 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7798 * is inferred from register state. 7799 */ 7800 for (i = 0; i < meta.access_size; i++) { 7801 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7802 BPF_WRITE, -1, false); 7803 if (err) 7804 return err; 7805 } 7806 7807 regs = cur_regs(env); 7808 7809 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7810 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 7811 * is safe to do directly. 7812 */ 7813 if (meta.uninit_dynptr_regno) { 7814 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 7815 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 7816 return -EFAULT; 7817 } 7818 /* we write BPF_DW bits (8 bytes) at a time */ 7819 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7820 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7821 i, BPF_DW, BPF_WRITE, -1, false); 7822 if (err) 7823 return err; 7824 } 7825 7826 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7827 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7828 insn_idx); 7829 if (err) 7830 return err; 7831 } 7832 7833 if (meta.release_regno) { 7834 err = -EINVAL; 7835 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7836 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 7837 * is safe to do directly. 7838 */ 7839 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 7840 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 7841 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 7842 return -EFAULT; 7843 } 7844 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7845 } else if (meta.ref_obj_id) { 7846 err = release_reference(env, meta.ref_obj_id); 7847 } else if (register_is_null(®s[meta.release_regno])) { 7848 /* meta.ref_obj_id can only be 0 if register that is meant to be 7849 * released is NULL, which must be > R0. 7850 */ 7851 err = 0; 7852 } 7853 if (err) { 7854 verbose(env, "func %s#%d reference has not been acquired before\n", 7855 func_id_name(func_id), func_id); 7856 return err; 7857 } 7858 } 7859 7860 switch (func_id) { 7861 case BPF_FUNC_tail_call: 7862 err = check_reference_leak(env); 7863 if (err) { 7864 verbose(env, "tail_call would lead to reference leak\n"); 7865 return err; 7866 } 7867 break; 7868 case BPF_FUNC_get_local_storage: 7869 /* check that flags argument in get_local_storage(map, flags) is 0, 7870 * this is required because get_local_storage() can't return an error. 7871 */ 7872 if (!register_is_null(®s[BPF_REG_2])) { 7873 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7874 return -EINVAL; 7875 } 7876 break; 7877 case BPF_FUNC_for_each_map_elem: 7878 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7879 set_map_elem_callback_state); 7880 break; 7881 case BPF_FUNC_timer_set_callback: 7882 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7883 set_timer_callback_state); 7884 break; 7885 case BPF_FUNC_find_vma: 7886 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7887 set_find_vma_callback_state); 7888 break; 7889 case BPF_FUNC_snprintf: 7890 err = check_bpf_snprintf_call(env, regs); 7891 break; 7892 case BPF_FUNC_loop: 7893 update_loop_inline_state(env, meta.subprogno); 7894 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7895 set_loop_callback_state); 7896 break; 7897 case BPF_FUNC_dynptr_from_mem: 7898 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7899 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7900 reg_type_str(env, regs[BPF_REG_1].type)); 7901 return -EACCES; 7902 } 7903 break; 7904 case BPF_FUNC_set_retval: 7905 if (prog_type == BPF_PROG_TYPE_LSM && 7906 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7907 if (!env->prog->aux->attach_func_proto->type) { 7908 /* Make sure programs that attach to void 7909 * hooks don't try to modify return value. 7910 */ 7911 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7912 return -EINVAL; 7913 } 7914 } 7915 break; 7916 case BPF_FUNC_dynptr_data: 7917 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7918 if (arg_type_is_dynptr(fn->arg_type[i])) { 7919 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7920 7921 if (meta.ref_obj_id) { 7922 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7923 return -EFAULT; 7924 } 7925 7926 meta.ref_obj_id = dynptr_ref_obj_id(env, reg); 7927 break; 7928 } 7929 } 7930 if (i == MAX_BPF_FUNC_REG_ARGS) { 7931 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7932 return -EFAULT; 7933 } 7934 break; 7935 case BPF_FUNC_user_ringbuf_drain: 7936 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7937 set_user_ringbuf_callback_state); 7938 break; 7939 } 7940 7941 if (err) 7942 return err; 7943 7944 /* reset caller saved regs */ 7945 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7946 mark_reg_not_init(env, regs, caller_saved[i]); 7947 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7948 } 7949 7950 /* helper call returns 64-bit value. */ 7951 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7952 7953 /* update return register (already marked as written above) */ 7954 ret_type = fn->ret_type; 7955 ret_flag = type_flag(ret_type); 7956 7957 switch (base_type(ret_type)) { 7958 case RET_INTEGER: 7959 /* sets type to SCALAR_VALUE */ 7960 mark_reg_unknown(env, regs, BPF_REG_0); 7961 break; 7962 case RET_VOID: 7963 regs[BPF_REG_0].type = NOT_INIT; 7964 break; 7965 case RET_PTR_TO_MAP_VALUE: 7966 /* There is no offset yet applied, variable or fixed */ 7967 mark_reg_known_zero(env, regs, BPF_REG_0); 7968 /* remember map_ptr, so that check_map_access() 7969 * can check 'value_size' boundary of memory access 7970 * to map element returned from bpf_map_lookup_elem() 7971 */ 7972 if (meta.map_ptr == NULL) { 7973 verbose(env, 7974 "kernel subsystem misconfigured verifier\n"); 7975 return -EINVAL; 7976 } 7977 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7978 regs[BPF_REG_0].map_uid = meta.map_uid; 7979 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7980 if (!type_may_be_null(ret_type) && 7981 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 7982 regs[BPF_REG_0].id = ++env->id_gen; 7983 } 7984 break; 7985 case RET_PTR_TO_SOCKET: 7986 mark_reg_known_zero(env, regs, BPF_REG_0); 7987 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7988 break; 7989 case RET_PTR_TO_SOCK_COMMON: 7990 mark_reg_known_zero(env, regs, BPF_REG_0); 7991 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7992 break; 7993 case RET_PTR_TO_TCP_SOCK: 7994 mark_reg_known_zero(env, regs, BPF_REG_0); 7995 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7996 break; 7997 case RET_PTR_TO_MEM: 7998 mark_reg_known_zero(env, regs, BPF_REG_0); 7999 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8000 regs[BPF_REG_0].mem_size = meta.mem_size; 8001 break; 8002 case RET_PTR_TO_MEM_OR_BTF_ID: 8003 { 8004 const struct btf_type *t; 8005 8006 mark_reg_known_zero(env, regs, BPF_REG_0); 8007 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8008 if (!btf_type_is_struct(t)) { 8009 u32 tsize; 8010 const struct btf_type *ret; 8011 const char *tname; 8012 8013 /* resolve the type size of ksym. */ 8014 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8015 if (IS_ERR(ret)) { 8016 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8017 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8018 tname, PTR_ERR(ret)); 8019 return -EINVAL; 8020 } 8021 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8022 regs[BPF_REG_0].mem_size = tsize; 8023 } else { 8024 /* MEM_RDONLY may be carried from ret_flag, but it 8025 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8026 * it will confuse the check of PTR_TO_BTF_ID in 8027 * check_mem_access(). 8028 */ 8029 ret_flag &= ~MEM_RDONLY; 8030 8031 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8032 regs[BPF_REG_0].btf = meta.ret_btf; 8033 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8034 } 8035 break; 8036 } 8037 case RET_PTR_TO_BTF_ID: 8038 { 8039 struct btf *ret_btf; 8040 int ret_btf_id; 8041 8042 mark_reg_known_zero(env, regs, BPF_REG_0); 8043 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8044 if (func_id == BPF_FUNC_kptr_xchg) { 8045 ret_btf = meta.kptr_field->kptr.btf; 8046 ret_btf_id = meta.kptr_field->kptr.btf_id; 8047 } else { 8048 if (fn->ret_btf_id == BPF_PTR_POISON) { 8049 verbose(env, "verifier internal error:"); 8050 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8051 func_id_name(func_id)); 8052 return -EINVAL; 8053 } 8054 ret_btf = btf_vmlinux; 8055 ret_btf_id = *fn->ret_btf_id; 8056 } 8057 if (ret_btf_id == 0) { 8058 verbose(env, "invalid return type %u of func %s#%d\n", 8059 base_type(ret_type), func_id_name(func_id), 8060 func_id); 8061 return -EINVAL; 8062 } 8063 regs[BPF_REG_0].btf = ret_btf; 8064 regs[BPF_REG_0].btf_id = ret_btf_id; 8065 break; 8066 } 8067 default: 8068 verbose(env, "unknown return type %u of func %s#%d\n", 8069 base_type(ret_type), func_id_name(func_id), func_id); 8070 return -EINVAL; 8071 } 8072 8073 if (type_may_be_null(regs[BPF_REG_0].type)) 8074 regs[BPF_REG_0].id = ++env->id_gen; 8075 8076 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8077 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8078 func_id_name(func_id), func_id); 8079 return -EFAULT; 8080 } 8081 8082 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8083 /* For release_reference() */ 8084 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8085 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8086 int id = acquire_reference_state(env, insn_idx); 8087 8088 if (id < 0) 8089 return id; 8090 /* For mark_ptr_or_null_reg() */ 8091 regs[BPF_REG_0].id = id; 8092 /* For release_reference() */ 8093 regs[BPF_REG_0].ref_obj_id = id; 8094 } 8095 8096 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8097 8098 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8099 if (err) 8100 return err; 8101 8102 if ((func_id == BPF_FUNC_get_stack || 8103 func_id == BPF_FUNC_get_task_stack) && 8104 !env->prog->has_callchain_buf) { 8105 const char *err_str; 8106 8107 #ifdef CONFIG_PERF_EVENTS 8108 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8109 err_str = "cannot get callchain buffer for func %s#%d\n"; 8110 #else 8111 err = -ENOTSUPP; 8112 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8113 #endif 8114 if (err) { 8115 verbose(env, err_str, func_id_name(func_id), func_id); 8116 return err; 8117 } 8118 8119 env->prog->has_callchain_buf = true; 8120 } 8121 8122 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8123 env->prog->call_get_stack = true; 8124 8125 if (func_id == BPF_FUNC_get_func_ip) { 8126 if (check_get_func_ip(env)) 8127 return -ENOTSUPP; 8128 env->prog->call_get_func_ip = true; 8129 } 8130 8131 if (changes_data) 8132 clear_all_pkt_pointers(env); 8133 return 0; 8134 } 8135 8136 /* mark_btf_func_reg_size() is used when the reg size is determined by 8137 * the BTF func_proto's return value size and argument. 8138 */ 8139 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8140 size_t reg_size) 8141 { 8142 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8143 8144 if (regno == BPF_REG_0) { 8145 /* Function return value */ 8146 reg->live |= REG_LIVE_WRITTEN; 8147 reg->subreg_def = reg_size == sizeof(u64) ? 8148 DEF_NOT_SUBREG : env->insn_idx + 1; 8149 } else { 8150 /* Function argument */ 8151 if (reg_size == sizeof(u64)) { 8152 mark_insn_zext(env, reg); 8153 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8154 } else { 8155 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8156 } 8157 } 8158 } 8159 8160 struct bpf_kfunc_call_arg_meta { 8161 /* In parameters */ 8162 struct btf *btf; 8163 u32 func_id; 8164 u32 kfunc_flags; 8165 const struct btf_type *func_proto; 8166 const char *func_name; 8167 /* Out parameters */ 8168 u32 ref_obj_id; 8169 u8 release_regno; 8170 bool r0_rdonly; 8171 u32 ret_btf_id; 8172 u64 r0_size; 8173 struct { 8174 u64 value; 8175 bool found; 8176 } arg_constant; 8177 struct { 8178 struct btf *btf; 8179 u32 btf_id; 8180 } arg_obj_drop; 8181 struct { 8182 struct btf_field *field; 8183 } arg_list_head; 8184 }; 8185 8186 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8187 { 8188 return meta->kfunc_flags & KF_ACQUIRE; 8189 } 8190 8191 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8192 { 8193 return meta->kfunc_flags & KF_RET_NULL; 8194 } 8195 8196 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8197 { 8198 return meta->kfunc_flags & KF_RELEASE; 8199 } 8200 8201 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8202 { 8203 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8204 } 8205 8206 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8207 { 8208 return meta->kfunc_flags & KF_SLEEPABLE; 8209 } 8210 8211 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8212 { 8213 return meta->kfunc_flags & KF_DESTRUCTIVE; 8214 } 8215 8216 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8217 { 8218 return meta->kfunc_flags & KF_RCU; 8219 } 8220 8221 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8222 { 8223 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8224 } 8225 8226 static bool __kfunc_param_match_suffix(const struct btf *btf, 8227 const struct btf_param *arg, 8228 const char *suffix) 8229 { 8230 int suffix_len = strlen(suffix), len; 8231 const char *param_name; 8232 8233 /* In the future, this can be ported to use BTF tagging */ 8234 param_name = btf_name_by_offset(btf, arg->name_off); 8235 if (str_is_empty(param_name)) 8236 return false; 8237 len = strlen(param_name); 8238 if (len < suffix_len) 8239 return false; 8240 param_name += len - suffix_len; 8241 return !strncmp(param_name, suffix, suffix_len); 8242 } 8243 8244 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8245 const struct btf_param *arg, 8246 const struct bpf_reg_state *reg) 8247 { 8248 const struct btf_type *t; 8249 8250 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8251 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8252 return false; 8253 8254 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8255 } 8256 8257 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8258 { 8259 return __kfunc_param_match_suffix(btf, arg, "__k"); 8260 } 8261 8262 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8263 { 8264 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8265 } 8266 8267 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8268 { 8269 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8270 } 8271 8272 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8273 const struct btf_param *arg, 8274 const char *name) 8275 { 8276 int len, target_len = strlen(name); 8277 const char *param_name; 8278 8279 param_name = btf_name_by_offset(btf, arg->name_off); 8280 if (str_is_empty(param_name)) 8281 return false; 8282 len = strlen(param_name); 8283 if (len != target_len) 8284 return false; 8285 if (strcmp(param_name, name)) 8286 return false; 8287 8288 return true; 8289 } 8290 8291 enum { 8292 KF_ARG_DYNPTR_ID, 8293 KF_ARG_LIST_HEAD_ID, 8294 KF_ARG_LIST_NODE_ID, 8295 }; 8296 8297 BTF_ID_LIST(kf_arg_btf_ids) 8298 BTF_ID(struct, bpf_dynptr_kern) 8299 BTF_ID(struct, bpf_list_head) 8300 BTF_ID(struct, bpf_list_node) 8301 8302 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8303 const struct btf_param *arg, int type) 8304 { 8305 const struct btf_type *t; 8306 u32 res_id; 8307 8308 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8309 if (!t) 8310 return false; 8311 if (!btf_type_is_ptr(t)) 8312 return false; 8313 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8314 if (!t) 8315 return false; 8316 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8317 } 8318 8319 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8320 { 8321 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8322 } 8323 8324 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8325 { 8326 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8327 } 8328 8329 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8330 { 8331 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8332 } 8333 8334 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8335 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8336 const struct btf *btf, 8337 const struct btf_type *t, int rec) 8338 { 8339 const struct btf_type *member_type; 8340 const struct btf_member *member; 8341 u32 i; 8342 8343 if (!btf_type_is_struct(t)) 8344 return false; 8345 8346 for_each_member(i, t, member) { 8347 const struct btf_array *array; 8348 8349 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8350 if (btf_type_is_struct(member_type)) { 8351 if (rec >= 3) { 8352 verbose(env, "max struct nesting depth exceeded\n"); 8353 return false; 8354 } 8355 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8356 return false; 8357 continue; 8358 } 8359 if (btf_type_is_array(member_type)) { 8360 array = btf_array(member_type); 8361 if (!array->nelems) 8362 return false; 8363 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8364 if (!btf_type_is_scalar(member_type)) 8365 return false; 8366 continue; 8367 } 8368 if (!btf_type_is_scalar(member_type)) 8369 return false; 8370 } 8371 return true; 8372 } 8373 8374 8375 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8376 #ifdef CONFIG_NET 8377 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8378 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8379 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8380 #endif 8381 }; 8382 8383 enum kfunc_ptr_arg_type { 8384 KF_ARG_PTR_TO_CTX, 8385 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8386 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8387 KF_ARG_PTR_TO_DYNPTR, 8388 KF_ARG_PTR_TO_LIST_HEAD, 8389 KF_ARG_PTR_TO_LIST_NODE, 8390 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8391 KF_ARG_PTR_TO_MEM, 8392 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8393 }; 8394 8395 enum special_kfunc_type { 8396 KF_bpf_obj_new_impl, 8397 KF_bpf_obj_drop_impl, 8398 KF_bpf_list_push_front, 8399 KF_bpf_list_push_back, 8400 KF_bpf_list_pop_front, 8401 KF_bpf_list_pop_back, 8402 KF_bpf_cast_to_kern_ctx, 8403 KF_bpf_rdonly_cast, 8404 KF_bpf_rcu_read_lock, 8405 KF_bpf_rcu_read_unlock, 8406 }; 8407 8408 BTF_SET_START(special_kfunc_set) 8409 BTF_ID(func, bpf_obj_new_impl) 8410 BTF_ID(func, bpf_obj_drop_impl) 8411 BTF_ID(func, bpf_list_push_front) 8412 BTF_ID(func, bpf_list_push_back) 8413 BTF_ID(func, bpf_list_pop_front) 8414 BTF_ID(func, bpf_list_pop_back) 8415 BTF_ID(func, bpf_cast_to_kern_ctx) 8416 BTF_ID(func, bpf_rdonly_cast) 8417 BTF_SET_END(special_kfunc_set) 8418 8419 BTF_ID_LIST(special_kfunc_list) 8420 BTF_ID(func, bpf_obj_new_impl) 8421 BTF_ID(func, bpf_obj_drop_impl) 8422 BTF_ID(func, bpf_list_push_front) 8423 BTF_ID(func, bpf_list_push_back) 8424 BTF_ID(func, bpf_list_pop_front) 8425 BTF_ID(func, bpf_list_pop_back) 8426 BTF_ID(func, bpf_cast_to_kern_ctx) 8427 BTF_ID(func, bpf_rdonly_cast) 8428 BTF_ID(func, bpf_rcu_read_lock) 8429 BTF_ID(func, bpf_rcu_read_unlock) 8430 8431 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8432 { 8433 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8434 } 8435 8436 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8437 { 8438 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8439 } 8440 8441 static enum kfunc_ptr_arg_type 8442 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8443 struct bpf_kfunc_call_arg_meta *meta, 8444 const struct btf_type *t, const struct btf_type *ref_t, 8445 const char *ref_tname, const struct btf_param *args, 8446 int argno, int nargs) 8447 { 8448 u32 regno = argno + 1; 8449 struct bpf_reg_state *regs = cur_regs(env); 8450 struct bpf_reg_state *reg = ®s[regno]; 8451 bool arg_mem_size = false; 8452 8453 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8454 return KF_ARG_PTR_TO_CTX; 8455 8456 /* In this function, we verify the kfunc's BTF as per the argument type, 8457 * leaving the rest of the verification with respect to the register 8458 * type to our caller. When a set of conditions hold in the BTF type of 8459 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8460 */ 8461 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8462 return KF_ARG_PTR_TO_CTX; 8463 8464 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8465 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8466 8467 if (is_kfunc_arg_kptr_get(meta, argno)) { 8468 if (!btf_type_is_ptr(ref_t)) { 8469 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8470 return -EINVAL; 8471 } 8472 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8473 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8474 if (!btf_type_is_struct(ref_t)) { 8475 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8476 meta->func_name, btf_type_str(ref_t), ref_tname); 8477 return -EINVAL; 8478 } 8479 return KF_ARG_PTR_TO_KPTR; 8480 } 8481 8482 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8483 return KF_ARG_PTR_TO_DYNPTR; 8484 8485 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8486 return KF_ARG_PTR_TO_LIST_HEAD; 8487 8488 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8489 return KF_ARG_PTR_TO_LIST_NODE; 8490 8491 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8492 if (!btf_type_is_struct(ref_t)) { 8493 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8494 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8495 return -EINVAL; 8496 } 8497 return KF_ARG_PTR_TO_BTF_ID; 8498 } 8499 8500 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8501 arg_mem_size = true; 8502 8503 /* This is the catch all argument type of register types supported by 8504 * check_helper_mem_access. However, we only allow when argument type is 8505 * pointer to scalar, or struct composed (recursively) of scalars. When 8506 * arg_mem_size is true, the pointer can be void *. 8507 */ 8508 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8509 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8510 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 8511 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 8512 return -EINVAL; 8513 } 8514 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 8515 } 8516 8517 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 8518 struct bpf_reg_state *reg, 8519 const struct btf_type *ref_t, 8520 const char *ref_tname, u32 ref_id, 8521 struct bpf_kfunc_call_arg_meta *meta, 8522 int argno) 8523 { 8524 const struct btf_type *reg_ref_t; 8525 bool strict_type_match = false; 8526 const struct btf *reg_btf; 8527 const char *reg_ref_tname; 8528 u32 reg_ref_id; 8529 8530 if (base_type(reg->type) == PTR_TO_BTF_ID) { 8531 reg_btf = reg->btf; 8532 reg_ref_id = reg->btf_id; 8533 } else { 8534 reg_btf = btf_vmlinux; 8535 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 8536 } 8537 8538 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id)) 8539 strict_type_match = true; 8540 8541 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 8542 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 8543 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 8544 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 8545 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 8546 btf_type_str(reg_ref_t), reg_ref_tname); 8547 return -EINVAL; 8548 } 8549 return 0; 8550 } 8551 8552 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 8553 struct bpf_reg_state *reg, 8554 const struct btf_type *ref_t, 8555 const char *ref_tname, 8556 struct bpf_kfunc_call_arg_meta *meta, 8557 int argno) 8558 { 8559 struct btf_field *kptr_field; 8560 8561 /* check_func_arg_reg_off allows var_off for 8562 * PTR_TO_MAP_VALUE, but we need fixed offset to find 8563 * off_desc. 8564 */ 8565 if (!tnum_is_const(reg->var_off)) { 8566 verbose(env, "arg#0 must have constant offset\n"); 8567 return -EINVAL; 8568 } 8569 8570 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 8571 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 8572 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 8573 reg->off + reg->var_off.value); 8574 return -EINVAL; 8575 } 8576 8577 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 8578 kptr_field->kptr.btf_id, true)) { 8579 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 8580 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8581 return -EINVAL; 8582 } 8583 return 0; 8584 } 8585 8586 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id) 8587 { 8588 struct bpf_func_state *state = cur_func(env); 8589 struct bpf_reg_state *reg; 8590 int i; 8591 8592 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF 8593 * subprogs, no global functions. This means that the references would 8594 * not be released inside the critical section but they may be added to 8595 * the reference state, and the acquired_refs are never copied out for a 8596 * different frame as BPF to BPF calls don't work in bpf_spin_lock 8597 * critical sections. 8598 */ 8599 if (!ref_obj_id) { 8600 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n"); 8601 return -EFAULT; 8602 } 8603 for (i = 0; i < state->acquired_refs; i++) { 8604 if (state->refs[i].id == ref_obj_id) { 8605 if (state->refs[i].release_on_unlock) { 8606 verbose(env, "verifier internal error: expected false release_on_unlock"); 8607 return -EFAULT; 8608 } 8609 state->refs[i].release_on_unlock = true; 8610 /* Now mark everyone sharing same ref_obj_id as untrusted */ 8611 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8612 if (reg->ref_obj_id == ref_obj_id) 8613 reg->type |= PTR_UNTRUSTED; 8614 })); 8615 return 0; 8616 } 8617 } 8618 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 8619 return -EFAULT; 8620 } 8621 8622 /* Implementation details: 8623 * 8624 * Each register points to some region of memory, which we define as an 8625 * allocation. Each allocation may embed a bpf_spin_lock which protects any 8626 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 8627 * allocation. The lock and the data it protects are colocated in the same 8628 * memory region. 8629 * 8630 * Hence, everytime a register holds a pointer value pointing to such 8631 * allocation, the verifier preserves a unique reg->id for it. 8632 * 8633 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 8634 * bpf_spin_lock is called. 8635 * 8636 * To enable this, lock state in the verifier captures two values: 8637 * active_lock.ptr = Register's type specific pointer 8638 * active_lock.id = A unique ID for each register pointer value 8639 * 8640 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 8641 * supported register types. 8642 * 8643 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 8644 * allocated objects is the reg->btf pointer. 8645 * 8646 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 8647 * can establish the provenance of the map value statically for each distinct 8648 * lookup into such maps. They always contain a single map value hence unique 8649 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 8650 * 8651 * So, in case of global variables, they use array maps with max_entries = 1, 8652 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 8653 * into the same map value as max_entries is 1, as described above). 8654 * 8655 * In case of inner map lookups, the inner map pointer has same map_ptr as the 8656 * outer map pointer (in verifier context), but each lookup into an inner map 8657 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 8658 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 8659 * will get different reg->id assigned to each lookup, hence different 8660 * active_lock.id. 8661 * 8662 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 8663 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 8664 * returned from bpf_obj_new. Each allocation receives a new reg->id. 8665 */ 8666 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8667 { 8668 void *ptr; 8669 u32 id; 8670 8671 switch ((int)reg->type) { 8672 case PTR_TO_MAP_VALUE: 8673 ptr = reg->map_ptr; 8674 break; 8675 case PTR_TO_BTF_ID | MEM_ALLOC: 8676 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 8677 ptr = reg->btf; 8678 break; 8679 default: 8680 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 8681 return -EFAULT; 8682 } 8683 id = reg->id; 8684 8685 if (!env->cur_state->active_lock.ptr) 8686 return -EINVAL; 8687 if (env->cur_state->active_lock.ptr != ptr || 8688 env->cur_state->active_lock.id != id) { 8689 verbose(env, "held lock and object are not in the same allocation\n"); 8690 return -EINVAL; 8691 } 8692 return 0; 8693 } 8694 8695 static bool is_bpf_list_api_kfunc(u32 btf_id) 8696 { 8697 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 8698 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 8699 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 8700 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 8701 } 8702 8703 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 8704 struct bpf_reg_state *reg, u32 regno, 8705 struct bpf_kfunc_call_arg_meta *meta) 8706 { 8707 struct btf_field *field; 8708 struct btf_record *rec; 8709 u32 list_head_off; 8710 8711 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) { 8712 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n"); 8713 return -EFAULT; 8714 } 8715 8716 if (!tnum_is_const(reg->var_off)) { 8717 verbose(env, 8718 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n", 8719 regno); 8720 return -EINVAL; 8721 } 8722 8723 rec = reg_btf_record(reg); 8724 list_head_off = reg->off + reg->var_off.value; 8725 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD); 8726 if (!field) { 8727 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off); 8728 return -EINVAL; 8729 } 8730 8731 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 8732 if (check_reg_allocation_locked(env, reg)) { 8733 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n", 8734 rec->spin_lock_off); 8735 return -EINVAL; 8736 } 8737 8738 if (meta->arg_list_head.field) { 8739 verbose(env, "verifier internal error: repeating bpf_list_head arg\n"); 8740 return -EFAULT; 8741 } 8742 meta->arg_list_head.field = field; 8743 return 0; 8744 } 8745 8746 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 8747 struct bpf_reg_state *reg, u32 regno, 8748 struct bpf_kfunc_call_arg_meta *meta) 8749 { 8750 const struct btf_type *et, *t; 8751 struct btf_field *field; 8752 struct btf_record *rec; 8753 u32 list_node_off; 8754 8755 if (meta->btf != btf_vmlinux || 8756 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] && 8757 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) { 8758 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n"); 8759 return -EFAULT; 8760 } 8761 8762 if (!tnum_is_const(reg->var_off)) { 8763 verbose(env, 8764 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n", 8765 regno); 8766 return -EINVAL; 8767 } 8768 8769 rec = reg_btf_record(reg); 8770 list_node_off = reg->off + reg->var_off.value; 8771 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE); 8772 if (!field || field->offset != list_node_off) { 8773 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off); 8774 return -EINVAL; 8775 } 8776 8777 field = meta->arg_list_head.field; 8778 8779 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 8780 t = btf_type_by_id(reg->btf, reg->btf_id); 8781 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 8782 field->graph_root.value_btf_id, true)) { 8783 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d " 8784 "in struct %s, but arg is at offset=%d in struct %s\n", 8785 field->graph_root.node_offset, 8786 btf_name_by_offset(field->graph_root.btf, et->name_off), 8787 list_node_off, btf_name_by_offset(reg->btf, t->name_off)); 8788 return -EINVAL; 8789 } 8790 8791 if (list_node_off != field->graph_root.node_offset) { 8792 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n", 8793 list_node_off, field->graph_root.node_offset, 8794 btf_name_by_offset(field->graph_root.btf, et->name_off)); 8795 return -EINVAL; 8796 } 8797 /* Set arg#1 for expiration after unlock */ 8798 return ref_set_release_on_unlock(env, reg->ref_obj_id); 8799 } 8800 8801 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 8802 { 8803 const char *func_name = meta->func_name, *ref_tname; 8804 const struct btf *btf = meta->btf; 8805 const struct btf_param *args; 8806 u32 i, nargs; 8807 int ret; 8808 8809 args = (const struct btf_param *)(meta->func_proto + 1); 8810 nargs = btf_type_vlen(meta->func_proto); 8811 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 8812 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 8813 MAX_BPF_FUNC_REG_ARGS); 8814 return -EINVAL; 8815 } 8816 8817 /* Check that BTF function arguments match actual types that the 8818 * verifier sees. 8819 */ 8820 for (i = 0; i < nargs; i++) { 8821 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 8822 const struct btf_type *t, *ref_t, *resolve_ret; 8823 enum bpf_arg_type arg_type = ARG_DONTCARE; 8824 u32 regno = i + 1, ref_id, type_size; 8825 bool is_ret_buf_sz = false; 8826 int kf_arg_type; 8827 8828 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 8829 8830 if (is_kfunc_arg_ignore(btf, &args[i])) 8831 continue; 8832 8833 if (btf_type_is_scalar(t)) { 8834 if (reg->type != SCALAR_VALUE) { 8835 verbose(env, "R%d is not a scalar\n", regno); 8836 return -EINVAL; 8837 } 8838 8839 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 8840 if (meta->arg_constant.found) { 8841 verbose(env, "verifier internal error: only one constant argument permitted\n"); 8842 return -EFAULT; 8843 } 8844 if (!tnum_is_const(reg->var_off)) { 8845 verbose(env, "R%d must be a known constant\n", regno); 8846 return -EINVAL; 8847 } 8848 ret = mark_chain_precision(env, regno); 8849 if (ret < 0) 8850 return ret; 8851 meta->arg_constant.found = true; 8852 meta->arg_constant.value = reg->var_off.value; 8853 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 8854 meta->r0_rdonly = true; 8855 is_ret_buf_sz = true; 8856 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 8857 is_ret_buf_sz = true; 8858 } 8859 8860 if (is_ret_buf_sz) { 8861 if (meta->r0_size) { 8862 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 8863 return -EINVAL; 8864 } 8865 8866 if (!tnum_is_const(reg->var_off)) { 8867 verbose(env, "R%d is not a const\n", regno); 8868 return -EINVAL; 8869 } 8870 8871 meta->r0_size = reg->var_off.value; 8872 ret = mark_chain_precision(env, regno); 8873 if (ret) 8874 return ret; 8875 } 8876 continue; 8877 } 8878 8879 if (!btf_type_is_ptr(t)) { 8880 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 8881 return -EINVAL; 8882 } 8883 8884 if (reg->ref_obj_id) { 8885 if (is_kfunc_release(meta) && meta->ref_obj_id) { 8886 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8887 regno, reg->ref_obj_id, 8888 meta->ref_obj_id); 8889 return -EFAULT; 8890 } 8891 meta->ref_obj_id = reg->ref_obj_id; 8892 if (is_kfunc_release(meta)) 8893 meta->release_regno = regno; 8894 } 8895 8896 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 8897 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 8898 8899 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 8900 if (kf_arg_type < 0) 8901 return kf_arg_type; 8902 8903 switch (kf_arg_type) { 8904 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8905 case KF_ARG_PTR_TO_BTF_ID: 8906 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 8907 break; 8908 8909 if (!is_trusted_reg(reg)) { 8910 if (!is_kfunc_rcu(meta)) { 8911 verbose(env, "R%d must be referenced or trusted\n", regno); 8912 return -EINVAL; 8913 } 8914 if (!is_rcu_reg(reg)) { 8915 verbose(env, "R%d must be a rcu pointer\n", regno); 8916 return -EINVAL; 8917 } 8918 } 8919 8920 fallthrough; 8921 case KF_ARG_PTR_TO_CTX: 8922 /* Trusted arguments have the same offset checks as release arguments */ 8923 arg_type |= OBJ_RELEASE; 8924 break; 8925 case KF_ARG_PTR_TO_KPTR: 8926 case KF_ARG_PTR_TO_DYNPTR: 8927 case KF_ARG_PTR_TO_LIST_HEAD: 8928 case KF_ARG_PTR_TO_LIST_NODE: 8929 case KF_ARG_PTR_TO_MEM: 8930 case KF_ARG_PTR_TO_MEM_SIZE: 8931 /* Trusted by default */ 8932 break; 8933 default: 8934 WARN_ON_ONCE(1); 8935 return -EFAULT; 8936 } 8937 8938 if (is_kfunc_release(meta) && reg->ref_obj_id) 8939 arg_type |= OBJ_RELEASE; 8940 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 8941 if (ret < 0) 8942 return ret; 8943 8944 switch (kf_arg_type) { 8945 case KF_ARG_PTR_TO_CTX: 8946 if (reg->type != PTR_TO_CTX) { 8947 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 8948 return -EINVAL; 8949 } 8950 8951 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 8952 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 8953 if (ret < 0) 8954 return -EINVAL; 8955 meta->ret_btf_id = ret; 8956 } 8957 break; 8958 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8959 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8960 verbose(env, "arg#%d expected pointer to allocated object\n", i); 8961 return -EINVAL; 8962 } 8963 if (!reg->ref_obj_id) { 8964 verbose(env, "allocated object must be referenced\n"); 8965 return -EINVAL; 8966 } 8967 if (meta->btf == btf_vmlinux && 8968 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 8969 meta->arg_obj_drop.btf = reg->btf; 8970 meta->arg_obj_drop.btf_id = reg->btf_id; 8971 } 8972 break; 8973 case KF_ARG_PTR_TO_KPTR: 8974 if (reg->type != PTR_TO_MAP_VALUE) { 8975 verbose(env, "arg#0 expected pointer to map value\n"); 8976 return -EINVAL; 8977 } 8978 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 8979 if (ret < 0) 8980 return ret; 8981 break; 8982 case KF_ARG_PTR_TO_DYNPTR: 8983 if (reg->type != PTR_TO_STACK && 8984 reg->type != CONST_PTR_TO_DYNPTR) { 8985 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 8986 return -EINVAL; 8987 } 8988 8989 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 8990 if (ret < 0) 8991 return ret; 8992 break; 8993 case KF_ARG_PTR_TO_LIST_HEAD: 8994 if (reg->type != PTR_TO_MAP_VALUE && 8995 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8996 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 8997 return -EINVAL; 8998 } 8999 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9000 verbose(env, "allocated object must be referenced\n"); 9001 return -EINVAL; 9002 } 9003 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9004 if (ret < 0) 9005 return ret; 9006 break; 9007 case KF_ARG_PTR_TO_LIST_NODE: 9008 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9009 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9010 return -EINVAL; 9011 } 9012 if (!reg->ref_obj_id) { 9013 verbose(env, "allocated object must be referenced\n"); 9014 return -EINVAL; 9015 } 9016 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9017 if (ret < 0) 9018 return ret; 9019 break; 9020 case KF_ARG_PTR_TO_BTF_ID: 9021 /* Only base_type is checked, further checks are done here */ 9022 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9023 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9024 !reg2btf_ids[base_type(reg->type)]) { 9025 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9026 verbose(env, "expected %s or socket\n", 9027 reg_type_str(env, base_type(reg->type) | 9028 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9029 return -EINVAL; 9030 } 9031 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9032 if (ret < 0) 9033 return ret; 9034 break; 9035 case KF_ARG_PTR_TO_MEM: 9036 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9037 if (IS_ERR(resolve_ret)) { 9038 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9039 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9040 return -EINVAL; 9041 } 9042 ret = check_mem_reg(env, reg, regno, type_size); 9043 if (ret < 0) 9044 return ret; 9045 break; 9046 case KF_ARG_PTR_TO_MEM_SIZE: 9047 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9048 if (ret < 0) { 9049 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9050 return ret; 9051 } 9052 /* Skip next '__sz' argument */ 9053 i++; 9054 break; 9055 } 9056 } 9057 9058 if (is_kfunc_release(meta) && !meta->release_regno) { 9059 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9060 func_name); 9061 return -EINVAL; 9062 } 9063 9064 return 0; 9065 } 9066 9067 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9068 int *insn_idx_p) 9069 { 9070 const struct btf_type *t, *func, *func_proto, *ptr_type; 9071 struct bpf_reg_state *regs = cur_regs(env); 9072 const char *func_name, *ptr_type_name; 9073 bool sleepable, rcu_lock, rcu_unlock; 9074 struct bpf_kfunc_call_arg_meta meta; 9075 u32 i, nargs, func_id, ptr_type_id; 9076 int err, insn_idx = *insn_idx_p; 9077 const struct btf_param *args; 9078 const struct btf_type *ret_t; 9079 struct btf *desc_btf; 9080 u32 *kfunc_flags; 9081 9082 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9083 if (!insn->imm) 9084 return 0; 9085 9086 desc_btf = find_kfunc_desc_btf(env, insn->off); 9087 if (IS_ERR(desc_btf)) 9088 return PTR_ERR(desc_btf); 9089 9090 func_id = insn->imm; 9091 func = btf_type_by_id(desc_btf, func_id); 9092 func_name = btf_name_by_offset(desc_btf, func->name_off); 9093 func_proto = btf_type_by_id(desc_btf, func->type); 9094 9095 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9096 if (!kfunc_flags) { 9097 verbose(env, "calling kernel function %s is not allowed\n", 9098 func_name); 9099 return -EACCES; 9100 } 9101 9102 /* Prepare kfunc call metadata */ 9103 memset(&meta, 0, sizeof(meta)); 9104 meta.btf = desc_btf; 9105 meta.func_id = func_id; 9106 meta.kfunc_flags = *kfunc_flags; 9107 meta.func_proto = func_proto; 9108 meta.func_name = func_name; 9109 9110 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9111 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9112 return -EACCES; 9113 } 9114 9115 sleepable = is_kfunc_sleepable(&meta); 9116 if (sleepable && !env->prog->aux->sleepable) { 9117 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9118 return -EACCES; 9119 } 9120 9121 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9122 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9123 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9124 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9125 return -EACCES; 9126 } 9127 9128 if (env->cur_state->active_rcu_lock) { 9129 struct bpf_func_state *state; 9130 struct bpf_reg_state *reg; 9131 9132 if (rcu_lock) { 9133 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9134 return -EINVAL; 9135 } else if (rcu_unlock) { 9136 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9137 if (reg->type & MEM_RCU) { 9138 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9139 reg->type |= PTR_UNTRUSTED; 9140 } 9141 })); 9142 env->cur_state->active_rcu_lock = false; 9143 } else if (sleepable) { 9144 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9145 return -EACCES; 9146 } 9147 } else if (rcu_lock) { 9148 env->cur_state->active_rcu_lock = true; 9149 } else if (rcu_unlock) { 9150 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9151 return -EINVAL; 9152 } 9153 9154 /* Check the arguments */ 9155 err = check_kfunc_args(env, &meta); 9156 if (err < 0) 9157 return err; 9158 /* In case of release function, we get register number of refcounted 9159 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9160 */ 9161 if (meta.release_regno) { 9162 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9163 if (err) { 9164 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9165 func_name, func_id); 9166 return err; 9167 } 9168 } 9169 9170 for (i = 0; i < CALLER_SAVED_REGS; i++) 9171 mark_reg_not_init(env, regs, caller_saved[i]); 9172 9173 /* Check return type */ 9174 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9175 9176 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9177 /* Only exception is bpf_obj_new_impl */ 9178 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9179 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9180 return -EINVAL; 9181 } 9182 } 9183 9184 if (btf_type_is_scalar(t)) { 9185 mark_reg_unknown(env, regs, BPF_REG_0); 9186 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9187 } else if (btf_type_is_ptr(t)) { 9188 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9189 9190 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9191 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9192 struct btf *ret_btf; 9193 u32 ret_btf_id; 9194 9195 if (unlikely(!bpf_global_ma_set)) 9196 return -ENOMEM; 9197 9198 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9199 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9200 return -EINVAL; 9201 } 9202 9203 ret_btf = env->prog->aux->btf; 9204 ret_btf_id = meta.arg_constant.value; 9205 9206 /* This may be NULL due to user not supplying a BTF */ 9207 if (!ret_btf) { 9208 verbose(env, "bpf_obj_new requires prog BTF\n"); 9209 return -EINVAL; 9210 } 9211 9212 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9213 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9214 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9215 return -EINVAL; 9216 } 9217 9218 mark_reg_known_zero(env, regs, BPF_REG_0); 9219 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9220 regs[BPF_REG_0].btf = ret_btf; 9221 regs[BPF_REG_0].btf_id = ret_btf_id; 9222 9223 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9224 env->insn_aux_data[insn_idx].kptr_struct_meta = 9225 btf_find_struct_meta(ret_btf, ret_btf_id); 9226 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9227 env->insn_aux_data[insn_idx].kptr_struct_meta = 9228 btf_find_struct_meta(meta.arg_obj_drop.btf, 9229 meta.arg_obj_drop.btf_id); 9230 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9231 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9232 struct btf_field *field = meta.arg_list_head.field; 9233 9234 mark_reg_known_zero(env, regs, BPF_REG_0); 9235 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9236 regs[BPF_REG_0].btf = field->graph_root.btf; 9237 regs[BPF_REG_0].btf_id = field->graph_root.value_btf_id; 9238 regs[BPF_REG_0].off = field->graph_root.node_offset; 9239 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9240 mark_reg_known_zero(env, regs, BPF_REG_0); 9241 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9242 regs[BPF_REG_0].btf = desc_btf; 9243 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9244 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9245 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9246 if (!ret_t || !btf_type_is_struct(ret_t)) { 9247 verbose(env, 9248 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9249 return -EINVAL; 9250 } 9251 9252 mark_reg_known_zero(env, regs, BPF_REG_0); 9253 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9254 regs[BPF_REG_0].btf = desc_btf; 9255 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9256 } else { 9257 verbose(env, "kernel function %s unhandled dynamic return type\n", 9258 meta.func_name); 9259 return -EFAULT; 9260 } 9261 } else if (!__btf_type_is_struct(ptr_type)) { 9262 if (!meta.r0_size) { 9263 ptr_type_name = btf_name_by_offset(desc_btf, 9264 ptr_type->name_off); 9265 verbose(env, 9266 "kernel function %s returns pointer type %s %s is not supported\n", 9267 func_name, 9268 btf_type_str(ptr_type), 9269 ptr_type_name); 9270 return -EINVAL; 9271 } 9272 9273 mark_reg_known_zero(env, regs, BPF_REG_0); 9274 regs[BPF_REG_0].type = PTR_TO_MEM; 9275 regs[BPF_REG_0].mem_size = meta.r0_size; 9276 9277 if (meta.r0_rdonly) 9278 regs[BPF_REG_0].type |= MEM_RDONLY; 9279 9280 /* Ensures we don't access the memory after a release_reference() */ 9281 if (meta.ref_obj_id) 9282 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9283 } else { 9284 mark_reg_known_zero(env, regs, BPF_REG_0); 9285 regs[BPF_REG_0].btf = desc_btf; 9286 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 9287 regs[BPF_REG_0].btf_id = ptr_type_id; 9288 } 9289 9290 if (is_kfunc_ret_null(&meta)) { 9291 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 9292 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 9293 regs[BPF_REG_0].id = ++env->id_gen; 9294 } 9295 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 9296 if (is_kfunc_acquire(&meta)) { 9297 int id = acquire_reference_state(env, insn_idx); 9298 9299 if (id < 0) 9300 return id; 9301 if (is_kfunc_ret_null(&meta)) 9302 regs[BPF_REG_0].id = id; 9303 regs[BPF_REG_0].ref_obj_id = id; 9304 } 9305 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 9306 regs[BPF_REG_0].id = ++env->id_gen; 9307 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 9308 9309 nargs = btf_type_vlen(func_proto); 9310 args = (const struct btf_param *)(func_proto + 1); 9311 for (i = 0; i < nargs; i++) { 9312 u32 regno = i + 1; 9313 9314 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 9315 if (btf_type_is_ptr(t)) 9316 mark_btf_func_reg_size(env, regno, sizeof(void *)); 9317 else 9318 /* scalar. ensured by btf_check_kfunc_arg_match() */ 9319 mark_btf_func_reg_size(env, regno, t->size); 9320 } 9321 9322 return 0; 9323 } 9324 9325 static bool signed_add_overflows(s64 a, s64 b) 9326 { 9327 /* Do the add in u64, where overflow is well-defined */ 9328 s64 res = (s64)((u64)a + (u64)b); 9329 9330 if (b < 0) 9331 return res > a; 9332 return res < a; 9333 } 9334 9335 static bool signed_add32_overflows(s32 a, s32 b) 9336 { 9337 /* Do the add in u32, where overflow is well-defined */ 9338 s32 res = (s32)((u32)a + (u32)b); 9339 9340 if (b < 0) 9341 return res > a; 9342 return res < a; 9343 } 9344 9345 static bool signed_sub_overflows(s64 a, s64 b) 9346 { 9347 /* Do the sub in u64, where overflow is well-defined */ 9348 s64 res = (s64)((u64)a - (u64)b); 9349 9350 if (b < 0) 9351 return res < a; 9352 return res > a; 9353 } 9354 9355 static bool signed_sub32_overflows(s32 a, s32 b) 9356 { 9357 /* Do the sub in u32, where overflow is well-defined */ 9358 s32 res = (s32)((u32)a - (u32)b); 9359 9360 if (b < 0) 9361 return res < a; 9362 return res > a; 9363 } 9364 9365 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 9366 const struct bpf_reg_state *reg, 9367 enum bpf_reg_type type) 9368 { 9369 bool known = tnum_is_const(reg->var_off); 9370 s64 val = reg->var_off.value; 9371 s64 smin = reg->smin_value; 9372 9373 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 9374 verbose(env, "math between %s pointer and %lld is not allowed\n", 9375 reg_type_str(env, type), val); 9376 return false; 9377 } 9378 9379 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 9380 verbose(env, "%s pointer offset %d is not allowed\n", 9381 reg_type_str(env, type), reg->off); 9382 return false; 9383 } 9384 9385 if (smin == S64_MIN) { 9386 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 9387 reg_type_str(env, type)); 9388 return false; 9389 } 9390 9391 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 9392 verbose(env, "value %lld makes %s pointer be out of bounds\n", 9393 smin, reg_type_str(env, type)); 9394 return false; 9395 } 9396 9397 return true; 9398 } 9399 9400 enum { 9401 REASON_BOUNDS = -1, 9402 REASON_TYPE = -2, 9403 REASON_PATHS = -3, 9404 REASON_LIMIT = -4, 9405 REASON_STACK = -5, 9406 }; 9407 9408 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 9409 u32 *alu_limit, bool mask_to_left) 9410 { 9411 u32 max = 0, ptr_limit = 0; 9412 9413 switch (ptr_reg->type) { 9414 case PTR_TO_STACK: 9415 /* Offset 0 is out-of-bounds, but acceptable start for the 9416 * left direction, see BPF_REG_FP. Also, unknown scalar 9417 * offset where we would need to deal with min/max bounds is 9418 * currently prohibited for unprivileged. 9419 */ 9420 max = MAX_BPF_STACK + mask_to_left; 9421 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 9422 break; 9423 case PTR_TO_MAP_VALUE: 9424 max = ptr_reg->map_ptr->value_size; 9425 ptr_limit = (mask_to_left ? 9426 ptr_reg->smin_value : 9427 ptr_reg->umax_value) + ptr_reg->off; 9428 break; 9429 default: 9430 return REASON_TYPE; 9431 } 9432 9433 if (ptr_limit >= max) 9434 return REASON_LIMIT; 9435 *alu_limit = ptr_limit; 9436 return 0; 9437 } 9438 9439 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 9440 const struct bpf_insn *insn) 9441 { 9442 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 9443 } 9444 9445 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 9446 u32 alu_state, u32 alu_limit) 9447 { 9448 /* If we arrived here from different branches with different 9449 * state or limits to sanitize, then this won't work. 9450 */ 9451 if (aux->alu_state && 9452 (aux->alu_state != alu_state || 9453 aux->alu_limit != alu_limit)) 9454 return REASON_PATHS; 9455 9456 /* Corresponding fixup done in do_misc_fixups(). */ 9457 aux->alu_state = alu_state; 9458 aux->alu_limit = alu_limit; 9459 return 0; 9460 } 9461 9462 static int sanitize_val_alu(struct bpf_verifier_env *env, 9463 struct bpf_insn *insn) 9464 { 9465 struct bpf_insn_aux_data *aux = cur_aux(env); 9466 9467 if (can_skip_alu_sanitation(env, insn)) 9468 return 0; 9469 9470 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 9471 } 9472 9473 static bool sanitize_needed(u8 opcode) 9474 { 9475 return opcode == BPF_ADD || opcode == BPF_SUB; 9476 } 9477 9478 struct bpf_sanitize_info { 9479 struct bpf_insn_aux_data aux; 9480 bool mask_to_left; 9481 }; 9482 9483 static struct bpf_verifier_state * 9484 sanitize_speculative_path(struct bpf_verifier_env *env, 9485 const struct bpf_insn *insn, 9486 u32 next_idx, u32 curr_idx) 9487 { 9488 struct bpf_verifier_state *branch; 9489 struct bpf_reg_state *regs; 9490 9491 branch = push_stack(env, next_idx, curr_idx, true); 9492 if (branch && insn) { 9493 regs = branch->frame[branch->curframe]->regs; 9494 if (BPF_SRC(insn->code) == BPF_K) { 9495 mark_reg_unknown(env, regs, insn->dst_reg); 9496 } else if (BPF_SRC(insn->code) == BPF_X) { 9497 mark_reg_unknown(env, regs, insn->dst_reg); 9498 mark_reg_unknown(env, regs, insn->src_reg); 9499 } 9500 } 9501 return branch; 9502 } 9503 9504 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 9505 struct bpf_insn *insn, 9506 const struct bpf_reg_state *ptr_reg, 9507 const struct bpf_reg_state *off_reg, 9508 struct bpf_reg_state *dst_reg, 9509 struct bpf_sanitize_info *info, 9510 const bool commit_window) 9511 { 9512 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 9513 struct bpf_verifier_state *vstate = env->cur_state; 9514 bool off_is_imm = tnum_is_const(off_reg->var_off); 9515 bool off_is_neg = off_reg->smin_value < 0; 9516 bool ptr_is_dst_reg = ptr_reg == dst_reg; 9517 u8 opcode = BPF_OP(insn->code); 9518 u32 alu_state, alu_limit; 9519 struct bpf_reg_state tmp; 9520 bool ret; 9521 int err; 9522 9523 if (can_skip_alu_sanitation(env, insn)) 9524 return 0; 9525 9526 /* We already marked aux for masking from non-speculative 9527 * paths, thus we got here in the first place. We only care 9528 * to explore bad access from here. 9529 */ 9530 if (vstate->speculative) 9531 goto do_sim; 9532 9533 if (!commit_window) { 9534 if (!tnum_is_const(off_reg->var_off) && 9535 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 9536 return REASON_BOUNDS; 9537 9538 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 9539 (opcode == BPF_SUB && !off_is_neg); 9540 } 9541 9542 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 9543 if (err < 0) 9544 return err; 9545 9546 if (commit_window) { 9547 /* In commit phase we narrow the masking window based on 9548 * the observed pointer move after the simulated operation. 9549 */ 9550 alu_state = info->aux.alu_state; 9551 alu_limit = abs(info->aux.alu_limit - alu_limit); 9552 } else { 9553 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 9554 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 9555 alu_state |= ptr_is_dst_reg ? 9556 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 9557 9558 /* Limit pruning on unknown scalars to enable deep search for 9559 * potential masking differences from other program paths. 9560 */ 9561 if (!off_is_imm) 9562 env->explore_alu_limits = true; 9563 } 9564 9565 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 9566 if (err < 0) 9567 return err; 9568 do_sim: 9569 /* If we're in commit phase, we're done here given we already 9570 * pushed the truncated dst_reg into the speculative verification 9571 * stack. 9572 * 9573 * Also, when register is a known constant, we rewrite register-based 9574 * operation to immediate-based, and thus do not need masking (and as 9575 * a consequence, do not need to simulate the zero-truncation either). 9576 */ 9577 if (commit_window || off_is_imm) 9578 return 0; 9579 9580 /* Simulate and find potential out-of-bounds access under 9581 * speculative execution from truncation as a result of 9582 * masking when off was not within expected range. If off 9583 * sits in dst, then we temporarily need to move ptr there 9584 * to simulate dst (== 0) +/-= ptr. Needed, for example, 9585 * for cases where we use K-based arithmetic in one direction 9586 * and truncated reg-based in the other in order to explore 9587 * bad access. 9588 */ 9589 if (!ptr_is_dst_reg) { 9590 tmp = *dst_reg; 9591 *dst_reg = *ptr_reg; 9592 } 9593 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 9594 env->insn_idx); 9595 if (!ptr_is_dst_reg && ret) 9596 *dst_reg = tmp; 9597 return !ret ? REASON_STACK : 0; 9598 } 9599 9600 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 9601 { 9602 struct bpf_verifier_state *vstate = env->cur_state; 9603 9604 /* If we simulate paths under speculation, we don't update the 9605 * insn as 'seen' such that when we verify unreachable paths in 9606 * the non-speculative domain, sanitize_dead_code() can still 9607 * rewrite/sanitize them. 9608 */ 9609 if (!vstate->speculative) 9610 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9611 } 9612 9613 static int sanitize_err(struct bpf_verifier_env *env, 9614 const struct bpf_insn *insn, int reason, 9615 const struct bpf_reg_state *off_reg, 9616 const struct bpf_reg_state *dst_reg) 9617 { 9618 static const char *err = "pointer arithmetic with it prohibited for !root"; 9619 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 9620 u32 dst = insn->dst_reg, src = insn->src_reg; 9621 9622 switch (reason) { 9623 case REASON_BOUNDS: 9624 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 9625 off_reg == dst_reg ? dst : src, err); 9626 break; 9627 case REASON_TYPE: 9628 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 9629 off_reg == dst_reg ? src : dst, err); 9630 break; 9631 case REASON_PATHS: 9632 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 9633 dst, op, err); 9634 break; 9635 case REASON_LIMIT: 9636 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 9637 dst, op, err); 9638 break; 9639 case REASON_STACK: 9640 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 9641 dst, err); 9642 break; 9643 default: 9644 verbose(env, "verifier internal error: unknown reason (%d)\n", 9645 reason); 9646 break; 9647 } 9648 9649 return -EACCES; 9650 } 9651 9652 /* check that stack access falls within stack limits and that 'reg' doesn't 9653 * have a variable offset. 9654 * 9655 * Variable offset is prohibited for unprivileged mode for simplicity since it 9656 * requires corresponding support in Spectre masking for stack ALU. See also 9657 * retrieve_ptr_limit(). 9658 * 9659 * 9660 * 'off' includes 'reg->off'. 9661 */ 9662 static int check_stack_access_for_ptr_arithmetic( 9663 struct bpf_verifier_env *env, 9664 int regno, 9665 const struct bpf_reg_state *reg, 9666 int off) 9667 { 9668 if (!tnum_is_const(reg->var_off)) { 9669 char tn_buf[48]; 9670 9671 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 9672 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 9673 regno, tn_buf, off); 9674 return -EACCES; 9675 } 9676 9677 if (off >= 0 || off < -MAX_BPF_STACK) { 9678 verbose(env, "R%d stack pointer arithmetic goes out of range, " 9679 "prohibited for !root; off=%d\n", regno, off); 9680 return -EACCES; 9681 } 9682 9683 return 0; 9684 } 9685 9686 static int sanitize_check_bounds(struct bpf_verifier_env *env, 9687 const struct bpf_insn *insn, 9688 const struct bpf_reg_state *dst_reg) 9689 { 9690 u32 dst = insn->dst_reg; 9691 9692 /* For unprivileged we require that resulting offset must be in bounds 9693 * in order to be able to sanitize access later on. 9694 */ 9695 if (env->bypass_spec_v1) 9696 return 0; 9697 9698 switch (dst_reg->type) { 9699 case PTR_TO_STACK: 9700 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 9701 dst_reg->off + dst_reg->var_off.value)) 9702 return -EACCES; 9703 break; 9704 case PTR_TO_MAP_VALUE: 9705 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 9706 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 9707 "prohibited for !root\n", dst); 9708 return -EACCES; 9709 } 9710 break; 9711 default: 9712 break; 9713 } 9714 9715 return 0; 9716 } 9717 9718 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 9719 * Caller should also handle BPF_MOV case separately. 9720 * If we return -EACCES, caller may want to try again treating pointer as a 9721 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 9722 */ 9723 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 9724 struct bpf_insn *insn, 9725 const struct bpf_reg_state *ptr_reg, 9726 const struct bpf_reg_state *off_reg) 9727 { 9728 struct bpf_verifier_state *vstate = env->cur_state; 9729 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9730 struct bpf_reg_state *regs = state->regs, *dst_reg; 9731 bool known = tnum_is_const(off_reg->var_off); 9732 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 9733 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 9734 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 9735 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 9736 struct bpf_sanitize_info info = {}; 9737 u8 opcode = BPF_OP(insn->code); 9738 u32 dst = insn->dst_reg; 9739 int ret; 9740 9741 dst_reg = ®s[dst]; 9742 9743 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 9744 smin_val > smax_val || umin_val > umax_val) { 9745 /* Taint dst register if offset had invalid bounds derived from 9746 * e.g. dead branches. 9747 */ 9748 __mark_reg_unknown(env, dst_reg); 9749 return 0; 9750 } 9751 9752 if (BPF_CLASS(insn->code) != BPF_ALU64) { 9753 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 9754 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9755 __mark_reg_unknown(env, dst_reg); 9756 return 0; 9757 } 9758 9759 verbose(env, 9760 "R%d 32-bit pointer arithmetic prohibited\n", 9761 dst); 9762 return -EACCES; 9763 } 9764 9765 if (ptr_reg->type & PTR_MAYBE_NULL) { 9766 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 9767 dst, reg_type_str(env, ptr_reg->type)); 9768 return -EACCES; 9769 } 9770 9771 switch (base_type(ptr_reg->type)) { 9772 case CONST_PTR_TO_MAP: 9773 /* smin_val represents the known value */ 9774 if (known && smin_val == 0 && opcode == BPF_ADD) 9775 break; 9776 fallthrough; 9777 case PTR_TO_PACKET_END: 9778 case PTR_TO_SOCKET: 9779 case PTR_TO_SOCK_COMMON: 9780 case PTR_TO_TCP_SOCK: 9781 case PTR_TO_XDP_SOCK: 9782 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 9783 dst, reg_type_str(env, ptr_reg->type)); 9784 return -EACCES; 9785 default: 9786 break; 9787 } 9788 9789 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 9790 * The id may be overwritten later if we create a new variable offset. 9791 */ 9792 dst_reg->type = ptr_reg->type; 9793 dst_reg->id = ptr_reg->id; 9794 9795 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 9796 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 9797 return -EINVAL; 9798 9799 /* pointer types do not carry 32-bit bounds at the moment. */ 9800 __mark_reg32_unbounded(dst_reg); 9801 9802 if (sanitize_needed(opcode)) { 9803 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 9804 &info, false); 9805 if (ret < 0) 9806 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9807 } 9808 9809 switch (opcode) { 9810 case BPF_ADD: 9811 /* We can take a fixed offset as long as it doesn't overflow 9812 * the s32 'off' field 9813 */ 9814 if (known && (ptr_reg->off + smin_val == 9815 (s64)(s32)(ptr_reg->off + smin_val))) { 9816 /* pointer += K. Accumulate it into fixed offset */ 9817 dst_reg->smin_value = smin_ptr; 9818 dst_reg->smax_value = smax_ptr; 9819 dst_reg->umin_value = umin_ptr; 9820 dst_reg->umax_value = umax_ptr; 9821 dst_reg->var_off = ptr_reg->var_off; 9822 dst_reg->off = ptr_reg->off + smin_val; 9823 dst_reg->raw = ptr_reg->raw; 9824 break; 9825 } 9826 /* A new variable offset is created. Note that off_reg->off 9827 * == 0, since it's a scalar. 9828 * dst_reg gets the pointer type and since some positive 9829 * integer value was added to the pointer, give it a new 'id' 9830 * if it's a PTR_TO_PACKET. 9831 * this creates a new 'base' pointer, off_reg (variable) gets 9832 * added into the variable offset, and we copy the fixed offset 9833 * from ptr_reg. 9834 */ 9835 if (signed_add_overflows(smin_ptr, smin_val) || 9836 signed_add_overflows(smax_ptr, smax_val)) { 9837 dst_reg->smin_value = S64_MIN; 9838 dst_reg->smax_value = S64_MAX; 9839 } else { 9840 dst_reg->smin_value = smin_ptr + smin_val; 9841 dst_reg->smax_value = smax_ptr + smax_val; 9842 } 9843 if (umin_ptr + umin_val < umin_ptr || 9844 umax_ptr + umax_val < umax_ptr) { 9845 dst_reg->umin_value = 0; 9846 dst_reg->umax_value = U64_MAX; 9847 } else { 9848 dst_reg->umin_value = umin_ptr + umin_val; 9849 dst_reg->umax_value = umax_ptr + umax_val; 9850 } 9851 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 9852 dst_reg->off = ptr_reg->off; 9853 dst_reg->raw = ptr_reg->raw; 9854 if (reg_is_pkt_pointer(ptr_reg)) { 9855 dst_reg->id = ++env->id_gen; 9856 /* something was added to pkt_ptr, set range to zero */ 9857 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9858 } 9859 break; 9860 case BPF_SUB: 9861 if (dst_reg == off_reg) { 9862 /* scalar -= pointer. Creates an unknown scalar */ 9863 verbose(env, "R%d tried to subtract pointer from scalar\n", 9864 dst); 9865 return -EACCES; 9866 } 9867 /* We don't allow subtraction from FP, because (according to 9868 * test_verifier.c test "invalid fp arithmetic", JITs might not 9869 * be able to deal with it. 9870 */ 9871 if (ptr_reg->type == PTR_TO_STACK) { 9872 verbose(env, "R%d subtraction from stack pointer prohibited\n", 9873 dst); 9874 return -EACCES; 9875 } 9876 if (known && (ptr_reg->off - smin_val == 9877 (s64)(s32)(ptr_reg->off - smin_val))) { 9878 /* pointer -= K. Subtract it from fixed offset */ 9879 dst_reg->smin_value = smin_ptr; 9880 dst_reg->smax_value = smax_ptr; 9881 dst_reg->umin_value = umin_ptr; 9882 dst_reg->umax_value = umax_ptr; 9883 dst_reg->var_off = ptr_reg->var_off; 9884 dst_reg->id = ptr_reg->id; 9885 dst_reg->off = ptr_reg->off - smin_val; 9886 dst_reg->raw = ptr_reg->raw; 9887 break; 9888 } 9889 /* A new variable offset is created. If the subtrahend is known 9890 * nonnegative, then any reg->range we had before is still good. 9891 */ 9892 if (signed_sub_overflows(smin_ptr, smax_val) || 9893 signed_sub_overflows(smax_ptr, smin_val)) { 9894 /* Overflow possible, we know nothing */ 9895 dst_reg->smin_value = S64_MIN; 9896 dst_reg->smax_value = S64_MAX; 9897 } else { 9898 dst_reg->smin_value = smin_ptr - smax_val; 9899 dst_reg->smax_value = smax_ptr - smin_val; 9900 } 9901 if (umin_ptr < umax_val) { 9902 /* Overflow possible, we know nothing */ 9903 dst_reg->umin_value = 0; 9904 dst_reg->umax_value = U64_MAX; 9905 } else { 9906 /* Cannot overflow (as long as bounds are consistent) */ 9907 dst_reg->umin_value = umin_ptr - umax_val; 9908 dst_reg->umax_value = umax_ptr - umin_val; 9909 } 9910 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 9911 dst_reg->off = ptr_reg->off; 9912 dst_reg->raw = ptr_reg->raw; 9913 if (reg_is_pkt_pointer(ptr_reg)) { 9914 dst_reg->id = ++env->id_gen; 9915 /* something was added to pkt_ptr, set range to zero */ 9916 if (smin_val < 0) 9917 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9918 } 9919 break; 9920 case BPF_AND: 9921 case BPF_OR: 9922 case BPF_XOR: 9923 /* bitwise ops on pointers are troublesome, prohibit. */ 9924 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 9925 dst, bpf_alu_string[opcode >> 4]); 9926 return -EACCES; 9927 default: 9928 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 9929 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 9930 dst, bpf_alu_string[opcode >> 4]); 9931 return -EACCES; 9932 } 9933 9934 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 9935 return -EINVAL; 9936 reg_bounds_sync(dst_reg); 9937 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 9938 return -EACCES; 9939 if (sanitize_needed(opcode)) { 9940 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 9941 &info, true); 9942 if (ret < 0) 9943 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9944 } 9945 9946 return 0; 9947 } 9948 9949 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 9950 struct bpf_reg_state *src_reg) 9951 { 9952 s32 smin_val = src_reg->s32_min_value; 9953 s32 smax_val = src_reg->s32_max_value; 9954 u32 umin_val = src_reg->u32_min_value; 9955 u32 umax_val = src_reg->u32_max_value; 9956 9957 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 9958 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 9959 dst_reg->s32_min_value = S32_MIN; 9960 dst_reg->s32_max_value = S32_MAX; 9961 } else { 9962 dst_reg->s32_min_value += smin_val; 9963 dst_reg->s32_max_value += smax_val; 9964 } 9965 if (dst_reg->u32_min_value + umin_val < umin_val || 9966 dst_reg->u32_max_value + umax_val < umax_val) { 9967 dst_reg->u32_min_value = 0; 9968 dst_reg->u32_max_value = U32_MAX; 9969 } else { 9970 dst_reg->u32_min_value += umin_val; 9971 dst_reg->u32_max_value += umax_val; 9972 } 9973 } 9974 9975 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 9976 struct bpf_reg_state *src_reg) 9977 { 9978 s64 smin_val = src_reg->smin_value; 9979 s64 smax_val = src_reg->smax_value; 9980 u64 umin_val = src_reg->umin_value; 9981 u64 umax_val = src_reg->umax_value; 9982 9983 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 9984 signed_add_overflows(dst_reg->smax_value, smax_val)) { 9985 dst_reg->smin_value = S64_MIN; 9986 dst_reg->smax_value = S64_MAX; 9987 } else { 9988 dst_reg->smin_value += smin_val; 9989 dst_reg->smax_value += smax_val; 9990 } 9991 if (dst_reg->umin_value + umin_val < umin_val || 9992 dst_reg->umax_value + umax_val < umax_val) { 9993 dst_reg->umin_value = 0; 9994 dst_reg->umax_value = U64_MAX; 9995 } else { 9996 dst_reg->umin_value += umin_val; 9997 dst_reg->umax_value += umax_val; 9998 } 9999 } 10000 10001 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 10002 struct bpf_reg_state *src_reg) 10003 { 10004 s32 smin_val = src_reg->s32_min_value; 10005 s32 smax_val = src_reg->s32_max_value; 10006 u32 umin_val = src_reg->u32_min_value; 10007 u32 umax_val = src_reg->u32_max_value; 10008 10009 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10010 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10011 /* Overflow possible, we know nothing */ 10012 dst_reg->s32_min_value = S32_MIN; 10013 dst_reg->s32_max_value = S32_MAX; 10014 } else { 10015 dst_reg->s32_min_value -= smax_val; 10016 dst_reg->s32_max_value -= smin_val; 10017 } 10018 if (dst_reg->u32_min_value < umax_val) { 10019 /* Overflow possible, we know nothing */ 10020 dst_reg->u32_min_value = 0; 10021 dst_reg->u32_max_value = U32_MAX; 10022 } else { 10023 /* Cannot overflow (as long as bounds are consistent) */ 10024 dst_reg->u32_min_value -= umax_val; 10025 dst_reg->u32_max_value -= umin_val; 10026 } 10027 } 10028 10029 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10030 struct bpf_reg_state *src_reg) 10031 { 10032 s64 smin_val = src_reg->smin_value; 10033 s64 smax_val = src_reg->smax_value; 10034 u64 umin_val = src_reg->umin_value; 10035 u64 umax_val = src_reg->umax_value; 10036 10037 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10038 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10039 /* Overflow possible, we know nothing */ 10040 dst_reg->smin_value = S64_MIN; 10041 dst_reg->smax_value = S64_MAX; 10042 } else { 10043 dst_reg->smin_value -= smax_val; 10044 dst_reg->smax_value -= smin_val; 10045 } 10046 if (dst_reg->umin_value < umax_val) { 10047 /* Overflow possible, we know nothing */ 10048 dst_reg->umin_value = 0; 10049 dst_reg->umax_value = U64_MAX; 10050 } else { 10051 /* Cannot overflow (as long as bounds are consistent) */ 10052 dst_reg->umin_value -= umax_val; 10053 dst_reg->umax_value -= umin_val; 10054 } 10055 } 10056 10057 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10058 struct bpf_reg_state *src_reg) 10059 { 10060 s32 smin_val = src_reg->s32_min_value; 10061 u32 umin_val = src_reg->u32_min_value; 10062 u32 umax_val = src_reg->u32_max_value; 10063 10064 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10065 /* Ain't nobody got time to multiply that sign */ 10066 __mark_reg32_unbounded(dst_reg); 10067 return; 10068 } 10069 /* Both values are positive, so we can work with unsigned and 10070 * copy the result to signed (unless it exceeds S32_MAX). 10071 */ 10072 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10073 /* Potential overflow, we know nothing */ 10074 __mark_reg32_unbounded(dst_reg); 10075 return; 10076 } 10077 dst_reg->u32_min_value *= umin_val; 10078 dst_reg->u32_max_value *= umax_val; 10079 if (dst_reg->u32_max_value > S32_MAX) { 10080 /* Overflow possible, we know nothing */ 10081 dst_reg->s32_min_value = S32_MIN; 10082 dst_reg->s32_max_value = S32_MAX; 10083 } else { 10084 dst_reg->s32_min_value = dst_reg->u32_min_value; 10085 dst_reg->s32_max_value = dst_reg->u32_max_value; 10086 } 10087 } 10088 10089 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10090 struct bpf_reg_state *src_reg) 10091 { 10092 s64 smin_val = src_reg->smin_value; 10093 u64 umin_val = src_reg->umin_value; 10094 u64 umax_val = src_reg->umax_value; 10095 10096 if (smin_val < 0 || dst_reg->smin_value < 0) { 10097 /* Ain't nobody got time to multiply that sign */ 10098 __mark_reg64_unbounded(dst_reg); 10099 return; 10100 } 10101 /* Both values are positive, so we can work with unsigned and 10102 * copy the result to signed (unless it exceeds S64_MAX). 10103 */ 10104 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10105 /* Potential overflow, we know nothing */ 10106 __mark_reg64_unbounded(dst_reg); 10107 return; 10108 } 10109 dst_reg->umin_value *= umin_val; 10110 dst_reg->umax_value *= umax_val; 10111 if (dst_reg->umax_value > S64_MAX) { 10112 /* Overflow possible, we know nothing */ 10113 dst_reg->smin_value = S64_MIN; 10114 dst_reg->smax_value = S64_MAX; 10115 } else { 10116 dst_reg->smin_value = dst_reg->umin_value; 10117 dst_reg->smax_value = dst_reg->umax_value; 10118 } 10119 } 10120 10121 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10122 struct bpf_reg_state *src_reg) 10123 { 10124 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10125 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10126 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10127 s32 smin_val = src_reg->s32_min_value; 10128 u32 umax_val = src_reg->u32_max_value; 10129 10130 if (src_known && dst_known) { 10131 __mark_reg32_known(dst_reg, var32_off.value); 10132 return; 10133 } 10134 10135 /* We get our minimum from the var_off, since that's inherently 10136 * bitwise. Our maximum is the minimum of the operands' maxima. 10137 */ 10138 dst_reg->u32_min_value = var32_off.value; 10139 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10140 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10141 /* Lose signed bounds when ANDing negative numbers, 10142 * ain't nobody got time for that. 10143 */ 10144 dst_reg->s32_min_value = S32_MIN; 10145 dst_reg->s32_max_value = S32_MAX; 10146 } else { 10147 /* ANDing two positives gives a positive, so safe to 10148 * cast result into s64. 10149 */ 10150 dst_reg->s32_min_value = dst_reg->u32_min_value; 10151 dst_reg->s32_max_value = dst_reg->u32_max_value; 10152 } 10153 } 10154 10155 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10156 struct bpf_reg_state *src_reg) 10157 { 10158 bool src_known = tnum_is_const(src_reg->var_off); 10159 bool dst_known = tnum_is_const(dst_reg->var_off); 10160 s64 smin_val = src_reg->smin_value; 10161 u64 umax_val = src_reg->umax_value; 10162 10163 if (src_known && dst_known) { 10164 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10165 return; 10166 } 10167 10168 /* We get our minimum from the var_off, since that's inherently 10169 * bitwise. Our maximum is the minimum of the operands' maxima. 10170 */ 10171 dst_reg->umin_value = dst_reg->var_off.value; 10172 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10173 if (dst_reg->smin_value < 0 || smin_val < 0) { 10174 /* Lose signed bounds when ANDing negative numbers, 10175 * ain't nobody got time for that. 10176 */ 10177 dst_reg->smin_value = S64_MIN; 10178 dst_reg->smax_value = S64_MAX; 10179 } else { 10180 /* ANDing two positives gives a positive, so safe to 10181 * cast result into s64. 10182 */ 10183 dst_reg->smin_value = dst_reg->umin_value; 10184 dst_reg->smax_value = dst_reg->umax_value; 10185 } 10186 /* We may learn something more from the var_off */ 10187 __update_reg_bounds(dst_reg); 10188 } 10189 10190 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10191 struct bpf_reg_state *src_reg) 10192 { 10193 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10194 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10195 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10196 s32 smin_val = src_reg->s32_min_value; 10197 u32 umin_val = src_reg->u32_min_value; 10198 10199 if (src_known && dst_known) { 10200 __mark_reg32_known(dst_reg, var32_off.value); 10201 return; 10202 } 10203 10204 /* We get our maximum from the var_off, and our minimum is the 10205 * maximum of the operands' minima 10206 */ 10207 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10208 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10209 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10210 /* Lose signed bounds when ORing negative numbers, 10211 * ain't nobody got time for that. 10212 */ 10213 dst_reg->s32_min_value = S32_MIN; 10214 dst_reg->s32_max_value = S32_MAX; 10215 } else { 10216 /* ORing two positives gives a positive, so safe to 10217 * cast result into s64. 10218 */ 10219 dst_reg->s32_min_value = dst_reg->u32_min_value; 10220 dst_reg->s32_max_value = dst_reg->u32_max_value; 10221 } 10222 } 10223 10224 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10225 struct bpf_reg_state *src_reg) 10226 { 10227 bool src_known = tnum_is_const(src_reg->var_off); 10228 bool dst_known = tnum_is_const(dst_reg->var_off); 10229 s64 smin_val = src_reg->smin_value; 10230 u64 umin_val = src_reg->umin_value; 10231 10232 if (src_known && dst_known) { 10233 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10234 return; 10235 } 10236 10237 /* We get our maximum from the var_off, and our minimum is the 10238 * maximum of the operands' minima 10239 */ 10240 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10241 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10242 if (dst_reg->smin_value < 0 || smin_val < 0) { 10243 /* Lose signed bounds when ORing negative numbers, 10244 * ain't nobody got time for that. 10245 */ 10246 dst_reg->smin_value = S64_MIN; 10247 dst_reg->smax_value = S64_MAX; 10248 } else { 10249 /* ORing two positives gives a positive, so safe to 10250 * cast result into s64. 10251 */ 10252 dst_reg->smin_value = dst_reg->umin_value; 10253 dst_reg->smax_value = dst_reg->umax_value; 10254 } 10255 /* We may learn something more from the var_off */ 10256 __update_reg_bounds(dst_reg); 10257 } 10258 10259 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 10260 struct bpf_reg_state *src_reg) 10261 { 10262 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10263 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10264 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10265 s32 smin_val = src_reg->s32_min_value; 10266 10267 if (src_known && dst_known) { 10268 __mark_reg32_known(dst_reg, var32_off.value); 10269 return; 10270 } 10271 10272 /* We get both minimum and maximum from the var32_off. */ 10273 dst_reg->u32_min_value = var32_off.value; 10274 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10275 10276 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 10277 /* XORing two positive sign numbers gives a positive, 10278 * so safe to cast u32 result into s32. 10279 */ 10280 dst_reg->s32_min_value = dst_reg->u32_min_value; 10281 dst_reg->s32_max_value = dst_reg->u32_max_value; 10282 } else { 10283 dst_reg->s32_min_value = S32_MIN; 10284 dst_reg->s32_max_value = S32_MAX; 10285 } 10286 } 10287 10288 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 10289 struct bpf_reg_state *src_reg) 10290 { 10291 bool src_known = tnum_is_const(src_reg->var_off); 10292 bool dst_known = tnum_is_const(dst_reg->var_off); 10293 s64 smin_val = src_reg->smin_value; 10294 10295 if (src_known && dst_known) { 10296 /* dst_reg->var_off.value has been updated earlier */ 10297 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10298 return; 10299 } 10300 10301 /* We get both minimum and maximum from the var_off. */ 10302 dst_reg->umin_value = dst_reg->var_off.value; 10303 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10304 10305 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 10306 /* XORing two positive sign numbers gives a positive, 10307 * so safe to cast u64 result into s64. 10308 */ 10309 dst_reg->smin_value = dst_reg->umin_value; 10310 dst_reg->smax_value = dst_reg->umax_value; 10311 } else { 10312 dst_reg->smin_value = S64_MIN; 10313 dst_reg->smax_value = S64_MAX; 10314 } 10315 10316 __update_reg_bounds(dst_reg); 10317 } 10318 10319 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10320 u64 umin_val, u64 umax_val) 10321 { 10322 /* We lose all sign bit information (except what we can pick 10323 * up from var_off) 10324 */ 10325 dst_reg->s32_min_value = S32_MIN; 10326 dst_reg->s32_max_value = S32_MAX; 10327 /* If we might shift our top bit out, then we know nothing */ 10328 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 10329 dst_reg->u32_min_value = 0; 10330 dst_reg->u32_max_value = U32_MAX; 10331 } else { 10332 dst_reg->u32_min_value <<= umin_val; 10333 dst_reg->u32_max_value <<= umax_val; 10334 } 10335 } 10336 10337 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10338 struct bpf_reg_state *src_reg) 10339 { 10340 u32 umax_val = src_reg->u32_max_value; 10341 u32 umin_val = src_reg->u32_min_value; 10342 /* u32 alu operation will zext upper bits */ 10343 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10344 10345 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10346 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 10347 /* Not required but being careful mark reg64 bounds as unknown so 10348 * that we are forced to pick them up from tnum and zext later and 10349 * if some path skips this step we are still safe. 10350 */ 10351 __mark_reg64_unbounded(dst_reg); 10352 __update_reg32_bounds(dst_reg); 10353 } 10354 10355 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 10356 u64 umin_val, u64 umax_val) 10357 { 10358 /* Special case <<32 because it is a common compiler pattern to sign 10359 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 10360 * positive we know this shift will also be positive so we can track 10361 * bounds correctly. Otherwise we lose all sign bit information except 10362 * what we can pick up from var_off. Perhaps we can generalize this 10363 * later to shifts of any length. 10364 */ 10365 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 10366 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 10367 else 10368 dst_reg->smax_value = S64_MAX; 10369 10370 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 10371 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 10372 else 10373 dst_reg->smin_value = S64_MIN; 10374 10375 /* If we might shift our top bit out, then we know nothing */ 10376 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 10377 dst_reg->umin_value = 0; 10378 dst_reg->umax_value = U64_MAX; 10379 } else { 10380 dst_reg->umin_value <<= umin_val; 10381 dst_reg->umax_value <<= umax_val; 10382 } 10383 } 10384 10385 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 10386 struct bpf_reg_state *src_reg) 10387 { 10388 u64 umax_val = src_reg->umax_value; 10389 u64 umin_val = src_reg->umin_value; 10390 10391 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 10392 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 10393 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10394 10395 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 10396 /* We may learn something more from the var_off */ 10397 __update_reg_bounds(dst_reg); 10398 } 10399 10400 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 10401 struct bpf_reg_state *src_reg) 10402 { 10403 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10404 u32 umax_val = src_reg->u32_max_value; 10405 u32 umin_val = src_reg->u32_min_value; 10406 10407 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10408 * be negative, then either: 10409 * 1) src_reg might be zero, so the sign bit of the result is 10410 * unknown, so we lose our signed bounds 10411 * 2) it's known negative, thus the unsigned bounds capture the 10412 * signed bounds 10413 * 3) the signed bounds cross zero, so they tell us nothing 10414 * about the result 10415 * If the value in dst_reg is known nonnegative, then again the 10416 * unsigned bounds capture the signed bounds. 10417 * Thus, in all cases it suffices to blow away our signed bounds 10418 * and rely on inferring new ones from the unsigned bounds and 10419 * var_off of the result. 10420 */ 10421 dst_reg->s32_min_value = S32_MIN; 10422 dst_reg->s32_max_value = S32_MAX; 10423 10424 dst_reg->var_off = tnum_rshift(subreg, umin_val); 10425 dst_reg->u32_min_value >>= umax_val; 10426 dst_reg->u32_max_value >>= umin_val; 10427 10428 __mark_reg64_unbounded(dst_reg); 10429 __update_reg32_bounds(dst_reg); 10430 } 10431 10432 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 10433 struct bpf_reg_state *src_reg) 10434 { 10435 u64 umax_val = src_reg->umax_value; 10436 u64 umin_val = src_reg->umin_value; 10437 10438 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10439 * be negative, then either: 10440 * 1) src_reg might be zero, so the sign bit of the result is 10441 * unknown, so we lose our signed bounds 10442 * 2) it's known negative, thus the unsigned bounds capture the 10443 * signed bounds 10444 * 3) the signed bounds cross zero, so they tell us nothing 10445 * about the result 10446 * If the value in dst_reg is known nonnegative, then again the 10447 * unsigned bounds capture the signed bounds. 10448 * Thus, in all cases it suffices to blow away our signed bounds 10449 * and rely on inferring new ones from the unsigned bounds and 10450 * var_off of the result. 10451 */ 10452 dst_reg->smin_value = S64_MIN; 10453 dst_reg->smax_value = S64_MAX; 10454 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 10455 dst_reg->umin_value >>= umax_val; 10456 dst_reg->umax_value >>= umin_val; 10457 10458 /* Its not easy to operate on alu32 bounds here because it depends 10459 * on bits being shifted in. Take easy way out and mark unbounded 10460 * so we can recalculate later from tnum. 10461 */ 10462 __mark_reg32_unbounded(dst_reg); 10463 __update_reg_bounds(dst_reg); 10464 } 10465 10466 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 10467 struct bpf_reg_state *src_reg) 10468 { 10469 u64 umin_val = src_reg->u32_min_value; 10470 10471 /* Upon reaching here, src_known is true and 10472 * umax_val is equal to umin_val. 10473 */ 10474 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 10475 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 10476 10477 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 10478 10479 /* blow away the dst_reg umin_value/umax_value and rely on 10480 * dst_reg var_off to refine the result. 10481 */ 10482 dst_reg->u32_min_value = 0; 10483 dst_reg->u32_max_value = U32_MAX; 10484 10485 __mark_reg64_unbounded(dst_reg); 10486 __update_reg32_bounds(dst_reg); 10487 } 10488 10489 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 10490 struct bpf_reg_state *src_reg) 10491 { 10492 u64 umin_val = src_reg->umin_value; 10493 10494 /* Upon reaching here, src_known is true and umax_val is equal 10495 * to umin_val. 10496 */ 10497 dst_reg->smin_value >>= umin_val; 10498 dst_reg->smax_value >>= umin_val; 10499 10500 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 10501 10502 /* blow away the dst_reg umin_value/umax_value and rely on 10503 * dst_reg var_off to refine the result. 10504 */ 10505 dst_reg->umin_value = 0; 10506 dst_reg->umax_value = U64_MAX; 10507 10508 /* Its not easy to operate on alu32 bounds here because it depends 10509 * on bits being shifted in from upper 32-bits. Take easy way out 10510 * and mark unbounded so we can recalculate later from tnum. 10511 */ 10512 __mark_reg32_unbounded(dst_reg); 10513 __update_reg_bounds(dst_reg); 10514 } 10515 10516 /* WARNING: This function does calculations on 64-bit values, but the actual 10517 * execution may occur on 32-bit values. Therefore, things like bitshifts 10518 * need extra checks in the 32-bit case. 10519 */ 10520 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 10521 struct bpf_insn *insn, 10522 struct bpf_reg_state *dst_reg, 10523 struct bpf_reg_state src_reg) 10524 { 10525 struct bpf_reg_state *regs = cur_regs(env); 10526 u8 opcode = BPF_OP(insn->code); 10527 bool src_known; 10528 s64 smin_val, smax_val; 10529 u64 umin_val, umax_val; 10530 s32 s32_min_val, s32_max_val; 10531 u32 u32_min_val, u32_max_val; 10532 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 10533 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 10534 int ret; 10535 10536 smin_val = src_reg.smin_value; 10537 smax_val = src_reg.smax_value; 10538 umin_val = src_reg.umin_value; 10539 umax_val = src_reg.umax_value; 10540 10541 s32_min_val = src_reg.s32_min_value; 10542 s32_max_val = src_reg.s32_max_value; 10543 u32_min_val = src_reg.u32_min_value; 10544 u32_max_val = src_reg.u32_max_value; 10545 10546 if (alu32) { 10547 src_known = tnum_subreg_is_const(src_reg.var_off); 10548 if ((src_known && 10549 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 10550 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 10551 /* Taint dst register if offset had invalid bounds 10552 * derived from e.g. dead branches. 10553 */ 10554 __mark_reg_unknown(env, dst_reg); 10555 return 0; 10556 } 10557 } else { 10558 src_known = tnum_is_const(src_reg.var_off); 10559 if ((src_known && 10560 (smin_val != smax_val || umin_val != umax_val)) || 10561 smin_val > smax_val || umin_val > umax_val) { 10562 /* Taint dst register if offset had invalid bounds 10563 * derived from e.g. dead branches. 10564 */ 10565 __mark_reg_unknown(env, dst_reg); 10566 return 0; 10567 } 10568 } 10569 10570 if (!src_known && 10571 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 10572 __mark_reg_unknown(env, dst_reg); 10573 return 0; 10574 } 10575 10576 if (sanitize_needed(opcode)) { 10577 ret = sanitize_val_alu(env, insn); 10578 if (ret < 0) 10579 return sanitize_err(env, insn, ret, NULL, NULL); 10580 } 10581 10582 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 10583 * There are two classes of instructions: The first class we track both 10584 * alu32 and alu64 sign/unsigned bounds independently this provides the 10585 * greatest amount of precision when alu operations are mixed with jmp32 10586 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 10587 * and BPF_OR. This is possible because these ops have fairly easy to 10588 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 10589 * See alu32 verifier tests for examples. The second class of 10590 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 10591 * with regards to tracking sign/unsigned bounds because the bits may 10592 * cross subreg boundaries in the alu64 case. When this happens we mark 10593 * the reg unbounded in the subreg bound space and use the resulting 10594 * tnum to calculate an approximation of the sign/unsigned bounds. 10595 */ 10596 switch (opcode) { 10597 case BPF_ADD: 10598 scalar32_min_max_add(dst_reg, &src_reg); 10599 scalar_min_max_add(dst_reg, &src_reg); 10600 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 10601 break; 10602 case BPF_SUB: 10603 scalar32_min_max_sub(dst_reg, &src_reg); 10604 scalar_min_max_sub(dst_reg, &src_reg); 10605 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 10606 break; 10607 case BPF_MUL: 10608 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 10609 scalar32_min_max_mul(dst_reg, &src_reg); 10610 scalar_min_max_mul(dst_reg, &src_reg); 10611 break; 10612 case BPF_AND: 10613 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 10614 scalar32_min_max_and(dst_reg, &src_reg); 10615 scalar_min_max_and(dst_reg, &src_reg); 10616 break; 10617 case BPF_OR: 10618 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 10619 scalar32_min_max_or(dst_reg, &src_reg); 10620 scalar_min_max_or(dst_reg, &src_reg); 10621 break; 10622 case BPF_XOR: 10623 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 10624 scalar32_min_max_xor(dst_reg, &src_reg); 10625 scalar_min_max_xor(dst_reg, &src_reg); 10626 break; 10627 case BPF_LSH: 10628 if (umax_val >= insn_bitness) { 10629 /* Shifts greater than 31 or 63 are undefined. 10630 * This includes shifts by a negative number. 10631 */ 10632 mark_reg_unknown(env, regs, insn->dst_reg); 10633 break; 10634 } 10635 if (alu32) 10636 scalar32_min_max_lsh(dst_reg, &src_reg); 10637 else 10638 scalar_min_max_lsh(dst_reg, &src_reg); 10639 break; 10640 case BPF_RSH: 10641 if (umax_val >= insn_bitness) { 10642 /* Shifts greater than 31 or 63 are undefined. 10643 * This includes shifts by a negative number. 10644 */ 10645 mark_reg_unknown(env, regs, insn->dst_reg); 10646 break; 10647 } 10648 if (alu32) 10649 scalar32_min_max_rsh(dst_reg, &src_reg); 10650 else 10651 scalar_min_max_rsh(dst_reg, &src_reg); 10652 break; 10653 case BPF_ARSH: 10654 if (umax_val >= insn_bitness) { 10655 /* Shifts greater than 31 or 63 are undefined. 10656 * This includes shifts by a negative number. 10657 */ 10658 mark_reg_unknown(env, regs, insn->dst_reg); 10659 break; 10660 } 10661 if (alu32) 10662 scalar32_min_max_arsh(dst_reg, &src_reg); 10663 else 10664 scalar_min_max_arsh(dst_reg, &src_reg); 10665 break; 10666 default: 10667 mark_reg_unknown(env, regs, insn->dst_reg); 10668 break; 10669 } 10670 10671 /* ALU32 ops are zero extended into 64bit register */ 10672 if (alu32) 10673 zext_32_to_64(dst_reg); 10674 reg_bounds_sync(dst_reg); 10675 return 0; 10676 } 10677 10678 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 10679 * and var_off. 10680 */ 10681 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 10682 struct bpf_insn *insn) 10683 { 10684 struct bpf_verifier_state *vstate = env->cur_state; 10685 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10686 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 10687 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 10688 u8 opcode = BPF_OP(insn->code); 10689 int err; 10690 10691 dst_reg = ®s[insn->dst_reg]; 10692 src_reg = NULL; 10693 if (dst_reg->type != SCALAR_VALUE) 10694 ptr_reg = dst_reg; 10695 else 10696 /* Make sure ID is cleared otherwise dst_reg min/max could be 10697 * incorrectly propagated into other registers by find_equal_scalars() 10698 */ 10699 dst_reg->id = 0; 10700 if (BPF_SRC(insn->code) == BPF_X) { 10701 src_reg = ®s[insn->src_reg]; 10702 if (src_reg->type != SCALAR_VALUE) { 10703 if (dst_reg->type != SCALAR_VALUE) { 10704 /* Combining two pointers by any ALU op yields 10705 * an arbitrary scalar. Disallow all math except 10706 * pointer subtraction 10707 */ 10708 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10709 mark_reg_unknown(env, regs, insn->dst_reg); 10710 return 0; 10711 } 10712 verbose(env, "R%d pointer %s pointer prohibited\n", 10713 insn->dst_reg, 10714 bpf_alu_string[opcode >> 4]); 10715 return -EACCES; 10716 } else { 10717 /* scalar += pointer 10718 * This is legal, but we have to reverse our 10719 * src/dest handling in computing the range 10720 */ 10721 err = mark_chain_precision(env, insn->dst_reg); 10722 if (err) 10723 return err; 10724 return adjust_ptr_min_max_vals(env, insn, 10725 src_reg, dst_reg); 10726 } 10727 } else if (ptr_reg) { 10728 /* pointer += scalar */ 10729 err = mark_chain_precision(env, insn->src_reg); 10730 if (err) 10731 return err; 10732 return adjust_ptr_min_max_vals(env, insn, 10733 dst_reg, src_reg); 10734 } else if (dst_reg->precise) { 10735 /* if dst_reg is precise, src_reg should be precise as well */ 10736 err = mark_chain_precision(env, insn->src_reg); 10737 if (err) 10738 return err; 10739 } 10740 } else { 10741 /* Pretend the src is a reg with a known value, since we only 10742 * need to be able to read from this state. 10743 */ 10744 off_reg.type = SCALAR_VALUE; 10745 __mark_reg_known(&off_reg, insn->imm); 10746 src_reg = &off_reg; 10747 if (ptr_reg) /* pointer += K */ 10748 return adjust_ptr_min_max_vals(env, insn, 10749 ptr_reg, src_reg); 10750 } 10751 10752 /* Got here implies adding two SCALAR_VALUEs */ 10753 if (WARN_ON_ONCE(ptr_reg)) { 10754 print_verifier_state(env, state, true); 10755 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 10756 return -EINVAL; 10757 } 10758 if (WARN_ON(!src_reg)) { 10759 print_verifier_state(env, state, true); 10760 verbose(env, "verifier internal error: no src_reg\n"); 10761 return -EINVAL; 10762 } 10763 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 10764 } 10765 10766 /* check validity of 32-bit and 64-bit arithmetic operations */ 10767 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 10768 { 10769 struct bpf_reg_state *regs = cur_regs(env); 10770 u8 opcode = BPF_OP(insn->code); 10771 int err; 10772 10773 if (opcode == BPF_END || opcode == BPF_NEG) { 10774 if (opcode == BPF_NEG) { 10775 if (BPF_SRC(insn->code) != BPF_K || 10776 insn->src_reg != BPF_REG_0 || 10777 insn->off != 0 || insn->imm != 0) { 10778 verbose(env, "BPF_NEG uses reserved fields\n"); 10779 return -EINVAL; 10780 } 10781 } else { 10782 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 10783 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 10784 BPF_CLASS(insn->code) == BPF_ALU64) { 10785 verbose(env, "BPF_END uses reserved fields\n"); 10786 return -EINVAL; 10787 } 10788 } 10789 10790 /* check src operand */ 10791 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10792 if (err) 10793 return err; 10794 10795 if (is_pointer_value(env, insn->dst_reg)) { 10796 verbose(env, "R%d pointer arithmetic prohibited\n", 10797 insn->dst_reg); 10798 return -EACCES; 10799 } 10800 10801 /* check dest operand */ 10802 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10803 if (err) 10804 return err; 10805 10806 } else if (opcode == BPF_MOV) { 10807 10808 if (BPF_SRC(insn->code) == BPF_X) { 10809 if (insn->imm != 0 || insn->off != 0) { 10810 verbose(env, "BPF_MOV uses reserved fields\n"); 10811 return -EINVAL; 10812 } 10813 10814 /* check src operand */ 10815 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10816 if (err) 10817 return err; 10818 } else { 10819 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10820 verbose(env, "BPF_MOV uses reserved fields\n"); 10821 return -EINVAL; 10822 } 10823 } 10824 10825 /* check dest operand, mark as required later */ 10826 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10827 if (err) 10828 return err; 10829 10830 if (BPF_SRC(insn->code) == BPF_X) { 10831 struct bpf_reg_state *src_reg = regs + insn->src_reg; 10832 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 10833 10834 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10835 /* case: R1 = R2 10836 * copy register state to dest reg 10837 */ 10838 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 10839 /* Assign src and dst registers the same ID 10840 * that will be used by find_equal_scalars() 10841 * to propagate min/max range. 10842 */ 10843 src_reg->id = ++env->id_gen; 10844 *dst_reg = *src_reg; 10845 dst_reg->live |= REG_LIVE_WRITTEN; 10846 dst_reg->subreg_def = DEF_NOT_SUBREG; 10847 } else { 10848 /* R1 = (u32) R2 */ 10849 if (is_pointer_value(env, insn->src_reg)) { 10850 verbose(env, 10851 "R%d partial copy of pointer\n", 10852 insn->src_reg); 10853 return -EACCES; 10854 } else if (src_reg->type == SCALAR_VALUE) { 10855 *dst_reg = *src_reg; 10856 /* Make sure ID is cleared otherwise 10857 * dst_reg min/max could be incorrectly 10858 * propagated into src_reg by find_equal_scalars() 10859 */ 10860 dst_reg->id = 0; 10861 dst_reg->live |= REG_LIVE_WRITTEN; 10862 dst_reg->subreg_def = env->insn_idx + 1; 10863 } else { 10864 mark_reg_unknown(env, regs, 10865 insn->dst_reg); 10866 } 10867 zext_32_to_64(dst_reg); 10868 reg_bounds_sync(dst_reg); 10869 } 10870 } else { 10871 /* case: R = imm 10872 * remember the value we stored into this reg 10873 */ 10874 /* clear any state __mark_reg_known doesn't set */ 10875 mark_reg_unknown(env, regs, insn->dst_reg); 10876 regs[insn->dst_reg].type = SCALAR_VALUE; 10877 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10878 __mark_reg_known(regs + insn->dst_reg, 10879 insn->imm); 10880 } else { 10881 __mark_reg_known(regs + insn->dst_reg, 10882 (u32)insn->imm); 10883 } 10884 } 10885 10886 } else if (opcode > BPF_END) { 10887 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 10888 return -EINVAL; 10889 10890 } else { /* all other ALU ops: and, sub, xor, add, ... */ 10891 10892 if (BPF_SRC(insn->code) == BPF_X) { 10893 if (insn->imm != 0 || insn->off != 0) { 10894 verbose(env, "BPF_ALU uses reserved fields\n"); 10895 return -EINVAL; 10896 } 10897 /* check src1 operand */ 10898 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10899 if (err) 10900 return err; 10901 } else { 10902 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10903 verbose(env, "BPF_ALU uses reserved fields\n"); 10904 return -EINVAL; 10905 } 10906 } 10907 10908 /* check src2 operand */ 10909 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10910 if (err) 10911 return err; 10912 10913 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 10914 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 10915 verbose(env, "div by zero\n"); 10916 return -EINVAL; 10917 } 10918 10919 if ((opcode == BPF_LSH || opcode == BPF_RSH || 10920 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 10921 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 10922 10923 if (insn->imm < 0 || insn->imm >= size) { 10924 verbose(env, "invalid shift %d\n", insn->imm); 10925 return -EINVAL; 10926 } 10927 } 10928 10929 /* check dest operand */ 10930 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10931 if (err) 10932 return err; 10933 10934 return adjust_reg_min_max_vals(env, insn); 10935 } 10936 10937 return 0; 10938 } 10939 10940 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 10941 struct bpf_reg_state *dst_reg, 10942 enum bpf_reg_type type, 10943 bool range_right_open) 10944 { 10945 struct bpf_func_state *state; 10946 struct bpf_reg_state *reg; 10947 int new_range; 10948 10949 if (dst_reg->off < 0 || 10950 (dst_reg->off == 0 && range_right_open)) 10951 /* This doesn't give us any range */ 10952 return; 10953 10954 if (dst_reg->umax_value > MAX_PACKET_OFF || 10955 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 10956 /* Risk of overflow. For instance, ptr + (1<<63) may be less 10957 * than pkt_end, but that's because it's also less than pkt. 10958 */ 10959 return; 10960 10961 new_range = dst_reg->off; 10962 if (range_right_open) 10963 new_range++; 10964 10965 /* Examples for register markings: 10966 * 10967 * pkt_data in dst register: 10968 * 10969 * r2 = r3; 10970 * r2 += 8; 10971 * if (r2 > pkt_end) goto <handle exception> 10972 * <access okay> 10973 * 10974 * r2 = r3; 10975 * r2 += 8; 10976 * if (r2 < pkt_end) goto <access okay> 10977 * <handle exception> 10978 * 10979 * Where: 10980 * r2 == dst_reg, pkt_end == src_reg 10981 * r2=pkt(id=n,off=8,r=0) 10982 * r3=pkt(id=n,off=0,r=0) 10983 * 10984 * pkt_data in src register: 10985 * 10986 * r2 = r3; 10987 * r2 += 8; 10988 * if (pkt_end >= r2) goto <access okay> 10989 * <handle exception> 10990 * 10991 * r2 = r3; 10992 * r2 += 8; 10993 * if (pkt_end <= r2) goto <handle exception> 10994 * <access okay> 10995 * 10996 * Where: 10997 * pkt_end == dst_reg, r2 == src_reg 10998 * r2=pkt(id=n,off=8,r=0) 10999 * r3=pkt(id=n,off=0,r=0) 11000 * 11001 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 11002 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 11003 * and [r3, r3 + 8-1) respectively is safe to access depending on 11004 * the check. 11005 */ 11006 11007 /* If our ids match, then we must have the same max_value. And we 11008 * don't care about the other reg's fixed offset, since if it's too big 11009 * the range won't allow anything. 11010 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11011 */ 11012 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11013 if (reg->type == type && reg->id == dst_reg->id) 11014 /* keep the maximum range already checked */ 11015 reg->range = max(reg->range, new_range); 11016 })); 11017 } 11018 11019 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11020 { 11021 struct tnum subreg = tnum_subreg(reg->var_off); 11022 s32 sval = (s32)val; 11023 11024 switch (opcode) { 11025 case BPF_JEQ: 11026 if (tnum_is_const(subreg)) 11027 return !!tnum_equals_const(subreg, val); 11028 break; 11029 case BPF_JNE: 11030 if (tnum_is_const(subreg)) 11031 return !tnum_equals_const(subreg, val); 11032 break; 11033 case BPF_JSET: 11034 if ((~subreg.mask & subreg.value) & val) 11035 return 1; 11036 if (!((subreg.mask | subreg.value) & val)) 11037 return 0; 11038 break; 11039 case BPF_JGT: 11040 if (reg->u32_min_value > val) 11041 return 1; 11042 else if (reg->u32_max_value <= val) 11043 return 0; 11044 break; 11045 case BPF_JSGT: 11046 if (reg->s32_min_value > sval) 11047 return 1; 11048 else if (reg->s32_max_value <= sval) 11049 return 0; 11050 break; 11051 case BPF_JLT: 11052 if (reg->u32_max_value < val) 11053 return 1; 11054 else if (reg->u32_min_value >= val) 11055 return 0; 11056 break; 11057 case BPF_JSLT: 11058 if (reg->s32_max_value < sval) 11059 return 1; 11060 else if (reg->s32_min_value >= sval) 11061 return 0; 11062 break; 11063 case BPF_JGE: 11064 if (reg->u32_min_value >= val) 11065 return 1; 11066 else if (reg->u32_max_value < val) 11067 return 0; 11068 break; 11069 case BPF_JSGE: 11070 if (reg->s32_min_value >= sval) 11071 return 1; 11072 else if (reg->s32_max_value < sval) 11073 return 0; 11074 break; 11075 case BPF_JLE: 11076 if (reg->u32_max_value <= val) 11077 return 1; 11078 else if (reg->u32_min_value > val) 11079 return 0; 11080 break; 11081 case BPF_JSLE: 11082 if (reg->s32_max_value <= sval) 11083 return 1; 11084 else if (reg->s32_min_value > sval) 11085 return 0; 11086 break; 11087 } 11088 11089 return -1; 11090 } 11091 11092 11093 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11094 { 11095 s64 sval = (s64)val; 11096 11097 switch (opcode) { 11098 case BPF_JEQ: 11099 if (tnum_is_const(reg->var_off)) 11100 return !!tnum_equals_const(reg->var_off, val); 11101 break; 11102 case BPF_JNE: 11103 if (tnum_is_const(reg->var_off)) 11104 return !tnum_equals_const(reg->var_off, val); 11105 break; 11106 case BPF_JSET: 11107 if ((~reg->var_off.mask & reg->var_off.value) & val) 11108 return 1; 11109 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11110 return 0; 11111 break; 11112 case BPF_JGT: 11113 if (reg->umin_value > val) 11114 return 1; 11115 else if (reg->umax_value <= val) 11116 return 0; 11117 break; 11118 case BPF_JSGT: 11119 if (reg->smin_value > sval) 11120 return 1; 11121 else if (reg->smax_value <= sval) 11122 return 0; 11123 break; 11124 case BPF_JLT: 11125 if (reg->umax_value < val) 11126 return 1; 11127 else if (reg->umin_value >= val) 11128 return 0; 11129 break; 11130 case BPF_JSLT: 11131 if (reg->smax_value < sval) 11132 return 1; 11133 else if (reg->smin_value >= sval) 11134 return 0; 11135 break; 11136 case BPF_JGE: 11137 if (reg->umin_value >= val) 11138 return 1; 11139 else if (reg->umax_value < val) 11140 return 0; 11141 break; 11142 case BPF_JSGE: 11143 if (reg->smin_value >= sval) 11144 return 1; 11145 else if (reg->smax_value < sval) 11146 return 0; 11147 break; 11148 case BPF_JLE: 11149 if (reg->umax_value <= val) 11150 return 1; 11151 else if (reg->umin_value > val) 11152 return 0; 11153 break; 11154 case BPF_JSLE: 11155 if (reg->smax_value <= sval) 11156 return 1; 11157 else if (reg->smin_value > sval) 11158 return 0; 11159 break; 11160 } 11161 11162 return -1; 11163 } 11164 11165 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11166 * and return: 11167 * 1 - branch will be taken and "goto target" will be executed 11168 * 0 - branch will not be taken and fall-through to next insn 11169 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11170 * range [0,10] 11171 */ 11172 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11173 bool is_jmp32) 11174 { 11175 if (__is_pointer_value(false, reg)) { 11176 if (!reg_type_not_null(reg->type)) 11177 return -1; 11178 11179 /* If pointer is valid tests against zero will fail so we can 11180 * use this to direct branch taken. 11181 */ 11182 if (val != 0) 11183 return -1; 11184 11185 switch (opcode) { 11186 case BPF_JEQ: 11187 return 0; 11188 case BPF_JNE: 11189 return 1; 11190 default: 11191 return -1; 11192 } 11193 } 11194 11195 if (is_jmp32) 11196 return is_branch32_taken(reg, val, opcode); 11197 return is_branch64_taken(reg, val, opcode); 11198 } 11199 11200 static int flip_opcode(u32 opcode) 11201 { 11202 /* How can we transform "a <op> b" into "b <op> a"? */ 11203 static const u8 opcode_flip[16] = { 11204 /* these stay the same */ 11205 [BPF_JEQ >> 4] = BPF_JEQ, 11206 [BPF_JNE >> 4] = BPF_JNE, 11207 [BPF_JSET >> 4] = BPF_JSET, 11208 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11209 [BPF_JGE >> 4] = BPF_JLE, 11210 [BPF_JGT >> 4] = BPF_JLT, 11211 [BPF_JLE >> 4] = BPF_JGE, 11212 [BPF_JLT >> 4] = BPF_JGT, 11213 [BPF_JSGE >> 4] = BPF_JSLE, 11214 [BPF_JSGT >> 4] = BPF_JSLT, 11215 [BPF_JSLE >> 4] = BPF_JSGE, 11216 [BPF_JSLT >> 4] = BPF_JSGT 11217 }; 11218 return opcode_flip[opcode >> 4]; 11219 } 11220 11221 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11222 struct bpf_reg_state *src_reg, 11223 u8 opcode) 11224 { 11225 struct bpf_reg_state *pkt; 11226 11227 if (src_reg->type == PTR_TO_PACKET_END) { 11228 pkt = dst_reg; 11229 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11230 pkt = src_reg; 11231 opcode = flip_opcode(opcode); 11232 } else { 11233 return -1; 11234 } 11235 11236 if (pkt->range >= 0) 11237 return -1; 11238 11239 switch (opcode) { 11240 case BPF_JLE: 11241 /* pkt <= pkt_end */ 11242 fallthrough; 11243 case BPF_JGT: 11244 /* pkt > pkt_end */ 11245 if (pkt->range == BEYOND_PKT_END) 11246 /* pkt has at last one extra byte beyond pkt_end */ 11247 return opcode == BPF_JGT; 11248 break; 11249 case BPF_JLT: 11250 /* pkt < pkt_end */ 11251 fallthrough; 11252 case BPF_JGE: 11253 /* pkt >= pkt_end */ 11254 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 11255 return opcode == BPF_JGE; 11256 break; 11257 } 11258 return -1; 11259 } 11260 11261 /* Adjusts the register min/max values in the case that the dst_reg is the 11262 * variable register that we are working on, and src_reg is a constant or we're 11263 * simply doing a BPF_K check. 11264 * In JEQ/JNE cases we also adjust the var_off values. 11265 */ 11266 static void reg_set_min_max(struct bpf_reg_state *true_reg, 11267 struct bpf_reg_state *false_reg, 11268 u64 val, u32 val32, 11269 u8 opcode, bool is_jmp32) 11270 { 11271 struct tnum false_32off = tnum_subreg(false_reg->var_off); 11272 struct tnum false_64off = false_reg->var_off; 11273 struct tnum true_32off = tnum_subreg(true_reg->var_off); 11274 struct tnum true_64off = true_reg->var_off; 11275 s64 sval = (s64)val; 11276 s32 sval32 = (s32)val32; 11277 11278 /* If the dst_reg is a pointer, we can't learn anything about its 11279 * variable offset from the compare (unless src_reg were a pointer into 11280 * the same object, but we don't bother with that. 11281 * Since false_reg and true_reg have the same type by construction, we 11282 * only need to check one of them for pointerness. 11283 */ 11284 if (__is_pointer_value(false, false_reg)) 11285 return; 11286 11287 switch (opcode) { 11288 /* JEQ/JNE comparison doesn't change the register equivalence. 11289 * 11290 * r1 = r2; 11291 * if (r1 == 42) goto label; 11292 * ... 11293 * label: // here both r1 and r2 are known to be 42. 11294 * 11295 * Hence when marking register as known preserve it's ID. 11296 */ 11297 case BPF_JEQ: 11298 if (is_jmp32) { 11299 __mark_reg32_known(true_reg, val32); 11300 true_32off = tnum_subreg(true_reg->var_off); 11301 } else { 11302 ___mark_reg_known(true_reg, val); 11303 true_64off = true_reg->var_off; 11304 } 11305 break; 11306 case BPF_JNE: 11307 if (is_jmp32) { 11308 __mark_reg32_known(false_reg, val32); 11309 false_32off = tnum_subreg(false_reg->var_off); 11310 } else { 11311 ___mark_reg_known(false_reg, val); 11312 false_64off = false_reg->var_off; 11313 } 11314 break; 11315 case BPF_JSET: 11316 if (is_jmp32) { 11317 false_32off = tnum_and(false_32off, tnum_const(~val32)); 11318 if (is_power_of_2(val32)) 11319 true_32off = tnum_or(true_32off, 11320 tnum_const(val32)); 11321 } else { 11322 false_64off = tnum_and(false_64off, tnum_const(~val)); 11323 if (is_power_of_2(val)) 11324 true_64off = tnum_or(true_64off, 11325 tnum_const(val)); 11326 } 11327 break; 11328 case BPF_JGE: 11329 case BPF_JGT: 11330 { 11331 if (is_jmp32) { 11332 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 11333 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 11334 11335 false_reg->u32_max_value = min(false_reg->u32_max_value, 11336 false_umax); 11337 true_reg->u32_min_value = max(true_reg->u32_min_value, 11338 true_umin); 11339 } else { 11340 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 11341 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 11342 11343 false_reg->umax_value = min(false_reg->umax_value, false_umax); 11344 true_reg->umin_value = max(true_reg->umin_value, true_umin); 11345 } 11346 break; 11347 } 11348 case BPF_JSGE: 11349 case BPF_JSGT: 11350 { 11351 if (is_jmp32) { 11352 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 11353 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 11354 11355 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 11356 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 11357 } else { 11358 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 11359 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 11360 11361 false_reg->smax_value = min(false_reg->smax_value, false_smax); 11362 true_reg->smin_value = max(true_reg->smin_value, true_smin); 11363 } 11364 break; 11365 } 11366 case BPF_JLE: 11367 case BPF_JLT: 11368 { 11369 if (is_jmp32) { 11370 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 11371 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 11372 11373 false_reg->u32_min_value = max(false_reg->u32_min_value, 11374 false_umin); 11375 true_reg->u32_max_value = min(true_reg->u32_max_value, 11376 true_umax); 11377 } else { 11378 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 11379 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 11380 11381 false_reg->umin_value = max(false_reg->umin_value, false_umin); 11382 true_reg->umax_value = min(true_reg->umax_value, true_umax); 11383 } 11384 break; 11385 } 11386 case BPF_JSLE: 11387 case BPF_JSLT: 11388 { 11389 if (is_jmp32) { 11390 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 11391 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 11392 11393 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 11394 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 11395 } else { 11396 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 11397 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 11398 11399 false_reg->smin_value = max(false_reg->smin_value, false_smin); 11400 true_reg->smax_value = min(true_reg->smax_value, true_smax); 11401 } 11402 break; 11403 } 11404 default: 11405 return; 11406 } 11407 11408 if (is_jmp32) { 11409 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 11410 tnum_subreg(false_32off)); 11411 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 11412 tnum_subreg(true_32off)); 11413 __reg_combine_32_into_64(false_reg); 11414 __reg_combine_32_into_64(true_reg); 11415 } else { 11416 false_reg->var_off = false_64off; 11417 true_reg->var_off = true_64off; 11418 __reg_combine_64_into_32(false_reg); 11419 __reg_combine_64_into_32(true_reg); 11420 } 11421 } 11422 11423 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 11424 * the variable reg. 11425 */ 11426 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 11427 struct bpf_reg_state *false_reg, 11428 u64 val, u32 val32, 11429 u8 opcode, bool is_jmp32) 11430 { 11431 opcode = flip_opcode(opcode); 11432 /* This uses zero as "not present in table"; luckily the zero opcode, 11433 * BPF_JA, can't get here. 11434 */ 11435 if (opcode) 11436 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 11437 } 11438 11439 /* Regs are known to be equal, so intersect their min/max/var_off */ 11440 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 11441 struct bpf_reg_state *dst_reg) 11442 { 11443 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 11444 dst_reg->umin_value); 11445 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 11446 dst_reg->umax_value); 11447 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 11448 dst_reg->smin_value); 11449 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 11450 dst_reg->smax_value); 11451 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 11452 dst_reg->var_off); 11453 reg_bounds_sync(src_reg); 11454 reg_bounds_sync(dst_reg); 11455 } 11456 11457 static void reg_combine_min_max(struct bpf_reg_state *true_src, 11458 struct bpf_reg_state *true_dst, 11459 struct bpf_reg_state *false_src, 11460 struct bpf_reg_state *false_dst, 11461 u8 opcode) 11462 { 11463 switch (opcode) { 11464 case BPF_JEQ: 11465 __reg_combine_min_max(true_src, true_dst); 11466 break; 11467 case BPF_JNE: 11468 __reg_combine_min_max(false_src, false_dst); 11469 break; 11470 } 11471 } 11472 11473 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 11474 struct bpf_reg_state *reg, u32 id, 11475 bool is_null) 11476 { 11477 if (type_may_be_null(reg->type) && reg->id == id && 11478 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 11479 /* Old offset (both fixed and variable parts) should have been 11480 * known-zero, because we don't allow pointer arithmetic on 11481 * pointers that might be NULL. If we see this happening, don't 11482 * convert the register. 11483 * 11484 * But in some cases, some helpers that return local kptrs 11485 * advance offset for the returned pointer. In those cases, it 11486 * is fine to expect to see reg->off. 11487 */ 11488 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 11489 return; 11490 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off)) 11491 return; 11492 if (is_null) { 11493 reg->type = SCALAR_VALUE; 11494 /* We don't need id and ref_obj_id from this point 11495 * onwards anymore, thus we should better reset it, 11496 * so that state pruning has chances to take effect. 11497 */ 11498 reg->id = 0; 11499 reg->ref_obj_id = 0; 11500 11501 return; 11502 } 11503 11504 mark_ptr_not_null_reg(reg); 11505 11506 if (!reg_may_point_to_spin_lock(reg)) { 11507 /* For not-NULL ptr, reg->ref_obj_id will be reset 11508 * in release_reference(). 11509 * 11510 * reg->id is still used by spin_lock ptr. Other 11511 * than spin_lock ptr type, reg->id can be reset. 11512 */ 11513 reg->id = 0; 11514 } 11515 } 11516 } 11517 11518 /* The logic is similar to find_good_pkt_pointers(), both could eventually 11519 * be folded together at some point. 11520 */ 11521 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 11522 bool is_null) 11523 { 11524 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11525 struct bpf_reg_state *regs = state->regs, *reg; 11526 u32 ref_obj_id = regs[regno].ref_obj_id; 11527 u32 id = regs[regno].id; 11528 11529 if (ref_obj_id && ref_obj_id == id && is_null) 11530 /* regs[regno] is in the " == NULL" branch. 11531 * No one could have freed the reference state before 11532 * doing the NULL check. 11533 */ 11534 WARN_ON_ONCE(release_reference_state(state, id)); 11535 11536 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11537 mark_ptr_or_null_reg(state, reg, id, is_null); 11538 })); 11539 } 11540 11541 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 11542 struct bpf_reg_state *dst_reg, 11543 struct bpf_reg_state *src_reg, 11544 struct bpf_verifier_state *this_branch, 11545 struct bpf_verifier_state *other_branch) 11546 { 11547 if (BPF_SRC(insn->code) != BPF_X) 11548 return false; 11549 11550 /* Pointers are always 64-bit. */ 11551 if (BPF_CLASS(insn->code) == BPF_JMP32) 11552 return false; 11553 11554 switch (BPF_OP(insn->code)) { 11555 case BPF_JGT: 11556 if ((dst_reg->type == PTR_TO_PACKET && 11557 src_reg->type == PTR_TO_PACKET_END) || 11558 (dst_reg->type == PTR_TO_PACKET_META && 11559 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11560 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 11561 find_good_pkt_pointers(this_branch, dst_reg, 11562 dst_reg->type, false); 11563 mark_pkt_end(other_branch, insn->dst_reg, true); 11564 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11565 src_reg->type == PTR_TO_PACKET) || 11566 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11567 src_reg->type == PTR_TO_PACKET_META)) { 11568 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 11569 find_good_pkt_pointers(other_branch, src_reg, 11570 src_reg->type, true); 11571 mark_pkt_end(this_branch, insn->src_reg, false); 11572 } else { 11573 return false; 11574 } 11575 break; 11576 case BPF_JLT: 11577 if ((dst_reg->type == PTR_TO_PACKET && 11578 src_reg->type == PTR_TO_PACKET_END) || 11579 (dst_reg->type == PTR_TO_PACKET_META && 11580 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11581 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 11582 find_good_pkt_pointers(other_branch, dst_reg, 11583 dst_reg->type, true); 11584 mark_pkt_end(this_branch, insn->dst_reg, false); 11585 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11586 src_reg->type == PTR_TO_PACKET) || 11587 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11588 src_reg->type == PTR_TO_PACKET_META)) { 11589 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 11590 find_good_pkt_pointers(this_branch, src_reg, 11591 src_reg->type, false); 11592 mark_pkt_end(other_branch, insn->src_reg, true); 11593 } else { 11594 return false; 11595 } 11596 break; 11597 case BPF_JGE: 11598 if ((dst_reg->type == PTR_TO_PACKET && 11599 src_reg->type == PTR_TO_PACKET_END) || 11600 (dst_reg->type == PTR_TO_PACKET_META && 11601 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11602 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 11603 find_good_pkt_pointers(this_branch, dst_reg, 11604 dst_reg->type, true); 11605 mark_pkt_end(other_branch, insn->dst_reg, false); 11606 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11607 src_reg->type == PTR_TO_PACKET) || 11608 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11609 src_reg->type == PTR_TO_PACKET_META)) { 11610 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 11611 find_good_pkt_pointers(other_branch, src_reg, 11612 src_reg->type, false); 11613 mark_pkt_end(this_branch, insn->src_reg, true); 11614 } else { 11615 return false; 11616 } 11617 break; 11618 case BPF_JLE: 11619 if ((dst_reg->type == PTR_TO_PACKET && 11620 src_reg->type == PTR_TO_PACKET_END) || 11621 (dst_reg->type == PTR_TO_PACKET_META && 11622 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11623 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 11624 find_good_pkt_pointers(other_branch, dst_reg, 11625 dst_reg->type, false); 11626 mark_pkt_end(this_branch, insn->dst_reg, true); 11627 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11628 src_reg->type == PTR_TO_PACKET) || 11629 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11630 src_reg->type == PTR_TO_PACKET_META)) { 11631 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 11632 find_good_pkt_pointers(this_branch, src_reg, 11633 src_reg->type, true); 11634 mark_pkt_end(other_branch, insn->src_reg, false); 11635 } else { 11636 return false; 11637 } 11638 break; 11639 default: 11640 return false; 11641 } 11642 11643 return true; 11644 } 11645 11646 static void find_equal_scalars(struct bpf_verifier_state *vstate, 11647 struct bpf_reg_state *known_reg) 11648 { 11649 struct bpf_func_state *state; 11650 struct bpf_reg_state *reg; 11651 11652 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11653 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 11654 *reg = *known_reg; 11655 })); 11656 } 11657 11658 static int check_cond_jmp_op(struct bpf_verifier_env *env, 11659 struct bpf_insn *insn, int *insn_idx) 11660 { 11661 struct bpf_verifier_state *this_branch = env->cur_state; 11662 struct bpf_verifier_state *other_branch; 11663 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 11664 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 11665 struct bpf_reg_state *eq_branch_regs; 11666 u8 opcode = BPF_OP(insn->code); 11667 bool is_jmp32; 11668 int pred = -1; 11669 int err; 11670 11671 /* Only conditional jumps are expected to reach here. */ 11672 if (opcode == BPF_JA || opcode > BPF_JSLE) { 11673 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 11674 return -EINVAL; 11675 } 11676 11677 if (BPF_SRC(insn->code) == BPF_X) { 11678 if (insn->imm != 0) { 11679 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11680 return -EINVAL; 11681 } 11682 11683 /* check src1 operand */ 11684 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11685 if (err) 11686 return err; 11687 11688 if (is_pointer_value(env, insn->src_reg)) { 11689 verbose(env, "R%d pointer comparison prohibited\n", 11690 insn->src_reg); 11691 return -EACCES; 11692 } 11693 src_reg = ®s[insn->src_reg]; 11694 } else { 11695 if (insn->src_reg != BPF_REG_0) { 11696 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11697 return -EINVAL; 11698 } 11699 } 11700 11701 /* check src2 operand */ 11702 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11703 if (err) 11704 return err; 11705 11706 dst_reg = ®s[insn->dst_reg]; 11707 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 11708 11709 if (BPF_SRC(insn->code) == BPF_K) { 11710 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 11711 } else if (src_reg->type == SCALAR_VALUE && 11712 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 11713 pred = is_branch_taken(dst_reg, 11714 tnum_subreg(src_reg->var_off).value, 11715 opcode, 11716 is_jmp32); 11717 } else if (src_reg->type == SCALAR_VALUE && 11718 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 11719 pred = is_branch_taken(dst_reg, 11720 src_reg->var_off.value, 11721 opcode, 11722 is_jmp32); 11723 } else if (reg_is_pkt_pointer_any(dst_reg) && 11724 reg_is_pkt_pointer_any(src_reg) && 11725 !is_jmp32) { 11726 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 11727 } 11728 11729 if (pred >= 0) { 11730 /* If we get here with a dst_reg pointer type it is because 11731 * above is_branch_taken() special cased the 0 comparison. 11732 */ 11733 if (!__is_pointer_value(false, dst_reg)) 11734 err = mark_chain_precision(env, insn->dst_reg); 11735 if (BPF_SRC(insn->code) == BPF_X && !err && 11736 !__is_pointer_value(false, src_reg)) 11737 err = mark_chain_precision(env, insn->src_reg); 11738 if (err) 11739 return err; 11740 } 11741 11742 if (pred == 1) { 11743 /* Only follow the goto, ignore fall-through. If needed, push 11744 * the fall-through branch for simulation under speculative 11745 * execution. 11746 */ 11747 if (!env->bypass_spec_v1 && 11748 !sanitize_speculative_path(env, insn, *insn_idx + 1, 11749 *insn_idx)) 11750 return -EFAULT; 11751 *insn_idx += insn->off; 11752 return 0; 11753 } else if (pred == 0) { 11754 /* Only follow the fall-through branch, since that's where the 11755 * program will go. If needed, push the goto branch for 11756 * simulation under speculative execution. 11757 */ 11758 if (!env->bypass_spec_v1 && 11759 !sanitize_speculative_path(env, insn, 11760 *insn_idx + insn->off + 1, 11761 *insn_idx)) 11762 return -EFAULT; 11763 return 0; 11764 } 11765 11766 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 11767 false); 11768 if (!other_branch) 11769 return -EFAULT; 11770 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 11771 11772 /* detect if we are comparing against a constant value so we can adjust 11773 * our min/max values for our dst register. 11774 * this is only legit if both are scalars (or pointers to the same 11775 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 11776 * because otherwise the different base pointers mean the offsets aren't 11777 * comparable. 11778 */ 11779 if (BPF_SRC(insn->code) == BPF_X) { 11780 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 11781 11782 if (dst_reg->type == SCALAR_VALUE && 11783 src_reg->type == SCALAR_VALUE) { 11784 if (tnum_is_const(src_reg->var_off) || 11785 (is_jmp32 && 11786 tnum_is_const(tnum_subreg(src_reg->var_off)))) 11787 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11788 dst_reg, 11789 src_reg->var_off.value, 11790 tnum_subreg(src_reg->var_off).value, 11791 opcode, is_jmp32); 11792 else if (tnum_is_const(dst_reg->var_off) || 11793 (is_jmp32 && 11794 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 11795 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 11796 src_reg, 11797 dst_reg->var_off.value, 11798 tnum_subreg(dst_reg->var_off).value, 11799 opcode, is_jmp32); 11800 else if (!is_jmp32 && 11801 (opcode == BPF_JEQ || opcode == BPF_JNE)) 11802 /* Comparing for equality, we can combine knowledge */ 11803 reg_combine_min_max(&other_branch_regs[insn->src_reg], 11804 &other_branch_regs[insn->dst_reg], 11805 src_reg, dst_reg, opcode); 11806 if (src_reg->id && 11807 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 11808 find_equal_scalars(this_branch, src_reg); 11809 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 11810 } 11811 11812 } 11813 } else if (dst_reg->type == SCALAR_VALUE) { 11814 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11815 dst_reg, insn->imm, (u32)insn->imm, 11816 opcode, is_jmp32); 11817 } 11818 11819 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 11820 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 11821 find_equal_scalars(this_branch, dst_reg); 11822 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 11823 } 11824 11825 /* if one pointer register is compared to another pointer 11826 * register check if PTR_MAYBE_NULL could be lifted. 11827 * E.g. register A - maybe null 11828 * register B - not null 11829 * for JNE A, B, ... - A is not null in the false branch; 11830 * for JEQ A, B, ... - A is not null in the true branch. 11831 */ 11832 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 11833 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 11834 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) { 11835 eq_branch_regs = NULL; 11836 switch (opcode) { 11837 case BPF_JEQ: 11838 eq_branch_regs = other_branch_regs; 11839 break; 11840 case BPF_JNE: 11841 eq_branch_regs = regs; 11842 break; 11843 default: 11844 /* do nothing */ 11845 break; 11846 } 11847 if (eq_branch_regs) { 11848 if (type_may_be_null(src_reg->type)) 11849 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 11850 else 11851 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 11852 } 11853 } 11854 11855 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 11856 * NOTE: these optimizations below are related with pointer comparison 11857 * which will never be JMP32. 11858 */ 11859 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 11860 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 11861 type_may_be_null(dst_reg->type)) { 11862 /* Mark all identical registers in each branch as either 11863 * safe or unknown depending R == 0 or R != 0 conditional. 11864 */ 11865 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 11866 opcode == BPF_JNE); 11867 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 11868 opcode == BPF_JEQ); 11869 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 11870 this_branch, other_branch) && 11871 is_pointer_value(env, insn->dst_reg)) { 11872 verbose(env, "R%d pointer comparison prohibited\n", 11873 insn->dst_reg); 11874 return -EACCES; 11875 } 11876 if (env->log.level & BPF_LOG_LEVEL) 11877 print_insn_state(env, this_branch->frame[this_branch->curframe]); 11878 return 0; 11879 } 11880 11881 /* verify BPF_LD_IMM64 instruction */ 11882 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 11883 { 11884 struct bpf_insn_aux_data *aux = cur_aux(env); 11885 struct bpf_reg_state *regs = cur_regs(env); 11886 struct bpf_reg_state *dst_reg; 11887 struct bpf_map *map; 11888 int err; 11889 11890 if (BPF_SIZE(insn->code) != BPF_DW) { 11891 verbose(env, "invalid BPF_LD_IMM insn\n"); 11892 return -EINVAL; 11893 } 11894 if (insn->off != 0) { 11895 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 11896 return -EINVAL; 11897 } 11898 11899 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11900 if (err) 11901 return err; 11902 11903 dst_reg = ®s[insn->dst_reg]; 11904 if (insn->src_reg == 0) { 11905 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 11906 11907 dst_reg->type = SCALAR_VALUE; 11908 __mark_reg_known(®s[insn->dst_reg], imm); 11909 return 0; 11910 } 11911 11912 /* All special src_reg cases are listed below. From this point onwards 11913 * we either succeed and assign a corresponding dst_reg->type after 11914 * zeroing the offset, or fail and reject the program. 11915 */ 11916 mark_reg_known_zero(env, regs, insn->dst_reg); 11917 11918 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 11919 dst_reg->type = aux->btf_var.reg_type; 11920 switch (base_type(dst_reg->type)) { 11921 case PTR_TO_MEM: 11922 dst_reg->mem_size = aux->btf_var.mem_size; 11923 break; 11924 case PTR_TO_BTF_ID: 11925 dst_reg->btf = aux->btf_var.btf; 11926 dst_reg->btf_id = aux->btf_var.btf_id; 11927 break; 11928 default: 11929 verbose(env, "bpf verifier is misconfigured\n"); 11930 return -EFAULT; 11931 } 11932 return 0; 11933 } 11934 11935 if (insn->src_reg == BPF_PSEUDO_FUNC) { 11936 struct bpf_prog_aux *aux = env->prog->aux; 11937 u32 subprogno = find_subprog(env, 11938 env->insn_idx + insn->imm + 1); 11939 11940 if (!aux->func_info) { 11941 verbose(env, "missing btf func_info\n"); 11942 return -EINVAL; 11943 } 11944 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 11945 verbose(env, "callback function not static\n"); 11946 return -EINVAL; 11947 } 11948 11949 dst_reg->type = PTR_TO_FUNC; 11950 dst_reg->subprogno = subprogno; 11951 return 0; 11952 } 11953 11954 map = env->used_maps[aux->map_index]; 11955 dst_reg->map_ptr = map; 11956 11957 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 11958 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 11959 dst_reg->type = PTR_TO_MAP_VALUE; 11960 dst_reg->off = aux->map_off; 11961 WARN_ON_ONCE(map->max_entries != 1); 11962 /* We want reg->id to be same (0) as map_value is not distinct */ 11963 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 11964 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 11965 dst_reg->type = CONST_PTR_TO_MAP; 11966 } else { 11967 verbose(env, "bpf verifier is misconfigured\n"); 11968 return -EINVAL; 11969 } 11970 11971 return 0; 11972 } 11973 11974 static bool may_access_skb(enum bpf_prog_type type) 11975 { 11976 switch (type) { 11977 case BPF_PROG_TYPE_SOCKET_FILTER: 11978 case BPF_PROG_TYPE_SCHED_CLS: 11979 case BPF_PROG_TYPE_SCHED_ACT: 11980 return true; 11981 default: 11982 return false; 11983 } 11984 } 11985 11986 /* verify safety of LD_ABS|LD_IND instructions: 11987 * - they can only appear in the programs where ctx == skb 11988 * - since they are wrappers of function calls, they scratch R1-R5 registers, 11989 * preserve R6-R9, and store return value into R0 11990 * 11991 * Implicit input: 11992 * ctx == skb == R6 == CTX 11993 * 11994 * Explicit input: 11995 * SRC == any register 11996 * IMM == 32-bit immediate 11997 * 11998 * Output: 11999 * R0 - 8/16/32-bit skb data converted to cpu endianness 12000 */ 12001 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 12002 { 12003 struct bpf_reg_state *regs = cur_regs(env); 12004 static const int ctx_reg = BPF_REG_6; 12005 u8 mode = BPF_MODE(insn->code); 12006 int i, err; 12007 12008 if (!may_access_skb(resolve_prog_type(env->prog))) { 12009 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12010 return -EINVAL; 12011 } 12012 12013 if (!env->ops->gen_ld_abs) { 12014 verbose(env, "bpf verifier is misconfigured\n"); 12015 return -EINVAL; 12016 } 12017 12018 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12019 BPF_SIZE(insn->code) == BPF_DW || 12020 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12021 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12022 return -EINVAL; 12023 } 12024 12025 /* check whether implicit source operand (register R6) is readable */ 12026 err = check_reg_arg(env, ctx_reg, SRC_OP); 12027 if (err) 12028 return err; 12029 12030 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12031 * gen_ld_abs() may terminate the program at runtime, leading to 12032 * reference leak. 12033 */ 12034 err = check_reference_leak(env); 12035 if (err) { 12036 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12037 return err; 12038 } 12039 12040 if (env->cur_state->active_lock.ptr) { 12041 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12042 return -EINVAL; 12043 } 12044 12045 if (env->cur_state->active_rcu_lock) { 12046 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12047 return -EINVAL; 12048 } 12049 12050 if (regs[ctx_reg].type != PTR_TO_CTX) { 12051 verbose(env, 12052 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12053 return -EINVAL; 12054 } 12055 12056 if (mode == BPF_IND) { 12057 /* check explicit source operand */ 12058 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12059 if (err) 12060 return err; 12061 } 12062 12063 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12064 if (err < 0) 12065 return err; 12066 12067 /* reset caller saved regs to unreadable */ 12068 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12069 mark_reg_not_init(env, regs, caller_saved[i]); 12070 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12071 } 12072 12073 /* mark destination R0 register as readable, since it contains 12074 * the value fetched from the packet. 12075 * Already marked as written above. 12076 */ 12077 mark_reg_unknown(env, regs, BPF_REG_0); 12078 /* ld_abs load up to 32-bit skb data. */ 12079 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12080 return 0; 12081 } 12082 12083 static int check_return_code(struct bpf_verifier_env *env) 12084 { 12085 struct tnum enforce_attach_type_range = tnum_unknown; 12086 const struct bpf_prog *prog = env->prog; 12087 struct bpf_reg_state *reg; 12088 struct tnum range = tnum_range(0, 1); 12089 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12090 int err; 12091 struct bpf_func_state *frame = env->cur_state->frame[0]; 12092 const bool is_subprog = frame->subprogno; 12093 12094 /* LSM and struct_ops func-ptr's return type could be "void" */ 12095 if (!is_subprog) { 12096 switch (prog_type) { 12097 case BPF_PROG_TYPE_LSM: 12098 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12099 /* See below, can be 0 or 0-1 depending on hook. */ 12100 break; 12101 fallthrough; 12102 case BPF_PROG_TYPE_STRUCT_OPS: 12103 if (!prog->aux->attach_func_proto->type) 12104 return 0; 12105 break; 12106 default: 12107 break; 12108 } 12109 } 12110 12111 /* eBPF calling convention is such that R0 is used 12112 * to return the value from eBPF program. 12113 * Make sure that it's readable at this time 12114 * of bpf_exit, which means that program wrote 12115 * something into it earlier 12116 */ 12117 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12118 if (err) 12119 return err; 12120 12121 if (is_pointer_value(env, BPF_REG_0)) { 12122 verbose(env, "R0 leaks addr as return value\n"); 12123 return -EACCES; 12124 } 12125 12126 reg = cur_regs(env) + BPF_REG_0; 12127 12128 if (frame->in_async_callback_fn) { 12129 /* enforce return zero from async callbacks like timer */ 12130 if (reg->type != SCALAR_VALUE) { 12131 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12132 reg_type_str(env, reg->type)); 12133 return -EINVAL; 12134 } 12135 12136 if (!tnum_in(tnum_const(0), reg->var_off)) { 12137 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12138 return -EINVAL; 12139 } 12140 return 0; 12141 } 12142 12143 if (is_subprog) { 12144 if (reg->type != SCALAR_VALUE) { 12145 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12146 reg_type_str(env, reg->type)); 12147 return -EINVAL; 12148 } 12149 return 0; 12150 } 12151 12152 switch (prog_type) { 12153 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12154 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12155 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12156 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12157 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12158 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12159 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12160 range = tnum_range(1, 1); 12161 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12162 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12163 range = tnum_range(0, 3); 12164 break; 12165 case BPF_PROG_TYPE_CGROUP_SKB: 12166 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12167 range = tnum_range(0, 3); 12168 enforce_attach_type_range = tnum_range(2, 3); 12169 } 12170 break; 12171 case BPF_PROG_TYPE_CGROUP_SOCK: 12172 case BPF_PROG_TYPE_SOCK_OPS: 12173 case BPF_PROG_TYPE_CGROUP_DEVICE: 12174 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12175 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12176 break; 12177 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12178 if (!env->prog->aux->attach_btf_id) 12179 return 0; 12180 range = tnum_const(0); 12181 break; 12182 case BPF_PROG_TYPE_TRACING: 12183 switch (env->prog->expected_attach_type) { 12184 case BPF_TRACE_FENTRY: 12185 case BPF_TRACE_FEXIT: 12186 range = tnum_const(0); 12187 break; 12188 case BPF_TRACE_RAW_TP: 12189 case BPF_MODIFY_RETURN: 12190 return 0; 12191 case BPF_TRACE_ITER: 12192 break; 12193 default: 12194 return -ENOTSUPP; 12195 } 12196 break; 12197 case BPF_PROG_TYPE_SK_LOOKUP: 12198 range = tnum_range(SK_DROP, SK_PASS); 12199 break; 12200 12201 case BPF_PROG_TYPE_LSM: 12202 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12203 /* Regular BPF_PROG_TYPE_LSM programs can return 12204 * any value. 12205 */ 12206 return 0; 12207 } 12208 if (!env->prog->aux->attach_func_proto->type) { 12209 /* Make sure programs that attach to void 12210 * hooks don't try to modify return value. 12211 */ 12212 range = tnum_range(1, 1); 12213 } 12214 break; 12215 12216 case BPF_PROG_TYPE_EXT: 12217 /* freplace program can return anything as its return value 12218 * depends on the to-be-replaced kernel func or bpf program. 12219 */ 12220 default: 12221 return 0; 12222 } 12223 12224 if (reg->type != SCALAR_VALUE) { 12225 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12226 reg_type_str(env, reg->type)); 12227 return -EINVAL; 12228 } 12229 12230 if (!tnum_in(range, reg->var_off)) { 12231 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12232 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12233 prog_type == BPF_PROG_TYPE_LSM && 12234 !prog->aux->attach_func_proto->type) 12235 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12236 return -EINVAL; 12237 } 12238 12239 if (!tnum_is_unknown(enforce_attach_type_range) && 12240 tnum_in(enforce_attach_type_range, reg->var_off)) 12241 env->prog->enforce_expected_attach_type = 1; 12242 return 0; 12243 } 12244 12245 /* non-recursive DFS pseudo code 12246 * 1 procedure DFS-iterative(G,v): 12247 * 2 label v as discovered 12248 * 3 let S be a stack 12249 * 4 S.push(v) 12250 * 5 while S is not empty 12251 * 6 t <- S.peek() 12252 * 7 if t is what we're looking for: 12253 * 8 return t 12254 * 9 for all edges e in G.adjacentEdges(t) do 12255 * 10 if edge e is already labelled 12256 * 11 continue with the next edge 12257 * 12 w <- G.adjacentVertex(t,e) 12258 * 13 if vertex w is not discovered and not explored 12259 * 14 label e as tree-edge 12260 * 15 label w as discovered 12261 * 16 S.push(w) 12262 * 17 continue at 5 12263 * 18 else if vertex w is discovered 12264 * 19 label e as back-edge 12265 * 20 else 12266 * 21 // vertex w is explored 12267 * 22 label e as forward- or cross-edge 12268 * 23 label t as explored 12269 * 24 S.pop() 12270 * 12271 * convention: 12272 * 0x10 - discovered 12273 * 0x11 - discovered and fall-through edge labelled 12274 * 0x12 - discovered and fall-through and branch edges labelled 12275 * 0x20 - explored 12276 */ 12277 12278 enum { 12279 DISCOVERED = 0x10, 12280 EXPLORED = 0x20, 12281 FALLTHROUGH = 1, 12282 BRANCH = 2, 12283 }; 12284 12285 static u32 state_htab_size(struct bpf_verifier_env *env) 12286 { 12287 return env->prog->len; 12288 } 12289 12290 static struct bpf_verifier_state_list **explored_state( 12291 struct bpf_verifier_env *env, 12292 int idx) 12293 { 12294 struct bpf_verifier_state *cur = env->cur_state; 12295 struct bpf_func_state *state = cur->frame[cur->curframe]; 12296 12297 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 12298 } 12299 12300 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 12301 { 12302 env->insn_aux_data[idx].prune_point = true; 12303 } 12304 12305 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 12306 { 12307 return env->insn_aux_data[insn_idx].prune_point; 12308 } 12309 12310 enum { 12311 DONE_EXPLORING = 0, 12312 KEEP_EXPLORING = 1, 12313 }; 12314 12315 /* t, w, e - match pseudo-code above: 12316 * t - index of current instruction 12317 * w - next instruction 12318 * e - edge 12319 */ 12320 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 12321 bool loop_ok) 12322 { 12323 int *insn_stack = env->cfg.insn_stack; 12324 int *insn_state = env->cfg.insn_state; 12325 12326 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 12327 return DONE_EXPLORING; 12328 12329 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 12330 return DONE_EXPLORING; 12331 12332 if (w < 0 || w >= env->prog->len) { 12333 verbose_linfo(env, t, "%d: ", t); 12334 verbose(env, "jump out of range from insn %d to %d\n", t, w); 12335 return -EINVAL; 12336 } 12337 12338 if (e == BRANCH) { 12339 /* mark branch target for state pruning */ 12340 mark_prune_point(env, w); 12341 mark_jmp_point(env, w); 12342 } 12343 12344 if (insn_state[w] == 0) { 12345 /* tree-edge */ 12346 insn_state[t] = DISCOVERED | e; 12347 insn_state[w] = DISCOVERED; 12348 if (env->cfg.cur_stack >= env->prog->len) 12349 return -E2BIG; 12350 insn_stack[env->cfg.cur_stack++] = w; 12351 return KEEP_EXPLORING; 12352 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 12353 if (loop_ok && env->bpf_capable) 12354 return DONE_EXPLORING; 12355 verbose_linfo(env, t, "%d: ", t); 12356 verbose_linfo(env, w, "%d: ", w); 12357 verbose(env, "back-edge from insn %d to %d\n", t, w); 12358 return -EINVAL; 12359 } else if (insn_state[w] == EXPLORED) { 12360 /* forward- or cross-edge */ 12361 insn_state[t] = DISCOVERED | e; 12362 } else { 12363 verbose(env, "insn state internal bug\n"); 12364 return -EFAULT; 12365 } 12366 return DONE_EXPLORING; 12367 } 12368 12369 static int visit_func_call_insn(int t, struct bpf_insn *insns, 12370 struct bpf_verifier_env *env, 12371 bool visit_callee) 12372 { 12373 int ret; 12374 12375 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 12376 if (ret) 12377 return ret; 12378 12379 mark_prune_point(env, t + 1); 12380 /* when we exit from subprog, we need to record non-linear history */ 12381 mark_jmp_point(env, t + 1); 12382 12383 if (visit_callee) { 12384 mark_prune_point(env, t); 12385 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 12386 /* It's ok to allow recursion from CFG point of 12387 * view. __check_func_call() will do the actual 12388 * check. 12389 */ 12390 bpf_pseudo_func(insns + t)); 12391 } 12392 return ret; 12393 } 12394 12395 /* Visits the instruction at index t and returns one of the following: 12396 * < 0 - an error occurred 12397 * DONE_EXPLORING - the instruction was fully explored 12398 * KEEP_EXPLORING - there is still work to be done before it is fully explored 12399 */ 12400 static int visit_insn(int t, struct bpf_verifier_env *env) 12401 { 12402 struct bpf_insn *insns = env->prog->insnsi; 12403 int ret; 12404 12405 if (bpf_pseudo_func(insns + t)) 12406 return visit_func_call_insn(t, insns, env, true); 12407 12408 /* All non-branch instructions have a single fall-through edge. */ 12409 if (BPF_CLASS(insns[t].code) != BPF_JMP && 12410 BPF_CLASS(insns[t].code) != BPF_JMP32) 12411 return push_insn(t, t + 1, FALLTHROUGH, env, false); 12412 12413 switch (BPF_OP(insns[t].code)) { 12414 case BPF_EXIT: 12415 return DONE_EXPLORING; 12416 12417 case BPF_CALL: 12418 if (insns[t].imm == BPF_FUNC_timer_set_callback) 12419 /* Mark this call insn as a prune point to trigger 12420 * is_state_visited() check before call itself is 12421 * processed by __check_func_call(). Otherwise new 12422 * async state will be pushed for further exploration. 12423 */ 12424 mark_prune_point(env, t); 12425 return visit_func_call_insn(t, insns, env, 12426 insns[t].src_reg == BPF_PSEUDO_CALL); 12427 12428 case BPF_JA: 12429 if (BPF_SRC(insns[t].code) != BPF_K) 12430 return -EINVAL; 12431 12432 /* unconditional jump with single edge */ 12433 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 12434 true); 12435 if (ret) 12436 return ret; 12437 12438 mark_prune_point(env, t + insns[t].off + 1); 12439 mark_jmp_point(env, t + insns[t].off + 1); 12440 12441 return ret; 12442 12443 default: 12444 /* conditional jump with two edges */ 12445 mark_prune_point(env, t); 12446 12447 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 12448 if (ret) 12449 return ret; 12450 12451 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 12452 } 12453 } 12454 12455 /* non-recursive depth-first-search to detect loops in BPF program 12456 * loop == back-edge in directed graph 12457 */ 12458 static int check_cfg(struct bpf_verifier_env *env) 12459 { 12460 int insn_cnt = env->prog->len; 12461 int *insn_stack, *insn_state; 12462 int ret = 0; 12463 int i; 12464 12465 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12466 if (!insn_state) 12467 return -ENOMEM; 12468 12469 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12470 if (!insn_stack) { 12471 kvfree(insn_state); 12472 return -ENOMEM; 12473 } 12474 12475 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 12476 insn_stack[0] = 0; /* 0 is the first instruction */ 12477 env->cfg.cur_stack = 1; 12478 12479 while (env->cfg.cur_stack > 0) { 12480 int t = insn_stack[env->cfg.cur_stack - 1]; 12481 12482 ret = visit_insn(t, env); 12483 switch (ret) { 12484 case DONE_EXPLORING: 12485 insn_state[t] = EXPLORED; 12486 env->cfg.cur_stack--; 12487 break; 12488 case KEEP_EXPLORING: 12489 break; 12490 default: 12491 if (ret > 0) { 12492 verbose(env, "visit_insn internal bug\n"); 12493 ret = -EFAULT; 12494 } 12495 goto err_free; 12496 } 12497 } 12498 12499 if (env->cfg.cur_stack < 0) { 12500 verbose(env, "pop stack internal bug\n"); 12501 ret = -EFAULT; 12502 goto err_free; 12503 } 12504 12505 for (i = 0; i < insn_cnt; i++) { 12506 if (insn_state[i] != EXPLORED) { 12507 verbose(env, "unreachable insn %d\n", i); 12508 ret = -EINVAL; 12509 goto err_free; 12510 } 12511 } 12512 ret = 0; /* cfg looks good */ 12513 12514 err_free: 12515 kvfree(insn_state); 12516 kvfree(insn_stack); 12517 env->cfg.insn_state = env->cfg.insn_stack = NULL; 12518 return ret; 12519 } 12520 12521 static int check_abnormal_return(struct bpf_verifier_env *env) 12522 { 12523 int i; 12524 12525 for (i = 1; i < env->subprog_cnt; i++) { 12526 if (env->subprog_info[i].has_ld_abs) { 12527 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 12528 return -EINVAL; 12529 } 12530 if (env->subprog_info[i].has_tail_call) { 12531 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 12532 return -EINVAL; 12533 } 12534 } 12535 return 0; 12536 } 12537 12538 /* The minimum supported BTF func info size */ 12539 #define MIN_BPF_FUNCINFO_SIZE 8 12540 #define MAX_FUNCINFO_REC_SIZE 252 12541 12542 static int check_btf_func(struct bpf_verifier_env *env, 12543 const union bpf_attr *attr, 12544 bpfptr_t uattr) 12545 { 12546 const struct btf_type *type, *func_proto, *ret_type; 12547 u32 i, nfuncs, urec_size, min_size; 12548 u32 krec_size = sizeof(struct bpf_func_info); 12549 struct bpf_func_info *krecord; 12550 struct bpf_func_info_aux *info_aux = NULL; 12551 struct bpf_prog *prog; 12552 const struct btf *btf; 12553 bpfptr_t urecord; 12554 u32 prev_offset = 0; 12555 bool scalar_return; 12556 int ret = -ENOMEM; 12557 12558 nfuncs = attr->func_info_cnt; 12559 if (!nfuncs) { 12560 if (check_abnormal_return(env)) 12561 return -EINVAL; 12562 return 0; 12563 } 12564 12565 if (nfuncs != env->subprog_cnt) { 12566 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 12567 return -EINVAL; 12568 } 12569 12570 urec_size = attr->func_info_rec_size; 12571 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 12572 urec_size > MAX_FUNCINFO_REC_SIZE || 12573 urec_size % sizeof(u32)) { 12574 verbose(env, "invalid func info rec size %u\n", urec_size); 12575 return -EINVAL; 12576 } 12577 12578 prog = env->prog; 12579 btf = prog->aux->btf; 12580 12581 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 12582 min_size = min_t(u32, krec_size, urec_size); 12583 12584 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 12585 if (!krecord) 12586 return -ENOMEM; 12587 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 12588 if (!info_aux) 12589 goto err_free; 12590 12591 for (i = 0; i < nfuncs; i++) { 12592 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 12593 if (ret) { 12594 if (ret == -E2BIG) { 12595 verbose(env, "nonzero tailing record in func info"); 12596 /* set the size kernel expects so loader can zero 12597 * out the rest of the record. 12598 */ 12599 if (copy_to_bpfptr_offset(uattr, 12600 offsetof(union bpf_attr, func_info_rec_size), 12601 &min_size, sizeof(min_size))) 12602 ret = -EFAULT; 12603 } 12604 goto err_free; 12605 } 12606 12607 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 12608 ret = -EFAULT; 12609 goto err_free; 12610 } 12611 12612 /* check insn_off */ 12613 ret = -EINVAL; 12614 if (i == 0) { 12615 if (krecord[i].insn_off) { 12616 verbose(env, 12617 "nonzero insn_off %u for the first func info record", 12618 krecord[i].insn_off); 12619 goto err_free; 12620 } 12621 } else if (krecord[i].insn_off <= prev_offset) { 12622 verbose(env, 12623 "same or smaller insn offset (%u) than previous func info record (%u)", 12624 krecord[i].insn_off, prev_offset); 12625 goto err_free; 12626 } 12627 12628 if (env->subprog_info[i].start != krecord[i].insn_off) { 12629 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 12630 goto err_free; 12631 } 12632 12633 /* check type_id */ 12634 type = btf_type_by_id(btf, krecord[i].type_id); 12635 if (!type || !btf_type_is_func(type)) { 12636 verbose(env, "invalid type id %d in func info", 12637 krecord[i].type_id); 12638 goto err_free; 12639 } 12640 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 12641 12642 func_proto = btf_type_by_id(btf, type->type); 12643 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 12644 /* btf_func_check() already verified it during BTF load */ 12645 goto err_free; 12646 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 12647 scalar_return = 12648 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 12649 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 12650 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 12651 goto err_free; 12652 } 12653 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 12654 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 12655 goto err_free; 12656 } 12657 12658 prev_offset = krecord[i].insn_off; 12659 bpfptr_add(&urecord, urec_size); 12660 } 12661 12662 prog->aux->func_info = krecord; 12663 prog->aux->func_info_cnt = nfuncs; 12664 prog->aux->func_info_aux = info_aux; 12665 return 0; 12666 12667 err_free: 12668 kvfree(krecord); 12669 kfree(info_aux); 12670 return ret; 12671 } 12672 12673 static void adjust_btf_func(struct bpf_verifier_env *env) 12674 { 12675 struct bpf_prog_aux *aux = env->prog->aux; 12676 int i; 12677 12678 if (!aux->func_info) 12679 return; 12680 12681 for (i = 0; i < env->subprog_cnt; i++) 12682 aux->func_info[i].insn_off = env->subprog_info[i].start; 12683 } 12684 12685 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 12686 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 12687 12688 static int check_btf_line(struct bpf_verifier_env *env, 12689 const union bpf_attr *attr, 12690 bpfptr_t uattr) 12691 { 12692 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 12693 struct bpf_subprog_info *sub; 12694 struct bpf_line_info *linfo; 12695 struct bpf_prog *prog; 12696 const struct btf *btf; 12697 bpfptr_t ulinfo; 12698 int err; 12699 12700 nr_linfo = attr->line_info_cnt; 12701 if (!nr_linfo) 12702 return 0; 12703 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 12704 return -EINVAL; 12705 12706 rec_size = attr->line_info_rec_size; 12707 if (rec_size < MIN_BPF_LINEINFO_SIZE || 12708 rec_size > MAX_LINEINFO_REC_SIZE || 12709 rec_size & (sizeof(u32) - 1)) 12710 return -EINVAL; 12711 12712 /* Need to zero it in case the userspace may 12713 * pass in a smaller bpf_line_info object. 12714 */ 12715 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 12716 GFP_KERNEL | __GFP_NOWARN); 12717 if (!linfo) 12718 return -ENOMEM; 12719 12720 prog = env->prog; 12721 btf = prog->aux->btf; 12722 12723 s = 0; 12724 sub = env->subprog_info; 12725 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 12726 expected_size = sizeof(struct bpf_line_info); 12727 ncopy = min_t(u32, expected_size, rec_size); 12728 for (i = 0; i < nr_linfo; i++) { 12729 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 12730 if (err) { 12731 if (err == -E2BIG) { 12732 verbose(env, "nonzero tailing record in line_info"); 12733 if (copy_to_bpfptr_offset(uattr, 12734 offsetof(union bpf_attr, line_info_rec_size), 12735 &expected_size, sizeof(expected_size))) 12736 err = -EFAULT; 12737 } 12738 goto err_free; 12739 } 12740 12741 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 12742 err = -EFAULT; 12743 goto err_free; 12744 } 12745 12746 /* 12747 * Check insn_off to ensure 12748 * 1) strictly increasing AND 12749 * 2) bounded by prog->len 12750 * 12751 * The linfo[0].insn_off == 0 check logically falls into 12752 * the later "missing bpf_line_info for func..." case 12753 * because the first linfo[0].insn_off must be the 12754 * first sub also and the first sub must have 12755 * subprog_info[0].start == 0. 12756 */ 12757 if ((i && linfo[i].insn_off <= prev_offset) || 12758 linfo[i].insn_off >= prog->len) { 12759 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 12760 i, linfo[i].insn_off, prev_offset, 12761 prog->len); 12762 err = -EINVAL; 12763 goto err_free; 12764 } 12765 12766 if (!prog->insnsi[linfo[i].insn_off].code) { 12767 verbose(env, 12768 "Invalid insn code at line_info[%u].insn_off\n", 12769 i); 12770 err = -EINVAL; 12771 goto err_free; 12772 } 12773 12774 if (!btf_name_by_offset(btf, linfo[i].line_off) || 12775 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 12776 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 12777 err = -EINVAL; 12778 goto err_free; 12779 } 12780 12781 if (s != env->subprog_cnt) { 12782 if (linfo[i].insn_off == sub[s].start) { 12783 sub[s].linfo_idx = i; 12784 s++; 12785 } else if (sub[s].start < linfo[i].insn_off) { 12786 verbose(env, "missing bpf_line_info for func#%u\n", s); 12787 err = -EINVAL; 12788 goto err_free; 12789 } 12790 } 12791 12792 prev_offset = linfo[i].insn_off; 12793 bpfptr_add(&ulinfo, rec_size); 12794 } 12795 12796 if (s != env->subprog_cnt) { 12797 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 12798 env->subprog_cnt - s, s); 12799 err = -EINVAL; 12800 goto err_free; 12801 } 12802 12803 prog->aux->linfo = linfo; 12804 prog->aux->nr_linfo = nr_linfo; 12805 12806 return 0; 12807 12808 err_free: 12809 kvfree(linfo); 12810 return err; 12811 } 12812 12813 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 12814 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 12815 12816 static int check_core_relo(struct bpf_verifier_env *env, 12817 const union bpf_attr *attr, 12818 bpfptr_t uattr) 12819 { 12820 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 12821 struct bpf_core_relo core_relo = {}; 12822 struct bpf_prog *prog = env->prog; 12823 const struct btf *btf = prog->aux->btf; 12824 struct bpf_core_ctx ctx = { 12825 .log = &env->log, 12826 .btf = btf, 12827 }; 12828 bpfptr_t u_core_relo; 12829 int err; 12830 12831 nr_core_relo = attr->core_relo_cnt; 12832 if (!nr_core_relo) 12833 return 0; 12834 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 12835 return -EINVAL; 12836 12837 rec_size = attr->core_relo_rec_size; 12838 if (rec_size < MIN_CORE_RELO_SIZE || 12839 rec_size > MAX_CORE_RELO_SIZE || 12840 rec_size % sizeof(u32)) 12841 return -EINVAL; 12842 12843 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 12844 expected_size = sizeof(struct bpf_core_relo); 12845 ncopy = min_t(u32, expected_size, rec_size); 12846 12847 /* Unlike func_info and line_info, copy and apply each CO-RE 12848 * relocation record one at a time. 12849 */ 12850 for (i = 0; i < nr_core_relo; i++) { 12851 /* future proofing when sizeof(bpf_core_relo) changes */ 12852 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 12853 if (err) { 12854 if (err == -E2BIG) { 12855 verbose(env, "nonzero tailing record in core_relo"); 12856 if (copy_to_bpfptr_offset(uattr, 12857 offsetof(union bpf_attr, core_relo_rec_size), 12858 &expected_size, sizeof(expected_size))) 12859 err = -EFAULT; 12860 } 12861 break; 12862 } 12863 12864 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 12865 err = -EFAULT; 12866 break; 12867 } 12868 12869 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 12870 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 12871 i, core_relo.insn_off, prog->len); 12872 err = -EINVAL; 12873 break; 12874 } 12875 12876 err = bpf_core_apply(&ctx, &core_relo, i, 12877 &prog->insnsi[core_relo.insn_off / 8]); 12878 if (err) 12879 break; 12880 bpfptr_add(&u_core_relo, rec_size); 12881 } 12882 return err; 12883 } 12884 12885 static int check_btf_info(struct bpf_verifier_env *env, 12886 const union bpf_attr *attr, 12887 bpfptr_t uattr) 12888 { 12889 struct btf *btf; 12890 int err; 12891 12892 if (!attr->func_info_cnt && !attr->line_info_cnt) { 12893 if (check_abnormal_return(env)) 12894 return -EINVAL; 12895 return 0; 12896 } 12897 12898 btf = btf_get_by_fd(attr->prog_btf_fd); 12899 if (IS_ERR(btf)) 12900 return PTR_ERR(btf); 12901 if (btf_is_kernel(btf)) { 12902 btf_put(btf); 12903 return -EACCES; 12904 } 12905 env->prog->aux->btf = btf; 12906 12907 err = check_btf_func(env, attr, uattr); 12908 if (err) 12909 return err; 12910 12911 err = check_btf_line(env, attr, uattr); 12912 if (err) 12913 return err; 12914 12915 err = check_core_relo(env, attr, uattr); 12916 if (err) 12917 return err; 12918 12919 return 0; 12920 } 12921 12922 /* check %cur's range satisfies %old's */ 12923 static bool range_within(struct bpf_reg_state *old, 12924 struct bpf_reg_state *cur) 12925 { 12926 return old->umin_value <= cur->umin_value && 12927 old->umax_value >= cur->umax_value && 12928 old->smin_value <= cur->smin_value && 12929 old->smax_value >= cur->smax_value && 12930 old->u32_min_value <= cur->u32_min_value && 12931 old->u32_max_value >= cur->u32_max_value && 12932 old->s32_min_value <= cur->s32_min_value && 12933 old->s32_max_value >= cur->s32_max_value; 12934 } 12935 12936 /* If in the old state two registers had the same id, then they need to have 12937 * the same id in the new state as well. But that id could be different from 12938 * the old state, so we need to track the mapping from old to new ids. 12939 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 12940 * regs with old id 5 must also have new id 9 for the new state to be safe. But 12941 * regs with a different old id could still have new id 9, we don't care about 12942 * that. 12943 * So we look through our idmap to see if this old id has been seen before. If 12944 * so, we require the new id to match; otherwise, we add the id pair to the map. 12945 */ 12946 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 12947 { 12948 unsigned int i; 12949 12950 /* either both IDs should be set or both should be zero */ 12951 if (!!old_id != !!cur_id) 12952 return false; 12953 12954 if (old_id == 0) /* cur_id == 0 as well */ 12955 return true; 12956 12957 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 12958 if (!idmap[i].old) { 12959 /* Reached an empty slot; haven't seen this id before */ 12960 idmap[i].old = old_id; 12961 idmap[i].cur = cur_id; 12962 return true; 12963 } 12964 if (idmap[i].old == old_id) 12965 return idmap[i].cur == cur_id; 12966 } 12967 /* We ran out of idmap slots, which should be impossible */ 12968 WARN_ON_ONCE(1); 12969 return false; 12970 } 12971 12972 static void clean_func_state(struct bpf_verifier_env *env, 12973 struct bpf_func_state *st) 12974 { 12975 enum bpf_reg_liveness live; 12976 int i, j; 12977 12978 for (i = 0; i < BPF_REG_FP; i++) { 12979 live = st->regs[i].live; 12980 /* liveness must not touch this register anymore */ 12981 st->regs[i].live |= REG_LIVE_DONE; 12982 if (!(live & REG_LIVE_READ)) 12983 /* since the register is unused, clear its state 12984 * to make further comparison simpler 12985 */ 12986 __mark_reg_not_init(env, &st->regs[i]); 12987 } 12988 12989 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 12990 live = st->stack[i].spilled_ptr.live; 12991 /* liveness must not touch this stack slot anymore */ 12992 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 12993 if (!(live & REG_LIVE_READ)) { 12994 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 12995 for (j = 0; j < BPF_REG_SIZE; j++) 12996 st->stack[i].slot_type[j] = STACK_INVALID; 12997 } 12998 } 12999 } 13000 13001 static void clean_verifier_state(struct bpf_verifier_env *env, 13002 struct bpf_verifier_state *st) 13003 { 13004 int i; 13005 13006 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 13007 /* all regs in this state in all frames were already marked */ 13008 return; 13009 13010 for (i = 0; i <= st->curframe; i++) 13011 clean_func_state(env, st->frame[i]); 13012 } 13013 13014 /* the parentage chains form a tree. 13015 * the verifier states are added to state lists at given insn and 13016 * pushed into state stack for future exploration. 13017 * when the verifier reaches bpf_exit insn some of the verifer states 13018 * stored in the state lists have their final liveness state already, 13019 * but a lot of states will get revised from liveness point of view when 13020 * the verifier explores other branches. 13021 * Example: 13022 * 1: r0 = 1 13023 * 2: if r1 == 100 goto pc+1 13024 * 3: r0 = 2 13025 * 4: exit 13026 * when the verifier reaches exit insn the register r0 in the state list of 13027 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13028 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13029 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13030 * 13031 * Since the verifier pushes the branch states as it sees them while exploring 13032 * the program the condition of walking the branch instruction for the second 13033 * time means that all states below this branch were already explored and 13034 * their final liveness marks are already propagated. 13035 * Hence when the verifier completes the search of state list in is_state_visited() 13036 * we can call this clean_live_states() function to mark all liveness states 13037 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13038 * will not be used. 13039 * This function also clears the registers and stack for states that !READ 13040 * to simplify state merging. 13041 * 13042 * Important note here that walking the same branch instruction in the callee 13043 * doesn't meant that the states are DONE. The verifier has to compare 13044 * the callsites 13045 */ 13046 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13047 struct bpf_verifier_state *cur) 13048 { 13049 struct bpf_verifier_state_list *sl; 13050 int i; 13051 13052 sl = *explored_state(env, insn); 13053 while (sl) { 13054 if (sl->state.branches) 13055 goto next; 13056 if (sl->state.insn_idx != insn || 13057 sl->state.curframe != cur->curframe) 13058 goto next; 13059 for (i = 0; i <= cur->curframe; i++) 13060 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13061 goto next; 13062 clean_verifier_state(env, &sl->state); 13063 next: 13064 sl = sl->next; 13065 } 13066 } 13067 13068 static bool regs_exact(const struct bpf_reg_state *rold, 13069 const struct bpf_reg_state *rcur, 13070 struct bpf_id_pair *idmap) 13071 { 13072 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13073 check_ids(rold->id, rcur->id, idmap) && 13074 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 13075 } 13076 13077 /* Returns true if (rold safe implies rcur safe) */ 13078 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13079 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13080 { 13081 if (!(rold->live & REG_LIVE_READ)) 13082 /* explored state didn't use this */ 13083 return true; 13084 if (rold->type == NOT_INIT) 13085 /* explored state can't have used this */ 13086 return true; 13087 if (rcur->type == NOT_INIT) 13088 return false; 13089 13090 /* Enforce that register types have to match exactly, including their 13091 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 13092 * rule. 13093 * 13094 * One can make a point that using a pointer register as unbounded 13095 * SCALAR would be technically acceptable, but this could lead to 13096 * pointer leaks because scalars are allowed to leak while pointers 13097 * are not. We could make this safe in special cases if root is 13098 * calling us, but it's probably not worth the hassle. 13099 * 13100 * Also, register types that are *not* MAYBE_NULL could technically be 13101 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 13102 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 13103 * to the same map). 13104 * However, if the old MAYBE_NULL register then got NULL checked, 13105 * doing so could have affected others with the same id, and we can't 13106 * check for that because we lost the id when we converted to 13107 * a non-MAYBE_NULL variant. 13108 * So, as a general rule we don't allow mixing MAYBE_NULL and 13109 * non-MAYBE_NULL registers as well. 13110 */ 13111 if (rold->type != rcur->type) 13112 return false; 13113 13114 switch (base_type(rold->type)) { 13115 case SCALAR_VALUE: 13116 if (regs_exact(rold, rcur, idmap)) 13117 return true; 13118 if (env->explore_alu_limits) 13119 return false; 13120 if (!rold->precise) 13121 return true; 13122 /* new val must satisfy old val knowledge */ 13123 return range_within(rold, rcur) && 13124 tnum_in(rold->var_off, rcur->var_off); 13125 case PTR_TO_MAP_KEY: 13126 case PTR_TO_MAP_VALUE: 13127 /* If the new min/max/var_off satisfy the old ones and 13128 * everything else matches, we are OK. 13129 */ 13130 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 13131 range_within(rold, rcur) && 13132 tnum_in(rold->var_off, rcur->var_off) && 13133 check_ids(rold->id, rcur->id, idmap); 13134 case PTR_TO_PACKET_META: 13135 case PTR_TO_PACKET: 13136 /* We must have at least as much range as the old ptr 13137 * did, so that any accesses which were safe before are 13138 * still safe. This is true even if old range < old off, 13139 * since someone could have accessed through (ptr - k), or 13140 * even done ptr -= k in a register, to get a safe access. 13141 */ 13142 if (rold->range > rcur->range) 13143 return false; 13144 /* If the offsets don't match, we can't trust our alignment; 13145 * nor can we be sure that we won't fall out of range. 13146 */ 13147 if (rold->off != rcur->off) 13148 return false; 13149 /* id relations must be preserved */ 13150 if (!check_ids(rold->id, rcur->id, idmap)) 13151 return false; 13152 /* new val must satisfy old val knowledge */ 13153 return range_within(rold, rcur) && 13154 tnum_in(rold->var_off, rcur->var_off); 13155 case PTR_TO_STACK: 13156 /* two stack pointers are equal only if they're pointing to 13157 * the same stack frame, since fp-8 in foo != fp-8 in bar 13158 */ 13159 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 13160 default: 13161 return regs_exact(rold, rcur, idmap); 13162 } 13163 } 13164 13165 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13166 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13167 { 13168 int i, spi; 13169 13170 /* walk slots of the explored stack and ignore any additional 13171 * slots in the current stack, since explored(safe) state 13172 * didn't use them 13173 */ 13174 for (i = 0; i < old->allocated_stack; i++) { 13175 spi = i / BPF_REG_SIZE; 13176 13177 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13178 i += BPF_REG_SIZE - 1; 13179 /* explored state didn't use this */ 13180 continue; 13181 } 13182 13183 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13184 continue; 13185 13186 /* explored stack has more populated slots than current stack 13187 * and these slots were used 13188 */ 13189 if (i >= cur->allocated_stack) 13190 return false; 13191 13192 /* if old state was safe with misc data in the stack 13193 * it will be safe with zero-initialized stack. 13194 * The opposite is not true 13195 */ 13196 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13197 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13198 continue; 13199 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13200 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13201 /* Ex: old explored (safe) state has STACK_SPILL in 13202 * this stack slot, but current has STACK_MISC -> 13203 * this verifier states are not equivalent, 13204 * return false to continue verification of this path 13205 */ 13206 return false; 13207 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13208 continue; 13209 if (!is_spilled_reg(&old->stack[spi])) 13210 continue; 13211 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13212 &cur->stack[spi].spilled_ptr, idmap)) 13213 /* when explored and current stack slot are both storing 13214 * spilled registers, check that stored pointers types 13215 * are the same as well. 13216 * Ex: explored safe path could have stored 13217 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13218 * but current path has stored: 13219 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13220 * such verifier states are not equivalent. 13221 * return false to continue verification of this path 13222 */ 13223 return false; 13224 } 13225 return true; 13226 } 13227 13228 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 13229 struct bpf_id_pair *idmap) 13230 { 13231 int i; 13232 13233 if (old->acquired_refs != cur->acquired_refs) 13234 return false; 13235 13236 for (i = 0; i < old->acquired_refs; i++) { 13237 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 13238 return false; 13239 } 13240 13241 return true; 13242 } 13243 13244 /* compare two verifier states 13245 * 13246 * all states stored in state_list are known to be valid, since 13247 * verifier reached 'bpf_exit' instruction through them 13248 * 13249 * this function is called when verifier exploring different branches of 13250 * execution popped from the state stack. If it sees an old state that has 13251 * more strict register state and more strict stack state then this execution 13252 * branch doesn't need to be explored further, since verifier already 13253 * concluded that more strict state leads to valid finish. 13254 * 13255 * Therefore two states are equivalent if register state is more conservative 13256 * and explored stack state is more conservative than the current one. 13257 * Example: 13258 * explored current 13259 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 13260 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 13261 * 13262 * In other words if current stack state (one being explored) has more 13263 * valid slots than old one that already passed validation, it means 13264 * the verifier can stop exploring and conclude that current state is valid too 13265 * 13266 * Similarly with registers. If explored state has register type as invalid 13267 * whereas register type in current state is meaningful, it means that 13268 * the current state will reach 'bpf_exit' instruction safely 13269 */ 13270 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 13271 struct bpf_func_state *cur) 13272 { 13273 int i; 13274 13275 for (i = 0; i < MAX_BPF_REG; i++) 13276 if (!regsafe(env, &old->regs[i], &cur->regs[i], 13277 env->idmap_scratch)) 13278 return false; 13279 13280 if (!stacksafe(env, old, cur, env->idmap_scratch)) 13281 return false; 13282 13283 if (!refsafe(old, cur, env->idmap_scratch)) 13284 return false; 13285 13286 return true; 13287 } 13288 13289 static bool states_equal(struct bpf_verifier_env *env, 13290 struct bpf_verifier_state *old, 13291 struct bpf_verifier_state *cur) 13292 { 13293 int i; 13294 13295 if (old->curframe != cur->curframe) 13296 return false; 13297 13298 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 13299 13300 /* Verification state from speculative execution simulation 13301 * must never prune a non-speculative execution one. 13302 */ 13303 if (old->speculative && !cur->speculative) 13304 return false; 13305 13306 if (old->active_lock.ptr != cur->active_lock.ptr) 13307 return false; 13308 13309 /* Old and cur active_lock's have to be either both present 13310 * or both absent. 13311 */ 13312 if (!!old->active_lock.id != !!cur->active_lock.id) 13313 return false; 13314 13315 if (old->active_lock.id && 13316 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 13317 return false; 13318 13319 if (old->active_rcu_lock != cur->active_rcu_lock) 13320 return false; 13321 13322 /* for states to be equal callsites have to be the same 13323 * and all frame states need to be equivalent 13324 */ 13325 for (i = 0; i <= old->curframe; i++) { 13326 if (old->frame[i]->callsite != cur->frame[i]->callsite) 13327 return false; 13328 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 13329 return false; 13330 } 13331 return true; 13332 } 13333 13334 /* Return 0 if no propagation happened. Return negative error code if error 13335 * happened. Otherwise, return the propagated bit. 13336 */ 13337 static int propagate_liveness_reg(struct bpf_verifier_env *env, 13338 struct bpf_reg_state *reg, 13339 struct bpf_reg_state *parent_reg) 13340 { 13341 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 13342 u8 flag = reg->live & REG_LIVE_READ; 13343 int err; 13344 13345 /* When comes here, read flags of PARENT_REG or REG could be any of 13346 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 13347 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 13348 */ 13349 if (parent_flag == REG_LIVE_READ64 || 13350 /* Or if there is no read flag from REG. */ 13351 !flag || 13352 /* Or if the read flag from REG is the same as PARENT_REG. */ 13353 parent_flag == flag) 13354 return 0; 13355 13356 err = mark_reg_read(env, reg, parent_reg, flag); 13357 if (err) 13358 return err; 13359 13360 return flag; 13361 } 13362 13363 /* A write screens off any subsequent reads; but write marks come from the 13364 * straight-line code between a state and its parent. When we arrive at an 13365 * equivalent state (jump target or such) we didn't arrive by the straight-line 13366 * code, so read marks in the state must propagate to the parent regardless 13367 * of the state's write marks. That's what 'parent == state->parent' comparison 13368 * in mark_reg_read() is for. 13369 */ 13370 static int propagate_liveness(struct bpf_verifier_env *env, 13371 const struct bpf_verifier_state *vstate, 13372 struct bpf_verifier_state *vparent) 13373 { 13374 struct bpf_reg_state *state_reg, *parent_reg; 13375 struct bpf_func_state *state, *parent; 13376 int i, frame, err = 0; 13377 13378 if (vparent->curframe != vstate->curframe) { 13379 WARN(1, "propagate_live: parent frame %d current frame %d\n", 13380 vparent->curframe, vstate->curframe); 13381 return -EFAULT; 13382 } 13383 /* Propagate read liveness of registers... */ 13384 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 13385 for (frame = 0; frame <= vstate->curframe; frame++) { 13386 parent = vparent->frame[frame]; 13387 state = vstate->frame[frame]; 13388 parent_reg = parent->regs; 13389 state_reg = state->regs; 13390 /* We don't need to worry about FP liveness, it's read-only */ 13391 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 13392 err = propagate_liveness_reg(env, &state_reg[i], 13393 &parent_reg[i]); 13394 if (err < 0) 13395 return err; 13396 if (err == REG_LIVE_READ64) 13397 mark_insn_zext(env, &parent_reg[i]); 13398 } 13399 13400 /* Propagate stack slots. */ 13401 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 13402 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 13403 parent_reg = &parent->stack[i].spilled_ptr; 13404 state_reg = &state->stack[i].spilled_ptr; 13405 err = propagate_liveness_reg(env, state_reg, 13406 parent_reg); 13407 if (err < 0) 13408 return err; 13409 } 13410 } 13411 return 0; 13412 } 13413 13414 /* find precise scalars in the previous equivalent state and 13415 * propagate them into the current state 13416 */ 13417 static int propagate_precision(struct bpf_verifier_env *env, 13418 const struct bpf_verifier_state *old) 13419 { 13420 struct bpf_reg_state *state_reg; 13421 struct bpf_func_state *state; 13422 int i, err = 0, fr; 13423 13424 for (fr = old->curframe; fr >= 0; fr--) { 13425 state = old->frame[fr]; 13426 state_reg = state->regs; 13427 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 13428 if (state_reg->type != SCALAR_VALUE || 13429 !state_reg->precise) 13430 continue; 13431 if (env->log.level & BPF_LOG_LEVEL2) 13432 verbose(env, "frame %d: propagating r%d\n", i, fr); 13433 err = mark_chain_precision_frame(env, fr, i); 13434 if (err < 0) 13435 return err; 13436 } 13437 13438 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 13439 if (!is_spilled_reg(&state->stack[i])) 13440 continue; 13441 state_reg = &state->stack[i].spilled_ptr; 13442 if (state_reg->type != SCALAR_VALUE || 13443 !state_reg->precise) 13444 continue; 13445 if (env->log.level & BPF_LOG_LEVEL2) 13446 verbose(env, "frame %d: propagating fp%d\n", 13447 (-i - 1) * BPF_REG_SIZE, fr); 13448 err = mark_chain_precision_stack_frame(env, fr, i); 13449 if (err < 0) 13450 return err; 13451 } 13452 } 13453 return 0; 13454 } 13455 13456 static bool states_maybe_looping(struct bpf_verifier_state *old, 13457 struct bpf_verifier_state *cur) 13458 { 13459 struct bpf_func_state *fold, *fcur; 13460 int i, fr = cur->curframe; 13461 13462 if (old->curframe != fr) 13463 return false; 13464 13465 fold = old->frame[fr]; 13466 fcur = cur->frame[fr]; 13467 for (i = 0; i < MAX_BPF_REG; i++) 13468 if (memcmp(&fold->regs[i], &fcur->regs[i], 13469 offsetof(struct bpf_reg_state, parent))) 13470 return false; 13471 return true; 13472 } 13473 13474 13475 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 13476 { 13477 struct bpf_verifier_state_list *new_sl; 13478 struct bpf_verifier_state_list *sl, **pprev; 13479 struct bpf_verifier_state *cur = env->cur_state, *new; 13480 int i, j, err, states_cnt = 0; 13481 bool add_new_state = env->test_state_freq ? true : false; 13482 13483 /* bpf progs typically have pruning point every 4 instructions 13484 * http://vger.kernel.org/bpfconf2019.html#session-1 13485 * Do not add new state for future pruning if the verifier hasn't seen 13486 * at least 2 jumps and at least 8 instructions. 13487 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 13488 * In tests that amounts to up to 50% reduction into total verifier 13489 * memory consumption and 20% verifier time speedup. 13490 */ 13491 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 13492 env->insn_processed - env->prev_insn_processed >= 8) 13493 add_new_state = true; 13494 13495 pprev = explored_state(env, insn_idx); 13496 sl = *pprev; 13497 13498 clean_live_states(env, insn_idx, cur); 13499 13500 while (sl) { 13501 states_cnt++; 13502 if (sl->state.insn_idx != insn_idx) 13503 goto next; 13504 13505 if (sl->state.branches) { 13506 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 13507 13508 if (frame->in_async_callback_fn && 13509 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 13510 /* Different async_entry_cnt means that the verifier is 13511 * processing another entry into async callback. 13512 * Seeing the same state is not an indication of infinite 13513 * loop or infinite recursion. 13514 * But finding the same state doesn't mean that it's safe 13515 * to stop processing the current state. The previous state 13516 * hasn't yet reached bpf_exit, since state.branches > 0. 13517 * Checking in_async_callback_fn alone is not enough either. 13518 * Since the verifier still needs to catch infinite loops 13519 * inside async callbacks. 13520 */ 13521 } else if (states_maybe_looping(&sl->state, cur) && 13522 states_equal(env, &sl->state, cur)) { 13523 verbose_linfo(env, insn_idx, "; "); 13524 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 13525 return -EINVAL; 13526 } 13527 /* if the verifier is processing a loop, avoid adding new state 13528 * too often, since different loop iterations have distinct 13529 * states and may not help future pruning. 13530 * This threshold shouldn't be too low to make sure that 13531 * a loop with large bound will be rejected quickly. 13532 * The most abusive loop will be: 13533 * r1 += 1 13534 * if r1 < 1000000 goto pc-2 13535 * 1M insn_procssed limit / 100 == 10k peak states. 13536 * This threshold shouldn't be too high either, since states 13537 * at the end of the loop are likely to be useful in pruning. 13538 */ 13539 if (env->jmps_processed - env->prev_jmps_processed < 20 && 13540 env->insn_processed - env->prev_insn_processed < 100) 13541 add_new_state = false; 13542 goto miss; 13543 } 13544 if (states_equal(env, &sl->state, cur)) { 13545 sl->hit_cnt++; 13546 /* reached equivalent register/stack state, 13547 * prune the search. 13548 * Registers read by the continuation are read by us. 13549 * If we have any write marks in env->cur_state, they 13550 * will prevent corresponding reads in the continuation 13551 * from reaching our parent (an explored_state). Our 13552 * own state will get the read marks recorded, but 13553 * they'll be immediately forgotten as we're pruning 13554 * this state and will pop a new one. 13555 */ 13556 err = propagate_liveness(env, &sl->state, cur); 13557 13558 /* if previous state reached the exit with precision and 13559 * current state is equivalent to it (except precsion marks) 13560 * the precision needs to be propagated back in 13561 * the current state. 13562 */ 13563 err = err ? : push_jmp_history(env, cur); 13564 err = err ? : propagate_precision(env, &sl->state); 13565 if (err) 13566 return err; 13567 return 1; 13568 } 13569 miss: 13570 /* when new state is not going to be added do not increase miss count. 13571 * Otherwise several loop iterations will remove the state 13572 * recorded earlier. The goal of these heuristics is to have 13573 * states from some iterations of the loop (some in the beginning 13574 * and some at the end) to help pruning. 13575 */ 13576 if (add_new_state) 13577 sl->miss_cnt++; 13578 /* heuristic to determine whether this state is beneficial 13579 * to keep checking from state equivalence point of view. 13580 * Higher numbers increase max_states_per_insn and verification time, 13581 * but do not meaningfully decrease insn_processed. 13582 */ 13583 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 13584 /* the state is unlikely to be useful. Remove it to 13585 * speed up verification 13586 */ 13587 *pprev = sl->next; 13588 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 13589 u32 br = sl->state.branches; 13590 13591 WARN_ONCE(br, 13592 "BUG live_done but branches_to_explore %d\n", 13593 br); 13594 free_verifier_state(&sl->state, false); 13595 kfree(sl); 13596 env->peak_states--; 13597 } else { 13598 /* cannot free this state, since parentage chain may 13599 * walk it later. Add it for free_list instead to 13600 * be freed at the end of verification 13601 */ 13602 sl->next = env->free_list; 13603 env->free_list = sl; 13604 } 13605 sl = *pprev; 13606 continue; 13607 } 13608 next: 13609 pprev = &sl->next; 13610 sl = *pprev; 13611 } 13612 13613 if (env->max_states_per_insn < states_cnt) 13614 env->max_states_per_insn = states_cnt; 13615 13616 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 13617 return 0; 13618 13619 if (!add_new_state) 13620 return 0; 13621 13622 /* There were no equivalent states, remember the current one. 13623 * Technically the current state is not proven to be safe yet, 13624 * but it will either reach outer most bpf_exit (which means it's safe) 13625 * or it will be rejected. When there are no loops the verifier won't be 13626 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 13627 * again on the way to bpf_exit. 13628 * When looping the sl->state.branches will be > 0 and this state 13629 * will not be considered for equivalence until branches == 0. 13630 */ 13631 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 13632 if (!new_sl) 13633 return -ENOMEM; 13634 env->total_states++; 13635 env->peak_states++; 13636 env->prev_jmps_processed = env->jmps_processed; 13637 env->prev_insn_processed = env->insn_processed; 13638 13639 /* forget precise markings we inherited, see __mark_chain_precision */ 13640 if (env->bpf_capable) 13641 mark_all_scalars_imprecise(env, cur); 13642 13643 /* add new state to the head of linked list */ 13644 new = &new_sl->state; 13645 err = copy_verifier_state(new, cur); 13646 if (err) { 13647 free_verifier_state(new, false); 13648 kfree(new_sl); 13649 return err; 13650 } 13651 new->insn_idx = insn_idx; 13652 WARN_ONCE(new->branches != 1, 13653 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 13654 13655 cur->parent = new; 13656 cur->first_insn_idx = insn_idx; 13657 clear_jmp_history(cur); 13658 new_sl->next = *explored_state(env, insn_idx); 13659 *explored_state(env, insn_idx) = new_sl; 13660 /* connect new state to parentage chain. Current frame needs all 13661 * registers connected. Only r6 - r9 of the callers are alive (pushed 13662 * to the stack implicitly by JITs) so in callers' frames connect just 13663 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 13664 * the state of the call instruction (with WRITTEN set), and r0 comes 13665 * from callee with its full parentage chain, anyway. 13666 */ 13667 /* clear write marks in current state: the writes we did are not writes 13668 * our child did, so they don't screen off its reads from us. 13669 * (There are no read marks in current state, because reads always mark 13670 * their parent and current state never has children yet. Only 13671 * explored_states can get read marks.) 13672 */ 13673 for (j = 0; j <= cur->curframe; j++) { 13674 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 13675 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 13676 for (i = 0; i < BPF_REG_FP; i++) 13677 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 13678 } 13679 13680 /* all stack frames are accessible from callee, clear them all */ 13681 for (j = 0; j <= cur->curframe; j++) { 13682 struct bpf_func_state *frame = cur->frame[j]; 13683 struct bpf_func_state *newframe = new->frame[j]; 13684 13685 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 13686 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 13687 frame->stack[i].spilled_ptr.parent = 13688 &newframe->stack[i].spilled_ptr; 13689 } 13690 } 13691 return 0; 13692 } 13693 13694 /* Return true if it's OK to have the same insn return a different type. */ 13695 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 13696 { 13697 switch (base_type(type)) { 13698 case PTR_TO_CTX: 13699 case PTR_TO_SOCKET: 13700 case PTR_TO_SOCK_COMMON: 13701 case PTR_TO_TCP_SOCK: 13702 case PTR_TO_XDP_SOCK: 13703 case PTR_TO_BTF_ID: 13704 return false; 13705 default: 13706 return true; 13707 } 13708 } 13709 13710 /* If an instruction was previously used with particular pointer types, then we 13711 * need to be careful to avoid cases such as the below, where it may be ok 13712 * for one branch accessing the pointer, but not ok for the other branch: 13713 * 13714 * R1 = sock_ptr 13715 * goto X; 13716 * ... 13717 * R1 = some_other_valid_ptr; 13718 * goto X; 13719 * ... 13720 * R2 = *(u32 *)(R1 + 0); 13721 */ 13722 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 13723 { 13724 return src != prev && (!reg_type_mismatch_ok(src) || 13725 !reg_type_mismatch_ok(prev)); 13726 } 13727 13728 static int do_check(struct bpf_verifier_env *env) 13729 { 13730 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13731 struct bpf_verifier_state *state = env->cur_state; 13732 struct bpf_insn *insns = env->prog->insnsi; 13733 struct bpf_reg_state *regs; 13734 int insn_cnt = env->prog->len; 13735 bool do_print_state = false; 13736 int prev_insn_idx = -1; 13737 13738 for (;;) { 13739 struct bpf_insn *insn; 13740 u8 class; 13741 int err; 13742 13743 env->prev_insn_idx = prev_insn_idx; 13744 if (env->insn_idx >= insn_cnt) { 13745 verbose(env, "invalid insn idx %d insn_cnt %d\n", 13746 env->insn_idx, insn_cnt); 13747 return -EFAULT; 13748 } 13749 13750 insn = &insns[env->insn_idx]; 13751 class = BPF_CLASS(insn->code); 13752 13753 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 13754 verbose(env, 13755 "BPF program is too large. Processed %d insn\n", 13756 env->insn_processed); 13757 return -E2BIG; 13758 } 13759 13760 state->last_insn_idx = env->prev_insn_idx; 13761 13762 if (is_prune_point(env, env->insn_idx)) { 13763 err = is_state_visited(env, env->insn_idx); 13764 if (err < 0) 13765 return err; 13766 if (err == 1) { 13767 /* found equivalent state, can prune the search */ 13768 if (env->log.level & BPF_LOG_LEVEL) { 13769 if (do_print_state) 13770 verbose(env, "\nfrom %d to %d%s: safe\n", 13771 env->prev_insn_idx, env->insn_idx, 13772 env->cur_state->speculative ? 13773 " (speculative execution)" : ""); 13774 else 13775 verbose(env, "%d: safe\n", env->insn_idx); 13776 } 13777 goto process_bpf_exit; 13778 } 13779 } 13780 13781 if (is_jmp_point(env, env->insn_idx)) { 13782 err = push_jmp_history(env, state); 13783 if (err) 13784 return err; 13785 } 13786 13787 if (signal_pending(current)) 13788 return -EAGAIN; 13789 13790 if (need_resched()) 13791 cond_resched(); 13792 13793 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 13794 verbose(env, "\nfrom %d to %d%s:", 13795 env->prev_insn_idx, env->insn_idx, 13796 env->cur_state->speculative ? 13797 " (speculative execution)" : ""); 13798 print_verifier_state(env, state->frame[state->curframe], true); 13799 do_print_state = false; 13800 } 13801 13802 if (env->log.level & BPF_LOG_LEVEL) { 13803 const struct bpf_insn_cbs cbs = { 13804 .cb_call = disasm_kfunc_name, 13805 .cb_print = verbose, 13806 .private_data = env, 13807 }; 13808 13809 if (verifier_state_scratched(env)) 13810 print_insn_state(env, state->frame[state->curframe]); 13811 13812 verbose_linfo(env, env->insn_idx, "; "); 13813 env->prev_log_len = env->log.len_used; 13814 verbose(env, "%d: ", env->insn_idx); 13815 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 13816 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 13817 env->prev_log_len = env->log.len_used; 13818 } 13819 13820 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13821 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 13822 env->prev_insn_idx); 13823 if (err) 13824 return err; 13825 } 13826 13827 regs = cur_regs(env); 13828 sanitize_mark_insn_seen(env); 13829 prev_insn_idx = env->insn_idx; 13830 13831 if (class == BPF_ALU || class == BPF_ALU64) { 13832 err = check_alu_op(env, insn); 13833 if (err) 13834 return err; 13835 13836 } else if (class == BPF_LDX) { 13837 enum bpf_reg_type *prev_src_type, src_reg_type; 13838 13839 /* check for reserved fields is already done */ 13840 13841 /* check src operand */ 13842 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13843 if (err) 13844 return err; 13845 13846 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13847 if (err) 13848 return err; 13849 13850 src_reg_type = regs[insn->src_reg].type; 13851 13852 /* check that memory (src_reg + off) is readable, 13853 * the state of dst_reg will be updated by this func 13854 */ 13855 err = check_mem_access(env, env->insn_idx, insn->src_reg, 13856 insn->off, BPF_SIZE(insn->code), 13857 BPF_READ, insn->dst_reg, false); 13858 if (err) 13859 return err; 13860 13861 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13862 13863 if (*prev_src_type == NOT_INIT) { 13864 /* saw a valid insn 13865 * dst_reg = *(u32 *)(src_reg + off) 13866 * save type to validate intersecting paths 13867 */ 13868 *prev_src_type = src_reg_type; 13869 13870 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 13871 /* ABuser program is trying to use the same insn 13872 * dst_reg = *(u32*) (src_reg + off) 13873 * with different pointer types: 13874 * src_reg == ctx in one branch and 13875 * src_reg == stack|map in some other branch. 13876 * Reject it. 13877 */ 13878 verbose(env, "same insn cannot be used with different pointers\n"); 13879 return -EINVAL; 13880 } 13881 13882 } else if (class == BPF_STX) { 13883 enum bpf_reg_type *prev_dst_type, dst_reg_type; 13884 13885 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 13886 err = check_atomic(env, env->insn_idx, insn); 13887 if (err) 13888 return err; 13889 env->insn_idx++; 13890 continue; 13891 } 13892 13893 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 13894 verbose(env, "BPF_STX uses reserved fields\n"); 13895 return -EINVAL; 13896 } 13897 13898 /* check src1 operand */ 13899 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13900 if (err) 13901 return err; 13902 /* check src2 operand */ 13903 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13904 if (err) 13905 return err; 13906 13907 dst_reg_type = regs[insn->dst_reg].type; 13908 13909 /* check that memory (dst_reg + off) is writeable */ 13910 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13911 insn->off, BPF_SIZE(insn->code), 13912 BPF_WRITE, insn->src_reg, false); 13913 if (err) 13914 return err; 13915 13916 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13917 13918 if (*prev_dst_type == NOT_INIT) { 13919 *prev_dst_type = dst_reg_type; 13920 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 13921 verbose(env, "same insn cannot be used with different pointers\n"); 13922 return -EINVAL; 13923 } 13924 13925 } else if (class == BPF_ST) { 13926 if (BPF_MODE(insn->code) != BPF_MEM || 13927 insn->src_reg != BPF_REG_0) { 13928 verbose(env, "BPF_ST uses reserved fields\n"); 13929 return -EINVAL; 13930 } 13931 /* check src operand */ 13932 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13933 if (err) 13934 return err; 13935 13936 if (is_ctx_reg(env, insn->dst_reg)) { 13937 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 13938 insn->dst_reg, 13939 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 13940 return -EACCES; 13941 } 13942 13943 /* check that memory (dst_reg + off) is writeable */ 13944 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13945 insn->off, BPF_SIZE(insn->code), 13946 BPF_WRITE, -1, false); 13947 if (err) 13948 return err; 13949 13950 } else if (class == BPF_JMP || class == BPF_JMP32) { 13951 u8 opcode = BPF_OP(insn->code); 13952 13953 env->jmps_processed++; 13954 if (opcode == BPF_CALL) { 13955 if (BPF_SRC(insn->code) != BPF_K || 13956 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 13957 && insn->off != 0) || 13958 (insn->src_reg != BPF_REG_0 && 13959 insn->src_reg != BPF_PSEUDO_CALL && 13960 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 13961 insn->dst_reg != BPF_REG_0 || 13962 class == BPF_JMP32) { 13963 verbose(env, "BPF_CALL uses reserved fields\n"); 13964 return -EINVAL; 13965 } 13966 13967 if (env->cur_state->active_lock.ptr) { 13968 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 13969 (insn->src_reg == BPF_PSEUDO_CALL) || 13970 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 13971 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) { 13972 verbose(env, "function calls are not allowed while holding a lock\n"); 13973 return -EINVAL; 13974 } 13975 } 13976 if (insn->src_reg == BPF_PSEUDO_CALL) 13977 err = check_func_call(env, insn, &env->insn_idx); 13978 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 13979 err = check_kfunc_call(env, insn, &env->insn_idx); 13980 else 13981 err = check_helper_call(env, insn, &env->insn_idx); 13982 if (err) 13983 return err; 13984 } else if (opcode == BPF_JA) { 13985 if (BPF_SRC(insn->code) != BPF_K || 13986 insn->imm != 0 || 13987 insn->src_reg != BPF_REG_0 || 13988 insn->dst_reg != BPF_REG_0 || 13989 class == BPF_JMP32) { 13990 verbose(env, "BPF_JA uses reserved fields\n"); 13991 return -EINVAL; 13992 } 13993 13994 env->insn_idx += insn->off + 1; 13995 continue; 13996 13997 } else if (opcode == BPF_EXIT) { 13998 if (BPF_SRC(insn->code) != BPF_K || 13999 insn->imm != 0 || 14000 insn->src_reg != BPF_REG_0 || 14001 insn->dst_reg != BPF_REG_0 || 14002 class == BPF_JMP32) { 14003 verbose(env, "BPF_EXIT uses reserved fields\n"); 14004 return -EINVAL; 14005 } 14006 14007 if (env->cur_state->active_lock.ptr) { 14008 verbose(env, "bpf_spin_unlock is missing\n"); 14009 return -EINVAL; 14010 } 14011 14012 if (env->cur_state->active_rcu_lock) { 14013 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14014 return -EINVAL; 14015 } 14016 14017 /* We must do check_reference_leak here before 14018 * prepare_func_exit to handle the case when 14019 * state->curframe > 0, it may be a callback 14020 * function, for which reference_state must 14021 * match caller reference state when it exits. 14022 */ 14023 err = check_reference_leak(env); 14024 if (err) 14025 return err; 14026 14027 if (state->curframe) { 14028 /* exit from nested function */ 14029 err = prepare_func_exit(env, &env->insn_idx); 14030 if (err) 14031 return err; 14032 do_print_state = true; 14033 continue; 14034 } 14035 14036 err = check_return_code(env); 14037 if (err) 14038 return err; 14039 process_bpf_exit: 14040 mark_verifier_state_scratched(env); 14041 update_branch_counts(env, env->cur_state); 14042 err = pop_stack(env, &prev_insn_idx, 14043 &env->insn_idx, pop_log); 14044 if (err < 0) { 14045 if (err != -ENOENT) 14046 return err; 14047 break; 14048 } else { 14049 do_print_state = true; 14050 continue; 14051 } 14052 } else { 14053 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14054 if (err) 14055 return err; 14056 } 14057 } else if (class == BPF_LD) { 14058 u8 mode = BPF_MODE(insn->code); 14059 14060 if (mode == BPF_ABS || mode == BPF_IND) { 14061 err = check_ld_abs(env, insn); 14062 if (err) 14063 return err; 14064 14065 } else if (mode == BPF_IMM) { 14066 err = check_ld_imm(env, insn); 14067 if (err) 14068 return err; 14069 14070 env->insn_idx++; 14071 sanitize_mark_insn_seen(env); 14072 } else { 14073 verbose(env, "invalid BPF_LD mode\n"); 14074 return -EINVAL; 14075 } 14076 } else { 14077 verbose(env, "unknown insn class %d\n", class); 14078 return -EINVAL; 14079 } 14080 14081 env->insn_idx++; 14082 } 14083 14084 return 0; 14085 } 14086 14087 static int find_btf_percpu_datasec(struct btf *btf) 14088 { 14089 const struct btf_type *t; 14090 const char *tname; 14091 int i, n; 14092 14093 /* 14094 * Both vmlinux and module each have their own ".data..percpu" 14095 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14096 * types to look at only module's own BTF types. 14097 */ 14098 n = btf_nr_types(btf); 14099 if (btf_is_module(btf)) 14100 i = btf_nr_types(btf_vmlinux); 14101 else 14102 i = 1; 14103 14104 for(; i < n; i++) { 14105 t = btf_type_by_id(btf, i); 14106 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14107 continue; 14108 14109 tname = btf_name_by_offset(btf, t->name_off); 14110 if (!strcmp(tname, ".data..percpu")) 14111 return i; 14112 } 14113 14114 return -ENOENT; 14115 } 14116 14117 /* replace pseudo btf_id with kernel symbol address */ 14118 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14119 struct bpf_insn *insn, 14120 struct bpf_insn_aux_data *aux) 14121 { 14122 const struct btf_var_secinfo *vsi; 14123 const struct btf_type *datasec; 14124 struct btf_mod_pair *btf_mod; 14125 const struct btf_type *t; 14126 const char *sym_name; 14127 bool percpu = false; 14128 u32 type, id = insn->imm; 14129 struct btf *btf; 14130 s32 datasec_id; 14131 u64 addr; 14132 int i, btf_fd, err; 14133 14134 btf_fd = insn[1].imm; 14135 if (btf_fd) { 14136 btf = btf_get_by_fd(btf_fd); 14137 if (IS_ERR(btf)) { 14138 verbose(env, "invalid module BTF object FD specified.\n"); 14139 return -EINVAL; 14140 } 14141 } else { 14142 if (!btf_vmlinux) { 14143 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14144 return -EINVAL; 14145 } 14146 btf = btf_vmlinux; 14147 btf_get(btf); 14148 } 14149 14150 t = btf_type_by_id(btf, id); 14151 if (!t) { 14152 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14153 err = -ENOENT; 14154 goto err_put; 14155 } 14156 14157 if (!btf_type_is_var(t)) { 14158 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14159 err = -EINVAL; 14160 goto err_put; 14161 } 14162 14163 sym_name = btf_name_by_offset(btf, t->name_off); 14164 addr = kallsyms_lookup_name(sym_name); 14165 if (!addr) { 14166 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14167 sym_name); 14168 err = -ENOENT; 14169 goto err_put; 14170 } 14171 14172 datasec_id = find_btf_percpu_datasec(btf); 14173 if (datasec_id > 0) { 14174 datasec = btf_type_by_id(btf, datasec_id); 14175 for_each_vsi(i, datasec, vsi) { 14176 if (vsi->type == id) { 14177 percpu = true; 14178 break; 14179 } 14180 } 14181 } 14182 14183 insn[0].imm = (u32)addr; 14184 insn[1].imm = addr >> 32; 14185 14186 type = t->type; 14187 t = btf_type_skip_modifiers(btf, type, NULL); 14188 if (percpu) { 14189 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14190 aux->btf_var.btf = btf; 14191 aux->btf_var.btf_id = type; 14192 } else if (!btf_type_is_struct(t)) { 14193 const struct btf_type *ret; 14194 const char *tname; 14195 u32 tsize; 14196 14197 /* resolve the type size of ksym. */ 14198 ret = btf_resolve_size(btf, t, &tsize); 14199 if (IS_ERR(ret)) { 14200 tname = btf_name_by_offset(btf, t->name_off); 14201 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14202 tname, PTR_ERR(ret)); 14203 err = -EINVAL; 14204 goto err_put; 14205 } 14206 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14207 aux->btf_var.mem_size = tsize; 14208 } else { 14209 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14210 aux->btf_var.btf = btf; 14211 aux->btf_var.btf_id = type; 14212 } 14213 14214 /* check whether we recorded this BTF (and maybe module) already */ 14215 for (i = 0; i < env->used_btf_cnt; i++) { 14216 if (env->used_btfs[i].btf == btf) { 14217 btf_put(btf); 14218 return 0; 14219 } 14220 } 14221 14222 if (env->used_btf_cnt >= MAX_USED_BTFS) { 14223 err = -E2BIG; 14224 goto err_put; 14225 } 14226 14227 btf_mod = &env->used_btfs[env->used_btf_cnt]; 14228 btf_mod->btf = btf; 14229 btf_mod->module = NULL; 14230 14231 /* if we reference variables from kernel module, bump its refcount */ 14232 if (btf_is_module(btf)) { 14233 btf_mod->module = btf_try_get_module(btf); 14234 if (!btf_mod->module) { 14235 err = -ENXIO; 14236 goto err_put; 14237 } 14238 } 14239 14240 env->used_btf_cnt++; 14241 14242 return 0; 14243 err_put: 14244 btf_put(btf); 14245 return err; 14246 } 14247 14248 static bool is_tracing_prog_type(enum bpf_prog_type type) 14249 { 14250 switch (type) { 14251 case BPF_PROG_TYPE_KPROBE: 14252 case BPF_PROG_TYPE_TRACEPOINT: 14253 case BPF_PROG_TYPE_PERF_EVENT: 14254 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14255 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 14256 return true; 14257 default: 14258 return false; 14259 } 14260 } 14261 14262 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 14263 struct bpf_map *map, 14264 struct bpf_prog *prog) 14265 14266 { 14267 enum bpf_prog_type prog_type = resolve_prog_type(prog); 14268 14269 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) { 14270 if (is_tracing_prog_type(prog_type)) { 14271 verbose(env, "tracing progs cannot use bpf_list_head yet\n"); 14272 return -EINVAL; 14273 } 14274 } 14275 14276 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 14277 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 14278 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 14279 return -EINVAL; 14280 } 14281 14282 if (is_tracing_prog_type(prog_type)) { 14283 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 14284 return -EINVAL; 14285 } 14286 14287 if (prog->aux->sleepable) { 14288 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 14289 return -EINVAL; 14290 } 14291 } 14292 14293 if (btf_record_has_field(map->record, BPF_TIMER)) { 14294 if (is_tracing_prog_type(prog_type)) { 14295 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 14296 return -EINVAL; 14297 } 14298 } 14299 14300 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 14301 !bpf_offload_prog_map_match(prog, map)) { 14302 verbose(env, "offload device mismatch between prog and map\n"); 14303 return -EINVAL; 14304 } 14305 14306 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 14307 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 14308 return -EINVAL; 14309 } 14310 14311 if (prog->aux->sleepable) 14312 switch (map->map_type) { 14313 case BPF_MAP_TYPE_HASH: 14314 case BPF_MAP_TYPE_LRU_HASH: 14315 case BPF_MAP_TYPE_ARRAY: 14316 case BPF_MAP_TYPE_PERCPU_HASH: 14317 case BPF_MAP_TYPE_PERCPU_ARRAY: 14318 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 14319 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 14320 case BPF_MAP_TYPE_HASH_OF_MAPS: 14321 case BPF_MAP_TYPE_RINGBUF: 14322 case BPF_MAP_TYPE_USER_RINGBUF: 14323 case BPF_MAP_TYPE_INODE_STORAGE: 14324 case BPF_MAP_TYPE_SK_STORAGE: 14325 case BPF_MAP_TYPE_TASK_STORAGE: 14326 case BPF_MAP_TYPE_CGRP_STORAGE: 14327 break; 14328 default: 14329 verbose(env, 14330 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 14331 return -EINVAL; 14332 } 14333 14334 return 0; 14335 } 14336 14337 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 14338 { 14339 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 14340 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 14341 } 14342 14343 /* find and rewrite pseudo imm in ld_imm64 instructions: 14344 * 14345 * 1. if it accesses map FD, replace it with actual map pointer. 14346 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 14347 * 14348 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 14349 */ 14350 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 14351 { 14352 struct bpf_insn *insn = env->prog->insnsi; 14353 int insn_cnt = env->prog->len; 14354 int i, j, err; 14355 14356 err = bpf_prog_calc_tag(env->prog); 14357 if (err) 14358 return err; 14359 14360 for (i = 0; i < insn_cnt; i++, insn++) { 14361 if (BPF_CLASS(insn->code) == BPF_LDX && 14362 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 14363 verbose(env, "BPF_LDX uses reserved fields\n"); 14364 return -EINVAL; 14365 } 14366 14367 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 14368 struct bpf_insn_aux_data *aux; 14369 struct bpf_map *map; 14370 struct fd f; 14371 u64 addr; 14372 u32 fd; 14373 14374 if (i == insn_cnt - 1 || insn[1].code != 0 || 14375 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 14376 insn[1].off != 0) { 14377 verbose(env, "invalid bpf_ld_imm64 insn\n"); 14378 return -EINVAL; 14379 } 14380 14381 if (insn[0].src_reg == 0) 14382 /* valid generic load 64-bit imm */ 14383 goto next_insn; 14384 14385 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 14386 aux = &env->insn_aux_data[i]; 14387 err = check_pseudo_btf_id(env, insn, aux); 14388 if (err) 14389 return err; 14390 goto next_insn; 14391 } 14392 14393 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 14394 aux = &env->insn_aux_data[i]; 14395 aux->ptr_type = PTR_TO_FUNC; 14396 goto next_insn; 14397 } 14398 14399 /* In final convert_pseudo_ld_imm64() step, this is 14400 * converted into regular 64-bit imm load insn. 14401 */ 14402 switch (insn[0].src_reg) { 14403 case BPF_PSEUDO_MAP_VALUE: 14404 case BPF_PSEUDO_MAP_IDX_VALUE: 14405 break; 14406 case BPF_PSEUDO_MAP_FD: 14407 case BPF_PSEUDO_MAP_IDX: 14408 if (insn[1].imm == 0) 14409 break; 14410 fallthrough; 14411 default: 14412 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 14413 return -EINVAL; 14414 } 14415 14416 switch (insn[0].src_reg) { 14417 case BPF_PSEUDO_MAP_IDX_VALUE: 14418 case BPF_PSEUDO_MAP_IDX: 14419 if (bpfptr_is_null(env->fd_array)) { 14420 verbose(env, "fd_idx without fd_array is invalid\n"); 14421 return -EPROTO; 14422 } 14423 if (copy_from_bpfptr_offset(&fd, env->fd_array, 14424 insn[0].imm * sizeof(fd), 14425 sizeof(fd))) 14426 return -EFAULT; 14427 break; 14428 default: 14429 fd = insn[0].imm; 14430 break; 14431 } 14432 14433 f = fdget(fd); 14434 map = __bpf_map_get(f); 14435 if (IS_ERR(map)) { 14436 verbose(env, "fd %d is not pointing to valid bpf_map\n", 14437 insn[0].imm); 14438 return PTR_ERR(map); 14439 } 14440 14441 err = check_map_prog_compatibility(env, map, env->prog); 14442 if (err) { 14443 fdput(f); 14444 return err; 14445 } 14446 14447 aux = &env->insn_aux_data[i]; 14448 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 14449 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 14450 addr = (unsigned long)map; 14451 } else { 14452 u32 off = insn[1].imm; 14453 14454 if (off >= BPF_MAX_VAR_OFF) { 14455 verbose(env, "direct value offset of %u is not allowed\n", off); 14456 fdput(f); 14457 return -EINVAL; 14458 } 14459 14460 if (!map->ops->map_direct_value_addr) { 14461 verbose(env, "no direct value access support for this map type\n"); 14462 fdput(f); 14463 return -EINVAL; 14464 } 14465 14466 err = map->ops->map_direct_value_addr(map, &addr, off); 14467 if (err) { 14468 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 14469 map->value_size, off); 14470 fdput(f); 14471 return err; 14472 } 14473 14474 aux->map_off = off; 14475 addr += off; 14476 } 14477 14478 insn[0].imm = (u32)addr; 14479 insn[1].imm = addr >> 32; 14480 14481 /* check whether we recorded this map already */ 14482 for (j = 0; j < env->used_map_cnt; j++) { 14483 if (env->used_maps[j] == map) { 14484 aux->map_index = j; 14485 fdput(f); 14486 goto next_insn; 14487 } 14488 } 14489 14490 if (env->used_map_cnt >= MAX_USED_MAPS) { 14491 fdput(f); 14492 return -E2BIG; 14493 } 14494 14495 /* hold the map. If the program is rejected by verifier, 14496 * the map will be released by release_maps() or it 14497 * will be used by the valid program until it's unloaded 14498 * and all maps are released in free_used_maps() 14499 */ 14500 bpf_map_inc(map); 14501 14502 aux->map_index = env->used_map_cnt; 14503 env->used_maps[env->used_map_cnt++] = map; 14504 14505 if (bpf_map_is_cgroup_storage(map) && 14506 bpf_cgroup_storage_assign(env->prog->aux, map)) { 14507 verbose(env, "only one cgroup storage of each type is allowed\n"); 14508 fdput(f); 14509 return -EBUSY; 14510 } 14511 14512 fdput(f); 14513 next_insn: 14514 insn++; 14515 i++; 14516 continue; 14517 } 14518 14519 /* Basic sanity check before we invest more work here. */ 14520 if (!bpf_opcode_in_insntable(insn->code)) { 14521 verbose(env, "unknown opcode %02x\n", insn->code); 14522 return -EINVAL; 14523 } 14524 } 14525 14526 /* now all pseudo BPF_LD_IMM64 instructions load valid 14527 * 'struct bpf_map *' into a register instead of user map_fd. 14528 * These pointers will be used later by verifier to validate map access. 14529 */ 14530 return 0; 14531 } 14532 14533 /* drop refcnt of maps used by the rejected program */ 14534 static void release_maps(struct bpf_verifier_env *env) 14535 { 14536 __bpf_free_used_maps(env->prog->aux, env->used_maps, 14537 env->used_map_cnt); 14538 } 14539 14540 /* drop refcnt of maps used by the rejected program */ 14541 static void release_btfs(struct bpf_verifier_env *env) 14542 { 14543 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 14544 env->used_btf_cnt); 14545 } 14546 14547 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 14548 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 14549 { 14550 struct bpf_insn *insn = env->prog->insnsi; 14551 int insn_cnt = env->prog->len; 14552 int i; 14553 14554 for (i = 0; i < insn_cnt; i++, insn++) { 14555 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 14556 continue; 14557 if (insn->src_reg == BPF_PSEUDO_FUNC) 14558 continue; 14559 insn->src_reg = 0; 14560 } 14561 } 14562 14563 /* single env->prog->insni[off] instruction was replaced with the range 14564 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 14565 * [0, off) and [off, end) to new locations, so the patched range stays zero 14566 */ 14567 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 14568 struct bpf_insn_aux_data *new_data, 14569 struct bpf_prog *new_prog, u32 off, u32 cnt) 14570 { 14571 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 14572 struct bpf_insn *insn = new_prog->insnsi; 14573 u32 old_seen = old_data[off].seen; 14574 u32 prog_len; 14575 int i; 14576 14577 /* aux info at OFF always needs adjustment, no matter fast path 14578 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 14579 * original insn at old prog. 14580 */ 14581 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 14582 14583 if (cnt == 1) 14584 return; 14585 prog_len = new_prog->len; 14586 14587 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 14588 memcpy(new_data + off + cnt - 1, old_data + off, 14589 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 14590 for (i = off; i < off + cnt - 1; i++) { 14591 /* Expand insni[off]'s seen count to the patched range. */ 14592 new_data[i].seen = old_seen; 14593 new_data[i].zext_dst = insn_has_def32(env, insn + i); 14594 } 14595 env->insn_aux_data = new_data; 14596 vfree(old_data); 14597 } 14598 14599 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 14600 { 14601 int i; 14602 14603 if (len == 1) 14604 return; 14605 /* NOTE: fake 'exit' subprog should be updated as well. */ 14606 for (i = 0; i <= env->subprog_cnt; i++) { 14607 if (env->subprog_info[i].start <= off) 14608 continue; 14609 env->subprog_info[i].start += len - 1; 14610 } 14611 } 14612 14613 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 14614 { 14615 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 14616 int i, sz = prog->aux->size_poke_tab; 14617 struct bpf_jit_poke_descriptor *desc; 14618 14619 for (i = 0; i < sz; i++) { 14620 desc = &tab[i]; 14621 if (desc->insn_idx <= off) 14622 continue; 14623 desc->insn_idx += len - 1; 14624 } 14625 } 14626 14627 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 14628 const struct bpf_insn *patch, u32 len) 14629 { 14630 struct bpf_prog *new_prog; 14631 struct bpf_insn_aux_data *new_data = NULL; 14632 14633 if (len > 1) { 14634 new_data = vzalloc(array_size(env->prog->len + len - 1, 14635 sizeof(struct bpf_insn_aux_data))); 14636 if (!new_data) 14637 return NULL; 14638 } 14639 14640 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 14641 if (IS_ERR(new_prog)) { 14642 if (PTR_ERR(new_prog) == -ERANGE) 14643 verbose(env, 14644 "insn %d cannot be patched due to 16-bit range\n", 14645 env->insn_aux_data[off].orig_idx); 14646 vfree(new_data); 14647 return NULL; 14648 } 14649 adjust_insn_aux_data(env, new_data, new_prog, off, len); 14650 adjust_subprog_starts(env, off, len); 14651 adjust_poke_descs(new_prog, off, len); 14652 return new_prog; 14653 } 14654 14655 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 14656 u32 off, u32 cnt) 14657 { 14658 int i, j; 14659 14660 /* find first prog starting at or after off (first to remove) */ 14661 for (i = 0; i < env->subprog_cnt; i++) 14662 if (env->subprog_info[i].start >= off) 14663 break; 14664 /* find first prog starting at or after off + cnt (first to stay) */ 14665 for (j = i; j < env->subprog_cnt; j++) 14666 if (env->subprog_info[j].start >= off + cnt) 14667 break; 14668 /* if j doesn't start exactly at off + cnt, we are just removing 14669 * the front of previous prog 14670 */ 14671 if (env->subprog_info[j].start != off + cnt) 14672 j--; 14673 14674 if (j > i) { 14675 struct bpf_prog_aux *aux = env->prog->aux; 14676 int move; 14677 14678 /* move fake 'exit' subprog as well */ 14679 move = env->subprog_cnt + 1 - j; 14680 14681 memmove(env->subprog_info + i, 14682 env->subprog_info + j, 14683 sizeof(*env->subprog_info) * move); 14684 env->subprog_cnt -= j - i; 14685 14686 /* remove func_info */ 14687 if (aux->func_info) { 14688 move = aux->func_info_cnt - j; 14689 14690 memmove(aux->func_info + i, 14691 aux->func_info + j, 14692 sizeof(*aux->func_info) * move); 14693 aux->func_info_cnt -= j - i; 14694 /* func_info->insn_off is set after all code rewrites, 14695 * in adjust_btf_func() - no need to adjust 14696 */ 14697 } 14698 } else { 14699 /* convert i from "first prog to remove" to "first to adjust" */ 14700 if (env->subprog_info[i].start == off) 14701 i++; 14702 } 14703 14704 /* update fake 'exit' subprog as well */ 14705 for (; i <= env->subprog_cnt; i++) 14706 env->subprog_info[i].start -= cnt; 14707 14708 return 0; 14709 } 14710 14711 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 14712 u32 cnt) 14713 { 14714 struct bpf_prog *prog = env->prog; 14715 u32 i, l_off, l_cnt, nr_linfo; 14716 struct bpf_line_info *linfo; 14717 14718 nr_linfo = prog->aux->nr_linfo; 14719 if (!nr_linfo) 14720 return 0; 14721 14722 linfo = prog->aux->linfo; 14723 14724 /* find first line info to remove, count lines to be removed */ 14725 for (i = 0; i < nr_linfo; i++) 14726 if (linfo[i].insn_off >= off) 14727 break; 14728 14729 l_off = i; 14730 l_cnt = 0; 14731 for (; i < nr_linfo; i++) 14732 if (linfo[i].insn_off < off + cnt) 14733 l_cnt++; 14734 else 14735 break; 14736 14737 /* First live insn doesn't match first live linfo, it needs to "inherit" 14738 * last removed linfo. prog is already modified, so prog->len == off 14739 * means no live instructions after (tail of the program was removed). 14740 */ 14741 if (prog->len != off && l_cnt && 14742 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 14743 l_cnt--; 14744 linfo[--i].insn_off = off + cnt; 14745 } 14746 14747 /* remove the line info which refer to the removed instructions */ 14748 if (l_cnt) { 14749 memmove(linfo + l_off, linfo + i, 14750 sizeof(*linfo) * (nr_linfo - i)); 14751 14752 prog->aux->nr_linfo -= l_cnt; 14753 nr_linfo = prog->aux->nr_linfo; 14754 } 14755 14756 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 14757 for (i = l_off; i < nr_linfo; i++) 14758 linfo[i].insn_off -= cnt; 14759 14760 /* fix up all subprogs (incl. 'exit') which start >= off */ 14761 for (i = 0; i <= env->subprog_cnt; i++) 14762 if (env->subprog_info[i].linfo_idx > l_off) { 14763 /* program may have started in the removed region but 14764 * may not be fully removed 14765 */ 14766 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 14767 env->subprog_info[i].linfo_idx -= l_cnt; 14768 else 14769 env->subprog_info[i].linfo_idx = l_off; 14770 } 14771 14772 return 0; 14773 } 14774 14775 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 14776 { 14777 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14778 unsigned int orig_prog_len = env->prog->len; 14779 int err; 14780 14781 if (bpf_prog_is_dev_bound(env->prog->aux)) 14782 bpf_prog_offload_remove_insns(env, off, cnt); 14783 14784 err = bpf_remove_insns(env->prog, off, cnt); 14785 if (err) 14786 return err; 14787 14788 err = adjust_subprog_starts_after_remove(env, off, cnt); 14789 if (err) 14790 return err; 14791 14792 err = bpf_adj_linfo_after_remove(env, off, cnt); 14793 if (err) 14794 return err; 14795 14796 memmove(aux_data + off, aux_data + off + cnt, 14797 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 14798 14799 return 0; 14800 } 14801 14802 /* The verifier does more data flow analysis than llvm and will not 14803 * explore branches that are dead at run time. Malicious programs can 14804 * have dead code too. Therefore replace all dead at-run-time code 14805 * with 'ja -1'. 14806 * 14807 * Just nops are not optimal, e.g. if they would sit at the end of the 14808 * program and through another bug we would manage to jump there, then 14809 * we'd execute beyond program memory otherwise. Returning exception 14810 * code also wouldn't work since we can have subprogs where the dead 14811 * code could be located. 14812 */ 14813 static void sanitize_dead_code(struct bpf_verifier_env *env) 14814 { 14815 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14816 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 14817 struct bpf_insn *insn = env->prog->insnsi; 14818 const int insn_cnt = env->prog->len; 14819 int i; 14820 14821 for (i = 0; i < insn_cnt; i++) { 14822 if (aux_data[i].seen) 14823 continue; 14824 memcpy(insn + i, &trap, sizeof(trap)); 14825 aux_data[i].zext_dst = false; 14826 } 14827 } 14828 14829 static bool insn_is_cond_jump(u8 code) 14830 { 14831 u8 op; 14832 14833 if (BPF_CLASS(code) == BPF_JMP32) 14834 return true; 14835 14836 if (BPF_CLASS(code) != BPF_JMP) 14837 return false; 14838 14839 op = BPF_OP(code); 14840 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 14841 } 14842 14843 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 14844 { 14845 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14846 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14847 struct bpf_insn *insn = env->prog->insnsi; 14848 const int insn_cnt = env->prog->len; 14849 int i; 14850 14851 for (i = 0; i < insn_cnt; i++, insn++) { 14852 if (!insn_is_cond_jump(insn->code)) 14853 continue; 14854 14855 if (!aux_data[i + 1].seen) 14856 ja.off = insn->off; 14857 else if (!aux_data[i + 1 + insn->off].seen) 14858 ja.off = 0; 14859 else 14860 continue; 14861 14862 if (bpf_prog_is_dev_bound(env->prog->aux)) 14863 bpf_prog_offload_replace_insn(env, i, &ja); 14864 14865 memcpy(insn, &ja, sizeof(ja)); 14866 } 14867 } 14868 14869 static int opt_remove_dead_code(struct bpf_verifier_env *env) 14870 { 14871 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14872 int insn_cnt = env->prog->len; 14873 int i, err; 14874 14875 for (i = 0; i < insn_cnt; i++) { 14876 int j; 14877 14878 j = 0; 14879 while (i + j < insn_cnt && !aux_data[i + j].seen) 14880 j++; 14881 if (!j) 14882 continue; 14883 14884 err = verifier_remove_insns(env, i, j); 14885 if (err) 14886 return err; 14887 insn_cnt = env->prog->len; 14888 } 14889 14890 return 0; 14891 } 14892 14893 static int opt_remove_nops(struct bpf_verifier_env *env) 14894 { 14895 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14896 struct bpf_insn *insn = env->prog->insnsi; 14897 int insn_cnt = env->prog->len; 14898 int i, err; 14899 14900 for (i = 0; i < insn_cnt; i++) { 14901 if (memcmp(&insn[i], &ja, sizeof(ja))) 14902 continue; 14903 14904 err = verifier_remove_insns(env, i, 1); 14905 if (err) 14906 return err; 14907 insn_cnt--; 14908 i--; 14909 } 14910 14911 return 0; 14912 } 14913 14914 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 14915 const union bpf_attr *attr) 14916 { 14917 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 14918 struct bpf_insn_aux_data *aux = env->insn_aux_data; 14919 int i, patch_len, delta = 0, len = env->prog->len; 14920 struct bpf_insn *insns = env->prog->insnsi; 14921 struct bpf_prog *new_prog; 14922 bool rnd_hi32; 14923 14924 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 14925 zext_patch[1] = BPF_ZEXT_REG(0); 14926 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 14927 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 14928 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 14929 for (i = 0; i < len; i++) { 14930 int adj_idx = i + delta; 14931 struct bpf_insn insn; 14932 int load_reg; 14933 14934 insn = insns[adj_idx]; 14935 load_reg = insn_def_regno(&insn); 14936 if (!aux[adj_idx].zext_dst) { 14937 u8 code, class; 14938 u32 imm_rnd; 14939 14940 if (!rnd_hi32) 14941 continue; 14942 14943 code = insn.code; 14944 class = BPF_CLASS(code); 14945 if (load_reg == -1) 14946 continue; 14947 14948 /* NOTE: arg "reg" (the fourth one) is only used for 14949 * BPF_STX + SRC_OP, so it is safe to pass NULL 14950 * here. 14951 */ 14952 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 14953 if (class == BPF_LD && 14954 BPF_MODE(code) == BPF_IMM) 14955 i++; 14956 continue; 14957 } 14958 14959 /* ctx load could be transformed into wider load. */ 14960 if (class == BPF_LDX && 14961 aux[adj_idx].ptr_type == PTR_TO_CTX) 14962 continue; 14963 14964 imm_rnd = get_random_u32(); 14965 rnd_hi32_patch[0] = insn; 14966 rnd_hi32_patch[1].imm = imm_rnd; 14967 rnd_hi32_patch[3].dst_reg = load_reg; 14968 patch = rnd_hi32_patch; 14969 patch_len = 4; 14970 goto apply_patch_buffer; 14971 } 14972 14973 /* Add in an zero-extend instruction if a) the JIT has requested 14974 * it or b) it's a CMPXCHG. 14975 * 14976 * The latter is because: BPF_CMPXCHG always loads a value into 14977 * R0, therefore always zero-extends. However some archs' 14978 * equivalent instruction only does this load when the 14979 * comparison is successful. This detail of CMPXCHG is 14980 * orthogonal to the general zero-extension behaviour of the 14981 * CPU, so it's treated independently of bpf_jit_needs_zext. 14982 */ 14983 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 14984 continue; 14985 14986 /* Zero-extension is done by the caller. */ 14987 if (bpf_pseudo_kfunc_call(&insn)) 14988 continue; 14989 14990 if (WARN_ON(load_reg == -1)) { 14991 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 14992 return -EFAULT; 14993 } 14994 14995 zext_patch[0] = insn; 14996 zext_patch[1].dst_reg = load_reg; 14997 zext_patch[1].src_reg = load_reg; 14998 patch = zext_patch; 14999 patch_len = 2; 15000 apply_patch_buffer: 15001 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 15002 if (!new_prog) 15003 return -ENOMEM; 15004 env->prog = new_prog; 15005 insns = new_prog->insnsi; 15006 aux = env->insn_aux_data; 15007 delta += patch_len - 1; 15008 } 15009 15010 return 0; 15011 } 15012 15013 /* convert load instructions that access fields of a context type into a 15014 * sequence of instructions that access fields of the underlying structure: 15015 * struct __sk_buff -> struct sk_buff 15016 * struct bpf_sock_ops -> struct sock 15017 */ 15018 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15019 { 15020 const struct bpf_verifier_ops *ops = env->ops; 15021 int i, cnt, size, ctx_field_size, delta = 0; 15022 const int insn_cnt = env->prog->len; 15023 struct bpf_insn insn_buf[16], *insn; 15024 u32 target_size, size_default, off; 15025 struct bpf_prog *new_prog; 15026 enum bpf_access_type type; 15027 bool is_narrower_load; 15028 15029 if (ops->gen_prologue || env->seen_direct_write) { 15030 if (!ops->gen_prologue) { 15031 verbose(env, "bpf verifier is misconfigured\n"); 15032 return -EINVAL; 15033 } 15034 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15035 env->prog); 15036 if (cnt >= ARRAY_SIZE(insn_buf)) { 15037 verbose(env, "bpf verifier is misconfigured\n"); 15038 return -EINVAL; 15039 } else if (cnt) { 15040 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15041 if (!new_prog) 15042 return -ENOMEM; 15043 15044 env->prog = new_prog; 15045 delta += cnt - 1; 15046 } 15047 } 15048 15049 if (bpf_prog_is_dev_bound(env->prog->aux)) 15050 return 0; 15051 15052 insn = env->prog->insnsi + delta; 15053 15054 for (i = 0; i < insn_cnt; i++, insn++) { 15055 bpf_convert_ctx_access_t convert_ctx_access; 15056 bool ctx_access; 15057 15058 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15059 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15060 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15061 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15062 type = BPF_READ; 15063 ctx_access = true; 15064 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15065 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15066 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15067 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15068 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15069 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15070 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15071 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15072 type = BPF_WRITE; 15073 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15074 } else { 15075 continue; 15076 } 15077 15078 if (type == BPF_WRITE && 15079 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15080 struct bpf_insn patch[] = { 15081 *insn, 15082 BPF_ST_NOSPEC(), 15083 }; 15084 15085 cnt = ARRAY_SIZE(patch); 15086 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15087 if (!new_prog) 15088 return -ENOMEM; 15089 15090 delta += cnt - 1; 15091 env->prog = new_prog; 15092 insn = new_prog->insnsi + i + delta; 15093 continue; 15094 } 15095 15096 if (!ctx_access) 15097 continue; 15098 15099 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15100 case PTR_TO_CTX: 15101 if (!ops->convert_ctx_access) 15102 continue; 15103 convert_ctx_access = ops->convert_ctx_access; 15104 break; 15105 case PTR_TO_SOCKET: 15106 case PTR_TO_SOCK_COMMON: 15107 convert_ctx_access = bpf_sock_convert_ctx_access; 15108 break; 15109 case PTR_TO_TCP_SOCK: 15110 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15111 break; 15112 case PTR_TO_XDP_SOCK: 15113 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15114 break; 15115 case PTR_TO_BTF_ID: 15116 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15117 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15118 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15119 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15120 * any faults for loads into such types. BPF_WRITE is disallowed 15121 * for this case. 15122 */ 15123 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15124 if (type == BPF_READ) { 15125 insn->code = BPF_LDX | BPF_PROBE_MEM | 15126 BPF_SIZE((insn)->code); 15127 env->prog->aux->num_exentries++; 15128 } 15129 continue; 15130 default: 15131 continue; 15132 } 15133 15134 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15135 size = BPF_LDST_BYTES(insn); 15136 15137 /* If the read access is a narrower load of the field, 15138 * convert to a 4/8-byte load, to minimum program type specific 15139 * convert_ctx_access changes. If conversion is successful, 15140 * we will apply proper mask to the result. 15141 */ 15142 is_narrower_load = size < ctx_field_size; 15143 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15144 off = insn->off; 15145 if (is_narrower_load) { 15146 u8 size_code; 15147 15148 if (type == BPF_WRITE) { 15149 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15150 return -EINVAL; 15151 } 15152 15153 size_code = BPF_H; 15154 if (ctx_field_size == 4) 15155 size_code = BPF_W; 15156 else if (ctx_field_size == 8) 15157 size_code = BPF_DW; 15158 15159 insn->off = off & ~(size_default - 1); 15160 insn->code = BPF_LDX | BPF_MEM | size_code; 15161 } 15162 15163 target_size = 0; 15164 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15165 &target_size); 15166 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15167 (ctx_field_size && !target_size)) { 15168 verbose(env, "bpf verifier is misconfigured\n"); 15169 return -EINVAL; 15170 } 15171 15172 if (is_narrower_load && size < target_size) { 15173 u8 shift = bpf_ctx_narrow_access_offset( 15174 off, size, size_default) * 8; 15175 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15176 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15177 return -EINVAL; 15178 } 15179 if (ctx_field_size <= 4) { 15180 if (shift) 15181 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15182 insn->dst_reg, 15183 shift); 15184 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15185 (1 << size * 8) - 1); 15186 } else { 15187 if (shift) 15188 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15189 insn->dst_reg, 15190 shift); 15191 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15192 (1ULL << size * 8) - 1); 15193 } 15194 } 15195 15196 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15197 if (!new_prog) 15198 return -ENOMEM; 15199 15200 delta += cnt - 1; 15201 15202 /* keep walking new program and skip insns we just inserted */ 15203 env->prog = new_prog; 15204 insn = new_prog->insnsi + i + delta; 15205 } 15206 15207 return 0; 15208 } 15209 15210 static int jit_subprogs(struct bpf_verifier_env *env) 15211 { 15212 struct bpf_prog *prog = env->prog, **func, *tmp; 15213 int i, j, subprog_start, subprog_end = 0, len, subprog; 15214 struct bpf_map *map_ptr; 15215 struct bpf_insn *insn; 15216 void *old_bpf_func; 15217 int err, num_exentries; 15218 15219 if (env->subprog_cnt <= 1) 15220 return 0; 15221 15222 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15223 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 15224 continue; 15225 15226 /* Upon error here we cannot fall back to interpreter but 15227 * need a hard reject of the program. Thus -EFAULT is 15228 * propagated in any case. 15229 */ 15230 subprog = find_subprog(env, i + insn->imm + 1); 15231 if (subprog < 0) { 15232 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 15233 i + insn->imm + 1); 15234 return -EFAULT; 15235 } 15236 /* temporarily remember subprog id inside insn instead of 15237 * aux_data, since next loop will split up all insns into funcs 15238 */ 15239 insn->off = subprog; 15240 /* remember original imm in case JIT fails and fallback 15241 * to interpreter will be needed 15242 */ 15243 env->insn_aux_data[i].call_imm = insn->imm; 15244 /* point imm to __bpf_call_base+1 from JITs point of view */ 15245 insn->imm = 1; 15246 if (bpf_pseudo_func(insn)) 15247 /* jit (e.g. x86_64) may emit fewer instructions 15248 * if it learns a u32 imm is the same as a u64 imm. 15249 * Force a non zero here. 15250 */ 15251 insn[1].imm = 1; 15252 } 15253 15254 err = bpf_prog_alloc_jited_linfo(prog); 15255 if (err) 15256 goto out_undo_insn; 15257 15258 err = -ENOMEM; 15259 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 15260 if (!func) 15261 goto out_undo_insn; 15262 15263 for (i = 0; i < env->subprog_cnt; i++) { 15264 subprog_start = subprog_end; 15265 subprog_end = env->subprog_info[i + 1].start; 15266 15267 len = subprog_end - subprog_start; 15268 /* bpf_prog_run() doesn't call subprogs directly, 15269 * hence main prog stats include the runtime of subprogs. 15270 * subprogs don't have IDs and not reachable via prog_get_next_id 15271 * func[i]->stats will never be accessed and stays NULL 15272 */ 15273 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 15274 if (!func[i]) 15275 goto out_free; 15276 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 15277 len * sizeof(struct bpf_insn)); 15278 func[i]->type = prog->type; 15279 func[i]->len = len; 15280 if (bpf_prog_calc_tag(func[i])) 15281 goto out_free; 15282 func[i]->is_func = 1; 15283 func[i]->aux->func_idx = i; 15284 /* Below members will be freed only at prog->aux */ 15285 func[i]->aux->btf = prog->aux->btf; 15286 func[i]->aux->func_info = prog->aux->func_info; 15287 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 15288 func[i]->aux->poke_tab = prog->aux->poke_tab; 15289 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 15290 15291 for (j = 0; j < prog->aux->size_poke_tab; j++) { 15292 struct bpf_jit_poke_descriptor *poke; 15293 15294 poke = &prog->aux->poke_tab[j]; 15295 if (poke->insn_idx < subprog_end && 15296 poke->insn_idx >= subprog_start) 15297 poke->aux = func[i]->aux; 15298 } 15299 15300 func[i]->aux->name[0] = 'F'; 15301 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 15302 func[i]->jit_requested = 1; 15303 func[i]->blinding_requested = prog->blinding_requested; 15304 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 15305 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 15306 func[i]->aux->linfo = prog->aux->linfo; 15307 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 15308 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 15309 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 15310 num_exentries = 0; 15311 insn = func[i]->insnsi; 15312 for (j = 0; j < func[i]->len; j++, insn++) { 15313 if (BPF_CLASS(insn->code) == BPF_LDX && 15314 BPF_MODE(insn->code) == BPF_PROBE_MEM) 15315 num_exentries++; 15316 } 15317 func[i]->aux->num_exentries = num_exentries; 15318 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 15319 func[i] = bpf_int_jit_compile(func[i]); 15320 if (!func[i]->jited) { 15321 err = -ENOTSUPP; 15322 goto out_free; 15323 } 15324 cond_resched(); 15325 } 15326 15327 /* at this point all bpf functions were successfully JITed 15328 * now populate all bpf_calls with correct addresses and 15329 * run last pass of JIT 15330 */ 15331 for (i = 0; i < env->subprog_cnt; i++) { 15332 insn = func[i]->insnsi; 15333 for (j = 0; j < func[i]->len; j++, insn++) { 15334 if (bpf_pseudo_func(insn)) { 15335 subprog = insn->off; 15336 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 15337 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 15338 continue; 15339 } 15340 if (!bpf_pseudo_call(insn)) 15341 continue; 15342 subprog = insn->off; 15343 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 15344 } 15345 15346 /* we use the aux data to keep a list of the start addresses 15347 * of the JITed images for each function in the program 15348 * 15349 * for some architectures, such as powerpc64, the imm field 15350 * might not be large enough to hold the offset of the start 15351 * address of the callee's JITed image from __bpf_call_base 15352 * 15353 * in such cases, we can lookup the start address of a callee 15354 * by using its subprog id, available from the off field of 15355 * the call instruction, as an index for this list 15356 */ 15357 func[i]->aux->func = func; 15358 func[i]->aux->func_cnt = env->subprog_cnt; 15359 } 15360 for (i = 0; i < env->subprog_cnt; i++) { 15361 old_bpf_func = func[i]->bpf_func; 15362 tmp = bpf_int_jit_compile(func[i]); 15363 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 15364 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 15365 err = -ENOTSUPP; 15366 goto out_free; 15367 } 15368 cond_resched(); 15369 } 15370 15371 /* finally lock prog and jit images for all functions and 15372 * populate kallsysm 15373 */ 15374 for (i = 0; i < env->subprog_cnt; i++) { 15375 bpf_prog_lock_ro(func[i]); 15376 bpf_prog_kallsyms_add(func[i]); 15377 } 15378 15379 /* Last step: make now unused interpreter insns from main 15380 * prog consistent for later dump requests, so they can 15381 * later look the same as if they were interpreted only. 15382 */ 15383 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15384 if (bpf_pseudo_func(insn)) { 15385 insn[0].imm = env->insn_aux_data[i].call_imm; 15386 insn[1].imm = insn->off; 15387 insn->off = 0; 15388 continue; 15389 } 15390 if (!bpf_pseudo_call(insn)) 15391 continue; 15392 insn->off = env->insn_aux_data[i].call_imm; 15393 subprog = find_subprog(env, i + insn->off + 1); 15394 insn->imm = subprog; 15395 } 15396 15397 prog->jited = 1; 15398 prog->bpf_func = func[0]->bpf_func; 15399 prog->jited_len = func[0]->jited_len; 15400 prog->aux->func = func; 15401 prog->aux->func_cnt = env->subprog_cnt; 15402 bpf_prog_jit_attempt_done(prog); 15403 return 0; 15404 out_free: 15405 /* We failed JIT'ing, so at this point we need to unregister poke 15406 * descriptors from subprogs, so that kernel is not attempting to 15407 * patch it anymore as we're freeing the subprog JIT memory. 15408 */ 15409 for (i = 0; i < prog->aux->size_poke_tab; i++) { 15410 map_ptr = prog->aux->poke_tab[i].tail_call.map; 15411 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 15412 } 15413 /* At this point we're guaranteed that poke descriptors are not 15414 * live anymore. We can just unlink its descriptor table as it's 15415 * released with the main prog. 15416 */ 15417 for (i = 0; i < env->subprog_cnt; i++) { 15418 if (!func[i]) 15419 continue; 15420 func[i]->aux->poke_tab = NULL; 15421 bpf_jit_free(func[i]); 15422 } 15423 kfree(func); 15424 out_undo_insn: 15425 /* cleanup main prog to be interpreted */ 15426 prog->jit_requested = 0; 15427 prog->blinding_requested = 0; 15428 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15429 if (!bpf_pseudo_call(insn)) 15430 continue; 15431 insn->off = 0; 15432 insn->imm = env->insn_aux_data[i].call_imm; 15433 } 15434 bpf_prog_jit_attempt_done(prog); 15435 return err; 15436 } 15437 15438 static int fixup_call_args(struct bpf_verifier_env *env) 15439 { 15440 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15441 struct bpf_prog *prog = env->prog; 15442 struct bpf_insn *insn = prog->insnsi; 15443 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 15444 int i, depth; 15445 #endif 15446 int err = 0; 15447 15448 if (env->prog->jit_requested && 15449 !bpf_prog_is_dev_bound(env->prog->aux)) { 15450 err = jit_subprogs(env); 15451 if (err == 0) 15452 return 0; 15453 if (err == -EFAULT) 15454 return err; 15455 } 15456 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15457 if (has_kfunc_call) { 15458 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 15459 return -EINVAL; 15460 } 15461 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 15462 /* When JIT fails the progs with bpf2bpf calls and tail_calls 15463 * have to be rejected, since interpreter doesn't support them yet. 15464 */ 15465 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 15466 return -EINVAL; 15467 } 15468 for (i = 0; i < prog->len; i++, insn++) { 15469 if (bpf_pseudo_func(insn)) { 15470 /* When JIT fails the progs with callback calls 15471 * have to be rejected, since interpreter doesn't support them yet. 15472 */ 15473 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 15474 return -EINVAL; 15475 } 15476 15477 if (!bpf_pseudo_call(insn)) 15478 continue; 15479 depth = get_callee_stack_depth(env, insn, i); 15480 if (depth < 0) 15481 return depth; 15482 bpf_patch_call_args(insn, depth); 15483 } 15484 err = 0; 15485 #endif 15486 return err; 15487 } 15488 15489 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 15490 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 15491 { 15492 const struct bpf_kfunc_desc *desc; 15493 15494 if (!insn->imm) { 15495 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 15496 return -EINVAL; 15497 } 15498 15499 /* insn->imm has the btf func_id. Replace it with 15500 * an address (relative to __bpf_call_base). 15501 */ 15502 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 15503 if (!desc) { 15504 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 15505 insn->imm); 15506 return -EFAULT; 15507 } 15508 15509 *cnt = 0; 15510 insn->imm = desc->imm; 15511 if (insn->off) 15512 return 0; 15513 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 15514 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15515 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15516 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 15517 15518 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 15519 insn_buf[1] = addr[0]; 15520 insn_buf[2] = addr[1]; 15521 insn_buf[3] = *insn; 15522 *cnt = 4; 15523 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 15524 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15525 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15526 15527 insn_buf[0] = addr[0]; 15528 insn_buf[1] = addr[1]; 15529 insn_buf[2] = *insn; 15530 *cnt = 3; 15531 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 15532 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 15533 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 15534 *cnt = 1; 15535 } 15536 return 0; 15537 } 15538 15539 /* Do various post-verification rewrites in a single program pass. 15540 * These rewrites simplify JIT and interpreter implementations. 15541 */ 15542 static int do_misc_fixups(struct bpf_verifier_env *env) 15543 { 15544 struct bpf_prog *prog = env->prog; 15545 enum bpf_attach_type eatype = prog->expected_attach_type; 15546 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15547 struct bpf_insn *insn = prog->insnsi; 15548 const struct bpf_func_proto *fn; 15549 const int insn_cnt = prog->len; 15550 const struct bpf_map_ops *ops; 15551 struct bpf_insn_aux_data *aux; 15552 struct bpf_insn insn_buf[16]; 15553 struct bpf_prog *new_prog; 15554 struct bpf_map *map_ptr; 15555 int i, ret, cnt, delta = 0; 15556 15557 for (i = 0; i < insn_cnt; i++, insn++) { 15558 /* Make divide-by-zero exceptions impossible. */ 15559 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 15560 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 15561 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 15562 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 15563 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 15564 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 15565 struct bpf_insn *patchlet; 15566 struct bpf_insn chk_and_div[] = { 15567 /* [R,W]x div 0 -> 0 */ 15568 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15569 BPF_JNE | BPF_K, insn->src_reg, 15570 0, 2, 0), 15571 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 15572 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15573 *insn, 15574 }; 15575 struct bpf_insn chk_and_mod[] = { 15576 /* [R,W]x mod 0 -> [R,W]x */ 15577 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15578 BPF_JEQ | BPF_K, insn->src_reg, 15579 0, 1 + (is64 ? 0 : 1), 0), 15580 *insn, 15581 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15582 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 15583 }; 15584 15585 patchlet = isdiv ? chk_and_div : chk_and_mod; 15586 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 15587 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 15588 15589 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 15590 if (!new_prog) 15591 return -ENOMEM; 15592 15593 delta += cnt - 1; 15594 env->prog = prog = new_prog; 15595 insn = new_prog->insnsi + i + delta; 15596 continue; 15597 } 15598 15599 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 15600 if (BPF_CLASS(insn->code) == BPF_LD && 15601 (BPF_MODE(insn->code) == BPF_ABS || 15602 BPF_MODE(insn->code) == BPF_IND)) { 15603 cnt = env->ops->gen_ld_abs(insn, insn_buf); 15604 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15605 verbose(env, "bpf verifier is misconfigured\n"); 15606 return -EINVAL; 15607 } 15608 15609 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15610 if (!new_prog) 15611 return -ENOMEM; 15612 15613 delta += cnt - 1; 15614 env->prog = prog = new_prog; 15615 insn = new_prog->insnsi + i + delta; 15616 continue; 15617 } 15618 15619 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 15620 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 15621 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 15622 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 15623 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 15624 struct bpf_insn *patch = &insn_buf[0]; 15625 bool issrc, isneg, isimm; 15626 u32 off_reg; 15627 15628 aux = &env->insn_aux_data[i + delta]; 15629 if (!aux->alu_state || 15630 aux->alu_state == BPF_ALU_NON_POINTER) 15631 continue; 15632 15633 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 15634 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 15635 BPF_ALU_SANITIZE_SRC; 15636 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 15637 15638 off_reg = issrc ? insn->src_reg : insn->dst_reg; 15639 if (isimm) { 15640 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15641 } else { 15642 if (isneg) 15643 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15644 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15645 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 15646 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 15647 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 15648 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 15649 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 15650 } 15651 if (!issrc) 15652 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 15653 insn->src_reg = BPF_REG_AX; 15654 if (isneg) 15655 insn->code = insn->code == code_add ? 15656 code_sub : code_add; 15657 *patch++ = *insn; 15658 if (issrc && isneg && !isimm) 15659 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15660 cnt = patch - insn_buf; 15661 15662 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15663 if (!new_prog) 15664 return -ENOMEM; 15665 15666 delta += cnt - 1; 15667 env->prog = prog = new_prog; 15668 insn = new_prog->insnsi + i + delta; 15669 continue; 15670 } 15671 15672 if (insn->code != (BPF_JMP | BPF_CALL)) 15673 continue; 15674 if (insn->src_reg == BPF_PSEUDO_CALL) 15675 continue; 15676 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15677 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 15678 if (ret) 15679 return ret; 15680 if (cnt == 0) 15681 continue; 15682 15683 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15684 if (!new_prog) 15685 return -ENOMEM; 15686 15687 delta += cnt - 1; 15688 env->prog = prog = new_prog; 15689 insn = new_prog->insnsi + i + delta; 15690 continue; 15691 } 15692 15693 if (insn->imm == BPF_FUNC_get_route_realm) 15694 prog->dst_needed = 1; 15695 if (insn->imm == BPF_FUNC_get_prandom_u32) 15696 bpf_user_rnd_init_once(); 15697 if (insn->imm == BPF_FUNC_override_return) 15698 prog->kprobe_override = 1; 15699 if (insn->imm == BPF_FUNC_tail_call) { 15700 /* If we tail call into other programs, we 15701 * cannot make any assumptions since they can 15702 * be replaced dynamically during runtime in 15703 * the program array. 15704 */ 15705 prog->cb_access = 1; 15706 if (!allow_tail_call_in_subprogs(env)) 15707 prog->aux->stack_depth = MAX_BPF_STACK; 15708 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 15709 15710 /* mark bpf_tail_call as different opcode to avoid 15711 * conditional branch in the interpreter for every normal 15712 * call and to prevent accidental JITing by JIT compiler 15713 * that doesn't support bpf_tail_call yet 15714 */ 15715 insn->imm = 0; 15716 insn->code = BPF_JMP | BPF_TAIL_CALL; 15717 15718 aux = &env->insn_aux_data[i + delta]; 15719 if (env->bpf_capable && !prog->blinding_requested && 15720 prog->jit_requested && 15721 !bpf_map_key_poisoned(aux) && 15722 !bpf_map_ptr_poisoned(aux) && 15723 !bpf_map_ptr_unpriv(aux)) { 15724 struct bpf_jit_poke_descriptor desc = { 15725 .reason = BPF_POKE_REASON_TAIL_CALL, 15726 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 15727 .tail_call.key = bpf_map_key_immediate(aux), 15728 .insn_idx = i + delta, 15729 }; 15730 15731 ret = bpf_jit_add_poke_descriptor(prog, &desc); 15732 if (ret < 0) { 15733 verbose(env, "adding tail call poke descriptor failed\n"); 15734 return ret; 15735 } 15736 15737 insn->imm = ret + 1; 15738 continue; 15739 } 15740 15741 if (!bpf_map_ptr_unpriv(aux)) 15742 continue; 15743 15744 /* instead of changing every JIT dealing with tail_call 15745 * emit two extra insns: 15746 * if (index >= max_entries) goto out; 15747 * index &= array->index_mask; 15748 * to avoid out-of-bounds cpu speculation 15749 */ 15750 if (bpf_map_ptr_poisoned(aux)) { 15751 verbose(env, "tail_call abusing map_ptr\n"); 15752 return -EINVAL; 15753 } 15754 15755 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15756 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 15757 map_ptr->max_entries, 2); 15758 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 15759 container_of(map_ptr, 15760 struct bpf_array, 15761 map)->index_mask); 15762 insn_buf[2] = *insn; 15763 cnt = 3; 15764 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15765 if (!new_prog) 15766 return -ENOMEM; 15767 15768 delta += cnt - 1; 15769 env->prog = prog = new_prog; 15770 insn = new_prog->insnsi + i + delta; 15771 continue; 15772 } 15773 15774 if (insn->imm == BPF_FUNC_timer_set_callback) { 15775 /* The verifier will process callback_fn as many times as necessary 15776 * with different maps and the register states prepared by 15777 * set_timer_callback_state will be accurate. 15778 * 15779 * The following use case is valid: 15780 * map1 is shared by prog1, prog2, prog3. 15781 * prog1 calls bpf_timer_init for some map1 elements 15782 * prog2 calls bpf_timer_set_callback for some map1 elements. 15783 * Those that were not bpf_timer_init-ed will return -EINVAL. 15784 * prog3 calls bpf_timer_start for some map1 elements. 15785 * Those that were not both bpf_timer_init-ed and 15786 * bpf_timer_set_callback-ed will return -EINVAL. 15787 */ 15788 struct bpf_insn ld_addrs[2] = { 15789 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 15790 }; 15791 15792 insn_buf[0] = ld_addrs[0]; 15793 insn_buf[1] = ld_addrs[1]; 15794 insn_buf[2] = *insn; 15795 cnt = 3; 15796 15797 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15798 if (!new_prog) 15799 return -ENOMEM; 15800 15801 delta += cnt - 1; 15802 env->prog = prog = new_prog; 15803 insn = new_prog->insnsi + i + delta; 15804 goto patch_call_imm; 15805 } 15806 15807 if (is_storage_get_function(insn->imm)) { 15808 if (!env->prog->aux->sleepable || 15809 env->insn_aux_data[i + delta].storage_get_func_atomic) 15810 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 15811 else 15812 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 15813 insn_buf[1] = *insn; 15814 cnt = 2; 15815 15816 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15817 if (!new_prog) 15818 return -ENOMEM; 15819 15820 delta += cnt - 1; 15821 env->prog = prog = new_prog; 15822 insn = new_prog->insnsi + i + delta; 15823 goto patch_call_imm; 15824 } 15825 15826 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 15827 * and other inlining handlers are currently limited to 64 bit 15828 * only. 15829 */ 15830 if (prog->jit_requested && BITS_PER_LONG == 64 && 15831 (insn->imm == BPF_FUNC_map_lookup_elem || 15832 insn->imm == BPF_FUNC_map_update_elem || 15833 insn->imm == BPF_FUNC_map_delete_elem || 15834 insn->imm == BPF_FUNC_map_push_elem || 15835 insn->imm == BPF_FUNC_map_pop_elem || 15836 insn->imm == BPF_FUNC_map_peek_elem || 15837 insn->imm == BPF_FUNC_redirect_map || 15838 insn->imm == BPF_FUNC_for_each_map_elem || 15839 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 15840 aux = &env->insn_aux_data[i + delta]; 15841 if (bpf_map_ptr_poisoned(aux)) 15842 goto patch_call_imm; 15843 15844 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15845 ops = map_ptr->ops; 15846 if (insn->imm == BPF_FUNC_map_lookup_elem && 15847 ops->map_gen_lookup) { 15848 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 15849 if (cnt == -EOPNOTSUPP) 15850 goto patch_map_ops_generic; 15851 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15852 verbose(env, "bpf verifier is misconfigured\n"); 15853 return -EINVAL; 15854 } 15855 15856 new_prog = bpf_patch_insn_data(env, i + delta, 15857 insn_buf, cnt); 15858 if (!new_prog) 15859 return -ENOMEM; 15860 15861 delta += cnt - 1; 15862 env->prog = prog = new_prog; 15863 insn = new_prog->insnsi + i + delta; 15864 continue; 15865 } 15866 15867 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 15868 (void *(*)(struct bpf_map *map, void *key))NULL)); 15869 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 15870 (int (*)(struct bpf_map *map, void *key))NULL)); 15871 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 15872 (int (*)(struct bpf_map *map, void *key, void *value, 15873 u64 flags))NULL)); 15874 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 15875 (int (*)(struct bpf_map *map, void *value, 15876 u64 flags))NULL)); 15877 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 15878 (int (*)(struct bpf_map *map, void *value))NULL)); 15879 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 15880 (int (*)(struct bpf_map *map, void *value))NULL)); 15881 BUILD_BUG_ON(!__same_type(ops->map_redirect, 15882 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 15883 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 15884 (int (*)(struct bpf_map *map, 15885 bpf_callback_t callback_fn, 15886 void *callback_ctx, 15887 u64 flags))NULL)); 15888 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 15889 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 15890 15891 patch_map_ops_generic: 15892 switch (insn->imm) { 15893 case BPF_FUNC_map_lookup_elem: 15894 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 15895 continue; 15896 case BPF_FUNC_map_update_elem: 15897 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 15898 continue; 15899 case BPF_FUNC_map_delete_elem: 15900 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 15901 continue; 15902 case BPF_FUNC_map_push_elem: 15903 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 15904 continue; 15905 case BPF_FUNC_map_pop_elem: 15906 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 15907 continue; 15908 case BPF_FUNC_map_peek_elem: 15909 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 15910 continue; 15911 case BPF_FUNC_redirect_map: 15912 insn->imm = BPF_CALL_IMM(ops->map_redirect); 15913 continue; 15914 case BPF_FUNC_for_each_map_elem: 15915 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 15916 continue; 15917 case BPF_FUNC_map_lookup_percpu_elem: 15918 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 15919 continue; 15920 } 15921 15922 goto patch_call_imm; 15923 } 15924 15925 /* Implement bpf_jiffies64 inline. */ 15926 if (prog->jit_requested && BITS_PER_LONG == 64 && 15927 insn->imm == BPF_FUNC_jiffies64) { 15928 struct bpf_insn ld_jiffies_addr[2] = { 15929 BPF_LD_IMM64(BPF_REG_0, 15930 (unsigned long)&jiffies), 15931 }; 15932 15933 insn_buf[0] = ld_jiffies_addr[0]; 15934 insn_buf[1] = ld_jiffies_addr[1]; 15935 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 15936 BPF_REG_0, 0); 15937 cnt = 3; 15938 15939 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 15940 cnt); 15941 if (!new_prog) 15942 return -ENOMEM; 15943 15944 delta += cnt - 1; 15945 env->prog = prog = new_prog; 15946 insn = new_prog->insnsi + i + delta; 15947 continue; 15948 } 15949 15950 /* Implement bpf_get_func_arg inline. */ 15951 if (prog_type == BPF_PROG_TYPE_TRACING && 15952 insn->imm == BPF_FUNC_get_func_arg) { 15953 /* Load nr_args from ctx - 8 */ 15954 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15955 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 15956 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 15957 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 15958 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 15959 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15960 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 15961 insn_buf[7] = BPF_JMP_A(1); 15962 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 15963 cnt = 9; 15964 15965 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15966 if (!new_prog) 15967 return -ENOMEM; 15968 15969 delta += cnt - 1; 15970 env->prog = prog = new_prog; 15971 insn = new_prog->insnsi + i + delta; 15972 continue; 15973 } 15974 15975 /* Implement bpf_get_func_ret inline. */ 15976 if (prog_type == BPF_PROG_TYPE_TRACING && 15977 insn->imm == BPF_FUNC_get_func_ret) { 15978 if (eatype == BPF_TRACE_FEXIT || 15979 eatype == BPF_MODIFY_RETURN) { 15980 /* Load nr_args from ctx - 8 */ 15981 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15982 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 15983 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 15984 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15985 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 15986 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 15987 cnt = 6; 15988 } else { 15989 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 15990 cnt = 1; 15991 } 15992 15993 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15994 if (!new_prog) 15995 return -ENOMEM; 15996 15997 delta += cnt - 1; 15998 env->prog = prog = new_prog; 15999 insn = new_prog->insnsi + i + delta; 16000 continue; 16001 } 16002 16003 /* Implement get_func_arg_cnt inline. */ 16004 if (prog_type == BPF_PROG_TYPE_TRACING && 16005 insn->imm == BPF_FUNC_get_func_arg_cnt) { 16006 /* Load nr_args from ctx - 8 */ 16007 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16008 16009 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16010 if (!new_prog) 16011 return -ENOMEM; 16012 16013 env->prog = prog = new_prog; 16014 insn = new_prog->insnsi + i + delta; 16015 continue; 16016 } 16017 16018 /* Implement bpf_get_func_ip inline. */ 16019 if (prog_type == BPF_PROG_TYPE_TRACING && 16020 insn->imm == BPF_FUNC_get_func_ip) { 16021 /* Load IP address from ctx - 16 */ 16022 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16023 16024 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16025 if (!new_prog) 16026 return -ENOMEM; 16027 16028 env->prog = prog = new_prog; 16029 insn = new_prog->insnsi + i + delta; 16030 continue; 16031 } 16032 16033 patch_call_imm: 16034 fn = env->ops->get_func_proto(insn->imm, env->prog); 16035 /* all functions that have prototype and verifier allowed 16036 * programs to call them, must be real in-kernel functions 16037 */ 16038 if (!fn->func) { 16039 verbose(env, 16040 "kernel subsystem misconfigured func %s#%d\n", 16041 func_id_name(insn->imm), insn->imm); 16042 return -EFAULT; 16043 } 16044 insn->imm = fn->func - __bpf_call_base; 16045 } 16046 16047 /* Since poke tab is now finalized, publish aux to tracker. */ 16048 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16049 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16050 if (!map_ptr->ops->map_poke_track || 16051 !map_ptr->ops->map_poke_untrack || 16052 !map_ptr->ops->map_poke_run) { 16053 verbose(env, "bpf verifier is misconfigured\n"); 16054 return -EINVAL; 16055 } 16056 16057 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16058 if (ret < 0) { 16059 verbose(env, "tracking tail call prog failed\n"); 16060 return ret; 16061 } 16062 } 16063 16064 sort_kfunc_descs_by_imm(env->prog); 16065 16066 return 0; 16067 } 16068 16069 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16070 int position, 16071 s32 stack_base, 16072 u32 callback_subprogno, 16073 u32 *cnt) 16074 { 16075 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16076 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16077 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16078 int reg_loop_max = BPF_REG_6; 16079 int reg_loop_cnt = BPF_REG_7; 16080 int reg_loop_ctx = BPF_REG_8; 16081 16082 struct bpf_prog *new_prog; 16083 u32 callback_start; 16084 u32 call_insn_offset; 16085 s32 callback_offset; 16086 16087 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16088 * be careful to modify this code in sync. 16089 */ 16090 struct bpf_insn insn_buf[] = { 16091 /* Return error and jump to the end of the patch if 16092 * expected number of iterations is too big. 16093 */ 16094 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16095 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16096 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16097 /* spill R6, R7, R8 to use these as loop vars */ 16098 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16099 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16100 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16101 /* initialize loop vars */ 16102 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16103 BPF_MOV32_IMM(reg_loop_cnt, 0), 16104 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16105 /* loop header, 16106 * if reg_loop_cnt >= reg_loop_max skip the loop body 16107 */ 16108 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16109 /* callback call, 16110 * correct callback offset would be set after patching 16111 */ 16112 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16113 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16114 BPF_CALL_REL(0), 16115 /* increment loop counter */ 16116 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16117 /* jump to loop header if callback returned 0 */ 16118 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16119 /* return value of bpf_loop, 16120 * set R0 to the number of iterations 16121 */ 16122 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16123 /* restore original values of R6, R7, R8 */ 16124 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16125 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16126 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16127 }; 16128 16129 *cnt = ARRAY_SIZE(insn_buf); 16130 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16131 if (!new_prog) 16132 return new_prog; 16133 16134 /* callback start is known only after patching */ 16135 callback_start = env->subprog_info[callback_subprogno].start; 16136 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16137 call_insn_offset = position + 12; 16138 callback_offset = callback_start - call_insn_offset - 1; 16139 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16140 16141 return new_prog; 16142 } 16143 16144 static bool is_bpf_loop_call(struct bpf_insn *insn) 16145 { 16146 return insn->code == (BPF_JMP | BPF_CALL) && 16147 insn->src_reg == 0 && 16148 insn->imm == BPF_FUNC_loop; 16149 } 16150 16151 /* For all sub-programs in the program (including main) check 16152 * insn_aux_data to see if there are bpf_loop calls that require 16153 * inlining. If such calls are found the calls are replaced with a 16154 * sequence of instructions produced by `inline_bpf_loop` function and 16155 * subprog stack_depth is increased by the size of 3 registers. 16156 * This stack space is used to spill values of the R6, R7, R8. These 16157 * registers are used to store the loop bound, counter and context 16158 * variables. 16159 */ 16160 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16161 { 16162 struct bpf_subprog_info *subprogs = env->subprog_info; 16163 int i, cur_subprog = 0, cnt, delta = 0; 16164 struct bpf_insn *insn = env->prog->insnsi; 16165 int insn_cnt = env->prog->len; 16166 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16167 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16168 u16 stack_depth_extra = 0; 16169 16170 for (i = 0; i < insn_cnt; i++, insn++) { 16171 struct bpf_loop_inline_state *inline_state = 16172 &env->insn_aux_data[i + delta].loop_inline_state; 16173 16174 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16175 struct bpf_prog *new_prog; 16176 16177 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16178 new_prog = inline_bpf_loop(env, 16179 i + delta, 16180 -(stack_depth + stack_depth_extra), 16181 inline_state->callback_subprogno, 16182 &cnt); 16183 if (!new_prog) 16184 return -ENOMEM; 16185 16186 delta += cnt - 1; 16187 env->prog = new_prog; 16188 insn = new_prog->insnsi + i + delta; 16189 } 16190 16191 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16192 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16193 cur_subprog++; 16194 stack_depth = subprogs[cur_subprog].stack_depth; 16195 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16196 stack_depth_extra = 0; 16197 } 16198 } 16199 16200 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16201 16202 return 0; 16203 } 16204 16205 static void free_states(struct bpf_verifier_env *env) 16206 { 16207 struct bpf_verifier_state_list *sl, *sln; 16208 int i; 16209 16210 sl = env->free_list; 16211 while (sl) { 16212 sln = sl->next; 16213 free_verifier_state(&sl->state, false); 16214 kfree(sl); 16215 sl = sln; 16216 } 16217 env->free_list = NULL; 16218 16219 if (!env->explored_states) 16220 return; 16221 16222 for (i = 0; i < state_htab_size(env); i++) { 16223 sl = env->explored_states[i]; 16224 16225 while (sl) { 16226 sln = sl->next; 16227 free_verifier_state(&sl->state, false); 16228 kfree(sl); 16229 sl = sln; 16230 } 16231 env->explored_states[i] = NULL; 16232 } 16233 } 16234 16235 static int do_check_common(struct bpf_verifier_env *env, int subprog) 16236 { 16237 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16238 struct bpf_verifier_state *state; 16239 struct bpf_reg_state *regs; 16240 int ret, i; 16241 16242 env->prev_linfo = NULL; 16243 env->pass_cnt++; 16244 16245 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 16246 if (!state) 16247 return -ENOMEM; 16248 state->curframe = 0; 16249 state->speculative = false; 16250 state->branches = 1; 16251 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 16252 if (!state->frame[0]) { 16253 kfree(state); 16254 return -ENOMEM; 16255 } 16256 env->cur_state = state; 16257 init_func_state(env, state->frame[0], 16258 BPF_MAIN_FUNC /* callsite */, 16259 0 /* frameno */, 16260 subprog); 16261 state->first_insn_idx = env->subprog_info[subprog].start; 16262 state->last_insn_idx = -1; 16263 16264 regs = state->frame[state->curframe]->regs; 16265 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 16266 ret = btf_prepare_func_args(env, subprog, regs); 16267 if (ret) 16268 goto out; 16269 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 16270 if (regs[i].type == PTR_TO_CTX) 16271 mark_reg_known_zero(env, regs, i); 16272 else if (regs[i].type == SCALAR_VALUE) 16273 mark_reg_unknown(env, regs, i); 16274 else if (base_type(regs[i].type) == PTR_TO_MEM) { 16275 const u32 mem_size = regs[i].mem_size; 16276 16277 mark_reg_known_zero(env, regs, i); 16278 regs[i].mem_size = mem_size; 16279 regs[i].id = ++env->id_gen; 16280 } 16281 } 16282 } else { 16283 /* 1st arg to a function */ 16284 regs[BPF_REG_1].type = PTR_TO_CTX; 16285 mark_reg_known_zero(env, regs, BPF_REG_1); 16286 ret = btf_check_subprog_arg_match(env, subprog, regs); 16287 if (ret == -EFAULT) 16288 /* unlikely verifier bug. abort. 16289 * ret == 0 and ret < 0 are sadly acceptable for 16290 * main() function due to backward compatibility. 16291 * Like socket filter program may be written as: 16292 * int bpf_prog(struct pt_regs *ctx) 16293 * and never dereference that ctx in the program. 16294 * 'struct pt_regs' is a type mismatch for socket 16295 * filter that should be using 'struct __sk_buff'. 16296 */ 16297 goto out; 16298 } 16299 16300 ret = do_check(env); 16301 out: 16302 /* check for NULL is necessary, since cur_state can be freed inside 16303 * do_check() under memory pressure. 16304 */ 16305 if (env->cur_state) { 16306 free_verifier_state(env->cur_state, true); 16307 env->cur_state = NULL; 16308 } 16309 while (!pop_stack(env, NULL, NULL, false)); 16310 if (!ret && pop_log) 16311 bpf_vlog_reset(&env->log, 0); 16312 free_states(env); 16313 return ret; 16314 } 16315 16316 /* Verify all global functions in a BPF program one by one based on their BTF. 16317 * All global functions must pass verification. Otherwise the whole program is rejected. 16318 * Consider: 16319 * int bar(int); 16320 * int foo(int f) 16321 * { 16322 * return bar(f); 16323 * } 16324 * int bar(int b) 16325 * { 16326 * ... 16327 * } 16328 * foo() will be verified first for R1=any_scalar_value. During verification it 16329 * will be assumed that bar() already verified successfully and call to bar() 16330 * from foo() will be checked for type match only. Later bar() will be verified 16331 * independently to check that it's safe for R1=any_scalar_value. 16332 */ 16333 static int do_check_subprogs(struct bpf_verifier_env *env) 16334 { 16335 struct bpf_prog_aux *aux = env->prog->aux; 16336 int i, ret; 16337 16338 if (!aux->func_info) 16339 return 0; 16340 16341 for (i = 1; i < env->subprog_cnt; i++) { 16342 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 16343 continue; 16344 env->insn_idx = env->subprog_info[i].start; 16345 WARN_ON_ONCE(env->insn_idx == 0); 16346 ret = do_check_common(env, i); 16347 if (ret) { 16348 return ret; 16349 } else if (env->log.level & BPF_LOG_LEVEL) { 16350 verbose(env, 16351 "Func#%d is safe for any args that match its prototype\n", 16352 i); 16353 } 16354 } 16355 return 0; 16356 } 16357 16358 static int do_check_main(struct bpf_verifier_env *env) 16359 { 16360 int ret; 16361 16362 env->insn_idx = 0; 16363 ret = do_check_common(env, 0); 16364 if (!ret) 16365 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16366 return ret; 16367 } 16368 16369 16370 static void print_verification_stats(struct bpf_verifier_env *env) 16371 { 16372 int i; 16373 16374 if (env->log.level & BPF_LOG_STATS) { 16375 verbose(env, "verification time %lld usec\n", 16376 div_u64(env->verification_time, 1000)); 16377 verbose(env, "stack depth "); 16378 for (i = 0; i < env->subprog_cnt; i++) { 16379 u32 depth = env->subprog_info[i].stack_depth; 16380 16381 verbose(env, "%d", depth); 16382 if (i + 1 < env->subprog_cnt) 16383 verbose(env, "+"); 16384 } 16385 verbose(env, "\n"); 16386 } 16387 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 16388 "total_states %d peak_states %d mark_read %d\n", 16389 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 16390 env->max_states_per_insn, env->total_states, 16391 env->peak_states, env->longest_mark_read_walk); 16392 } 16393 16394 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 16395 { 16396 const struct btf_type *t, *func_proto; 16397 const struct bpf_struct_ops *st_ops; 16398 const struct btf_member *member; 16399 struct bpf_prog *prog = env->prog; 16400 u32 btf_id, member_idx; 16401 const char *mname; 16402 16403 if (!prog->gpl_compatible) { 16404 verbose(env, "struct ops programs must have a GPL compatible license\n"); 16405 return -EINVAL; 16406 } 16407 16408 btf_id = prog->aux->attach_btf_id; 16409 st_ops = bpf_struct_ops_find(btf_id); 16410 if (!st_ops) { 16411 verbose(env, "attach_btf_id %u is not a supported struct\n", 16412 btf_id); 16413 return -ENOTSUPP; 16414 } 16415 16416 t = st_ops->type; 16417 member_idx = prog->expected_attach_type; 16418 if (member_idx >= btf_type_vlen(t)) { 16419 verbose(env, "attach to invalid member idx %u of struct %s\n", 16420 member_idx, st_ops->name); 16421 return -EINVAL; 16422 } 16423 16424 member = &btf_type_member(t)[member_idx]; 16425 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 16426 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 16427 NULL); 16428 if (!func_proto) { 16429 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 16430 mname, member_idx, st_ops->name); 16431 return -EINVAL; 16432 } 16433 16434 if (st_ops->check_member) { 16435 int err = st_ops->check_member(t, member); 16436 16437 if (err) { 16438 verbose(env, "attach to unsupported member %s of struct %s\n", 16439 mname, st_ops->name); 16440 return err; 16441 } 16442 } 16443 16444 prog->aux->attach_func_proto = func_proto; 16445 prog->aux->attach_func_name = mname; 16446 env->ops = st_ops->verifier_ops; 16447 16448 return 0; 16449 } 16450 #define SECURITY_PREFIX "security_" 16451 16452 static int check_attach_modify_return(unsigned long addr, const char *func_name) 16453 { 16454 if (within_error_injection_list(addr) || 16455 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 16456 return 0; 16457 16458 return -EINVAL; 16459 } 16460 16461 /* list of non-sleepable functions that are otherwise on 16462 * ALLOW_ERROR_INJECTION list 16463 */ 16464 BTF_SET_START(btf_non_sleepable_error_inject) 16465 /* Three functions below can be called from sleepable and non-sleepable context. 16466 * Assume non-sleepable from bpf safety point of view. 16467 */ 16468 BTF_ID(func, __filemap_add_folio) 16469 BTF_ID(func, should_fail_alloc_page) 16470 BTF_ID(func, should_failslab) 16471 BTF_SET_END(btf_non_sleepable_error_inject) 16472 16473 static int check_non_sleepable_error_inject(u32 btf_id) 16474 { 16475 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 16476 } 16477 16478 int bpf_check_attach_target(struct bpf_verifier_log *log, 16479 const struct bpf_prog *prog, 16480 const struct bpf_prog *tgt_prog, 16481 u32 btf_id, 16482 struct bpf_attach_target_info *tgt_info) 16483 { 16484 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 16485 const char prefix[] = "btf_trace_"; 16486 int ret = 0, subprog = -1, i; 16487 const struct btf_type *t; 16488 bool conservative = true; 16489 const char *tname; 16490 struct btf *btf; 16491 long addr = 0; 16492 16493 if (!btf_id) { 16494 bpf_log(log, "Tracing programs must provide btf_id\n"); 16495 return -EINVAL; 16496 } 16497 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 16498 if (!btf) { 16499 bpf_log(log, 16500 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 16501 return -EINVAL; 16502 } 16503 t = btf_type_by_id(btf, btf_id); 16504 if (!t) { 16505 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 16506 return -EINVAL; 16507 } 16508 tname = btf_name_by_offset(btf, t->name_off); 16509 if (!tname) { 16510 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 16511 return -EINVAL; 16512 } 16513 if (tgt_prog) { 16514 struct bpf_prog_aux *aux = tgt_prog->aux; 16515 16516 for (i = 0; i < aux->func_info_cnt; i++) 16517 if (aux->func_info[i].type_id == btf_id) { 16518 subprog = i; 16519 break; 16520 } 16521 if (subprog == -1) { 16522 bpf_log(log, "Subprog %s doesn't exist\n", tname); 16523 return -EINVAL; 16524 } 16525 conservative = aux->func_info_aux[subprog].unreliable; 16526 if (prog_extension) { 16527 if (conservative) { 16528 bpf_log(log, 16529 "Cannot replace static functions\n"); 16530 return -EINVAL; 16531 } 16532 if (!prog->jit_requested) { 16533 bpf_log(log, 16534 "Extension programs should be JITed\n"); 16535 return -EINVAL; 16536 } 16537 } 16538 if (!tgt_prog->jited) { 16539 bpf_log(log, "Can attach to only JITed progs\n"); 16540 return -EINVAL; 16541 } 16542 if (tgt_prog->type == prog->type) { 16543 /* Cannot fentry/fexit another fentry/fexit program. 16544 * Cannot attach program extension to another extension. 16545 * It's ok to attach fentry/fexit to extension program. 16546 */ 16547 bpf_log(log, "Cannot recursively attach\n"); 16548 return -EINVAL; 16549 } 16550 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 16551 prog_extension && 16552 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 16553 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 16554 /* Program extensions can extend all program types 16555 * except fentry/fexit. The reason is the following. 16556 * The fentry/fexit programs are used for performance 16557 * analysis, stats and can be attached to any program 16558 * type except themselves. When extension program is 16559 * replacing XDP function it is necessary to allow 16560 * performance analysis of all functions. Both original 16561 * XDP program and its program extension. Hence 16562 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 16563 * allowed. If extending of fentry/fexit was allowed it 16564 * would be possible to create long call chain 16565 * fentry->extension->fentry->extension beyond 16566 * reasonable stack size. Hence extending fentry is not 16567 * allowed. 16568 */ 16569 bpf_log(log, "Cannot extend fentry/fexit\n"); 16570 return -EINVAL; 16571 } 16572 } else { 16573 if (prog_extension) { 16574 bpf_log(log, "Cannot replace kernel functions\n"); 16575 return -EINVAL; 16576 } 16577 } 16578 16579 switch (prog->expected_attach_type) { 16580 case BPF_TRACE_RAW_TP: 16581 if (tgt_prog) { 16582 bpf_log(log, 16583 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 16584 return -EINVAL; 16585 } 16586 if (!btf_type_is_typedef(t)) { 16587 bpf_log(log, "attach_btf_id %u is not a typedef\n", 16588 btf_id); 16589 return -EINVAL; 16590 } 16591 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 16592 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 16593 btf_id, tname); 16594 return -EINVAL; 16595 } 16596 tname += sizeof(prefix) - 1; 16597 t = btf_type_by_id(btf, t->type); 16598 if (!btf_type_is_ptr(t)) 16599 /* should never happen in valid vmlinux build */ 16600 return -EINVAL; 16601 t = btf_type_by_id(btf, t->type); 16602 if (!btf_type_is_func_proto(t)) 16603 /* should never happen in valid vmlinux build */ 16604 return -EINVAL; 16605 16606 break; 16607 case BPF_TRACE_ITER: 16608 if (!btf_type_is_func(t)) { 16609 bpf_log(log, "attach_btf_id %u is not a function\n", 16610 btf_id); 16611 return -EINVAL; 16612 } 16613 t = btf_type_by_id(btf, t->type); 16614 if (!btf_type_is_func_proto(t)) 16615 return -EINVAL; 16616 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16617 if (ret) 16618 return ret; 16619 break; 16620 default: 16621 if (!prog_extension) 16622 return -EINVAL; 16623 fallthrough; 16624 case BPF_MODIFY_RETURN: 16625 case BPF_LSM_MAC: 16626 case BPF_LSM_CGROUP: 16627 case BPF_TRACE_FENTRY: 16628 case BPF_TRACE_FEXIT: 16629 if (!btf_type_is_func(t)) { 16630 bpf_log(log, "attach_btf_id %u is not a function\n", 16631 btf_id); 16632 return -EINVAL; 16633 } 16634 if (prog_extension && 16635 btf_check_type_match(log, prog, btf, t)) 16636 return -EINVAL; 16637 t = btf_type_by_id(btf, t->type); 16638 if (!btf_type_is_func_proto(t)) 16639 return -EINVAL; 16640 16641 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 16642 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 16643 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 16644 return -EINVAL; 16645 16646 if (tgt_prog && conservative) 16647 t = NULL; 16648 16649 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16650 if (ret < 0) 16651 return ret; 16652 16653 if (tgt_prog) { 16654 if (subprog == 0) 16655 addr = (long) tgt_prog->bpf_func; 16656 else 16657 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 16658 } else { 16659 addr = kallsyms_lookup_name(tname); 16660 if (!addr) { 16661 bpf_log(log, 16662 "The address of function %s cannot be found\n", 16663 tname); 16664 return -ENOENT; 16665 } 16666 } 16667 16668 if (prog->aux->sleepable) { 16669 ret = -EINVAL; 16670 switch (prog->type) { 16671 case BPF_PROG_TYPE_TRACING: 16672 16673 /* fentry/fexit/fmod_ret progs can be sleepable if they are 16674 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 16675 */ 16676 if (!check_non_sleepable_error_inject(btf_id) && 16677 within_error_injection_list(addr)) 16678 ret = 0; 16679 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 16680 * in the fmodret id set with the KF_SLEEPABLE flag. 16681 */ 16682 else { 16683 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 16684 16685 if (flags && (*flags & KF_SLEEPABLE)) 16686 ret = 0; 16687 } 16688 break; 16689 case BPF_PROG_TYPE_LSM: 16690 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 16691 * Only some of them are sleepable. 16692 */ 16693 if (bpf_lsm_is_sleepable_hook(btf_id)) 16694 ret = 0; 16695 break; 16696 default: 16697 break; 16698 } 16699 if (ret) { 16700 bpf_log(log, "%s is not sleepable\n", tname); 16701 return ret; 16702 } 16703 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 16704 if (tgt_prog) { 16705 bpf_log(log, "can't modify return codes of BPF programs\n"); 16706 return -EINVAL; 16707 } 16708 ret = -EINVAL; 16709 if (btf_kfunc_is_modify_return(btf, btf_id) || 16710 !check_attach_modify_return(addr, tname)) 16711 ret = 0; 16712 if (ret) { 16713 bpf_log(log, "%s() is not modifiable\n", tname); 16714 return ret; 16715 } 16716 } 16717 16718 break; 16719 } 16720 tgt_info->tgt_addr = addr; 16721 tgt_info->tgt_name = tname; 16722 tgt_info->tgt_type = t; 16723 return 0; 16724 } 16725 16726 BTF_SET_START(btf_id_deny) 16727 BTF_ID_UNUSED 16728 #ifdef CONFIG_SMP 16729 BTF_ID(func, migrate_disable) 16730 BTF_ID(func, migrate_enable) 16731 #endif 16732 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 16733 BTF_ID(func, rcu_read_unlock_strict) 16734 #endif 16735 BTF_SET_END(btf_id_deny) 16736 16737 static int check_attach_btf_id(struct bpf_verifier_env *env) 16738 { 16739 struct bpf_prog *prog = env->prog; 16740 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 16741 struct bpf_attach_target_info tgt_info = {}; 16742 u32 btf_id = prog->aux->attach_btf_id; 16743 struct bpf_trampoline *tr; 16744 int ret; 16745 u64 key; 16746 16747 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 16748 if (prog->aux->sleepable) 16749 /* attach_btf_id checked to be zero already */ 16750 return 0; 16751 verbose(env, "Syscall programs can only be sleepable\n"); 16752 return -EINVAL; 16753 } 16754 16755 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 16756 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 16757 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 16758 return -EINVAL; 16759 } 16760 16761 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 16762 return check_struct_ops_btf_id(env); 16763 16764 if (prog->type != BPF_PROG_TYPE_TRACING && 16765 prog->type != BPF_PROG_TYPE_LSM && 16766 prog->type != BPF_PROG_TYPE_EXT) 16767 return 0; 16768 16769 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 16770 if (ret) 16771 return ret; 16772 16773 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 16774 /* to make freplace equivalent to their targets, they need to 16775 * inherit env->ops and expected_attach_type for the rest of the 16776 * verification 16777 */ 16778 env->ops = bpf_verifier_ops[tgt_prog->type]; 16779 prog->expected_attach_type = tgt_prog->expected_attach_type; 16780 } 16781 16782 /* store info about the attachment target that will be used later */ 16783 prog->aux->attach_func_proto = tgt_info.tgt_type; 16784 prog->aux->attach_func_name = tgt_info.tgt_name; 16785 16786 if (tgt_prog) { 16787 prog->aux->saved_dst_prog_type = tgt_prog->type; 16788 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 16789 } 16790 16791 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 16792 prog->aux->attach_btf_trace = true; 16793 return 0; 16794 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 16795 if (!bpf_iter_prog_supported(prog)) 16796 return -EINVAL; 16797 return 0; 16798 } 16799 16800 if (prog->type == BPF_PROG_TYPE_LSM) { 16801 ret = bpf_lsm_verify_prog(&env->log, prog); 16802 if (ret < 0) 16803 return ret; 16804 } else if (prog->type == BPF_PROG_TYPE_TRACING && 16805 btf_id_set_contains(&btf_id_deny, btf_id)) { 16806 return -EINVAL; 16807 } 16808 16809 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 16810 tr = bpf_trampoline_get(key, &tgt_info); 16811 if (!tr) 16812 return -ENOMEM; 16813 16814 prog->aux->dst_trampoline = tr; 16815 return 0; 16816 } 16817 16818 struct btf *bpf_get_btf_vmlinux(void) 16819 { 16820 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 16821 mutex_lock(&bpf_verifier_lock); 16822 if (!btf_vmlinux) 16823 btf_vmlinux = btf_parse_vmlinux(); 16824 mutex_unlock(&bpf_verifier_lock); 16825 } 16826 return btf_vmlinux; 16827 } 16828 16829 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 16830 { 16831 u64 start_time = ktime_get_ns(); 16832 struct bpf_verifier_env *env; 16833 struct bpf_verifier_log *log; 16834 int i, len, ret = -EINVAL; 16835 bool is_priv; 16836 16837 /* no program is valid */ 16838 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 16839 return -EINVAL; 16840 16841 /* 'struct bpf_verifier_env' can be global, but since it's not small, 16842 * allocate/free it every time bpf_check() is called 16843 */ 16844 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 16845 if (!env) 16846 return -ENOMEM; 16847 log = &env->log; 16848 16849 len = (*prog)->len; 16850 env->insn_aux_data = 16851 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 16852 ret = -ENOMEM; 16853 if (!env->insn_aux_data) 16854 goto err_free_env; 16855 for (i = 0; i < len; i++) 16856 env->insn_aux_data[i].orig_idx = i; 16857 env->prog = *prog; 16858 env->ops = bpf_verifier_ops[env->prog->type]; 16859 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 16860 is_priv = bpf_capable(); 16861 16862 bpf_get_btf_vmlinux(); 16863 16864 /* grab the mutex to protect few globals used by verifier */ 16865 if (!is_priv) 16866 mutex_lock(&bpf_verifier_lock); 16867 16868 if (attr->log_level || attr->log_buf || attr->log_size) { 16869 /* user requested verbose verifier output 16870 * and supplied buffer to store the verification trace 16871 */ 16872 log->level = attr->log_level; 16873 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 16874 log->len_total = attr->log_size; 16875 16876 /* log attributes have to be sane */ 16877 if (!bpf_verifier_log_attr_valid(log)) { 16878 ret = -EINVAL; 16879 goto err_unlock; 16880 } 16881 } 16882 16883 mark_verifier_state_clean(env); 16884 16885 if (IS_ERR(btf_vmlinux)) { 16886 /* Either gcc or pahole or kernel are broken. */ 16887 verbose(env, "in-kernel BTF is malformed\n"); 16888 ret = PTR_ERR(btf_vmlinux); 16889 goto skip_full_check; 16890 } 16891 16892 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 16893 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 16894 env->strict_alignment = true; 16895 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 16896 env->strict_alignment = false; 16897 16898 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 16899 env->allow_uninit_stack = bpf_allow_uninit_stack(); 16900 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 16901 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 16902 env->bpf_capable = bpf_capable(); 16903 env->rcu_tag_supported = btf_vmlinux && 16904 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 16905 16906 if (is_priv) 16907 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 16908 16909 env->explored_states = kvcalloc(state_htab_size(env), 16910 sizeof(struct bpf_verifier_state_list *), 16911 GFP_USER); 16912 ret = -ENOMEM; 16913 if (!env->explored_states) 16914 goto skip_full_check; 16915 16916 ret = add_subprog_and_kfunc(env); 16917 if (ret < 0) 16918 goto skip_full_check; 16919 16920 ret = check_subprogs(env); 16921 if (ret < 0) 16922 goto skip_full_check; 16923 16924 ret = check_btf_info(env, attr, uattr); 16925 if (ret < 0) 16926 goto skip_full_check; 16927 16928 ret = check_attach_btf_id(env); 16929 if (ret) 16930 goto skip_full_check; 16931 16932 ret = resolve_pseudo_ldimm64(env); 16933 if (ret < 0) 16934 goto skip_full_check; 16935 16936 if (bpf_prog_is_dev_bound(env->prog->aux)) { 16937 ret = bpf_prog_offload_verifier_prep(env->prog); 16938 if (ret) 16939 goto skip_full_check; 16940 } 16941 16942 ret = check_cfg(env); 16943 if (ret < 0) 16944 goto skip_full_check; 16945 16946 ret = do_check_subprogs(env); 16947 ret = ret ?: do_check_main(env); 16948 16949 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 16950 ret = bpf_prog_offload_finalize(env); 16951 16952 skip_full_check: 16953 kvfree(env->explored_states); 16954 16955 if (ret == 0) 16956 ret = check_max_stack_depth(env); 16957 16958 /* instruction rewrites happen after this point */ 16959 if (ret == 0) 16960 ret = optimize_bpf_loop(env); 16961 16962 if (is_priv) { 16963 if (ret == 0) 16964 opt_hard_wire_dead_code_branches(env); 16965 if (ret == 0) 16966 ret = opt_remove_dead_code(env); 16967 if (ret == 0) 16968 ret = opt_remove_nops(env); 16969 } else { 16970 if (ret == 0) 16971 sanitize_dead_code(env); 16972 } 16973 16974 if (ret == 0) 16975 /* program is valid, convert *(u32*)(ctx + off) accesses */ 16976 ret = convert_ctx_accesses(env); 16977 16978 if (ret == 0) 16979 ret = do_misc_fixups(env); 16980 16981 /* do 32-bit optimization after insn patching has done so those patched 16982 * insns could be handled correctly. 16983 */ 16984 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 16985 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 16986 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 16987 : false; 16988 } 16989 16990 if (ret == 0) 16991 ret = fixup_call_args(env); 16992 16993 env->verification_time = ktime_get_ns() - start_time; 16994 print_verification_stats(env); 16995 env->prog->aux->verified_insns = env->insn_processed; 16996 16997 if (log->level && bpf_verifier_log_full(log)) 16998 ret = -ENOSPC; 16999 if (log->level && !log->ubuf) { 17000 ret = -EFAULT; 17001 goto err_release_maps; 17002 } 17003 17004 if (ret) 17005 goto err_release_maps; 17006 17007 if (env->used_map_cnt) { 17008 /* if program passed verifier, update used_maps in bpf_prog_info */ 17009 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 17010 sizeof(env->used_maps[0]), 17011 GFP_KERNEL); 17012 17013 if (!env->prog->aux->used_maps) { 17014 ret = -ENOMEM; 17015 goto err_release_maps; 17016 } 17017 17018 memcpy(env->prog->aux->used_maps, env->used_maps, 17019 sizeof(env->used_maps[0]) * env->used_map_cnt); 17020 env->prog->aux->used_map_cnt = env->used_map_cnt; 17021 } 17022 if (env->used_btf_cnt) { 17023 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17024 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17025 sizeof(env->used_btfs[0]), 17026 GFP_KERNEL); 17027 if (!env->prog->aux->used_btfs) { 17028 ret = -ENOMEM; 17029 goto err_release_maps; 17030 } 17031 17032 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17033 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17034 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17035 } 17036 if (env->used_map_cnt || env->used_btf_cnt) { 17037 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17038 * bpf_ld_imm64 instructions 17039 */ 17040 convert_pseudo_ld_imm64(env); 17041 } 17042 17043 adjust_btf_func(env); 17044 17045 err_release_maps: 17046 if (!env->prog->aux->used_maps) 17047 /* if we didn't copy map pointers into bpf_prog_info, release 17048 * them now. Otherwise free_used_maps() will release them. 17049 */ 17050 release_maps(env); 17051 if (!env->prog->aux->used_btfs) 17052 release_btfs(env); 17053 17054 /* extension progs temporarily inherit the attach_type of their targets 17055 for verification purposes, so set it back to zero before returning 17056 */ 17057 if (env->prog->type == BPF_PROG_TYPE_EXT) 17058 env->prog->expected_attach_type = 0; 17059 17060 *prog = env->prog; 17061 err_unlock: 17062 if (!is_priv) 17063 mutex_unlock(&bpf_verifier_lock); 17064 vfree(env->insn_aux_data); 17065 err_free_env: 17066 kfree(env); 17067 return ret; 17068 } 17069