xref: /openbmc/linux/kernel/bpf/verifier.c (revision d4fffba4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 	struct btf_field *kptr_field;
266 	u8 uninit_dynptr_regno;
267 };
268 
269 struct btf *btf_vmlinux;
270 
271 static DEFINE_MUTEX(bpf_verifier_lock);
272 
273 static const struct bpf_line_info *
274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 	const struct bpf_line_info *linfo;
277 	const struct bpf_prog *prog;
278 	u32 i, nr_linfo;
279 
280 	prog = env->prog;
281 	nr_linfo = prog->aux->nr_linfo;
282 
283 	if (!nr_linfo || insn_off >= prog->len)
284 		return NULL;
285 
286 	linfo = prog->aux->linfo;
287 	for (i = 1; i < nr_linfo; i++)
288 		if (insn_off < linfo[i].insn_off)
289 			break;
290 
291 	return &linfo[i - 1];
292 }
293 
294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 		       va_list args)
296 {
297 	unsigned int n;
298 
299 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300 
301 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 		  "verifier log line truncated - local buffer too short\n");
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306 
307 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 		return;
309 	}
310 
311 	n = min(log->len_total - log->len_used - 1, n);
312 	log->kbuf[n] = '\0';
313 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 		log->len_used += n;
315 	else
316 		log->ubuf = NULL;
317 }
318 
319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 	char zero = 0;
322 
323 	if (!bpf_verifier_log_needed(log))
324 		return;
325 
326 	log->len_used = new_pos;
327 	if (put_user(zero, log->ubuf + new_pos))
328 		log->ubuf = NULL;
329 }
330 
331 /* log_level controls verbosity level of eBPF verifier.
332  * bpf_verifier_log_write() is used to dump the verification trace to the log,
333  * so the user can figure out what's wrong with the program
334  */
335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 					   const char *fmt, ...)
337 {
338 	va_list args;
339 
340 	if (!bpf_verifier_log_needed(&env->log))
341 		return;
342 
343 	va_start(args, fmt);
344 	bpf_verifier_vlog(&env->log, fmt, args);
345 	va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348 
349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 	struct bpf_verifier_env *env = private_data;
352 	va_list args;
353 
354 	if (!bpf_verifier_log_needed(&env->log))
355 		return;
356 
357 	va_start(args, fmt);
358 	bpf_verifier_vlog(&env->log, fmt, args);
359 	va_end(args);
360 }
361 
362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 			    const char *fmt, ...)
364 {
365 	va_list args;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	va_start(args, fmt);
371 	bpf_verifier_vlog(log, fmt, args);
372 	va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375 
376 static const char *ltrim(const char *s)
377 {
378 	while (isspace(*s))
379 		s++;
380 
381 	return s;
382 }
383 
384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 					 u32 insn_off,
386 					 const char *prefix_fmt, ...)
387 {
388 	const struct bpf_line_info *linfo;
389 
390 	if (!bpf_verifier_log_needed(&env->log))
391 		return;
392 
393 	linfo = find_linfo(env, insn_off);
394 	if (!linfo || linfo == env->prev_linfo)
395 		return;
396 
397 	if (prefix_fmt) {
398 		va_list args;
399 
400 		va_start(args, prefix_fmt);
401 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 		va_end(args);
403 	}
404 
405 	verbose(env, "%s\n",
406 		ltrim(btf_name_by_offset(env->prog->aux->btf,
407 					 linfo->line_off)));
408 
409 	env->prev_linfo = linfo;
410 }
411 
412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 				   struct bpf_reg_state *reg,
414 				   struct tnum *range, const char *ctx,
415 				   const char *reg_name)
416 {
417 	char tn_buf[48];
418 
419 	verbose(env, "At %s the register %s ", ctx, reg_name);
420 	if (!tnum_is_unknown(reg->var_off)) {
421 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 		verbose(env, "has value %s", tn_buf);
423 	} else {
424 		verbose(env, "has unknown scalar value");
425 	}
426 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 	verbose(env, " should have been in %s\n", tn_buf);
428 }
429 
430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 	type = base_type(type);
433 	return type == PTR_TO_PACKET ||
434 	       type == PTR_TO_PACKET_META;
435 }
436 
437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 	return type == PTR_TO_SOCKET ||
440 		type == PTR_TO_SOCK_COMMON ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_XDP_SOCK;
443 }
444 
445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 	return type == PTR_TO_SOCKET ||
448 		type == PTR_TO_TCP_SOCK ||
449 		type == PTR_TO_MAP_VALUE ||
450 		type == PTR_TO_MAP_KEY ||
451 		type == PTR_TO_SOCK_COMMON;
452 }
453 
454 static bool type_is_ptr_alloc_obj(u32 type)
455 {
456 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
457 }
458 
459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
460 {
461 	struct btf_record *rec = NULL;
462 	struct btf_struct_meta *meta;
463 
464 	if (reg->type == PTR_TO_MAP_VALUE) {
465 		rec = reg->map_ptr->record;
466 	} else if (type_is_ptr_alloc_obj(reg->type)) {
467 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
468 		if (meta)
469 			rec = meta->record;
470 	}
471 	return rec;
472 }
473 
474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
475 {
476 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
477 }
478 
479 static bool type_is_rdonly_mem(u32 type)
480 {
481 	return type & MEM_RDONLY;
482 }
483 
484 static bool type_may_be_null(u32 type)
485 {
486 	return type & PTR_MAYBE_NULL;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
522 {
523 	return func_id == BPF_FUNC_dynptr_data;
524 }
525 
526 static bool is_callback_calling_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_for_each_map_elem ||
529 	       func_id == BPF_FUNC_timer_set_callback ||
530 	       func_id == BPF_FUNC_find_vma ||
531 	       func_id == BPF_FUNC_loop ||
532 	       func_id == BPF_FUNC_user_ringbuf_drain;
533 }
534 
535 static bool is_storage_get_function(enum bpf_func_id func_id)
536 {
537 	return func_id == BPF_FUNC_sk_storage_get ||
538 	       func_id == BPF_FUNC_inode_storage_get ||
539 	       func_id == BPF_FUNC_task_storage_get ||
540 	       func_id == BPF_FUNC_cgrp_storage_get;
541 }
542 
543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
544 					const struct bpf_map *map)
545 {
546 	int ref_obj_uses = 0;
547 
548 	if (is_ptr_cast_function(func_id))
549 		ref_obj_uses++;
550 	if (is_acquire_function(func_id, map))
551 		ref_obj_uses++;
552 	if (is_dynptr_ref_function(func_id))
553 		ref_obj_uses++;
554 
555 	return ref_obj_uses > 1;
556 }
557 
558 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
559 {
560 	return BPF_CLASS(insn->code) == BPF_STX &&
561 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
562 	       insn->imm == BPF_CMPXCHG;
563 }
564 
565 /* string representation of 'enum bpf_reg_type'
566  *
567  * Note that reg_type_str() can not appear more than once in a single verbose()
568  * statement.
569  */
570 static const char *reg_type_str(struct bpf_verifier_env *env,
571 				enum bpf_reg_type type)
572 {
573 	char postfix[16] = {0}, prefix[64] = {0};
574 	static const char * const str[] = {
575 		[NOT_INIT]		= "?",
576 		[SCALAR_VALUE]		= "scalar",
577 		[PTR_TO_CTX]		= "ctx",
578 		[CONST_PTR_TO_MAP]	= "map_ptr",
579 		[PTR_TO_MAP_VALUE]	= "map_value",
580 		[PTR_TO_STACK]		= "fp",
581 		[PTR_TO_PACKET]		= "pkt",
582 		[PTR_TO_PACKET_META]	= "pkt_meta",
583 		[PTR_TO_PACKET_END]	= "pkt_end",
584 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
585 		[PTR_TO_SOCKET]		= "sock",
586 		[PTR_TO_SOCK_COMMON]	= "sock_common",
587 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
588 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
589 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
590 		[PTR_TO_BTF_ID]		= "ptr_",
591 		[PTR_TO_MEM]		= "mem",
592 		[PTR_TO_BUF]		= "buf",
593 		[PTR_TO_FUNC]		= "func",
594 		[PTR_TO_MAP_KEY]	= "map_key",
595 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
596 	};
597 
598 	if (type & PTR_MAYBE_NULL) {
599 		if (base_type(type) == PTR_TO_BTF_ID)
600 			strncpy(postfix, "or_null_", 16);
601 		else
602 			strncpy(postfix, "_or_null", 16);
603 	}
604 
605 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
606 		 type & MEM_RDONLY ? "rdonly_" : "",
607 		 type & MEM_RINGBUF ? "ringbuf_" : "",
608 		 type & MEM_USER ? "user_" : "",
609 		 type & MEM_PERCPU ? "percpu_" : "",
610 		 type & MEM_RCU ? "rcu_" : "",
611 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
612 		 type & PTR_TRUSTED ? "trusted_" : ""
613 	);
614 
615 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
616 		 prefix, str[base_type(type)], postfix);
617 	return env->type_str_buf;
618 }
619 
620 static char slot_type_char[] = {
621 	[STACK_INVALID]	= '?',
622 	[STACK_SPILL]	= 'r',
623 	[STACK_MISC]	= 'm',
624 	[STACK_ZERO]	= '0',
625 	[STACK_DYNPTR]	= 'd',
626 };
627 
628 static void print_liveness(struct bpf_verifier_env *env,
629 			   enum bpf_reg_liveness live)
630 {
631 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
632 	    verbose(env, "_");
633 	if (live & REG_LIVE_READ)
634 		verbose(env, "r");
635 	if (live & REG_LIVE_WRITTEN)
636 		verbose(env, "w");
637 	if (live & REG_LIVE_DONE)
638 		verbose(env, "D");
639 }
640 
641 static int get_spi(s32 off)
642 {
643 	return (-off - 1) / BPF_REG_SIZE;
644 }
645 
646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
647 {
648 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
649 
650 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
651 	 * within [0, allocated_stack).
652 	 *
653 	 * Please note that the spi grows downwards. For example, a dynptr
654 	 * takes the size of two stack slots; the first slot will be at
655 	 * spi and the second slot will be at spi - 1.
656 	 */
657 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
658 }
659 
660 static struct bpf_func_state *func(struct bpf_verifier_env *env,
661 				   const struct bpf_reg_state *reg)
662 {
663 	struct bpf_verifier_state *cur = env->cur_state;
664 
665 	return cur->frame[reg->frameno];
666 }
667 
668 static const char *kernel_type_name(const struct btf* btf, u32 id)
669 {
670 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
671 }
672 
673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
674 {
675 	env->scratched_regs |= 1U << regno;
676 }
677 
678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
679 {
680 	env->scratched_stack_slots |= 1ULL << spi;
681 }
682 
683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
684 {
685 	return (env->scratched_regs >> regno) & 1;
686 }
687 
688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
689 {
690 	return (env->scratched_stack_slots >> regno) & 1;
691 }
692 
693 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
694 {
695 	return env->scratched_regs || env->scratched_stack_slots;
696 }
697 
698 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
699 {
700 	env->scratched_regs = 0U;
701 	env->scratched_stack_slots = 0ULL;
702 }
703 
704 /* Used for printing the entire verifier state. */
705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
706 {
707 	env->scratched_regs = ~0U;
708 	env->scratched_stack_slots = ~0ULL;
709 }
710 
711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
712 {
713 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
714 	case DYNPTR_TYPE_LOCAL:
715 		return BPF_DYNPTR_TYPE_LOCAL;
716 	case DYNPTR_TYPE_RINGBUF:
717 		return BPF_DYNPTR_TYPE_RINGBUF;
718 	default:
719 		return BPF_DYNPTR_TYPE_INVALID;
720 	}
721 }
722 
723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
724 {
725 	return type == BPF_DYNPTR_TYPE_RINGBUF;
726 }
727 
728 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
729 			      enum bpf_dynptr_type type,
730 			      bool first_slot);
731 
732 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
733 				struct bpf_reg_state *reg);
734 
735 static void mark_dynptr_stack_regs(struct bpf_reg_state *sreg1,
736 				   struct bpf_reg_state *sreg2,
737 				   enum bpf_dynptr_type type)
738 {
739 	__mark_dynptr_reg(sreg1, type, true);
740 	__mark_dynptr_reg(sreg2, type, false);
741 }
742 
743 static void mark_dynptr_cb_reg(struct bpf_reg_state *reg,
744 			       enum bpf_dynptr_type type)
745 {
746 	__mark_dynptr_reg(reg, type, true);
747 }
748 
749 
750 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
751 				   enum bpf_arg_type arg_type, int insn_idx)
752 {
753 	struct bpf_func_state *state = func(env, reg);
754 	enum bpf_dynptr_type type;
755 	int spi, i, id;
756 
757 	spi = get_spi(reg->off);
758 
759 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
760 		return -EINVAL;
761 
762 	for (i = 0; i < BPF_REG_SIZE; i++) {
763 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
764 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
765 	}
766 
767 	type = arg_to_dynptr_type(arg_type);
768 	if (type == BPF_DYNPTR_TYPE_INVALID)
769 		return -EINVAL;
770 
771 	mark_dynptr_stack_regs(&state->stack[spi].spilled_ptr,
772 			       &state->stack[spi - 1].spilled_ptr, type);
773 
774 	if (dynptr_type_refcounted(type)) {
775 		/* The id is used to track proper releasing */
776 		id = acquire_reference_state(env, insn_idx);
777 		if (id < 0)
778 			return id;
779 
780 		state->stack[spi].spilled_ptr.ref_obj_id = id;
781 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
782 	}
783 
784 	return 0;
785 }
786 
787 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
788 {
789 	struct bpf_func_state *state = func(env, reg);
790 	int spi, i;
791 
792 	spi = get_spi(reg->off);
793 
794 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
795 		return -EINVAL;
796 
797 	for (i = 0; i < BPF_REG_SIZE; i++) {
798 		state->stack[spi].slot_type[i] = STACK_INVALID;
799 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
800 	}
801 
802 	/* Invalidate any slices associated with this dynptr */
803 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
804 		WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
805 
806 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
807 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
808 	return 0;
809 }
810 
811 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
812 {
813 	struct bpf_func_state *state = func(env, reg);
814 	int spi, i;
815 
816 	if (reg->type == CONST_PTR_TO_DYNPTR)
817 		return false;
818 
819 	spi = get_spi(reg->off);
820 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
821 		return true;
822 
823 	for (i = 0; i < BPF_REG_SIZE; i++) {
824 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
825 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
826 			return false;
827 	}
828 
829 	return true;
830 }
831 
832 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
833 {
834 	struct bpf_func_state *state = func(env, reg);
835 	int spi;
836 	int i;
837 
838 	/* This already represents first slot of initialized bpf_dynptr */
839 	if (reg->type == CONST_PTR_TO_DYNPTR)
840 		return true;
841 
842 	spi = get_spi(reg->off);
843 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
844 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
845 		return false;
846 
847 	for (i = 0; i < BPF_REG_SIZE; i++) {
848 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
849 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
850 			return false;
851 	}
852 
853 	return true;
854 }
855 
856 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
857 				    enum bpf_arg_type arg_type)
858 {
859 	struct bpf_func_state *state = func(env, reg);
860 	enum bpf_dynptr_type dynptr_type;
861 	int spi;
862 
863 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
864 	if (arg_type == ARG_PTR_TO_DYNPTR)
865 		return true;
866 
867 	dynptr_type = arg_to_dynptr_type(arg_type);
868 	if (reg->type == CONST_PTR_TO_DYNPTR) {
869 		return reg->dynptr.type == dynptr_type;
870 	} else {
871 		spi = get_spi(reg->off);
872 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
873 	}
874 }
875 
876 /* The reg state of a pointer or a bounded scalar was saved when
877  * it was spilled to the stack.
878  */
879 static bool is_spilled_reg(const struct bpf_stack_state *stack)
880 {
881 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
882 }
883 
884 static void scrub_spilled_slot(u8 *stype)
885 {
886 	if (*stype != STACK_INVALID)
887 		*stype = STACK_MISC;
888 }
889 
890 static void print_verifier_state(struct bpf_verifier_env *env,
891 				 const struct bpf_func_state *state,
892 				 bool print_all)
893 {
894 	const struct bpf_reg_state *reg;
895 	enum bpf_reg_type t;
896 	int i;
897 
898 	if (state->frameno)
899 		verbose(env, " frame%d:", state->frameno);
900 	for (i = 0; i < MAX_BPF_REG; i++) {
901 		reg = &state->regs[i];
902 		t = reg->type;
903 		if (t == NOT_INIT)
904 			continue;
905 		if (!print_all && !reg_scratched(env, i))
906 			continue;
907 		verbose(env, " R%d", i);
908 		print_liveness(env, reg->live);
909 		verbose(env, "=");
910 		if (t == SCALAR_VALUE && reg->precise)
911 			verbose(env, "P");
912 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
913 		    tnum_is_const(reg->var_off)) {
914 			/* reg->off should be 0 for SCALAR_VALUE */
915 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
916 			verbose(env, "%lld", reg->var_off.value + reg->off);
917 		} else {
918 			const char *sep = "";
919 
920 			verbose(env, "%s", reg_type_str(env, t));
921 			if (base_type(t) == PTR_TO_BTF_ID)
922 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
923 			verbose(env, "(");
924 /*
925  * _a stands for append, was shortened to avoid multiline statements below.
926  * This macro is used to output a comma separated list of attributes.
927  */
928 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
929 
930 			if (reg->id)
931 				verbose_a("id=%d", reg->id);
932 			if (reg->ref_obj_id)
933 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
934 			if (t != SCALAR_VALUE)
935 				verbose_a("off=%d", reg->off);
936 			if (type_is_pkt_pointer(t))
937 				verbose_a("r=%d", reg->range);
938 			else if (base_type(t) == CONST_PTR_TO_MAP ||
939 				 base_type(t) == PTR_TO_MAP_KEY ||
940 				 base_type(t) == PTR_TO_MAP_VALUE)
941 				verbose_a("ks=%d,vs=%d",
942 					  reg->map_ptr->key_size,
943 					  reg->map_ptr->value_size);
944 			if (tnum_is_const(reg->var_off)) {
945 				/* Typically an immediate SCALAR_VALUE, but
946 				 * could be a pointer whose offset is too big
947 				 * for reg->off
948 				 */
949 				verbose_a("imm=%llx", reg->var_off.value);
950 			} else {
951 				if (reg->smin_value != reg->umin_value &&
952 				    reg->smin_value != S64_MIN)
953 					verbose_a("smin=%lld", (long long)reg->smin_value);
954 				if (reg->smax_value != reg->umax_value &&
955 				    reg->smax_value != S64_MAX)
956 					verbose_a("smax=%lld", (long long)reg->smax_value);
957 				if (reg->umin_value != 0)
958 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
959 				if (reg->umax_value != U64_MAX)
960 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
961 				if (!tnum_is_unknown(reg->var_off)) {
962 					char tn_buf[48];
963 
964 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
965 					verbose_a("var_off=%s", tn_buf);
966 				}
967 				if (reg->s32_min_value != reg->smin_value &&
968 				    reg->s32_min_value != S32_MIN)
969 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
970 				if (reg->s32_max_value != reg->smax_value &&
971 				    reg->s32_max_value != S32_MAX)
972 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
973 				if (reg->u32_min_value != reg->umin_value &&
974 				    reg->u32_min_value != U32_MIN)
975 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
976 				if (reg->u32_max_value != reg->umax_value &&
977 				    reg->u32_max_value != U32_MAX)
978 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
979 			}
980 #undef verbose_a
981 
982 			verbose(env, ")");
983 		}
984 	}
985 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
986 		char types_buf[BPF_REG_SIZE + 1];
987 		bool valid = false;
988 		int j;
989 
990 		for (j = 0; j < BPF_REG_SIZE; j++) {
991 			if (state->stack[i].slot_type[j] != STACK_INVALID)
992 				valid = true;
993 			types_buf[j] = slot_type_char[
994 					state->stack[i].slot_type[j]];
995 		}
996 		types_buf[BPF_REG_SIZE] = 0;
997 		if (!valid)
998 			continue;
999 		if (!print_all && !stack_slot_scratched(env, i))
1000 			continue;
1001 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1002 		print_liveness(env, state->stack[i].spilled_ptr.live);
1003 		if (is_spilled_reg(&state->stack[i])) {
1004 			reg = &state->stack[i].spilled_ptr;
1005 			t = reg->type;
1006 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1007 			if (t == SCALAR_VALUE && reg->precise)
1008 				verbose(env, "P");
1009 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1010 				verbose(env, "%lld", reg->var_off.value + reg->off);
1011 		} else {
1012 			verbose(env, "=%s", types_buf);
1013 		}
1014 	}
1015 	if (state->acquired_refs && state->refs[0].id) {
1016 		verbose(env, " refs=%d", state->refs[0].id);
1017 		for (i = 1; i < state->acquired_refs; i++)
1018 			if (state->refs[i].id)
1019 				verbose(env, ",%d", state->refs[i].id);
1020 	}
1021 	if (state->in_callback_fn)
1022 		verbose(env, " cb");
1023 	if (state->in_async_callback_fn)
1024 		verbose(env, " async_cb");
1025 	verbose(env, "\n");
1026 	mark_verifier_state_clean(env);
1027 }
1028 
1029 static inline u32 vlog_alignment(u32 pos)
1030 {
1031 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1032 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1033 }
1034 
1035 static void print_insn_state(struct bpf_verifier_env *env,
1036 			     const struct bpf_func_state *state)
1037 {
1038 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1039 		/* remove new line character */
1040 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1041 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1042 	} else {
1043 		verbose(env, "%d:", env->insn_idx);
1044 	}
1045 	print_verifier_state(env, state, false);
1046 }
1047 
1048 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1049  * small to hold src. This is different from krealloc since we don't want to preserve
1050  * the contents of dst.
1051  *
1052  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1053  * not be allocated.
1054  */
1055 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1056 {
1057 	size_t bytes;
1058 
1059 	if (ZERO_OR_NULL_PTR(src))
1060 		goto out;
1061 
1062 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1063 		return NULL;
1064 
1065 	if (ksize(dst) < ksize(src)) {
1066 		kfree(dst);
1067 		dst = kmalloc_track_caller(kmalloc_size_roundup(bytes), flags);
1068 		if (!dst)
1069 			return NULL;
1070 	}
1071 
1072 	memcpy(dst, src, bytes);
1073 out:
1074 	return dst ? dst : ZERO_SIZE_PTR;
1075 }
1076 
1077 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1078  * small to hold new_n items. new items are zeroed out if the array grows.
1079  *
1080  * Contrary to krealloc_array, does not free arr if new_n is zero.
1081  */
1082 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1083 {
1084 	size_t alloc_size;
1085 	void *new_arr;
1086 
1087 	if (!new_n || old_n == new_n)
1088 		goto out;
1089 
1090 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1091 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1092 	if (!new_arr) {
1093 		kfree(arr);
1094 		return NULL;
1095 	}
1096 	arr = new_arr;
1097 
1098 	if (new_n > old_n)
1099 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1100 
1101 out:
1102 	return arr ? arr : ZERO_SIZE_PTR;
1103 }
1104 
1105 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1106 {
1107 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1108 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1109 	if (!dst->refs)
1110 		return -ENOMEM;
1111 
1112 	dst->acquired_refs = src->acquired_refs;
1113 	return 0;
1114 }
1115 
1116 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1117 {
1118 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1119 
1120 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1121 				GFP_KERNEL);
1122 	if (!dst->stack)
1123 		return -ENOMEM;
1124 
1125 	dst->allocated_stack = src->allocated_stack;
1126 	return 0;
1127 }
1128 
1129 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1130 {
1131 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1132 				    sizeof(struct bpf_reference_state));
1133 	if (!state->refs)
1134 		return -ENOMEM;
1135 
1136 	state->acquired_refs = n;
1137 	return 0;
1138 }
1139 
1140 static int grow_stack_state(struct bpf_func_state *state, int size)
1141 {
1142 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1143 
1144 	if (old_n >= n)
1145 		return 0;
1146 
1147 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1148 	if (!state->stack)
1149 		return -ENOMEM;
1150 
1151 	state->allocated_stack = size;
1152 	return 0;
1153 }
1154 
1155 /* Acquire a pointer id from the env and update the state->refs to include
1156  * this new pointer reference.
1157  * On success, returns a valid pointer id to associate with the register
1158  * On failure, returns a negative errno.
1159  */
1160 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1161 {
1162 	struct bpf_func_state *state = cur_func(env);
1163 	int new_ofs = state->acquired_refs;
1164 	int id, err;
1165 
1166 	err = resize_reference_state(state, state->acquired_refs + 1);
1167 	if (err)
1168 		return err;
1169 	id = ++env->id_gen;
1170 	state->refs[new_ofs].id = id;
1171 	state->refs[new_ofs].insn_idx = insn_idx;
1172 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1173 
1174 	return id;
1175 }
1176 
1177 /* release function corresponding to acquire_reference_state(). Idempotent. */
1178 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1179 {
1180 	int i, last_idx;
1181 
1182 	last_idx = state->acquired_refs - 1;
1183 	for (i = 0; i < state->acquired_refs; i++) {
1184 		if (state->refs[i].id == ptr_id) {
1185 			/* Cannot release caller references in callbacks */
1186 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1187 				return -EINVAL;
1188 			if (last_idx && i != last_idx)
1189 				memcpy(&state->refs[i], &state->refs[last_idx],
1190 				       sizeof(*state->refs));
1191 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1192 			state->acquired_refs--;
1193 			return 0;
1194 		}
1195 	}
1196 	return -EINVAL;
1197 }
1198 
1199 static void free_func_state(struct bpf_func_state *state)
1200 {
1201 	if (!state)
1202 		return;
1203 	kfree(state->refs);
1204 	kfree(state->stack);
1205 	kfree(state);
1206 }
1207 
1208 static void clear_jmp_history(struct bpf_verifier_state *state)
1209 {
1210 	kfree(state->jmp_history);
1211 	state->jmp_history = NULL;
1212 	state->jmp_history_cnt = 0;
1213 }
1214 
1215 static void free_verifier_state(struct bpf_verifier_state *state,
1216 				bool free_self)
1217 {
1218 	int i;
1219 
1220 	for (i = 0; i <= state->curframe; i++) {
1221 		free_func_state(state->frame[i]);
1222 		state->frame[i] = NULL;
1223 	}
1224 	clear_jmp_history(state);
1225 	if (free_self)
1226 		kfree(state);
1227 }
1228 
1229 /* copy verifier state from src to dst growing dst stack space
1230  * when necessary to accommodate larger src stack
1231  */
1232 static int copy_func_state(struct bpf_func_state *dst,
1233 			   const struct bpf_func_state *src)
1234 {
1235 	int err;
1236 
1237 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1238 	err = copy_reference_state(dst, src);
1239 	if (err)
1240 		return err;
1241 	return copy_stack_state(dst, src);
1242 }
1243 
1244 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1245 			       const struct bpf_verifier_state *src)
1246 {
1247 	struct bpf_func_state *dst;
1248 	int i, err;
1249 
1250 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1251 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1252 					    GFP_USER);
1253 	if (!dst_state->jmp_history)
1254 		return -ENOMEM;
1255 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1256 
1257 	/* if dst has more stack frames then src frame, free them */
1258 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1259 		free_func_state(dst_state->frame[i]);
1260 		dst_state->frame[i] = NULL;
1261 	}
1262 	dst_state->speculative = src->speculative;
1263 	dst_state->active_rcu_lock = src->active_rcu_lock;
1264 	dst_state->curframe = src->curframe;
1265 	dst_state->active_lock.ptr = src->active_lock.ptr;
1266 	dst_state->active_lock.id = src->active_lock.id;
1267 	dst_state->branches = src->branches;
1268 	dst_state->parent = src->parent;
1269 	dst_state->first_insn_idx = src->first_insn_idx;
1270 	dst_state->last_insn_idx = src->last_insn_idx;
1271 	for (i = 0; i <= src->curframe; i++) {
1272 		dst = dst_state->frame[i];
1273 		if (!dst) {
1274 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1275 			if (!dst)
1276 				return -ENOMEM;
1277 			dst_state->frame[i] = dst;
1278 		}
1279 		err = copy_func_state(dst, src->frame[i]);
1280 		if (err)
1281 			return err;
1282 	}
1283 	return 0;
1284 }
1285 
1286 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1287 {
1288 	while (st) {
1289 		u32 br = --st->branches;
1290 
1291 		/* WARN_ON(br > 1) technically makes sense here,
1292 		 * but see comment in push_stack(), hence:
1293 		 */
1294 		WARN_ONCE((int)br < 0,
1295 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1296 			  br);
1297 		if (br)
1298 			break;
1299 		st = st->parent;
1300 	}
1301 }
1302 
1303 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1304 		     int *insn_idx, bool pop_log)
1305 {
1306 	struct bpf_verifier_state *cur = env->cur_state;
1307 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1308 	int err;
1309 
1310 	if (env->head == NULL)
1311 		return -ENOENT;
1312 
1313 	if (cur) {
1314 		err = copy_verifier_state(cur, &head->st);
1315 		if (err)
1316 			return err;
1317 	}
1318 	if (pop_log)
1319 		bpf_vlog_reset(&env->log, head->log_pos);
1320 	if (insn_idx)
1321 		*insn_idx = head->insn_idx;
1322 	if (prev_insn_idx)
1323 		*prev_insn_idx = head->prev_insn_idx;
1324 	elem = head->next;
1325 	free_verifier_state(&head->st, false);
1326 	kfree(head);
1327 	env->head = elem;
1328 	env->stack_size--;
1329 	return 0;
1330 }
1331 
1332 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1333 					     int insn_idx, int prev_insn_idx,
1334 					     bool speculative)
1335 {
1336 	struct bpf_verifier_state *cur = env->cur_state;
1337 	struct bpf_verifier_stack_elem *elem;
1338 	int err;
1339 
1340 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1341 	if (!elem)
1342 		goto err;
1343 
1344 	elem->insn_idx = insn_idx;
1345 	elem->prev_insn_idx = prev_insn_idx;
1346 	elem->next = env->head;
1347 	elem->log_pos = env->log.len_used;
1348 	env->head = elem;
1349 	env->stack_size++;
1350 	err = copy_verifier_state(&elem->st, cur);
1351 	if (err)
1352 		goto err;
1353 	elem->st.speculative |= speculative;
1354 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1355 		verbose(env, "The sequence of %d jumps is too complex.\n",
1356 			env->stack_size);
1357 		goto err;
1358 	}
1359 	if (elem->st.parent) {
1360 		++elem->st.parent->branches;
1361 		/* WARN_ON(branches > 2) technically makes sense here,
1362 		 * but
1363 		 * 1. speculative states will bump 'branches' for non-branch
1364 		 * instructions
1365 		 * 2. is_state_visited() heuristics may decide not to create
1366 		 * a new state for a sequence of branches and all such current
1367 		 * and cloned states will be pointing to a single parent state
1368 		 * which might have large 'branches' count.
1369 		 */
1370 	}
1371 	return &elem->st;
1372 err:
1373 	free_verifier_state(env->cur_state, true);
1374 	env->cur_state = NULL;
1375 	/* pop all elements and return */
1376 	while (!pop_stack(env, NULL, NULL, false));
1377 	return NULL;
1378 }
1379 
1380 #define CALLER_SAVED_REGS 6
1381 static const int caller_saved[CALLER_SAVED_REGS] = {
1382 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1383 };
1384 
1385 /* This helper doesn't clear reg->id */
1386 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1387 {
1388 	reg->var_off = tnum_const(imm);
1389 	reg->smin_value = (s64)imm;
1390 	reg->smax_value = (s64)imm;
1391 	reg->umin_value = imm;
1392 	reg->umax_value = imm;
1393 
1394 	reg->s32_min_value = (s32)imm;
1395 	reg->s32_max_value = (s32)imm;
1396 	reg->u32_min_value = (u32)imm;
1397 	reg->u32_max_value = (u32)imm;
1398 }
1399 
1400 /* Mark the unknown part of a register (variable offset or scalar value) as
1401  * known to have the value @imm.
1402  */
1403 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1404 {
1405 	/* Clear off and union(map_ptr, range) */
1406 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1407 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1408 	reg->id = 0;
1409 	reg->ref_obj_id = 0;
1410 	___mark_reg_known(reg, imm);
1411 }
1412 
1413 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1414 {
1415 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1416 	reg->s32_min_value = (s32)imm;
1417 	reg->s32_max_value = (s32)imm;
1418 	reg->u32_min_value = (u32)imm;
1419 	reg->u32_max_value = (u32)imm;
1420 }
1421 
1422 /* Mark the 'variable offset' part of a register as zero.  This should be
1423  * used only on registers holding a pointer type.
1424  */
1425 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1426 {
1427 	__mark_reg_known(reg, 0);
1428 }
1429 
1430 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1431 {
1432 	__mark_reg_known(reg, 0);
1433 	reg->type = SCALAR_VALUE;
1434 }
1435 
1436 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1437 				struct bpf_reg_state *regs, u32 regno)
1438 {
1439 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1440 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1441 		/* Something bad happened, let's kill all regs */
1442 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1443 			__mark_reg_not_init(env, regs + regno);
1444 		return;
1445 	}
1446 	__mark_reg_known_zero(regs + regno);
1447 }
1448 
1449 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1450 			      bool first_slot)
1451 {
1452 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1453 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1454 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1455 	 */
1456 	__mark_reg_known_zero(reg);
1457 	reg->type = CONST_PTR_TO_DYNPTR;
1458 	reg->dynptr.type = type;
1459 	reg->dynptr.first_slot = first_slot;
1460 }
1461 
1462 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1463 {
1464 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1465 		const struct bpf_map *map = reg->map_ptr;
1466 
1467 		if (map->inner_map_meta) {
1468 			reg->type = CONST_PTR_TO_MAP;
1469 			reg->map_ptr = map->inner_map_meta;
1470 			/* transfer reg's id which is unique for every map_lookup_elem
1471 			 * as UID of the inner map.
1472 			 */
1473 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1474 				reg->map_uid = reg->id;
1475 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1476 			reg->type = PTR_TO_XDP_SOCK;
1477 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1478 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1479 			reg->type = PTR_TO_SOCKET;
1480 		} else {
1481 			reg->type = PTR_TO_MAP_VALUE;
1482 		}
1483 		return;
1484 	}
1485 
1486 	reg->type &= ~PTR_MAYBE_NULL;
1487 }
1488 
1489 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1490 {
1491 	return type_is_pkt_pointer(reg->type);
1492 }
1493 
1494 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1495 {
1496 	return reg_is_pkt_pointer(reg) ||
1497 	       reg->type == PTR_TO_PACKET_END;
1498 }
1499 
1500 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1501 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1502 				    enum bpf_reg_type which)
1503 {
1504 	/* The register can already have a range from prior markings.
1505 	 * This is fine as long as it hasn't been advanced from its
1506 	 * origin.
1507 	 */
1508 	return reg->type == which &&
1509 	       reg->id == 0 &&
1510 	       reg->off == 0 &&
1511 	       tnum_equals_const(reg->var_off, 0);
1512 }
1513 
1514 /* Reset the min/max bounds of a register */
1515 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1516 {
1517 	reg->smin_value = S64_MIN;
1518 	reg->smax_value = S64_MAX;
1519 	reg->umin_value = 0;
1520 	reg->umax_value = U64_MAX;
1521 
1522 	reg->s32_min_value = S32_MIN;
1523 	reg->s32_max_value = S32_MAX;
1524 	reg->u32_min_value = 0;
1525 	reg->u32_max_value = U32_MAX;
1526 }
1527 
1528 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1529 {
1530 	reg->smin_value = S64_MIN;
1531 	reg->smax_value = S64_MAX;
1532 	reg->umin_value = 0;
1533 	reg->umax_value = U64_MAX;
1534 }
1535 
1536 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1537 {
1538 	reg->s32_min_value = S32_MIN;
1539 	reg->s32_max_value = S32_MAX;
1540 	reg->u32_min_value = 0;
1541 	reg->u32_max_value = U32_MAX;
1542 }
1543 
1544 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1545 {
1546 	struct tnum var32_off = tnum_subreg(reg->var_off);
1547 
1548 	/* min signed is max(sign bit) | min(other bits) */
1549 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1550 			var32_off.value | (var32_off.mask & S32_MIN));
1551 	/* max signed is min(sign bit) | max(other bits) */
1552 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1553 			var32_off.value | (var32_off.mask & S32_MAX));
1554 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1555 	reg->u32_max_value = min(reg->u32_max_value,
1556 				 (u32)(var32_off.value | var32_off.mask));
1557 }
1558 
1559 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1560 {
1561 	/* min signed is max(sign bit) | min(other bits) */
1562 	reg->smin_value = max_t(s64, reg->smin_value,
1563 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1564 	/* max signed is min(sign bit) | max(other bits) */
1565 	reg->smax_value = min_t(s64, reg->smax_value,
1566 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1567 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1568 	reg->umax_value = min(reg->umax_value,
1569 			      reg->var_off.value | reg->var_off.mask);
1570 }
1571 
1572 static void __update_reg_bounds(struct bpf_reg_state *reg)
1573 {
1574 	__update_reg32_bounds(reg);
1575 	__update_reg64_bounds(reg);
1576 }
1577 
1578 /* Uses signed min/max values to inform unsigned, and vice-versa */
1579 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1580 {
1581 	/* Learn sign from signed bounds.
1582 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1583 	 * are the same, so combine.  This works even in the negative case, e.g.
1584 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1585 	 */
1586 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1587 		reg->s32_min_value = reg->u32_min_value =
1588 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1589 		reg->s32_max_value = reg->u32_max_value =
1590 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1591 		return;
1592 	}
1593 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1594 	 * boundary, so we must be careful.
1595 	 */
1596 	if ((s32)reg->u32_max_value >= 0) {
1597 		/* Positive.  We can't learn anything from the smin, but smax
1598 		 * is positive, hence safe.
1599 		 */
1600 		reg->s32_min_value = reg->u32_min_value;
1601 		reg->s32_max_value = reg->u32_max_value =
1602 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1603 	} else if ((s32)reg->u32_min_value < 0) {
1604 		/* Negative.  We can't learn anything from the smax, but smin
1605 		 * is negative, hence safe.
1606 		 */
1607 		reg->s32_min_value = reg->u32_min_value =
1608 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1609 		reg->s32_max_value = reg->u32_max_value;
1610 	}
1611 }
1612 
1613 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1614 {
1615 	/* Learn sign from signed bounds.
1616 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1617 	 * are the same, so combine.  This works even in the negative case, e.g.
1618 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1619 	 */
1620 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1621 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1622 							  reg->umin_value);
1623 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1624 							  reg->umax_value);
1625 		return;
1626 	}
1627 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1628 	 * boundary, so we must be careful.
1629 	 */
1630 	if ((s64)reg->umax_value >= 0) {
1631 		/* Positive.  We can't learn anything from the smin, but smax
1632 		 * is positive, hence safe.
1633 		 */
1634 		reg->smin_value = reg->umin_value;
1635 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1636 							  reg->umax_value);
1637 	} else if ((s64)reg->umin_value < 0) {
1638 		/* Negative.  We can't learn anything from the smax, but smin
1639 		 * is negative, hence safe.
1640 		 */
1641 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1642 							  reg->umin_value);
1643 		reg->smax_value = reg->umax_value;
1644 	}
1645 }
1646 
1647 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1648 {
1649 	__reg32_deduce_bounds(reg);
1650 	__reg64_deduce_bounds(reg);
1651 }
1652 
1653 /* Attempts to improve var_off based on unsigned min/max information */
1654 static void __reg_bound_offset(struct bpf_reg_state *reg)
1655 {
1656 	struct tnum var64_off = tnum_intersect(reg->var_off,
1657 					       tnum_range(reg->umin_value,
1658 							  reg->umax_value));
1659 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1660 						tnum_range(reg->u32_min_value,
1661 							   reg->u32_max_value));
1662 
1663 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1664 }
1665 
1666 static void reg_bounds_sync(struct bpf_reg_state *reg)
1667 {
1668 	/* We might have learned new bounds from the var_off. */
1669 	__update_reg_bounds(reg);
1670 	/* We might have learned something about the sign bit. */
1671 	__reg_deduce_bounds(reg);
1672 	/* We might have learned some bits from the bounds. */
1673 	__reg_bound_offset(reg);
1674 	/* Intersecting with the old var_off might have improved our bounds
1675 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1676 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1677 	 */
1678 	__update_reg_bounds(reg);
1679 }
1680 
1681 static bool __reg32_bound_s64(s32 a)
1682 {
1683 	return a >= 0 && a <= S32_MAX;
1684 }
1685 
1686 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1687 {
1688 	reg->umin_value = reg->u32_min_value;
1689 	reg->umax_value = reg->u32_max_value;
1690 
1691 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1692 	 * be positive otherwise set to worse case bounds and refine later
1693 	 * from tnum.
1694 	 */
1695 	if (__reg32_bound_s64(reg->s32_min_value) &&
1696 	    __reg32_bound_s64(reg->s32_max_value)) {
1697 		reg->smin_value = reg->s32_min_value;
1698 		reg->smax_value = reg->s32_max_value;
1699 	} else {
1700 		reg->smin_value = 0;
1701 		reg->smax_value = U32_MAX;
1702 	}
1703 }
1704 
1705 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1706 {
1707 	/* special case when 64-bit register has upper 32-bit register
1708 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1709 	 * allowing us to use 32-bit bounds directly,
1710 	 */
1711 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1712 		__reg_assign_32_into_64(reg);
1713 	} else {
1714 		/* Otherwise the best we can do is push lower 32bit known and
1715 		 * unknown bits into register (var_off set from jmp logic)
1716 		 * then learn as much as possible from the 64-bit tnum
1717 		 * known and unknown bits. The previous smin/smax bounds are
1718 		 * invalid here because of jmp32 compare so mark them unknown
1719 		 * so they do not impact tnum bounds calculation.
1720 		 */
1721 		__mark_reg64_unbounded(reg);
1722 	}
1723 	reg_bounds_sync(reg);
1724 }
1725 
1726 static bool __reg64_bound_s32(s64 a)
1727 {
1728 	return a >= S32_MIN && a <= S32_MAX;
1729 }
1730 
1731 static bool __reg64_bound_u32(u64 a)
1732 {
1733 	return a >= U32_MIN && a <= U32_MAX;
1734 }
1735 
1736 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1737 {
1738 	__mark_reg32_unbounded(reg);
1739 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1740 		reg->s32_min_value = (s32)reg->smin_value;
1741 		reg->s32_max_value = (s32)reg->smax_value;
1742 	}
1743 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1744 		reg->u32_min_value = (u32)reg->umin_value;
1745 		reg->u32_max_value = (u32)reg->umax_value;
1746 	}
1747 	reg_bounds_sync(reg);
1748 }
1749 
1750 /* Mark a register as having a completely unknown (scalar) value. */
1751 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1752 			       struct bpf_reg_state *reg)
1753 {
1754 	/*
1755 	 * Clear type, off, and union(map_ptr, range) and
1756 	 * padding between 'type' and union
1757 	 */
1758 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1759 	reg->type = SCALAR_VALUE;
1760 	reg->id = 0;
1761 	reg->ref_obj_id = 0;
1762 	reg->var_off = tnum_unknown;
1763 	reg->frameno = 0;
1764 	reg->precise = !env->bpf_capable;
1765 	__mark_reg_unbounded(reg);
1766 }
1767 
1768 static void mark_reg_unknown(struct bpf_verifier_env *env,
1769 			     struct bpf_reg_state *regs, u32 regno)
1770 {
1771 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1772 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1773 		/* Something bad happened, let's kill all regs except FP */
1774 		for (regno = 0; regno < BPF_REG_FP; regno++)
1775 			__mark_reg_not_init(env, regs + regno);
1776 		return;
1777 	}
1778 	__mark_reg_unknown(env, regs + regno);
1779 }
1780 
1781 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1782 				struct bpf_reg_state *reg)
1783 {
1784 	__mark_reg_unknown(env, reg);
1785 	reg->type = NOT_INIT;
1786 }
1787 
1788 static void mark_reg_not_init(struct bpf_verifier_env *env,
1789 			      struct bpf_reg_state *regs, u32 regno)
1790 {
1791 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1792 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1793 		/* Something bad happened, let's kill all regs except FP */
1794 		for (regno = 0; regno < BPF_REG_FP; regno++)
1795 			__mark_reg_not_init(env, regs + regno);
1796 		return;
1797 	}
1798 	__mark_reg_not_init(env, regs + regno);
1799 }
1800 
1801 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1802 			    struct bpf_reg_state *regs, u32 regno,
1803 			    enum bpf_reg_type reg_type,
1804 			    struct btf *btf, u32 btf_id,
1805 			    enum bpf_type_flag flag)
1806 {
1807 	if (reg_type == SCALAR_VALUE) {
1808 		mark_reg_unknown(env, regs, regno);
1809 		return;
1810 	}
1811 	mark_reg_known_zero(env, regs, regno);
1812 	regs[regno].type = PTR_TO_BTF_ID | flag;
1813 	regs[regno].btf = btf;
1814 	regs[regno].btf_id = btf_id;
1815 }
1816 
1817 #define DEF_NOT_SUBREG	(0)
1818 static void init_reg_state(struct bpf_verifier_env *env,
1819 			   struct bpf_func_state *state)
1820 {
1821 	struct bpf_reg_state *regs = state->regs;
1822 	int i;
1823 
1824 	for (i = 0; i < MAX_BPF_REG; i++) {
1825 		mark_reg_not_init(env, regs, i);
1826 		regs[i].live = REG_LIVE_NONE;
1827 		regs[i].parent = NULL;
1828 		regs[i].subreg_def = DEF_NOT_SUBREG;
1829 	}
1830 
1831 	/* frame pointer */
1832 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1833 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1834 	regs[BPF_REG_FP].frameno = state->frameno;
1835 }
1836 
1837 #define BPF_MAIN_FUNC (-1)
1838 static void init_func_state(struct bpf_verifier_env *env,
1839 			    struct bpf_func_state *state,
1840 			    int callsite, int frameno, int subprogno)
1841 {
1842 	state->callsite = callsite;
1843 	state->frameno = frameno;
1844 	state->subprogno = subprogno;
1845 	state->callback_ret_range = tnum_range(0, 0);
1846 	init_reg_state(env, state);
1847 	mark_verifier_state_scratched(env);
1848 }
1849 
1850 /* Similar to push_stack(), but for async callbacks */
1851 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1852 						int insn_idx, int prev_insn_idx,
1853 						int subprog)
1854 {
1855 	struct bpf_verifier_stack_elem *elem;
1856 	struct bpf_func_state *frame;
1857 
1858 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1859 	if (!elem)
1860 		goto err;
1861 
1862 	elem->insn_idx = insn_idx;
1863 	elem->prev_insn_idx = prev_insn_idx;
1864 	elem->next = env->head;
1865 	elem->log_pos = env->log.len_used;
1866 	env->head = elem;
1867 	env->stack_size++;
1868 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1869 		verbose(env,
1870 			"The sequence of %d jumps is too complex for async cb.\n",
1871 			env->stack_size);
1872 		goto err;
1873 	}
1874 	/* Unlike push_stack() do not copy_verifier_state().
1875 	 * The caller state doesn't matter.
1876 	 * This is async callback. It starts in a fresh stack.
1877 	 * Initialize it similar to do_check_common().
1878 	 */
1879 	elem->st.branches = 1;
1880 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1881 	if (!frame)
1882 		goto err;
1883 	init_func_state(env, frame,
1884 			BPF_MAIN_FUNC /* callsite */,
1885 			0 /* frameno within this callchain */,
1886 			subprog /* subprog number within this prog */);
1887 	elem->st.frame[0] = frame;
1888 	return &elem->st;
1889 err:
1890 	free_verifier_state(env->cur_state, true);
1891 	env->cur_state = NULL;
1892 	/* pop all elements and return */
1893 	while (!pop_stack(env, NULL, NULL, false));
1894 	return NULL;
1895 }
1896 
1897 
1898 enum reg_arg_type {
1899 	SRC_OP,		/* register is used as source operand */
1900 	DST_OP,		/* register is used as destination operand */
1901 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1902 };
1903 
1904 static int cmp_subprogs(const void *a, const void *b)
1905 {
1906 	return ((struct bpf_subprog_info *)a)->start -
1907 	       ((struct bpf_subprog_info *)b)->start;
1908 }
1909 
1910 static int find_subprog(struct bpf_verifier_env *env, int off)
1911 {
1912 	struct bpf_subprog_info *p;
1913 
1914 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1915 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1916 	if (!p)
1917 		return -ENOENT;
1918 	return p - env->subprog_info;
1919 
1920 }
1921 
1922 static int add_subprog(struct bpf_verifier_env *env, int off)
1923 {
1924 	int insn_cnt = env->prog->len;
1925 	int ret;
1926 
1927 	if (off >= insn_cnt || off < 0) {
1928 		verbose(env, "call to invalid destination\n");
1929 		return -EINVAL;
1930 	}
1931 	ret = find_subprog(env, off);
1932 	if (ret >= 0)
1933 		return ret;
1934 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1935 		verbose(env, "too many subprograms\n");
1936 		return -E2BIG;
1937 	}
1938 	/* determine subprog starts. The end is one before the next starts */
1939 	env->subprog_info[env->subprog_cnt++].start = off;
1940 	sort(env->subprog_info, env->subprog_cnt,
1941 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1942 	return env->subprog_cnt - 1;
1943 }
1944 
1945 #define MAX_KFUNC_DESCS 256
1946 #define MAX_KFUNC_BTFS	256
1947 
1948 struct bpf_kfunc_desc {
1949 	struct btf_func_model func_model;
1950 	u32 func_id;
1951 	s32 imm;
1952 	u16 offset;
1953 };
1954 
1955 struct bpf_kfunc_btf {
1956 	struct btf *btf;
1957 	struct module *module;
1958 	u16 offset;
1959 };
1960 
1961 struct bpf_kfunc_desc_tab {
1962 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1963 	u32 nr_descs;
1964 };
1965 
1966 struct bpf_kfunc_btf_tab {
1967 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1968 	u32 nr_descs;
1969 };
1970 
1971 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1972 {
1973 	const struct bpf_kfunc_desc *d0 = a;
1974 	const struct bpf_kfunc_desc *d1 = b;
1975 
1976 	/* func_id is not greater than BTF_MAX_TYPE */
1977 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1978 }
1979 
1980 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1981 {
1982 	const struct bpf_kfunc_btf *d0 = a;
1983 	const struct bpf_kfunc_btf *d1 = b;
1984 
1985 	return d0->offset - d1->offset;
1986 }
1987 
1988 static const struct bpf_kfunc_desc *
1989 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1990 {
1991 	struct bpf_kfunc_desc desc = {
1992 		.func_id = func_id,
1993 		.offset = offset,
1994 	};
1995 	struct bpf_kfunc_desc_tab *tab;
1996 
1997 	tab = prog->aux->kfunc_tab;
1998 	return bsearch(&desc, tab->descs, tab->nr_descs,
1999 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2000 }
2001 
2002 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2003 					 s16 offset)
2004 {
2005 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2006 	struct bpf_kfunc_btf_tab *tab;
2007 	struct bpf_kfunc_btf *b;
2008 	struct module *mod;
2009 	struct btf *btf;
2010 	int btf_fd;
2011 
2012 	tab = env->prog->aux->kfunc_btf_tab;
2013 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2014 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2015 	if (!b) {
2016 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2017 			verbose(env, "too many different module BTFs\n");
2018 			return ERR_PTR(-E2BIG);
2019 		}
2020 
2021 		if (bpfptr_is_null(env->fd_array)) {
2022 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2023 			return ERR_PTR(-EPROTO);
2024 		}
2025 
2026 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2027 					    offset * sizeof(btf_fd),
2028 					    sizeof(btf_fd)))
2029 			return ERR_PTR(-EFAULT);
2030 
2031 		btf = btf_get_by_fd(btf_fd);
2032 		if (IS_ERR(btf)) {
2033 			verbose(env, "invalid module BTF fd specified\n");
2034 			return btf;
2035 		}
2036 
2037 		if (!btf_is_module(btf)) {
2038 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2039 			btf_put(btf);
2040 			return ERR_PTR(-EINVAL);
2041 		}
2042 
2043 		mod = btf_try_get_module(btf);
2044 		if (!mod) {
2045 			btf_put(btf);
2046 			return ERR_PTR(-ENXIO);
2047 		}
2048 
2049 		b = &tab->descs[tab->nr_descs++];
2050 		b->btf = btf;
2051 		b->module = mod;
2052 		b->offset = offset;
2053 
2054 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2055 		     kfunc_btf_cmp_by_off, NULL);
2056 	}
2057 	return b->btf;
2058 }
2059 
2060 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2061 {
2062 	if (!tab)
2063 		return;
2064 
2065 	while (tab->nr_descs--) {
2066 		module_put(tab->descs[tab->nr_descs].module);
2067 		btf_put(tab->descs[tab->nr_descs].btf);
2068 	}
2069 	kfree(tab);
2070 }
2071 
2072 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2073 {
2074 	if (offset) {
2075 		if (offset < 0) {
2076 			/* In the future, this can be allowed to increase limit
2077 			 * of fd index into fd_array, interpreted as u16.
2078 			 */
2079 			verbose(env, "negative offset disallowed for kernel module function call\n");
2080 			return ERR_PTR(-EINVAL);
2081 		}
2082 
2083 		return __find_kfunc_desc_btf(env, offset);
2084 	}
2085 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2086 }
2087 
2088 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2089 {
2090 	const struct btf_type *func, *func_proto;
2091 	struct bpf_kfunc_btf_tab *btf_tab;
2092 	struct bpf_kfunc_desc_tab *tab;
2093 	struct bpf_prog_aux *prog_aux;
2094 	struct bpf_kfunc_desc *desc;
2095 	const char *func_name;
2096 	struct btf *desc_btf;
2097 	unsigned long call_imm;
2098 	unsigned long addr;
2099 	int err;
2100 
2101 	prog_aux = env->prog->aux;
2102 	tab = prog_aux->kfunc_tab;
2103 	btf_tab = prog_aux->kfunc_btf_tab;
2104 	if (!tab) {
2105 		if (!btf_vmlinux) {
2106 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2107 			return -ENOTSUPP;
2108 		}
2109 
2110 		if (!env->prog->jit_requested) {
2111 			verbose(env, "JIT is required for calling kernel function\n");
2112 			return -ENOTSUPP;
2113 		}
2114 
2115 		if (!bpf_jit_supports_kfunc_call()) {
2116 			verbose(env, "JIT does not support calling kernel function\n");
2117 			return -ENOTSUPP;
2118 		}
2119 
2120 		if (!env->prog->gpl_compatible) {
2121 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2122 			return -EINVAL;
2123 		}
2124 
2125 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2126 		if (!tab)
2127 			return -ENOMEM;
2128 		prog_aux->kfunc_tab = tab;
2129 	}
2130 
2131 	/* func_id == 0 is always invalid, but instead of returning an error, be
2132 	 * conservative and wait until the code elimination pass before returning
2133 	 * error, so that invalid calls that get pruned out can be in BPF programs
2134 	 * loaded from userspace.  It is also required that offset be untouched
2135 	 * for such calls.
2136 	 */
2137 	if (!func_id && !offset)
2138 		return 0;
2139 
2140 	if (!btf_tab && offset) {
2141 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2142 		if (!btf_tab)
2143 			return -ENOMEM;
2144 		prog_aux->kfunc_btf_tab = btf_tab;
2145 	}
2146 
2147 	desc_btf = find_kfunc_desc_btf(env, offset);
2148 	if (IS_ERR(desc_btf)) {
2149 		verbose(env, "failed to find BTF for kernel function\n");
2150 		return PTR_ERR(desc_btf);
2151 	}
2152 
2153 	if (find_kfunc_desc(env->prog, func_id, offset))
2154 		return 0;
2155 
2156 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2157 		verbose(env, "too many different kernel function calls\n");
2158 		return -E2BIG;
2159 	}
2160 
2161 	func = btf_type_by_id(desc_btf, func_id);
2162 	if (!func || !btf_type_is_func(func)) {
2163 		verbose(env, "kernel btf_id %u is not a function\n",
2164 			func_id);
2165 		return -EINVAL;
2166 	}
2167 	func_proto = btf_type_by_id(desc_btf, func->type);
2168 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2169 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2170 			func_id);
2171 		return -EINVAL;
2172 	}
2173 
2174 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2175 	addr = kallsyms_lookup_name(func_name);
2176 	if (!addr) {
2177 		verbose(env, "cannot find address for kernel function %s\n",
2178 			func_name);
2179 		return -EINVAL;
2180 	}
2181 
2182 	call_imm = BPF_CALL_IMM(addr);
2183 	/* Check whether or not the relative offset overflows desc->imm */
2184 	if ((unsigned long)(s32)call_imm != call_imm) {
2185 		verbose(env, "address of kernel function %s is out of range\n",
2186 			func_name);
2187 		return -EINVAL;
2188 	}
2189 
2190 	desc = &tab->descs[tab->nr_descs++];
2191 	desc->func_id = func_id;
2192 	desc->imm = call_imm;
2193 	desc->offset = offset;
2194 	err = btf_distill_func_proto(&env->log, desc_btf,
2195 				     func_proto, func_name,
2196 				     &desc->func_model);
2197 	if (!err)
2198 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2199 		     kfunc_desc_cmp_by_id_off, NULL);
2200 	return err;
2201 }
2202 
2203 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2204 {
2205 	const struct bpf_kfunc_desc *d0 = a;
2206 	const struct bpf_kfunc_desc *d1 = b;
2207 
2208 	if (d0->imm > d1->imm)
2209 		return 1;
2210 	else if (d0->imm < d1->imm)
2211 		return -1;
2212 	return 0;
2213 }
2214 
2215 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2216 {
2217 	struct bpf_kfunc_desc_tab *tab;
2218 
2219 	tab = prog->aux->kfunc_tab;
2220 	if (!tab)
2221 		return;
2222 
2223 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2224 	     kfunc_desc_cmp_by_imm, NULL);
2225 }
2226 
2227 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2228 {
2229 	return !!prog->aux->kfunc_tab;
2230 }
2231 
2232 const struct btf_func_model *
2233 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2234 			 const struct bpf_insn *insn)
2235 {
2236 	const struct bpf_kfunc_desc desc = {
2237 		.imm = insn->imm,
2238 	};
2239 	const struct bpf_kfunc_desc *res;
2240 	struct bpf_kfunc_desc_tab *tab;
2241 
2242 	tab = prog->aux->kfunc_tab;
2243 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2244 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2245 
2246 	return res ? &res->func_model : NULL;
2247 }
2248 
2249 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2250 {
2251 	struct bpf_subprog_info *subprog = env->subprog_info;
2252 	struct bpf_insn *insn = env->prog->insnsi;
2253 	int i, ret, insn_cnt = env->prog->len;
2254 
2255 	/* Add entry function. */
2256 	ret = add_subprog(env, 0);
2257 	if (ret)
2258 		return ret;
2259 
2260 	for (i = 0; i < insn_cnt; i++, insn++) {
2261 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2262 		    !bpf_pseudo_kfunc_call(insn))
2263 			continue;
2264 
2265 		if (!env->bpf_capable) {
2266 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2267 			return -EPERM;
2268 		}
2269 
2270 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2271 			ret = add_subprog(env, i + insn->imm + 1);
2272 		else
2273 			ret = add_kfunc_call(env, insn->imm, insn->off);
2274 
2275 		if (ret < 0)
2276 			return ret;
2277 	}
2278 
2279 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2280 	 * logic. 'subprog_cnt' should not be increased.
2281 	 */
2282 	subprog[env->subprog_cnt].start = insn_cnt;
2283 
2284 	if (env->log.level & BPF_LOG_LEVEL2)
2285 		for (i = 0; i < env->subprog_cnt; i++)
2286 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2287 
2288 	return 0;
2289 }
2290 
2291 static int check_subprogs(struct bpf_verifier_env *env)
2292 {
2293 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2294 	struct bpf_subprog_info *subprog = env->subprog_info;
2295 	struct bpf_insn *insn = env->prog->insnsi;
2296 	int insn_cnt = env->prog->len;
2297 
2298 	/* now check that all jumps are within the same subprog */
2299 	subprog_start = subprog[cur_subprog].start;
2300 	subprog_end = subprog[cur_subprog + 1].start;
2301 	for (i = 0; i < insn_cnt; i++) {
2302 		u8 code = insn[i].code;
2303 
2304 		if (code == (BPF_JMP | BPF_CALL) &&
2305 		    insn[i].imm == BPF_FUNC_tail_call &&
2306 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2307 			subprog[cur_subprog].has_tail_call = true;
2308 		if (BPF_CLASS(code) == BPF_LD &&
2309 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2310 			subprog[cur_subprog].has_ld_abs = true;
2311 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2312 			goto next;
2313 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2314 			goto next;
2315 		off = i + insn[i].off + 1;
2316 		if (off < subprog_start || off >= subprog_end) {
2317 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2318 			return -EINVAL;
2319 		}
2320 next:
2321 		if (i == subprog_end - 1) {
2322 			/* to avoid fall-through from one subprog into another
2323 			 * the last insn of the subprog should be either exit
2324 			 * or unconditional jump back
2325 			 */
2326 			if (code != (BPF_JMP | BPF_EXIT) &&
2327 			    code != (BPF_JMP | BPF_JA)) {
2328 				verbose(env, "last insn is not an exit or jmp\n");
2329 				return -EINVAL;
2330 			}
2331 			subprog_start = subprog_end;
2332 			cur_subprog++;
2333 			if (cur_subprog < env->subprog_cnt)
2334 				subprog_end = subprog[cur_subprog + 1].start;
2335 		}
2336 	}
2337 	return 0;
2338 }
2339 
2340 /* Parentage chain of this register (or stack slot) should take care of all
2341  * issues like callee-saved registers, stack slot allocation time, etc.
2342  */
2343 static int mark_reg_read(struct bpf_verifier_env *env,
2344 			 const struct bpf_reg_state *state,
2345 			 struct bpf_reg_state *parent, u8 flag)
2346 {
2347 	bool writes = parent == state->parent; /* Observe write marks */
2348 	int cnt = 0;
2349 
2350 	while (parent) {
2351 		/* if read wasn't screened by an earlier write ... */
2352 		if (writes && state->live & REG_LIVE_WRITTEN)
2353 			break;
2354 		if (parent->live & REG_LIVE_DONE) {
2355 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2356 				reg_type_str(env, parent->type),
2357 				parent->var_off.value, parent->off);
2358 			return -EFAULT;
2359 		}
2360 		/* The first condition is more likely to be true than the
2361 		 * second, checked it first.
2362 		 */
2363 		if ((parent->live & REG_LIVE_READ) == flag ||
2364 		    parent->live & REG_LIVE_READ64)
2365 			/* The parentage chain never changes and
2366 			 * this parent was already marked as LIVE_READ.
2367 			 * There is no need to keep walking the chain again and
2368 			 * keep re-marking all parents as LIVE_READ.
2369 			 * This case happens when the same register is read
2370 			 * multiple times without writes into it in-between.
2371 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2372 			 * then no need to set the weak REG_LIVE_READ32.
2373 			 */
2374 			break;
2375 		/* ... then we depend on parent's value */
2376 		parent->live |= flag;
2377 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2378 		if (flag == REG_LIVE_READ64)
2379 			parent->live &= ~REG_LIVE_READ32;
2380 		state = parent;
2381 		parent = state->parent;
2382 		writes = true;
2383 		cnt++;
2384 	}
2385 
2386 	if (env->longest_mark_read_walk < cnt)
2387 		env->longest_mark_read_walk = cnt;
2388 	return 0;
2389 }
2390 
2391 /* This function is supposed to be used by the following 32-bit optimization
2392  * code only. It returns TRUE if the source or destination register operates
2393  * on 64-bit, otherwise return FALSE.
2394  */
2395 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2396 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2397 {
2398 	u8 code, class, op;
2399 
2400 	code = insn->code;
2401 	class = BPF_CLASS(code);
2402 	op = BPF_OP(code);
2403 	if (class == BPF_JMP) {
2404 		/* BPF_EXIT for "main" will reach here. Return TRUE
2405 		 * conservatively.
2406 		 */
2407 		if (op == BPF_EXIT)
2408 			return true;
2409 		if (op == BPF_CALL) {
2410 			/* BPF to BPF call will reach here because of marking
2411 			 * caller saved clobber with DST_OP_NO_MARK for which we
2412 			 * don't care the register def because they are anyway
2413 			 * marked as NOT_INIT already.
2414 			 */
2415 			if (insn->src_reg == BPF_PSEUDO_CALL)
2416 				return false;
2417 			/* Helper call will reach here because of arg type
2418 			 * check, conservatively return TRUE.
2419 			 */
2420 			if (t == SRC_OP)
2421 				return true;
2422 
2423 			return false;
2424 		}
2425 	}
2426 
2427 	if (class == BPF_ALU64 || class == BPF_JMP ||
2428 	    /* BPF_END always use BPF_ALU class. */
2429 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2430 		return true;
2431 
2432 	if (class == BPF_ALU || class == BPF_JMP32)
2433 		return false;
2434 
2435 	if (class == BPF_LDX) {
2436 		if (t != SRC_OP)
2437 			return BPF_SIZE(code) == BPF_DW;
2438 		/* LDX source must be ptr. */
2439 		return true;
2440 	}
2441 
2442 	if (class == BPF_STX) {
2443 		/* BPF_STX (including atomic variants) has multiple source
2444 		 * operands, one of which is a ptr. Check whether the caller is
2445 		 * asking about it.
2446 		 */
2447 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2448 			return true;
2449 		return BPF_SIZE(code) == BPF_DW;
2450 	}
2451 
2452 	if (class == BPF_LD) {
2453 		u8 mode = BPF_MODE(code);
2454 
2455 		/* LD_IMM64 */
2456 		if (mode == BPF_IMM)
2457 			return true;
2458 
2459 		/* Both LD_IND and LD_ABS return 32-bit data. */
2460 		if (t != SRC_OP)
2461 			return  false;
2462 
2463 		/* Implicit ctx ptr. */
2464 		if (regno == BPF_REG_6)
2465 			return true;
2466 
2467 		/* Explicit source could be any width. */
2468 		return true;
2469 	}
2470 
2471 	if (class == BPF_ST)
2472 		/* The only source register for BPF_ST is a ptr. */
2473 		return true;
2474 
2475 	/* Conservatively return true at default. */
2476 	return true;
2477 }
2478 
2479 /* Return the regno defined by the insn, or -1. */
2480 static int insn_def_regno(const struct bpf_insn *insn)
2481 {
2482 	switch (BPF_CLASS(insn->code)) {
2483 	case BPF_JMP:
2484 	case BPF_JMP32:
2485 	case BPF_ST:
2486 		return -1;
2487 	case BPF_STX:
2488 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2489 		    (insn->imm & BPF_FETCH)) {
2490 			if (insn->imm == BPF_CMPXCHG)
2491 				return BPF_REG_0;
2492 			else
2493 				return insn->src_reg;
2494 		} else {
2495 			return -1;
2496 		}
2497 	default:
2498 		return insn->dst_reg;
2499 	}
2500 }
2501 
2502 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2503 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2504 {
2505 	int dst_reg = insn_def_regno(insn);
2506 
2507 	if (dst_reg == -1)
2508 		return false;
2509 
2510 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2511 }
2512 
2513 static void mark_insn_zext(struct bpf_verifier_env *env,
2514 			   struct bpf_reg_state *reg)
2515 {
2516 	s32 def_idx = reg->subreg_def;
2517 
2518 	if (def_idx == DEF_NOT_SUBREG)
2519 		return;
2520 
2521 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2522 	/* The dst will be zero extended, so won't be sub-register anymore. */
2523 	reg->subreg_def = DEF_NOT_SUBREG;
2524 }
2525 
2526 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2527 			 enum reg_arg_type t)
2528 {
2529 	struct bpf_verifier_state *vstate = env->cur_state;
2530 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2531 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2532 	struct bpf_reg_state *reg, *regs = state->regs;
2533 	bool rw64;
2534 
2535 	if (regno >= MAX_BPF_REG) {
2536 		verbose(env, "R%d is invalid\n", regno);
2537 		return -EINVAL;
2538 	}
2539 
2540 	mark_reg_scratched(env, regno);
2541 
2542 	reg = &regs[regno];
2543 	rw64 = is_reg64(env, insn, regno, reg, t);
2544 	if (t == SRC_OP) {
2545 		/* check whether register used as source operand can be read */
2546 		if (reg->type == NOT_INIT) {
2547 			verbose(env, "R%d !read_ok\n", regno);
2548 			return -EACCES;
2549 		}
2550 		/* We don't need to worry about FP liveness because it's read-only */
2551 		if (regno == BPF_REG_FP)
2552 			return 0;
2553 
2554 		if (rw64)
2555 			mark_insn_zext(env, reg);
2556 
2557 		return mark_reg_read(env, reg, reg->parent,
2558 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2559 	} else {
2560 		/* check whether register used as dest operand can be written to */
2561 		if (regno == BPF_REG_FP) {
2562 			verbose(env, "frame pointer is read only\n");
2563 			return -EACCES;
2564 		}
2565 		reg->live |= REG_LIVE_WRITTEN;
2566 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2567 		if (t == DST_OP)
2568 			mark_reg_unknown(env, regs, regno);
2569 	}
2570 	return 0;
2571 }
2572 
2573 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
2574 {
2575 	env->insn_aux_data[idx].jmp_point = true;
2576 }
2577 
2578 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
2579 {
2580 	return env->insn_aux_data[insn_idx].jmp_point;
2581 }
2582 
2583 /* for any branch, call, exit record the history of jmps in the given state */
2584 static int push_jmp_history(struct bpf_verifier_env *env,
2585 			    struct bpf_verifier_state *cur)
2586 {
2587 	u32 cnt = cur->jmp_history_cnt;
2588 	struct bpf_idx_pair *p;
2589 	size_t alloc_size;
2590 
2591 	if (!is_jmp_point(env, env->insn_idx))
2592 		return 0;
2593 
2594 	cnt++;
2595 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2596 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2597 	if (!p)
2598 		return -ENOMEM;
2599 	p[cnt - 1].idx = env->insn_idx;
2600 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2601 	cur->jmp_history = p;
2602 	cur->jmp_history_cnt = cnt;
2603 	return 0;
2604 }
2605 
2606 /* Backtrack one insn at a time. If idx is not at the top of recorded
2607  * history then previous instruction came from straight line execution.
2608  */
2609 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2610 			     u32 *history)
2611 {
2612 	u32 cnt = *history;
2613 
2614 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2615 		i = st->jmp_history[cnt - 1].prev_idx;
2616 		(*history)--;
2617 	} else {
2618 		i--;
2619 	}
2620 	return i;
2621 }
2622 
2623 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2624 {
2625 	const struct btf_type *func;
2626 	struct btf *desc_btf;
2627 
2628 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2629 		return NULL;
2630 
2631 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2632 	if (IS_ERR(desc_btf))
2633 		return "<error>";
2634 
2635 	func = btf_type_by_id(desc_btf, insn->imm);
2636 	return btf_name_by_offset(desc_btf, func->name_off);
2637 }
2638 
2639 /* For given verifier state backtrack_insn() is called from the last insn to
2640  * the first insn. Its purpose is to compute a bitmask of registers and
2641  * stack slots that needs precision in the parent verifier state.
2642  */
2643 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2644 			  u32 *reg_mask, u64 *stack_mask)
2645 {
2646 	const struct bpf_insn_cbs cbs = {
2647 		.cb_call	= disasm_kfunc_name,
2648 		.cb_print	= verbose,
2649 		.private_data	= env,
2650 	};
2651 	struct bpf_insn *insn = env->prog->insnsi + idx;
2652 	u8 class = BPF_CLASS(insn->code);
2653 	u8 opcode = BPF_OP(insn->code);
2654 	u8 mode = BPF_MODE(insn->code);
2655 	u32 dreg = 1u << insn->dst_reg;
2656 	u32 sreg = 1u << insn->src_reg;
2657 	u32 spi;
2658 
2659 	if (insn->code == 0)
2660 		return 0;
2661 	if (env->log.level & BPF_LOG_LEVEL2) {
2662 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2663 		verbose(env, "%d: ", idx);
2664 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2665 	}
2666 
2667 	if (class == BPF_ALU || class == BPF_ALU64) {
2668 		if (!(*reg_mask & dreg))
2669 			return 0;
2670 		if (opcode == BPF_MOV) {
2671 			if (BPF_SRC(insn->code) == BPF_X) {
2672 				/* dreg = sreg
2673 				 * dreg needs precision after this insn
2674 				 * sreg needs precision before this insn
2675 				 */
2676 				*reg_mask &= ~dreg;
2677 				*reg_mask |= sreg;
2678 			} else {
2679 				/* dreg = K
2680 				 * dreg needs precision after this insn.
2681 				 * Corresponding register is already marked
2682 				 * as precise=true in this verifier state.
2683 				 * No further markings in parent are necessary
2684 				 */
2685 				*reg_mask &= ~dreg;
2686 			}
2687 		} else {
2688 			if (BPF_SRC(insn->code) == BPF_X) {
2689 				/* dreg += sreg
2690 				 * both dreg and sreg need precision
2691 				 * before this insn
2692 				 */
2693 				*reg_mask |= sreg;
2694 			} /* else dreg += K
2695 			   * dreg still needs precision before this insn
2696 			   */
2697 		}
2698 	} else if (class == BPF_LDX) {
2699 		if (!(*reg_mask & dreg))
2700 			return 0;
2701 		*reg_mask &= ~dreg;
2702 
2703 		/* scalars can only be spilled into stack w/o losing precision.
2704 		 * Load from any other memory can be zero extended.
2705 		 * The desire to keep that precision is already indicated
2706 		 * by 'precise' mark in corresponding register of this state.
2707 		 * No further tracking necessary.
2708 		 */
2709 		if (insn->src_reg != BPF_REG_FP)
2710 			return 0;
2711 
2712 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2713 		 * that [fp - off] slot contains scalar that needs to be
2714 		 * tracked with precision
2715 		 */
2716 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2717 		if (spi >= 64) {
2718 			verbose(env, "BUG spi %d\n", spi);
2719 			WARN_ONCE(1, "verifier backtracking bug");
2720 			return -EFAULT;
2721 		}
2722 		*stack_mask |= 1ull << spi;
2723 	} else if (class == BPF_STX || class == BPF_ST) {
2724 		if (*reg_mask & dreg)
2725 			/* stx & st shouldn't be using _scalar_ dst_reg
2726 			 * to access memory. It means backtracking
2727 			 * encountered a case of pointer subtraction.
2728 			 */
2729 			return -ENOTSUPP;
2730 		/* scalars can only be spilled into stack */
2731 		if (insn->dst_reg != BPF_REG_FP)
2732 			return 0;
2733 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2734 		if (spi >= 64) {
2735 			verbose(env, "BUG spi %d\n", spi);
2736 			WARN_ONCE(1, "verifier backtracking bug");
2737 			return -EFAULT;
2738 		}
2739 		if (!(*stack_mask & (1ull << spi)))
2740 			return 0;
2741 		*stack_mask &= ~(1ull << spi);
2742 		if (class == BPF_STX)
2743 			*reg_mask |= sreg;
2744 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2745 		if (opcode == BPF_CALL) {
2746 			if (insn->src_reg == BPF_PSEUDO_CALL)
2747 				return -ENOTSUPP;
2748 			/* BPF helpers that invoke callback subprogs are
2749 			 * equivalent to BPF_PSEUDO_CALL above
2750 			 */
2751 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2752 				return -ENOTSUPP;
2753 			/* regular helper call sets R0 */
2754 			*reg_mask &= ~1;
2755 			if (*reg_mask & 0x3f) {
2756 				/* if backtracing was looking for registers R1-R5
2757 				 * they should have been found already.
2758 				 */
2759 				verbose(env, "BUG regs %x\n", *reg_mask);
2760 				WARN_ONCE(1, "verifier backtracking bug");
2761 				return -EFAULT;
2762 			}
2763 		} else if (opcode == BPF_EXIT) {
2764 			return -ENOTSUPP;
2765 		}
2766 	} else if (class == BPF_LD) {
2767 		if (!(*reg_mask & dreg))
2768 			return 0;
2769 		*reg_mask &= ~dreg;
2770 		/* It's ld_imm64 or ld_abs or ld_ind.
2771 		 * For ld_imm64 no further tracking of precision
2772 		 * into parent is necessary
2773 		 */
2774 		if (mode == BPF_IND || mode == BPF_ABS)
2775 			/* to be analyzed */
2776 			return -ENOTSUPP;
2777 	}
2778 	return 0;
2779 }
2780 
2781 /* the scalar precision tracking algorithm:
2782  * . at the start all registers have precise=false.
2783  * . scalar ranges are tracked as normal through alu and jmp insns.
2784  * . once precise value of the scalar register is used in:
2785  *   .  ptr + scalar alu
2786  *   . if (scalar cond K|scalar)
2787  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2788  *   backtrack through the verifier states and mark all registers and
2789  *   stack slots with spilled constants that these scalar regisers
2790  *   should be precise.
2791  * . during state pruning two registers (or spilled stack slots)
2792  *   are equivalent if both are not precise.
2793  *
2794  * Note the verifier cannot simply walk register parentage chain,
2795  * since many different registers and stack slots could have been
2796  * used to compute single precise scalar.
2797  *
2798  * The approach of starting with precise=true for all registers and then
2799  * backtrack to mark a register as not precise when the verifier detects
2800  * that program doesn't care about specific value (e.g., when helper
2801  * takes register as ARG_ANYTHING parameter) is not safe.
2802  *
2803  * It's ok to walk single parentage chain of the verifier states.
2804  * It's possible that this backtracking will go all the way till 1st insn.
2805  * All other branches will be explored for needing precision later.
2806  *
2807  * The backtracking needs to deal with cases like:
2808  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2809  * r9 -= r8
2810  * r5 = r9
2811  * if r5 > 0x79f goto pc+7
2812  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2813  * r5 += 1
2814  * ...
2815  * call bpf_perf_event_output#25
2816  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2817  *
2818  * and this case:
2819  * r6 = 1
2820  * call foo // uses callee's r6 inside to compute r0
2821  * r0 += r6
2822  * if r0 == 0 goto
2823  *
2824  * to track above reg_mask/stack_mask needs to be independent for each frame.
2825  *
2826  * Also if parent's curframe > frame where backtracking started,
2827  * the verifier need to mark registers in both frames, otherwise callees
2828  * may incorrectly prune callers. This is similar to
2829  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2830  *
2831  * For now backtracking falls back into conservative marking.
2832  */
2833 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2834 				     struct bpf_verifier_state *st)
2835 {
2836 	struct bpf_func_state *func;
2837 	struct bpf_reg_state *reg;
2838 	int i, j;
2839 
2840 	/* big hammer: mark all scalars precise in this path.
2841 	 * pop_stack may still get !precise scalars.
2842 	 * We also skip current state and go straight to first parent state,
2843 	 * because precision markings in current non-checkpointed state are
2844 	 * not needed. See why in the comment in __mark_chain_precision below.
2845 	 */
2846 	for (st = st->parent; st; st = st->parent) {
2847 		for (i = 0; i <= st->curframe; i++) {
2848 			func = st->frame[i];
2849 			for (j = 0; j < BPF_REG_FP; j++) {
2850 				reg = &func->regs[j];
2851 				if (reg->type != SCALAR_VALUE)
2852 					continue;
2853 				reg->precise = true;
2854 			}
2855 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2856 				if (!is_spilled_reg(&func->stack[j]))
2857 					continue;
2858 				reg = &func->stack[j].spilled_ptr;
2859 				if (reg->type != SCALAR_VALUE)
2860 					continue;
2861 				reg->precise = true;
2862 			}
2863 		}
2864 	}
2865 }
2866 
2867 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2868 {
2869 	struct bpf_func_state *func;
2870 	struct bpf_reg_state *reg;
2871 	int i, j;
2872 
2873 	for (i = 0; i <= st->curframe; i++) {
2874 		func = st->frame[i];
2875 		for (j = 0; j < BPF_REG_FP; j++) {
2876 			reg = &func->regs[j];
2877 			if (reg->type != SCALAR_VALUE)
2878 				continue;
2879 			reg->precise = false;
2880 		}
2881 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2882 			if (!is_spilled_reg(&func->stack[j]))
2883 				continue;
2884 			reg = &func->stack[j].spilled_ptr;
2885 			if (reg->type != SCALAR_VALUE)
2886 				continue;
2887 			reg->precise = false;
2888 		}
2889 	}
2890 }
2891 
2892 /*
2893  * __mark_chain_precision() backtracks BPF program instruction sequence and
2894  * chain of verifier states making sure that register *regno* (if regno >= 0)
2895  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2896  * SCALARS, as well as any other registers and slots that contribute to
2897  * a tracked state of given registers/stack slots, depending on specific BPF
2898  * assembly instructions (see backtrack_insns() for exact instruction handling
2899  * logic). This backtracking relies on recorded jmp_history and is able to
2900  * traverse entire chain of parent states. This process ends only when all the
2901  * necessary registers/slots and their transitive dependencies are marked as
2902  * precise.
2903  *
2904  * One important and subtle aspect is that precise marks *do not matter* in
2905  * the currently verified state (current state). It is important to understand
2906  * why this is the case.
2907  *
2908  * First, note that current state is the state that is not yet "checkpointed",
2909  * i.e., it is not yet put into env->explored_states, and it has no children
2910  * states as well. It's ephemeral, and can end up either a) being discarded if
2911  * compatible explored state is found at some point or BPF_EXIT instruction is
2912  * reached or b) checkpointed and put into env->explored_states, branching out
2913  * into one or more children states.
2914  *
2915  * In the former case, precise markings in current state are completely
2916  * ignored by state comparison code (see regsafe() for details). Only
2917  * checkpointed ("old") state precise markings are important, and if old
2918  * state's register/slot is precise, regsafe() assumes current state's
2919  * register/slot as precise and checks value ranges exactly and precisely. If
2920  * states turn out to be compatible, current state's necessary precise
2921  * markings and any required parent states' precise markings are enforced
2922  * after the fact with propagate_precision() logic, after the fact. But it's
2923  * important to realize that in this case, even after marking current state
2924  * registers/slots as precise, we immediately discard current state. So what
2925  * actually matters is any of the precise markings propagated into current
2926  * state's parent states, which are always checkpointed (due to b) case above).
2927  * As such, for scenario a) it doesn't matter if current state has precise
2928  * markings set or not.
2929  *
2930  * Now, for the scenario b), checkpointing and forking into child(ren)
2931  * state(s). Note that before current state gets to checkpointing step, any
2932  * processed instruction always assumes precise SCALAR register/slot
2933  * knowledge: if precise value or range is useful to prune jump branch, BPF
2934  * verifier takes this opportunity enthusiastically. Similarly, when
2935  * register's value is used to calculate offset or memory address, exact
2936  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2937  * what we mentioned above about state comparison ignoring precise markings
2938  * during state comparison, BPF verifier ignores and also assumes precise
2939  * markings *at will* during instruction verification process. But as verifier
2940  * assumes precision, it also propagates any precision dependencies across
2941  * parent states, which are not yet finalized, so can be further restricted
2942  * based on new knowledge gained from restrictions enforced by their children
2943  * states. This is so that once those parent states are finalized, i.e., when
2944  * they have no more active children state, state comparison logic in
2945  * is_state_visited() would enforce strict and precise SCALAR ranges, if
2946  * required for correctness.
2947  *
2948  * To build a bit more intuition, note also that once a state is checkpointed,
2949  * the path we took to get to that state is not important. This is crucial
2950  * property for state pruning. When state is checkpointed and finalized at
2951  * some instruction index, it can be correctly and safely used to "short
2952  * circuit" any *compatible* state that reaches exactly the same instruction
2953  * index. I.e., if we jumped to that instruction from a completely different
2954  * code path than original finalized state was derived from, it doesn't
2955  * matter, current state can be discarded because from that instruction
2956  * forward having a compatible state will ensure we will safely reach the
2957  * exit. States describe preconditions for further exploration, but completely
2958  * forget the history of how we got here.
2959  *
2960  * This also means that even if we needed precise SCALAR range to get to
2961  * finalized state, but from that point forward *that same* SCALAR register is
2962  * never used in a precise context (i.e., it's precise value is not needed for
2963  * correctness), it's correct and safe to mark such register as "imprecise"
2964  * (i.e., precise marking set to false). This is what we rely on when we do
2965  * not set precise marking in current state. If no child state requires
2966  * precision for any given SCALAR register, it's safe to dictate that it can
2967  * be imprecise. If any child state does require this register to be precise,
2968  * we'll mark it precise later retroactively during precise markings
2969  * propagation from child state to parent states.
2970  *
2971  * Skipping precise marking setting in current state is a mild version of
2972  * relying on the above observation. But we can utilize this property even
2973  * more aggressively by proactively forgetting any precise marking in the
2974  * current state (which we inherited from the parent state), right before we
2975  * checkpoint it and branch off into new child state. This is done by
2976  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2977  * finalized states which help in short circuiting more future states.
2978  */
2979 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2980 				  int spi)
2981 {
2982 	struct bpf_verifier_state *st = env->cur_state;
2983 	int first_idx = st->first_insn_idx;
2984 	int last_idx = env->insn_idx;
2985 	struct bpf_func_state *func;
2986 	struct bpf_reg_state *reg;
2987 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2988 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2989 	bool skip_first = true;
2990 	bool new_marks = false;
2991 	int i, err;
2992 
2993 	if (!env->bpf_capable)
2994 		return 0;
2995 
2996 	/* Do sanity checks against current state of register and/or stack
2997 	 * slot, but don't set precise flag in current state, as precision
2998 	 * tracking in the current state is unnecessary.
2999 	 */
3000 	func = st->frame[frame];
3001 	if (regno >= 0) {
3002 		reg = &func->regs[regno];
3003 		if (reg->type != SCALAR_VALUE) {
3004 			WARN_ONCE(1, "backtracing misuse");
3005 			return -EFAULT;
3006 		}
3007 		new_marks = true;
3008 	}
3009 
3010 	while (spi >= 0) {
3011 		if (!is_spilled_reg(&func->stack[spi])) {
3012 			stack_mask = 0;
3013 			break;
3014 		}
3015 		reg = &func->stack[spi].spilled_ptr;
3016 		if (reg->type != SCALAR_VALUE) {
3017 			stack_mask = 0;
3018 			break;
3019 		}
3020 		new_marks = true;
3021 		break;
3022 	}
3023 
3024 	if (!new_marks)
3025 		return 0;
3026 	if (!reg_mask && !stack_mask)
3027 		return 0;
3028 
3029 	for (;;) {
3030 		DECLARE_BITMAP(mask, 64);
3031 		u32 history = st->jmp_history_cnt;
3032 
3033 		if (env->log.level & BPF_LOG_LEVEL2)
3034 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3035 
3036 		if (last_idx < 0) {
3037 			/* we are at the entry into subprog, which
3038 			 * is expected for global funcs, but only if
3039 			 * requested precise registers are R1-R5
3040 			 * (which are global func's input arguments)
3041 			 */
3042 			if (st->curframe == 0 &&
3043 			    st->frame[0]->subprogno > 0 &&
3044 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3045 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3046 				bitmap_from_u64(mask, reg_mask);
3047 				for_each_set_bit(i, mask, 32) {
3048 					reg = &st->frame[0]->regs[i];
3049 					if (reg->type != SCALAR_VALUE) {
3050 						reg_mask &= ~(1u << i);
3051 						continue;
3052 					}
3053 					reg->precise = true;
3054 				}
3055 				return 0;
3056 			}
3057 
3058 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3059 				st->frame[0]->subprogno, reg_mask, stack_mask);
3060 			WARN_ONCE(1, "verifier backtracking bug");
3061 			return -EFAULT;
3062 		}
3063 
3064 		for (i = last_idx;;) {
3065 			if (skip_first) {
3066 				err = 0;
3067 				skip_first = false;
3068 			} else {
3069 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3070 			}
3071 			if (err == -ENOTSUPP) {
3072 				mark_all_scalars_precise(env, st);
3073 				return 0;
3074 			} else if (err) {
3075 				return err;
3076 			}
3077 			if (!reg_mask && !stack_mask)
3078 				/* Found assignment(s) into tracked register in this state.
3079 				 * Since this state is already marked, just return.
3080 				 * Nothing to be tracked further in the parent state.
3081 				 */
3082 				return 0;
3083 			if (i == first_idx)
3084 				break;
3085 			i = get_prev_insn_idx(st, i, &history);
3086 			if (i >= env->prog->len) {
3087 				/* This can happen if backtracking reached insn 0
3088 				 * and there are still reg_mask or stack_mask
3089 				 * to backtrack.
3090 				 * It means the backtracking missed the spot where
3091 				 * particular register was initialized with a constant.
3092 				 */
3093 				verbose(env, "BUG backtracking idx %d\n", i);
3094 				WARN_ONCE(1, "verifier backtracking bug");
3095 				return -EFAULT;
3096 			}
3097 		}
3098 		st = st->parent;
3099 		if (!st)
3100 			break;
3101 
3102 		new_marks = false;
3103 		func = st->frame[frame];
3104 		bitmap_from_u64(mask, reg_mask);
3105 		for_each_set_bit(i, mask, 32) {
3106 			reg = &func->regs[i];
3107 			if (reg->type != SCALAR_VALUE) {
3108 				reg_mask &= ~(1u << i);
3109 				continue;
3110 			}
3111 			if (!reg->precise)
3112 				new_marks = true;
3113 			reg->precise = true;
3114 		}
3115 
3116 		bitmap_from_u64(mask, stack_mask);
3117 		for_each_set_bit(i, mask, 64) {
3118 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3119 				/* the sequence of instructions:
3120 				 * 2: (bf) r3 = r10
3121 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3122 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3123 				 * doesn't contain jmps. It's backtracked
3124 				 * as a single block.
3125 				 * During backtracking insn 3 is not recognized as
3126 				 * stack access, so at the end of backtracking
3127 				 * stack slot fp-8 is still marked in stack_mask.
3128 				 * However the parent state may not have accessed
3129 				 * fp-8 and it's "unallocated" stack space.
3130 				 * In such case fallback to conservative.
3131 				 */
3132 				mark_all_scalars_precise(env, st);
3133 				return 0;
3134 			}
3135 
3136 			if (!is_spilled_reg(&func->stack[i])) {
3137 				stack_mask &= ~(1ull << i);
3138 				continue;
3139 			}
3140 			reg = &func->stack[i].spilled_ptr;
3141 			if (reg->type != SCALAR_VALUE) {
3142 				stack_mask &= ~(1ull << i);
3143 				continue;
3144 			}
3145 			if (!reg->precise)
3146 				new_marks = true;
3147 			reg->precise = true;
3148 		}
3149 		if (env->log.level & BPF_LOG_LEVEL2) {
3150 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3151 				new_marks ? "didn't have" : "already had",
3152 				reg_mask, stack_mask);
3153 			print_verifier_state(env, func, true);
3154 		}
3155 
3156 		if (!reg_mask && !stack_mask)
3157 			break;
3158 		if (!new_marks)
3159 			break;
3160 
3161 		last_idx = st->last_insn_idx;
3162 		first_idx = st->first_insn_idx;
3163 	}
3164 	return 0;
3165 }
3166 
3167 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3168 {
3169 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3170 }
3171 
3172 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3173 {
3174 	return __mark_chain_precision(env, frame, regno, -1);
3175 }
3176 
3177 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3178 {
3179 	return __mark_chain_precision(env, frame, -1, spi);
3180 }
3181 
3182 static bool is_spillable_regtype(enum bpf_reg_type type)
3183 {
3184 	switch (base_type(type)) {
3185 	case PTR_TO_MAP_VALUE:
3186 	case PTR_TO_STACK:
3187 	case PTR_TO_CTX:
3188 	case PTR_TO_PACKET:
3189 	case PTR_TO_PACKET_META:
3190 	case PTR_TO_PACKET_END:
3191 	case PTR_TO_FLOW_KEYS:
3192 	case CONST_PTR_TO_MAP:
3193 	case PTR_TO_SOCKET:
3194 	case PTR_TO_SOCK_COMMON:
3195 	case PTR_TO_TCP_SOCK:
3196 	case PTR_TO_XDP_SOCK:
3197 	case PTR_TO_BTF_ID:
3198 	case PTR_TO_BUF:
3199 	case PTR_TO_MEM:
3200 	case PTR_TO_FUNC:
3201 	case PTR_TO_MAP_KEY:
3202 		return true;
3203 	default:
3204 		return false;
3205 	}
3206 }
3207 
3208 /* Does this register contain a constant zero? */
3209 static bool register_is_null(struct bpf_reg_state *reg)
3210 {
3211 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3212 }
3213 
3214 static bool register_is_const(struct bpf_reg_state *reg)
3215 {
3216 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3217 }
3218 
3219 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3220 {
3221 	return tnum_is_unknown(reg->var_off) &&
3222 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3223 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3224 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3225 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3226 }
3227 
3228 static bool register_is_bounded(struct bpf_reg_state *reg)
3229 {
3230 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3231 }
3232 
3233 static bool __is_pointer_value(bool allow_ptr_leaks,
3234 			       const struct bpf_reg_state *reg)
3235 {
3236 	if (allow_ptr_leaks)
3237 		return false;
3238 
3239 	return reg->type != SCALAR_VALUE;
3240 }
3241 
3242 static void save_register_state(struct bpf_func_state *state,
3243 				int spi, struct bpf_reg_state *reg,
3244 				int size)
3245 {
3246 	int i;
3247 
3248 	state->stack[spi].spilled_ptr = *reg;
3249 	if (size == BPF_REG_SIZE)
3250 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3251 
3252 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3253 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3254 
3255 	/* size < 8 bytes spill */
3256 	for (; i; i--)
3257 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3258 }
3259 
3260 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3261  * stack boundary and alignment are checked in check_mem_access()
3262  */
3263 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3264 				       /* stack frame we're writing to */
3265 				       struct bpf_func_state *state,
3266 				       int off, int size, int value_regno,
3267 				       int insn_idx)
3268 {
3269 	struct bpf_func_state *cur; /* state of the current function */
3270 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3271 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3272 	struct bpf_reg_state *reg = NULL;
3273 
3274 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3275 	if (err)
3276 		return err;
3277 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3278 	 * so it's aligned access and [off, off + size) are within stack limits
3279 	 */
3280 	if (!env->allow_ptr_leaks &&
3281 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3282 	    size != BPF_REG_SIZE) {
3283 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3284 		return -EACCES;
3285 	}
3286 
3287 	cur = env->cur_state->frame[env->cur_state->curframe];
3288 	if (value_regno >= 0)
3289 		reg = &cur->regs[value_regno];
3290 	if (!env->bypass_spec_v4) {
3291 		bool sanitize = reg && is_spillable_regtype(reg->type);
3292 
3293 		for (i = 0; i < size; i++) {
3294 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3295 				sanitize = true;
3296 				break;
3297 			}
3298 		}
3299 
3300 		if (sanitize)
3301 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3302 	}
3303 
3304 	mark_stack_slot_scratched(env, spi);
3305 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3306 	    !register_is_null(reg) && env->bpf_capable) {
3307 		if (dst_reg != BPF_REG_FP) {
3308 			/* The backtracking logic can only recognize explicit
3309 			 * stack slot address like [fp - 8]. Other spill of
3310 			 * scalar via different register has to be conservative.
3311 			 * Backtrack from here and mark all registers as precise
3312 			 * that contributed into 'reg' being a constant.
3313 			 */
3314 			err = mark_chain_precision(env, value_regno);
3315 			if (err)
3316 				return err;
3317 		}
3318 		save_register_state(state, spi, reg, size);
3319 	} else if (reg && is_spillable_regtype(reg->type)) {
3320 		/* register containing pointer is being spilled into stack */
3321 		if (size != BPF_REG_SIZE) {
3322 			verbose_linfo(env, insn_idx, "; ");
3323 			verbose(env, "invalid size of register spill\n");
3324 			return -EACCES;
3325 		}
3326 		if (state != cur && reg->type == PTR_TO_STACK) {
3327 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3328 			return -EINVAL;
3329 		}
3330 		save_register_state(state, spi, reg, size);
3331 	} else {
3332 		u8 type = STACK_MISC;
3333 
3334 		/* regular write of data into stack destroys any spilled ptr */
3335 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3336 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3337 		if (is_spilled_reg(&state->stack[spi]))
3338 			for (i = 0; i < BPF_REG_SIZE; i++)
3339 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3340 
3341 		/* only mark the slot as written if all 8 bytes were written
3342 		 * otherwise read propagation may incorrectly stop too soon
3343 		 * when stack slots are partially written.
3344 		 * This heuristic means that read propagation will be
3345 		 * conservative, since it will add reg_live_read marks
3346 		 * to stack slots all the way to first state when programs
3347 		 * writes+reads less than 8 bytes
3348 		 */
3349 		if (size == BPF_REG_SIZE)
3350 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3351 
3352 		/* when we zero initialize stack slots mark them as such */
3353 		if (reg && register_is_null(reg)) {
3354 			/* backtracking doesn't work for STACK_ZERO yet. */
3355 			err = mark_chain_precision(env, value_regno);
3356 			if (err)
3357 				return err;
3358 			type = STACK_ZERO;
3359 		}
3360 
3361 		/* Mark slots affected by this stack write. */
3362 		for (i = 0; i < size; i++)
3363 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3364 				type;
3365 	}
3366 	return 0;
3367 }
3368 
3369 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3370  * known to contain a variable offset.
3371  * This function checks whether the write is permitted and conservatively
3372  * tracks the effects of the write, considering that each stack slot in the
3373  * dynamic range is potentially written to.
3374  *
3375  * 'off' includes 'regno->off'.
3376  * 'value_regno' can be -1, meaning that an unknown value is being written to
3377  * the stack.
3378  *
3379  * Spilled pointers in range are not marked as written because we don't know
3380  * what's going to be actually written. This means that read propagation for
3381  * future reads cannot be terminated by this write.
3382  *
3383  * For privileged programs, uninitialized stack slots are considered
3384  * initialized by this write (even though we don't know exactly what offsets
3385  * are going to be written to). The idea is that we don't want the verifier to
3386  * reject future reads that access slots written to through variable offsets.
3387  */
3388 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3389 				     /* func where register points to */
3390 				     struct bpf_func_state *state,
3391 				     int ptr_regno, int off, int size,
3392 				     int value_regno, int insn_idx)
3393 {
3394 	struct bpf_func_state *cur; /* state of the current function */
3395 	int min_off, max_off;
3396 	int i, err;
3397 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3398 	bool writing_zero = false;
3399 	/* set if the fact that we're writing a zero is used to let any
3400 	 * stack slots remain STACK_ZERO
3401 	 */
3402 	bool zero_used = false;
3403 
3404 	cur = env->cur_state->frame[env->cur_state->curframe];
3405 	ptr_reg = &cur->regs[ptr_regno];
3406 	min_off = ptr_reg->smin_value + off;
3407 	max_off = ptr_reg->smax_value + off + size;
3408 	if (value_regno >= 0)
3409 		value_reg = &cur->regs[value_regno];
3410 	if (value_reg && register_is_null(value_reg))
3411 		writing_zero = true;
3412 
3413 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3414 	if (err)
3415 		return err;
3416 
3417 
3418 	/* Variable offset writes destroy any spilled pointers in range. */
3419 	for (i = min_off; i < max_off; i++) {
3420 		u8 new_type, *stype;
3421 		int slot, spi;
3422 
3423 		slot = -i - 1;
3424 		spi = slot / BPF_REG_SIZE;
3425 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3426 		mark_stack_slot_scratched(env, spi);
3427 
3428 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3429 			/* Reject the write if range we may write to has not
3430 			 * been initialized beforehand. If we didn't reject
3431 			 * here, the ptr status would be erased below (even
3432 			 * though not all slots are actually overwritten),
3433 			 * possibly opening the door to leaks.
3434 			 *
3435 			 * We do however catch STACK_INVALID case below, and
3436 			 * only allow reading possibly uninitialized memory
3437 			 * later for CAP_PERFMON, as the write may not happen to
3438 			 * that slot.
3439 			 */
3440 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3441 				insn_idx, i);
3442 			return -EINVAL;
3443 		}
3444 
3445 		/* Erase all spilled pointers. */
3446 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3447 
3448 		/* Update the slot type. */
3449 		new_type = STACK_MISC;
3450 		if (writing_zero && *stype == STACK_ZERO) {
3451 			new_type = STACK_ZERO;
3452 			zero_used = true;
3453 		}
3454 		/* If the slot is STACK_INVALID, we check whether it's OK to
3455 		 * pretend that it will be initialized by this write. The slot
3456 		 * might not actually be written to, and so if we mark it as
3457 		 * initialized future reads might leak uninitialized memory.
3458 		 * For privileged programs, we will accept such reads to slots
3459 		 * that may or may not be written because, if we're reject
3460 		 * them, the error would be too confusing.
3461 		 */
3462 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3463 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3464 					insn_idx, i);
3465 			return -EINVAL;
3466 		}
3467 		*stype = new_type;
3468 	}
3469 	if (zero_used) {
3470 		/* backtracking doesn't work for STACK_ZERO yet. */
3471 		err = mark_chain_precision(env, value_regno);
3472 		if (err)
3473 			return err;
3474 	}
3475 	return 0;
3476 }
3477 
3478 /* When register 'dst_regno' is assigned some values from stack[min_off,
3479  * max_off), we set the register's type according to the types of the
3480  * respective stack slots. If all the stack values are known to be zeros, then
3481  * so is the destination reg. Otherwise, the register is considered to be
3482  * SCALAR. This function does not deal with register filling; the caller must
3483  * ensure that all spilled registers in the stack range have been marked as
3484  * read.
3485  */
3486 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3487 				/* func where src register points to */
3488 				struct bpf_func_state *ptr_state,
3489 				int min_off, int max_off, int dst_regno)
3490 {
3491 	struct bpf_verifier_state *vstate = env->cur_state;
3492 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3493 	int i, slot, spi;
3494 	u8 *stype;
3495 	int zeros = 0;
3496 
3497 	for (i = min_off; i < max_off; i++) {
3498 		slot = -i - 1;
3499 		spi = slot / BPF_REG_SIZE;
3500 		stype = ptr_state->stack[spi].slot_type;
3501 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3502 			break;
3503 		zeros++;
3504 	}
3505 	if (zeros == max_off - min_off) {
3506 		/* any access_size read into register is zero extended,
3507 		 * so the whole register == const_zero
3508 		 */
3509 		__mark_reg_const_zero(&state->regs[dst_regno]);
3510 		/* backtracking doesn't support STACK_ZERO yet,
3511 		 * so mark it precise here, so that later
3512 		 * backtracking can stop here.
3513 		 * Backtracking may not need this if this register
3514 		 * doesn't participate in pointer adjustment.
3515 		 * Forward propagation of precise flag is not
3516 		 * necessary either. This mark is only to stop
3517 		 * backtracking. Any register that contributed
3518 		 * to const 0 was marked precise before spill.
3519 		 */
3520 		state->regs[dst_regno].precise = true;
3521 	} else {
3522 		/* have read misc data from the stack */
3523 		mark_reg_unknown(env, state->regs, dst_regno);
3524 	}
3525 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3526 }
3527 
3528 /* Read the stack at 'off' and put the results into the register indicated by
3529  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3530  * spilled reg.
3531  *
3532  * 'dst_regno' can be -1, meaning that the read value is not going to a
3533  * register.
3534  *
3535  * The access is assumed to be within the current stack bounds.
3536  */
3537 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3538 				      /* func where src register points to */
3539 				      struct bpf_func_state *reg_state,
3540 				      int off, int size, int dst_regno)
3541 {
3542 	struct bpf_verifier_state *vstate = env->cur_state;
3543 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3544 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3545 	struct bpf_reg_state *reg;
3546 	u8 *stype, type;
3547 
3548 	stype = reg_state->stack[spi].slot_type;
3549 	reg = &reg_state->stack[spi].spilled_ptr;
3550 
3551 	if (is_spilled_reg(&reg_state->stack[spi])) {
3552 		u8 spill_size = 1;
3553 
3554 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3555 			spill_size++;
3556 
3557 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3558 			if (reg->type != SCALAR_VALUE) {
3559 				verbose_linfo(env, env->insn_idx, "; ");
3560 				verbose(env, "invalid size of register fill\n");
3561 				return -EACCES;
3562 			}
3563 
3564 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3565 			if (dst_regno < 0)
3566 				return 0;
3567 
3568 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3569 				/* The earlier check_reg_arg() has decided the
3570 				 * subreg_def for this insn.  Save it first.
3571 				 */
3572 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3573 
3574 				state->regs[dst_regno] = *reg;
3575 				state->regs[dst_regno].subreg_def = subreg_def;
3576 			} else {
3577 				for (i = 0; i < size; i++) {
3578 					type = stype[(slot - i) % BPF_REG_SIZE];
3579 					if (type == STACK_SPILL)
3580 						continue;
3581 					if (type == STACK_MISC)
3582 						continue;
3583 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3584 						off, i, size);
3585 					return -EACCES;
3586 				}
3587 				mark_reg_unknown(env, state->regs, dst_regno);
3588 			}
3589 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3590 			return 0;
3591 		}
3592 
3593 		if (dst_regno >= 0) {
3594 			/* restore register state from stack */
3595 			state->regs[dst_regno] = *reg;
3596 			/* mark reg as written since spilled pointer state likely
3597 			 * has its liveness marks cleared by is_state_visited()
3598 			 * which resets stack/reg liveness for state transitions
3599 			 */
3600 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3601 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3602 			/* If dst_regno==-1, the caller is asking us whether
3603 			 * it is acceptable to use this value as a SCALAR_VALUE
3604 			 * (e.g. for XADD).
3605 			 * We must not allow unprivileged callers to do that
3606 			 * with spilled pointers.
3607 			 */
3608 			verbose(env, "leaking pointer from stack off %d\n",
3609 				off);
3610 			return -EACCES;
3611 		}
3612 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3613 	} else {
3614 		for (i = 0; i < size; i++) {
3615 			type = stype[(slot - i) % BPF_REG_SIZE];
3616 			if (type == STACK_MISC)
3617 				continue;
3618 			if (type == STACK_ZERO)
3619 				continue;
3620 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3621 				off, i, size);
3622 			return -EACCES;
3623 		}
3624 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3625 		if (dst_regno >= 0)
3626 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3627 	}
3628 	return 0;
3629 }
3630 
3631 enum bpf_access_src {
3632 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3633 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3634 };
3635 
3636 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3637 					 int regno, int off, int access_size,
3638 					 bool zero_size_allowed,
3639 					 enum bpf_access_src type,
3640 					 struct bpf_call_arg_meta *meta);
3641 
3642 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3643 {
3644 	return cur_regs(env) + regno;
3645 }
3646 
3647 /* Read the stack at 'ptr_regno + off' and put the result into the register
3648  * 'dst_regno'.
3649  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3650  * but not its variable offset.
3651  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3652  *
3653  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3654  * filling registers (i.e. reads of spilled register cannot be detected when
3655  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3656  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3657  * offset; for a fixed offset check_stack_read_fixed_off should be used
3658  * instead.
3659  */
3660 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3661 				    int ptr_regno, int off, int size, int dst_regno)
3662 {
3663 	/* The state of the source register. */
3664 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3665 	struct bpf_func_state *ptr_state = func(env, reg);
3666 	int err;
3667 	int min_off, max_off;
3668 
3669 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3670 	 */
3671 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3672 					    false, ACCESS_DIRECT, NULL);
3673 	if (err)
3674 		return err;
3675 
3676 	min_off = reg->smin_value + off;
3677 	max_off = reg->smax_value + off;
3678 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3679 	return 0;
3680 }
3681 
3682 /* check_stack_read dispatches to check_stack_read_fixed_off or
3683  * check_stack_read_var_off.
3684  *
3685  * The caller must ensure that the offset falls within the allocated stack
3686  * bounds.
3687  *
3688  * 'dst_regno' is a register which will receive the value from the stack. It
3689  * can be -1, meaning that the read value is not going to a register.
3690  */
3691 static int check_stack_read(struct bpf_verifier_env *env,
3692 			    int ptr_regno, int off, int size,
3693 			    int dst_regno)
3694 {
3695 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3696 	struct bpf_func_state *state = func(env, reg);
3697 	int err;
3698 	/* Some accesses are only permitted with a static offset. */
3699 	bool var_off = !tnum_is_const(reg->var_off);
3700 
3701 	/* The offset is required to be static when reads don't go to a
3702 	 * register, in order to not leak pointers (see
3703 	 * check_stack_read_fixed_off).
3704 	 */
3705 	if (dst_regno < 0 && var_off) {
3706 		char tn_buf[48];
3707 
3708 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3709 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3710 			tn_buf, off, size);
3711 		return -EACCES;
3712 	}
3713 	/* Variable offset is prohibited for unprivileged mode for simplicity
3714 	 * since it requires corresponding support in Spectre masking for stack
3715 	 * ALU. See also retrieve_ptr_limit().
3716 	 */
3717 	if (!env->bypass_spec_v1 && var_off) {
3718 		char tn_buf[48];
3719 
3720 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3721 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3722 				ptr_regno, tn_buf);
3723 		return -EACCES;
3724 	}
3725 
3726 	if (!var_off) {
3727 		off += reg->var_off.value;
3728 		err = check_stack_read_fixed_off(env, state, off, size,
3729 						 dst_regno);
3730 	} else {
3731 		/* Variable offset stack reads need more conservative handling
3732 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3733 		 * branch.
3734 		 */
3735 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3736 					       dst_regno);
3737 	}
3738 	return err;
3739 }
3740 
3741 
3742 /* check_stack_write dispatches to check_stack_write_fixed_off or
3743  * check_stack_write_var_off.
3744  *
3745  * 'ptr_regno' is the register used as a pointer into the stack.
3746  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3747  * 'value_regno' is the register whose value we're writing to the stack. It can
3748  * be -1, meaning that we're not writing from a register.
3749  *
3750  * The caller must ensure that the offset falls within the maximum stack size.
3751  */
3752 static int check_stack_write(struct bpf_verifier_env *env,
3753 			     int ptr_regno, int off, int size,
3754 			     int value_regno, int insn_idx)
3755 {
3756 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3757 	struct bpf_func_state *state = func(env, reg);
3758 	int err;
3759 
3760 	if (tnum_is_const(reg->var_off)) {
3761 		off += reg->var_off.value;
3762 		err = check_stack_write_fixed_off(env, state, off, size,
3763 						  value_regno, insn_idx);
3764 	} else {
3765 		/* Variable offset stack reads need more conservative handling
3766 		 * than fixed offset ones.
3767 		 */
3768 		err = check_stack_write_var_off(env, state,
3769 						ptr_regno, off, size,
3770 						value_regno, insn_idx);
3771 	}
3772 	return err;
3773 }
3774 
3775 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3776 				 int off, int size, enum bpf_access_type type)
3777 {
3778 	struct bpf_reg_state *regs = cur_regs(env);
3779 	struct bpf_map *map = regs[regno].map_ptr;
3780 	u32 cap = bpf_map_flags_to_cap(map);
3781 
3782 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3783 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3784 			map->value_size, off, size);
3785 		return -EACCES;
3786 	}
3787 
3788 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3789 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3790 			map->value_size, off, size);
3791 		return -EACCES;
3792 	}
3793 
3794 	return 0;
3795 }
3796 
3797 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3798 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3799 			      int off, int size, u32 mem_size,
3800 			      bool zero_size_allowed)
3801 {
3802 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3803 	struct bpf_reg_state *reg;
3804 
3805 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3806 		return 0;
3807 
3808 	reg = &cur_regs(env)[regno];
3809 	switch (reg->type) {
3810 	case PTR_TO_MAP_KEY:
3811 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3812 			mem_size, off, size);
3813 		break;
3814 	case PTR_TO_MAP_VALUE:
3815 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3816 			mem_size, off, size);
3817 		break;
3818 	case PTR_TO_PACKET:
3819 	case PTR_TO_PACKET_META:
3820 	case PTR_TO_PACKET_END:
3821 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3822 			off, size, regno, reg->id, off, mem_size);
3823 		break;
3824 	case PTR_TO_MEM:
3825 	default:
3826 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3827 			mem_size, off, size);
3828 	}
3829 
3830 	return -EACCES;
3831 }
3832 
3833 /* check read/write into a memory region with possible variable offset */
3834 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3835 				   int off, int size, u32 mem_size,
3836 				   bool zero_size_allowed)
3837 {
3838 	struct bpf_verifier_state *vstate = env->cur_state;
3839 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3840 	struct bpf_reg_state *reg = &state->regs[regno];
3841 	int err;
3842 
3843 	/* We may have adjusted the register pointing to memory region, so we
3844 	 * need to try adding each of min_value and max_value to off
3845 	 * to make sure our theoretical access will be safe.
3846 	 *
3847 	 * The minimum value is only important with signed
3848 	 * comparisons where we can't assume the floor of a
3849 	 * value is 0.  If we are using signed variables for our
3850 	 * index'es we need to make sure that whatever we use
3851 	 * will have a set floor within our range.
3852 	 */
3853 	if (reg->smin_value < 0 &&
3854 	    (reg->smin_value == S64_MIN ||
3855 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3856 	      reg->smin_value + off < 0)) {
3857 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3858 			regno);
3859 		return -EACCES;
3860 	}
3861 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3862 				 mem_size, zero_size_allowed);
3863 	if (err) {
3864 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3865 			regno);
3866 		return err;
3867 	}
3868 
3869 	/* If we haven't set a max value then we need to bail since we can't be
3870 	 * sure we won't do bad things.
3871 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3872 	 */
3873 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3874 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3875 			regno);
3876 		return -EACCES;
3877 	}
3878 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3879 				 mem_size, zero_size_allowed);
3880 	if (err) {
3881 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3882 			regno);
3883 		return err;
3884 	}
3885 
3886 	return 0;
3887 }
3888 
3889 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3890 			       const struct bpf_reg_state *reg, int regno,
3891 			       bool fixed_off_ok)
3892 {
3893 	/* Access to this pointer-typed register or passing it to a helper
3894 	 * is only allowed in its original, unmodified form.
3895 	 */
3896 
3897 	if (reg->off < 0) {
3898 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3899 			reg_type_str(env, reg->type), regno, reg->off);
3900 		return -EACCES;
3901 	}
3902 
3903 	if (!fixed_off_ok && reg->off) {
3904 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3905 			reg_type_str(env, reg->type), regno, reg->off);
3906 		return -EACCES;
3907 	}
3908 
3909 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3910 		char tn_buf[48];
3911 
3912 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3913 		verbose(env, "variable %s access var_off=%s disallowed\n",
3914 			reg_type_str(env, reg->type), tn_buf);
3915 		return -EACCES;
3916 	}
3917 
3918 	return 0;
3919 }
3920 
3921 int check_ptr_off_reg(struct bpf_verifier_env *env,
3922 		      const struct bpf_reg_state *reg, int regno)
3923 {
3924 	return __check_ptr_off_reg(env, reg, regno, false);
3925 }
3926 
3927 static int map_kptr_match_type(struct bpf_verifier_env *env,
3928 			       struct btf_field *kptr_field,
3929 			       struct bpf_reg_state *reg, u32 regno)
3930 {
3931 	const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
3932 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
3933 	const char *reg_name = "";
3934 
3935 	/* Only unreferenced case accepts untrusted pointers */
3936 	if (kptr_field->type == BPF_KPTR_UNREF)
3937 		perm_flags |= PTR_UNTRUSTED;
3938 
3939 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3940 		goto bad_type;
3941 
3942 	if (!btf_is_kernel(reg->btf)) {
3943 		verbose(env, "R%d must point to kernel BTF\n", regno);
3944 		return -EINVAL;
3945 	}
3946 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3947 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3948 
3949 	/* For ref_ptr case, release function check should ensure we get one
3950 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3951 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3952 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3953 	 * reg->off and reg->ref_obj_id are not needed here.
3954 	 */
3955 	if (__check_ptr_off_reg(env, reg, regno, true))
3956 		return -EACCES;
3957 
3958 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3959 	 * we also need to take into account the reg->off.
3960 	 *
3961 	 * We want to support cases like:
3962 	 *
3963 	 * struct foo {
3964 	 *         struct bar br;
3965 	 *         struct baz bz;
3966 	 * };
3967 	 *
3968 	 * struct foo *v;
3969 	 * v = func();	      // PTR_TO_BTF_ID
3970 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3971 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3972 	 *                    // first member type of struct after comparison fails
3973 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3974 	 *                    // to match type
3975 	 *
3976 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3977 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3978 	 * the struct to match type against first member of struct, i.e. reject
3979 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3980 	 * strict mode to true for type match.
3981 	 */
3982 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3983 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3984 				  kptr_field->type == BPF_KPTR_REF))
3985 		goto bad_type;
3986 	return 0;
3987 bad_type:
3988 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3989 		reg_type_str(env, reg->type), reg_name);
3990 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3991 	if (kptr_field->type == BPF_KPTR_UNREF)
3992 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3993 			targ_name);
3994 	else
3995 		verbose(env, "\n");
3996 	return -EINVAL;
3997 }
3998 
3999 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4000 				 int value_regno, int insn_idx,
4001 				 struct btf_field *kptr_field)
4002 {
4003 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4004 	int class = BPF_CLASS(insn->code);
4005 	struct bpf_reg_state *val_reg;
4006 
4007 	/* Things we already checked for in check_map_access and caller:
4008 	 *  - Reject cases where variable offset may touch kptr
4009 	 *  - size of access (must be BPF_DW)
4010 	 *  - tnum_is_const(reg->var_off)
4011 	 *  - kptr_field->offset == off + reg->var_off.value
4012 	 */
4013 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4014 	if (BPF_MODE(insn->code) != BPF_MEM) {
4015 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4016 		return -EACCES;
4017 	}
4018 
4019 	/* We only allow loading referenced kptr, since it will be marked as
4020 	 * untrusted, similar to unreferenced kptr.
4021 	 */
4022 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4023 		verbose(env, "store to referenced kptr disallowed\n");
4024 		return -EACCES;
4025 	}
4026 
4027 	if (class == BPF_LDX) {
4028 		val_reg = reg_state(env, value_regno);
4029 		/* We can simply mark the value_regno receiving the pointer
4030 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4031 		 */
4032 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4033 				kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
4034 		/* For mark_ptr_or_null_reg */
4035 		val_reg->id = ++env->id_gen;
4036 	} else if (class == BPF_STX) {
4037 		val_reg = reg_state(env, value_regno);
4038 		if (!register_is_null(val_reg) &&
4039 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4040 			return -EACCES;
4041 	} else if (class == BPF_ST) {
4042 		if (insn->imm) {
4043 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4044 				kptr_field->offset);
4045 			return -EACCES;
4046 		}
4047 	} else {
4048 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4049 		return -EACCES;
4050 	}
4051 	return 0;
4052 }
4053 
4054 /* check read/write into a map element with possible variable offset */
4055 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4056 			    int off, int size, bool zero_size_allowed,
4057 			    enum bpf_access_src src)
4058 {
4059 	struct bpf_verifier_state *vstate = env->cur_state;
4060 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4061 	struct bpf_reg_state *reg = &state->regs[regno];
4062 	struct bpf_map *map = reg->map_ptr;
4063 	struct btf_record *rec;
4064 	int err, i;
4065 
4066 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4067 				      zero_size_allowed);
4068 	if (err)
4069 		return err;
4070 
4071 	if (IS_ERR_OR_NULL(map->record))
4072 		return 0;
4073 	rec = map->record;
4074 	for (i = 0; i < rec->cnt; i++) {
4075 		struct btf_field *field = &rec->fields[i];
4076 		u32 p = field->offset;
4077 
4078 		/* If any part of a field  can be touched by load/store, reject
4079 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4080 		 * it is sufficient to check x1 < y2 && y1 < x2.
4081 		 */
4082 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4083 		    p < reg->umax_value + off + size) {
4084 			switch (field->type) {
4085 			case BPF_KPTR_UNREF:
4086 			case BPF_KPTR_REF:
4087 				if (src != ACCESS_DIRECT) {
4088 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4089 					return -EACCES;
4090 				}
4091 				if (!tnum_is_const(reg->var_off)) {
4092 					verbose(env, "kptr access cannot have variable offset\n");
4093 					return -EACCES;
4094 				}
4095 				if (p != off + reg->var_off.value) {
4096 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4097 						p, off + reg->var_off.value);
4098 					return -EACCES;
4099 				}
4100 				if (size != bpf_size_to_bytes(BPF_DW)) {
4101 					verbose(env, "kptr access size must be BPF_DW\n");
4102 					return -EACCES;
4103 				}
4104 				break;
4105 			default:
4106 				verbose(env, "%s cannot be accessed directly by load/store\n",
4107 					btf_field_type_name(field->type));
4108 				return -EACCES;
4109 			}
4110 		}
4111 	}
4112 	return 0;
4113 }
4114 
4115 #define MAX_PACKET_OFF 0xffff
4116 
4117 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4118 				       const struct bpf_call_arg_meta *meta,
4119 				       enum bpf_access_type t)
4120 {
4121 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4122 
4123 	switch (prog_type) {
4124 	/* Program types only with direct read access go here! */
4125 	case BPF_PROG_TYPE_LWT_IN:
4126 	case BPF_PROG_TYPE_LWT_OUT:
4127 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4128 	case BPF_PROG_TYPE_SK_REUSEPORT:
4129 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4130 	case BPF_PROG_TYPE_CGROUP_SKB:
4131 		if (t == BPF_WRITE)
4132 			return false;
4133 		fallthrough;
4134 
4135 	/* Program types with direct read + write access go here! */
4136 	case BPF_PROG_TYPE_SCHED_CLS:
4137 	case BPF_PROG_TYPE_SCHED_ACT:
4138 	case BPF_PROG_TYPE_XDP:
4139 	case BPF_PROG_TYPE_LWT_XMIT:
4140 	case BPF_PROG_TYPE_SK_SKB:
4141 	case BPF_PROG_TYPE_SK_MSG:
4142 		if (meta)
4143 			return meta->pkt_access;
4144 
4145 		env->seen_direct_write = true;
4146 		return true;
4147 
4148 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4149 		if (t == BPF_WRITE)
4150 			env->seen_direct_write = true;
4151 
4152 		return true;
4153 
4154 	default:
4155 		return false;
4156 	}
4157 }
4158 
4159 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4160 			       int size, bool zero_size_allowed)
4161 {
4162 	struct bpf_reg_state *regs = cur_regs(env);
4163 	struct bpf_reg_state *reg = &regs[regno];
4164 	int err;
4165 
4166 	/* We may have added a variable offset to the packet pointer; but any
4167 	 * reg->range we have comes after that.  We are only checking the fixed
4168 	 * offset.
4169 	 */
4170 
4171 	/* We don't allow negative numbers, because we aren't tracking enough
4172 	 * detail to prove they're safe.
4173 	 */
4174 	if (reg->smin_value < 0) {
4175 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4176 			regno);
4177 		return -EACCES;
4178 	}
4179 
4180 	err = reg->range < 0 ? -EINVAL :
4181 	      __check_mem_access(env, regno, off, size, reg->range,
4182 				 zero_size_allowed);
4183 	if (err) {
4184 		verbose(env, "R%d offset is outside of the packet\n", regno);
4185 		return err;
4186 	}
4187 
4188 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4189 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4190 	 * otherwise find_good_pkt_pointers would have refused to set range info
4191 	 * that __check_mem_access would have rejected this pkt access.
4192 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4193 	 */
4194 	env->prog->aux->max_pkt_offset =
4195 		max_t(u32, env->prog->aux->max_pkt_offset,
4196 		      off + reg->umax_value + size - 1);
4197 
4198 	return err;
4199 }
4200 
4201 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4202 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4203 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4204 			    struct btf **btf, u32 *btf_id)
4205 {
4206 	struct bpf_insn_access_aux info = {
4207 		.reg_type = *reg_type,
4208 		.log = &env->log,
4209 	};
4210 
4211 	if (env->ops->is_valid_access &&
4212 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4213 		/* A non zero info.ctx_field_size indicates that this field is a
4214 		 * candidate for later verifier transformation to load the whole
4215 		 * field and then apply a mask when accessed with a narrower
4216 		 * access than actual ctx access size. A zero info.ctx_field_size
4217 		 * will only allow for whole field access and rejects any other
4218 		 * type of narrower access.
4219 		 */
4220 		*reg_type = info.reg_type;
4221 
4222 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4223 			*btf = info.btf;
4224 			*btf_id = info.btf_id;
4225 		} else {
4226 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4227 		}
4228 		/* remember the offset of last byte accessed in ctx */
4229 		if (env->prog->aux->max_ctx_offset < off + size)
4230 			env->prog->aux->max_ctx_offset = off + size;
4231 		return 0;
4232 	}
4233 
4234 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4235 	return -EACCES;
4236 }
4237 
4238 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4239 				  int size)
4240 {
4241 	if (size < 0 || off < 0 ||
4242 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4243 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4244 			off, size);
4245 		return -EACCES;
4246 	}
4247 	return 0;
4248 }
4249 
4250 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4251 			     u32 regno, int off, int size,
4252 			     enum bpf_access_type t)
4253 {
4254 	struct bpf_reg_state *regs = cur_regs(env);
4255 	struct bpf_reg_state *reg = &regs[regno];
4256 	struct bpf_insn_access_aux info = {};
4257 	bool valid;
4258 
4259 	if (reg->smin_value < 0) {
4260 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4261 			regno);
4262 		return -EACCES;
4263 	}
4264 
4265 	switch (reg->type) {
4266 	case PTR_TO_SOCK_COMMON:
4267 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4268 		break;
4269 	case PTR_TO_SOCKET:
4270 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4271 		break;
4272 	case PTR_TO_TCP_SOCK:
4273 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4274 		break;
4275 	case PTR_TO_XDP_SOCK:
4276 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4277 		break;
4278 	default:
4279 		valid = false;
4280 	}
4281 
4282 
4283 	if (valid) {
4284 		env->insn_aux_data[insn_idx].ctx_field_size =
4285 			info.ctx_field_size;
4286 		return 0;
4287 	}
4288 
4289 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4290 		regno, reg_type_str(env, reg->type), off, size);
4291 
4292 	return -EACCES;
4293 }
4294 
4295 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4296 {
4297 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4298 }
4299 
4300 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4301 {
4302 	const struct bpf_reg_state *reg = reg_state(env, regno);
4303 
4304 	return reg->type == PTR_TO_CTX;
4305 }
4306 
4307 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4308 {
4309 	const struct bpf_reg_state *reg = reg_state(env, regno);
4310 
4311 	return type_is_sk_pointer(reg->type);
4312 }
4313 
4314 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4315 {
4316 	const struct bpf_reg_state *reg = reg_state(env, regno);
4317 
4318 	return type_is_pkt_pointer(reg->type);
4319 }
4320 
4321 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4322 {
4323 	const struct bpf_reg_state *reg = reg_state(env, regno);
4324 
4325 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4326 	return reg->type == PTR_TO_FLOW_KEYS;
4327 }
4328 
4329 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4330 {
4331 	/* A referenced register is always trusted. */
4332 	if (reg->ref_obj_id)
4333 		return true;
4334 
4335 	/* If a register is not referenced, it is trusted if it has the
4336 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4337 	 * other type modifiers may be safe, but we elect to take an opt-in
4338 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4339 	 * not.
4340 	 *
4341 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4342 	 * for whether a register is trusted.
4343 	 */
4344 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4345 	       !bpf_type_has_unsafe_modifiers(reg->type);
4346 }
4347 
4348 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4349 {
4350 	return reg->type & MEM_RCU;
4351 }
4352 
4353 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4354 				   const struct bpf_reg_state *reg,
4355 				   int off, int size, bool strict)
4356 {
4357 	struct tnum reg_off;
4358 	int ip_align;
4359 
4360 	/* Byte size accesses are always allowed. */
4361 	if (!strict || size == 1)
4362 		return 0;
4363 
4364 	/* For platforms that do not have a Kconfig enabling
4365 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4366 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4367 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4368 	 * to this code only in strict mode where we want to emulate
4369 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4370 	 * unconditional IP align value of '2'.
4371 	 */
4372 	ip_align = 2;
4373 
4374 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4375 	if (!tnum_is_aligned(reg_off, size)) {
4376 		char tn_buf[48];
4377 
4378 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4379 		verbose(env,
4380 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4381 			ip_align, tn_buf, reg->off, off, size);
4382 		return -EACCES;
4383 	}
4384 
4385 	return 0;
4386 }
4387 
4388 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4389 				       const struct bpf_reg_state *reg,
4390 				       const char *pointer_desc,
4391 				       int off, int size, bool strict)
4392 {
4393 	struct tnum reg_off;
4394 
4395 	/* Byte size accesses are always allowed. */
4396 	if (!strict || size == 1)
4397 		return 0;
4398 
4399 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4400 	if (!tnum_is_aligned(reg_off, size)) {
4401 		char tn_buf[48];
4402 
4403 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4404 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4405 			pointer_desc, tn_buf, reg->off, off, size);
4406 		return -EACCES;
4407 	}
4408 
4409 	return 0;
4410 }
4411 
4412 static int check_ptr_alignment(struct bpf_verifier_env *env,
4413 			       const struct bpf_reg_state *reg, int off,
4414 			       int size, bool strict_alignment_once)
4415 {
4416 	bool strict = env->strict_alignment || strict_alignment_once;
4417 	const char *pointer_desc = "";
4418 
4419 	switch (reg->type) {
4420 	case PTR_TO_PACKET:
4421 	case PTR_TO_PACKET_META:
4422 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4423 		 * right in front, treat it the very same way.
4424 		 */
4425 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4426 	case PTR_TO_FLOW_KEYS:
4427 		pointer_desc = "flow keys ";
4428 		break;
4429 	case PTR_TO_MAP_KEY:
4430 		pointer_desc = "key ";
4431 		break;
4432 	case PTR_TO_MAP_VALUE:
4433 		pointer_desc = "value ";
4434 		break;
4435 	case PTR_TO_CTX:
4436 		pointer_desc = "context ";
4437 		break;
4438 	case PTR_TO_STACK:
4439 		pointer_desc = "stack ";
4440 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4441 		 * and check_stack_read_fixed_off() relies on stack accesses being
4442 		 * aligned.
4443 		 */
4444 		strict = true;
4445 		break;
4446 	case PTR_TO_SOCKET:
4447 		pointer_desc = "sock ";
4448 		break;
4449 	case PTR_TO_SOCK_COMMON:
4450 		pointer_desc = "sock_common ";
4451 		break;
4452 	case PTR_TO_TCP_SOCK:
4453 		pointer_desc = "tcp_sock ";
4454 		break;
4455 	case PTR_TO_XDP_SOCK:
4456 		pointer_desc = "xdp_sock ";
4457 		break;
4458 	default:
4459 		break;
4460 	}
4461 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4462 					   strict);
4463 }
4464 
4465 static int update_stack_depth(struct bpf_verifier_env *env,
4466 			      const struct bpf_func_state *func,
4467 			      int off)
4468 {
4469 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4470 
4471 	if (stack >= -off)
4472 		return 0;
4473 
4474 	/* update known max for given subprogram */
4475 	env->subprog_info[func->subprogno].stack_depth = -off;
4476 	return 0;
4477 }
4478 
4479 /* starting from main bpf function walk all instructions of the function
4480  * and recursively walk all callees that given function can call.
4481  * Ignore jump and exit insns.
4482  * Since recursion is prevented by check_cfg() this algorithm
4483  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4484  */
4485 static int check_max_stack_depth(struct bpf_verifier_env *env)
4486 {
4487 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4488 	struct bpf_subprog_info *subprog = env->subprog_info;
4489 	struct bpf_insn *insn = env->prog->insnsi;
4490 	bool tail_call_reachable = false;
4491 	int ret_insn[MAX_CALL_FRAMES];
4492 	int ret_prog[MAX_CALL_FRAMES];
4493 	int j;
4494 
4495 process_func:
4496 	/* protect against potential stack overflow that might happen when
4497 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4498 	 * depth for such case down to 256 so that the worst case scenario
4499 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4500 	 * 8k).
4501 	 *
4502 	 * To get the idea what might happen, see an example:
4503 	 * func1 -> sub rsp, 128
4504 	 *  subfunc1 -> sub rsp, 256
4505 	 *  tailcall1 -> add rsp, 256
4506 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4507 	 *   subfunc2 -> sub rsp, 64
4508 	 *   subfunc22 -> sub rsp, 128
4509 	 *   tailcall2 -> add rsp, 128
4510 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4511 	 *
4512 	 * tailcall will unwind the current stack frame but it will not get rid
4513 	 * of caller's stack as shown on the example above.
4514 	 */
4515 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4516 		verbose(env,
4517 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4518 			depth);
4519 		return -EACCES;
4520 	}
4521 	/* round up to 32-bytes, since this is granularity
4522 	 * of interpreter stack size
4523 	 */
4524 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4525 	if (depth > MAX_BPF_STACK) {
4526 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4527 			frame + 1, depth);
4528 		return -EACCES;
4529 	}
4530 continue_func:
4531 	subprog_end = subprog[idx + 1].start;
4532 	for (; i < subprog_end; i++) {
4533 		int next_insn;
4534 
4535 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4536 			continue;
4537 		/* remember insn and function to return to */
4538 		ret_insn[frame] = i + 1;
4539 		ret_prog[frame] = idx;
4540 
4541 		/* find the callee */
4542 		next_insn = i + insn[i].imm + 1;
4543 		idx = find_subprog(env, next_insn);
4544 		if (idx < 0) {
4545 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4546 				  next_insn);
4547 			return -EFAULT;
4548 		}
4549 		if (subprog[idx].is_async_cb) {
4550 			if (subprog[idx].has_tail_call) {
4551 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4552 				return -EFAULT;
4553 			}
4554 			 /* async callbacks don't increase bpf prog stack size */
4555 			continue;
4556 		}
4557 		i = next_insn;
4558 
4559 		if (subprog[idx].has_tail_call)
4560 			tail_call_reachable = true;
4561 
4562 		frame++;
4563 		if (frame >= MAX_CALL_FRAMES) {
4564 			verbose(env, "the call stack of %d frames is too deep !\n",
4565 				frame);
4566 			return -E2BIG;
4567 		}
4568 		goto process_func;
4569 	}
4570 	/* if tail call got detected across bpf2bpf calls then mark each of the
4571 	 * currently present subprog frames as tail call reachable subprogs;
4572 	 * this info will be utilized by JIT so that we will be preserving the
4573 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4574 	 */
4575 	if (tail_call_reachable)
4576 		for (j = 0; j < frame; j++)
4577 			subprog[ret_prog[j]].tail_call_reachable = true;
4578 	if (subprog[0].tail_call_reachable)
4579 		env->prog->aux->tail_call_reachable = true;
4580 
4581 	/* end of for() loop means the last insn of the 'subprog'
4582 	 * was reached. Doesn't matter whether it was JA or EXIT
4583 	 */
4584 	if (frame == 0)
4585 		return 0;
4586 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4587 	frame--;
4588 	i = ret_insn[frame];
4589 	idx = ret_prog[frame];
4590 	goto continue_func;
4591 }
4592 
4593 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4594 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4595 				  const struct bpf_insn *insn, int idx)
4596 {
4597 	int start = idx + insn->imm + 1, subprog;
4598 
4599 	subprog = find_subprog(env, start);
4600 	if (subprog < 0) {
4601 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4602 			  start);
4603 		return -EFAULT;
4604 	}
4605 	return env->subprog_info[subprog].stack_depth;
4606 }
4607 #endif
4608 
4609 static int __check_buffer_access(struct bpf_verifier_env *env,
4610 				 const char *buf_info,
4611 				 const struct bpf_reg_state *reg,
4612 				 int regno, int off, int size)
4613 {
4614 	if (off < 0) {
4615 		verbose(env,
4616 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4617 			regno, buf_info, off, size);
4618 		return -EACCES;
4619 	}
4620 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4621 		char tn_buf[48];
4622 
4623 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4624 		verbose(env,
4625 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4626 			regno, off, tn_buf);
4627 		return -EACCES;
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4634 				  const struct bpf_reg_state *reg,
4635 				  int regno, int off, int size)
4636 {
4637 	int err;
4638 
4639 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4640 	if (err)
4641 		return err;
4642 
4643 	if (off + size > env->prog->aux->max_tp_access)
4644 		env->prog->aux->max_tp_access = off + size;
4645 
4646 	return 0;
4647 }
4648 
4649 static int check_buffer_access(struct bpf_verifier_env *env,
4650 			       const struct bpf_reg_state *reg,
4651 			       int regno, int off, int size,
4652 			       bool zero_size_allowed,
4653 			       u32 *max_access)
4654 {
4655 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4656 	int err;
4657 
4658 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4659 	if (err)
4660 		return err;
4661 
4662 	if (off + size > *max_access)
4663 		*max_access = off + size;
4664 
4665 	return 0;
4666 }
4667 
4668 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4669 static void zext_32_to_64(struct bpf_reg_state *reg)
4670 {
4671 	reg->var_off = tnum_subreg(reg->var_off);
4672 	__reg_assign_32_into_64(reg);
4673 }
4674 
4675 /* truncate register to smaller size (in bytes)
4676  * must be called with size < BPF_REG_SIZE
4677  */
4678 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4679 {
4680 	u64 mask;
4681 
4682 	/* clear high bits in bit representation */
4683 	reg->var_off = tnum_cast(reg->var_off, size);
4684 
4685 	/* fix arithmetic bounds */
4686 	mask = ((u64)1 << (size * 8)) - 1;
4687 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4688 		reg->umin_value &= mask;
4689 		reg->umax_value &= mask;
4690 	} else {
4691 		reg->umin_value = 0;
4692 		reg->umax_value = mask;
4693 	}
4694 	reg->smin_value = reg->umin_value;
4695 	reg->smax_value = reg->umax_value;
4696 
4697 	/* If size is smaller than 32bit register the 32bit register
4698 	 * values are also truncated so we push 64-bit bounds into
4699 	 * 32-bit bounds. Above were truncated < 32-bits already.
4700 	 */
4701 	if (size >= 4)
4702 		return;
4703 	__reg_combine_64_into_32(reg);
4704 }
4705 
4706 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4707 {
4708 	/* A map is considered read-only if the following condition are true:
4709 	 *
4710 	 * 1) BPF program side cannot change any of the map content. The
4711 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4712 	 *    and was set at map creation time.
4713 	 * 2) The map value(s) have been initialized from user space by a
4714 	 *    loader and then "frozen", such that no new map update/delete
4715 	 *    operations from syscall side are possible for the rest of
4716 	 *    the map's lifetime from that point onwards.
4717 	 * 3) Any parallel/pending map update/delete operations from syscall
4718 	 *    side have been completed. Only after that point, it's safe to
4719 	 *    assume that map value(s) are immutable.
4720 	 */
4721 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4722 	       READ_ONCE(map->frozen) &&
4723 	       !bpf_map_write_active(map);
4724 }
4725 
4726 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4727 {
4728 	void *ptr;
4729 	u64 addr;
4730 	int err;
4731 
4732 	err = map->ops->map_direct_value_addr(map, &addr, off);
4733 	if (err)
4734 		return err;
4735 	ptr = (void *)(long)addr + off;
4736 
4737 	switch (size) {
4738 	case sizeof(u8):
4739 		*val = (u64)*(u8 *)ptr;
4740 		break;
4741 	case sizeof(u16):
4742 		*val = (u64)*(u16 *)ptr;
4743 		break;
4744 	case sizeof(u32):
4745 		*val = (u64)*(u32 *)ptr;
4746 		break;
4747 	case sizeof(u64):
4748 		*val = *(u64 *)ptr;
4749 		break;
4750 	default:
4751 		return -EINVAL;
4752 	}
4753 	return 0;
4754 }
4755 
4756 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4757 				   struct bpf_reg_state *regs,
4758 				   int regno, int off, int size,
4759 				   enum bpf_access_type atype,
4760 				   int value_regno)
4761 {
4762 	struct bpf_reg_state *reg = regs + regno;
4763 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4764 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4765 	enum bpf_type_flag flag = 0;
4766 	u32 btf_id;
4767 	int ret;
4768 
4769 	if (!env->allow_ptr_leaks) {
4770 		verbose(env,
4771 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4772 			tname);
4773 		return -EPERM;
4774 	}
4775 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4776 		verbose(env,
4777 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4778 			tname);
4779 		return -EINVAL;
4780 	}
4781 	if (off < 0) {
4782 		verbose(env,
4783 			"R%d is ptr_%s invalid negative access: off=%d\n",
4784 			regno, tname, off);
4785 		return -EACCES;
4786 	}
4787 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4788 		char tn_buf[48];
4789 
4790 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4791 		verbose(env,
4792 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4793 			regno, tname, off, tn_buf);
4794 		return -EACCES;
4795 	}
4796 
4797 	if (reg->type & MEM_USER) {
4798 		verbose(env,
4799 			"R%d is ptr_%s access user memory: off=%d\n",
4800 			regno, tname, off);
4801 		return -EACCES;
4802 	}
4803 
4804 	if (reg->type & MEM_PERCPU) {
4805 		verbose(env,
4806 			"R%d is ptr_%s access percpu memory: off=%d\n",
4807 			regno, tname, off);
4808 		return -EACCES;
4809 	}
4810 
4811 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4812 		if (!btf_is_kernel(reg->btf)) {
4813 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4814 			return -EFAULT;
4815 		}
4816 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4817 	} else {
4818 		/* Writes are permitted with default btf_struct_access for
4819 		 * program allocated objects (which always have ref_obj_id > 0),
4820 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4821 		 */
4822 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
4823 			verbose(env, "only read is supported\n");
4824 			return -EACCES;
4825 		}
4826 
4827 		if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4828 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4829 			return -EFAULT;
4830 		}
4831 
4832 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4833 	}
4834 
4835 	if (ret < 0)
4836 		return ret;
4837 
4838 	/* If this is an untrusted pointer, all pointers formed by walking it
4839 	 * also inherit the untrusted flag.
4840 	 */
4841 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4842 		flag |= PTR_UNTRUSTED;
4843 
4844 	/* By default any pointer obtained from walking a trusted pointer is
4845 	 * no longer trusted except the rcu case below.
4846 	 */
4847 	flag &= ~PTR_TRUSTED;
4848 
4849 	if (flag & MEM_RCU) {
4850 		/* Mark value register as MEM_RCU only if it is protected by
4851 		 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
4852 		 * itself can already indicate trustedness inside the rcu
4853 		 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
4854 		 * it could be null in some cases.
4855 		 */
4856 		if (!env->cur_state->active_rcu_lock ||
4857 		    !(is_trusted_reg(reg) || is_rcu_reg(reg)))
4858 			flag &= ~MEM_RCU;
4859 		else
4860 			flag |= PTR_MAYBE_NULL;
4861 	} else if (reg->type & MEM_RCU) {
4862 		/* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
4863 		 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
4864 		 */
4865 		flag |= PTR_UNTRUSTED;
4866 	}
4867 
4868 	if (atype == BPF_READ && value_regno >= 0)
4869 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4870 
4871 	return 0;
4872 }
4873 
4874 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4875 				   struct bpf_reg_state *regs,
4876 				   int regno, int off, int size,
4877 				   enum bpf_access_type atype,
4878 				   int value_regno)
4879 {
4880 	struct bpf_reg_state *reg = regs + regno;
4881 	struct bpf_map *map = reg->map_ptr;
4882 	struct bpf_reg_state map_reg;
4883 	enum bpf_type_flag flag = 0;
4884 	const struct btf_type *t;
4885 	const char *tname;
4886 	u32 btf_id;
4887 	int ret;
4888 
4889 	if (!btf_vmlinux) {
4890 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4891 		return -ENOTSUPP;
4892 	}
4893 
4894 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4895 		verbose(env, "map_ptr access not supported for map type %d\n",
4896 			map->map_type);
4897 		return -ENOTSUPP;
4898 	}
4899 
4900 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4901 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4902 
4903 	if (!env->allow_ptr_leaks) {
4904 		verbose(env,
4905 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4906 			tname);
4907 		return -EPERM;
4908 	}
4909 
4910 	if (off < 0) {
4911 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4912 			regno, tname, off);
4913 		return -EACCES;
4914 	}
4915 
4916 	if (atype != BPF_READ) {
4917 		verbose(env, "only read from %s is supported\n", tname);
4918 		return -EACCES;
4919 	}
4920 
4921 	/* Simulate access to a PTR_TO_BTF_ID */
4922 	memset(&map_reg, 0, sizeof(map_reg));
4923 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4924 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
4925 	if (ret < 0)
4926 		return ret;
4927 
4928 	if (value_regno >= 0)
4929 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4930 
4931 	return 0;
4932 }
4933 
4934 /* Check that the stack access at the given offset is within bounds. The
4935  * maximum valid offset is -1.
4936  *
4937  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4938  * -state->allocated_stack for reads.
4939  */
4940 static int check_stack_slot_within_bounds(int off,
4941 					  struct bpf_func_state *state,
4942 					  enum bpf_access_type t)
4943 {
4944 	int min_valid_off;
4945 
4946 	if (t == BPF_WRITE)
4947 		min_valid_off = -MAX_BPF_STACK;
4948 	else
4949 		min_valid_off = -state->allocated_stack;
4950 
4951 	if (off < min_valid_off || off > -1)
4952 		return -EACCES;
4953 	return 0;
4954 }
4955 
4956 /* Check that the stack access at 'regno + off' falls within the maximum stack
4957  * bounds.
4958  *
4959  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4960  */
4961 static int check_stack_access_within_bounds(
4962 		struct bpf_verifier_env *env,
4963 		int regno, int off, int access_size,
4964 		enum bpf_access_src src, enum bpf_access_type type)
4965 {
4966 	struct bpf_reg_state *regs = cur_regs(env);
4967 	struct bpf_reg_state *reg = regs + regno;
4968 	struct bpf_func_state *state = func(env, reg);
4969 	int min_off, max_off;
4970 	int err;
4971 	char *err_extra;
4972 
4973 	if (src == ACCESS_HELPER)
4974 		/* We don't know if helpers are reading or writing (or both). */
4975 		err_extra = " indirect access to";
4976 	else if (type == BPF_READ)
4977 		err_extra = " read from";
4978 	else
4979 		err_extra = " write to";
4980 
4981 	if (tnum_is_const(reg->var_off)) {
4982 		min_off = reg->var_off.value + off;
4983 		if (access_size > 0)
4984 			max_off = min_off + access_size - 1;
4985 		else
4986 			max_off = min_off;
4987 	} else {
4988 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4989 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4990 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4991 				err_extra, regno);
4992 			return -EACCES;
4993 		}
4994 		min_off = reg->smin_value + off;
4995 		if (access_size > 0)
4996 			max_off = reg->smax_value + off + access_size - 1;
4997 		else
4998 			max_off = min_off;
4999 	}
5000 
5001 	err = check_stack_slot_within_bounds(min_off, state, type);
5002 	if (!err)
5003 		err = check_stack_slot_within_bounds(max_off, state, type);
5004 
5005 	if (err) {
5006 		if (tnum_is_const(reg->var_off)) {
5007 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5008 				err_extra, regno, off, access_size);
5009 		} else {
5010 			char tn_buf[48];
5011 
5012 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5013 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5014 				err_extra, regno, tn_buf, access_size);
5015 		}
5016 	}
5017 	return err;
5018 }
5019 
5020 /* check whether memory at (regno + off) is accessible for t = (read | write)
5021  * if t==write, value_regno is a register which value is stored into memory
5022  * if t==read, value_regno is a register which will receive the value from memory
5023  * if t==write && value_regno==-1, some unknown value is stored into memory
5024  * if t==read && value_regno==-1, don't care what we read from memory
5025  */
5026 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5027 			    int off, int bpf_size, enum bpf_access_type t,
5028 			    int value_regno, bool strict_alignment_once)
5029 {
5030 	struct bpf_reg_state *regs = cur_regs(env);
5031 	struct bpf_reg_state *reg = regs + regno;
5032 	struct bpf_func_state *state;
5033 	int size, err = 0;
5034 
5035 	size = bpf_size_to_bytes(bpf_size);
5036 	if (size < 0)
5037 		return size;
5038 
5039 	/* alignment checks will add in reg->off themselves */
5040 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5041 	if (err)
5042 		return err;
5043 
5044 	/* for access checks, reg->off is just part of off */
5045 	off += reg->off;
5046 
5047 	if (reg->type == PTR_TO_MAP_KEY) {
5048 		if (t == BPF_WRITE) {
5049 			verbose(env, "write to change key R%d not allowed\n", regno);
5050 			return -EACCES;
5051 		}
5052 
5053 		err = check_mem_region_access(env, regno, off, size,
5054 					      reg->map_ptr->key_size, false);
5055 		if (err)
5056 			return err;
5057 		if (value_regno >= 0)
5058 			mark_reg_unknown(env, regs, value_regno);
5059 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5060 		struct btf_field *kptr_field = NULL;
5061 
5062 		if (t == BPF_WRITE && value_regno >= 0 &&
5063 		    is_pointer_value(env, value_regno)) {
5064 			verbose(env, "R%d leaks addr into map\n", value_regno);
5065 			return -EACCES;
5066 		}
5067 		err = check_map_access_type(env, regno, off, size, t);
5068 		if (err)
5069 			return err;
5070 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5071 		if (err)
5072 			return err;
5073 		if (tnum_is_const(reg->var_off))
5074 			kptr_field = btf_record_find(reg->map_ptr->record,
5075 						     off + reg->var_off.value, BPF_KPTR);
5076 		if (kptr_field) {
5077 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5078 		} else if (t == BPF_READ && value_regno >= 0) {
5079 			struct bpf_map *map = reg->map_ptr;
5080 
5081 			/* if map is read-only, track its contents as scalars */
5082 			if (tnum_is_const(reg->var_off) &&
5083 			    bpf_map_is_rdonly(map) &&
5084 			    map->ops->map_direct_value_addr) {
5085 				int map_off = off + reg->var_off.value;
5086 				u64 val = 0;
5087 
5088 				err = bpf_map_direct_read(map, map_off, size,
5089 							  &val);
5090 				if (err)
5091 					return err;
5092 
5093 				regs[value_regno].type = SCALAR_VALUE;
5094 				__mark_reg_known(&regs[value_regno], val);
5095 			} else {
5096 				mark_reg_unknown(env, regs, value_regno);
5097 			}
5098 		}
5099 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5100 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5101 
5102 		if (type_may_be_null(reg->type)) {
5103 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5104 				reg_type_str(env, reg->type));
5105 			return -EACCES;
5106 		}
5107 
5108 		if (t == BPF_WRITE && rdonly_mem) {
5109 			verbose(env, "R%d cannot write into %s\n",
5110 				regno, reg_type_str(env, reg->type));
5111 			return -EACCES;
5112 		}
5113 
5114 		if (t == BPF_WRITE && value_regno >= 0 &&
5115 		    is_pointer_value(env, value_regno)) {
5116 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5117 			return -EACCES;
5118 		}
5119 
5120 		err = check_mem_region_access(env, regno, off, size,
5121 					      reg->mem_size, false);
5122 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5123 			mark_reg_unknown(env, regs, value_regno);
5124 	} else if (reg->type == PTR_TO_CTX) {
5125 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5126 		struct btf *btf = NULL;
5127 		u32 btf_id = 0;
5128 
5129 		if (t == BPF_WRITE && value_regno >= 0 &&
5130 		    is_pointer_value(env, value_regno)) {
5131 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5132 			return -EACCES;
5133 		}
5134 
5135 		err = check_ptr_off_reg(env, reg, regno);
5136 		if (err < 0)
5137 			return err;
5138 
5139 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5140 				       &btf_id);
5141 		if (err)
5142 			verbose_linfo(env, insn_idx, "; ");
5143 		if (!err && t == BPF_READ && value_regno >= 0) {
5144 			/* ctx access returns either a scalar, or a
5145 			 * PTR_TO_PACKET[_META,_END]. In the latter
5146 			 * case, we know the offset is zero.
5147 			 */
5148 			if (reg_type == SCALAR_VALUE) {
5149 				mark_reg_unknown(env, regs, value_regno);
5150 			} else {
5151 				mark_reg_known_zero(env, regs,
5152 						    value_regno);
5153 				if (type_may_be_null(reg_type))
5154 					regs[value_regno].id = ++env->id_gen;
5155 				/* A load of ctx field could have different
5156 				 * actual load size with the one encoded in the
5157 				 * insn. When the dst is PTR, it is for sure not
5158 				 * a sub-register.
5159 				 */
5160 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5161 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5162 					regs[value_regno].btf = btf;
5163 					regs[value_regno].btf_id = btf_id;
5164 				}
5165 			}
5166 			regs[value_regno].type = reg_type;
5167 		}
5168 
5169 	} else if (reg->type == PTR_TO_STACK) {
5170 		/* Basic bounds checks. */
5171 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5172 		if (err)
5173 			return err;
5174 
5175 		state = func(env, reg);
5176 		err = update_stack_depth(env, state, off);
5177 		if (err)
5178 			return err;
5179 
5180 		if (t == BPF_READ)
5181 			err = check_stack_read(env, regno, off, size,
5182 					       value_regno);
5183 		else
5184 			err = check_stack_write(env, regno, off, size,
5185 						value_regno, insn_idx);
5186 	} else if (reg_is_pkt_pointer(reg)) {
5187 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5188 			verbose(env, "cannot write into packet\n");
5189 			return -EACCES;
5190 		}
5191 		if (t == BPF_WRITE && value_regno >= 0 &&
5192 		    is_pointer_value(env, value_regno)) {
5193 			verbose(env, "R%d leaks addr into packet\n",
5194 				value_regno);
5195 			return -EACCES;
5196 		}
5197 		err = check_packet_access(env, regno, off, size, false);
5198 		if (!err && t == BPF_READ && value_regno >= 0)
5199 			mark_reg_unknown(env, regs, value_regno);
5200 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5201 		if (t == BPF_WRITE && value_regno >= 0 &&
5202 		    is_pointer_value(env, value_regno)) {
5203 			verbose(env, "R%d leaks addr into flow keys\n",
5204 				value_regno);
5205 			return -EACCES;
5206 		}
5207 
5208 		err = check_flow_keys_access(env, off, size);
5209 		if (!err && t == BPF_READ && value_regno >= 0)
5210 			mark_reg_unknown(env, regs, value_regno);
5211 	} else if (type_is_sk_pointer(reg->type)) {
5212 		if (t == BPF_WRITE) {
5213 			verbose(env, "R%d cannot write into %s\n",
5214 				regno, reg_type_str(env, reg->type));
5215 			return -EACCES;
5216 		}
5217 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5218 		if (!err && value_regno >= 0)
5219 			mark_reg_unknown(env, regs, value_regno);
5220 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5221 		err = check_tp_buffer_access(env, reg, regno, off, size);
5222 		if (!err && t == BPF_READ && value_regno >= 0)
5223 			mark_reg_unknown(env, regs, value_regno);
5224 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5225 		   !type_may_be_null(reg->type)) {
5226 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5227 					      value_regno);
5228 	} else if (reg->type == CONST_PTR_TO_MAP) {
5229 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5230 					      value_regno);
5231 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5232 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5233 		u32 *max_access;
5234 
5235 		if (rdonly_mem) {
5236 			if (t == BPF_WRITE) {
5237 				verbose(env, "R%d cannot write into %s\n",
5238 					regno, reg_type_str(env, reg->type));
5239 				return -EACCES;
5240 			}
5241 			max_access = &env->prog->aux->max_rdonly_access;
5242 		} else {
5243 			max_access = &env->prog->aux->max_rdwr_access;
5244 		}
5245 
5246 		err = check_buffer_access(env, reg, regno, off, size, false,
5247 					  max_access);
5248 
5249 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5250 			mark_reg_unknown(env, regs, value_regno);
5251 	} else {
5252 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5253 			reg_type_str(env, reg->type));
5254 		return -EACCES;
5255 	}
5256 
5257 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5258 	    regs[value_regno].type == SCALAR_VALUE) {
5259 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5260 		coerce_reg_to_size(&regs[value_regno], size);
5261 	}
5262 	return err;
5263 }
5264 
5265 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5266 {
5267 	int load_reg;
5268 	int err;
5269 
5270 	switch (insn->imm) {
5271 	case BPF_ADD:
5272 	case BPF_ADD | BPF_FETCH:
5273 	case BPF_AND:
5274 	case BPF_AND | BPF_FETCH:
5275 	case BPF_OR:
5276 	case BPF_OR | BPF_FETCH:
5277 	case BPF_XOR:
5278 	case BPF_XOR | BPF_FETCH:
5279 	case BPF_XCHG:
5280 	case BPF_CMPXCHG:
5281 		break;
5282 	default:
5283 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5284 		return -EINVAL;
5285 	}
5286 
5287 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5288 		verbose(env, "invalid atomic operand size\n");
5289 		return -EINVAL;
5290 	}
5291 
5292 	/* check src1 operand */
5293 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5294 	if (err)
5295 		return err;
5296 
5297 	/* check src2 operand */
5298 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5299 	if (err)
5300 		return err;
5301 
5302 	if (insn->imm == BPF_CMPXCHG) {
5303 		/* Check comparison of R0 with memory location */
5304 		const u32 aux_reg = BPF_REG_0;
5305 
5306 		err = check_reg_arg(env, aux_reg, SRC_OP);
5307 		if (err)
5308 			return err;
5309 
5310 		if (is_pointer_value(env, aux_reg)) {
5311 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5312 			return -EACCES;
5313 		}
5314 	}
5315 
5316 	if (is_pointer_value(env, insn->src_reg)) {
5317 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5318 		return -EACCES;
5319 	}
5320 
5321 	if (is_ctx_reg(env, insn->dst_reg) ||
5322 	    is_pkt_reg(env, insn->dst_reg) ||
5323 	    is_flow_key_reg(env, insn->dst_reg) ||
5324 	    is_sk_reg(env, insn->dst_reg)) {
5325 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5326 			insn->dst_reg,
5327 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5328 		return -EACCES;
5329 	}
5330 
5331 	if (insn->imm & BPF_FETCH) {
5332 		if (insn->imm == BPF_CMPXCHG)
5333 			load_reg = BPF_REG_0;
5334 		else
5335 			load_reg = insn->src_reg;
5336 
5337 		/* check and record load of old value */
5338 		err = check_reg_arg(env, load_reg, DST_OP);
5339 		if (err)
5340 			return err;
5341 	} else {
5342 		/* This instruction accesses a memory location but doesn't
5343 		 * actually load it into a register.
5344 		 */
5345 		load_reg = -1;
5346 	}
5347 
5348 	/* Check whether we can read the memory, with second call for fetch
5349 	 * case to simulate the register fill.
5350 	 */
5351 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5352 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5353 	if (!err && load_reg >= 0)
5354 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5355 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5356 				       true);
5357 	if (err)
5358 		return err;
5359 
5360 	/* Check whether we can write into the same memory. */
5361 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5362 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5363 	if (err)
5364 		return err;
5365 
5366 	return 0;
5367 }
5368 
5369 /* When register 'regno' is used to read the stack (either directly or through
5370  * a helper function) make sure that it's within stack boundary and, depending
5371  * on the access type, that all elements of the stack are initialized.
5372  *
5373  * 'off' includes 'regno->off', but not its dynamic part (if any).
5374  *
5375  * All registers that have been spilled on the stack in the slots within the
5376  * read offsets are marked as read.
5377  */
5378 static int check_stack_range_initialized(
5379 		struct bpf_verifier_env *env, int regno, int off,
5380 		int access_size, bool zero_size_allowed,
5381 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5382 {
5383 	struct bpf_reg_state *reg = reg_state(env, regno);
5384 	struct bpf_func_state *state = func(env, reg);
5385 	int err, min_off, max_off, i, j, slot, spi;
5386 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5387 	enum bpf_access_type bounds_check_type;
5388 	/* Some accesses can write anything into the stack, others are
5389 	 * read-only.
5390 	 */
5391 	bool clobber = false;
5392 
5393 	if (access_size == 0 && !zero_size_allowed) {
5394 		verbose(env, "invalid zero-sized read\n");
5395 		return -EACCES;
5396 	}
5397 
5398 	if (type == ACCESS_HELPER) {
5399 		/* The bounds checks for writes are more permissive than for
5400 		 * reads. However, if raw_mode is not set, we'll do extra
5401 		 * checks below.
5402 		 */
5403 		bounds_check_type = BPF_WRITE;
5404 		clobber = true;
5405 	} else {
5406 		bounds_check_type = BPF_READ;
5407 	}
5408 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5409 					       type, bounds_check_type);
5410 	if (err)
5411 		return err;
5412 
5413 
5414 	if (tnum_is_const(reg->var_off)) {
5415 		min_off = max_off = reg->var_off.value + off;
5416 	} else {
5417 		/* Variable offset is prohibited for unprivileged mode for
5418 		 * simplicity since it requires corresponding support in
5419 		 * Spectre masking for stack ALU.
5420 		 * See also retrieve_ptr_limit().
5421 		 */
5422 		if (!env->bypass_spec_v1) {
5423 			char tn_buf[48];
5424 
5425 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5426 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5427 				regno, err_extra, tn_buf);
5428 			return -EACCES;
5429 		}
5430 		/* Only initialized buffer on stack is allowed to be accessed
5431 		 * with variable offset. With uninitialized buffer it's hard to
5432 		 * guarantee that whole memory is marked as initialized on
5433 		 * helper return since specific bounds are unknown what may
5434 		 * cause uninitialized stack leaking.
5435 		 */
5436 		if (meta && meta->raw_mode)
5437 			meta = NULL;
5438 
5439 		min_off = reg->smin_value + off;
5440 		max_off = reg->smax_value + off;
5441 	}
5442 
5443 	if (meta && meta->raw_mode) {
5444 		meta->access_size = access_size;
5445 		meta->regno = regno;
5446 		return 0;
5447 	}
5448 
5449 	for (i = min_off; i < max_off + access_size; i++) {
5450 		u8 *stype;
5451 
5452 		slot = -i - 1;
5453 		spi = slot / BPF_REG_SIZE;
5454 		if (state->allocated_stack <= slot)
5455 			goto err;
5456 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5457 		if (*stype == STACK_MISC)
5458 			goto mark;
5459 		if (*stype == STACK_ZERO) {
5460 			if (clobber) {
5461 				/* helper can write anything into the stack */
5462 				*stype = STACK_MISC;
5463 			}
5464 			goto mark;
5465 		}
5466 
5467 		if (is_spilled_reg(&state->stack[spi]) &&
5468 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5469 		     env->allow_ptr_leaks)) {
5470 			if (clobber) {
5471 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5472 				for (j = 0; j < BPF_REG_SIZE; j++)
5473 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5474 			}
5475 			goto mark;
5476 		}
5477 
5478 err:
5479 		if (tnum_is_const(reg->var_off)) {
5480 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5481 				err_extra, regno, min_off, i - min_off, access_size);
5482 		} else {
5483 			char tn_buf[48];
5484 
5485 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5486 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5487 				err_extra, regno, tn_buf, i - min_off, access_size);
5488 		}
5489 		return -EACCES;
5490 mark:
5491 		/* reading any byte out of 8-byte 'spill_slot' will cause
5492 		 * the whole slot to be marked as 'read'
5493 		 */
5494 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5495 			      state->stack[spi].spilled_ptr.parent,
5496 			      REG_LIVE_READ64);
5497 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5498 		 * be sure that whether stack slot is written to or not. Hence,
5499 		 * we must still conservatively propagate reads upwards even if
5500 		 * helper may write to the entire memory range.
5501 		 */
5502 	}
5503 	return update_stack_depth(env, state, min_off);
5504 }
5505 
5506 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5507 				   int access_size, bool zero_size_allowed,
5508 				   struct bpf_call_arg_meta *meta)
5509 {
5510 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5511 	u32 *max_access;
5512 
5513 	switch (base_type(reg->type)) {
5514 	case PTR_TO_PACKET:
5515 	case PTR_TO_PACKET_META:
5516 		return check_packet_access(env, regno, reg->off, access_size,
5517 					   zero_size_allowed);
5518 	case PTR_TO_MAP_KEY:
5519 		if (meta && meta->raw_mode) {
5520 			verbose(env, "R%d cannot write into %s\n", regno,
5521 				reg_type_str(env, reg->type));
5522 			return -EACCES;
5523 		}
5524 		return check_mem_region_access(env, regno, reg->off, access_size,
5525 					       reg->map_ptr->key_size, false);
5526 	case PTR_TO_MAP_VALUE:
5527 		if (check_map_access_type(env, regno, reg->off, access_size,
5528 					  meta && meta->raw_mode ? BPF_WRITE :
5529 					  BPF_READ))
5530 			return -EACCES;
5531 		return check_map_access(env, regno, reg->off, access_size,
5532 					zero_size_allowed, ACCESS_HELPER);
5533 	case PTR_TO_MEM:
5534 		if (type_is_rdonly_mem(reg->type)) {
5535 			if (meta && meta->raw_mode) {
5536 				verbose(env, "R%d cannot write into %s\n", regno,
5537 					reg_type_str(env, reg->type));
5538 				return -EACCES;
5539 			}
5540 		}
5541 		return check_mem_region_access(env, regno, reg->off,
5542 					       access_size, reg->mem_size,
5543 					       zero_size_allowed);
5544 	case PTR_TO_BUF:
5545 		if (type_is_rdonly_mem(reg->type)) {
5546 			if (meta && meta->raw_mode) {
5547 				verbose(env, "R%d cannot write into %s\n", regno,
5548 					reg_type_str(env, reg->type));
5549 				return -EACCES;
5550 			}
5551 
5552 			max_access = &env->prog->aux->max_rdonly_access;
5553 		} else {
5554 			max_access = &env->prog->aux->max_rdwr_access;
5555 		}
5556 		return check_buffer_access(env, reg, regno, reg->off,
5557 					   access_size, zero_size_allowed,
5558 					   max_access);
5559 	case PTR_TO_STACK:
5560 		return check_stack_range_initialized(
5561 				env,
5562 				regno, reg->off, access_size,
5563 				zero_size_allowed, ACCESS_HELPER, meta);
5564 	case PTR_TO_CTX:
5565 		/* in case the function doesn't know how to access the context,
5566 		 * (because we are in a program of type SYSCALL for example), we
5567 		 * can not statically check its size.
5568 		 * Dynamically check it now.
5569 		 */
5570 		if (!env->ops->convert_ctx_access) {
5571 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5572 			int offset = access_size - 1;
5573 
5574 			/* Allow zero-byte read from PTR_TO_CTX */
5575 			if (access_size == 0)
5576 				return zero_size_allowed ? 0 : -EACCES;
5577 
5578 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5579 						atype, -1, false);
5580 		}
5581 
5582 		fallthrough;
5583 	default: /* scalar_value or invalid ptr */
5584 		/* Allow zero-byte read from NULL, regardless of pointer type */
5585 		if (zero_size_allowed && access_size == 0 &&
5586 		    register_is_null(reg))
5587 			return 0;
5588 
5589 		verbose(env, "R%d type=%s ", regno,
5590 			reg_type_str(env, reg->type));
5591 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5592 		return -EACCES;
5593 	}
5594 }
5595 
5596 static int check_mem_size_reg(struct bpf_verifier_env *env,
5597 			      struct bpf_reg_state *reg, u32 regno,
5598 			      bool zero_size_allowed,
5599 			      struct bpf_call_arg_meta *meta)
5600 {
5601 	int err;
5602 
5603 	/* This is used to refine r0 return value bounds for helpers
5604 	 * that enforce this value as an upper bound on return values.
5605 	 * See do_refine_retval_range() for helpers that can refine
5606 	 * the return value. C type of helper is u32 so we pull register
5607 	 * bound from umax_value however, if negative verifier errors
5608 	 * out. Only upper bounds can be learned because retval is an
5609 	 * int type and negative retvals are allowed.
5610 	 */
5611 	meta->msize_max_value = reg->umax_value;
5612 
5613 	/* The register is SCALAR_VALUE; the access check
5614 	 * happens using its boundaries.
5615 	 */
5616 	if (!tnum_is_const(reg->var_off))
5617 		/* For unprivileged variable accesses, disable raw
5618 		 * mode so that the program is required to
5619 		 * initialize all the memory that the helper could
5620 		 * just partially fill up.
5621 		 */
5622 		meta = NULL;
5623 
5624 	if (reg->smin_value < 0) {
5625 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5626 			regno);
5627 		return -EACCES;
5628 	}
5629 
5630 	if (reg->umin_value == 0) {
5631 		err = check_helper_mem_access(env, regno - 1, 0,
5632 					      zero_size_allowed,
5633 					      meta);
5634 		if (err)
5635 			return err;
5636 	}
5637 
5638 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5639 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5640 			regno);
5641 		return -EACCES;
5642 	}
5643 	err = check_helper_mem_access(env, regno - 1,
5644 				      reg->umax_value,
5645 				      zero_size_allowed, meta);
5646 	if (!err)
5647 		err = mark_chain_precision(env, regno);
5648 	return err;
5649 }
5650 
5651 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5652 		   u32 regno, u32 mem_size)
5653 {
5654 	bool may_be_null = type_may_be_null(reg->type);
5655 	struct bpf_reg_state saved_reg;
5656 	struct bpf_call_arg_meta meta;
5657 	int err;
5658 
5659 	if (register_is_null(reg))
5660 		return 0;
5661 
5662 	memset(&meta, 0, sizeof(meta));
5663 	/* Assuming that the register contains a value check if the memory
5664 	 * access is safe. Temporarily save and restore the register's state as
5665 	 * the conversion shouldn't be visible to a caller.
5666 	 */
5667 	if (may_be_null) {
5668 		saved_reg = *reg;
5669 		mark_ptr_not_null_reg(reg);
5670 	}
5671 
5672 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5673 	/* Check access for BPF_WRITE */
5674 	meta.raw_mode = true;
5675 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5676 
5677 	if (may_be_null)
5678 		*reg = saved_reg;
5679 
5680 	return err;
5681 }
5682 
5683 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5684 				    u32 regno)
5685 {
5686 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5687 	bool may_be_null = type_may_be_null(mem_reg->type);
5688 	struct bpf_reg_state saved_reg;
5689 	struct bpf_call_arg_meta meta;
5690 	int err;
5691 
5692 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5693 
5694 	memset(&meta, 0, sizeof(meta));
5695 
5696 	if (may_be_null) {
5697 		saved_reg = *mem_reg;
5698 		mark_ptr_not_null_reg(mem_reg);
5699 	}
5700 
5701 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5702 	/* Check access for BPF_WRITE */
5703 	meta.raw_mode = true;
5704 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5705 
5706 	if (may_be_null)
5707 		*mem_reg = saved_reg;
5708 	return err;
5709 }
5710 
5711 /* Implementation details:
5712  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5713  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
5714  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5715  * Two separate bpf_obj_new will also have different reg->id.
5716  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5717  * clears reg->id after value_or_null->value transition, since the verifier only
5718  * cares about the range of access to valid map value pointer and doesn't care
5719  * about actual address of the map element.
5720  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5721  * reg->id > 0 after value_or_null->value transition. By doing so
5722  * two bpf_map_lookups will be considered two different pointers that
5723  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5724  * returned from bpf_obj_new.
5725  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5726  * dead-locks.
5727  * Since only one bpf_spin_lock is allowed the checks are simpler than
5728  * reg_is_refcounted() logic. The verifier needs to remember only
5729  * one spin_lock instead of array of acquired_refs.
5730  * cur_state->active_lock remembers which map value element or allocated
5731  * object got locked and clears it after bpf_spin_unlock.
5732  */
5733 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5734 			     bool is_lock)
5735 {
5736 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5737 	struct bpf_verifier_state *cur = env->cur_state;
5738 	bool is_const = tnum_is_const(reg->var_off);
5739 	u64 val = reg->var_off.value;
5740 	struct bpf_map *map = NULL;
5741 	struct btf *btf = NULL;
5742 	struct btf_record *rec;
5743 
5744 	if (!is_const) {
5745 		verbose(env,
5746 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5747 			regno);
5748 		return -EINVAL;
5749 	}
5750 	if (reg->type == PTR_TO_MAP_VALUE) {
5751 		map = reg->map_ptr;
5752 		if (!map->btf) {
5753 			verbose(env,
5754 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5755 				map->name);
5756 			return -EINVAL;
5757 		}
5758 	} else {
5759 		btf = reg->btf;
5760 	}
5761 
5762 	rec = reg_btf_record(reg);
5763 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5764 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5765 			map ? map->name : "kptr");
5766 		return -EINVAL;
5767 	}
5768 	if (rec->spin_lock_off != val + reg->off) {
5769 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
5770 			val + reg->off, rec->spin_lock_off);
5771 		return -EINVAL;
5772 	}
5773 	if (is_lock) {
5774 		if (cur->active_lock.ptr) {
5775 			verbose(env,
5776 				"Locking two bpf_spin_locks are not allowed\n");
5777 			return -EINVAL;
5778 		}
5779 		if (map)
5780 			cur->active_lock.ptr = map;
5781 		else
5782 			cur->active_lock.ptr = btf;
5783 		cur->active_lock.id = reg->id;
5784 	} else {
5785 		struct bpf_func_state *fstate = cur_func(env);
5786 		void *ptr;
5787 		int i;
5788 
5789 		if (map)
5790 			ptr = map;
5791 		else
5792 			ptr = btf;
5793 
5794 		if (!cur->active_lock.ptr) {
5795 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5796 			return -EINVAL;
5797 		}
5798 		if (cur->active_lock.ptr != ptr ||
5799 		    cur->active_lock.id != reg->id) {
5800 			verbose(env, "bpf_spin_unlock of different lock\n");
5801 			return -EINVAL;
5802 		}
5803 		cur->active_lock.ptr = NULL;
5804 		cur->active_lock.id = 0;
5805 
5806 		for (i = fstate->acquired_refs - 1; i >= 0; i--) {
5807 			int err;
5808 
5809 			/* Complain on error because this reference state cannot
5810 			 * be freed before this point, as bpf_spin_lock critical
5811 			 * section does not allow functions that release the
5812 			 * allocated object immediately.
5813 			 */
5814 			if (!fstate->refs[i].release_on_unlock)
5815 				continue;
5816 			err = release_reference(env, fstate->refs[i].id);
5817 			if (err) {
5818 				verbose(env, "failed to release release_on_unlock reference");
5819 				return err;
5820 			}
5821 		}
5822 	}
5823 	return 0;
5824 }
5825 
5826 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5827 			      struct bpf_call_arg_meta *meta)
5828 {
5829 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5830 	bool is_const = tnum_is_const(reg->var_off);
5831 	struct bpf_map *map = reg->map_ptr;
5832 	u64 val = reg->var_off.value;
5833 
5834 	if (!is_const) {
5835 		verbose(env,
5836 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5837 			regno);
5838 		return -EINVAL;
5839 	}
5840 	if (!map->btf) {
5841 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5842 			map->name);
5843 		return -EINVAL;
5844 	}
5845 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
5846 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
5847 		return -EINVAL;
5848 	}
5849 	if (map->record->timer_off != val + reg->off) {
5850 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5851 			val + reg->off, map->record->timer_off);
5852 		return -EINVAL;
5853 	}
5854 	if (meta->map_ptr) {
5855 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5856 		return -EFAULT;
5857 	}
5858 	meta->map_uid = reg->map_uid;
5859 	meta->map_ptr = map;
5860 	return 0;
5861 }
5862 
5863 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5864 			     struct bpf_call_arg_meta *meta)
5865 {
5866 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5867 	struct bpf_map *map_ptr = reg->map_ptr;
5868 	struct btf_field *kptr_field;
5869 	u32 kptr_off;
5870 
5871 	if (!tnum_is_const(reg->var_off)) {
5872 		verbose(env,
5873 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5874 			regno);
5875 		return -EINVAL;
5876 	}
5877 	if (!map_ptr->btf) {
5878 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5879 			map_ptr->name);
5880 		return -EINVAL;
5881 	}
5882 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5883 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5884 		return -EINVAL;
5885 	}
5886 
5887 	meta->map_ptr = map_ptr;
5888 	kptr_off = reg->off + reg->var_off.value;
5889 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5890 	if (!kptr_field) {
5891 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5892 		return -EACCES;
5893 	}
5894 	if (kptr_field->type != BPF_KPTR_REF) {
5895 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5896 		return -EACCES;
5897 	}
5898 	meta->kptr_field = kptr_field;
5899 	return 0;
5900 }
5901 
5902 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
5903  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
5904  *
5905  * In both cases we deal with the first 8 bytes, but need to mark the next 8
5906  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
5907  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
5908  *
5909  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
5910  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
5911  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
5912  * mutate the view of the dynptr and also possibly destroy it. In the latter
5913  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
5914  * memory that dynptr points to.
5915  *
5916  * The verifier will keep track both levels of mutation (bpf_dynptr's in
5917  * reg->type and the memory's in reg->dynptr.type), but there is no support for
5918  * readonly dynptr view yet, hence only the first case is tracked and checked.
5919  *
5920  * This is consistent with how C applies the const modifier to a struct object,
5921  * where the pointer itself inside bpf_dynptr becomes const but not what it
5922  * points to.
5923  *
5924  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
5925  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
5926  */
5927 int process_dynptr_func(struct bpf_verifier_env *env, int regno,
5928 			enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta)
5929 {
5930 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5931 
5932 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
5933 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
5934 	 */
5935 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
5936 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
5937 		return -EFAULT;
5938 	}
5939 	/* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
5940 	 * check_func_arg_reg_off's logic. We only need to check offset
5941 	 * alignment for PTR_TO_STACK.
5942 	 */
5943 	if (reg->type == PTR_TO_STACK && (reg->off % BPF_REG_SIZE)) {
5944 		verbose(env, "cannot pass in dynptr at an offset=%d\n", reg->off);
5945 		return -EINVAL;
5946 	}
5947 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
5948 	 *		 constructing a mutable bpf_dynptr object.
5949 	 *
5950 	 *		 Currently, this is only possible with PTR_TO_STACK
5951 	 *		 pointing to a region of at least 16 bytes which doesn't
5952 	 *		 contain an existing bpf_dynptr.
5953 	 *
5954 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
5955 	 *		 mutated or destroyed. However, the memory it points to
5956 	 *		 may be mutated.
5957 	 *
5958 	 *  None       - Points to a initialized dynptr that can be mutated and
5959 	 *		 destroyed, including mutation of the memory it points
5960 	 *		 to.
5961 	 */
5962 	if (arg_type & MEM_UNINIT) {
5963 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
5964 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
5965 			return -EINVAL;
5966 		}
5967 
5968 		/* We only support one dynptr being uninitialized at the moment,
5969 		 * which is sufficient for the helper functions we have right now.
5970 		 */
5971 		if (meta->uninit_dynptr_regno) {
5972 			verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
5973 			return -EFAULT;
5974 		}
5975 
5976 		meta->uninit_dynptr_regno = regno;
5977 	} else /* MEM_RDONLY and None case from above */ {
5978 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
5979 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
5980 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
5981 			return -EINVAL;
5982 		}
5983 
5984 		if (!is_dynptr_reg_valid_init(env, reg)) {
5985 			verbose(env,
5986 				"Expected an initialized dynptr as arg #%d\n",
5987 				regno);
5988 			return -EINVAL;
5989 		}
5990 
5991 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
5992 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
5993 			const char *err_extra = "";
5994 
5995 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
5996 			case DYNPTR_TYPE_LOCAL:
5997 				err_extra = "local";
5998 				break;
5999 			case DYNPTR_TYPE_RINGBUF:
6000 				err_extra = "ringbuf";
6001 				break;
6002 			default:
6003 				err_extra = "<unknown>";
6004 				break;
6005 			}
6006 			verbose(env,
6007 				"Expected a dynptr of type %s as arg #%d\n",
6008 				err_extra, regno);
6009 			return -EINVAL;
6010 		}
6011 	}
6012 	return 0;
6013 }
6014 
6015 static bool arg_type_is_mem_size(enum bpf_arg_type type)
6016 {
6017 	return type == ARG_CONST_SIZE ||
6018 	       type == ARG_CONST_SIZE_OR_ZERO;
6019 }
6020 
6021 static bool arg_type_is_release(enum bpf_arg_type type)
6022 {
6023 	return type & OBJ_RELEASE;
6024 }
6025 
6026 static bool arg_type_is_dynptr(enum bpf_arg_type type)
6027 {
6028 	return base_type(type) == ARG_PTR_TO_DYNPTR;
6029 }
6030 
6031 static int int_ptr_type_to_size(enum bpf_arg_type type)
6032 {
6033 	if (type == ARG_PTR_TO_INT)
6034 		return sizeof(u32);
6035 	else if (type == ARG_PTR_TO_LONG)
6036 		return sizeof(u64);
6037 
6038 	return -EINVAL;
6039 }
6040 
6041 static int resolve_map_arg_type(struct bpf_verifier_env *env,
6042 				 const struct bpf_call_arg_meta *meta,
6043 				 enum bpf_arg_type *arg_type)
6044 {
6045 	if (!meta->map_ptr) {
6046 		/* kernel subsystem misconfigured verifier */
6047 		verbose(env, "invalid map_ptr to access map->type\n");
6048 		return -EACCES;
6049 	}
6050 
6051 	switch (meta->map_ptr->map_type) {
6052 	case BPF_MAP_TYPE_SOCKMAP:
6053 	case BPF_MAP_TYPE_SOCKHASH:
6054 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6055 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
6056 		} else {
6057 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
6058 			return -EINVAL;
6059 		}
6060 		break;
6061 	case BPF_MAP_TYPE_BLOOM_FILTER:
6062 		if (meta->func_id == BPF_FUNC_map_peek_elem)
6063 			*arg_type = ARG_PTR_TO_MAP_VALUE;
6064 		break;
6065 	default:
6066 		break;
6067 	}
6068 	return 0;
6069 }
6070 
6071 struct bpf_reg_types {
6072 	const enum bpf_reg_type types[10];
6073 	u32 *btf_id;
6074 };
6075 
6076 static const struct bpf_reg_types sock_types = {
6077 	.types = {
6078 		PTR_TO_SOCK_COMMON,
6079 		PTR_TO_SOCKET,
6080 		PTR_TO_TCP_SOCK,
6081 		PTR_TO_XDP_SOCK,
6082 	},
6083 };
6084 
6085 #ifdef CONFIG_NET
6086 static const struct bpf_reg_types btf_id_sock_common_types = {
6087 	.types = {
6088 		PTR_TO_SOCK_COMMON,
6089 		PTR_TO_SOCKET,
6090 		PTR_TO_TCP_SOCK,
6091 		PTR_TO_XDP_SOCK,
6092 		PTR_TO_BTF_ID,
6093 		PTR_TO_BTF_ID | PTR_TRUSTED,
6094 	},
6095 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6096 };
6097 #endif
6098 
6099 static const struct bpf_reg_types mem_types = {
6100 	.types = {
6101 		PTR_TO_STACK,
6102 		PTR_TO_PACKET,
6103 		PTR_TO_PACKET_META,
6104 		PTR_TO_MAP_KEY,
6105 		PTR_TO_MAP_VALUE,
6106 		PTR_TO_MEM,
6107 		PTR_TO_MEM | MEM_RINGBUF,
6108 		PTR_TO_BUF,
6109 	},
6110 };
6111 
6112 static const struct bpf_reg_types int_ptr_types = {
6113 	.types = {
6114 		PTR_TO_STACK,
6115 		PTR_TO_PACKET,
6116 		PTR_TO_PACKET_META,
6117 		PTR_TO_MAP_KEY,
6118 		PTR_TO_MAP_VALUE,
6119 	},
6120 };
6121 
6122 static const struct bpf_reg_types spin_lock_types = {
6123 	.types = {
6124 		PTR_TO_MAP_VALUE,
6125 		PTR_TO_BTF_ID | MEM_ALLOC,
6126 	}
6127 };
6128 
6129 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
6130 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
6131 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
6132 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
6133 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
6134 static const struct bpf_reg_types btf_ptr_types = {
6135 	.types = {
6136 		PTR_TO_BTF_ID,
6137 		PTR_TO_BTF_ID | PTR_TRUSTED,
6138 		PTR_TO_BTF_ID | MEM_RCU,
6139 	},
6140 };
6141 static const struct bpf_reg_types percpu_btf_ptr_types = {
6142 	.types = {
6143 		PTR_TO_BTF_ID | MEM_PERCPU,
6144 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
6145 	}
6146 };
6147 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
6148 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
6149 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
6150 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
6151 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
6152 static const struct bpf_reg_types dynptr_types = {
6153 	.types = {
6154 		PTR_TO_STACK,
6155 		CONST_PTR_TO_DYNPTR,
6156 	}
6157 };
6158 
6159 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
6160 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
6161 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
6162 	[ARG_CONST_SIZE]		= &scalar_types,
6163 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
6164 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
6165 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
6166 	[ARG_PTR_TO_CTX]		= &context_types,
6167 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
6168 #ifdef CONFIG_NET
6169 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
6170 #endif
6171 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
6172 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
6173 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
6174 	[ARG_PTR_TO_MEM]		= &mem_types,
6175 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
6176 	[ARG_PTR_TO_INT]		= &int_ptr_types,
6177 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
6178 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
6179 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
6180 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
6181 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
6182 	[ARG_PTR_TO_TIMER]		= &timer_types,
6183 	[ARG_PTR_TO_KPTR]		= &kptr_types,
6184 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
6185 };
6186 
6187 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6188 			  enum bpf_arg_type arg_type,
6189 			  const u32 *arg_btf_id,
6190 			  struct bpf_call_arg_meta *meta)
6191 {
6192 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6193 	enum bpf_reg_type expected, type = reg->type;
6194 	const struct bpf_reg_types *compatible;
6195 	int i, j;
6196 
6197 	compatible = compatible_reg_types[base_type(arg_type)];
6198 	if (!compatible) {
6199 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6200 		return -EFAULT;
6201 	}
6202 
6203 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6204 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6205 	 *
6206 	 * Same for MAYBE_NULL:
6207 	 *
6208 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6209 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6210 	 *
6211 	 * Therefore we fold these flags depending on the arg_type before comparison.
6212 	 */
6213 	if (arg_type & MEM_RDONLY)
6214 		type &= ~MEM_RDONLY;
6215 	if (arg_type & PTR_MAYBE_NULL)
6216 		type &= ~PTR_MAYBE_NULL;
6217 
6218 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6219 		expected = compatible->types[i];
6220 		if (expected == NOT_INIT)
6221 			break;
6222 
6223 		if (type == expected)
6224 			goto found;
6225 	}
6226 
6227 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6228 	for (j = 0; j + 1 < i; j++)
6229 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6230 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6231 	return -EACCES;
6232 
6233 found:
6234 	if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
6235 		/* For bpf_sk_release, it needs to match against first member
6236 		 * 'struct sock_common', hence make an exception for it. This
6237 		 * allows bpf_sk_release to work for multiple socket types.
6238 		 */
6239 		bool strict_type_match = arg_type_is_release(arg_type) &&
6240 					 meta->func_id != BPF_FUNC_sk_release;
6241 
6242 		if (!arg_btf_id) {
6243 			if (!compatible->btf_id) {
6244 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6245 				return -EFAULT;
6246 			}
6247 			arg_btf_id = compatible->btf_id;
6248 		}
6249 
6250 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6251 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
6252 				return -EACCES;
6253 		} else {
6254 			if (arg_btf_id == BPF_PTR_POISON) {
6255 				verbose(env, "verifier internal error:");
6256 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6257 					regno);
6258 				return -EACCES;
6259 			}
6260 
6261 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6262 						  btf_vmlinux, *arg_btf_id,
6263 						  strict_type_match)) {
6264 				verbose(env, "R%d is of type %s but %s is expected\n",
6265 					regno, kernel_type_name(reg->btf, reg->btf_id),
6266 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6267 				return -EACCES;
6268 			}
6269 		}
6270 	} else if (type_is_alloc(reg->type)) {
6271 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6272 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6273 			return -EFAULT;
6274 		}
6275 	}
6276 
6277 	return 0;
6278 }
6279 
6280 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6281 			   const struct bpf_reg_state *reg, int regno,
6282 			   enum bpf_arg_type arg_type)
6283 {
6284 	u32 type = reg->type;
6285 
6286 	/* When referenced register is passed to release function, its fixed
6287 	 * offset must be 0.
6288 	 *
6289 	 * We will check arg_type_is_release reg has ref_obj_id when storing
6290 	 * meta->release_regno.
6291 	 */
6292 	if (arg_type_is_release(arg_type)) {
6293 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
6294 		 * may not directly point to the object being released, but to
6295 		 * dynptr pointing to such object, which might be at some offset
6296 		 * on the stack. In that case, we simply to fallback to the
6297 		 * default handling.
6298 		 */
6299 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
6300 			return 0;
6301 		/* Doing check_ptr_off_reg check for the offset will catch this
6302 		 * because fixed_off_ok is false, but checking here allows us
6303 		 * to give the user a better error message.
6304 		 */
6305 		if (reg->off) {
6306 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
6307 				regno);
6308 			return -EINVAL;
6309 		}
6310 		return __check_ptr_off_reg(env, reg, regno, false);
6311 	}
6312 
6313 	switch (type) {
6314 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
6315 	case PTR_TO_STACK:
6316 	case PTR_TO_PACKET:
6317 	case PTR_TO_PACKET_META:
6318 	case PTR_TO_MAP_KEY:
6319 	case PTR_TO_MAP_VALUE:
6320 	case PTR_TO_MEM:
6321 	case PTR_TO_MEM | MEM_RDONLY:
6322 	case PTR_TO_MEM | MEM_RINGBUF:
6323 	case PTR_TO_BUF:
6324 	case PTR_TO_BUF | MEM_RDONLY:
6325 	case SCALAR_VALUE:
6326 		return 0;
6327 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6328 	 * fixed offset.
6329 	 */
6330 	case PTR_TO_BTF_ID:
6331 	case PTR_TO_BTF_ID | MEM_ALLOC:
6332 	case PTR_TO_BTF_ID | PTR_TRUSTED:
6333 	case PTR_TO_BTF_ID | MEM_RCU:
6334 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
6335 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6336 		 * its fixed offset must be 0. In the other cases, fixed offset
6337 		 * can be non-zero. This was already checked above. So pass
6338 		 * fixed_off_ok as true to allow fixed offset for all other
6339 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
6340 		 * still need to do checks instead of returning.
6341 		 */
6342 		return __check_ptr_off_reg(env, reg, regno, true);
6343 	default:
6344 		return __check_ptr_off_reg(env, reg, regno, false);
6345 	}
6346 }
6347 
6348 static u32 dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6349 {
6350 	struct bpf_func_state *state = func(env, reg);
6351 	int spi;
6352 
6353 	if (reg->type == CONST_PTR_TO_DYNPTR)
6354 		return reg->ref_obj_id;
6355 
6356 	spi = get_spi(reg->off);
6357 	return state->stack[spi].spilled_ptr.ref_obj_id;
6358 }
6359 
6360 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6361 			  struct bpf_call_arg_meta *meta,
6362 			  const struct bpf_func_proto *fn)
6363 {
6364 	u32 regno = BPF_REG_1 + arg;
6365 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6366 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6367 	enum bpf_reg_type type = reg->type;
6368 	u32 *arg_btf_id = NULL;
6369 	int err = 0;
6370 
6371 	if (arg_type == ARG_DONTCARE)
6372 		return 0;
6373 
6374 	err = check_reg_arg(env, regno, SRC_OP);
6375 	if (err)
6376 		return err;
6377 
6378 	if (arg_type == ARG_ANYTHING) {
6379 		if (is_pointer_value(env, regno)) {
6380 			verbose(env, "R%d leaks addr into helper function\n",
6381 				regno);
6382 			return -EACCES;
6383 		}
6384 		return 0;
6385 	}
6386 
6387 	if (type_is_pkt_pointer(type) &&
6388 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6389 		verbose(env, "helper access to the packet is not allowed\n");
6390 		return -EACCES;
6391 	}
6392 
6393 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6394 		err = resolve_map_arg_type(env, meta, &arg_type);
6395 		if (err)
6396 			return err;
6397 	}
6398 
6399 	if (register_is_null(reg) && type_may_be_null(arg_type))
6400 		/* A NULL register has a SCALAR_VALUE type, so skip
6401 		 * type checking.
6402 		 */
6403 		goto skip_type_check;
6404 
6405 	/* arg_btf_id and arg_size are in a union. */
6406 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6407 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
6408 		arg_btf_id = fn->arg_btf_id[arg];
6409 
6410 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6411 	if (err)
6412 		return err;
6413 
6414 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6415 	if (err)
6416 		return err;
6417 
6418 skip_type_check:
6419 	if (arg_type_is_release(arg_type)) {
6420 		if (arg_type_is_dynptr(arg_type)) {
6421 			struct bpf_func_state *state = func(env, reg);
6422 			int spi;
6423 
6424 			/* Only dynptr created on stack can be released, thus
6425 			 * the get_spi and stack state checks for spilled_ptr
6426 			 * should only be done before process_dynptr_func for
6427 			 * PTR_TO_STACK.
6428 			 */
6429 			if (reg->type == PTR_TO_STACK) {
6430 				spi = get_spi(reg->off);
6431 				if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6432 				    !state->stack[spi].spilled_ptr.ref_obj_id) {
6433 					verbose(env, "arg %d is an unacquired reference\n", regno);
6434 					return -EINVAL;
6435 				}
6436 			} else {
6437 				verbose(env, "cannot release unowned const bpf_dynptr\n");
6438 				return -EINVAL;
6439 			}
6440 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6441 			verbose(env, "R%d must be referenced when passed to release function\n",
6442 				regno);
6443 			return -EINVAL;
6444 		}
6445 		if (meta->release_regno) {
6446 			verbose(env, "verifier internal error: more than one release argument\n");
6447 			return -EFAULT;
6448 		}
6449 		meta->release_regno = regno;
6450 	}
6451 
6452 	if (reg->ref_obj_id) {
6453 		if (meta->ref_obj_id) {
6454 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6455 				regno, reg->ref_obj_id,
6456 				meta->ref_obj_id);
6457 			return -EFAULT;
6458 		}
6459 		meta->ref_obj_id = reg->ref_obj_id;
6460 	}
6461 
6462 	switch (base_type(arg_type)) {
6463 	case ARG_CONST_MAP_PTR:
6464 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6465 		if (meta->map_ptr) {
6466 			/* Use map_uid (which is unique id of inner map) to reject:
6467 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6468 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6469 			 * if (inner_map1 && inner_map2) {
6470 			 *     timer = bpf_map_lookup_elem(inner_map1);
6471 			 *     if (timer)
6472 			 *         // mismatch would have been allowed
6473 			 *         bpf_timer_init(timer, inner_map2);
6474 			 * }
6475 			 *
6476 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6477 			 */
6478 			if (meta->map_ptr != reg->map_ptr ||
6479 			    meta->map_uid != reg->map_uid) {
6480 				verbose(env,
6481 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6482 					meta->map_uid, reg->map_uid);
6483 				return -EINVAL;
6484 			}
6485 		}
6486 		meta->map_ptr = reg->map_ptr;
6487 		meta->map_uid = reg->map_uid;
6488 		break;
6489 	case ARG_PTR_TO_MAP_KEY:
6490 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6491 		 * check that [key, key + map->key_size) are within
6492 		 * stack limits and initialized
6493 		 */
6494 		if (!meta->map_ptr) {
6495 			/* in function declaration map_ptr must come before
6496 			 * map_key, so that it's verified and known before
6497 			 * we have to check map_key here. Otherwise it means
6498 			 * that kernel subsystem misconfigured verifier
6499 			 */
6500 			verbose(env, "invalid map_ptr to access map->key\n");
6501 			return -EACCES;
6502 		}
6503 		err = check_helper_mem_access(env, regno,
6504 					      meta->map_ptr->key_size, false,
6505 					      NULL);
6506 		break;
6507 	case ARG_PTR_TO_MAP_VALUE:
6508 		if (type_may_be_null(arg_type) && register_is_null(reg))
6509 			return 0;
6510 
6511 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6512 		 * check [value, value + map->value_size) validity
6513 		 */
6514 		if (!meta->map_ptr) {
6515 			/* kernel subsystem misconfigured verifier */
6516 			verbose(env, "invalid map_ptr to access map->value\n");
6517 			return -EACCES;
6518 		}
6519 		meta->raw_mode = arg_type & MEM_UNINIT;
6520 		err = check_helper_mem_access(env, regno,
6521 					      meta->map_ptr->value_size, false,
6522 					      meta);
6523 		break;
6524 	case ARG_PTR_TO_PERCPU_BTF_ID:
6525 		if (!reg->btf_id) {
6526 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6527 			return -EACCES;
6528 		}
6529 		meta->ret_btf = reg->btf;
6530 		meta->ret_btf_id = reg->btf_id;
6531 		break;
6532 	case ARG_PTR_TO_SPIN_LOCK:
6533 		if (meta->func_id == BPF_FUNC_spin_lock) {
6534 			err = process_spin_lock(env, regno, true);
6535 			if (err)
6536 				return err;
6537 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6538 			err = process_spin_lock(env, regno, false);
6539 			if (err)
6540 				return err;
6541 		} else {
6542 			verbose(env, "verifier internal error\n");
6543 			return -EFAULT;
6544 		}
6545 		break;
6546 	case ARG_PTR_TO_TIMER:
6547 		err = process_timer_func(env, regno, meta);
6548 		if (err)
6549 			return err;
6550 		break;
6551 	case ARG_PTR_TO_FUNC:
6552 		meta->subprogno = reg->subprogno;
6553 		break;
6554 	case ARG_PTR_TO_MEM:
6555 		/* The access to this pointer is only checked when we hit the
6556 		 * next is_mem_size argument below.
6557 		 */
6558 		meta->raw_mode = arg_type & MEM_UNINIT;
6559 		if (arg_type & MEM_FIXED_SIZE) {
6560 			err = check_helper_mem_access(env, regno,
6561 						      fn->arg_size[arg], false,
6562 						      meta);
6563 		}
6564 		break;
6565 	case ARG_CONST_SIZE:
6566 		err = check_mem_size_reg(env, reg, regno, false, meta);
6567 		break;
6568 	case ARG_CONST_SIZE_OR_ZERO:
6569 		err = check_mem_size_reg(env, reg, regno, true, meta);
6570 		break;
6571 	case ARG_PTR_TO_DYNPTR:
6572 		err = process_dynptr_func(env, regno, arg_type, meta);
6573 		if (err)
6574 			return err;
6575 		break;
6576 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6577 		if (!tnum_is_const(reg->var_off)) {
6578 			verbose(env, "R%d is not a known constant'\n",
6579 				regno);
6580 			return -EACCES;
6581 		}
6582 		meta->mem_size = reg->var_off.value;
6583 		err = mark_chain_precision(env, regno);
6584 		if (err)
6585 			return err;
6586 		break;
6587 	case ARG_PTR_TO_INT:
6588 	case ARG_PTR_TO_LONG:
6589 	{
6590 		int size = int_ptr_type_to_size(arg_type);
6591 
6592 		err = check_helper_mem_access(env, regno, size, false, meta);
6593 		if (err)
6594 			return err;
6595 		err = check_ptr_alignment(env, reg, 0, size, true);
6596 		break;
6597 	}
6598 	case ARG_PTR_TO_CONST_STR:
6599 	{
6600 		struct bpf_map *map = reg->map_ptr;
6601 		int map_off;
6602 		u64 map_addr;
6603 		char *str_ptr;
6604 
6605 		if (!bpf_map_is_rdonly(map)) {
6606 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6607 			return -EACCES;
6608 		}
6609 
6610 		if (!tnum_is_const(reg->var_off)) {
6611 			verbose(env, "R%d is not a constant address'\n", regno);
6612 			return -EACCES;
6613 		}
6614 
6615 		if (!map->ops->map_direct_value_addr) {
6616 			verbose(env, "no direct value access support for this map type\n");
6617 			return -EACCES;
6618 		}
6619 
6620 		err = check_map_access(env, regno, reg->off,
6621 				       map->value_size - reg->off, false,
6622 				       ACCESS_HELPER);
6623 		if (err)
6624 			return err;
6625 
6626 		map_off = reg->off + reg->var_off.value;
6627 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6628 		if (err) {
6629 			verbose(env, "direct value access on string failed\n");
6630 			return err;
6631 		}
6632 
6633 		str_ptr = (char *)(long)(map_addr);
6634 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6635 			verbose(env, "string is not zero-terminated\n");
6636 			return -EINVAL;
6637 		}
6638 		break;
6639 	}
6640 	case ARG_PTR_TO_KPTR:
6641 		err = process_kptr_func(env, regno, meta);
6642 		if (err)
6643 			return err;
6644 		break;
6645 	}
6646 
6647 	return err;
6648 }
6649 
6650 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6651 {
6652 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6653 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6654 
6655 	if (func_id != BPF_FUNC_map_update_elem)
6656 		return false;
6657 
6658 	/* It's not possible to get access to a locked struct sock in these
6659 	 * contexts, so updating is safe.
6660 	 */
6661 	switch (type) {
6662 	case BPF_PROG_TYPE_TRACING:
6663 		if (eatype == BPF_TRACE_ITER)
6664 			return true;
6665 		break;
6666 	case BPF_PROG_TYPE_SOCKET_FILTER:
6667 	case BPF_PROG_TYPE_SCHED_CLS:
6668 	case BPF_PROG_TYPE_SCHED_ACT:
6669 	case BPF_PROG_TYPE_XDP:
6670 	case BPF_PROG_TYPE_SK_REUSEPORT:
6671 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6672 	case BPF_PROG_TYPE_SK_LOOKUP:
6673 		return true;
6674 	default:
6675 		break;
6676 	}
6677 
6678 	verbose(env, "cannot update sockmap in this context\n");
6679 	return false;
6680 }
6681 
6682 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6683 {
6684 	return env->prog->jit_requested &&
6685 	       bpf_jit_supports_subprog_tailcalls();
6686 }
6687 
6688 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6689 					struct bpf_map *map, int func_id)
6690 {
6691 	if (!map)
6692 		return 0;
6693 
6694 	/* We need a two way check, first is from map perspective ... */
6695 	switch (map->map_type) {
6696 	case BPF_MAP_TYPE_PROG_ARRAY:
6697 		if (func_id != BPF_FUNC_tail_call)
6698 			goto error;
6699 		break;
6700 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6701 		if (func_id != BPF_FUNC_perf_event_read &&
6702 		    func_id != BPF_FUNC_perf_event_output &&
6703 		    func_id != BPF_FUNC_skb_output &&
6704 		    func_id != BPF_FUNC_perf_event_read_value &&
6705 		    func_id != BPF_FUNC_xdp_output)
6706 			goto error;
6707 		break;
6708 	case BPF_MAP_TYPE_RINGBUF:
6709 		if (func_id != BPF_FUNC_ringbuf_output &&
6710 		    func_id != BPF_FUNC_ringbuf_reserve &&
6711 		    func_id != BPF_FUNC_ringbuf_query &&
6712 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6713 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6714 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6715 			goto error;
6716 		break;
6717 	case BPF_MAP_TYPE_USER_RINGBUF:
6718 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6719 			goto error;
6720 		break;
6721 	case BPF_MAP_TYPE_STACK_TRACE:
6722 		if (func_id != BPF_FUNC_get_stackid)
6723 			goto error;
6724 		break;
6725 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6726 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6727 		    func_id != BPF_FUNC_current_task_under_cgroup)
6728 			goto error;
6729 		break;
6730 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6731 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6732 		if (func_id != BPF_FUNC_get_local_storage)
6733 			goto error;
6734 		break;
6735 	case BPF_MAP_TYPE_DEVMAP:
6736 	case BPF_MAP_TYPE_DEVMAP_HASH:
6737 		if (func_id != BPF_FUNC_redirect_map &&
6738 		    func_id != BPF_FUNC_map_lookup_elem)
6739 			goto error;
6740 		break;
6741 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6742 	 * appear.
6743 	 */
6744 	case BPF_MAP_TYPE_CPUMAP:
6745 		if (func_id != BPF_FUNC_redirect_map)
6746 			goto error;
6747 		break;
6748 	case BPF_MAP_TYPE_XSKMAP:
6749 		if (func_id != BPF_FUNC_redirect_map &&
6750 		    func_id != BPF_FUNC_map_lookup_elem)
6751 			goto error;
6752 		break;
6753 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6754 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6755 		if (func_id != BPF_FUNC_map_lookup_elem)
6756 			goto error;
6757 		break;
6758 	case BPF_MAP_TYPE_SOCKMAP:
6759 		if (func_id != BPF_FUNC_sk_redirect_map &&
6760 		    func_id != BPF_FUNC_sock_map_update &&
6761 		    func_id != BPF_FUNC_map_delete_elem &&
6762 		    func_id != BPF_FUNC_msg_redirect_map &&
6763 		    func_id != BPF_FUNC_sk_select_reuseport &&
6764 		    func_id != BPF_FUNC_map_lookup_elem &&
6765 		    !may_update_sockmap(env, func_id))
6766 			goto error;
6767 		break;
6768 	case BPF_MAP_TYPE_SOCKHASH:
6769 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6770 		    func_id != BPF_FUNC_sock_hash_update &&
6771 		    func_id != BPF_FUNC_map_delete_elem &&
6772 		    func_id != BPF_FUNC_msg_redirect_hash &&
6773 		    func_id != BPF_FUNC_sk_select_reuseport &&
6774 		    func_id != BPF_FUNC_map_lookup_elem &&
6775 		    !may_update_sockmap(env, func_id))
6776 			goto error;
6777 		break;
6778 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6779 		if (func_id != BPF_FUNC_sk_select_reuseport)
6780 			goto error;
6781 		break;
6782 	case BPF_MAP_TYPE_QUEUE:
6783 	case BPF_MAP_TYPE_STACK:
6784 		if (func_id != BPF_FUNC_map_peek_elem &&
6785 		    func_id != BPF_FUNC_map_pop_elem &&
6786 		    func_id != BPF_FUNC_map_push_elem)
6787 			goto error;
6788 		break;
6789 	case BPF_MAP_TYPE_SK_STORAGE:
6790 		if (func_id != BPF_FUNC_sk_storage_get &&
6791 		    func_id != BPF_FUNC_sk_storage_delete)
6792 			goto error;
6793 		break;
6794 	case BPF_MAP_TYPE_INODE_STORAGE:
6795 		if (func_id != BPF_FUNC_inode_storage_get &&
6796 		    func_id != BPF_FUNC_inode_storage_delete)
6797 			goto error;
6798 		break;
6799 	case BPF_MAP_TYPE_TASK_STORAGE:
6800 		if (func_id != BPF_FUNC_task_storage_get &&
6801 		    func_id != BPF_FUNC_task_storage_delete)
6802 			goto error;
6803 		break;
6804 	case BPF_MAP_TYPE_CGRP_STORAGE:
6805 		if (func_id != BPF_FUNC_cgrp_storage_get &&
6806 		    func_id != BPF_FUNC_cgrp_storage_delete)
6807 			goto error;
6808 		break;
6809 	case BPF_MAP_TYPE_BLOOM_FILTER:
6810 		if (func_id != BPF_FUNC_map_peek_elem &&
6811 		    func_id != BPF_FUNC_map_push_elem)
6812 			goto error;
6813 		break;
6814 	default:
6815 		break;
6816 	}
6817 
6818 	/* ... and second from the function itself. */
6819 	switch (func_id) {
6820 	case BPF_FUNC_tail_call:
6821 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6822 			goto error;
6823 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6824 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6825 			return -EINVAL;
6826 		}
6827 		break;
6828 	case BPF_FUNC_perf_event_read:
6829 	case BPF_FUNC_perf_event_output:
6830 	case BPF_FUNC_perf_event_read_value:
6831 	case BPF_FUNC_skb_output:
6832 	case BPF_FUNC_xdp_output:
6833 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6834 			goto error;
6835 		break;
6836 	case BPF_FUNC_ringbuf_output:
6837 	case BPF_FUNC_ringbuf_reserve:
6838 	case BPF_FUNC_ringbuf_query:
6839 	case BPF_FUNC_ringbuf_reserve_dynptr:
6840 	case BPF_FUNC_ringbuf_submit_dynptr:
6841 	case BPF_FUNC_ringbuf_discard_dynptr:
6842 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6843 			goto error;
6844 		break;
6845 	case BPF_FUNC_user_ringbuf_drain:
6846 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6847 			goto error;
6848 		break;
6849 	case BPF_FUNC_get_stackid:
6850 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6851 			goto error;
6852 		break;
6853 	case BPF_FUNC_current_task_under_cgroup:
6854 	case BPF_FUNC_skb_under_cgroup:
6855 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6856 			goto error;
6857 		break;
6858 	case BPF_FUNC_redirect_map:
6859 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6860 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6861 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6862 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6863 			goto error;
6864 		break;
6865 	case BPF_FUNC_sk_redirect_map:
6866 	case BPF_FUNC_msg_redirect_map:
6867 	case BPF_FUNC_sock_map_update:
6868 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6869 			goto error;
6870 		break;
6871 	case BPF_FUNC_sk_redirect_hash:
6872 	case BPF_FUNC_msg_redirect_hash:
6873 	case BPF_FUNC_sock_hash_update:
6874 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6875 			goto error;
6876 		break;
6877 	case BPF_FUNC_get_local_storage:
6878 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6879 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6880 			goto error;
6881 		break;
6882 	case BPF_FUNC_sk_select_reuseport:
6883 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6884 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6885 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6886 			goto error;
6887 		break;
6888 	case BPF_FUNC_map_pop_elem:
6889 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6890 		    map->map_type != BPF_MAP_TYPE_STACK)
6891 			goto error;
6892 		break;
6893 	case BPF_FUNC_map_peek_elem:
6894 	case BPF_FUNC_map_push_elem:
6895 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6896 		    map->map_type != BPF_MAP_TYPE_STACK &&
6897 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6898 			goto error;
6899 		break;
6900 	case BPF_FUNC_map_lookup_percpu_elem:
6901 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6902 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6903 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6904 			goto error;
6905 		break;
6906 	case BPF_FUNC_sk_storage_get:
6907 	case BPF_FUNC_sk_storage_delete:
6908 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6909 			goto error;
6910 		break;
6911 	case BPF_FUNC_inode_storage_get:
6912 	case BPF_FUNC_inode_storage_delete:
6913 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6914 			goto error;
6915 		break;
6916 	case BPF_FUNC_task_storage_get:
6917 	case BPF_FUNC_task_storage_delete:
6918 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6919 			goto error;
6920 		break;
6921 	case BPF_FUNC_cgrp_storage_get:
6922 	case BPF_FUNC_cgrp_storage_delete:
6923 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6924 			goto error;
6925 		break;
6926 	default:
6927 		break;
6928 	}
6929 
6930 	return 0;
6931 error:
6932 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6933 		map->map_type, func_id_name(func_id), func_id);
6934 	return -EINVAL;
6935 }
6936 
6937 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6938 {
6939 	int count = 0;
6940 
6941 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6942 		count++;
6943 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6944 		count++;
6945 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6946 		count++;
6947 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6948 		count++;
6949 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6950 		count++;
6951 
6952 	/* We only support one arg being in raw mode at the moment,
6953 	 * which is sufficient for the helper functions we have
6954 	 * right now.
6955 	 */
6956 	return count <= 1;
6957 }
6958 
6959 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6960 {
6961 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6962 	bool has_size = fn->arg_size[arg] != 0;
6963 	bool is_next_size = false;
6964 
6965 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6966 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6967 
6968 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6969 		return is_next_size;
6970 
6971 	return has_size == is_next_size || is_next_size == is_fixed;
6972 }
6973 
6974 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6975 {
6976 	/* bpf_xxx(..., buf, len) call will access 'len'
6977 	 * bytes from memory 'buf'. Both arg types need
6978 	 * to be paired, so make sure there's no buggy
6979 	 * helper function specification.
6980 	 */
6981 	if (arg_type_is_mem_size(fn->arg1_type) ||
6982 	    check_args_pair_invalid(fn, 0) ||
6983 	    check_args_pair_invalid(fn, 1) ||
6984 	    check_args_pair_invalid(fn, 2) ||
6985 	    check_args_pair_invalid(fn, 3) ||
6986 	    check_args_pair_invalid(fn, 4))
6987 		return false;
6988 
6989 	return true;
6990 }
6991 
6992 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6993 {
6994 	int i;
6995 
6996 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6997 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
6998 			return !!fn->arg_btf_id[i];
6999 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
7000 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
7001 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
7002 		    /* arg_btf_id and arg_size are in a union. */
7003 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
7004 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
7005 			return false;
7006 	}
7007 
7008 	return true;
7009 }
7010 
7011 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
7012 {
7013 	return check_raw_mode_ok(fn) &&
7014 	       check_arg_pair_ok(fn) &&
7015 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
7016 }
7017 
7018 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
7019  * are now invalid, so turn them into unknown SCALAR_VALUE.
7020  */
7021 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
7022 {
7023 	struct bpf_func_state *state;
7024 	struct bpf_reg_state *reg;
7025 
7026 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7027 		if (reg_is_pkt_pointer_any(reg))
7028 			__mark_reg_unknown(env, reg);
7029 	}));
7030 }
7031 
7032 enum {
7033 	AT_PKT_END = -1,
7034 	BEYOND_PKT_END = -2,
7035 };
7036 
7037 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
7038 {
7039 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7040 	struct bpf_reg_state *reg = &state->regs[regn];
7041 
7042 	if (reg->type != PTR_TO_PACKET)
7043 		/* PTR_TO_PACKET_META is not supported yet */
7044 		return;
7045 
7046 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
7047 	 * How far beyond pkt_end it goes is unknown.
7048 	 * if (!range_open) it's the case of pkt >= pkt_end
7049 	 * if (range_open) it's the case of pkt > pkt_end
7050 	 * hence this pointer is at least 1 byte bigger than pkt_end
7051 	 */
7052 	if (range_open)
7053 		reg->range = BEYOND_PKT_END;
7054 	else
7055 		reg->range = AT_PKT_END;
7056 }
7057 
7058 /* The pointer with the specified id has released its reference to kernel
7059  * resources. Identify all copies of the same pointer and clear the reference.
7060  */
7061 static int release_reference(struct bpf_verifier_env *env,
7062 			     int ref_obj_id)
7063 {
7064 	struct bpf_func_state *state;
7065 	struct bpf_reg_state *reg;
7066 	int err;
7067 
7068 	err = release_reference_state(cur_func(env), ref_obj_id);
7069 	if (err)
7070 		return err;
7071 
7072 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7073 		if (reg->ref_obj_id == ref_obj_id) {
7074 			if (!env->allow_ptr_leaks)
7075 				__mark_reg_not_init(env, reg);
7076 			else
7077 				__mark_reg_unknown(env, reg);
7078 		}
7079 	}));
7080 
7081 	return 0;
7082 }
7083 
7084 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
7085 				    struct bpf_reg_state *regs)
7086 {
7087 	int i;
7088 
7089 	/* after the call registers r0 - r5 were scratched */
7090 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7091 		mark_reg_not_init(env, regs, caller_saved[i]);
7092 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7093 	}
7094 }
7095 
7096 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
7097 				   struct bpf_func_state *caller,
7098 				   struct bpf_func_state *callee,
7099 				   int insn_idx);
7100 
7101 static int set_callee_state(struct bpf_verifier_env *env,
7102 			    struct bpf_func_state *caller,
7103 			    struct bpf_func_state *callee, int insn_idx);
7104 
7105 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7106 			     int *insn_idx, int subprog,
7107 			     set_callee_state_fn set_callee_state_cb)
7108 {
7109 	struct bpf_verifier_state *state = env->cur_state;
7110 	struct bpf_func_info_aux *func_info_aux;
7111 	struct bpf_func_state *caller, *callee;
7112 	int err;
7113 	bool is_global = false;
7114 
7115 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
7116 		verbose(env, "the call stack of %d frames is too deep\n",
7117 			state->curframe + 2);
7118 		return -E2BIG;
7119 	}
7120 
7121 	caller = state->frame[state->curframe];
7122 	if (state->frame[state->curframe + 1]) {
7123 		verbose(env, "verifier bug. Frame %d already allocated\n",
7124 			state->curframe + 1);
7125 		return -EFAULT;
7126 	}
7127 
7128 	func_info_aux = env->prog->aux->func_info_aux;
7129 	if (func_info_aux)
7130 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
7131 	err = btf_check_subprog_call(env, subprog, caller->regs);
7132 	if (err == -EFAULT)
7133 		return err;
7134 	if (is_global) {
7135 		if (err) {
7136 			verbose(env, "Caller passes invalid args into func#%d\n",
7137 				subprog);
7138 			return err;
7139 		} else {
7140 			if (env->log.level & BPF_LOG_LEVEL)
7141 				verbose(env,
7142 					"Func#%d is global and valid. Skipping.\n",
7143 					subprog);
7144 			clear_caller_saved_regs(env, caller->regs);
7145 
7146 			/* All global functions return a 64-bit SCALAR_VALUE */
7147 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
7148 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7149 
7150 			/* continue with next insn after call */
7151 			return 0;
7152 		}
7153 	}
7154 
7155 	/* set_callee_state is used for direct subprog calls, but we are
7156 	 * interested in validating only BPF helpers that can call subprogs as
7157 	 * callbacks
7158 	 */
7159 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7160 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7161 			func_id_name(insn->imm), insn->imm);
7162 		return -EFAULT;
7163 	}
7164 
7165 	if (insn->code == (BPF_JMP | BPF_CALL) &&
7166 	    insn->src_reg == 0 &&
7167 	    insn->imm == BPF_FUNC_timer_set_callback) {
7168 		struct bpf_verifier_state *async_cb;
7169 
7170 		/* there is no real recursion here. timer callbacks are async */
7171 		env->subprog_info[subprog].is_async_cb = true;
7172 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7173 					 *insn_idx, subprog);
7174 		if (!async_cb)
7175 			return -EFAULT;
7176 		callee = async_cb->frame[0];
7177 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
7178 
7179 		/* Convert bpf_timer_set_callback() args into timer callback args */
7180 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
7181 		if (err)
7182 			return err;
7183 
7184 		clear_caller_saved_regs(env, caller->regs);
7185 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
7186 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7187 		/* continue with next insn after call */
7188 		return 0;
7189 	}
7190 
7191 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7192 	if (!callee)
7193 		return -ENOMEM;
7194 	state->frame[state->curframe + 1] = callee;
7195 
7196 	/* callee cannot access r0, r6 - r9 for reading and has to write
7197 	 * into its own stack before reading from it.
7198 	 * callee can read/write into caller's stack
7199 	 */
7200 	init_func_state(env, callee,
7201 			/* remember the callsite, it will be used by bpf_exit */
7202 			*insn_idx /* callsite */,
7203 			state->curframe + 1 /* frameno within this callchain */,
7204 			subprog /* subprog number within this prog */);
7205 
7206 	/* Transfer references to the callee */
7207 	err = copy_reference_state(callee, caller);
7208 	if (err)
7209 		goto err_out;
7210 
7211 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7212 	if (err)
7213 		goto err_out;
7214 
7215 	clear_caller_saved_regs(env, caller->regs);
7216 
7217 	/* only increment it after check_reg_arg() finished */
7218 	state->curframe++;
7219 
7220 	/* and go analyze first insn of the callee */
7221 	*insn_idx = env->subprog_info[subprog].start - 1;
7222 
7223 	if (env->log.level & BPF_LOG_LEVEL) {
7224 		verbose(env, "caller:\n");
7225 		print_verifier_state(env, caller, true);
7226 		verbose(env, "callee:\n");
7227 		print_verifier_state(env, callee, true);
7228 	}
7229 	return 0;
7230 
7231 err_out:
7232 	free_func_state(callee);
7233 	state->frame[state->curframe + 1] = NULL;
7234 	return err;
7235 }
7236 
7237 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7238 				   struct bpf_func_state *caller,
7239 				   struct bpf_func_state *callee)
7240 {
7241 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7242 	 *      void *callback_ctx, u64 flags);
7243 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7244 	 *      void *callback_ctx);
7245 	 */
7246 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7247 
7248 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7249 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7250 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7251 
7252 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7253 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7254 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7255 
7256 	/* pointer to stack or null */
7257 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7258 
7259 	/* unused */
7260 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7261 	return 0;
7262 }
7263 
7264 static int set_callee_state(struct bpf_verifier_env *env,
7265 			    struct bpf_func_state *caller,
7266 			    struct bpf_func_state *callee, int insn_idx)
7267 {
7268 	int i;
7269 
7270 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7271 	 * pointers, which connects us up to the liveness chain
7272 	 */
7273 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7274 		callee->regs[i] = caller->regs[i];
7275 	return 0;
7276 }
7277 
7278 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7279 			   int *insn_idx)
7280 {
7281 	int subprog, target_insn;
7282 
7283 	target_insn = *insn_idx + insn->imm + 1;
7284 	subprog = find_subprog(env, target_insn);
7285 	if (subprog < 0) {
7286 		verbose(env, "verifier bug. No program starts at insn %d\n",
7287 			target_insn);
7288 		return -EFAULT;
7289 	}
7290 
7291 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7292 }
7293 
7294 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7295 				       struct bpf_func_state *caller,
7296 				       struct bpf_func_state *callee,
7297 				       int insn_idx)
7298 {
7299 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7300 	struct bpf_map *map;
7301 	int err;
7302 
7303 	if (bpf_map_ptr_poisoned(insn_aux)) {
7304 		verbose(env, "tail_call abusing map_ptr\n");
7305 		return -EINVAL;
7306 	}
7307 
7308 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7309 	if (!map->ops->map_set_for_each_callback_args ||
7310 	    !map->ops->map_for_each_callback) {
7311 		verbose(env, "callback function not allowed for map\n");
7312 		return -ENOTSUPP;
7313 	}
7314 
7315 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7316 	if (err)
7317 		return err;
7318 
7319 	callee->in_callback_fn = true;
7320 	callee->callback_ret_range = tnum_range(0, 1);
7321 	return 0;
7322 }
7323 
7324 static int set_loop_callback_state(struct bpf_verifier_env *env,
7325 				   struct bpf_func_state *caller,
7326 				   struct bpf_func_state *callee,
7327 				   int insn_idx)
7328 {
7329 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7330 	 *	    u64 flags);
7331 	 * callback_fn(u32 index, void *callback_ctx);
7332 	 */
7333 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7334 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7335 
7336 	/* unused */
7337 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7338 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7339 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7340 
7341 	callee->in_callback_fn = true;
7342 	callee->callback_ret_range = tnum_range(0, 1);
7343 	return 0;
7344 }
7345 
7346 static int set_timer_callback_state(struct bpf_verifier_env *env,
7347 				    struct bpf_func_state *caller,
7348 				    struct bpf_func_state *callee,
7349 				    int insn_idx)
7350 {
7351 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7352 
7353 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7354 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7355 	 */
7356 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7357 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7358 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7359 
7360 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7361 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7362 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7363 
7364 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7365 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7366 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7367 
7368 	/* unused */
7369 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7370 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7371 	callee->in_async_callback_fn = true;
7372 	callee->callback_ret_range = tnum_range(0, 1);
7373 	return 0;
7374 }
7375 
7376 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7377 				       struct bpf_func_state *caller,
7378 				       struct bpf_func_state *callee,
7379 				       int insn_idx)
7380 {
7381 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7382 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7383 	 * (callback_fn)(struct task_struct *task,
7384 	 *               struct vm_area_struct *vma, void *callback_ctx);
7385 	 */
7386 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7387 
7388 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7389 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7390 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7391 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7392 
7393 	/* pointer to stack or null */
7394 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7395 
7396 	/* unused */
7397 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7398 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7399 	callee->in_callback_fn = true;
7400 	callee->callback_ret_range = tnum_range(0, 1);
7401 	return 0;
7402 }
7403 
7404 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7405 					   struct bpf_func_state *caller,
7406 					   struct bpf_func_state *callee,
7407 					   int insn_idx)
7408 {
7409 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7410 	 *			  callback_ctx, u64 flags);
7411 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
7412 	 */
7413 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7414 	mark_dynptr_cb_reg(&callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
7415 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7416 
7417 	/* unused */
7418 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7419 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7420 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7421 
7422 	callee->in_callback_fn = true;
7423 	callee->callback_ret_range = tnum_range(0, 1);
7424 	return 0;
7425 }
7426 
7427 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7428 {
7429 	struct bpf_verifier_state *state = env->cur_state;
7430 	struct bpf_func_state *caller, *callee;
7431 	struct bpf_reg_state *r0;
7432 	int err;
7433 
7434 	callee = state->frame[state->curframe];
7435 	r0 = &callee->regs[BPF_REG_0];
7436 	if (r0->type == PTR_TO_STACK) {
7437 		/* technically it's ok to return caller's stack pointer
7438 		 * (or caller's caller's pointer) back to the caller,
7439 		 * since these pointers are valid. Only current stack
7440 		 * pointer will be invalid as soon as function exits,
7441 		 * but let's be conservative
7442 		 */
7443 		verbose(env, "cannot return stack pointer to the caller\n");
7444 		return -EINVAL;
7445 	}
7446 
7447 	caller = state->frame[state->curframe - 1];
7448 	if (callee->in_callback_fn) {
7449 		/* enforce R0 return value range [0, 1]. */
7450 		struct tnum range = callee->callback_ret_range;
7451 
7452 		if (r0->type != SCALAR_VALUE) {
7453 			verbose(env, "R0 not a scalar value\n");
7454 			return -EACCES;
7455 		}
7456 		if (!tnum_in(range, r0->var_off)) {
7457 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7458 			return -EINVAL;
7459 		}
7460 	} else {
7461 		/* return to the caller whatever r0 had in the callee */
7462 		caller->regs[BPF_REG_0] = *r0;
7463 	}
7464 
7465 	/* callback_fn frame should have released its own additions to parent's
7466 	 * reference state at this point, or check_reference_leak would
7467 	 * complain, hence it must be the same as the caller. There is no need
7468 	 * to copy it back.
7469 	 */
7470 	if (!callee->in_callback_fn) {
7471 		/* Transfer references to the caller */
7472 		err = copy_reference_state(caller, callee);
7473 		if (err)
7474 			return err;
7475 	}
7476 
7477 	*insn_idx = callee->callsite + 1;
7478 	if (env->log.level & BPF_LOG_LEVEL) {
7479 		verbose(env, "returning from callee:\n");
7480 		print_verifier_state(env, callee, true);
7481 		verbose(env, "to caller at %d:\n", *insn_idx);
7482 		print_verifier_state(env, caller, true);
7483 	}
7484 	/* clear everything in the callee */
7485 	free_func_state(callee);
7486 	state->frame[state->curframe--] = NULL;
7487 	return 0;
7488 }
7489 
7490 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7491 				   int func_id,
7492 				   struct bpf_call_arg_meta *meta)
7493 {
7494 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7495 
7496 	if (ret_type != RET_INTEGER ||
7497 	    (func_id != BPF_FUNC_get_stack &&
7498 	     func_id != BPF_FUNC_get_task_stack &&
7499 	     func_id != BPF_FUNC_probe_read_str &&
7500 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7501 	     func_id != BPF_FUNC_probe_read_user_str))
7502 		return;
7503 
7504 	ret_reg->smax_value = meta->msize_max_value;
7505 	ret_reg->s32_max_value = meta->msize_max_value;
7506 	ret_reg->smin_value = -MAX_ERRNO;
7507 	ret_reg->s32_min_value = -MAX_ERRNO;
7508 	reg_bounds_sync(ret_reg);
7509 }
7510 
7511 static int
7512 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7513 		int func_id, int insn_idx)
7514 {
7515 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7516 	struct bpf_map *map = meta->map_ptr;
7517 
7518 	if (func_id != BPF_FUNC_tail_call &&
7519 	    func_id != BPF_FUNC_map_lookup_elem &&
7520 	    func_id != BPF_FUNC_map_update_elem &&
7521 	    func_id != BPF_FUNC_map_delete_elem &&
7522 	    func_id != BPF_FUNC_map_push_elem &&
7523 	    func_id != BPF_FUNC_map_pop_elem &&
7524 	    func_id != BPF_FUNC_map_peek_elem &&
7525 	    func_id != BPF_FUNC_for_each_map_elem &&
7526 	    func_id != BPF_FUNC_redirect_map &&
7527 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7528 		return 0;
7529 
7530 	if (map == NULL) {
7531 		verbose(env, "kernel subsystem misconfigured verifier\n");
7532 		return -EINVAL;
7533 	}
7534 
7535 	/* In case of read-only, some additional restrictions
7536 	 * need to be applied in order to prevent altering the
7537 	 * state of the map from program side.
7538 	 */
7539 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7540 	    (func_id == BPF_FUNC_map_delete_elem ||
7541 	     func_id == BPF_FUNC_map_update_elem ||
7542 	     func_id == BPF_FUNC_map_push_elem ||
7543 	     func_id == BPF_FUNC_map_pop_elem)) {
7544 		verbose(env, "write into map forbidden\n");
7545 		return -EACCES;
7546 	}
7547 
7548 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7549 		bpf_map_ptr_store(aux, meta->map_ptr,
7550 				  !meta->map_ptr->bypass_spec_v1);
7551 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7552 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7553 				  !meta->map_ptr->bypass_spec_v1);
7554 	return 0;
7555 }
7556 
7557 static int
7558 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7559 		int func_id, int insn_idx)
7560 {
7561 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7562 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7563 	struct bpf_map *map = meta->map_ptr;
7564 	u64 val, max;
7565 	int err;
7566 
7567 	if (func_id != BPF_FUNC_tail_call)
7568 		return 0;
7569 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7570 		verbose(env, "kernel subsystem misconfigured verifier\n");
7571 		return -EINVAL;
7572 	}
7573 
7574 	reg = &regs[BPF_REG_3];
7575 	val = reg->var_off.value;
7576 	max = map->max_entries;
7577 
7578 	if (!(register_is_const(reg) && val < max)) {
7579 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7580 		return 0;
7581 	}
7582 
7583 	err = mark_chain_precision(env, BPF_REG_3);
7584 	if (err)
7585 		return err;
7586 	if (bpf_map_key_unseen(aux))
7587 		bpf_map_key_store(aux, val);
7588 	else if (!bpf_map_key_poisoned(aux) &&
7589 		  bpf_map_key_immediate(aux) != val)
7590 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7591 	return 0;
7592 }
7593 
7594 static int check_reference_leak(struct bpf_verifier_env *env)
7595 {
7596 	struct bpf_func_state *state = cur_func(env);
7597 	bool refs_lingering = false;
7598 	int i;
7599 
7600 	if (state->frameno && !state->in_callback_fn)
7601 		return 0;
7602 
7603 	for (i = 0; i < state->acquired_refs; i++) {
7604 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7605 			continue;
7606 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7607 			state->refs[i].id, state->refs[i].insn_idx);
7608 		refs_lingering = true;
7609 	}
7610 	return refs_lingering ? -EINVAL : 0;
7611 }
7612 
7613 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7614 				   struct bpf_reg_state *regs)
7615 {
7616 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7617 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7618 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7619 	struct bpf_bprintf_data data = {};
7620 	int err, fmt_map_off, num_args;
7621 	u64 fmt_addr;
7622 	char *fmt;
7623 
7624 	/* data must be an array of u64 */
7625 	if (data_len_reg->var_off.value % 8)
7626 		return -EINVAL;
7627 	num_args = data_len_reg->var_off.value / 8;
7628 
7629 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7630 	 * and map_direct_value_addr is set.
7631 	 */
7632 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7633 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7634 						  fmt_map_off);
7635 	if (err) {
7636 		verbose(env, "verifier bug\n");
7637 		return -EFAULT;
7638 	}
7639 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7640 
7641 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7642 	 * can focus on validating the format specifiers.
7643 	 */
7644 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7645 	if (err < 0)
7646 		verbose(env, "Invalid format string\n");
7647 
7648 	return err;
7649 }
7650 
7651 static int check_get_func_ip(struct bpf_verifier_env *env)
7652 {
7653 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7654 	int func_id = BPF_FUNC_get_func_ip;
7655 
7656 	if (type == BPF_PROG_TYPE_TRACING) {
7657 		if (!bpf_prog_has_trampoline(env->prog)) {
7658 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7659 				func_id_name(func_id), func_id);
7660 			return -ENOTSUPP;
7661 		}
7662 		return 0;
7663 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7664 		return 0;
7665 	}
7666 
7667 	verbose(env, "func %s#%d not supported for program type %d\n",
7668 		func_id_name(func_id), func_id, type);
7669 	return -ENOTSUPP;
7670 }
7671 
7672 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7673 {
7674 	return &env->insn_aux_data[env->insn_idx];
7675 }
7676 
7677 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7678 {
7679 	struct bpf_reg_state *regs = cur_regs(env);
7680 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7681 	bool reg_is_null = register_is_null(reg);
7682 
7683 	if (reg_is_null)
7684 		mark_chain_precision(env, BPF_REG_4);
7685 
7686 	return reg_is_null;
7687 }
7688 
7689 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7690 {
7691 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7692 
7693 	if (!state->initialized) {
7694 		state->initialized = 1;
7695 		state->fit_for_inline = loop_flag_is_zero(env);
7696 		state->callback_subprogno = subprogno;
7697 		return;
7698 	}
7699 
7700 	if (!state->fit_for_inline)
7701 		return;
7702 
7703 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7704 				 state->callback_subprogno == subprogno);
7705 }
7706 
7707 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7708 			     int *insn_idx_p)
7709 {
7710 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7711 	const struct bpf_func_proto *fn = NULL;
7712 	enum bpf_return_type ret_type;
7713 	enum bpf_type_flag ret_flag;
7714 	struct bpf_reg_state *regs;
7715 	struct bpf_call_arg_meta meta;
7716 	int insn_idx = *insn_idx_p;
7717 	bool changes_data;
7718 	int i, err, func_id;
7719 
7720 	/* find function prototype */
7721 	func_id = insn->imm;
7722 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7723 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7724 			func_id);
7725 		return -EINVAL;
7726 	}
7727 
7728 	if (env->ops->get_func_proto)
7729 		fn = env->ops->get_func_proto(func_id, env->prog);
7730 	if (!fn) {
7731 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7732 			func_id);
7733 		return -EINVAL;
7734 	}
7735 
7736 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7737 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7738 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7739 		return -EINVAL;
7740 	}
7741 
7742 	if (fn->allowed && !fn->allowed(env->prog)) {
7743 		verbose(env, "helper call is not allowed in probe\n");
7744 		return -EINVAL;
7745 	}
7746 
7747 	if (!env->prog->aux->sleepable && fn->might_sleep) {
7748 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
7749 		return -EINVAL;
7750 	}
7751 
7752 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7753 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7754 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7755 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7756 			func_id_name(func_id), func_id);
7757 		return -EINVAL;
7758 	}
7759 
7760 	memset(&meta, 0, sizeof(meta));
7761 	meta.pkt_access = fn->pkt_access;
7762 
7763 	err = check_func_proto(fn, func_id);
7764 	if (err) {
7765 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7766 			func_id_name(func_id), func_id);
7767 		return err;
7768 	}
7769 
7770 	if (env->cur_state->active_rcu_lock) {
7771 		if (fn->might_sleep) {
7772 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
7773 				func_id_name(func_id), func_id);
7774 			return -EINVAL;
7775 		}
7776 
7777 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
7778 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
7779 	}
7780 
7781 	meta.func_id = func_id;
7782 	/* check args */
7783 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7784 		err = check_func_arg(env, i, &meta, fn);
7785 		if (err)
7786 			return err;
7787 	}
7788 
7789 	err = record_func_map(env, &meta, func_id, insn_idx);
7790 	if (err)
7791 		return err;
7792 
7793 	err = record_func_key(env, &meta, func_id, insn_idx);
7794 	if (err)
7795 		return err;
7796 
7797 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7798 	 * is inferred from register state.
7799 	 */
7800 	for (i = 0; i < meta.access_size; i++) {
7801 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7802 				       BPF_WRITE, -1, false);
7803 		if (err)
7804 			return err;
7805 	}
7806 
7807 	regs = cur_regs(env);
7808 
7809 	/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
7810 	 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr
7811 	 * is safe to do directly.
7812 	 */
7813 	if (meta.uninit_dynptr_regno) {
7814 		if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) {
7815 			verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n");
7816 			return -EFAULT;
7817 		}
7818 		/* we write BPF_DW bits (8 bytes) at a time */
7819 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7820 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7821 					       i, BPF_DW, BPF_WRITE, -1, false);
7822 			if (err)
7823 				return err;
7824 		}
7825 
7826 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7827 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7828 					      insn_idx);
7829 		if (err)
7830 			return err;
7831 	}
7832 
7833 	if (meta.release_regno) {
7834 		err = -EINVAL;
7835 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
7836 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
7837 		 * is safe to do directly.
7838 		 */
7839 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
7840 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
7841 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
7842 				return -EFAULT;
7843 			}
7844 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7845 		} else if (meta.ref_obj_id) {
7846 			err = release_reference(env, meta.ref_obj_id);
7847 		} else if (register_is_null(&regs[meta.release_regno])) {
7848 			/* meta.ref_obj_id can only be 0 if register that is meant to be
7849 			 * released is NULL, which must be > R0.
7850 			 */
7851 			err = 0;
7852 		}
7853 		if (err) {
7854 			verbose(env, "func %s#%d reference has not been acquired before\n",
7855 				func_id_name(func_id), func_id);
7856 			return err;
7857 		}
7858 	}
7859 
7860 	switch (func_id) {
7861 	case BPF_FUNC_tail_call:
7862 		err = check_reference_leak(env);
7863 		if (err) {
7864 			verbose(env, "tail_call would lead to reference leak\n");
7865 			return err;
7866 		}
7867 		break;
7868 	case BPF_FUNC_get_local_storage:
7869 		/* check that flags argument in get_local_storage(map, flags) is 0,
7870 		 * this is required because get_local_storage() can't return an error.
7871 		 */
7872 		if (!register_is_null(&regs[BPF_REG_2])) {
7873 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7874 			return -EINVAL;
7875 		}
7876 		break;
7877 	case BPF_FUNC_for_each_map_elem:
7878 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7879 					set_map_elem_callback_state);
7880 		break;
7881 	case BPF_FUNC_timer_set_callback:
7882 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7883 					set_timer_callback_state);
7884 		break;
7885 	case BPF_FUNC_find_vma:
7886 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7887 					set_find_vma_callback_state);
7888 		break;
7889 	case BPF_FUNC_snprintf:
7890 		err = check_bpf_snprintf_call(env, regs);
7891 		break;
7892 	case BPF_FUNC_loop:
7893 		update_loop_inline_state(env, meta.subprogno);
7894 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7895 					set_loop_callback_state);
7896 		break;
7897 	case BPF_FUNC_dynptr_from_mem:
7898 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7899 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7900 				reg_type_str(env, regs[BPF_REG_1].type));
7901 			return -EACCES;
7902 		}
7903 		break;
7904 	case BPF_FUNC_set_retval:
7905 		if (prog_type == BPF_PROG_TYPE_LSM &&
7906 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7907 			if (!env->prog->aux->attach_func_proto->type) {
7908 				/* Make sure programs that attach to void
7909 				 * hooks don't try to modify return value.
7910 				 */
7911 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7912 				return -EINVAL;
7913 			}
7914 		}
7915 		break;
7916 	case BPF_FUNC_dynptr_data:
7917 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7918 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7919 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7920 
7921 				if (meta.ref_obj_id) {
7922 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7923 					return -EFAULT;
7924 				}
7925 
7926 				meta.ref_obj_id = dynptr_ref_obj_id(env, reg);
7927 				break;
7928 			}
7929 		}
7930 		if (i == MAX_BPF_FUNC_REG_ARGS) {
7931 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7932 			return -EFAULT;
7933 		}
7934 		break;
7935 	case BPF_FUNC_user_ringbuf_drain:
7936 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7937 					set_user_ringbuf_callback_state);
7938 		break;
7939 	}
7940 
7941 	if (err)
7942 		return err;
7943 
7944 	/* reset caller saved regs */
7945 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7946 		mark_reg_not_init(env, regs, caller_saved[i]);
7947 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7948 	}
7949 
7950 	/* helper call returns 64-bit value. */
7951 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7952 
7953 	/* update return register (already marked as written above) */
7954 	ret_type = fn->ret_type;
7955 	ret_flag = type_flag(ret_type);
7956 
7957 	switch (base_type(ret_type)) {
7958 	case RET_INTEGER:
7959 		/* sets type to SCALAR_VALUE */
7960 		mark_reg_unknown(env, regs, BPF_REG_0);
7961 		break;
7962 	case RET_VOID:
7963 		regs[BPF_REG_0].type = NOT_INIT;
7964 		break;
7965 	case RET_PTR_TO_MAP_VALUE:
7966 		/* There is no offset yet applied, variable or fixed */
7967 		mark_reg_known_zero(env, regs, BPF_REG_0);
7968 		/* remember map_ptr, so that check_map_access()
7969 		 * can check 'value_size' boundary of memory access
7970 		 * to map element returned from bpf_map_lookup_elem()
7971 		 */
7972 		if (meta.map_ptr == NULL) {
7973 			verbose(env,
7974 				"kernel subsystem misconfigured verifier\n");
7975 			return -EINVAL;
7976 		}
7977 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7978 		regs[BPF_REG_0].map_uid = meta.map_uid;
7979 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7980 		if (!type_may_be_null(ret_type) &&
7981 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
7982 			regs[BPF_REG_0].id = ++env->id_gen;
7983 		}
7984 		break;
7985 	case RET_PTR_TO_SOCKET:
7986 		mark_reg_known_zero(env, regs, BPF_REG_0);
7987 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7988 		break;
7989 	case RET_PTR_TO_SOCK_COMMON:
7990 		mark_reg_known_zero(env, regs, BPF_REG_0);
7991 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7992 		break;
7993 	case RET_PTR_TO_TCP_SOCK:
7994 		mark_reg_known_zero(env, regs, BPF_REG_0);
7995 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7996 		break;
7997 	case RET_PTR_TO_MEM:
7998 		mark_reg_known_zero(env, regs, BPF_REG_0);
7999 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8000 		regs[BPF_REG_0].mem_size = meta.mem_size;
8001 		break;
8002 	case RET_PTR_TO_MEM_OR_BTF_ID:
8003 	{
8004 		const struct btf_type *t;
8005 
8006 		mark_reg_known_zero(env, regs, BPF_REG_0);
8007 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
8008 		if (!btf_type_is_struct(t)) {
8009 			u32 tsize;
8010 			const struct btf_type *ret;
8011 			const char *tname;
8012 
8013 			/* resolve the type size of ksym. */
8014 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
8015 			if (IS_ERR(ret)) {
8016 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
8017 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
8018 					tname, PTR_ERR(ret));
8019 				return -EINVAL;
8020 			}
8021 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8022 			regs[BPF_REG_0].mem_size = tsize;
8023 		} else {
8024 			/* MEM_RDONLY may be carried from ret_flag, but it
8025 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
8026 			 * it will confuse the check of PTR_TO_BTF_ID in
8027 			 * check_mem_access().
8028 			 */
8029 			ret_flag &= ~MEM_RDONLY;
8030 
8031 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8032 			regs[BPF_REG_0].btf = meta.ret_btf;
8033 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
8034 		}
8035 		break;
8036 	}
8037 	case RET_PTR_TO_BTF_ID:
8038 	{
8039 		struct btf *ret_btf;
8040 		int ret_btf_id;
8041 
8042 		mark_reg_known_zero(env, regs, BPF_REG_0);
8043 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8044 		if (func_id == BPF_FUNC_kptr_xchg) {
8045 			ret_btf = meta.kptr_field->kptr.btf;
8046 			ret_btf_id = meta.kptr_field->kptr.btf_id;
8047 		} else {
8048 			if (fn->ret_btf_id == BPF_PTR_POISON) {
8049 				verbose(env, "verifier internal error:");
8050 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
8051 					func_id_name(func_id));
8052 				return -EINVAL;
8053 			}
8054 			ret_btf = btf_vmlinux;
8055 			ret_btf_id = *fn->ret_btf_id;
8056 		}
8057 		if (ret_btf_id == 0) {
8058 			verbose(env, "invalid return type %u of func %s#%d\n",
8059 				base_type(ret_type), func_id_name(func_id),
8060 				func_id);
8061 			return -EINVAL;
8062 		}
8063 		regs[BPF_REG_0].btf = ret_btf;
8064 		regs[BPF_REG_0].btf_id = ret_btf_id;
8065 		break;
8066 	}
8067 	default:
8068 		verbose(env, "unknown return type %u of func %s#%d\n",
8069 			base_type(ret_type), func_id_name(func_id), func_id);
8070 		return -EINVAL;
8071 	}
8072 
8073 	if (type_may_be_null(regs[BPF_REG_0].type))
8074 		regs[BPF_REG_0].id = ++env->id_gen;
8075 
8076 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
8077 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
8078 			func_id_name(func_id), func_id);
8079 		return -EFAULT;
8080 	}
8081 
8082 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
8083 		/* For release_reference() */
8084 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8085 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
8086 		int id = acquire_reference_state(env, insn_idx);
8087 
8088 		if (id < 0)
8089 			return id;
8090 		/* For mark_ptr_or_null_reg() */
8091 		regs[BPF_REG_0].id = id;
8092 		/* For release_reference() */
8093 		regs[BPF_REG_0].ref_obj_id = id;
8094 	}
8095 
8096 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
8097 
8098 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
8099 	if (err)
8100 		return err;
8101 
8102 	if ((func_id == BPF_FUNC_get_stack ||
8103 	     func_id == BPF_FUNC_get_task_stack) &&
8104 	    !env->prog->has_callchain_buf) {
8105 		const char *err_str;
8106 
8107 #ifdef CONFIG_PERF_EVENTS
8108 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
8109 		err_str = "cannot get callchain buffer for func %s#%d\n";
8110 #else
8111 		err = -ENOTSUPP;
8112 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
8113 #endif
8114 		if (err) {
8115 			verbose(env, err_str, func_id_name(func_id), func_id);
8116 			return err;
8117 		}
8118 
8119 		env->prog->has_callchain_buf = true;
8120 	}
8121 
8122 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
8123 		env->prog->call_get_stack = true;
8124 
8125 	if (func_id == BPF_FUNC_get_func_ip) {
8126 		if (check_get_func_ip(env))
8127 			return -ENOTSUPP;
8128 		env->prog->call_get_func_ip = true;
8129 	}
8130 
8131 	if (changes_data)
8132 		clear_all_pkt_pointers(env);
8133 	return 0;
8134 }
8135 
8136 /* mark_btf_func_reg_size() is used when the reg size is determined by
8137  * the BTF func_proto's return value size and argument.
8138  */
8139 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
8140 				   size_t reg_size)
8141 {
8142 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
8143 
8144 	if (regno == BPF_REG_0) {
8145 		/* Function return value */
8146 		reg->live |= REG_LIVE_WRITTEN;
8147 		reg->subreg_def = reg_size == sizeof(u64) ?
8148 			DEF_NOT_SUBREG : env->insn_idx + 1;
8149 	} else {
8150 		/* Function argument */
8151 		if (reg_size == sizeof(u64)) {
8152 			mark_insn_zext(env, reg);
8153 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
8154 		} else {
8155 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
8156 		}
8157 	}
8158 }
8159 
8160 struct bpf_kfunc_call_arg_meta {
8161 	/* In parameters */
8162 	struct btf *btf;
8163 	u32 func_id;
8164 	u32 kfunc_flags;
8165 	const struct btf_type *func_proto;
8166 	const char *func_name;
8167 	/* Out parameters */
8168 	u32 ref_obj_id;
8169 	u8 release_regno;
8170 	bool r0_rdonly;
8171 	u32 ret_btf_id;
8172 	u64 r0_size;
8173 	struct {
8174 		u64 value;
8175 		bool found;
8176 	} arg_constant;
8177 	struct {
8178 		struct btf *btf;
8179 		u32 btf_id;
8180 	} arg_obj_drop;
8181 	struct {
8182 		struct btf_field *field;
8183 	} arg_list_head;
8184 };
8185 
8186 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8187 {
8188 	return meta->kfunc_flags & KF_ACQUIRE;
8189 }
8190 
8191 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8192 {
8193 	return meta->kfunc_flags & KF_RET_NULL;
8194 }
8195 
8196 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8197 {
8198 	return meta->kfunc_flags & KF_RELEASE;
8199 }
8200 
8201 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8202 {
8203 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
8204 }
8205 
8206 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8207 {
8208 	return meta->kfunc_flags & KF_SLEEPABLE;
8209 }
8210 
8211 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8212 {
8213 	return meta->kfunc_flags & KF_DESTRUCTIVE;
8214 }
8215 
8216 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8217 {
8218 	return meta->kfunc_flags & KF_RCU;
8219 }
8220 
8221 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8222 {
8223 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8224 }
8225 
8226 static bool __kfunc_param_match_suffix(const struct btf *btf,
8227 				       const struct btf_param *arg,
8228 				       const char *suffix)
8229 {
8230 	int suffix_len = strlen(suffix), len;
8231 	const char *param_name;
8232 
8233 	/* In the future, this can be ported to use BTF tagging */
8234 	param_name = btf_name_by_offset(btf, arg->name_off);
8235 	if (str_is_empty(param_name))
8236 		return false;
8237 	len = strlen(param_name);
8238 	if (len < suffix_len)
8239 		return false;
8240 	param_name += len - suffix_len;
8241 	return !strncmp(param_name, suffix, suffix_len);
8242 }
8243 
8244 static bool is_kfunc_arg_mem_size(const struct btf *btf,
8245 				  const struct btf_param *arg,
8246 				  const struct bpf_reg_state *reg)
8247 {
8248 	const struct btf_type *t;
8249 
8250 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8251 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
8252 		return false;
8253 
8254 	return __kfunc_param_match_suffix(btf, arg, "__sz");
8255 }
8256 
8257 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8258 {
8259 	return __kfunc_param_match_suffix(btf, arg, "__k");
8260 }
8261 
8262 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8263 {
8264 	return __kfunc_param_match_suffix(btf, arg, "__ign");
8265 }
8266 
8267 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8268 {
8269 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
8270 }
8271 
8272 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8273 					  const struct btf_param *arg,
8274 					  const char *name)
8275 {
8276 	int len, target_len = strlen(name);
8277 	const char *param_name;
8278 
8279 	param_name = btf_name_by_offset(btf, arg->name_off);
8280 	if (str_is_empty(param_name))
8281 		return false;
8282 	len = strlen(param_name);
8283 	if (len != target_len)
8284 		return false;
8285 	if (strcmp(param_name, name))
8286 		return false;
8287 
8288 	return true;
8289 }
8290 
8291 enum {
8292 	KF_ARG_DYNPTR_ID,
8293 	KF_ARG_LIST_HEAD_ID,
8294 	KF_ARG_LIST_NODE_ID,
8295 };
8296 
8297 BTF_ID_LIST(kf_arg_btf_ids)
8298 BTF_ID(struct, bpf_dynptr_kern)
8299 BTF_ID(struct, bpf_list_head)
8300 BTF_ID(struct, bpf_list_node)
8301 
8302 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8303 				    const struct btf_param *arg, int type)
8304 {
8305 	const struct btf_type *t;
8306 	u32 res_id;
8307 
8308 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8309 	if (!t)
8310 		return false;
8311 	if (!btf_type_is_ptr(t))
8312 		return false;
8313 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
8314 	if (!t)
8315 		return false;
8316 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8317 }
8318 
8319 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8320 {
8321 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8322 }
8323 
8324 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8325 {
8326 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8327 }
8328 
8329 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8330 {
8331 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
8332 }
8333 
8334 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8335 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8336 					const struct btf *btf,
8337 					const struct btf_type *t, int rec)
8338 {
8339 	const struct btf_type *member_type;
8340 	const struct btf_member *member;
8341 	u32 i;
8342 
8343 	if (!btf_type_is_struct(t))
8344 		return false;
8345 
8346 	for_each_member(i, t, member) {
8347 		const struct btf_array *array;
8348 
8349 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8350 		if (btf_type_is_struct(member_type)) {
8351 			if (rec >= 3) {
8352 				verbose(env, "max struct nesting depth exceeded\n");
8353 				return false;
8354 			}
8355 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8356 				return false;
8357 			continue;
8358 		}
8359 		if (btf_type_is_array(member_type)) {
8360 			array = btf_array(member_type);
8361 			if (!array->nelems)
8362 				return false;
8363 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8364 			if (!btf_type_is_scalar(member_type))
8365 				return false;
8366 			continue;
8367 		}
8368 		if (!btf_type_is_scalar(member_type))
8369 			return false;
8370 	}
8371 	return true;
8372 }
8373 
8374 
8375 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8376 #ifdef CONFIG_NET
8377 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8378 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8379 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8380 #endif
8381 };
8382 
8383 enum kfunc_ptr_arg_type {
8384 	KF_ARG_PTR_TO_CTX,
8385 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
8386 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
8387 	KF_ARG_PTR_TO_DYNPTR,
8388 	KF_ARG_PTR_TO_LIST_HEAD,
8389 	KF_ARG_PTR_TO_LIST_NODE,
8390 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
8391 	KF_ARG_PTR_TO_MEM,
8392 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
8393 };
8394 
8395 enum special_kfunc_type {
8396 	KF_bpf_obj_new_impl,
8397 	KF_bpf_obj_drop_impl,
8398 	KF_bpf_list_push_front,
8399 	KF_bpf_list_push_back,
8400 	KF_bpf_list_pop_front,
8401 	KF_bpf_list_pop_back,
8402 	KF_bpf_cast_to_kern_ctx,
8403 	KF_bpf_rdonly_cast,
8404 	KF_bpf_rcu_read_lock,
8405 	KF_bpf_rcu_read_unlock,
8406 };
8407 
8408 BTF_SET_START(special_kfunc_set)
8409 BTF_ID(func, bpf_obj_new_impl)
8410 BTF_ID(func, bpf_obj_drop_impl)
8411 BTF_ID(func, bpf_list_push_front)
8412 BTF_ID(func, bpf_list_push_back)
8413 BTF_ID(func, bpf_list_pop_front)
8414 BTF_ID(func, bpf_list_pop_back)
8415 BTF_ID(func, bpf_cast_to_kern_ctx)
8416 BTF_ID(func, bpf_rdonly_cast)
8417 BTF_SET_END(special_kfunc_set)
8418 
8419 BTF_ID_LIST(special_kfunc_list)
8420 BTF_ID(func, bpf_obj_new_impl)
8421 BTF_ID(func, bpf_obj_drop_impl)
8422 BTF_ID(func, bpf_list_push_front)
8423 BTF_ID(func, bpf_list_push_back)
8424 BTF_ID(func, bpf_list_pop_front)
8425 BTF_ID(func, bpf_list_pop_back)
8426 BTF_ID(func, bpf_cast_to_kern_ctx)
8427 BTF_ID(func, bpf_rdonly_cast)
8428 BTF_ID(func, bpf_rcu_read_lock)
8429 BTF_ID(func, bpf_rcu_read_unlock)
8430 
8431 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8432 {
8433 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8434 }
8435 
8436 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8437 {
8438 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8439 }
8440 
8441 static enum kfunc_ptr_arg_type
8442 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8443 		       struct bpf_kfunc_call_arg_meta *meta,
8444 		       const struct btf_type *t, const struct btf_type *ref_t,
8445 		       const char *ref_tname, const struct btf_param *args,
8446 		       int argno, int nargs)
8447 {
8448 	u32 regno = argno + 1;
8449 	struct bpf_reg_state *regs = cur_regs(env);
8450 	struct bpf_reg_state *reg = &regs[regno];
8451 	bool arg_mem_size = false;
8452 
8453 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8454 		return KF_ARG_PTR_TO_CTX;
8455 
8456 	/* In this function, we verify the kfunc's BTF as per the argument type,
8457 	 * leaving the rest of the verification with respect to the register
8458 	 * type to our caller. When a set of conditions hold in the BTF type of
8459 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8460 	 */
8461 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8462 		return KF_ARG_PTR_TO_CTX;
8463 
8464 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8465 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8466 
8467 	if (is_kfunc_arg_kptr_get(meta, argno)) {
8468 		if (!btf_type_is_ptr(ref_t)) {
8469 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8470 			return -EINVAL;
8471 		}
8472 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
8473 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8474 		if (!btf_type_is_struct(ref_t)) {
8475 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8476 				meta->func_name, btf_type_str(ref_t), ref_tname);
8477 			return -EINVAL;
8478 		}
8479 		return KF_ARG_PTR_TO_KPTR;
8480 	}
8481 
8482 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8483 		return KF_ARG_PTR_TO_DYNPTR;
8484 
8485 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8486 		return KF_ARG_PTR_TO_LIST_HEAD;
8487 
8488 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8489 		return KF_ARG_PTR_TO_LIST_NODE;
8490 
8491 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8492 		if (!btf_type_is_struct(ref_t)) {
8493 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8494 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8495 			return -EINVAL;
8496 		}
8497 		return KF_ARG_PTR_TO_BTF_ID;
8498 	}
8499 
8500 	if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8501 		arg_mem_size = true;
8502 
8503 	/* This is the catch all argument type of register types supported by
8504 	 * check_helper_mem_access. However, we only allow when argument type is
8505 	 * pointer to scalar, or struct composed (recursively) of scalars. When
8506 	 * arg_mem_size is true, the pointer can be void *.
8507 	 */
8508 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8509 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8510 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8511 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8512 		return -EINVAL;
8513 	}
8514 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8515 }
8516 
8517 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8518 					struct bpf_reg_state *reg,
8519 					const struct btf_type *ref_t,
8520 					const char *ref_tname, u32 ref_id,
8521 					struct bpf_kfunc_call_arg_meta *meta,
8522 					int argno)
8523 {
8524 	const struct btf_type *reg_ref_t;
8525 	bool strict_type_match = false;
8526 	const struct btf *reg_btf;
8527 	const char *reg_ref_tname;
8528 	u32 reg_ref_id;
8529 
8530 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
8531 		reg_btf = reg->btf;
8532 		reg_ref_id = reg->btf_id;
8533 	} else {
8534 		reg_btf = btf_vmlinux;
8535 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8536 	}
8537 
8538 	if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8539 		strict_type_match = true;
8540 
8541 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8542 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8543 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8544 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8545 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8546 			btf_type_str(reg_ref_t), reg_ref_tname);
8547 		return -EINVAL;
8548 	}
8549 	return 0;
8550 }
8551 
8552 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8553 				      struct bpf_reg_state *reg,
8554 				      const struct btf_type *ref_t,
8555 				      const char *ref_tname,
8556 				      struct bpf_kfunc_call_arg_meta *meta,
8557 				      int argno)
8558 {
8559 	struct btf_field *kptr_field;
8560 
8561 	/* check_func_arg_reg_off allows var_off for
8562 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8563 	 * off_desc.
8564 	 */
8565 	if (!tnum_is_const(reg->var_off)) {
8566 		verbose(env, "arg#0 must have constant offset\n");
8567 		return -EINVAL;
8568 	}
8569 
8570 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8571 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8572 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8573 			reg->off + reg->var_off.value);
8574 		return -EINVAL;
8575 	}
8576 
8577 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8578 				  kptr_field->kptr.btf_id, true)) {
8579 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8580 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8581 		return -EINVAL;
8582 	}
8583 	return 0;
8584 }
8585 
8586 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8587 {
8588 	struct bpf_func_state *state = cur_func(env);
8589 	struct bpf_reg_state *reg;
8590 	int i;
8591 
8592 	/* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8593 	 * subprogs, no global functions. This means that the references would
8594 	 * not be released inside the critical section but they may be added to
8595 	 * the reference state, and the acquired_refs are never copied out for a
8596 	 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8597 	 * critical sections.
8598 	 */
8599 	if (!ref_obj_id) {
8600 		verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8601 		return -EFAULT;
8602 	}
8603 	for (i = 0; i < state->acquired_refs; i++) {
8604 		if (state->refs[i].id == ref_obj_id) {
8605 			if (state->refs[i].release_on_unlock) {
8606 				verbose(env, "verifier internal error: expected false release_on_unlock");
8607 				return -EFAULT;
8608 			}
8609 			state->refs[i].release_on_unlock = true;
8610 			/* Now mark everyone sharing same ref_obj_id as untrusted */
8611 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8612 				if (reg->ref_obj_id == ref_obj_id)
8613 					reg->type |= PTR_UNTRUSTED;
8614 			}));
8615 			return 0;
8616 		}
8617 	}
8618 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8619 	return -EFAULT;
8620 }
8621 
8622 /* Implementation details:
8623  *
8624  * Each register points to some region of memory, which we define as an
8625  * allocation. Each allocation may embed a bpf_spin_lock which protects any
8626  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8627  * allocation. The lock and the data it protects are colocated in the same
8628  * memory region.
8629  *
8630  * Hence, everytime a register holds a pointer value pointing to such
8631  * allocation, the verifier preserves a unique reg->id for it.
8632  *
8633  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8634  * bpf_spin_lock is called.
8635  *
8636  * To enable this, lock state in the verifier captures two values:
8637  *	active_lock.ptr = Register's type specific pointer
8638  *	active_lock.id  = A unique ID for each register pointer value
8639  *
8640  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8641  * supported register types.
8642  *
8643  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8644  * allocated objects is the reg->btf pointer.
8645  *
8646  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8647  * can establish the provenance of the map value statically for each distinct
8648  * lookup into such maps. They always contain a single map value hence unique
8649  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8650  *
8651  * So, in case of global variables, they use array maps with max_entries = 1,
8652  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8653  * into the same map value as max_entries is 1, as described above).
8654  *
8655  * In case of inner map lookups, the inner map pointer has same map_ptr as the
8656  * outer map pointer (in verifier context), but each lookup into an inner map
8657  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8658  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8659  * will get different reg->id assigned to each lookup, hence different
8660  * active_lock.id.
8661  *
8662  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8663  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8664  * returned from bpf_obj_new. Each allocation receives a new reg->id.
8665  */
8666 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8667 {
8668 	void *ptr;
8669 	u32 id;
8670 
8671 	switch ((int)reg->type) {
8672 	case PTR_TO_MAP_VALUE:
8673 		ptr = reg->map_ptr;
8674 		break;
8675 	case PTR_TO_BTF_ID | MEM_ALLOC:
8676 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8677 		ptr = reg->btf;
8678 		break;
8679 	default:
8680 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
8681 		return -EFAULT;
8682 	}
8683 	id = reg->id;
8684 
8685 	if (!env->cur_state->active_lock.ptr)
8686 		return -EINVAL;
8687 	if (env->cur_state->active_lock.ptr != ptr ||
8688 	    env->cur_state->active_lock.id != id) {
8689 		verbose(env, "held lock and object are not in the same allocation\n");
8690 		return -EINVAL;
8691 	}
8692 	return 0;
8693 }
8694 
8695 static bool is_bpf_list_api_kfunc(u32 btf_id)
8696 {
8697 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8698 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8699 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8700 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8701 }
8702 
8703 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8704 					   struct bpf_reg_state *reg, u32 regno,
8705 					   struct bpf_kfunc_call_arg_meta *meta)
8706 {
8707 	struct btf_field *field;
8708 	struct btf_record *rec;
8709 	u32 list_head_off;
8710 
8711 	if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8712 		verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8713 		return -EFAULT;
8714 	}
8715 
8716 	if (!tnum_is_const(reg->var_off)) {
8717 		verbose(env,
8718 			"R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8719 			regno);
8720 		return -EINVAL;
8721 	}
8722 
8723 	rec = reg_btf_record(reg);
8724 	list_head_off = reg->off + reg->var_off.value;
8725 	field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8726 	if (!field) {
8727 		verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8728 		return -EINVAL;
8729 	}
8730 
8731 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8732 	if (check_reg_allocation_locked(env, reg)) {
8733 		verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8734 			rec->spin_lock_off);
8735 		return -EINVAL;
8736 	}
8737 
8738 	if (meta->arg_list_head.field) {
8739 		verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8740 		return -EFAULT;
8741 	}
8742 	meta->arg_list_head.field = field;
8743 	return 0;
8744 }
8745 
8746 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
8747 					   struct bpf_reg_state *reg, u32 regno,
8748 					   struct bpf_kfunc_call_arg_meta *meta)
8749 {
8750 	const struct btf_type *et, *t;
8751 	struct btf_field *field;
8752 	struct btf_record *rec;
8753 	u32 list_node_off;
8754 
8755 	if (meta->btf != btf_vmlinux ||
8756 	    (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
8757 	     meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
8758 		verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
8759 		return -EFAULT;
8760 	}
8761 
8762 	if (!tnum_is_const(reg->var_off)) {
8763 		verbose(env,
8764 			"R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
8765 			regno);
8766 		return -EINVAL;
8767 	}
8768 
8769 	rec = reg_btf_record(reg);
8770 	list_node_off = reg->off + reg->var_off.value;
8771 	field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
8772 	if (!field || field->offset != list_node_off) {
8773 		verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
8774 		return -EINVAL;
8775 	}
8776 
8777 	field = meta->arg_list_head.field;
8778 
8779 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
8780 	t = btf_type_by_id(reg->btf, reg->btf_id);
8781 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
8782 				  field->graph_root.value_btf_id, true)) {
8783 		verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
8784 			"in struct %s, but arg is at offset=%d in struct %s\n",
8785 			field->graph_root.node_offset,
8786 			btf_name_by_offset(field->graph_root.btf, et->name_off),
8787 			list_node_off, btf_name_by_offset(reg->btf, t->name_off));
8788 		return -EINVAL;
8789 	}
8790 
8791 	if (list_node_off != field->graph_root.node_offset) {
8792 		verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
8793 			list_node_off, field->graph_root.node_offset,
8794 			btf_name_by_offset(field->graph_root.btf, et->name_off));
8795 		return -EINVAL;
8796 	}
8797 	/* Set arg#1 for expiration after unlock */
8798 	return ref_set_release_on_unlock(env, reg->ref_obj_id);
8799 }
8800 
8801 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8802 {
8803 	const char *func_name = meta->func_name, *ref_tname;
8804 	const struct btf *btf = meta->btf;
8805 	const struct btf_param *args;
8806 	u32 i, nargs;
8807 	int ret;
8808 
8809 	args = (const struct btf_param *)(meta->func_proto + 1);
8810 	nargs = btf_type_vlen(meta->func_proto);
8811 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8812 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8813 			MAX_BPF_FUNC_REG_ARGS);
8814 		return -EINVAL;
8815 	}
8816 
8817 	/* Check that BTF function arguments match actual types that the
8818 	 * verifier sees.
8819 	 */
8820 	for (i = 0; i < nargs; i++) {
8821 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8822 		const struct btf_type *t, *ref_t, *resolve_ret;
8823 		enum bpf_arg_type arg_type = ARG_DONTCARE;
8824 		u32 regno = i + 1, ref_id, type_size;
8825 		bool is_ret_buf_sz = false;
8826 		int kf_arg_type;
8827 
8828 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
8829 
8830 		if (is_kfunc_arg_ignore(btf, &args[i]))
8831 			continue;
8832 
8833 		if (btf_type_is_scalar(t)) {
8834 			if (reg->type != SCALAR_VALUE) {
8835 				verbose(env, "R%d is not a scalar\n", regno);
8836 				return -EINVAL;
8837 			}
8838 
8839 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8840 				if (meta->arg_constant.found) {
8841 					verbose(env, "verifier internal error: only one constant argument permitted\n");
8842 					return -EFAULT;
8843 				}
8844 				if (!tnum_is_const(reg->var_off)) {
8845 					verbose(env, "R%d must be a known constant\n", regno);
8846 					return -EINVAL;
8847 				}
8848 				ret = mark_chain_precision(env, regno);
8849 				if (ret < 0)
8850 					return ret;
8851 				meta->arg_constant.found = true;
8852 				meta->arg_constant.value = reg->var_off.value;
8853 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
8854 				meta->r0_rdonly = true;
8855 				is_ret_buf_sz = true;
8856 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8857 				is_ret_buf_sz = true;
8858 			}
8859 
8860 			if (is_ret_buf_sz) {
8861 				if (meta->r0_size) {
8862 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8863 					return -EINVAL;
8864 				}
8865 
8866 				if (!tnum_is_const(reg->var_off)) {
8867 					verbose(env, "R%d is not a const\n", regno);
8868 					return -EINVAL;
8869 				}
8870 
8871 				meta->r0_size = reg->var_off.value;
8872 				ret = mark_chain_precision(env, regno);
8873 				if (ret)
8874 					return ret;
8875 			}
8876 			continue;
8877 		}
8878 
8879 		if (!btf_type_is_ptr(t)) {
8880 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8881 			return -EINVAL;
8882 		}
8883 
8884 		if (reg->ref_obj_id) {
8885 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
8886 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8887 					regno, reg->ref_obj_id,
8888 					meta->ref_obj_id);
8889 				return -EFAULT;
8890 			}
8891 			meta->ref_obj_id = reg->ref_obj_id;
8892 			if (is_kfunc_release(meta))
8893 				meta->release_regno = regno;
8894 		}
8895 
8896 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8897 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8898 
8899 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8900 		if (kf_arg_type < 0)
8901 			return kf_arg_type;
8902 
8903 		switch (kf_arg_type) {
8904 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8905 		case KF_ARG_PTR_TO_BTF_ID:
8906 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
8907 				break;
8908 
8909 			if (!is_trusted_reg(reg)) {
8910 				if (!is_kfunc_rcu(meta)) {
8911 					verbose(env, "R%d must be referenced or trusted\n", regno);
8912 					return -EINVAL;
8913 				}
8914 				if (!is_rcu_reg(reg)) {
8915 					verbose(env, "R%d must be a rcu pointer\n", regno);
8916 					return -EINVAL;
8917 				}
8918 			}
8919 
8920 			fallthrough;
8921 		case KF_ARG_PTR_TO_CTX:
8922 			/* Trusted arguments have the same offset checks as release arguments */
8923 			arg_type |= OBJ_RELEASE;
8924 			break;
8925 		case KF_ARG_PTR_TO_KPTR:
8926 		case KF_ARG_PTR_TO_DYNPTR:
8927 		case KF_ARG_PTR_TO_LIST_HEAD:
8928 		case KF_ARG_PTR_TO_LIST_NODE:
8929 		case KF_ARG_PTR_TO_MEM:
8930 		case KF_ARG_PTR_TO_MEM_SIZE:
8931 			/* Trusted by default */
8932 			break;
8933 		default:
8934 			WARN_ON_ONCE(1);
8935 			return -EFAULT;
8936 		}
8937 
8938 		if (is_kfunc_release(meta) && reg->ref_obj_id)
8939 			arg_type |= OBJ_RELEASE;
8940 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8941 		if (ret < 0)
8942 			return ret;
8943 
8944 		switch (kf_arg_type) {
8945 		case KF_ARG_PTR_TO_CTX:
8946 			if (reg->type != PTR_TO_CTX) {
8947 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8948 				return -EINVAL;
8949 			}
8950 
8951 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8952 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
8953 				if (ret < 0)
8954 					return -EINVAL;
8955 				meta->ret_btf_id  = ret;
8956 			}
8957 			break;
8958 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8959 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8960 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
8961 				return -EINVAL;
8962 			}
8963 			if (!reg->ref_obj_id) {
8964 				verbose(env, "allocated object must be referenced\n");
8965 				return -EINVAL;
8966 			}
8967 			if (meta->btf == btf_vmlinux &&
8968 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8969 				meta->arg_obj_drop.btf = reg->btf;
8970 				meta->arg_obj_drop.btf_id = reg->btf_id;
8971 			}
8972 			break;
8973 		case KF_ARG_PTR_TO_KPTR:
8974 			if (reg->type != PTR_TO_MAP_VALUE) {
8975 				verbose(env, "arg#0 expected pointer to map value\n");
8976 				return -EINVAL;
8977 			}
8978 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8979 			if (ret < 0)
8980 				return ret;
8981 			break;
8982 		case KF_ARG_PTR_TO_DYNPTR:
8983 			if (reg->type != PTR_TO_STACK &&
8984 			    reg->type != CONST_PTR_TO_DYNPTR) {
8985 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
8986 				return -EINVAL;
8987 			}
8988 
8989 			ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL);
8990 			if (ret < 0)
8991 				return ret;
8992 			break;
8993 		case KF_ARG_PTR_TO_LIST_HEAD:
8994 			if (reg->type != PTR_TO_MAP_VALUE &&
8995 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8996 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
8997 				return -EINVAL;
8998 			}
8999 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
9000 				verbose(env, "allocated object must be referenced\n");
9001 				return -EINVAL;
9002 			}
9003 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
9004 			if (ret < 0)
9005 				return ret;
9006 			break;
9007 		case KF_ARG_PTR_TO_LIST_NODE:
9008 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9009 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
9010 				return -EINVAL;
9011 			}
9012 			if (!reg->ref_obj_id) {
9013 				verbose(env, "allocated object must be referenced\n");
9014 				return -EINVAL;
9015 			}
9016 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
9017 			if (ret < 0)
9018 				return ret;
9019 			break;
9020 		case KF_ARG_PTR_TO_BTF_ID:
9021 			/* Only base_type is checked, further checks are done here */
9022 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
9023 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
9024 			    !reg2btf_ids[base_type(reg->type)]) {
9025 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
9026 				verbose(env, "expected %s or socket\n",
9027 					reg_type_str(env, base_type(reg->type) |
9028 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
9029 				return -EINVAL;
9030 			}
9031 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
9032 			if (ret < 0)
9033 				return ret;
9034 			break;
9035 		case KF_ARG_PTR_TO_MEM:
9036 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
9037 			if (IS_ERR(resolve_ret)) {
9038 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
9039 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
9040 				return -EINVAL;
9041 			}
9042 			ret = check_mem_reg(env, reg, regno, type_size);
9043 			if (ret < 0)
9044 				return ret;
9045 			break;
9046 		case KF_ARG_PTR_TO_MEM_SIZE:
9047 			ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
9048 			if (ret < 0) {
9049 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
9050 				return ret;
9051 			}
9052 			/* Skip next '__sz' argument */
9053 			i++;
9054 			break;
9055 		}
9056 	}
9057 
9058 	if (is_kfunc_release(meta) && !meta->release_regno) {
9059 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
9060 			func_name);
9061 		return -EINVAL;
9062 	}
9063 
9064 	return 0;
9065 }
9066 
9067 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9068 			    int *insn_idx_p)
9069 {
9070 	const struct btf_type *t, *func, *func_proto, *ptr_type;
9071 	struct bpf_reg_state *regs = cur_regs(env);
9072 	const char *func_name, *ptr_type_name;
9073 	bool sleepable, rcu_lock, rcu_unlock;
9074 	struct bpf_kfunc_call_arg_meta meta;
9075 	u32 i, nargs, func_id, ptr_type_id;
9076 	int err, insn_idx = *insn_idx_p;
9077 	const struct btf_param *args;
9078 	const struct btf_type *ret_t;
9079 	struct btf *desc_btf;
9080 	u32 *kfunc_flags;
9081 
9082 	/* skip for now, but return error when we find this in fixup_kfunc_call */
9083 	if (!insn->imm)
9084 		return 0;
9085 
9086 	desc_btf = find_kfunc_desc_btf(env, insn->off);
9087 	if (IS_ERR(desc_btf))
9088 		return PTR_ERR(desc_btf);
9089 
9090 	func_id = insn->imm;
9091 	func = btf_type_by_id(desc_btf, func_id);
9092 	func_name = btf_name_by_offset(desc_btf, func->name_off);
9093 	func_proto = btf_type_by_id(desc_btf, func->type);
9094 
9095 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
9096 	if (!kfunc_flags) {
9097 		verbose(env, "calling kernel function %s is not allowed\n",
9098 			func_name);
9099 		return -EACCES;
9100 	}
9101 
9102 	/* Prepare kfunc call metadata */
9103 	memset(&meta, 0, sizeof(meta));
9104 	meta.btf = desc_btf;
9105 	meta.func_id = func_id;
9106 	meta.kfunc_flags = *kfunc_flags;
9107 	meta.func_proto = func_proto;
9108 	meta.func_name = func_name;
9109 
9110 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
9111 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
9112 		return -EACCES;
9113 	}
9114 
9115 	sleepable = is_kfunc_sleepable(&meta);
9116 	if (sleepable && !env->prog->aux->sleepable) {
9117 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
9118 		return -EACCES;
9119 	}
9120 
9121 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
9122 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9123 	if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
9124 		verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
9125 		return -EACCES;
9126 	}
9127 
9128 	if (env->cur_state->active_rcu_lock) {
9129 		struct bpf_func_state *state;
9130 		struct bpf_reg_state *reg;
9131 
9132 		if (rcu_lock) {
9133 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
9134 			return -EINVAL;
9135 		} else if (rcu_unlock) {
9136 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9137 				if (reg->type & MEM_RCU) {
9138 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9139 					reg->type |= PTR_UNTRUSTED;
9140 				}
9141 			}));
9142 			env->cur_state->active_rcu_lock = false;
9143 		} else if (sleepable) {
9144 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
9145 			return -EACCES;
9146 		}
9147 	} else if (rcu_lock) {
9148 		env->cur_state->active_rcu_lock = true;
9149 	} else if (rcu_unlock) {
9150 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
9151 		return -EINVAL;
9152 	}
9153 
9154 	/* Check the arguments */
9155 	err = check_kfunc_args(env, &meta);
9156 	if (err < 0)
9157 		return err;
9158 	/* In case of release function, we get register number of refcounted
9159 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
9160 	 */
9161 	if (meta.release_regno) {
9162 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
9163 		if (err) {
9164 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9165 				func_name, func_id);
9166 			return err;
9167 		}
9168 	}
9169 
9170 	for (i = 0; i < CALLER_SAVED_REGS; i++)
9171 		mark_reg_not_init(env, regs, caller_saved[i]);
9172 
9173 	/* Check return type */
9174 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
9175 
9176 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
9177 		/* Only exception is bpf_obj_new_impl */
9178 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9179 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9180 			return -EINVAL;
9181 		}
9182 	}
9183 
9184 	if (btf_type_is_scalar(t)) {
9185 		mark_reg_unknown(env, regs, BPF_REG_0);
9186 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9187 	} else if (btf_type_is_ptr(t)) {
9188 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9189 
9190 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9191 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
9192 				struct btf *ret_btf;
9193 				u32 ret_btf_id;
9194 
9195 				if (unlikely(!bpf_global_ma_set))
9196 					return -ENOMEM;
9197 
9198 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9199 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9200 					return -EINVAL;
9201 				}
9202 
9203 				ret_btf = env->prog->aux->btf;
9204 				ret_btf_id = meta.arg_constant.value;
9205 
9206 				/* This may be NULL due to user not supplying a BTF */
9207 				if (!ret_btf) {
9208 					verbose(env, "bpf_obj_new requires prog BTF\n");
9209 					return -EINVAL;
9210 				}
9211 
9212 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9213 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
9214 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9215 					return -EINVAL;
9216 				}
9217 
9218 				mark_reg_known_zero(env, regs, BPF_REG_0);
9219 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9220 				regs[BPF_REG_0].btf = ret_btf;
9221 				regs[BPF_REG_0].btf_id = ret_btf_id;
9222 
9223 				env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9224 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9225 					btf_find_struct_meta(ret_btf, ret_btf_id);
9226 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9227 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9228 					btf_find_struct_meta(meta.arg_obj_drop.btf,
9229 							     meta.arg_obj_drop.btf_id);
9230 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9231 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9232 				struct btf_field *field = meta.arg_list_head.field;
9233 
9234 				mark_reg_known_zero(env, regs, BPF_REG_0);
9235 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9236 				regs[BPF_REG_0].btf = field->graph_root.btf;
9237 				regs[BPF_REG_0].btf_id = field->graph_root.value_btf_id;
9238 				regs[BPF_REG_0].off = field->graph_root.node_offset;
9239 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9240 				mark_reg_known_zero(env, regs, BPF_REG_0);
9241 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9242 				regs[BPF_REG_0].btf = desc_btf;
9243 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9244 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9245 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9246 				if (!ret_t || !btf_type_is_struct(ret_t)) {
9247 					verbose(env,
9248 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9249 					return -EINVAL;
9250 				}
9251 
9252 				mark_reg_known_zero(env, regs, BPF_REG_0);
9253 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9254 				regs[BPF_REG_0].btf = desc_btf;
9255 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
9256 			} else {
9257 				verbose(env, "kernel function %s unhandled dynamic return type\n",
9258 					meta.func_name);
9259 				return -EFAULT;
9260 			}
9261 		} else if (!__btf_type_is_struct(ptr_type)) {
9262 			if (!meta.r0_size) {
9263 				ptr_type_name = btf_name_by_offset(desc_btf,
9264 								   ptr_type->name_off);
9265 				verbose(env,
9266 					"kernel function %s returns pointer type %s %s is not supported\n",
9267 					func_name,
9268 					btf_type_str(ptr_type),
9269 					ptr_type_name);
9270 				return -EINVAL;
9271 			}
9272 
9273 			mark_reg_known_zero(env, regs, BPF_REG_0);
9274 			regs[BPF_REG_0].type = PTR_TO_MEM;
9275 			regs[BPF_REG_0].mem_size = meta.r0_size;
9276 
9277 			if (meta.r0_rdonly)
9278 				regs[BPF_REG_0].type |= MEM_RDONLY;
9279 
9280 			/* Ensures we don't access the memory after a release_reference() */
9281 			if (meta.ref_obj_id)
9282 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9283 		} else {
9284 			mark_reg_known_zero(env, regs, BPF_REG_0);
9285 			regs[BPF_REG_0].btf = desc_btf;
9286 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9287 			regs[BPF_REG_0].btf_id = ptr_type_id;
9288 		}
9289 
9290 		if (is_kfunc_ret_null(&meta)) {
9291 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9292 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9293 			regs[BPF_REG_0].id = ++env->id_gen;
9294 		}
9295 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
9296 		if (is_kfunc_acquire(&meta)) {
9297 			int id = acquire_reference_state(env, insn_idx);
9298 
9299 			if (id < 0)
9300 				return id;
9301 			if (is_kfunc_ret_null(&meta))
9302 				regs[BPF_REG_0].id = id;
9303 			regs[BPF_REG_0].ref_obj_id = id;
9304 		}
9305 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9306 			regs[BPF_REG_0].id = ++env->id_gen;
9307 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9308 
9309 	nargs = btf_type_vlen(func_proto);
9310 	args = (const struct btf_param *)(func_proto + 1);
9311 	for (i = 0; i < nargs; i++) {
9312 		u32 regno = i + 1;
9313 
9314 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
9315 		if (btf_type_is_ptr(t))
9316 			mark_btf_func_reg_size(env, regno, sizeof(void *));
9317 		else
9318 			/* scalar. ensured by btf_check_kfunc_arg_match() */
9319 			mark_btf_func_reg_size(env, regno, t->size);
9320 	}
9321 
9322 	return 0;
9323 }
9324 
9325 static bool signed_add_overflows(s64 a, s64 b)
9326 {
9327 	/* Do the add in u64, where overflow is well-defined */
9328 	s64 res = (s64)((u64)a + (u64)b);
9329 
9330 	if (b < 0)
9331 		return res > a;
9332 	return res < a;
9333 }
9334 
9335 static bool signed_add32_overflows(s32 a, s32 b)
9336 {
9337 	/* Do the add in u32, where overflow is well-defined */
9338 	s32 res = (s32)((u32)a + (u32)b);
9339 
9340 	if (b < 0)
9341 		return res > a;
9342 	return res < a;
9343 }
9344 
9345 static bool signed_sub_overflows(s64 a, s64 b)
9346 {
9347 	/* Do the sub in u64, where overflow is well-defined */
9348 	s64 res = (s64)((u64)a - (u64)b);
9349 
9350 	if (b < 0)
9351 		return res < a;
9352 	return res > a;
9353 }
9354 
9355 static bool signed_sub32_overflows(s32 a, s32 b)
9356 {
9357 	/* Do the sub in u32, where overflow is well-defined */
9358 	s32 res = (s32)((u32)a - (u32)b);
9359 
9360 	if (b < 0)
9361 		return res < a;
9362 	return res > a;
9363 }
9364 
9365 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9366 				  const struct bpf_reg_state *reg,
9367 				  enum bpf_reg_type type)
9368 {
9369 	bool known = tnum_is_const(reg->var_off);
9370 	s64 val = reg->var_off.value;
9371 	s64 smin = reg->smin_value;
9372 
9373 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9374 		verbose(env, "math between %s pointer and %lld is not allowed\n",
9375 			reg_type_str(env, type), val);
9376 		return false;
9377 	}
9378 
9379 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9380 		verbose(env, "%s pointer offset %d is not allowed\n",
9381 			reg_type_str(env, type), reg->off);
9382 		return false;
9383 	}
9384 
9385 	if (smin == S64_MIN) {
9386 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
9387 			reg_type_str(env, type));
9388 		return false;
9389 	}
9390 
9391 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9392 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
9393 			smin, reg_type_str(env, type));
9394 		return false;
9395 	}
9396 
9397 	return true;
9398 }
9399 
9400 enum {
9401 	REASON_BOUNDS	= -1,
9402 	REASON_TYPE	= -2,
9403 	REASON_PATHS	= -3,
9404 	REASON_LIMIT	= -4,
9405 	REASON_STACK	= -5,
9406 };
9407 
9408 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
9409 			      u32 *alu_limit, bool mask_to_left)
9410 {
9411 	u32 max = 0, ptr_limit = 0;
9412 
9413 	switch (ptr_reg->type) {
9414 	case PTR_TO_STACK:
9415 		/* Offset 0 is out-of-bounds, but acceptable start for the
9416 		 * left direction, see BPF_REG_FP. Also, unknown scalar
9417 		 * offset where we would need to deal with min/max bounds is
9418 		 * currently prohibited for unprivileged.
9419 		 */
9420 		max = MAX_BPF_STACK + mask_to_left;
9421 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
9422 		break;
9423 	case PTR_TO_MAP_VALUE:
9424 		max = ptr_reg->map_ptr->value_size;
9425 		ptr_limit = (mask_to_left ?
9426 			     ptr_reg->smin_value :
9427 			     ptr_reg->umax_value) + ptr_reg->off;
9428 		break;
9429 	default:
9430 		return REASON_TYPE;
9431 	}
9432 
9433 	if (ptr_limit >= max)
9434 		return REASON_LIMIT;
9435 	*alu_limit = ptr_limit;
9436 	return 0;
9437 }
9438 
9439 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9440 				    const struct bpf_insn *insn)
9441 {
9442 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
9443 }
9444 
9445 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9446 				       u32 alu_state, u32 alu_limit)
9447 {
9448 	/* If we arrived here from different branches with different
9449 	 * state or limits to sanitize, then this won't work.
9450 	 */
9451 	if (aux->alu_state &&
9452 	    (aux->alu_state != alu_state ||
9453 	     aux->alu_limit != alu_limit))
9454 		return REASON_PATHS;
9455 
9456 	/* Corresponding fixup done in do_misc_fixups(). */
9457 	aux->alu_state = alu_state;
9458 	aux->alu_limit = alu_limit;
9459 	return 0;
9460 }
9461 
9462 static int sanitize_val_alu(struct bpf_verifier_env *env,
9463 			    struct bpf_insn *insn)
9464 {
9465 	struct bpf_insn_aux_data *aux = cur_aux(env);
9466 
9467 	if (can_skip_alu_sanitation(env, insn))
9468 		return 0;
9469 
9470 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9471 }
9472 
9473 static bool sanitize_needed(u8 opcode)
9474 {
9475 	return opcode == BPF_ADD || opcode == BPF_SUB;
9476 }
9477 
9478 struct bpf_sanitize_info {
9479 	struct bpf_insn_aux_data aux;
9480 	bool mask_to_left;
9481 };
9482 
9483 static struct bpf_verifier_state *
9484 sanitize_speculative_path(struct bpf_verifier_env *env,
9485 			  const struct bpf_insn *insn,
9486 			  u32 next_idx, u32 curr_idx)
9487 {
9488 	struct bpf_verifier_state *branch;
9489 	struct bpf_reg_state *regs;
9490 
9491 	branch = push_stack(env, next_idx, curr_idx, true);
9492 	if (branch && insn) {
9493 		regs = branch->frame[branch->curframe]->regs;
9494 		if (BPF_SRC(insn->code) == BPF_K) {
9495 			mark_reg_unknown(env, regs, insn->dst_reg);
9496 		} else if (BPF_SRC(insn->code) == BPF_X) {
9497 			mark_reg_unknown(env, regs, insn->dst_reg);
9498 			mark_reg_unknown(env, regs, insn->src_reg);
9499 		}
9500 	}
9501 	return branch;
9502 }
9503 
9504 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9505 			    struct bpf_insn *insn,
9506 			    const struct bpf_reg_state *ptr_reg,
9507 			    const struct bpf_reg_state *off_reg,
9508 			    struct bpf_reg_state *dst_reg,
9509 			    struct bpf_sanitize_info *info,
9510 			    const bool commit_window)
9511 {
9512 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
9513 	struct bpf_verifier_state *vstate = env->cur_state;
9514 	bool off_is_imm = tnum_is_const(off_reg->var_off);
9515 	bool off_is_neg = off_reg->smin_value < 0;
9516 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
9517 	u8 opcode = BPF_OP(insn->code);
9518 	u32 alu_state, alu_limit;
9519 	struct bpf_reg_state tmp;
9520 	bool ret;
9521 	int err;
9522 
9523 	if (can_skip_alu_sanitation(env, insn))
9524 		return 0;
9525 
9526 	/* We already marked aux for masking from non-speculative
9527 	 * paths, thus we got here in the first place. We only care
9528 	 * to explore bad access from here.
9529 	 */
9530 	if (vstate->speculative)
9531 		goto do_sim;
9532 
9533 	if (!commit_window) {
9534 		if (!tnum_is_const(off_reg->var_off) &&
9535 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9536 			return REASON_BOUNDS;
9537 
9538 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
9539 				     (opcode == BPF_SUB && !off_is_neg);
9540 	}
9541 
9542 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
9543 	if (err < 0)
9544 		return err;
9545 
9546 	if (commit_window) {
9547 		/* In commit phase we narrow the masking window based on
9548 		 * the observed pointer move after the simulated operation.
9549 		 */
9550 		alu_state = info->aux.alu_state;
9551 		alu_limit = abs(info->aux.alu_limit - alu_limit);
9552 	} else {
9553 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
9554 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
9555 		alu_state |= ptr_is_dst_reg ?
9556 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
9557 
9558 		/* Limit pruning on unknown scalars to enable deep search for
9559 		 * potential masking differences from other program paths.
9560 		 */
9561 		if (!off_is_imm)
9562 			env->explore_alu_limits = true;
9563 	}
9564 
9565 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9566 	if (err < 0)
9567 		return err;
9568 do_sim:
9569 	/* If we're in commit phase, we're done here given we already
9570 	 * pushed the truncated dst_reg into the speculative verification
9571 	 * stack.
9572 	 *
9573 	 * Also, when register is a known constant, we rewrite register-based
9574 	 * operation to immediate-based, and thus do not need masking (and as
9575 	 * a consequence, do not need to simulate the zero-truncation either).
9576 	 */
9577 	if (commit_window || off_is_imm)
9578 		return 0;
9579 
9580 	/* Simulate and find potential out-of-bounds access under
9581 	 * speculative execution from truncation as a result of
9582 	 * masking when off was not within expected range. If off
9583 	 * sits in dst, then we temporarily need to move ptr there
9584 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9585 	 * for cases where we use K-based arithmetic in one direction
9586 	 * and truncated reg-based in the other in order to explore
9587 	 * bad access.
9588 	 */
9589 	if (!ptr_is_dst_reg) {
9590 		tmp = *dst_reg;
9591 		*dst_reg = *ptr_reg;
9592 	}
9593 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9594 					env->insn_idx);
9595 	if (!ptr_is_dst_reg && ret)
9596 		*dst_reg = tmp;
9597 	return !ret ? REASON_STACK : 0;
9598 }
9599 
9600 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9601 {
9602 	struct bpf_verifier_state *vstate = env->cur_state;
9603 
9604 	/* If we simulate paths under speculation, we don't update the
9605 	 * insn as 'seen' such that when we verify unreachable paths in
9606 	 * the non-speculative domain, sanitize_dead_code() can still
9607 	 * rewrite/sanitize them.
9608 	 */
9609 	if (!vstate->speculative)
9610 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9611 }
9612 
9613 static int sanitize_err(struct bpf_verifier_env *env,
9614 			const struct bpf_insn *insn, int reason,
9615 			const struct bpf_reg_state *off_reg,
9616 			const struct bpf_reg_state *dst_reg)
9617 {
9618 	static const char *err = "pointer arithmetic with it prohibited for !root";
9619 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9620 	u32 dst = insn->dst_reg, src = insn->src_reg;
9621 
9622 	switch (reason) {
9623 	case REASON_BOUNDS:
9624 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9625 			off_reg == dst_reg ? dst : src, err);
9626 		break;
9627 	case REASON_TYPE:
9628 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9629 			off_reg == dst_reg ? src : dst, err);
9630 		break;
9631 	case REASON_PATHS:
9632 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9633 			dst, op, err);
9634 		break;
9635 	case REASON_LIMIT:
9636 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9637 			dst, op, err);
9638 		break;
9639 	case REASON_STACK:
9640 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9641 			dst, err);
9642 		break;
9643 	default:
9644 		verbose(env, "verifier internal error: unknown reason (%d)\n",
9645 			reason);
9646 		break;
9647 	}
9648 
9649 	return -EACCES;
9650 }
9651 
9652 /* check that stack access falls within stack limits and that 'reg' doesn't
9653  * have a variable offset.
9654  *
9655  * Variable offset is prohibited for unprivileged mode for simplicity since it
9656  * requires corresponding support in Spectre masking for stack ALU.  See also
9657  * retrieve_ptr_limit().
9658  *
9659  *
9660  * 'off' includes 'reg->off'.
9661  */
9662 static int check_stack_access_for_ptr_arithmetic(
9663 				struct bpf_verifier_env *env,
9664 				int regno,
9665 				const struct bpf_reg_state *reg,
9666 				int off)
9667 {
9668 	if (!tnum_is_const(reg->var_off)) {
9669 		char tn_buf[48];
9670 
9671 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9672 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9673 			regno, tn_buf, off);
9674 		return -EACCES;
9675 	}
9676 
9677 	if (off >= 0 || off < -MAX_BPF_STACK) {
9678 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
9679 			"prohibited for !root; off=%d\n", regno, off);
9680 		return -EACCES;
9681 	}
9682 
9683 	return 0;
9684 }
9685 
9686 static int sanitize_check_bounds(struct bpf_verifier_env *env,
9687 				 const struct bpf_insn *insn,
9688 				 const struct bpf_reg_state *dst_reg)
9689 {
9690 	u32 dst = insn->dst_reg;
9691 
9692 	/* For unprivileged we require that resulting offset must be in bounds
9693 	 * in order to be able to sanitize access later on.
9694 	 */
9695 	if (env->bypass_spec_v1)
9696 		return 0;
9697 
9698 	switch (dst_reg->type) {
9699 	case PTR_TO_STACK:
9700 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9701 					dst_reg->off + dst_reg->var_off.value))
9702 			return -EACCES;
9703 		break;
9704 	case PTR_TO_MAP_VALUE:
9705 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
9706 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9707 				"prohibited for !root\n", dst);
9708 			return -EACCES;
9709 		}
9710 		break;
9711 	default:
9712 		break;
9713 	}
9714 
9715 	return 0;
9716 }
9717 
9718 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
9719  * Caller should also handle BPF_MOV case separately.
9720  * If we return -EACCES, caller may want to try again treating pointer as a
9721  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
9722  */
9723 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9724 				   struct bpf_insn *insn,
9725 				   const struct bpf_reg_state *ptr_reg,
9726 				   const struct bpf_reg_state *off_reg)
9727 {
9728 	struct bpf_verifier_state *vstate = env->cur_state;
9729 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9730 	struct bpf_reg_state *regs = state->regs, *dst_reg;
9731 	bool known = tnum_is_const(off_reg->var_off);
9732 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9733 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9734 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9735 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9736 	struct bpf_sanitize_info info = {};
9737 	u8 opcode = BPF_OP(insn->code);
9738 	u32 dst = insn->dst_reg;
9739 	int ret;
9740 
9741 	dst_reg = &regs[dst];
9742 
9743 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9744 	    smin_val > smax_val || umin_val > umax_val) {
9745 		/* Taint dst register if offset had invalid bounds derived from
9746 		 * e.g. dead branches.
9747 		 */
9748 		__mark_reg_unknown(env, dst_reg);
9749 		return 0;
9750 	}
9751 
9752 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
9753 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
9754 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9755 			__mark_reg_unknown(env, dst_reg);
9756 			return 0;
9757 		}
9758 
9759 		verbose(env,
9760 			"R%d 32-bit pointer arithmetic prohibited\n",
9761 			dst);
9762 		return -EACCES;
9763 	}
9764 
9765 	if (ptr_reg->type & PTR_MAYBE_NULL) {
9766 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
9767 			dst, reg_type_str(env, ptr_reg->type));
9768 		return -EACCES;
9769 	}
9770 
9771 	switch (base_type(ptr_reg->type)) {
9772 	case CONST_PTR_TO_MAP:
9773 		/* smin_val represents the known value */
9774 		if (known && smin_val == 0 && opcode == BPF_ADD)
9775 			break;
9776 		fallthrough;
9777 	case PTR_TO_PACKET_END:
9778 	case PTR_TO_SOCKET:
9779 	case PTR_TO_SOCK_COMMON:
9780 	case PTR_TO_TCP_SOCK:
9781 	case PTR_TO_XDP_SOCK:
9782 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
9783 			dst, reg_type_str(env, ptr_reg->type));
9784 		return -EACCES;
9785 	default:
9786 		break;
9787 	}
9788 
9789 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9790 	 * The id may be overwritten later if we create a new variable offset.
9791 	 */
9792 	dst_reg->type = ptr_reg->type;
9793 	dst_reg->id = ptr_reg->id;
9794 
9795 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9796 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9797 		return -EINVAL;
9798 
9799 	/* pointer types do not carry 32-bit bounds at the moment. */
9800 	__mark_reg32_unbounded(dst_reg);
9801 
9802 	if (sanitize_needed(opcode)) {
9803 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
9804 				       &info, false);
9805 		if (ret < 0)
9806 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9807 	}
9808 
9809 	switch (opcode) {
9810 	case BPF_ADD:
9811 		/* We can take a fixed offset as long as it doesn't overflow
9812 		 * the s32 'off' field
9813 		 */
9814 		if (known && (ptr_reg->off + smin_val ==
9815 			      (s64)(s32)(ptr_reg->off + smin_val))) {
9816 			/* pointer += K.  Accumulate it into fixed offset */
9817 			dst_reg->smin_value = smin_ptr;
9818 			dst_reg->smax_value = smax_ptr;
9819 			dst_reg->umin_value = umin_ptr;
9820 			dst_reg->umax_value = umax_ptr;
9821 			dst_reg->var_off = ptr_reg->var_off;
9822 			dst_reg->off = ptr_reg->off + smin_val;
9823 			dst_reg->raw = ptr_reg->raw;
9824 			break;
9825 		}
9826 		/* A new variable offset is created.  Note that off_reg->off
9827 		 * == 0, since it's a scalar.
9828 		 * dst_reg gets the pointer type and since some positive
9829 		 * integer value was added to the pointer, give it a new 'id'
9830 		 * if it's a PTR_TO_PACKET.
9831 		 * this creates a new 'base' pointer, off_reg (variable) gets
9832 		 * added into the variable offset, and we copy the fixed offset
9833 		 * from ptr_reg.
9834 		 */
9835 		if (signed_add_overflows(smin_ptr, smin_val) ||
9836 		    signed_add_overflows(smax_ptr, smax_val)) {
9837 			dst_reg->smin_value = S64_MIN;
9838 			dst_reg->smax_value = S64_MAX;
9839 		} else {
9840 			dst_reg->smin_value = smin_ptr + smin_val;
9841 			dst_reg->smax_value = smax_ptr + smax_val;
9842 		}
9843 		if (umin_ptr + umin_val < umin_ptr ||
9844 		    umax_ptr + umax_val < umax_ptr) {
9845 			dst_reg->umin_value = 0;
9846 			dst_reg->umax_value = U64_MAX;
9847 		} else {
9848 			dst_reg->umin_value = umin_ptr + umin_val;
9849 			dst_reg->umax_value = umax_ptr + umax_val;
9850 		}
9851 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9852 		dst_reg->off = ptr_reg->off;
9853 		dst_reg->raw = ptr_reg->raw;
9854 		if (reg_is_pkt_pointer(ptr_reg)) {
9855 			dst_reg->id = ++env->id_gen;
9856 			/* something was added to pkt_ptr, set range to zero */
9857 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9858 		}
9859 		break;
9860 	case BPF_SUB:
9861 		if (dst_reg == off_reg) {
9862 			/* scalar -= pointer.  Creates an unknown scalar */
9863 			verbose(env, "R%d tried to subtract pointer from scalar\n",
9864 				dst);
9865 			return -EACCES;
9866 		}
9867 		/* We don't allow subtraction from FP, because (according to
9868 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
9869 		 * be able to deal with it.
9870 		 */
9871 		if (ptr_reg->type == PTR_TO_STACK) {
9872 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
9873 				dst);
9874 			return -EACCES;
9875 		}
9876 		if (known && (ptr_reg->off - smin_val ==
9877 			      (s64)(s32)(ptr_reg->off - smin_val))) {
9878 			/* pointer -= K.  Subtract it from fixed offset */
9879 			dst_reg->smin_value = smin_ptr;
9880 			dst_reg->smax_value = smax_ptr;
9881 			dst_reg->umin_value = umin_ptr;
9882 			dst_reg->umax_value = umax_ptr;
9883 			dst_reg->var_off = ptr_reg->var_off;
9884 			dst_reg->id = ptr_reg->id;
9885 			dst_reg->off = ptr_reg->off - smin_val;
9886 			dst_reg->raw = ptr_reg->raw;
9887 			break;
9888 		}
9889 		/* A new variable offset is created.  If the subtrahend is known
9890 		 * nonnegative, then any reg->range we had before is still good.
9891 		 */
9892 		if (signed_sub_overflows(smin_ptr, smax_val) ||
9893 		    signed_sub_overflows(smax_ptr, smin_val)) {
9894 			/* Overflow possible, we know nothing */
9895 			dst_reg->smin_value = S64_MIN;
9896 			dst_reg->smax_value = S64_MAX;
9897 		} else {
9898 			dst_reg->smin_value = smin_ptr - smax_val;
9899 			dst_reg->smax_value = smax_ptr - smin_val;
9900 		}
9901 		if (umin_ptr < umax_val) {
9902 			/* Overflow possible, we know nothing */
9903 			dst_reg->umin_value = 0;
9904 			dst_reg->umax_value = U64_MAX;
9905 		} else {
9906 			/* Cannot overflow (as long as bounds are consistent) */
9907 			dst_reg->umin_value = umin_ptr - umax_val;
9908 			dst_reg->umax_value = umax_ptr - umin_val;
9909 		}
9910 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9911 		dst_reg->off = ptr_reg->off;
9912 		dst_reg->raw = ptr_reg->raw;
9913 		if (reg_is_pkt_pointer(ptr_reg)) {
9914 			dst_reg->id = ++env->id_gen;
9915 			/* something was added to pkt_ptr, set range to zero */
9916 			if (smin_val < 0)
9917 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9918 		}
9919 		break;
9920 	case BPF_AND:
9921 	case BPF_OR:
9922 	case BPF_XOR:
9923 		/* bitwise ops on pointers are troublesome, prohibit. */
9924 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9925 			dst, bpf_alu_string[opcode >> 4]);
9926 		return -EACCES;
9927 	default:
9928 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
9929 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9930 			dst, bpf_alu_string[opcode >> 4]);
9931 		return -EACCES;
9932 	}
9933 
9934 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9935 		return -EINVAL;
9936 	reg_bounds_sync(dst_reg);
9937 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9938 		return -EACCES;
9939 	if (sanitize_needed(opcode)) {
9940 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
9941 				       &info, true);
9942 		if (ret < 0)
9943 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9944 	}
9945 
9946 	return 0;
9947 }
9948 
9949 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9950 				 struct bpf_reg_state *src_reg)
9951 {
9952 	s32 smin_val = src_reg->s32_min_value;
9953 	s32 smax_val = src_reg->s32_max_value;
9954 	u32 umin_val = src_reg->u32_min_value;
9955 	u32 umax_val = src_reg->u32_max_value;
9956 
9957 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9958 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9959 		dst_reg->s32_min_value = S32_MIN;
9960 		dst_reg->s32_max_value = S32_MAX;
9961 	} else {
9962 		dst_reg->s32_min_value += smin_val;
9963 		dst_reg->s32_max_value += smax_val;
9964 	}
9965 	if (dst_reg->u32_min_value + umin_val < umin_val ||
9966 	    dst_reg->u32_max_value + umax_val < umax_val) {
9967 		dst_reg->u32_min_value = 0;
9968 		dst_reg->u32_max_value = U32_MAX;
9969 	} else {
9970 		dst_reg->u32_min_value += umin_val;
9971 		dst_reg->u32_max_value += umax_val;
9972 	}
9973 }
9974 
9975 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9976 			       struct bpf_reg_state *src_reg)
9977 {
9978 	s64 smin_val = src_reg->smin_value;
9979 	s64 smax_val = src_reg->smax_value;
9980 	u64 umin_val = src_reg->umin_value;
9981 	u64 umax_val = src_reg->umax_value;
9982 
9983 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9984 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
9985 		dst_reg->smin_value = S64_MIN;
9986 		dst_reg->smax_value = S64_MAX;
9987 	} else {
9988 		dst_reg->smin_value += smin_val;
9989 		dst_reg->smax_value += smax_val;
9990 	}
9991 	if (dst_reg->umin_value + umin_val < umin_val ||
9992 	    dst_reg->umax_value + umax_val < umax_val) {
9993 		dst_reg->umin_value = 0;
9994 		dst_reg->umax_value = U64_MAX;
9995 	} else {
9996 		dst_reg->umin_value += umin_val;
9997 		dst_reg->umax_value += umax_val;
9998 	}
9999 }
10000 
10001 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
10002 				 struct bpf_reg_state *src_reg)
10003 {
10004 	s32 smin_val = src_reg->s32_min_value;
10005 	s32 smax_val = src_reg->s32_max_value;
10006 	u32 umin_val = src_reg->u32_min_value;
10007 	u32 umax_val = src_reg->u32_max_value;
10008 
10009 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
10010 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
10011 		/* Overflow possible, we know nothing */
10012 		dst_reg->s32_min_value = S32_MIN;
10013 		dst_reg->s32_max_value = S32_MAX;
10014 	} else {
10015 		dst_reg->s32_min_value -= smax_val;
10016 		dst_reg->s32_max_value -= smin_val;
10017 	}
10018 	if (dst_reg->u32_min_value < umax_val) {
10019 		/* Overflow possible, we know nothing */
10020 		dst_reg->u32_min_value = 0;
10021 		dst_reg->u32_max_value = U32_MAX;
10022 	} else {
10023 		/* Cannot overflow (as long as bounds are consistent) */
10024 		dst_reg->u32_min_value -= umax_val;
10025 		dst_reg->u32_max_value -= umin_val;
10026 	}
10027 }
10028 
10029 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
10030 			       struct bpf_reg_state *src_reg)
10031 {
10032 	s64 smin_val = src_reg->smin_value;
10033 	s64 smax_val = src_reg->smax_value;
10034 	u64 umin_val = src_reg->umin_value;
10035 	u64 umax_val = src_reg->umax_value;
10036 
10037 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
10038 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
10039 		/* Overflow possible, we know nothing */
10040 		dst_reg->smin_value = S64_MIN;
10041 		dst_reg->smax_value = S64_MAX;
10042 	} else {
10043 		dst_reg->smin_value -= smax_val;
10044 		dst_reg->smax_value -= smin_val;
10045 	}
10046 	if (dst_reg->umin_value < umax_val) {
10047 		/* Overflow possible, we know nothing */
10048 		dst_reg->umin_value = 0;
10049 		dst_reg->umax_value = U64_MAX;
10050 	} else {
10051 		/* Cannot overflow (as long as bounds are consistent) */
10052 		dst_reg->umin_value -= umax_val;
10053 		dst_reg->umax_value -= umin_val;
10054 	}
10055 }
10056 
10057 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
10058 				 struct bpf_reg_state *src_reg)
10059 {
10060 	s32 smin_val = src_reg->s32_min_value;
10061 	u32 umin_val = src_reg->u32_min_value;
10062 	u32 umax_val = src_reg->u32_max_value;
10063 
10064 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
10065 		/* Ain't nobody got time to multiply that sign */
10066 		__mark_reg32_unbounded(dst_reg);
10067 		return;
10068 	}
10069 	/* Both values are positive, so we can work with unsigned and
10070 	 * copy the result to signed (unless it exceeds S32_MAX).
10071 	 */
10072 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
10073 		/* Potential overflow, we know nothing */
10074 		__mark_reg32_unbounded(dst_reg);
10075 		return;
10076 	}
10077 	dst_reg->u32_min_value *= umin_val;
10078 	dst_reg->u32_max_value *= umax_val;
10079 	if (dst_reg->u32_max_value > S32_MAX) {
10080 		/* Overflow possible, we know nothing */
10081 		dst_reg->s32_min_value = S32_MIN;
10082 		dst_reg->s32_max_value = S32_MAX;
10083 	} else {
10084 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10085 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10086 	}
10087 }
10088 
10089 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
10090 			       struct bpf_reg_state *src_reg)
10091 {
10092 	s64 smin_val = src_reg->smin_value;
10093 	u64 umin_val = src_reg->umin_value;
10094 	u64 umax_val = src_reg->umax_value;
10095 
10096 	if (smin_val < 0 || dst_reg->smin_value < 0) {
10097 		/* Ain't nobody got time to multiply that sign */
10098 		__mark_reg64_unbounded(dst_reg);
10099 		return;
10100 	}
10101 	/* Both values are positive, so we can work with unsigned and
10102 	 * copy the result to signed (unless it exceeds S64_MAX).
10103 	 */
10104 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
10105 		/* Potential overflow, we know nothing */
10106 		__mark_reg64_unbounded(dst_reg);
10107 		return;
10108 	}
10109 	dst_reg->umin_value *= umin_val;
10110 	dst_reg->umax_value *= umax_val;
10111 	if (dst_reg->umax_value > S64_MAX) {
10112 		/* Overflow possible, we know nothing */
10113 		dst_reg->smin_value = S64_MIN;
10114 		dst_reg->smax_value = S64_MAX;
10115 	} else {
10116 		dst_reg->smin_value = dst_reg->umin_value;
10117 		dst_reg->smax_value = dst_reg->umax_value;
10118 	}
10119 }
10120 
10121 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
10122 				 struct bpf_reg_state *src_reg)
10123 {
10124 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10125 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10126 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10127 	s32 smin_val = src_reg->s32_min_value;
10128 	u32 umax_val = src_reg->u32_max_value;
10129 
10130 	if (src_known && dst_known) {
10131 		__mark_reg32_known(dst_reg, var32_off.value);
10132 		return;
10133 	}
10134 
10135 	/* We get our minimum from the var_off, since that's inherently
10136 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10137 	 */
10138 	dst_reg->u32_min_value = var32_off.value;
10139 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
10140 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10141 		/* Lose signed bounds when ANDing negative numbers,
10142 		 * ain't nobody got time for that.
10143 		 */
10144 		dst_reg->s32_min_value = S32_MIN;
10145 		dst_reg->s32_max_value = S32_MAX;
10146 	} else {
10147 		/* ANDing two positives gives a positive, so safe to
10148 		 * cast result into s64.
10149 		 */
10150 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10151 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10152 	}
10153 }
10154 
10155 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
10156 			       struct bpf_reg_state *src_reg)
10157 {
10158 	bool src_known = tnum_is_const(src_reg->var_off);
10159 	bool dst_known = tnum_is_const(dst_reg->var_off);
10160 	s64 smin_val = src_reg->smin_value;
10161 	u64 umax_val = src_reg->umax_value;
10162 
10163 	if (src_known && dst_known) {
10164 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10165 		return;
10166 	}
10167 
10168 	/* We get our minimum from the var_off, since that's inherently
10169 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10170 	 */
10171 	dst_reg->umin_value = dst_reg->var_off.value;
10172 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10173 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10174 		/* Lose signed bounds when ANDing negative numbers,
10175 		 * ain't nobody got time for that.
10176 		 */
10177 		dst_reg->smin_value = S64_MIN;
10178 		dst_reg->smax_value = S64_MAX;
10179 	} else {
10180 		/* ANDing two positives gives a positive, so safe to
10181 		 * cast result into s64.
10182 		 */
10183 		dst_reg->smin_value = dst_reg->umin_value;
10184 		dst_reg->smax_value = dst_reg->umax_value;
10185 	}
10186 	/* We may learn something more from the var_off */
10187 	__update_reg_bounds(dst_reg);
10188 }
10189 
10190 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10191 				struct bpf_reg_state *src_reg)
10192 {
10193 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10194 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10195 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10196 	s32 smin_val = src_reg->s32_min_value;
10197 	u32 umin_val = src_reg->u32_min_value;
10198 
10199 	if (src_known && dst_known) {
10200 		__mark_reg32_known(dst_reg, var32_off.value);
10201 		return;
10202 	}
10203 
10204 	/* We get our maximum from the var_off, and our minimum is the
10205 	 * maximum of the operands' minima
10206 	 */
10207 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10208 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10209 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10210 		/* Lose signed bounds when ORing negative numbers,
10211 		 * ain't nobody got time for that.
10212 		 */
10213 		dst_reg->s32_min_value = S32_MIN;
10214 		dst_reg->s32_max_value = S32_MAX;
10215 	} else {
10216 		/* ORing two positives gives a positive, so safe to
10217 		 * cast result into s64.
10218 		 */
10219 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10220 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10221 	}
10222 }
10223 
10224 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10225 			      struct bpf_reg_state *src_reg)
10226 {
10227 	bool src_known = tnum_is_const(src_reg->var_off);
10228 	bool dst_known = tnum_is_const(dst_reg->var_off);
10229 	s64 smin_val = src_reg->smin_value;
10230 	u64 umin_val = src_reg->umin_value;
10231 
10232 	if (src_known && dst_known) {
10233 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10234 		return;
10235 	}
10236 
10237 	/* We get our maximum from the var_off, and our minimum is the
10238 	 * maximum of the operands' minima
10239 	 */
10240 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10241 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10242 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10243 		/* Lose signed bounds when ORing negative numbers,
10244 		 * ain't nobody got time for that.
10245 		 */
10246 		dst_reg->smin_value = S64_MIN;
10247 		dst_reg->smax_value = S64_MAX;
10248 	} else {
10249 		/* ORing two positives gives a positive, so safe to
10250 		 * cast result into s64.
10251 		 */
10252 		dst_reg->smin_value = dst_reg->umin_value;
10253 		dst_reg->smax_value = dst_reg->umax_value;
10254 	}
10255 	/* We may learn something more from the var_off */
10256 	__update_reg_bounds(dst_reg);
10257 }
10258 
10259 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10260 				 struct bpf_reg_state *src_reg)
10261 {
10262 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10263 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10264 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10265 	s32 smin_val = src_reg->s32_min_value;
10266 
10267 	if (src_known && dst_known) {
10268 		__mark_reg32_known(dst_reg, var32_off.value);
10269 		return;
10270 	}
10271 
10272 	/* We get both minimum and maximum from the var32_off. */
10273 	dst_reg->u32_min_value = var32_off.value;
10274 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10275 
10276 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10277 		/* XORing two positive sign numbers gives a positive,
10278 		 * so safe to cast u32 result into s32.
10279 		 */
10280 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10281 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10282 	} else {
10283 		dst_reg->s32_min_value = S32_MIN;
10284 		dst_reg->s32_max_value = S32_MAX;
10285 	}
10286 }
10287 
10288 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10289 			       struct bpf_reg_state *src_reg)
10290 {
10291 	bool src_known = tnum_is_const(src_reg->var_off);
10292 	bool dst_known = tnum_is_const(dst_reg->var_off);
10293 	s64 smin_val = src_reg->smin_value;
10294 
10295 	if (src_known && dst_known) {
10296 		/* dst_reg->var_off.value has been updated earlier */
10297 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10298 		return;
10299 	}
10300 
10301 	/* We get both minimum and maximum from the var_off. */
10302 	dst_reg->umin_value = dst_reg->var_off.value;
10303 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10304 
10305 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10306 		/* XORing two positive sign numbers gives a positive,
10307 		 * so safe to cast u64 result into s64.
10308 		 */
10309 		dst_reg->smin_value = dst_reg->umin_value;
10310 		dst_reg->smax_value = dst_reg->umax_value;
10311 	} else {
10312 		dst_reg->smin_value = S64_MIN;
10313 		dst_reg->smax_value = S64_MAX;
10314 	}
10315 
10316 	__update_reg_bounds(dst_reg);
10317 }
10318 
10319 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10320 				   u64 umin_val, u64 umax_val)
10321 {
10322 	/* We lose all sign bit information (except what we can pick
10323 	 * up from var_off)
10324 	 */
10325 	dst_reg->s32_min_value = S32_MIN;
10326 	dst_reg->s32_max_value = S32_MAX;
10327 	/* If we might shift our top bit out, then we know nothing */
10328 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10329 		dst_reg->u32_min_value = 0;
10330 		dst_reg->u32_max_value = U32_MAX;
10331 	} else {
10332 		dst_reg->u32_min_value <<= umin_val;
10333 		dst_reg->u32_max_value <<= umax_val;
10334 	}
10335 }
10336 
10337 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10338 				 struct bpf_reg_state *src_reg)
10339 {
10340 	u32 umax_val = src_reg->u32_max_value;
10341 	u32 umin_val = src_reg->u32_min_value;
10342 	/* u32 alu operation will zext upper bits */
10343 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10344 
10345 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10346 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10347 	/* Not required but being careful mark reg64 bounds as unknown so
10348 	 * that we are forced to pick them up from tnum and zext later and
10349 	 * if some path skips this step we are still safe.
10350 	 */
10351 	__mark_reg64_unbounded(dst_reg);
10352 	__update_reg32_bounds(dst_reg);
10353 }
10354 
10355 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10356 				   u64 umin_val, u64 umax_val)
10357 {
10358 	/* Special case <<32 because it is a common compiler pattern to sign
10359 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10360 	 * positive we know this shift will also be positive so we can track
10361 	 * bounds correctly. Otherwise we lose all sign bit information except
10362 	 * what we can pick up from var_off. Perhaps we can generalize this
10363 	 * later to shifts of any length.
10364 	 */
10365 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10366 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10367 	else
10368 		dst_reg->smax_value = S64_MAX;
10369 
10370 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10371 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10372 	else
10373 		dst_reg->smin_value = S64_MIN;
10374 
10375 	/* If we might shift our top bit out, then we know nothing */
10376 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10377 		dst_reg->umin_value = 0;
10378 		dst_reg->umax_value = U64_MAX;
10379 	} else {
10380 		dst_reg->umin_value <<= umin_val;
10381 		dst_reg->umax_value <<= umax_val;
10382 	}
10383 }
10384 
10385 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10386 			       struct bpf_reg_state *src_reg)
10387 {
10388 	u64 umax_val = src_reg->umax_value;
10389 	u64 umin_val = src_reg->umin_value;
10390 
10391 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
10392 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10393 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10394 
10395 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10396 	/* We may learn something more from the var_off */
10397 	__update_reg_bounds(dst_reg);
10398 }
10399 
10400 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10401 				 struct bpf_reg_state *src_reg)
10402 {
10403 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10404 	u32 umax_val = src_reg->u32_max_value;
10405 	u32 umin_val = src_reg->u32_min_value;
10406 
10407 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10408 	 * be negative, then either:
10409 	 * 1) src_reg might be zero, so the sign bit of the result is
10410 	 *    unknown, so we lose our signed bounds
10411 	 * 2) it's known negative, thus the unsigned bounds capture the
10412 	 *    signed bounds
10413 	 * 3) the signed bounds cross zero, so they tell us nothing
10414 	 *    about the result
10415 	 * If the value in dst_reg is known nonnegative, then again the
10416 	 * unsigned bounds capture the signed bounds.
10417 	 * Thus, in all cases it suffices to blow away our signed bounds
10418 	 * and rely on inferring new ones from the unsigned bounds and
10419 	 * var_off of the result.
10420 	 */
10421 	dst_reg->s32_min_value = S32_MIN;
10422 	dst_reg->s32_max_value = S32_MAX;
10423 
10424 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
10425 	dst_reg->u32_min_value >>= umax_val;
10426 	dst_reg->u32_max_value >>= umin_val;
10427 
10428 	__mark_reg64_unbounded(dst_reg);
10429 	__update_reg32_bounds(dst_reg);
10430 }
10431 
10432 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10433 			       struct bpf_reg_state *src_reg)
10434 {
10435 	u64 umax_val = src_reg->umax_value;
10436 	u64 umin_val = src_reg->umin_value;
10437 
10438 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10439 	 * be negative, then either:
10440 	 * 1) src_reg might be zero, so the sign bit of the result is
10441 	 *    unknown, so we lose our signed bounds
10442 	 * 2) it's known negative, thus the unsigned bounds capture the
10443 	 *    signed bounds
10444 	 * 3) the signed bounds cross zero, so they tell us nothing
10445 	 *    about the result
10446 	 * If the value in dst_reg is known nonnegative, then again the
10447 	 * unsigned bounds capture the signed bounds.
10448 	 * Thus, in all cases it suffices to blow away our signed bounds
10449 	 * and rely on inferring new ones from the unsigned bounds and
10450 	 * var_off of the result.
10451 	 */
10452 	dst_reg->smin_value = S64_MIN;
10453 	dst_reg->smax_value = S64_MAX;
10454 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10455 	dst_reg->umin_value >>= umax_val;
10456 	dst_reg->umax_value >>= umin_val;
10457 
10458 	/* Its not easy to operate on alu32 bounds here because it depends
10459 	 * on bits being shifted in. Take easy way out and mark unbounded
10460 	 * so we can recalculate later from tnum.
10461 	 */
10462 	__mark_reg32_unbounded(dst_reg);
10463 	__update_reg_bounds(dst_reg);
10464 }
10465 
10466 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10467 				  struct bpf_reg_state *src_reg)
10468 {
10469 	u64 umin_val = src_reg->u32_min_value;
10470 
10471 	/* Upon reaching here, src_known is true and
10472 	 * umax_val is equal to umin_val.
10473 	 */
10474 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10475 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
10476 
10477 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10478 
10479 	/* blow away the dst_reg umin_value/umax_value and rely on
10480 	 * dst_reg var_off to refine the result.
10481 	 */
10482 	dst_reg->u32_min_value = 0;
10483 	dst_reg->u32_max_value = U32_MAX;
10484 
10485 	__mark_reg64_unbounded(dst_reg);
10486 	__update_reg32_bounds(dst_reg);
10487 }
10488 
10489 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10490 				struct bpf_reg_state *src_reg)
10491 {
10492 	u64 umin_val = src_reg->umin_value;
10493 
10494 	/* Upon reaching here, src_known is true and umax_val is equal
10495 	 * to umin_val.
10496 	 */
10497 	dst_reg->smin_value >>= umin_val;
10498 	dst_reg->smax_value >>= umin_val;
10499 
10500 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
10501 
10502 	/* blow away the dst_reg umin_value/umax_value and rely on
10503 	 * dst_reg var_off to refine the result.
10504 	 */
10505 	dst_reg->umin_value = 0;
10506 	dst_reg->umax_value = U64_MAX;
10507 
10508 	/* Its not easy to operate on alu32 bounds here because it depends
10509 	 * on bits being shifted in from upper 32-bits. Take easy way out
10510 	 * and mark unbounded so we can recalculate later from tnum.
10511 	 */
10512 	__mark_reg32_unbounded(dst_reg);
10513 	__update_reg_bounds(dst_reg);
10514 }
10515 
10516 /* WARNING: This function does calculations on 64-bit values, but the actual
10517  * execution may occur on 32-bit values. Therefore, things like bitshifts
10518  * need extra checks in the 32-bit case.
10519  */
10520 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10521 				      struct bpf_insn *insn,
10522 				      struct bpf_reg_state *dst_reg,
10523 				      struct bpf_reg_state src_reg)
10524 {
10525 	struct bpf_reg_state *regs = cur_regs(env);
10526 	u8 opcode = BPF_OP(insn->code);
10527 	bool src_known;
10528 	s64 smin_val, smax_val;
10529 	u64 umin_val, umax_val;
10530 	s32 s32_min_val, s32_max_val;
10531 	u32 u32_min_val, u32_max_val;
10532 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
10533 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
10534 	int ret;
10535 
10536 	smin_val = src_reg.smin_value;
10537 	smax_val = src_reg.smax_value;
10538 	umin_val = src_reg.umin_value;
10539 	umax_val = src_reg.umax_value;
10540 
10541 	s32_min_val = src_reg.s32_min_value;
10542 	s32_max_val = src_reg.s32_max_value;
10543 	u32_min_val = src_reg.u32_min_value;
10544 	u32_max_val = src_reg.u32_max_value;
10545 
10546 	if (alu32) {
10547 		src_known = tnum_subreg_is_const(src_reg.var_off);
10548 		if ((src_known &&
10549 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10550 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10551 			/* Taint dst register if offset had invalid bounds
10552 			 * derived from e.g. dead branches.
10553 			 */
10554 			__mark_reg_unknown(env, dst_reg);
10555 			return 0;
10556 		}
10557 	} else {
10558 		src_known = tnum_is_const(src_reg.var_off);
10559 		if ((src_known &&
10560 		     (smin_val != smax_val || umin_val != umax_val)) ||
10561 		    smin_val > smax_val || umin_val > umax_val) {
10562 			/* Taint dst register if offset had invalid bounds
10563 			 * derived from e.g. dead branches.
10564 			 */
10565 			__mark_reg_unknown(env, dst_reg);
10566 			return 0;
10567 		}
10568 	}
10569 
10570 	if (!src_known &&
10571 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
10572 		__mark_reg_unknown(env, dst_reg);
10573 		return 0;
10574 	}
10575 
10576 	if (sanitize_needed(opcode)) {
10577 		ret = sanitize_val_alu(env, insn);
10578 		if (ret < 0)
10579 			return sanitize_err(env, insn, ret, NULL, NULL);
10580 	}
10581 
10582 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10583 	 * There are two classes of instructions: The first class we track both
10584 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
10585 	 * greatest amount of precision when alu operations are mixed with jmp32
10586 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10587 	 * and BPF_OR. This is possible because these ops have fairly easy to
10588 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10589 	 * See alu32 verifier tests for examples. The second class of
10590 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10591 	 * with regards to tracking sign/unsigned bounds because the bits may
10592 	 * cross subreg boundaries in the alu64 case. When this happens we mark
10593 	 * the reg unbounded in the subreg bound space and use the resulting
10594 	 * tnum to calculate an approximation of the sign/unsigned bounds.
10595 	 */
10596 	switch (opcode) {
10597 	case BPF_ADD:
10598 		scalar32_min_max_add(dst_reg, &src_reg);
10599 		scalar_min_max_add(dst_reg, &src_reg);
10600 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
10601 		break;
10602 	case BPF_SUB:
10603 		scalar32_min_max_sub(dst_reg, &src_reg);
10604 		scalar_min_max_sub(dst_reg, &src_reg);
10605 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
10606 		break;
10607 	case BPF_MUL:
10608 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10609 		scalar32_min_max_mul(dst_reg, &src_reg);
10610 		scalar_min_max_mul(dst_reg, &src_reg);
10611 		break;
10612 	case BPF_AND:
10613 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10614 		scalar32_min_max_and(dst_reg, &src_reg);
10615 		scalar_min_max_and(dst_reg, &src_reg);
10616 		break;
10617 	case BPF_OR:
10618 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10619 		scalar32_min_max_or(dst_reg, &src_reg);
10620 		scalar_min_max_or(dst_reg, &src_reg);
10621 		break;
10622 	case BPF_XOR:
10623 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10624 		scalar32_min_max_xor(dst_reg, &src_reg);
10625 		scalar_min_max_xor(dst_reg, &src_reg);
10626 		break;
10627 	case BPF_LSH:
10628 		if (umax_val >= insn_bitness) {
10629 			/* Shifts greater than 31 or 63 are undefined.
10630 			 * This includes shifts by a negative number.
10631 			 */
10632 			mark_reg_unknown(env, regs, insn->dst_reg);
10633 			break;
10634 		}
10635 		if (alu32)
10636 			scalar32_min_max_lsh(dst_reg, &src_reg);
10637 		else
10638 			scalar_min_max_lsh(dst_reg, &src_reg);
10639 		break;
10640 	case BPF_RSH:
10641 		if (umax_val >= insn_bitness) {
10642 			/* Shifts greater than 31 or 63 are undefined.
10643 			 * This includes shifts by a negative number.
10644 			 */
10645 			mark_reg_unknown(env, regs, insn->dst_reg);
10646 			break;
10647 		}
10648 		if (alu32)
10649 			scalar32_min_max_rsh(dst_reg, &src_reg);
10650 		else
10651 			scalar_min_max_rsh(dst_reg, &src_reg);
10652 		break;
10653 	case BPF_ARSH:
10654 		if (umax_val >= insn_bitness) {
10655 			/* Shifts greater than 31 or 63 are undefined.
10656 			 * This includes shifts by a negative number.
10657 			 */
10658 			mark_reg_unknown(env, regs, insn->dst_reg);
10659 			break;
10660 		}
10661 		if (alu32)
10662 			scalar32_min_max_arsh(dst_reg, &src_reg);
10663 		else
10664 			scalar_min_max_arsh(dst_reg, &src_reg);
10665 		break;
10666 	default:
10667 		mark_reg_unknown(env, regs, insn->dst_reg);
10668 		break;
10669 	}
10670 
10671 	/* ALU32 ops are zero extended into 64bit register */
10672 	if (alu32)
10673 		zext_32_to_64(dst_reg);
10674 	reg_bounds_sync(dst_reg);
10675 	return 0;
10676 }
10677 
10678 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10679  * and var_off.
10680  */
10681 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10682 				   struct bpf_insn *insn)
10683 {
10684 	struct bpf_verifier_state *vstate = env->cur_state;
10685 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10686 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
10687 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10688 	u8 opcode = BPF_OP(insn->code);
10689 	int err;
10690 
10691 	dst_reg = &regs[insn->dst_reg];
10692 	src_reg = NULL;
10693 	if (dst_reg->type != SCALAR_VALUE)
10694 		ptr_reg = dst_reg;
10695 	else
10696 		/* Make sure ID is cleared otherwise dst_reg min/max could be
10697 		 * incorrectly propagated into other registers by find_equal_scalars()
10698 		 */
10699 		dst_reg->id = 0;
10700 	if (BPF_SRC(insn->code) == BPF_X) {
10701 		src_reg = &regs[insn->src_reg];
10702 		if (src_reg->type != SCALAR_VALUE) {
10703 			if (dst_reg->type != SCALAR_VALUE) {
10704 				/* Combining two pointers by any ALU op yields
10705 				 * an arbitrary scalar. Disallow all math except
10706 				 * pointer subtraction
10707 				 */
10708 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10709 					mark_reg_unknown(env, regs, insn->dst_reg);
10710 					return 0;
10711 				}
10712 				verbose(env, "R%d pointer %s pointer prohibited\n",
10713 					insn->dst_reg,
10714 					bpf_alu_string[opcode >> 4]);
10715 				return -EACCES;
10716 			} else {
10717 				/* scalar += pointer
10718 				 * This is legal, but we have to reverse our
10719 				 * src/dest handling in computing the range
10720 				 */
10721 				err = mark_chain_precision(env, insn->dst_reg);
10722 				if (err)
10723 					return err;
10724 				return adjust_ptr_min_max_vals(env, insn,
10725 							       src_reg, dst_reg);
10726 			}
10727 		} else if (ptr_reg) {
10728 			/* pointer += scalar */
10729 			err = mark_chain_precision(env, insn->src_reg);
10730 			if (err)
10731 				return err;
10732 			return adjust_ptr_min_max_vals(env, insn,
10733 						       dst_reg, src_reg);
10734 		} else if (dst_reg->precise) {
10735 			/* if dst_reg is precise, src_reg should be precise as well */
10736 			err = mark_chain_precision(env, insn->src_reg);
10737 			if (err)
10738 				return err;
10739 		}
10740 	} else {
10741 		/* Pretend the src is a reg with a known value, since we only
10742 		 * need to be able to read from this state.
10743 		 */
10744 		off_reg.type = SCALAR_VALUE;
10745 		__mark_reg_known(&off_reg, insn->imm);
10746 		src_reg = &off_reg;
10747 		if (ptr_reg) /* pointer += K */
10748 			return adjust_ptr_min_max_vals(env, insn,
10749 						       ptr_reg, src_reg);
10750 	}
10751 
10752 	/* Got here implies adding two SCALAR_VALUEs */
10753 	if (WARN_ON_ONCE(ptr_reg)) {
10754 		print_verifier_state(env, state, true);
10755 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
10756 		return -EINVAL;
10757 	}
10758 	if (WARN_ON(!src_reg)) {
10759 		print_verifier_state(env, state, true);
10760 		verbose(env, "verifier internal error: no src_reg\n");
10761 		return -EINVAL;
10762 	}
10763 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
10764 }
10765 
10766 /* check validity of 32-bit and 64-bit arithmetic operations */
10767 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
10768 {
10769 	struct bpf_reg_state *regs = cur_regs(env);
10770 	u8 opcode = BPF_OP(insn->code);
10771 	int err;
10772 
10773 	if (opcode == BPF_END || opcode == BPF_NEG) {
10774 		if (opcode == BPF_NEG) {
10775 			if (BPF_SRC(insn->code) != BPF_K ||
10776 			    insn->src_reg != BPF_REG_0 ||
10777 			    insn->off != 0 || insn->imm != 0) {
10778 				verbose(env, "BPF_NEG uses reserved fields\n");
10779 				return -EINVAL;
10780 			}
10781 		} else {
10782 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
10783 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10784 			    BPF_CLASS(insn->code) == BPF_ALU64) {
10785 				verbose(env, "BPF_END uses reserved fields\n");
10786 				return -EINVAL;
10787 			}
10788 		}
10789 
10790 		/* check src operand */
10791 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10792 		if (err)
10793 			return err;
10794 
10795 		if (is_pointer_value(env, insn->dst_reg)) {
10796 			verbose(env, "R%d pointer arithmetic prohibited\n",
10797 				insn->dst_reg);
10798 			return -EACCES;
10799 		}
10800 
10801 		/* check dest operand */
10802 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
10803 		if (err)
10804 			return err;
10805 
10806 	} else if (opcode == BPF_MOV) {
10807 
10808 		if (BPF_SRC(insn->code) == BPF_X) {
10809 			if (insn->imm != 0 || insn->off != 0) {
10810 				verbose(env, "BPF_MOV uses reserved fields\n");
10811 				return -EINVAL;
10812 			}
10813 
10814 			/* check src operand */
10815 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10816 			if (err)
10817 				return err;
10818 		} else {
10819 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10820 				verbose(env, "BPF_MOV uses reserved fields\n");
10821 				return -EINVAL;
10822 			}
10823 		}
10824 
10825 		/* check dest operand, mark as required later */
10826 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10827 		if (err)
10828 			return err;
10829 
10830 		if (BPF_SRC(insn->code) == BPF_X) {
10831 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
10832 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10833 
10834 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10835 				/* case: R1 = R2
10836 				 * copy register state to dest reg
10837 				 */
10838 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10839 					/* Assign src and dst registers the same ID
10840 					 * that will be used by find_equal_scalars()
10841 					 * to propagate min/max range.
10842 					 */
10843 					src_reg->id = ++env->id_gen;
10844 				*dst_reg = *src_reg;
10845 				dst_reg->live |= REG_LIVE_WRITTEN;
10846 				dst_reg->subreg_def = DEF_NOT_SUBREG;
10847 			} else {
10848 				/* R1 = (u32) R2 */
10849 				if (is_pointer_value(env, insn->src_reg)) {
10850 					verbose(env,
10851 						"R%d partial copy of pointer\n",
10852 						insn->src_reg);
10853 					return -EACCES;
10854 				} else if (src_reg->type == SCALAR_VALUE) {
10855 					*dst_reg = *src_reg;
10856 					/* Make sure ID is cleared otherwise
10857 					 * dst_reg min/max could be incorrectly
10858 					 * propagated into src_reg by find_equal_scalars()
10859 					 */
10860 					dst_reg->id = 0;
10861 					dst_reg->live |= REG_LIVE_WRITTEN;
10862 					dst_reg->subreg_def = env->insn_idx + 1;
10863 				} else {
10864 					mark_reg_unknown(env, regs,
10865 							 insn->dst_reg);
10866 				}
10867 				zext_32_to_64(dst_reg);
10868 				reg_bounds_sync(dst_reg);
10869 			}
10870 		} else {
10871 			/* case: R = imm
10872 			 * remember the value we stored into this reg
10873 			 */
10874 			/* clear any state __mark_reg_known doesn't set */
10875 			mark_reg_unknown(env, regs, insn->dst_reg);
10876 			regs[insn->dst_reg].type = SCALAR_VALUE;
10877 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10878 				__mark_reg_known(regs + insn->dst_reg,
10879 						 insn->imm);
10880 			} else {
10881 				__mark_reg_known(regs + insn->dst_reg,
10882 						 (u32)insn->imm);
10883 			}
10884 		}
10885 
10886 	} else if (opcode > BPF_END) {
10887 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
10888 		return -EINVAL;
10889 
10890 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
10891 
10892 		if (BPF_SRC(insn->code) == BPF_X) {
10893 			if (insn->imm != 0 || insn->off != 0) {
10894 				verbose(env, "BPF_ALU uses reserved fields\n");
10895 				return -EINVAL;
10896 			}
10897 			/* check src1 operand */
10898 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10899 			if (err)
10900 				return err;
10901 		} else {
10902 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10903 				verbose(env, "BPF_ALU uses reserved fields\n");
10904 				return -EINVAL;
10905 			}
10906 		}
10907 
10908 		/* check src2 operand */
10909 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10910 		if (err)
10911 			return err;
10912 
10913 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10914 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
10915 			verbose(env, "div by zero\n");
10916 			return -EINVAL;
10917 		}
10918 
10919 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10920 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10921 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10922 
10923 			if (insn->imm < 0 || insn->imm >= size) {
10924 				verbose(env, "invalid shift %d\n", insn->imm);
10925 				return -EINVAL;
10926 			}
10927 		}
10928 
10929 		/* check dest operand */
10930 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10931 		if (err)
10932 			return err;
10933 
10934 		return adjust_reg_min_max_vals(env, insn);
10935 	}
10936 
10937 	return 0;
10938 }
10939 
10940 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
10941 				   struct bpf_reg_state *dst_reg,
10942 				   enum bpf_reg_type type,
10943 				   bool range_right_open)
10944 {
10945 	struct bpf_func_state *state;
10946 	struct bpf_reg_state *reg;
10947 	int new_range;
10948 
10949 	if (dst_reg->off < 0 ||
10950 	    (dst_reg->off == 0 && range_right_open))
10951 		/* This doesn't give us any range */
10952 		return;
10953 
10954 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
10955 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
10956 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
10957 		 * than pkt_end, but that's because it's also less than pkt.
10958 		 */
10959 		return;
10960 
10961 	new_range = dst_reg->off;
10962 	if (range_right_open)
10963 		new_range++;
10964 
10965 	/* Examples for register markings:
10966 	 *
10967 	 * pkt_data in dst register:
10968 	 *
10969 	 *   r2 = r3;
10970 	 *   r2 += 8;
10971 	 *   if (r2 > pkt_end) goto <handle exception>
10972 	 *   <access okay>
10973 	 *
10974 	 *   r2 = r3;
10975 	 *   r2 += 8;
10976 	 *   if (r2 < pkt_end) goto <access okay>
10977 	 *   <handle exception>
10978 	 *
10979 	 *   Where:
10980 	 *     r2 == dst_reg, pkt_end == src_reg
10981 	 *     r2=pkt(id=n,off=8,r=0)
10982 	 *     r3=pkt(id=n,off=0,r=0)
10983 	 *
10984 	 * pkt_data in src register:
10985 	 *
10986 	 *   r2 = r3;
10987 	 *   r2 += 8;
10988 	 *   if (pkt_end >= r2) goto <access okay>
10989 	 *   <handle exception>
10990 	 *
10991 	 *   r2 = r3;
10992 	 *   r2 += 8;
10993 	 *   if (pkt_end <= r2) goto <handle exception>
10994 	 *   <access okay>
10995 	 *
10996 	 *   Where:
10997 	 *     pkt_end == dst_reg, r2 == src_reg
10998 	 *     r2=pkt(id=n,off=8,r=0)
10999 	 *     r3=pkt(id=n,off=0,r=0)
11000 	 *
11001 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
11002 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
11003 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
11004 	 * the check.
11005 	 */
11006 
11007 	/* If our ids match, then we must have the same max_value.  And we
11008 	 * don't care about the other reg's fixed offset, since if it's too big
11009 	 * the range won't allow anything.
11010 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
11011 	 */
11012 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11013 		if (reg->type == type && reg->id == dst_reg->id)
11014 			/* keep the maximum range already checked */
11015 			reg->range = max(reg->range, new_range);
11016 	}));
11017 }
11018 
11019 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
11020 {
11021 	struct tnum subreg = tnum_subreg(reg->var_off);
11022 	s32 sval = (s32)val;
11023 
11024 	switch (opcode) {
11025 	case BPF_JEQ:
11026 		if (tnum_is_const(subreg))
11027 			return !!tnum_equals_const(subreg, val);
11028 		break;
11029 	case BPF_JNE:
11030 		if (tnum_is_const(subreg))
11031 			return !tnum_equals_const(subreg, val);
11032 		break;
11033 	case BPF_JSET:
11034 		if ((~subreg.mask & subreg.value) & val)
11035 			return 1;
11036 		if (!((subreg.mask | subreg.value) & val))
11037 			return 0;
11038 		break;
11039 	case BPF_JGT:
11040 		if (reg->u32_min_value > val)
11041 			return 1;
11042 		else if (reg->u32_max_value <= val)
11043 			return 0;
11044 		break;
11045 	case BPF_JSGT:
11046 		if (reg->s32_min_value > sval)
11047 			return 1;
11048 		else if (reg->s32_max_value <= sval)
11049 			return 0;
11050 		break;
11051 	case BPF_JLT:
11052 		if (reg->u32_max_value < val)
11053 			return 1;
11054 		else if (reg->u32_min_value >= val)
11055 			return 0;
11056 		break;
11057 	case BPF_JSLT:
11058 		if (reg->s32_max_value < sval)
11059 			return 1;
11060 		else if (reg->s32_min_value >= sval)
11061 			return 0;
11062 		break;
11063 	case BPF_JGE:
11064 		if (reg->u32_min_value >= val)
11065 			return 1;
11066 		else if (reg->u32_max_value < val)
11067 			return 0;
11068 		break;
11069 	case BPF_JSGE:
11070 		if (reg->s32_min_value >= sval)
11071 			return 1;
11072 		else if (reg->s32_max_value < sval)
11073 			return 0;
11074 		break;
11075 	case BPF_JLE:
11076 		if (reg->u32_max_value <= val)
11077 			return 1;
11078 		else if (reg->u32_min_value > val)
11079 			return 0;
11080 		break;
11081 	case BPF_JSLE:
11082 		if (reg->s32_max_value <= sval)
11083 			return 1;
11084 		else if (reg->s32_min_value > sval)
11085 			return 0;
11086 		break;
11087 	}
11088 
11089 	return -1;
11090 }
11091 
11092 
11093 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
11094 {
11095 	s64 sval = (s64)val;
11096 
11097 	switch (opcode) {
11098 	case BPF_JEQ:
11099 		if (tnum_is_const(reg->var_off))
11100 			return !!tnum_equals_const(reg->var_off, val);
11101 		break;
11102 	case BPF_JNE:
11103 		if (tnum_is_const(reg->var_off))
11104 			return !tnum_equals_const(reg->var_off, val);
11105 		break;
11106 	case BPF_JSET:
11107 		if ((~reg->var_off.mask & reg->var_off.value) & val)
11108 			return 1;
11109 		if (!((reg->var_off.mask | reg->var_off.value) & val))
11110 			return 0;
11111 		break;
11112 	case BPF_JGT:
11113 		if (reg->umin_value > val)
11114 			return 1;
11115 		else if (reg->umax_value <= val)
11116 			return 0;
11117 		break;
11118 	case BPF_JSGT:
11119 		if (reg->smin_value > sval)
11120 			return 1;
11121 		else if (reg->smax_value <= sval)
11122 			return 0;
11123 		break;
11124 	case BPF_JLT:
11125 		if (reg->umax_value < val)
11126 			return 1;
11127 		else if (reg->umin_value >= val)
11128 			return 0;
11129 		break;
11130 	case BPF_JSLT:
11131 		if (reg->smax_value < sval)
11132 			return 1;
11133 		else if (reg->smin_value >= sval)
11134 			return 0;
11135 		break;
11136 	case BPF_JGE:
11137 		if (reg->umin_value >= val)
11138 			return 1;
11139 		else if (reg->umax_value < val)
11140 			return 0;
11141 		break;
11142 	case BPF_JSGE:
11143 		if (reg->smin_value >= sval)
11144 			return 1;
11145 		else if (reg->smax_value < sval)
11146 			return 0;
11147 		break;
11148 	case BPF_JLE:
11149 		if (reg->umax_value <= val)
11150 			return 1;
11151 		else if (reg->umin_value > val)
11152 			return 0;
11153 		break;
11154 	case BPF_JSLE:
11155 		if (reg->smax_value <= sval)
11156 			return 1;
11157 		else if (reg->smin_value > sval)
11158 			return 0;
11159 		break;
11160 	}
11161 
11162 	return -1;
11163 }
11164 
11165 /* compute branch direction of the expression "if (reg opcode val) goto target;"
11166  * and return:
11167  *  1 - branch will be taken and "goto target" will be executed
11168  *  0 - branch will not be taken and fall-through to next insn
11169  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11170  *      range [0,10]
11171  */
11172 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11173 			   bool is_jmp32)
11174 {
11175 	if (__is_pointer_value(false, reg)) {
11176 		if (!reg_type_not_null(reg->type))
11177 			return -1;
11178 
11179 		/* If pointer is valid tests against zero will fail so we can
11180 		 * use this to direct branch taken.
11181 		 */
11182 		if (val != 0)
11183 			return -1;
11184 
11185 		switch (opcode) {
11186 		case BPF_JEQ:
11187 			return 0;
11188 		case BPF_JNE:
11189 			return 1;
11190 		default:
11191 			return -1;
11192 		}
11193 	}
11194 
11195 	if (is_jmp32)
11196 		return is_branch32_taken(reg, val, opcode);
11197 	return is_branch64_taken(reg, val, opcode);
11198 }
11199 
11200 static int flip_opcode(u32 opcode)
11201 {
11202 	/* How can we transform "a <op> b" into "b <op> a"? */
11203 	static const u8 opcode_flip[16] = {
11204 		/* these stay the same */
11205 		[BPF_JEQ  >> 4] = BPF_JEQ,
11206 		[BPF_JNE  >> 4] = BPF_JNE,
11207 		[BPF_JSET >> 4] = BPF_JSET,
11208 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
11209 		[BPF_JGE  >> 4] = BPF_JLE,
11210 		[BPF_JGT  >> 4] = BPF_JLT,
11211 		[BPF_JLE  >> 4] = BPF_JGE,
11212 		[BPF_JLT  >> 4] = BPF_JGT,
11213 		[BPF_JSGE >> 4] = BPF_JSLE,
11214 		[BPF_JSGT >> 4] = BPF_JSLT,
11215 		[BPF_JSLE >> 4] = BPF_JSGE,
11216 		[BPF_JSLT >> 4] = BPF_JSGT
11217 	};
11218 	return opcode_flip[opcode >> 4];
11219 }
11220 
11221 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11222 				   struct bpf_reg_state *src_reg,
11223 				   u8 opcode)
11224 {
11225 	struct bpf_reg_state *pkt;
11226 
11227 	if (src_reg->type == PTR_TO_PACKET_END) {
11228 		pkt = dst_reg;
11229 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
11230 		pkt = src_reg;
11231 		opcode = flip_opcode(opcode);
11232 	} else {
11233 		return -1;
11234 	}
11235 
11236 	if (pkt->range >= 0)
11237 		return -1;
11238 
11239 	switch (opcode) {
11240 	case BPF_JLE:
11241 		/* pkt <= pkt_end */
11242 		fallthrough;
11243 	case BPF_JGT:
11244 		/* pkt > pkt_end */
11245 		if (pkt->range == BEYOND_PKT_END)
11246 			/* pkt has at last one extra byte beyond pkt_end */
11247 			return opcode == BPF_JGT;
11248 		break;
11249 	case BPF_JLT:
11250 		/* pkt < pkt_end */
11251 		fallthrough;
11252 	case BPF_JGE:
11253 		/* pkt >= pkt_end */
11254 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11255 			return opcode == BPF_JGE;
11256 		break;
11257 	}
11258 	return -1;
11259 }
11260 
11261 /* Adjusts the register min/max values in the case that the dst_reg is the
11262  * variable register that we are working on, and src_reg is a constant or we're
11263  * simply doing a BPF_K check.
11264  * In JEQ/JNE cases we also adjust the var_off values.
11265  */
11266 static void reg_set_min_max(struct bpf_reg_state *true_reg,
11267 			    struct bpf_reg_state *false_reg,
11268 			    u64 val, u32 val32,
11269 			    u8 opcode, bool is_jmp32)
11270 {
11271 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
11272 	struct tnum false_64off = false_reg->var_off;
11273 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
11274 	struct tnum true_64off = true_reg->var_off;
11275 	s64 sval = (s64)val;
11276 	s32 sval32 = (s32)val32;
11277 
11278 	/* If the dst_reg is a pointer, we can't learn anything about its
11279 	 * variable offset from the compare (unless src_reg were a pointer into
11280 	 * the same object, but we don't bother with that.
11281 	 * Since false_reg and true_reg have the same type by construction, we
11282 	 * only need to check one of them for pointerness.
11283 	 */
11284 	if (__is_pointer_value(false, false_reg))
11285 		return;
11286 
11287 	switch (opcode) {
11288 	/* JEQ/JNE comparison doesn't change the register equivalence.
11289 	 *
11290 	 * r1 = r2;
11291 	 * if (r1 == 42) goto label;
11292 	 * ...
11293 	 * label: // here both r1 and r2 are known to be 42.
11294 	 *
11295 	 * Hence when marking register as known preserve it's ID.
11296 	 */
11297 	case BPF_JEQ:
11298 		if (is_jmp32) {
11299 			__mark_reg32_known(true_reg, val32);
11300 			true_32off = tnum_subreg(true_reg->var_off);
11301 		} else {
11302 			___mark_reg_known(true_reg, val);
11303 			true_64off = true_reg->var_off;
11304 		}
11305 		break;
11306 	case BPF_JNE:
11307 		if (is_jmp32) {
11308 			__mark_reg32_known(false_reg, val32);
11309 			false_32off = tnum_subreg(false_reg->var_off);
11310 		} else {
11311 			___mark_reg_known(false_reg, val);
11312 			false_64off = false_reg->var_off;
11313 		}
11314 		break;
11315 	case BPF_JSET:
11316 		if (is_jmp32) {
11317 			false_32off = tnum_and(false_32off, tnum_const(~val32));
11318 			if (is_power_of_2(val32))
11319 				true_32off = tnum_or(true_32off,
11320 						     tnum_const(val32));
11321 		} else {
11322 			false_64off = tnum_and(false_64off, tnum_const(~val));
11323 			if (is_power_of_2(val))
11324 				true_64off = tnum_or(true_64off,
11325 						     tnum_const(val));
11326 		}
11327 		break;
11328 	case BPF_JGE:
11329 	case BPF_JGT:
11330 	{
11331 		if (is_jmp32) {
11332 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
11333 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11334 
11335 			false_reg->u32_max_value = min(false_reg->u32_max_value,
11336 						       false_umax);
11337 			true_reg->u32_min_value = max(true_reg->u32_min_value,
11338 						      true_umin);
11339 		} else {
11340 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
11341 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11342 
11343 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
11344 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
11345 		}
11346 		break;
11347 	}
11348 	case BPF_JSGE:
11349 	case BPF_JSGT:
11350 	{
11351 		if (is_jmp32) {
11352 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
11353 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
11354 
11355 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11356 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11357 		} else {
11358 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
11359 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11360 
11361 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
11362 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
11363 		}
11364 		break;
11365 	}
11366 	case BPF_JLE:
11367 	case BPF_JLT:
11368 	{
11369 		if (is_jmp32) {
11370 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
11371 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11372 
11373 			false_reg->u32_min_value = max(false_reg->u32_min_value,
11374 						       false_umin);
11375 			true_reg->u32_max_value = min(true_reg->u32_max_value,
11376 						      true_umax);
11377 		} else {
11378 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
11379 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11380 
11381 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
11382 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
11383 		}
11384 		break;
11385 	}
11386 	case BPF_JSLE:
11387 	case BPF_JSLT:
11388 	{
11389 		if (is_jmp32) {
11390 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
11391 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
11392 
11393 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11394 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11395 		} else {
11396 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
11397 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11398 
11399 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
11400 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
11401 		}
11402 		break;
11403 	}
11404 	default:
11405 		return;
11406 	}
11407 
11408 	if (is_jmp32) {
11409 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11410 					     tnum_subreg(false_32off));
11411 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11412 					    tnum_subreg(true_32off));
11413 		__reg_combine_32_into_64(false_reg);
11414 		__reg_combine_32_into_64(true_reg);
11415 	} else {
11416 		false_reg->var_off = false_64off;
11417 		true_reg->var_off = true_64off;
11418 		__reg_combine_64_into_32(false_reg);
11419 		__reg_combine_64_into_32(true_reg);
11420 	}
11421 }
11422 
11423 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
11424  * the variable reg.
11425  */
11426 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
11427 				struct bpf_reg_state *false_reg,
11428 				u64 val, u32 val32,
11429 				u8 opcode, bool is_jmp32)
11430 {
11431 	opcode = flip_opcode(opcode);
11432 	/* This uses zero as "not present in table"; luckily the zero opcode,
11433 	 * BPF_JA, can't get here.
11434 	 */
11435 	if (opcode)
11436 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
11437 }
11438 
11439 /* Regs are known to be equal, so intersect their min/max/var_off */
11440 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11441 				  struct bpf_reg_state *dst_reg)
11442 {
11443 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11444 							dst_reg->umin_value);
11445 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11446 							dst_reg->umax_value);
11447 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11448 							dst_reg->smin_value);
11449 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11450 							dst_reg->smax_value);
11451 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11452 							     dst_reg->var_off);
11453 	reg_bounds_sync(src_reg);
11454 	reg_bounds_sync(dst_reg);
11455 }
11456 
11457 static void reg_combine_min_max(struct bpf_reg_state *true_src,
11458 				struct bpf_reg_state *true_dst,
11459 				struct bpf_reg_state *false_src,
11460 				struct bpf_reg_state *false_dst,
11461 				u8 opcode)
11462 {
11463 	switch (opcode) {
11464 	case BPF_JEQ:
11465 		__reg_combine_min_max(true_src, true_dst);
11466 		break;
11467 	case BPF_JNE:
11468 		__reg_combine_min_max(false_src, false_dst);
11469 		break;
11470 	}
11471 }
11472 
11473 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11474 				 struct bpf_reg_state *reg, u32 id,
11475 				 bool is_null)
11476 {
11477 	if (type_may_be_null(reg->type) && reg->id == id &&
11478 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
11479 		/* Old offset (both fixed and variable parts) should have been
11480 		 * known-zero, because we don't allow pointer arithmetic on
11481 		 * pointers that might be NULL. If we see this happening, don't
11482 		 * convert the register.
11483 		 *
11484 		 * But in some cases, some helpers that return local kptrs
11485 		 * advance offset for the returned pointer. In those cases, it
11486 		 * is fine to expect to see reg->off.
11487 		 */
11488 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11489 			return;
11490 		if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
11491 			return;
11492 		if (is_null) {
11493 			reg->type = SCALAR_VALUE;
11494 			/* We don't need id and ref_obj_id from this point
11495 			 * onwards anymore, thus we should better reset it,
11496 			 * so that state pruning has chances to take effect.
11497 			 */
11498 			reg->id = 0;
11499 			reg->ref_obj_id = 0;
11500 
11501 			return;
11502 		}
11503 
11504 		mark_ptr_not_null_reg(reg);
11505 
11506 		if (!reg_may_point_to_spin_lock(reg)) {
11507 			/* For not-NULL ptr, reg->ref_obj_id will be reset
11508 			 * in release_reference().
11509 			 *
11510 			 * reg->id is still used by spin_lock ptr. Other
11511 			 * than spin_lock ptr type, reg->id can be reset.
11512 			 */
11513 			reg->id = 0;
11514 		}
11515 	}
11516 }
11517 
11518 /* The logic is similar to find_good_pkt_pointers(), both could eventually
11519  * be folded together at some point.
11520  */
11521 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11522 				  bool is_null)
11523 {
11524 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11525 	struct bpf_reg_state *regs = state->regs, *reg;
11526 	u32 ref_obj_id = regs[regno].ref_obj_id;
11527 	u32 id = regs[regno].id;
11528 
11529 	if (ref_obj_id && ref_obj_id == id && is_null)
11530 		/* regs[regno] is in the " == NULL" branch.
11531 		 * No one could have freed the reference state before
11532 		 * doing the NULL check.
11533 		 */
11534 		WARN_ON_ONCE(release_reference_state(state, id));
11535 
11536 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11537 		mark_ptr_or_null_reg(state, reg, id, is_null);
11538 	}));
11539 }
11540 
11541 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11542 				   struct bpf_reg_state *dst_reg,
11543 				   struct bpf_reg_state *src_reg,
11544 				   struct bpf_verifier_state *this_branch,
11545 				   struct bpf_verifier_state *other_branch)
11546 {
11547 	if (BPF_SRC(insn->code) != BPF_X)
11548 		return false;
11549 
11550 	/* Pointers are always 64-bit. */
11551 	if (BPF_CLASS(insn->code) == BPF_JMP32)
11552 		return false;
11553 
11554 	switch (BPF_OP(insn->code)) {
11555 	case BPF_JGT:
11556 		if ((dst_reg->type == PTR_TO_PACKET &&
11557 		     src_reg->type == PTR_TO_PACKET_END) ||
11558 		    (dst_reg->type == PTR_TO_PACKET_META &&
11559 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11560 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11561 			find_good_pkt_pointers(this_branch, dst_reg,
11562 					       dst_reg->type, false);
11563 			mark_pkt_end(other_branch, insn->dst_reg, true);
11564 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11565 			    src_reg->type == PTR_TO_PACKET) ||
11566 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11567 			    src_reg->type == PTR_TO_PACKET_META)) {
11568 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
11569 			find_good_pkt_pointers(other_branch, src_reg,
11570 					       src_reg->type, true);
11571 			mark_pkt_end(this_branch, insn->src_reg, false);
11572 		} else {
11573 			return false;
11574 		}
11575 		break;
11576 	case BPF_JLT:
11577 		if ((dst_reg->type == PTR_TO_PACKET &&
11578 		     src_reg->type == PTR_TO_PACKET_END) ||
11579 		    (dst_reg->type == PTR_TO_PACKET_META &&
11580 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11581 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11582 			find_good_pkt_pointers(other_branch, dst_reg,
11583 					       dst_reg->type, true);
11584 			mark_pkt_end(this_branch, insn->dst_reg, false);
11585 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11586 			    src_reg->type == PTR_TO_PACKET) ||
11587 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11588 			    src_reg->type == PTR_TO_PACKET_META)) {
11589 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
11590 			find_good_pkt_pointers(this_branch, src_reg,
11591 					       src_reg->type, false);
11592 			mark_pkt_end(other_branch, insn->src_reg, true);
11593 		} else {
11594 			return false;
11595 		}
11596 		break;
11597 	case BPF_JGE:
11598 		if ((dst_reg->type == PTR_TO_PACKET &&
11599 		     src_reg->type == PTR_TO_PACKET_END) ||
11600 		    (dst_reg->type == PTR_TO_PACKET_META &&
11601 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11602 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11603 			find_good_pkt_pointers(this_branch, dst_reg,
11604 					       dst_reg->type, true);
11605 			mark_pkt_end(other_branch, insn->dst_reg, false);
11606 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11607 			    src_reg->type == PTR_TO_PACKET) ||
11608 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11609 			    src_reg->type == PTR_TO_PACKET_META)) {
11610 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11611 			find_good_pkt_pointers(other_branch, src_reg,
11612 					       src_reg->type, false);
11613 			mark_pkt_end(this_branch, insn->src_reg, true);
11614 		} else {
11615 			return false;
11616 		}
11617 		break;
11618 	case BPF_JLE:
11619 		if ((dst_reg->type == PTR_TO_PACKET &&
11620 		     src_reg->type == PTR_TO_PACKET_END) ||
11621 		    (dst_reg->type == PTR_TO_PACKET_META &&
11622 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11623 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11624 			find_good_pkt_pointers(other_branch, dst_reg,
11625 					       dst_reg->type, false);
11626 			mark_pkt_end(this_branch, insn->dst_reg, true);
11627 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11628 			    src_reg->type == PTR_TO_PACKET) ||
11629 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11630 			    src_reg->type == PTR_TO_PACKET_META)) {
11631 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11632 			find_good_pkt_pointers(this_branch, src_reg,
11633 					       src_reg->type, true);
11634 			mark_pkt_end(other_branch, insn->src_reg, false);
11635 		} else {
11636 			return false;
11637 		}
11638 		break;
11639 	default:
11640 		return false;
11641 	}
11642 
11643 	return true;
11644 }
11645 
11646 static void find_equal_scalars(struct bpf_verifier_state *vstate,
11647 			       struct bpf_reg_state *known_reg)
11648 {
11649 	struct bpf_func_state *state;
11650 	struct bpf_reg_state *reg;
11651 
11652 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11653 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11654 			*reg = *known_reg;
11655 	}));
11656 }
11657 
11658 static int check_cond_jmp_op(struct bpf_verifier_env *env,
11659 			     struct bpf_insn *insn, int *insn_idx)
11660 {
11661 	struct bpf_verifier_state *this_branch = env->cur_state;
11662 	struct bpf_verifier_state *other_branch;
11663 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
11664 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
11665 	struct bpf_reg_state *eq_branch_regs;
11666 	u8 opcode = BPF_OP(insn->code);
11667 	bool is_jmp32;
11668 	int pred = -1;
11669 	int err;
11670 
11671 	/* Only conditional jumps are expected to reach here. */
11672 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
11673 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
11674 		return -EINVAL;
11675 	}
11676 
11677 	if (BPF_SRC(insn->code) == BPF_X) {
11678 		if (insn->imm != 0) {
11679 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11680 			return -EINVAL;
11681 		}
11682 
11683 		/* check src1 operand */
11684 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11685 		if (err)
11686 			return err;
11687 
11688 		if (is_pointer_value(env, insn->src_reg)) {
11689 			verbose(env, "R%d pointer comparison prohibited\n",
11690 				insn->src_reg);
11691 			return -EACCES;
11692 		}
11693 		src_reg = &regs[insn->src_reg];
11694 	} else {
11695 		if (insn->src_reg != BPF_REG_0) {
11696 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11697 			return -EINVAL;
11698 		}
11699 	}
11700 
11701 	/* check src2 operand */
11702 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11703 	if (err)
11704 		return err;
11705 
11706 	dst_reg = &regs[insn->dst_reg];
11707 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
11708 
11709 	if (BPF_SRC(insn->code) == BPF_K) {
11710 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11711 	} else if (src_reg->type == SCALAR_VALUE &&
11712 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11713 		pred = is_branch_taken(dst_reg,
11714 				       tnum_subreg(src_reg->var_off).value,
11715 				       opcode,
11716 				       is_jmp32);
11717 	} else if (src_reg->type == SCALAR_VALUE &&
11718 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11719 		pred = is_branch_taken(dst_reg,
11720 				       src_reg->var_off.value,
11721 				       opcode,
11722 				       is_jmp32);
11723 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
11724 		   reg_is_pkt_pointer_any(src_reg) &&
11725 		   !is_jmp32) {
11726 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
11727 	}
11728 
11729 	if (pred >= 0) {
11730 		/* If we get here with a dst_reg pointer type it is because
11731 		 * above is_branch_taken() special cased the 0 comparison.
11732 		 */
11733 		if (!__is_pointer_value(false, dst_reg))
11734 			err = mark_chain_precision(env, insn->dst_reg);
11735 		if (BPF_SRC(insn->code) == BPF_X && !err &&
11736 		    !__is_pointer_value(false, src_reg))
11737 			err = mark_chain_precision(env, insn->src_reg);
11738 		if (err)
11739 			return err;
11740 	}
11741 
11742 	if (pred == 1) {
11743 		/* Only follow the goto, ignore fall-through. If needed, push
11744 		 * the fall-through branch for simulation under speculative
11745 		 * execution.
11746 		 */
11747 		if (!env->bypass_spec_v1 &&
11748 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
11749 					       *insn_idx))
11750 			return -EFAULT;
11751 		*insn_idx += insn->off;
11752 		return 0;
11753 	} else if (pred == 0) {
11754 		/* Only follow the fall-through branch, since that's where the
11755 		 * program will go. If needed, push the goto branch for
11756 		 * simulation under speculative execution.
11757 		 */
11758 		if (!env->bypass_spec_v1 &&
11759 		    !sanitize_speculative_path(env, insn,
11760 					       *insn_idx + insn->off + 1,
11761 					       *insn_idx))
11762 			return -EFAULT;
11763 		return 0;
11764 	}
11765 
11766 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11767 				  false);
11768 	if (!other_branch)
11769 		return -EFAULT;
11770 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
11771 
11772 	/* detect if we are comparing against a constant value so we can adjust
11773 	 * our min/max values for our dst register.
11774 	 * this is only legit if both are scalars (or pointers to the same
11775 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11776 	 * because otherwise the different base pointers mean the offsets aren't
11777 	 * comparable.
11778 	 */
11779 	if (BPF_SRC(insn->code) == BPF_X) {
11780 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
11781 
11782 		if (dst_reg->type == SCALAR_VALUE &&
11783 		    src_reg->type == SCALAR_VALUE) {
11784 			if (tnum_is_const(src_reg->var_off) ||
11785 			    (is_jmp32 &&
11786 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
11787 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
11788 						dst_reg,
11789 						src_reg->var_off.value,
11790 						tnum_subreg(src_reg->var_off).value,
11791 						opcode, is_jmp32);
11792 			else if (tnum_is_const(dst_reg->var_off) ||
11793 				 (is_jmp32 &&
11794 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
11795 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
11796 						    src_reg,
11797 						    dst_reg->var_off.value,
11798 						    tnum_subreg(dst_reg->var_off).value,
11799 						    opcode, is_jmp32);
11800 			else if (!is_jmp32 &&
11801 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
11802 				/* Comparing for equality, we can combine knowledge */
11803 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
11804 						    &other_branch_regs[insn->dst_reg],
11805 						    src_reg, dst_reg, opcode);
11806 			if (src_reg->id &&
11807 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
11808 				find_equal_scalars(this_branch, src_reg);
11809 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11810 			}
11811 
11812 		}
11813 	} else if (dst_reg->type == SCALAR_VALUE) {
11814 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
11815 					dst_reg, insn->imm, (u32)insn->imm,
11816 					opcode, is_jmp32);
11817 	}
11818 
11819 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11820 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
11821 		find_equal_scalars(this_branch, dst_reg);
11822 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11823 	}
11824 
11825 	/* if one pointer register is compared to another pointer
11826 	 * register check if PTR_MAYBE_NULL could be lifted.
11827 	 * E.g. register A - maybe null
11828 	 *      register B - not null
11829 	 * for JNE A, B, ... - A is not null in the false branch;
11830 	 * for JEQ A, B, ... - A is not null in the true branch.
11831 	 */
11832 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11833 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11834 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
11835 		eq_branch_regs = NULL;
11836 		switch (opcode) {
11837 		case BPF_JEQ:
11838 			eq_branch_regs = other_branch_regs;
11839 			break;
11840 		case BPF_JNE:
11841 			eq_branch_regs = regs;
11842 			break;
11843 		default:
11844 			/* do nothing */
11845 			break;
11846 		}
11847 		if (eq_branch_regs) {
11848 			if (type_may_be_null(src_reg->type))
11849 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11850 			else
11851 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11852 		}
11853 	}
11854 
11855 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11856 	 * NOTE: these optimizations below are related with pointer comparison
11857 	 *       which will never be JMP32.
11858 	 */
11859 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
11860 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
11861 	    type_may_be_null(dst_reg->type)) {
11862 		/* Mark all identical registers in each branch as either
11863 		 * safe or unknown depending R == 0 or R != 0 conditional.
11864 		 */
11865 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11866 				      opcode == BPF_JNE);
11867 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11868 				      opcode == BPF_JEQ);
11869 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11870 					   this_branch, other_branch) &&
11871 		   is_pointer_value(env, insn->dst_reg)) {
11872 		verbose(env, "R%d pointer comparison prohibited\n",
11873 			insn->dst_reg);
11874 		return -EACCES;
11875 	}
11876 	if (env->log.level & BPF_LOG_LEVEL)
11877 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
11878 	return 0;
11879 }
11880 
11881 /* verify BPF_LD_IMM64 instruction */
11882 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
11883 {
11884 	struct bpf_insn_aux_data *aux = cur_aux(env);
11885 	struct bpf_reg_state *regs = cur_regs(env);
11886 	struct bpf_reg_state *dst_reg;
11887 	struct bpf_map *map;
11888 	int err;
11889 
11890 	if (BPF_SIZE(insn->code) != BPF_DW) {
11891 		verbose(env, "invalid BPF_LD_IMM insn\n");
11892 		return -EINVAL;
11893 	}
11894 	if (insn->off != 0) {
11895 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
11896 		return -EINVAL;
11897 	}
11898 
11899 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
11900 	if (err)
11901 		return err;
11902 
11903 	dst_reg = &regs[insn->dst_reg];
11904 	if (insn->src_reg == 0) {
11905 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11906 
11907 		dst_reg->type = SCALAR_VALUE;
11908 		__mark_reg_known(&regs[insn->dst_reg], imm);
11909 		return 0;
11910 	}
11911 
11912 	/* All special src_reg cases are listed below. From this point onwards
11913 	 * we either succeed and assign a corresponding dst_reg->type after
11914 	 * zeroing the offset, or fail and reject the program.
11915 	 */
11916 	mark_reg_known_zero(env, regs, insn->dst_reg);
11917 
11918 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
11919 		dst_reg->type = aux->btf_var.reg_type;
11920 		switch (base_type(dst_reg->type)) {
11921 		case PTR_TO_MEM:
11922 			dst_reg->mem_size = aux->btf_var.mem_size;
11923 			break;
11924 		case PTR_TO_BTF_ID:
11925 			dst_reg->btf = aux->btf_var.btf;
11926 			dst_reg->btf_id = aux->btf_var.btf_id;
11927 			break;
11928 		default:
11929 			verbose(env, "bpf verifier is misconfigured\n");
11930 			return -EFAULT;
11931 		}
11932 		return 0;
11933 	}
11934 
11935 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
11936 		struct bpf_prog_aux *aux = env->prog->aux;
11937 		u32 subprogno = find_subprog(env,
11938 					     env->insn_idx + insn->imm + 1);
11939 
11940 		if (!aux->func_info) {
11941 			verbose(env, "missing btf func_info\n");
11942 			return -EINVAL;
11943 		}
11944 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11945 			verbose(env, "callback function not static\n");
11946 			return -EINVAL;
11947 		}
11948 
11949 		dst_reg->type = PTR_TO_FUNC;
11950 		dst_reg->subprogno = subprogno;
11951 		return 0;
11952 	}
11953 
11954 	map = env->used_maps[aux->map_index];
11955 	dst_reg->map_ptr = map;
11956 
11957 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11958 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
11959 		dst_reg->type = PTR_TO_MAP_VALUE;
11960 		dst_reg->off = aux->map_off;
11961 		WARN_ON_ONCE(map->max_entries != 1);
11962 		/* We want reg->id to be same (0) as map_value is not distinct */
11963 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11964 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
11965 		dst_reg->type = CONST_PTR_TO_MAP;
11966 	} else {
11967 		verbose(env, "bpf verifier is misconfigured\n");
11968 		return -EINVAL;
11969 	}
11970 
11971 	return 0;
11972 }
11973 
11974 static bool may_access_skb(enum bpf_prog_type type)
11975 {
11976 	switch (type) {
11977 	case BPF_PROG_TYPE_SOCKET_FILTER:
11978 	case BPF_PROG_TYPE_SCHED_CLS:
11979 	case BPF_PROG_TYPE_SCHED_ACT:
11980 		return true;
11981 	default:
11982 		return false;
11983 	}
11984 }
11985 
11986 /* verify safety of LD_ABS|LD_IND instructions:
11987  * - they can only appear in the programs where ctx == skb
11988  * - since they are wrappers of function calls, they scratch R1-R5 registers,
11989  *   preserve R6-R9, and store return value into R0
11990  *
11991  * Implicit input:
11992  *   ctx == skb == R6 == CTX
11993  *
11994  * Explicit input:
11995  *   SRC == any register
11996  *   IMM == 32-bit immediate
11997  *
11998  * Output:
11999  *   R0 - 8/16/32-bit skb data converted to cpu endianness
12000  */
12001 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
12002 {
12003 	struct bpf_reg_state *regs = cur_regs(env);
12004 	static const int ctx_reg = BPF_REG_6;
12005 	u8 mode = BPF_MODE(insn->code);
12006 	int i, err;
12007 
12008 	if (!may_access_skb(resolve_prog_type(env->prog))) {
12009 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
12010 		return -EINVAL;
12011 	}
12012 
12013 	if (!env->ops->gen_ld_abs) {
12014 		verbose(env, "bpf verifier is misconfigured\n");
12015 		return -EINVAL;
12016 	}
12017 
12018 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
12019 	    BPF_SIZE(insn->code) == BPF_DW ||
12020 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
12021 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
12022 		return -EINVAL;
12023 	}
12024 
12025 	/* check whether implicit source operand (register R6) is readable */
12026 	err = check_reg_arg(env, ctx_reg, SRC_OP);
12027 	if (err)
12028 		return err;
12029 
12030 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
12031 	 * gen_ld_abs() may terminate the program at runtime, leading to
12032 	 * reference leak.
12033 	 */
12034 	err = check_reference_leak(env);
12035 	if (err) {
12036 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
12037 		return err;
12038 	}
12039 
12040 	if (env->cur_state->active_lock.ptr) {
12041 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
12042 		return -EINVAL;
12043 	}
12044 
12045 	if (env->cur_state->active_rcu_lock) {
12046 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
12047 		return -EINVAL;
12048 	}
12049 
12050 	if (regs[ctx_reg].type != PTR_TO_CTX) {
12051 		verbose(env,
12052 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
12053 		return -EINVAL;
12054 	}
12055 
12056 	if (mode == BPF_IND) {
12057 		/* check explicit source operand */
12058 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
12059 		if (err)
12060 			return err;
12061 	}
12062 
12063 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
12064 	if (err < 0)
12065 		return err;
12066 
12067 	/* reset caller saved regs to unreadable */
12068 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
12069 		mark_reg_not_init(env, regs, caller_saved[i]);
12070 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
12071 	}
12072 
12073 	/* mark destination R0 register as readable, since it contains
12074 	 * the value fetched from the packet.
12075 	 * Already marked as written above.
12076 	 */
12077 	mark_reg_unknown(env, regs, BPF_REG_0);
12078 	/* ld_abs load up to 32-bit skb data. */
12079 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
12080 	return 0;
12081 }
12082 
12083 static int check_return_code(struct bpf_verifier_env *env)
12084 {
12085 	struct tnum enforce_attach_type_range = tnum_unknown;
12086 	const struct bpf_prog *prog = env->prog;
12087 	struct bpf_reg_state *reg;
12088 	struct tnum range = tnum_range(0, 1);
12089 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12090 	int err;
12091 	struct bpf_func_state *frame = env->cur_state->frame[0];
12092 	const bool is_subprog = frame->subprogno;
12093 
12094 	/* LSM and struct_ops func-ptr's return type could be "void" */
12095 	if (!is_subprog) {
12096 		switch (prog_type) {
12097 		case BPF_PROG_TYPE_LSM:
12098 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
12099 				/* See below, can be 0 or 0-1 depending on hook. */
12100 				break;
12101 			fallthrough;
12102 		case BPF_PROG_TYPE_STRUCT_OPS:
12103 			if (!prog->aux->attach_func_proto->type)
12104 				return 0;
12105 			break;
12106 		default:
12107 			break;
12108 		}
12109 	}
12110 
12111 	/* eBPF calling convention is such that R0 is used
12112 	 * to return the value from eBPF program.
12113 	 * Make sure that it's readable at this time
12114 	 * of bpf_exit, which means that program wrote
12115 	 * something into it earlier
12116 	 */
12117 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
12118 	if (err)
12119 		return err;
12120 
12121 	if (is_pointer_value(env, BPF_REG_0)) {
12122 		verbose(env, "R0 leaks addr as return value\n");
12123 		return -EACCES;
12124 	}
12125 
12126 	reg = cur_regs(env) + BPF_REG_0;
12127 
12128 	if (frame->in_async_callback_fn) {
12129 		/* enforce return zero from async callbacks like timer */
12130 		if (reg->type != SCALAR_VALUE) {
12131 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
12132 				reg_type_str(env, reg->type));
12133 			return -EINVAL;
12134 		}
12135 
12136 		if (!tnum_in(tnum_const(0), reg->var_off)) {
12137 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
12138 			return -EINVAL;
12139 		}
12140 		return 0;
12141 	}
12142 
12143 	if (is_subprog) {
12144 		if (reg->type != SCALAR_VALUE) {
12145 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
12146 				reg_type_str(env, reg->type));
12147 			return -EINVAL;
12148 		}
12149 		return 0;
12150 	}
12151 
12152 	switch (prog_type) {
12153 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
12154 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
12155 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
12156 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
12157 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
12158 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
12159 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
12160 			range = tnum_range(1, 1);
12161 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12162 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12163 			range = tnum_range(0, 3);
12164 		break;
12165 	case BPF_PROG_TYPE_CGROUP_SKB:
12166 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12167 			range = tnum_range(0, 3);
12168 			enforce_attach_type_range = tnum_range(2, 3);
12169 		}
12170 		break;
12171 	case BPF_PROG_TYPE_CGROUP_SOCK:
12172 	case BPF_PROG_TYPE_SOCK_OPS:
12173 	case BPF_PROG_TYPE_CGROUP_DEVICE:
12174 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
12175 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
12176 		break;
12177 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12178 		if (!env->prog->aux->attach_btf_id)
12179 			return 0;
12180 		range = tnum_const(0);
12181 		break;
12182 	case BPF_PROG_TYPE_TRACING:
12183 		switch (env->prog->expected_attach_type) {
12184 		case BPF_TRACE_FENTRY:
12185 		case BPF_TRACE_FEXIT:
12186 			range = tnum_const(0);
12187 			break;
12188 		case BPF_TRACE_RAW_TP:
12189 		case BPF_MODIFY_RETURN:
12190 			return 0;
12191 		case BPF_TRACE_ITER:
12192 			break;
12193 		default:
12194 			return -ENOTSUPP;
12195 		}
12196 		break;
12197 	case BPF_PROG_TYPE_SK_LOOKUP:
12198 		range = tnum_range(SK_DROP, SK_PASS);
12199 		break;
12200 
12201 	case BPF_PROG_TYPE_LSM:
12202 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12203 			/* Regular BPF_PROG_TYPE_LSM programs can return
12204 			 * any value.
12205 			 */
12206 			return 0;
12207 		}
12208 		if (!env->prog->aux->attach_func_proto->type) {
12209 			/* Make sure programs that attach to void
12210 			 * hooks don't try to modify return value.
12211 			 */
12212 			range = tnum_range(1, 1);
12213 		}
12214 		break;
12215 
12216 	case BPF_PROG_TYPE_EXT:
12217 		/* freplace program can return anything as its return value
12218 		 * depends on the to-be-replaced kernel func or bpf program.
12219 		 */
12220 	default:
12221 		return 0;
12222 	}
12223 
12224 	if (reg->type != SCALAR_VALUE) {
12225 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
12226 			reg_type_str(env, reg->type));
12227 		return -EINVAL;
12228 	}
12229 
12230 	if (!tnum_in(range, reg->var_off)) {
12231 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
12232 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
12233 		    prog_type == BPF_PROG_TYPE_LSM &&
12234 		    !prog->aux->attach_func_proto->type)
12235 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
12236 		return -EINVAL;
12237 	}
12238 
12239 	if (!tnum_is_unknown(enforce_attach_type_range) &&
12240 	    tnum_in(enforce_attach_type_range, reg->var_off))
12241 		env->prog->enforce_expected_attach_type = 1;
12242 	return 0;
12243 }
12244 
12245 /* non-recursive DFS pseudo code
12246  * 1  procedure DFS-iterative(G,v):
12247  * 2      label v as discovered
12248  * 3      let S be a stack
12249  * 4      S.push(v)
12250  * 5      while S is not empty
12251  * 6            t <- S.peek()
12252  * 7            if t is what we're looking for:
12253  * 8                return t
12254  * 9            for all edges e in G.adjacentEdges(t) do
12255  * 10               if edge e is already labelled
12256  * 11                   continue with the next edge
12257  * 12               w <- G.adjacentVertex(t,e)
12258  * 13               if vertex w is not discovered and not explored
12259  * 14                   label e as tree-edge
12260  * 15                   label w as discovered
12261  * 16                   S.push(w)
12262  * 17                   continue at 5
12263  * 18               else if vertex w is discovered
12264  * 19                   label e as back-edge
12265  * 20               else
12266  * 21                   // vertex w is explored
12267  * 22                   label e as forward- or cross-edge
12268  * 23           label t as explored
12269  * 24           S.pop()
12270  *
12271  * convention:
12272  * 0x10 - discovered
12273  * 0x11 - discovered and fall-through edge labelled
12274  * 0x12 - discovered and fall-through and branch edges labelled
12275  * 0x20 - explored
12276  */
12277 
12278 enum {
12279 	DISCOVERED = 0x10,
12280 	EXPLORED = 0x20,
12281 	FALLTHROUGH = 1,
12282 	BRANCH = 2,
12283 };
12284 
12285 static u32 state_htab_size(struct bpf_verifier_env *env)
12286 {
12287 	return env->prog->len;
12288 }
12289 
12290 static struct bpf_verifier_state_list **explored_state(
12291 					struct bpf_verifier_env *env,
12292 					int idx)
12293 {
12294 	struct bpf_verifier_state *cur = env->cur_state;
12295 	struct bpf_func_state *state = cur->frame[cur->curframe];
12296 
12297 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
12298 }
12299 
12300 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
12301 {
12302 	env->insn_aux_data[idx].prune_point = true;
12303 }
12304 
12305 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
12306 {
12307 	return env->insn_aux_data[insn_idx].prune_point;
12308 }
12309 
12310 enum {
12311 	DONE_EXPLORING = 0,
12312 	KEEP_EXPLORING = 1,
12313 };
12314 
12315 /* t, w, e - match pseudo-code above:
12316  * t - index of current instruction
12317  * w - next instruction
12318  * e - edge
12319  */
12320 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12321 		     bool loop_ok)
12322 {
12323 	int *insn_stack = env->cfg.insn_stack;
12324 	int *insn_state = env->cfg.insn_state;
12325 
12326 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
12327 		return DONE_EXPLORING;
12328 
12329 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
12330 		return DONE_EXPLORING;
12331 
12332 	if (w < 0 || w >= env->prog->len) {
12333 		verbose_linfo(env, t, "%d: ", t);
12334 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
12335 		return -EINVAL;
12336 	}
12337 
12338 	if (e == BRANCH) {
12339 		/* mark branch target for state pruning */
12340 		mark_prune_point(env, w);
12341 		mark_jmp_point(env, w);
12342 	}
12343 
12344 	if (insn_state[w] == 0) {
12345 		/* tree-edge */
12346 		insn_state[t] = DISCOVERED | e;
12347 		insn_state[w] = DISCOVERED;
12348 		if (env->cfg.cur_stack >= env->prog->len)
12349 			return -E2BIG;
12350 		insn_stack[env->cfg.cur_stack++] = w;
12351 		return KEEP_EXPLORING;
12352 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
12353 		if (loop_ok && env->bpf_capable)
12354 			return DONE_EXPLORING;
12355 		verbose_linfo(env, t, "%d: ", t);
12356 		verbose_linfo(env, w, "%d: ", w);
12357 		verbose(env, "back-edge from insn %d to %d\n", t, w);
12358 		return -EINVAL;
12359 	} else if (insn_state[w] == EXPLORED) {
12360 		/* forward- or cross-edge */
12361 		insn_state[t] = DISCOVERED | e;
12362 	} else {
12363 		verbose(env, "insn state internal bug\n");
12364 		return -EFAULT;
12365 	}
12366 	return DONE_EXPLORING;
12367 }
12368 
12369 static int visit_func_call_insn(int t, struct bpf_insn *insns,
12370 				struct bpf_verifier_env *env,
12371 				bool visit_callee)
12372 {
12373 	int ret;
12374 
12375 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12376 	if (ret)
12377 		return ret;
12378 
12379 	mark_prune_point(env, t + 1);
12380 	/* when we exit from subprog, we need to record non-linear history */
12381 	mark_jmp_point(env, t + 1);
12382 
12383 	if (visit_callee) {
12384 		mark_prune_point(env, t);
12385 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12386 				/* It's ok to allow recursion from CFG point of
12387 				 * view. __check_func_call() will do the actual
12388 				 * check.
12389 				 */
12390 				bpf_pseudo_func(insns + t));
12391 	}
12392 	return ret;
12393 }
12394 
12395 /* Visits the instruction at index t and returns one of the following:
12396  *  < 0 - an error occurred
12397  *  DONE_EXPLORING - the instruction was fully explored
12398  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
12399  */
12400 static int visit_insn(int t, struct bpf_verifier_env *env)
12401 {
12402 	struct bpf_insn *insns = env->prog->insnsi;
12403 	int ret;
12404 
12405 	if (bpf_pseudo_func(insns + t))
12406 		return visit_func_call_insn(t, insns, env, true);
12407 
12408 	/* All non-branch instructions have a single fall-through edge. */
12409 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12410 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
12411 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
12412 
12413 	switch (BPF_OP(insns[t].code)) {
12414 	case BPF_EXIT:
12415 		return DONE_EXPLORING;
12416 
12417 	case BPF_CALL:
12418 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
12419 			/* Mark this call insn as a prune point to trigger
12420 			 * is_state_visited() check before call itself is
12421 			 * processed by __check_func_call(). Otherwise new
12422 			 * async state will be pushed for further exploration.
12423 			 */
12424 			mark_prune_point(env, t);
12425 		return visit_func_call_insn(t, insns, env,
12426 					    insns[t].src_reg == BPF_PSEUDO_CALL);
12427 
12428 	case BPF_JA:
12429 		if (BPF_SRC(insns[t].code) != BPF_K)
12430 			return -EINVAL;
12431 
12432 		/* unconditional jump with single edge */
12433 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12434 				true);
12435 		if (ret)
12436 			return ret;
12437 
12438 		mark_prune_point(env, t + insns[t].off + 1);
12439 		mark_jmp_point(env, t + insns[t].off + 1);
12440 
12441 		return ret;
12442 
12443 	default:
12444 		/* conditional jump with two edges */
12445 		mark_prune_point(env, t);
12446 
12447 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12448 		if (ret)
12449 			return ret;
12450 
12451 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12452 	}
12453 }
12454 
12455 /* non-recursive depth-first-search to detect loops in BPF program
12456  * loop == back-edge in directed graph
12457  */
12458 static int check_cfg(struct bpf_verifier_env *env)
12459 {
12460 	int insn_cnt = env->prog->len;
12461 	int *insn_stack, *insn_state;
12462 	int ret = 0;
12463 	int i;
12464 
12465 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12466 	if (!insn_state)
12467 		return -ENOMEM;
12468 
12469 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12470 	if (!insn_stack) {
12471 		kvfree(insn_state);
12472 		return -ENOMEM;
12473 	}
12474 
12475 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12476 	insn_stack[0] = 0; /* 0 is the first instruction */
12477 	env->cfg.cur_stack = 1;
12478 
12479 	while (env->cfg.cur_stack > 0) {
12480 		int t = insn_stack[env->cfg.cur_stack - 1];
12481 
12482 		ret = visit_insn(t, env);
12483 		switch (ret) {
12484 		case DONE_EXPLORING:
12485 			insn_state[t] = EXPLORED;
12486 			env->cfg.cur_stack--;
12487 			break;
12488 		case KEEP_EXPLORING:
12489 			break;
12490 		default:
12491 			if (ret > 0) {
12492 				verbose(env, "visit_insn internal bug\n");
12493 				ret = -EFAULT;
12494 			}
12495 			goto err_free;
12496 		}
12497 	}
12498 
12499 	if (env->cfg.cur_stack < 0) {
12500 		verbose(env, "pop stack internal bug\n");
12501 		ret = -EFAULT;
12502 		goto err_free;
12503 	}
12504 
12505 	for (i = 0; i < insn_cnt; i++) {
12506 		if (insn_state[i] != EXPLORED) {
12507 			verbose(env, "unreachable insn %d\n", i);
12508 			ret = -EINVAL;
12509 			goto err_free;
12510 		}
12511 	}
12512 	ret = 0; /* cfg looks good */
12513 
12514 err_free:
12515 	kvfree(insn_state);
12516 	kvfree(insn_stack);
12517 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
12518 	return ret;
12519 }
12520 
12521 static int check_abnormal_return(struct bpf_verifier_env *env)
12522 {
12523 	int i;
12524 
12525 	for (i = 1; i < env->subprog_cnt; i++) {
12526 		if (env->subprog_info[i].has_ld_abs) {
12527 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12528 			return -EINVAL;
12529 		}
12530 		if (env->subprog_info[i].has_tail_call) {
12531 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12532 			return -EINVAL;
12533 		}
12534 	}
12535 	return 0;
12536 }
12537 
12538 /* The minimum supported BTF func info size */
12539 #define MIN_BPF_FUNCINFO_SIZE	8
12540 #define MAX_FUNCINFO_REC_SIZE	252
12541 
12542 static int check_btf_func(struct bpf_verifier_env *env,
12543 			  const union bpf_attr *attr,
12544 			  bpfptr_t uattr)
12545 {
12546 	const struct btf_type *type, *func_proto, *ret_type;
12547 	u32 i, nfuncs, urec_size, min_size;
12548 	u32 krec_size = sizeof(struct bpf_func_info);
12549 	struct bpf_func_info *krecord;
12550 	struct bpf_func_info_aux *info_aux = NULL;
12551 	struct bpf_prog *prog;
12552 	const struct btf *btf;
12553 	bpfptr_t urecord;
12554 	u32 prev_offset = 0;
12555 	bool scalar_return;
12556 	int ret = -ENOMEM;
12557 
12558 	nfuncs = attr->func_info_cnt;
12559 	if (!nfuncs) {
12560 		if (check_abnormal_return(env))
12561 			return -EINVAL;
12562 		return 0;
12563 	}
12564 
12565 	if (nfuncs != env->subprog_cnt) {
12566 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12567 		return -EINVAL;
12568 	}
12569 
12570 	urec_size = attr->func_info_rec_size;
12571 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12572 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
12573 	    urec_size % sizeof(u32)) {
12574 		verbose(env, "invalid func info rec size %u\n", urec_size);
12575 		return -EINVAL;
12576 	}
12577 
12578 	prog = env->prog;
12579 	btf = prog->aux->btf;
12580 
12581 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
12582 	min_size = min_t(u32, krec_size, urec_size);
12583 
12584 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
12585 	if (!krecord)
12586 		return -ENOMEM;
12587 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12588 	if (!info_aux)
12589 		goto err_free;
12590 
12591 	for (i = 0; i < nfuncs; i++) {
12592 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12593 		if (ret) {
12594 			if (ret == -E2BIG) {
12595 				verbose(env, "nonzero tailing record in func info");
12596 				/* set the size kernel expects so loader can zero
12597 				 * out the rest of the record.
12598 				 */
12599 				if (copy_to_bpfptr_offset(uattr,
12600 							  offsetof(union bpf_attr, func_info_rec_size),
12601 							  &min_size, sizeof(min_size)))
12602 					ret = -EFAULT;
12603 			}
12604 			goto err_free;
12605 		}
12606 
12607 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
12608 			ret = -EFAULT;
12609 			goto err_free;
12610 		}
12611 
12612 		/* check insn_off */
12613 		ret = -EINVAL;
12614 		if (i == 0) {
12615 			if (krecord[i].insn_off) {
12616 				verbose(env,
12617 					"nonzero insn_off %u for the first func info record",
12618 					krecord[i].insn_off);
12619 				goto err_free;
12620 			}
12621 		} else if (krecord[i].insn_off <= prev_offset) {
12622 			verbose(env,
12623 				"same or smaller insn offset (%u) than previous func info record (%u)",
12624 				krecord[i].insn_off, prev_offset);
12625 			goto err_free;
12626 		}
12627 
12628 		if (env->subprog_info[i].start != krecord[i].insn_off) {
12629 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
12630 			goto err_free;
12631 		}
12632 
12633 		/* check type_id */
12634 		type = btf_type_by_id(btf, krecord[i].type_id);
12635 		if (!type || !btf_type_is_func(type)) {
12636 			verbose(env, "invalid type id %d in func info",
12637 				krecord[i].type_id);
12638 			goto err_free;
12639 		}
12640 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
12641 
12642 		func_proto = btf_type_by_id(btf, type->type);
12643 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12644 			/* btf_func_check() already verified it during BTF load */
12645 			goto err_free;
12646 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12647 		scalar_return =
12648 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
12649 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12650 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12651 			goto err_free;
12652 		}
12653 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12654 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12655 			goto err_free;
12656 		}
12657 
12658 		prev_offset = krecord[i].insn_off;
12659 		bpfptr_add(&urecord, urec_size);
12660 	}
12661 
12662 	prog->aux->func_info = krecord;
12663 	prog->aux->func_info_cnt = nfuncs;
12664 	prog->aux->func_info_aux = info_aux;
12665 	return 0;
12666 
12667 err_free:
12668 	kvfree(krecord);
12669 	kfree(info_aux);
12670 	return ret;
12671 }
12672 
12673 static void adjust_btf_func(struct bpf_verifier_env *env)
12674 {
12675 	struct bpf_prog_aux *aux = env->prog->aux;
12676 	int i;
12677 
12678 	if (!aux->func_info)
12679 		return;
12680 
12681 	for (i = 0; i < env->subprog_cnt; i++)
12682 		aux->func_info[i].insn_off = env->subprog_info[i].start;
12683 }
12684 
12685 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
12686 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
12687 
12688 static int check_btf_line(struct bpf_verifier_env *env,
12689 			  const union bpf_attr *attr,
12690 			  bpfptr_t uattr)
12691 {
12692 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12693 	struct bpf_subprog_info *sub;
12694 	struct bpf_line_info *linfo;
12695 	struct bpf_prog *prog;
12696 	const struct btf *btf;
12697 	bpfptr_t ulinfo;
12698 	int err;
12699 
12700 	nr_linfo = attr->line_info_cnt;
12701 	if (!nr_linfo)
12702 		return 0;
12703 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12704 		return -EINVAL;
12705 
12706 	rec_size = attr->line_info_rec_size;
12707 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12708 	    rec_size > MAX_LINEINFO_REC_SIZE ||
12709 	    rec_size & (sizeof(u32) - 1))
12710 		return -EINVAL;
12711 
12712 	/* Need to zero it in case the userspace may
12713 	 * pass in a smaller bpf_line_info object.
12714 	 */
12715 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12716 			 GFP_KERNEL | __GFP_NOWARN);
12717 	if (!linfo)
12718 		return -ENOMEM;
12719 
12720 	prog = env->prog;
12721 	btf = prog->aux->btf;
12722 
12723 	s = 0;
12724 	sub = env->subprog_info;
12725 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
12726 	expected_size = sizeof(struct bpf_line_info);
12727 	ncopy = min_t(u32, expected_size, rec_size);
12728 	for (i = 0; i < nr_linfo; i++) {
12729 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12730 		if (err) {
12731 			if (err == -E2BIG) {
12732 				verbose(env, "nonzero tailing record in line_info");
12733 				if (copy_to_bpfptr_offset(uattr,
12734 							  offsetof(union bpf_attr, line_info_rec_size),
12735 							  &expected_size, sizeof(expected_size)))
12736 					err = -EFAULT;
12737 			}
12738 			goto err_free;
12739 		}
12740 
12741 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
12742 			err = -EFAULT;
12743 			goto err_free;
12744 		}
12745 
12746 		/*
12747 		 * Check insn_off to ensure
12748 		 * 1) strictly increasing AND
12749 		 * 2) bounded by prog->len
12750 		 *
12751 		 * The linfo[0].insn_off == 0 check logically falls into
12752 		 * the later "missing bpf_line_info for func..." case
12753 		 * because the first linfo[0].insn_off must be the
12754 		 * first sub also and the first sub must have
12755 		 * subprog_info[0].start == 0.
12756 		 */
12757 		if ((i && linfo[i].insn_off <= prev_offset) ||
12758 		    linfo[i].insn_off >= prog->len) {
12759 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12760 				i, linfo[i].insn_off, prev_offset,
12761 				prog->len);
12762 			err = -EINVAL;
12763 			goto err_free;
12764 		}
12765 
12766 		if (!prog->insnsi[linfo[i].insn_off].code) {
12767 			verbose(env,
12768 				"Invalid insn code at line_info[%u].insn_off\n",
12769 				i);
12770 			err = -EINVAL;
12771 			goto err_free;
12772 		}
12773 
12774 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12775 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
12776 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12777 			err = -EINVAL;
12778 			goto err_free;
12779 		}
12780 
12781 		if (s != env->subprog_cnt) {
12782 			if (linfo[i].insn_off == sub[s].start) {
12783 				sub[s].linfo_idx = i;
12784 				s++;
12785 			} else if (sub[s].start < linfo[i].insn_off) {
12786 				verbose(env, "missing bpf_line_info for func#%u\n", s);
12787 				err = -EINVAL;
12788 				goto err_free;
12789 			}
12790 		}
12791 
12792 		prev_offset = linfo[i].insn_off;
12793 		bpfptr_add(&ulinfo, rec_size);
12794 	}
12795 
12796 	if (s != env->subprog_cnt) {
12797 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12798 			env->subprog_cnt - s, s);
12799 		err = -EINVAL;
12800 		goto err_free;
12801 	}
12802 
12803 	prog->aux->linfo = linfo;
12804 	prog->aux->nr_linfo = nr_linfo;
12805 
12806 	return 0;
12807 
12808 err_free:
12809 	kvfree(linfo);
12810 	return err;
12811 }
12812 
12813 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
12814 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
12815 
12816 static int check_core_relo(struct bpf_verifier_env *env,
12817 			   const union bpf_attr *attr,
12818 			   bpfptr_t uattr)
12819 {
12820 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12821 	struct bpf_core_relo core_relo = {};
12822 	struct bpf_prog *prog = env->prog;
12823 	const struct btf *btf = prog->aux->btf;
12824 	struct bpf_core_ctx ctx = {
12825 		.log = &env->log,
12826 		.btf = btf,
12827 	};
12828 	bpfptr_t u_core_relo;
12829 	int err;
12830 
12831 	nr_core_relo = attr->core_relo_cnt;
12832 	if (!nr_core_relo)
12833 		return 0;
12834 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12835 		return -EINVAL;
12836 
12837 	rec_size = attr->core_relo_rec_size;
12838 	if (rec_size < MIN_CORE_RELO_SIZE ||
12839 	    rec_size > MAX_CORE_RELO_SIZE ||
12840 	    rec_size % sizeof(u32))
12841 		return -EINVAL;
12842 
12843 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12844 	expected_size = sizeof(struct bpf_core_relo);
12845 	ncopy = min_t(u32, expected_size, rec_size);
12846 
12847 	/* Unlike func_info and line_info, copy and apply each CO-RE
12848 	 * relocation record one at a time.
12849 	 */
12850 	for (i = 0; i < nr_core_relo; i++) {
12851 		/* future proofing when sizeof(bpf_core_relo) changes */
12852 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12853 		if (err) {
12854 			if (err == -E2BIG) {
12855 				verbose(env, "nonzero tailing record in core_relo");
12856 				if (copy_to_bpfptr_offset(uattr,
12857 							  offsetof(union bpf_attr, core_relo_rec_size),
12858 							  &expected_size, sizeof(expected_size)))
12859 					err = -EFAULT;
12860 			}
12861 			break;
12862 		}
12863 
12864 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12865 			err = -EFAULT;
12866 			break;
12867 		}
12868 
12869 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12870 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12871 				i, core_relo.insn_off, prog->len);
12872 			err = -EINVAL;
12873 			break;
12874 		}
12875 
12876 		err = bpf_core_apply(&ctx, &core_relo, i,
12877 				     &prog->insnsi[core_relo.insn_off / 8]);
12878 		if (err)
12879 			break;
12880 		bpfptr_add(&u_core_relo, rec_size);
12881 	}
12882 	return err;
12883 }
12884 
12885 static int check_btf_info(struct bpf_verifier_env *env,
12886 			  const union bpf_attr *attr,
12887 			  bpfptr_t uattr)
12888 {
12889 	struct btf *btf;
12890 	int err;
12891 
12892 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
12893 		if (check_abnormal_return(env))
12894 			return -EINVAL;
12895 		return 0;
12896 	}
12897 
12898 	btf = btf_get_by_fd(attr->prog_btf_fd);
12899 	if (IS_ERR(btf))
12900 		return PTR_ERR(btf);
12901 	if (btf_is_kernel(btf)) {
12902 		btf_put(btf);
12903 		return -EACCES;
12904 	}
12905 	env->prog->aux->btf = btf;
12906 
12907 	err = check_btf_func(env, attr, uattr);
12908 	if (err)
12909 		return err;
12910 
12911 	err = check_btf_line(env, attr, uattr);
12912 	if (err)
12913 		return err;
12914 
12915 	err = check_core_relo(env, attr, uattr);
12916 	if (err)
12917 		return err;
12918 
12919 	return 0;
12920 }
12921 
12922 /* check %cur's range satisfies %old's */
12923 static bool range_within(struct bpf_reg_state *old,
12924 			 struct bpf_reg_state *cur)
12925 {
12926 	return old->umin_value <= cur->umin_value &&
12927 	       old->umax_value >= cur->umax_value &&
12928 	       old->smin_value <= cur->smin_value &&
12929 	       old->smax_value >= cur->smax_value &&
12930 	       old->u32_min_value <= cur->u32_min_value &&
12931 	       old->u32_max_value >= cur->u32_max_value &&
12932 	       old->s32_min_value <= cur->s32_min_value &&
12933 	       old->s32_max_value >= cur->s32_max_value;
12934 }
12935 
12936 /* If in the old state two registers had the same id, then they need to have
12937  * the same id in the new state as well.  But that id could be different from
12938  * the old state, so we need to track the mapping from old to new ids.
12939  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12940  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
12941  * regs with a different old id could still have new id 9, we don't care about
12942  * that.
12943  * So we look through our idmap to see if this old id has been seen before.  If
12944  * so, we require the new id to match; otherwise, we add the id pair to the map.
12945  */
12946 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
12947 {
12948 	unsigned int i;
12949 
12950 	/* either both IDs should be set or both should be zero */
12951 	if (!!old_id != !!cur_id)
12952 		return false;
12953 
12954 	if (old_id == 0) /* cur_id == 0 as well */
12955 		return true;
12956 
12957 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
12958 		if (!idmap[i].old) {
12959 			/* Reached an empty slot; haven't seen this id before */
12960 			idmap[i].old = old_id;
12961 			idmap[i].cur = cur_id;
12962 			return true;
12963 		}
12964 		if (idmap[i].old == old_id)
12965 			return idmap[i].cur == cur_id;
12966 	}
12967 	/* We ran out of idmap slots, which should be impossible */
12968 	WARN_ON_ONCE(1);
12969 	return false;
12970 }
12971 
12972 static void clean_func_state(struct bpf_verifier_env *env,
12973 			     struct bpf_func_state *st)
12974 {
12975 	enum bpf_reg_liveness live;
12976 	int i, j;
12977 
12978 	for (i = 0; i < BPF_REG_FP; i++) {
12979 		live = st->regs[i].live;
12980 		/* liveness must not touch this register anymore */
12981 		st->regs[i].live |= REG_LIVE_DONE;
12982 		if (!(live & REG_LIVE_READ))
12983 			/* since the register is unused, clear its state
12984 			 * to make further comparison simpler
12985 			 */
12986 			__mark_reg_not_init(env, &st->regs[i]);
12987 	}
12988 
12989 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12990 		live = st->stack[i].spilled_ptr.live;
12991 		/* liveness must not touch this stack slot anymore */
12992 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12993 		if (!(live & REG_LIVE_READ)) {
12994 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
12995 			for (j = 0; j < BPF_REG_SIZE; j++)
12996 				st->stack[i].slot_type[j] = STACK_INVALID;
12997 		}
12998 	}
12999 }
13000 
13001 static void clean_verifier_state(struct bpf_verifier_env *env,
13002 				 struct bpf_verifier_state *st)
13003 {
13004 	int i;
13005 
13006 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
13007 		/* all regs in this state in all frames were already marked */
13008 		return;
13009 
13010 	for (i = 0; i <= st->curframe; i++)
13011 		clean_func_state(env, st->frame[i]);
13012 }
13013 
13014 /* the parentage chains form a tree.
13015  * the verifier states are added to state lists at given insn and
13016  * pushed into state stack for future exploration.
13017  * when the verifier reaches bpf_exit insn some of the verifer states
13018  * stored in the state lists have their final liveness state already,
13019  * but a lot of states will get revised from liveness point of view when
13020  * the verifier explores other branches.
13021  * Example:
13022  * 1: r0 = 1
13023  * 2: if r1 == 100 goto pc+1
13024  * 3: r0 = 2
13025  * 4: exit
13026  * when the verifier reaches exit insn the register r0 in the state list of
13027  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
13028  * of insn 2 and goes exploring further. At the insn 4 it will walk the
13029  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
13030  *
13031  * Since the verifier pushes the branch states as it sees them while exploring
13032  * the program the condition of walking the branch instruction for the second
13033  * time means that all states below this branch were already explored and
13034  * their final liveness marks are already propagated.
13035  * Hence when the verifier completes the search of state list in is_state_visited()
13036  * we can call this clean_live_states() function to mark all liveness states
13037  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
13038  * will not be used.
13039  * This function also clears the registers and stack for states that !READ
13040  * to simplify state merging.
13041  *
13042  * Important note here that walking the same branch instruction in the callee
13043  * doesn't meant that the states are DONE. The verifier has to compare
13044  * the callsites
13045  */
13046 static void clean_live_states(struct bpf_verifier_env *env, int insn,
13047 			      struct bpf_verifier_state *cur)
13048 {
13049 	struct bpf_verifier_state_list *sl;
13050 	int i;
13051 
13052 	sl = *explored_state(env, insn);
13053 	while (sl) {
13054 		if (sl->state.branches)
13055 			goto next;
13056 		if (sl->state.insn_idx != insn ||
13057 		    sl->state.curframe != cur->curframe)
13058 			goto next;
13059 		for (i = 0; i <= cur->curframe; i++)
13060 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
13061 				goto next;
13062 		clean_verifier_state(env, &sl->state);
13063 next:
13064 		sl = sl->next;
13065 	}
13066 }
13067 
13068 static bool regs_exact(const struct bpf_reg_state *rold,
13069 		       const struct bpf_reg_state *rcur,
13070 		       struct bpf_id_pair *idmap)
13071 {
13072 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
13073 	       check_ids(rold->id, rcur->id, idmap) &&
13074 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
13075 }
13076 
13077 /* Returns true if (rold safe implies rcur safe) */
13078 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
13079 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
13080 {
13081 	if (!(rold->live & REG_LIVE_READ))
13082 		/* explored state didn't use this */
13083 		return true;
13084 	if (rold->type == NOT_INIT)
13085 		/* explored state can't have used this */
13086 		return true;
13087 	if (rcur->type == NOT_INIT)
13088 		return false;
13089 
13090 	/* Enforce that register types have to match exactly, including their
13091 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
13092 	 * rule.
13093 	 *
13094 	 * One can make a point that using a pointer register as unbounded
13095 	 * SCALAR would be technically acceptable, but this could lead to
13096 	 * pointer leaks because scalars are allowed to leak while pointers
13097 	 * are not. We could make this safe in special cases if root is
13098 	 * calling us, but it's probably not worth the hassle.
13099 	 *
13100 	 * Also, register types that are *not* MAYBE_NULL could technically be
13101 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
13102 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
13103 	 * to the same map).
13104 	 * However, if the old MAYBE_NULL register then got NULL checked,
13105 	 * doing so could have affected others with the same id, and we can't
13106 	 * check for that because we lost the id when we converted to
13107 	 * a non-MAYBE_NULL variant.
13108 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
13109 	 * non-MAYBE_NULL registers as well.
13110 	 */
13111 	if (rold->type != rcur->type)
13112 		return false;
13113 
13114 	switch (base_type(rold->type)) {
13115 	case SCALAR_VALUE:
13116 		if (regs_exact(rold, rcur, idmap))
13117 			return true;
13118 		if (env->explore_alu_limits)
13119 			return false;
13120 		if (!rold->precise)
13121 			return true;
13122 		/* new val must satisfy old val knowledge */
13123 		return range_within(rold, rcur) &&
13124 		       tnum_in(rold->var_off, rcur->var_off);
13125 	case PTR_TO_MAP_KEY:
13126 	case PTR_TO_MAP_VALUE:
13127 		/* If the new min/max/var_off satisfy the old ones and
13128 		 * everything else matches, we are OK.
13129 		 */
13130 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
13131 		       range_within(rold, rcur) &&
13132 		       tnum_in(rold->var_off, rcur->var_off) &&
13133 		       check_ids(rold->id, rcur->id, idmap);
13134 	case PTR_TO_PACKET_META:
13135 	case PTR_TO_PACKET:
13136 		/* We must have at least as much range as the old ptr
13137 		 * did, so that any accesses which were safe before are
13138 		 * still safe.  This is true even if old range < old off,
13139 		 * since someone could have accessed through (ptr - k), or
13140 		 * even done ptr -= k in a register, to get a safe access.
13141 		 */
13142 		if (rold->range > rcur->range)
13143 			return false;
13144 		/* If the offsets don't match, we can't trust our alignment;
13145 		 * nor can we be sure that we won't fall out of range.
13146 		 */
13147 		if (rold->off != rcur->off)
13148 			return false;
13149 		/* id relations must be preserved */
13150 		if (!check_ids(rold->id, rcur->id, idmap))
13151 			return false;
13152 		/* new val must satisfy old val knowledge */
13153 		return range_within(rold, rcur) &&
13154 		       tnum_in(rold->var_off, rcur->var_off);
13155 	case PTR_TO_STACK:
13156 		/* two stack pointers are equal only if they're pointing to
13157 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
13158 		 */
13159 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
13160 	default:
13161 		return regs_exact(rold, rcur, idmap);
13162 	}
13163 }
13164 
13165 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13166 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
13167 {
13168 	int i, spi;
13169 
13170 	/* walk slots of the explored stack and ignore any additional
13171 	 * slots in the current stack, since explored(safe) state
13172 	 * didn't use them
13173 	 */
13174 	for (i = 0; i < old->allocated_stack; i++) {
13175 		spi = i / BPF_REG_SIZE;
13176 
13177 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13178 			i += BPF_REG_SIZE - 1;
13179 			/* explored state didn't use this */
13180 			continue;
13181 		}
13182 
13183 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13184 			continue;
13185 
13186 		/* explored stack has more populated slots than current stack
13187 		 * and these slots were used
13188 		 */
13189 		if (i >= cur->allocated_stack)
13190 			return false;
13191 
13192 		/* if old state was safe with misc data in the stack
13193 		 * it will be safe with zero-initialized stack.
13194 		 * The opposite is not true
13195 		 */
13196 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13197 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13198 			continue;
13199 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13200 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13201 			/* Ex: old explored (safe) state has STACK_SPILL in
13202 			 * this stack slot, but current has STACK_MISC ->
13203 			 * this verifier states are not equivalent,
13204 			 * return false to continue verification of this path
13205 			 */
13206 			return false;
13207 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
13208 			continue;
13209 		if (!is_spilled_reg(&old->stack[spi]))
13210 			continue;
13211 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
13212 			     &cur->stack[spi].spilled_ptr, idmap))
13213 			/* when explored and current stack slot are both storing
13214 			 * spilled registers, check that stored pointers types
13215 			 * are the same as well.
13216 			 * Ex: explored safe path could have stored
13217 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13218 			 * but current path has stored:
13219 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13220 			 * such verifier states are not equivalent.
13221 			 * return false to continue verification of this path
13222 			 */
13223 			return false;
13224 	}
13225 	return true;
13226 }
13227 
13228 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
13229 		    struct bpf_id_pair *idmap)
13230 {
13231 	int i;
13232 
13233 	if (old->acquired_refs != cur->acquired_refs)
13234 		return false;
13235 
13236 	for (i = 0; i < old->acquired_refs; i++) {
13237 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
13238 			return false;
13239 	}
13240 
13241 	return true;
13242 }
13243 
13244 /* compare two verifier states
13245  *
13246  * all states stored in state_list are known to be valid, since
13247  * verifier reached 'bpf_exit' instruction through them
13248  *
13249  * this function is called when verifier exploring different branches of
13250  * execution popped from the state stack. If it sees an old state that has
13251  * more strict register state and more strict stack state then this execution
13252  * branch doesn't need to be explored further, since verifier already
13253  * concluded that more strict state leads to valid finish.
13254  *
13255  * Therefore two states are equivalent if register state is more conservative
13256  * and explored stack state is more conservative than the current one.
13257  * Example:
13258  *       explored                   current
13259  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13260  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13261  *
13262  * In other words if current stack state (one being explored) has more
13263  * valid slots than old one that already passed validation, it means
13264  * the verifier can stop exploring and conclude that current state is valid too
13265  *
13266  * Similarly with registers. If explored state has register type as invalid
13267  * whereas register type in current state is meaningful, it means that
13268  * the current state will reach 'bpf_exit' instruction safely
13269  */
13270 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
13271 			      struct bpf_func_state *cur)
13272 {
13273 	int i;
13274 
13275 	for (i = 0; i < MAX_BPF_REG; i++)
13276 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
13277 			     env->idmap_scratch))
13278 			return false;
13279 
13280 	if (!stacksafe(env, old, cur, env->idmap_scratch))
13281 		return false;
13282 
13283 	if (!refsafe(old, cur, env->idmap_scratch))
13284 		return false;
13285 
13286 	return true;
13287 }
13288 
13289 static bool states_equal(struct bpf_verifier_env *env,
13290 			 struct bpf_verifier_state *old,
13291 			 struct bpf_verifier_state *cur)
13292 {
13293 	int i;
13294 
13295 	if (old->curframe != cur->curframe)
13296 		return false;
13297 
13298 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13299 
13300 	/* Verification state from speculative execution simulation
13301 	 * must never prune a non-speculative execution one.
13302 	 */
13303 	if (old->speculative && !cur->speculative)
13304 		return false;
13305 
13306 	if (old->active_lock.ptr != cur->active_lock.ptr)
13307 		return false;
13308 
13309 	/* Old and cur active_lock's have to be either both present
13310 	 * or both absent.
13311 	 */
13312 	if (!!old->active_lock.id != !!cur->active_lock.id)
13313 		return false;
13314 
13315 	if (old->active_lock.id &&
13316 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
13317 		return false;
13318 
13319 	if (old->active_rcu_lock != cur->active_rcu_lock)
13320 		return false;
13321 
13322 	/* for states to be equal callsites have to be the same
13323 	 * and all frame states need to be equivalent
13324 	 */
13325 	for (i = 0; i <= old->curframe; i++) {
13326 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
13327 			return false;
13328 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
13329 			return false;
13330 	}
13331 	return true;
13332 }
13333 
13334 /* Return 0 if no propagation happened. Return negative error code if error
13335  * happened. Otherwise, return the propagated bit.
13336  */
13337 static int propagate_liveness_reg(struct bpf_verifier_env *env,
13338 				  struct bpf_reg_state *reg,
13339 				  struct bpf_reg_state *parent_reg)
13340 {
13341 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13342 	u8 flag = reg->live & REG_LIVE_READ;
13343 	int err;
13344 
13345 	/* When comes here, read flags of PARENT_REG or REG could be any of
13346 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13347 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13348 	 */
13349 	if (parent_flag == REG_LIVE_READ64 ||
13350 	    /* Or if there is no read flag from REG. */
13351 	    !flag ||
13352 	    /* Or if the read flag from REG is the same as PARENT_REG. */
13353 	    parent_flag == flag)
13354 		return 0;
13355 
13356 	err = mark_reg_read(env, reg, parent_reg, flag);
13357 	if (err)
13358 		return err;
13359 
13360 	return flag;
13361 }
13362 
13363 /* A write screens off any subsequent reads; but write marks come from the
13364  * straight-line code between a state and its parent.  When we arrive at an
13365  * equivalent state (jump target or such) we didn't arrive by the straight-line
13366  * code, so read marks in the state must propagate to the parent regardless
13367  * of the state's write marks. That's what 'parent == state->parent' comparison
13368  * in mark_reg_read() is for.
13369  */
13370 static int propagate_liveness(struct bpf_verifier_env *env,
13371 			      const struct bpf_verifier_state *vstate,
13372 			      struct bpf_verifier_state *vparent)
13373 {
13374 	struct bpf_reg_state *state_reg, *parent_reg;
13375 	struct bpf_func_state *state, *parent;
13376 	int i, frame, err = 0;
13377 
13378 	if (vparent->curframe != vstate->curframe) {
13379 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
13380 		     vparent->curframe, vstate->curframe);
13381 		return -EFAULT;
13382 	}
13383 	/* Propagate read liveness of registers... */
13384 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
13385 	for (frame = 0; frame <= vstate->curframe; frame++) {
13386 		parent = vparent->frame[frame];
13387 		state = vstate->frame[frame];
13388 		parent_reg = parent->regs;
13389 		state_reg = state->regs;
13390 		/* We don't need to worry about FP liveness, it's read-only */
13391 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
13392 			err = propagate_liveness_reg(env, &state_reg[i],
13393 						     &parent_reg[i]);
13394 			if (err < 0)
13395 				return err;
13396 			if (err == REG_LIVE_READ64)
13397 				mark_insn_zext(env, &parent_reg[i]);
13398 		}
13399 
13400 		/* Propagate stack slots. */
13401 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13402 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
13403 			parent_reg = &parent->stack[i].spilled_ptr;
13404 			state_reg = &state->stack[i].spilled_ptr;
13405 			err = propagate_liveness_reg(env, state_reg,
13406 						     parent_reg);
13407 			if (err < 0)
13408 				return err;
13409 		}
13410 	}
13411 	return 0;
13412 }
13413 
13414 /* find precise scalars in the previous equivalent state and
13415  * propagate them into the current state
13416  */
13417 static int propagate_precision(struct bpf_verifier_env *env,
13418 			       const struct bpf_verifier_state *old)
13419 {
13420 	struct bpf_reg_state *state_reg;
13421 	struct bpf_func_state *state;
13422 	int i, err = 0, fr;
13423 
13424 	for (fr = old->curframe; fr >= 0; fr--) {
13425 		state = old->frame[fr];
13426 		state_reg = state->regs;
13427 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13428 			if (state_reg->type != SCALAR_VALUE ||
13429 			    !state_reg->precise)
13430 				continue;
13431 			if (env->log.level & BPF_LOG_LEVEL2)
13432 				verbose(env, "frame %d: propagating r%d\n", i, fr);
13433 			err = mark_chain_precision_frame(env, fr, i);
13434 			if (err < 0)
13435 				return err;
13436 		}
13437 
13438 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13439 			if (!is_spilled_reg(&state->stack[i]))
13440 				continue;
13441 			state_reg = &state->stack[i].spilled_ptr;
13442 			if (state_reg->type != SCALAR_VALUE ||
13443 			    !state_reg->precise)
13444 				continue;
13445 			if (env->log.level & BPF_LOG_LEVEL2)
13446 				verbose(env, "frame %d: propagating fp%d\n",
13447 					(-i - 1) * BPF_REG_SIZE, fr);
13448 			err = mark_chain_precision_stack_frame(env, fr, i);
13449 			if (err < 0)
13450 				return err;
13451 		}
13452 	}
13453 	return 0;
13454 }
13455 
13456 static bool states_maybe_looping(struct bpf_verifier_state *old,
13457 				 struct bpf_verifier_state *cur)
13458 {
13459 	struct bpf_func_state *fold, *fcur;
13460 	int i, fr = cur->curframe;
13461 
13462 	if (old->curframe != fr)
13463 		return false;
13464 
13465 	fold = old->frame[fr];
13466 	fcur = cur->frame[fr];
13467 	for (i = 0; i < MAX_BPF_REG; i++)
13468 		if (memcmp(&fold->regs[i], &fcur->regs[i],
13469 			   offsetof(struct bpf_reg_state, parent)))
13470 			return false;
13471 	return true;
13472 }
13473 
13474 
13475 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
13476 {
13477 	struct bpf_verifier_state_list *new_sl;
13478 	struct bpf_verifier_state_list *sl, **pprev;
13479 	struct bpf_verifier_state *cur = env->cur_state, *new;
13480 	int i, j, err, states_cnt = 0;
13481 	bool add_new_state = env->test_state_freq ? true : false;
13482 
13483 	/* bpf progs typically have pruning point every 4 instructions
13484 	 * http://vger.kernel.org/bpfconf2019.html#session-1
13485 	 * Do not add new state for future pruning if the verifier hasn't seen
13486 	 * at least 2 jumps and at least 8 instructions.
13487 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13488 	 * In tests that amounts to up to 50% reduction into total verifier
13489 	 * memory consumption and 20% verifier time speedup.
13490 	 */
13491 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13492 	    env->insn_processed - env->prev_insn_processed >= 8)
13493 		add_new_state = true;
13494 
13495 	pprev = explored_state(env, insn_idx);
13496 	sl = *pprev;
13497 
13498 	clean_live_states(env, insn_idx, cur);
13499 
13500 	while (sl) {
13501 		states_cnt++;
13502 		if (sl->state.insn_idx != insn_idx)
13503 			goto next;
13504 
13505 		if (sl->state.branches) {
13506 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13507 
13508 			if (frame->in_async_callback_fn &&
13509 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13510 				/* Different async_entry_cnt means that the verifier is
13511 				 * processing another entry into async callback.
13512 				 * Seeing the same state is not an indication of infinite
13513 				 * loop or infinite recursion.
13514 				 * But finding the same state doesn't mean that it's safe
13515 				 * to stop processing the current state. The previous state
13516 				 * hasn't yet reached bpf_exit, since state.branches > 0.
13517 				 * Checking in_async_callback_fn alone is not enough either.
13518 				 * Since the verifier still needs to catch infinite loops
13519 				 * inside async callbacks.
13520 				 */
13521 			} else if (states_maybe_looping(&sl->state, cur) &&
13522 				   states_equal(env, &sl->state, cur)) {
13523 				verbose_linfo(env, insn_idx, "; ");
13524 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13525 				return -EINVAL;
13526 			}
13527 			/* if the verifier is processing a loop, avoid adding new state
13528 			 * too often, since different loop iterations have distinct
13529 			 * states and may not help future pruning.
13530 			 * This threshold shouldn't be too low to make sure that
13531 			 * a loop with large bound will be rejected quickly.
13532 			 * The most abusive loop will be:
13533 			 * r1 += 1
13534 			 * if r1 < 1000000 goto pc-2
13535 			 * 1M insn_procssed limit / 100 == 10k peak states.
13536 			 * This threshold shouldn't be too high either, since states
13537 			 * at the end of the loop are likely to be useful in pruning.
13538 			 */
13539 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13540 			    env->insn_processed - env->prev_insn_processed < 100)
13541 				add_new_state = false;
13542 			goto miss;
13543 		}
13544 		if (states_equal(env, &sl->state, cur)) {
13545 			sl->hit_cnt++;
13546 			/* reached equivalent register/stack state,
13547 			 * prune the search.
13548 			 * Registers read by the continuation are read by us.
13549 			 * If we have any write marks in env->cur_state, they
13550 			 * will prevent corresponding reads in the continuation
13551 			 * from reaching our parent (an explored_state).  Our
13552 			 * own state will get the read marks recorded, but
13553 			 * they'll be immediately forgotten as we're pruning
13554 			 * this state and will pop a new one.
13555 			 */
13556 			err = propagate_liveness(env, &sl->state, cur);
13557 
13558 			/* if previous state reached the exit with precision and
13559 			 * current state is equivalent to it (except precsion marks)
13560 			 * the precision needs to be propagated back in
13561 			 * the current state.
13562 			 */
13563 			err = err ? : push_jmp_history(env, cur);
13564 			err = err ? : propagate_precision(env, &sl->state);
13565 			if (err)
13566 				return err;
13567 			return 1;
13568 		}
13569 miss:
13570 		/* when new state is not going to be added do not increase miss count.
13571 		 * Otherwise several loop iterations will remove the state
13572 		 * recorded earlier. The goal of these heuristics is to have
13573 		 * states from some iterations of the loop (some in the beginning
13574 		 * and some at the end) to help pruning.
13575 		 */
13576 		if (add_new_state)
13577 			sl->miss_cnt++;
13578 		/* heuristic to determine whether this state is beneficial
13579 		 * to keep checking from state equivalence point of view.
13580 		 * Higher numbers increase max_states_per_insn and verification time,
13581 		 * but do not meaningfully decrease insn_processed.
13582 		 */
13583 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13584 			/* the state is unlikely to be useful. Remove it to
13585 			 * speed up verification
13586 			 */
13587 			*pprev = sl->next;
13588 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
13589 				u32 br = sl->state.branches;
13590 
13591 				WARN_ONCE(br,
13592 					  "BUG live_done but branches_to_explore %d\n",
13593 					  br);
13594 				free_verifier_state(&sl->state, false);
13595 				kfree(sl);
13596 				env->peak_states--;
13597 			} else {
13598 				/* cannot free this state, since parentage chain may
13599 				 * walk it later. Add it for free_list instead to
13600 				 * be freed at the end of verification
13601 				 */
13602 				sl->next = env->free_list;
13603 				env->free_list = sl;
13604 			}
13605 			sl = *pprev;
13606 			continue;
13607 		}
13608 next:
13609 		pprev = &sl->next;
13610 		sl = *pprev;
13611 	}
13612 
13613 	if (env->max_states_per_insn < states_cnt)
13614 		env->max_states_per_insn = states_cnt;
13615 
13616 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
13617 		return 0;
13618 
13619 	if (!add_new_state)
13620 		return 0;
13621 
13622 	/* There were no equivalent states, remember the current one.
13623 	 * Technically the current state is not proven to be safe yet,
13624 	 * but it will either reach outer most bpf_exit (which means it's safe)
13625 	 * or it will be rejected. When there are no loops the verifier won't be
13626 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
13627 	 * again on the way to bpf_exit.
13628 	 * When looping the sl->state.branches will be > 0 and this state
13629 	 * will not be considered for equivalence until branches == 0.
13630 	 */
13631 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
13632 	if (!new_sl)
13633 		return -ENOMEM;
13634 	env->total_states++;
13635 	env->peak_states++;
13636 	env->prev_jmps_processed = env->jmps_processed;
13637 	env->prev_insn_processed = env->insn_processed;
13638 
13639 	/* forget precise markings we inherited, see __mark_chain_precision */
13640 	if (env->bpf_capable)
13641 		mark_all_scalars_imprecise(env, cur);
13642 
13643 	/* add new state to the head of linked list */
13644 	new = &new_sl->state;
13645 	err = copy_verifier_state(new, cur);
13646 	if (err) {
13647 		free_verifier_state(new, false);
13648 		kfree(new_sl);
13649 		return err;
13650 	}
13651 	new->insn_idx = insn_idx;
13652 	WARN_ONCE(new->branches != 1,
13653 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
13654 
13655 	cur->parent = new;
13656 	cur->first_insn_idx = insn_idx;
13657 	clear_jmp_history(cur);
13658 	new_sl->next = *explored_state(env, insn_idx);
13659 	*explored_state(env, insn_idx) = new_sl;
13660 	/* connect new state to parentage chain. Current frame needs all
13661 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
13662 	 * to the stack implicitly by JITs) so in callers' frames connect just
13663 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13664 	 * the state of the call instruction (with WRITTEN set), and r0 comes
13665 	 * from callee with its full parentage chain, anyway.
13666 	 */
13667 	/* clear write marks in current state: the writes we did are not writes
13668 	 * our child did, so they don't screen off its reads from us.
13669 	 * (There are no read marks in current state, because reads always mark
13670 	 * their parent and current state never has children yet.  Only
13671 	 * explored_states can get read marks.)
13672 	 */
13673 	for (j = 0; j <= cur->curframe; j++) {
13674 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13675 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13676 		for (i = 0; i < BPF_REG_FP; i++)
13677 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13678 	}
13679 
13680 	/* all stack frames are accessible from callee, clear them all */
13681 	for (j = 0; j <= cur->curframe; j++) {
13682 		struct bpf_func_state *frame = cur->frame[j];
13683 		struct bpf_func_state *newframe = new->frame[j];
13684 
13685 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
13686 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
13687 			frame->stack[i].spilled_ptr.parent =
13688 						&newframe->stack[i].spilled_ptr;
13689 		}
13690 	}
13691 	return 0;
13692 }
13693 
13694 /* Return true if it's OK to have the same insn return a different type. */
13695 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13696 {
13697 	switch (base_type(type)) {
13698 	case PTR_TO_CTX:
13699 	case PTR_TO_SOCKET:
13700 	case PTR_TO_SOCK_COMMON:
13701 	case PTR_TO_TCP_SOCK:
13702 	case PTR_TO_XDP_SOCK:
13703 	case PTR_TO_BTF_ID:
13704 		return false;
13705 	default:
13706 		return true;
13707 	}
13708 }
13709 
13710 /* If an instruction was previously used with particular pointer types, then we
13711  * need to be careful to avoid cases such as the below, where it may be ok
13712  * for one branch accessing the pointer, but not ok for the other branch:
13713  *
13714  * R1 = sock_ptr
13715  * goto X;
13716  * ...
13717  * R1 = some_other_valid_ptr;
13718  * goto X;
13719  * ...
13720  * R2 = *(u32 *)(R1 + 0);
13721  */
13722 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13723 {
13724 	return src != prev && (!reg_type_mismatch_ok(src) ||
13725 			       !reg_type_mismatch_ok(prev));
13726 }
13727 
13728 static int do_check(struct bpf_verifier_env *env)
13729 {
13730 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13731 	struct bpf_verifier_state *state = env->cur_state;
13732 	struct bpf_insn *insns = env->prog->insnsi;
13733 	struct bpf_reg_state *regs;
13734 	int insn_cnt = env->prog->len;
13735 	bool do_print_state = false;
13736 	int prev_insn_idx = -1;
13737 
13738 	for (;;) {
13739 		struct bpf_insn *insn;
13740 		u8 class;
13741 		int err;
13742 
13743 		env->prev_insn_idx = prev_insn_idx;
13744 		if (env->insn_idx >= insn_cnt) {
13745 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
13746 				env->insn_idx, insn_cnt);
13747 			return -EFAULT;
13748 		}
13749 
13750 		insn = &insns[env->insn_idx];
13751 		class = BPF_CLASS(insn->code);
13752 
13753 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
13754 			verbose(env,
13755 				"BPF program is too large. Processed %d insn\n",
13756 				env->insn_processed);
13757 			return -E2BIG;
13758 		}
13759 
13760 		state->last_insn_idx = env->prev_insn_idx;
13761 
13762 		if (is_prune_point(env, env->insn_idx)) {
13763 			err = is_state_visited(env, env->insn_idx);
13764 			if (err < 0)
13765 				return err;
13766 			if (err == 1) {
13767 				/* found equivalent state, can prune the search */
13768 				if (env->log.level & BPF_LOG_LEVEL) {
13769 					if (do_print_state)
13770 						verbose(env, "\nfrom %d to %d%s: safe\n",
13771 							env->prev_insn_idx, env->insn_idx,
13772 							env->cur_state->speculative ?
13773 							" (speculative execution)" : "");
13774 					else
13775 						verbose(env, "%d: safe\n", env->insn_idx);
13776 				}
13777 				goto process_bpf_exit;
13778 			}
13779 		}
13780 
13781 		if (is_jmp_point(env, env->insn_idx)) {
13782 			err = push_jmp_history(env, state);
13783 			if (err)
13784 				return err;
13785 		}
13786 
13787 		if (signal_pending(current))
13788 			return -EAGAIN;
13789 
13790 		if (need_resched())
13791 			cond_resched();
13792 
13793 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13794 			verbose(env, "\nfrom %d to %d%s:",
13795 				env->prev_insn_idx, env->insn_idx,
13796 				env->cur_state->speculative ?
13797 				" (speculative execution)" : "");
13798 			print_verifier_state(env, state->frame[state->curframe], true);
13799 			do_print_state = false;
13800 		}
13801 
13802 		if (env->log.level & BPF_LOG_LEVEL) {
13803 			const struct bpf_insn_cbs cbs = {
13804 				.cb_call	= disasm_kfunc_name,
13805 				.cb_print	= verbose,
13806 				.private_data	= env,
13807 			};
13808 
13809 			if (verifier_state_scratched(env))
13810 				print_insn_state(env, state->frame[state->curframe]);
13811 
13812 			verbose_linfo(env, env->insn_idx, "; ");
13813 			env->prev_log_len = env->log.len_used;
13814 			verbose(env, "%d: ", env->insn_idx);
13815 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
13816 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13817 			env->prev_log_len = env->log.len_used;
13818 		}
13819 
13820 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
13821 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13822 							   env->prev_insn_idx);
13823 			if (err)
13824 				return err;
13825 		}
13826 
13827 		regs = cur_regs(env);
13828 		sanitize_mark_insn_seen(env);
13829 		prev_insn_idx = env->insn_idx;
13830 
13831 		if (class == BPF_ALU || class == BPF_ALU64) {
13832 			err = check_alu_op(env, insn);
13833 			if (err)
13834 				return err;
13835 
13836 		} else if (class == BPF_LDX) {
13837 			enum bpf_reg_type *prev_src_type, src_reg_type;
13838 
13839 			/* check for reserved fields is already done */
13840 
13841 			/* check src operand */
13842 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13843 			if (err)
13844 				return err;
13845 
13846 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13847 			if (err)
13848 				return err;
13849 
13850 			src_reg_type = regs[insn->src_reg].type;
13851 
13852 			/* check that memory (src_reg + off) is readable,
13853 			 * the state of dst_reg will be updated by this func
13854 			 */
13855 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
13856 					       insn->off, BPF_SIZE(insn->code),
13857 					       BPF_READ, insn->dst_reg, false);
13858 			if (err)
13859 				return err;
13860 
13861 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13862 
13863 			if (*prev_src_type == NOT_INIT) {
13864 				/* saw a valid insn
13865 				 * dst_reg = *(u32 *)(src_reg + off)
13866 				 * save type to validate intersecting paths
13867 				 */
13868 				*prev_src_type = src_reg_type;
13869 
13870 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
13871 				/* ABuser program is trying to use the same insn
13872 				 * dst_reg = *(u32*) (src_reg + off)
13873 				 * with different pointer types:
13874 				 * src_reg == ctx in one branch and
13875 				 * src_reg == stack|map in some other branch.
13876 				 * Reject it.
13877 				 */
13878 				verbose(env, "same insn cannot be used with different pointers\n");
13879 				return -EINVAL;
13880 			}
13881 
13882 		} else if (class == BPF_STX) {
13883 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
13884 
13885 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13886 				err = check_atomic(env, env->insn_idx, insn);
13887 				if (err)
13888 					return err;
13889 				env->insn_idx++;
13890 				continue;
13891 			}
13892 
13893 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13894 				verbose(env, "BPF_STX uses reserved fields\n");
13895 				return -EINVAL;
13896 			}
13897 
13898 			/* check src1 operand */
13899 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13900 			if (err)
13901 				return err;
13902 			/* check src2 operand */
13903 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13904 			if (err)
13905 				return err;
13906 
13907 			dst_reg_type = regs[insn->dst_reg].type;
13908 
13909 			/* check that memory (dst_reg + off) is writeable */
13910 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13911 					       insn->off, BPF_SIZE(insn->code),
13912 					       BPF_WRITE, insn->src_reg, false);
13913 			if (err)
13914 				return err;
13915 
13916 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13917 
13918 			if (*prev_dst_type == NOT_INIT) {
13919 				*prev_dst_type = dst_reg_type;
13920 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
13921 				verbose(env, "same insn cannot be used with different pointers\n");
13922 				return -EINVAL;
13923 			}
13924 
13925 		} else if (class == BPF_ST) {
13926 			if (BPF_MODE(insn->code) != BPF_MEM ||
13927 			    insn->src_reg != BPF_REG_0) {
13928 				verbose(env, "BPF_ST uses reserved fields\n");
13929 				return -EINVAL;
13930 			}
13931 			/* check src operand */
13932 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13933 			if (err)
13934 				return err;
13935 
13936 			if (is_ctx_reg(env, insn->dst_reg)) {
13937 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
13938 					insn->dst_reg,
13939 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
13940 				return -EACCES;
13941 			}
13942 
13943 			/* check that memory (dst_reg + off) is writeable */
13944 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13945 					       insn->off, BPF_SIZE(insn->code),
13946 					       BPF_WRITE, -1, false);
13947 			if (err)
13948 				return err;
13949 
13950 		} else if (class == BPF_JMP || class == BPF_JMP32) {
13951 			u8 opcode = BPF_OP(insn->code);
13952 
13953 			env->jmps_processed++;
13954 			if (opcode == BPF_CALL) {
13955 				if (BPF_SRC(insn->code) != BPF_K ||
13956 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13957 				     && insn->off != 0) ||
13958 				    (insn->src_reg != BPF_REG_0 &&
13959 				     insn->src_reg != BPF_PSEUDO_CALL &&
13960 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
13961 				    insn->dst_reg != BPF_REG_0 ||
13962 				    class == BPF_JMP32) {
13963 					verbose(env, "BPF_CALL uses reserved fields\n");
13964 					return -EINVAL;
13965 				}
13966 
13967 				if (env->cur_state->active_lock.ptr) {
13968 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
13969 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
13970 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
13971 					     (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
13972 						verbose(env, "function calls are not allowed while holding a lock\n");
13973 						return -EINVAL;
13974 					}
13975 				}
13976 				if (insn->src_reg == BPF_PSEUDO_CALL)
13977 					err = check_func_call(env, insn, &env->insn_idx);
13978 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
13979 					err = check_kfunc_call(env, insn, &env->insn_idx);
13980 				else
13981 					err = check_helper_call(env, insn, &env->insn_idx);
13982 				if (err)
13983 					return err;
13984 			} else if (opcode == BPF_JA) {
13985 				if (BPF_SRC(insn->code) != BPF_K ||
13986 				    insn->imm != 0 ||
13987 				    insn->src_reg != BPF_REG_0 ||
13988 				    insn->dst_reg != BPF_REG_0 ||
13989 				    class == BPF_JMP32) {
13990 					verbose(env, "BPF_JA uses reserved fields\n");
13991 					return -EINVAL;
13992 				}
13993 
13994 				env->insn_idx += insn->off + 1;
13995 				continue;
13996 
13997 			} else if (opcode == BPF_EXIT) {
13998 				if (BPF_SRC(insn->code) != BPF_K ||
13999 				    insn->imm != 0 ||
14000 				    insn->src_reg != BPF_REG_0 ||
14001 				    insn->dst_reg != BPF_REG_0 ||
14002 				    class == BPF_JMP32) {
14003 					verbose(env, "BPF_EXIT uses reserved fields\n");
14004 					return -EINVAL;
14005 				}
14006 
14007 				if (env->cur_state->active_lock.ptr) {
14008 					verbose(env, "bpf_spin_unlock is missing\n");
14009 					return -EINVAL;
14010 				}
14011 
14012 				if (env->cur_state->active_rcu_lock) {
14013 					verbose(env, "bpf_rcu_read_unlock is missing\n");
14014 					return -EINVAL;
14015 				}
14016 
14017 				/* We must do check_reference_leak here before
14018 				 * prepare_func_exit to handle the case when
14019 				 * state->curframe > 0, it may be a callback
14020 				 * function, for which reference_state must
14021 				 * match caller reference state when it exits.
14022 				 */
14023 				err = check_reference_leak(env);
14024 				if (err)
14025 					return err;
14026 
14027 				if (state->curframe) {
14028 					/* exit from nested function */
14029 					err = prepare_func_exit(env, &env->insn_idx);
14030 					if (err)
14031 						return err;
14032 					do_print_state = true;
14033 					continue;
14034 				}
14035 
14036 				err = check_return_code(env);
14037 				if (err)
14038 					return err;
14039 process_bpf_exit:
14040 				mark_verifier_state_scratched(env);
14041 				update_branch_counts(env, env->cur_state);
14042 				err = pop_stack(env, &prev_insn_idx,
14043 						&env->insn_idx, pop_log);
14044 				if (err < 0) {
14045 					if (err != -ENOENT)
14046 						return err;
14047 					break;
14048 				} else {
14049 					do_print_state = true;
14050 					continue;
14051 				}
14052 			} else {
14053 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
14054 				if (err)
14055 					return err;
14056 			}
14057 		} else if (class == BPF_LD) {
14058 			u8 mode = BPF_MODE(insn->code);
14059 
14060 			if (mode == BPF_ABS || mode == BPF_IND) {
14061 				err = check_ld_abs(env, insn);
14062 				if (err)
14063 					return err;
14064 
14065 			} else if (mode == BPF_IMM) {
14066 				err = check_ld_imm(env, insn);
14067 				if (err)
14068 					return err;
14069 
14070 				env->insn_idx++;
14071 				sanitize_mark_insn_seen(env);
14072 			} else {
14073 				verbose(env, "invalid BPF_LD mode\n");
14074 				return -EINVAL;
14075 			}
14076 		} else {
14077 			verbose(env, "unknown insn class %d\n", class);
14078 			return -EINVAL;
14079 		}
14080 
14081 		env->insn_idx++;
14082 	}
14083 
14084 	return 0;
14085 }
14086 
14087 static int find_btf_percpu_datasec(struct btf *btf)
14088 {
14089 	const struct btf_type *t;
14090 	const char *tname;
14091 	int i, n;
14092 
14093 	/*
14094 	 * Both vmlinux and module each have their own ".data..percpu"
14095 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
14096 	 * types to look at only module's own BTF types.
14097 	 */
14098 	n = btf_nr_types(btf);
14099 	if (btf_is_module(btf))
14100 		i = btf_nr_types(btf_vmlinux);
14101 	else
14102 		i = 1;
14103 
14104 	for(; i < n; i++) {
14105 		t = btf_type_by_id(btf, i);
14106 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
14107 			continue;
14108 
14109 		tname = btf_name_by_offset(btf, t->name_off);
14110 		if (!strcmp(tname, ".data..percpu"))
14111 			return i;
14112 	}
14113 
14114 	return -ENOENT;
14115 }
14116 
14117 /* replace pseudo btf_id with kernel symbol address */
14118 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
14119 			       struct bpf_insn *insn,
14120 			       struct bpf_insn_aux_data *aux)
14121 {
14122 	const struct btf_var_secinfo *vsi;
14123 	const struct btf_type *datasec;
14124 	struct btf_mod_pair *btf_mod;
14125 	const struct btf_type *t;
14126 	const char *sym_name;
14127 	bool percpu = false;
14128 	u32 type, id = insn->imm;
14129 	struct btf *btf;
14130 	s32 datasec_id;
14131 	u64 addr;
14132 	int i, btf_fd, err;
14133 
14134 	btf_fd = insn[1].imm;
14135 	if (btf_fd) {
14136 		btf = btf_get_by_fd(btf_fd);
14137 		if (IS_ERR(btf)) {
14138 			verbose(env, "invalid module BTF object FD specified.\n");
14139 			return -EINVAL;
14140 		}
14141 	} else {
14142 		if (!btf_vmlinux) {
14143 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
14144 			return -EINVAL;
14145 		}
14146 		btf = btf_vmlinux;
14147 		btf_get(btf);
14148 	}
14149 
14150 	t = btf_type_by_id(btf, id);
14151 	if (!t) {
14152 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
14153 		err = -ENOENT;
14154 		goto err_put;
14155 	}
14156 
14157 	if (!btf_type_is_var(t)) {
14158 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
14159 		err = -EINVAL;
14160 		goto err_put;
14161 	}
14162 
14163 	sym_name = btf_name_by_offset(btf, t->name_off);
14164 	addr = kallsyms_lookup_name(sym_name);
14165 	if (!addr) {
14166 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
14167 			sym_name);
14168 		err = -ENOENT;
14169 		goto err_put;
14170 	}
14171 
14172 	datasec_id = find_btf_percpu_datasec(btf);
14173 	if (datasec_id > 0) {
14174 		datasec = btf_type_by_id(btf, datasec_id);
14175 		for_each_vsi(i, datasec, vsi) {
14176 			if (vsi->type == id) {
14177 				percpu = true;
14178 				break;
14179 			}
14180 		}
14181 	}
14182 
14183 	insn[0].imm = (u32)addr;
14184 	insn[1].imm = addr >> 32;
14185 
14186 	type = t->type;
14187 	t = btf_type_skip_modifiers(btf, type, NULL);
14188 	if (percpu) {
14189 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
14190 		aux->btf_var.btf = btf;
14191 		aux->btf_var.btf_id = type;
14192 	} else if (!btf_type_is_struct(t)) {
14193 		const struct btf_type *ret;
14194 		const char *tname;
14195 		u32 tsize;
14196 
14197 		/* resolve the type size of ksym. */
14198 		ret = btf_resolve_size(btf, t, &tsize);
14199 		if (IS_ERR(ret)) {
14200 			tname = btf_name_by_offset(btf, t->name_off);
14201 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14202 				tname, PTR_ERR(ret));
14203 			err = -EINVAL;
14204 			goto err_put;
14205 		}
14206 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
14207 		aux->btf_var.mem_size = tsize;
14208 	} else {
14209 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
14210 		aux->btf_var.btf = btf;
14211 		aux->btf_var.btf_id = type;
14212 	}
14213 
14214 	/* check whether we recorded this BTF (and maybe module) already */
14215 	for (i = 0; i < env->used_btf_cnt; i++) {
14216 		if (env->used_btfs[i].btf == btf) {
14217 			btf_put(btf);
14218 			return 0;
14219 		}
14220 	}
14221 
14222 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
14223 		err = -E2BIG;
14224 		goto err_put;
14225 	}
14226 
14227 	btf_mod = &env->used_btfs[env->used_btf_cnt];
14228 	btf_mod->btf = btf;
14229 	btf_mod->module = NULL;
14230 
14231 	/* if we reference variables from kernel module, bump its refcount */
14232 	if (btf_is_module(btf)) {
14233 		btf_mod->module = btf_try_get_module(btf);
14234 		if (!btf_mod->module) {
14235 			err = -ENXIO;
14236 			goto err_put;
14237 		}
14238 	}
14239 
14240 	env->used_btf_cnt++;
14241 
14242 	return 0;
14243 err_put:
14244 	btf_put(btf);
14245 	return err;
14246 }
14247 
14248 static bool is_tracing_prog_type(enum bpf_prog_type type)
14249 {
14250 	switch (type) {
14251 	case BPF_PROG_TYPE_KPROBE:
14252 	case BPF_PROG_TYPE_TRACEPOINT:
14253 	case BPF_PROG_TYPE_PERF_EVENT:
14254 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14255 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
14256 		return true;
14257 	default:
14258 		return false;
14259 	}
14260 }
14261 
14262 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14263 					struct bpf_map *map,
14264 					struct bpf_prog *prog)
14265 
14266 {
14267 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14268 
14269 	if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14270 		if (is_tracing_prog_type(prog_type)) {
14271 			verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14272 			return -EINVAL;
14273 		}
14274 	}
14275 
14276 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
14277 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14278 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14279 			return -EINVAL;
14280 		}
14281 
14282 		if (is_tracing_prog_type(prog_type)) {
14283 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14284 			return -EINVAL;
14285 		}
14286 
14287 		if (prog->aux->sleepable) {
14288 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14289 			return -EINVAL;
14290 		}
14291 	}
14292 
14293 	if (btf_record_has_field(map->record, BPF_TIMER)) {
14294 		if (is_tracing_prog_type(prog_type)) {
14295 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
14296 			return -EINVAL;
14297 		}
14298 	}
14299 
14300 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
14301 	    !bpf_offload_prog_map_match(prog, map)) {
14302 		verbose(env, "offload device mismatch between prog and map\n");
14303 		return -EINVAL;
14304 	}
14305 
14306 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14307 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14308 		return -EINVAL;
14309 	}
14310 
14311 	if (prog->aux->sleepable)
14312 		switch (map->map_type) {
14313 		case BPF_MAP_TYPE_HASH:
14314 		case BPF_MAP_TYPE_LRU_HASH:
14315 		case BPF_MAP_TYPE_ARRAY:
14316 		case BPF_MAP_TYPE_PERCPU_HASH:
14317 		case BPF_MAP_TYPE_PERCPU_ARRAY:
14318 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14319 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14320 		case BPF_MAP_TYPE_HASH_OF_MAPS:
14321 		case BPF_MAP_TYPE_RINGBUF:
14322 		case BPF_MAP_TYPE_USER_RINGBUF:
14323 		case BPF_MAP_TYPE_INODE_STORAGE:
14324 		case BPF_MAP_TYPE_SK_STORAGE:
14325 		case BPF_MAP_TYPE_TASK_STORAGE:
14326 		case BPF_MAP_TYPE_CGRP_STORAGE:
14327 			break;
14328 		default:
14329 			verbose(env,
14330 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
14331 			return -EINVAL;
14332 		}
14333 
14334 	return 0;
14335 }
14336 
14337 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14338 {
14339 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14340 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14341 }
14342 
14343 /* find and rewrite pseudo imm in ld_imm64 instructions:
14344  *
14345  * 1. if it accesses map FD, replace it with actual map pointer.
14346  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14347  *
14348  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
14349  */
14350 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
14351 {
14352 	struct bpf_insn *insn = env->prog->insnsi;
14353 	int insn_cnt = env->prog->len;
14354 	int i, j, err;
14355 
14356 	err = bpf_prog_calc_tag(env->prog);
14357 	if (err)
14358 		return err;
14359 
14360 	for (i = 0; i < insn_cnt; i++, insn++) {
14361 		if (BPF_CLASS(insn->code) == BPF_LDX &&
14362 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
14363 			verbose(env, "BPF_LDX uses reserved fields\n");
14364 			return -EINVAL;
14365 		}
14366 
14367 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
14368 			struct bpf_insn_aux_data *aux;
14369 			struct bpf_map *map;
14370 			struct fd f;
14371 			u64 addr;
14372 			u32 fd;
14373 
14374 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
14375 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14376 			    insn[1].off != 0) {
14377 				verbose(env, "invalid bpf_ld_imm64 insn\n");
14378 				return -EINVAL;
14379 			}
14380 
14381 			if (insn[0].src_reg == 0)
14382 				/* valid generic load 64-bit imm */
14383 				goto next_insn;
14384 
14385 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14386 				aux = &env->insn_aux_data[i];
14387 				err = check_pseudo_btf_id(env, insn, aux);
14388 				if (err)
14389 					return err;
14390 				goto next_insn;
14391 			}
14392 
14393 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14394 				aux = &env->insn_aux_data[i];
14395 				aux->ptr_type = PTR_TO_FUNC;
14396 				goto next_insn;
14397 			}
14398 
14399 			/* In final convert_pseudo_ld_imm64() step, this is
14400 			 * converted into regular 64-bit imm load insn.
14401 			 */
14402 			switch (insn[0].src_reg) {
14403 			case BPF_PSEUDO_MAP_VALUE:
14404 			case BPF_PSEUDO_MAP_IDX_VALUE:
14405 				break;
14406 			case BPF_PSEUDO_MAP_FD:
14407 			case BPF_PSEUDO_MAP_IDX:
14408 				if (insn[1].imm == 0)
14409 					break;
14410 				fallthrough;
14411 			default:
14412 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
14413 				return -EINVAL;
14414 			}
14415 
14416 			switch (insn[0].src_reg) {
14417 			case BPF_PSEUDO_MAP_IDX_VALUE:
14418 			case BPF_PSEUDO_MAP_IDX:
14419 				if (bpfptr_is_null(env->fd_array)) {
14420 					verbose(env, "fd_idx without fd_array is invalid\n");
14421 					return -EPROTO;
14422 				}
14423 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
14424 							    insn[0].imm * sizeof(fd),
14425 							    sizeof(fd)))
14426 					return -EFAULT;
14427 				break;
14428 			default:
14429 				fd = insn[0].imm;
14430 				break;
14431 			}
14432 
14433 			f = fdget(fd);
14434 			map = __bpf_map_get(f);
14435 			if (IS_ERR(map)) {
14436 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
14437 					insn[0].imm);
14438 				return PTR_ERR(map);
14439 			}
14440 
14441 			err = check_map_prog_compatibility(env, map, env->prog);
14442 			if (err) {
14443 				fdput(f);
14444 				return err;
14445 			}
14446 
14447 			aux = &env->insn_aux_data[i];
14448 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14449 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
14450 				addr = (unsigned long)map;
14451 			} else {
14452 				u32 off = insn[1].imm;
14453 
14454 				if (off >= BPF_MAX_VAR_OFF) {
14455 					verbose(env, "direct value offset of %u is not allowed\n", off);
14456 					fdput(f);
14457 					return -EINVAL;
14458 				}
14459 
14460 				if (!map->ops->map_direct_value_addr) {
14461 					verbose(env, "no direct value access support for this map type\n");
14462 					fdput(f);
14463 					return -EINVAL;
14464 				}
14465 
14466 				err = map->ops->map_direct_value_addr(map, &addr, off);
14467 				if (err) {
14468 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14469 						map->value_size, off);
14470 					fdput(f);
14471 					return err;
14472 				}
14473 
14474 				aux->map_off = off;
14475 				addr += off;
14476 			}
14477 
14478 			insn[0].imm = (u32)addr;
14479 			insn[1].imm = addr >> 32;
14480 
14481 			/* check whether we recorded this map already */
14482 			for (j = 0; j < env->used_map_cnt; j++) {
14483 				if (env->used_maps[j] == map) {
14484 					aux->map_index = j;
14485 					fdput(f);
14486 					goto next_insn;
14487 				}
14488 			}
14489 
14490 			if (env->used_map_cnt >= MAX_USED_MAPS) {
14491 				fdput(f);
14492 				return -E2BIG;
14493 			}
14494 
14495 			/* hold the map. If the program is rejected by verifier,
14496 			 * the map will be released by release_maps() or it
14497 			 * will be used by the valid program until it's unloaded
14498 			 * and all maps are released in free_used_maps()
14499 			 */
14500 			bpf_map_inc(map);
14501 
14502 			aux->map_index = env->used_map_cnt;
14503 			env->used_maps[env->used_map_cnt++] = map;
14504 
14505 			if (bpf_map_is_cgroup_storage(map) &&
14506 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
14507 				verbose(env, "only one cgroup storage of each type is allowed\n");
14508 				fdput(f);
14509 				return -EBUSY;
14510 			}
14511 
14512 			fdput(f);
14513 next_insn:
14514 			insn++;
14515 			i++;
14516 			continue;
14517 		}
14518 
14519 		/* Basic sanity check before we invest more work here. */
14520 		if (!bpf_opcode_in_insntable(insn->code)) {
14521 			verbose(env, "unknown opcode %02x\n", insn->code);
14522 			return -EINVAL;
14523 		}
14524 	}
14525 
14526 	/* now all pseudo BPF_LD_IMM64 instructions load valid
14527 	 * 'struct bpf_map *' into a register instead of user map_fd.
14528 	 * These pointers will be used later by verifier to validate map access.
14529 	 */
14530 	return 0;
14531 }
14532 
14533 /* drop refcnt of maps used by the rejected program */
14534 static void release_maps(struct bpf_verifier_env *env)
14535 {
14536 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
14537 			     env->used_map_cnt);
14538 }
14539 
14540 /* drop refcnt of maps used by the rejected program */
14541 static void release_btfs(struct bpf_verifier_env *env)
14542 {
14543 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14544 			     env->used_btf_cnt);
14545 }
14546 
14547 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
14548 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
14549 {
14550 	struct bpf_insn *insn = env->prog->insnsi;
14551 	int insn_cnt = env->prog->len;
14552 	int i;
14553 
14554 	for (i = 0; i < insn_cnt; i++, insn++) {
14555 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14556 			continue;
14557 		if (insn->src_reg == BPF_PSEUDO_FUNC)
14558 			continue;
14559 		insn->src_reg = 0;
14560 	}
14561 }
14562 
14563 /* single env->prog->insni[off] instruction was replaced with the range
14564  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
14565  * [0, off) and [off, end) to new locations, so the patched range stays zero
14566  */
14567 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14568 				 struct bpf_insn_aux_data *new_data,
14569 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
14570 {
14571 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
14572 	struct bpf_insn *insn = new_prog->insnsi;
14573 	u32 old_seen = old_data[off].seen;
14574 	u32 prog_len;
14575 	int i;
14576 
14577 	/* aux info at OFF always needs adjustment, no matter fast path
14578 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14579 	 * original insn at old prog.
14580 	 */
14581 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14582 
14583 	if (cnt == 1)
14584 		return;
14585 	prog_len = new_prog->len;
14586 
14587 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14588 	memcpy(new_data + off + cnt - 1, old_data + off,
14589 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
14590 	for (i = off; i < off + cnt - 1; i++) {
14591 		/* Expand insni[off]'s seen count to the patched range. */
14592 		new_data[i].seen = old_seen;
14593 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
14594 	}
14595 	env->insn_aux_data = new_data;
14596 	vfree(old_data);
14597 }
14598 
14599 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14600 {
14601 	int i;
14602 
14603 	if (len == 1)
14604 		return;
14605 	/* NOTE: fake 'exit' subprog should be updated as well. */
14606 	for (i = 0; i <= env->subprog_cnt; i++) {
14607 		if (env->subprog_info[i].start <= off)
14608 			continue;
14609 		env->subprog_info[i].start += len - 1;
14610 	}
14611 }
14612 
14613 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
14614 {
14615 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14616 	int i, sz = prog->aux->size_poke_tab;
14617 	struct bpf_jit_poke_descriptor *desc;
14618 
14619 	for (i = 0; i < sz; i++) {
14620 		desc = &tab[i];
14621 		if (desc->insn_idx <= off)
14622 			continue;
14623 		desc->insn_idx += len - 1;
14624 	}
14625 }
14626 
14627 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14628 					    const struct bpf_insn *patch, u32 len)
14629 {
14630 	struct bpf_prog *new_prog;
14631 	struct bpf_insn_aux_data *new_data = NULL;
14632 
14633 	if (len > 1) {
14634 		new_data = vzalloc(array_size(env->prog->len + len - 1,
14635 					      sizeof(struct bpf_insn_aux_data)));
14636 		if (!new_data)
14637 			return NULL;
14638 	}
14639 
14640 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
14641 	if (IS_ERR(new_prog)) {
14642 		if (PTR_ERR(new_prog) == -ERANGE)
14643 			verbose(env,
14644 				"insn %d cannot be patched due to 16-bit range\n",
14645 				env->insn_aux_data[off].orig_idx);
14646 		vfree(new_data);
14647 		return NULL;
14648 	}
14649 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
14650 	adjust_subprog_starts(env, off, len);
14651 	adjust_poke_descs(new_prog, off, len);
14652 	return new_prog;
14653 }
14654 
14655 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14656 					      u32 off, u32 cnt)
14657 {
14658 	int i, j;
14659 
14660 	/* find first prog starting at or after off (first to remove) */
14661 	for (i = 0; i < env->subprog_cnt; i++)
14662 		if (env->subprog_info[i].start >= off)
14663 			break;
14664 	/* find first prog starting at or after off + cnt (first to stay) */
14665 	for (j = i; j < env->subprog_cnt; j++)
14666 		if (env->subprog_info[j].start >= off + cnt)
14667 			break;
14668 	/* if j doesn't start exactly at off + cnt, we are just removing
14669 	 * the front of previous prog
14670 	 */
14671 	if (env->subprog_info[j].start != off + cnt)
14672 		j--;
14673 
14674 	if (j > i) {
14675 		struct bpf_prog_aux *aux = env->prog->aux;
14676 		int move;
14677 
14678 		/* move fake 'exit' subprog as well */
14679 		move = env->subprog_cnt + 1 - j;
14680 
14681 		memmove(env->subprog_info + i,
14682 			env->subprog_info + j,
14683 			sizeof(*env->subprog_info) * move);
14684 		env->subprog_cnt -= j - i;
14685 
14686 		/* remove func_info */
14687 		if (aux->func_info) {
14688 			move = aux->func_info_cnt - j;
14689 
14690 			memmove(aux->func_info + i,
14691 				aux->func_info + j,
14692 				sizeof(*aux->func_info) * move);
14693 			aux->func_info_cnt -= j - i;
14694 			/* func_info->insn_off is set after all code rewrites,
14695 			 * in adjust_btf_func() - no need to adjust
14696 			 */
14697 		}
14698 	} else {
14699 		/* convert i from "first prog to remove" to "first to adjust" */
14700 		if (env->subprog_info[i].start == off)
14701 			i++;
14702 	}
14703 
14704 	/* update fake 'exit' subprog as well */
14705 	for (; i <= env->subprog_cnt; i++)
14706 		env->subprog_info[i].start -= cnt;
14707 
14708 	return 0;
14709 }
14710 
14711 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14712 				      u32 cnt)
14713 {
14714 	struct bpf_prog *prog = env->prog;
14715 	u32 i, l_off, l_cnt, nr_linfo;
14716 	struct bpf_line_info *linfo;
14717 
14718 	nr_linfo = prog->aux->nr_linfo;
14719 	if (!nr_linfo)
14720 		return 0;
14721 
14722 	linfo = prog->aux->linfo;
14723 
14724 	/* find first line info to remove, count lines to be removed */
14725 	for (i = 0; i < nr_linfo; i++)
14726 		if (linfo[i].insn_off >= off)
14727 			break;
14728 
14729 	l_off = i;
14730 	l_cnt = 0;
14731 	for (; i < nr_linfo; i++)
14732 		if (linfo[i].insn_off < off + cnt)
14733 			l_cnt++;
14734 		else
14735 			break;
14736 
14737 	/* First live insn doesn't match first live linfo, it needs to "inherit"
14738 	 * last removed linfo.  prog is already modified, so prog->len == off
14739 	 * means no live instructions after (tail of the program was removed).
14740 	 */
14741 	if (prog->len != off && l_cnt &&
14742 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14743 		l_cnt--;
14744 		linfo[--i].insn_off = off + cnt;
14745 	}
14746 
14747 	/* remove the line info which refer to the removed instructions */
14748 	if (l_cnt) {
14749 		memmove(linfo + l_off, linfo + i,
14750 			sizeof(*linfo) * (nr_linfo - i));
14751 
14752 		prog->aux->nr_linfo -= l_cnt;
14753 		nr_linfo = prog->aux->nr_linfo;
14754 	}
14755 
14756 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
14757 	for (i = l_off; i < nr_linfo; i++)
14758 		linfo[i].insn_off -= cnt;
14759 
14760 	/* fix up all subprogs (incl. 'exit') which start >= off */
14761 	for (i = 0; i <= env->subprog_cnt; i++)
14762 		if (env->subprog_info[i].linfo_idx > l_off) {
14763 			/* program may have started in the removed region but
14764 			 * may not be fully removed
14765 			 */
14766 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14767 				env->subprog_info[i].linfo_idx -= l_cnt;
14768 			else
14769 				env->subprog_info[i].linfo_idx = l_off;
14770 		}
14771 
14772 	return 0;
14773 }
14774 
14775 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14776 {
14777 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14778 	unsigned int orig_prog_len = env->prog->len;
14779 	int err;
14780 
14781 	if (bpf_prog_is_dev_bound(env->prog->aux))
14782 		bpf_prog_offload_remove_insns(env, off, cnt);
14783 
14784 	err = bpf_remove_insns(env->prog, off, cnt);
14785 	if (err)
14786 		return err;
14787 
14788 	err = adjust_subprog_starts_after_remove(env, off, cnt);
14789 	if (err)
14790 		return err;
14791 
14792 	err = bpf_adj_linfo_after_remove(env, off, cnt);
14793 	if (err)
14794 		return err;
14795 
14796 	memmove(aux_data + off,	aux_data + off + cnt,
14797 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
14798 
14799 	return 0;
14800 }
14801 
14802 /* The verifier does more data flow analysis than llvm and will not
14803  * explore branches that are dead at run time. Malicious programs can
14804  * have dead code too. Therefore replace all dead at-run-time code
14805  * with 'ja -1'.
14806  *
14807  * Just nops are not optimal, e.g. if they would sit at the end of the
14808  * program and through another bug we would manage to jump there, then
14809  * we'd execute beyond program memory otherwise. Returning exception
14810  * code also wouldn't work since we can have subprogs where the dead
14811  * code could be located.
14812  */
14813 static void sanitize_dead_code(struct bpf_verifier_env *env)
14814 {
14815 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14816 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
14817 	struct bpf_insn *insn = env->prog->insnsi;
14818 	const int insn_cnt = env->prog->len;
14819 	int i;
14820 
14821 	for (i = 0; i < insn_cnt; i++) {
14822 		if (aux_data[i].seen)
14823 			continue;
14824 		memcpy(insn + i, &trap, sizeof(trap));
14825 		aux_data[i].zext_dst = false;
14826 	}
14827 }
14828 
14829 static bool insn_is_cond_jump(u8 code)
14830 {
14831 	u8 op;
14832 
14833 	if (BPF_CLASS(code) == BPF_JMP32)
14834 		return true;
14835 
14836 	if (BPF_CLASS(code) != BPF_JMP)
14837 		return false;
14838 
14839 	op = BPF_OP(code);
14840 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14841 }
14842 
14843 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14844 {
14845 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14846 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14847 	struct bpf_insn *insn = env->prog->insnsi;
14848 	const int insn_cnt = env->prog->len;
14849 	int i;
14850 
14851 	for (i = 0; i < insn_cnt; i++, insn++) {
14852 		if (!insn_is_cond_jump(insn->code))
14853 			continue;
14854 
14855 		if (!aux_data[i + 1].seen)
14856 			ja.off = insn->off;
14857 		else if (!aux_data[i + 1 + insn->off].seen)
14858 			ja.off = 0;
14859 		else
14860 			continue;
14861 
14862 		if (bpf_prog_is_dev_bound(env->prog->aux))
14863 			bpf_prog_offload_replace_insn(env, i, &ja);
14864 
14865 		memcpy(insn, &ja, sizeof(ja));
14866 	}
14867 }
14868 
14869 static int opt_remove_dead_code(struct bpf_verifier_env *env)
14870 {
14871 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14872 	int insn_cnt = env->prog->len;
14873 	int i, err;
14874 
14875 	for (i = 0; i < insn_cnt; i++) {
14876 		int j;
14877 
14878 		j = 0;
14879 		while (i + j < insn_cnt && !aux_data[i + j].seen)
14880 			j++;
14881 		if (!j)
14882 			continue;
14883 
14884 		err = verifier_remove_insns(env, i, j);
14885 		if (err)
14886 			return err;
14887 		insn_cnt = env->prog->len;
14888 	}
14889 
14890 	return 0;
14891 }
14892 
14893 static int opt_remove_nops(struct bpf_verifier_env *env)
14894 {
14895 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14896 	struct bpf_insn *insn = env->prog->insnsi;
14897 	int insn_cnt = env->prog->len;
14898 	int i, err;
14899 
14900 	for (i = 0; i < insn_cnt; i++) {
14901 		if (memcmp(&insn[i], &ja, sizeof(ja)))
14902 			continue;
14903 
14904 		err = verifier_remove_insns(env, i, 1);
14905 		if (err)
14906 			return err;
14907 		insn_cnt--;
14908 		i--;
14909 	}
14910 
14911 	return 0;
14912 }
14913 
14914 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14915 					 const union bpf_attr *attr)
14916 {
14917 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
14918 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
14919 	int i, patch_len, delta = 0, len = env->prog->len;
14920 	struct bpf_insn *insns = env->prog->insnsi;
14921 	struct bpf_prog *new_prog;
14922 	bool rnd_hi32;
14923 
14924 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
14925 	zext_patch[1] = BPF_ZEXT_REG(0);
14926 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14927 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14928 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
14929 	for (i = 0; i < len; i++) {
14930 		int adj_idx = i + delta;
14931 		struct bpf_insn insn;
14932 		int load_reg;
14933 
14934 		insn = insns[adj_idx];
14935 		load_reg = insn_def_regno(&insn);
14936 		if (!aux[adj_idx].zext_dst) {
14937 			u8 code, class;
14938 			u32 imm_rnd;
14939 
14940 			if (!rnd_hi32)
14941 				continue;
14942 
14943 			code = insn.code;
14944 			class = BPF_CLASS(code);
14945 			if (load_reg == -1)
14946 				continue;
14947 
14948 			/* NOTE: arg "reg" (the fourth one) is only used for
14949 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
14950 			 *       here.
14951 			 */
14952 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
14953 				if (class == BPF_LD &&
14954 				    BPF_MODE(code) == BPF_IMM)
14955 					i++;
14956 				continue;
14957 			}
14958 
14959 			/* ctx load could be transformed into wider load. */
14960 			if (class == BPF_LDX &&
14961 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
14962 				continue;
14963 
14964 			imm_rnd = get_random_u32();
14965 			rnd_hi32_patch[0] = insn;
14966 			rnd_hi32_patch[1].imm = imm_rnd;
14967 			rnd_hi32_patch[3].dst_reg = load_reg;
14968 			patch = rnd_hi32_patch;
14969 			patch_len = 4;
14970 			goto apply_patch_buffer;
14971 		}
14972 
14973 		/* Add in an zero-extend instruction if a) the JIT has requested
14974 		 * it or b) it's a CMPXCHG.
14975 		 *
14976 		 * The latter is because: BPF_CMPXCHG always loads a value into
14977 		 * R0, therefore always zero-extends. However some archs'
14978 		 * equivalent instruction only does this load when the
14979 		 * comparison is successful. This detail of CMPXCHG is
14980 		 * orthogonal to the general zero-extension behaviour of the
14981 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
14982 		 */
14983 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
14984 			continue;
14985 
14986 		/* Zero-extension is done by the caller. */
14987 		if (bpf_pseudo_kfunc_call(&insn))
14988 			continue;
14989 
14990 		if (WARN_ON(load_reg == -1)) {
14991 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14992 			return -EFAULT;
14993 		}
14994 
14995 		zext_patch[0] = insn;
14996 		zext_patch[1].dst_reg = load_reg;
14997 		zext_patch[1].src_reg = load_reg;
14998 		patch = zext_patch;
14999 		patch_len = 2;
15000 apply_patch_buffer:
15001 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
15002 		if (!new_prog)
15003 			return -ENOMEM;
15004 		env->prog = new_prog;
15005 		insns = new_prog->insnsi;
15006 		aux = env->insn_aux_data;
15007 		delta += patch_len - 1;
15008 	}
15009 
15010 	return 0;
15011 }
15012 
15013 /* convert load instructions that access fields of a context type into a
15014  * sequence of instructions that access fields of the underlying structure:
15015  *     struct __sk_buff    -> struct sk_buff
15016  *     struct bpf_sock_ops -> struct sock
15017  */
15018 static int convert_ctx_accesses(struct bpf_verifier_env *env)
15019 {
15020 	const struct bpf_verifier_ops *ops = env->ops;
15021 	int i, cnt, size, ctx_field_size, delta = 0;
15022 	const int insn_cnt = env->prog->len;
15023 	struct bpf_insn insn_buf[16], *insn;
15024 	u32 target_size, size_default, off;
15025 	struct bpf_prog *new_prog;
15026 	enum bpf_access_type type;
15027 	bool is_narrower_load;
15028 
15029 	if (ops->gen_prologue || env->seen_direct_write) {
15030 		if (!ops->gen_prologue) {
15031 			verbose(env, "bpf verifier is misconfigured\n");
15032 			return -EINVAL;
15033 		}
15034 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
15035 					env->prog);
15036 		if (cnt >= ARRAY_SIZE(insn_buf)) {
15037 			verbose(env, "bpf verifier is misconfigured\n");
15038 			return -EINVAL;
15039 		} else if (cnt) {
15040 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
15041 			if (!new_prog)
15042 				return -ENOMEM;
15043 
15044 			env->prog = new_prog;
15045 			delta += cnt - 1;
15046 		}
15047 	}
15048 
15049 	if (bpf_prog_is_dev_bound(env->prog->aux))
15050 		return 0;
15051 
15052 	insn = env->prog->insnsi + delta;
15053 
15054 	for (i = 0; i < insn_cnt; i++, insn++) {
15055 		bpf_convert_ctx_access_t convert_ctx_access;
15056 		bool ctx_access;
15057 
15058 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
15059 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
15060 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
15061 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
15062 			type = BPF_READ;
15063 			ctx_access = true;
15064 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
15065 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
15066 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
15067 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
15068 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
15069 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
15070 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
15071 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
15072 			type = BPF_WRITE;
15073 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
15074 		} else {
15075 			continue;
15076 		}
15077 
15078 		if (type == BPF_WRITE &&
15079 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
15080 			struct bpf_insn patch[] = {
15081 				*insn,
15082 				BPF_ST_NOSPEC(),
15083 			};
15084 
15085 			cnt = ARRAY_SIZE(patch);
15086 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
15087 			if (!new_prog)
15088 				return -ENOMEM;
15089 
15090 			delta    += cnt - 1;
15091 			env->prog = new_prog;
15092 			insn      = new_prog->insnsi + i + delta;
15093 			continue;
15094 		}
15095 
15096 		if (!ctx_access)
15097 			continue;
15098 
15099 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
15100 		case PTR_TO_CTX:
15101 			if (!ops->convert_ctx_access)
15102 				continue;
15103 			convert_ctx_access = ops->convert_ctx_access;
15104 			break;
15105 		case PTR_TO_SOCKET:
15106 		case PTR_TO_SOCK_COMMON:
15107 			convert_ctx_access = bpf_sock_convert_ctx_access;
15108 			break;
15109 		case PTR_TO_TCP_SOCK:
15110 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
15111 			break;
15112 		case PTR_TO_XDP_SOCK:
15113 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
15114 			break;
15115 		case PTR_TO_BTF_ID:
15116 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
15117 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
15118 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
15119 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
15120 		 * any faults for loads into such types. BPF_WRITE is disallowed
15121 		 * for this case.
15122 		 */
15123 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
15124 			if (type == BPF_READ) {
15125 				insn->code = BPF_LDX | BPF_PROBE_MEM |
15126 					BPF_SIZE((insn)->code);
15127 				env->prog->aux->num_exentries++;
15128 			}
15129 			continue;
15130 		default:
15131 			continue;
15132 		}
15133 
15134 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
15135 		size = BPF_LDST_BYTES(insn);
15136 
15137 		/* If the read access is a narrower load of the field,
15138 		 * convert to a 4/8-byte load, to minimum program type specific
15139 		 * convert_ctx_access changes. If conversion is successful,
15140 		 * we will apply proper mask to the result.
15141 		 */
15142 		is_narrower_load = size < ctx_field_size;
15143 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
15144 		off = insn->off;
15145 		if (is_narrower_load) {
15146 			u8 size_code;
15147 
15148 			if (type == BPF_WRITE) {
15149 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
15150 				return -EINVAL;
15151 			}
15152 
15153 			size_code = BPF_H;
15154 			if (ctx_field_size == 4)
15155 				size_code = BPF_W;
15156 			else if (ctx_field_size == 8)
15157 				size_code = BPF_DW;
15158 
15159 			insn->off = off & ~(size_default - 1);
15160 			insn->code = BPF_LDX | BPF_MEM | size_code;
15161 		}
15162 
15163 		target_size = 0;
15164 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
15165 					 &target_size);
15166 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
15167 		    (ctx_field_size && !target_size)) {
15168 			verbose(env, "bpf verifier is misconfigured\n");
15169 			return -EINVAL;
15170 		}
15171 
15172 		if (is_narrower_load && size < target_size) {
15173 			u8 shift = bpf_ctx_narrow_access_offset(
15174 				off, size, size_default) * 8;
15175 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15176 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15177 				return -EINVAL;
15178 			}
15179 			if (ctx_field_size <= 4) {
15180 				if (shift)
15181 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15182 									insn->dst_reg,
15183 									shift);
15184 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
15185 								(1 << size * 8) - 1);
15186 			} else {
15187 				if (shift)
15188 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15189 									insn->dst_reg,
15190 									shift);
15191 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
15192 								(1ULL << size * 8) - 1);
15193 			}
15194 		}
15195 
15196 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15197 		if (!new_prog)
15198 			return -ENOMEM;
15199 
15200 		delta += cnt - 1;
15201 
15202 		/* keep walking new program and skip insns we just inserted */
15203 		env->prog = new_prog;
15204 		insn      = new_prog->insnsi + i + delta;
15205 	}
15206 
15207 	return 0;
15208 }
15209 
15210 static int jit_subprogs(struct bpf_verifier_env *env)
15211 {
15212 	struct bpf_prog *prog = env->prog, **func, *tmp;
15213 	int i, j, subprog_start, subprog_end = 0, len, subprog;
15214 	struct bpf_map *map_ptr;
15215 	struct bpf_insn *insn;
15216 	void *old_bpf_func;
15217 	int err, num_exentries;
15218 
15219 	if (env->subprog_cnt <= 1)
15220 		return 0;
15221 
15222 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15223 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
15224 			continue;
15225 
15226 		/* Upon error here we cannot fall back to interpreter but
15227 		 * need a hard reject of the program. Thus -EFAULT is
15228 		 * propagated in any case.
15229 		 */
15230 		subprog = find_subprog(env, i + insn->imm + 1);
15231 		if (subprog < 0) {
15232 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15233 				  i + insn->imm + 1);
15234 			return -EFAULT;
15235 		}
15236 		/* temporarily remember subprog id inside insn instead of
15237 		 * aux_data, since next loop will split up all insns into funcs
15238 		 */
15239 		insn->off = subprog;
15240 		/* remember original imm in case JIT fails and fallback
15241 		 * to interpreter will be needed
15242 		 */
15243 		env->insn_aux_data[i].call_imm = insn->imm;
15244 		/* point imm to __bpf_call_base+1 from JITs point of view */
15245 		insn->imm = 1;
15246 		if (bpf_pseudo_func(insn))
15247 			/* jit (e.g. x86_64) may emit fewer instructions
15248 			 * if it learns a u32 imm is the same as a u64 imm.
15249 			 * Force a non zero here.
15250 			 */
15251 			insn[1].imm = 1;
15252 	}
15253 
15254 	err = bpf_prog_alloc_jited_linfo(prog);
15255 	if (err)
15256 		goto out_undo_insn;
15257 
15258 	err = -ENOMEM;
15259 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
15260 	if (!func)
15261 		goto out_undo_insn;
15262 
15263 	for (i = 0; i < env->subprog_cnt; i++) {
15264 		subprog_start = subprog_end;
15265 		subprog_end = env->subprog_info[i + 1].start;
15266 
15267 		len = subprog_end - subprog_start;
15268 		/* bpf_prog_run() doesn't call subprogs directly,
15269 		 * hence main prog stats include the runtime of subprogs.
15270 		 * subprogs don't have IDs and not reachable via prog_get_next_id
15271 		 * func[i]->stats will never be accessed and stays NULL
15272 		 */
15273 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
15274 		if (!func[i])
15275 			goto out_free;
15276 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15277 		       len * sizeof(struct bpf_insn));
15278 		func[i]->type = prog->type;
15279 		func[i]->len = len;
15280 		if (bpf_prog_calc_tag(func[i]))
15281 			goto out_free;
15282 		func[i]->is_func = 1;
15283 		func[i]->aux->func_idx = i;
15284 		/* Below members will be freed only at prog->aux */
15285 		func[i]->aux->btf = prog->aux->btf;
15286 		func[i]->aux->func_info = prog->aux->func_info;
15287 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
15288 		func[i]->aux->poke_tab = prog->aux->poke_tab;
15289 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
15290 
15291 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
15292 			struct bpf_jit_poke_descriptor *poke;
15293 
15294 			poke = &prog->aux->poke_tab[j];
15295 			if (poke->insn_idx < subprog_end &&
15296 			    poke->insn_idx >= subprog_start)
15297 				poke->aux = func[i]->aux;
15298 		}
15299 
15300 		func[i]->aux->name[0] = 'F';
15301 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
15302 		func[i]->jit_requested = 1;
15303 		func[i]->blinding_requested = prog->blinding_requested;
15304 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
15305 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
15306 		func[i]->aux->linfo = prog->aux->linfo;
15307 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15308 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15309 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
15310 		num_exentries = 0;
15311 		insn = func[i]->insnsi;
15312 		for (j = 0; j < func[i]->len; j++, insn++) {
15313 			if (BPF_CLASS(insn->code) == BPF_LDX &&
15314 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
15315 				num_exentries++;
15316 		}
15317 		func[i]->aux->num_exentries = num_exentries;
15318 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
15319 		func[i] = bpf_int_jit_compile(func[i]);
15320 		if (!func[i]->jited) {
15321 			err = -ENOTSUPP;
15322 			goto out_free;
15323 		}
15324 		cond_resched();
15325 	}
15326 
15327 	/* at this point all bpf functions were successfully JITed
15328 	 * now populate all bpf_calls with correct addresses and
15329 	 * run last pass of JIT
15330 	 */
15331 	for (i = 0; i < env->subprog_cnt; i++) {
15332 		insn = func[i]->insnsi;
15333 		for (j = 0; j < func[i]->len; j++, insn++) {
15334 			if (bpf_pseudo_func(insn)) {
15335 				subprog = insn->off;
15336 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15337 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15338 				continue;
15339 			}
15340 			if (!bpf_pseudo_call(insn))
15341 				continue;
15342 			subprog = insn->off;
15343 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
15344 		}
15345 
15346 		/* we use the aux data to keep a list of the start addresses
15347 		 * of the JITed images for each function in the program
15348 		 *
15349 		 * for some architectures, such as powerpc64, the imm field
15350 		 * might not be large enough to hold the offset of the start
15351 		 * address of the callee's JITed image from __bpf_call_base
15352 		 *
15353 		 * in such cases, we can lookup the start address of a callee
15354 		 * by using its subprog id, available from the off field of
15355 		 * the call instruction, as an index for this list
15356 		 */
15357 		func[i]->aux->func = func;
15358 		func[i]->aux->func_cnt = env->subprog_cnt;
15359 	}
15360 	for (i = 0; i < env->subprog_cnt; i++) {
15361 		old_bpf_func = func[i]->bpf_func;
15362 		tmp = bpf_int_jit_compile(func[i]);
15363 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15364 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
15365 			err = -ENOTSUPP;
15366 			goto out_free;
15367 		}
15368 		cond_resched();
15369 	}
15370 
15371 	/* finally lock prog and jit images for all functions and
15372 	 * populate kallsysm
15373 	 */
15374 	for (i = 0; i < env->subprog_cnt; i++) {
15375 		bpf_prog_lock_ro(func[i]);
15376 		bpf_prog_kallsyms_add(func[i]);
15377 	}
15378 
15379 	/* Last step: make now unused interpreter insns from main
15380 	 * prog consistent for later dump requests, so they can
15381 	 * later look the same as if they were interpreted only.
15382 	 */
15383 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15384 		if (bpf_pseudo_func(insn)) {
15385 			insn[0].imm = env->insn_aux_data[i].call_imm;
15386 			insn[1].imm = insn->off;
15387 			insn->off = 0;
15388 			continue;
15389 		}
15390 		if (!bpf_pseudo_call(insn))
15391 			continue;
15392 		insn->off = env->insn_aux_data[i].call_imm;
15393 		subprog = find_subprog(env, i + insn->off + 1);
15394 		insn->imm = subprog;
15395 	}
15396 
15397 	prog->jited = 1;
15398 	prog->bpf_func = func[0]->bpf_func;
15399 	prog->jited_len = func[0]->jited_len;
15400 	prog->aux->func = func;
15401 	prog->aux->func_cnt = env->subprog_cnt;
15402 	bpf_prog_jit_attempt_done(prog);
15403 	return 0;
15404 out_free:
15405 	/* We failed JIT'ing, so at this point we need to unregister poke
15406 	 * descriptors from subprogs, so that kernel is not attempting to
15407 	 * patch it anymore as we're freeing the subprog JIT memory.
15408 	 */
15409 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15410 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15411 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15412 	}
15413 	/* At this point we're guaranteed that poke descriptors are not
15414 	 * live anymore. We can just unlink its descriptor table as it's
15415 	 * released with the main prog.
15416 	 */
15417 	for (i = 0; i < env->subprog_cnt; i++) {
15418 		if (!func[i])
15419 			continue;
15420 		func[i]->aux->poke_tab = NULL;
15421 		bpf_jit_free(func[i]);
15422 	}
15423 	kfree(func);
15424 out_undo_insn:
15425 	/* cleanup main prog to be interpreted */
15426 	prog->jit_requested = 0;
15427 	prog->blinding_requested = 0;
15428 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15429 		if (!bpf_pseudo_call(insn))
15430 			continue;
15431 		insn->off = 0;
15432 		insn->imm = env->insn_aux_data[i].call_imm;
15433 	}
15434 	bpf_prog_jit_attempt_done(prog);
15435 	return err;
15436 }
15437 
15438 static int fixup_call_args(struct bpf_verifier_env *env)
15439 {
15440 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15441 	struct bpf_prog *prog = env->prog;
15442 	struct bpf_insn *insn = prog->insnsi;
15443 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
15444 	int i, depth;
15445 #endif
15446 	int err = 0;
15447 
15448 	if (env->prog->jit_requested &&
15449 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
15450 		err = jit_subprogs(env);
15451 		if (err == 0)
15452 			return 0;
15453 		if (err == -EFAULT)
15454 			return err;
15455 	}
15456 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15457 	if (has_kfunc_call) {
15458 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15459 		return -EINVAL;
15460 	}
15461 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15462 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
15463 		 * have to be rejected, since interpreter doesn't support them yet.
15464 		 */
15465 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15466 		return -EINVAL;
15467 	}
15468 	for (i = 0; i < prog->len; i++, insn++) {
15469 		if (bpf_pseudo_func(insn)) {
15470 			/* When JIT fails the progs with callback calls
15471 			 * have to be rejected, since interpreter doesn't support them yet.
15472 			 */
15473 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
15474 			return -EINVAL;
15475 		}
15476 
15477 		if (!bpf_pseudo_call(insn))
15478 			continue;
15479 		depth = get_callee_stack_depth(env, insn, i);
15480 		if (depth < 0)
15481 			return depth;
15482 		bpf_patch_call_args(insn, depth);
15483 	}
15484 	err = 0;
15485 #endif
15486 	return err;
15487 }
15488 
15489 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15490 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
15491 {
15492 	const struct bpf_kfunc_desc *desc;
15493 
15494 	if (!insn->imm) {
15495 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15496 		return -EINVAL;
15497 	}
15498 
15499 	/* insn->imm has the btf func_id. Replace it with
15500 	 * an address (relative to __bpf_call_base).
15501 	 */
15502 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
15503 	if (!desc) {
15504 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15505 			insn->imm);
15506 		return -EFAULT;
15507 	}
15508 
15509 	*cnt = 0;
15510 	insn->imm = desc->imm;
15511 	if (insn->off)
15512 		return 0;
15513 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15514 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15515 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15516 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
15517 
15518 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15519 		insn_buf[1] = addr[0];
15520 		insn_buf[2] = addr[1];
15521 		insn_buf[3] = *insn;
15522 		*cnt = 4;
15523 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15524 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15525 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15526 
15527 		insn_buf[0] = addr[0];
15528 		insn_buf[1] = addr[1];
15529 		insn_buf[2] = *insn;
15530 		*cnt = 3;
15531 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15532 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
15533 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15534 		*cnt = 1;
15535 	}
15536 	return 0;
15537 }
15538 
15539 /* Do various post-verification rewrites in a single program pass.
15540  * These rewrites simplify JIT and interpreter implementations.
15541  */
15542 static int do_misc_fixups(struct bpf_verifier_env *env)
15543 {
15544 	struct bpf_prog *prog = env->prog;
15545 	enum bpf_attach_type eatype = prog->expected_attach_type;
15546 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
15547 	struct bpf_insn *insn = prog->insnsi;
15548 	const struct bpf_func_proto *fn;
15549 	const int insn_cnt = prog->len;
15550 	const struct bpf_map_ops *ops;
15551 	struct bpf_insn_aux_data *aux;
15552 	struct bpf_insn insn_buf[16];
15553 	struct bpf_prog *new_prog;
15554 	struct bpf_map *map_ptr;
15555 	int i, ret, cnt, delta = 0;
15556 
15557 	for (i = 0; i < insn_cnt; i++, insn++) {
15558 		/* Make divide-by-zero exceptions impossible. */
15559 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15560 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15561 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
15562 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
15563 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
15564 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15565 			struct bpf_insn *patchlet;
15566 			struct bpf_insn chk_and_div[] = {
15567 				/* [R,W]x div 0 -> 0 */
15568 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15569 					     BPF_JNE | BPF_K, insn->src_reg,
15570 					     0, 2, 0),
15571 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15572 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15573 				*insn,
15574 			};
15575 			struct bpf_insn chk_and_mod[] = {
15576 				/* [R,W]x mod 0 -> [R,W]x */
15577 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15578 					     BPF_JEQ | BPF_K, insn->src_reg,
15579 					     0, 1 + (is64 ? 0 : 1), 0),
15580 				*insn,
15581 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15582 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
15583 			};
15584 
15585 			patchlet = isdiv ? chk_and_div : chk_and_mod;
15586 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
15587 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
15588 
15589 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
15590 			if (!new_prog)
15591 				return -ENOMEM;
15592 
15593 			delta    += cnt - 1;
15594 			env->prog = prog = new_prog;
15595 			insn      = new_prog->insnsi + i + delta;
15596 			continue;
15597 		}
15598 
15599 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
15600 		if (BPF_CLASS(insn->code) == BPF_LD &&
15601 		    (BPF_MODE(insn->code) == BPF_ABS ||
15602 		     BPF_MODE(insn->code) == BPF_IND)) {
15603 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
15604 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15605 				verbose(env, "bpf verifier is misconfigured\n");
15606 				return -EINVAL;
15607 			}
15608 
15609 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15610 			if (!new_prog)
15611 				return -ENOMEM;
15612 
15613 			delta    += cnt - 1;
15614 			env->prog = prog = new_prog;
15615 			insn      = new_prog->insnsi + i + delta;
15616 			continue;
15617 		}
15618 
15619 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
15620 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15621 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15622 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15623 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
15624 			struct bpf_insn *patch = &insn_buf[0];
15625 			bool issrc, isneg, isimm;
15626 			u32 off_reg;
15627 
15628 			aux = &env->insn_aux_data[i + delta];
15629 			if (!aux->alu_state ||
15630 			    aux->alu_state == BPF_ALU_NON_POINTER)
15631 				continue;
15632 
15633 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15634 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15635 				BPF_ALU_SANITIZE_SRC;
15636 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
15637 
15638 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
15639 			if (isimm) {
15640 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15641 			} else {
15642 				if (isneg)
15643 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15644 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15645 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15646 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15647 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15648 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15649 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15650 			}
15651 			if (!issrc)
15652 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15653 			insn->src_reg = BPF_REG_AX;
15654 			if (isneg)
15655 				insn->code = insn->code == code_add ?
15656 					     code_sub : code_add;
15657 			*patch++ = *insn;
15658 			if (issrc && isneg && !isimm)
15659 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15660 			cnt = patch - insn_buf;
15661 
15662 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15663 			if (!new_prog)
15664 				return -ENOMEM;
15665 
15666 			delta    += cnt - 1;
15667 			env->prog = prog = new_prog;
15668 			insn      = new_prog->insnsi + i + delta;
15669 			continue;
15670 		}
15671 
15672 		if (insn->code != (BPF_JMP | BPF_CALL))
15673 			continue;
15674 		if (insn->src_reg == BPF_PSEUDO_CALL)
15675 			continue;
15676 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15677 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
15678 			if (ret)
15679 				return ret;
15680 			if (cnt == 0)
15681 				continue;
15682 
15683 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15684 			if (!new_prog)
15685 				return -ENOMEM;
15686 
15687 			delta	 += cnt - 1;
15688 			env->prog = prog = new_prog;
15689 			insn	  = new_prog->insnsi + i + delta;
15690 			continue;
15691 		}
15692 
15693 		if (insn->imm == BPF_FUNC_get_route_realm)
15694 			prog->dst_needed = 1;
15695 		if (insn->imm == BPF_FUNC_get_prandom_u32)
15696 			bpf_user_rnd_init_once();
15697 		if (insn->imm == BPF_FUNC_override_return)
15698 			prog->kprobe_override = 1;
15699 		if (insn->imm == BPF_FUNC_tail_call) {
15700 			/* If we tail call into other programs, we
15701 			 * cannot make any assumptions since they can
15702 			 * be replaced dynamically during runtime in
15703 			 * the program array.
15704 			 */
15705 			prog->cb_access = 1;
15706 			if (!allow_tail_call_in_subprogs(env))
15707 				prog->aux->stack_depth = MAX_BPF_STACK;
15708 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
15709 
15710 			/* mark bpf_tail_call as different opcode to avoid
15711 			 * conditional branch in the interpreter for every normal
15712 			 * call and to prevent accidental JITing by JIT compiler
15713 			 * that doesn't support bpf_tail_call yet
15714 			 */
15715 			insn->imm = 0;
15716 			insn->code = BPF_JMP | BPF_TAIL_CALL;
15717 
15718 			aux = &env->insn_aux_data[i + delta];
15719 			if (env->bpf_capable && !prog->blinding_requested &&
15720 			    prog->jit_requested &&
15721 			    !bpf_map_key_poisoned(aux) &&
15722 			    !bpf_map_ptr_poisoned(aux) &&
15723 			    !bpf_map_ptr_unpriv(aux)) {
15724 				struct bpf_jit_poke_descriptor desc = {
15725 					.reason = BPF_POKE_REASON_TAIL_CALL,
15726 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15727 					.tail_call.key = bpf_map_key_immediate(aux),
15728 					.insn_idx = i + delta,
15729 				};
15730 
15731 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
15732 				if (ret < 0) {
15733 					verbose(env, "adding tail call poke descriptor failed\n");
15734 					return ret;
15735 				}
15736 
15737 				insn->imm = ret + 1;
15738 				continue;
15739 			}
15740 
15741 			if (!bpf_map_ptr_unpriv(aux))
15742 				continue;
15743 
15744 			/* instead of changing every JIT dealing with tail_call
15745 			 * emit two extra insns:
15746 			 * if (index >= max_entries) goto out;
15747 			 * index &= array->index_mask;
15748 			 * to avoid out-of-bounds cpu speculation
15749 			 */
15750 			if (bpf_map_ptr_poisoned(aux)) {
15751 				verbose(env, "tail_call abusing map_ptr\n");
15752 				return -EINVAL;
15753 			}
15754 
15755 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15756 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15757 						  map_ptr->max_entries, 2);
15758 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15759 						    container_of(map_ptr,
15760 								 struct bpf_array,
15761 								 map)->index_mask);
15762 			insn_buf[2] = *insn;
15763 			cnt = 3;
15764 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15765 			if (!new_prog)
15766 				return -ENOMEM;
15767 
15768 			delta    += cnt - 1;
15769 			env->prog = prog = new_prog;
15770 			insn      = new_prog->insnsi + i + delta;
15771 			continue;
15772 		}
15773 
15774 		if (insn->imm == BPF_FUNC_timer_set_callback) {
15775 			/* The verifier will process callback_fn as many times as necessary
15776 			 * with different maps and the register states prepared by
15777 			 * set_timer_callback_state will be accurate.
15778 			 *
15779 			 * The following use case is valid:
15780 			 *   map1 is shared by prog1, prog2, prog3.
15781 			 *   prog1 calls bpf_timer_init for some map1 elements
15782 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
15783 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
15784 			 *   prog3 calls bpf_timer_start for some map1 elements.
15785 			 *     Those that were not both bpf_timer_init-ed and
15786 			 *     bpf_timer_set_callback-ed will return -EINVAL.
15787 			 */
15788 			struct bpf_insn ld_addrs[2] = {
15789 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15790 			};
15791 
15792 			insn_buf[0] = ld_addrs[0];
15793 			insn_buf[1] = ld_addrs[1];
15794 			insn_buf[2] = *insn;
15795 			cnt = 3;
15796 
15797 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15798 			if (!new_prog)
15799 				return -ENOMEM;
15800 
15801 			delta    += cnt - 1;
15802 			env->prog = prog = new_prog;
15803 			insn      = new_prog->insnsi + i + delta;
15804 			goto patch_call_imm;
15805 		}
15806 
15807 		if (is_storage_get_function(insn->imm)) {
15808 			if (!env->prog->aux->sleepable ||
15809 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
15810 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
15811 			else
15812 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
15813 			insn_buf[1] = *insn;
15814 			cnt = 2;
15815 
15816 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15817 			if (!new_prog)
15818 				return -ENOMEM;
15819 
15820 			delta += cnt - 1;
15821 			env->prog = prog = new_prog;
15822 			insn = new_prog->insnsi + i + delta;
15823 			goto patch_call_imm;
15824 		}
15825 
15826 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
15827 		 * and other inlining handlers are currently limited to 64 bit
15828 		 * only.
15829 		 */
15830 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15831 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
15832 		     insn->imm == BPF_FUNC_map_update_elem ||
15833 		     insn->imm == BPF_FUNC_map_delete_elem ||
15834 		     insn->imm == BPF_FUNC_map_push_elem   ||
15835 		     insn->imm == BPF_FUNC_map_pop_elem    ||
15836 		     insn->imm == BPF_FUNC_map_peek_elem   ||
15837 		     insn->imm == BPF_FUNC_redirect_map    ||
15838 		     insn->imm == BPF_FUNC_for_each_map_elem ||
15839 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
15840 			aux = &env->insn_aux_data[i + delta];
15841 			if (bpf_map_ptr_poisoned(aux))
15842 				goto patch_call_imm;
15843 
15844 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15845 			ops = map_ptr->ops;
15846 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
15847 			    ops->map_gen_lookup) {
15848 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
15849 				if (cnt == -EOPNOTSUPP)
15850 					goto patch_map_ops_generic;
15851 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15852 					verbose(env, "bpf verifier is misconfigured\n");
15853 					return -EINVAL;
15854 				}
15855 
15856 				new_prog = bpf_patch_insn_data(env, i + delta,
15857 							       insn_buf, cnt);
15858 				if (!new_prog)
15859 					return -ENOMEM;
15860 
15861 				delta    += cnt - 1;
15862 				env->prog = prog = new_prog;
15863 				insn      = new_prog->insnsi + i + delta;
15864 				continue;
15865 			}
15866 
15867 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15868 				     (void *(*)(struct bpf_map *map, void *key))NULL));
15869 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15870 				     (int (*)(struct bpf_map *map, void *key))NULL));
15871 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15872 				     (int (*)(struct bpf_map *map, void *key, void *value,
15873 					      u64 flags))NULL));
15874 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15875 				     (int (*)(struct bpf_map *map, void *value,
15876 					      u64 flags))NULL));
15877 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15878 				     (int (*)(struct bpf_map *map, void *value))NULL));
15879 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15880 				     (int (*)(struct bpf_map *map, void *value))NULL));
15881 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
15882 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
15883 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15884 				     (int (*)(struct bpf_map *map,
15885 					      bpf_callback_t callback_fn,
15886 					      void *callback_ctx,
15887 					      u64 flags))NULL));
15888 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15889 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
15890 
15891 patch_map_ops_generic:
15892 			switch (insn->imm) {
15893 			case BPF_FUNC_map_lookup_elem:
15894 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
15895 				continue;
15896 			case BPF_FUNC_map_update_elem:
15897 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
15898 				continue;
15899 			case BPF_FUNC_map_delete_elem:
15900 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
15901 				continue;
15902 			case BPF_FUNC_map_push_elem:
15903 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
15904 				continue;
15905 			case BPF_FUNC_map_pop_elem:
15906 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
15907 				continue;
15908 			case BPF_FUNC_map_peek_elem:
15909 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
15910 				continue;
15911 			case BPF_FUNC_redirect_map:
15912 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
15913 				continue;
15914 			case BPF_FUNC_for_each_map_elem:
15915 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
15916 				continue;
15917 			case BPF_FUNC_map_lookup_percpu_elem:
15918 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15919 				continue;
15920 			}
15921 
15922 			goto patch_call_imm;
15923 		}
15924 
15925 		/* Implement bpf_jiffies64 inline. */
15926 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15927 		    insn->imm == BPF_FUNC_jiffies64) {
15928 			struct bpf_insn ld_jiffies_addr[2] = {
15929 				BPF_LD_IMM64(BPF_REG_0,
15930 					     (unsigned long)&jiffies),
15931 			};
15932 
15933 			insn_buf[0] = ld_jiffies_addr[0];
15934 			insn_buf[1] = ld_jiffies_addr[1];
15935 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15936 						  BPF_REG_0, 0);
15937 			cnt = 3;
15938 
15939 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15940 						       cnt);
15941 			if (!new_prog)
15942 				return -ENOMEM;
15943 
15944 			delta    += cnt - 1;
15945 			env->prog = prog = new_prog;
15946 			insn      = new_prog->insnsi + i + delta;
15947 			continue;
15948 		}
15949 
15950 		/* Implement bpf_get_func_arg inline. */
15951 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15952 		    insn->imm == BPF_FUNC_get_func_arg) {
15953 			/* Load nr_args from ctx - 8 */
15954 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15955 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15956 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15957 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15958 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15959 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15960 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15961 			insn_buf[7] = BPF_JMP_A(1);
15962 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15963 			cnt = 9;
15964 
15965 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15966 			if (!new_prog)
15967 				return -ENOMEM;
15968 
15969 			delta    += cnt - 1;
15970 			env->prog = prog = new_prog;
15971 			insn      = new_prog->insnsi + i + delta;
15972 			continue;
15973 		}
15974 
15975 		/* Implement bpf_get_func_ret inline. */
15976 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15977 		    insn->imm == BPF_FUNC_get_func_ret) {
15978 			if (eatype == BPF_TRACE_FEXIT ||
15979 			    eatype == BPF_MODIFY_RETURN) {
15980 				/* Load nr_args from ctx - 8 */
15981 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15982 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15983 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15984 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15985 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15986 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15987 				cnt = 6;
15988 			} else {
15989 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15990 				cnt = 1;
15991 			}
15992 
15993 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15994 			if (!new_prog)
15995 				return -ENOMEM;
15996 
15997 			delta    += cnt - 1;
15998 			env->prog = prog = new_prog;
15999 			insn      = new_prog->insnsi + i + delta;
16000 			continue;
16001 		}
16002 
16003 		/* Implement get_func_arg_cnt inline. */
16004 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16005 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
16006 			/* Load nr_args from ctx - 8 */
16007 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16008 
16009 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16010 			if (!new_prog)
16011 				return -ENOMEM;
16012 
16013 			env->prog = prog = new_prog;
16014 			insn      = new_prog->insnsi + i + delta;
16015 			continue;
16016 		}
16017 
16018 		/* Implement bpf_get_func_ip inline. */
16019 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16020 		    insn->imm == BPF_FUNC_get_func_ip) {
16021 			/* Load IP address from ctx - 16 */
16022 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
16023 
16024 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16025 			if (!new_prog)
16026 				return -ENOMEM;
16027 
16028 			env->prog = prog = new_prog;
16029 			insn      = new_prog->insnsi + i + delta;
16030 			continue;
16031 		}
16032 
16033 patch_call_imm:
16034 		fn = env->ops->get_func_proto(insn->imm, env->prog);
16035 		/* all functions that have prototype and verifier allowed
16036 		 * programs to call them, must be real in-kernel functions
16037 		 */
16038 		if (!fn->func) {
16039 			verbose(env,
16040 				"kernel subsystem misconfigured func %s#%d\n",
16041 				func_id_name(insn->imm), insn->imm);
16042 			return -EFAULT;
16043 		}
16044 		insn->imm = fn->func - __bpf_call_base;
16045 	}
16046 
16047 	/* Since poke tab is now finalized, publish aux to tracker. */
16048 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
16049 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
16050 		if (!map_ptr->ops->map_poke_track ||
16051 		    !map_ptr->ops->map_poke_untrack ||
16052 		    !map_ptr->ops->map_poke_run) {
16053 			verbose(env, "bpf verifier is misconfigured\n");
16054 			return -EINVAL;
16055 		}
16056 
16057 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
16058 		if (ret < 0) {
16059 			verbose(env, "tracking tail call prog failed\n");
16060 			return ret;
16061 		}
16062 	}
16063 
16064 	sort_kfunc_descs_by_imm(env->prog);
16065 
16066 	return 0;
16067 }
16068 
16069 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
16070 					int position,
16071 					s32 stack_base,
16072 					u32 callback_subprogno,
16073 					u32 *cnt)
16074 {
16075 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
16076 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
16077 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
16078 	int reg_loop_max = BPF_REG_6;
16079 	int reg_loop_cnt = BPF_REG_7;
16080 	int reg_loop_ctx = BPF_REG_8;
16081 
16082 	struct bpf_prog *new_prog;
16083 	u32 callback_start;
16084 	u32 call_insn_offset;
16085 	s32 callback_offset;
16086 
16087 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
16088 	 * be careful to modify this code in sync.
16089 	 */
16090 	struct bpf_insn insn_buf[] = {
16091 		/* Return error and jump to the end of the patch if
16092 		 * expected number of iterations is too big.
16093 		 */
16094 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
16095 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
16096 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
16097 		/* spill R6, R7, R8 to use these as loop vars */
16098 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
16099 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
16100 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
16101 		/* initialize loop vars */
16102 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
16103 		BPF_MOV32_IMM(reg_loop_cnt, 0),
16104 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
16105 		/* loop header,
16106 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
16107 		 */
16108 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
16109 		/* callback call,
16110 		 * correct callback offset would be set after patching
16111 		 */
16112 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
16113 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
16114 		BPF_CALL_REL(0),
16115 		/* increment loop counter */
16116 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
16117 		/* jump to loop header if callback returned 0 */
16118 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
16119 		/* return value of bpf_loop,
16120 		 * set R0 to the number of iterations
16121 		 */
16122 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
16123 		/* restore original values of R6, R7, R8 */
16124 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
16125 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
16126 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
16127 	};
16128 
16129 	*cnt = ARRAY_SIZE(insn_buf);
16130 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
16131 	if (!new_prog)
16132 		return new_prog;
16133 
16134 	/* callback start is known only after patching */
16135 	callback_start = env->subprog_info[callback_subprogno].start;
16136 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
16137 	call_insn_offset = position + 12;
16138 	callback_offset = callback_start - call_insn_offset - 1;
16139 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
16140 
16141 	return new_prog;
16142 }
16143 
16144 static bool is_bpf_loop_call(struct bpf_insn *insn)
16145 {
16146 	return insn->code == (BPF_JMP | BPF_CALL) &&
16147 		insn->src_reg == 0 &&
16148 		insn->imm == BPF_FUNC_loop;
16149 }
16150 
16151 /* For all sub-programs in the program (including main) check
16152  * insn_aux_data to see if there are bpf_loop calls that require
16153  * inlining. If such calls are found the calls are replaced with a
16154  * sequence of instructions produced by `inline_bpf_loop` function and
16155  * subprog stack_depth is increased by the size of 3 registers.
16156  * This stack space is used to spill values of the R6, R7, R8.  These
16157  * registers are used to store the loop bound, counter and context
16158  * variables.
16159  */
16160 static int optimize_bpf_loop(struct bpf_verifier_env *env)
16161 {
16162 	struct bpf_subprog_info *subprogs = env->subprog_info;
16163 	int i, cur_subprog = 0, cnt, delta = 0;
16164 	struct bpf_insn *insn = env->prog->insnsi;
16165 	int insn_cnt = env->prog->len;
16166 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
16167 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16168 	u16 stack_depth_extra = 0;
16169 
16170 	for (i = 0; i < insn_cnt; i++, insn++) {
16171 		struct bpf_loop_inline_state *inline_state =
16172 			&env->insn_aux_data[i + delta].loop_inline_state;
16173 
16174 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16175 			struct bpf_prog *new_prog;
16176 
16177 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16178 			new_prog = inline_bpf_loop(env,
16179 						   i + delta,
16180 						   -(stack_depth + stack_depth_extra),
16181 						   inline_state->callback_subprogno,
16182 						   &cnt);
16183 			if (!new_prog)
16184 				return -ENOMEM;
16185 
16186 			delta     += cnt - 1;
16187 			env->prog  = new_prog;
16188 			insn       = new_prog->insnsi + i + delta;
16189 		}
16190 
16191 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16192 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
16193 			cur_subprog++;
16194 			stack_depth = subprogs[cur_subprog].stack_depth;
16195 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16196 			stack_depth_extra = 0;
16197 		}
16198 	}
16199 
16200 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16201 
16202 	return 0;
16203 }
16204 
16205 static void free_states(struct bpf_verifier_env *env)
16206 {
16207 	struct bpf_verifier_state_list *sl, *sln;
16208 	int i;
16209 
16210 	sl = env->free_list;
16211 	while (sl) {
16212 		sln = sl->next;
16213 		free_verifier_state(&sl->state, false);
16214 		kfree(sl);
16215 		sl = sln;
16216 	}
16217 	env->free_list = NULL;
16218 
16219 	if (!env->explored_states)
16220 		return;
16221 
16222 	for (i = 0; i < state_htab_size(env); i++) {
16223 		sl = env->explored_states[i];
16224 
16225 		while (sl) {
16226 			sln = sl->next;
16227 			free_verifier_state(&sl->state, false);
16228 			kfree(sl);
16229 			sl = sln;
16230 		}
16231 		env->explored_states[i] = NULL;
16232 	}
16233 }
16234 
16235 static int do_check_common(struct bpf_verifier_env *env, int subprog)
16236 {
16237 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16238 	struct bpf_verifier_state *state;
16239 	struct bpf_reg_state *regs;
16240 	int ret, i;
16241 
16242 	env->prev_linfo = NULL;
16243 	env->pass_cnt++;
16244 
16245 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16246 	if (!state)
16247 		return -ENOMEM;
16248 	state->curframe = 0;
16249 	state->speculative = false;
16250 	state->branches = 1;
16251 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16252 	if (!state->frame[0]) {
16253 		kfree(state);
16254 		return -ENOMEM;
16255 	}
16256 	env->cur_state = state;
16257 	init_func_state(env, state->frame[0],
16258 			BPF_MAIN_FUNC /* callsite */,
16259 			0 /* frameno */,
16260 			subprog);
16261 	state->first_insn_idx = env->subprog_info[subprog].start;
16262 	state->last_insn_idx = -1;
16263 
16264 	regs = state->frame[state->curframe]->regs;
16265 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
16266 		ret = btf_prepare_func_args(env, subprog, regs);
16267 		if (ret)
16268 			goto out;
16269 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16270 			if (regs[i].type == PTR_TO_CTX)
16271 				mark_reg_known_zero(env, regs, i);
16272 			else if (regs[i].type == SCALAR_VALUE)
16273 				mark_reg_unknown(env, regs, i);
16274 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
16275 				const u32 mem_size = regs[i].mem_size;
16276 
16277 				mark_reg_known_zero(env, regs, i);
16278 				regs[i].mem_size = mem_size;
16279 				regs[i].id = ++env->id_gen;
16280 			}
16281 		}
16282 	} else {
16283 		/* 1st arg to a function */
16284 		regs[BPF_REG_1].type = PTR_TO_CTX;
16285 		mark_reg_known_zero(env, regs, BPF_REG_1);
16286 		ret = btf_check_subprog_arg_match(env, subprog, regs);
16287 		if (ret == -EFAULT)
16288 			/* unlikely verifier bug. abort.
16289 			 * ret == 0 and ret < 0 are sadly acceptable for
16290 			 * main() function due to backward compatibility.
16291 			 * Like socket filter program may be written as:
16292 			 * int bpf_prog(struct pt_regs *ctx)
16293 			 * and never dereference that ctx in the program.
16294 			 * 'struct pt_regs' is a type mismatch for socket
16295 			 * filter that should be using 'struct __sk_buff'.
16296 			 */
16297 			goto out;
16298 	}
16299 
16300 	ret = do_check(env);
16301 out:
16302 	/* check for NULL is necessary, since cur_state can be freed inside
16303 	 * do_check() under memory pressure.
16304 	 */
16305 	if (env->cur_state) {
16306 		free_verifier_state(env->cur_state, true);
16307 		env->cur_state = NULL;
16308 	}
16309 	while (!pop_stack(env, NULL, NULL, false));
16310 	if (!ret && pop_log)
16311 		bpf_vlog_reset(&env->log, 0);
16312 	free_states(env);
16313 	return ret;
16314 }
16315 
16316 /* Verify all global functions in a BPF program one by one based on their BTF.
16317  * All global functions must pass verification. Otherwise the whole program is rejected.
16318  * Consider:
16319  * int bar(int);
16320  * int foo(int f)
16321  * {
16322  *    return bar(f);
16323  * }
16324  * int bar(int b)
16325  * {
16326  *    ...
16327  * }
16328  * foo() will be verified first for R1=any_scalar_value. During verification it
16329  * will be assumed that bar() already verified successfully and call to bar()
16330  * from foo() will be checked for type match only. Later bar() will be verified
16331  * independently to check that it's safe for R1=any_scalar_value.
16332  */
16333 static int do_check_subprogs(struct bpf_verifier_env *env)
16334 {
16335 	struct bpf_prog_aux *aux = env->prog->aux;
16336 	int i, ret;
16337 
16338 	if (!aux->func_info)
16339 		return 0;
16340 
16341 	for (i = 1; i < env->subprog_cnt; i++) {
16342 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16343 			continue;
16344 		env->insn_idx = env->subprog_info[i].start;
16345 		WARN_ON_ONCE(env->insn_idx == 0);
16346 		ret = do_check_common(env, i);
16347 		if (ret) {
16348 			return ret;
16349 		} else if (env->log.level & BPF_LOG_LEVEL) {
16350 			verbose(env,
16351 				"Func#%d is safe for any args that match its prototype\n",
16352 				i);
16353 		}
16354 	}
16355 	return 0;
16356 }
16357 
16358 static int do_check_main(struct bpf_verifier_env *env)
16359 {
16360 	int ret;
16361 
16362 	env->insn_idx = 0;
16363 	ret = do_check_common(env, 0);
16364 	if (!ret)
16365 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16366 	return ret;
16367 }
16368 
16369 
16370 static void print_verification_stats(struct bpf_verifier_env *env)
16371 {
16372 	int i;
16373 
16374 	if (env->log.level & BPF_LOG_STATS) {
16375 		verbose(env, "verification time %lld usec\n",
16376 			div_u64(env->verification_time, 1000));
16377 		verbose(env, "stack depth ");
16378 		for (i = 0; i < env->subprog_cnt; i++) {
16379 			u32 depth = env->subprog_info[i].stack_depth;
16380 
16381 			verbose(env, "%d", depth);
16382 			if (i + 1 < env->subprog_cnt)
16383 				verbose(env, "+");
16384 		}
16385 		verbose(env, "\n");
16386 	}
16387 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16388 		"total_states %d peak_states %d mark_read %d\n",
16389 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16390 		env->max_states_per_insn, env->total_states,
16391 		env->peak_states, env->longest_mark_read_walk);
16392 }
16393 
16394 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16395 {
16396 	const struct btf_type *t, *func_proto;
16397 	const struct bpf_struct_ops *st_ops;
16398 	const struct btf_member *member;
16399 	struct bpf_prog *prog = env->prog;
16400 	u32 btf_id, member_idx;
16401 	const char *mname;
16402 
16403 	if (!prog->gpl_compatible) {
16404 		verbose(env, "struct ops programs must have a GPL compatible license\n");
16405 		return -EINVAL;
16406 	}
16407 
16408 	btf_id = prog->aux->attach_btf_id;
16409 	st_ops = bpf_struct_ops_find(btf_id);
16410 	if (!st_ops) {
16411 		verbose(env, "attach_btf_id %u is not a supported struct\n",
16412 			btf_id);
16413 		return -ENOTSUPP;
16414 	}
16415 
16416 	t = st_ops->type;
16417 	member_idx = prog->expected_attach_type;
16418 	if (member_idx >= btf_type_vlen(t)) {
16419 		verbose(env, "attach to invalid member idx %u of struct %s\n",
16420 			member_idx, st_ops->name);
16421 		return -EINVAL;
16422 	}
16423 
16424 	member = &btf_type_member(t)[member_idx];
16425 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16426 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16427 					       NULL);
16428 	if (!func_proto) {
16429 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16430 			mname, member_idx, st_ops->name);
16431 		return -EINVAL;
16432 	}
16433 
16434 	if (st_ops->check_member) {
16435 		int err = st_ops->check_member(t, member);
16436 
16437 		if (err) {
16438 			verbose(env, "attach to unsupported member %s of struct %s\n",
16439 				mname, st_ops->name);
16440 			return err;
16441 		}
16442 	}
16443 
16444 	prog->aux->attach_func_proto = func_proto;
16445 	prog->aux->attach_func_name = mname;
16446 	env->ops = st_ops->verifier_ops;
16447 
16448 	return 0;
16449 }
16450 #define SECURITY_PREFIX "security_"
16451 
16452 static int check_attach_modify_return(unsigned long addr, const char *func_name)
16453 {
16454 	if (within_error_injection_list(addr) ||
16455 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
16456 		return 0;
16457 
16458 	return -EINVAL;
16459 }
16460 
16461 /* list of non-sleepable functions that are otherwise on
16462  * ALLOW_ERROR_INJECTION list
16463  */
16464 BTF_SET_START(btf_non_sleepable_error_inject)
16465 /* Three functions below can be called from sleepable and non-sleepable context.
16466  * Assume non-sleepable from bpf safety point of view.
16467  */
16468 BTF_ID(func, __filemap_add_folio)
16469 BTF_ID(func, should_fail_alloc_page)
16470 BTF_ID(func, should_failslab)
16471 BTF_SET_END(btf_non_sleepable_error_inject)
16472 
16473 static int check_non_sleepable_error_inject(u32 btf_id)
16474 {
16475 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16476 }
16477 
16478 int bpf_check_attach_target(struct bpf_verifier_log *log,
16479 			    const struct bpf_prog *prog,
16480 			    const struct bpf_prog *tgt_prog,
16481 			    u32 btf_id,
16482 			    struct bpf_attach_target_info *tgt_info)
16483 {
16484 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
16485 	const char prefix[] = "btf_trace_";
16486 	int ret = 0, subprog = -1, i;
16487 	const struct btf_type *t;
16488 	bool conservative = true;
16489 	const char *tname;
16490 	struct btf *btf;
16491 	long addr = 0;
16492 
16493 	if (!btf_id) {
16494 		bpf_log(log, "Tracing programs must provide btf_id\n");
16495 		return -EINVAL;
16496 	}
16497 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
16498 	if (!btf) {
16499 		bpf_log(log,
16500 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16501 		return -EINVAL;
16502 	}
16503 	t = btf_type_by_id(btf, btf_id);
16504 	if (!t) {
16505 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
16506 		return -EINVAL;
16507 	}
16508 	tname = btf_name_by_offset(btf, t->name_off);
16509 	if (!tname) {
16510 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
16511 		return -EINVAL;
16512 	}
16513 	if (tgt_prog) {
16514 		struct bpf_prog_aux *aux = tgt_prog->aux;
16515 
16516 		for (i = 0; i < aux->func_info_cnt; i++)
16517 			if (aux->func_info[i].type_id == btf_id) {
16518 				subprog = i;
16519 				break;
16520 			}
16521 		if (subprog == -1) {
16522 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
16523 			return -EINVAL;
16524 		}
16525 		conservative = aux->func_info_aux[subprog].unreliable;
16526 		if (prog_extension) {
16527 			if (conservative) {
16528 				bpf_log(log,
16529 					"Cannot replace static functions\n");
16530 				return -EINVAL;
16531 			}
16532 			if (!prog->jit_requested) {
16533 				bpf_log(log,
16534 					"Extension programs should be JITed\n");
16535 				return -EINVAL;
16536 			}
16537 		}
16538 		if (!tgt_prog->jited) {
16539 			bpf_log(log, "Can attach to only JITed progs\n");
16540 			return -EINVAL;
16541 		}
16542 		if (tgt_prog->type == prog->type) {
16543 			/* Cannot fentry/fexit another fentry/fexit program.
16544 			 * Cannot attach program extension to another extension.
16545 			 * It's ok to attach fentry/fexit to extension program.
16546 			 */
16547 			bpf_log(log, "Cannot recursively attach\n");
16548 			return -EINVAL;
16549 		}
16550 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16551 		    prog_extension &&
16552 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16553 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16554 			/* Program extensions can extend all program types
16555 			 * except fentry/fexit. The reason is the following.
16556 			 * The fentry/fexit programs are used for performance
16557 			 * analysis, stats and can be attached to any program
16558 			 * type except themselves. When extension program is
16559 			 * replacing XDP function it is necessary to allow
16560 			 * performance analysis of all functions. Both original
16561 			 * XDP program and its program extension. Hence
16562 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16563 			 * allowed. If extending of fentry/fexit was allowed it
16564 			 * would be possible to create long call chain
16565 			 * fentry->extension->fentry->extension beyond
16566 			 * reasonable stack size. Hence extending fentry is not
16567 			 * allowed.
16568 			 */
16569 			bpf_log(log, "Cannot extend fentry/fexit\n");
16570 			return -EINVAL;
16571 		}
16572 	} else {
16573 		if (prog_extension) {
16574 			bpf_log(log, "Cannot replace kernel functions\n");
16575 			return -EINVAL;
16576 		}
16577 	}
16578 
16579 	switch (prog->expected_attach_type) {
16580 	case BPF_TRACE_RAW_TP:
16581 		if (tgt_prog) {
16582 			bpf_log(log,
16583 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16584 			return -EINVAL;
16585 		}
16586 		if (!btf_type_is_typedef(t)) {
16587 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
16588 				btf_id);
16589 			return -EINVAL;
16590 		}
16591 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
16592 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
16593 				btf_id, tname);
16594 			return -EINVAL;
16595 		}
16596 		tname += sizeof(prefix) - 1;
16597 		t = btf_type_by_id(btf, t->type);
16598 		if (!btf_type_is_ptr(t))
16599 			/* should never happen in valid vmlinux build */
16600 			return -EINVAL;
16601 		t = btf_type_by_id(btf, t->type);
16602 		if (!btf_type_is_func_proto(t))
16603 			/* should never happen in valid vmlinux build */
16604 			return -EINVAL;
16605 
16606 		break;
16607 	case BPF_TRACE_ITER:
16608 		if (!btf_type_is_func(t)) {
16609 			bpf_log(log, "attach_btf_id %u is not a function\n",
16610 				btf_id);
16611 			return -EINVAL;
16612 		}
16613 		t = btf_type_by_id(btf, t->type);
16614 		if (!btf_type_is_func_proto(t))
16615 			return -EINVAL;
16616 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16617 		if (ret)
16618 			return ret;
16619 		break;
16620 	default:
16621 		if (!prog_extension)
16622 			return -EINVAL;
16623 		fallthrough;
16624 	case BPF_MODIFY_RETURN:
16625 	case BPF_LSM_MAC:
16626 	case BPF_LSM_CGROUP:
16627 	case BPF_TRACE_FENTRY:
16628 	case BPF_TRACE_FEXIT:
16629 		if (!btf_type_is_func(t)) {
16630 			bpf_log(log, "attach_btf_id %u is not a function\n",
16631 				btf_id);
16632 			return -EINVAL;
16633 		}
16634 		if (prog_extension &&
16635 		    btf_check_type_match(log, prog, btf, t))
16636 			return -EINVAL;
16637 		t = btf_type_by_id(btf, t->type);
16638 		if (!btf_type_is_func_proto(t))
16639 			return -EINVAL;
16640 
16641 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16642 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16643 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16644 			return -EINVAL;
16645 
16646 		if (tgt_prog && conservative)
16647 			t = NULL;
16648 
16649 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16650 		if (ret < 0)
16651 			return ret;
16652 
16653 		if (tgt_prog) {
16654 			if (subprog == 0)
16655 				addr = (long) tgt_prog->bpf_func;
16656 			else
16657 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
16658 		} else {
16659 			addr = kallsyms_lookup_name(tname);
16660 			if (!addr) {
16661 				bpf_log(log,
16662 					"The address of function %s cannot be found\n",
16663 					tname);
16664 				return -ENOENT;
16665 			}
16666 		}
16667 
16668 		if (prog->aux->sleepable) {
16669 			ret = -EINVAL;
16670 			switch (prog->type) {
16671 			case BPF_PROG_TYPE_TRACING:
16672 
16673 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
16674 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16675 				 */
16676 				if (!check_non_sleepable_error_inject(btf_id) &&
16677 				    within_error_injection_list(addr))
16678 					ret = 0;
16679 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
16680 				 * in the fmodret id set with the KF_SLEEPABLE flag.
16681 				 */
16682 				else {
16683 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
16684 
16685 					if (flags && (*flags & KF_SLEEPABLE))
16686 						ret = 0;
16687 				}
16688 				break;
16689 			case BPF_PROG_TYPE_LSM:
16690 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
16691 				 * Only some of them are sleepable.
16692 				 */
16693 				if (bpf_lsm_is_sleepable_hook(btf_id))
16694 					ret = 0;
16695 				break;
16696 			default:
16697 				break;
16698 			}
16699 			if (ret) {
16700 				bpf_log(log, "%s is not sleepable\n", tname);
16701 				return ret;
16702 			}
16703 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
16704 			if (tgt_prog) {
16705 				bpf_log(log, "can't modify return codes of BPF programs\n");
16706 				return -EINVAL;
16707 			}
16708 			ret = -EINVAL;
16709 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
16710 			    !check_attach_modify_return(addr, tname))
16711 				ret = 0;
16712 			if (ret) {
16713 				bpf_log(log, "%s() is not modifiable\n", tname);
16714 				return ret;
16715 			}
16716 		}
16717 
16718 		break;
16719 	}
16720 	tgt_info->tgt_addr = addr;
16721 	tgt_info->tgt_name = tname;
16722 	tgt_info->tgt_type = t;
16723 	return 0;
16724 }
16725 
16726 BTF_SET_START(btf_id_deny)
16727 BTF_ID_UNUSED
16728 #ifdef CONFIG_SMP
16729 BTF_ID(func, migrate_disable)
16730 BTF_ID(func, migrate_enable)
16731 #endif
16732 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16733 BTF_ID(func, rcu_read_unlock_strict)
16734 #endif
16735 BTF_SET_END(btf_id_deny)
16736 
16737 static int check_attach_btf_id(struct bpf_verifier_env *env)
16738 {
16739 	struct bpf_prog *prog = env->prog;
16740 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
16741 	struct bpf_attach_target_info tgt_info = {};
16742 	u32 btf_id = prog->aux->attach_btf_id;
16743 	struct bpf_trampoline *tr;
16744 	int ret;
16745 	u64 key;
16746 
16747 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16748 		if (prog->aux->sleepable)
16749 			/* attach_btf_id checked to be zero already */
16750 			return 0;
16751 		verbose(env, "Syscall programs can only be sleepable\n");
16752 		return -EINVAL;
16753 	}
16754 
16755 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
16756 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16757 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
16758 		return -EINVAL;
16759 	}
16760 
16761 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16762 		return check_struct_ops_btf_id(env);
16763 
16764 	if (prog->type != BPF_PROG_TYPE_TRACING &&
16765 	    prog->type != BPF_PROG_TYPE_LSM &&
16766 	    prog->type != BPF_PROG_TYPE_EXT)
16767 		return 0;
16768 
16769 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16770 	if (ret)
16771 		return ret;
16772 
16773 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
16774 		/* to make freplace equivalent to their targets, they need to
16775 		 * inherit env->ops and expected_attach_type for the rest of the
16776 		 * verification
16777 		 */
16778 		env->ops = bpf_verifier_ops[tgt_prog->type];
16779 		prog->expected_attach_type = tgt_prog->expected_attach_type;
16780 	}
16781 
16782 	/* store info about the attachment target that will be used later */
16783 	prog->aux->attach_func_proto = tgt_info.tgt_type;
16784 	prog->aux->attach_func_name = tgt_info.tgt_name;
16785 
16786 	if (tgt_prog) {
16787 		prog->aux->saved_dst_prog_type = tgt_prog->type;
16788 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16789 	}
16790 
16791 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16792 		prog->aux->attach_btf_trace = true;
16793 		return 0;
16794 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16795 		if (!bpf_iter_prog_supported(prog))
16796 			return -EINVAL;
16797 		return 0;
16798 	}
16799 
16800 	if (prog->type == BPF_PROG_TYPE_LSM) {
16801 		ret = bpf_lsm_verify_prog(&env->log, prog);
16802 		if (ret < 0)
16803 			return ret;
16804 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
16805 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
16806 		return -EINVAL;
16807 	}
16808 
16809 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
16810 	tr = bpf_trampoline_get(key, &tgt_info);
16811 	if (!tr)
16812 		return -ENOMEM;
16813 
16814 	prog->aux->dst_trampoline = tr;
16815 	return 0;
16816 }
16817 
16818 struct btf *bpf_get_btf_vmlinux(void)
16819 {
16820 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16821 		mutex_lock(&bpf_verifier_lock);
16822 		if (!btf_vmlinux)
16823 			btf_vmlinux = btf_parse_vmlinux();
16824 		mutex_unlock(&bpf_verifier_lock);
16825 	}
16826 	return btf_vmlinux;
16827 }
16828 
16829 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
16830 {
16831 	u64 start_time = ktime_get_ns();
16832 	struct bpf_verifier_env *env;
16833 	struct bpf_verifier_log *log;
16834 	int i, len, ret = -EINVAL;
16835 	bool is_priv;
16836 
16837 	/* no program is valid */
16838 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16839 		return -EINVAL;
16840 
16841 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
16842 	 * allocate/free it every time bpf_check() is called
16843 	 */
16844 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
16845 	if (!env)
16846 		return -ENOMEM;
16847 	log = &env->log;
16848 
16849 	len = (*prog)->len;
16850 	env->insn_aux_data =
16851 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
16852 	ret = -ENOMEM;
16853 	if (!env->insn_aux_data)
16854 		goto err_free_env;
16855 	for (i = 0; i < len; i++)
16856 		env->insn_aux_data[i].orig_idx = i;
16857 	env->prog = *prog;
16858 	env->ops = bpf_verifier_ops[env->prog->type];
16859 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
16860 	is_priv = bpf_capable();
16861 
16862 	bpf_get_btf_vmlinux();
16863 
16864 	/* grab the mutex to protect few globals used by verifier */
16865 	if (!is_priv)
16866 		mutex_lock(&bpf_verifier_lock);
16867 
16868 	if (attr->log_level || attr->log_buf || attr->log_size) {
16869 		/* user requested verbose verifier output
16870 		 * and supplied buffer to store the verification trace
16871 		 */
16872 		log->level = attr->log_level;
16873 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16874 		log->len_total = attr->log_size;
16875 
16876 		/* log attributes have to be sane */
16877 		if (!bpf_verifier_log_attr_valid(log)) {
16878 			ret = -EINVAL;
16879 			goto err_unlock;
16880 		}
16881 	}
16882 
16883 	mark_verifier_state_clean(env);
16884 
16885 	if (IS_ERR(btf_vmlinux)) {
16886 		/* Either gcc or pahole or kernel are broken. */
16887 		verbose(env, "in-kernel BTF is malformed\n");
16888 		ret = PTR_ERR(btf_vmlinux);
16889 		goto skip_full_check;
16890 	}
16891 
16892 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16893 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
16894 		env->strict_alignment = true;
16895 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16896 		env->strict_alignment = false;
16897 
16898 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
16899 	env->allow_uninit_stack = bpf_allow_uninit_stack();
16900 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
16901 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
16902 	env->bpf_capable = bpf_capable();
16903 	env->rcu_tag_supported = btf_vmlinux &&
16904 		btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
16905 
16906 	if (is_priv)
16907 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16908 
16909 	env->explored_states = kvcalloc(state_htab_size(env),
16910 				       sizeof(struct bpf_verifier_state_list *),
16911 				       GFP_USER);
16912 	ret = -ENOMEM;
16913 	if (!env->explored_states)
16914 		goto skip_full_check;
16915 
16916 	ret = add_subprog_and_kfunc(env);
16917 	if (ret < 0)
16918 		goto skip_full_check;
16919 
16920 	ret = check_subprogs(env);
16921 	if (ret < 0)
16922 		goto skip_full_check;
16923 
16924 	ret = check_btf_info(env, attr, uattr);
16925 	if (ret < 0)
16926 		goto skip_full_check;
16927 
16928 	ret = check_attach_btf_id(env);
16929 	if (ret)
16930 		goto skip_full_check;
16931 
16932 	ret = resolve_pseudo_ldimm64(env);
16933 	if (ret < 0)
16934 		goto skip_full_check;
16935 
16936 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
16937 		ret = bpf_prog_offload_verifier_prep(env->prog);
16938 		if (ret)
16939 			goto skip_full_check;
16940 	}
16941 
16942 	ret = check_cfg(env);
16943 	if (ret < 0)
16944 		goto skip_full_check;
16945 
16946 	ret = do_check_subprogs(env);
16947 	ret = ret ?: do_check_main(env);
16948 
16949 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16950 		ret = bpf_prog_offload_finalize(env);
16951 
16952 skip_full_check:
16953 	kvfree(env->explored_states);
16954 
16955 	if (ret == 0)
16956 		ret = check_max_stack_depth(env);
16957 
16958 	/* instruction rewrites happen after this point */
16959 	if (ret == 0)
16960 		ret = optimize_bpf_loop(env);
16961 
16962 	if (is_priv) {
16963 		if (ret == 0)
16964 			opt_hard_wire_dead_code_branches(env);
16965 		if (ret == 0)
16966 			ret = opt_remove_dead_code(env);
16967 		if (ret == 0)
16968 			ret = opt_remove_nops(env);
16969 	} else {
16970 		if (ret == 0)
16971 			sanitize_dead_code(env);
16972 	}
16973 
16974 	if (ret == 0)
16975 		/* program is valid, convert *(u32*)(ctx + off) accesses */
16976 		ret = convert_ctx_accesses(env);
16977 
16978 	if (ret == 0)
16979 		ret = do_misc_fixups(env);
16980 
16981 	/* do 32-bit optimization after insn patching has done so those patched
16982 	 * insns could be handled correctly.
16983 	 */
16984 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16985 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16986 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16987 								     : false;
16988 	}
16989 
16990 	if (ret == 0)
16991 		ret = fixup_call_args(env);
16992 
16993 	env->verification_time = ktime_get_ns() - start_time;
16994 	print_verification_stats(env);
16995 	env->prog->aux->verified_insns = env->insn_processed;
16996 
16997 	if (log->level && bpf_verifier_log_full(log))
16998 		ret = -ENOSPC;
16999 	if (log->level && !log->ubuf) {
17000 		ret = -EFAULT;
17001 		goto err_release_maps;
17002 	}
17003 
17004 	if (ret)
17005 		goto err_release_maps;
17006 
17007 	if (env->used_map_cnt) {
17008 		/* if program passed verifier, update used_maps in bpf_prog_info */
17009 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
17010 							  sizeof(env->used_maps[0]),
17011 							  GFP_KERNEL);
17012 
17013 		if (!env->prog->aux->used_maps) {
17014 			ret = -ENOMEM;
17015 			goto err_release_maps;
17016 		}
17017 
17018 		memcpy(env->prog->aux->used_maps, env->used_maps,
17019 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
17020 		env->prog->aux->used_map_cnt = env->used_map_cnt;
17021 	}
17022 	if (env->used_btf_cnt) {
17023 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
17024 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
17025 							  sizeof(env->used_btfs[0]),
17026 							  GFP_KERNEL);
17027 		if (!env->prog->aux->used_btfs) {
17028 			ret = -ENOMEM;
17029 			goto err_release_maps;
17030 		}
17031 
17032 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
17033 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
17034 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
17035 	}
17036 	if (env->used_map_cnt || env->used_btf_cnt) {
17037 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
17038 		 * bpf_ld_imm64 instructions
17039 		 */
17040 		convert_pseudo_ld_imm64(env);
17041 	}
17042 
17043 	adjust_btf_func(env);
17044 
17045 err_release_maps:
17046 	if (!env->prog->aux->used_maps)
17047 		/* if we didn't copy map pointers into bpf_prog_info, release
17048 		 * them now. Otherwise free_used_maps() will release them.
17049 		 */
17050 		release_maps(env);
17051 	if (!env->prog->aux->used_btfs)
17052 		release_btfs(env);
17053 
17054 	/* extension progs temporarily inherit the attach_type of their targets
17055 	   for verification purposes, so set it back to zero before returning
17056 	 */
17057 	if (env->prog->type == BPF_PROG_TYPE_EXT)
17058 		env->prog->expected_attach_type = 0;
17059 
17060 	*prog = env->prog;
17061 err_unlock:
17062 	if (!is_priv)
17063 		mutex_unlock(&bpf_verifier_lock);
17064 	vfree(env->insn_aux_data);
17065 err_free_env:
17066 	kfree(env);
17067 	return ret;
17068 }
17069