xref: /openbmc/linux/kernel/bpf/verifier.c (revision d3964221)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have SCALAR_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes SCALAR_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[SCALAR_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_STACK]		= "fp",
189 	[PTR_TO_PACKET]		= "pkt",
190 	[PTR_TO_PACKET_END]	= "pkt_end",
191 };
192 
193 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194 static const char * const func_id_str[] = {
195 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196 };
197 #undef __BPF_FUNC_STR_FN
198 
199 static const char *func_id_name(int id)
200 {
201 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202 
203 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 		return func_id_str[id];
205 	else
206 		return "unknown";
207 }
208 
209 static void print_verifier_state(struct bpf_verifier_state *state)
210 {
211 	struct bpf_reg_state *reg;
212 	enum bpf_reg_type t;
213 	int i;
214 
215 	for (i = 0; i < MAX_BPF_REG; i++) {
216 		reg = &state->regs[i];
217 		t = reg->type;
218 		if (t == NOT_INIT)
219 			continue;
220 		verbose(" R%d=%s", i, reg_type_str[t]);
221 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 		    tnum_is_const(reg->var_off)) {
223 			/* reg->off should be 0 for SCALAR_VALUE */
224 			verbose("%lld", reg->var_off.value + reg->off);
225 		} else {
226 			verbose("(id=%d", reg->id);
227 			if (t != SCALAR_VALUE)
228 				verbose(",off=%d", reg->off);
229 			if (t == PTR_TO_PACKET)
230 				verbose(",r=%d", reg->range);
231 			else if (t == CONST_PTR_TO_MAP ||
232 				 t == PTR_TO_MAP_VALUE ||
233 				 t == PTR_TO_MAP_VALUE_OR_NULL)
234 				verbose(",ks=%d,vs=%d",
235 					reg->map_ptr->key_size,
236 					reg->map_ptr->value_size);
237 			if (tnum_is_const(reg->var_off)) {
238 				/* Typically an immediate SCALAR_VALUE, but
239 				 * could be a pointer whose offset is too big
240 				 * for reg->off
241 				 */
242 				verbose(",imm=%llx", reg->var_off.value);
243 			} else {
244 				if (reg->smin_value != reg->umin_value &&
245 				    reg->smin_value != S64_MIN)
246 					verbose(",smin_value=%lld",
247 						(long long)reg->smin_value);
248 				if (reg->smax_value != reg->umax_value &&
249 				    reg->smax_value != S64_MAX)
250 					verbose(",smax_value=%lld",
251 						(long long)reg->smax_value);
252 				if (reg->umin_value != 0)
253 					verbose(",umin_value=%llu",
254 						(unsigned long long)reg->umin_value);
255 				if (reg->umax_value != U64_MAX)
256 					verbose(",umax_value=%llu",
257 						(unsigned long long)reg->umax_value);
258 				if (!tnum_is_unknown(reg->var_off)) {
259 					char tn_buf[48];
260 
261 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 					verbose(",var_off=%s", tn_buf);
263 				}
264 			}
265 			verbose(")");
266 		}
267 	}
268 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
269 		if (state->stack_slot_type[i] == STACK_SPILL)
270 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
271 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
272 	}
273 	verbose("\n");
274 }
275 
276 static const char *const bpf_class_string[] = {
277 	[BPF_LD]    = "ld",
278 	[BPF_LDX]   = "ldx",
279 	[BPF_ST]    = "st",
280 	[BPF_STX]   = "stx",
281 	[BPF_ALU]   = "alu",
282 	[BPF_JMP]   = "jmp",
283 	[BPF_RET]   = "BUG",
284 	[BPF_ALU64] = "alu64",
285 };
286 
287 static const char *const bpf_alu_string[16] = {
288 	[BPF_ADD >> 4]  = "+=",
289 	[BPF_SUB >> 4]  = "-=",
290 	[BPF_MUL >> 4]  = "*=",
291 	[BPF_DIV >> 4]  = "/=",
292 	[BPF_OR  >> 4]  = "|=",
293 	[BPF_AND >> 4]  = "&=",
294 	[BPF_LSH >> 4]  = "<<=",
295 	[BPF_RSH >> 4]  = ">>=",
296 	[BPF_NEG >> 4]  = "neg",
297 	[BPF_MOD >> 4]  = "%=",
298 	[BPF_XOR >> 4]  = "^=",
299 	[BPF_MOV >> 4]  = "=",
300 	[BPF_ARSH >> 4] = "s>>=",
301 	[BPF_END >> 4]  = "endian",
302 };
303 
304 static const char *const bpf_ldst_string[] = {
305 	[BPF_W >> 3]  = "u32",
306 	[BPF_H >> 3]  = "u16",
307 	[BPF_B >> 3]  = "u8",
308 	[BPF_DW >> 3] = "u64",
309 };
310 
311 static const char *const bpf_jmp_string[16] = {
312 	[BPF_JA >> 4]   = "jmp",
313 	[BPF_JEQ >> 4]  = "==",
314 	[BPF_JGT >> 4]  = ">",
315 	[BPF_JLT >> 4]  = "<",
316 	[BPF_JGE >> 4]  = ">=",
317 	[BPF_JLE >> 4]  = "<=",
318 	[BPF_JSET >> 4] = "&",
319 	[BPF_JNE >> 4]  = "!=",
320 	[BPF_JSGT >> 4] = "s>",
321 	[BPF_JSLT >> 4] = "s<",
322 	[BPF_JSGE >> 4] = "s>=",
323 	[BPF_JSLE >> 4] = "s<=",
324 	[BPF_CALL >> 4] = "call",
325 	[BPF_EXIT >> 4] = "exit",
326 };
327 
328 static void print_bpf_insn(const struct bpf_verifier_env *env,
329 			   const struct bpf_insn *insn)
330 {
331 	u8 class = BPF_CLASS(insn->code);
332 
333 	if (class == BPF_ALU || class == BPF_ALU64) {
334 		if (BPF_SRC(insn->code) == BPF_X)
335 			verbose("(%02x) %sr%d %s %sr%d\n",
336 				insn->code, class == BPF_ALU ? "(u32) " : "",
337 				insn->dst_reg,
338 				bpf_alu_string[BPF_OP(insn->code) >> 4],
339 				class == BPF_ALU ? "(u32) " : "",
340 				insn->src_reg);
341 		else
342 			verbose("(%02x) %sr%d %s %s%d\n",
343 				insn->code, class == BPF_ALU ? "(u32) " : "",
344 				insn->dst_reg,
345 				bpf_alu_string[BPF_OP(insn->code) >> 4],
346 				class == BPF_ALU ? "(u32) " : "",
347 				insn->imm);
348 	} else if (class == BPF_STX) {
349 		if (BPF_MODE(insn->code) == BPF_MEM)
350 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 				insn->code,
352 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 				insn->dst_reg,
354 				insn->off, insn->src_reg);
355 		else if (BPF_MODE(insn->code) == BPF_XADD)
356 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 				insn->code,
358 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 				insn->dst_reg, insn->off,
360 				insn->src_reg);
361 		else
362 			verbose("BUG_%02x\n", insn->code);
363 	} else if (class == BPF_ST) {
364 		if (BPF_MODE(insn->code) != BPF_MEM) {
365 			verbose("BUG_st_%02x\n", insn->code);
366 			return;
367 		}
368 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 			insn->code,
370 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 			insn->dst_reg,
372 			insn->off, insn->imm);
373 	} else if (class == BPF_LDX) {
374 		if (BPF_MODE(insn->code) != BPF_MEM) {
375 			verbose("BUG_ldx_%02x\n", insn->code);
376 			return;
377 		}
378 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 			insn->code, insn->dst_reg,
380 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 			insn->src_reg, insn->off);
382 	} else if (class == BPF_LD) {
383 		if (BPF_MODE(insn->code) == BPF_ABS) {
384 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 				insn->code,
386 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 				insn->imm);
388 		} else if (BPF_MODE(insn->code) == BPF_IND) {
389 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 				insn->code,
391 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 				insn->src_reg, insn->imm);
393 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
394 			   BPF_SIZE(insn->code) == BPF_DW) {
395 			/* At this point, we already made sure that the second
396 			 * part of the ldimm64 insn is accessible.
397 			 */
398 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400 
401 			if (map_ptr && !env->allow_ptr_leaks)
402 				imm = 0;
403 
404 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 				insn->dst_reg, (unsigned long long)imm);
406 		} else {
407 			verbose("BUG_ld_%02x\n", insn->code);
408 			return;
409 		}
410 	} else if (class == BPF_JMP) {
411 		u8 opcode = BPF_OP(insn->code);
412 
413 		if (opcode == BPF_CALL) {
414 			verbose("(%02x) call %s#%d\n", insn->code,
415 				func_id_name(insn->imm), insn->imm);
416 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
417 			verbose("(%02x) goto pc%+d\n",
418 				insn->code, insn->off);
419 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 			verbose("(%02x) exit\n", insn->code);
421 		} else if (BPF_SRC(insn->code) == BPF_X) {
422 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 				insn->code, insn->dst_reg,
424 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 				insn->src_reg, insn->off);
426 		} else {
427 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 				insn->code, insn->dst_reg,
429 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 				insn->imm, insn->off);
431 		}
432 	} else {
433 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 	}
435 }
436 
437 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
438 {
439 	struct bpf_verifier_stack_elem *elem;
440 	int insn_idx;
441 
442 	if (env->head == NULL)
443 		return -1;
444 
445 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 	insn_idx = env->head->insn_idx;
447 	if (prev_insn_idx)
448 		*prev_insn_idx = env->head->prev_insn_idx;
449 	elem = env->head->next;
450 	kfree(env->head);
451 	env->head = elem;
452 	env->stack_size--;
453 	return insn_idx;
454 }
455 
456 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 					     int insn_idx, int prev_insn_idx)
458 {
459 	struct bpf_verifier_stack_elem *elem;
460 
461 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
462 	if (!elem)
463 		goto err;
464 
465 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 	elem->insn_idx = insn_idx;
467 	elem->prev_insn_idx = prev_insn_idx;
468 	elem->next = env->head;
469 	env->head = elem;
470 	env->stack_size++;
471 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
472 		verbose("BPF program is too complex\n");
473 		goto err;
474 	}
475 	return &elem->st;
476 err:
477 	/* pop all elements and return */
478 	while (pop_stack(env, NULL) >= 0);
479 	return NULL;
480 }
481 
482 #define CALLER_SAVED_REGS 6
483 static const int caller_saved[CALLER_SAVED_REGS] = {
484 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485 };
486 
487 static void __mark_reg_not_init(struct bpf_reg_state *reg);
488 
489 /* Mark the unknown part of a register (variable offset or scalar value) as
490  * known to have the value @imm.
491  */
492 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493 {
494 	reg->id = 0;
495 	reg->var_off = tnum_const(imm);
496 	reg->smin_value = (s64)imm;
497 	reg->smax_value = (s64)imm;
498 	reg->umin_value = imm;
499 	reg->umax_value = imm;
500 }
501 
502 /* Mark the 'variable offset' part of a register as zero.  This should be
503  * used only on registers holding a pointer type.
504  */
505 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
506 {
507 	__mark_reg_known(reg, 0);
508 }
509 
510 static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511 {
512 	if (WARN_ON(regno >= MAX_BPF_REG)) {
513 		verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 		/* Something bad happened, let's kill all regs */
515 		for (regno = 0; regno < MAX_BPF_REG; regno++)
516 			__mark_reg_not_init(regs + regno);
517 		return;
518 	}
519 	__mark_reg_known_zero(regs + regno);
520 }
521 
522 /* Attempts to improve min/max values based on var_off information */
523 static void __update_reg_bounds(struct bpf_reg_state *reg)
524 {
525 	/* min signed is max(sign bit) | min(other bits) */
526 	reg->smin_value = max_t(s64, reg->smin_value,
527 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 	/* max signed is min(sign bit) | max(other bits) */
529 	reg->smax_value = min_t(s64, reg->smax_value,
530 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 	reg->umax_value = min(reg->umax_value,
533 			      reg->var_off.value | reg->var_off.mask);
534 }
535 
536 /* Uses signed min/max values to inform unsigned, and vice-versa */
537 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538 {
539 	/* Learn sign from signed bounds.
540 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 	 * are the same, so combine.  This works even in the negative case, e.g.
542 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 	 */
544 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 							  reg->umin_value);
547 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 							  reg->umax_value);
549 		return;
550 	}
551 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
552 	 * boundary, so we must be careful.
553 	 */
554 	if ((s64)reg->umax_value >= 0) {
555 		/* Positive.  We can't learn anything from the smin, but smax
556 		 * is positive, hence safe.
557 		 */
558 		reg->smin_value = reg->umin_value;
559 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 							  reg->umax_value);
561 	} else if ((s64)reg->umin_value < 0) {
562 		/* Negative.  We can't learn anything from the smax, but smin
563 		 * is negative, hence safe.
564 		 */
565 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 							  reg->umin_value);
567 		reg->smax_value = reg->umax_value;
568 	}
569 }
570 
571 /* Attempts to improve var_off based on unsigned min/max information */
572 static void __reg_bound_offset(struct bpf_reg_state *reg)
573 {
574 	reg->var_off = tnum_intersect(reg->var_off,
575 				      tnum_range(reg->umin_value,
576 						 reg->umax_value));
577 }
578 
579 /* Reset the min/max bounds of a register */
580 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581 {
582 	reg->smin_value = S64_MIN;
583 	reg->smax_value = S64_MAX;
584 	reg->umin_value = 0;
585 	reg->umax_value = U64_MAX;
586 }
587 
588 /* Mark a register as having a completely unknown (scalar) value. */
589 static void __mark_reg_unknown(struct bpf_reg_state *reg)
590 {
591 	reg->type = SCALAR_VALUE;
592 	reg->id = 0;
593 	reg->off = 0;
594 	reg->var_off = tnum_unknown;
595 	__mark_reg_unbounded(reg);
596 }
597 
598 static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599 {
600 	if (WARN_ON(regno >= MAX_BPF_REG)) {
601 		verbose("mark_reg_unknown(regs, %u)\n", regno);
602 		/* Something bad happened, let's kill all regs */
603 		for (regno = 0; regno < MAX_BPF_REG; regno++)
604 			__mark_reg_not_init(regs + regno);
605 		return;
606 	}
607 	__mark_reg_unknown(regs + regno);
608 }
609 
610 static void __mark_reg_not_init(struct bpf_reg_state *reg)
611 {
612 	__mark_reg_unknown(reg);
613 	reg->type = NOT_INIT;
614 }
615 
616 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617 {
618 	if (WARN_ON(regno >= MAX_BPF_REG)) {
619 		verbose("mark_reg_not_init(regs, %u)\n", regno);
620 		/* Something bad happened, let's kill all regs */
621 		for (regno = 0; regno < MAX_BPF_REG; regno++)
622 			__mark_reg_not_init(regs + regno);
623 		return;
624 	}
625 	__mark_reg_not_init(regs + regno);
626 }
627 
628 static void init_reg_state(struct bpf_reg_state *regs)
629 {
630 	int i;
631 
632 	for (i = 0; i < MAX_BPF_REG; i++) {
633 		mark_reg_not_init(regs, i);
634 		regs[i].live = REG_LIVE_NONE;
635 	}
636 
637 	/* frame pointer */
638 	regs[BPF_REG_FP].type = PTR_TO_STACK;
639 	mark_reg_known_zero(regs, BPF_REG_FP);
640 
641 	/* 1st arg to a function */
642 	regs[BPF_REG_1].type = PTR_TO_CTX;
643 	mark_reg_known_zero(regs, BPF_REG_1);
644 }
645 
646 enum reg_arg_type {
647 	SRC_OP,		/* register is used as source operand */
648 	DST_OP,		/* register is used as destination operand */
649 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
650 };
651 
652 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653 {
654 	struct bpf_verifier_state *parent = state->parent;
655 
656 	if (regno == BPF_REG_FP)
657 		/* We don't need to worry about FP liveness because it's read-only */
658 		return;
659 
660 	while (parent) {
661 		/* if read wasn't screened by an earlier write ... */
662 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
663 			break;
664 		/* ... then we depend on parent's value */
665 		parent->regs[regno].live |= REG_LIVE_READ;
666 		state = parent;
667 		parent = state->parent;
668 	}
669 }
670 
671 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
672 			 enum reg_arg_type t)
673 {
674 	struct bpf_reg_state *regs = env->cur_state.regs;
675 
676 	if (regno >= MAX_BPF_REG) {
677 		verbose("R%d is invalid\n", regno);
678 		return -EINVAL;
679 	}
680 
681 	if (t == SRC_OP) {
682 		/* check whether register used as source operand can be read */
683 		if (regs[regno].type == NOT_INIT) {
684 			verbose("R%d !read_ok\n", regno);
685 			return -EACCES;
686 		}
687 		mark_reg_read(&env->cur_state, regno);
688 	} else {
689 		/* check whether register used as dest operand can be written to */
690 		if (regno == BPF_REG_FP) {
691 			verbose("frame pointer is read only\n");
692 			return -EACCES;
693 		}
694 		regs[regno].live |= REG_LIVE_WRITTEN;
695 		if (t == DST_OP)
696 			mark_reg_unknown(regs, regno);
697 	}
698 	return 0;
699 }
700 
701 static bool is_spillable_regtype(enum bpf_reg_type type)
702 {
703 	switch (type) {
704 	case PTR_TO_MAP_VALUE:
705 	case PTR_TO_MAP_VALUE_OR_NULL:
706 	case PTR_TO_STACK:
707 	case PTR_TO_CTX:
708 	case PTR_TO_PACKET:
709 	case PTR_TO_PACKET_END:
710 	case CONST_PTR_TO_MAP:
711 		return true;
712 	default:
713 		return false;
714 	}
715 }
716 
717 /* check_stack_read/write functions track spill/fill of registers,
718  * stack boundary and alignment are checked in check_mem_access()
719  */
720 static int check_stack_write(struct bpf_verifier_state *state, int off,
721 			     int size, int value_regno)
722 {
723 	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
724 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
725 	 * so it's aligned access and [off, off + size) are within stack limits
726 	 */
727 
728 	if (value_regno >= 0 &&
729 	    is_spillable_regtype(state->regs[value_regno].type)) {
730 
731 		/* register containing pointer is being spilled into stack */
732 		if (size != BPF_REG_SIZE) {
733 			verbose("invalid size of register spill\n");
734 			return -EACCES;
735 		}
736 
737 		/* save register state */
738 		state->spilled_regs[spi] = state->regs[value_regno];
739 		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
740 
741 		for (i = 0; i < BPF_REG_SIZE; i++)
742 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
743 	} else {
744 		/* regular write of data into stack */
745 		state->spilled_regs[spi] = (struct bpf_reg_state) {};
746 
747 		for (i = 0; i < size; i++)
748 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
749 	}
750 	return 0;
751 }
752 
753 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
754 {
755 	struct bpf_verifier_state *parent = state->parent;
756 
757 	while (parent) {
758 		/* if read wasn't screened by an earlier write ... */
759 		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
760 			break;
761 		/* ... then we depend on parent's value */
762 		parent->spilled_regs[slot].live |= REG_LIVE_READ;
763 		state = parent;
764 		parent = state->parent;
765 	}
766 }
767 
768 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
769 			    int value_regno)
770 {
771 	u8 *slot_type;
772 	int i, spi;
773 
774 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
775 
776 	if (slot_type[0] == STACK_SPILL) {
777 		if (size != BPF_REG_SIZE) {
778 			verbose("invalid size of register spill\n");
779 			return -EACCES;
780 		}
781 		for (i = 1; i < BPF_REG_SIZE; i++) {
782 			if (slot_type[i] != STACK_SPILL) {
783 				verbose("corrupted spill memory\n");
784 				return -EACCES;
785 			}
786 		}
787 
788 		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
789 
790 		if (value_regno >= 0) {
791 			/* restore register state from stack */
792 			state->regs[value_regno] = state->spilled_regs[spi];
793 			mark_stack_slot_read(state, spi);
794 		}
795 		return 0;
796 	} else {
797 		for (i = 0; i < size; i++) {
798 			if (slot_type[i] != STACK_MISC) {
799 				verbose("invalid read from stack off %d+%d size %d\n",
800 					off, i, size);
801 				return -EACCES;
802 			}
803 		}
804 		if (value_regno >= 0)
805 			/* have read misc data from the stack */
806 			mark_reg_unknown(state->regs, value_regno);
807 		return 0;
808 	}
809 }
810 
811 /* check read/write into map element returned by bpf_map_lookup_elem() */
812 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
813 			    int size)
814 {
815 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
816 
817 	if (off < 0 || size <= 0 || off + size > map->value_size) {
818 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
819 			map->value_size, off, size);
820 		return -EACCES;
821 	}
822 	return 0;
823 }
824 
825 /* check read/write into a map element with possible variable offset */
826 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
827 				int off, int size)
828 {
829 	struct bpf_verifier_state *state = &env->cur_state;
830 	struct bpf_reg_state *reg = &state->regs[regno];
831 	int err;
832 
833 	/* We may have adjusted the register to this map value, so we
834 	 * need to try adding each of min_value and max_value to off
835 	 * to make sure our theoretical access will be safe.
836 	 */
837 	if (log_level)
838 		print_verifier_state(state);
839 	/* The minimum value is only important with signed
840 	 * comparisons where we can't assume the floor of a
841 	 * value is 0.  If we are using signed variables for our
842 	 * index'es we need to make sure that whatever we use
843 	 * will have a set floor within our range.
844 	 */
845 	if (reg->smin_value < 0) {
846 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
847 			regno);
848 		return -EACCES;
849 	}
850 	err = __check_map_access(env, regno, reg->smin_value + off, size);
851 	if (err) {
852 		verbose("R%d min value is outside of the array range\n", regno);
853 		return err;
854 	}
855 
856 	/* If we haven't set a max value then we need to bail since we can't be
857 	 * sure we won't do bad things.
858 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
859 	 */
860 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
861 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
862 			regno);
863 		return -EACCES;
864 	}
865 	err = __check_map_access(env, regno, reg->umax_value + off, size);
866 	if (err)
867 		verbose("R%d max value is outside of the array range\n", regno);
868 	return err;
869 }
870 
871 #define MAX_PACKET_OFF 0xffff
872 
873 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
874 				       const struct bpf_call_arg_meta *meta,
875 				       enum bpf_access_type t)
876 {
877 	switch (env->prog->type) {
878 	case BPF_PROG_TYPE_LWT_IN:
879 	case BPF_PROG_TYPE_LWT_OUT:
880 		/* dst_input() and dst_output() can't write for now */
881 		if (t == BPF_WRITE)
882 			return false;
883 		/* fallthrough */
884 	case BPF_PROG_TYPE_SCHED_CLS:
885 	case BPF_PROG_TYPE_SCHED_ACT:
886 	case BPF_PROG_TYPE_XDP:
887 	case BPF_PROG_TYPE_LWT_XMIT:
888 	case BPF_PROG_TYPE_SK_SKB:
889 		if (meta)
890 			return meta->pkt_access;
891 
892 		env->seen_direct_write = true;
893 		return true;
894 	default:
895 		return false;
896 	}
897 }
898 
899 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
900 				 int off, int size)
901 {
902 	struct bpf_reg_state *regs = env->cur_state.regs;
903 	struct bpf_reg_state *reg = &regs[regno];
904 
905 	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
906 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
907 			off, size, regno, reg->id, reg->off, reg->range);
908 		return -EACCES;
909 	}
910 	return 0;
911 }
912 
913 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
914 			       int size)
915 {
916 	struct bpf_reg_state *regs = env->cur_state.regs;
917 	struct bpf_reg_state *reg = &regs[regno];
918 	int err;
919 
920 	/* We may have added a variable offset to the packet pointer; but any
921 	 * reg->range we have comes after that.  We are only checking the fixed
922 	 * offset.
923 	 */
924 
925 	/* We don't allow negative numbers, because we aren't tracking enough
926 	 * detail to prove they're safe.
927 	 */
928 	if (reg->smin_value < 0) {
929 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
930 			regno);
931 		return -EACCES;
932 	}
933 	err = __check_packet_access(env, regno, off, size);
934 	if (err) {
935 		verbose("R%d offset is outside of the packet\n", regno);
936 		return err;
937 	}
938 	return err;
939 }
940 
941 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
942 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
943 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
944 {
945 	struct bpf_insn_access_aux info = {
946 		.reg_type = *reg_type,
947 	};
948 
949 	/* for analyzer ctx accesses are already validated and converted */
950 	if (env->analyzer_ops)
951 		return 0;
952 
953 	if (env->prog->aux->ops->is_valid_access &&
954 	    env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
955 		/* A non zero info.ctx_field_size indicates that this field is a
956 		 * candidate for later verifier transformation to load the whole
957 		 * field and then apply a mask when accessed with a narrower
958 		 * access than actual ctx access size. A zero info.ctx_field_size
959 		 * will only allow for whole field access and rejects any other
960 		 * type of narrower access.
961 		 */
962 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
963 		*reg_type = info.reg_type;
964 
965 		/* remember the offset of last byte accessed in ctx */
966 		if (env->prog->aux->max_ctx_offset < off + size)
967 			env->prog->aux->max_ctx_offset = off + size;
968 		return 0;
969 	}
970 
971 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
972 	return -EACCES;
973 }
974 
975 static bool __is_pointer_value(bool allow_ptr_leaks,
976 			       const struct bpf_reg_state *reg)
977 {
978 	if (allow_ptr_leaks)
979 		return false;
980 
981 	return reg->type != SCALAR_VALUE;
982 }
983 
984 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
985 {
986 	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
987 }
988 
989 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
990 				   int off, int size, bool strict)
991 {
992 	struct tnum reg_off;
993 	int ip_align;
994 
995 	/* Byte size accesses are always allowed. */
996 	if (!strict || size == 1)
997 		return 0;
998 
999 	/* For platforms that do not have a Kconfig enabling
1000 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1001 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1002 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1003 	 * to this code only in strict mode where we want to emulate
1004 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1005 	 * unconditional IP align value of '2'.
1006 	 */
1007 	ip_align = 2;
1008 
1009 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1010 	if (!tnum_is_aligned(reg_off, size)) {
1011 		char tn_buf[48];
1012 
1013 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1014 		verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1015 			ip_align, tn_buf, reg->off, off, size);
1016 		return -EACCES;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1023 				       const char *pointer_desc,
1024 				       int off, int size, bool strict)
1025 {
1026 	struct tnum reg_off;
1027 
1028 	/* Byte size accesses are always allowed. */
1029 	if (!strict || size == 1)
1030 		return 0;
1031 
1032 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1033 	if (!tnum_is_aligned(reg_off, size)) {
1034 		char tn_buf[48];
1035 
1036 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1037 		verbose("misaligned %saccess off %s+%d+%d size %d\n",
1038 			pointer_desc, tn_buf, reg->off, off, size);
1039 		return -EACCES;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int check_ptr_alignment(struct bpf_verifier_env *env,
1046 			       const struct bpf_reg_state *reg,
1047 			       int off, int size)
1048 {
1049 	bool strict = env->strict_alignment;
1050 	const char *pointer_desc = "";
1051 
1052 	switch (reg->type) {
1053 	case PTR_TO_PACKET:
1054 		/* special case, because of NET_IP_ALIGN */
1055 		return check_pkt_ptr_alignment(reg, off, size, strict);
1056 	case PTR_TO_MAP_VALUE:
1057 		pointer_desc = "value ";
1058 		break;
1059 	case PTR_TO_CTX:
1060 		pointer_desc = "context ";
1061 		break;
1062 	case PTR_TO_STACK:
1063 		pointer_desc = "stack ";
1064 		break;
1065 	default:
1066 		break;
1067 	}
1068 	return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1069 }
1070 
1071 /* check whether memory at (regno + off) is accessible for t = (read | write)
1072  * if t==write, value_regno is a register which value is stored into memory
1073  * if t==read, value_regno is a register which will receive the value from memory
1074  * if t==write && value_regno==-1, some unknown value is stored into memory
1075  * if t==read && value_regno==-1, don't care what we read from memory
1076  */
1077 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1078 			    int bpf_size, enum bpf_access_type t,
1079 			    int value_regno)
1080 {
1081 	struct bpf_verifier_state *state = &env->cur_state;
1082 	struct bpf_reg_state *reg = &state->regs[regno];
1083 	int size, err = 0;
1084 
1085 	size = bpf_size_to_bytes(bpf_size);
1086 	if (size < 0)
1087 		return size;
1088 
1089 	/* alignment checks will add in reg->off themselves */
1090 	err = check_ptr_alignment(env, reg, off, size);
1091 	if (err)
1092 		return err;
1093 
1094 	/* for access checks, reg->off is just part of off */
1095 	off += reg->off;
1096 
1097 	if (reg->type == PTR_TO_MAP_VALUE) {
1098 		if (t == BPF_WRITE && value_regno >= 0 &&
1099 		    is_pointer_value(env, value_regno)) {
1100 			verbose("R%d leaks addr into map\n", value_regno);
1101 			return -EACCES;
1102 		}
1103 
1104 		err = check_map_access(env, regno, off, size);
1105 		if (!err && t == BPF_READ && value_regno >= 0)
1106 			mark_reg_unknown(state->regs, value_regno);
1107 
1108 	} else if (reg->type == PTR_TO_CTX) {
1109 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110 
1111 		if (t == BPF_WRITE && value_regno >= 0 &&
1112 		    is_pointer_value(env, value_regno)) {
1113 			verbose("R%d leaks addr into ctx\n", value_regno);
1114 			return -EACCES;
1115 		}
1116 		/* ctx accesses must be at a fixed offset, so that we can
1117 		 * determine what type of data were returned.
1118 		 */
1119 		if (reg->off) {
1120 			verbose("dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1121 				regno, reg->off, off - reg->off);
1122 			return -EACCES;
1123 		}
1124 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1125 			char tn_buf[48];
1126 
1127 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1128 			verbose("variable ctx access var_off=%s off=%d size=%d",
1129 				tn_buf, off, size);
1130 			return -EACCES;
1131 		}
1132 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1133 		if (!err && t == BPF_READ && value_regno >= 0) {
1134 			/* ctx access returns either a scalar, or a
1135 			 * PTR_TO_PACKET[_END].  In the latter case, we know
1136 			 * the offset is zero.
1137 			 */
1138 			if (reg_type == SCALAR_VALUE)
1139 				mark_reg_unknown(state->regs, value_regno);
1140 			else
1141 				mark_reg_known_zero(state->regs, value_regno);
1142 			state->regs[value_regno].id = 0;
1143 			state->regs[value_regno].off = 0;
1144 			state->regs[value_regno].range = 0;
1145 			state->regs[value_regno].type = reg_type;
1146 		}
1147 
1148 	} else if (reg->type == PTR_TO_STACK) {
1149 		/* stack accesses must be at a fixed offset, so that we can
1150 		 * determine what type of data were returned.
1151 		 * See check_stack_read().
1152 		 */
1153 		if (!tnum_is_const(reg->var_off)) {
1154 			char tn_buf[48];
1155 
1156 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1157 			verbose("variable stack access var_off=%s off=%d size=%d",
1158 				tn_buf, off, size);
1159 			return -EACCES;
1160 		}
1161 		off += reg->var_off.value;
1162 		if (off >= 0 || off < -MAX_BPF_STACK) {
1163 			verbose("invalid stack off=%d size=%d\n", off, size);
1164 			return -EACCES;
1165 		}
1166 
1167 		if (env->prog->aux->stack_depth < -off)
1168 			env->prog->aux->stack_depth = -off;
1169 
1170 		if (t == BPF_WRITE) {
1171 			if (!env->allow_ptr_leaks &&
1172 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1173 			    size != BPF_REG_SIZE) {
1174 				verbose("attempt to corrupt spilled pointer on stack\n");
1175 				return -EACCES;
1176 			}
1177 			err = check_stack_write(state, off, size, value_regno);
1178 		} else {
1179 			err = check_stack_read(state, off, size, value_regno);
1180 		}
1181 	} else if (reg->type == PTR_TO_PACKET) {
1182 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1183 			verbose("cannot write into packet\n");
1184 			return -EACCES;
1185 		}
1186 		if (t == BPF_WRITE && value_regno >= 0 &&
1187 		    is_pointer_value(env, value_regno)) {
1188 			verbose("R%d leaks addr into packet\n", value_regno);
1189 			return -EACCES;
1190 		}
1191 		err = check_packet_access(env, regno, off, size);
1192 		if (!err && t == BPF_READ && value_regno >= 0)
1193 			mark_reg_unknown(state->regs, value_regno);
1194 	} else {
1195 		verbose("R%d invalid mem access '%s'\n",
1196 			regno, reg_type_str[reg->type]);
1197 		return -EACCES;
1198 	}
1199 
1200 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201 	    state->regs[value_regno].type == SCALAR_VALUE) {
1202 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1203 		state->regs[value_regno].var_off = tnum_cast(
1204 					state->regs[value_regno].var_off, size);
1205 		__update_reg_bounds(&state->regs[value_regno]);
1206 	}
1207 	return err;
1208 }
1209 
1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 {
1212 	int err;
1213 
1214 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 	    insn->imm != 0) {
1216 		verbose("BPF_XADD uses reserved fields\n");
1217 		return -EINVAL;
1218 	}
1219 
1220 	/* check src1 operand */
1221 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 	if (err)
1223 		return err;
1224 
1225 	/* check src2 operand */
1226 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 	if (err)
1228 		return err;
1229 
1230 	if (is_pointer_value(env, insn->src_reg)) {
1231 		verbose("R%d leaks addr into mem\n", insn->src_reg);
1232 		return -EACCES;
1233 	}
1234 
1235 	/* check whether atomic_add can read the memory */
1236 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 			       BPF_SIZE(insn->code), BPF_READ, -1);
1238 	if (err)
1239 		return err;
1240 
1241 	/* check whether atomic_add can write into the same memory */
1242 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1244 }
1245 
1246 /* Does this register contain a constant zero? */
1247 static bool register_is_null(struct bpf_reg_state reg)
1248 {
1249 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250 }
1251 
1252 /* when register 'regno' is passed into function that will read 'access_size'
1253  * bytes from that pointer, make sure that it's within stack boundary
1254  * and all elements of stack are initialized.
1255  * Unlike most pointer bounds-checking functions, this one doesn't take an
1256  * 'off' argument, so it has to add in reg->off itself.
1257  */
1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 				int access_size, bool zero_size_allowed,
1260 				struct bpf_call_arg_meta *meta)
1261 {
1262 	struct bpf_verifier_state *state = &env->cur_state;
1263 	struct bpf_reg_state *regs = state->regs;
1264 	int off, i;
1265 
1266 	if (regs[regno].type != PTR_TO_STACK) {
1267 		/* Allow zero-byte read from NULL, regardless of pointer type */
1268 		if (zero_size_allowed && access_size == 0 &&
1269 		    register_is_null(regs[regno]))
1270 			return 0;
1271 
1272 		verbose("R%d type=%s expected=%s\n", regno,
1273 			reg_type_str[regs[regno].type],
1274 			reg_type_str[PTR_TO_STACK]);
1275 		return -EACCES;
1276 	}
1277 
1278 	/* Only allow fixed-offset stack reads */
1279 	if (!tnum_is_const(regs[regno].var_off)) {
1280 		char tn_buf[48];
1281 
1282 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283 		verbose("invalid variable stack read R%d var_off=%s\n",
1284 			regno, tn_buf);
1285 	}
1286 	off = regs[regno].off + regs[regno].var_off.value;
1287 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288 	    access_size <= 0) {
1289 		verbose("invalid stack type R%d off=%d access_size=%d\n",
1290 			regno, off, access_size);
1291 		return -EACCES;
1292 	}
1293 
1294 	if (env->prog->aux->stack_depth < -off)
1295 		env->prog->aux->stack_depth = -off;
1296 
1297 	if (meta && meta->raw_mode) {
1298 		meta->access_size = access_size;
1299 		meta->regno = regno;
1300 		return 0;
1301 	}
1302 
1303 	for (i = 0; i < access_size; i++) {
1304 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1305 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1306 				off, i, access_size);
1307 			return -EACCES;
1308 		}
1309 	}
1310 	return 0;
1311 }
1312 
1313 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1314 				   int access_size, bool zero_size_allowed,
1315 				   struct bpf_call_arg_meta *meta)
1316 {
1317 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1318 
1319 	switch (reg->type) {
1320 	case PTR_TO_PACKET:
1321 		return check_packet_access(env, regno, reg->off, access_size);
1322 	case PTR_TO_MAP_VALUE:
1323 		return check_map_access(env, regno, reg->off, access_size);
1324 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1325 		return check_stack_boundary(env, regno, access_size,
1326 					    zero_size_allowed, meta);
1327 	}
1328 }
1329 
1330 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1331 			  enum bpf_arg_type arg_type,
1332 			  struct bpf_call_arg_meta *meta)
1333 {
1334 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1335 	enum bpf_reg_type expected_type, type = reg->type;
1336 	int err = 0;
1337 
1338 	if (arg_type == ARG_DONTCARE)
1339 		return 0;
1340 
1341 	err = check_reg_arg(env, regno, SRC_OP);
1342 	if (err)
1343 		return err;
1344 
1345 	if (arg_type == ARG_ANYTHING) {
1346 		if (is_pointer_value(env, regno)) {
1347 			verbose("R%d leaks addr into helper function\n", regno);
1348 			return -EACCES;
1349 		}
1350 		return 0;
1351 	}
1352 
1353 	if (type == PTR_TO_PACKET &&
1354 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1355 		verbose("helper access to the packet is not allowed\n");
1356 		return -EACCES;
1357 	}
1358 
1359 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1360 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1361 		expected_type = PTR_TO_STACK;
1362 		if (type != PTR_TO_PACKET && type != expected_type)
1363 			goto err_type;
1364 	} else if (arg_type == ARG_CONST_SIZE ||
1365 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1366 		expected_type = SCALAR_VALUE;
1367 		if (type != expected_type)
1368 			goto err_type;
1369 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1370 		expected_type = CONST_PTR_TO_MAP;
1371 		if (type != expected_type)
1372 			goto err_type;
1373 	} else if (arg_type == ARG_PTR_TO_CTX) {
1374 		expected_type = PTR_TO_CTX;
1375 		if (type != expected_type)
1376 			goto err_type;
1377 	} else if (arg_type == ARG_PTR_TO_MEM ||
1378 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1379 		expected_type = PTR_TO_STACK;
1380 		/* One exception here. In case function allows for NULL to be
1381 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1382 		 * happens during stack boundary checking.
1383 		 */
1384 		if (register_is_null(*reg))
1385 			/* final test in check_stack_boundary() */;
1386 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1387 			 type != expected_type)
1388 			goto err_type;
1389 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1390 	} else {
1391 		verbose("unsupported arg_type %d\n", arg_type);
1392 		return -EFAULT;
1393 	}
1394 
1395 	if (arg_type == ARG_CONST_MAP_PTR) {
1396 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1397 		meta->map_ptr = reg->map_ptr;
1398 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1399 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1400 		 * check that [key, key + map->key_size) are within
1401 		 * stack limits and initialized
1402 		 */
1403 		if (!meta->map_ptr) {
1404 			/* in function declaration map_ptr must come before
1405 			 * map_key, so that it's verified and known before
1406 			 * we have to check map_key here. Otherwise it means
1407 			 * that kernel subsystem misconfigured verifier
1408 			 */
1409 			verbose("invalid map_ptr to access map->key\n");
1410 			return -EACCES;
1411 		}
1412 		if (type == PTR_TO_PACKET)
1413 			err = check_packet_access(env, regno, reg->off,
1414 						  meta->map_ptr->key_size);
1415 		else
1416 			err = check_stack_boundary(env, regno,
1417 						   meta->map_ptr->key_size,
1418 						   false, NULL);
1419 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1420 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1421 		 * check [value, value + map->value_size) validity
1422 		 */
1423 		if (!meta->map_ptr) {
1424 			/* kernel subsystem misconfigured verifier */
1425 			verbose("invalid map_ptr to access map->value\n");
1426 			return -EACCES;
1427 		}
1428 		if (type == PTR_TO_PACKET)
1429 			err = check_packet_access(env, regno, reg->off,
1430 						  meta->map_ptr->value_size);
1431 		else
1432 			err = check_stack_boundary(env, regno,
1433 						   meta->map_ptr->value_size,
1434 						   false, NULL);
1435 	} else if (arg_type == ARG_CONST_SIZE ||
1436 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1437 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1438 
1439 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1440 		 * from stack pointer 'buf'. Check it
1441 		 * note: regno == len, regno - 1 == buf
1442 		 */
1443 		if (regno == 0) {
1444 			/* kernel subsystem misconfigured verifier */
1445 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1446 			return -EACCES;
1447 		}
1448 
1449 		/* The register is SCALAR_VALUE; the access check
1450 		 * happens using its boundaries.
1451 		 */
1452 
1453 		if (!tnum_is_const(reg->var_off))
1454 			/* For unprivileged variable accesses, disable raw
1455 			 * mode so that the program is required to
1456 			 * initialize all the memory that the helper could
1457 			 * just partially fill up.
1458 			 */
1459 			meta = NULL;
1460 
1461 		if (reg->smin_value < 0) {
1462 			verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1463 				regno);
1464 			return -EACCES;
1465 		}
1466 
1467 		if (reg->umin_value == 0) {
1468 			err = check_helper_mem_access(env, regno - 1, 0,
1469 						      zero_size_allowed,
1470 						      meta);
1471 			if (err)
1472 				return err;
1473 		}
1474 
1475 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1476 			verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1477 				regno);
1478 			return -EACCES;
1479 		}
1480 		err = check_helper_mem_access(env, regno - 1,
1481 					      reg->umax_value,
1482 					      zero_size_allowed, meta);
1483 	}
1484 
1485 	return err;
1486 err_type:
1487 	verbose("R%d type=%s expected=%s\n", regno,
1488 		reg_type_str[type], reg_type_str[expected_type]);
1489 	return -EACCES;
1490 }
1491 
1492 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1493 {
1494 	if (!map)
1495 		return 0;
1496 
1497 	/* We need a two way check, first is from map perspective ... */
1498 	switch (map->map_type) {
1499 	case BPF_MAP_TYPE_PROG_ARRAY:
1500 		if (func_id != BPF_FUNC_tail_call)
1501 			goto error;
1502 		break;
1503 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1504 		if (func_id != BPF_FUNC_perf_event_read &&
1505 		    func_id != BPF_FUNC_perf_event_output)
1506 			goto error;
1507 		break;
1508 	case BPF_MAP_TYPE_STACK_TRACE:
1509 		if (func_id != BPF_FUNC_get_stackid)
1510 			goto error;
1511 		break;
1512 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1513 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1514 		    func_id != BPF_FUNC_current_task_under_cgroup)
1515 			goto error;
1516 		break;
1517 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1518 	 * allow to be modified from bpf side. So do not allow lookup elements
1519 	 * for now.
1520 	 */
1521 	case BPF_MAP_TYPE_DEVMAP:
1522 		if (func_id != BPF_FUNC_redirect_map)
1523 			goto error;
1524 		break;
1525 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1526 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1527 		if (func_id != BPF_FUNC_map_lookup_elem)
1528 			goto error;
1529 		break;
1530 	case BPF_MAP_TYPE_SOCKMAP:
1531 		if (func_id != BPF_FUNC_sk_redirect_map &&
1532 		    func_id != BPF_FUNC_sock_map_update &&
1533 		    func_id != BPF_FUNC_map_delete_elem)
1534 			goto error;
1535 		break;
1536 	default:
1537 		break;
1538 	}
1539 
1540 	/* ... and second from the function itself. */
1541 	switch (func_id) {
1542 	case BPF_FUNC_tail_call:
1543 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1544 			goto error;
1545 		break;
1546 	case BPF_FUNC_perf_event_read:
1547 	case BPF_FUNC_perf_event_output:
1548 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1549 			goto error;
1550 		break;
1551 	case BPF_FUNC_get_stackid:
1552 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1553 			goto error;
1554 		break;
1555 	case BPF_FUNC_current_task_under_cgroup:
1556 	case BPF_FUNC_skb_under_cgroup:
1557 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1558 			goto error;
1559 		break;
1560 	case BPF_FUNC_redirect_map:
1561 		if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1562 			goto error;
1563 		break;
1564 	case BPF_FUNC_sk_redirect_map:
1565 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1566 			goto error;
1567 		break;
1568 	case BPF_FUNC_sock_map_update:
1569 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1570 			goto error;
1571 		break;
1572 	default:
1573 		break;
1574 	}
1575 
1576 	return 0;
1577 error:
1578 	verbose("cannot pass map_type %d into func %s#%d\n",
1579 		map->map_type, func_id_name(func_id), func_id);
1580 	return -EINVAL;
1581 }
1582 
1583 static int check_raw_mode(const struct bpf_func_proto *fn)
1584 {
1585 	int count = 0;
1586 
1587 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1588 		count++;
1589 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1590 		count++;
1591 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1592 		count++;
1593 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1594 		count++;
1595 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1596 		count++;
1597 
1598 	return count > 1 ? -EINVAL : 0;
1599 }
1600 
1601 /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1602  * so turn them into unknown SCALAR_VALUE.
1603  */
1604 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1605 {
1606 	struct bpf_verifier_state *state = &env->cur_state;
1607 	struct bpf_reg_state *regs = state->regs, *reg;
1608 	int i;
1609 
1610 	for (i = 0; i < MAX_BPF_REG; i++)
1611 		if (regs[i].type == PTR_TO_PACKET ||
1612 		    regs[i].type == PTR_TO_PACKET_END)
1613 			mark_reg_unknown(regs, i);
1614 
1615 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1616 		if (state->stack_slot_type[i] != STACK_SPILL)
1617 			continue;
1618 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1619 		if (reg->type != PTR_TO_PACKET &&
1620 		    reg->type != PTR_TO_PACKET_END)
1621 			continue;
1622 		__mark_reg_unknown(reg);
1623 	}
1624 }
1625 
1626 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1627 {
1628 	struct bpf_verifier_state *state = &env->cur_state;
1629 	const struct bpf_func_proto *fn = NULL;
1630 	struct bpf_reg_state *regs = state->regs;
1631 	struct bpf_call_arg_meta meta;
1632 	bool changes_data;
1633 	int i, err;
1634 
1635 	/* find function prototype */
1636 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1637 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1638 		return -EINVAL;
1639 	}
1640 
1641 	if (env->prog->aux->ops->get_func_proto)
1642 		fn = env->prog->aux->ops->get_func_proto(func_id);
1643 
1644 	if (!fn) {
1645 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1646 		return -EINVAL;
1647 	}
1648 
1649 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1650 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1651 		verbose("cannot call GPL only function from proprietary program\n");
1652 		return -EINVAL;
1653 	}
1654 
1655 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1656 
1657 	memset(&meta, 0, sizeof(meta));
1658 	meta.pkt_access = fn->pkt_access;
1659 
1660 	/* We only support one arg being in raw mode at the moment, which
1661 	 * is sufficient for the helper functions we have right now.
1662 	 */
1663 	err = check_raw_mode(fn);
1664 	if (err) {
1665 		verbose("kernel subsystem misconfigured func %s#%d\n",
1666 			func_id_name(func_id), func_id);
1667 		return err;
1668 	}
1669 
1670 	/* check args */
1671 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1672 	if (err)
1673 		return err;
1674 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1675 	if (err)
1676 		return err;
1677 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1678 	if (err)
1679 		return err;
1680 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1681 	if (err)
1682 		return err;
1683 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1684 	if (err)
1685 		return err;
1686 
1687 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1688 	 * is inferred from register state.
1689 	 */
1690 	for (i = 0; i < meta.access_size; i++) {
1691 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1692 		if (err)
1693 			return err;
1694 	}
1695 
1696 	/* reset caller saved regs */
1697 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1698 		mark_reg_not_init(regs, caller_saved[i]);
1699 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1700 	}
1701 
1702 	/* update return register (already marked as written above) */
1703 	if (fn->ret_type == RET_INTEGER) {
1704 		/* sets type to SCALAR_VALUE */
1705 		mark_reg_unknown(regs, BPF_REG_0);
1706 	} else if (fn->ret_type == RET_VOID) {
1707 		regs[BPF_REG_0].type = NOT_INIT;
1708 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1709 		struct bpf_insn_aux_data *insn_aux;
1710 
1711 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1712 		/* There is no offset yet applied, variable or fixed */
1713 		mark_reg_known_zero(regs, BPF_REG_0);
1714 		regs[BPF_REG_0].off = 0;
1715 		/* remember map_ptr, so that check_map_access()
1716 		 * can check 'value_size' boundary of memory access
1717 		 * to map element returned from bpf_map_lookup_elem()
1718 		 */
1719 		if (meta.map_ptr == NULL) {
1720 			verbose("kernel subsystem misconfigured verifier\n");
1721 			return -EINVAL;
1722 		}
1723 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1724 		regs[BPF_REG_0].id = ++env->id_gen;
1725 		insn_aux = &env->insn_aux_data[insn_idx];
1726 		if (!insn_aux->map_ptr)
1727 			insn_aux->map_ptr = meta.map_ptr;
1728 		else if (insn_aux->map_ptr != meta.map_ptr)
1729 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1730 	} else {
1731 		verbose("unknown return type %d of func %s#%d\n",
1732 			fn->ret_type, func_id_name(func_id), func_id);
1733 		return -EINVAL;
1734 	}
1735 
1736 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1737 	if (err)
1738 		return err;
1739 
1740 	if (changes_data)
1741 		clear_all_pkt_pointers(env);
1742 	return 0;
1743 }
1744 
1745 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1746 {
1747 	/* clear high 32 bits */
1748 	reg->var_off = tnum_cast(reg->var_off, 4);
1749 	/* Update bounds */
1750 	__update_reg_bounds(reg);
1751 }
1752 
1753 static bool signed_add_overflows(s64 a, s64 b)
1754 {
1755 	/* Do the add in u64, where overflow is well-defined */
1756 	s64 res = (s64)((u64)a + (u64)b);
1757 
1758 	if (b < 0)
1759 		return res > a;
1760 	return res < a;
1761 }
1762 
1763 static bool signed_sub_overflows(s64 a, s64 b)
1764 {
1765 	/* Do the sub in u64, where overflow is well-defined */
1766 	s64 res = (s64)((u64)a - (u64)b);
1767 
1768 	if (b < 0)
1769 		return res < a;
1770 	return res > a;
1771 }
1772 
1773 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1774  * Caller should also handle BPF_MOV case separately.
1775  * If we return -EACCES, caller may want to try again treating pointer as a
1776  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1777  */
1778 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1779 				   struct bpf_insn *insn,
1780 				   const struct bpf_reg_state *ptr_reg,
1781 				   const struct bpf_reg_state *off_reg)
1782 {
1783 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1784 	bool known = tnum_is_const(off_reg->var_off);
1785 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1786 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1787 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1788 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1789 	u8 opcode = BPF_OP(insn->code);
1790 	u32 dst = insn->dst_reg;
1791 
1792 	dst_reg = &regs[dst];
1793 
1794 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1795 		print_verifier_state(&env->cur_state);
1796 		verbose("verifier internal error: known but bad sbounds\n");
1797 		return -EINVAL;
1798 	}
1799 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1800 		print_verifier_state(&env->cur_state);
1801 		verbose("verifier internal error: known but bad ubounds\n");
1802 		return -EINVAL;
1803 	}
1804 
1805 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1806 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1807 		if (!env->allow_ptr_leaks)
1808 			verbose("R%d 32-bit pointer arithmetic prohibited\n",
1809 				dst);
1810 		return -EACCES;
1811 	}
1812 
1813 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1814 		if (!env->allow_ptr_leaks)
1815 			verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1816 				dst);
1817 		return -EACCES;
1818 	}
1819 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1820 		if (!env->allow_ptr_leaks)
1821 			verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1822 				dst);
1823 		return -EACCES;
1824 	}
1825 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1826 		if (!env->allow_ptr_leaks)
1827 			verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1828 				dst);
1829 		return -EACCES;
1830 	}
1831 
1832 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1833 	 * The id may be overwritten later if we create a new variable offset.
1834 	 */
1835 	dst_reg->type = ptr_reg->type;
1836 	dst_reg->id = ptr_reg->id;
1837 
1838 	switch (opcode) {
1839 	case BPF_ADD:
1840 		/* We can take a fixed offset as long as it doesn't overflow
1841 		 * the s32 'off' field
1842 		 */
1843 		if (known && (ptr_reg->off + smin_val ==
1844 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1845 			/* pointer += K.  Accumulate it into fixed offset */
1846 			dst_reg->smin_value = smin_ptr;
1847 			dst_reg->smax_value = smax_ptr;
1848 			dst_reg->umin_value = umin_ptr;
1849 			dst_reg->umax_value = umax_ptr;
1850 			dst_reg->var_off = ptr_reg->var_off;
1851 			dst_reg->off = ptr_reg->off + smin_val;
1852 			dst_reg->range = ptr_reg->range;
1853 			break;
1854 		}
1855 		/* A new variable offset is created.  Note that off_reg->off
1856 		 * == 0, since it's a scalar.
1857 		 * dst_reg gets the pointer type and since some positive
1858 		 * integer value was added to the pointer, give it a new 'id'
1859 		 * if it's a PTR_TO_PACKET.
1860 		 * this creates a new 'base' pointer, off_reg (variable) gets
1861 		 * added into the variable offset, and we copy the fixed offset
1862 		 * from ptr_reg.
1863 		 */
1864 		if (signed_add_overflows(smin_ptr, smin_val) ||
1865 		    signed_add_overflows(smax_ptr, smax_val)) {
1866 			dst_reg->smin_value = S64_MIN;
1867 			dst_reg->smax_value = S64_MAX;
1868 		} else {
1869 			dst_reg->smin_value = smin_ptr + smin_val;
1870 			dst_reg->smax_value = smax_ptr + smax_val;
1871 		}
1872 		if (umin_ptr + umin_val < umin_ptr ||
1873 		    umax_ptr + umax_val < umax_ptr) {
1874 			dst_reg->umin_value = 0;
1875 			dst_reg->umax_value = U64_MAX;
1876 		} else {
1877 			dst_reg->umin_value = umin_ptr + umin_val;
1878 			dst_reg->umax_value = umax_ptr + umax_val;
1879 		}
1880 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1881 		dst_reg->off = ptr_reg->off;
1882 		if (ptr_reg->type == PTR_TO_PACKET) {
1883 			dst_reg->id = ++env->id_gen;
1884 			/* something was added to pkt_ptr, set range to zero */
1885 			dst_reg->range = 0;
1886 		}
1887 		break;
1888 	case BPF_SUB:
1889 		if (dst_reg == off_reg) {
1890 			/* scalar -= pointer.  Creates an unknown scalar */
1891 			if (!env->allow_ptr_leaks)
1892 				verbose("R%d tried to subtract pointer from scalar\n",
1893 					dst);
1894 			return -EACCES;
1895 		}
1896 		/* We don't allow subtraction from FP, because (according to
1897 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1898 		 * be able to deal with it.
1899 		 */
1900 		if (ptr_reg->type == PTR_TO_STACK) {
1901 			if (!env->allow_ptr_leaks)
1902 				verbose("R%d subtraction from stack pointer prohibited\n",
1903 					dst);
1904 			return -EACCES;
1905 		}
1906 		if (known && (ptr_reg->off - smin_val ==
1907 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1908 			/* pointer -= K.  Subtract it from fixed offset */
1909 			dst_reg->smin_value = smin_ptr;
1910 			dst_reg->smax_value = smax_ptr;
1911 			dst_reg->umin_value = umin_ptr;
1912 			dst_reg->umax_value = umax_ptr;
1913 			dst_reg->var_off = ptr_reg->var_off;
1914 			dst_reg->id = ptr_reg->id;
1915 			dst_reg->off = ptr_reg->off - smin_val;
1916 			dst_reg->range = ptr_reg->range;
1917 			break;
1918 		}
1919 		/* A new variable offset is created.  If the subtrahend is known
1920 		 * nonnegative, then any reg->range we had before is still good.
1921 		 */
1922 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1923 		    signed_sub_overflows(smax_ptr, smin_val)) {
1924 			/* Overflow possible, we know nothing */
1925 			dst_reg->smin_value = S64_MIN;
1926 			dst_reg->smax_value = S64_MAX;
1927 		} else {
1928 			dst_reg->smin_value = smin_ptr - smax_val;
1929 			dst_reg->smax_value = smax_ptr - smin_val;
1930 		}
1931 		if (umin_ptr < umax_val) {
1932 			/* Overflow possible, we know nothing */
1933 			dst_reg->umin_value = 0;
1934 			dst_reg->umax_value = U64_MAX;
1935 		} else {
1936 			/* Cannot overflow (as long as bounds are consistent) */
1937 			dst_reg->umin_value = umin_ptr - umax_val;
1938 			dst_reg->umax_value = umax_ptr - umin_val;
1939 		}
1940 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1941 		dst_reg->off = ptr_reg->off;
1942 		if (ptr_reg->type == PTR_TO_PACKET) {
1943 			dst_reg->id = ++env->id_gen;
1944 			/* something was added to pkt_ptr, set range to zero */
1945 			if (smin_val < 0)
1946 				dst_reg->range = 0;
1947 		}
1948 		break;
1949 	case BPF_AND:
1950 	case BPF_OR:
1951 	case BPF_XOR:
1952 		/* bitwise ops on pointers are troublesome, prohibit for now.
1953 		 * (However, in principle we could allow some cases, e.g.
1954 		 * ptr &= ~3 which would reduce min_value by 3.)
1955 		 */
1956 		if (!env->allow_ptr_leaks)
1957 			verbose("R%d bitwise operator %s on pointer prohibited\n",
1958 				dst, bpf_alu_string[opcode >> 4]);
1959 		return -EACCES;
1960 	default:
1961 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
1962 		if (!env->allow_ptr_leaks)
1963 			verbose("R%d pointer arithmetic with %s operator prohibited\n",
1964 				dst, bpf_alu_string[opcode >> 4]);
1965 		return -EACCES;
1966 	}
1967 
1968 	__update_reg_bounds(dst_reg);
1969 	__reg_deduce_bounds(dst_reg);
1970 	__reg_bound_offset(dst_reg);
1971 	return 0;
1972 }
1973 
1974 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1975 				      struct bpf_insn *insn,
1976 				      struct bpf_reg_state *dst_reg,
1977 				      struct bpf_reg_state src_reg)
1978 {
1979 	struct bpf_reg_state *regs = env->cur_state.regs;
1980 	u8 opcode = BPF_OP(insn->code);
1981 	bool src_known, dst_known;
1982 	s64 smin_val, smax_val;
1983 	u64 umin_val, umax_val;
1984 
1985 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1986 		/* 32-bit ALU ops are (32,32)->64 */
1987 		coerce_reg_to_32(dst_reg);
1988 		coerce_reg_to_32(&src_reg);
1989 	}
1990 	smin_val = src_reg.smin_value;
1991 	smax_val = src_reg.smax_value;
1992 	umin_val = src_reg.umin_value;
1993 	umax_val = src_reg.umax_value;
1994 	src_known = tnum_is_const(src_reg.var_off);
1995 	dst_known = tnum_is_const(dst_reg->var_off);
1996 
1997 	switch (opcode) {
1998 	case BPF_ADD:
1999 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2000 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2001 			dst_reg->smin_value = S64_MIN;
2002 			dst_reg->smax_value = S64_MAX;
2003 		} else {
2004 			dst_reg->smin_value += smin_val;
2005 			dst_reg->smax_value += smax_val;
2006 		}
2007 		if (dst_reg->umin_value + umin_val < umin_val ||
2008 		    dst_reg->umax_value + umax_val < umax_val) {
2009 			dst_reg->umin_value = 0;
2010 			dst_reg->umax_value = U64_MAX;
2011 		} else {
2012 			dst_reg->umin_value += umin_val;
2013 			dst_reg->umax_value += umax_val;
2014 		}
2015 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2016 		break;
2017 	case BPF_SUB:
2018 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2019 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2020 			/* Overflow possible, we know nothing */
2021 			dst_reg->smin_value = S64_MIN;
2022 			dst_reg->smax_value = S64_MAX;
2023 		} else {
2024 			dst_reg->smin_value -= smax_val;
2025 			dst_reg->smax_value -= smin_val;
2026 		}
2027 		if (dst_reg->umin_value < umax_val) {
2028 			/* Overflow possible, we know nothing */
2029 			dst_reg->umin_value = 0;
2030 			dst_reg->umax_value = U64_MAX;
2031 		} else {
2032 			/* Cannot overflow (as long as bounds are consistent) */
2033 			dst_reg->umin_value -= umax_val;
2034 			dst_reg->umax_value -= umin_val;
2035 		}
2036 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2037 		break;
2038 	case BPF_MUL:
2039 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2040 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2041 			/* Ain't nobody got time to multiply that sign */
2042 			__mark_reg_unbounded(dst_reg);
2043 			__update_reg_bounds(dst_reg);
2044 			break;
2045 		}
2046 		/* Both values are positive, so we can work with unsigned and
2047 		 * copy the result to signed (unless it exceeds S64_MAX).
2048 		 */
2049 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2050 			/* Potential overflow, we know nothing */
2051 			__mark_reg_unbounded(dst_reg);
2052 			/* (except what we can learn from the var_off) */
2053 			__update_reg_bounds(dst_reg);
2054 			break;
2055 		}
2056 		dst_reg->umin_value *= umin_val;
2057 		dst_reg->umax_value *= umax_val;
2058 		if (dst_reg->umax_value > S64_MAX) {
2059 			/* Overflow possible, we know nothing */
2060 			dst_reg->smin_value = S64_MIN;
2061 			dst_reg->smax_value = S64_MAX;
2062 		} else {
2063 			dst_reg->smin_value = dst_reg->umin_value;
2064 			dst_reg->smax_value = dst_reg->umax_value;
2065 		}
2066 		break;
2067 	case BPF_AND:
2068 		if (src_known && dst_known) {
2069 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2070 						  src_reg.var_off.value);
2071 			break;
2072 		}
2073 		/* We get our minimum from the var_off, since that's inherently
2074 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2075 		 */
2076 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2077 		dst_reg->umin_value = dst_reg->var_off.value;
2078 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2079 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2080 			/* Lose signed bounds when ANDing negative numbers,
2081 			 * ain't nobody got time for that.
2082 			 */
2083 			dst_reg->smin_value = S64_MIN;
2084 			dst_reg->smax_value = S64_MAX;
2085 		} else {
2086 			/* ANDing two positives gives a positive, so safe to
2087 			 * cast result into s64.
2088 			 */
2089 			dst_reg->smin_value = dst_reg->umin_value;
2090 			dst_reg->smax_value = dst_reg->umax_value;
2091 		}
2092 		/* We may learn something more from the var_off */
2093 		__update_reg_bounds(dst_reg);
2094 		break;
2095 	case BPF_OR:
2096 		if (src_known && dst_known) {
2097 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2098 						  src_reg.var_off.value);
2099 			break;
2100 		}
2101 		/* We get our maximum from the var_off, and our minimum is the
2102 		 * maximum of the operands' minima
2103 		 */
2104 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2105 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2106 		dst_reg->umax_value = dst_reg->var_off.value |
2107 				      dst_reg->var_off.mask;
2108 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2109 			/* Lose signed bounds when ORing negative numbers,
2110 			 * ain't nobody got time for that.
2111 			 */
2112 			dst_reg->smin_value = S64_MIN;
2113 			dst_reg->smax_value = S64_MAX;
2114 		} else {
2115 			/* ORing two positives gives a positive, so safe to
2116 			 * cast result into s64.
2117 			 */
2118 			dst_reg->smin_value = dst_reg->umin_value;
2119 			dst_reg->smax_value = dst_reg->umax_value;
2120 		}
2121 		/* We may learn something more from the var_off */
2122 		__update_reg_bounds(dst_reg);
2123 		break;
2124 	case BPF_LSH:
2125 		if (umax_val > 63) {
2126 			/* Shifts greater than 63 are undefined.  This includes
2127 			 * shifts by a negative number.
2128 			 */
2129 			mark_reg_unknown(regs, insn->dst_reg);
2130 			break;
2131 		}
2132 		/* We lose all sign bit information (except what we can pick
2133 		 * up from var_off)
2134 		 */
2135 		dst_reg->smin_value = S64_MIN;
2136 		dst_reg->smax_value = S64_MAX;
2137 		/* If we might shift our top bit out, then we know nothing */
2138 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2139 			dst_reg->umin_value = 0;
2140 			dst_reg->umax_value = U64_MAX;
2141 		} else {
2142 			dst_reg->umin_value <<= umin_val;
2143 			dst_reg->umax_value <<= umax_val;
2144 		}
2145 		if (src_known)
2146 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2147 		else
2148 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2149 		/* We may learn something more from the var_off */
2150 		__update_reg_bounds(dst_reg);
2151 		break;
2152 	case BPF_RSH:
2153 		if (umax_val > 63) {
2154 			/* Shifts greater than 63 are undefined.  This includes
2155 			 * shifts by a negative number.
2156 			 */
2157 			mark_reg_unknown(regs, insn->dst_reg);
2158 			break;
2159 		}
2160 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2161 		if (dst_reg->smin_value < 0) {
2162 			if (umin_val) {
2163 				/* Sign bit will be cleared */
2164 				dst_reg->smin_value = 0;
2165 			} else {
2166 				/* Lost sign bit information */
2167 				dst_reg->smin_value = S64_MIN;
2168 				dst_reg->smax_value = S64_MAX;
2169 			}
2170 		} else {
2171 			dst_reg->smin_value =
2172 				(u64)(dst_reg->smin_value) >> umax_val;
2173 		}
2174 		if (src_known)
2175 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2176 						       umin_val);
2177 		else
2178 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2179 		dst_reg->umin_value >>= umax_val;
2180 		dst_reg->umax_value >>= umin_val;
2181 		/* We may learn something more from the var_off */
2182 		__update_reg_bounds(dst_reg);
2183 		break;
2184 	default:
2185 		mark_reg_unknown(regs, insn->dst_reg);
2186 		break;
2187 	}
2188 
2189 	__reg_deduce_bounds(dst_reg);
2190 	__reg_bound_offset(dst_reg);
2191 	return 0;
2192 }
2193 
2194 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2195  * and var_off.
2196  */
2197 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2198 				   struct bpf_insn *insn)
2199 {
2200 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2201 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2202 	u8 opcode = BPF_OP(insn->code);
2203 	int rc;
2204 
2205 	dst_reg = &regs[insn->dst_reg];
2206 	src_reg = NULL;
2207 	if (dst_reg->type != SCALAR_VALUE)
2208 		ptr_reg = dst_reg;
2209 	if (BPF_SRC(insn->code) == BPF_X) {
2210 		src_reg = &regs[insn->src_reg];
2211 		if (src_reg->type != SCALAR_VALUE) {
2212 			if (dst_reg->type != SCALAR_VALUE) {
2213 				/* Combining two pointers by any ALU op yields
2214 				 * an arbitrary scalar.
2215 				 */
2216 				if (!env->allow_ptr_leaks) {
2217 					verbose("R%d pointer %s pointer prohibited\n",
2218 						insn->dst_reg,
2219 						bpf_alu_string[opcode >> 4]);
2220 					return -EACCES;
2221 				}
2222 				mark_reg_unknown(regs, insn->dst_reg);
2223 				return 0;
2224 			} else {
2225 				/* scalar += pointer
2226 				 * This is legal, but we have to reverse our
2227 				 * src/dest handling in computing the range
2228 				 */
2229 				rc = adjust_ptr_min_max_vals(env, insn,
2230 							     src_reg, dst_reg);
2231 				if (rc == -EACCES && env->allow_ptr_leaks) {
2232 					/* scalar += unknown scalar */
2233 					__mark_reg_unknown(&off_reg);
2234 					return adjust_scalar_min_max_vals(
2235 							env, insn,
2236 							dst_reg, off_reg);
2237 				}
2238 				return rc;
2239 			}
2240 		} else if (ptr_reg) {
2241 			/* pointer += scalar */
2242 			rc = adjust_ptr_min_max_vals(env, insn,
2243 						     dst_reg, src_reg);
2244 			if (rc == -EACCES && env->allow_ptr_leaks) {
2245 				/* unknown scalar += scalar */
2246 				__mark_reg_unknown(dst_reg);
2247 				return adjust_scalar_min_max_vals(
2248 						env, insn, dst_reg, *src_reg);
2249 			}
2250 			return rc;
2251 		}
2252 	} else {
2253 		/* Pretend the src is a reg with a known value, since we only
2254 		 * need to be able to read from this state.
2255 		 */
2256 		off_reg.type = SCALAR_VALUE;
2257 		__mark_reg_known(&off_reg, insn->imm);
2258 		src_reg = &off_reg;
2259 		if (ptr_reg) { /* pointer += K */
2260 			rc = adjust_ptr_min_max_vals(env, insn,
2261 						     ptr_reg, src_reg);
2262 			if (rc == -EACCES && env->allow_ptr_leaks) {
2263 				/* unknown scalar += K */
2264 				__mark_reg_unknown(dst_reg);
2265 				return adjust_scalar_min_max_vals(
2266 						env, insn, dst_reg, off_reg);
2267 			}
2268 			return rc;
2269 		}
2270 	}
2271 
2272 	/* Got here implies adding two SCALAR_VALUEs */
2273 	if (WARN_ON_ONCE(ptr_reg)) {
2274 		print_verifier_state(&env->cur_state);
2275 		verbose("verifier internal error: unexpected ptr_reg\n");
2276 		return -EINVAL;
2277 	}
2278 	if (WARN_ON(!src_reg)) {
2279 		print_verifier_state(&env->cur_state);
2280 		verbose("verifier internal error: no src_reg\n");
2281 		return -EINVAL;
2282 	}
2283 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2284 }
2285 
2286 /* check validity of 32-bit and 64-bit arithmetic operations */
2287 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2288 {
2289 	struct bpf_reg_state *regs = env->cur_state.regs;
2290 	u8 opcode = BPF_OP(insn->code);
2291 	int err;
2292 
2293 	if (opcode == BPF_END || opcode == BPF_NEG) {
2294 		if (opcode == BPF_NEG) {
2295 			if (BPF_SRC(insn->code) != 0 ||
2296 			    insn->src_reg != BPF_REG_0 ||
2297 			    insn->off != 0 || insn->imm != 0) {
2298 				verbose("BPF_NEG uses reserved fields\n");
2299 				return -EINVAL;
2300 			}
2301 		} else {
2302 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2303 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2304 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2305 				verbose("BPF_END uses reserved fields\n");
2306 				return -EINVAL;
2307 			}
2308 		}
2309 
2310 		/* check src operand */
2311 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2312 		if (err)
2313 			return err;
2314 
2315 		if (is_pointer_value(env, insn->dst_reg)) {
2316 			verbose("R%d pointer arithmetic prohibited\n",
2317 				insn->dst_reg);
2318 			return -EACCES;
2319 		}
2320 
2321 		/* check dest operand */
2322 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2323 		if (err)
2324 			return err;
2325 
2326 	} else if (opcode == BPF_MOV) {
2327 
2328 		if (BPF_SRC(insn->code) == BPF_X) {
2329 			if (insn->imm != 0 || insn->off != 0) {
2330 				verbose("BPF_MOV uses reserved fields\n");
2331 				return -EINVAL;
2332 			}
2333 
2334 			/* check src operand */
2335 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2336 			if (err)
2337 				return err;
2338 		} else {
2339 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2340 				verbose("BPF_MOV uses reserved fields\n");
2341 				return -EINVAL;
2342 			}
2343 		}
2344 
2345 		/* check dest operand */
2346 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2347 		if (err)
2348 			return err;
2349 
2350 		if (BPF_SRC(insn->code) == BPF_X) {
2351 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2352 				/* case: R1 = R2
2353 				 * copy register state to dest reg
2354 				 */
2355 				regs[insn->dst_reg] = regs[insn->src_reg];
2356 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2357 			} else {
2358 				/* R1 = (u32) R2 */
2359 				if (is_pointer_value(env, insn->src_reg)) {
2360 					verbose("R%d partial copy of pointer\n",
2361 						insn->src_reg);
2362 					return -EACCES;
2363 				}
2364 				mark_reg_unknown(regs, insn->dst_reg);
2365 				/* high 32 bits are known zero. */
2366 				regs[insn->dst_reg].var_off = tnum_cast(
2367 						regs[insn->dst_reg].var_off, 4);
2368 				__update_reg_bounds(&regs[insn->dst_reg]);
2369 			}
2370 		} else {
2371 			/* case: R = imm
2372 			 * remember the value we stored into this reg
2373 			 */
2374 			regs[insn->dst_reg].type = SCALAR_VALUE;
2375 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2376 		}
2377 
2378 	} else if (opcode > BPF_END) {
2379 		verbose("invalid BPF_ALU opcode %x\n", opcode);
2380 		return -EINVAL;
2381 
2382 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2383 
2384 		if (BPF_SRC(insn->code) == BPF_X) {
2385 			if (insn->imm != 0 || insn->off != 0) {
2386 				verbose("BPF_ALU uses reserved fields\n");
2387 				return -EINVAL;
2388 			}
2389 			/* check src1 operand */
2390 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2391 			if (err)
2392 				return err;
2393 		} else {
2394 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2395 				verbose("BPF_ALU uses reserved fields\n");
2396 				return -EINVAL;
2397 			}
2398 		}
2399 
2400 		/* check src2 operand */
2401 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2402 		if (err)
2403 			return err;
2404 
2405 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2406 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2407 			verbose("div by zero\n");
2408 			return -EINVAL;
2409 		}
2410 
2411 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2412 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2413 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2414 
2415 			if (insn->imm < 0 || insn->imm >= size) {
2416 				verbose("invalid shift %d\n", insn->imm);
2417 				return -EINVAL;
2418 			}
2419 		}
2420 
2421 		/* check dest operand */
2422 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2423 		if (err)
2424 			return err;
2425 
2426 		return adjust_reg_min_max_vals(env, insn);
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2433 				   struct bpf_reg_state *dst_reg,
2434 				   bool range_right_open)
2435 {
2436 	struct bpf_reg_state *regs = state->regs, *reg;
2437 	u16 new_range;
2438 	int i;
2439 
2440 	if (dst_reg->off < 0 ||
2441 	    (dst_reg->off == 0 && range_right_open))
2442 		/* This doesn't give us any range */
2443 		return;
2444 
2445 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2446 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2447 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2448 		 * than pkt_end, but that's because it's also less than pkt.
2449 		 */
2450 		return;
2451 
2452 	new_range = dst_reg->off;
2453 	if (range_right_open)
2454 		new_range--;
2455 
2456 	/* Examples for register markings:
2457 	 *
2458 	 * pkt_data in dst register:
2459 	 *
2460 	 *   r2 = r3;
2461 	 *   r2 += 8;
2462 	 *   if (r2 > pkt_end) goto <handle exception>
2463 	 *   <access okay>
2464 	 *
2465 	 *   r2 = r3;
2466 	 *   r2 += 8;
2467 	 *   if (r2 < pkt_end) goto <access okay>
2468 	 *   <handle exception>
2469 	 *
2470 	 *   Where:
2471 	 *     r2 == dst_reg, pkt_end == src_reg
2472 	 *     r2=pkt(id=n,off=8,r=0)
2473 	 *     r3=pkt(id=n,off=0,r=0)
2474 	 *
2475 	 * pkt_data in src register:
2476 	 *
2477 	 *   r2 = r3;
2478 	 *   r2 += 8;
2479 	 *   if (pkt_end >= r2) goto <access okay>
2480 	 *   <handle exception>
2481 	 *
2482 	 *   r2 = r3;
2483 	 *   r2 += 8;
2484 	 *   if (pkt_end <= r2) goto <handle exception>
2485 	 *   <access okay>
2486 	 *
2487 	 *   Where:
2488 	 *     pkt_end == dst_reg, r2 == src_reg
2489 	 *     r2=pkt(id=n,off=8,r=0)
2490 	 *     r3=pkt(id=n,off=0,r=0)
2491 	 *
2492 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2493 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2494 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
2495 	 * the check.
2496 	 */
2497 
2498 	/* If our ids match, then we must have the same max_value.  And we
2499 	 * don't care about the other reg's fixed offset, since if it's too big
2500 	 * the range won't allow anything.
2501 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2502 	 */
2503 	for (i = 0; i < MAX_BPF_REG; i++)
2504 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2505 			/* keep the maximum range already checked */
2506 			regs[i].range = max(regs[i].range, new_range);
2507 
2508 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2509 		if (state->stack_slot_type[i] != STACK_SPILL)
2510 			continue;
2511 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2512 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2513 			reg->range = max(reg->range, new_range);
2514 	}
2515 }
2516 
2517 /* Adjusts the register min/max values in the case that the dst_reg is the
2518  * variable register that we are working on, and src_reg is a constant or we're
2519  * simply doing a BPF_K check.
2520  * In JEQ/JNE cases we also adjust the var_off values.
2521  */
2522 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2523 			    struct bpf_reg_state *false_reg, u64 val,
2524 			    u8 opcode)
2525 {
2526 	/* If the dst_reg is a pointer, we can't learn anything about its
2527 	 * variable offset from the compare (unless src_reg were a pointer into
2528 	 * the same object, but we don't bother with that.
2529 	 * Since false_reg and true_reg have the same type by construction, we
2530 	 * only need to check one of them for pointerness.
2531 	 */
2532 	if (__is_pointer_value(false, false_reg))
2533 		return;
2534 
2535 	switch (opcode) {
2536 	case BPF_JEQ:
2537 		/* If this is false then we know nothing Jon Snow, but if it is
2538 		 * true then we know for sure.
2539 		 */
2540 		__mark_reg_known(true_reg, val);
2541 		break;
2542 	case BPF_JNE:
2543 		/* If this is true we know nothing Jon Snow, but if it is false
2544 		 * we know the value for sure;
2545 		 */
2546 		__mark_reg_known(false_reg, val);
2547 		break;
2548 	case BPF_JGT:
2549 		false_reg->umax_value = min(false_reg->umax_value, val);
2550 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2551 		break;
2552 	case BPF_JSGT:
2553 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2554 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2555 		break;
2556 	case BPF_JLT:
2557 		false_reg->umin_value = max(false_reg->umin_value, val);
2558 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2559 		break;
2560 	case BPF_JSLT:
2561 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2562 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2563 		break;
2564 	case BPF_JGE:
2565 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2566 		true_reg->umin_value = max(true_reg->umin_value, val);
2567 		break;
2568 	case BPF_JSGE:
2569 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2570 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2571 		break;
2572 	case BPF_JLE:
2573 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2574 		true_reg->umax_value = min(true_reg->umax_value, val);
2575 		break;
2576 	case BPF_JSLE:
2577 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2578 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2579 		break;
2580 	default:
2581 		break;
2582 	}
2583 
2584 	__reg_deduce_bounds(false_reg);
2585 	__reg_deduce_bounds(true_reg);
2586 	/* We might have learned some bits from the bounds. */
2587 	__reg_bound_offset(false_reg);
2588 	__reg_bound_offset(true_reg);
2589 	/* Intersecting with the old var_off might have improved our bounds
2590 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2591 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2592 	 */
2593 	__update_reg_bounds(false_reg);
2594 	__update_reg_bounds(true_reg);
2595 }
2596 
2597 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2598  * the variable reg.
2599  */
2600 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2601 				struct bpf_reg_state *false_reg, u64 val,
2602 				u8 opcode)
2603 {
2604 	if (__is_pointer_value(false, false_reg))
2605 		return;
2606 
2607 	switch (opcode) {
2608 	case BPF_JEQ:
2609 		/* If this is false then we know nothing Jon Snow, but if it is
2610 		 * true then we know for sure.
2611 		 */
2612 		__mark_reg_known(true_reg, val);
2613 		break;
2614 	case BPF_JNE:
2615 		/* If this is true we know nothing Jon Snow, but if it is false
2616 		 * we know the value for sure;
2617 		 */
2618 		__mark_reg_known(false_reg, val);
2619 		break;
2620 	case BPF_JGT:
2621 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2622 		false_reg->umin_value = max(false_reg->umin_value, val);
2623 		break;
2624 	case BPF_JSGT:
2625 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2626 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2627 		break;
2628 	case BPF_JLT:
2629 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2630 		false_reg->umax_value = min(false_reg->umax_value, val);
2631 		break;
2632 	case BPF_JSLT:
2633 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2634 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2635 		break;
2636 	case BPF_JGE:
2637 		true_reg->umax_value = min(true_reg->umax_value, val);
2638 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2639 		break;
2640 	case BPF_JSGE:
2641 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2642 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2643 		break;
2644 	case BPF_JLE:
2645 		true_reg->umin_value = max(true_reg->umin_value, val);
2646 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2647 		break;
2648 	case BPF_JSLE:
2649 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2650 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2651 		break;
2652 	default:
2653 		break;
2654 	}
2655 
2656 	__reg_deduce_bounds(false_reg);
2657 	__reg_deduce_bounds(true_reg);
2658 	/* We might have learned some bits from the bounds. */
2659 	__reg_bound_offset(false_reg);
2660 	__reg_bound_offset(true_reg);
2661 	/* Intersecting with the old var_off might have improved our bounds
2662 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2663 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2664 	 */
2665 	__update_reg_bounds(false_reg);
2666 	__update_reg_bounds(true_reg);
2667 }
2668 
2669 /* Regs are known to be equal, so intersect their min/max/var_off */
2670 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2671 				  struct bpf_reg_state *dst_reg)
2672 {
2673 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2674 							dst_reg->umin_value);
2675 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2676 							dst_reg->umax_value);
2677 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2678 							dst_reg->smin_value);
2679 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2680 							dst_reg->smax_value);
2681 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2682 							     dst_reg->var_off);
2683 	/* We might have learned new bounds from the var_off. */
2684 	__update_reg_bounds(src_reg);
2685 	__update_reg_bounds(dst_reg);
2686 	/* We might have learned something about the sign bit. */
2687 	__reg_deduce_bounds(src_reg);
2688 	__reg_deduce_bounds(dst_reg);
2689 	/* We might have learned some bits from the bounds. */
2690 	__reg_bound_offset(src_reg);
2691 	__reg_bound_offset(dst_reg);
2692 	/* Intersecting with the old var_off might have improved our bounds
2693 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2694 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2695 	 */
2696 	__update_reg_bounds(src_reg);
2697 	__update_reg_bounds(dst_reg);
2698 }
2699 
2700 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2701 				struct bpf_reg_state *true_dst,
2702 				struct bpf_reg_state *false_src,
2703 				struct bpf_reg_state *false_dst,
2704 				u8 opcode)
2705 {
2706 	switch (opcode) {
2707 	case BPF_JEQ:
2708 		__reg_combine_min_max(true_src, true_dst);
2709 		break;
2710 	case BPF_JNE:
2711 		__reg_combine_min_max(false_src, false_dst);
2712 		break;
2713 	}
2714 }
2715 
2716 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2717 			 bool is_null)
2718 {
2719 	struct bpf_reg_state *reg = &regs[regno];
2720 
2721 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2722 		/* Old offset (both fixed and variable parts) should
2723 		 * have been known-zero, because we don't allow pointer
2724 		 * arithmetic on pointers that might be NULL.
2725 		 */
2726 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2727 				 !tnum_equals_const(reg->var_off, 0) ||
2728 				 reg->off)) {
2729 			__mark_reg_known_zero(reg);
2730 			reg->off = 0;
2731 		}
2732 		if (is_null) {
2733 			reg->type = SCALAR_VALUE;
2734 		} else if (reg->map_ptr->inner_map_meta) {
2735 			reg->type = CONST_PTR_TO_MAP;
2736 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2737 		} else {
2738 			reg->type = PTR_TO_MAP_VALUE;
2739 		}
2740 		/* We don't need id from this point onwards anymore, thus we
2741 		 * should better reset it, so that state pruning has chances
2742 		 * to take effect.
2743 		 */
2744 		reg->id = 0;
2745 	}
2746 }
2747 
2748 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2749  * be folded together at some point.
2750  */
2751 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2752 			  bool is_null)
2753 {
2754 	struct bpf_reg_state *regs = state->regs;
2755 	u32 id = regs[regno].id;
2756 	int i;
2757 
2758 	for (i = 0; i < MAX_BPF_REG; i++)
2759 		mark_map_reg(regs, i, id, is_null);
2760 
2761 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2762 		if (state->stack_slot_type[i] != STACK_SPILL)
2763 			continue;
2764 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2765 	}
2766 }
2767 
2768 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2769 			     struct bpf_insn *insn, int *insn_idx)
2770 {
2771 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2772 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2773 	u8 opcode = BPF_OP(insn->code);
2774 	int err;
2775 
2776 	if (opcode > BPF_JSLE) {
2777 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (BPF_SRC(insn->code) == BPF_X) {
2782 		if (insn->imm != 0) {
2783 			verbose("BPF_JMP uses reserved fields\n");
2784 			return -EINVAL;
2785 		}
2786 
2787 		/* check src1 operand */
2788 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2789 		if (err)
2790 			return err;
2791 
2792 		if (is_pointer_value(env, insn->src_reg)) {
2793 			verbose("R%d pointer comparison prohibited\n",
2794 				insn->src_reg);
2795 			return -EACCES;
2796 		}
2797 	} else {
2798 		if (insn->src_reg != BPF_REG_0) {
2799 			verbose("BPF_JMP uses reserved fields\n");
2800 			return -EINVAL;
2801 		}
2802 	}
2803 
2804 	/* check src2 operand */
2805 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2806 	if (err)
2807 		return err;
2808 
2809 	dst_reg = &regs[insn->dst_reg];
2810 
2811 	/* detect if R == 0 where R was initialized to zero earlier */
2812 	if (BPF_SRC(insn->code) == BPF_K &&
2813 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2814 	    dst_reg->type == SCALAR_VALUE &&
2815 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2816 		if (opcode == BPF_JEQ) {
2817 			/* if (imm == imm) goto pc+off;
2818 			 * only follow the goto, ignore fall-through
2819 			 */
2820 			*insn_idx += insn->off;
2821 			return 0;
2822 		} else {
2823 			/* if (imm != imm) goto pc+off;
2824 			 * only follow fall-through branch, since
2825 			 * that's where the program will go
2826 			 */
2827 			return 0;
2828 		}
2829 	}
2830 
2831 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2832 	if (!other_branch)
2833 		return -EFAULT;
2834 
2835 	/* detect if we are comparing against a constant value so we can adjust
2836 	 * our min/max values for our dst register.
2837 	 * this is only legit if both are scalars (or pointers to the same
2838 	 * object, I suppose, but we don't support that right now), because
2839 	 * otherwise the different base pointers mean the offsets aren't
2840 	 * comparable.
2841 	 */
2842 	if (BPF_SRC(insn->code) == BPF_X) {
2843 		if (dst_reg->type == SCALAR_VALUE &&
2844 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2845 			if (tnum_is_const(regs[insn->src_reg].var_off))
2846 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2847 						dst_reg, regs[insn->src_reg].var_off.value,
2848 						opcode);
2849 			else if (tnum_is_const(dst_reg->var_off))
2850 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2851 						    &regs[insn->src_reg],
2852 						    dst_reg->var_off.value, opcode);
2853 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2854 				/* Comparing for equality, we can combine knowledge */
2855 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2856 						    &other_branch->regs[insn->dst_reg],
2857 						    &regs[insn->src_reg],
2858 						    &regs[insn->dst_reg], opcode);
2859 		}
2860 	} else if (dst_reg->type == SCALAR_VALUE) {
2861 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2862 					dst_reg, insn->imm, opcode);
2863 	}
2864 
2865 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2866 	if (BPF_SRC(insn->code) == BPF_K &&
2867 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2868 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2869 		/* Mark all identical map registers in each branch as either
2870 		 * safe or unknown depending R == 0 or R != 0 conditional.
2871 		 */
2872 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2873 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2874 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2875 		   dst_reg->type == PTR_TO_PACKET &&
2876 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2877 		/* pkt_data' > pkt_end */
2878 		find_good_pkt_pointers(this_branch, dst_reg, false);
2879 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2880 		   dst_reg->type == PTR_TO_PACKET_END &&
2881 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2882 		/* pkt_end > pkt_data' */
2883 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg], true);
2884 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2885 		   dst_reg->type == PTR_TO_PACKET &&
2886 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2887 		/* pkt_data' < pkt_end */
2888 		find_good_pkt_pointers(other_branch, dst_reg, true);
2889 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2890 		   dst_reg->type == PTR_TO_PACKET_END &&
2891 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2892 		/* pkt_end < pkt_data' */
2893 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg], false);
2894 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2895 		   dst_reg->type == PTR_TO_PACKET &&
2896 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2897 		/* pkt_data' >= pkt_end */
2898 		find_good_pkt_pointers(this_branch, dst_reg, true);
2899 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2900 		   dst_reg->type == PTR_TO_PACKET_END &&
2901 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2902 		/* pkt_end >= pkt_data' */
2903 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg], false);
2904 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2905 		   dst_reg->type == PTR_TO_PACKET &&
2906 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2907 		/* pkt_data' <= pkt_end */
2908 		find_good_pkt_pointers(other_branch, dst_reg, false);
2909 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2910 		   dst_reg->type == PTR_TO_PACKET_END &&
2911 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2912 		/* pkt_end <= pkt_data' */
2913 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg], true);
2914 	} else if (is_pointer_value(env, insn->dst_reg)) {
2915 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2916 		return -EACCES;
2917 	}
2918 	if (log_level)
2919 		print_verifier_state(this_branch);
2920 	return 0;
2921 }
2922 
2923 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2924 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2925 {
2926 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2927 
2928 	return (struct bpf_map *) (unsigned long) imm64;
2929 }
2930 
2931 /* verify BPF_LD_IMM64 instruction */
2932 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2933 {
2934 	struct bpf_reg_state *regs = env->cur_state.regs;
2935 	int err;
2936 
2937 	if (BPF_SIZE(insn->code) != BPF_DW) {
2938 		verbose("invalid BPF_LD_IMM insn\n");
2939 		return -EINVAL;
2940 	}
2941 	if (insn->off != 0) {
2942 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2943 		return -EINVAL;
2944 	}
2945 
2946 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2947 	if (err)
2948 		return err;
2949 
2950 	if (insn->src_reg == 0) {
2951 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2952 
2953 		regs[insn->dst_reg].type = SCALAR_VALUE;
2954 		__mark_reg_known(&regs[insn->dst_reg], imm);
2955 		return 0;
2956 	}
2957 
2958 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2959 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2960 
2961 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2962 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2963 	return 0;
2964 }
2965 
2966 static bool may_access_skb(enum bpf_prog_type type)
2967 {
2968 	switch (type) {
2969 	case BPF_PROG_TYPE_SOCKET_FILTER:
2970 	case BPF_PROG_TYPE_SCHED_CLS:
2971 	case BPF_PROG_TYPE_SCHED_ACT:
2972 		return true;
2973 	default:
2974 		return false;
2975 	}
2976 }
2977 
2978 /* verify safety of LD_ABS|LD_IND instructions:
2979  * - they can only appear in the programs where ctx == skb
2980  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2981  *   preserve R6-R9, and store return value into R0
2982  *
2983  * Implicit input:
2984  *   ctx == skb == R6 == CTX
2985  *
2986  * Explicit input:
2987  *   SRC == any register
2988  *   IMM == 32-bit immediate
2989  *
2990  * Output:
2991  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2992  */
2993 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2994 {
2995 	struct bpf_reg_state *regs = env->cur_state.regs;
2996 	u8 mode = BPF_MODE(insn->code);
2997 	int i, err;
2998 
2999 	if (!may_access_skb(env->prog->type)) {
3000 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3001 		return -EINVAL;
3002 	}
3003 
3004 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3005 	    BPF_SIZE(insn->code) == BPF_DW ||
3006 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3007 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
3008 		return -EINVAL;
3009 	}
3010 
3011 	/* check whether implicit source operand (register R6) is readable */
3012 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3013 	if (err)
3014 		return err;
3015 
3016 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3017 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3018 		return -EINVAL;
3019 	}
3020 
3021 	if (mode == BPF_IND) {
3022 		/* check explicit source operand */
3023 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3024 		if (err)
3025 			return err;
3026 	}
3027 
3028 	/* reset caller saved regs to unreadable */
3029 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3030 		mark_reg_not_init(regs, caller_saved[i]);
3031 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3032 	}
3033 
3034 	/* mark destination R0 register as readable, since it contains
3035 	 * the value fetched from the packet.
3036 	 * Already marked as written above.
3037 	 */
3038 	mark_reg_unknown(regs, BPF_REG_0);
3039 	return 0;
3040 }
3041 
3042 /* non-recursive DFS pseudo code
3043  * 1  procedure DFS-iterative(G,v):
3044  * 2      label v as discovered
3045  * 3      let S be a stack
3046  * 4      S.push(v)
3047  * 5      while S is not empty
3048  * 6            t <- S.pop()
3049  * 7            if t is what we're looking for:
3050  * 8                return t
3051  * 9            for all edges e in G.adjacentEdges(t) do
3052  * 10               if edge e is already labelled
3053  * 11                   continue with the next edge
3054  * 12               w <- G.adjacentVertex(t,e)
3055  * 13               if vertex w is not discovered and not explored
3056  * 14                   label e as tree-edge
3057  * 15                   label w as discovered
3058  * 16                   S.push(w)
3059  * 17                   continue at 5
3060  * 18               else if vertex w is discovered
3061  * 19                   label e as back-edge
3062  * 20               else
3063  * 21                   // vertex w is explored
3064  * 22                   label e as forward- or cross-edge
3065  * 23           label t as explored
3066  * 24           S.pop()
3067  *
3068  * convention:
3069  * 0x10 - discovered
3070  * 0x11 - discovered and fall-through edge labelled
3071  * 0x12 - discovered and fall-through and branch edges labelled
3072  * 0x20 - explored
3073  */
3074 
3075 enum {
3076 	DISCOVERED = 0x10,
3077 	EXPLORED = 0x20,
3078 	FALLTHROUGH = 1,
3079 	BRANCH = 2,
3080 };
3081 
3082 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3083 
3084 static int *insn_stack;	/* stack of insns to process */
3085 static int cur_stack;	/* current stack index */
3086 static int *insn_state;
3087 
3088 /* t, w, e - match pseudo-code above:
3089  * t - index of current instruction
3090  * w - next instruction
3091  * e - edge
3092  */
3093 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3094 {
3095 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3096 		return 0;
3097 
3098 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3099 		return 0;
3100 
3101 	if (w < 0 || w >= env->prog->len) {
3102 		verbose("jump out of range from insn %d to %d\n", t, w);
3103 		return -EINVAL;
3104 	}
3105 
3106 	if (e == BRANCH)
3107 		/* mark branch target for state pruning */
3108 		env->explored_states[w] = STATE_LIST_MARK;
3109 
3110 	if (insn_state[w] == 0) {
3111 		/* tree-edge */
3112 		insn_state[t] = DISCOVERED | e;
3113 		insn_state[w] = DISCOVERED;
3114 		if (cur_stack >= env->prog->len)
3115 			return -E2BIG;
3116 		insn_stack[cur_stack++] = w;
3117 		return 1;
3118 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3119 		verbose("back-edge from insn %d to %d\n", t, w);
3120 		return -EINVAL;
3121 	} else if (insn_state[w] == EXPLORED) {
3122 		/* forward- or cross-edge */
3123 		insn_state[t] = DISCOVERED | e;
3124 	} else {
3125 		verbose("insn state internal bug\n");
3126 		return -EFAULT;
3127 	}
3128 	return 0;
3129 }
3130 
3131 /* non-recursive depth-first-search to detect loops in BPF program
3132  * loop == back-edge in directed graph
3133  */
3134 static int check_cfg(struct bpf_verifier_env *env)
3135 {
3136 	struct bpf_insn *insns = env->prog->insnsi;
3137 	int insn_cnt = env->prog->len;
3138 	int ret = 0;
3139 	int i, t;
3140 
3141 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3142 	if (!insn_state)
3143 		return -ENOMEM;
3144 
3145 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3146 	if (!insn_stack) {
3147 		kfree(insn_state);
3148 		return -ENOMEM;
3149 	}
3150 
3151 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3152 	insn_stack[0] = 0; /* 0 is the first instruction */
3153 	cur_stack = 1;
3154 
3155 peek_stack:
3156 	if (cur_stack == 0)
3157 		goto check_state;
3158 	t = insn_stack[cur_stack - 1];
3159 
3160 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3161 		u8 opcode = BPF_OP(insns[t].code);
3162 
3163 		if (opcode == BPF_EXIT) {
3164 			goto mark_explored;
3165 		} else if (opcode == BPF_CALL) {
3166 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3167 			if (ret == 1)
3168 				goto peek_stack;
3169 			else if (ret < 0)
3170 				goto err_free;
3171 			if (t + 1 < insn_cnt)
3172 				env->explored_states[t + 1] = STATE_LIST_MARK;
3173 		} else if (opcode == BPF_JA) {
3174 			if (BPF_SRC(insns[t].code) != BPF_K) {
3175 				ret = -EINVAL;
3176 				goto err_free;
3177 			}
3178 			/* unconditional jump with single edge */
3179 			ret = push_insn(t, t + insns[t].off + 1,
3180 					FALLTHROUGH, env);
3181 			if (ret == 1)
3182 				goto peek_stack;
3183 			else if (ret < 0)
3184 				goto err_free;
3185 			/* tell verifier to check for equivalent states
3186 			 * after every call and jump
3187 			 */
3188 			if (t + 1 < insn_cnt)
3189 				env->explored_states[t + 1] = STATE_LIST_MARK;
3190 		} else {
3191 			/* conditional jump with two edges */
3192 			env->explored_states[t] = STATE_LIST_MARK;
3193 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3194 			if (ret == 1)
3195 				goto peek_stack;
3196 			else if (ret < 0)
3197 				goto err_free;
3198 
3199 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3200 			if (ret == 1)
3201 				goto peek_stack;
3202 			else if (ret < 0)
3203 				goto err_free;
3204 		}
3205 	} else {
3206 		/* all other non-branch instructions with single
3207 		 * fall-through edge
3208 		 */
3209 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3210 		if (ret == 1)
3211 			goto peek_stack;
3212 		else if (ret < 0)
3213 			goto err_free;
3214 	}
3215 
3216 mark_explored:
3217 	insn_state[t] = EXPLORED;
3218 	if (cur_stack-- <= 0) {
3219 		verbose("pop stack internal bug\n");
3220 		ret = -EFAULT;
3221 		goto err_free;
3222 	}
3223 	goto peek_stack;
3224 
3225 check_state:
3226 	for (i = 0; i < insn_cnt; i++) {
3227 		if (insn_state[i] != EXPLORED) {
3228 			verbose("unreachable insn %d\n", i);
3229 			ret = -EINVAL;
3230 			goto err_free;
3231 		}
3232 	}
3233 	ret = 0; /* cfg looks good */
3234 
3235 err_free:
3236 	kfree(insn_state);
3237 	kfree(insn_stack);
3238 	return ret;
3239 }
3240 
3241 /* check %cur's range satisfies %old's */
3242 static bool range_within(struct bpf_reg_state *old,
3243 			 struct bpf_reg_state *cur)
3244 {
3245 	return old->umin_value <= cur->umin_value &&
3246 	       old->umax_value >= cur->umax_value &&
3247 	       old->smin_value <= cur->smin_value &&
3248 	       old->smax_value >= cur->smax_value;
3249 }
3250 
3251 /* Maximum number of register states that can exist at once */
3252 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3253 struct idpair {
3254 	u32 old;
3255 	u32 cur;
3256 };
3257 
3258 /* If in the old state two registers had the same id, then they need to have
3259  * the same id in the new state as well.  But that id could be different from
3260  * the old state, so we need to track the mapping from old to new ids.
3261  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3262  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3263  * regs with a different old id could still have new id 9, we don't care about
3264  * that.
3265  * So we look through our idmap to see if this old id has been seen before.  If
3266  * so, we require the new id to match; otherwise, we add the id pair to the map.
3267  */
3268 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3269 {
3270 	unsigned int i;
3271 
3272 	for (i = 0; i < ID_MAP_SIZE; i++) {
3273 		if (!idmap[i].old) {
3274 			/* Reached an empty slot; haven't seen this id before */
3275 			idmap[i].old = old_id;
3276 			idmap[i].cur = cur_id;
3277 			return true;
3278 		}
3279 		if (idmap[i].old == old_id)
3280 			return idmap[i].cur == cur_id;
3281 	}
3282 	/* We ran out of idmap slots, which should be impossible */
3283 	WARN_ON_ONCE(1);
3284 	return false;
3285 }
3286 
3287 /* Returns true if (rold safe implies rcur safe) */
3288 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3289 		    struct idpair *idmap)
3290 {
3291 	if (!(rold->live & REG_LIVE_READ))
3292 		/* explored state didn't use this */
3293 		return true;
3294 
3295 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3296 		return true;
3297 
3298 	if (rold->type == NOT_INIT)
3299 		/* explored state can't have used this */
3300 		return true;
3301 	if (rcur->type == NOT_INIT)
3302 		return false;
3303 	switch (rold->type) {
3304 	case SCALAR_VALUE:
3305 		if (rcur->type == SCALAR_VALUE) {
3306 			/* new val must satisfy old val knowledge */
3307 			return range_within(rold, rcur) &&
3308 			       tnum_in(rold->var_off, rcur->var_off);
3309 		} else {
3310 			/* if we knew anything about the old value, we're not
3311 			 * equal, because we can't know anything about the
3312 			 * scalar value of the pointer in the new value.
3313 			 */
3314 			return rold->umin_value == 0 &&
3315 			       rold->umax_value == U64_MAX &&
3316 			       rold->smin_value == S64_MIN &&
3317 			       rold->smax_value == S64_MAX &&
3318 			       tnum_is_unknown(rold->var_off);
3319 		}
3320 	case PTR_TO_MAP_VALUE:
3321 		/* If the new min/max/var_off satisfy the old ones and
3322 		 * everything else matches, we are OK.
3323 		 * We don't care about the 'id' value, because nothing
3324 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3325 		 */
3326 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3327 		       range_within(rold, rcur) &&
3328 		       tnum_in(rold->var_off, rcur->var_off);
3329 	case PTR_TO_MAP_VALUE_OR_NULL:
3330 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3331 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3332 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3333 		 * checked, doing so could have affected others with the same
3334 		 * id, and we can't check for that because we lost the id when
3335 		 * we converted to a PTR_TO_MAP_VALUE.
3336 		 */
3337 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3338 			return false;
3339 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3340 			return false;
3341 		/* Check our ids match any regs they're supposed to */
3342 		return check_ids(rold->id, rcur->id, idmap);
3343 	case PTR_TO_PACKET:
3344 		if (rcur->type != PTR_TO_PACKET)
3345 			return false;
3346 		/* We must have at least as much range as the old ptr
3347 		 * did, so that any accesses which were safe before are
3348 		 * still safe.  This is true even if old range < old off,
3349 		 * since someone could have accessed through (ptr - k), or
3350 		 * even done ptr -= k in a register, to get a safe access.
3351 		 */
3352 		if (rold->range > rcur->range)
3353 			return false;
3354 		/* If the offsets don't match, we can't trust our alignment;
3355 		 * nor can we be sure that we won't fall out of range.
3356 		 */
3357 		if (rold->off != rcur->off)
3358 			return false;
3359 		/* id relations must be preserved */
3360 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3361 			return false;
3362 		/* new val must satisfy old val knowledge */
3363 		return range_within(rold, rcur) &&
3364 		       tnum_in(rold->var_off, rcur->var_off);
3365 	case PTR_TO_CTX:
3366 	case CONST_PTR_TO_MAP:
3367 	case PTR_TO_STACK:
3368 	case PTR_TO_PACKET_END:
3369 		/* Only valid matches are exact, which memcmp() above
3370 		 * would have accepted
3371 		 */
3372 	default:
3373 		/* Don't know what's going on, just say it's not safe */
3374 		return false;
3375 	}
3376 
3377 	/* Shouldn't get here; if we do, say it's not safe */
3378 	WARN_ON_ONCE(1);
3379 	return false;
3380 }
3381 
3382 /* compare two verifier states
3383  *
3384  * all states stored in state_list are known to be valid, since
3385  * verifier reached 'bpf_exit' instruction through them
3386  *
3387  * this function is called when verifier exploring different branches of
3388  * execution popped from the state stack. If it sees an old state that has
3389  * more strict register state and more strict stack state then this execution
3390  * branch doesn't need to be explored further, since verifier already
3391  * concluded that more strict state leads to valid finish.
3392  *
3393  * Therefore two states are equivalent if register state is more conservative
3394  * and explored stack state is more conservative than the current one.
3395  * Example:
3396  *       explored                   current
3397  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3398  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3399  *
3400  * In other words if current stack state (one being explored) has more
3401  * valid slots than old one that already passed validation, it means
3402  * the verifier can stop exploring and conclude that current state is valid too
3403  *
3404  * Similarly with registers. If explored state has register type as invalid
3405  * whereas register type in current state is meaningful, it means that
3406  * the current state will reach 'bpf_exit' instruction safely
3407  */
3408 static bool states_equal(struct bpf_verifier_env *env,
3409 			 struct bpf_verifier_state *old,
3410 			 struct bpf_verifier_state *cur)
3411 {
3412 	struct idpair *idmap;
3413 	bool ret = false;
3414 	int i;
3415 
3416 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3417 	/* If we failed to allocate the idmap, just say it's not safe */
3418 	if (!idmap)
3419 		return false;
3420 
3421 	for (i = 0; i < MAX_BPF_REG; i++) {
3422 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3423 			goto out_free;
3424 	}
3425 
3426 	for (i = 0; i < MAX_BPF_STACK; i++) {
3427 		if (old->stack_slot_type[i] == STACK_INVALID)
3428 			continue;
3429 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3430 			/* Ex: old explored (safe) state has STACK_SPILL in
3431 			 * this stack slot, but current has has STACK_MISC ->
3432 			 * this verifier states are not equivalent,
3433 			 * return false to continue verification of this path
3434 			 */
3435 			goto out_free;
3436 		if (i % BPF_REG_SIZE)
3437 			continue;
3438 		if (old->stack_slot_type[i] != STACK_SPILL)
3439 			continue;
3440 		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3441 			     &cur->spilled_regs[i / BPF_REG_SIZE],
3442 			     idmap))
3443 			/* when explored and current stack slot are both storing
3444 			 * spilled registers, check that stored pointers types
3445 			 * are the same as well.
3446 			 * Ex: explored safe path could have stored
3447 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3448 			 * but current path has stored:
3449 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3450 			 * such verifier states are not equivalent.
3451 			 * return false to continue verification of this path
3452 			 */
3453 			goto out_free;
3454 		else
3455 			continue;
3456 	}
3457 	ret = true;
3458 out_free:
3459 	kfree(idmap);
3460 	return ret;
3461 }
3462 
3463 /* A write screens off any subsequent reads; but write marks come from the
3464  * straight-line code between a state and its parent.  When we arrive at a
3465  * jump target (in the first iteration of the propagate_liveness() loop),
3466  * we didn't arrive by the straight-line code, so read marks in state must
3467  * propagate to parent regardless of state's write marks.
3468  */
3469 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3470 				  struct bpf_verifier_state *parent)
3471 {
3472 	bool writes = parent == state->parent; /* Observe write marks */
3473 	bool touched = false; /* any changes made? */
3474 	int i;
3475 
3476 	if (!parent)
3477 		return touched;
3478 	/* Propagate read liveness of registers... */
3479 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3480 	/* We don't need to worry about FP liveness because it's read-only */
3481 	for (i = 0; i < BPF_REG_FP; i++) {
3482 		if (parent->regs[i].live & REG_LIVE_READ)
3483 			continue;
3484 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3485 			continue;
3486 		if (state->regs[i].live & REG_LIVE_READ) {
3487 			parent->regs[i].live |= REG_LIVE_READ;
3488 			touched = true;
3489 		}
3490 	}
3491 	/* ... and stack slots */
3492 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3493 		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3494 			continue;
3495 		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3496 			continue;
3497 		if (parent->spilled_regs[i].live & REG_LIVE_READ)
3498 			continue;
3499 		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3500 			continue;
3501 		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3502 			parent->spilled_regs[i].live |= REG_LIVE_READ;
3503 			touched = true;
3504 		}
3505 	}
3506 	return touched;
3507 }
3508 
3509 /* "parent" is "a state from which we reach the current state", but initially
3510  * it is not the state->parent (i.e. "the state whose straight-line code leads
3511  * to the current state"), instead it is the state that happened to arrive at
3512  * a (prunable) equivalent of the current state.  See comment above
3513  * do_propagate_liveness() for consequences of this.
3514  * This function is just a more efficient way of calling mark_reg_read() or
3515  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3516  * though it requires that parent != state->parent in the call arguments.
3517  */
3518 static void propagate_liveness(const struct bpf_verifier_state *state,
3519 			       struct bpf_verifier_state *parent)
3520 {
3521 	while (do_propagate_liveness(state, parent)) {
3522 		/* Something changed, so we need to feed those changes onward */
3523 		state = parent;
3524 		parent = state->parent;
3525 	}
3526 }
3527 
3528 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3529 {
3530 	struct bpf_verifier_state_list *new_sl;
3531 	struct bpf_verifier_state_list *sl;
3532 	int i;
3533 
3534 	sl = env->explored_states[insn_idx];
3535 	if (!sl)
3536 		/* this 'insn_idx' instruction wasn't marked, so we will not
3537 		 * be doing state search here
3538 		 */
3539 		return 0;
3540 
3541 	while (sl != STATE_LIST_MARK) {
3542 		if (states_equal(env, &sl->state, &env->cur_state)) {
3543 			/* reached equivalent register/stack state,
3544 			 * prune the search.
3545 			 * Registers read by the continuation are read by us.
3546 			 * If we have any write marks in env->cur_state, they
3547 			 * will prevent corresponding reads in the continuation
3548 			 * from reaching our parent (an explored_state).  Our
3549 			 * own state will get the read marks recorded, but
3550 			 * they'll be immediately forgotten as we're pruning
3551 			 * this state and will pop a new one.
3552 			 */
3553 			propagate_liveness(&sl->state, &env->cur_state);
3554 			return 1;
3555 		}
3556 		sl = sl->next;
3557 	}
3558 
3559 	/* there were no equivalent states, remember current one.
3560 	 * technically the current state is not proven to be safe yet,
3561 	 * but it will either reach bpf_exit (which means it's safe) or
3562 	 * it will be rejected. Since there are no loops, we won't be
3563 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3564 	 */
3565 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3566 	if (!new_sl)
3567 		return -ENOMEM;
3568 
3569 	/* add new state to the head of linked list */
3570 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3571 	new_sl->next = env->explored_states[insn_idx];
3572 	env->explored_states[insn_idx] = new_sl;
3573 	/* connect new state to parentage chain */
3574 	env->cur_state.parent = &new_sl->state;
3575 	/* clear write marks in current state: the writes we did are not writes
3576 	 * our child did, so they don't screen off its reads from us.
3577 	 * (There are no read marks in current state, because reads always mark
3578 	 * their parent and current state never has children yet.  Only
3579 	 * explored_states can get read marks.)
3580 	 */
3581 	for (i = 0; i < BPF_REG_FP; i++)
3582 		env->cur_state.regs[i].live = REG_LIVE_NONE;
3583 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3584 		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3585 			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3586 	return 0;
3587 }
3588 
3589 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3590 				  int insn_idx, int prev_insn_idx)
3591 {
3592 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3593 		return 0;
3594 
3595 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3596 }
3597 
3598 static int do_check(struct bpf_verifier_env *env)
3599 {
3600 	struct bpf_verifier_state *state = &env->cur_state;
3601 	struct bpf_insn *insns = env->prog->insnsi;
3602 	struct bpf_reg_state *regs = state->regs;
3603 	int insn_cnt = env->prog->len;
3604 	int insn_idx, prev_insn_idx = 0;
3605 	int insn_processed = 0;
3606 	bool do_print_state = false;
3607 
3608 	init_reg_state(regs);
3609 	state->parent = NULL;
3610 	insn_idx = 0;
3611 	for (;;) {
3612 		struct bpf_insn *insn;
3613 		u8 class;
3614 		int err;
3615 
3616 		if (insn_idx >= insn_cnt) {
3617 			verbose("invalid insn idx %d insn_cnt %d\n",
3618 				insn_idx, insn_cnt);
3619 			return -EFAULT;
3620 		}
3621 
3622 		insn = &insns[insn_idx];
3623 		class = BPF_CLASS(insn->code);
3624 
3625 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3626 			verbose("BPF program is too large. Processed %d insn\n",
3627 				insn_processed);
3628 			return -E2BIG;
3629 		}
3630 
3631 		err = is_state_visited(env, insn_idx);
3632 		if (err < 0)
3633 			return err;
3634 		if (err == 1) {
3635 			/* found equivalent state, can prune the search */
3636 			if (log_level) {
3637 				if (do_print_state)
3638 					verbose("\nfrom %d to %d: safe\n",
3639 						prev_insn_idx, insn_idx);
3640 				else
3641 					verbose("%d: safe\n", insn_idx);
3642 			}
3643 			goto process_bpf_exit;
3644 		}
3645 
3646 		if (need_resched())
3647 			cond_resched();
3648 
3649 		if (log_level > 1 || (log_level && do_print_state)) {
3650 			if (log_level > 1)
3651 				verbose("%d:", insn_idx);
3652 			else
3653 				verbose("\nfrom %d to %d:",
3654 					prev_insn_idx, insn_idx);
3655 			print_verifier_state(&env->cur_state);
3656 			do_print_state = false;
3657 		}
3658 
3659 		if (log_level) {
3660 			verbose("%d: ", insn_idx);
3661 			print_bpf_insn(env, insn);
3662 		}
3663 
3664 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3665 		if (err)
3666 			return err;
3667 
3668 		if (class == BPF_ALU || class == BPF_ALU64) {
3669 			err = check_alu_op(env, insn);
3670 			if (err)
3671 				return err;
3672 
3673 		} else if (class == BPF_LDX) {
3674 			enum bpf_reg_type *prev_src_type, src_reg_type;
3675 
3676 			/* check for reserved fields is already done */
3677 
3678 			/* check src operand */
3679 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3680 			if (err)
3681 				return err;
3682 
3683 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3684 			if (err)
3685 				return err;
3686 
3687 			src_reg_type = regs[insn->src_reg].type;
3688 
3689 			/* check that memory (src_reg + off) is readable,
3690 			 * the state of dst_reg will be updated by this func
3691 			 */
3692 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3693 					       BPF_SIZE(insn->code), BPF_READ,
3694 					       insn->dst_reg);
3695 			if (err)
3696 				return err;
3697 
3698 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3699 
3700 			if (*prev_src_type == NOT_INIT) {
3701 				/* saw a valid insn
3702 				 * dst_reg = *(u32 *)(src_reg + off)
3703 				 * save type to validate intersecting paths
3704 				 */
3705 				*prev_src_type = src_reg_type;
3706 
3707 			} else if (src_reg_type != *prev_src_type &&
3708 				   (src_reg_type == PTR_TO_CTX ||
3709 				    *prev_src_type == PTR_TO_CTX)) {
3710 				/* ABuser program is trying to use the same insn
3711 				 * dst_reg = *(u32*) (src_reg + off)
3712 				 * with different pointer types:
3713 				 * src_reg == ctx in one branch and
3714 				 * src_reg == stack|map in some other branch.
3715 				 * Reject it.
3716 				 */
3717 				verbose("same insn cannot be used with different pointers\n");
3718 				return -EINVAL;
3719 			}
3720 
3721 		} else if (class == BPF_STX) {
3722 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3723 
3724 			if (BPF_MODE(insn->code) == BPF_XADD) {
3725 				err = check_xadd(env, insn_idx, insn);
3726 				if (err)
3727 					return err;
3728 				insn_idx++;
3729 				continue;
3730 			}
3731 
3732 			/* check src1 operand */
3733 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3734 			if (err)
3735 				return err;
3736 			/* check src2 operand */
3737 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3738 			if (err)
3739 				return err;
3740 
3741 			dst_reg_type = regs[insn->dst_reg].type;
3742 
3743 			/* check that memory (dst_reg + off) is writeable */
3744 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3745 					       BPF_SIZE(insn->code), BPF_WRITE,
3746 					       insn->src_reg);
3747 			if (err)
3748 				return err;
3749 
3750 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3751 
3752 			if (*prev_dst_type == NOT_INIT) {
3753 				*prev_dst_type = dst_reg_type;
3754 			} else if (dst_reg_type != *prev_dst_type &&
3755 				   (dst_reg_type == PTR_TO_CTX ||
3756 				    *prev_dst_type == PTR_TO_CTX)) {
3757 				verbose("same insn cannot be used with different pointers\n");
3758 				return -EINVAL;
3759 			}
3760 
3761 		} else if (class == BPF_ST) {
3762 			if (BPF_MODE(insn->code) != BPF_MEM ||
3763 			    insn->src_reg != BPF_REG_0) {
3764 				verbose("BPF_ST uses reserved fields\n");
3765 				return -EINVAL;
3766 			}
3767 			/* check src operand */
3768 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3769 			if (err)
3770 				return err;
3771 
3772 			/* check that memory (dst_reg + off) is writeable */
3773 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3774 					       BPF_SIZE(insn->code), BPF_WRITE,
3775 					       -1);
3776 			if (err)
3777 				return err;
3778 
3779 		} else if (class == BPF_JMP) {
3780 			u8 opcode = BPF_OP(insn->code);
3781 
3782 			if (opcode == BPF_CALL) {
3783 				if (BPF_SRC(insn->code) != BPF_K ||
3784 				    insn->off != 0 ||
3785 				    insn->src_reg != BPF_REG_0 ||
3786 				    insn->dst_reg != BPF_REG_0) {
3787 					verbose("BPF_CALL uses reserved fields\n");
3788 					return -EINVAL;
3789 				}
3790 
3791 				err = check_call(env, insn->imm, insn_idx);
3792 				if (err)
3793 					return err;
3794 
3795 			} else if (opcode == BPF_JA) {
3796 				if (BPF_SRC(insn->code) != BPF_K ||
3797 				    insn->imm != 0 ||
3798 				    insn->src_reg != BPF_REG_0 ||
3799 				    insn->dst_reg != BPF_REG_0) {
3800 					verbose("BPF_JA uses reserved fields\n");
3801 					return -EINVAL;
3802 				}
3803 
3804 				insn_idx += insn->off + 1;
3805 				continue;
3806 
3807 			} else if (opcode == BPF_EXIT) {
3808 				if (BPF_SRC(insn->code) != BPF_K ||
3809 				    insn->imm != 0 ||
3810 				    insn->src_reg != BPF_REG_0 ||
3811 				    insn->dst_reg != BPF_REG_0) {
3812 					verbose("BPF_EXIT uses reserved fields\n");
3813 					return -EINVAL;
3814 				}
3815 
3816 				/* eBPF calling convetion is such that R0 is used
3817 				 * to return the value from eBPF program.
3818 				 * Make sure that it's readable at this time
3819 				 * of bpf_exit, which means that program wrote
3820 				 * something into it earlier
3821 				 */
3822 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3823 				if (err)
3824 					return err;
3825 
3826 				if (is_pointer_value(env, BPF_REG_0)) {
3827 					verbose("R0 leaks addr as return value\n");
3828 					return -EACCES;
3829 				}
3830 
3831 process_bpf_exit:
3832 				insn_idx = pop_stack(env, &prev_insn_idx);
3833 				if (insn_idx < 0) {
3834 					break;
3835 				} else {
3836 					do_print_state = true;
3837 					continue;
3838 				}
3839 			} else {
3840 				err = check_cond_jmp_op(env, insn, &insn_idx);
3841 				if (err)
3842 					return err;
3843 			}
3844 		} else if (class == BPF_LD) {
3845 			u8 mode = BPF_MODE(insn->code);
3846 
3847 			if (mode == BPF_ABS || mode == BPF_IND) {
3848 				err = check_ld_abs(env, insn);
3849 				if (err)
3850 					return err;
3851 
3852 			} else if (mode == BPF_IMM) {
3853 				err = check_ld_imm(env, insn);
3854 				if (err)
3855 					return err;
3856 
3857 				insn_idx++;
3858 			} else {
3859 				verbose("invalid BPF_LD mode\n");
3860 				return -EINVAL;
3861 			}
3862 		} else {
3863 			verbose("unknown insn class %d\n", class);
3864 			return -EINVAL;
3865 		}
3866 
3867 		insn_idx++;
3868 	}
3869 
3870 	verbose("processed %d insns, stack depth %d\n",
3871 		insn_processed, env->prog->aux->stack_depth);
3872 	return 0;
3873 }
3874 
3875 static int check_map_prealloc(struct bpf_map *map)
3876 {
3877 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3878 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3879 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3880 		!(map->map_flags & BPF_F_NO_PREALLOC);
3881 }
3882 
3883 static int check_map_prog_compatibility(struct bpf_map *map,
3884 					struct bpf_prog *prog)
3885 
3886 {
3887 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3888 	 * preallocated hash maps, since doing memory allocation
3889 	 * in overflow_handler can crash depending on where nmi got
3890 	 * triggered.
3891 	 */
3892 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3893 		if (!check_map_prealloc(map)) {
3894 			verbose("perf_event programs can only use preallocated hash map\n");
3895 			return -EINVAL;
3896 		}
3897 		if (map->inner_map_meta &&
3898 		    !check_map_prealloc(map->inner_map_meta)) {
3899 			verbose("perf_event programs can only use preallocated inner hash map\n");
3900 			return -EINVAL;
3901 		}
3902 	}
3903 	return 0;
3904 }
3905 
3906 /* look for pseudo eBPF instructions that access map FDs and
3907  * replace them with actual map pointers
3908  */
3909 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3910 {
3911 	struct bpf_insn *insn = env->prog->insnsi;
3912 	int insn_cnt = env->prog->len;
3913 	int i, j, err;
3914 
3915 	err = bpf_prog_calc_tag(env->prog);
3916 	if (err)
3917 		return err;
3918 
3919 	for (i = 0; i < insn_cnt; i++, insn++) {
3920 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3921 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3922 			verbose("BPF_LDX uses reserved fields\n");
3923 			return -EINVAL;
3924 		}
3925 
3926 		if (BPF_CLASS(insn->code) == BPF_STX &&
3927 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3928 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3929 			verbose("BPF_STX uses reserved fields\n");
3930 			return -EINVAL;
3931 		}
3932 
3933 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3934 			struct bpf_map *map;
3935 			struct fd f;
3936 
3937 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3938 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3939 			    insn[1].off != 0) {
3940 				verbose("invalid bpf_ld_imm64 insn\n");
3941 				return -EINVAL;
3942 			}
3943 
3944 			if (insn->src_reg == 0)
3945 				/* valid generic load 64-bit imm */
3946 				goto next_insn;
3947 
3948 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3949 				verbose("unrecognized bpf_ld_imm64 insn\n");
3950 				return -EINVAL;
3951 			}
3952 
3953 			f = fdget(insn->imm);
3954 			map = __bpf_map_get(f);
3955 			if (IS_ERR(map)) {
3956 				verbose("fd %d is not pointing to valid bpf_map\n",
3957 					insn->imm);
3958 				return PTR_ERR(map);
3959 			}
3960 
3961 			err = check_map_prog_compatibility(map, env->prog);
3962 			if (err) {
3963 				fdput(f);
3964 				return err;
3965 			}
3966 
3967 			/* store map pointer inside BPF_LD_IMM64 instruction */
3968 			insn[0].imm = (u32) (unsigned long) map;
3969 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3970 
3971 			/* check whether we recorded this map already */
3972 			for (j = 0; j < env->used_map_cnt; j++)
3973 				if (env->used_maps[j] == map) {
3974 					fdput(f);
3975 					goto next_insn;
3976 				}
3977 
3978 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3979 				fdput(f);
3980 				return -E2BIG;
3981 			}
3982 
3983 			/* hold the map. If the program is rejected by verifier,
3984 			 * the map will be released by release_maps() or it
3985 			 * will be used by the valid program until it's unloaded
3986 			 * and all maps are released in free_bpf_prog_info()
3987 			 */
3988 			map = bpf_map_inc(map, false);
3989 			if (IS_ERR(map)) {
3990 				fdput(f);
3991 				return PTR_ERR(map);
3992 			}
3993 			env->used_maps[env->used_map_cnt++] = map;
3994 
3995 			fdput(f);
3996 next_insn:
3997 			insn++;
3998 			i++;
3999 		}
4000 	}
4001 
4002 	/* now all pseudo BPF_LD_IMM64 instructions load valid
4003 	 * 'struct bpf_map *' into a register instead of user map_fd.
4004 	 * These pointers will be used later by verifier to validate map access.
4005 	 */
4006 	return 0;
4007 }
4008 
4009 /* drop refcnt of maps used by the rejected program */
4010 static void release_maps(struct bpf_verifier_env *env)
4011 {
4012 	int i;
4013 
4014 	for (i = 0; i < env->used_map_cnt; i++)
4015 		bpf_map_put(env->used_maps[i]);
4016 }
4017 
4018 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4019 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4020 {
4021 	struct bpf_insn *insn = env->prog->insnsi;
4022 	int insn_cnt = env->prog->len;
4023 	int i;
4024 
4025 	for (i = 0; i < insn_cnt; i++, insn++)
4026 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4027 			insn->src_reg = 0;
4028 }
4029 
4030 /* single env->prog->insni[off] instruction was replaced with the range
4031  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4032  * [0, off) and [off, end) to new locations, so the patched range stays zero
4033  */
4034 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4035 				u32 off, u32 cnt)
4036 {
4037 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4038 
4039 	if (cnt == 1)
4040 		return 0;
4041 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4042 	if (!new_data)
4043 		return -ENOMEM;
4044 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4045 	memcpy(new_data + off + cnt - 1, old_data + off,
4046 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4047 	env->insn_aux_data = new_data;
4048 	vfree(old_data);
4049 	return 0;
4050 }
4051 
4052 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4053 					    const struct bpf_insn *patch, u32 len)
4054 {
4055 	struct bpf_prog *new_prog;
4056 
4057 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4058 	if (!new_prog)
4059 		return NULL;
4060 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4061 		return NULL;
4062 	return new_prog;
4063 }
4064 
4065 /* convert load instructions that access fields of 'struct __sk_buff'
4066  * into sequence of instructions that access fields of 'struct sk_buff'
4067  */
4068 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4069 {
4070 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4071 	int i, cnt, size, ctx_field_size, delta = 0;
4072 	const int insn_cnt = env->prog->len;
4073 	struct bpf_insn insn_buf[16], *insn;
4074 	struct bpf_prog *new_prog;
4075 	enum bpf_access_type type;
4076 	bool is_narrower_load;
4077 	u32 target_size;
4078 
4079 	if (ops->gen_prologue) {
4080 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4081 					env->prog);
4082 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4083 			verbose("bpf verifier is misconfigured\n");
4084 			return -EINVAL;
4085 		} else if (cnt) {
4086 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4087 			if (!new_prog)
4088 				return -ENOMEM;
4089 
4090 			env->prog = new_prog;
4091 			delta += cnt - 1;
4092 		}
4093 	}
4094 
4095 	if (!ops->convert_ctx_access)
4096 		return 0;
4097 
4098 	insn = env->prog->insnsi + delta;
4099 
4100 	for (i = 0; i < insn_cnt; i++, insn++) {
4101 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4102 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4103 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4104 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4105 			type = BPF_READ;
4106 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4107 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4108 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4109 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4110 			type = BPF_WRITE;
4111 		else
4112 			continue;
4113 
4114 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4115 			continue;
4116 
4117 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4118 		size = BPF_LDST_BYTES(insn);
4119 
4120 		/* If the read access is a narrower load of the field,
4121 		 * convert to a 4/8-byte load, to minimum program type specific
4122 		 * convert_ctx_access changes. If conversion is successful,
4123 		 * we will apply proper mask to the result.
4124 		 */
4125 		is_narrower_load = size < ctx_field_size;
4126 		if (is_narrower_load) {
4127 			u32 off = insn->off;
4128 			u8 size_code;
4129 
4130 			if (type == BPF_WRITE) {
4131 				verbose("bpf verifier narrow ctx access misconfigured\n");
4132 				return -EINVAL;
4133 			}
4134 
4135 			size_code = BPF_H;
4136 			if (ctx_field_size == 4)
4137 				size_code = BPF_W;
4138 			else if (ctx_field_size == 8)
4139 				size_code = BPF_DW;
4140 
4141 			insn->off = off & ~(ctx_field_size - 1);
4142 			insn->code = BPF_LDX | BPF_MEM | size_code;
4143 		}
4144 
4145 		target_size = 0;
4146 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4147 					      &target_size);
4148 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4149 		    (ctx_field_size && !target_size)) {
4150 			verbose("bpf verifier is misconfigured\n");
4151 			return -EINVAL;
4152 		}
4153 
4154 		if (is_narrower_load && size < target_size) {
4155 			if (ctx_field_size <= 4)
4156 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4157 								(1 << size * 8) - 1);
4158 			else
4159 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4160 								(1 << size * 8) - 1);
4161 		}
4162 
4163 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4164 		if (!new_prog)
4165 			return -ENOMEM;
4166 
4167 		delta += cnt - 1;
4168 
4169 		/* keep walking new program and skip insns we just inserted */
4170 		env->prog = new_prog;
4171 		insn      = new_prog->insnsi + i + delta;
4172 	}
4173 
4174 	return 0;
4175 }
4176 
4177 /* fixup insn->imm field of bpf_call instructions
4178  * and inline eligible helpers as explicit sequence of BPF instructions
4179  *
4180  * this function is called after eBPF program passed verification
4181  */
4182 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4183 {
4184 	struct bpf_prog *prog = env->prog;
4185 	struct bpf_insn *insn = prog->insnsi;
4186 	const struct bpf_func_proto *fn;
4187 	const int insn_cnt = prog->len;
4188 	struct bpf_insn insn_buf[16];
4189 	struct bpf_prog *new_prog;
4190 	struct bpf_map *map_ptr;
4191 	int i, cnt, delta = 0;
4192 
4193 	for (i = 0; i < insn_cnt; i++, insn++) {
4194 		if (insn->code != (BPF_JMP | BPF_CALL))
4195 			continue;
4196 
4197 		if (insn->imm == BPF_FUNC_get_route_realm)
4198 			prog->dst_needed = 1;
4199 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4200 			bpf_user_rnd_init_once();
4201 		if (insn->imm == BPF_FUNC_tail_call) {
4202 			/* If we tail call into other programs, we
4203 			 * cannot make any assumptions since they can
4204 			 * be replaced dynamically during runtime in
4205 			 * the program array.
4206 			 */
4207 			prog->cb_access = 1;
4208 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4209 
4210 			/* mark bpf_tail_call as different opcode to avoid
4211 			 * conditional branch in the interpeter for every normal
4212 			 * call and to prevent accidental JITing by JIT compiler
4213 			 * that doesn't support bpf_tail_call yet
4214 			 */
4215 			insn->imm = 0;
4216 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4217 			continue;
4218 		}
4219 
4220 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4221 		 * handlers are currently limited to 64 bit only.
4222 		 */
4223 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4224 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4225 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4226 			if (map_ptr == BPF_MAP_PTR_POISON ||
4227 			    !map_ptr->ops->map_gen_lookup)
4228 				goto patch_call_imm;
4229 
4230 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4231 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4232 				verbose("bpf verifier is misconfigured\n");
4233 				return -EINVAL;
4234 			}
4235 
4236 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4237 						       cnt);
4238 			if (!new_prog)
4239 				return -ENOMEM;
4240 
4241 			delta += cnt - 1;
4242 
4243 			/* keep walking new program and skip insns we just inserted */
4244 			env->prog = prog = new_prog;
4245 			insn      = new_prog->insnsi + i + delta;
4246 			continue;
4247 		}
4248 
4249 		if (insn->imm == BPF_FUNC_redirect_map) {
4250 			/* Note, we cannot use prog directly as imm as subsequent
4251 			 * rewrites would still change the prog pointer. The only
4252 			 * stable address we can use is aux, which also works with
4253 			 * prog clones during blinding.
4254 			 */
4255 			u64 addr = (unsigned long)prog->aux;
4256 			struct bpf_insn r4_ld[] = {
4257 				BPF_LD_IMM64(BPF_REG_4, addr),
4258 				*insn,
4259 			};
4260 			cnt = ARRAY_SIZE(r4_ld);
4261 
4262 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4263 			if (!new_prog)
4264 				return -ENOMEM;
4265 
4266 			delta    += cnt - 1;
4267 			env->prog = prog = new_prog;
4268 			insn      = new_prog->insnsi + i + delta;
4269 		}
4270 patch_call_imm:
4271 		fn = prog->aux->ops->get_func_proto(insn->imm);
4272 		/* all functions that have prototype and verifier allowed
4273 		 * programs to call them, must be real in-kernel functions
4274 		 */
4275 		if (!fn->func) {
4276 			verbose("kernel subsystem misconfigured func %s#%d\n",
4277 				func_id_name(insn->imm), insn->imm);
4278 			return -EFAULT;
4279 		}
4280 		insn->imm = fn->func - __bpf_call_base;
4281 	}
4282 
4283 	return 0;
4284 }
4285 
4286 static void free_states(struct bpf_verifier_env *env)
4287 {
4288 	struct bpf_verifier_state_list *sl, *sln;
4289 	int i;
4290 
4291 	if (!env->explored_states)
4292 		return;
4293 
4294 	for (i = 0; i < env->prog->len; i++) {
4295 		sl = env->explored_states[i];
4296 
4297 		if (sl)
4298 			while (sl != STATE_LIST_MARK) {
4299 				sln = sl->next;
4300 				kfree(sl);
4301 				sl = sln;
4302 			}
4303 	}
4304 
4305 	kfree(env->explored_states);
4306 }
4307 
4308 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4309 {
4310 	char __user *log_ubuf = NULL;
4311 	struct bpf_verifier_env *env;
4312 	int ret = -EINVAL;
4313 
4314 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4315 	 * allocate/free it every time bpf_check() is called
4316 	 */
4317 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4318 	if (!env)
4319 		return -ENOMEM;
4320 
4321 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4322 				     (*prog)->len);
4323 	ret = -ENOMEM;
4324 	if (!env->insn_aux_data)
4325 		goto err_free_env;
4326 	env->prog = *prog;
4327 
4328 	/* grab the mutex to protect few globals used by verifier */
4329 	mutex_lock(&bpf_verifier_lock);
4330 
4331 	if (attr->log_level || attr->log_buf || attr->log_size) {
4332 		/* user requested verbose verifier output
4333 		 * and supplied buffer to store the verification trace
4334 		 */
4335 		log_level = attr->log_level;
4336 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4337 		log_size = attr->log_size;
4338 		log_len = 0;
4339 
4340 		ret = -EINVAL;
4341 		/* log_* values have to be sane */
4342 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4343 		    log_level == 0 || log_ubuf == NULL)
4344 			goto err_unlock;
4345 
4346 		ret = -ENOMEM;
4347 		log_buf = vmalloc(log_size);
4348 		if (!log_buf)
4349 			goto err_unlock;
4350 	} else {
4351 		log_level = 0;
4352 	}
4353 
4354 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4355 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4356 		env->strict_alignment = true;
4357 
4358 	ret = replace_map_fd_with_map_ptr(env);
4359 	if (ret < 0)
4360 		goto skip_full_check;
4361 
4362 	env->explored_states = kcalloc(env->prog->len,
4363 				       sizeof(struct bpf_verifier_state_list *),
4364 				       GFP_USER);
4365 	ret = -ENOMEM;
4366 	if (!env->explored_states)
4367 		goto skip_full_check;
4368 
4369 	ret = check_cfg(env);
4370 	if (ret < 0)
4371 		goto skip_full_check;
4372 
4373 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4374 
4375 	ret = do_check(env);
4376 
4377 skip_full_check:
4378 	while (pop_stack(env, NULL) >= 0);
4379 	free_states(env);
4380 
4381 	if (ret == 0)
4382 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4383 		ret = convert_ctx_accesses(env);
4384 
4385 	if (ret == 0)
4386 		ret = fixup_bpf_calls(env);
4387 
4388 	if (log_level && log_len >= log_size - 1) {
4389 		BUG_ON(log_len >= log_size);
4390 		/* verifier log exceeded user supplied buffer */
4391 		ret = -ENOSPC;
4392 		/* fall through to return what was recorded */
4393 	}
4394 
4395 	/* copy verifier log back to user space including trailing zero */
4396 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4397 		ret = -EFAULT;
4398 		goto free_log_buf;
4399 	}
4400 
4401 	if (ret == 0 && env->used_map_cnt) {
4402 		/* if program passed verifier, update used_maps in bpf_prog_info */
4403 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4404 							  sizeof(env->used_maps[0]),
4405 							  GFP_KERNEL);
4406 
4407 		if (!env->prog->aux->used_maps) {
4408 			ret = -ENOMEM;
4409 			goto free_log_buf;
4410 		}
4411 
4412 		memcpy(env->prog->aux->used_maps, env->used_maps,
4413 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4414 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4415 
4416 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4417 		 * bpf_ld_imm64 instructions
4418 		 */
4419 		convert_pseudo_ld_imm64(env);
4420 	}
4421 
4422 free_log_buf:
4423 	if (log_level)
4424 		vfree(log_buf);
4425 	if (!env->prog->aux->used_maps)
4426 		/* if we didn't copy map pointers into bpf_prog_info, release
4427 		 * them now. Otherwise free_bpf_prog_info() will release them.
4428 		 */
4429 		release_maps(env);
4430 	*prog = env->prog;
4431 err_unlock:
4432 	mutex_unlock(&bpf_verifier_lock);
4433 	vfree(env->insn_aux_data);
4434 err_free_env:
4435 	kfree(env);
4436 	return ret;
4437 }
4438 
4439 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4440 		 void *priv)
4441 {
4442 	struct bpf_verifier_env *env;
4443 	int ret;
4444 
4445 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4446 	if (!env)
4447 		return -ENOMEM;
4448 
4449 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4450 				     prog->len);
4451 	ret = -ENOMEM;
4452 	if (!env->insn_aux_data)
4453 		goto err_free_env;
4454 	env->prog = prog;
4455 	env->analyzer_ops = ops;
4456 	env->analyzer_priv = priv;
4457 
4458 	/* grab the mutex to protect few globals used by verifier */
4459 	mutex_lock(&bpf_verifier_lock);
4460 
4461 	log_level = 0;
4462 
4463 	env->strict_alignment = false;
4464 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4465 		env->strict_alignment = true;
4466 
4467 	env->explored_states = kcalloc(env->prog->len,
4468 				       sizeof(struct bpf_verifier_state_list *),
4469 				       GFP_KERNEL);
4470 	ret = -ENOMEM;
4471 	if (!env->explored_states)
4472 		goto skip_full_check;
4473 
4474 	ret = check_cfg(env);
4475 	if (ret < 0)
4476 		goto skip_full_check;
4477 
4478 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4479 
4480 	ret = do_check(env);
4481 
4482 skip_full_check:
4483 	while (pop_stack(env, NULL) >= 0);
4484 	free_states(env);
4485 
4486 	mutex_unlock(&bpf_verifier_lock);
4487 	vfree(env->insn_aux_data);
4488 err_free_env:
4489 	kfree(env);
4490 	return ret;
4491 }
4492 EXPORT_SYMBOL_GPL(bpf_analyzer);
4493