1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 /* bpf_check() is a static code analyzer that walks eBPF program 25 * instruction by instruction and updates register/stack state. 26 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 27 * 28 * The first pass is depth-first-search to check that the program is a DAG. 29 * It rejects the following programs: 30 * - larger than BPF_MAXINSNS insns 31 * - if loop is present (detected via back-edge) 32 * - unreachable insns exist (shouldn't be a forest. program = one function) 33 * - out of bounds or malformed jumps 34 * The second pass is all possible path descent from the 1st insn. 35 * Since it's analyzing all pathes through the program, the length of the 36 * analysis is limited to 64k insn, which may be hit even if total number of 37 * insn is less then 4K, but there are too many branches that change stack/regs. 38 * Number of 'branches to be analyzed' is limited to 1k 39 * 40 * On entry to each instruction, each register has a type, and the instruction 41 * changes the types of the registers depending on instruction semantics. 42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 43 * copied to R1. 44 * 45 * All registers are 64-bit. 46 * R0 - return register 47 * R1-R5 argument passing registers 48 * R6-R9 callee saved registers 49 * R10 - frame pointer read-only 50 * 51 * At the start of BPF program the register R1 contains a pointer to bpf_context 52 * and has type PTR_TO_CTX. 53 * 54 * Verifier tracks arithmetic operations on pointers in case: 55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 57 * 1st insn copies R10 (which has FRAME_PTR) type into R1 58 * and 2nd arithmetic instruction is pattern matched to recognize 59 * that it wants to construct a pointer to some element within stack. 60 * So after 2nd insn, the register R1 has type PTR_TO_STACK 61 * (and -20 constant is saved for further stack bounds checking). 62 * Meaning that this reg is a pointer to stack plus known immediate constant. 63 * 64 * Most of the time the registers have SCALAR_VALUE type, which 65 * means the register has some value, but it's not a valid pointer. 66 * (like pointer plus pointer becomes SCALAR_VALUE type) 67 * 68 * When verifier sees load or store instructions the type of base register 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 70 * types recognized by check_mem_access() function. 71 * 72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 73 * and the range of [ptr, ptr + map's value_size) is accessible. 74 * 75 * registers used to pass values to function calls are checked against 76 * function argument constraints. 77 * 78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 79 * It means that the register type passed to this function must be 80 * PTR_TO_STACK and it will be used inside the function as 81 * 'pointer to map element key' 82 * 83 * For example the argument constraints for bpf_map_lookup_elem(): 84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 85 * .arg1_type = ARG_CONST_MAP_PTR, 86 * .arg2_type = ARG_PTR_TO_MAP_KEY, 87 * 88 * ret_type says that this function returns 'pointer to map elem value or null' 89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 90 * 2nd argument should be a pointer to stack, which will be used inside 91 * the helper function as a pointer to map element key. 92 * 93 * On the kernel side the helper function looks like: 94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 95 * { 96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 97 * void *key = (void *) (unsigned long) r2; 98 * void *value; 99 * 100 * here kernel can access 'key' and 'map' pointers safely, knowing that 101 * [key, key + map->key_size) bytes are valid and were initialized on 102 * the stack of eBPF program. 103 * } 104 * 105 * Corresponding eBPF program may look like: 106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 110 * here verifier looks at prototype of map_lookup_elem() and sees: 111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 113 * 114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 116 * and were initialized prior to this call. 117 * If it's ok, then verifier allows this BPF_CALL insn and looks at 118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 120 * returns ether pointer to map value or NULL. 121 * 122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 123 * insn, the register holding that pointer in the true branch changes state to 124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 125 * branch. See check_cond_jmp_op(). 126 * 127 * After the call R0 is set to return type of the function and registers R1-R5 128 * are set to NOT_INIT to indicate that they are no longer readable. 129 */ 130 131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 132 struct bpf_verifier_stack_elem { 133 /* verifer state is 'st' 134 * before processing instruction 'insn_idx' 135 * and after processing instruction 'prev_insn_idx' 136 */ 137 struct bpf_verifier_state st; 138 int insn_idx; 139 int prev_insn_idx; 140 struct bpf_verifier_stack_elem *next; 141 }; 142 143 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 144 #define BPF_COMPLEXITY_LIMIT_STACK 1024 145 146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 147 148 struct bpf_call_arg_meta { 149 struct bpf_map *map_ptr; 150 bool raw_mode; 151 bool pkt_access; 152 int regno; 153 int access_size; 154 }; 155 156 /* verbose verifier prints what it's seeing 157 * bpf_check() is called under lock, so no race to access these global vars 158 */ 159 static u32 log_level, log_size, log_len; 160 static char *log_buf; 161 162 static DEFINE_MUTEX(bpf_verifier_lock); 163 164 /* log_level controls verbosity level of eBPF verifier. 165 * verbose() is used to dump the verification trace to the log, so the user 166 * can figure out what's wrong with the program 167 */ 168 static __printf(1, 2) void verbose(const char *fmt, ...) 169 { 170 va_list args; 171 172 if (log_level == 0 || log_len >= log_size - 1) 173 return; 174 175 va_start(args, fmt); 176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); 177 va_end(args); 178 } 179 180 /* string representation of 'enum bpf_reg_type' */ 181 static const char * const reg_type_str[] = { 182 [NOT_INIT] = "?", 183 [SCALAR_VALUE] = "inv", 184 [PTR_TO_CTX] = "ctx", 185 [CONST_PTR_TO_MAP] = "map_ptr", 186 [PTR_TO_MAP_VALUE] = "map_value", 187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 188 [PTR_TO_STACK] = "fp", 189 [PTR_TO_PACKET] = "pkt", 190 [PTR_TO_PACKET_END] = "pkt_end", 191 }; 192 193 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) 194 static const char * const func_id_str[] = { 195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) 196 }; 197 #undef __BPF_FUNC_STR_FN 198 199 static const char *func_id_name(int id) 200 { 201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); 202 203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) 204 return func_id_str[id]; 205 else 206 return "unknown"; 207 } 208 209 static void print_verifier_state(struct bpf_verifier_state *state) 210 { 211 struct bpf_reg_state *reg; 212 enum bpf_reg_type t; 213 int i; 214 215 for (i = 0; i < MAX_BPF_REG; i++) { 216 reg = &state->regs[i]; 217 t = reg->type; 218 if (t == NOT_INIT) 219 continue; 220 verbose(" R%d=%s", i, reg_type_str[t]); 221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 222 tnum_is_const(reg->var_off)) { 223 /* reg->off should be 0 for SCALAR_VALUE */ 224 verbose("%lld", reg->var_off.value + reg->off); 225 } else { 226 verbose("(id=%d", reg->id); 227 if (t != SCALAR_VALUE) 228 verbose(",off=%d", reg->off); 229 if (t == PTR_TO_PACKET) 230 verbose(",r=%d", reg->range); 231 else if (t == CONST_PTR_TO_MAP || 232 t == PTR_TO_MAP_VALUE || 233 t == PTR_TO_MAP_VALUE_OR_NULL) 234 verbose(",ks=%d,vs=%d", 235 reg->map_ptr->key_size, 236 reg->map_ptr->value_size); 237 if (tnum_is_const(reg->var_off)) { 238 /* Typically an immediate SCALAR_VALUE, but 239 * could be a pointer whose offset is too big 240 * for reg->off 241 */ 242 verbose(",imm=%llx", reg->var_off.value); 243 } else { 244 if (reg->smin_value != reg->umin_value && 245 reg->smin_value != S64_MIN) 246 verbose(",smin_value=%lld", 247 (long long)reg->smin_value); 248 if (reg->smax_value != reg->umax_value && 249 reg->smax_value != S64_MAX) 250 verbose(",smax_value=%lld", 251 (long long)reg->smax_value); 252 if (reg->umin_value != 0) 253 verbose(",umin_value=%llu", 254 (unsigned long long)reg->umin_value); 255 if (reg->umax_value != U64_MAX) 256 verbose(",umax_value=%llu", 257 (unsigned long long)reg->umax_value); 258 if (!tnum_is_unknown(reg->var_off)) { 259 char tn_buf[48]; 260 261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 262 verbose(",var_off=%s", tn_buf); 263 } 264 } 265 verbose(")"); 266 } 267 } 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 269 if (state->stack_slot_type[i] == STACK_SPILL) 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i, 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); 272 } 273 verbose("\n"); 274 } 275 276 static const char *const bpf_class_string[] = { 277 [BPF_LD] = "ld", 278 [BPF_LDX] = "ldx", 279 [BPF_ST] = "st", 280 [BPF_STX] = "stx", 281 [BPF_ALU] = "alu", 282 [BPF_JMP] = "jmp", 283 [BPF_RET] = "BUG", 284 [BPF_ALU64] = "alu64", 285 }; 286 287 static const char *const bpf_alu_string[16] = { 288 [BPF_ADD >> 4] = "+=", 289 [BPF_SUB >> 4] = "-=", 290 [BPF_MUL >> 4] = "*=", 291 [BPF_DIV >> 4] = "/=", 292 [BPF_OR >> 4] = "|=", 293 [BPF_AND >> 4] = "&=", 294 [BPF_LSH >> 4] = "<<=", 295 [BPF_RSH >> 4] = ">>=", 296 [BPF_NEG >> 4] = "neg", 297 [BPF_MOD >> 4] = "%=", 298 [BPF_XOR >> 4] = "^=", 299 [BPF_MOV >> 4] = "=", 300 [BPF_ARSH >> 4] = "s>>=", 301 [BPF_END >> 4] = "endian", 302 }; 303 304 static const char *const bpf_ldst_string[] = { 305 [BPF_W >> 3] = "u32", 306 [BPF_H >> 3] = "u16", 307 [BPF_B >> 3] = "u8", 308 [BPF_DW >> 3] = "u64", 309 }; 310 311 static const char *const bpf_jmp_string[16] = { 312 [BPF_JA >> 4] = "jmp", 313 [BPF_JEQ >> 4] = "==", 314 [BPF_JGT >> 4] = ">", 315 [BPF_JLT >> 4] = "<", 316 [BPF_JGE >> 4] = ">=", 317 [BPF_JLE >> 4] = "<=", 318 [BPF_JSET >> 4] = "&", 319 [BPF_JNE >> 4] = "!=", 320 [BPF_JSGT >> 4] = "s>", 321 [BPF_JSLT >> 4] = "s<", 322 [BPF_JSGE >> 4] = "s>=", 323 [BPF_JSLE >> 4] = "s<=", 324 [BPF_CALL >> 4] = "call", 325 [BPF_EXIT >> 4] = "exit", 326 }; 327 328 static void print_bpf_insn(const struct bpf_verifier_env *env, 329 const struct bpf_insn *insn) 330 { 331 u8 class = BPF_CLASS(insn->code); 332 333 if (class == BPF_ALU || class == BPF_ALU64) { 334 if (BPF_SRC(insn->code) == BPF_X) 335 verbose("(%02x) %sr%d %s %sr%d\n", 336 insn->code, class == BPF_ALU ? "(u32) " : "", 337 insn->dst_reg, 338 bpf_alu_string[BPF_OP(insn->code) >> 4], 339 class == BPF_ALU ? "(u32) " : "", 340 insn->src_reg); 341 else 342 verbose("(%02x) %sr%d %s %s%d\n", 343 insn->code, class == BPF_ALU ? "(u32) " : "", 344 insn->dst_reg, 345 bpf_alu_string[BPF_OP(insn->code) >> 4], 346 class == BPF_ALU ? "(u32) " : "", 347 insn->imm); 348 } else if (class == BPF_STX) { 349 if (BPF_MODE(insn->code) == BPF_MEM) 350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", 351 insn->code, 352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 353 insn->dst_reg, 354 insn->off, insn->src_reg); 355 else if (BPF_MODE(insn->code) == BPF_XADD) 356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", 357 insn->code, 358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 359 insn->dst_reg, insn->off, 360 insn->src_reg); 361 else 362 verbose("BUG_%02x\n", insn->code); 363 } else if (class == BPF_ST) { 364 if (BPF_MODE(insn->code) != BPF_MEM) { 365 verbose("BUG_st_%02x\n", insn->code); 366 return; 367 } 368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n", 369 insn->code, 370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 371 insn->dst_reg, 372 insn->off, insn->imm); 373 } else if (class == BPF_LDX) { 374 if (BPF_MODE(insn->code) != BPF_MEM) { 375 verbose("BUG_ldx_%02x\n", insn->code); 376 return; 377 } 378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", 379 insn->code, insn->dst_reg, 380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 381 insn->src_reg, insn->off); 382 } else if (class == BPF_LD) { 383 if (BPF_MODE(insn->code) == BPF_ABS) { 384 verbose("(%02x) r0 = *(%s *)skb[%d]\n", 385 insn->code, 386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 387 insn->imm); 388 } else if (BPF_MODE(insn->code) == BPF_IND) { 389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", 390 insn->code, 391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 392 insn->src_reg, insn->imm); 393 } else if (BPF_MODE(insn->code) == BPF_IMM && 394 BPF_SIZE(insn->code) == BPF_DW) { 395 /* At this point, we already made sure that the second 396 * part of the ldimm64 insn is accessible. 397 */ 398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD; 400 401 if (map_ptr && !env->allow_ptr_leaks) 402 imm = 0; 403 404 verbose("(%02x) r%d = 0x%llx\n", insn->code, 405 insn->dst_reg, (unsigned long long)imm); 406 } else { 407 verbose("BUG_ld_%02x\n", insn->code); 408 return; 409 } 410 } else if (class == BPF_JMP) { 411 u8 opcode = BPF_OP(insn->code); 412 413 if (opcode == BPF_CALL) { 414 verbose("(%02x) call %s#%d\n", insn->code, 415 func_id_name(insn->imm), insn->imm); 416 } else if (insn->code == (BPF_JMP | BPF_JA)) { 417 verbose("(%02x) goto pc%+d\n", 418 insn->code, insn->off); 419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) { 420 verbose("(%02x) exit\n", insn->code); 421 } else if (BPF_SRC(insn->code) == BPF_X) { 422 verbose("(%02x) if r%d %s r%d goto pc%+d\n", 423 insn->code, insn->dst_reg, 424 bpf_jmp_string[BPF_OP(insn->code) >> 4], 425 insn->src_reg, insn->off); 426 } else { 427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", 428 insn->code, insn->dst_reg, 429 bpf_jmp_string[BPF_OP(insn->code) >> 4], 430 insn->imm, insn->off); 431 } 432 } else { 433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); 434 } 435 } 436 437 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) 438 { 439 struct bpf_verifier_stack_elem *elem; 440 int insn_idx; 441 442 if (env->head == NULL) 443 return -1; 444 445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 446 insn_idx = env->head->insn_idx; 447 if (prev_insn_idx) 448 *prev_insn_idx = env->head->prev_insn_idx; 449 elem = env->head->next; 450 kfree(env->head); 451 env->head = elem; 452 env->stack_size--; 453 return insn_idx; 454 } 455 456 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 457 int insn_idx, int prev_insn_idx) 458 { 459 struct bpf_verifier_stack_elem *elem; 460 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 462 if (!elem) 463 goto err; 464 465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); 466 elem->insn_idx = insn_idx; 467 elem->prev_insn_idx = prev_insn_idx; 468 elem->next = env->head; 469 env->head = elem; 470 env->stack_size++; 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 472 verbose("BPF program is too complex\n"); 473 goto err; 474 } 475 return &elem->st; 476 err: 477 /* pop all elements and return */ 478 while (pop_stack(env, NULL) >= 0); 479 return NULL; 480 } 481 482 #define CALLER_SAVED_REGS 6 483 static const int caller_saved[CALLER_SAVED_REGS] = { 484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 485 }; 486 487 static void __mark_reg_not_init(struct bpf_reg_state *reg); 488 489 /* Mark the unknown part of a register (variable offset or scalar value) as 490 * known to have the value @imm. 491 */ 492 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 493 { 494 reg->id = 0; 495 reg->var_off = tnum_const(imm); 496 reg->smin_value = (s64)imm; 497 reg->smax_value = (s64)imm; 498 reg->umin_value = imm; 499 reg->umax_value = imm; 500 } 501 502 /* Mark the 'variable offset' part of a register as zero. This should be 503 * used only on registers holding a pointer type. 504 */ 505 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 506 { 507 __mark_reg_known(reg, 0); 508 } 509 510 static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno) 511 { 512 if (WARN_ON(regno >= MAX_BPF_REG)) { 513 verbose("mark_reg_known_zero(regs, %u)\n", regno); 514 /* Something bad happened, let's kill all regs */ 515 for (regno = 0; regno < MAX_BPF_REG; regno++) 516 __mark_reg_not_init(regs + regno); 517 return; 518 } 519 __mark_reg_known_zero(regs + regno); 520 } 521 522 /* Attempts to improve min/max values based on var_off information */ 523 static void __update_reg_bounds(struct bpf_reg_state *reg) 524 { 525 /* min signed is max(sign bit) | min(other bits) */ 526 reg->smin_value = max_t(s64, reg->smin_value, 527 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 528 /* max signed is min(sign bit) | max(other bits) */ 529 reg->smax_value = min_t(s64, reg->smax_value, 530 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 531 reg->umin_value = max(reg->umin_value, reg->var_off.value); 532 reg->umax_value = min(reg->umax_value, 533 reg->var_off.value | reg->var_off.mask); 534 } 535 536 /* Uses signed min/max values to inform unsigned, and vice-versa */ 537 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 538 { 539 /* Learn sign from signed bounds. 540 * If we cannot cross the sign boundary, then signed and unsigned bounds 541 * are the same, so combine. This works even in the negative case, e.g. 542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 543 */ 544 if (reg->smin_value >= 0 || reg->smax_value < 0) { 545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 546 reg->umin_value); 547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 548 reg->umax_value); 549 return; 550 } 551 /* Learn sign from unsigned bounds. Signed bounds cross the sign 552 * boundary, so we must be careful. 553 */ 554 if ((s64)reg->umax_value >= 0) { 555 /* Positive. We can't learn anything from the smin, but smax 556 * is positive, hence safe. 557 */ 558 reg->smin_value = reg->umin_value; 559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 560 reg->umax_value); 561 } else if ((s64)reg->umin_value < 0) { 562 /* Negative. We can't learn anything from the smax, but smin 563 * is negative, hence safe. 564 */ 565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 566 reg->umin_value); 567 reg->smax_value = reg->umax_value; 568 } 569 } 570 571 /* Attempts to improve var_off based on unsigned min/max information */ 572 static void __reg_bound_offset(struct bpf_reg_state *reg) 573 { 574 reg->var_off = tnum_intersect(reg->var_off, 575 tnum_range(reg->umin_value, 576 reg->umax_value)); 577 } 578 579 /* Reset the min/max bounds of a register */ 580 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 581 { 582 reg->smin_value = S64_MIN; 583 reg->smax_value = S64_MAX; 584 reg->umin_value = 0; 585 reg->umax_value = U64_MAX; 586 } 587 588 /* Mark a register as having a completely unknown (scalar) value. */ 589 static void __mark_reg_unknown(struct bpf_reg_state *reg) 590 { 591 reg->type = SCALAR_VALUE; 592 reg->id = 0; 593 reg->off = 0; 594 reg->var_off = tnum_unknown; 595 __mark_reg_unbounded(reg); 596 } 597 598 static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno) 599 { 600 if (WARN_ON(regno >= MAX_BPF_REG)) { 601 verbose("mark_reg_unknown(regs, %u)\n", regno); 602 /* Something bad happened, let's kill all regs */ 603 for (regno = 0; regno < MAX_BPF_REG; regno++) 604 __mark_reg_not_init(regs + regno); 605 return; 606 } 607 __mark_reg_unknown(regs + regno); 608 } 609 610 static void __mark_reg_not_init(struct bpf_reg_state *reg) 611 { 612 __mark_reg_unknown(reg); 613 reg->type = NOT_INIT; 614 } 615 616 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno) 617 { 618 if (WARN_ON(regno >= MAX_BPF_REG)) { 619 verbose("mark_reg_not_init(regs, %u)\n", regno); 620 /* Something bad happened, let's kill all regs */ 621 for (regno = 0; regno < MAX_BPF_REG; regno++) 622 __mark_reg_not_init(regs + regno); 623 return; 624 } 625 __mark_reg_not_init(regs + regno); 626 } 627 628 static void init_reg_state(struct bpf_reg_state *regs) 629 { 630 int i; 631 632 for (i = 0; i < MAX_BPF_REG; i++) { 633 mark_reg_not_init(regs, i); 634 regs[i].live = REG_LIVE_NONE; 635 } 636 637 /* frame pointer */ 638 regs[BPF_REG_FP].type = PTR_TO_STACK; 639 mark_reg_known_zero(regs, BPF_REG_FP); 640 641 /* 1st arg to a function */ 642 regs[BPF_REG_1].type = PTR_TO_CTX; 643 mark_reg_known_zero(regs, BPF_REG_1); 644 } 645 646 enum reg_arg_type { 647 SRC_OP, /* register is used as source operand */ 648 DST_OP, /* register is used as destination operand */ 649 DST_OP_NO_MARK /* same as above, check only, don't mark */ 650 }; 651 652 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 653 { 654 struct bpf_verifier_state *parent = state->parent; 655 656 if (regno == BPF_REG_FP) 657 /* We don't need to worry about FP liveness because it's read-only */ 658 return; 659 660 while (parent) { 661 /* if read wasn't screened by an earlier write ... */ 662 if (state->regs[regno].live & REG_LIVE_WRITTEN) 663 break; 664 /* ... then we depend on parent's value */ 665 parent->regs[regno].live |= REG_LIVE_READ; 666 state = parent; 667 parent = state->parent; 668 } 669 } 670 671 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 672 enum reg_arg_type t) 673 { 674 struct bpf_reg_state *regs = env->cur_state.regs; 675 676 if (regno >= MAX_BPF_REG) { 677 verbose("R%d is invalid\n", regno); 678 return -EINVAL; 679 } 680 681 if (t == SRC_OP) { 682 /* check whether register used as source operand can be read */ 683 if (regs[regno].type == NOT_INIT) { 684 verbose("R%d !read_ok\n", regno); 685 return -EACCES; 686 } 687 mark_reg_read(&env->cur_state, regno); 688 } else { 689 /* check whether register used as dest operand can be written to */ 690 if (regno == BPF_REG_FP) { 691 verbose("frame pointer is read only\n"); 692 return -EACCES; 693 } 694 regs[regno].live |= REG_LIVE_WRITTEN; 695 if (t == DST_OP) 696 mark_reg_unknown(regs, regno); 697 } 698 return 0; 699 } 700 701 static bool is_spillable_regtype(enum bpf_reg_type type) 702 { 703 switch (type) { 704 case PTR_TO_MAP_VALUE: 705 case PTR_TO_MAP_VALUE_OR_NULL: 706 case PTR_TO_STACK: 707 case PTR_TO_CTX: 708 case PTR_TO_PACKET: 709 case PTR_TO_PACKET_END: 710 case CONST_PTR_TO_MAP: 711 return true; 712 default: 713 return false; 714 } 715 } 716 717 /* check_stack_read/write functions track spill/fill of registers, 718 * stack boundary and alignment are checked in check_mem_access() 719 */ 720 static int check_stack_write(struct bpf_verifier_state *state, int off, 721 int size, int value_regno) 722 { 723 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 724 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 725 * so it's aligned access and [off, off + size) are within stack limits 726 */ 727 728 if (value_regno >= 0 && 729 is_spillable_regtype(state->regs[value_regno].type)) { 730 731 /* register containing pointer is being spilled into stack */ 732 if (size != BPF_REG_SIZE) { 733 verbose("invalid size of register spill\n"); 734 return -EACCES; 735 } 736 737 /* save register state */ 738 state->spilled_regs[spi] = state->regs[value_regno]; 739 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN; 740 741 for (i = 0; i < BPF_REG_SIZE; i++) 742 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; 743 } else { 744 /* regular write of data into stack */ 745 state->spilled_regs[spi] = (struct bpf_reg_state) {}; 746 747 for (i = 0; i < size; i++) 748 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; 749 } 750 return 0; 751 } 752 753 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 754 { 755 struct bpf_verifier_state *parent = state->parent; 756 757 while (parent) { 758 /* if read wasn't screened by an earlier write ... */ 759 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN) 760 break; 761 /* ... then we depend on parent's value */ 762 parent->spilled_regs[slot].live |= REG_LIVE_READ; 763 state = parent; 764 parent = state->parent; 765 } 766 } 767 768 static int check_stack_read(struct bpf_verifier_state *state, int off, int size, 769 int value_regno) 770 { 771 u8 *slot_type; 772 int i, spi; 773 774 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; 775 776 if (slot_type[0] == STACK_SPILL) { 777 if (size != BPF_REG_SIZE) { 778 verbose("invalid size of register spill\n"); 779 return -EACCES; 780 } 781 for (i = 1; i < BPF_REG_SIZE; i++) { 782 if (slot_type[i] != STACK_SPILL) { 783 verbose("corrupted spill memory\n"); 784 return -EACCES; 785 } 786 } 787 788 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 789 790 if (value_regno >= 0) { 791 /* restore register state from stack */ 792 state->regs[value_regno] = state->spilled_regs[spi]; 793 mark_stack_slot_read(state, spi); 794 } 795 return 0; 796 } else { 797 for (i = 0; i < size; i++) { 798 if (slot_type[i] != STACK_MISC) { 799 verbose("invalid read from stack off %d+%d size %d\n", 800 off, i, size); 801 return -EACCES; 802 } 803 } 804 if (value_regno >= 0) 805 /* have read misc data from the stack */ 806 mark_reg_unknown(state->regs, value_regno); 807 return 0; 808 } 809 } 810 811 /* check read/write into map element returned by bpf_map_lookup_elem() */ 812 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 813 int size) 814 { 815 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; 816 817 if (off < 0 || size <= 0 || off + size > map->value_size) { 818 verbose("invalid access to map value, value_size=%d off=%d size=%d\n", 819 map->value_size, off, size); 820 return -EACCES; 821 } 822 return 0; 823 } 824 825 /* check read/write into a map element with possible variable offset */ 826 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 827 int off, int size) 828 { 829 struct bpf_verifier_state *state = &env->cur_state; 830 struct bpf_reg_state *reg = &state->regs[regno]; 831 int err; 832 833 /* We may have adjusted the register to this map value, so we 834 * need to try adding each of min_value and max_value to off 835 * to make sure our theoretical access will be safe. 836 */ 837 if (log_level) 838 print_verifier_state(state); 839 /* The minimum value is only important with signed 840 * comparisons where we can't assume the floor of a 841 * value is 0. If we are using signed variables for our 842 * index'es we need to make sure that whatever we use 843 * will have a set floor within our range. 844 */ 845 if (reg->smin_value < 0) { 846 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 847 regno); 848 return -EACCES; 849 } 850 err = __check_map_access(env, regno, reg->smin_value + off, size); 851 if (err) { 852 verbose("R%d min value is outside of the array range\n", regno); 853 return err; 854 } 855 856 /* If we haven't set a max value then we need to bail since we can't be 857 * sure we won't do bad things. 858 * If reg->umax_value + off could overflow, treat that as unbounded too. 859 */ 860 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 861 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", 862 regno); 863 return -EACCES; 864 } 865 err = __check_map_access(env, regno, reg->umax_value + off, size); 866 if (err) 867 verbose("R%d max value is outside of the array range\n", regno); 868 return err; 869 } 870 871 #define MAX_PACKET_OFF 0xffff 872 873 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 874 const struct bpf_call_arg_meta *meta, 875 enum bpf_access_type t) 876 { 877 switch (env->prog->type) { 878 case BPF_PROG_TYPE_LWT_IN: 879 case BPF_PROG_TYPE_LWT_OUT: 880 /* dst_input() and dst_output() can't write for now */ 881 if (t == BPF_WRITE) 882 return false; 883 /* fallthrough */ 884 case BPF_PROG_TYPE_SCHED_CLS: 885 case BPF_PROG_TYPE_SCHED_ACT: 886 case BPF_PROG_TYPE_XDP: 887 case BPF_PROG_TYPE_LWT_XMIT: 888 case BPF_PROG_TYPE_SK_SKB: 889 if (meta) 890 return meta->pkt_access; 891 892 env->seen_direct_write = true; 893 return true; 894 default: 895 return false; 896 } 897 } 898 899 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 900 int off, int size) 901 { 902 struct bpf_reg_state *regs = env->cur_state.regs; 903 struct bpf_reg_state *reg = ®s[regno]; 904 905 if (off < 0 || size <= 0 || (u64)off + size > reg->range) { 906 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 907 off, size, regno, reg->id, reg->off, reg->range); 908 return -EACCES; 909 } 910 return 0; 911 } 912 913 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 914 int size) 915 { 916 struct bpf_reg_state *regs = env->cur_state.regs; 917 struct bpf_reg_state *reg = ®s[regno]; 918 int err; 919 920 /* We may have added a variable offset to the packet pointer; but any 921 * reg->range we have comes after that. We are only checking the fixed 922 * offset. 923 */ 924 925 /* We don't allow negative numbers, because we aren't tracking enough 926 * detail to prove they're safe. 927 */ 928 if (reg->smin_value < 0) { 929 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 930 regno); 931 return -EACCES; 932 } 933 err = __check_packet_access(env, regno, off, size); 934 if (err) { 935 verbose("R%d offset is outside of the packet\n", regno); 936 return err; 937 } 938 return err; 939 } 940 941 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 942 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 943 enum bpf_access_type t, enum bpf_reg_type *reg_type) 944 { 945 struct bpf_insn_access_aux info = { 946 .reg_type = *reg_type, 947 }; 948 949 /* for analyzer ctx accesses are already validated and converted */ 950 if (env->analyzer_ops) 951 return 0; 952 953 if (env->prog->aux->ops->is_valid_access && 954 env->prog->aux->ops->is_valid_access(off, size, t, &info)) { 955 /* A non zero info.ctx_field_size indicates that this field is a 956 * candidate for later verifier transformation to load the whole 957 * field and then apply a mask when accessed with a narrower 958 * access than actual ctx access size. A zero info.ctx_field_size 959 * will only allow for whole field access and rejects any other 960 * type of narrower access. 961 */ 962 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 963 *reg_type = info.reg_type; 964 965 /* remember the offset of last byte accessed in ctx */ 966 if (env->prog->aux->max_ctx_offset < off + size) 967 env->prog->aux->max_ctx_offset = off + size; 968 return 0; 969 } 970 971 verbose("invalid bpf_context access off=%d size=%d\n", off, size); 972 return -EACCES; 973 } 974 975 static bool __is_pointer_value(bool allow_ptr_leaks, 976 const struct bpf_reg_state *reg) 977 { 978 if (allow_ptr_leaks) 979 return false; 980 981 return reg->type != SCALAR_VALUE; 982 } 983 984 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 985 { 986 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]); 987 } 988 989 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg, 990 int off, int size, bool strict) 991 { 992 struct tnum reg_off; 993 int ip_align; 994 995 /* Byte size accesses are always allowed. */ 996 if (!strict || size == 1) 997 return 0; 998 999 /* For platforms that do not have a Kconfig enabling 1000 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1001 * NET_IP_ALIGN is universally set to '2'. And on platforms 1002 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1003 * to this code only in strict mode where we want to emulate 1004 * the NET_IP_ALIGN==2 checking. Therefore use an 1005 * unconditional IP align value of '2'. 1006 */ 1007 ip_align = 2; 1008 1009 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1010 if (!tnum_is_aligned(reg_off, size)) { 1011 char tn_buf[48]; 1012 1013 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1014 verbose("misaligned packet access off %d+%s+%d+%d size %d\n", 1015 ip_align, tn_buf, reg->off, off, size); 1016 return -EACCES; 1017 } 1018 1019 return 0; 1020 } 1021 1022 static int check_generic_ptr_alignment(const struct bpf_reg_state *reg, 1023 const char *pointer_desc, 1024 int off, int size, bool strict) 1025 { 1026 struct tnum reg_off; 1027 1028 /* Byte size accesses are always allowed. */ 1029 if (!strict || size == 1) 1030 return 0; 1031 1032 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1033 if (!tnum_is_aligned(reg_off, size)) { 1034 char tn_buf[48]; 1035 1036 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1037 verbose("misaligned %saccess off %s+%d+%d size %d\n", 1038 pointer_desc, tn_buf, reg->off, off, size); 1039 return -EACCES; 1040 } 1041 1042 return 0; 1043 } 1044 1045 static int check_ptr_alignment(struct bpf_verifier_env *env, 1046 const struct bpf_reg_state *reg, 1047 int off, int size) 1048 { 1049 bool strict = env->strict_alignment; 1050 const char *pointer_desc = ""; 1051 1052 switch (reg->type) { 1053 case PTR_TO_PACKET: 1054 /* special case, because of NET_IP_ALIGN */ 1055 return check_pkt_ptr_alignment(reg, off, size, strict); 1056 case PTR_TO_MAP_VALUE: 1057 pointer_desc = "value "; 1058 break; 1059 case PTR_TO_CTX: 1060 pointer_desc = "context "; 1061 break; 1062 case PTR_TO_STACK: 1063 pointer_desc = "stack "; 1064 break; 1065 default: 1066 break; 1067 } 1068 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict); 1069 } 1070 1071 /* check whether memory at (regno + off) is accessible for t = (read | write) 1072 * if t==write, value_regno is a register which value is stored into memory 1073 * if t==read, value_regno is a register which will receive the value from memory 1074 * if t==write && value_regno==-1, some unknown value is stored into memory 1075 * if t==read && value_regno==-1, don't care what we read from memory 1076 */ 1077 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1078 int bpf_size, enum bpf_access_type t, 1079 int value_regno) 1080 { 1081 struct bpf_verifier_state *state = &env->cur_state; 1082 struct bpf_reg_state *reg = &state->regs[regno]; 1083 int size, err = 0; 1084 1085 size = bpf_size_to_bytes(bpf_size); 1086 if (size < 0) 1087 return size; 1088 1089 /* alignment checks will add in reg->off themselves */ 1090 err = check_ptr_alignment(env, reg, off, size); 1091 if (err) 1092 return err; 1093 1094 /* for access checks, reg->off is just part of off */ 1095 off += reg->off; 1096 1097 if (reg->type == PTR_TO_MAP_VALUE) { 1098 if (t == BPF_WRITE && value_regno >= 0 && 1099 is_pointer_value(env, value_regno)) { 1100 verbose("R%d leaks addr into map\n", value_regno); 1101 return -EACCES; 1102 } 1103 1104 err = check_map_access(env, regno, off, size); 1105 if (!err && t == BPF_READ && value_regno >= 0) 1106 mark_reg_unknown(state->regs, value_regno); 1107 1108 } else if (reg->type == PTR_TO_CTX) { 1109 enum bpf_reg_type reg_type = SCALAR_VALUE; 1110 1111 if (t == BPF_WRITE && value_regno >= 0 && 1112 is_pointer_value(env, value_regno)) { 1113 verbose("R%d leaks addr into ctx\n", value_regno); 1114 return -EACCES; 1115 } 1116 /* ctx accesses must be at a fixed offset, so that we can 1117 * determine what type of data were returned. 1118 */ 1119 if (reg->off) { 1120 verbose("dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1121 regno, reg->off, off - reg->off); 1122 return -EACCES; 1123 } 1124 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1125 char tn_buf[48]; 1126 1127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1128 verbose("variable ctx access var_off=%s off=%d size=%d", 1129 tn_buf, off, size); 1130 return -EACCES; 1131 } 1132 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1133 if (!err && t == BPF_READ && value_regno >= 0) { 1134 /* ctx access returns either a scalar, or a 1135 * PTR_TO_PACKET[_END]. In the latter case, we know 1136 * the offset is zero. 1137 */ 1138 if (reg_type == SCALAR_VALUE) 1139 mark_reg_unknown(state->regs, value_regno); 1140 else 1141 mark_reg_known_zero(state->regs, value_regno); 1142 state->regs[value_regno].id = 0; 1143 state->regs[value_regno].off = 0; 1144 state->regs[value_regno].range = 0; 1145 state->regs[value_regno].type = reg_type; 1146 } 1147 1148 } else if (reg->type == PTR_TO_STACK) { 1149 /* stack accesses must be at a fixed offset, so that we can 1150 * determine what type of data were returned. 1151 * See check_stack_read(). 1152 */ 1153 if (!tnum_is_const(reg->var_off)) { 1154 char tn_buf[48]; 1155 1156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1157 verbose("variable stack access var_off=%s off=%d size=%d", 1158 tn_buf, off, size); 1159 return -EACCES; 1160 } 1161 off += reg->var_off.value; 1162 if (off >= 0 || off < -MAX_BPF_STACK) { 1163 verbose("invalid stack off=%d size=%d\n", off, size); 1164 return -EACCES; 1165 } 1166 1167 if (env->prog->aux->stack_depth < -off) 1168 env->prog->aux->stack_depth = -off; 1169 1170 if (t == BPF_WRITE) { 1171 if (!env->allow_ptr_leaks && 1172 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 1173 size != BPF_REG_SIZE) { 1174 verbose("attempt to corrupt spilled pointer on stack\n"); 1175 return -EACCES; 1176 } 1177 err = check_stack_write(state, off, size, value_regno); 1178 } else { 1179 err = check_stack_read(state, off, size, value_regno); 1180 } 1181 } else if (reg->type == PTR_TO_PACKET) { 1182 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1183 verbose("cannot write into packet\n"); 1184 return -EACCES; 1185 } 1186 if (t == BPF_WRITE && value_regno >= 0 && 1187 is_pointer_value(env, value_regno)) { 1188 verbose("R%d leaks addr into packet\n", value_regno); 1189 return -EACCES; 1190 } 1191 err = check_packet_access(env, regno, off, size); 1192 if (!err && t == BPF_READ && value_regno >= 0) 1193 mark_reg_unknown(state->regs, value_regno); 1194 } else { 1195 verbose("R%d invalid mem access '%s'\n", 1196 regno, reg_type_str[reg->type]); 1197 return -EACCES; 1198 } 1199 1200 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1201 state->regs[value_regno].type == SCALAR_VALUE) { 1202 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1203 state->regs[value_regno].var_off = tnum_cast( 1204 state->regs[value_regno].var_off, size); 1205 __update_reg_bounds(&state->regs[value_regno]); 1206 } 1207 return err; 1208 } 1209 1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1211 { 1212 int err; 1213 1214 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1215 insn->imm != 0) { 1216 verbose("BPF_XADD uses reserved fields\n"); 1217 return -EINVAL; 1218 } 1219 1220 /* check src1 operand */ 1221 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1222 if (err) 1223 return err; 1224 1225 /* check src2 operand */ 1226 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1227 if (err) 1228 return err; 1229 1230 if (is_pointer_value(env, insn->src_reg)) { 1231 verbose("R%d leaks addr into mem\n", insn->src_reg); 1232 return -EACCES; 1233 } 1234 1235 /* check whether atomic_add can read the memory */ 1236 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1237 BPF_SIZE(insn->code), BPF_READ, -1); 1238 if (err) 1239 return err; 1240 1241 /* check whether atomic_add can write into the same memory */ 1242 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1243 BPF_SIZE(insn->code), BPF_WRITE, -1); 1244 } 1245 1246 /* Does this register contain a constant zero? */ 1247 static bool register_is_null(struct bpf_reg_state reg) 1248 { 1249 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); 1250 } 1251 1252 /* when register 'regno' is passed into function that will read 'access_size' 1253 * bytes from that pointer, make sure that it's within stack boundary 1254 * and all elements of stack are initialized. 1255 * Unlike most pointer bounds-checking functions, this one doesn't take an 1256 * 'off' argument, so it has to add in reg->off itself. 1257 */ 1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1259 int access_size, bool zero_size_allowed, 1260 struct bpf_call_arg_meta *meta) 1261 { 1262 struct bpf_verifier_state *state = &env->cur_state; 1263 struct bpf_reg_state *regs = state->regs; 1264 int off, i; 1265 1266 if (regs[regno].type != PTR_TO_STACK) { 1267 /* Allow zero-byte read from NULL, regardless of pointer type */ 1268 if (zero_size_allowed && access_size == 0 && 1269 register_is_null(regs[regno])) 1270 return 0; 1271 1272 verbose("R%d type=%s expected=%s\n", regno, 1273 reg_type_str[regs[regno].type], 1274 reg_type_str[PTR_TO_STACK]); 1275 return -EACCES; 1276 } 1277 1278 /* Only allow fixed-offset stack reads */ 1279 if (!tnum_is_const(regs[regno].var_off)) { 1280 char tn_buf[48]; 1281 1282 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); 1283 verbose("invalid variable stack read R%d var_off=%s\n", 1284 regno, tn_buf); 1285 } 1286 off = regs[regno].off + regs[regno].var_off.value; 1287 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1288 access_size <= 0) { 1289 verbose("invalid stack type R%d off=%d access_size=%d\n", 1290 regno, off, access_size); 1291 return -EACCES; 1292 } 1293 1294 if (env->prog->aux->stack_depth < -off) 1295 env->prog->aux->stack_depth = -off; 1296 1297 if (meta && meta->raw_mode) { 1298 meta->access_size = access_size; 1299 meta->regno = regno; 1300 return 0; 1301 } 1302 1303 for (i = 0; i < access_size; i++) { 1304 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 1305 verbose("invalid indirect read from stack off %d+%d size %d\n", 1306 off, i, access_size); 1307 return -EACCES; 1308 } 1309 } 1310 return 0; 1311 } 1312 1313 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1314 int access_size, bool zero_size_allowed, 1315 struct bpf_call_arg_meta *meta) 1316 { 1317 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1318 1319 switch (reg->type) { 1320 case PTR_TO_PACKET: 1321 return check_packet_access(env, regno, reg->off, access_size); 1322 case PTR_TO_MAP_VALUE: 1323 return check_map_access(env, regno, reg->off, access_size); 1324 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1325 return check_stack_boundary(env, regno, access_size, 1326 zero_size_allowed, meta); 1327 } 1328 } 1329 1330 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1331 enum bpf_arg_type arg_type, 1332 struct bpf_call_arg_meta *meta) 1333 { 1334 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1335 enum bpf_reg_type expected_type, type = reg->type; 1336 int err = 0; 1337 1338 if (arg_type == ARG_DONTCARE) 1339 return 0; 1340 1341 err = check_reg_arg(env, regno, SRC_OP); 1342 if (err) 1343 return err; 1344 1345 if (arg_type == ARG_ANYTHING) { 1346 if (is_pointer_value(env, regno)) { 1347 verbose("R%d leaks addr into helper function\n", regno); 1348 return -EACCES; 1349 } 1350 return 0; 1351 } 1352 1353 if (type == PTR_TO_PACKET && 1354 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1355 verbose("helper access to the packet is not allowed\n"); 1356 return -EACCES; 1357 } 1358 1359 if (arg_type == ARG_PTR_TO_MAP_KEY || 1360 arg_type == ARG_PTR_TO_MAP_VALUE) { 1361 expected_type = PTR_TO_STACK; 1362 if (type != PTR_TO_PACKET && type != expected_type) 1363 goto err_type; 1364 } else if (arg_type == ARG_CONST_SIZE || 1365 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1366 expected_type = SCALAR_VALUE; 1367 if (type != expected_type) 1368 goto err_type; 1369 } else if (arg_type == ARG_CONST_MAP_PTR) { 1370 expected_type = CONST_PTR_TO_MAP; 1371 if (type != expected_type) 1372 goto err_type; 1373 } else if (arg_type == ARG_PTR_TO_CTX) { 1374 expected_type = PTR_TO_CTX; 1375 if (type != expected_type) 1376 goto err_type; 1377 } else if (arg_type == ARG_PTR_TO_MEM || 1378 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1379 expected_type = PTR_TO_STACK; 1380 /* One exception here. In case function allows for NULL to be 1381 * passed in as argument, it's a SCALAR_VALUE type. Final test 1382 * happens during stack boundary checking. 1383 */ 1384 if (register_is_null(*reg)) 1385 /* final test in check_stack_boundary() */; 1386 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && 1387 type != expected_type) 1388 goto err_type; 1389 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1390 } else { 1391 verbose("unsupported arg_type %d\n", arg_type); 1392 return -EFAULT; 1393 } 1394 1395 if (arg_type == ARG_CONST_MAP_PTR) { 1396 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1397 meta->map_ptr = reg->map_ptr; 1398 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1399 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1400 * check that [key, key + map->key_size) are within 1401 * stack limits and initialized 1402 */ 1403 if (!meta->map_ptr) { 1404 /* in function declaration map_ptr must come before 1405 * map_key, so that it's verified and known before 1406 * we have to check map_key here. Otherwise it means 1407 * that kernel subsystem misconfigured verifier 1408 */ 1409 verbose("invalid map_ptr to access map->key\n"); 1410 return -EACCES; 1411 } 1412 if (type == PTR_TO_PACKET) 1413 err = check_packet_access(env, regno, reg->off, 1414 meta->map_ptr->key_size); 1415 else 1416 err = check_stack_boundary(env, regno, 1417 meta->map_ptr->key_size, 1418 false, NULL); 1419 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1420 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1421 * check [value, value + map->value_size) validity 1422 */ 1423 if (!meta->map_ptr) { 1424 /* kernel subsystem misconfigured verifier */ 1425 verbose("invalid map_ptr to access map->value\n"); 1426 return -EACCES; 1427 } 1428 if (type == PTR_TO_PACKET) 1429 err = check_packet_access(env, regno, reg->off, 1430 meta->map_ptr->value_size); 1431 else 1432 err = check_stack_boundary(env, regno, 1433 meta->map_ptr->value_size, 1434 false, NULL); 1435 } else if (arg_type == ARG_CONST_SIZE || 1436 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1437 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1438 1439 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1440 * from stack pointer 'buf'. Check it 1441 * note: regno == len, regno - 1 == buf 1442 */ 1443 if (regno == 0) { 1444 /* kernel subsystem misconfigured verifier */ 1445 verbose("ARG_CONST_SIZE cannot be first argument\n"); 1446 return -EACCES; 1447 } 1448 1449 /* The register is SCALAR_VALUE; the access check 1450 * happens using its boundaries. 1451 */ 1452 1453 if (!tnum_is_const(reg->var_off)) 1454 /* For unprivileged variable accesses, disable raw 1455 * mode so that the program is required to 1456 * initialize all the memory that the helper could 1457 * just partially fill up. 1458 */ 1459 meta = NULL; 1460 1461 if (reg->smin_value < 0) { 1462 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", 1463 regno); 1464 return -EACCES; 1465 } 1466 1467 if (reg->umin_value == 0) { 1468 err = check_helper_mem_access(env, regno - 1, 0, 1469 zero_size_allowed, 1470 meta); 1471 if (err) 1472 return err; 1473 } 1474 1475 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 1476 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1477 regno); 1478 return -EACCES; 1479 } 1480 err = check_helper_mem_access(env, regno - 1, 1481 reg->umax_value, 1482 zero_size_allowed, meta); 1483 } 1484 1485 return err; 1486 err_type: 1487 verbose("R%d type=%s expected=%s\n", regno, 1488 reg_type_str[type], reg_type_str[expected_type]); 1489 return -EACCES; 1490 } 1491 1492 static int check_map_func_compatibility(struct bpf_map *map, int func_id) 1493 { 1494 if (!map) 1495 return 0; 1496 1497 /* We need a two way check, first is from map perspective ... */ 1498 switch (map->map_type) { 1499 case BPF_MAP_TYPE_PROG_ARRAY: 1500 if (func_id != BPF_FUNC_tail_call) 1501 goto error; 1502 break; 1503 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1504 if (func_id != BPF_FUNC_perf_event_read && 1505 func_id != BPF_FUNC_perf_event_output) 1506 goto error; 1507 break; 1508 case BPF_MAP_TYPE_STACK_TRACE: 1509 if (func_id != BPF_FUNC_get_stackid) 1510 goto error; 1511 break; 1512 case BPF_MAP_TYPE_CGROUP_ARRAY: 1513 if (func_id != BPF_FUNC_skb_under_cgroup && 1514 func_id != BPF_FUNC_current_task_under_cgroup) 1515 goto error; 1516 break; 1517 /* devmap returns a pointer to a live net_device ifindex that we cannot 1518 * allow to be modified from bpf side. So do not allow lookup elements 1519 * for now. 1520 */ 1521 case BPF_MAP_TYPE_DEVMAP: 1522 if (func_id != BPF_FUNC_redirect_map) 1523 goto error; 1524 break; 1525 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1526 case BPF_MAP_TYPE_HASH_OF_MAPS: 1527 if (func_id != BPF_FUNC_map_lookup_elem) 1528 goto error; 1529 break; 1530 case BPF_MAP_TYPE_SOCKMAP: 1531 if (func_id != BPF_FUNC_sk_redirect_map && 1532 func_id != BPF_FUNC_sock_map_update && 1533 func_id != BPF_FUNC_map_delete_elem) 1534 goto error; 1535 break; 1536 default: 1537 break; 1538 } 1539 1540 /* ... and second from the function itself. */ 1541 switch (func_id) { 1542 case BPF_FUNC_tail_call: 1543 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1544 goto error; 1545 break; 1546 case BPF_FUNC_perf_event_read: 1547 case BPF_FUNC_perf_event_output: 1548 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1549 goto error; 1550 break; 1551 case BPF_FUNC_get_stackid: 1552 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1553 goto error; 1554 break; 1555 case BPF_FUNC_current_task_under_cgroup: 1556 case BPF_FUNC_skb_under_cgroup: 1557 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1558 goto error; 1559 break; 1560 case BPF_FUNC_redirect_map: 1561 if (map->map_type != BPF_MAP_TYPE_DEVMAP) 1562 goto error; 1563 break; 1564 case BPF_FUNC_sk_redirect_map: 1565 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1566 goto error; 1567 break; 1568 case BPF_FUNC_sock_map_update: 1569 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1570 goto error; 1571 break; 1572 default: 1573 break; 1574 } 1575 1576 return 0; 1577 error: 1578 verbose("cannot pass map_type %d into func %s#%d\n", 1579 map->map_type, func_id_name(func_id), func_id); 1580 return -EINVAL; 1581 } 1582 1583 static int check_raw_mode(const struct bpf_func_proto *fn) 1584 { 1585 int count = 0; 1586 1587 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1588 count++; 1589 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1590 count++; 1591 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1592 count++; 1593 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1594 count++; 1595 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1596 count++; 1597 1598 return count > 1 ? -EINVAL : 0; 1599 } 1600 1601 /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid, 1602 * so turn them into unknown SCALAR_VALUE. 1603 */ 1604 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1605 { 1606 struct bpf_verifier_state *state = &env->cur_state; 1607 struct bpf_reg_state *regs = state->regs, *reg; 1608 int i; 1609 1610 for (i = 0; i < MAX_BPF_REG; i++) 1611 if (regs[i].type == PTR_TO_PACKET || 1612 regs[i].type == PTR_TO_PACKET_END) 1613 mark_reg_unknown(regs, i); 1614 1615 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1616 if (state->stack_slot_type[i] != STACK_SPILL) 1617 continue; 1618 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1619 if (reg->type != PTR_TO_PACKET && 1620 reg->type != PTR_TO_PACKET_END) 1621 continue; 1622 __mark_reg_unknown(reg); 1623 } 1624 } 1625 1626 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1627 { 1628 struct bpf_verifier_state *state = &env->cur_state; 1629 const struct bpf_func_proto *fn = NULL; 1630 struct bpf_reg_state *regs = state->regs; 1631 struct bpf_call_arg_meta meta; 1632 bool changes_data; 1633 int i, err; 1634 1635 /* find function prototype */ 1636 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1637 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id); 1638 return -EINVAL; 1639 } 1640 1641 if (env->prog->aux->ops->get_func_proto) 1642 fn = env->prog->aux->ops->get_func_proto(func_id); 1643 1644 if (!fn) { 1645 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id); 1646 return -EINVAL; 1647 } 1648 1649 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1650 if (!env->prog->gpl_compatible && fn->gpl_only) { 1651 verbose("cannot call GPL only function from proprietary program\n"); 1652 return -EINVAL; 1653 } 1654 1655 changes_data = bpf_helper_changes_pkt_data(fn->func); 1656 1657 memset(&meta, 0, sizeof(meta)); 1658 meta.pkt_access = fn->pkt_access; 1659 1660 /* We only support one arg being in raw mode at the moment, which 1661 * is sufficient for the helper functions we have right now. 1662 */ 1663 err = check_raw_mode(fn); 1664 if (err) { 1665 verbose("kernel subsystem misconfigured func %s#%d\n", 1666 func_id_name(func_id), func_id); 1667 return err; 1668 } 1669 1670 /* check args */ 1671 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1672 if (err) 1673 return err; 1674 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1675 if (err) 1676 return err; 1677 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1678 if (err) 1679 return err; 1680 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1681 if (err) 1682 return err; 1683 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1684 if (err) 1685 return err; 1686 1687 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1688 * is inferred from register state. 1689 */ 1690 for (i = 0; i < meta.access_size; i++) { 1691 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1692 if (err) 1693 return err; 1694 } 1695 1696 /* reset caller saved regs */ 1697 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1698 mark_reg_not_init(regs, caller_saved[i]); 1699 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1700 } 1701 1702 /* update return register (already marked as written above) */ 1703 if (fn->ret_type == RET_INTEGER) { 1704 /* sets type to SCALAR_VALUE */ 1705 mark_reg_unknown(regs, BPF_REG_0); 1706 } else if (fn->ret_type == RET_VOID) { 1707 regs[BPF_REG_0].type = NOT_INIT; 1708 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1709 struct bpf_insn_aux_data *insn_aux; 1710 1711 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1712 /* There is no offset yet applied, variable or fixed */ 1713 mark_reg_known_zero(regs, BPF_REG_0); 1714 regs[BPF_REG_0].off = 0; 1715 /* remember map_ptr, so that check_map_access() 1716 * can check 'value_size' boundary of memory access 1717 * to map element returned from bpf_map_lookup_elem() 1718 */ 1719 if (meta.map_ptr == NULL) { 1720 verbose("kernel subsystem misconfigured verifier\n"); 1721 return -EINVAL; 1722 } 1723 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1724 regs[BPF_REG_0].id = ++env->id_gen; 1725 insn_aux = &env->insn_aux_data[insn_idx]; 1726 if (!insn_aux->map_ptr) 1727 insn_aux->map_ptr = meta.map_ptr; 1728 else if (insn_aux->map_ptr != meta.map_ptr) 1729 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1730 } else { 1731 verbose("unknown return type %d of func %s#%d\n", 1732 fn->ret_type, func_id_name(func_id), func_id); 1733 return -EINVAL; 1734 } 1735 1736 err = check_map_func_compatibility(meta.map_ptr, func_id); 1737 if (err) 1738 return err; 1739 1740 if (changes_data) 1741 clear_all_pkt_pointers(env); 1742 return 0; 1743 } 1744 1745 static void coerce_reg_to_32(struct bpf_reg_state *reg) 1746 { 1747 /* clear high 32 bits */ 1748 reg->var_off = tnum_cast(reg->var_off, 4); 1749 /* Update bounds */ 1750 __update_reg_bounds(reg); 1751 } 1752 1753 static bool signed_add_overflows(s64 a, s64 b) 1754 { 1755 /* Do the add in u64, where overflow is well-defined */ 1756 s64 res = (s64)((u64)a + (u64)b); 1757 1758 if (b < 0) 1759 return res > a; 1760 return res < a; 1761 } 1762 1763 static bool signed_sub_overflows(s64 a, s64 b) 1764 { 1765 /* Do the sub in u64, where overflow is well-defined */ 1766 s64 res = (s64)((u64)a - (u64)b); 1767 1768 if (b < 0) 1769 return res < a; 1770 return res > a; 1771 } 1772 1773 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 1774 * Caller should also handle BPF_MOV case separately. 1775 * If we return -EACCES, caller may want to try again treating pointer as a 1776 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1777 */ 1778 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1779 struct bpf_insn *insn, 1780 const struct bpf_reg_state *ptr_reg, 1781 const struct bpf_reg_state *off_reg) 1782 { 1783 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1784 bool known = tnum_is_const(off_reg->var_off); 1785 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1786 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1787 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1788 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1789 u8 opcode = BPF_OP(insn->code); 1790 u32 dst = insn->dst_reg; 1791 1792 dst_reg = ®s[dst]; 1793 1794 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { 1795 print_verifier_state(&env->cur_state); 1796 verbose("verifier internal error: known but bad sbounds\n"); 1797 return -EINVAL; 1798 } 1799 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { 1800 print_verifier_state(&env->cur_state); 1801 verbose("verifier internal error: known but bad ubounds\n"); 1802 return -EINVAL; 1803 } 1804 1805 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1806 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1807 if (!env->allow_ptr_leaks) 1808 verbose("R%d 32-bit pointer arithmetic prohibited\n", 1809 dst); 1810 return -EACCES; 1811 } 1812 1813 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1814 if (!env->allow_ptr_leaks) 1815 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 1816 dst); 1817 return -EACCES; 1818 } 1819 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1820 if (!env->allow_ptr_leaks) 1821 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 1822 dst); 1823 return -EACCES; 1824 } 1825 if (ptr_reg->type == PTR_TO_PACKET_END) { 1826 if (!env->allow_ptr_leaks) 1827 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 1828 dst); 1829 return -EACCES; 1830 } 1831 1832 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1833 * The id may be overwritten later if we create a new variable offset. 1834 */ 1835 dst_reg->type = ptr_reg->type; 1836 dst_reg->id = ptr_reg->id; 1837 1838 switch (opcode) { 1839 case BPF_ADD: 1840 /* We can take a fixed offset as long as it doesn't overflow 1841 * the s32 'off' field 1842 */ 1843 if (known && (ptr_reg->off + smin_val == 1844 (s64)(s32)(ptr_reg->off + smin_val))) { 1845 /* pointer += K. Accumulate it into fixed offset */ 1846 dst_reg->smin_value = smin_ptr; 1847 dst_reg->smax_value = smax_ptr; 1848 dst_reg->umin_value = umin_ptr; 1849 dst_reg->umax_value = umax_ptr; 1850 dst_reg->var_off = ptr_reg->var_off; 1851 dst_reg->off = ptr_reg->off + smin_val; 1852 dst_reg->range = ptr_reg->range; 1853 break; 1854 } 1855 /* A new variable offset is created. Note that off_reg->off 1856 * == 0, since it's a scalar. 1857 * dst_reg gets the pointer type and since some positive 1858 * integer value was added to the pointer, give it a new 'id' 1859 * if it's a PTR_TO_PACKET. 1860 * this creates a new 'base' pointer, off_reg (variable) gets 1861 * added into the variable offset, and we copy the fixed offset 1862 * from ptr_reg. 1863 */ 1864 if (signed_add_overflows(smin_ptr, smin_val) || 1865 signed_add_overflows(smax_ptr, smax_val)) { 1866 dst_reg->smin_value = S64_MIN; 1867 dst_reg->smax_value = S64_MAX; 1868 } else { 1869 dst_reg->smin_value = smin_ptr + smin_val; 1870 dst_reg->smax_value = smax_ptr + smax_val; 1871 } 1872 if (umin_ptr + umin_val < umin_ptr || 1873 umax_ptr + umax_val < umax_ptr) { 1874 dst_reg->umin_value = 0; 1875 dst_reg->umax_value = U64_MAX; 1876 } else { 1877 dst_reg->umin_value = umin_ptr + umin_val; 1878 dst_reg->umax_value = umax_ptr + umax_val; 1879 } 1880 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1881 dst_reg->off = ptr_reg->off; 1882 if (ptr_reg->type == PTR_TO_PACKET) { 1883 dst_reg->id = ++env->id_gen; 1884 /* something was added to pkt_ptr, set range to zero */ 1885 dst_reg->range = 0; 1886 } 1887 break; 1888 case BPF_SUB: 1889 if (dst_reg == off_reg) { 1890 /* scalar -= pointer. Creates an unknown scalar */ 1891 if (!env->allow_ptr_leaks) 1892 verbose("R%d tried to subtract pointer from scalar\n", 1893 dst); 1894 return -EACCES; 1895 } 1896 /* We don't allow subtraction from FP, because (according to 1897 * test_verifier.c test "invalid fp arithmetic", JITs might not 1898 * be able to deal with it. 1899 */ 1900 if (ptr_reg->type == PTR_TO_STACK) { 1901 if (!env->allow_ptr_leaks) 1902 verbose("R%d subtraction from stack pointer prohibited\n", 1903 dst); 1904 return -EACCES; 1905 } 1906 if (known && (ptr_reg->off - smin_val == 1907 (s64)(s32)(ptr_reg->off - smin_val))) { 1908 /* pointer -= K. Subtract it from fixed offset */ 1909 dst_reg->smin_value = smin_ptr; 1910 dst_reg->smax_value = smax_ptr; 1911 dst_reg->umin_value = umin_ptr; 1912 dst_reg->umax_value = umax_ptr; 1913 dst_reg->var_off = ptr_reg->var_off; 1914 dst_reg->id = ptr_reg->id; 1915 dst_reg->off = ptr_reg->off - smin_val; 1916 dst_reg->range = ptr_reg->range; 1917 break; 1918 } 1919 /* A new variable offset is created. If the subtrahend is known 1920 * nonnegative, then any reg->range we had before is still good. 1921 */ 1922 if (signed_sub_overflows(smin_ptr, smax_val) || 1923 signed_sub_overflows(smax_ptr, smin_val)) { 1924 /* Overflow possible, we know nothing */ 1925 dst_reg->smin_value = S64_MIN; 1926 dst_reg->smax_value = S64_MAX; 1927 } else { 1928 dst_reg->smin_value = smin_ptr - smax_val; 1929 dst_reg->smax_value = smax_ptr - smin_val; 1930 } 1931 if (umin_ptr < umax_val) { 1932 /* Overflow possible, we know nothing */ 1933 dst_reg->umin_value = 0; 1934 dst_reg->umax_value = U64_MAX; 1935 } else { 1936 /* Cannot overflow (as long as bounds are consistent) */ 1937 dst_reg->umin_value = umin_ptr - umax_val; 1938 dst_reg->umax_value = umax_ptr - umin_val; 1939 } 1940 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1941 dst_reg->off = ptr_reg->off; 1942 if (ptr_reg->type == PTR_TO_PACKET) { 1943 dst_reg->id = ++env->id_gen; 1944 /* something was added to pkt_ptr, set range to zero */ 1945 if (smin_val < 0) 1946 dst_reg->range = 0; 1947 } 1948 break; 1949 case BPF_AND: 1950 case BPF_OR: 1951 case BPF_XOR: 1952 /* bitwise ops on pointers are troublesome, prohibit for now. 1953 * (However, in principle we could allow some cases, e.g. 1954 * ptr &= ~3 which would reduce min_value by 3.) 1955 */ 1956 if (!env->allow_ptr_leaks) 1957 verbose("R%d bitwise operator %s on pointer prohibited\n", 1958 dst, bpf_alu_string[opcode >> 4]); 1959 return -EACCES; 1960 default: 1961 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1962 if (!env->allow_ptr_leaks) 1963 verbose("R%d pointer arithmetic with %s operator prohibited\n", 1964 dst, bpf_alu_string[opcode >> 4]); 1965 return -EACCES; 1966 } 1967 1968 __update_reg_bounds(dst_reg); 1969 __reg_deduce_bounds(dst_reg); 1970 __reg_bound_offset(dst_reg); 1971 return 0; 1972 } 1973 1974 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 1975 struct bpf_insn *insn, 1976 struct bpf_reg_state *dst_reg, 1977 struct bpf_reg_state src_reg) 1978 { 1979 struct bpf_reg_state *regs = env->cur_state.regs; 1980 u8 opcode = BPF_OP(insn->code); 1981 bool src_known, dst_known; 1982 s64 smin_val, smax_val; 1983 u64 umin_val, umax_val; 1984 1985 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1986 /* 32-bit ALU ops are (32,32)->64 */ 1987 coerce_reg_to_32(dst_reg); 1988 coerce_reg_to_32(&src_reg); 1989 } 1990 smin_val = src_reg.smin_value; 1991 smax_val = src_reg.smax_value; 1992 umin_val = src_reg.umin_value; 1993 umax_val = src_reg.umax_value; 1994 src_known = tnum_is_const(src_reg.var_off); 1995 dst_known = tnum_is_const(dst_reg->var_off); 1996 1997 switch (opcode) { 1998 case BPF_ADD: 1999 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2000 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2001 dst_reg->smin_value = S64_MIN; 2002 dst_reg->smax_value = S64_MAX; 2003 } else { 2004 dst_reg->smin_value += smin_val; 2005 dst_reg->smax_value += smax_val; 2006 } 2007 if (dst_reg->umin_value + umin_val < umin_val || 2008 dst_reg->umax_value + umax_val < umax_val) { 2009 dst_reg->umin_value = 0; 2010 dst_reg->umax_value = U64_MAX; 2011 } else { 2012 dst_reg->umin_value += umin_val; 2013 dst_reg->umax_value += umax_val; 2014 } 2015 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2016 break; 2017 case BPF_SUB: 2018 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2019 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2020 /* Overflow possible, we know nothing */ 2021 dst_reg->smin_value = S64_MIN; 2022 dst_reg->smax_value = S64_MAX; 2023 } else { 2024 dst_reg->smin_value -= smax_val; 2025 dst_reg->smax_value -= smin_val; 2026 } 2027 if (dst_reg->umin_value < umax_val) { 2028 /* Overflow possible, we know nothing */ 2029 dst_reg->umin_value = 0; 2030 dst_reg->umax_value = U64_MAX; 2031 } else { 2032 /* Cannot overflow (as long as bounds are consistent) */ 2033 dst_reg->umin_value -= umax_val; 2034 dst_reg->umax_value -= umin_val; 2035 } 2036 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2037 break; 2038 case BPF_MUL: 2039 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2040 if (smin_val < 0 || dst_reg->smin_value < 0) { 2041 /* Ain't nobody got time to multiply that sign */ 2042 __mark_reg_unbounded(dst_reg); 2043 __update_reg_bounds(dst_reg); 2044 break; 2045 } 2046 /* Both values are positive, so we can work with unsigned and 2047 * copy the result to signed (unless it exceeds S64_MAX). 2048 */ 2049 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2050 /* Potential overflow, we know nothing */ 2051 __mark_reg_unbounded(dst_reg); 2052 /* (except what we can learn from the var_off) */ 2053 __update_reg_bounds(dst_reg); 2054 break; 2055 } 2056 dst_reg->umin_value *= umin_val; 2057 dst_reg->umax_value *= umax_val; 2058 if (dst_reg->umax_value > S64_MAX) { 2059 /* Overflow possible, we know nothing */ 2060 dst_reg->smin_value = S64_MIN; 2061 dst_reg->smax_value = S64_MAX; 2062 } else { 2063 dst_reg->smin_value = dst_reg->umin_value; 2064 dst_reg->smax_value = dst_reg->umax_value; 2065 } 2066 break; 2067 case BPF_AND: 2068 if (src_known && dst_known) { 2069 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2070 src_reg.var_off.value); 2071 break; 2072 } 2073 /* We get our minimum from the var_off, since that's inherently 2074 * bitwise. Our maximum is the minimum of the operands' maxima. 2075 */ 2076 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2077 dst_reg->umin_value = dst_reg->var_off.value; 2078 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2079 if (dst_reg->smin_value < 0 || smin_val < 0) { 2080 /* Lose signed bounds when ANDing negative numbers, 2081 * ain't nobody got time for that. 2082 */ 2083 dst_reg->smin_value = S64_MIN; 2084 dst_reg->smax_value = S64_MAX; 2085 } else { 2086 /* ANDing two positives gives a positive, so safe to 2087 * cast result into s64. 2088 */ 2089 dst_reg->smin_value = dst_reg->umin_value; 2090 dst_reg->smax_value = dst_reg->umax_value; 2091 } 2092 /* We may learn something more from the var_off */ 2093 __update_reg_bounds(dst_reg); 2094 break; 2095 case BPF_OR: 2096 if (src_known && dst_known) { 2097 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2098 src_reg.var_off.value); 2099 break; 2100 } 2101 /* We get our maximum from the var_off, and our minimum is the 2102 * maximum of the operands' minima 2103 */ 2104 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2105 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2106 dst_reg->umax_value = dst_reg->var_off.value | 2107 dst_reg->var_off.mask; 2108 if (dst_reg->smin_value < 0 || smin_val < 0) { 2109 /* Lose signed bounds when ORing negative numbers, 2110 * ain't nobody got time for that. 2111 */ 2112 dst_reg->smin_value = S64_MIN; 2113 dst_reg->smax_value = S64_MAX; 2114 } else { 2115 /* ORing two positives gives a positive, so safe to 2116 * cast result into s64. 2117 */ 2118 dst_reg->smin_value = dst_reg->umin_value; 2119 dst_reg->smax_value = dst_reg->umax_value; 2120 } 2121 /* We may learn something more from the var_off */ 2122 __update_reg_bounds(dst_reg); 2123 break; 2124 case BPF_LSH: 2125 if (umax_val > 63) { 2126 /* Shifts greater than 63 are undefined. This includes 2127 * shifts by a negative number. 2128 */ 2129 mark_reg_unknown(regs, insn->dst_reg); 2130 break; 2131 } 2132 /* We lose all sign bit information (except what we can pick 2133 * up from var_off) 2134 */ 2135 dst_reg->smin_value = S64_MIN; 2136 dst_reg->smax_value = S64_MAX; 2137 /* If we might shift our top bit out, then we know nothing */ 2138 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2139 dst_reg->umin_value = 0; 2140 dst_reg->umax_value = U64_MAX; 2141 } else { 2142 dst_reg->umin_value <<= umin_val; 2143 dst_reg->umax_value <<= umax_val; 2144 } 2145 if (src_known) 2146 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2147 else 2148 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2149 /* We may learn something more from the var_off */ 2150 __update_reg_bounds(dst_reg); 2151 break; 2152 case BPF_RSH: 2153 if (umax_val > 63) { 2154 /* Shifts greater than 63 are undefined. This includes 2155 * shifts by a negative number. 2156 */ 2157 mark_reg_unknown(regs, insn->dst_reg); 2158 break; 2159 } 2160 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2161 if (dst_reg->smin_value < 0) { 2162 if (umin_val) { 2163 /* Sign bit will be cleared */ 2164 dst_reg->smin_value = 0; 2165 } else { 2166 /* Lost sign bit information */ 2167 dst_reg->smin_value = S64_MIN; 2168 dst_reg->smax_value = S64_MAX; 2169 } 2170 } else { 2171 dst_reg->smin_value = 2172 (u64)(dst_reg->smin_value) >> umax_val; 2173 } 2174 if (src_known) 2175 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2176 umin_val); 2177 else 2178 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2179 dst_reg->umin_value >>= umax_val; 2180 dst_reg->umax_value >>= umin_val; 2181 /* We may learn something more from the var_off */ 2182 __update_reg_bounds(dst_reg); 2183 break; 2184 default: 2185 mark_reg_unknown(regs, insn->dst_reg); 2186 break; 2187 } 2188 2189 __reg_deduce_bounds(dst_reg); 2190 __reg_bound_offset(dst_reg); 2191 return 0; 2192 } 2193 2194 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2195 * and var_off. 2196 */ 2197 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2198 struct bpf_insn *insn) 2199 { 2200 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg; 2201 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2202 u8 opcode = BPF_OP(insn->code); 2203 int rc; 2204 2205 dst_reg = ®s[insn->dst_reg]; 2206 src_reg = NULL; 2207 if (dst_reg->type != SCALAR_VALUE) 2208 ptr_reg = dst_reg; 2209 if (BPF_SRC(insn->code) == BPF_X) { 2210 src_reg = ®s[insn->src_reg]; 2211 if (src_reg->type != SCALAR_VALUE) { 2212 if (dst_reg->type != SCALAR_VALUE) { 2213 /* Combining two pointers by any ALU op yields 2214 * an arbitrary scalar. 2215 */ 2216 if (!env->allow_ptr_leaks) { 2217 verbose("R%d pointer %s pointer prohibited\n", 2218 insn->dst_reg, 2219 bpf_alu_string[opcode >> 4]); 2220 return -EACCES; 2221 } 2222 mark_reg_unknown(regs, insn->dst_reg); 2223 return 0; 2224 } else { 2225 /* scalar += pointer 2226 * This is legal, but we have to reverse our 2227 * src/dest handling in computing the range 2228 */ 2229 rc = adjust_ptr_min_max_vals(env, insn, 2230 src_reg, dst_reg); 2231 if (rc == -EACCES && env->allow_ptr_leaks) { 2232 /* scalar += unknown scalar */ 2233 __mark_reg_unknown(&off_reg); 2234 return adjust_scalar_min_max_vals( 2235 env, insn, 2236 dst_reg, off_reg); 2237 } 2238 return rc; 2239 } 2240 } else if (ptr_reg) { 2241 /* pointer += scalar */ 2242 rc = adjust_ptr_min_max_vals(env, insn, 2243 dst_reg, src_reg); 2244 if (rc == -EACCES && env->allow_ptr_leaks) { 2245 /* unknown scalar += scalar */ 2246 __mark_reg_unknown(dst_reg); 2247 return adjust_scalar_min_max_vals( 2248 env, insn, dst_reg, *src_reg); 2249 } 2250 return rc; 2251 } 2252 } else { 2253 /* Pretend the src is a reg with a known value, since we only 2254 * need to be able to read from this state. 2255 */ 2256 off_reg.type = SCALAR_VALUE; 2257 __mark_reg_known(&off_reg, insn->imm); 2258 src_reg = &off_reg; 2259 if (ptr_reg) { /* pointer += K */ 2260 rc = adjust_ptr_min_max_vals(env, insn, 2261 ptr_reg, src_reg); 2262 if (rc == -EACCES && env->allow_ptr_leaks) { 2263 /* unknown scalar += K */ 2264 __mark_reg_unknown(dst_reg); 2265 return adjust_scalar_min_max_vals( 2266 env, insn, dst_reg, off_reg); 2267 } 2268 return rc; 2269 } 2270 } 2271 2272 /* Got here implies adding two SCALAR_VALUEs */ 2273 if (WARN_ON_ONCE(ptr_reg)) { 2274 print_verifier_state(&env->cur_state); 2275 verbose("verifier internal error: unexpected ptr_reg\n"); 2276 return -EINVAL; 2277 } 2278 if (WARN_ON(!src_reg)) { 2279 print_verifier_state(&env->cur_state); 2280 verbose("verifier internal error: no src_reg\n"); 2281 return -EINVAL; 2282 } 2283 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2284 } 2285 2286 /* check validity of 32-bit and 64-bit arithmetic operations */ 2287 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2288 { 2289 struct bpf_reg_state *regs = env->cur_state.regs; 2290 u8 opcode = BPF_OP(insn->code); 2291 int err; 2292 2293 if (opcode == BPF_END || opcode == BPF_NEG) { 2294 if (opcode == BPF_NEG) { 2295 if (BPF_SRC(insn->code) != 0 || 2296 insn->src_reg != BPF_REG_0 || 2297 insn->off != 0 || insn->imm != 0) { 2298 verbose("BPF_NEG uses reserved fields\n"); 2299 return -EINVAL; 2300 } 2301 } else { 2302 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2303 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2304 BPF_CLASS(insn->code) == BPF_ALU64) { 2305 verbose("BPF_END uses reserved fields\n"); 2306 return -EINVAL; 2307 } 2308 } 2309 2310 /* check src operand */ 2311 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2312 if (err) 2313 return err; 2314 2315 if (is_pointer_value(env, insn->dst_reg)) { 2316 verbose("R%d pointer arithmetic prohibited\n", 2317 insn->dst_reg); 2318 return -EACCES; 2319 } 2320 2321 /* check dest operand */ 2322 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2323 if (err) 2324 return err; 2325 2326 } else if (opcode == BPF_MOV) { 2327 2328 if (BPF_SRC(insn->code) == BPF_X) { 2329 if (insn->imm != 0 || insn->off != 0) { 2330 verbose("BPF_MOV uses reserved fields\n"); 2331 return -EINVAL; 2332 } 2333 2334 /* check src operand */ 2335 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2336 if (err) 2337 return err; 2338 } else { 2339 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2340 verbose("BPF_MOV uses reserved fields\n"); 2341 return -EINVAL; 2342 } 2343 } 2344 2345 /* check dest operand */ 2346 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2347 if (err) 2348 return err; 2349 2350 if (BPF_SRC(insn->code) == BPF_X) { 2351 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2352 /* case: R1 = R2 2353 * copy register state to dest reg 2354 */ 2355 regs[insn->dst_reg] = regs[insn->src_reg]; 2356 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 2357 } else { 2358 /* R1 = (u32) R2 */ 2359 if (is_pointer_value(env, insn->src_reg)) { 2360 verbose("R%d partial copy of pointer\n", 2361 insn->src_reg); 2362 return -EACCES; 2363 } 2364 mark_reg_unknown(regs, insn->dst_reg); 2365 /* high 32 bits are known zero. */ 2366 regs[insn->dst_reg].var_off = tnum_cast( 2367 regs[insn->dst_reg].var_off, 4); 2368 __update_reg_bounds(®s[insn->dst_reg]); 2369 } 2370 } else { 2371 /* case: R = imm 2372 * remember the value we stored into this reg 2373 */ 2374 regs[insn->dst_reg].type = SCALAR_VALUE; 2375 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2376 } 2377 2378 } else if (opcode > BPF_END) { 2379 verbose("invalid BPF_ALU opcode %x\n", opcode); 2380 return -EINVAL; 2381 2382 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2383 2384 if (BPF_SRC(insn->code) == BPF_X) { 2385 if (insn->imm != 0 || insn->off != 0) { 2386 verbose("BPF_ALU uses reserved fields\n"); 2387 return -EINVAL; 2388 } 2389 /* check src1 operand */ 2390 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2391 if (err) 2392 return err; 2393 } else { 2394 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2395 verbose("BPF_ALU uses reserved fields\n"); 2396 return -EINVAL; 2397 } 2398 } 2399 2400 /* check src2 operand */ 2401 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2402 if (err) 2403 return err; 2404 2405 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2406 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2407 verbose("div by zero\n"); 2408 return -EINVAL; 2409 } 2410 2411 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2412 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2413 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2414 2415 if (insn->imm < 0 || insn->imm >= size) { 2416 verbose("invalid shift %d\n", insn->imm); 2417 return -EINVAL; 2418 } 2419 } 2420 2421 /* check dest operand */ 2422 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2423 if (err) 2424 return err; 2425 2426 return adjust_reg_min_max_vals(env, insn); 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2433 struct bpf_reg_state *dst_reg, 2434 bool range_right_open) 2435 { 2436 struct bpf_reg_state *regs = state->regs, *reg; 2437 u16 new_range; 2438 int i; 2439 2440 if (dst_reg->off < 0 || 2441 (dst_reg->off == 0 && range_right_open)) 2442 /* This doesn't give us any range */ 2443 return; 2444 2445 if (dst_reg->umax_value > MAX_PACKET_OFF || 2446 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2447 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2448 * than pkt_end, but that's because it's also less than pkt. 2449 */ 2450 return; 2451 2452 new_range = dst_reg->off; 2453 if (range_right_open) 2454 new_range--; 2455 2456 /* Examples for register markings: 2457 * 2458 * pkt_data in dst register: 2459 * 2460 * r2 = r3; 2461 * r2 += 8; 2462 * if (r2 > pkt_end) goto <handle exception> 2463 * <access okay> 2464 * 2465 * r2 = r3; 2466 * r2 += 8; 2467 * if (r2 < pkt_end) goto <access okay> 2468 * <handle exception> 2469 * 2470 * Where: 2471 * r2 == dst_reg, pkt_end == src_reg 2472 * r2=pkt(id=n,off=8,r=0) 2473 * r3=pkt(id=n,off=0,r=0) 2474 * 2475 * pkt_data in src register: 2476 * 2477 * r2 = r3; 2478 * r2 += 8; 2479 * if (pkt_end >= r2) goto <access okay> 2480 * <handle exception> 2481 * 2482 * r2 = r3; 2483 * r2 += 8; 2484 * if (pkt_end <= r2) goto <handle exception> 2485 * <access okay> 2486 * 2487 * Where: 2488 * pkt_end == dst_reg, r2 == src_reg 2489 * r2=pkt(id=n,off=8,r=0) 2490 * r3=pkt(id=n,off=0,r=0) 2491 * 2492 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2493 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 2494 * and [r3, r3 + 8-1) respectively is safe to access depending on 2495 * the check. 2496 */ 2497 2498 /* If our ids match, then we must have the same max_value. And we 2499 * don't care about the other reg's fixed offset, since if it's too big 2500 * the range won't allow anything. 2501 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2502 */ 2503 for (i = 0; i < MAX_BPF_REG; i++) 2504 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id) 2505 /* keep the maximum range already checked */ 2506 regs[i].range = max(regs[i].range, new_range); 2507 2508 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2509 if (state->stack_slot_type[i] != STACK_SPILL) 2510 continue; 2511 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2512 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id) 2513 reg->range = max(reg->range, new_range); 2514 } 2515 } 2516 2517 /* Adjusts the register min/max values in the case that the dst_reg is the 2518 * variable register that we are working on, and src_reg is a constant or we're 2519 * simply doing a BPF_K check. 2520 * In JEQ/JNE cases we also adjust the var_off values. 2521 */ 2522 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2523 struct bpf_reg_state *false_reg, u64 val, 2524 u8 opcode) 2525 { 2526 /* If the dst_reg is a pointer, we can't learn anything about its 2527 * variable offset from the compare (unless src_reg were a pointer into 2528 * the same object, but we don't bother with that. 2529 * Since false_reg and true_reg have the same type by construction, we 2530 * only need to check one of them for pointerness. 2531 */ 2532 if (__is_pointer_value(false, false_reg)) 2533 return; 2534 2535 switch (opcode) { 2536 case BPF_JEQ: 2537 /* If this is false then we know nothing Jon Snow, but if it is 2538 * true then we know for sure. 2539 */ 2540 __mark_reg_known(true_reg, val); 2541 break; 2542 case BPF_JNE: 2543 /* If this is true we know nothing Jon Snow, but if it is false 2544 * we know the value for sure; 2545 */ 2546 __mark_reg_known(false_reg, val); 2547 break; 2548 case BPF_JGT: 2549 false_reg->umax_value = min(false_reg->umax_value, val); 2550 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2551 break; 2552 case BPF_JSGT: 2553 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2554 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2555 break; 2556 case BPF_JLT: 2557 false_reg->umin_value = max(false_reg->umin_value, val); 2558 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2559 break; 2560 case BPF_JSLT: 2561 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2562 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2563 break; 2564 case BPF_JGE: 2565 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2566 true_reg->umin_value = max(true_reg->umin_value, val); 2567 break; 2568 case BPF_JSGE: 2569 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2570 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2571 break; 2572 case BPF_JLE: 2573 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2574 true_reg->umax_value = min(true_reg->umax_value, val); 2575 break; 2576 case BPF_JSLE: 2577 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2578 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2579 break; 2580 default: 2581 break; 2582 } 2583 2584 __reg_deduce_bounds(false_reg); 2585 __reg_deduce_bounds(true_reg); 2586 /* We might have learned some bits from the bounds. */ 2587 __reg_bound_offset(false_reg); 2588 __reg_bound_offset(true_reg); 2589 /* Intersecting with the old var_off might have improved our bounds 2590 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2591 * then new var_off is (0; 0x7f...fc) which improves our umax. 2592 */ 2593 __update_reg_bounds(false_reg); 2594 __update_reg_bounds(true_reg); 2595 } 2596 2597 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 2598 * the variable reg. 2599 */ 2600 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2601 struct bpf_reg_state *false_reg, u64 val, 2602 u8 opcode) 2603 { 2604 if (__is_pointer_value(false, false_reg)) 2605 return; 2606 2607 switch (opcode) { 2608 case BPF_JEQ: 2609 /* If this is false then we know nothing Jon Snow, but if it is 2610 * true then we know for sure. 2611 */ 2612 __mark_reg_known(true_reg, val); 2613 break; 2614 case BPF_JNE: 2615 /* If this is true we know nothing Jon Snow, but if it is false 2616 * we know the value for sure; 2617 */ 2618 __mark_reg_known(false_reg, val); 2619 break; 2620 case BPF_JGT: 2621 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2622 false_reg->umin_value = max(false_reg->umin_value, val); 2623 break; 2624 case BPF_JSGT: 2625 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2626 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2627 break; 2628 case BPF_JLT: 2629 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2630 false_reg->umax_value = min(false_reg->umax_value, val); 2631 break; 2632 case BPF_JSLT: 2633 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2634 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2635 break; 2636 case BPF_JGE: 2637 true_reg->umax_value = min(true_reg->umax_value, val); 2638 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2639 break; 2640 case BPF_JSGE: 2641 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2642 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2643 break; 2644 case BPF_JLE: 2645 true_reg->umin_value = max(true_reg->umin_value, val); 2646 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2647 break; 2648 case BPF_JSLE: 2649 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2650 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2651 break; 2652 default: 2653 break; 2654 } 2655 2656 __reg_deduce_bounds(false_reg); 2657 __reg_deduce_bounds(true_reg); 2658 /* We might have learned some bits from the bounds. */ 2659 __reg_bound_offset(false_reg); 2660 __reg_bound_offset(true_reg); 2661 /* Intersecting with the old var_off might have improved our bounds 2662 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2663 * then new var_off is (0; 0x7f...fc) which improves our umax. 2664 */ 2665 __update_reg_bounds(false_reg); 2666 __update_reg_bounds(true_reg); 2667 } 2668 2669 /* Regs are known to be equal, so intersect their min/max/var_off */ 2670 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 2671 struct bpf_reg_state *dst_reg) 2672 { 2673 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 2674 dst_reg->umin_value); 2675 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 2676 dst_reg->umax_value); 2677 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 2678 dst_reg->smin_value); 2679 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 2680 dst_reg->smax_value); 2681 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 2682 dst_reg->var_off); 2683 /* We might have learned new bounds from the var_off. */ 2684 __update_reg_bounds(src_reg); 2685 __update_reg_bounds(dst_reg); 2686 /* We might have learned something about the sign bit. */ 2687 __reg_deduce_bounds(src_reg); 2688 __reg_deduce_bounds(dst_reg); 2689 /* We might have learned some bits from the bounds. */ 2690 __reg_bound_offset(src_reg); 2691 __reg_bound_offset(dst_reg); 2692 /* Intersecting with the old var_off might have improved our bounds 2693 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2694 * then new var_off is (0; 0x7f...fc) which improves our umax. 2695 */ 2696 __update_reg_bounds(src_reg); 2697 __update_reg_bounds(dst_reg); 2698 } 2699 2700 static void reg_combine_min_max(struct bpf_reg_state *true_src, 2701 struct bpf_reg_state *true_dst, 2702 struct bpf_reg_state *false_src, 2703 struct bpf_reg_state *false_dst, 2704 u8 opcode) 2705 { 2706 switch (opcode) { 2707 case BPF_JEQ: 2708 __reg_combine_min_max(true_src, true_dst); 2709 break; 2710 case BPF_JNE: 2711 __reg_combine_min_max(false_src, false_dst); 2712 break; 2713 } 2714 } 2715 2716 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2717 bool is_null) 2718 { 2719 struct bpf_reg_state *reg = ®s[regno]; 2720 2721 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2722 /* Old offset (both fixed and variable parts) should 2723 * have been known-zero, because we don't allow pointer 2724 * arithmetic on pointers that might be NULL. 2725 */ 2726 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 2727 !tnum_equals_const(reg->var_off, 0) || 2728 reg->off)) { 2729 __mark_reg_known_zero(reg); 2730 reg->off = 0; 2731 } 2732 if (is_null) { 2733 reg->type = SCALAR_VALUE; 2734 } else if (reg->map_ptr->inner_map_meta) { 2735 reg->type = CONST_PTR_TO_MAP; 2736 reg->map_ptr = reg->map_ptr->inner_map_meta; 2737 } else { 2738 reg->type = PTR_TO_MAP_VALUE; 2739 } 2740 /* We don't need id from this point onwards anymore, thus we 2741 * should better reset it, so that state pruning has chances 2742 * to take effect. 2743 */ 2744 reg->id = 0; 2745 } 2746 } 2747 2748 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2749 * be folded together at some point. 2750 */ 2751 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2752 bool is_null) 2753 { 2754 struct bpf_reg_state *regs = state->regs; 2755 u32 id = regs[regno].id; 2756 int i; 2757 2758 for (i = 0; i < MAX_BPF_REG; i++) 2759 mark_map_reg(regs, i, id, is_null); 2760 2761 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2762 if (state->stack_slot_type[i] != STACK_SPILL) 2763 continue; 2764 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null); 2765 } 2766 } 2767 2768 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2769 struct bpf_insn *insn, int *insn_idx) 2770 { 2771 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; 2772 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2773 u8 opcode = BPF_OP(insn->code); 2774 int err; 2775 2776 if (opcode > BPF_JSLE) { 2777 verbose("invalid BPF_JMP opcode %x\n", opcode); 2778 return -EINVAL; 2779 } 2780 2781 if (BPF_SRC(insn->code) == BPF_X) { 2782 if (insn->imm != 0) { 2783 verbose("BPF_JMP uses reserved fields\n"); 2784 return -EINVAL; 2785 } 2786 2787 /* check src1 operand */ 2788 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2789 if (err) 2790 return err; 2791 2792 if (is_pointer_value(env, insn->src_reg)) { 2793 verbose("R%d pointer comparison prohibited\n", 2794 insn->src_reg); 2795 return -EACCES; 2796 } 2797 } else { 2798 if (insn->src_reg != BPF_REG_0) { 2799 verbose("BPF_JMP uses reserved fields\n"); 2800 return -EINVAL; 2801 } 2802 } 2803 2804 /* check src2 operand */ 2805 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2806 if (err) 2807 return err; 2808 2809 dst_reg = ®s[insn->dst_reg]; 2810 2811 /* detect if R == 0 where R was initialized to zero earlier */ 2812 if (BPF_SRC(insn->code) == BPF_K && 2813 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2814 dst_reg->type == SCALAR_VALUE && 2815 tnum_equals_const(dst_reg->var_off, insn->imm)) { 2816 if (opcode == BPF_JEQ) { 2817 /* if (imm == imm) goto pc+off; 2818 * only follow the goto, ignore fall-through 2819 */ 2820 *insn_idx += insn->off; 2821 return 0; 2822 } else { 2823 /* if (imm != imm) goto pc+off; 2824 * only follow fall-through branch, since 2825 * that's where the program will go 2826 */ 2827 return 0; 2828 } 2829 } 2830 2831 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2832 if (!other_branch) 2833 return -EFAULT; 2834 2835 /* detect if we are comparing against a constant value so we can adjust 2836 * our min/max values for our dst register. 2837 * this is only legit if both are scalars (or pointers to the same 2838 * object, I suppose, but we don't support that right now), because 2839 * otherwise the different base pointers mean the offsets aren't 2840 * comparable. 2841 */ 2842 if (BPF_SRC(insn->code) == BPF_X) { 2843 if (dst_reg->type == SCALAR_VALUE && 2844 regs[insn->src_reg].type == SCALAR_VALUE) { 2845 if (tnum_is_const(regs[insn->src_reg].var_off)) 2846 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2847 dst_reg, regs[insn->src_reg].var_off.value, 2848 opcode); 2849 else if (tnum_is_const(dst_reg->var_off)) 2850 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2851 ®s[insn->src_reg], 2852 dst_reg->var_off.value, opcode); 2853 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 2854 /* Comparing for equality, we can combine knowledge */ 2855 reg_combine_min_max(&other_branch->regs[insn->src_reg], 2856 &other_branch->regs[insn->dst_reg], 2857 ®s[insn->src_reg], 2858 ®s[insn->dst_reg], opcode); 2859 } 2860 } else if (dst_reg->type == SCALAR_VALUE) { 2861 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2862 dst_reg, insn->imm, opcode); 2863 } 2864 2865 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2866 if (BPF_SRC(insn->code) == BPF_K && 2867 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2868 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2869 /* Mark all identical map registers in each branch as either 2870 * safe or unknown depending R == 0 or R != 0 conditional. 2871 */ 2872 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2873 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 2874 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2875 dst_reg->type == PTR_TO_PACKET && 2876 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2877 /* pkt_data' > pkt_end */ 2878 find_good_pkt_pointers(this_branch, dst_reg, false); 2879 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2880 dst_reg->type == PTR_TO_PACKET_END && 2881 regs[insn->src_reg].type == PTR_TO_PACKET) { 2882 /* pkt_end > pkt_data' */ 2883 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], true); 2884 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2885 dst_reg->type == PTR_TO_PACKET && 2886 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2887 /* pkt_data' < pkt_end */ 2888 find_good_pkt_pointers(other_branch, dst_reg, true); 2889 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2890 dst_reg->type == PTR_TO_PACKET_END && 2891 regs[insn->src_reg].type == PTR_TO_PACKET) { 2892 /* pkt_end < pkt_data' */ 2893 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], false); 2894 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2895 dst_reg->type == PTR_TO_PACKET && 2896 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2897 /* pkt_data' >= pkt_end */ 2898 find_good_pkt_pointers(this_branch, dst_reg, true); 2899 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2900 dst_reg->type == PTR_TO_PACKET_END && 2901 regs[insn->src_reg].type == PTR_TO_PACKET) { 2902 /* pkt_end >= pkt_data' */ 2903 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], false); 2904 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2905 dst_reg->type == PTR_TO_PACKET && 2906 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2907 /* pkt_data' <= pkt_end */ 2908 find_good_pkt_pointers(other_branch, dst_reg, false); 2909 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2910 dst_reg->type == PTR_TO_PACKET_END && 2911 regs[insn->src_reg].type == PTR_TO_PACKET) { 2912 /* pkt_end <= pkt_data' */ 2913 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], true); 2914 } else if (is_pointer_value(env, insn->dst_reg)) { 2915 verbose("R%d pointer comparison prohibited\n", insn->dst_reg); 2916 return -EACCES; 2917 } 2918 if (log_level) 2919 print_verifier_state(this_branch); 2920 return 0; 2921 } 2922 2923 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2924 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2925 { 2926 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2927 2928 return (struct bpf_map *) (unsigned long) imm64; 2929 } 2930 2931 /* verify BPF_LD_IMM64 instruction */ 2932 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2933 { 2934 struct bpf_reg_state *regs = env->cur_state.regs; 2935 int err; 2936 2937 if (BPF_SIZE(insn->code) != BPF_DW) { 2938 verbose("invalid BPF_LD_IMM insn\n"); 2939 return -EINVAL; 2940 } 2941 if (insn->off != 0) { 2942 verbose("BPF_LD_IMM64 uses reserved fields\n"); 2943 return -EINVAL; 2944 } 2945 2946 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2947 if (err) 2948 return err; 2949 2950 if (insn->src_reg == 0) { 2951 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 2952 2953 regs[insn->dst_reg].type = SCALAR_VALUE; 2954 __mark_reg_known(®s[insn->dst_reg], imm); 2955 return 0; 2956 } 2957 2958 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 2959 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 2960 2961 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 2962 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 2963 return 0; 2964 } 2965 2966 static bool may_access_skb(enum bpf_prog_type type) 2967 { 2968 switch (type) { 2969 case BPF_PROG_TYPE_SOCKET_FILTER: 2970 case BPF_PROG_TYPE_SCHED_CLS: 2971 case BPF_PROG_TYPE_SCHED_ACT: 2972 return true; 2973 default: 2974 return false; 2975 } 2976 } 2977 2978 /* verify safety of LD_ABS|LD_IND instructions: 2979 * - they can only appear in the programs where ctx == skb 2980 * - since they are wrappers of function calls, they scratch R1-R5 registers, 2981 * preserve R6-R9, and store return value into R0 2982 * 2983 * Implicit input: 2984 * ctx == skb == R6 == CTX 2985 * 2986 * Explicit input: 2987 * SRC == any register 2988 * IMM == 32-bit immediate 2989 * 2990 * Output: 2991 * R0 - 8/16/32-bit skb data converted to cpu endianness 2992 */ 2993 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2994 { 2995 struct bpf_reg_state *regs = env->cur_state.regs; 2996 u8 mode = BPF_MODE(insn->code); 2997 int i, err; 2998 2999 if (!may_access_skb(env->prog->type)) { 3000 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3001 return -EINVAL; 3002 } 3003 3004 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3005 BPF_SIZE(insn->code) == BPF_DW || 3006 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3007 verbose("BPF_LD_[ABS|IND] uses reserved fields\n"); 3008 return -EINVAL; 3009 } 3010 3011 /* check whether implicit source operand (register R6) is readable */ 3012 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3013 if (err) 3014 return err; 3015 3016 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3017 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3018 return -EINVAL; 3019 } 3020 3021 if (mode == BPF_IND) { 3022 /* check explicit source operand */ 3023 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3024 if (err) 3025 return err; 3026 } 3027 3028 /* reset caller saved regs to unreadable */ 3029 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3030 mark_reg_not_init(regs, caller_saved[i]); 3031 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3032 } 3033 3034 /* mark destination R0 register as readable, since it contains 3035 * the value fetched from the packet. 3036 * Already marked as written above. 3037 */ 3038 mark_reg_unknown(regs, BPF_REG_0); 3039 return 0; 3040 } 3041 3042 /* non-recursive DFS pseudo code 3043 * 1 procedure DFS-iterative(G,v): 3044 * 2 label v as discovered 3045 * 3 let S be a stack 3046 * 4 S.push(v) 3047 * 5 while S is not empty 3048 * 6 t <- S.pop() 3049 * 7 if t is what we're looking for: 3050 * 8 return t 3051 * 9 for all edges e in G.adjacentEdges(t) do 3052 * 10 if edge e is already labelled 3053 * 11 continue with the next edge 3054 * 12 w <- G.adjacentVertex(t,e) 3055 * 13 if vertex w is not discovered and not explored 3056 * 14 label e as tree-edge 3057 * 15 label w as discovered 3058 * 16 S.push(w) 3059 * 17 continue at 5 3060 * 18 else if vertex w is discovered 3061 * 19 label e as back-edge 3062 * 20 else 3063 * 21 // vertex w is explored 3064 * 22 label e as forward- or cross-edge 3065 * 23 label t as explored 3066 * 24 S.pop() 3067 * 3068 * convention: 3069 * 0x10 - discovered 3070 * 0x11 - discovered and fall-through edge labelled 3071 * 0x12 - discovered and fall-through and branch edges labelled 3072 * 0x20 - explored 3073 */ 3074 3075 enum { 3076 DISCOVERED = 0x10, 3077 EXPLORED = 0x20, 3078 FALLTHROUGH = 1, 3079 BRANCH = 2, 3080 }; 3081 3082 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3083 3084 static int *insn_stack; /* stack of insns to process */ 3085 static int cur_stack; /* current stack index */ 3086 static int *insn_state; 3087 3088 /* t, w, e - match pseudo-code above: 3089 * t - index of current instruction 3090 * w - next instruction 3091 * e - edge 3092 */ 3093 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3094 { 3095 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3096 return 0; 3097 3098 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3099 return 0; 3100 3101 if (w < 0 || w >= env->prog->len) { 3102 verbose("jump out of range from insn %d to %d\n", t, w); 3103 return -EINVAL; 3104 } 3105 3106 if (e == BRANCH) 3107 /* mark branch target for state pruning */ 3108 env->explored_states[w] = STATE_LIST_MARK; 3109 3110 if (insn_state[w] == 0) { 3111 /* tree-edge */ 3112 insn_state[t] = DISCOVERED | e; 3113 insn_state[w] = DISCOVERED; 3114 if (cur_stack >= env->prog->len) 3115 return -E2BIG; 3116 insn_stack[cur_stack++] = w; 3117 return 1; 3118 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3119 verbose("back-edge from insn %d to %d\n", t, w); 3120 return -EINVAL; 3121 } else if (insn_state[w] == EXPLORED) { 3122 /* forward- or cross-edge */ 3123 insn_state[t] = DISCOVERED | e; 3124 } else { 3125 verbose("insn state internal bug\n"); 3126 return -EFAULT; 3127 } 3128 return 0; 3129 } 3130 3131 /* non-recursive depth-first-search to detect loops in BPF program 3132 * loop == back-edge in directed graph 3133 */ 3134 static int check_cfg(struct bpf_verifier_env *env) 3135 { 3136 struct bpf_insn *insns = env->prog->insnsi; 3137 int insn_cnt = env->prog->len; 3138 int ret = 0; 3139 int i, t; 3140 3141 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3142 if (!insn_state) 3143 return -ENOMEM; 3144 3145 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3146 if (!insn_stack) { 3147 kfree(insn_state); 3148 return -ENOMEM; 3149 } 3150 3151 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 3152 insn_stack[0] = 0; /* 0 is the first instruction */ 3153 cur_stack = 1; 3154 3155 peek_stack: 3156 if (cur_stack == 0) 3157 goto check_state; 3158 t = insn_stack[cur_stack - 1]; 3159 3160 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 3161 u8 opcode = BPF_OP(insns[t].code); 3162 3163 if (opcode == BPF_EXIT) { 3164 goto mark_explored; 3165 } else if (opcode == BPF_CALL) { 3166 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3167 if (ret == 1) 3168 goto peek_stack; 3169 else if (ret < 0) 3170 goto err_free; 3171 if (t + 1 < insn_cnt) 3172 env->explored_states[t + 1] = STATE_LIST_MARK; 3173 } else if (opcode == BPF_JA) { 3174 if (BPF_SRC(insns[t].code) != BPF_K) { 3175 ret = -EINVAL; 3176 goto err_free; 3177 } 3178 /* unconditional jump with single edge */ 3179 ret = push_insn(t, t + insns[t].off + 1, 3180 FALLTHROUGH, env); 3181 if (ret == 1) 3182 goto peek_stack; 3183 else if (ret < 0) 3184 goto err_free; 3185 /* tell verifier to check for equivalent states 3186 * after every call and jump 3187 */ 3188 if (t + 1 < insn_cnt) 3189 env->explored_states[t + 1] = STATE_LIST_MARK; 3190 } else { 3191 /* conditional jump with two edges */ 3192 env->explored_states[t] = STATE_LIST_MARK; 3193 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3194 if (ret == 1) 3195 goto peek_stack; 3196 else if (ret < 0) 3197 goto err_free; 3198 3199 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 3200 if (ret == 1) 3201 goto peek_stack; 3202 else if (ret < 0) 3203 goto err_free; 3204 } 3205 } else { 3206 /* all other non-branch instructions with single 3207 * fall-through edge 3208 */ 3209 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3210 if (ret == 1) 3211 goto peek_stack; 3212 else if (ret < 0) 3213 goto err_free; 3214 } 3215 3216 mark_explored: 3217 insn_state[t] = EXPLORED; 3218 if (cur_stack-- <= 0) { 3219 verbose("pop stack internal bug\n"); 3220 ret = -EFAULT; 3221 goto err_free; 3222 } 3223 goto peek_stack; 3224 3225 check_state: 3226 for (i = 0; i < insn_cnt; i++) { 3227 if (insn_state[i] != EXPLORED) { 3228 verbose("unreachable insn %d\n", i); 3229 ret = -EINVAL; 3230 goto err_free; 3231 } 3232 } 3233 ret = 0; /* cfg looks good */ 3234 3235 err_free: 3236 kfree(insn_state); 3237 kfree(insn_stack); 3238 return ret; 3239 } 3240 3241 /* check %cur's range satisfies %old's */ 3242 static bool range_within(struct bpf_reg_state *old, 3243 struct bpf_reg_state *cur) 3244 { 3245 return old->umin_value <= cur->umin_value && 3246 old->umax_value >= cur->umax_value && 3247 old->smin_value <= cur->smin_value && 3248 old->smax_value >= cur->smax_value; 3249 } 3250 3251 /* Maximum number of register states that can exist at once */ 3252 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 3253 struct idpair { 3254 u32 old; 3255 u32 cur; 3256 }; 3257 3258 /* If in the old state two registers had the same id, then they need to have 3259 * the same id in the new state as well. But that id could be different from 3260 * the old state, so we need to track the mapping from old to new ids. 3261 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 3262 * regs with old id 5 must also have new id 9 for the new state to be safe. But 3263 * regs with a different old id could still have new id 9, we don't care about 3264 * that. 3265 * So we look through our idmap to see if this old id has been seen before. If 3266 * so, we require the new id to match; otherwise, we add the id pair to the map. 3267 */ 3268 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 3269 { 3270 unsigned int i; 3271 3272 for (i = 0; i < ID_MAP_SIZE; i++) { 3273 if (!idmap[i].old) { 3274 /* Reached an empty slot; haven't seen this id before */ 3275 idmap[i].old = old_id; 3276 idmap[i].cur = cur_id; 3277 return true; 3278 } 3279 if (idmap[i].old == old_id) 3280 return idmap[i].cur == cur_id; 3281 } 3282 /* We ran out of idmap slots, which should be impossible */ 3283 WARN_ON_ONCE(1); 3284 return false; 3285 } 3286 3287 /* Returns true if (rold safe implies rcur safe) */ 3288 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 3289 struct idpair *idmap) 3290 { 3291 if (!(rold->live & REG_LIVE_READ)) 3292 /* explored state didn't use this */ 3293 return true; 3294 3295 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) 3296 return true; 3297 3298 if (rold->type == NOT_INIT) 3299 /* explored state can't have used this */ 3300 return true; 3301 if (rcur->type == NOT_INIT) 3302 return false; 3303 switch (rold->type) { 3304 case SCALAR_VALUE: 3305 if (rcur->type == SCALAR_VALUE) { 3306 /* new val must satisfy old val knowledge */ 3307 return range_within(rold, rcur) && 3308 tnum_in(rold->var_off, rcur->var_off); 3309 } else { 3310 /* if we knew anything about the old value, we're not 3311 * equal, because we can't know anything about the 3312 * scalar value of the pointer in the new value. 3313 */ 3314 return rold->umin_value == 0 && 3315 rold->umax_value == U64_MAX && 3316 rold->smin_value == S64_MIN && 3317 rold->smax_value == S64_MAX && 3318 tnum_is_unknown(rold->var_off); 3319 } 3320 case PTR_TO_MAP_VALUE: 3321 /* If the new min/max/var_off satisfy the old ones and 3322 * everything else matches, we are OK. 3323 * We don't care about the 'id' value, because nothing 3324 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 3325 */ 3326 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 3327 range_within(rold, rcur) && 3328 tnum_in(rold->var_off, rcur->var_off); 3329 case PTR_TO_MAP_VALUE_OR_NULL: 3330 /* a PTR_TO_MAP_VALUE could be safe to use as a 3331 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 3332 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 3333 * checked, doing so could have affected others with the same 3334 * id, and we can't check for that because we lost the id when 3335 * we converted to a PTR_TO_MAP_VALUE. 3336 */ 3337 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3338 return false; 3339 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3340 return false; 3341 /* Check our ids match any regs they're supposed to */ 3342 return check_ids(rold->id, rcur->id, idmap); 3343 case PTR_TO_PACKET: 3344 if (rcur->type != PTR_TO_PACKET) 3345 return false; 3346 /* We must have at least as much range as the old ptr 3347 * did, so that any accesses which were safe before are 3348 * still safe. This is true even if old range < old off, 3349 * since someone could have accessed through (ptr - k), or 3350 * even done ptr -= k in a register, to get a safe access. 3351 */ 3352 if (rold->range > rcur->range) 3353 return false; 3354 /* If the offsets don't match, we can't trust our alignment; 3355 * nor can we be sure that we won't fall out of range. 3356 */ 3357 if (rold->off != rcur->off) 3358 return false; 3359 /* id relations must be preserved */ 3360 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 3361 return false; 3362 /* new val must satisfy old val knowledge */ 3363 return range_within(rold, rcur) && 3364 tnum_in(rold->var_off, rcur->var_off); 3365 case PTR_TO_CTX: 3366 case CONST_PTR_TO_MAP: 3367 case PTR_TO_STACK: 3368 case PTR_TO_PACKET_END: 3369 /* Only valid matches are exact, which memcmp() above 3370 * would have accepted 3371 */ 3372 default: 3373 /* Don't know what's going on, just say it's not safe */ 3374 return false; 3375 } 3376 3377 /* Shouldn't get here; if we do, say it's not safe */ 3378 WARN_ON_ONCE(1); 3379 return false; 3380 } 3381 3382 /* compare two verifier states 3383 * 3384 * all states stored in state_list are known to be valid, since 3385 * verifier reached 'bpf_exit' instruction through them 3386 * 3387 * this function is called when verifier exploring different branches of 3388 * execution popped from the state stack. If it sees an old state that has 3389 * more strict register state and more strict stack state then this execution 3390 * branch doesn't need to be explored further, since verifier already 3391 * concluded that more strict state leads to valid finish. 3392 * 3393 * Therefore two states are equivalent if register state is more conservative 3394 * and explored stack state is more conservative than the current one. 3395 * Example: 3396 * explored current 3397 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 3398 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 3399 * 3400 * In other words if current stack state (one being explored) has more 3401 * valid slots than old one that already passed validation, it means 3402 * the verifier can stop exploring and conclude that current state is valid too 3403 * 3404 * Similarly with registers. If explored state has register type as invalid 3405 * whereas register type in current state is meaningful, it means that 3406 * the current state will reach 'bpf_exit' instruction safely 3407 */ 3408 static bool states_equal(struct bpf_verifier_env *env, 3409 struct bpf_verifier_state *old, 3410 struct bpf_verifier_state *cur) 3411 { 3412 struct idpair *idmap; 3413 bool ret = false; 3414 int i; 3415 3416 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 3417 /* If we failed to allocate the idmap, just say it's not safe */ 3418 if (!idmap) 3419 return false; 3420 3421 for (i = 0; i < MAX_BPF_REG; i++) { 3422 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3423 goto out_free; 3424 } 3425 3426 for (i = 0; i < MAX_BPF_STACK; i++) { 3427 if (old->stack_slot_type[i] == STACK_INVALID) 3428 continue; 3429 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 3430 /* Ex: old explored (safe) state has STACK_SPILL in 3431 * this stack slot, but current has has STACK_MISC -> 3432 * this verifier states are not equivalent, 3433 * return false to continue verification of this path 3434 */ 3435 goto out_free; 3436 if (i % BPF_REG_SIZE) 3437 continue; 3438 if (old->stack_slot_type[i] != STACK_SPILL) 3439 continue; 3440 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE], 3441 &cur->spilled_regs[i / BPF_REG_SIZE], 3442 idmap)) 3443 /* when explored and current stack slot are both storing 3444 * spilled registers, check that stored pointers types 3445 * are the same as well. 3446 * Ex: explored safe path could have stored 3447 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3448 * but current path has stored: 3449 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3450 * such verifier states are not equivalent. 3451 * return false to continue verification of this path 3452 */ 3453 goto out_free; 3454 else 3455 continue; 3456 } 3457 ret = true; 3458 out_free: 3459 kfree(idmap); 3460 return ret; 3461 } 3462 3463 /* A write screens off any subsequent reads; but write marks come from the 3464 * straight-line code between a state and its parent. When we arrive at a 3465 * jump target (in the first iteration of the propagate_liveness() loop), 3466 * we didn't arrive by the straight-line code, so read marks in state must 3467 * propagate to parent regardless of state's write marks. 3468 */ 3469 static bool do_propagate_liveness(const struct bpf_verifier_state *state, 3470 struct bpf_verifier_state *parent) 3471 { 3472 bool writes = parent == state->parent; /* Observe write marks */ 3473 bool touched = false; /* any changes made? */ 3474 int i; 3475 3476 if (!parent) 3477 return touched; 3478 /* Propagate read liveness of registers... */ 3479 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 3480 /* We don't need to worry about FP liveness because it's read-only */ 3481 for (i = 0; i < BPF_REG_FP; i++) { 3482 if (parent->regs[i].live & REG_LIVE_READ) 3483 continue; 3484 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3485 continue; 3486 if (state->regs[i].live & REG_LIVE_READ) { 3487 parent->regs[i].live |= REG_LIVE_READ; 3488 touched = true; 3489 } 3490 } 3491 /* ... and stack slots */ 3492 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) { 3493 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3494 continue; 3495 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3496 continue; 3497 if (parent->spilled_regs[i].live & REG_LIVE_READ) 3498 continue; 3499 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN)) 3500 continue; 3501 if (state->spilled_regs[i].live & REG_LIVE_READ) { 3502 parent->spilled_regs[i].live |= REG_LIVE_READ; 3503 touched = true; 3504 } 3505 } 3506 return touched; 3507 } 3508 3509 /* "parent" is "a state from which we reach the current state", but initially 3510 * it is not the state->parent (i.e. "the state whose straight-line code leads 3511 * to the current state"), instead it is the state that happened to arrive at 3512 * a (prunable) equivalent of the current state. See comment above 3513 * do_propagate_liveness() for consequences of this. 3514 * This function is just a more efficient way of calling mark_reg_read() or 3515 * mark_stack_slot_read() on each reg in "parent" that is read in "state", 3516 * though it requires that parent != state->parent in the call arguments. 3517 */ 3518 static void propagate_liveness(const struct bpf_verifier_state *state, 3519 struct bpf_verifier_state *parent) 3520 { 3521 while (do_propagate_liveness(state, parent)) { 3522 /* Something changed, so we need to feed those changes onward */ 3523 state = parent; 3524 parent = state->parent; 3525 } 3526 } 3527 3528 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3529 { 3530 struct bpf_verifier_state_list *new_sl; 3531 struct bpf_verifier_state_list *sl; 3532 int i; 3533 3534 sl = env->explored_states[insn_idx]; 3535 if (!sl) 3536 /* this 'insn_idx' instruction wasn't marked, so we will not 3537 * be doing state search here 3538 */ 3539 return 0; 3540 3541 while (sl != STATE_LIST_MARK) { 3542 if (states_equal(env, &sl->state, &env->cur_state)) { 3543 /* reached equivalent register/stack state, 3544 * prune the search. 3545 * Registers read by the continuation are read by us. 3546 * If we have any write marks in env->cur_state, they 3547 * will prevent corresponding reads in the continuation 3548 * from reaching our parent (an explored_state). Our 3549 * own state will get the read marks recorded, but 3550 * they'll be immediately forgotten as we're pruning 3551 * this state and will pop a new one. 3552 */ 3553 propagate_liveness(&sl->state, &env->cur_state); 3554 return 1; 3555 } 3556 sl = sl->next; 3557 } 3558 3559 /* there were no equivalent states, remember current one. 3560 * technically the current state is not proven to be safe yet, 3561 * but it will either reach bpf_exit (which means it's safe) or 3562 * it will be rejected. Since there are no loops, we won't be 3563 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3564 */ 3565 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); 3566 if (!new_sl) 3567 return -ENOMEM; 3568 3569 /* add new state to the head of linked list */ 3570 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); 3571 new_sl->next = env->explored_states[insn_idx]; 3572 env->explored_states[insn_idx] = new_sl; 3573 /* connect new state to parentage chain */ 3574 env->cur_state.parent = &new_sl->state; 3575 /* clear write marks in current state: the writes we did are not writes 3576 * our child did, so they don't screen off its reads from us. 3577 * (There are no read marks in current state, because reads always mark 3578 * their parent and current state never has children yet. Only 3579 * explored_states can get read marks.) 3580 */ 3581 for (i = 0; i < BPF_REG_FP; i++) 3582 env->cur_state.regs[i].live = REG_LIVE_NONE; 3583 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) 3584 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL) 3585 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE; 3586 return 0; 3587 } 3588 3589 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3590 int insn_idx, int prev_insn_idx) 3591 { 3592 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 3593 return 0; 3594 3595 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); 3596 } 3597 3598 static int do_check(struct bpf_verifier_env *env) 3599 { 3600 struct bpf_verifier_state *state = &env->cur_state; 3601 struct bpf_insn *insns = env->prog->insnsi; 3602 struct bpf_reg_state *regs = state->regs; 3603 int insn_cnt = env->prog->len; 3604 int insn_idx, prev_insn_idx = 0; 3605 int insn_processed = 0; 3606 bool do_print_state = false; 3607 3608 init_reg_state(regs); 3609 state->parent = NULL; 3610 insn_idx = 0; 3611 for (;;) { 3612 struct bpf_insn *insn; 3613 u8 class; 3614 int err; 3615 3616 if (insn_idx >= insn_cnt) { 3617 verbose("invalid insn idx %d insn_cnt %d\n", 3618 insn_idx, insn_cnt); 3619 return -EFAULT; 3620 } 3621 3622 insn = &insns[insn_idx]; 3623 class = BPF_CLASS(insn->code); 3624 3625 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 3626 verbose("BPF program is too large. Processed %d insn\n", 3627 insn_processed); 3628 return -E2BIG; 3629 } 3630 3631 err = is_state_visited(env, insn_idx); 3632 if (err < 0) 3633 return err; 3634 if (err == 1) { 3635 /* found equivalent state, can prune the search */ 3636 if (log_level) { 3637 if (do_print_state) 3638 verbose("\nfrom %d to %d: safe\n", 3639 prev_insn_idx, insn_idx); 3640 else 3641 verbose("%d: safe\n", insn_idx); 3642 } 3643 goto process_bpf_exit; 3644 } 3645 3646 if (need_resched()) 3647 cond_resched(); 3648 3649 if (log_level > 1 || (log_level && do_print_state)) { 3650 if (log_level > 1) 3651 verbose("%d:", insn_idx); 3652 else 3653 verbose("\nfrom %d to %d:", 3654 prev_insn_idx, insn_idx); 3655 print_verifier_state(&env->cur_state); 3656 do_print_state = false; 3657 } 3658 3659 if (log_level) { 3660 verbose("%d: ", insn_idx); 3661 print_bpf_insn(env, insn); 3662 } 3663 3664 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3665 if (err) 3666 return err; 3667 3668 if (class == BPF_ALU || class == BPF_ALU64) { 3669 err = check_alu_op(env, insn); 3670 if (err) 3671 return err; 3672 3673 } else if (class == BPF_LDX) { 3674 enum bpf_reg_type *prev_src_type, src_reg_type; 3675 3676 /* check for reserved fields is already done */ 3677 3678 /* check src operand */ 3679 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3680 if (err) 3681 return err; 3682 3683 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3684 if (err) 3685 return err; 3686 3687 src_reg_type = regs[insn->src_reg].type; 3688 3689 /* check that memory (src_reg + off) is readable, 3690 * the state of dst_reg will be updated by this func 3691 */ 3692 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3693 BPF_SIZE(insn->code), BPF_READ, 3694 insn->dst_reg); 3695 if (err) 3696 return err; 3697 3698 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3699 3700 if (*prev_src_type == NOT_INIT) { 3701 /* saw a valid insn 3702 * dst_reg = *(u32 *)(src_reg + off) 3703 * save type to validate intersecting paths 3704 */ 3705 *prev_src_type = src_reg_type; 3706 3707 } else if (src_reg_type != *prev_src_type && 3708 (src_reg_type == PTR_TO_CTX || 3709 *prev_src_type == PTR_TO_CTX)) { 3710 /* ABuser program is trying to use the same insn 3711 * dst_reg = *(u32*) (src_reg + off) 3712 * with different pointer types: 3713 * src_reg == ctx in one branch and 3714 * src_reg == stack|map in some other branch. 3715 * Reject it. 3716 */ 3717 verbose("same insn cannot be used with different pointers\n"); 3718 return -EINVAL; 3719 } 3720 3721 } else if (class == BPF_STX) { 3722 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3723 3724 if (BPF_MODE(insn->code) == BPF_XADD) { 3725 err = check_xadd(env, insn_idx, insn); 3726 if (err) 3727 return err; 3728 insn_idx++; 3729 continue; 3730 } 3731 3732 /* check src1 operand */ 3733 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3734 if (err) 3735 return err; 3736 /* check src2 operand */ 3737 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3738 if (err) 3739 return err; 3740 3741 dst_reg_type = regs[insn->dst_reg].type; 3742 3743 /* check that memory (dst_reg + off) is writeable */ 3744 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3745 BPF_SIZE(insn->code), BPF_WRITE, 3746 insn->src_reg); 3747 if (err) 3748 return err; 3749 3750 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3751 3752 if (*prev_dst_type == NOT_INIT) { 3753 *prev_dst_type = dst_reg_type; 3754 } else if (dst_reg_type != *prev_dst_type && 3755 (dst_reg_type == PTR_TO_CTX || 3756 *prev_dst_type == PTR_TO_CTX)) { 3757 verbose("same insn cannot be used with different pointers\n"); 3758 return -EINVAL; 3759 } 3760 3761 } else if (class == BPF_ST) { 3762 if (BPF_MODE(insn->code) != BPF_MEM || 3763 insn->src_reg != BPF_REG_0) { 3764 verbose("BPF_ST uses reserved fields\n"); 3765 return -EINVAL; 3766 } 3767 /* check src operand */ 3768 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3769 if (err) 3770 return err; 3771 3772 /* check that memory (dst_reg + off) is writeable */ 3773 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3774 BPF_SIZE(insn->code), BPF_WRITE, 3775 -1); 3776 if (err) 3777 return err; 3778 3779 } else if (class == BPF_JMP) { 3780 u8 opcode = BPF_OP(insn->code); 3781 3782 if (opcode == BPF_CALL) { 3783 if (BPF_SRC(insn->code) != BPF_K || 3784 insn->off != 0 || 3785 insn->src_reg != BPF_REG_0 || 3786 insn->dst_reg != BPF_REG_0) { 3787 verbose("BPF_CALL uses reserved fields\n"); 3788 return -EINVAL; 3789 } 3790 3791 err = check_call(env, insn->imm, insn_idx); 3792 if (err) 3793 return err; 3794 3795 } else if (opcode == BPF_JA) { 3796 if (BPF_SRC(insn->code) != BPF_K || 3797 insn->imm != 0 || 3798 insn->src_reg != BPF_REG_0 || 3799 insn->dst_reg != BPF_REG_0) { 3800 verbose("BPF_JA uses reserved fields\n"); 3801 return -EINVAL; 3802 } 3803 3804 insn_idx += insn->off + 1; 3805 continue; 3806 3807 } else if (opcode == BPF_EXIT) { 3808 if (BPF_SRC(insn->code) != BPF_K || 3809 insn->imm != 0 || 3810 insn->src_reg != BPF_REG_0 || 3811 insn->dst_reg != BPF_REG_0) { 3812 verbose("BPF_EXIT uses reserved fields\n"); 3813 return -EINVAL; 3814 } 3815 3816 /* eBPF calling convetion is such that R0 is used 3817 * to return the value from eBPF program. 3818 * Make sure that it's readable at this time 3819 * of bpf_exit, which means that program wrote 3820 * something into it earlier 3821 */ 3822 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3823 if (err) 3824 return err; 3825 3826 if (is_pointer_value(env, BPF_REG_0)) { 3827 verbose("R0 leaks addr as return value\n"); 3828 return -EACCES; 3829 } 3830 3831 process_bpf_exit: 3832 insn_idx = pop_stack(env, &prev_insn_idx); 3833 if (insn_idx < 0) { 3834 break; 3835 } else { 3836 do_print_state = true; 3837 continue; 3838 } 3839 } else { 3840 err = check_cond_jmp_op(env, insn, &insn_idx); 3841 if (err) 3842 return err; 3843 } 3844 } else if (class == BPF_LD) { 3845 u8 mode = BPF_MODE(insn->code); 3846 3847 if (mode == BPF_ABS || mode == BPF_IND) { 3848 err = check_ld_abs(env, insn); 3849 if (err) 3850 return err; 3851 3852 } else if (mode == BPF_IMM) { 3853 err = check_ld_imm(env, insn); 3854 if (err) 3855 return err; 3856 3857 insn_idx++; 3858 } else { 3859 verbose("invalid BPF_LD mode\n"); 3860 return -EINVAL; 3861 } 3862 } else { 3863 verbose("unknown insn class %d\n", class); 3864 return -EINVAL; 3865 } 3866 3867 insn_idx++; 3868 } 3869 3870 verbose("processed %d insns, stack depth %d\n", 3871 insn_processed, env->prog->aux->stack_depth); 3872 return 0; 3873 } 3874 3875 static int check_map_prealloc(struct bpf_map *map) 3876 { 3877 return (map->map_type != BPF_MAP_TYPE_HASH && 3878 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3879 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3880 !(map->map_flags & BPF_F_NO_PREALLOC); 3881 } 3882 3883 static int check_map_prog_compatibility(struct bpf_map *map, 3884 struct bpf_prog *prog) 3885 3886 { 3887 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3888 * preallocated hash maps, since doing memory allocation 3889 * in overflow_handler can crash depending on where nmi got 3890 * triggered. 3891 */ 3892 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3893 if (!check_map_prealloc(map)) { 3894 verbose("perf_event programs can only use preallocated hash map\n"); 3895 return -EINVAL; 3896 } 3897 if (map->inner_map_meta && 3898 !check_map_prealloc(map->inner_map_meta)) { 3899 verbose("perf_event programs can only use preallocated inner hash map\n"); 3900 return -EINVAL; 3901 } 3902 } 3903 return 0; 3904 } 3905 3906 /* look for pseudo eBPF instructions that access map FDs and 3907 * replace them with actual map pointers 3908 */ 3909 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 3910 { 3911 struct bpf_insn *insn = env->prog->insnsi; 3912 int insn_cnt = env->prog->len; 3913 int i, j, err; 3914 3915 err = bpf_prog_calc_tag(env->prog); 3916 if (err) 3917 return err; 3918 3919 for (i = 0; i < insn_cnt; i++, insn++) { 3920 if (BPF_CLASS(insn->code) == BPF_LDX && 3921 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 3922 verbose("BPF_LDX uses reserved fields\n"); 3923 return -EINVAL; 3924 } 3925 3926 if (BPF_CLASS(insn->code) == BPF_STX && 3927 ((BPF_MODE(insn->code) != BPF_MEM && 3928 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 3929 verbose("BPF_STX uses reserved fields\n"); 3930 return -EINVAL; 3931 } 3932 3933 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3934 struct bpf_map *map; 3935 struct fd f; 3936 3937 if (i == insn_cnt - 1 || insn[1].code != 0 || 3938 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3939 insn[1].off != 0) { 3940 verbose("invalid bpf_ld_imm64 insn\n"); 3941 return -EINVAL; 3942 } 3943 3944 if (insn->src_reg == 0) 3945 /* valid generic load 64-bit imm */ 3946 goto next_insn; 3947 3948 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 3949 verbose("unrecognized bpf_ld_imm64 insn\n"); 3950 return -EINVAL; 3951 } 3952 3953 f = fdget(insn->imm); 3954 map = __bpf_map_get(f); 3955 if (IS_ERR(map)) { 3956 verbose("fd %d is not pointing to valid bpf_map\n", 3957 insn->imm); 3958 return PTR_ERR(map); 3959 } 3960 3961 err = check_map_prog_compatibility(map, env->prog); 3962 if (err) { 3963 fdput(f); 3964 return err; 3965 } 3966 3967 /* store map pointer inside BPF_LD_IMM64 instruction */ 3968 insn[0].imm = (u32) (unsigned long) map; 3969 insn[1].imm = ((u64) (unsigned long) map) >> 32; 3970 3971 /* check whether we recorded this map already */ 3972 for (j = 0; j < env->used_map_cnt; j++) 3973 if (env->used_maps[j] == map) { 3974 fdput(f); 3975 goto next_insn; 3976 } 3977 3978 if (env->used_map_cnt >= MAX_USED_MAPS) { 3979 fdput(f); 3980 return -E2BIG; 3981 } 3982 3983 /* hold the map. If the program is rejected by verifier, 3984 * the map will be released by release_maps() or it 3985 * will be used by the valid program until it's unloaded 3986 * and all maps are released in free_bpf_prog_info() 3987 */ 3988 map = bpf_map_inc(map, false); 3989 if (IS_ERR(map)) { 3990 fdput(f); 3991 return PTR_ERR(map); 3992 } 3993 env->used_maps[env->used_map_cnt++] = map; 3994 3995 fdput(f); 3996 next_insn: 3997 insn++; 3998 i++; 3999 } 4000 } 4001 4002 /* now all pseudo BPF_LD_IMM64 instructions load valid 4003 * 'struct bpf_map *' into a register instead of user map_fd. 4004 * These pointers will be used later by verifier to validate map access. 4005 */ 4006 return 0; 4007 } 4008 4009 /* drop refcnt of maps used by the rejected program */ 4010 static void release_maps(struct bpf_verifier_env *env) 4011 { 4012 int i; 4013 4014 for (i = 0; i < env->used_map_cnt; i++) 4015 bpf_map_put(env->used_maps[i]); 4016 } 4017 4018 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 4019 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 4020 { 4021 struct bpf_insn *insn = env->prog->insnsi; 4022 int insn_cnt = env->prog->len; 4023 int i; 4024 4025 for (i = 0; i < insn_cnt; i++, insn++) 4026 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 4027 insn->src_reg = 0; 4028 } 4029 4030 /* single env->prog->insni[off] instruction was replaced with the range 4031 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 4032 * [0, off) and [off, end) to new locations, so the patched range stays zero 4033 */ 4034 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 4035 u32 off, u32 cnt) 4036 { 4037 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 4038 4039 if (cnt == 1) 4040 return 0; 4041 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 4042 if (!new_data) 4043 return -ENOMEM; 4044 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 4045 memcpy(new_data + off + cnt - 1, old_data + off, 4046 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 4047 env->insn_aux_data = new_data; 4048 vfree(old_data); 4049 return 0; 4050 } 4051 4052 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 4053 const struct bpf_insn *patch, u32 len) 4054 { 4055 struct bpf_prog *new_prog; 4056 4057 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 4058 if (!new_prog) 4059 return NULL; 4060 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 4061 return NULL; 4062 return new_prog; 4063 } 4064 4065 /* convert load instructions that access fields of 'struct __sk_buff' 4066 * into sequence of instructions that access fields of 'struct sk_buff' 4067 */ 4068 static int convert_ctx_accesses(struct bpf_verifier_env *env) 4069 { 4070 const struct bpf_verifier_ops *ops = env->prog->aux->ops; 4071 int i, cnt, size, ctx_field_size, delta = 0; 4072 const int insn_cnt = env->prog->len; 4073 struct bpf_insn insn_buf[16], *insn; 4074 struct bpf_prog *new_prog; 4075 enum bpf_access_type type; 4076 bool is_narrower_load; 4077 u32 target_size; 4078 4079 if (ops->gen_prologue) { 4080 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4081 env->prog); 4082 if (cnt >= ARRAY_SIZE(insn_buf)) { 4083 verbose("bpf verifier is misconfigured\n"); 4084 return -EINVAL; 4085 } else if (cnt) { 4086 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4087 if (!new_prog) 4088 return -ENOMEM; 4089 4090 env->prog = new_prog; 4091 delta += cnt - 1; 4092 } 4093 } 4094 4095 if (!ops->convert_ctx_access) 4096 return 0; 4097 4098 insn = env->prog->insnsi + delta; 4099 4100 for (i = 0; i < insn_cnt; i++, insn++) { 4101 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 4102 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 4103 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 4104 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 4105 type = BPF_READ; 4106 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 4107 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 4108 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 4109 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 4110 type = BPF_WRITE; 4111 else 4112 continue; 4113 4114 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 4115 continue; 4116 4117 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 4118 size = BPF_LDST_BYTES(insn); 4119 4120 /* If the read access is a narrower load of the field, 4121 * convert to a 4/8-byte load, to minimum program type specific 4122 * convert_ctx_access changes. If conversion is successful, 4123 * we will apply proper mask to the result. 4124 */ 4125 is_narrower_load = size < ctx_field_size; 4126 if (is_narrower_load) { 4127 u32 off = insn->off; 4128 u8 size_code; 4129 4130 if (type == BPF_WRITE) { 4131 verbose("bpf verifier narrow ctx access misconfigured\n"); 4132 return -EINVAL; 4133 } 4134 4135 size_code = BPF_H; 4136 if (ctx_field_size == 4) 4137 size_code = BPF_W; 4138 else if (ctx_field_size == 8) 4139 size_code = BPF_DW; 4140 4141 insn->off = off & ~(ctx_field_size - 1); 4142 insn->code = BPF_LDX | BPF_MEM | size_code; 4143 } 4144 4145 target_size = 0; 4146 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4147 &target_size); 4148 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4149 (ctx_field_size && !target_size)) { 4150 verbose("bpf verifier is misconfigured\n"); 4151 return -EINVAL; 4152 } 4153 4154 if (is_narrower_load && size < target_size) { 4155 if (ctx_field_size <= 4) 4156 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4157 (1 << size * 8) - 1); 4158 else 4159 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 4160 (1 << size * 8) - 1); 4161 } 4162 4163 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 4164 if (!new_prog) 4165 return -ENOMEM; 4166 4167 delta += cnt - 1; 4168 4169 /* keep walking new program and skip insns we just inserted */ 4170 env->prog = new_prog; 4171 insn = new_prog->insnsi + i + delta; 4172 } 4173 4174 return 0; 4175 } 4176 4177 /* fixup insn->imm field of bpf_call instructions 4178 * and inline eligible helpers as explicit sequence of BPF instructions 4179 * 4180 * this function is called after eBPF program passed verification 4181 */ 4182 static int fixup_bpf_calls(struct bpf_verifier_env *env) 4183 { 4184 struct bpf_prog *prog = env->prog; 4185 struct bpf_insn *insn = prog->insnsi; 4186 const struct bpf_func_proto *fn; 4187 const int insn_cnt = prog->len; 4188 struct bpf_insn insn_buf[16]; 4189 struct bpf_prog *new_prog; 4190 struct bpf_map *map_ptr; 4191 int i, cnt, delta = 0; 4192 4193 for (i = 0; i < insn_cnt; i++, insn++) { 4194 if (insn->code != (BPF_JMP | BPF_CALL)) 4195 continue; 4196 4197 if (insn->imm == BPF_FUNC_get_route_realm) 4198 prog->dst_needed = 1; 4199 if (insn->imm == BPF_FUNC_get_prandom_u32) 4200 bpf_user_rnd_init_once(); 4201 if (insn->imm == BPF_FUNC_tail_call) { 4202 /* If we tail call into other programs, we 4203 * cannot make any assumptions since they can 4204 * be replaced dynamically during runtime in 4205 * the program array. 4206 */ 4207 prog->cb_access = 1; 4208 env->prog->aux->stack_depth = MAX_BPF_STACK; 4209 4210 /* mark bpf_tail_call as different opcode to avoid 4211 * conditional branch in the interpeter for every normal 4212 * call and to prevent accidental JITing by JIT compiler 4213 * that doesn't support bpf_tail_call yet 4214 */ 4215 insn->imm = 0; 4216 insn->code = BPF_JMP | BPF_TAIL_CALL; 4217 continue; 4218 } 4219 4220 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 4221 * handlers are currently limited to 64 bit only. 4222 */ 4223 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && 4224 insn->imm == BPF_FUNC_map_lookup_elem) { 4225 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4226 if (map_ptr == BPF_MAP_PTR_POISON || 4227 !map_ptr->ops->map_gen_lookup) 4228 goto patch_call_imm; 4229 4230 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4231 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 4232 verbose("bpf verifier is misconfigured\n"); 4233 return -EINVAL; 4234 } 4235 4236 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4237 cnt); 4238 if (!new_prog) 4239 return -ENOMEM; 4240 4241 delta += cnt - 1; 4242 4243 /* keep walking new program and skip insns we just inserted */ 4244 env->prog = prog = new_prog; 4245 insn = new_prog->insnsi + i + delta; 4246 continue; 4247 } 4248 4249 if (insn->imm == BPF_FUNC_redirect_map) { 4250 /* Note, we cannot use prog directly as imm as subsequent 4251 * rewrites would still change the prog pointer. The only 4252 * stable address we can use is aux, which also works with 4253 * prog clones during blinding. 4254 */ 4255 u64 addr = (unsigned long)prog->aux; 4256 struct bpf_insn r4_ld[] = { 4257 BPF_LD_IMM64(BPF_REG_4, addr), 4258 *insn, 4259 }; 4260 cnt = ARRAY_SIZE(r4_ld); 4261 4262 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 4263 if (!new_prog) 4264 return -ENOMEM; 4265 4266 delta += cnt - 1; 4267 env->prog = prog = new_prog; 4268 insn = new_prog->insnsi + i + delta; 4269 } 4270 patch_call_imm: 4271 fn = prog->aux->ops->get_func_proto(insn->imm); 4272 /* all functions that have prototype and verifier allowed 4273 * programs to call them, must be real in-kernel functions 4274 */ 4275 if (!fn->func) { 4276 verbose("kernel subsystem misconfigured func %s#%d\n", 4277 func_id_name(insn->imm), insn->imm); 4278 return -EFAULT; 4279 } 4280 insn->imm = fn->func - __bpf_call_base; 4281 } 4282 4283 return 0; 4284 } 4285 4286 static void free_states(struct bpf_verifier_env *env) 4287 { 4288 struct bpf_verifier_state_list *sl, *sln; 4289 int i; 4290 4291 if (!env->explored_states) 4292 return; 4293 4294 for (i = 0; i < env->prog->len; i++) { 4295 sl = env->explored_states[i]; 4296 4297 if (sl) 4298 while (sl != STATE_LIST_MARK) { 4299 sln = sl->next; 4300 kfree(sl); 4301 sl = sln; 4302 } 4303 } 4304 4305 kfree(env->explored_states); 4306 } 4307 4308 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4309 { 4310 char __user *log_ubuf = NULL; 4311 struct bpf_verifier_env *env; 4312 int ret = -EINVAL; 4313 4314 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4315 * allocate/free it every time bpf_check() is called 4316 */ 4317 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4318 if (!env) 4319 return -ENOMEM; 4320 4321 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4322 (*prog)->len); 4323 ret = -ENOMEM; 4324 if (!env->insn_aux_data) 4325 goto err_free_env; 4326 env->prog = *prog; 4327 4328 /* grab the mutex to protect few globals used by verifier */ 4329 mutex_lock(&bpf_verifier_lock); 4330 4331 if (attr->log_level || attr->log_buf || attr->log_size) { 4332 /* user requested verbose verifier output 4333 * and supplied buffer to store the verification trace 4334 */ 4335 log_level = attr->log_level; 4336 log_ubuf = (char __user *) (unsigned long) attr->log_buf; 4337 log_size = attr->log_size; 4338 log_len = 0; 4339 4340 ret = -EINVAL; 4341 /* log_* values have to be sane */ 4342 if (log_size < 128 || log_size > UINT_MAX >> 8 || 4343 log_level == 0 || log_ubuf == NULL) 4344 goto err_unlock; 4345 4346 ret = -ENOMEM; 4347 log_buf = vmalloc(log_size); 4348 if (!log_buf) 4349 goto err_unlock; 4350 } else { 4351 log_level = 0; 4352 } 4353 4354 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4355 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4356 env->strict_alignment = true; 4357 4358 ret = replace_map_fd_with_map_ptr(env); 4359 if (ret < 0) 4360 goto skip_full_check; 4361 4362 env->explored_states = kcalloc(env->prog->len, 4363 sizeof(struct bpf_verifier_state_list *), 4364 GFP_USER); 4365 ret = -ENOMEM; 4366 if (!env->explored_states) 4367 goto skip_full_check; 4368 4369 ret = check_cfg(env); 4370 if (ret < 0) 4371 goto skip_full_check; 4372 4373 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4374 4375 ret = do_check(env); 4376 4377 skip_full_check: 4378 while (pop_stack(env, NULL) >= 0); 4379 free_states(env); 4380 4381 if (ret == 0) 4382 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4383 ret = convert_ctx_accesses(env); 4384 4385 if (ret == 0) 4386 ret = fixup_bpf_calls(env); 4387 4388 if (log_level && log_len >= log_size - 1) { 4389 BUG_ON(log_len >= log_size); 4390 /* verifier log exceeded user supplied buffer */ 4391 ret = -ENOSPC; 4392 /* fall through to return what was recorded */ 4393 } 4394 4395 /* copy verifier log back to user space including trailing zero */ 4396 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { 4397 ret = -EFAULT; 4398 goto free_log_buf; 4399 } 4400 4401 if (ret == 0 && env->used_map_cnt) { 4402 /* if program passed verifier, update used_maps in bpf_prog_info */ 4403 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4404 sizeof(env->used_maps[0]), 4405 GFP_KERNEL); 4406 4407 if (!env->prog->aux->used_maps) { 4408 ret = -ENOMEM; 4409 goto free_log_buf; 4410 } 4411 4412 memcpy(env->prog->aux->used_maps, env->used_maps, 4413 sizeof(env->used_maps[0]) * env->used_map_cnt); 4414 env->prog->aux->used_map_cnt = env->used_map_cnt; 4415 4416 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4417 * bpf_ld_imm64 instructions 4418 */ 4419 convert_pseudo_ld_imm64(env); 4420 } 4421 4422 free_log_buf: 4423 if (log_level) 4424 vfree(log_buf); 4425 if (!env->prog->aux->used_maps) 4426 /* if we didn't copy map pointers into bpf_prog_info, release 4427 * them now. Otherwise free_bpf_prog_info() will release them. 4428 */ 4429 release_maps(env); 4430 *prog = env->prog; 4431 err_unlock: 4432 mutex_unlock(&bpf_verifier_lock); 4433 vfree(env->insn_aux_data); 4434 err_free_env: 4435 kfree(env); 4436 return ret; 4437 } 4438 4439 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 4440 void *priv) 4441 { 4442 struct bpf_verifier_env *env; 4443 int ret; 4444 4445 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4446 if (!env) 4447 return -ENOMEM; 4448 4449 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4450 prog->len); 4451 ret = -ENOMEM; 4452 if (!env->insn_aux_data) 4453 goto err_free_env; 4454 env->prog = prog; 4455 env->analyzer_ops = ops; 4456 env->analyzer_priv = priv; 4457 4458 /* grab the mutex to protect few globals used by verifier */ 4459 mutex_lock(&bpf_verifier_lock); 4460 4461 log_level = 0; 4462 4463 env->strict_alignment = false; 4464 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4465 env->strict_alignment = true; 4466 4467 env->explored_states = kcalloc(env->prog->len, 4468 sizeof(struct bpf_verifier_state_list *), 4469 GFP_KERNEL); 4470 ret = -ENOMEM; 4471 if (!env->explored_states) 4472 goto skip_full_check; 4473 4474 ret = check_cfg(env); 4475 if (ret < 0) 4476 goto skip_full_check; 4477 4478 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4479 4480 ret = do_check(env); 4481 4482 skip_full_check: 4483 while (pop_stack(env, NULL) >= 0); 4484 free_states(env); 4485 4486 mutex_unlock(&bpf_verifier_lock); 4487 vfree(env->insn_aux_data); 4488 err_free_env: 4489 kfree(env); 4490 return ret; 4491 } 4492 EXPORT_SYMBOL_GPL(bpf_analyzer); 4493