1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 if (type_may_be_null(flag)) 2543 regs[regno].id = ++env->id_gen; 2544 } 2545 2546 #define DEF_NOT_SUBREG (0) 2547 static void init_reg_state(struct bpf_verifier_env *env, 2548 struct bpf_func_state *state) 2549 { 2550 struct bpf_reg_state *regs = state->regs; 2551 int i; 2552 2553 for (i = 0; i < MAX_BPF_REG; i++) { 2554 mark_reg_not_init(env, regs, i); 2555 regs[i].live = REG_LIVE_NONE; 2556 regs[i].parent = NULL; 2557 regs[i].subreg_def = DEF_NOT_SUBREG; 2558 } 2559 2560 /* frame pointer */ 2561 regs[BPF_REG_FP].type = PTR_TO_STACK; 2562 mark_reg_known_zero(env, regs, BPF_REG_FP); 2563 regs[BPF_REG_FP].frameno = state->frameno; 2564 } 2565 2566 #define BPF_MAIN_FUNC (-1) 2567 static void init_func_state(struct bpf_verifier_env *env, 2568 struct bpf_func_state *state, 2569 int callsite, int frameno, int subprogno) 2570 { 2571 state->callsite = callsite; 2572 state->frameno = frameno; 2573 state->subprogno = subprogno; 2574 state->callback_ret_range = tnum_range(0, 0); 2575 init_reg_state(env, state); 2576 mark_verifier_state_scratched(env); 2577 } 2578 2579 /* Similar to push_stack(), but for async callbacks */ 2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2581 int insn_idx, int prev_insn_idx, 2582 int subprog) 2583 { 2584 struct bpf_verifier_stack_elem *elem; 2585 struct bpf_func_state *frame; 2586 2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2588 if (!elem) 2589 goto err; 2590 2591 elem->insn_idx = insn_idx; 2592 elem->prev_insn_idx = prev_insn_idx; 2593 elem->next = env->head; 2594 elem->log_pos = env->log.end_pos; 2595 env->head = elem; 2596 env->stack_size++; 2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2598 verbose(env, 2599 "The sequence of %d jumps is too complex for async cb.\n", 2600 env->stack_size); 2601 goto err; 2602 } 2603 /* Unlike push_stack() do not copy_verifier_state(). 2604 * The caller state doesn't matter. 2605 * This is async callback. It starts in a fresh stack. 2606 * Initialize it similar to do_check_common(). 2607 */ 2608 elem->st.branches = 1; 2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2610 if (!frame) 2611 goto err; 2612 init_func_state(env, frame, 2613 BPF_MAIN_FUNC /* callsite */, 2614 0 /* frameno within this callchain */, 2615 subprog /* subprog number within this prog */); 2616 elem->st.frame[0] = frame; 2617 return &elem->st; 2618 err: 2619 free_verifier_state(env->cur_state, true); 2620 env->cur_state = NULL; 2621 /* pop all elements and return */ 2622 while (!pop_stack(env, NULL, NULL, false)); 2623 return NULL; 2624 } 2625 2626 2627 enum reg_arg_type { 2628 SRC_OP, /* register is used as source operand */ 2629 DST_OP, /* register is used as destination operand */ 2630 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2631 }; 2632 2633 static int cmp_subprogs(const void *a, const void *b) 2634 { 2635 return ((struct bpf_subprog_info *)a)->start - 2636 ((struct bpf_subprog_info *)b)->start; 2637 } 2638 2639 static int find_subprog(struct bpf_verifier_env *env, int off) 2640 { 2641 struct bpf_subprog_info *p; 2642 2643 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2644 sizeof(env->subprog_info[0]), cmp_subprogs); 2645 if (!p) 2646 return -ENOENT; 2647 return p - env->subprog_info; 2648 2649 } 2650 2651 static int add_subprog(struct bpf_verifier_env *env, int off) 2652 { 2653 int insn_cnt = env->prog->len; 2654 int ret; 2655 2656 if (off >= insn_cnt || off < 0) { 2657 verbose(env, "call to invalid destination\n"); 2658 return -EINVAL; 2659 } 2660 ret = find_subprog(env, off); 2661 if (ret >= 0) 2662 return ret; 2663 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2664 verbose(env, "too many subprograms\n"); 2665 return -E2BIG; 2666 } 2667 /* determine subprog starts. The end is one before the next starts */ 2668 env->subprog_info[env->subprog_cnt++].start = off; 2669 sort(env->subprog_info, env->subprog_cnt, 2670 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2671 return env->subprog_cnt - 1; 2672 } 2673 2674 #define MAX_KFUNC_DESCS 256 2675 #define MAX_KFUNC_BTFS 256 2676 2677 struct bpf_kfunc_desc { 2678 struct btf_func_model func_model; 2679 u32 func_id; 2680 s32 imm; 2681 u16 offset; 2682 unsigned long addr; 2683 }; 2684 2685 struct bpf_kfunc_btf { 2686 struct btf *btf; 2687 struct module *module; 2688 u16 offset; 2689 }; 2690 2691 struct bpf_kfunc_desc_tab { 2692 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2693 * verification. JITs do lookups by bpf_insn, where func_id may not be 2694 * available, therefore at the end of verification do_misc_fixups() 2695 * sorts this by imm and offset. 2696 */ 2697 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2698 u32 nr_descs; 2699 }; 2700 2701 struct bpf_kfunc_btf_tab { 2702 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2703 u32 nr_descs; 2704 }; 2705 2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2707 { 2708 const struct bpf_kfunc_desc *d0 = a; 2709 const struct bpf_kfunc_desc *d1 = b; 2710 2711 /* func_id is not greater than BTF_MAX_TYPE */ 2712 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2713 } 2714 2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2716 { 2717 const struct bpf_kfunc_btf *d0 = a; 2718 const struct bpf_kfunc_btf *d1 = b; 2719 2720 return d0->offset - d1->offset; 2721 } 2722 2723 static const struct bpf_kfunc_desc * 2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2725 { 2726 struct bpf_kfunc_desc desc = { 2727 .func_id = func_id, 2728 .offset = offset, 2729 }; 2730 struct bpf_kfunc_desc_tab *tab; 2731 2732 tab = prog->aux->kfunc_tab; 2733 return bsearch(&desc, tab->descs, tab->nr_descs, 2734 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2735 } 2736 2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2738 u16 btf_fd_idx, u8 **func_addr) 2739 { 2740 const struct bpf_kfunc_desc *desc; 2741 2742 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2743 if (!desc) 2744 return -EFAULT; 2745 2746 *func_addr = (u8 *)desc->addr; 2747 return 0; 2748 } 2749 2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2751 s16 offset) 2752 { 2753 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2754 struct bpf_kfunc_btf_tab *tab; 2755 struct bpf_kfunc_btf *b; 2756 struct module *mod; 2757 struct btf *btf; 2758 int btf_fd; 2759 2760 tab = env->prog->aux->kfunc_btf_tab; 2761 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2762 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2763 if (!b) { 2764 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2765 verbose(env, "too many different module BTFs\n"); 2766 return ERR_PTR(-E2BIG); 2767 } 2768 2769 if (bpfptr_is_null(env->fd_array)) { 2770 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2771 return ERR_PTR(-EPROTO); 2772 } 2773 2774 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2775 offset * sizeof(btf_fd), 2776 sizeof(btf_fd))) 2777 return ERR_PTR(-EFAULT); 2778 2779 btf = btf_get_by_fd(btf_fd); 2780 if (IS_ERR(btf)) { 2781 verbose(env, "invalid module BTF fd specified\n"); 2782 return btf; 2783 } 2784 2785 if (!btf_is_module(btf)) { 2786 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2787 btf_put(btf); 2788 return ERR_PTR(-EINVAL); 2789 } 2790 2791 mod = btf_try_get_module(btf); 2792 if (!mod) { 2793 btf_put(btf); 2794 return ERR_PTR(-ENXIO); 2795 } 2796 2797 b = &tab->descs[tab->nr_descs++]; 2798 b->btf = btf; 2799 b->module = mod; 2800 b->offset = offset; 2801 2802 /* sort() reorders entries by value, so b may no longer point 2803 * to the right entry after this 2804 */ 2805 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2806 kfunc_btf_cmp_by_off, NULL); 2807 } else { 2808 btf = b->btf; 2809 } 2810 2811 return btf; 2812 } 2813 2814 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2815 { 2816 if (!tab) 2817 return; 2818 2819 while (tab->nr_descs--) { 2820 module_put(tab->descs[tab->nr_descs].module); 2821 btf_put(tab->descs[tab->nr_descs].btf); 2822 } 2823 kfree(tab); 2824 } 2825 2826 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2827 { 2828 if (offset) { 2829 if (offset < 0) { 2830 /* In the future, this can be allowed to increase limit 2831 * of fd index into fd_array, interpreted as u16. 2832 */ 2833 verbose(env, "negative offset disallowed for kernel module function call\n"); 2834 return ERR_PTR(-EINVAL); 2835 } 2836 2837 return __find_kfunc_desc_btf(env, offset); 2838 } 2839 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2840 } 2841 2842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2843 { 2844 const struct btf_type *func, *func_proto; 2845 struct bpf_kfunc_btf_tab *btf_tab; 2846 struct bpf_kfunc_desc_tab *tab; 2847 struct bpf_prog_aux *prog_aux; 2848 struct bpf_kfunc_desc *desc; 2849 const char *func_name; 2850 struct btf *desc_btf; 2851 unsigned long call_imm; 2852 unsigned long addr; 2853 int err; 2854 2855 prog_aux = env->prog->aux; 2856 tab = prog_aux->kfunc_tab; 2857 btf_tab = prog_aux->kfunc_btf_tab; 2858 if (!tab) { 2859 if (!btf_vmlinux) { 2860 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2861 return -ENOTSUPP; 2862 } 2863 2864 if (!env->prog->jit_requested) { 2865 verbose(env, "JIT is required for calling kernel function\n"); 2866 return -ENOTSUPP; 2867 } 2868 2869 if (!bpf_jit_supports_kfunc_call()) { 2870 verbose(env, "JIT does not support calling kernel function\n"); 2871 return -ENOTSUPP; 2872 } 2873 2874 if (!env->prog->gpl_compatible) { 2875 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2876 return -EINVAL; 2877 } 2878 2879 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2880 if (!tab) 2881 return -ENOMEM; 2882 prog_aux->kfunc_tab = tab; 2883 } 2884 2885 /* func_id == 0 is always invalid, but instead of returning an error, be 2886 * conservative and wait until the code elimination pass before returning 2887 * error, so that invalid calls that get pruned out can be in BPF programs 2888 * loaded from userspace. It is also required that offset be untouched 2889 * for such calls. 2890 */ 2891 if (!func_id && !offset) 2892 return 0; 2893 2894 if (!btf_tab && offset) { 2895 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2896 if (!btf_tab) 2897 return -ENOMEM; 2898 prog_aux->kfunc_btf_tab = btf_tab; 2899 } 2900 2901 desc_btf = find_kfunc_desc_btf(env, offset); 2902 if (IS_ERR(desc_btf)) { 2903 verbose(env, "failed to find BTF for kernel function\n"); 2904 return PTR_ERR(desc_btf); 2905 } 2906 2907 if (find_kfunc_desc(env->prog, func_id, offset)) 2908 return 0; 2909 2910 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2911 verbose(env, "too many different kernel function calls\n"); 2912 return -E2BIG; 2913 } 2914 2915 func = btf_type_by_id(desc_btf, func_id); 2916 if (!func || !btf_type_is_func(func)) { 2917 verbose(env, "kernel btf_id %u is not a function\n", 2918 func_id); 2919 return -EINVAL; 2920 } 2921 func_proto = btf_type_by_id(desc_btf, func->type); 2922 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2923 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2924 func_id); 2925 return -EINVAL; 2926 } 2927 2928 func_name = btf_name_by_offset(desc_btf, func->name_off); 2929 addr = kallsyms_lookup_name(func_name); 2930 if (!addr) { 2931 verbose(env, "cannot find address for kernel function %s\n", 2932 func_name); 2933 return -EINVAL; 2934 } 2935 specialize_kfunc(env, func_id, offset, &addr); 2936 2937 if (bpf_jit_supports_far_kfunc_call()) { 2938 call_imm = func_id; 2939 } else { 2940 call_imm = BPF_CALL_IMM(addr); 2941 /* Check whether the relative offset overflows desc->imm */ 2942 if ((unsigned long)(s32)call_imm != call_imm) { 2943 verbose(env, "address of kernel function %s is out of range\n", 2944 func_name); 2945 return -EINVAL; 2946 } 2947 } 2948 2949 if (bpf_dev_bound_kfunc_id(func_id)) { 2950 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2951 if (err) 2952 return err; 2953 } 2954 2955 desc = &tab->descs[tab->nr_descs++]; 2956 desc->func_id = func_id; 2957 desc->imm = call_imm; 2958 desc->offset = offset; 2959 desc->addr = addr; 2960 err = btf_distill_func_proto(&env->log, desc_btf, 2961 func_proto, func_name, 2962 &desc->func_model); 2963 if (!err) 2964 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2965 kfunc_desc_cmp_by_id_off, NULL); 2966 return err; 2967 } 2968 2969 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2970 { 2971 const struct bpf_kfunc_desc *d0 = a; 2972 const struct bpf_kfunc_desc *d1 = b; 2973 2974 if (d0->imm != d1->imm) 2975 return d0->imm < d1->imm ? -1 : 1; 2976 if (d0->offset != d1->offset) 2977 return d0->offset < d1->offset ? -1 : 1; 2978 return 0; 2979 } 2980 2981 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2982 { 2983 struct bpf_kfunc_desc_tab *tab; 2984 2985 tab = prog->aux->kfunc_tab; 2986 if (!tab) 2987 return; 2988 2989 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2990 kfunc_desc_cmp_by_imm_off, NULL); 2991 } 2992 2993 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2994 { 2995 return !!prog->aux->kfunc_tab; 2996 } 2997 2998 const struct btf_func_model * 2999 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3000 const struct bpf_insn *insn) 3001 { 3002 const struct bpf_kfunc_desc desc = { 3003 .imm = insn->imm, 3004 .offset = insn->off, 3005 }; 3006 const struct bpf_kfunc_desc *res; 3007 struct bpf_kfunc_desc_tab *tab; 3008 3009 tab = prog->aux->kfunc_tab; 3010 res = bsearch(&desc, tab->descs, tab->nr_descs, 3011 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3012 3013 return res ? &res->func_model : NULL; 3014 } 3015 3016 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3017 { 3018 struct bpf_subprog_info *subprog = env->subprog_info; 3019 struct bpf_insn *insn = env->prog->insnsi; 3020 int i, ret, insn_cnt = env->prog->len; 3021 3022 /* Add entry function. */ 3023 ret = add_subprog(env, 0); 3024 if (ret) 3025 return ret; 3026 3027 for (i = 0; i < insn_cnt; i++, insn++) { 3028 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3029 !bpf_pseudo_kfunc_call(insn)) 3030 continue; 3031 3032 if (!env->bpf_capable) { 3033 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3034 return -EPERM; 3035 } 3036 3037 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3038 ret = add_subprog(env, i + insn->imm + 1); 3039 else 3040 ret = add_kfunc_call(env, insn->imm, insn->off); 3041 3042 if (ret < 0) 3043 return ret; 3044 } 3045 3046 /* Add a fake 'exit' subprog which could simplify subprog iteration 3047 * logic. 'subprog_cnt' should not be increased. 3048 */ 3049 subprog[env->subprog_cnt].start = insn_cnt; 3050 3051 if (env->log.level & BPF_LOG_LEVEL2) 3052 for (i = 0; i < env->subprog_cnt; i++) 3053 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3054 3055 return 0; 3056 } 3057 3058 static int check_subprogs(struct bpf_verifier_env *env) 3059 { 3060 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3061 struct bpf_subprog_info *subprog = env->subprog_info; 3062 struct bpf_insn *insn = env->prog->insnsi; 3063 int insn_cnt = env->prog->len; 3064 3065 /* now check that all jumps are within the same subprog */ 3066 subprog_start = subprog[cur_subprog].start; 3067 subprog_end = subprog[cur_subprog + 1].start; 3068 for (i = 0; i < insn_cnt; i++) { 3069 u8 code = insn[i].code; 3070 3071 if (code == (BPF_JMP | BPF_CALL) && 3072 insn[i].src_reg == 0 && 3073 insn[i].imm == BPF_FUNC_tail_call) { 3074 subprog[cur_subprog].has_tail_call = true; 3075 subprog[cur_subprog].tail_call_reachable = true; 3076 } 3077 if (BPF_CLASS(code) == BPF_LD && 3078 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3079 subprog[cur_subprog].has_ld_abs = true; 3080 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3081 goto next; 3082 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3083 goto next; 3084 if (code == (BPF_JMP32 | BPF_JA)) 3085 off = i + insn[i].imm + 1; 3086 else 3087 off = i + insn[i].off + 1; 3088 if (off < subprog_start || off >= subprog_end) { 3089 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3090 return -EINVAL; 3091 } 3092 next: 3093 if (i == subprog_end - 1) { 3094 /* to avoid fall-through from one subprog into another 3095 * the last insn of the subprog should be either exit 3096 * or unconditional jump back 3097 */ 3098 if (code != (BPF_JMP | BPF_EXIT) && 3099 code != (BPF_JMP32 | BPF_JA) && 3100 code != (BPF_JMP | BPF_JA)) { 3101 verbose(env, "last insn is not an exit or jmp\n"); 3102 return -EINVAL; 3103 } 3104 subprog_start = subprog_end; 3105 cur_subprog++; 3106 if (cur_subprog < env->subprog_cnt) 3107 subprog_end = subprog[cur_subprog + 1].start; 3108 } 3109 } 3110 return 0; 3111 } 3112 3113 /* Parentage chain of this register (or stack slot) should take care of all 3114 * issues like callee-saved registers, stack slot allocation time, etc. 3115 */ 3116 static int mark_reg_read(struct bpf_verifier_env *env, 3117 const struct bpf_reg_state *state, 3118 struct bpf_reg_state *parent, u8 flag) 3119 { 3120 bool writes = parent == state->parent; /* Observe write marks */ 3121 int cnt = 0; 3122 3123 while (parent) { 3124 /* if read wasn't screened by an earlier write ... */ 3125 if (writes && state->live & REG_LIVE_WRITTEN) 3126 break; 3127 if (parent->live & REG_LIVE_DONE) { 3128 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3129 reg_type_str(env, parent->type), 3130 parent->var_off.value, parent->off); 3131 return -EFAULT; 3132 } 3133 /* The first condition is more likely to be true than the 3134 * second, checked it first. 3135 */ 3136 if ((parent->live & REG_LIVE_READ) == flag || 3137 parent->live & REG_LIVE_READ64) 3138 /* The parentage chain never changes and 3139 * this parent was already marked as LIVE_READ. 3140 * There is no need to keep walking the chain again and 3141 * keep re-marking all parents as LIVE_READ. 3142 * This case happens when the same register is read 3143 * multiple times without writes into it in-between. 3144 * Also, if parent has the stronger REG_LIVE_READ64 set, 3145 * then no need to set the weak REG_LIVE_READ32. 3146 */ 3147 break; 3148 /* ... then we depend on parent's value */ 3149 parent->live |= flag; 3150 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3151 if (flag == REG_LIVE_READ64) 3152 parent->live &= ~REG_LIVE_READ32; 3153 state = parent; 3154 parent = state->parent; 3155 writes = true; 3156 cnt++; 3157 } 3158 3159 if (env->longest_mark_read_walk < cnt) 3160 env->longest_mark_read_walk = cnt; 3161 return 0; 3162 } 3163 3164 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3165 { 3166 struct bpf_func_state *state = func(env, reg); 3167 int spi, ret; 3168 3169 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3170 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3171 * check_kfunc_call. 3172 */ 3173 if (reg->type == CONST_PTR_TO_DYNPTR) 3174 return 0; 3175 spi = dynptr_get_spi(env, reg); 3176 if (spi < 0) 3177 return spi; 3178 /* Caller ensures dynptr is valid and initialized, which means spi is in 3179 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3180 * read. 3181 */ 3182 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3183 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3184 if (ret) 3185 return ret; 3186 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3187 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3188 } 3189 3190 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3191 int spi, int nr_slots) 3192 { 3193 struct bpf_func_state *state = func(env, reg); 3194 int err, i; 3195 3196 for (i = 0; i < nr_slots; i++) { 3197 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3198 3199 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3200 if (err) 3201 return err; 3202 3203 mark_stack_slot_scratched(env, spi - i); 3204 } 3205 3206 return 0; 3207 } 3208 3209 /* This function is supposed to be used by the following 32-bit optimization 3210 * code only. It returns TRUE if the source or destination register operates 3211 * on 64-bit, otherwise return FALSE. 3212 */ 3213 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3214 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3215 { 3216 u8 code, class, op; 3217 3218 code = insn->code; 3219 class = BPF_CLASS(code); 3220 op = BPF_OP(code); 3221 if (class == BPF_JMP) { 3222 /* BPF_EXIT for "main" will reach here. Return TRUE 3223 * conservatively. 3224 */ 3225 if (op == BPF_EXIT) 3226 return true; 3227 if (op == BPF_CALL) { 3228 /* BPF to BPF call will reach here because of marking 3229 * caller saved clobber with DST_OP_NO_MARK for which we 3230 * don't care the register def because they are anyway 3231 * marked as NOT_INIT already. 3232 */ 3233 if (insn->src_reg == BPF_PSEUDO_CALL) 3234 return false; 3235 /* Helper call will reach here because of arg type 3236 * check, conservatively return TRUE. 3237 */ 3238 if (t == SRC_OP) 3239 return true; 3240 3241 return false; 3242 } 3243 } 3244 3245 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3246 return false; 3247 3248 if (class == BPF_ALU64 || class == BPF_JMP || 3249 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3250 return true; 3251 3252 if (class == BPF_ALU || class == BPF_JMP32) 3253 return false; 3254 3255 if (class == BPF_LDX) { 3256 if (t != SRC_OP) 3257 return BPF_SIZE(code) == BPF_DW; 3258 /* LDX source must be ptr. */ 3259 return true; 3260 } 3261 3262 if (class == BPF_STX) { 3263 /* BPF_STX (including atomic variants) has multiple source 3264 * operands, one of which is a ptr. Check whether the caller is 3265 * asking about it. 3266 */ 3267 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3268 return true; 3269 return BPF_SIZE(code) == BPF_DW; 3270 } 3271 3272 if (class == BPF_LD) { 3273 u8 mode = BPF_MODE(code); 3274 3275 /* LD_IMM64 */ 3276 if (mode == BPF_IMM) 3277 return true; 3278 3279 /* Both LD_IND and LD_ABS return 32-bit data. */ 3280 if (t != SRC_OP) 3281 return false; 3282 3283 /* Implicit ctx ptr. */ 3284 if (regno == BPF_REG_6) 3285 return true; 3286 3287 /* Explicit source could be any width. */ 3288 return true; 3289 } 3290 3291 if (class == BPF_ST) 3292 /* The only source register for BPF_ST is a ptr. */ 3293 return true; 3294 3295 /* Conservatively return true at default. */ 3296 return true; 3297 } 3298 3299 /* Return the regno defined by the insn, or -1. */ 3300 static int insn_def_regno(const struct bpf_insn *insn) 3301 { 3302 switch (BPF_CLASS(insn->code)) { 3303 case BPF_JMP: 3304 case BPF_JMP32: 3305 case BPF_ST: 3306 return -1; 3307 case BPF_STX: 3308 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3309 (insn->imm & BPF_FETCH)) { 3310 if (insn->imm == BPF_CMPXCHG) 3311 return BPF_REG_0; 3312 else 3313 return insn->src_reg; 3314 } else { 3315 return -1; 3316 } 3317 default: 3318 return insn->dst_reg; 3319 } 3320 } 3321 3322 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3323 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3324 { 3325 int dst_reg = insn_def_regno(insn); 3326 3327 if (dst_reg == -1) 3328 return false; 3329 3330 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3331 } 3332 3333 static void mark_insn_zext(struct bpf_verifier_env *env, 3334 struct bpf_reg_state *reg) 3335 { 3336 s32 def_idx = reg->subreg_def; 3337 3338 if (def_idx == DEF_NOT_SUBREG) 3339 return; 3340 3341 env->insn_aux_data[def_idx - 1].zext_dst = true; 3342 /* The dst will be zero extended, so won't be sub-register anymore. */ 3343 reg->subreg_def = DEF_NOT_SUBREG; 3344 } 3345 3346 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3347 enum reg_arg_type t) 3348 { 3349 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3350 struct bpf_reg_state *reg; 3351 bool rw64; 3352 3353 if (regno >= MAX_BPF_REG) { 3354 verbose(env, "R%d is invalid\n", regno); 3355 return -EINVAL; 3356 } 3357 3358 mark_reg_scratched(env, regno); 3359 3360 reg = ®s[regno]; 3361 rw64 = is_reg64(env, insn, regno, reg, t); 3362 if (t == SRC_OP) { 3363 /* check whether register used as source operand can be read */ 3364 if (reg->type == NOT_INIT) { 3365 verbose(env, "R%d !read_ok\n", regno); 3366 return -EACCES; 3367 } 3368 /* We don't need to worry about FP liveness because it's read-only */ 3369 if (regno == BPF_REG_FP) 3370 return 0; 3371 3372 if (rw64) 3373 mark_insn_zext(env, reg); 3374 3375 return mark_reg_read(env, reg, reg->parent, 3376 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3377 } else { 3378 /* check whether register used as dest operand can be written to */ 3379 if (regno == BPF_REG_FP) { 3380 verbose(env, "frame pointer is read only\n"); 3381 return -EACCES; 3382 } 3383 reg->live |= REG_LIVE_WRITTEN; 3384 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3385 if (t == DST_OP) 3386 mark_reg_unknown(env, regs, regno); 3387 } 3388 return 0; 3389 } 3390 3391 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3392 enum reg_arg_type t) 3393 { 3394 struct bpf_verifier_state *vstate = env->cur_state; 3395 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3396 3397 return __check_reg_arg(env, state->regs, regno, t); 3398 } 3399 3400 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3401 { 3402 env->insn_aux_data[idx].jmp_point = true; 3403 } 3404 3405 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3406 { 3407 return env->insn_aux_data[insn_idx].jmp_point; 3408 } 3409 3410 /* for any branch, call, exit record the history of jmps in the given state */ 3411 static int push_jmp_history(struct bpf_verifier_env *env, 3412 struct bpf_verifier_state *cur) 3413 { 3414 u32 cnt = cur->jmp_history_cnt; 3415 struct bpf_idx_pair *p; 3416 size_t alloc_size; 3417 3418 if (!is_jmp_point(env, env->insn_idx)) 3419 return 0; 3420 3421 cnt++; 3422 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3423 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3424 if (!p) 3425 return -ENOMEM; 3426 p[cnt - 1].idx = env->insn_idx; 3427 p[cnt - 1].prev_idx = env->prev_insn_idx; 3428 cur->jmp_history = p; 3429 cur->jmp_history_cnt = cnt; 3430 return 0; 3431 } 3432 3433 /* Backtrack one insn at a time. If idx is not at the top of recorded 3434 * history then previous instruction came from straight line execution. 3435 * Return -ENOENT if we exhausted all instructions within given state. 3436 * 3437 * It's legal to have a bit of a looping with the same starting and ending 3438 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3439 * instruction index is the same as state's first_idx doesn't mean we are 3440 * done. If there is still some jump history left, we should keep going. We 3441 * need to take into account that we might have a jump history between given 3442 * state's parent and itself, due to checkpointing. In this case, we'll have 3443 * history entry recording a jump from last instruction of parent state and 3444 * first instruction of given state. 3445 */ 3446 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3447 u32 *history) 3448 { 3449 u32 cnt = *history; 3450 3451 if (i == st->first_insn_idx) { 3452 if (cnt == 0) 3453 return -ENOENT; 3454 if (cnt == 1 && st->jmp_history[0].idx == i) 3455 return -ENOENT; 3456 } 3457 3458 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3459 i = st->jmp_history[cnt - 1].prev_idx; 3460 (*history)--; 3461 } else { 3462 i--; 3463 } 3464 return i; 3465 } 3466 3467 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3468 { 3469 const struct btf_type *func; 3470 struct btf *desc_btf; 3471 3472 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3473 return NULL; 3474 3475 desc_btf = find_kfunc_desc_btf(data, insn->off); 3476 if (IS_ERR(desc_btf)) 3477 return "<error>"; 3478 3479 func = btf_type_by_id(desc_btf, insn->imm); 3480 return btf_name_by_offset(desc_btf, func->name_off); 3481 } 3482 3483 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3484 { 3485 bt->frame = frame; 3486 } 3487 3488 static inline void bt_reset(struct backtrack_state *bt) 3489 { 3490 struct bpf_verifier_env *env = bt->env; 3491 3492 memset(bt, 0, sizeof(*bt)); 3493 bt->env = env; 3494 } 3495 3496 static inline u32 bt_empty(struct backtrack_state *bt) 3497 { 3498 u64 mask = 0; 3499 int i; 3500 3501 for (i = 0; i <= bt->frame; i++) 3502 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3503 3504 return mask == 0; 3505 } 3506 3507 static inline int bt_subprog_enter(struct backtrack_state *bt) 3508 { 3509 if (bt->frame == MAX_CALL_FRAMES - 1) { 3510 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3511 WARN_ONCE(1, "verifier backtracking bug"); 3512 return -EFAULT; 3513 } 3514 bt->frame++; 3515 return 0; 3516 } 3517 3518 static inline int bt_subprog_exit(struct backtrack_state *bt) 3519 { 3520 if (bt->frame == 0) { 3521 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3522 WARN_ONCE(1, "verifier backtracking bug"); 3523 return -EFAULT; 3524 } 3525 bt->frame--; 3526 return 0; 3527 } 3528 3529 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3530 { 3531 bt->reg_masks[frame] |= 1 << reg; 3532 } 3533 3534 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3535 { 3536 bt->reg_masks[frame] &= ~(1 << reg); 3537 } 3538 3539 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3540 { 3541 bt_set_frame_reg(bt, bt->frame, reg); 3542 } 3543 3544 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3545 { 3546 bt_clear_frame_reg(bt, bt->frame, reg); 3547 } 3548 3549 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3550 { 3551 bt->stack_masks[frame] |= 1ull << slot; 3552 } 3553 3554 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3555 { 3556 bt->stack_masks[frame] &= ~(1ull << slot); 3557 } 3558 3559 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3560 { 3561 bt_set_frame_slot(bt, bt->frame, slot); 3562 } 3563 3564 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3565 { 3566 bt_clear_frame_slot(bt, bt->frame, slot); 3567 } 3568 3569 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3570 { 3571 return bt->reg_masks[frame]; 3572 } 3573 3574 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3575 { 3576 return bt->reg_masks[bt->frame]; 3577 } 3578 3579 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3580 { 3581 return bt->stack_masks[frame]; 3582 } 3583 3584 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3585 { 3586 return bt->stack_masks[bt->frame]; 3587 } 3588 3589 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3590 { 3591 return bt->reg_masks[bt->frame] & (1 << reg); 3592 } 3593 3594 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3595 { 3596 return bt->stack_masks[bt->frame] & (1ull << slot); 3597 } 3598 3599 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3600 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3601 { 3602 DECLARE_BITMAP(mask, 64); 3603 bool first = true; 3604 int i, n; 3605 3606 buf[0] = '\0'; 3607 3608 bitmap_from_u64(mask, reg_mask); 3609 for_each_set_bit(i, mask, 32) { 3610 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3611 first = false; 3612 buf += n; 3613 buf_sz -= n; 3614 if (buf_sz < 0) 3615 break; 3616 } 3617 } 3618 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3619 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3620 { 3621 DECLARE_BITMAP(mask, 64); 3622 bool first = true; 3623 int i, n; 3624 3625 buf[0] = '\0'; 3626 3627 bitmap_from_u64(mask, stack_mask); 3628 for_each_set_bit(i, mask, 64) { 3629 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3630 first = false; 3631 buf += n; 3632 buf_sz -= n; 3633 if (buf_sz < 0) 3634 break; 3635 } 3636 } 3637 3638 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3639 3640 /* For given verifier state backtrack_insn() is called from the last insn to 3641 * the first insn. Its purpose is to compute a bitmask of registers and 3642 * stack slots that needs precision in the parent verifier state. 3643 * 3644 * @idx is an index of the instruction we are currently processing; 3645 * @subseq_idx is an index of the subsequent instruction that: 3646 * - *would be* executed next, if jump history is viewed in forward order; 3647 * - *was* processed previously during backtracking. 3648 */ 3649 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3650 struct backtrack_state *bt) 3651 { 3652 const struct bpf_insn_cbs cbs = { 3653 .cb_call = disasm_kfunc_name, 3654 .cb_print = verbose, 3655 .private_data = env, 3656 }; 3657 struct bpf_insn *insn = env->prog->insnsi + idx; 3658 u8 class = BPF_CLASS(insn->code); 3659 u8 opcode = BPF_OP(insn->code); 3660 u8 mode = BPF_MODE(insn->code); 3661 u32 dreg = insn->dst_reg; 3662 u32 sreg = insn->src_reg; 3663 u32 spi, i; 3664 3665 if (insn->code == 0) 3666 return 0; 3667 if (env->log.level & BPF_LOG_LEVEL2) { 3668 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3669 verbose(env, "mark_precise: frame%d: regs=%s ", 3670 bt->frame, env->tmp_str_buf); 3671 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3672 verbose(env, "stack=%s before ", env->tmp_str_buf); 3673 verbose(env, "%d: ", idx); 3674 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3675 } 3676 3677 if (class == BPF_ALU || class == BPF_ALU64) { 3678 if (!bt_is_reg_set(bt, dreg)) 3679 return 0; 3680 if (opcode == BPF_END || opcode == BPF_NEG) { 3681 /* sreg is reserved and unused 3682 * dreg still need precision before this insn 3683 */ 3684 return 0; 3685 } else if (opcode == BPF_MOV) { 3686 if (BPF_SRC(insn->code) == BPF_X) { 3687 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3688 * dreg needs precision after this insn 3689 * sreg needs precision before this insn 3690 */ 3691 bt_clear_reg(bt, dreg); 3692 if (sreg != BPF_REG_FP) 3693 bt_set_reg(bt, sreg); 3694 } else { 3695 /* dreg = K 3696 * dreg needs precision after this insn. 3697 * Corresponding register is already marked 3698 * as precise=true in this verifier state. 3699 * No further markings in parent are necessary 3700 */ 3701 bt_clear_reg(bt, dreg); 3702 } 3703 } else { 3704 if (BPF_SRC(insn->code) == BPF_X) { 3705 /* dreg += sreg 3706 * both dreg and sreg need precision 3707 * before this insn 3708 */ 3709 if (sreg != BPF_REG_FP) 3710 bt_set_reg(bt, sreg); 3711 } /* else dreg += K 3712 * dreg still needs precision before this insn 3713 */ 3714 } 3715 } else if (class == BPF_LDX) { 3716 if (!bt_is_reg_set(bt, dreg)) 3717 return 0; 3718 bt_clear_reg(bt, dreg); 3719 3720 /* scalars can only be spilled into stack w/o losing precision. 3721 * Load from any other memory can be zero extended. 3722 * The desire to keep that precision is already indicated 3723 * by 'precise' mark in corresponding register of this state. 3724 * No further tracking necessary. 3725 */ 3726 if (insn->src_reg != BPF_REG_FP) 3727 return 0; 3728 3729 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3730 * that [fp - off] slot contains scalar that needs to be 3731 * tracked with precision 3732 */ 3733 spi = (-insn->off - 1) / BPF_REG_SIZE; 3734 if (spi >= 64) { 3735 verbose(env, "BUG spi %d\n", spi); 3736 WARN_ONCE(1, "verifier backtracking bug"); 3737 return -EFAULT; 3738 } 3739 bt_set_slot(bt, spi); 3740 } else if (class == BPF_STX || class == BPF_ST) { 3741 if (bt_is_reg_set(bt, dreg)) 3742 /* stx & st shouldn't be using _scalar_ dst_reg 3743 * to access memory. It means backtracking 3744 * encountered a case of pointer subtraction. 3745 */ 3746 return -ENOTSUPP; 3747 /* scalars can only be spilled into stack */ 3748 if (insn->dst_reg != BPF_REG_FP) 3749 return 0; 3750 spi = (-insn->off - 1) / BPF_REG_SIZE; 3751 if (spi >= 64) { 3752 verbose(env, "BUG spi %d\n", spi); 3753 WARN_ONCE(1, "verifier backtracking bug"); 3754 return -EFAULT; 3755 } 3756 if (!bt_is_slot_set(bt, spi)) 3757 return 0; 3758 bt_clear_slot(bt, spi); 3759 if (class == BPF_STX) 3760 bt_set_reg(bt, sreg); 3761 } else if (class == BPF_JMP || class == BPF_JMP32) { 3762 if (bpf_pseudo_call(insn)) { 3763 int subprog_insn_idx, subprog; 3764 3765 subprog_insn_idx = idx + insn->imm + 1; 3766 subprog = find_subprog(env, subprog_insn_idx); 3767 if (subprog < 0) 3768 return -EFAULT; 3769 3770 if (subprog_is_global(env, subprog)) { 3771 /* check that jump history doesn't have any 3772 * extra instructions from subprog; the next 3773 * instruction after call to global subprog 3774 * should be literally next instruction in 3775 * caller program 3776 */ 3777 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3778 /* r1-r5 are invalidated after subprog call, 3779 * so for global func call it shouldn't be set 3780 * anymore 3781 */ 3782 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3783 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3784 WARN_ONCE(1, "verifier backtracking bug"); 3785 return -EFAULT; 3786 } 3787 /* global subprog always sets R0 */ 3788 bt_clear_reg(bt, BPF_REG_0); 3789 return 0; 3790 } else { 3791 /* static subprog call instruction, which 3792 * means that we are exiting current subprog, 3793 * so only r1-r5 could be still requested as 3794 * precise, r0 and r6-r10 or any stack slot in 3795 * the current frame should be zero by now 3796 */ 3797 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3798 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3799 WARN_ONCE(1, "verifier backtracking bug"); 3800 return -EFAULT; 3801 } 3802 /* we don't track register spills perfectly, 3803 * so fallback to force-precise instead of failing */ 3804 if (bt_stack_mask(bt) != 0) 3805 return -ENOTSUPP; 3806 /* propagate r1-r5 to the caller */ 3807 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3808 if (bt_is_reg_set(bt, i)) { 3809 bt_clear_reg(bt, i); 3810 bt_set_frame_reg(bt, bt->frame - 1, i); 3811 } 3812 } 3813 if (bt_subprog_exit(bt)) 3814 return -EFAULT; 3815 return 0; 3816 } 3817 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3818 /* exit from callback subprog to callback-calling helper or 3819 * kfunc call. Use idx/subseq_idx check to discern it from 3820 * straight line code backtracking. 3821 * Unlike the subprog call handling above, we shouldn't 3822 * propagate precision of r1-r5 (if any requested), as they are 3823 * not actually arguments passed directly to callback subprogs 3824 */ 3825 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3826 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3827 WARN_ONCE(1, "verifier backtracking bug"); 3828 return -EFAULT; 3829 } 3830 if (bt_stack_mask(bt) != 0) 3831 return -ENOTSUPP; 3832 /* clear r1-r5 in callback subprog's mask */ 3833 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3834 bt_clear_reg(bt, i); 3835 if (bt_subprog_exit(bt)) 3836 return -EFAULT; 3837 return 0; 3838 } else if (opcode == BPF_CALL) { 3839 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3840 * catch this error later. Make backtracking conservative 3841 * with ENOTSUPP. 3842 */ 3843 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3844 return -ENOTSUPP; 3845 /* regular helper call sets R0 */ 3846 bt_clear_reg(bt, BPF_REG_0); 3847 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3848 /* if backtracing was looking for registers R1-R5 3849 * they should have been found already. 3850 */ 3851 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3852 WARN_ONCE(1, "verifier backtracking bug"); 3853 return -EFAULT; 3854 } 3855 } else if (opcode == BPF_EXIT) { 3856 bool r0_precise; 3857 3858 /* Backtracking to a nested function call, 'idx' is a part of 3859 * the inner frame 'subseq_idx' is a part of the outer frame. 3860 * In case of a regular function call, instructions giving 3861 * precision to registers R1-R5 should have been found already. 3862 * In case of a callback, it is ok to have R1-R5 marked for 3863 * backtracking, as these registers are set by the function 3864 * invoking callback. 3865 */ 3866 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3867 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3868 bt_clear_reg(bt, i); 3869 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3870 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3871 WARN_ONCE(1, "verifier backtracking bug"); 3872 return -EFAULT; 3873 } 3874 3875 /* BPF_EXIT in subprog or callback always returns 3876 * right after the call instruction, so by checking 3877 * whether the instruction at subseq_idx-1 is subprog 3878 * call or not we can distinguish actual exit from 3879 * *subprog* from exit from *callback*. In the former 3880 * case, we need to propagate r0 precision, if 3881 * necessary. In the former we never do that. 3882 */ 3883 r0_precise = subseq_idx - 1 >= 0 && 3884 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3885 bt_is_reg_set(bt, BPF_REG_0); 3886 3887 bt_clear_reg(bt, BPF_REG_0); 3888 if (bt_subprog_enter(bt)) 3889 return -EFAULT; 3890 3891 if (r0_precise) 3892 bt_set_reg(bt, BPF_REG_0); 3893 /* r6-r9 and stack slots will stay set in caller frame 3894 * bitmasks until we return back from callee(s) 3895 */ 3896 return 0; 3897 } else if (BPF_SRC(insn->code) == BPF_X) { 3898 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3899 return 0; 3900 /* dreg <cond> sreg 3901 * Both dreg and sreg need precision before 3902 * this insn. If only sreg was marked precise 3903 * before it would be equally necessary to 3904 * propagate it to dreg. 3905 */ 3906 bt_set_reg(bt, dreg); 3907 bt_set_reg(bt, sreg); 3908 /* else dreg <cond> K 3909 * Only dreg still needs precision before 3910 * this insn, so for the K-based conditional 3911 * there is nothing new to be marked. 3912 */ 3913 } 3914 } else if (class == BPF_LD) { 3915 if (!bt_is_reg_set(bt, dreg)) 3916 return 0; 3917 bt_clear_reg(bt, dreg); 3918 /* It's ld_imm64 or ld_abs or ld_ind. 3919 * For ld_imm64 no further tracking of precision 3920 * into parent is necessary 3921 */ 3922 if (mode == BPF_IND || mode == BPF_ABS) 3923 /* to be analyzed */ 3924 return -ENOTSUPP; 3925 } 3926 return 0; 3927 } 3928 3929 /* the scalar precision tracking algorithm: 3930 * . at the start all registers have precise=false. 3931 * . scalar ranges are tracked as normal through alu and jmp insns. 3932 * . once precise value of the scalar register is used in: 3933 * . ptr + scalar alu 3934 * . if (scalar cond K|scalar) 3935 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3936 * backtrack through the verifier states and mark all registers and 3937 * stack slots with spilled constants that these scalar regisers 3938 * should be precise. 3939 * . during state pruning two registers (or spilled stack slots) 3940 * are equivalent if both are not precise. 3941 * 3942 * Note the verifier cannot simply walk register parentage chain, 3943 * since many different registers and stack slots could have been 3944 * used to compute single precise scalar. 3945 * 3946 * The approach of starting with precise=true for all registers and then 3947 * backtrack to mark a register as not precise when the verifier detects 3948 * that program doesn't care about specific value (e.g., when helper 3949 * takes register as ARG_ANYTHING parameter) is not safe. 3950 * 3951 * It's ok to walk single parentage chain of the verifier states. 3952 * It's possible that this backtracking will go all the way till 1st insn. 3953 * All other branches will be explored for needing precision later. 3954 * 3955 * The backtracking needs to deal with cases like: 3956 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3957 * r9 -= r8 3958 * r5 = r9 3959 * if r5 > 0x79f goto pc+7 3960 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3961 * r5 += 1 3962 * ... 3963 * call bpf_perf_event_output#25 3964 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3965 * 3966 * and this case: 3967 * r6 = 1 3968 * call foo // uses callee's r6 inside to compute r0 3969 * r0 += r6 3970 * if r0 == 0 goto 3971 * 3972 * to track above reg_mask/stack_mask needs to be independent for each frame. 3973 * 3974 * Also if parent's curframe > frame where backtracking started, 3975 * the verifier need to mark registers in both frames, otherwise callees 3976 * may incorrectly prune callers. This is similar to 3977 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3978 * 3979 * For now backtracking falls back into conservative marking. 3980 */ 3981 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3982 struct bpf_verifier_state *st) 3983 { 3984 struct bpf_func_state *func; 3985 struct bpf_reg_state *reg; 3986 int i, j; 3987 3988 if (env->log.level & BPF_LOG_LEVEL2) { 3989 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3990 st->curframe); 3991 } 3992 3993 /* big hammer: mark all scalars precise in this path. 3994 * pop_stack may still get !precise scalars. 3995 * We also skip current state and go straight to first parent state, 3996 * because precision markings in current non-checkpointed state are 3997 * not needed. See why in the comment in __mark_chain_precision below. 3998 */ 3999 for (st = st->parent; st; st = st->parent) { 4000 for (i = 0; i <= st->curframe; i++) { 4001 func = st->frame[i]; 4002 for (j = 0; j < BPF_REG_FP; j++) { 4003 reg = &func->regs[j]; 4004 if (reg->type != SCALAR_VALUE || reg->precise) 4005 continue; 4006 reg->precise = true; 4007 if (env->log.level & BPF_LOG_LEVEL2) { 4008 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4009 i, j); 4010 } 4011 } 4012 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4013 if (!is_spilled_reg(&func->stack[j])) 4014 continue; 4015 reg = &func->stack[j].spilled_ptr; 4016 if (reg->type != SCALAR_VALUE || reg->precise) 4017 continue; 4018 reg->precise = true; 4019 if (env->log.level & BPF_LOG_LEVEL2) { 4020 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4021 i, -(j + 1) * 8); 4022 } 4023 } 4024 } 4025 } 4026 } 4027 4028 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4029 { 4030 struct bpf_func_state *func; 4031 struct bpf_reg_state *reg; 4032 int i, j; 4033 4034 for (i = 0; i <= st->curframe; i++) { 4035 func = st->frame[i]; 4036 for (j = 0; j < BPF_REG_FP; j++) { 4037 reg = &func->regs[j]; 4038 if (reg->type != SCALAR_VALUE) 4039 continue; 4040 reg->precise = false; 4041 } 4042 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4043 if (!is_spilled_reg(&func->stack[j])) 4044 continue; 4045 reg = &func->stack[j].spilled_ptr; 4046 if (reg->type != SCALAR_VALUE) 4047 continue; 4048 reg->precise = false; 4049 } 4050 } 4051 } 4052 4053 static bool idset_contains(struct bpf_idset *s, u32 id) 4054 { 4055 u32 i; 4056 4057 for (i = 0; i < s->count; ++i) 4058 if (s->ids[i] == id) 4059 return true; 4060 4061 return false; 4062 } 4063 4064 static int idset_push(struct bpf_idset *s, u32 id) 4065 { 4066 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4067 return -EFAULT; 4068 s->ids[s->count++] = id; 4069 return 0; 4070 } 4071 4072 static void idset_reset(struct bpf_idset *s) 4073 { 4074 s->count = 0; 4075 } 4076 4077 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4078 * Mark all registers with these IDs as precise. 4079 */ 4080 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4081 { 4082 struct bpf_idset *precise_ids = &env->idset_scratch; 4083 struct backtrack_state *bt = &env->bt; 4084 struct bpf_func_state *func; 4085 struct bpf_reg_state *reg; 4086 DECLARE_BITMAP(mask, 64); 4087 int i, fr; 4088 4089 idset_reset(precise_ids); 4090 4091 for (fr = bt->frame; fr >= 0; fr--) { 4092 func = st->frame[fr]; 4093 4094 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4095 for_each_set_bit(i, mask, 32) { 4096 reg = &func->regs[i]; 4097 if (!reg->id || reg->type != SCALAR_VALUE) 4098 continue; 4099 if (idset_push(precise_ids, reg->id)) 4100 return -EFAULT; 4101 } 4102 4103 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4104 for_each_set_bit(i, mask, 64) { 4105 if (i >= func->allocated_stack / BPF_REG_SIZE) 4106 break; 4107 if (!is_spilled_scalar_reg(&func->stack[i])) 4108 continue; 4109 reg = &func->stack[i].spilled_ptr; 4110 if (!reg->id) 4111 continue; 4112 if (idset_push(precise_ids, reg->id)) 4113 return -EFAULT; 4114 } 4115 } 4116 4117 for (fr = 0; fr <= st->curframe; ++fr) { 4118 func = st->frame[fr]; 4119 4120 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4121 reg = &func->regs[i]; 4122 if (!reg->id) 4123 continue; 4124 if (!idset_contains(precise_ids, reg->id)) 4125 continue; 4126 bt_set_frame_reg(bt, fr, i); 4127 } 4128 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4129 if (!is_spilled_scalar_reg(&func->stack[i])) 4130 continue; 4131 reg = &func->stack[i].spilled_ptr; 4132 if (!reg->id) 4133 continue; 4134 if (!idset_contains(precise_ids, reg->id)) 4135 continue; 4136 bt_set_frame_slot(bt, fr, i); 4137 } 4138 } 4139 4140 return 0; 4141 } 4142 4143 /* 4144 * __mark_chain_precision() backtracks BPF program instruction sequence and 4145 * chain of verifier states making sure that register *regno* (if regno >= 0) 4146 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4147 * SCALARS, as well as any other registers and slots that contribute to 4148 * a tracked state of given registers/stack slots, depending on specific BPF 4149 * assembly instructions (see backtrack_insns() for exact instruction handling 4150 * logic). This backtracking relies on recorded jmp_history and is able to 4151 * traverse entire chain of parent states. This process ends only when all the 4152 * necessary registers/slots and their transitive dependencies are marked as 4153 * precise. 4154 * 4155 * One important and subtle aspect is that precise marks *do not matter* in 4156 * the currently verified state (current state). It is important to understand 4157 * why this is the case. 4158 * 4159 * First, note that current state is the state that is not yet "checkpointed", 4160 * i.e., it is not yet put into env->explored_states, and it has no children 4161 * states as well. It's ephemeral, and can end up either a) being discarded if 4162 * compatible explored state is found at some point or BPF_EXIT instruction is 4163 * reached or b) checkpointed and put into env->explored_states, branching out 4164 * into one or more children states. 4165 * 4166 * In the former case, precise markings in current state are completely 4167 * ignored by state comparison code (see regsafe() for details). Only 4168 * checkpointed ("old") state precise markings are important, and if old 4169 * state's register/slot is precise, regsafe() assumes current state's 4170 * register/slot as precise and checks value ranges exactly and precisely. If 4171 * states turn out to be compatible, current state's necessary precise 4172 * markings and any required parent states' precise markings are enforced 4173 * after the fact with propagate_precision() logic, after the fact. But it's 4174 * important to realize that in this case, even after marking current state 4175 * registers/slots as precise, we immediately discard current state. So what 4176 * actually matters is any of the precise markings propagated into current 4177 * state's parent states, which are always checkpointed (due to b) case above). 4178 * As such, for scenario a) it doesn't matter if current state has precise 4179 * markings set or not. 4180 * 4181 * Now, for the scenario b), checkpointing and forking into child(ren) 4182 * state(s). Note that before current state gets to checkpointing step, any 4183 * processed instruction always assumes precise SCALAR register/slot 4184 * knowledge: if precise value or range is useful to prune jump branch, BPF 4185 * verifier takes this opportunity enthusiastically. Similarly, when 4186 * register's value is used to calculate offset or memory address, exact 4187 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4188 * what we mentioned above about state comparison ignoring precise markings 4189 * during state comparison, BPF verifier ignores and also assumes precise 4190 * markings *at will* during instruction verification process. But as verifier 4191 * assumes precision, it also propagates any precision dependencies across 4192 * parent states, which are not yet finalized, so can be further restricted 4193 * based on new knowledge gained from restrictions enforced by their children 4194 * states. This is so that once those parent states are finalized, i.e., when 4195 * they have no more active children state, state comparison logic in 4196 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4197 * required for correctness. 4198 * 4199 * To build a bit more intuition, note also that once a state is checkpointed, 4200 * the path we took to get to that state is not important. This is crucial 4201 * property for state pruning. When state is checkpointed and finalized at 4202 * some instruction index, it can be correctly and safely used to "short 4203 * circuit" any *compatible* state that reaches exactly the same instruction 4204 * index. I.e., if we jumped to that instruction from a completely different 4205 * code path than original finalized state was derived from, it doesn't 4206 * matter, current state can be discarded because from that instruction 4207 * forward having a compatible state will ensure we will safely reach the 4208 * exit. States describe preconditions for further exploration, but completely 4209 * forget the history of how we got here. 4210 * 4211 * This also means that even if we needed precise SCALAR range to get to 4212 * finalized state, but from that point forward *that same* SCALAR register is 4213 * never used in a precise context (i.e., it's precise value is not needed for 4214 * correctness), it's correct and safe to mark such register as "imprecise" 4215 * (i.e., precise marking set to false). This is what we rely on when we do 4216 * not set precise marking in current state. If no child state requires 4217 * precision for any given SCALAR register, it's safe to dictate that it can 4218 * be imprecise. If any child state does require this register to be precise, 4219 * we'll mark it precise later retroactively during precise markings 4220 * propagation from child state to parent states. 4221 * 4222 * Skipping precise marking setting in current state is a mild version of 4223 * relying on the above observation. But we can utilize this property even 4224 * more aggressively by proactively forgetting any precise marking in the 4225 * current state (which we inherited from the parent state), right before we 4226 * checkpoint it and branch off into new child state. This is done by 4227 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4228 * finalized states which help in short circuiting more future states. 4229 */ 4230 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4231 { 4232 struct backtrack_state *bt = &env->bt; 4233 struct bpf_verifier_state *st = env->cur_state; 4234 int first_idx = st->first_insn_idx; 4235 int last_idx = env->insn_idx; 4236 int subseq_idx = -1; 4237 struct bpf_func_state *func; 4238 struct bpf_reg_state *reg; 4239 bool skip_first = true; 4240 int i, fr, err; 4241 4242 if (!env->bpf_capable) 4243 return 0; 4244 4245 /* set frame number from which we are starting to backtrack */ 4246 bt_init(bt, env->cur_state->curframe); 4247 4248 /* Do sanity checks against current state of register and/or stack 4249 * slot, but don't set precise flag in current state, as precision 4250 * tracking in the current state is unnecessary. 4251 */ 4252 func = st->frame[bt->frame]; 4253 if (regno >= 0) { 4254 reg = &func->regs[regno]; 4255 if (reg->type != SCALAR_VALUE) { 4256 WARN_ONCE(1, "backtracing misuse"); 4257 return -EFAULT; 4258 } 4259 bt_set_reg(bt, regno); 4260 } 4261 4262 if (bt_empty(bt)) 4263 return 0; 4264 4265 for (;;) { 4266 DECLARE_BITMAP(mask, 64); 4267 u32 history = st->jmp_history_cnt; 4268 4269 if (env->log.level & BPF_LOG_LEVEL2) { 4270 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4271 bt->frame, last_idx, first_idx, subseq_idx); 4272 } 4273 4274 /* If some register with scalar ID is marked as precise, 4275 * make sure that all registers sharing this ID are also precise. 4276 * This is needed to estimate effect of find_equal_scalars(). 4277 * Do this at the last instruction of each state, 4278 * bpf_reg_state::id fields are valid for these instructions. 4279 * 4280 * Allows to track precision in situation like below: 4281 * 4282 * r2 = unknown value 4283 * ... 4284 * --- state #0 --- 4285 * ... 4286 * r1 = r2 // r1 and r2 now share the same ID 4287 * ... 4288 * --- state #1 {r1.id = A, r2.id = A} --- 4289 * ... 4290 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4291 * ... 4292 * --- state #2 {r1.id = A, r2.id = A} --- 4293 * r3 = r10 4294 * r3 += r1 // need to mark both r1 and r2 4295 */ 4296 if (mark_precise_scalar_ids(env, st)) 4297 return -EFAULT; 4298 4299 if (last_idx < 0) { 4300 /* we are at the entry into subprog, which 4301 * is expected for global funcs, but only if 4302 * requested precise registers are R1-R5 4303 * (which are global func's input arguments) 4304 */ 4305 if (st->curframe == 0 && 4306 st->frame[0]->subprogno > 0 && 4307 st->frame[0]->callsite == BPF_MAIN_FUNC && 4308 bt_stack_mask(bt) == 0 && 4309 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4310 bitmap_from_u64(mask, bt_reg_mask(bt)); 4311 for_each_set_bit(i, mask, 32) { 4312 reg = &st->frame[0]->regs[i]; 4313 bt_clear_reg(bt, i); 4314 if (reg->type == SCALAR_VALUE) 4315 reg->precise = true; 4316 } 4317 return 0; 4318 } 4319 4320 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4321 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4322 WARN_ONCE(1, "verifier backtracking bug"); 4323 return -EFAULT; 4324 } 4325 4326 for (i = last_idx;;) { 4327 if (skip_first) { 4328 err = 0; 4329 skip_first = false; 4330 } else { 4331 err = backtrack_insn(env, i, subseq_idx, bt); 4332 } 4333 if (err == -ENOTSUPP) { 4334 mark_all_scalars_precise(env, env->cur_state); 4335 bt_reset(bt); 4336 return 0; 4337 } else if (err) { 4338 return err; 4339 } 4340 if (bt_empty(bt)) 4341 /* Found assignment(s) into tracked register in this state. 4342 * Since this state is already marked, just return. 4343 * Nothing to be tracked further in the parent state. 4344 */ 4345 return 0; 4346 subseq_idx = i; 4347 i = get_prev_insn_idx(st, i, &history); 4348 if (i == -ENOENT) 4349 break; 4350 if (i >= env->prog->len) { 4351 /* This can happen if backtracking reached insn 0 4352 * and there are still reg_mask or stack_mask 4353 * to backtrack. 4354 * It means the backtracking missed the spot where 4355 * particular register was initialized with a constant. 4356 */ 4357 verbose(env, "BUG backtracking idx %d\n", i); 4358 WARN_ONCE(1, "verifier backtracking bug"); 4359 return -EFAULT; 4360 } 4361 } 4362 st = st->parent; 4363 if (!st) 4364 break; 4365 4366 for (fr = bt->frame; fr >= 0; fr--) { 4367 func = st->frame[fr]; 4368 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4369 for_each_set_bit(i, mask, 32) { 4370 reg = &func->regs[i]; 4371 if (reg->type != SCALAR_VALUE) { 4372 bt_clear_frame_reg(bt, fr, i); 4373 continue; 4374 } 4375 if (reg->precise) 4376 bt_clear_frame_reg(bt, fr, i); 4377 else 4378 reg->precise = true; 4379 } 4380 4381 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4382 for_each_set_bit(i, mask, 64) { 4383 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4384 /* the sequence of instructions: 4385 * 2: (bf) r3 = r10 4386 * 3: (7b) *(u64 *)(r3 -8) = r0 4387 * 4: (79) r4 = *(u64 *)(r10 -8) 4388 * doesn't contain jmps. It's backtracked 4389 * as a single block. 4390 * During backtracking insn 3 is not recognized as 4391 * stack access, so at the end of backtracking 4392 * stack slot fp-8 is still marked in stack_mask. 4393 * However the parent state may not have accessed 4394 * fp-8 and it's "unallocated" stack space. 4395 * In such case fallback to conservative. 4396 */ 4397 mark_all_scalars_precise(env, env->cur_state); 4398 bt_reset(bt); 4399 return 0; 4400 } 4401 4402 if (!is_spilled_scalar_reg(&func->stack[i])) { 4403 bt_clear_frame_slot(bt, fr, i); 4404 continue; 4405 } 4406 reg = &func->stack[i].spilled_ptr; 4407 if (reg->precise) 4408 bt_clear_frame_slot(bt, fr, i); 4409 else 4410 reg->precise = true; 4411 } 4412 if (env->log.level & BPF_LOG_LEVEL2) { 4413 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4414 bt_frame_reg_mask(bt, fr)); 4415 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4416 fr, env->tmp_str_buf); 4417 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4418 bt_frame_stack_mask(bt, fr)); 4419 verbose(env, "stack=%s: ", env->tmp_str_buf); 4420 print_verifier_state(env, func, true); 4421 } 4422 } 4423 4424 if (bt_empty(bt)) 4425 return 0; 4426 4427 subseq_idx = first_idx; 4428 last_idx = st->last_insn_idx; 4429 first_idx = st->first_insn_idx; 4430 } 4431 4432 /* if we still have requested precise regs or slots, we missed 4433 * something (e.g., stack access through non-r10 register), so 4434 * fallback to marking all precise 4435 */ 4436 if (!bt_empty(bt)) { 4437 mark_all_scalars_precise(env, env->cur_state); 4438 bt_reset(bt); 4439 } 4440 4441 return 0; 4442 } 4443 4444 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4445 { 4446 return __mark_chain_precision(env, regno); 4447 } 4448 4449 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4450 * desired reg and stack masks across all relevant frames 4451 */ 4452 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4453 { 4454 return __mark_chain_precision(env, -1); 4455 } 4456 4457 static bool is_spillable_regtype(enum bpf_reg_type type) 4458 { 4459 switch (base_type(type)) { 4460 case PTR_TO_MAP_VALUE: 4461 case PTR_TO_STACK: 4462 case PTR_TO_CTX: 4463 case PTR_TO_PACKET: 4464 case PTR_TO_PACKET_META: 4465 case PTR_TO_PACKET_END: 4466 case PTR_TO_FLOW_KEYS: 4467 case CONST_PTR_TO_MAP: 4468 case PTR_TO_SOCKET: 4469 case PTR_TO_SOCK_COMMON: 4470 case PTR_TO_TCP_SOCK: 4471 case PTR_TO_XDP_SOCK: 4472 case PTR_TO_BTF_ID: 4473 case PTR_TO_BUF: 4474 case PTR_TO_MEM: 4475 case PTR_TO_FUNC: 4476 case PTR_TO_MAP_KEY: 4477 return true; 4478 default: 4479 return false; 4480 } 4481 } 4482 4483 /* Does this register contain a constant zero? */ 4484 static bool register_is_null(struct bpf_reg_state *reg) 4485 { 4486 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4487 } 4488 4489 static bool register_is_const(struct bpf_reg_state *reg) 4490 { 4491 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4492 } 4493 4494 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4495 { 4496 return tnum_is_unknown(reg->var_off) && 4497 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4498 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4499 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4500 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4501 } 4502 4503 static bool register_is_bounded(struct bpf_reg_state *reg) 4504 { 4505 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4506 } 4507 4508 static bool __is_pointer_value(bool allow_ptr_leaks, 4509 const struct bpf_reg_state *reg) 4510 { 4511 if (allow_ptr_leaks) 4512 return false; 4513 4514 return reg->type != SCALAR_VALUE; 4515 } 4516 4517 /* Copy src state preserving dst->parent and dst->live fields */ 4518 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4519 { 4520 struct bpf_reg_state *parent = dst->parent; 4521 enum bpf_reg_liveness live = dst->live; 4522 4523 *dst = *src; 4524 dst->parent = parent; 4525 dst->live = live; 4526 } 4527 4528 static void save_register_state(struct bpf_func_state *state, 4529 int spi, struct bpf_reg_state *reg, 4530 int size) 4531 { 4532 int i; 4533 4534 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4535 if (size == BPF_REG_SIZE) 4536 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4537 4538 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4539 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4540 4541 /* size < 8 bytes spill */ 4542 for (; i; i--) 4543 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4544 } 4545 4546 static bool is_bpf_st_mem(struct bpf_insn *insn) 4547 { 4548 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4549 } 4550 4551 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4552 * stack boundary and alignment are checked in check_mem_access() 4553 */ 4554 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4555 /* stack frame we're writing to */ 4556 struct bpf_func_state *state, 4557 int off, int size, int value_regno, 4558 int insn_idx) 4559 { 4560 struct bpf_func_state *cur; /* state of the current function */ 4561 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4562 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4563 struct bpf_reg_state *reg = NULL; 4564 u32 dst_reg = insn->dst_reg; 4565 4566 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4567 * so it's aligned access and [off, off + size) are within stack limits 4568 */ 4569 if (!env->allow_ptr_leaks && 4570 is_spilled_reg(&state->stack[spi]) && 4571 size != BPF_REG_SIZE) { 4572 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4573 return -EACCES; 4574 } 4575 4576 cur = env->cur_state->frame[env->cur_state->curframe]; 4577 if (value_regno >= 0) 4578 reg = &cur->regs[value_regno]; 4579 if (!env->bypass_spec_v4) { 4580 bool sanitize = reg && is_spillable_regtype(reg->type); 4581 4582 for (i = 0; i < size; i++) { 4583 u8 type = state->stack[spi].slot_type[i]; 4584 4585 if (type != STACK_MISC && type != STACK_ZERO) { 4586 sanitize = true; 4587 break; 4588 } 4589 } 4590 4591 if (sanitize) 4592 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4593 } 4594 4595 err = destroy_if_dynptr_stack_slot(env, state, spi); 4596 if (err) 4597 return err; 4598 4599 mark_stack_slot_scratched(env, spi); 4600 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4601 !register_is_null(reg) && env->bpf_capable) { 4602 if (dst_reg != BPF_REG_FP) { 4603 /* The backtracking logic can only recognize explicit 4604 * stack slot address like [fp - 8]. Other spill of 4605 * scalar via different register has to be conservative. 4606 * Backtrack from here and mark all registers as precise 4607 * that contributed into 'reg' being a constant. 4608 */ 4609 err = mark_chain_precision(env, value_regno); 4610 if (err) 4611 return err; 4612 } 4613 save_register_state(state, spi, reg, size); 4614 /* Break the relation on a narrowing spill. */ 4615 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4616 state->stack[spi].spilled_ptr.id = 0; 4617 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4618 insn->imm != 0 && env->bpf_capable) { 4619 struct bpf_reg_state fake_reg = {}; 4620 4621 __mark_reg_known(&fake_reg, insn->imm); 4622 fake_reg.type = SCALAR_VALUE; 4623 save_register_state(state, spi, &fake_reg, size); 4624 } else if (reg && is_spillable_regtype(reg->type)) { 4625 /* register containing pointer is being spilled into stack */ 4626 if (size != BPF_REG_SIZE) { 4627 verbose_linfo(env, insn_idx, "; "); 4628 verbose(env, "invalid size of register spill\n"); 4629 return -EACCES; 4630 } 4631 if (state != cur && reg->type == PTR_TO_STACK) { 4632 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4633 return -EINVAL; 4634 } 4635 save_register_state(state, spi, reg, size); 4636 } else { 4637 u8 type = STACK_MISC; 4638 4639 /* regular write of data into stack destroys any spilled ptr */ 4640 state->stack[spi].spilled_ptr.type = NOT_INIT; 4641 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4642 if (is_stack_slot_special(&state->stack[spi])) 4643 for (i = 0; i < BPF_REG_SIZE; i++) 4644 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4645 4646 /* only mark the slot as written if all 8 bytes were written 4647 * otherwise read propagation may incorrectly stop too soon 4648 * when stack slots are partially written. 4649 * This heuristic means that read propagation will be 4650 * conservative, since it will add reg_live_read marks 4651 * to stack slots all the way to first state when programs 4652 * writes+reads less than 8 bytes 4653 */ 4654 if (size == BPF_REG_SIZE) 4655 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4656 4657 /* when we zero initialize stack slots mark them as such */ 4658 if ((reg && register_is_null(reg)) || 4659 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4660 /* backtracking doesn't work for STACK_ZERO yet. */ 4661 err = mark_chain_precision(env, value_regno); 4662 if (err) 4663 return err; 4664 type = STACK_ZERO; 4665 } 4666 4667 /* Mark slots affected by this stack write. */ 4668 for (i = 0; i < size; i++) 4669 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4670 type; 4671 } 4672 return 0; 4673 } 4674 4675 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4676 * known to contain a variable offset. 4677 * This function checks whether the write is permitted and conservatively 4678 * tracks the effects of the write, considering that each stack slot in the 4679 * dynamic range is potentially written to. 4680 * 4681 * 'off' includes 'regno->off'. 4682 * 'value_regno' can be -1, meaning that an unknown value is being written to 4683 * the stack. 4684 * 4685 * Spilled pointers in range are not marked as written because we don't know 4686 * what's going to be actually written. This means that read propagation for 4687 * future reads cannot be terminated by this write. 4688 * 4689 * For privileged programs, uninitialized stack slots are considered 4690 * initialized by this write (even though we don't know exactly what offsets 4691 * are going to be written to). The idea is that we don't want the verifier to 4692 * reject future reads that access slots written to through variable offsets. 4693 */ 4694 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4695 /* func where register points to */ 4696 struct bpf_func_state *state, 4697 int ptr_regno, int off, int size, 4698 int value_regno, int insn_idx) 4699 { 4700 struct bpf_func_state *cur; /* state of the current function */ 4701 int min_off, max_off; 4702 int i, err; 4703 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4704 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4705 bool writing_zero = false; 4706 /* set if the fact that we're writing a zero is used to let any 4707 * stack slots remain STACK_ZERO 4708 */ 4709 bool zero_used = false; 4710 4711 cur = env->cur_state->frame[env->cur_state->curframe]; 4712 ptr_reg = &cur->regs[ptr_regno]; 4713 min_off = ptr_reg->smin_value + off; 4714 max_off = ptr_reg->smax_value + off + size; 4715 if (value_regno >= 0) 4716 value_reg = &cur->regs[value_regno]; 4717 if ((value_reg && register_is_null(value_reg)) || 4718 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4719 writing_zero = true; 4720 4721 for (i = min_off; i < max_off; i++) { 4722 int spi; 4723 4724 spi = __get_spi(i); 4725 err = destroy_if_dynptr_stack_slot(env, state, spi); 4726 if (err) 4727 return err; 4728 } 4729 4730 /* Variable offset writes destroy any spilled pointers in range. */ 4731 for (i = min_off; i < max_off; i++) { 4732 u8 new_type, *stype; 4733 int slot, spi; 4734 4735 slot = -i - 1; 4736 spi = slot / BPF_REG_SIZE; 4737 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4738 mark_stack_slot_scratched(env, spi); 4739 4740 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4741 /* Reject the write if range we may write to has not 4742 * been initialized beforehand. If we didn't reject 4743 * here, the ptr status would be erased below (even 4744 * though not all slots are actually overwritten), 4745 * possibly opening the door to leaks. 4746 * 4747 * We do however catch STACK_INVALID case below, and 4748 * only allow reading possibly uninitialized memory 4749 * later for CAP_PERFMON, as the write may not happen to 4750 * that slot. 4751 */ 4752 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4753 insn_idx, i); 4754 return -EINVAL; 4755 } 4756 4757 /* Erase all spilled pointers. */ 4758 state->stack[spi].spilled_ptr.type = NOT_INIT; 4759 4760 /* Update the slot type. */ 4761 new_type = STACK_MISC; 4762 if (writing_zero && *stype == STACK_ZERO) { 4763 new_type = STACK_ZERO; 4764 zero_used = true; 4765 } 4766 /* If the slot is STACK_INVALID, we check whether it's OK to 4767 * pretend that it will be initialized by this write. The slot 4768 * might not actually be written to, and so if we mark it as 4769 * initialized future reads might leak uninitialized memory. 4770 * For privileged programs, we will accept such reads to slots 4771 * that may or may not be written because, if we're reject 4772 * them, the error would be too confusing. 4773 */ 4774 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4775 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4776 insn_idx, i); 4777 return -EINVAL; 4778 } 4779 *stype = new_type; 4780 } 4781 if (zero_used) { 4782 /* backtracking doesn't work for STACK_ZERO yet. */ 4783 err = mark_chain_precision(env, value_regno); 4784 if (err) 4785 return err; 4786 } 4787 return 0; 4788 } 4789 4790 /* When register 'dst_regno' is assigned some values from stack[min_off, 4791 * max_off), we set the register's type according to the types of the 4792 * respective stack slots. If all the stack values are known to be zeros, then 4793 * so is the destination reg. Otherwise, the register is considered to be 4794 * SCALAR. This function does not deal with register filling; the caller must 4795 * ensure that all spilled registers in the stack range have been marked as 4796 * read. 4797 */ 4798 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4799 /* func where src register points to */ 4800 struct bpf_func_state *ptr_state, 4801 int min_off, int max_off, int dst_regno) 4802 { 4803 struct bpf_verifier_state *vstate = env->cur_state; 4804 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4805 int i, slot, spi; 4806 u8 *stype; 4807 int zeros = 0; 4808 4809 for (i = min_off; i < max_off; i++) { 4810 slot = -i - 1; 4811 spi = slot / BPF_REG_SIZE; 4812 mark_stack_slot_scratched(env, spi); 4813 stype = ptr_state->stack[spi].slot_type; 4814 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4815 break; 4816 zeros++; 4817 } 4818 if (zeros == max_off - min_off) { 4819 /* any access_size read into register is zero extended, 4820 * so the whole register == const_zero 4821 */ 4822 __mark_reg_const_zero(&state->regs[dst_regno]); 4823 /* backtracking doesn't support STACK_ZERO yet, 4824 * so mark it precise here, so that later 4825 * backtracking can stop here. 4826 * Backtracking may not need this if this register 4827 * doesn't participate in pointer adjustment. 4828 * Forward propagation of precise flag is not 4829 * necessary either. This mark is only to stop 4830 * backtracking. Any register that contributed 4831 * to const 0 was marked precise before spill. 4832 */ 4833 state->regs[dst_regno].precise = true; 4834 } else { 4835 /* have read misc data from the stack */ 4836 mark_reg_unknown(env, state->regs, dst_regno); 4837 } 4838 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4839 } 4840 4841 /* Read the stack at 'off' and put the results into the register indicated by 4842 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4843 * spilled reg. 4844 * 4845 * 'dst_regno' can be -1, meaning that the read value is not going to a 4846 * register. 4847 * 4848 * The access is assumed to be within the current stack bounds. 4849 */ 4850 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4851 /* func where src register points to */ 4852 struct bpf_func_state *reg_state, 4853 int off, int size, int dst_regno) 4854 { 4855 struct bpf_verifier_state *vstate = env->cur_state; 4856 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4857 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4858 struct bpf_reg_state *reg; 4859 u8 *stype, type; 4860 4861 stype = reg_state->stack[spi].slot_type; 4862 reg = ®_state->stack[spi].spilled_ptr; 4863 4864 mark_stack_slot_scratched(env, spi); 4865 4866 if (is_spilled_reg(®_state->stack[spi])) { 4867 u8 spill_size = 1; 4868 4869 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4870 spill_size++; 4871 4872 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4873 if (reg->type != SCALAR_VALUE) { 4874 verbose_linfo(env, env->insn_idx, "; "); 4875 verbose(env, "invalid size of register fill\n"); 4876 return -EACCES; 4877 } 4878 4879 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4880 if (dst_regno < 0) 4881 return 0; 4882 4883 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4884 /* The earlier check_reg_arg() has decided the 4885 * subreg_def for this insn. Save it first. 4886 */ 4887 s32 subreg_def = state->regs[dst_regno].subreg_def; 4888 4889 copy_register_state(&state->regs[dst_regno], reg); 4890 state->regs[dst_regno].subreg_def = subreg_def; 4891 } else { 4892 for (i = 0; i < size; i++) { 4893 type = stype[(slot - i) % BPF_REG_SIZE]; 4894 if (type == STACK_SPILL) 4895 continue; 4896 if (type == STACK_MISC) 4897 continue; 4898 if (type == STACK_INVALID && env->allow_uninit_stack) 4899 continue; 4900 verbose(env, "invalid read from stack off %d+%d size %d\n", 4901 off, i, size); 4902 return -EACCES; 4903 } 4904 mark_reg_unknown(env, state->regs, dst_regno); 4905 } 4906 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4907 return 0; 4908 } 4909 4910 if (dst_regno >= 0) { 4911 /* restore register state from stack */ 4912 copy_register_state(&state->regs[dst_regno], reg); 4913 /* mark reg as written since spilled pointer state likely 4914 * has its liveness marks cleared by is_state_visited() 4915 * which resets stack/reg liveness for state transitions 4916 */ 4917 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4918 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4919 /* If dst_regno==-1, the caller is asking us whether 4920 * it is acceptable to use this value as a SCALAR_VALUE 4921 * (e.g. for XADD). 4922 * We must not allow unprivileged callers to do that 4923 * with spilled pointers. 4924 */ 4925 verbose(env, "leaking pointer from stack off %d\n", 4926 off); 4927 return -EACCES; 4928 } 4929 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4930 } else { 4931 for (i = 0; i < size; i++) { 4932 type = stype[(slot - i) % BPF_REG_SIZE]; 4933 if (type == STACK_MISC) 4934 continue; 4935 if (type == STACK_ZERO) 4936 continue; 4937 if (type == STACK_INVALID && env->allow_uninit_stack) 4938 continue; 4939 verbose(env, "invalid read from stack off %d+%d size %d\n", 4940 off, i, size); 4941 return -EACCES; 4942 } 4943 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4944 if (dst_regno >= 0) 4945 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4946 } 4947 return 0; 4948 } 4949 4950 enum bpf_access_src { 4951 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4952 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4953 }; 4954 4955 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4956 int regno, int off, int access_size, 4957 bool zero_size_allowed, 4958 enum bpf_access_src type, 4959 struct bpf_call_arg_meta *meta); 4960 4961 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4962 { 4963 return cur_regs(env) + regno; 4964 } 4965 4966 /* Read the stack at 'ptr_regno + off' and put the result into the register 4967 * 'dst_regno'. 4968 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4969 * but not its variable offset. 4970 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4971 * 4972 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4973 * filling registers (i.e. reads of spilled register cannot be detected when 4974 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4975 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4976 * offset; for a fixed offset check_stack_read_fixed_off should be used 4977 * instead. 4978 */ 4979 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4980 int ptr_regno, int off, int size, int dst_regno) 4981 { 4982 /* The state of the source register. */ 4983 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4984 struct bpf_func_state *ptr_state = func(env, reg); 4985 int err; 4986 int min_off, max_off; 4987 4988 /* Note that we pass a NULL meta, so raw access will not be permitted. 4989 */ 4990 err = check_stack_range_initialized(env, ptr_regno, off, size, 4991 false, ACCESS_DIRECT, NULL); 4992 if (err) 4993 return err; 4994 4995 min_off = reg->smin_value + off; 4996 max_off = reg->smax_value + off; 4997 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4998 return 0; 4999 } 5000 5001 /* check_stack_read dispatches to check_stack_read_fixed_off or 5002 * check_stack_read_var_off. 5003 * 5004 * The caller must ensure that the offset falls within the allocated stack 5005 * bounds. 5006 * 5007 * 'dst_regno' is a register which will receive the value from the stack. It 5008 * can be -1, meaning that the read value is not going to a register. 5009 */ 5010 static int check_stack_read(struct bpf_verifier_env *env, 5011 int ptr_regno, int off, int size, 5012 int dst_regno) 5013 { 5014 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5015 struct bpf_func_state *state = func(env, reg); 5016 int err; 5017 /* Some accesses are only permitted with a static offset. */ 5018 bool var_off = !tnum_is_const(reg->var_off); 5019 5020 /* The offset is required to be static when reads don't go to a 5021 * register, in order to not leak pointers (see 5022 * check_stack_read_fixed_off). 5023 */ 5024 if (dst_regno < 0 && var_off) { 5025 char tn_buf[48]; 5026 5027 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5028 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5029 tn_buf, off, size); 5030 return -EACCES; 5031 } 5032 /* Variable offset is prohibited for unprivileged mode for simplicity 5033 * since it requires corresponding support in Spectre masking for stack 5034 * ALU. See also retrieve_ptr_limit(). The check in 5035 * check_stack_access_for_ptr_arithmetic() called by 5036 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5037 * with variable offsets, therefore no check is required here. Further, 5038 * just checking it here would be insufficient as speculative stack 5039 * writes could still lead to unsafe speculative behaviour. 5040 */ 5041 if (!var_off) { 5042 off += reg->var_off.value; 5043 err = check_stack_read_fixed_off(env, state, off, size, 5044 dst_regno); 5045 } else { 5046 /* Variable offset stack reads need more conservative handling 5047 * than fixed offset ones. Note that dst_regno >= 0 on this 5048 * branch. 5049 */ 5050 err = check_stack_read_var_off(env, ptr_regno, off, size, 5051 dst_regno); 5052 } 5053 return err; 5054 } 5055 5056 5057 /* check_stack_write dispatches to check_stack_write_fixed_off or 5058 * check_stack_write_var_off. 5059 * 5060 * 'ptr_regno' is the register used as a pointer into the stack. 5061 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5062 * 'value_regno' is the register whose value we're writing to the stack. It can 5063 * be -1, meaning that we're not writing from a register. 5064 * 5065 * The caller must ensure that the offset falls within the maximum stack size. 5066 */ 5067 static int check_stack_write(struct bpf_verifier_env *env, 5068 int ptr_regno, int off, int size, 5069 int value_regno, int insn_idx) 5070 { 5071 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5072 struct bpf_func_state *state = func(env, reg); 5073 int err; 5074 5075 if (tnum_is_const(reg->var_off)) { 5076 off += reg->var_off.value; 5077 err = check_stack_write_fixed_off(env, state, off, size, 5078 value_regno, insn_idx); 5079 } else { 5080 /* Variable offset stack reads need more conservative handling 5081 * than fixed offset ones. 5082 */ 5083 err = check_stack_write_var_off(env, state, 5084 ptr_regno, off, size, 5085 value_regno, insn_idx); 5086 } 5087 return err; 5088 } 5089 5090 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5091 int off, int size, enum bpf_access_type type) 5092 { 5093 struct bpf_reg_state *regs = cur_regs(env); 5094 struct bpf_map *map = regs[regno].map_ptr; 5095 u32 cap = bpf_map_flags_to_cap(map); 5096 5097 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5098 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5099 map->value_size, off, size); 5100 return -EACCES; 5101 } 5102 5103 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5104 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5105 map->value_size, off, size); 5106 return -EACCES; 5107 } 5108 5109 return 0; 5110 } 5111 5112 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5113 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5114 int off, int size, u32 mem_size, 5115 bool zero_size_allowed) 5116 { 5117 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5118 struct bpf_reg_state *reg; 5119 5120 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5121 return 0; 5122 5123 reg = &cur_regs(env)[regno]; 5124 switch (reg->type) { 5125 case PTR_TO_MAP_KEY: 5126 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5127 mem_size, off, size); 5128 break; 5129 case PTR_TO_MAP_VALUE: 5130 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5131 mem_size, off, size); 5132 break; 5133 case PTR_TO_PACKET: 5134 case PTR_TO_PACKET_META: 5135 case PTR_TO_PACKET_END: 5136 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5137 off, size, regno, reg->id, off, mem_size); 5138 break; 5139 case PTR_TO_MEM: 5140 default: 5141 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5142 mem_size, off, size); 5143 } 5144 5145 return -EACCES; 5146 } 5147 5148 /* check read/write into a memory region with possible variable offset */ 5149 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5150 int off, int size, u32 mem_size, 5151 bool zero_size_allowed) 5152 { 5153 struct bpf_verifier_state *vstate = env->cur_state; 5154 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5155 struct bpf_reg_state *reg = &state->regs[regno]; 5156 int err; 5157 5158 /* We may have adjusted the register pointing to memory region, so we 5159 * need to try adding each of min_value and max_value to off 5160 * to make sure our theoretical access will be safe. 5161 * 5162 * The minimum value is only important with signed 5163 * comparisons where we can't assume the floor of a 5164 * value is 0. If we are using signed variables for our 5165 * index'es we need to make sure that whatever we use 5166 * will have a set floor within our range. 5167 */ 5168 if (reg->smin_value < 0 && 5169 (reg->smin_value == S64_MIN || 5170 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5171 reg->smin_value + off < 0)) { 5172 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5173 regno); 5174 return -EACCES; 5175 } 5176 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5177 mem_size, zero_size_allowed); 5178 if (err) { 5179 verbose(env, "R%d min value is outside of the allowed memory range\n", 5180 regno); 5181 return err; 5182 } 5183 5184 /* If we haven't set a max value then we need to bail since we can't be 5185 * sure we won't do bad things. 5186 * If reg->umax_value + off could overflow, treat that as unbounded too. 5187 */ 5188 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5189 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5190 regno); 5191 return -EACCES; 5192 } 5193 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5194 mem_size, zero_size_allowed); 5195 if (err) { 5196 verbose(env, "R%d max value is outside of the allowed memory range\n", 5197 regno); 5198 return err; 5199 } 5200 5201 return 0; 5202 } 5203 5204 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5205 const struct bpf_reg_state *reg, int regno, 5206 bool fixed_off_ok) 5207 { 5208 /* Access to this pointer-typed register or passing it to a helper 5209 * is only allowed in its original, unmodified form. 5210 */ 5211 5212 if (reg->off < 0) { 5213 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5214 reg_type_str(env, reg->type), regno, reg->off); 5215 return -EACCES; 5216 } 5217 5218 if (!fixed_off_ok && reg->off) { 5219 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5220 reg_type_str(env, reg->type), regno, reg->off); 5221 return -EACCES; 5222 } 5223 5224 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5225 char tn_buf[48]; 5226 5227 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5228 verbose(env, "variable %s access var_off=%s disallowed\n", 5229 reg_type_str(env, reg->type), tn_buf); 5230 return -EACCES; 5231 } 5232 5233 return 0; 5234 } 5235 5236 int check_ptr_off_reg(struct bpf_verifier_env *env, 5237 const struct bpf_reg_state *reg, int regno) 5238 { 5239 return __check_ptr_off_reg(env, reg, regno, false); 5240 } 5241 5242 static int map_kptr_match_type(struct bpf_verifier_env *env, 5243 struct btf_field *kptr_field, 5244 struct bpf_reg_state *reg, u32 regno) 5245 { 5246 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5247 int perm_flags; 5248 const char *reg_name = ""; 5249 5250 if (btf_is_kernel(reg->btf)) { 5251 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5252 5253 /* Only unreferenced case accepts untrusted pointers */ 5254 if (kptr_field->type == BPF_KPTR_UNREF) 5255 perm_flags |= PTR_UNTRUSTED; 5256 } else { 5257 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5258 } 5259 5260 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5261 goto bad_type; 5262 5263 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5264 reg_name = btf_type_name(reg->btf, reg->btf_id); 5265 5266 /* For ref_ptr case, release function check should ensure we get one 5267 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5268 * normal store of unreferenced kptr, we must ensure var_off is zero. 5269 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5270 * reg->off and reg->ref_obj_id are not needed here. 5271 */ 5272 if (__check_ptr_off_reg(env, reg, regno, true)) 5273 return -EACCES; 5274 5275 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5276 * we also need to take into account the reg->off. 5277 * 5278 * We want to support cases like: 5279 * 5280 * struct foo { 5281 * struct bar br; 5282 * struct baz bz; 5283 * }; 5284 * 5285 * struct foo *v; 5286 * v = func(); // PTR_TO_BTF_ID 5287 * val->foo = v; // reg->off is zero, btf and btf_id match type 5288 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5289 * // first member type of struct after comparison fails 5290 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5291 * // to match type 5292 * 5293 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5294 * is zero. We must also ensure that btf_struct_ids_match does not walk 5295 * the struct to match type against first member of struct, i.e. reject 5296 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5297 * strict mode to true for type match. 5298 */ 5299 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5300 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5301 kptr_field->type == BPF_KPTR_REF)) 5302 goto bad_type; 5303 return 0; 5304 bad_type: 5305 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5306 reg_type_str(env, reg->type), reg_name); 5307 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5308 if (kptr_field->type == BPF_KPTR_UNREF) 5309 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5310 targ_name); 5311 else 5312 verbose(env, "\n"); 5313 return -EINVAL; 5314 } 5315 5316 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5317 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5318 */ 5319 static bool in_rcu_cs(struct bpf_verifier_env *env) 5320 { 5321 return env->cur_state->active_rcu_lock || 5322 env->cur_state->active_lock.ptr || 5323 !env->prog->aux->sleepable; 5324 } 5325 5326 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5327 BTF_SET_START(rcu_protected_types) 5328 BTF_ID(struct, prog_test_ref_kfunc) 5329 BTF_ID(struct, cgroup) 5330 BTF_ID(struct, bpf_cpumask) 5331 BTF_ID(struct, task_struct) 5332 BTF_SET_END(rcu_protected_types) 5333 5334 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5335 { 5336 if (!btf_is_kernel(btf)) 5337 return false; 5338 return btf_id_set_contains(&rcu_protected_types, btf_id); 5339 } 5340 5341 static bool rcu_safe_kptr(const struct btf_field *field) 5342 { 5343 const struct btf_field_kptr *kptr = &field->kptr; 5344 5345 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5346 } 5347 5348 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5349 int value_regno, int insn_idx, 5350 struct btf_field *kptr_field) 5351 { 5352 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5353 int class = BPF_CLASS(insn->code); 5354 struct bpf_reg_state *val_reg; 5355 5356 /* Things we already checked for in check_map_access and caller: 5357 * - Reject cases where variable offset may touch kptr 5358 * - size of access (must be BPF_DW) 5359 * - tnum_is_const(reg->var_off) 5360 * - kptr_field->offset == off + reg->var_off.value 5361 */ 5362 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5363 if (BPF_MODE(insn->code) != BPF_MEM) { 5364 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5365 return -EACCES; 5366 } 5367 5368 /* We only allow loading referenced kptr, since it will be marked as 5369 * untrusted, similar to unreferenced kptr. 5370 */ 5371 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5372 verbose(env, "store to referenced kptr disallowed\n"); 5373 return -EACCES; 5374 } 5375 5376 if (class == BPF_LDX) { 5377 val_reg = reg_state(env, value_regno); 5378 /* We can simply mark the value_regno receiving the pointer 5379 * value from map as PTR_TO_BTF_ID, with the correct type. 5380 */ 5381 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5382 kptr_field->kptr.btf_id, 5383 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5384 PTR_MAYBE_NULL | MEM_RCU : 5385 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5386 } else if (class == BPF_STX) { 5387 val_reg = reg_state(env, value_regno); 5388 if (!register_is_null(val_reg) && 5389 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5390 return -EACCES; 5391 } else if (class == BPF_ST) { 5392 if (insn->imm) { 5393 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5394 kptr_field->offset); 5395 return -EACCES; 5396 } 5397 } else { 5398 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5399 return -EACCES; 5400 } 5401 return 0; 5402 } 5403 5404 /* check read/write into a map element with possible variable offset */ 5405 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5406 int off, int size, bool zero_size_allowed, 5407 enum bpf_access_src src) 5408 { 5409 struct bpf_verifier_state *vstate = env->cur_state; 5410 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5411 struct bpf_reg_state *reg = &state->regs[regno]; 5412 struct bpf_map *map = reg->map_ptr; 5413 struct btf_record *rec; 5414 int err, i; 5415 5416 err = check_mem_region_access(env, regno, off, size, map->value_size, 5417 zero_size_allowed); 5418 if (err) 5419 return err; 5420 5421 if (IS_ERR_OR_NULL(map->record)) 5422 return 0; 5423 rec = map->record; 5424 for (i = 0; i < rec->cnt; i++) { 5425 struct btf_field *field = &rec->fields[i]; 5426 u32 p = field->offset; 5427 5428 /* If any part of a field can be touched by load/store, reject 5429 * this program. To check that [x1, x2) overlaps with [y1, y2), 5430 * it is sufficient to check x1 < y2 && y1 < x2. 5431 */ 5432 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5433 p < reg->umax_value + off + size) { 5434 switch (field->type) { 5435 case BPF_KPTR_UNREF: 5436 case BPF_KPTR_REF: 5437 if (src != ACCESS_DIRECT) { 5438 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5439 return -EACCES; 5440 } 5441 if (!tnum_is_const(reg->var_off)) { 5442 verbose(env, "kptr access cannot have variable offset\n"); 5443 return -EACCES; 5444 } 5445 if (p != off + reg->var_off.value) { 5446 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5447 p, off + reg->var_off.value); 5448 return -EACCES; 5449 } 5450 if (size != bpf_size_to_bytes(BPF_DW)) { 5451 verbose(env, "kptr access size must be BPF_DW\n"); 5452 return -EACCES; 5453 } 5454 break; 5455 default: 5456 verbose(env, "%s cannot be accessed directly by load/store\n", 5457 btf_field_type_name(field->type)); 5458 return -EACCES; 5459 } 5460 } 5461 } 5462 return 0; 5463 } 5464 5465 #define MAX_PACKET_OFF 0xffff 5466 5467 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5468 const struct bpf_call_arg_meta *meta, 5469 enum bpf_access_type t) 5470 { 5471 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5472 5473 switch (prog_type) { 5474 /* Program types only with direct read access go here! */ 5475 case BPF_PROG_TYPE_LWT_IN: 5476 case BPF_PROG_TYPE_LWT_OUT: 5477 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5478 case BPF_PROG_TYPE_SK_REUSEPORT: 5479 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5480 case BPF_PROG_TYPE_CGROUP_SKB: 5481 if (t == BPF_WRITE) 5482 return false; 5483 fallthrough; 5484 5485 /* Program types with direct read + write access go here! */ 5486 case BPF_PROG_TYPE_SCHED_CLS: 5487 case BPF_PROG_TYPE_SCHED_ACT: 5488 case BPF_PROG_TYPE_XDP: 5489 case BPF_PROG_TYPE_LWT_XMIT: 5490 case BPF_PROG_TYPE_SK_SKB: 5491 case BPF_PROG_TYPE_SK_MSG: 5492 if (meta) 5493 return meta->pkt_access; 5494 5495 env->seen_direct_write = true; 5496 return true; 5497 5498 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5499 if (t == BPF_WRITE) 5500 env->seen_direct_write = true; 5501 5502 return true; 5503 5504 default: 5505 return false; 5506 } 5507 } 5508 5509 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5510 int size, bool zero_size_allowed) 5511 { 5512 struct bpf_reg_state *regs = cur_regs(env); 5513 struct bpf_reg_state *reg = ®s[regno]; 5514 int err; 5515 5516 /* We may have added a variable offset to the packet pointer; but any 5517 * reg->range we have comes after that. We are only checking the fixed 5518 * offset. 5519 */ 5520 5521 /* We don't allow negative numbers, because we aren't tracking enough 5522 * detail to prove they're safe. 5523 */ 5524 if (reg->smin_value < 0) { 5525 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5526 regno); 5527 return -EACCES; 5528 } 5529 5530 err = reg->range < 0 ? -EINVAL : 5531 __check_mem_access(env, regno, off, size, reg->range, 5532 zero_size_allowed); 5533 if (err) { 5534 verbose(env, "R%d offset is outside of the packet\n", regno); 5535 return err; 5536 } 5537 5538 /* __check_mem_access has made sure "off + size - 1" is within u16. 5539 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5540 * otherwise find_good_pkt_pointers would have refused to set range info 5541 * that __check_mem_access would have rejected this pkt access. 5542 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5543 */ 5544 env->prog->aux->max_pkt_offset = 5545 max_t(u32, env->prog->aux->max_pkt_offset, 5546 off + reg->umax_value + size - 1); 5547 5548 return err; 5549 } 5550 5551 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5552 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5553 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5554 struct btf **btf, u32 *btf_id) 5555 { 5556 struct bpf_insn_access_aux info = { 5557 .reg_type = *reg_type, 5558 .log = &env->log, 5559 }; 5560 5561 if (env->ops->is_valid_access && 5562 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5563 /* A non zero info.ctx_field_size indicates that this field is a 5564 * candidate for later verifier transformation to load the whole 5565 * field and then apply a mask when accessed with a narrower 5566 * access than actual ctx access size. A zero info.ctx_field_size 5567 * will only allow for whole field access and rejects any other 5568 * type of narrower access. 5569 */ 5570 *reg_type = info.reg_type; 5571 5572 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5573 *btf = info.btf; 5574 *btf_id = info.btf_id; 5575 } else { 5576 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5577 } 5578 /* remember the offset of last byte accessed in ctx */ 5579 if (env->prog->aux->max_ctx_offset < off + size) 5580 env->prog->aux->max_ctx_offset = off + size; 5581 return 0; 5582 } 5583 5584 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5585 return -EACCES; 5586 } 5587 5588 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5589 int size) 5590 { 5591 if (size < 0 || off < 0 || 5592 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5593 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5594 off, size); 5595 return -EACCES; 5596 } 5597 return 0; 5598 } 5599 5600 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5601 u32 regno, int off, int size, 5602 enum bpf_access_type t) 5603 { 5604 struct bpf_reg_state *regs = cur_regs(env); 5605 struct bpf_reg_state *reg = ®s[regno]; 5606 struct bpf_insn_access_aux info = {}; 5607 bool valid; 5608 5609 if (reg->smin_value < 0) { 5610 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5611 regno); 5612 return -EACCES; 5613 } 5614 5615 switch (reg->type) { 5616 case PTR_TO_SOCK_COMMON: 5617 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5618 break; 5619 case PTR_TO_SOCKET: 5620 valid = bpf_sock_is_valid_access(off, size, t, &info); 5621 break; 5622 case PTR_TO_TCP_SOCK: 5623 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5624 break; 5625 case PTR_TO_XDP_SOCK: 5626 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5627 break; 5628 default: 5629 valid = false; 5630 } 5631 5632 5633 if (valid) { 5634 env->insn_aux_data[insn_idx].ctx_field_size = 5635 info.ctx_field_size; 5636 return 0; 5637 } 5638 5639 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5640 regno, reg_type_str(env, reg->type), off, size); 5641 5642 return -EACCES; 5643 } 5644 5645 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5646 { 5647 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5648 } 5649 5650 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5651 { 5652 const struct bpf_reg_state *reg = reg_state(env, regno); 5653 5654 return reg->type == PTR_TO_CTX; 5655 } 5656 5657 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5658 { 5659 const struct bpf_reg_state *reg = reg_state(env, regno); 5660 5661 return type_is_sk_pointer(reg->type); 5662 } 5663 5664 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5665 { 5666 const struct bpf_reg_state *reg = reg_state(env, regno); 5667 5668 return type_is_pkt_pointer(reg->type); 5669 } 5670 5671 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5672 { 5673 const struct bpf_reg_state *reg = reg_state(env, regno); 5674 5675 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5676 return reg->type == PTR_TO_FLOW_KEYS; 5677 } 5678 5679 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5680 #ifdef CONFIG_NET 5681 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5682 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5683 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5684 #endif 5685 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5686 }; 5687 5688 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5689 { 5690 /* A referenced register is always trusted. */ 5691 if (reg->ref_obj_id) 5692 return true; 5693 5694 /* Types listed in the reg2btf_ids are always trusted */ 5695 if (reg2btf_ids[base_type(reg->type)] && 5696 !bpf_type_has_unsafe_modifiers(reg->type)) 5697 return true; 5698 5699 /* If a register is not referenced, it is trusted if it has the 5700 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5701 * other type modifiers may be safe, but we elect to take an opt-in 5702 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5703 * not. 5704 * 5705 * Eventually, we should make PTR_TRUSTED the single source of truth 5706 * for whether a register is trusted. 5707 */ 5708 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5709 !bpf_type_has_unsafe_modifiers(reg->type); 5710 } 5711 5712 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5713 { 5714 return reg->type & MEM_RCU; 5715 } 5716 5717 static void clear_trusted_flags(enum bpf_type_flag *flag) 5718 { 5719 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5720 } 5721 5722 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5723 const struct bpf_reg_state *reg, 5724 int off, int size, bool strict) 5725 { 5726 struct tnum reg_off; 5727 int ip_align; 5728 5729 /* Byte size accesses are always allowed. */ 5730 if (!strict || size == 1) 5731 return 0; 5732 5733 /* For platforms that do not have a Kconfig enabling 5734 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5735 * NET_IP_ALIGN is universally set to '2'. And on platforms 5736 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5737 * to this code only in strict mode where we want to emulate 5738 * the NET_IP_ALIGN==2 checking. Therefore use an 5739 * unconditional IP align value of '2'. 5740 */ 5741 ip_align = 2; 5742 5743 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5744 if (!tnum_is_aligned(reg_off, size)) { 5745 char tn_buf[48]; 5746 5747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5748 verbose(env, 5749 "misaligned packet access off %d+%s+%d+%d size %d\n", 5750 ip_align, tn_buf, reg->off, off, size); 5751 return -EACCES; 5752 } 5753 5754 return 0; 5755 } 5756 5757 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5758 const struct bpf_reg_state *reg, 5759 const char *pointer_desc, 5760 int off, int size, bool strict) 5761 { 5762 struct tnum reg_off; 5763 5764 /* Byte size accesses are always allowed. */ 5765 if (!strict || size == 1) 5766 return 0; 5767 5768 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5769 if (!tnum_is_aligned(reg_off, size)) { 5770 char tn_buf[48]; 5771 5772 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5773 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5774 pointer_desc, tn_buf, reg->off, off, size); 5775 return -EACCES; 5776 } 5777 5778 return 0; 5779 } 5780 5781 static int check_ptr_alignment(struct bpf_verifier_env *env, 5782 const struct bpf_reg_state *reg, int off, 5783 int size, bool strict_alignment_once) 5784 { 5785 bool strict = env->strict_alignment || strict_alignment_once; 5786 const char *pointer_desc = ""; 5787 5788 switch (reg->type) { 5789 case PTR_TO_PACKET: 5790 case PTR_TO_PACKET_META: 5791 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5792 * right in front, treat it the very same way. 5793 */ 5794 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5795 case PTR_TO_FLOW_KEYS: 5796 pointer_desc = "flow keys "; 5797 break; 5798 case PTR_TO_MAP_KEY: 5799 pointer_desc = "key "; 5800 break; 5801 case PTR_TO_MAP_VALUE: 5802 pointer_desc = "value "; 5803 break; 5804 case PTR_TO_CTX: 5805 pointer_desc = "context "; 5806 break; 5807 case PTR_TO_STACK: 5808 pointer_desc = "stack "; 5809 /* The stack spill tracking logic in check_stack_write_fixed_off() 5810 * and check_stack_read_fixed_off() relies on stack accesses being 5811 * aligned. 5812 */ 5813 strict = true; 5814 break; 5815 case PTR_TO_SOCKET: 5816 pointer_desc = "sock "; 5817 break; 5818 case PTR_TO_SOCK_COMMON: 5819 pointer_desc = "sock_common "; 5820 break; 5821 case PTR_TO_TCP_SOCK: 5822 pointer_desc = "tcp_sock "; 5823 break; 5824 case PTR_TO_XDP_SOCK: 5825 pointer_desc = "xdp_sock "; 5826 break; 5827 default: 5828 break; 5829 } 5830 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5831 strict); 5832 } 5833 5834 /* starting from main bpf function walk all instructions of the function 5835 * and recursively walk all callees that given function can call. 5836 * Ignore jump and exit insns. 5837 * Since recursion is prevented by check_cfg() this algorithm 5838 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5839 */ 5840 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5841 { 5842 struct bpf_subprog_info *subprog = env->subprog_info; 5843 struct bpf_insn *insn = env->prog->insnsi; 5844 int depth = 0, frame = 0, i, subprog_end; 5845 bool tail_call_reachable = false; 5846 int ret_insn[MAX_CALL_FRAMES]; 5847 int ret_prog[MAX_CALL_FRAMES]; 5848 int j; 5849 5850 i = subprog[idx].start; 5851 process_func: 5852 /* protect against potential stack overflow that might happen when 5853 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5854 * depth for such case down to 256 so that the worst case scenario 5855 * would result in 8k stack size (32 which is tailcall limit * 256 = 5856 * 8k). 5857 * 5858 * To get the idea what might happen, see an example: 5859 * func1 -> sub rsp, 128 5860 * subfunc1 -> sub rsp, 256 5861 * tailcall1 -> add rsp, 256 5862 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5863 * subfunc2 -> sub rsp, 64 5864 * subfunc22 -> sub rsp, 128 5865 * tailcall2 -> add rsp, 128 5866 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5867 * 5868 * tailcall will unwind the current stack frame but it will not get rid 5869 * of caller's stack as shown on the example above. 5870 */ 5871 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5872 verbose(env, 5873 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5874 depth); 5875 return -EACCES; 5876 } 5877 /* round up to 32-bytes, since this is granularity 5878 * of interpreter stack size 5879 */ 5880 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5881 if (depth > MAX_BPF_STACK) { 5882 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5883 frame + 1, depth); 5884 return -EACCES; 5885 } 5886 continue_func: 5887 subprog_end = subprog[idx + 1].start; 5888 for (; i < subprog_end; i++) { 5889 int next_insn, sidx; 5890 5891 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5892 continue; 5893 /* remember insn and function to return to */ 5894 ret_insn[frame] = i + 1; 5895 ret_prog[frame] = idx; 5896 5897 /* find the callee */ 5898 next_insn = i + insn[i].imm + 1; 5899 sidx = find_subprog(env, next_insn); 5900 if (sidx < 0) { 5901 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5902 next_insn); 5903 return -EFAULT; 5904 } 5905 if (subprog[sidx].is_async_cb) { 5906 if (subprog[sidx].has_tail_call) { 5907 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5908 return -EFAULT; 5909 } 5910 /* async callbacks don't increase bpf prog stack size unless called directly */ 5911 if (!bpf_pseudo_call(insn + i)) 5912 continue; 5913 } 5914 i = next_insn; 5915 idx = sidx; 5916 5917 if (subprog[idx].has_tail_call) 5918 tail_call_reachable = true; 5919 5920 frame++; 5921 if (frame >= MAX_CALL_FRAMES) { 5922 verbose(env, "the call stack of %d frames is too deep !\n", 5923 frame); 5924 return -E2BIG; 5925 } 5926 goto process_func; 5927 } 5928 /* if tail call got detected across bpf2bpf calls then mark each of the 5929 * currently present subprog frames as tail call reachable subprogs; 5930 * this info will be utilized by JIT so that we will be preserving the 5931 * tail call counter throughout bpf2bpf calls combined with tailcalls 5932 */ 5933 if (tail_call_reachable) 5934 for (j = 0; j < frame; j++) 5935 subprog[ret_prog[j]].tail_call_reachable = true; 5936 if (subprog[0].tail_call_reachable) 5937 env->prog->aux->tail_call_reachable = true; 5938 5939 /* end of for() loop means the last insn of the 'subprog' 5940 * was reached. Doesn't matter whether it was JA or EXIT 5941 */ 5942 if (frame == 0) 5943 return 0; 5944 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5945 frame--; 5946 i = ret_insn[frame]; 5947 idx = ret_prog[frame]; 5948 goto continue_func; 5949 } 5950 5951 static int check_max_stack_depth(struct bpf_verifier_env *env) 5952 { 5953 struct bpf_subprog_info *si = env->subprog_info; 5954 int ret; 5955 5956 for (int i = 0; i < env->subprog_cnt; i++) { 5957 if (!i || si[i].is_async_cb) { 5958 ret = check_max_stack_depth_subprog(env, i); 5959 if (ret < 0) 5960 return ret; 5961 } 5962 continue; 5963 } 5964 return 0; 5965 } 5966 5967 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5968 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5969 const struct bpf_insn *insn, int idx) 5970 { 5971 int start = idx + insn->imm + 1, subprog; 5972 5973 subprog = find_subprog(env, start); 5974 if (subprog < 0) { 5975 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5976 start); 5977 return -EFAULT; 5978 } 5979 return env->subprog_info[subprog].stack_depth; 5980 } 5981 #endif 5982 5983 static int __check_buffer_access(struct bpf_verifier_env *env, 5984 const char *buf_info, 5985 const struct bpf_reg_state *reg, 5986 int regno, int off, int size) 5987 { 5988 if (off < 0) { 5989 verbose(env, 5990 "R%d invalid %s buffer access: off=%d, size=%d\n", 5991 regno, buf_info, off, size); 5992 return -EACCES; 5993 } 5994 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5995 char tn_buf[48]; 5996 5997 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5998 verbose(env, 5999 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6000 regno, off, tn_buf); 6001 return -EACCES; 6002 } 6003 6004 return 0; 6005 } 6006 6007 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6008 const struct bpf_reg_state *reg, 6009 int regno, int off, int size) 6010 { 6011 int err; 6012 6013 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6014 if (err) 6015 return err; 6016 6017 if (off + size > env->prog->aux->max_tp_access) 6018 env->prog->aux->max_tp_access = off + size; 6019 6020 return 0; 6021 } 6022 6023 static int check_buffer_access(struct bpf_verifier_env *env, 6024 const struct bpf_reg_state *reg, 6025 int regno, int off, int size, 6026 bool zero_size_allowed, 6027 u32 *max_access) 6028 { 6029 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6030 int err; 6031 6032 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6033 if (err) 6034 return err; 6035 6036 if (off + size > *max_access) 6037 *max_access = off + size; 6038 6039 return 0; 6040 } 6041 6042 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6043 static void zext_32_to_64(struct bpf_reg_state *reg) 6044 { 6045 reg->var_off = tnum_subreg(reg->var_off); 6046 __reg_assign_32_into_64(reg); 6047 } 6048 6049 /* truncate register to smaller size (in bytes) 6050 * must be called with size < BPF_REG_SIZE 6051 */ 6052 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6053 { 6054 u64 mask; 6055 6056 /* clear high bits in bit representation */ 6057 reg->var_off = tnum_cast(reg->var_off, size); 6058 6059 /* fix arithmetic bounds */ 6060 mask = ((u64)1 << (size * 8)) - 1; 6061 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6062 reg->umin_value &= mask; 6063 reg->umax_value &= mask; 6064 } else { 6065 reg->umin_value = 0; 6066 reg->umax_value = mask; 6067 } 6068 reg->smin_value = reg->umin_value; 6069 reg->smax_value = reg->umax_value; 6070 6071 /* If size is smaller than 32bit register the 32bit register 6072 * values are also truncated so we push 64-bit bounds into 6073 * 32-bit bounds. Above were truncated < 32-bits already. 6074 */ 6075 if (size >= 4) 6076 return; 6077 __reg_combine_64_into_32(reg); 6078 } 6079 6080 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6081 { 6082 if (size == 1) { 6083 reg->smin_value = reg->s32_min_value = S8_MIN; 6084 reg->smax_value = reg->s32_max_value = S8_MAX; 6085 } else if (size == 2) { 6086 reg->smin_value = reg->s32_min_value = S16_MIN; 6087 reg->smax_value = reg->s32_max_value = S16_MAX; 6088 } else { 6089 /* size == 4 */ 6090 reg->smin_value = reg->s32_min_value = S32_MIN; 6091 reg->smax_value = reg->s32_max_value = S32_MAX; 6092 } 6093 reg->umin_value = reg->u32_min_value = 0; 6094 reg->umax_value = U64_MAX; 6095 reg->u32_max_value = U32_MAX; 6096 reg->var_off = tnum_unknown; 6097 } 6098 6099 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6100 { 6101 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6102 u64 top_smax_value, top_smin_value; 6103 u64 num_bits = size * 8; 6104 6105 if (tnum_is_const(reg->var_off)) { 6106 u64_cval = reg->var_off.value; 6107 if (size == 1) 6108 reg->var_off = tnum_const((s8)u64_cval); 6109 else if (size == 2) 6110 reg->var_off = tnum_const((s16)u64_cval); 6111 else 6112 /* size == 4 */ 6113 reg->var_off = tnum_const((s32)u64_cval); 6114 6115 u64_cval = reg->var_off.value; 6116 reg->smax_value = reg->smin_value = u64_cval; 6117 reg->umax_value = reg->umin_value = u64_cval; 6118 reg->s32_max_value = reg->s32_min_value = u64_cval; 6119 reg->u32_max_value = reg->u32_min_value = u64_cval; 6120 return; 6121 } 6122 6123 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6124 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6125 6126 if (top_smax_value != top_smin_value) 6127 goto out; 6128 6129 /* find the s64_min and s64_min after sign extension */ 6130 if (size == 1) { 6131 init_s64_max = (s8)reg->smax_value; 6132 init_s64_min = (s8)reg->smin_value; 6133 } else if (size == 2) { 6134 init_s64_max = (s16)reg->smax_value; 6135 init_s64_min = (s16)reg->smin_value; 6136 } else { 6137 init_s64_max = (s32)reg->smax_value; 6138 init_s64_min = (s32)reg->smin_value; 6139 } 6140 6141 s64_max = max(init_s64_max, init_s64_min); 6142 s64_min = min(init_s64_max, init_s64_min); 6143 6144 /* both of s64_max/s64_min positive or negative */ 6145 if ((s64_max >= 0) == (s64_min >= 0)) { 6146 reg->s32_min_value = reg->smin_value = s64_min; 6147 reg->s32_max_value = reg->smax_value = s64_max; 6148 reg->u32_min_value = reg->umin_value = s64_min; 6149 reg->u32_max_value = reg->umax_value = s64_max; 6150 reg->var_off = tnum_range(s64_min, s64_max); 6151 return; 6152 } 6153 6154 out: 6155 set_sext64_default_val(reg, size); 6156 } 6157 6158 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6159 { 6160 if (size == 1) { 6161 reg->s32_min_value = S8_MIN; 6162 reg->s32_max_value = S8_MAX; 6163 } else { 6164 /* size == 2 */ 6165 reg->s32_min_value = S16_MIN; 6166 reg->s32_max_value = S16_MAX; 6167 } 6168 reg->u32_min_value = 0; 6169 reg->u32_max_value = U32_MAX; 6170 reg->var_off = tnum_subreg(tnum_unknown); 6171 } 6172 6173 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6174 { 6175 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6176 u32 top_smax_value, top_smin_value; 6177 u32 num_bits = size * 8; 6178 6179 if (tnum_is_const(reg->var_off)) { 6180 u32_val = reg->var_off.value; 6181 if (size == 1) 6182 reg->var_off = tnum_const((s8)u32_val); 6183 else 6184 reg->var_off = tnum_const((s16)u32_val); 6185 6186 u32_val = reg->var_off.value; 6187 reg->s32_min_value = reg->s32_max_value = u32_val; 6188 reg->u32_min_value = reg->u32_max_value = u32_val; 6189 return; 6190 } 6191 6192 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6193 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6194 6195 if (top_smax_value != top_smin_value) 6196 goto out; 6197 6198 /* find the s32_min and s32_min after sign extension */ 6199 if (size == 1) { 6200 init_s32_max = (s8)reg->s32_max_value; 6201 init_s32_min = (s8)reg->s32_min_value; 6202 } else { 6203 /* size == 2 */ 6204 init_s32_max = (s16)reg->s32_max_value; 6205 init_s32_min = (s16)reg->s32_min_value; 6206 } 6207 s32_max = max(init_s32_max, init_s32_min); 6208 s32_min = min(init_s32_max, init_s32_min); 6209 6210 if ((s32_min >= 0) == (s32_max >= 0)) { 6211 reg->s32_min_value = s32_min; 6212 reg->s32_max_value = s32_max; 6213 reg->u32_min_value = (u32)s32_min; 6214 reg->u32_max_value = (u32)s32_max; 6215 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6216 return; 6217 } 6218 6219 out: 6220 set_sext32_default_val(reg, size); 6221 } 6222 6223 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6224 { 6225 /* A map is considered read-only if the following condition are true: 6226 * 6227 * 1) BPF program side cannot change any of the map content. The 6228 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6229 * and was set at map creation time. 6230 * 2) The map value(s) have been initialized from user space by a 6231 * loader and then "frozen", such that no new map update/delete 6232 * operations from syscall side are possible for the rest of 6233 * the map's lifetime from that point onwards. 6234 * 3) Any parallel/pending map update/delete operations from syscall 6235 * side have been completed. Only after that point, it's safe to 6236 * assume that map value(s) are immutable. 6237 */ 6238 return (map->map_flags & BPF_F_RDONLY_PROG) && 6239 READ_ONCE(map->frozen) && 6240 !bpf_map_write_active(map); 6241 } 6242 6243 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6244 bool is_ldsx) 6245 { 6246 void *ptr; 6247 u64 addr; 6248 int err; 6249 6250 err = map->ops->map_direct_value_addr(map, &addr, off); 6251 if (err) 6252 return err; 6253 ptr = (void *)(long)addr + off; 6254 6255 switch (size) { 6256 case sizeof(u8): 6257 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6258 break; 6259 case sizeof(u16): 6260 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6261 break; 6262 case sizeof(u32): 6263 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6264 break; 6265 case sizeof(u64): 6266 *val = *(u64 *)ptr; 6267 break; 6268 default: 6269 return -EINVAL; 6270 } 6271 return 0; 6272 } 6273 6274 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6275 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6276 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6277 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6278 6279 /* 6280 * Allow list few fields as RCU trusted or full trusted. 6281 * This logic doesn't allow mix tagging and will be removed once GCC supports 6282 * btf_type_tag. 6283 */ 6284 6285 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6286 BTF_TYPE_SAFE_RCU(struct task_struct) { 6287 const cpumask_t *cpus_ptr; 6288 struct css_set __rcu *cgroups; 6289 struct task_struct __rcu *real_parent; 6290 struct task_struct *group_leader; 6291 }; 6292 6293 BTF_TYPE_SAFE_RCU(struct cgroup) { 6294 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6295 struct kernfs_node *kn; 6296 }; 6297 6298 BTF_TYPE_SAFE_RCU(struct css_set) { 6299 struct cgroup *dfl_cgrp; 6300 }; 6301 6302 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6303 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6304 struct file __rcu *exe_file; 6305 }; 6306 6307 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6308 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6309 */ 6310 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6311 struct sock *sk; 6312 }; 6313 6314 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6315 struct sock *sk; 6316 }; 6317 6318 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6319 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6320 struct seq_file *seq; 6321 }; 6322 6323 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6324 struct bpf_iter_meta *meta; 6325 struct task_struct *task; 6326 }; 6327 6328 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6329 struct file *file; 6330 }; 6331 6332 BTF_TYPE_SAFE_TRUSTED(struct file) { 6333 struct inode *f_inode; 6334 }; 6335 6336 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6337 /* no negative dentry-s in places where bpf can see it */ 6338 struct inode *d_inode; 6339 }; 6340 6341 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6342 struct sock *sk; 6343 }; 6344 6345 static bool type_is_rcu(struct bpf_verifier_env *env, 6346 struct bpf_reg_state *reg, 6347 const char *field_name, u32 btf_id) 6348 { 6349 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6350 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6351 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6352 6353 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6354 } 6355 6356 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6357 struct bpf_reg_state *reg, 6358 const char *field_name, u32 btf_id) 6359 { 6360 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6363 6364 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6365 } 6366 6367 static bool type_is_trusted(struct bpf_verifier_env *env, 6368 struct bpf_reg_state *reg, 6369 const char *field_name, u32 btf_id) 6370 { 6371 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6372 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6373 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6374 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6375 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6376 6377 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6378 } 6379 6380 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6381 struct bpf_reg_state *reg, 6382 const char *field_name, u32 btf_id) 6383 { 6384 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6385 6386 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6387 "__safe_trusted_or_null"); 6388 } 6389 6390 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6391 struct bpf_reg_state *regs, 6392 int regno, int off, int size, 6393 enum bpf_access_type atype, 6394 int value_regno) 6395 { 6396 struct bpf_reg_state *reg = regs + regno; 6397 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6398 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6399 const char *field_name = NULL; 6400 enum bpf_type_flag flag = 0; 6401 u32 btf_id = 0; 6402 int ret; 6403 6404 if (!env->allow_ptr_leaks) { 6405 verbose(env, 6406 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6407 tname); 6408 return -EPERM; 6409 } 6410 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6411 verbose(env, 6412 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6413 tname); 6414 return -EINVAL; 6415 } 6416 if (off < 0) { 6417 verbose(env, 6418 "R%d is ptr_%s invalid negative access: off=%d\n", 6419 regno, tname, off); 6420 return -EACCES; 6421 } 6422 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6423 char tn_buf[48]; 6424 6425 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6426 verbose(env, 6427 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6428 regno, tname, off, tn_buf); 6429 return -EACCES; 6430 } 6431 6432 if (reg->type & MEM_USER) { 6433 verbose(env, 6434 "R%d is ptr_%s access user memory: off=%d\n", 6435 regno, tname, off); 6436 return -EACCES; 6437 } 6438 6439 if (reg->type & MEM_PERCPU) { 6440 verbose(env, 6441 "R%d is ptr_%s access percpu memory: off=%d\n", 6442 regno, tname, off); 6443 return -EACCES; 6444 } 6445 6446 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6447 if (!btf_is_kernel(reg->btf)) { 6448 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6449 return -EFAULT; 6450 } 6451 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6452 } else { 6453 /* Writes are permitted with default btf_struct_access for 6454 * program allocated objects (which always have ref_obj_id > 0), 6455 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6456 */ 6457 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6458 verbose(env, "only read is supported\n"); 6459 return -EACCES; 6460 } 6461 6462 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6463 !reg->ref_obj_id) { 6464 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6465 return -EFAULT; 6466 } 6467 6468 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6469 } 6470 6471 if (ret < 0) 6472 return ret; 6473 6474 if (ret != PTR_TO_BTF_ID) { 6475 /* just mark; */ 6476 6477 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6478 /* If this is an untrusted pointer, all pointers formed by walking it 6479 * also inherit the untrusted flag. 6480 */ 6481 flag = PTR_UNTRUSTED; 6482 6483 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6484 /* By default any pointer obtained from walking a trusted pointer is no 6485 * longer trusted, unless the field being accessed has explicitly been 6486 * marked as inheriting its parent's state of trust (either full or RCU). 6487 * For example: 6488 * 'cgroups' pointer is untrusted if task->cgroups dereference 6489 * happened in a sleepable program outside of bpf_rcu_read_lock() 6490 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6491 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6492 * 6493 * A regular RCU-protected pointer with __rcu tag can also be deemed 6494 * trusted if we are in an RCU CS. Such pointer can be NULL. 6495 */ 6496 if (type_is_trusted(env, reg, field_name, btf_id)) { 6497 flag |= PTR_TRUSTED; 6498 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6499 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6500 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6501 if (type_is_rcu(env, reg, field_name, btf_id)) { 6502 /* ignore __rcu tag and mark it MEM_RCU */ 6503 flag |= MEM_RCU; 6504 } else if (flag & MEM_RCU || 6505 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6506 /* __rcu tagged pointers can be NULL */ 6507 flag |= MEM_RCU | PTR_MAYBE_NULL; 6508 6509 /* We always trust them */ 6510 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6511 flag & PTR_UNTRUSTED) 6512 flag &= ~PTR_UNTRUSTED; 6513 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6514 /* keep as-is */ 6515 } else { 6516 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6517 clear_trusted_flags(&flag); 6518 } 6519 } else { 6520 /* 6521 * If not in RCU CS or MEM_RCU pointer can be NULL then 6522 * aggressively mark as untrusted otherwise such 6523 * pointers will be plain PTR_TO_BTF_ID without flags 6524 * and will be allowed to be passed into helpers for 6525 * compat reasons. 6526 */ 6527 flag = PTR_UNTRUSTED; 6528 } 6529 } else { 6530 /* Old compat. Deprecated */ 6531 clear_trusted_flags(&flag); 6532 } 6533 6534 if (atype == BPF_READ && value_regno >= 0) 6535 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6536 6537 return 0; 6538 } 6539 6540 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6541 struct bpf_reg_state *regs, 6542 int regno, int off, int size, 6543 enum bpf_access_type atype, 6544 int value_regno) 6545 { 6546 struct bpf_reg_state *reg = regs + regno; 6547 struct bpf_map *map = reg->map_ptr; 6548 struct bpf_reg_state map_reg; 6549 enum bpf_type_flag flag = 0; 6550 const struct btf_type *t; 6551 const char *tname; 6552 u32 btf_id; 6553 int ret; 6554 6555 if (!btf_vmlinux) { 6556 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6557 return -ENOTSUPP; 6558 } 6559 6560 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6561 verbose(env, "map_ptr access not supported for map type %d\n", 6562 map->map_type); 6563 return -ENOTSUPP; 6564 } 6565 6566 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6567 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6568 6569 if (!env->allow_ptr_leaks) { 6570 verbose(env, 6571 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6572 tname); 6573 return -EPERM; 6574 } 6575 6576 if (off < 0) { 6577 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6578 regno, tname, off); 6579 return -EACCES; 6580 } 6581 6582 if (atype != BPF_READ) { 6583 verbose(env, "only read from %s is supported\n", tname); 6584 return -EACCES; 6585 } 6586 6587 /* Simulate access to a PTR_TO_BTF_ID */ 6588 memset(&map_reg, 0, sizeof(map_reg)); 6589 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6590 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6591 if (ret < 0) 6592 return ret; 6593 6594 if (value_regno >= 0) 6595 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6596 6597 return 0; 6598 } 6599 6600 /* Check that the stack access at the given offset is within bounds. The 6601 * maximum valid offset is -1. 6602 * 6603 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6604 * -state->allocated_stack for reads. 6605 */ 6606 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6607 s64 off, 6608 struct bpf_func_state *state, 6609 enum bpf_access_type t) 6610 { 6611 int min_valid_off; 6612 6613 if (t == BPF_WRITE || env->allow_uninit_stack) 6614 min_valid_off = -MAX_BPF_STACK; 6615 else 6616 min_valid_off = -state->allocated_stack; 6617 6618 if (off < min_valid_off || off > -1) 6619 return -EACCES; 6620 return 0; 6621 } 6622 6623 /* Check that the stack access at 'regno + off' falls within the maximum stack 6624 * bounds. 6625 * 6626 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6627 */ 6628 static int check_stack_access_within_bounds( 6629 struct bpf_verifier_env *env, 6630 int regno, int off, int access_size, 6631 enum bpf_access_src src, enum bpf_access_type type) 6632 { 6633 struct bpf_reg_state *regs = cur_regs(env); 6634 struct bpf_reg_state *reg = regs + regno; 6635 struct bpf_func_state *state = func(env, reg); 6636 s64 min_off, max_off; 6637 int err; 6638 char *err_extra; 6639 6640 if (src == ACCESS_HELPER) 6641 /* We don't know if helpers are reading or writing (or both). */ 6642 err_extra = " indirect access to"; 6643 else if (type == BPF_READ) 6644 err_extra = " read from"; 6645 else 6646 err_extra = " write to"; 6647 6648 if (tnum_is_const(reg->var_off)) { 6649 min_off = (s64)reg->var_off.value + off; 6650 max_off = min_off + access_size; 6651 } else { 6652 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6653 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6654 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6655 err_extra, regno); 6656 return -EACCES; 6657 } 6658 min_off = reg->smin_value + off; 6659 max_off = reg->smax_value + off + access_size; 6660 } 6661 6662 err = check_stack_slot_within_bounds(env, min_off, state, type); 6663 if (!err && max_off > 0) 6664 err = -EINVAL; /* out of stack access into non-negative offsets */ 6665 if (!err && access_size < 0) 6666 /* access_size should not be negative (or overflow an int); others checks 6667 * along the way should have prevented such an access. 6668 */ 6669 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6670 6671 if (err) { 6672 if (tnum_is_const(reg->var_off)) { 6673 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6674 err_extra, regno, off, access_size); 6675 } else { 6676 char tn_buf[48]; 6677 6678 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6679 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6680 err_extra, regno, tn_buf, access_size); 6681 } 6682 return err; 6683 } 6684 6685 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6686 } 6687 6688 /* check whether memory at (regno + off) is accessible for t = (read | write) 6689 * if t==write, value_regno is a register which value is stored into memory 6690 * if t==read, value_regno is a register which will receive the value from memory 6691 * if t==write && value_regno==-1, some unknown value is stored into memory 6692 * if t==read && value_regno==-1, don't care what we read from memory 6693 */ 6694 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6695 int off, int bpf_size, enum bpf_access_type t, 6696 int value_regno, bool strict_alignment_once, bool is_ldsx) 6697 { 6698 struct bpf_reg_state *regs = cur_regs(env); 6699 struct bpf_reg_state *reg = regs + regno; 6700 int size, err = 0; 6701 6702 size = bpf_size_to_bytes(bpf_size); 6703 if (size < 0) 6704 return size; 6705 6706 /* alignment checks will add in reg->off themselves */ 6707 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6708 if (err) 6709 return err; 6710 6711 /* for access checks, reg->off is just part of off */ 6712 off += reg->off; 6713 6714 if (reg->type == PTR_TO_MAP_KEY) { 6715 if (t == BPF_WRITE) { 6716 verbose(env, "write to change key R%d not allowed\n", regno); 6717 return -EACCES; 6718 } 6719 6720 err = check_mem_region_access(env, regno, off, size, 6721 reg->map_ptr->key_size, false); 6722 if (err) 6723 return err; 6724 if (value_regno >= 0) 6725 mark_reg_unknown(env, regs, value_regno); 6726 } else if (reg->type == PTR_TO_MAP_VALUE) { 6727 struct btf_field *kptr_field = NULL; 6728 6729 if (t == BPF_WRITE && value_regno >= 0 && 6730 is_pointer_value(env, value_regno)) { 6731 verbose(env, "R%d leaks addr into map\n", value_regno); 6732 return -EACCES; 6733 } 6734 err = check_map_access_type(env, regno, off, size, t); 6735 if (err) 6736 return err; 6737 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6738 if (err) 6739 return err; 6740 if (tnum_is_const(reg->var_off)) 6741 kptr_field = btf_record_find(reg->map_ptr->record, 6742 off + reg->var_off.value, BPF_KPTR); 6743 if (kptr_field) { 6744 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6745 } else if (t == BPF_READ && value_regno >= 0) { 6746 struct bpf_map *map = reg->map_ptr; 6747 6748 /* if map is read-only, track its contents as scalars */ 6749 if (tnum_is_const(reg->var_off) && 6750 bpf_map_is_rdonly(map) && 6751 map->ops->map_direct_value_addr) { 6752 int map_off = off + reg->var_off.value; 6753 u64 val = 0; 6754 6755 err = bpf_map_direct_read(map, map_off, size, 6756 &val, is_ldsx); 6757 if (err) 6758 return err; 6759 6760 regs[value_regno].type = SCALAR_VALUE; 6761 __mark_reg_known(®s[value_regno], val); 6762 } else { 6763 mark_reg_unknown(env, regs, value_regno); 6764 } 6765 } 6766 } else if (base_type(reg->type) == PTR_TO_MEM) { 6767 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6768 6769 if (type_may_be_null(reg->type)) { 6770 verbose(env, "R%d invalid mem access '%s'\n", regno, 6771 reg_type_str(env, reg->type)); 6772 return -EACCES; 6773 } 6774 6775 if (t == BPF_WRITE && rdonly_mem) { 6776 verbose(env, "R%d cannot write into %s\n", 6777 regno, reg_type_str(env, reg->type)); 6778 return -EACCES; 6779 } 6780 6781 if (t == BPF_WRITE && value_regno >= 0 && 6782 is_pointer_value(env, value_regno)) { 6783 verbose(env, "R%d leaks addr into mem\n", value_regno); 6784 return -EACCES; 6785 } 6786 6787 err = check_mem_region_access(env, regno, off, size, 6788 reg->mem_size, false); 6789 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6790 mark_reg_unknown(env, regs, value_regno); 6791 } else if (reg->type == PTR_TO_CTX) { 6792 enum bpf_reg_type reg_type = SCALAR_VALUE; 6793 struct btf *btf = NULL; 6794 u32 btf_id = 0; 6795 6796 if (t == BPF_WRITE && value_regno >= 0 && 6797 is_pointer_value(env, value_regno)) { 6798 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6799 return -EACCES; 6800 } 6801 6802 err = check_ptr_off_reg(env, reg, regno); 6803 if (err < 0) 6804 return err; 6805 6806 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6807 &btf_id); 6808 if (err) 6809 verbose_linfo(env, insn_idx, "; "); 6810 if (!err && t == BPF_READ && value_regno >= 0) { 6811 /* ctx access returns either a scalar, or a 6812 * PTR_TO_PACKET[_META,_END]. In the latter 6813 * case, we know the offset is zero. 6814 */ 6815 if (reg_type == SCALAR_VALUE) { 6816 mark_reg_unknown(env, regs, value_regno); 6817 } else { 6818 mark_reg_known_zero(env, regs, 6819 value_regno); 6820 if (type_may_be_null(reg_type)) 6821 regs[value_regno].id = ++env->id_gen; 6822 /* A load of ctx field could have different 6823 * actual load size with the one encoded in the 6824 * insn. When the dst is PTR, it is for sure not 6825 * a sub-register. 6826 */ 6827 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6828 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6829 regs[value_regno].btf = btf; 6830 regs[value_regno].btf_id = btf_id; 6831 } 6832 } 6833 regs[value_regno].type = reg_type; 6834 } 6835 6836 } else if (reg->type == PTR_TO_STACK) { 6837 /* Basic bounds checks. */ 6838 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6839 if (err) 6840 return err; 6841 6842 if (t == BPF_READ) 6843 err = check_stack_read(env, regno, off, size, 6844 value_regno); 6845 else 6846 err = check_stack_write(env, regno, off, size, 6847 value_regno, insn_idx); 6848 } else if (reg_is_pkt_pointer(reg)) { 6849 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6850 verbose(env, "cannot write into packet\n"); 6851 return -EACCES; 6852 } 6853 if (t == BPF_WRITE && value_regno >= 0 && 6854 is_pointer_value(env, value_regno)) { 6855 verbose(env, "R%d leaks addr into packet\n", 6856 value_regno); 6857 return -EACCES; 6858 } 6859 err = check_packet_access(env, regno, off, size, false); 6860 if (!err && t == BPF_READ && value_regno >= 0) 6861 mark_reg_unknown(env, regs, value_regno); 6862 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6863 if (t == BPF_WRITE && value_regno >= 0 && 6864 is_pointer_value(env, value_regno)) { 6865 verbose(env, "R%d leaks addr into flow keys\n", 6866 value_regno); 6867 return -EACCES; 6868 } 6869 6870 err = check_flow_keys_access(env, off, size); 6871 if (!err && t == BPF_READ && value_regno >= 0) 6872 mark_reg_unknown(env, regs, value_regno); 6873 } else if (type_is_sk_pointer(reg->type)) { 6874 if (t == BPF_WRITE) { 6875 verbose(env, "R%d cannot write into %s\n", 6876 regno, reg_type_str(env, reg->type)); 6877 return -EACCES; 6878 } 6879 err = check_sock_access(env, insn_idx, regno, off, size, t); 6880 if (!err && value_regno >= 0) 6881 mark_reg_unknown(env, regs, value_regno); 6882 } else if (reg->type == PTR_TO_TP_BUFFER) { 6883 err = check_tp_buffer_access(env, reg, regno, off, size); 6884 if (!err && t == BPF_READ && value_regno >= 0) 6885 mark_reg_unknown(env, regs, value_regno); 6886 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6887 !type_may_be_null(reg->type)) { 6888 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6889 value_regno); 6890 } else if (reg->type == CONST_PTR_TO_MAP) { 6891 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6892 value_regno); 6893 } else if (base_type(reg->type) == PTR_TO_BUF) { 6894 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6895 u32 *max_access; 6896 6897 if (rdonly_mem) { 6898 if (t == BPF_WRITE) { 6899 verbose(env, "R%d cannot write into %s\n", 6900 regno, reg_type_str(env, reg->type)); 6901 return -EACCES; 6902 } 6903 max_access = &env->prog->aux->max_rdonly_access; 6904 } else { 6905 max_access = &env->prog->aux->max_rdwr_access; 6906 } 6907 6908 err = check_buffer_access(env, reg, regno, off, size, false, 6909 max_access); 6910 6911 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6912 mark_reg_unknown(env, regs, value_regno); 6913 } else { 6914 verbose(env, "R%d invalid mem access '%s'\n", regno, 6915 reg_type_str(env, reg->type)); 6916 return -EACCES; 6917 } 6918 6919 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6920 regs[value_regno].type == SCALAR_VALUE) { 6921 if (!is_ldsx) 6922 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6923 coerce_reg_to_size(®s[value_regno], size); 6924 else 6925 coerce_reg_to_size_sx(®s[value_regno], size); 6926 } 6927 return err; 6928 } 6929 6930 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6931 { 6932 int load_reg; 6933 int err; 6934 6935 switch (insn->imm) { 6936 case BPF_ADD: 6937 case BPF_ADD | BPF_FETCH: 6938 case BPF_AND: 6939 case BPF_AND | BPF_FETCH: 6940 case BPF_OR: 6941 case BPF_OR | BPF_FETCH: 6942 case BPF_XOR: 6943 case BPF_XOR | BPF_FETCH: 6944 case BPF_XCHG: 6945 case BPF_CMPXCHG: 6946 break; 6947 default: 6948 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6949 return -EINVAL; 6950 } 6951 6952 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6953 verbose(env, "invalid atomic operand size\n"); 6954 return -EINVAL; 6955 } 6956 6957 /* check src1 operand */ 6958 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6959 if (err) 6960 return err; 6961 6962 /* check src2 operand */ 6963 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6964 if (err) 6965 return err; 6966 6967 if (insn->imm == BPF_CMPXCHG) { 6968 /* Check comparison of R0 with memory location */ 6969 const u32 aux_reg = BPF_REG_0; 6970 6971 err = check_reg_arg(env, aux_reg, SRC_OP); 6972 if (err) 6973 return err; 6974 6975 if (is_pointer_value(env, aux_reg)) { 6976 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6977 return -EACCES; 6978 } 6979 } 6980 6981 if (is_pointer_value(env, insn->src_reg)) { 6982 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6983 return -EACCES; 6984 } 6985 6986 if (is_ctx_reg(env, insn->dst_reg) || 6987 is_pkt_reg(env, insn->dst_reg) || 6988 is_flow_key_reg(env, insn->dst_reg) || 6989 is_sk_reg(env, insn->dst_reg)) { 6990 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6991 insn->dst_reg, 6992 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6993 return -EACCES; 6994 } 6995 6996 if (insn->imm & BPF_FETCH) { 6997 if (insn->imm == BPF_CMPXCHG) 6998 load_reg = BPF_REG_0; 6999 else 7000 load_reg = insn->src_reg; 7001 7002 /* check and record load of old value */ 7003 err = check_reg_arg(env, load_reg, DST_OP); 7004 if (err) 7005 return err; 7006 } else { 7007 /* This instruction accesses a memory location but doesn't 7008 * actually load it into a register. 7009 */ 7010 load_reg = -1; 7011 } 7012 7013 /* Check whether we can read the memory, with second call for fetch 7014 * case to simulate the register fill. 7015 */ 7016 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7017 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7018 if (!err && load_reg >= 0) 7019 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7020 BPF_SIZE(insn->code), BPF_READ, load_reg, 7021 true, false); 7022 if (err) 7023 return err; 7024 7025 /* Check whether we can write into the same memory. */ 7026 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7027 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7028 if (err) 7029 return err; 7030 7031 return 0; 7032 } 7033 7034 /* When register 'regno' is used to read the stack (either directly or through 7035 * a helper function) make sure that it's within stack boundary and, depending 7036 * on the access type and privileges, that all elements of the stack are 7037 * initialized. 7038 * 7039 * 'off' includes 'regno->off', but not its dynamic part (if any). 7040 * 7041 * All registers that have been spilled on the stack in the slots within the 7042 * read offsets are marked as read. 7043 */ 7044 static int check_stack_range_initialized( 7045 struct bpf_verifier_env *env, int regno, int off, 7046 int access_size, bool zero_size_allowed, 7047 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7048 { 7049 struct bpf_reg_state *reg = reg_state(env, regno); 7050 struct bpf_func_state *state = func(env, reg); 7051 int err, min_off, max_off, i, j, slot, spi; 7052 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7053 enum bpf_access_type bounds_check_type; 7054 /* Some accesses can write anything into the stack, others are 7055 * read-only. 7056 */ 7057 bool clobber = false; 7058 7059 if (access_size == 0 && !zero_size_allowed) { 7060 verbose(env, "invalid zero-sized read\n"); 7061 return -EACCES; 7062 } 7063 7064 if (type == ACCESS_HELPER) { 7065 /* The bounds checks for writes are more permissive than for 7066 * reads. However, if raw_mode is not set, we'll do extra 7067 * checks below. 7068 */ 7069 bounds_check_type = BPF_WRITE; 7070 clobber = true; 7071 } else { 7072 bounds_check_type = BPF_READ; 7073 } 7074 err = check_stack_access_within_bounds(env, regno, off, access_size, 7075 type, bounds_check_type); 7076 if (err) 7077 return err; 7078 7079 7080 if (tnum_is_const(reg->var_off)) { 7081 min_off = max_off = reg->var_off.value + off; 7082 } else { 7083 /* Variable offset is prohibited for unprivileged mode for 7084 * simplicity since it requires corresponding support in 7085 * Spectre masking for stack ALU. 7086 * See also retrieve_ptr_limit(). 7087 */ 7088 if (!env->bypass_spec_v1) { 7089 char tn_buf[48]; 7090 7091 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7092 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7093 regno, err_extra, tn_buf); 7094 return -EACCES; 7095 } 7096 /* Only initialized buffer on stack is allowed to be accessed 7097 * with variable offset. With uninitialized buffer it's hard to 7098 * guarantee that whole memory is marked as initialized on 7099 * helper return since specific bounds are unknown what may 7100 * cause uninitialized stack leaking. 7101 */ 7102 if (meta && meta->raw_mode) 7103 meta = NULL; 7104 7105 min_off = reg->smin_value + off; 7106 max_off = reg->smax_value + off; 7107 } 7108 7109 if (meta && meta->raw_mode) { 7110 /* Ensure we won't be overwriting dynptrs when simulating byte 7111 * by byte access in check_helper_call using meta.access_size. 7112 * This would be a problem if we have a helper in the future 7113 * which takes: 7114 * 7115 * helper(uninit_mem, len, dynptr) 7116 * 7117 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7118 * may end up writing to dynptr itself when touching memory from 7119 * arg 1. This can be relaxed on a case by case basis for known 7120 * safe cases, but reject due to the possibilitiy of aliasing by 7121 * default. 7122 */ 7123 for (i = min_off; i < max_off + access_size; i++) { 7124 int stack_off = -i - 1; 7125 7126 spi = __get_spi(i); 7127 /* raw_mode may write past allocated_stack */ 7128 if (state->allocated_stack <= stack_off) 7129 continue; 7130 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7131 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7132 return -EACCES; 7133 } 7134 } 7135 meta->access_size = access_size; 7136 meta->regno = regno; 7137 return 0; 7138 } 7139 7140 for (i = min_off; i < max_off + access_size; i++) { 7141 u8 *stype; 7142 7143 slot = -i - 1; 7144 spi = slot / BPF_REG_SIZE; 7145 if (state->allocated_stack <= slot) { 7146 verbose(env, "verifier bug: allocated_stack too small"); 7147 return -EFAULT; 7148 } 7149 7150 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7151 if (*stype == STACK_MISC) 7152 goto mark; 7153 if ((*stype == STACK_ZERO) || 7154 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7155 if (clobber) { 7156 /* helper can write anything into the stack */ 7157 *stype = STACK_MISC; 7158 } 7159 goto mark; 7160 } 7161 7162 if (is_spilled_reg(&state->stack[spi]) && 7163 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7164 env->allow_ptr_leaks)) { 7165 if (clobber) { 7166 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7167 for (j = 0; j < BPF_REG_SIZE; j++) 7168 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7169 } 7170 goto mark; 7171 } 7172 7173 if (tnum_is_const(reg->var_off)) { 7174 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7175 err_extra, regno, min_off, i - min_off, access_size); 7176 } else { 7177 char tn_buf[48]; 7178 7179 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7180 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7181 err_extra, regno, tn_buf, i - min_off, access_size); 7182 } 7183 return -EACCES; 7184 mark: 7185 /* reading any byte out of 8-byte 'spill_slot' will cause 7186 * the whole slot to be marked as 'read' 7187 */ 7188 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7189 state->stack[spi].spilled_ptr.parent, 7190 REG_LIVE_READ64); 7191 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7192 * be sure that whether stack slot is written to or not. Hence, 7193 * we must still conservatively propagate reads upwards even if 7194 * helper may write to the entire memory range. 7195 */ 7196 } 7197 return 0; 7198 } 7199 7200 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7201 int access_size, enum bpf_access_type access_type, 7202 bool zero_size_allowed, 7203 struct bpf_call_arg_meta *meta) 7204 { 7205 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7206 u32 *max_access; 7207 7208 switch (base_type(reg->type)) { 7209 case PTR_TO_PACKET: 7210 case PTR_TO_PACKET_META: 7211 return check_packet_access(env, regno, reg->off, access_size, 7212 zero_size_allowed); 7213 case PTR_TO_MAP_KEY: 7214 if (access_type == BPF_WRITE) { 7215 verbose(env, "R%d cannot write into %s\n", regno, 7216 reg_type_str(env, reg->type)); 7217 return -EACCES; 7218 } 7219 return check_mem_region_access(env, regno, reg->off, access_size, 7220 reg->map_ptr->key_size, false); 7221 case PTR_TO_MAP_VALUE: 7222 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 7223 return -EACCES; 7224 return check_map_access(env, regno, reg->off, access_size, 7225 zero_size_allowed, ACCESS_HELPER); 7226 case PTR_TO_MEM: 7227 if (type_is_rdonly_mem(reg->type)) { 7228 if (access_type == BPF_WRITE) { 7229 verbose(env, "R%d cannot write into %s\n", regno, 7230 reg_type_str(env, reg->type)); 7231 return -EACCES; 7232 } 7233 } 7234 return check_mem_region_access(env, regno, reg->off, 7235 access_size, reg->mem_size, 7236 zero_size_allowed); 7237 case PTR_TO_BUF: 7238 if (type_is_rdonly_mem(reg->type)) { 7239 if (access_type == BPF_WRITE) { 7240 verbose(env, "R%d cannot write into %s\n", regno, 7241 reg_type_str(env, reg->type)); 7242 return -EACCES; 7243 } 7244 7245 max_access = &env->prog->aux->max_rdonly_access; 7246 } else { 7247 max_access = &env->prog->aux->max_rdwr_access; 7248 } 7249 return check_buffer_access(env, reg, regno, reg->off, 7250 access_size, zero_size_allowed, 7251 max_access); 7252 case PTR_TO_STACK: 7253 return check_stack_range_initialized( 7254 env, 7255 regno, reg->off, access_size, 7256 zero_size_allowed, ACCESS_HELPER, meta); 7257 case PTR_TO_BTF_ID: 7258 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7259 access_size, BPF_READ, -1); 7260 case PTR_TO_CTX: 7261 /* in case the function doesn't know how to access the context, 7262 * (because we are in a program of type SYSCALL for example), we 7263 * can not statically check its size. 7264 * Dynamically check it now. 7265 */ 7266 if (!env->ops->convert_ctx_access) { 7267 int offset = access_size - 1; 7268 7269 /* Allow zero-byte read from PTR_TO_CTX */ 7270 if (access_size == 0) 7271 return zero_size_allowed ? 0 : -EACCES; 7272 7273 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7274 access_type, -1, false, false); 7275 } 7276 7277 fallthrough; 7278 default: /* scalar_value or invalid ptr */ 7279 /* Allow zero-byte read from NULL, regardless of pointer type */ 7280 if (zero_size_allowed && access_size == 0 && 7281 register_is_null(reg)) 7282 return 0; 7283 7284 verbose(env, "R%d type=%s ", regno, 7285 reg_type_str(env, reg->type)); 7286 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7287 return -EACCES; 7288 } 7289 } 7290 7291 static int check_mem_size_reg(struct bpf_verifier_env *env, 7292 struct bpf_reg_state *reg, u32 regno, 7293 enum bpf_access_type access_type, 7294 bool zero_size_allowed, 7295 struct bpf_call_arg_meta *meta) 7296 { 7297 int err; 7298 7299 /* This is used to refine r0 return value bounds for helpers 7300 * that enforce this value as an upper bound on return values. 7301 * See do_refine_retval_range() for helpers that can refine 7302 * the return value. C type of helper is u32 so we pull register 7303 * bound from umax_value however, if negative verifier errors 7304 * out. Only upper bounds can be learned because retval is an 7305 * int type and negative retvals are allowed. 7306 */ 7307 meta->msize_max_value = reg->umax_value; 7308 7309 /* The register is SCALAR_VALUE; the access check happens using 7310 * its boundaries. For unprivileged variable accesses, disable 7311 * raw mode so that the program is required to initialize all 7312 * the memory that the helper could just partially fill up. 7313 */ 7314 if (!tnum_is_const(reg->var_off)) 7315 meta = NULL; 7316 7317 if (reg->smin_value < 0) { 7318 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7319 regno); 7320 return -EACCES; 7321 } 7322 7323 if (reg->umin_value == 0 && !zero_size_allowed) { 7324 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7325 regno, reg->umin_value, reg->umax_value); 7326 return -EACCES; 7327 } 7328 7329 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7330 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7331 regno); 7332 return -EACCES; 7333 } 7334 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 7335 access_type, zero_size_allowed, meta); 7336 if (!err) 7337 err = mark_chain_precision(env, regno); 7338 return err; 7339 } 7340 7341 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7342 u32 regno, u32 mem_size) 7343 { 7344 bool may_be_null = type_may_be_null(reg->type); 7345 struct bpf_reg_state saved_reg; 7346 int err; 7347 7348 if (register_is_null(reg)) 7349 return 0; 7350 7351 /* Assuming that the register contains a value check if the memory 7352 * access is safe. Temporarily save and restore the register's state as 7353 * the conversion shouldn't be visible to a caller. 7354 */ 7355 if (may_be_null) { 7356 saved_reg = *reg; 7357 mark_ptr_not_null_reg(reg); 7358 } 7359 7360 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 7361 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 7362 7363 if (may_be_null) 7364 *reg = saved_reg; 7365 7366 return err; 7367 } 7368 7369 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7370 u32 regno) 7371 { 7372 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7373 bool may_be_null = type_may_be_null(mem_reg->type); 7374 struct bpf_reg_state saved_reg; 7375 struct bpf_call_arg_meta meta; 7376 int err; 7377 7378 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7379 7380 memset(&meta, 0, sizeof(meta)); 7381 7382 if (may_be_null) { 7383 saved_reg = *mem_reg; 7384 mark_ptr_not_null_reg(mem_reg); 7385 } 7386 7387 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 7388 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 7389 7390 if (may_be_null) 7391 *mem_reg = saved_reg; 7392 7393 return err; 7394 } 7395 7396 /* Implementation details: 7397 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7398 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7399 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7400 * Two separate bpf_obj_new will also have different reg->id. 7401 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7402 * clears reg->id after value_or_null->value transition, since the verifier only 7403 * cares about the range of access to valid map value pointer and doesn't care 7404 * about actual address of the map element. 7405 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7406 * reg->id > 0 after value_or_null->value transition. By doing so 7407 * two bpf_map_lookups will be considered two different pointers that 7408 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7409 * returned from bpf_obj_new. 7410 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7411 * dead-locks. 7412 * Since only one bpf_spin_lock is allowed the checks are simpler than 7413 * reg_is_refcounted() logic. The verifier needs to remember only 7414 * one spin_lock instead of array of acquired_refs. 7415 * cur_state->active_lock remembers which map value element or allocated 7416 * object got locked and clears it after bpf_spin_unlock. 7417 */ 7418 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7419 bool is_lock) 7420 { 7421 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7422 struct bpf_verifier_state *cur = env->cur_state; 7423 bool is_const = tnum_is_const(reg->var_off); 7424 u64 val = reg->var_off.value; 7425 struct bpf_map *map = NULL; 7426 struct btf *btf = NULL; 7427 struct btf_record *rec; 7428 7429 if (!is_const) { 7430 verbose(env, 7431 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7432 regno); 7433 return -EINVAL; 7434 } 7435 if (reg->type == PTR_TO_MAP_VALUE) { 7436 map = reg->map_ptr; 7437 if (!map->btf) { 7438 verbose(env, 7439 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7440 map->name); 7441 return -EINVAL; 7442 } 7443 } else { 7444 btf = reg->btf; 7445 } 7446 7447 rec = reg_btf_record(reg); 7448 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7449 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7450 map ? map->name : "kptr"); 7451 return -EINVAL; 7452 } 7453 if (rec->spin_lock_off != val + reg->off) { 7454 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7455 val + reg->off, rec->spin_lock_off); 7456 return -EINVAL; 7457 } 7458 if (is_lock) { 7459 if (cur->active_lock.ptr) { 7460 verbose(env, 7461 "Locking two bpf_spin_locks are not allowed\n"); 7462 return -EINVAL; 7463 } 7464 if (map) 7465 cur->active_lock.ptr = map; 7466 else 7467 cur->active_lock.ptr = btf; 7468 cur->active_lock.id = reg->id; 7469 } else { 7470 void *ptr; 7471 7472 if (map) 7473 ptr = map; 7474 else 7475 ptr = btf; 7476 7477 if (!cur->active_lock.ptr) { 7478 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7479 return -EINVAL; 7480 } 7481 if (cur->active_lock.ptr != ptr || 7482 cur->active_lock.id != reg->id) { 7483 verbose(env, "bpf_spin_unlock of different lock\n"); 7484 return -EINVAL; 7485 } 7486 7487 invalidate_non_owning_refs(env); 7488 7489 cur->active_lock.ptr = NULL; 7490 cur->active_lock.id = 0; 7491 } 7492 return 0; 7493 } 7494 7495 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7496 struct bpf_call_arg_meta *meta) 7497 { 7498 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7499 bool is_const = tnum_is_const(reg->var_off); 7500 struct bpf_map *map = reg->map_ptr; 7501 u64 val = reg->var_off.value; 7502 7503 if (!is_const) { 7504 verbose(env, 7505 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7506 regno); 7507 return -EINVAL; 7508 } 7509 if (!map->btf) { 7510 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7511 map->name); 7512 return -EINVAL; 7513 } 7514 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7515 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7516 return -EINVAL; 7517 } 7518 if (map->record->timer_off != val + reg->off) { 7519 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7520 val + reg->off, map->record->timer_off); 7521 return -EINVAL; 7522 } 7523 if (meta->map_ptr) { 7524 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7525 return -EFAULT; 7526 } 7527 meta->map_uid = reg->map_uid; 7528 meta->map_ptr = map; 7529 return 0; 7530 } 7531 7532 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7533 struct bpf_call_arg_meta *meta) 7534 { 7535 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7536 struct bpf_map *map_ptr = reg->map_ptr; 7537 struct btf_field *kptr_field; 7538 u32 kptr_off; 7539 7540 if (!tnum_is_const(reg->var_off)) { 7541 verbose(env, 7542 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7543 regno); 7544 return -EINVAL; 7545 } 7546 if (!map_ptr->btf) { 7547 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7548 map_ptr->name); 7549 return -EINVAL; 7550 } 7551 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7552 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7553 return -EINVAL; 7554 } 7555 7556 meta->map_ptr = map_ptr; 7557 kptr_off = reg->off + reg->var_off.value; 7558 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7559 if (!kptr_field) { 7560 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7561 return -EACCES; 7562 } 7563 if (kptr_field->type != BPF_KPTR_REF) { 7564 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7565 return -EACCES; 7566 } 7567 meta->kptr_field = kptr_field; 7568 return 0; 7569 } 7570 7571 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7572 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7573 * 7574 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7575 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7576 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7577 * 7578 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7579 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7580 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7581 * mutate the view of the dynptr and also possibly destroy it. In the latter 7582 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7583 * memory that dynptr points to. 7584 * 7585 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7586 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7587 * readonly dynptr view yet, hence only the first case is tracked and checked. 7588 * 7589 * This is consistent with how C applies the const modifier to a struct object, 7590 * where the pointer itself inside bpf_dynptr becomes const but not what it 7591 * points to. 7592 * 7593 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7594 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7595 */ 7596 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7597 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7598 { 7599 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7600 int err; 7601 7602 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7603 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7604 */ 7605 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7606 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7607 return -EFAULT; 7608 } 7609 7610 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7611 * constructing a mutable bpf_dynptr object. 7612 * 7613 * Currently, this is only possible with PTR_TO_STACK 7614 * pointing to a region of at least 16 bytes which doesn't 7615 * contain an existing bpf_dynptr. 7616 * 7617 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7618 * mutated or destroyed. However, the memory it points to 7619 * may be mutated. 7620 * 7621 * None - Points to a initialized dynptr that can be mutated and 7622 * destroyed, including mutation of the memory it points 7623 * to. 7624 */ 7625 if (arg_type & MEM_UNINIT) { 7626 int i; 7627 7628 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7629 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7630 return -EINVAL; 7631 } 7632 7633 /* we write BPF_DW bits (8 bytes) at a time */ 7634 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7635 err = check_mem_access(env, insn_idx, regno, 7636 i, BPF_DW, BPF_WRITE, -1, false, false); 7637 if (err) 7638 return err; 7639 } 7640 7641 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7642 } else /* MEM_RDONLY and None case from above */ { 7643 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7644 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7645 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7646 return -EINVAL; 7647 } 7648 7649 if (!is_dynptr_reg_valid_init(env, reg)) { 7650 verbose(env, 7651 "Expected an initialized dynptr as arg #%d\n", 7652 regno); 7653 return -EINVAL; 7654 } 7655 7656 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7657 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7658 verbose(env, 7659 "Expected a dynptr of type %s as arg #%d\n", 7660 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7661 return -EINVAL; 7662 } 7663 7664 err = mark_dynptr_read(env, reg); 7665 } 7666 return err; 7667 } 7668 7669 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7670 { 7671 struct bpf_func_state *state = func(env, reg); 7672 7673 return state->stack[spi].spilled_ptr.ref_obj_id; 7674 } 7675 7676 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7677 { 7678 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7679 } 7680 7681 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7682 { 7683 return meta->kfunc_flags & KF_ITER_NEW; 7684 } 7685 7686 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7687 { 7688 return meta->kfunc_flags & KF_ITER_NEXT; 7689 } 7690 7691 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7692 { 7693 return meta->kfunc_flags & KF_ITER_DESTROY; 7694 } 7695 7696 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7697 { 7698 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7699 * kfunc is iter state pointer 7700 */ 7701 return arg == 0 && is_iter_kfunc(meta); 7702 } 7703 7704 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7705 struct bpf_kfunc_call_arg_meta *meta) 7706 { 7707 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7708 const struct btf_type *t; 7709 const struct btf_param *arg; 7710 int spi, err, i, nr_slots; 7711 u32 btf_id; 7712 7713 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7714 arg = &btf_params(meta->func_proto)[0]; 7715 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7716 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7717 nr_slots = t->size / BPF_REG_SIZE; 7718 7719 if (is_iter_new_kfunc(meta)) { 7720 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7721 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7722 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7723 iter_type_str(meta->btf, btf_id), regno); 7724 return -EINVAL; 7725 } 7726 7727 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7728 err = check_mem_access(env, insn_idx, regno, 7729 i, BPF_DW, BPF_WRITE, -1, false, false); 7730 if (err) 7731 return err; 7732 } 7733 7734 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7735 if (err) 7736 return err; 7737 } else { 7738 /* iter_next() or iter_destroy() expect initialized iter state*/ 7739 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7740 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7741 iter_type_str(meta->btf, btf_id), regno); 7742 return -EINVAL; 7743 } 7744 7745 spi = iter_get_spi(env, reg, nr_slots); 7746 if (spi < 0) 7747 return spi; 7748 7749 err = mark_iter_read(env, reg, spi, nr_slots); 7750 if (err) 7751 return err; 7752 7753 /* remember meta->iter info for process_iter_next_call() */ 7754 meta->iter.spi = spi; 7755 meta->iter.frameno = reg->frameno; 7756 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7757 7758 if (is_iter_destroy_kfunc(meta)) { 7759 err = unmark_stack_slots_iter(env, reg, nr_slots); 7760 if (err) 7761 return err; 7762 } 7763 } 7764 7765 return 0; 7766 } 7767 7768 /* Look for a previous loop entry at insn_idx: nearest parent state 7769 * stopped at insn_idx with callsites matching those in cur->frame. 7770 */ 7771 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7772 struct bpf_verifier_state *cur, 7773 int insn_idx) 7774 { 7775 struct bpf_verifier_state_list *sl; 7776 struct bpf_verifier_state *st; 7777 7778 /* Explored states are pushed in stack order, most recent states come first */ 7779 sl = *explored_state(env, insn_idx); 7780 for (; sl; sl = sl->next) { 7781 /* If st->branches != 0 state is a part of current DFS verification path, 7782 * hence cur & st for a loop. 7783 */ 7784 st = &sl->state; 7785 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7786 st->dfs_depth < cur->dfs_depth) 7787 return st; 7788 } 7789 7790 return NULL; 7791 } 7792 7793 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7794 static bool regs_exact(const struct bpf_reg_state *rold, 7795 const struct bpf_reg_state *rcur, 7796 struct bpf_idmap *idmap); 7797 7798 static void maybe_widen_reg(struct bpf_verifier_env *env, 7799 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7800 struct bpf_idmap *idmap) 7801 { 7802 if (rold->type != SCALAR_VALUE) 7803 return; 7804 if (rold->type != rcur->type) 7805 return; 7806 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7807 return; 7808 __mark_reg_unknown(env, rcur); 7809 } 7810 7811 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7812 struct bpf_verifier_state *old, 7813 struct bpf_verifier_state *cur) 7814 { 7815 struct bpf_func_state *fold, *fcur; 7816 int i, fr; 7817 7818 reset_idmap_scratch(env); 7819 for (fr = old->curframe; fr >= 0; fr--) { 7820 fold = old->frame[fr]; 7821 fcur = cur->frame[fr]; 7822 7823 for (i = 0; i < MAX_BPF_REG; i++) 7824 maybe_widen_reg(env, 7825 &fold->regs[i], 7826 &fcur->regs[i], 7827 &env->idmap_scratch); 7828 7829 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7830 if (!is_spilled_reg(&fold->stack[i]) || 7831 !is_spilled_reg(&fcur->stack[i])) 7832 continue; 7833 7834 maybe_widen_reg(env, 7835 &fold->stack[i].spilled_ptr, 7836 &fcur->stack[i].spilled_ptr, 7837 &env->idmap_scratch); 7838 } 7839 } 7840 return 0; 7841 } 7842 7843 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 7844 struct bpf_kfunc_call_arg_meta *meta) 7845 { 7846 int iter_frameno = meta->iter.frameno; 7847 int iter_spi = meta->iter.spi; 7848 7849 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7850 } 7851 7852 /* process_iter_next_call() is called when verifier gets to iterator's next 7853 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7854 * to it as just "iter_next()" in comments below. 7855 * 7856 * BPF verifier relies on a crucial contract for any iter_next() 7857 * implementation: it should *eventually* return NULL, and once that happens 7858 * it should keep returning NULL. That is, once iterator exhausts elements to 7859 * iterate, it should never reset or spuriously return new elements. 7860 * 7861 * With the assumption of such contract, process_iter_next_call() simulates 7862 * a fork in the verifier state to validate loop logic correctness and safety 7863 * without having to simulate infinite amount of iterations. 7864 * 7865 * In current state, we first assume that iter_next() returned NULL and 7866 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7867 * conditions we should not form an infinite loop and should eventually reach 7868 * exit. 7869 * 7870 * Besides that, we also fork current state and enqueue it for later 7871 * verification. In a forked state we keep iterator state as ACTIVE 7872 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7873 * also bump iteration depth to prevent erroneous infinite loop detection 7874 * later on (see iter_active_depths_differ() comment for details). In this 7875 * state we assume that we'll eventually loop back to another iter_next() 7876 * calls (it could be in exactly same location or in some other instruction, 7877 * it doesn't matter, we don't make any unnecessary assumptions about this, 7878 * everything revolves around iterator state in a stack slot, not which 7879 * instruction is calling iter_next()). When that happens, we either will come 7880 * to iter_next() with equivalent state and can conclude that next iteration 7881 * will proceed in exactly the same way as we just verified, so it's safe to 7882 * assume that loop converges. If not, we'll go on another iteration 7883 * simulation with a different input state, until all possible starting states 7884 * are validated or we reach maximum number of instructions limit. 7885 * 7886 * This way, we will either exhaustively discover all possible input states 7887 * that iterator loop can start with and eventually will converge, or we'll 7888 * effectively regress into bounded loop simulation logic and either reach 7889 * maximum number of instructions if loop is not provably convergent, or there 7890 * is some statically known limit on number of iterations (e.g., if there is 7891 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7892 * 7893 * Iteration convergence logic in is_state_visited() relies on exact 7894 * states comparison, which ignores read and precision marks. 7895 * This is necessary because read and precision marks are not finalized 7896 * while in the loop. Exact comparison might preclude convergence for 7897 * simple programs like below: 7898 * 7899 * i = 0; 7900 * while(iter_next(&it)) 7901 * i++; 7902 * 7903 * At each iteration step i++ would produce a new distinct state and 7904 * eventually instruction processing limit would be reached. 7905 * 7906 * To avoid such behavior speculatively forget (widen) range for 7907 * imprecise scalar registers, if those registers were not precise at the 7908 * end of the previous iteration and do not match exactly. 7909 * 7910 * This is a conservative heuristic that allows to verify wide range of programs, 7911 * however it precludes verification of programs that conjure an 7912 * imprecise value on the first loop iteration and use it as precise on a second. 7913 * For example, the following safe program would fail to verify: 7914 * 7915 * struct bpf_num_iter it; 7916 * int arr[10]; 7917 * int i = 0, a = 0; 7918 * bpf_iter_num_new(&it, 0, 10); 7919 * while (bpf_iter_num_next(&it)) { 7920 * if (a == 0) { 7921 * a = 1; 7922 * i = 7; // Because i changed verifier would forget 7923 * // it's range on second loop entry. 7924 * } else { 7925 * arr[i] = 42; // This would fail to verify. 7926 * } 7927 * } 7928 * bpf_iter_num_destroy(&it); 7929 */ 7930 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7931 struct bpf_kfunc_call_arg_meta *meta) 7932 { 7933 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7934 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7935 struct bpf_reg_state *cur_iter, *queued_iter; 7936 7937 BTF_TYPE_EMIT(struct bpf_iter); 7938 7939 cur_iter = get_iter_from_state(cur_st, meta); 7940 7941 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7942 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7943 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7944 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7945 return -EFAULT; 7946 } 7947 7948 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7949 /* Because iter_next() call is a checkpoint is_state_visitied() 7950 * should guarantee parent state with same call sites and insn_idx. 7951 */ 7952 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7953 !same_callsites(cur_st->parent, cur_st)) { 7954 verbose(env, "bug: bad parent state for iter next call"); 7955 return -EFAULT; 7956 } 7957 /* Note cur_st->parent in the call below, it is necessary to skip 7958 * checkpoint created for cur_st by is_state_visited() 7959 * right at this instruction. 7960 */ 7961 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7962 /* branch out active iter state */ 7963 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7964 if (!queued_st) 7965 return -ENOMEM; 7966 7967 queued_iter = get_iter_from_state(queued_st, meta); 7968 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7969 queued_iter->iter.depth++; 7970 if (prev_st) 7971 widen_imprecise_scalars(env, prev_st, queued_st); 7972 7973 queued_fr = queued_st->frame[queued_st->curframe]; 7974 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7975 } 7976 7977 /* switch to DRAINED state, but keep the depth unchanged */ 7978 /* mark current iter state as drained and assume returned NULL */ 7979 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7980 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7981 7982 return 0; 7983 } 7984 7985 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7986 { 7987 return type == ARG_CONST_SIZE || 7988 type == ARG_CONST_SIZE_OR_ZERO; 7989 } 7990 7991 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 7992 { 7993 return base_type(type) == ARG_PTR_TO_MEM && 7994 type & MEM_UNINIT; 7995 } 7996 7997 static bool arg_type_is_release(enum bpf_arg_type type) 7998 { 7999 return type & OBJ_RELEASE; 8000 } 8001 8002 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8003 { 8004 return base_type(type) == ARG_PTR_TO_DYNPTR; 8005 } 8006 8007 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8008 const struct bpf_call_arg_meta *meta, 8009 enum bpf_arg_type *arg_type) 8010 { 8011 if (!meta->map_ptr) { 8012 /* kernel subsystem misconfigured verifier */ 8013 verbose(env, "invalid map_ptr to access map->type\n"); 8014 return -EACCES; 8015 } 8016 8017 switch (meta->map_ptr->map_type) { 8018 case BPF_MAP_TYPE_SOCKMAP: 8019 case BPF_MAP_TYPE_SOCKHASH: 8020 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8021 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8022 } else { 8023 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8024 return -EINVAL; 8025 } 8026 break; 8027 case BPF_MAP_TYPE_BLOOM_FILTER: 8028 if (meta->func_id == BPF_FUNC_map_peek_elem) 8029 *arg_type = ARG_PTR_TO_MAP_VALUE; 8030 break; 8031 default: 8032 break; 8033 } 8034 return 0; 8035 } 8036 8037 struct bpf_reg_types { 8038 const enum bpf_reg_type types[10]; 8039 u32 *btf_id; 8040 }; 8041 8042 static const struct bpf_reg_types sock_types = { 8043 .types = { 8044 PTR_TO_SOCK_COMMON, 8045 PTR_TO_SOCKET, 8046 PTR_TO_TCP_SOCK, 8047 PTR_TO_XDP_SOCK, 8048 }, 8049 }; 8050 8051 #ifdef CONFIG_NET 8052 static const struct bpf_reg_types btf_id_sock_common_types = { 8053 .types = { 8054 PTR_TO_SOCK_COMMON, 8055 PTR_TO_SOCKET, 8056 PTR_TO_TCP_SOCK, 8057 PTR_TO_XDP_SOCK, 8058 PTR_TO_BTF_ID, 8059 PTR_TO_BTF_ID | PTR_TRUSTED, 8060 }, 8061 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8062 }; 8063 #endif 8064 8065 static const struct bpf_reg_types mem_types = { 8066 .types = { 8067 PTR_TO_STACK, 8068 PTR_TO_PACKET, 8069 PTR_TO_PACKET_META, 8070 PTR_TO_MAP_KEY, 8071 PTR_TO_MAP_VALUE, 8072 PTR_TO_MEM, 8073 PTR_TO_MEM | MEM_RINGBUF, 8074 PTR_TO_BUF, 8075 PTR_TO_BTF_ID | PTR_TRUSTED, 8076 }, 8077 }; 8078 8079 static const struct bpf_reg_types spin_lock_types = { 8080 .types = { 8081 PTR_TO_MAP_VALUE, 8082 PTR_TO_BTF_ID | MEM_ALLOC, 8083 } 8084 }; 8085 8086 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8087 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8088 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8089 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8090 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8091 static const struct bpf_reg_types btf_ptr_types = { 8092 .types = { 8093 PTR_TO_BTF_ID, 8094 PTR_TO_BTF_ID | PTR_TRUSTED, 8095 PTR_TO_BTF_ID | MEM_RCU, 8096 }, 8097 }; 8098 static const struct bpf_reg_types percpu_btf_ptr_types = { 8099 .types = { 8100 PTR_TO_BTF_ID | MEM_PERCPU, 8101 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8102 } 8103 }; 8104 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8105 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8106 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8107 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8108 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8109 static const struct bpf_reg_types dynptr_types = { 8110 .types = { 8111 PTR_TO_STACK, 8112 CONST_PTR_TO_DYNPTR, 8113 } 8114 }; 8115 8116 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8117 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8118 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8119 [ARG_CONST_SIZE] = &scalar_types, 8120 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8121 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8122 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8123 [ARG_PTR_TO_CTX] = &context_types, 8124 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8125 #ifdef CONFIG_NET 8126 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8127 #endif 8128 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8129 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8130 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8131 [ARG_PTR_TO_MEM] = &mem_types, 8132 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8133 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8134 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8135 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8136 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8137 [ARG_PTR_TO_TIMER] = &timer_types, 8138 [ARG_PTR_TO_KPTR] = &kptr_types, 8139 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8140 }; 8141 8142 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8143 enum bpf_arg_type arg_type, 8144 const u32 *arg_btf_id, 8145 struct bpf_call_arg_meta *meta) 8146 { 8147 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8148 enum bpf_reg_type expected, type = reg->type; 8149 const struct bpf_reg_types *compatible; 8150 int i, j; 8151 8152 compatible = compatible_reg_types[base_type(arg_type)]; 8153 if (!compatible) { 8154 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8155 return -EFAULT; 8156 } 8157 8158 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8159 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8160 * 8161 * Same for MAYBE_NULL: 8162 * 8163 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8164 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8165 * 8166 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8167 * 8168 * Therefore we fold these flags depending on the arg_type before comparison. 8169 */ 8170 if (arg_type & MEM_RDONLY) 8171 type &= ~MEM_RDONLY; 8172 if (arg_type & PTR_MAYBE_NULL) 8173 type &= ~PTR_MAYBE_NULL; 8174 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8175 type &= ~DYNPTR_TYPE_FLAG_MASK; 8176 8177 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8178 type &= ~MEM_ALLOC; 8179 8180 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8181 expected = compatible->types[i]; 8182 if (expected == NOT_INIT) 8183 break; 8184 8185 if (type == expected) 8186 goto found; 8187 } 8188 8189 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8190 for (j = 0; j + 1 < i; j++) 8191 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8192 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8193 return -EACCES; 8194 8195 found: 8196 if (base_type(reg->type) != PTR_TO_BTF_ID) 8197 return 0; 8198 8199 if (compatible == &mem_types) { 8200 if (!(arg_type & MEM_RDONLY)) { 8201 verbose(env, 8202 "%s() may write into memory pointed by R%d type=%s\n", 8203 func_id_name(meta->func_id), 8204 regno, reg_type_str(env, reg->type)); 8205 return -EACCES; 8206 } 8207 return 0; 8208 } 8209 8210 switch ((int)reg->type) { 8211 case PTR_TO_BTF_ID: 8212 case PTR_TO_BTF_ID | PTR_TRUSTED: 8213 case PTR_TO_BTF_ID | MEM_RCU: 8214 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8215 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8216 { 8217 /* For bpf_sk_release, it needs to match against first member 8218 * 'struct sock_common', hence make an exception for it. This 8219 * allows bpf_sk_release to work for multiple socket types. 8220 */ 8221 bool strict_type_match = arg_type_is_release(arg_type) && 8222 meta->func_id != BPF_FUNC_sk_release; 8223 8224 if (type_may_be_null(reg->type) && 8225 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8226 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8227 return -EACCES; 8228 } 8229 8230 if (!arg_btf_id) { 8231 if (!compatible->btf_id) { 8232 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8233 return -EFAULT; 8234 } 8235 arg_btf_id = compatible->btf_id; 8236 } 8237 8238 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8239 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8240 return -EACCES; 8241 } else { 8242 if (arg_btf_id == BPF_PTR_POISON) { 8243 verbose(env, "verifier internal error:"); 8244 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8245 regno); 8246 return -EACCES; 8247 } 8248 8249 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8250 btf_vmlinux, *arg_btf_id, 8251 strict_type_match)) { 8252 verbose(env, "R%d is of type %s but %s is expected\n", 8253 regno, btf_type_name(reg->btf, reg->btf_id), 8254 btf_type_name(btf_vmlinux, *arg_btf_id)); 8255 return -EACCES; 8256 } 8257 } 8258 break; 8259 } 8260 case PTR_TO_BTF_ID | MEM_ALLOC: 8261 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8262 meta->func_id != BPF_FUNC_kptr_xchg) { 8263 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8264 return -EFAULT; 8265 } 8266 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8267 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8268 return -EACCES; 8269 } 8270 break; 8271 case PTR_TO_BTF_ID | MEM_PERCPU: 8272 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8273 /* Handled by helper specific checks */ 8274 break; 8275 default: 8276 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8277 return -EFAULT; 8278 } 8279 return 0; 8280 } 8281 8282 static struct btf_field * 8283 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8284 { 8285 struct btf_field *field; 8286 struct btf_record *rec; 8287 8288 rec = reg_btf_record(reg); 8289 if (!rec) 8290 return NULL; 8291 8292 field = btf_record_find(rec, off, fields); 8293 if (!field) 8294 return NULL; 8295 8296 return field; 8297 } 8298 8299 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8300 const struct bpf_reg_state *reg, int regno, 8301 enum bpf_arg_type arg_type) 8302 { 8303 u32 type = reg->type; 8304 8305 /* When referenced register is passed to release function, its fixed 8306 * offset must be 0. 8307 * 8308 * We will check arg_type_is_release reg has ref_obj_id when storing 8309 * meta->release_regno. 8310 */ 8311 if (arg_type_is_release(arg_type)) { 8312 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8313 * may not directly point to the object being released, but to 8314 * dynptr pointing to such object, which might be at some offset 8315 * on the stack. In that case, we simply to fallback to the 8316 * default handling. 8317 */ 8318 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8319 return 0; 8320 8321 /* Doing check_ptr_off_reg check for the offset will catch this 8322 * because fixed_off_ok is false, but checking here allows us 8323 * to give the user a better error message. 8324 */ 8325 if (reg->off) { 8326 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8327 regno); 8328 return -EINVAL; 8329 } 8330 return __check_ptr_off_reg(env, reg, regno, false); 8331 } 8332 8333 switch (type) { 8334 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8335 case PTR_TO_STACK: 8336 case PTR_TO_PACKET: 8337 case PTR_TO_PACKET_META: 8338 case PTR_TO_MAP_KEY: 8339 case PTR_TO_MAP_VALUE: 8340 case PTR_TO_MEM: 8341 case PTR_TO_MEM | MEM_RDONLY: 8342 case PTR_TO_MEM | MEM_RINGBUF: 8343 case PTR_TO_BUF: 8344 case PTR_TO_BUF | MEM_RDONLY: 8345 case SCALAR_VALUE: 8346 return 0; 8347 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8348 * fixed offset. 8349 */ 8350 case PTR_TO_BTF_ID: 8351 case PTR_TO_BTF_ID | MEM_ALLOC: 8352 case PTR_TO_BTF_ID | PTR_TRUSTED: 8353 case PTR_TO_BTF_ID | MEM_RCU: 8354 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8355 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8356 /* When referenced PTR_TO_BTF_ID is passed to release function, 8357 * its fixed offset must be 0. In the other cases, fixed offset 8358 * can be non-zero. This was already checked above. So pass 8359 * fixed_off_ok as true to allow fixed offset for all other 8360 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8361 * still need to do checks instead of returning. 8362 */ 8363 return __check_ptr_off_reg(env, reg, regno, true); 8364 default: 8365 return __check_ptr_off_reg(env, reg, regno, false); 8366 } 8367 } 8368 8369 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8370 const struct bpf_func_proto *fn, 8371 struct bpf_reg_state *regs) 8372 { 8373 struct bpf_reg_state *state = NULL; 8374 int i; 8375 8376 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8377 if (arg_type_is_dynptr(fn->arg_type[i])) { 8378 if (state) { 8379 verbose(env, "verifier internal error: multiple dynptr args\n"); 8380 return NULL; 8381 } 8382 state = ®s[BPF_REG_1 + i]; 8383 } 8384 8385 if (!state) 8386 verbose(env, "verifier internal error: no dynptr arg found\n"); 8387 8388 return state; 8389 } 8390 8391 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8392 { 8393 struct bpf_func_state *state = func(env, reg); 8394 int spi; 8395 8396 if (reg->type == CONST_PTR_TO_DYNPTR) 8397 return reg->id; 8398 spi = dynptr_get_spi(env, reg); 8399 if (spi < 0) 8400 return spi; 8401 return state->stack[spi].spilled_ptr.id; 8402 } 8403 8404 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8405 { 8406 struct bpf_func_state *state = func(env, reg); 8407 int spi; 8408 8409 if (reg->type == CONST_PTR_TO_DYNPTR) 8410 return reg->ref_obj_id; 8411 spi = dynptr_get_spi(env, reg); 8412 if (spi < 0) 8413 return spi; 8414 return state->stack[spi].spilled_ptr.ref_obj_id; 8415 } 8416 8417 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8418 struct bpf_reg_state *reg) 8419 { 8420 struct bpf_func_state *state = func(env, reg); 8421 int spi; 8422 8423 if (reg->type == CONST_PTR_TO_DYNPTR) 8424 return reg->dynptr.type; 8425 8426 spi = __get_spi(reg->off); 8427 if (spi < 0) { 8428 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8429 return BPF_DYNPTR_TYPE_INVALID; 8430 } 8431 8432 return state->stack[spi].spilled_ptr.dynptr.type; 8433 } 8434 8435 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8436 struct bpf_call_arg_meta *meta, 8437 const struct bpf_func_proto *fn, 8438 int insn_idx) 8439 { 8440 u32 regno = BPF_REG_1 + arg; 8441 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8442 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8443 enum bpf_reg_type type = reg->type; 8444 u32 *arg_btf_id = NULL; 8445 int err = 0; 8446 8447 if (arg_type == ARG_DONTCARE) 8448 return 0; 8449 8450 err = check_reg_arg(env, regno, SRC_OP); 8451 if (err) 8452 return err; 8453 8454 if (arg_type == ARG_ANYTHING) { 8455 if (is_pointer_value(env, regno)) { 8456 verbose(env, "R%d leaks addr into helper function\n", 8457 regno); 8458 return -EACCES; 8459 } 8460 return 0; 8461 } 8462 8463 if (type_is_pkt_pointer(type) && 8464 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8465 verbose(env, "helper access to the packet is not allowed\n"); 8466 return -EACCES; 8467 } 8468 8469 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8470 err = resolve_map_arg_type(env, meta, &arg_type); 8471 if (err) 8472 return err; 8473 } 8474 8475 if (register_is_null(reg) && type_may_be_null(arg_type)) 8476 /* A NULL register has a SCALAR_VALUE type, so skip 8477 * type checking. 8478 */ 8479 goto skip_type_check; 8480 8481 /* arg_btf_id and arg_size are in a union. */ 8482 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8483 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8484 arg_btf_id = fn->arg_btf_id[arg]; 8485 8486 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8487 if (err) 8488 return err; 8489 8490 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8491 if (err) 8492 return err; 8493 8494 skip_type_check: 8495 if (arg_type_is_release(arg_type)) { 8496 if (arg_type_is_dynptr(arg_type)) { 8497 struct bpf_func_state *state = func(env, reg); 8498 int spi; 8499 8500 /* Only dynptr created on stack can be released, thus 8501 * the get_spi and stack state checks for spilled_ptr 8502 * should only be done before process_dynptr_func for 8503 * PTR_TO_STACK. 8504 */ 8505 if (reg->type == PTR_TO_STACK) { 8506 spi = dynptr_get_spi(env, reg); 8507 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8508 verbose(env, "arg %d is an unacquired reference\n", regno); 8509 return -EINVAL; 8510 } 8511 } else { 8512 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8513 return -EINVAL; 8514 } 8515 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8516 verbose(env, "R%d must be referenced when passed to release function\n", 8517 regno); 8518 return -EINVAL; 8519 } 8520 if (meta->release_regno) { 8521 verbose(env, "verifier internal error: more than one release argument\n"); 8522 return -EFAULT; 8523 } 8524 meta->release_regno = regno; 8525 } 8526 8527 if (reg->ref_obj_id) { 8528 if (meta->ref_obj_id) { 8529 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8530 regno, reg->ref_obj_id, 8531 meta->ref_obj_id); 8532 return -EFAULT; 8533 } 8534 meta->ref_obj_id = reg->ref_obj_id; 8535 } 8536 8537 switch (base_type(arg_type)) { 8538 case ARG_CONST_MAP_PTR: 8539 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8540 if (meta->map_ptr) { 8541 /* Use map_uid (which is unique id of inner map) to reject: 8542 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8543 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8544 * if (inner_map1 && inner_map2) { 8545 * timer = bpf_map_lookup_elem(inner_map1); 8546 * if (timer) 8547 * // mismatch would have been allowed 8548 * bpf_timer_init(timer, inner_map2); 8549 * } 8550 * 8551 * Comparing map_ptr is enough to distinguish normal and outer maps. 8552 */ 8553 if (meta->map_ptr != reg->map_ptr || 8554 meta->map_uid != reg->map_uid) { 8555 verbose(env, 8556 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8557 meta->map_uid, reg->map_uid); 8558 return -EINVAL; 8559 } 8560 } 8561 meta->map_ptr = reg->map_ptr; 8562 meta->map_uid = reg->map_uid; 8563 break; 8564 case ARG_PTR_TO_MAP_KEY: 8565 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8566 * check that [key, key + map->key_size) are within 8567 * stack limits and initialized 8568 */ 8569 if (!meta->map_ptr) { 8570 /* in function declaration map_ptr must come before 8571 * map_key, so that it's verified and known before 8572 * we have to check map_key here. Otherwise it means 8573 * that kernel subsystem misconfigured verifier 8574 */ 8575 verbose(env, "invalid map_ptr to access map->key\n"); 8576 return -EACCES; 8577 } 8578 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size, 8579 BPF_READ, false, NULL); 8580 break; 8581 case ARG_PTR_TO_MAP_VALUE: 8582 if (type_may_be_null(arg_type) && register_is_null(reg)) 8583 return 0; 8584 8585 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8586 * check [value, value + map->value_size) validity 8587 */ 8588 if (!meta->map_ptr) { 8589 /* kernel subsystem misconfigured verifier */ 8590 verbose(env, "invalid map_ptr to access map->value\n"); 8591 return -EACCES; 8592 } 8593 meta->raw_mode = arg_type & MEM_UNINIT; 8594 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 8595 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 8596 false, meta); 8597 break; 8598 case ARG_PTR_TO_PERCPU_BTF_ID: 8599 if (!reg->btf_id) { 8600 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8601 return -EACCES; 8602 } 8603 meta->ret_btf = reg->btf; 8604 meta->ret_btf_id = reg->btf_id; 8605 break; 8606 case ARG_PTR_TO_SPIN_LOCK: 8607 if (in_rbtree_lock_required_cb(env)) { 8608 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8609 return -EACCES; 8610 } 8611 if (meta->func_id == BPF_FUNC_spin_lock) { 8612 err = process_spin_lock(env, regno, true); 8613 if (err) 8614 return err; 8615 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8616 err = process_spin_lock(env, regno, false); 8617 if (err) 8618 return err; 8619 } else { 8620 verbose(env, "verifier internal error\n"); 8621 return -EFAULT; 8622 } 8623 break; 8624 case ARG_PTR_TO_TIMER: 8625 err = process_timer_func(env, regno, meta); 8626 if (err) 8627 return err; 8628 break; 8629 case ARG_PTR_TO_FUNC: 8630 meta->subprogno = reg->subprogno; 8631 break; 8632 case ARG_PTR_TO_MEM: 8633 /* The access to this pointer is only checked when we hit the 8634 * next is_mem_size argument below. 8635 */ 8636 meta->raw_mode = arg_type & MEM_UNINIT; 8637 if (arg_type & MEM_FIXED_SIZE) { 8638 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 8639 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 8640 false, meta); 8641 if (err) 8642 return err; 8643 if (arg_type & MEM_ALIGNED) 8644 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 8645 } 8646 break; 8647 case ARG_CONST_SIZE: 8648 err = check_mem_size_reg(env, reg, regno, 8649 fn->arg_type[arg - 1] & MEM_WRITE ? 8650 BPF_WRITE : BPF_READ, 8651 false, meta); 8652 break; 8653 case ARG_CONST_SIZE_OR_ZERO: 8654 err = check_mem_size_reg(env, reg, regno, 8655 fn->arg_type[arg - 1] & MEM_WRITE ? 8656 BPF_WRITE : BPF_READ, 8657 true, meta); 8658 break; 8659 case ARG_PTR_TO_DYNPTR: 8660 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8661 if (err) 8662 return err; 8663 break; 8664 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8665 if (!tnum_is_const(reg->var_off)) { 8666 verbose(env, "R%d is not a known constant'\n", 8667 regno); 8668 return -EACCES; 8669 } 8670 meta->mem_size = reg->var_off.value; 8671 err = mark_chain_precision(env, regno); 8672 if (err) 8673 return err; 8674 break; 8675 case ARG_PTR_TO_CONST_STR: 8676 { 8677 struct bpf_map *map = reg->map_ptr; 8678 int map_off; 8679 u64 map_addr; 8680 char *str_ptr; 8681 8682 if (!bpf_map_is_rdonly(map)) { 8683 verbose(env, "R%d does not point to a readonly map'\n", regno); 8684 return -EACCES; 8685 } 8686 8687 if (!tnum_is_const(reg->var_off)) { 8688 verbose(env, "R%d is not a constant address'\n", regno); 8689 return -EACCES; 8690 } 8691 8692 if (!map->ops->map_direct_value_addr) { 8693 verbose(env, "no direct value access support for this map type\n"); 8694 return -EACCES; 8695 } 8696 8697 err = check_map_access(env, regno, reg->off, 8698 map->value_size - reg->off, false, 8699 ACCESS_HELPER); 8700 if (err) 8701 return err; 8702 8703 map_off = reg->off + reg->var_off.value; 8704 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8705 if (err) { 8706 verbose(env, "direct value access on string failed\n"); 8707 return err; 8708 } 8709 8710 str_ptr = (char *)(long)(map_addr); 8711 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8712 verbose(env, "string is not zero-terminated\n"); 8713 return -EINVAL; 8714 } 8715 break; 8716 } 8717 case ARG_PTR_TO_KPTR: 8718 err = process_kptr_func(env, regno, meta); 8719 if (err) 8720 return err; 8721 break; 8722 } 8723 8724 return err; 8725 } 8726 8727 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8728 { 8729 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8730 enum bpf_prog_type type = resolve_prog_type(env->prog); 8731 8732 if (func_id != BPF_FUNC_map_update_elem && 8733 func_id != BPF_FUNC_map_delete_elem) 8734 return false; 8735 8736 /* It's not possible to get access to a locked struct sock in these 8737 * contexts, so updating is safe. 8738 */ 8739 switch (type) { 8740 case BPF_PROG_TYPE_TRACING: 8741 if (eatype == BPF_TRACE_ITER) 8742 return true; 8743 break; 8744 case BPF_PROG_TYPE_SOCK_OPS: 8745 /* map_update allowed only via dedicated helpers with event type checks */ 8746 if (func_id == BPF_FUNC_map_delete_elem) 8747 return true; 8748 break; 8749 case BPF_PROG_TYPE_SOCKET_FILTER: 8750 case BPF_PROG_TYPE_SCHED_CLS: 8751 case BPF_PROG_TYPE_SCHED_ACT: 8752 case BPF_PROG_TYPE_XDP: 8753 case BPF_PROG_TYPE_SK_REUSEPORT: 8754 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8755 case BPF_PROG_TYPE_SK_LOOKUP: 8756 return true; 8757 default: 8758 break; 8759 } 8760 8761 verbose(env, "cannot update sockmap in this context\n"); 8762 return false; 8763 } 8764 8765 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8766 { 8767 return env->prog->jit_requested && 8768 bpf_jit_supports_subprog_tailcalls(); 8769 } 8770 8771 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8772 struct bpf_map *map, int func_id) 8773 { 8774 if (!map) 8775 return 0; 8776 8777 /* We need a two way check, first is from map perspective ... */ 8778 switch (map->map_type) { 8779 case BPF_MAP_TYPE_PROG_ARRAY: 8780 if (func_id != BPF_FUNC_tail_call) 8781 goto error; 8782 break; 8783 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8784 if (func_id != BPF_FUNC_perf_event_read && 8785 func_id != BPF_FUNC_perf_event_output && 8786 func_id != BPF_FUNC_skb_output && 8787 func_id != BPF_FUNC_perf_event_read_value && 8788 func_id != BPF_FUNC_xdp_output) 8789 goto error; 8790 break; 8791 case BPF_MAP_TYPE_RINGBUF: 8792 if (func_id != BPF_FUNC_ringbuf_output && 8793 func_id != BPF_FUNC_ringbuf_reserve && 8794 func_id != BPF_FUNC_ringbuf_query && 8795 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8796 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8797 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8798 goto error; 8799 break; 8800 case BPF_MAP_TYPE_USER_RINGBUF: 8801 if (func_id != BPF_FUNC_user_ringbuf_drain) 8802 goto error; 8803 break; 8804 case BPF_MAP_TYPE_STACK_TRACE: 8805 if (func_id != BPF_FUNC_get_stackid) 8806 goto error; 8807 break; 8808 case BPF_MAP_TYPE_CGROUP_ARRAY: 8809 if (func_id != BPF_FUNC_skb_under_cgroup && 8810 func_id != BPF_FUNC_current_task_under_cgroup) 8811 goto error; 8812 break; 8813 case BPF_MAP_TYPE_CGROUP_STORAGE: 8814 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8815 if (func_id != BPF_FUNC_get_local_storage) 8816 goto error; 8817 break; 8818 case BPF_MAP_TYPE_DEVMAP: 8819 case BPF_MAP_TYPE_DEVMAP_HASH: 8820 if (func_id != BPF_FUNC_redirect_map && 8821 func_id != BPF_FUNC_map_lookup_elem) 8822 goto error; 8823 break; 8824 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8825 * appear. 8826 */ 8827 case BPF_MAP_TYPE_CPUMAP: 8828 if (func_id != BPF_FUNC_redirect_map) 8829 goto error; 8830 break; 8831 case BPF_MAP_TYPE_XSKMAP: 8832 if (func_id != BPF_FUNC_redirect_map && 8833 func_id != BPF_FUNC_map_lookup_elem) 8834 goto error; 8835 break; 8836 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8837 case BPF_MAP_TYPE_HASH_OF_MAPS: 8838 if (func_id != BPF_FUNC_map_lookup_elem) 8839 goto error; 8840 break; 8841 case BPF_MAP_TYPE_SOCKMAP: 8842 if (func_id != BPF_FUNC_sk_redirect_map && 8843 func_id != BPF_FUNC_sock_map_update && 8844 func_id != BPF_FUNC_msg_redirect_map && 8845 func_id != BPF_FUNC_sk_select_reuseport && 8846 func_id != BPF_FUNC_map_lookup_elem && 8847 !may_update_sockmap(env, func_id)) 8848 goto error; 8849 break; 8850 case BPF_MAP_TYPE_SOCKHASH: 8851 if (func_id != BPF_FUNC_sk_redirect_hash && 8852 func_id != BPF_FUNC_sock_hash_update && 8853 func_id != BPF_FUNC_msg_redirect_hash && 8854 func_id != BPF_FUNC_sk_select_reuseport && 8855 func_id != BPF_FUNC_map_lookup_elem && 8856 !may_update_sockmap(env, func_id)) 8857 goto error; 8858 break; 8859 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8860 if (func_id != BPF_FUNC_sk_select_reuseport) 8861 goto error; 8862 break; 8863 case BPF_MAP_TYPE_QUEUE: 8864 case BPF_MAP_TYPE_STACK: 8865 if (func_id != BPF_FUNC_map_peek_elem && 8866 func_id != BPF_FUNC_map_pop_elem && 8867 func_id != BPF_FUNC_map_push_elem) 8868 goto error; 8869 break; 8870 case BPF_MAP_TYPE_SK_STORAGE: 8871 if (func_id != BPF_FUNC_sk_storage_get && 8872 func_id != BPF_FUNC_sk_storage_delete && 8873 func_id != BPF_FUNC_kptr_xchg) 8874 goto error; 8875 break; 8876 case BPF_MAP_TYPE_INODE_STORAGE: 8877 if (func_id != BPF_FUNC_inode_storage_get && 8878 func_id != BPF_FUNC_inode_storage_delete && 8879 func_id != BPF_FUNC_kptr_xchg) 8880 goto error; 8881 break; 8882 case BPF_MAP_TYPE_TASK_STORAGE: 8883 if (func_id != BPF_FUNC_task_storage_get && 8884 func_id != BPF_FUNC_task_storage_delete && 8885 func_id != BPF_FUNC_kptr_xchg) 8886 goto error; 8887 break; 8888 case BPF_MAP_TYPE_CGRP_STORAGE: 8889 if (func_id != BPF_FUNC_cgrp_storage_get && 8890 func_id != BPF_FUNC_cgrp_storage_delete && 8891 func_id != BPF_FUNC_kptr_xchg) 8892 goto error; 8893 break; 8894 case BPF_MAP_TYPE_BLOOM_FILTER: 8895 if (func_id != BPF_FUNC_map_peek_elem && 8896 func_id != BPF_FUNC_map_push_elem) 8897 goto error; 8898 break; 8899 default: 8900 break; 8901 } 8902 8903 /* ... and second from the function itself. */ 8904 switch (func_id) { 8905 case BPF_FUNC_tail_call: 8906 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8907 goto error; 8908 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8909 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8910 return -EINVAL; 8911 } 8912 break; 8913 case BPF_FUNC_perf_event_read: 8914 case BPF_FUNC_perf_event_output: 8915 case BPF_FUNC_perf_event_read_value: 8916 case BPF_FUNC_skb_output: 8917 case BPF_FUNC_xdp_output: 8918 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8919 goto error; 8920 break; 8921 case BPF_FUNC_ringbuf_output: 8922 case BPF_FUNC_ringbuf_reserve: 8923 case BPF_FUNC_ringbuf_query: 8924 case BPF_FUNC_ringbuf_reserve_dynptr: 8925 case BPF_FUNC_ringbuf_submit_dynptr: 8926 case BPF_FUNC_ringbuf_discard_dynptr: 8927 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8928 goto error; 8929 break; 8930 case BPF_FUNC_user_ringbuf_drain: 8931 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8932 goto error; 8933 break; 8934 case BPF_FUNC_get_stackid: 8935 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8936 goto error; 8937 break; 8938 case BPF_FUNC_current_task_under_cgroup: 8939 case BPF_FUNC_skb_under_cgroup: 8940 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8941 goto error; 8942 break; 8943 case BPF_FUNC_redirect_map: 8944 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8945 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8946 map->map_type != BPF_MAP_TYPE_CPUMAP && 8947 map->map_type != BPF_MAP_TYPE_XSKMAP) 8948 goto error; 8949 break; 8950 case BPF_FUNC_sk_redirect_map: 8951 case BPF_FUNC_msg_redirect_map: 8952 case BPF_FUNC_sock_map_update: 8953 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8954 goto error; 8955 break; 8956 case BPF_FUNC_sk_redirect_hash: 8957 case BPF_FUNC_msg_redirect_hash: 8958 case BPF_FUNC_sock_hash_update: 8959 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8960 goto error; 8961 break; 8962 case BPF_FUNC_get_local_storage: 8963 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8964 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8965 goto error; 8966 break; 8967 case BPF_FUNC_sk_select_reuseport: 8968 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8969 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8970 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8971 goto error; 8972 break; 8973 case BPF_FUNC_map_pop_elem: 8974 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8975 map->map_type != BPF_MAP_TYPE_STACK) 8976 goto error; 8977 break; 8978 case BPF_FUNC_map_peek_elem: 8979 case BPF_FUNC_map_push_elem: 8980 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8981 map->map_type != BPF_MAP_TYPE_STACK && 8982 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8983 goto error; 8984 break; 8985 case BPF_FUNC_map_lookup_percpu_elem: 8986 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8987 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8988 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8989 goto error; 8990 break; 8991 case BPF_FUNC_sk_storage_get: 8992 case BPF_FUNC_sk_storage_delete: 8993 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8994 goto error; 8995 break; 8996 case BPF_FUNC_inode_storage_get: 8997 case BPF_FUNC_inode_storage_delete: 8998 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8999 goto error; 9000 break; 9001 case BPF_FUNC_task_storage_get: 9002 case BPF_FUNC_task_storage_delete: 9003 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9004 goto error; 9005 break; 9006 case BPF_FUNC_cgrp_storage_get: 9007 case BPF_FUNC_cgrp_storage_delete: 9008 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9009 goto error; 9010 break; 9011 default: 9012 break; 9013 } 9014 9015 return 0; 9016 error: 9017 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9018 map->map_type, func_id_name(func_id), func_id); 9019 return -EINVAL; 9020 } 9021 9022 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9023 { 9024 int count = 0; 9025 9026 if (arg_type_is_raw_mem(fn->arg1_type)) 9027 count++; 9028 if (arg_type_is_raw_mem(fn->arg2_type)) 9029 count++; 9030 if (arg_type_is_raw_mem(fn->arg3_type)) 9031 count++; 9032 if (arg_type_is_raw_mem(fn->arg4_type)) 9033 count++; 9034 if (arg_type_is_raw_mem(fn->arg5_type)) 9035 count++; 9036 9037 /* We only support one arg being in raw mode at the moment, 9038 * which is sufficient for the helper functions we have 9039 * right now. 9040 */ 9041 return count <= 1; 9042 } 9043 9044 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9045 { 9046 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9047 bool has_size = fn->arg_size[arg] != 0; 9048 bool is_next_size = false; 9049 9050 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9051 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9052 9053 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9054 return is_next_size; 9055 9056 return has_size == is_next_size || is_next_size == is_fixed; 9057 } 9058 9059 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9060 { 9061 /* bpf_xxx(..., buf, len) call will access 'len' 9062 * bytes from memory 'buf'. Both arg types need 9063 * to be paired, so make sure there's no buggy 9064 * helper function specification. 9065 */ 9066 if (arg_type_is_mem_size(fn->arg1_type) || 9067 check_args_pair_invalid(fn, 0) || 9068 check_args_pair_invalid(fn, 1) || 9069 check_args_pair_invalid(fn, 2) || 9070 check_args_pair_invalid(fn, 3) || 9071 check_args_pair_invalid(fn, 4)) 9072 return false; 9073 9074 return true; 9075 } 9076 9077 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9078 { 9079 int i; 9080 9081 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9082 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9083 return !!fn->arg_btf_id[i]; 9084 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9085 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9086 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9087 /* arg_btf_id and arg_size are in a union. */ 9088 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9089 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9090 return false; 9091 } 9092 9093 return true; 9094 } 9095 9096 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9097 { 9098 return check_raw_mode_ok(fn) && 9099 check_arg_pair_ok(fn) && 9100 check_btf_id_ok(fn) ? 0 : -EINVAL; 9101 } 9102 9103 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9104 * are now invalid, so turn them into unknown SCALAR_VALUE. 9105 * 9106 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9107 * since these slices point to packet data. 9108 */ 9109 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9110 { 9111 struct bpf_func_state *state; 9112 struct bpf_reg_state *reg; 9113 9114 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9115 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9116 mark_reg_invalid(env, reg); 9117 })); 9118 } 9119 9120 enum { 9121 AT_PKT_END = -1, 9122 BEYOND_PKT_END = -2, 9123 }; 9124 9125 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9126 { 9127 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9128 struct bpf_reg_state *reg = &state->regs[regn]; 9129 9130 if (reg->type != PTR_TO_PACKET) 9131 /* PTR_TO_PACKET_META is not supported yet */ 9132 return; 9133 9134 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9135 * How far beyond pkt_end it goes is unknown. 9136 * if (!range_open) it's the case of pkt >= pkt_end 9137 * if (range_open) it's the case of pkt > pkt_end 9138 * hence this pointer is at least 1 byte bigger than pkt_end 9139 */ 9140 if (range_open) 9141 reg->range = BEYOND_PKT_END; 9142 else 9143 reg->range = AT_PKT_END; 9144 } 9145 9146 /* The pointer with the specified id has released its reference to kernel 9147 * resources. Identify all copies of the same pointer and clear the reference. 9148 */ 9149 static int release_reference(struct bpf_verifier_env *env, 9150 int ref_obj_id) 9151 { 9152 struct bpf_func_state *state; 9153 struct bpf_reg_state *reg; 9154 int err; 9155 9156 err = release_reference_state(cur_func(env), ref_obj_id); 9157 if (err) 9158 return err; 9159 9160 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9161 if (reg->ref_obj_id == ref_obj_id) 9162 mark_reg_invalid(env, reg); 9163 })); 9164 9165 return 0; 9166 } 9167 9168 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9169 { 9170 struct bpf_func_state *unused; 9171 struct bpf_reg_state *reg; 9172 9173 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9174 if (type_is_non_owning_ref(reg->type)) 9175 mark_reg_invalid(env, reg); 9176 })); 9177 } 9178 9179 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9180 struct bpf_reg_state *regs) 9181 { 9182 int i; 9183 9184 /* after the call registers r0 - r5 were scratched */ 9185 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9186 mark_reg_not_init(env, regs, caller_saved[i]); 9187 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9188 } 9189 } 9190 9191 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9192 struct bpf_func_state *caller, 9193 struct bpf_func_state *callee, 9194 int insn_idx); 9195 9196 static int set_callee_state(struct bpf_verifier_env *env, 9197 struct bpf_func_state *caller, 9198 struct bpf_func_state *callee, int insn_idx); 9199 9200 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9201 set_callee_state_fn set_callee_state_cb, 9202 struct bpf_verifier_state *state) 9203 { 9204 struct bpf_func_state *caller, *callee; 9205 int err; 9206 9207 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9208 verbose(env, "the call stack of %d frames is too deep\n", 9209 state->curframe + 2); 9210 return -E2BIG; 9211 } 9212 9213 if (state->frame[state->curframe + 1]) { 9214 verbose(env, "verifier bug. Frame %d already allocated\n", 9215 state->curframe + 1); 9216 return -EFAULT; 9217 } 9218 9219 caller = state->frame[state->curframe]; 9220 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9221 if (!callee) 9222 return -ENOMEM; 9223 state->frame[state->curframe + 1] = callee; 9224 9225 /* callee cannot access r0, r6 - r9 for reading and has to write 9226 * into its own stack before reading from it. 9227 * callee can read/write into caller's stack 9228 */ 9229 init_func_state(env, callee, 9230 /* remember the callsite, it will be used by bpf_exit */ 9231 callsite, 9232 state->curframe + 1 /* frameno within this callchain */, 9233 subprog /* subprog number within this prog */); 9234 /* Transfer references to the callee */ 9235 err = copy_reference_state(callee, caller); 9236 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9237 if (err) 9238 goto err_out; 9239 9240 /* only increment it after check_reg_arg() finished */ 9241 state->curframe++; 9242 9243 return 0; 9244 9245 err_out: 9246 free_func_state(callee); 9247 state->frame[state->curframe + 1] = NULL; 9248 return err; 9249 } 9250 9251 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9252 int insn_idx, int subprog, 9253 set_callee_state_fn set_callee_state_cb) 9254 { 9255 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9256 struct bpf_func_state *caller, *callee; 9257 int err; 9258 9259 caller = state->frame[state->curframe]; 9260 err = btf_check_subprog_call(env, subprog, caller->regs); 9261 if (err == -EFAULT) 9262 return err; 9263 9264 /* set_callee_state is used for direct subprog calls, but we are 9265 * interested in validating only BPF helpers that can call subprogs as 9266 * callbacks 9267 */ 9268 if (bpf_pseudo_kfunc_call(insn) && 9269 !is_sync_callback_calling_kfunc(insn->imm)) { 9270 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9271 func_id_name(insn->imm), insn->imm); 9272 return -EFAULT; 9273 } else if (!bpf_pseudo_kfunc_call(insn) && 9274 !is_callback_calling_function(insn->imm)) { /* helper */ 9275 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9276 func_id_name(insn->imm), insn->imm); 9277 return -EFAULT; 9278 } 9279 9280 if (insn->code == (BPF_JMP | BPF_CALL) && 9281 insn->src_reg == 0 && 9282 insn->imm == BPF_FUNC_timer_set_callback) { 9283 struct bpf_verifier_state *async_cb; 9284 9285 /* there is no real recursion here. timer callbacks are async */ 9286 env->subprog_info[subprog].is_async_cb = true; 9287 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9288 insn_idx, subprog); 9289 if (!async_cb) 9290 return -EFAULT; 9291 callee = async_cb->frame[0]; 9292 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9293 9294 /* Convert bpf_timer_set_callback() args into timer callback args */ 9295 err = set_callee_state_cb(env, caller, callee, insn_idx); 9296 if (err) 9297 return err; 9298 9299 return 0; 9300 } 9301 9302 /* for callback functions enqueue entry to callback and 9303 * proceed with next instruction within current frame. 9304 */ 9305 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9306 if (!callback_state) 9307 return -ENOMEM; 9308 9309 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9310 callback_state); 9311 if (err) 9312 return err; 9313 9314 callback_state->callback_unroll_depth++; 9315 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9316 caller->callback_depth = 0; 9317 return 0; 9318 } 9319 9320 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9321 int *insn_idx) 9322 { 9323 struct bpf_verifier_state *state = env->cur_state; 9324 struct bpf_func_state *caller; 9325 int err, subprog, target_insn; 9326 9327 target_insn = *insn_idx + insn->imm + 1; 9328 subprog = find_subprog(env, target_insn); 9329 if (subprog < 0) { 9330 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9331 return -EFAULT; 9332 } 9333 9334 caller = state->frame[state->curframe]; 9335 err = btf_check_subprog_call(env, subprog, caller->regs); 9336 if (err == -EFAULT) 9337 return err; 9338 if (subprog_is_global(env, subprog)) { 9339 if (err) { 9340 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9341 return err; 9342 } 9343 9344 if (env->log.level & BPF_LOG_LEVEL) 9345 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9346 clear_caller_saved_regs(env, caller->regs); 9347 9348 /* All global functions return a 64-bit SCALAR_VALUE */ 9349 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9350 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9351 9352 /* continue with next insn after call */ 9353 return 0; 9354 } 9355 9356 /* for regular function entry setup new frame and continue 9357 * from that frame. 9358 */ 9359 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9360 if (err) 9361 return err; 9362 9363 clear_caller_saved_regs(env, caller->regs); 9364 9365 /* and go analyze first insn of the callee */ 9366 *insn_idx = env->subprog_info[subprog].start - 1; 9367 9368 if (env->log.level & BPF_LOG_LEVEL) { 9369 verbose(env, "caller:\n"); 9370 print_verifier_state(env, caller, true); 9371 verbose(env, "callee:\n"); 9372 print_verifier_state(env, state->frame[state->curframe], true); 9373 } 9374 9375 return 0; 9376 } 9377 9378 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9379 struct bpf_func_state *caller, 9380 struct bpf_func_state *callee) 9381 { 9382 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9383 * void *callback_ctx, u64 flags); 9384 * callback_fn(struct bpf_map *map, void *key, void *value, 9385 * void *callback_ctx); 9386 */ 9387 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9388 9389 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9390 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9391 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9392 9393 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9394 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9395 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9396 9397 /* pointer to stack or null */ 9398 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9399 9400 /* unused */ 9401 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9402 return 0; 9403 } 9404 9405 static int set_callee_state(struct bpf_verifier_env *env, 9406 struct bpf_func_state *caller, 9407 struct bpf_func_state *callee, int insn_idx) 9408 { 9409 int i; 9410 9411 /* copy r1 - r5 args that callee can access. The copy includes parent 9412 * pointers, which connects us up to the liveness chain 9413 */ 9414 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9415 callee->regs[i] = caller->regs[i]; 9416 return 0; 9417 } 9418 9419 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9420 struct bpf_func_state *caller, 9421 struct bpf_func_state *callee, 9422 int insn_idx) 9423 { 9424 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9425 struct bpf_map *map; 9426 int err; 9427 9428 if (bpf_map_ptr_poisoned(insn_aux)) { 9429 verbose(env, "tail_call abusing map_ptr\n"); 9430 return -EINVAL; 9431 } 9432 9433 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9434 if (!map->ops->map_set_for_each_callback_args || 9435 !map->ops->map_for_each_callback) { 9436 verbose(env, "callback function not allowed for map\n"); 9437 return -ENOTSUPP; 9438 } 9439 9440 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9441 if (err) 9442 return err; 9443 9444 callee->in_callback_fn = true; 9445 callee->callback_ret_range = tnum_range(0, 1); 9446 return 0; 9447 } 9448 9449 static int set_loop_callback_state(struct bpf_verifier_env *env, 9450 struct bpf_func_state *caller, 9451 struct bpf_func_state *callee, 9452 int insn_idx) 9453 { 9454 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9455 * u64 flags); 9456 * callback_fn(u32 index, void *callback_ctx); 9457 */ 9458 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9459 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9460 9461 /* unused */ 9462 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9463 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9464 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9465 9466 callee->in_callback_fn = true; 9467 callee->callback_ret_range = tnum_range(0, 1); 9468 return 0; 9469 } 9470 9471 static int set_timer_callback_state(struct bpf_verifier_env *env, 9472 struct bpf_func_state *caller, 9473 struct bpf_func_state *callee, 9474 int insn_idx) 9475 { 9476 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9477 9478 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9479 * callback_fn(struct bpf_map *map, void *key, void *value); 9480 */ 9481 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9482 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9483 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9484 9485 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9486 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9487 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9488 9489 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9490 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9491 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9492 9493 /* unused */ 9494 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9495 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9496 callee->in_async_callback_fn = true; 9497 callee->callback_ret_range = tnum_range(0, 1); 9498 return 0; 9499 } 9500 9501 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9502 struct bpf_func_state *caller, 9503 struct bpf_func_state *callee, 9504 int insn_idx) 9505 { 9506 /* bpf_find_vma(struct task_struct *task, u64 addr, 9507 * void *callback_fn, void *callback_ctx, u64 flags) 9508 * (callback_fn)(struct task_struct *task, 9509 * struct vm_area_struct *vma, void *callback_ctx); 9510 */ 9511 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9512 9513 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9514 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9515 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9516 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9517 9518 /* pointer to stack or null */ 9519 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9520 9521 /* unused */ 9522 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9523 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9524 callee->in_callback_fn = true; 9525 callee->callback_ret_range = tnum_range(0, 1); 9526 return 0; 9527 } 9528 9529 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9530 struct bpf_func_state *caller, 9531 struct bpf_func_state *callee, 9532 int insn_idx) 9533 { 9534 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9535 * callback_ctx, u64 flags); 9536 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9537 */ 9538 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9539 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9540 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9541 9542 /* unused */ 9543 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9544 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9545 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9546 9547 callee->in_callback_fn = true; 9548 callee->callback_ret_range = tnum_range(0, 1); 9549 return 0; 9550 } 9551 9552 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9553 struct bpf_func_state *caller, 9554 struct bpf_func_state *callee, 9555 int insn_idx) 9556 { 9557 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9558 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9559 * 9560 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9561 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9562 * by this point, so look at 'root' 9563 */ 9564 struct btf_field *field; 9565 9566 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9567 BPF_RB_ROOT); 9568 if (!field || !field->graph_root.value_btf_id) 9569 return -EFAULT; 9570 9571 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9572 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9573 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9574 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9575 9576 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9577 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9578 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9579 callee->in_callback_fn = true; 9580 callee->callback_ret_range = tnum_range(0, 1); 9581 return 0; 9582 } 9583 9584 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9585 9586 /* Are we currently verifying the callback for a rbtree helper that must 9587 * be called with lock held? If so, no need to complain about unreleased 9588 * lock 9589 */ 9590 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9591 { 9592 struct bpf_verifier_state *state = env->cur_state; 9593 struct bpf_insn *insn = env->prog->insnsi; 9594 struct bpf_func_state *callee; 9595 int kfunc_btf_id; 9596 9597 if (!state->curframe) 9598 return false; 9599 9600 callee = state->frame[state->curframe]; 9601 9602 if (!callee->in_callback_fn) 9603 return false; 9604 9605 kfunc_btf_id = insn[callee->callsite].imm; 9606 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9607 } 9608 9609 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9610 { 9611 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9612 struct bpf_func_state *caller, *callee; 9613 struct bpf_reg_state *r0; 9614 bool in_callback_fn; 9615 int err; 9616 9617 callee = state->frame[state->curframe]; 9618 r0 = &callee->regs[BPF_REG_0]; 9619 if (r0->type == PTR_TO_STACK) { 9620 /* technically it's ok to return caller's stack pointer 9621 * (or caller's caller's pointer) back to the caller, 9622 * since these pointers are valid. Only current stack 9623 * pointer will be invalid as soon as function exits, 9624 * but let's be conservative 9625 */ 9626 verbose(env, "cannot return stack pointer to the caller\n"); 9627 return -EINVAL; 9628 } 9629 9630 caller = state->frame[state->curframe - 1]; 9631 if (callee->in_callback_fn) { 9632 /* enforce R0 return value range [0, 1]. */ 9633 struct tnum range = callee->callback_ret_range; 9634 9635 if (r0->type != SCALAR_VALUE) { 9636 verbose(env, "R0 not a scalar value\n"); 9637 return -EACCES; 9638 } 9639 9640 /* we are going to rely on register's precise value */ 9641 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9642 err = err ?: mark_chain_precision(env, BPF_REG_0); 9643 if (err) 9644 return err; 9645 9646 if (!tnum_in(range, r0->var_off)) { 9647 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9648 return -EINVAL; 9649 } 9650 if (!calls_callback(env, callee->callsite)) { 9651 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9652 *insn_idx, callee->callsite); 9653 return -EFAULT; 9654 } 9655 } else { 9656 /* return to the caller whatever r0 had in the callee */ 9657 caller->regs[BPF_REG_0] = *r0; 9658 } 9659 9660 /* callback_fn frame should have released its own additions to parent's 9661 * reference state at this point, or check_reference_leak would 9662 * complain, hence it must be the same as the caller. There is no need 9663 * to copy it back. 9664 */ 9665 if (!callee->in_callback_fn) { 9666 /* Transfer references to the caller */ 9667 err = copy_reference_state(caller, callee); 9668 if (err) 9669 return err; 9670 } 9671 9672 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9673 * there function call logic would reschedule callback visit. If iteration 9674 * converges is_state_visited() would prune that visit eventually. 9675 */ 9676 in_callback_fn = callee->in_callback_fn; 9677 if (in_callback_fn) 9678 *insn_idx = callee->callsite; 9679 else 9680 *insn_idx = callee->callsite + 1; 9681 9682 if (env->log.level & BPF_LOG_LEVEL) { 9683 verbose(env, "returning from callee:\n"); 9684 print_verifier_state(env, callee, true); 9685 verbose(env, "to caller at %d:\n", *insn_idx); 9686 print_verifier_state(env, caller, true); 9687 } 9688 /* clear everything in the callee */ 9689 free_func_state(callee); 9690 state->frame[state->curframe--] = NULL; 9691 9692 /* for callbacks widen imprecise scalars to make programs like below verify: 9693 * 9694 * struct ctx { int i; } 9695 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9696 * ... 9697 * struct ctx = { .i = 0; } 9698 * bpf_loop(100, cb, &ctx, 0); 9699 * 9700 * This is similar to what is done in process_iter_next_call() for open 9701 * coded iterators. 9702 */ 9703 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9704 if (prev_st) { 9705 err = widen_imprecise_scalars(env, prev_st, state); 9706 if (err) 9707 return err; 9708 } 9709 return 0; 9710 } 9711 9712 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9713 int func_id, 9714 struct bpf_call_arg_meta *meta) 9715 { 9716 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9717 9718 if (ret_type != RET_INTEGER) 9719 return; 9720 9721 switch (func_id) { 9722 case BPF_FUNC_get_stack: 9723 case BPF_FUNC_get_task_stack: 9724 case BPF_FUNC_probe_read_str: 9725 case BPF_FUNC_probe_read_kernel_str: 9726 case BPF_FUNC_probe_read_user_str: 9727 ret_reg->smax_value = meta->msize_max_value; 9728 ret_reg->s32_max_value = meta->msize_max_value; 9729 ret_reg->smin_value = -MAX_ERRNO; 9730 ret_reg->s32_min_value = -MAX_ERRNO; 9731 reg_bounds_sync(ret_reg); 9732 break; 9733 case BPF_FUNC_get_smp_processor_id: 9734 ret_reg->umax_value = nr_cpu_ids - 1; 9735 ret_reg->u32_max_value = nr_cpu_ids - 1; 9736 ret_reg->smax_value = nr_cpu_ids - 1; 9737 ret_reg->s32_max_value = nr_cpu_ids - 1; 9738 ret_reg->umin_value = 0; 9739 ret_reg->u32_min_value = 0; 9740 ret_reg->smin_value = 0; 9741 ret_reg->s32_min_value = 0; 9742 reg_bounds_sync(ret_reg); 9743 break; 9744 } 9745 } 9746 9747 static int 9748 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9749 int func_id, int insn_idx) 9750 { 9751 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9752 struct bpf_map *map = meta->map_ptr; 9753 9754 if (func_id != BPF_FUNC_tail_call && 9755 func_id != BPF_FUNC_map_lookup_elem && 9756 func_id != BPF_FUNC_map_update_elem && 9757 func_id != BPF_FUNC_map_delete_elem && 9758 func_id != BPF_FUNC_map_push_elem && 9759 func_id != BPF_FUNC_map_pop_elem && 9760 func_id != BPF_FUNC_map_peek_elem && 9761 func_id != BPF_FUNC_for_each_map_elem && 9762 func_id != BPF_FUNC_redirect_map && 9763 func_id != BPF_FUNC_map_lookup_percpu_elem) 9764 return 0; 9765 9766 if (map == NULL) { 9767 verbose(env, "kernel subsystem misconfigured verifier\n"); 9768 return -EINVAL; 9769 } 9770 9771 /* In case of read-only, some additional restrictions 9772 * need to be applied in order to prevent altering the 9773 * state of the map from program side. 9774 */ 9775 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9776 (func_id == BPF_FUNC_map_delete_elem || 9777 func_id == BPF_FUNC_map_update_elem || 9778 func_id == BPF_FUNC_map_push_elem || 9779 func_id == BPF_FUNC_map_pop_elem)) { 9780 verbose(env, "write into map forbidden\n"); 9781 return -EACCES; 9782 } 9783 9784 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9785 bpf_map_ptr_store(aux, meta->map_ptr, 9786 !meta->map_ptr->bypass_spec_v1); 9787 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9788 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9789 !meta->map_ptr->bypass_spec_v1); 9790 return 0; 9791 } 9792 9793 static int 9794 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9795 int func_id, int insn_idx) 9796 { 9797 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9798 struct bpf_reg_state *regs = cur_regs(env), *reg; 9799 struct bpf_map *map = meta->map_ptr; 9800 u64 val, max; 9801 int err; 9802 9803 if (func_id != BPF_FUNC_tail_call) 9804 return 0; 9805 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9806 verbose(env, "kernel subsystem misconfigured verifier\n"); 9807 return -EINVAL; 9808 } 9809 9810 reg = ®s[BPF_REG_3]; 9811 val = reg->var_off.value; 9812 max = map->max_entries; 9813 9814 if (!(register_is_const(reg) && val < max)) { 9815 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9816 return 0; 9817 } 9818 9819 err = mark_chain_precision(env, BPF_REG_3); 9820 if (err) 9821 return err; 9822 if (bpf_map_key_unseen(aux)) 9823 bpf_map_key_store(aux, val); 9824 else if (!bpf_map_key_poisoned(aux) && 9825 bpf_map_key_immediate(aux) != val) 9826 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9827 return 0; 9828 } 9829 9830 static int check_reference_leak(struct bpf_verifier_env *env) 9831 { 9832 struct bpf_func_state *state = cur_func(env); 9833 bool refs_lingering = false; 9834 int i; 9835 9836 if (state->frameno && !state->in_callback_fn) 9837 return 0; 9838 9839 for (i = 0; i < state->acquired_refs; i++) { 9840 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9841 continue; 9842 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9843 state->refs[i].id, state->refs[i].insn_idx); 9844 refs_lingering = true; 9845 } 9846 return refs_lingering ? -EINVAL : 0; 9847 } 9848 9849 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9850 struct bpf_reg_state *regs) 9851 { 9852 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9853 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9854 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9855 struct bpf_bprintf_data data = {}; 9856 int err, fmt_map_off, num_args; 9857 u64 fmt_addr; 9858 char *fmt; 9859 9860 /* data must be an array of u64 */ 9861 if (data_len_reg->var_off.value % 8) 9862 return -EINVAL; 9863 num_args = data_len_reg->var_off.value / 8; 9864 9865 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9866 * and map_direct_value_addr is set. 9867 */ 9868 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9869 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9870 fmt_map_off); 9871 if (err) { 9872 verbose(env, "verifier bug\n"); 9873 return -EFAULT; 9874 } 9875 fmt = (char *)(long)fmt_addr + fmt_map_off; 9876 9877 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9878 * can focus on validating the format specifiers. 9879 */ 9880 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9881 if (err < 0) 9882 verbose(env, "Invalid format string\n"); 9883 9884 return err; 9885 } 9886 9887 static int check_get_func_ip(struct bpf_verifier_env *env) 9888 { 9889 enum bpf_prog_type type = resolve_prog_type(env->prog); 9890 int func_id = BPF_FUNC_get_func_ip; 9891 9892 if (type == BPF_PROG_TYPE_TRACING) { 9893 if (!bpf_prog_has_trampoline(env->prog)) { 9894 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9895 func_id_name(func_id), func_id); 9896 return -ENOTSUPP; 9897 } 9898 return 0; 9899 } else if (type == BPF_PROG_TYPE_KPROBE) { 9900 return 0; 9901 } 9902 9903 verbose(env, "func %s#%d not supported for program type %d\n", 9904 func_id_name(func_id), func_id, type); 9905 return -ENOTSUPP; 9906 } 9907 9908 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9909 { 9910 return &env->insn_aux_data[env->insn_idx]; 9911 } 9912 9913 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9914 { 9915 struct bpf_reg_state *regs = cur_regs(env); 9916 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9917 bool reg_is_null = register_is_null(reg); 9918 9919 if (reg_is_null) 9920 mark_chain_precision(env, BPF_REG_4); 9921 9922 return reg_is_null; 9923 } 9924 9925 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9926 { 9927 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9928 9929 if (!state->initialized) { 9930 state->initialized = 1; 9931 state->fit_for_inline = loop_flag_is_zero(env); 9932 state->callback_subprogno = subprogno; 9933 return; 9934 } 9935 9936 if (!state->fit_for_inline) 9937 return; 9938 9939 state->fit_for_inline = (loop_flag_is_zero(env) && 9940 state->callback_subprogno == subprogno); 9941 } 9942 9943 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9944 int *insn_idx_p) 9945 { 9946 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9947 const struct bpf_func_proto *fn = NULL; 9948 enum bpf_return_type ret_type; 9949 enum bpf_type_flag ret_flag; 9950 struct bpf_reg_state *regs; 9951 struct bpf_call_arg_meta meta; 9952 int insn_idx = *insn_idx_p; 9953 bool changes_data; 9954 int i, err, func_id; 9955 9956 /* find function prototype */ 9957 func_id = insn->imm; 9958 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9959 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9960 func_id); 9961 return -EINVAL; 9962 } 9963 9964 if (env->ops->get_func_proto) 9965 fn = env->ops->get_func_proto(func_id, env->prog); 9966 if (!fn) { 9967 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9968 func_id); 9969 return -EINVAL; 9970 } 9971 9972 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9973 if (!env->prog->gpl_compatible && fn->gpl_only) { 9974 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9975 return -EINVAL; 9976 } 9977 9978 if (fn->allowed && !fn->allowed(env->prog)) { 9979 verbose(env, "helper call is not allowed in probe\n"); 9980 return -EINVAL; 9981 } 9982 9983 if (!env->prog->aux->sleepable && fn->might_sleep) { 9984 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9985 return -EINVAL; 9986 } 9987 9988 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9989 changes_data = bpf_helper_changes_pkt_data(fn->func); 9990 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9991 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9992 func_id_name(func_id), func_id); 9993 return -EINVAL; 9994 } 9995 9996 memset(&meta, 0, sizeof(meta)); 9997 meta.pkt_access = fn->pkt_access; 9998 9999 err = check_func_proto(fn, func_id); 10000 if (err) { 10001 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10002 func_id_name(func_id), func_id); 10003 return err; 10004 } 10005 10006 if (env->cur_state->active_rcu_lock) { 10007 if (fn->might_sleep) { 10008 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10009 func_id_name(func_id), func_id); 10010 return -EINVAL; 10011 } 10012 10013 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10014 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10015 } 10016 10017 meta.func_id = func_id; 10018 /* check args */ 10019 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10020 err = check_func_arg(env, i, &meta, fn, insn_idx); 10021 if (err) 10022 return err; 10023 } 10024 10025 err = record_func_map(env, &meta, func_id, insn_idx); 10026 if (err) 10027 return err; 10028 10029 err = record_func_key(env, &meta, func_id, insn_idx); 10030 if (err) 10031 return err; 10032 10033 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10034 * is inferred from register state. 10035 */ 10036 for (i = 0; i < meta.access_size; i++) { 10037 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10038 BPF_WRITE, -1, false, false); 10039 if (err) 10040 return err; 10041 } 10042 10043 regs = cur_regs(env); 10044 10045 if (meta.release_regno) { 10046 err = -EINVAL; 10047 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10048 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10049 * is safe to do directly. 10050 */ 10051 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10052 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10053 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10054 return -EFAULT; 10055 } 10056 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10057 } else if (meta.ref_obj_id) { 10058 err = release_reference(env, meta.ref_obj_id); 10059 } else if (register_is_null(®s[meta.release_regno])) { 10060 /* meta.ref_obj_id can only be 0 if register that is meant to be 10061 * released is NULL, which must be > R0. 10062 */ 10063 err = 0; 10064 } 10065 if (err) { 10066 verbose(env, "func %s#%d reference has not been acquired before\n", 10067 func_id_name(func_id), func_id); 10068 return err; 10069 } 10070 } 10071 10072 switch (func_id) { 10073 case BPF_FUNC_tail_call: 10074 err = check_reference_leak(env); 10075 if (err) { 10076 verbose(env, "tail_call would lead to reference leak\n"); 10077 return err; 10078 } 10079 break; 10080 case BPF_FUNC_get_local_storage: 10081 /* check that flags argument in get_local_storage(map, flags) is 0, 10082 * this is required because get_local_storage() can't return an error. 10083 */ 10084 if (!register_is_null(®s[BPF_REG_2])) { 10085 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10086 return -EINVAL; 10087 } 10088 break; 10089 case BPF_FUNC_for_each_map_elem: 10090 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10091 set_map_elem_callback_state); 10092 break; 10093 case BPF_FUNC_timer_set_callback: 10094 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10095 set_timer_callback_state); 10096 break; 10097 case BPF_FUNC_find_vma: 10098 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10099 set_find_vma_callback_state); 10100 break; 10101 case BPF_FUNC_snprintf: 10102 err = check_bpf_snprintf_call(env, regs); 10103 break; 10104 case BPF_FUNC_loop: 10105 update_loop_inline_state(env, meta.subprogno); 10106 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10107 * is finished, thus mark it precise. 10108 */ 10109 err = mark_chain_precision(env, BPF_REG_1); 10110 if (err) 10111 return err; 10112 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10113 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10114 set_loop_callback_state); 10115 } else { 10116 cur_func(env)->callback_depth = 0; 10117 if (env->log.level & BPF_LOG_LEVEL2) 10118 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10119 env->cur_state->curframe); 10120 } 10121 break; 10122 case BPF_FUNC_dynptr_from_mem: 10123 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10124 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10125 reg_type_str(env, regs[BPF_REG_1].type)); 10126 return -EACCES; 10127 } 10128 break; 10129 case BPF_FUNC_set_retval: 10130 if (prog_type == BPF_PROG_TYPE_LSM && 10131 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10132 if (!env->prog->aux->attach_func_proto->type) { 10133 /* Make sure programs that attach to void 10134 * hooks don't try to modify return value. 10135 */ 10136 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10137 return -EINVAL; 10138 } 10139 } 10140 break; 10141 case BPF_FUNC_dynptr_data: 10142 { 10143 struct bpf_reg_state *reg; 10144 int id, ref_obj_id; 10145 10146 reg = get_dynptr_arg_reg(env, fn, regs); 10147 if (!reg) 10148 return -EFAULT; 10149 10150 10151 if (meta.dynptr_id) { 10152 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10153 return -EFAULT; 10154 } 10155 if (meta.ref_obj_id) { 10156 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10157 return -EFAULT; 10158 } 10159 10160 id = dynptr_id(env, reg); 10161 if (id < 0) { 10162 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10163 return id; 10164 } 10165 10166 ref_obj_id = dynptr_ref_obj_id(env, reg); 10167 if (ref_obj_id < 0) { 10168 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10169 return ref_obj_id; 10170 } 10171 10172 meta.dynptr_id = id; 10173 meta.ref_obj_id = ref_obj_id; 10174 10175 break; 10176 } 10177 case BPF_FUNC_dynptr_write: 10178 { 10179 enum bpf_dynptr_type dynptr_type; 10180 struct bpf_reg_state *reg; 10181 10182 reg = get_dynptr_arg_reg(env, fn, regs); 10183 if (!reg) 10184 return -EFAULT; 10185 10186 dynptr_type = dynptr_get_type(env, reg); 10187 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10188 return -EFAULT; 10189 10190 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10191 /* this will trigger clear_all_pkt_pointers(), which will 10192 * invalidate all dynptr slices associated with the skb 10193 */ 10194 changes_data = true; 10195 10196 break; 10197 } 10198 case BPF_FUNC_user_ringbuf_drain: 10199 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10200 set_user_ringbuf_callback_state); 10201 break; 10202 } 10203 10204 if (err) 10205 return err; 10206 10207 /* reset caller saved regs */ 10208 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10209 mark_reg_not_init(env, regs, caller_saved[i]); 10210 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10211 } 10212 10213 /* helper call returns 64-bit value. */ 10214 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10215 10216 /* update return register (already marked as written above) */ 10217 ret_type = fn->ret_type; 10218 ret_flag = type_flag(ret_type); 10219 10220 switch (base_type(ret_type)) { 10221 case RET_INTEGER: 10222 /* sets type to SCALAR_VALUE */ 10223 mark_reg_unknown(env, regs, BPF_REG_0); 10224 break; 10225 case RET_VOID: 10226 regs[BPF_REG_0].type = NOT_INIT; 10227 break; 10228 case RET_PTR_TO_MAP_VALUE: 10229 /* There is no offset yet applied, variable or fixed */ 10230 mark_reg_known_zero(env, regs, BPF_REG_0); 10231 /* remember map_ptr, so that check_map_access() 10232 * can check 'value_size' boundary of memory access 10233 * to map element returned from bpf_map_lookup_elem() 10234 */ 10235 if (meta.map_ptr == NULL) { 10236 verbose(env, 10237 "kernel subsystem misconfigured verifier\n"); 10238 return -EINVAL; 10239 } 10240 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10241 regs[BPF_REG_0].map_uid = meta.map_uid; 10242 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10243 if (!type_may_be_null(ret_type) && 10244 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10245 regs[BPF_REG_0].id = ++env->id_gen; 10246 } 10247 break; 10248 case RET_PTR_TO_SOCKET: 10249 mark_reg_known_zero(env, regs, BPF_REG_0); 10250 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10251 break; 10252 case RET_PTR_TO_SOCK_COMMON: 10253 mark_reg_known_zero(env, regs, BPF_REG_0); 10254 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10255 break; 10256 case RET_PTR_TO_TCP_SOCK: 10257 mark_reg_known_zero(env, regs, BPF_REG_0); 10258 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10259 break; 10260 case RET_PTR_TO_MEM: 10261 mark_reg_known_zero(env, regs, BPF_REG_0); 10262 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10263 regs[BPF_REG_0].mem_size = meta.mem_size; 10264 break; 10265 case RET_PTR_TO_MEM_OR_BTF_ID: 10266 { 10267 const struct btf_type *t; 10268 10269 mark_reg_known_zero(env, regs, BPF_REG_0); 10270 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10271 if (!btf_type_is_struct(t)) { 10272 u32 tsize; 10273 const struct btf_type *ret; 10274 const char *tname; 10275 10276 /* resolve the type size of ksym. */ 10277 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10278 if (IS_ERR(ret)) { 10279 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10280 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10281 tname, PTR_ERR(ret)); 10282 return -EINVAL; 10283 } 10284 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10285 regs[BPF_REG_0].mem_size = tsize; 10286 } else { 10287 /* MEM_RDONLY may be carried from ret_flag, but it 10288 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10289 * it will confuse the check of PTR_TO_BTF_ID in 10290 * check_mem_access(). 10291 */ 10292 ret_flag &= ~MEM_RDONLY; 10293 10294 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10295 regs[BPF_REG_0].btf = meta.ret_btf; 10296 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10297 } 10298 break; 10299 } 10300 case RET_PTR_TO_BTF_ID: 10301 { 10302 struct btf *ret_btf; 10303 int ret_btf_id; 10304 10305 mark_reg_known_zero(env, regs, BPF_REG_0); 10306 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10307 if (func_id == BPF_FUNC_kptr_xchg) { 10308 ret_btf = meta.kptr_field->kptr.btf; 10309 ret_btf_id = meta.kptr_field->kptr.btf_id; 10310 if (!btf_is_kernel(ret_btf)) 10311 regs[BPF_REG_0].type |= MEM_ALLOC; 10312 } else { 10313 if (fn->ret_btf_id == BPF_PTR_POISON) { 10314 verbose(env, "verifier internal error:"); 10315 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10316 func_id_name(func_id)); 10317 return -EINVAL; 10318 } 10319 ret_btf = btf_vmlinux; 10320 ret_btf_id = *fn->ret_btf_id; 10321 } 10322 if (ret_btf_id == 0) { 10323 verbose(env, "invalid return type %u of func %s#%d\n", 10324 base_type(ret_type), func_id_name(func_id), 10325 func_id); 10326 return -EINVAL; 10327 } 10328 regs[BPF_REG_0].btf = ret_btf; 10329 regs[BPF_REG_0].btf_id = ret_btf_id; 10330 break; 10331 } 10332 default: 10333 verbose(env, "unknown return type %u of func %s#%d\n", 10334 base_type(ret_type), func_id_name(func_id), func_id); 10335 return -EINVAL; 10336 } 10337 10338 if (type_may_be_null(regs[BPF_REG_0].type)) 10339 regs[BPF_REG_0].id = ++env->id_gen; 10340 10341 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10342 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10343 func_id_name(func_id), func_id); 10344 return -EFAULT; 10345 } 10346 10347 if (is_dynptr_ref_function(func_id)) 10348 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10349 10350 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10351 /* For release_reference() */ 10352 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10353 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10354 int id = acquire_reference_state(env, insn_idx); 10355 10356 if (id < 0) 10357 return id; 10358 /* For mark_ptr_or_null_reg() */ 10359 regs[BPF_REG_0].id = id; 10360 /* For release_reference() */ 10361 regs[BPF_REG_0].ref_obj_id = id; 10362 } 10363 10364 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10365 10366 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10367 if (err) 10368 return err; 10369 10370 if ((func_id == BPF_FUNC_get_stack || 10371 func_id == BPF_FUNC_get_task_stack) && 10372 !env->prog->has_callchain_buf) { 10373 const char *err_str; 10374 10375 #ifdef CONFIG_PERF_EVENTS 10376 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10377 err_str = "cannot get callchain buffer for func %s#%d\n"; 10378 #else 10379 err = -ENOTSUPP; 10380 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10381 #endif 10382 if (err) { 10383 verbose(env, err_str, func_id_name(func_id), func_id); 10384 return err; 10385 } 10386 10387 env->prog->has_callchain_buf = true; 10388 } 10389 10390 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10391 env->prog->call_get_stack = true; 10392 10393 if (func_id == BPF_FUNC_get_func_ip) { 10394 if (check_get_func_ip(env)) 10395 return -ENOTSUPP; 10396 env->prog->call_get_func_ip = true; 10397 } 10398 10399 if (changes_data) 10400 clear_all_pkt_pointers(env); 10401 return 0; 10402 } 10403 10404 /* mark_btf_func_reg_size() is used when the reg size is determined by 10405 * the BTF func_proto's return value size and argument. 10406 */ 10407 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10408 size_t reg_size) 10409 { 10410 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10411 10412 if (regno == BPF_REG_0) { 10413 /* Function return value */ 10414 reg->live |= REG_LIVE_WRITTEN; 10415 reg->subreg_def = reg_size == sizeof(u64) ? 10416 DEF_NOT_SUBREG : env->insn_idx + 1; 10417 } else { 10418 /* Function argument */ 10419 if (reg_size == sizeof(u64)) { 10420 mark_insn_zext(env, reg); 10421 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10422 } else { 10423 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10424 } 10425 } 10426 } 10427 10428 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10429 { 10430 return meta->kfunc_flags & KF_ACQUIRE; 10431 } 10432 10433 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10434 { 10435 return meta->kfunc_flags & KF_RELEASE; 10436 } 10437 10438 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10439 { 10440 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10441 } 10442 10443 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10444 { 10445 return meta->kfunc_flags & KF_SLEEPABLE; 10446 } 10447 10448 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10449 { 10450 return meta->kfunc_flags & KF_DESTRUCTIVE; 10451 } 10452 10453 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10454 { 10455 return meta->kfunc_flags & KF_RCU; 10456 } 10457 10458 static bool __kfunc_param_match_suffix(const struct btf *btf, 10459 const struct btf_param *arg, 10460 const char *suffix) 10461 { 10462 int suffix_len = strlen(suffix), len; 10463 const char *param_name; 10464 10465 /* In the future, this can be ported to use BTF tagging */ 10466 param_name = btf_name_by_offset(btf, arg->name_off); 10467 if (str_is_empty(param_name)) 10468 return false; 10469 len = strlen(param_name); 10470 if (len < suffix_len) 10471 return false; 10472 param_name += len - suffix_len; 10473 return !strncmp(param_name, suffix, suffix_len); 10474 } 10475 10476 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10477 const struct btf_param *arg, 10478 const struct bpf_reg_state *reg) 10479 { 10480 const struct btf_type *t; 10481 10482 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10483 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10484 return false; 10485 10486 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10487 } 10488 10489 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10490 const struct btf_param *arg, 10491 const struct bpf_reg_state *reg) 10492 { 10493 const struct btf_type *t; 10494 10495 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10496 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10497 return false; 10498 10499 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10500 } 10501 10502 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10503 { 10504 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10505 } 10506 10507 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10508 { 10509 return __kfunc_param_match_suffix(btf, arg, "__k"); 10510 } 10511 10512 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10513 { 10514 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10515 } 10516 10517 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10518 { 10519 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10520 } 10521 10522 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10523 { 10524 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10525 } 10526 10527 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10528 { 10529 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10530 } 10531 10532 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10533 const struct btf_param *arg, 10534 const char *name) 10535 { 10536 int len, target_len = strlen(name); 10537 const char *param_name; 10538 10539 param_name = btf_name_by_offset(btf, arg->name_off); 10540 if (str_is_empty(param_name)) 10541 return false; 10542 len = strlen(param_name); 10543 if (len != target_len) 10544 return false; 10545 if (strcmp(param_name, name)) 10546 return false; 10547 10548 return true; 10549 } 10550 10551 enum { 10552 KF_ARG_DYNPTR_ID, 10553 KF_ARG_LIST_HEAD_ID, 10554 KF_ARG_LIST_NODE_ID, 10555 KF_ARG_RB_ROOT_ID, 10556 KF_ARG_RB_NODE_ID, 10557 }; 10558 10559 BTF_ID_LIST(kf_arg_btf_ids) 10560 BTF_ID(struct, bpf_dynptr_kern) 10561 BTF_ID(struct, bpf_list_head) 10562 BTF_ID(struct, bpf_list_node) 10563 BTF_ID(struct, bpf_rb_root) 10564 BTF_ID(struct, bpf_rb_node) 10565 10566 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10567 const struct btf_param *arg, int type) 10568 { 10569 const struct btf_type *t; 10570 u32 res_id; 10571 10572 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10573 if (!t) 10574 return false; 10575 if (!btf_type_is_ptr(t)) 10576 return false; 10577 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10578 if (!t) 10579 return false; 10580 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10581 } 10582 10583 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10584 { 10585 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10586 } 10587 10588 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10589 { 10590 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10591 } 10592 10593 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10594 { 10595 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10596 } 10597 10598 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10599 { 10600 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10601 } 10602 10603 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10604 { 10605 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10606 } 10607 10608 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10609 const struct btf_param *arg) 10610 { 10611 const struct btf_type *t; 10612 10613 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10614 if (!t) 10615 return false; 10616 10617 return true; 10618 } 10619 10620 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10621 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10622 const struct btf *btf, 10623 const struct btf_type *t, int rec) 10624 { 10625 const struct btf_type *member_type; 10626 const struct btf_member *member; 10627 u32 i; 10628 10629 if (!btf_type_is_struct(t)) 10630 return false; 10631 10632 for_each_member(i, t, member) { 10633 const struct btf_array *array; 10634 10635 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10636 if (btf_type_is_struct(member_type)) { 10637 if (rec >= 3) { 10638 verbose(env, "max struct nesting depth exceeded\n"); 10639 return false; 10640 } 10641 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10642 return false; 10643 continue; 10644 } 10645 if (btf_type_is_array(member_type)) { 10646 array = btf_array(member_type); 10647 if (!array->nelems) 10648 return false; 10649 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10650 if (!btf_type_is_scalar(member_type)) 10651 return false; 10652 continue; 10653 } 10654 if (!btf_type_is_scalar(member_type)) 10655 return false; 10656 } 10657 return true; 10658 } 10659 10660 enum kfunc_ptr_arg_type { 10661 KF_ARG_PTR_TO_CTX, 10662 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10663 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10664 KF_ARG_PTR_TO_DYNPTR, 10665 KF_ARG_PTR_TO_ITER, 10666 KF_ARG_PTR_TO_LIST_HEAD, 10667 KF_ARG_PTR_TO_LIST_NODE, 10668 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10669 KF_ARG_PTR_TO_MEM, 10670 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10671 KF_ARG_PTR_TO_CALLBACK, 10672 KF_ARG_PTR_TO_RB_ROOT, 10673 KF_ARG_PTR_TO_RB_NODE, 10674 }; 10675 10676 enum special_kfunc_type { 10677 KF_bpf_obj_new_impl, 10678 KF_bpf_obj_drop_impl, 10679 KF_bpf_refcount_acquire_impl, 10680 KF_bpf_list_push_front_impl, 10681 KF_bpf_list_push_back_impl, 10682 KF_bpf_list_pop_front, 10683 KF_bpf_list_pop_back, 10684 KF_bpf_cast_to_kern_ctx, 10685 KF_bpf_rdonly_cast, 10686 KF_bpf_rcu_read_lock, 10687 KF_bpf_rcu_read_unlock, 10688 KF_bpf_rbtree_remove, 10689 KF_bpf_rbtree_add_impl, 10690 KF_bpf_rbtree_first, 10691 KF_bpf_dynptr_from_skb, 10692 KF_bpf_dynptr_from_xdp, 10693 KF_bpf_dynptr_slice, 10694 KF_bpf_dynptr_slice_rdwr, 10695 KF_bpf_dynptr_clone, 10696 }; 10697 10698 BTF_SET_START(special_kfunc_set) 10699 BTF_ID(func, bpf_obj_new_impl) 10700 BTF_ID(func, bpf_obj_drop_impl) 10701 BTF_ID(func, bpf_refcount_acquire_impl) 10702 BTF_ID(func, bpf_list_push_front_impl) 10703 BTF_ID(func, bpf_list_push_back_impl) 10704 BTF_ID(func, bpf_list_pop_front) 10705 BTF_ID(func, bpf_list_pop_back) 10706 BTF_ID(func, bpf_cast_to_kern_ctx) 10707 BTF_ID(func, bpf_rdonly_cast) 10708 BTF_ID(func, bpf_rbtree_remove) 10709 BTF_ID(func, bpf_rbtree_add_impl) 10710 BTF_ID(func, bpf_rbtree_first) 10711 BTF_ID(func, bpf_dynptr_from_skb) 10712 BTF_ID(func, bpf_dynptr_from_xdp) 10713 BTF_ID(func, bpf_dynptr_slice) 10714 BTF_ID(func, bpf_dynptr_slice_rdwr) 10715 BTF_ID(func, bpf_dynptr_clone) 10716 BTF_SET_END(special_kfunc_set) 10717 10718 BTF_ID_LIST(special_kfunc_list) 10719 BTF_ID(func, bpf_obj_new_impl) 10720 BTF_ID(func, bpf_obj_drop_impl) 10721 BTF_ID(func, bpf_refcount_acquire_impl) 10722 BTF_ID(func, bpf_list_push_front_impl) 10723 BTF_ID(func, bpf_list_push_back_impl) 10724 BTF_ID(func, bpf_list_pop_front) 10725 BTF_ID(func, bpf_list_pop_back) 10726 BTF_ID(func, bpf_cast_to_kern_ctx) 10727 BTF_ID(func, bpf_rdonly_cast) 10728 BTF_ID(func, bpf_rcu_read_lock) 10729 BTF_ID(func, bpf_rcu_read_unlock) 10730 BTF_ID(func, bpf_rbtree_remove) 10731 BTF_ID(func, bpf_rbtree_add_impl) 10732 BTF_ID(func, bpf_rbtree_first) 10733 BTF_ID(func, bpf_dynptr_from_skb) 10734 BTF_ID(func, bpf_dynptr_from_xdp) 10735 BTF_ID(func, bpf_dynptr_slice) 10736 BTF_ID(func, bpf_dynptr_slice_rdwr) 10737 BTF_ID(func, bpf_dynptr_clone) 10738 10739 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10740 { 10741 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10742 meta->arg_owning_ref) { 10743 return false; 10744 } 10745 10746 return meta->kfunc_flags & KF_RET_NULL; 10747 } 10748 10749 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10750 { 10751 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10752 } 10753 10754 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10755 { 10756 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10757 } 10758 10759 static enum kfunc_ptr_arg_type 10760 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10761 struct bpf_kfunc_call_arg_meta *meta, 10762 const struct btf_type *t, const struct btf_type *ref_t, 10763 const char *ref_tname, const struct btf_param *args, 10764 int argno, int nargs) 10765 { 10766 u32 regno = argno + 1; 10767 struct bpf_reg_state *regs = cur_regs(env); 10768 struct bpf_reg_state *reg = ®s[regno]; 10769 bool arg_mem_size = false; 10770 10771 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10772 return KF_ARG_PTR_TO_CTX; 10773 10774 /* In this function, we verify the kfunc's BTF as per the argument type, 10775 * leaving the rest of the verification with respect to the register 10776 * type to our caller. When a set of conditions hold in the BTF type of 10777 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10778 */ 10779 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10780 return KF_ARG_PTR_TO_CTX; 10781 10782 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10783 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10784 10785 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10786 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10787 10788 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10789 return KF_ARG_PTR_TO_DYNPTR; 10790 10791 if (is_kfunc_arg_iter(meta, argno)) 10792 return KF_ARG_PTR_TO_ITER; 10793 10794 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10795 return KF_ARG_PTR_TO_LIST_HEAD; 10796 10797 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10798 return KF_ARG_PTR_TO_LIST_NODE; 10799 10800 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10801 return KF_ARG_PTR_TO_RB_ROOT; 10802 10803 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10804 return KF_ARG_PTR_TO_RB_NODE; 10805 10806 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10807 if (!btf_type_is_struct(ref_t)) { 10808 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10809 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10810 return -EINVAL; 10811 } 10812 return KF_ARG_PTR_TO_BTF_ID; 10813 } 10814 10815 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10816 return KF_ARG_PTR_TO_CALLBACK; 10817 10818 10819 if (argno + 1 < nargs && 10820 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10821 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10822 arg_mem_size = true; 10823 10824 /* This is the catch all argument type of register types supported by 10825 * check_helper_mem_access. However, we only allow when argument type is 10826 * pointer to scalar, or struct composed (recursively) of scalars. When 10827 * arg_mem_size is true, the pointer can be void *. 10828 */ 10829 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10830 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10831 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10832 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10833 return -EINVAL; 10834 } 10835 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10836 } 10837 10838 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10839 struct bpf_reg_state *reg, 10840 const struct btf_type *ref_t, 10841 const char *ref_tname, u32 ref_id, 10842 struct bpf_kfunc_call_arg_meta *meta, 10843 int argno) 10844 { 10845 const struct btf_type *reg_ref_t; 10846 bool strict_type_match = false; 10847 const struct btf *reg_btf; 10848 const char *reg_ref_tname; 10849 u32 reg_ref_id; 10850 10851 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10852 reg_btf = reg->btf; 10853 reg_ref_id = reg->btf_id; 10854 } else { 10855 reg_btf = btf_vmlinux; 10856 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10857 } 10858 10859 /* Enforce strict type matching for calls to kfuncs that are acquiring 10860 * or releasing a reference, or are no-cast aliases. We do _not_ 10861 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10862 * as we want to enable BPF programs to pass types that are bitwise 10863 * equivalent without forcing them to explicitly cast with something 10864 * like bpf_cast_to_kern_ctx(). 10865 * 10866 * For example, say we had a type like the following: 10867 * 10868 * struct bpf_cpumask { 10869 * cpumask_t cpumask; 10870 * refcount_t usage; 10871 * }; 10872 * 10873 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10874 * to a struct cpumask, so it would be safe to pass a struct 10875 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10876 * 10877 * The philosophy here is similar to how we allow scalars of different 10878 * types to be passed to kfuncs as long as the size is the same. The 10879 * only difference here is that we're simply allowing 10880 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10881 * resolve types. 10882 */ 10883 if (is_kfunc_acquire(meta) || 10884 (is_kfunc_release(meta) && reg->ref_obj_id) || 10885 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10886 strict_type_match = true; 10887 10888 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10889 10890 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10891 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10892 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10893 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10894 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10895 btf_type_str(reg_ref_t), reg_ref_tname); 10896 return -EINVAL; 10897 } 10898 return 0; 10899 } 10900 10901 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10902 { 10903 struct bpf_verifier_state *state = env->cur_state; 10904 struct btf_record *rec = reg_btf_record(reg); 10905 10906 if (!state->active_lock.ptr) { 10907 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10908 return -EFAULT; 10909 } 10910 10911 if (type_flag(reg->type) & NON_OWN_REF) { 10912 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10913 return -EFAULT; 10914 } 10915 10916 reg->type |= NON_OWN_REF; 10917 if (rec->refcount_off >= 0) 10918 reg->type |= MEM_RCU; 10919 10920 return 0; 10921 } 10922 10923 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10924 { 10925 struct bpf_func_state *state, *unused; 10926 struct bpf_reg_state *reg; 10927 int i; 10928 10929 state = cur_func(env); 10930 10931 if (!ref_obj_id) { 10932 verbose(env, "verifier internal error: ref_obj_id is zero for " 10933 "owning -> non-owning conversion\n"); 10934 return -EFAULT; 10935 } 10936 10937 for (i = 0; i < state->acquired_refs; i++) { 10938 if (state->refs[i].id != ref_obj_id) 10939 continue; 10940 10941 /* Clear ref_obj_id here so release_reference doesn't clobber 10942 * the whole reg 10943 */ 10944 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10945 if (reg->ref_obj_id == ref_obj_id) { 10946 reg->ref_obj_id = 0; 10947 ref_set_non_owning(env, reg); 10948 } 10949 })); 10950 return 0; 10951 } 10952 10953 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10954 return -EFAULT; 10955 } 10956 10957 /* Implementation details: 10958 * 10959 * Each register points to some region of memory, which we define as an 10960 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10961 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10962 * allocation. The lock and the data it protects are colocated in the same 10963 * memory region. 10964 * 10965 * Hence, everytime a register holds a pointer value pointing to such 10966 * allocation, the verifier preserves a unique reg->id for it. 10967 * 10968 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10969 * bpf_spin_lock is called. 10970 * 10971 * To enable this, lock state in the verifier captures two values: 10972 * active_lock.ptr = Register's type specific pointer 10973 * active_lock.id = A unique ID for each register pointer value 10974 * 10975 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10976 * supported register types. 10977 * 10978 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10979 * allocated objects is the reg->btf pointer. 10980 * 10981 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10982 * can establish the provenance of the map value statically for each distinct 10983 * lookup into such maps. They always contain a single map value hence unique 10984 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10985 * 10986 * So, in case of global variables, they use array maps with max_entries = 1, 10987 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10988 * into the same map value as max_entries is 1, as described above). 10989 * 10990 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10991 * outer map pointer (in verifier context), but each lookup into an inner map 10992 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10993 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10994 * will get different reg->id assigned to each lookup, hence different 10995 * active_lock.id. 10996 * 10997 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10998 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10999 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11000 */ 11001 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11002 { 11003 void *ptr; 11004 u32 id; 11005 11006 switch ((int)reg->type) { 11007 case PTR_TO_MAP_VALUE: 11008 ptr = reg->map_ptr; 11009 break; 11010 case PTR_TO_BTF_ID | MEM_ALLOC: 11011 ptr = reg->btf; 11012 break; 11013 default: 11014 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11015 return -EFAULT; 11016 } 11017 id = reg->id; 11018 11019 if (!env->cur_state->active_lock.ptr) 11020 return -EINVAL; 11021 if (env->cur_state->active_lock.ptr != ptr || 11022 env->cur_state->active_lock.id != id) { 11023 verbose(env, "held lock and object are not in the same allocation\n"); 11024 return -EINVAL; 11025 } 11026 return 0; 11027 } 11028 11029 static bool is_bpf_list_api_kfunc(u32 btf_id) 11030 { 11031 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11032 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11033 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11034 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11035 } 11036 11037 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11038 { 11039 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11040 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11041 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11042 } 11043 11044 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11045 { 11046 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11047 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11048 } 11049 11050 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11051 { 11052 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11053 } 11054 11055 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11056 { 11057 return is_bpf_rbtree_api_kfunc(btf_id); 11058 } 11059 11060 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11061 enum btf_field_type head_field_type, 11062 u32 kfunc_btf_id) 11063 { 11064 bool ret; 11065 11066 switch (head_field_type) { 11067 case BPF_LIST_HEAD: 11068 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11069 break; 11070 case BPF_RB_ROOT: 11071 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11072 break; 11073 default: 11074 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11075 btf_field_type_name(head_field_type)); 11076 return false; 11077 } 11078 11079 if (!ret) 11080 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11081 btf_field_type_name(head_field_type)); 11082 return ret; 11083 } 11084 11085 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11086 enum btf_field_type node_field_type, 11087 u32 kfunc_btf_id) 11088 { 11089 bool ret; 11090 11091 switch (node_field_type) { 11092 case BPF_LIST_NODE: 11093 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11094 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11095 break; 11096 case BPF_RB_NODE: 11097 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11098 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11099 break; 11100 default: 11101 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11102 btf_field_type_name(node_field_type)); 11103 return false; 11104 } 11105 11106 if (!ret) 11107 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11108 btf_field_type_name(node_field_type)); 11109 return ret; 11110 } 11111 11112 static int 11113 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11114 struct bpf_reg_state *reg, u32 regno, 11115 struct bpf_kfunc_call_arg_meta *meta, 11116 enum btf_field_type head_field_type, 11117 struct btf_field **head_field) 11118 { 11119 const char *head_type_name; 11120 struct btf_field *field; 11121 struct btf_record *rec; 11122 u32 head_off; 11123 11124 if (meta->btf != btf_vmlinux) { 11125 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11126 return -EFAULT; 11127 } 11128 11129 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11130 return -EFAULT; 11131 11132 head_type_name = btf_field_type_name(head_field_type); 11133 if (!tnum_is_const(reg->var_off)) { 11134 verbose(env, 11135 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11136 regno, head_type_name); 11137 return -EINVAL; 11138 } 11139 11140 rec = reg_btf_record(reg); 11141 head_off = reg->off + reg->var_off.value; 11142 field = btf_record_find(rec, head_off, head_field_type); 11143 if (!field) { 11144 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11145 return -EINVAL; 11146 } 11147 11148 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11149 if (check_reg_allocation_locked(env, reg)) { 11150 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11151 rec->spin_lock_off, head_type_name); 11152 return -EINVAL; 11153 } 11154 11155 if (*head_field) { 11156 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11157 return -EFAULT; 11158 } 11159 *head_field = field; 11160 return 0; 11161 } 11162 11163 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11164 struct bpf_reg_state *reg, u32 regno, 11165 struct bpf_kfunc_call_arg_meta *meta) 11166 { 11167 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11168 &meta->arg_list_head.field); 11169 } 11170 11171 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11172 struct bpf_reg_state *reg, u32 regno, 11173 struct bpf_kfunc_call_arg_meta *meta) 11174 { 11175 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11176 &meta->arg_rbtree_root.field); 11177 } 11178 11179 static int 11180 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11181 struct bpf_reg_state *reg, u32 regno, 11182 struct bpf_kfunc_call_arg_meta *meta, 11183 enum btf_field_type head_field_type, 11184 enum btf_field_type node_field_type, 11185 struct btf_field **node_field) 11186 { 11187 const char *node_type_name; 11188 const struct btf_type *et, *t; 11189 struct btf_field *field; 11190 u32 node_off; 11191 11192 if (meta->btf != btf_vmlinux) { 11193 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11194 return -EFAULT; 11195 } 11196 11197 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11198 return -EFAULT; 11199 11200 node_type_name = btf_field_type_name(node_field_type); 11201 if (!tnum_is_const(reg->var_off)) { 11202 verbose(env, 11203 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11204 regno, node_type_name); 11205 return -EINVAL; 11206 } 11207 11208 node_off = reg->off + reg->var_off.value; 11209 field = reg_find_field_offset(reg, node_off, node_field_type); 11210 if (!field || field->offset != node_off) { 11211 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11212 return -EINVAL; 11213 } 11214 11215 field = *node_field; 11216 11217 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11218 t = btf_type_by_id(reg->btf, reg->btf_id); 11219 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11220 field->graph_root.value_btf_id, true)) { 11221 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11222 "in struct %s, but arg is at offset=%d in struct %s\n", 11223 btf_field_type_name(head_field_type), 11224 btf_field_type_name(node_field_type), 11225 field->graph_root.node_offset, 11226 btf_name_by_offset(field->graph_root.btf, et->name_off), 11227 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11228 return -EINVAL; 11229 } 11230 meta->arg_btf = reg->btf; 11231 meta->arg_btf_id = reg->btf_id; 11232 11233 if (node_off != field->graph_root.node_offset) { 11234 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11235 node_off, btf_field_type_name(node_field_type), 11236 field->graph_root.node_offset, 11237 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11238 return -EINVAL; 11239 } 11240 11241 return 0; 11242 } 11243 11244 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11245 struct bpf_reg_state *reg, u32 regno, 11246 struct bpf_kfunc_call_arg_meta *meta) 11247 { 11248 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11249 BPF_LIST_HEAD, BPF_LIST_NODE, 11250 &meta->arg_list_head.field); 11251 } 11252 11253 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11254 struct bpf_reg_state *reg, u32 regno, 11255 struct bpf_kfunc_call_arg_meta *meta) 11256 { 11257 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11258 BPF_RB_ROOT, BPF_RB_NODE, 11259 &meta->arg_rbtree_root.field); 11260 } 11261 11262 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11263 int insn_idx) 11264 { 11265 const char *func_name = meta->func_name, *ref_tname; 11266 const struct btf *btf = meta->btf; 11267 const struct btf_param *args; 11268 struct btf_record *rec; 11269 u32 i, nargs; 11270 int ret; 11271 11272 args = (const struct btf_param *)(meta->func_proto + 1); 11273 nargs = btf_type_vlen(meta->func_proto); 11274 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11275 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11276 MAX_BPF_FUNC_REG_ARGS); 11277 return -EINVAL; 11278 } 11279 11280 /* Check that BTF function arguments match actual types that the 11281 * verifier sees. 11282 */ 11283 for (i = 0; i < nargs; i++) { 11284 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11285 const struct btf_type *t, *ref_t, *resolve_ret; 11286 enum bpf_arg_type arg_type = ARG_DONTCARE; 11287 u32 regno = i + 1, ref_id, type_size; 11288 bool is_ret_buf_sz = false; 11289 int kf_arg_type; 11290 11291 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11292 11293 if (is_kfunc_arg_ignore(btf, &args[i])) 11294 continue; 11295 11296 if (btf_type_is_scalar(t)) { 11297 if (reg->type != SCALAR_VALUE) { 11298 verbose(env, "R%d is not a scalar\n", regno); 11299 return -EINVAL; 11300 } 11301 11302 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11303 if (meta->arg_constant.found) { 11304 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11305 return -EFAULT; 11306 } 11307 if (!tnum_is_const(reg->var_off)) { 11308 verbose(env, "R%d must be a known constant\n", regno); 11309 return -EINVAL; 11310 } 11311 ret = mark_chain_precision(env, regno); 11312 if (ret < 0) 11313 return ret; 11314 meta->arg_constant.found = true; 11315 meta->arg_constant.value = reg->var_off.value; 11316 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11317 meta->r0_rdonly = true; 11318 is_ret_buf_sz = true; 11319 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11320 is_ret_buf_sz = true; 11321 } 11322 11323 if (is_ret_buf_sz) { 11324 if (meta->r0_size) { 11325 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11326 return -EINVAL; 11327 } 11328 11329 if (!tnum_is_const(reg->var_off)) { 11330 verbose(env, "R%d is not a const\n", regno); 11331 return -EINVAL; 11332 } 11333 11334 meta->r0_size = reg->var_off.value; 11335 ret = mark_chain_precision(env, regno); 11336 if (ret) 11337 return ret; 11338 } 11339 continue; 11340 } 11341 11342 if (!btf_type_is_ptr(t)) { 11343 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11344 return -EINVAL; 11345 } 11346 11347 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11348 (register_is_null(reg) || type_may_be_null(reg->type))) { 11349 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11350 return -EACCES; 11351 } 11352 11353 if (reg->ref_obj_id) { 11354 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11355 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11356 regno, reg->ref_obj_id, 11357 meta->ref_obj_id); 11358 return -EFAULT; 11359 } 11360 meta->ref_obj_id = reg->ref_obj_id; 11361 if (is_kfunc_release(meta)) 11362 meta->release_regno = regno; 11363 } 11364 11365 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11366 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11367 11368 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11369 if (kf_arg_type < 0) 11370 return kf_arg_type; 11371 11372 switch (kf_arg_type) { 11373 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11374 case KF_ARG_PTR_TO_BTF_ID: 11375 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11376 break; 11377 11378 if (!is_trusted_reg(reg)) { 11379 if (!is_kfunc_rcu(meta)) { 11380 verbose(env, "R%d must be referenced or trusted\n", regno); 11381 return -EINVAL; 11382 } 11383 if (!is_rcu_reg(reg)) { 11384 verbose(env, "R%d must be a rcu pointer\n", regno); 11385 return -EINVAL; 11386 } 11387 } 11388 11389 fallthrough; 11390 case KF_ARG_PTR_TO_CTX: 11391 /* Trusted arguments have the same offset checks as release arguments */ 11392 arg_type |= OBJ_RELEASE; 11393 break; 11394 case KF_ARG_PTR_TO_DYNPTR: 11395 case KF_ARG_PTR_TO_ITER: 11396 case KF_ARG_PTR_TO_LIST_HEAD: 11397 case KF_ARG_PTR_TO_LIST_NODE: 11398 case KF_ARG_PTR_TO_RB_ROOT: 11399 case KF_ARG_PTR_TO_RB_NODE: 11400 case KF_ARG_PTR_TO_MEM: 11401 case KF_ARG_PTR_TO_MEM_SIZE: 11402 case KF_ARG_PTR_TO_CALLBACK: 11403 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11404 /* Trusted by default */ 11405 break; 11406 default: 11407 WARN_ON_ONCE(1); 11408 return -EFAULT; 11409 } 11410 11411 if (is_kfunc_release(meta) && reg->ref_obj_id) 11412 arg_type |= OBJ_RELEASE; 11413 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11414 if (ret < 0) 11415 return ret; 11416 11417 switch (kf_arg_type) { 11418 case KF_ARG_PTR_TO_CTX: 11419 if (reg->type != PTR_TO_CTX) { 11420 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11421 return -EINVAL; 11422 } 11423 11424 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11425 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11426 if (ret < 0) 11427 return -EINVAL; 11428 meta->ret_btf_id = ret; 11429 } 11430 break; 11431 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11432 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11433 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11434 return -EINVAL; 11435 } 11436 if (!reg->ref_obj_id) { 11437 verbose(env, "allocated object must be referenced\n"); 11438 return -EINVAL; 11439 } 11440 if (meta->btf == btf_vmlinux && 11441 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11442 meta->arg_btf = reg->btf; 11443 meta->arg_btf_id = reg->btf_id; 11444 } 11445 break; 11446 case KF_ARG_PTR_TO_DYNPTR: 11447 { 11448 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11449 int clone_ref_obj_id = 0; 11450 11451 if (reg->type != PTR_TO_STACK && 11452 reg->type != CONST_PTR_TO_DYNPTR) { 11453 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11454 return -EINVAL; 11455 } 11456 11457 if (reg->type == CONST_PTR_TO_DYNPTR) 11458 dynptr_arg_type |= MEM_RDONLY; 11459 11460 if (is_kfunc_arg_uninit(btf, &args[i])) 11461 dynptr_arg_type |= MEM_UNINIT; 11462 11463 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11464 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11465 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11466 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11467 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11468 (dynptr_arg_type & MEM_UNINIT)) { 11469 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11470 11471 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11472 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11473 return -EFAULT; 11474 } 11475 11476 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11477 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11478 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11479 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11480 return -EFAULT; 11481 } 11482 } 11483 11484 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11485 if (ret < 0) 11486 return ret; 11487 11488 if (!(dynptr_arg_type & MEM_UNINIT)) { 11489 int id = dynptr_id(env, reg); 11490 11491 if (id < 0) { 11492 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11493 return id; 11494 } 11495 meta->initialized_dynptr.id = id; 11496 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11497 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11498 } 11499 11500 break; 11501 } 11502 case KF_ARG_PTR_TO_ITER: 11503 ret = process_iter_arg(env, regno, insn_idx, meta); 11504 if (ret < 0) 11505 return ret; 11506 break; 11507 case KF_ARG_PTR_TO_LIST_HEAD: 11508 if (reg->type != PTR_TO_MAP_VALUE && 11509 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11510 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11511 return -EINVAL; 11512 } 11513 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11514 verbose(env, "allocated object must be referenced\n"); 11515 return -EINVAL; 11516 } 11517 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11518 if (ret < 0) 11519 return ret; 11520 break; 11521 case KF_ARG_PTR_TO_RB_ROOT: 11522 if (reg->type != PTR_TO_MAP_VALUE && 11523 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11524 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11525 return -EINVAL; 11526 } 11527 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11528 verbose(env, "allocated object must be referenced\n"); 11529 return -EINVAL; 11530 } 11531 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11532 if (ret < 0) 11533 return ret; 11534 break; 11535 case KF_ARG_PTR_TO_LIST_NODE: 11536 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11537 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11538 return -EINVAL; 11539 } 11540 if (!reg->ref_obj_id) { 11541 verbose(env, "allocated object must be referenced\n"); 11542 return -EINVAL; 11543 } 11544 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11545 if (ret < 0) 11546 return ret; 11547 break; 11548 case KF_ARG_PTR_TO_RB_NODE: 11549 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11550 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11551 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11552 return -EINVAL; 11553 } 11554 if (in_rbtree_lock_required_cb(env)) { 11555 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11556 return -EINVAL; 11557 } 11558 } else { 11559 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11560 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11561 return -EINVAL; 11562 } 11563 if (!reg->ref_obj_id) { 11564 verbose(env, "allocated object must be referenced\n"); 11565 return -EINVAL; 11566 } 11567 } 11568 11569 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11570 if (ret < 0) 11571 return ret; 11572 break; 11573 case KF_ARG_PTR_TO_BTF_ID: 11574 /* Only base_type is checked, further checks are done here */ 11575 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11576 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11577 !reg2btf_ids[base_type(reg->type)]) { 11578 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11579 verbose(env, "expected %s or socket\n", 11580 reg_type_str(env, base_type(reg->type) | 11581 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11582 return -EINVAL; 11583 } 11584 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11585 if (ret < 0) 11586 return ret; 11587 break; 11588 case KF_ARG_PTR_TO_MEM: 11589 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11590 if (IS_ERR(resolve_ret)) { 11591 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11592 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11593 return -EINVAL; 11594 } 11595 ret = check_mem_reg(env, reg, regno, type_size); 11596 if (ret < 0) 11597 return ret; 11598 break; 11599 case KF_ARG_PTR_TO_MEM_SIZE: 11600 { 11601 struct bpf_reg_state *buff_reg = ®s[regno]; 11602 const struct btf_param *buff_arg = &args[i]; 11603 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11604 const struct btf_param *size_arg = &args[i + 1]; 11605 11606 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11607 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11608 if (ret < 0) { 11609 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11610 return ret; 11611 } 11612 } 11613 11614 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11615 if (meta->arg_constant.found) { 11616 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11617 return -EFAULT; 11618 } 11619 if (!tnum_is_const(size_reg->var_off)) { 11620 verbose(env, "R%d must be a known constant\n", regno + 1); 11621 return -EINVAL; 11622 } 11623 meta->arg_constant.found = true; 11624 meta->arg_constant.value = size_reg->var_off.value; 11625 } 11626 11627 /* Skip next '__sz' or '__szk' argument */ 11628 i++; 11629 break; 11630 } 11631 case KF_ARG_PTR_TO_CALLBACK: 11632 if (reg->type != PTR_TO_FUNC) { 11633 verbose(env, "arg%d expected pointer to func\n", i); 11634 return -EINVAL; 11635 } 11636 meta->subprogno = reg->subprogno; 11637 break; 11638 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11639 if (!type_is_ptr_alloc_obj(reg->type)) { 11640 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11641 return -EINVAL; 11642 } 11643 if (!type_is_non_owning_ref(reg->type)) 11644 meta->arg_owning_ref = true; 11645 11646 rec = reg_btf_record(reg); 11647 if (!rec) { 11648 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11649 return -EFAULT; 11650 } 11651 11652 if (rec->refcount_off < 0) { 11653 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11654 return -EINVAL; 11655 } 11656 11657 meta->arg_btf = reg->btf; 11658 meta->arg_btf_id = reg->btf_id; 11659 break; 11660 } 11661 } 11662 11663 if (is_kfunc_release(meta) && !meta->release_regno) { 11664 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11665 func_name); 11666 return -EINVAL; 11667 } 11668 11669 return 0; 11670 } 11671 11672 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11673 struct bpf_insn *insn, 11674 struct bpf_kfunc_call_arg_meta *meta, 11675 const char **kfunc_name) 11676 { 11677 const struct btf_type *func, *func_proto; 11678 u32 func_id, *kfunc_flags; 11679 const char *func_name; 11680 struct btf *desc_btf; 11681 11682 if (kfunc_name) 11683 *kfunc_name = NULL; 11684 11685 if (!insn->imm) 11686 return -EINVAL; 11687 11688 desc_btf = find_kfunc_desc_btf(env, insn->off); 11689 if (IS_ERR(desc_btf)) 11690 return PTR_ERR(desc_btf); 11691 11692 func_id = insn->imm; 11693 func = btf_type_by_id(desc_btf, func_id); 11694 func_name = btf_name_by_offset(desc_btf, func->name_off); 11695 if (kfunc_name) 11696 *kfunc_name = func_name; 11697 func_proto = btf_type_by_id(desc_btf, func->type); 11698 11699 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11700 if (!kfunc_flags) { 11701 return -EACCES; 11702 } 11703 11704 memset(meta, 0, sizeof(*meta)); 11705 meta->btf = desc_btf; 11706 meta->func_id = func_id; 11707 meta->kfunc_flags = *kfunc_flags; 11708 meta->func_proto = func_proto; 11709 meta->func_name = func_name; 11710 11711 return 0; 11712 } 11713 11714 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11715 int *insn_idx_p) 11716 { 11717 const struct btf_type *t, *ptr_type; 11718 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11719 struct bpf_reg_state *regs = cur_regs(env); 11720 const char *func_name, *ptr_type_name; 11721 bool sleepable, rcu_lock, rcu_unlock; 11722 struct bpf_kfunc_call_arg_meta meta; 11723 struct bpf_insn_aux_data *insn_aux; 11724 int err, insn_idx = *insn_idx_p; 11725 const struct btf_param *args; 11726 const struct btf_type *ret_t; 11727 struct btf *desc_btf; 11728 11729 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11730 if (!insn->imm) 11731 return 0; 11732 11733 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11734 if (err == -EACCES && func_name) 11735 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11736 if (err) 11737 return err; 11738 desc_btf = meta.btf; 11739 insn_aux = &env->insn_aux_data[insn_idx]; 11740 11741 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11742 11743 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11744 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11745 return -EACCES; 11746 } 11747 11748 sleepable = is_kfunc_sleepable(&meta); 11749 if (sleepable && !env->prog->aux->sleepable) { 11750 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11751 return -EACCES; 11752 } 11753 11754 /* Check the arguments */ 11755 err = check_kfunc_args(env, &meta, insn_idx); 11756 if (err < 0) 11757 return err; 11758 11759 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11760 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11761 set_rbtree_add_callback_state); 11762 if (err) { 11763 verbose(env, "kfunc %s#%d failed callback verification\n", 11764 func_name, meta.func_id); 11765 return err; 11766 } 11767 } 11768 11769 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11770 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11771 11772 if (env->cur_state->active_rcu_lock) { 11773 struct bpf_func_state *state; 11774 struct bpf_reg_state *reg; 11775 11776 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11777 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11778 return -EACCES; 11779 } 11780 11781 if (rcu_lock) { 11782 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11783 return -EINVAL; 11784 } else if (rcu_unlock) { 11785 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11786 if (reg->type & MEM_RCU) { 11787 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11788 reg->type |= PTR_UNTRUSTED; 11789 } 11790 })); 11791 env->cur_state->active_rcu_lock = false; 11792 } else if (sleepable) { 11793 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11794 return -EACCES; 11795 } 11796 } else if (rcu_lock) { 11797 env->cur_state->active_rcu_lock = true; 11798 } else if (rcu_unlock) { 11799 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11800 return -EINVAL; 11801 } 11802 11803 /* In case of release function, we get register number of refcounted 11804 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11805 */ 11806 if (meta.release_regno) { 11807 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11808 if (err) { 11809 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11810 func_name, meta.func_id); 11811 return err; 11812 } 11813 } 11814 11815 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11816 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11817 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11818 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11819 insn_aux->insert_off = regs[BPF_REG_2].off; 11820 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11821 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11822 if (err) { 11823 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11824 func_name, meta.func_id); 11825 return err; 11826 } 11827 11828 err = release_reference(env, release_ref_obj_id); 11829 if (err) { 11830 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11831 func_name, meta.func_id); 11832 return err; 11833 } 11834 } 11835 11836 for (i = 0; i < CALLER_SAVED_REGS; i++) 11837 mark_reg_not_init(env, regs, caller_saved[i]); 11838 11839 /* Check return type */ 11840 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11841 11842 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11843 /* Only exception is bpf_obj_new_impl */ 11844 if (meta.btf != btf_vmlinux || 11845 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11846 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11847 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11848 return -EINVAL; 11849 } 11850 } 11851 11852 if (btf_type_is_scalar(t)) { 11853 mark_reg_unknown(env, regs, BPF_REG_0); 11854 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11855 } else if (btf_type_is_ptr(t)) { 11856 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11857 11858 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11859 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11860 struct btf *ret_btf; 11861 u32 ret_btf_id; 11862 11863 if (unlikely(!bpf_global_ma_set)) 11864 return -ENOMEM; 11865 11866 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11867 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11868 return -EINVAL; 11869 } 11870 11871 ret_btf = env->prog->aux->btf; 11872 ret_btf_id = meta.arg_constant.value; 11873 11874 /* This may be NULL due to user not supplying a BTF */ 11875 if (!ret_btf) { 11876 verbose(env, "bpf_obj_new requires prog BTF\n"); 11877 return -EINVAL; 11878 } 11879 11880 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11881 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11882 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11883 return -EINVAL; 11884 } 11885 11886 mark_reg_known_zero(env, regs, BPF_REG_0); 11887 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11888 regs[BPF_REG_0].btf = ret_btf; 11889 regs[BPF_REG_0].btf_id = ret_btf_id; 11890 11891 insn_aux->obj_new_size = ret_t->size; 11892 insn_aux->kptr_struct_meta = 11893 btf_find_struct_meta(ret_btf, ret_btf_id); 11894 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11895 mark_reg_known_zero(env, regs, BPF_REG_0); 11896 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11897 regs[BPF_REG_0].btf = meta.arg_btf; 11898 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11899 11900 insn_aux->kptr_struct_meta = 11901 btf_find_struct_meta(meta.arg_btf, 11902 meta.arg_btf_id); 11903 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11904 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11905 struct btf_field *field = meta.arg_list_head.field; 11906 11907 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11908 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11909 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11910 struct btf_field *field = meta.arg_rbtree_root.field; 11911 11912 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11913 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11914 mark_reg_known_zero(env, regs, BPF_REG_0); 11915 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11916 regs[BPF_REG_0].btf = desc_btf; 11917 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11918 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11919 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11920 if (!ret_t || !btf_type_is_struct(ret_t)) { 11921 verbose(env, 11922 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11923 return -EINVAL; 11924 } 11925 11926 mark_reg_known_zero(env, regs, BPF_REG_0); 11927 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11928 regs[BPF_REG_0].btf = desc_btf; 11929 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11930 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11931 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11932 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11933 11934 mark_reg_known_zero(env, regs, BPF_REG_0); 11935 11936 if (!meta.arg_constant.found) { 11937 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11938 return -EFAULT; 11939 } 11940 11941 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11942 11943 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11944 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11945 11946 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11947 regs[BPF_REG_0].type |= MEM_RDONLY; 11948 } else { 11949 /* this will set env->seen_direct_write to true */ 11950 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11951 verbose(env, "the prog does not allow writes to packet data\n"); 11952 return -EINVAL; 11953 } 11954 } 11955 11956 if (!meta.initialized_dynptr.id) { 11957 verbose(env, "verifier internal error: no dynptr id\n"); 11958 return -EFAULT; 11959 } 11960 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11961 11962 /* we don't need to set BPF_REG_0's ref obj id 11963 * because packet slices are not refcounted (see 11964 * dynptr_type_refcounted) 11965 */ 11966 } else { 11967 verbose(env, "kernel function %s unhandled dynamic return type\n", 11968 meta.func_name); 11969 return -EFAULT; 11970 } 11971 } else if (!__btf_type_is_struct(ptr_type)) { 11972 if (!meta.r0_size) { 11973 __u32 sz; 11974 11975 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11976 meta.r0_size = sz; 11977 meta.r0_rdonly = true; 11978 } 11979 } 11980 if (!meta.r0_size) { 11981 ptr_type_name = btf_name_by_offset(desc_btf, 11982 ptr_type->name_off); 11983 verbose(env, 11984 "kernel function %s returns pointer type %s %s is not supported\n", 11985 func_name, 11986 btf_type_str(ptr_type), 11987 ptr_type_name); 11988 return -EINVAL; 11989 } 11990 11991 mark_reg_known_zero(env, regs, BPF_REG_0); 11992 regs[BPF_REG_0].type = PTR_TO_MEM; 11993 regs[BPF_REG_0].mem_size = meta.r0_size; 11994 11995 if (meta.r0_rdonly) 11996 regs[BPF_REG_0].type |= MEM_RDONLY; 11997 11998 /* Ensures we don't access the memory after a release_reference() */ 11999 if (meta.ref_obj_id) 12000 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12001 } else { 12002 mark_reg_known_zero(env, regs, BPF_REG_0); 12003 regs[BPF_REG_0].btf = desc_btf; 12004 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12005 regs[BPF_REG_0].btf_id = ptr_type_id; 12006 12007 if (is_iter_next_kfunc(&meta)) { 12008 struct bpf_reg_state *cur_iter; 12009 12010 cur_iter = get_iter_from_state(env->cur_state, &meta); 12011 12012 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 12013 regs[BPF_REG_0].type |= MEM_RCU; 12014 else 12015 regs[BPF_REG_0].type |= PTR_TRUSTED; 12016 } 12017 } 12018 12019 if (is_kfunc_ret_null(&meta)) { 12020 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12021 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12022 regs[BPF_REG_0].id = ++env->id_gen; 12023 } 12024 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12025 if (is_kfunc_acquire(&meta)) { 12026 int id = acquire_reference_state(env, insn_idx); 12027 12028 if (id < 0) 12029 return id; 12030 if (is_kfunc_ret_null(&meta)) 12031 regs[BPF_REG_0].id = id; 12032 regs[BPF_REG_0].ref_obj_id = id; 12033 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12034 ref_set_non_owning(env, ®s[BPF_REG_0]); 12035 } 12036 12037 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12038 regs[BPF_REG_0].id = ++env->id_gen; 12039 } else if (btf_type_is_void(t)) { 12040 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12041 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12042 insn_aux->kptr_struct_meta = 12043 btf_find_struct_meta(meta.arg_btf, 12044 meta.arg_btf_id); 12045 } 12046 } 12047 } 12048 12049 nargs = btf_type_vlen(meta.func_proto); 12050 args = (const struct btf_param *)(meta.func_proto + 1); 12051 for (i = 0; i < nargs; i++) { 12052 u32 regno = i + 1; 12053 12054 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12055 if (btf_type_is_ptr(t)) 12056 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12057 else 12058 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12059 mark_btf_func_reg_size(env, regno, t->size); 12060 } 12061 12062 if (is_iter_next_kfunc(&meta)) { 12063 err = process_iter_next_call(env, insn_idx, &meta); 12064 if (err) 12065 return err; 12066 } 12067 12068 return 0; 12069 } 12070 12071 static bool signed_add_overflows(s64 a, s64 b) 12072 { 12073 /* Do the add in u64, where overflow is well-defined */ 12074 s64 res = (s64)((u64)a + (u64)b); 12075 12076 if (b < 0) 12077 return res > a; 12078 return res < a; 12079 } 12080 12081 static bool signed_add32_overflows(s32 a, s32 b) 12082 { 12083 /* Do the add in u32, where overflow is well-defined */ 12084 s32 res = (s32)((u32)a + (u32)b); 12085 12086 if (b < 0) 12087 return res > a; 12088 return res < a; 12089 } 12090 12091 static bool signed_sub_overflows(s64 a, s64 b) 12092 { 12093 /* Do the sub in u64, where overflow is well-defined */ 12094 s64 res = (s64)((u64)a - (u64)b); 12095 12096 if (b < 0) 12097 return res < a; 12098 return res > a; 12099 } 12100 12101 static bool signed_sub32_overflows(s32 a, s32 b) 12102 { 12103 /* Do the sub in u32, where overflow is well-defined */ 12104 s32 res = (s32)((u32)a - (u32)b); 12105 12106 if (b < 0) 12107 return res < a; 12108 return res > a; 12109 } 12110 12111 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12112 const struct bpf_reg_state *reg, 12113 enum bpf_reg_type type) 12114 { 12115 bool known = tnum_is_const(reg->var_off); 12116 s64 val = reg->var_off.value; 12117 s64 smin = reg->smin_value; 12118 12119 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12120 verbose(env, "math between %s pointer and %lld is not allowed\n", 12121 reg_type_str(env, type), val); 12122 return false; 12123 } 12124 12125 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12126 verbose(env, "%s pointer offset %d is not allowed\n", 12127 reg_type_str(env, type), reg->off); 12128 return false; 12129 } 12130 12131 if (smin == S64_MIN) { 12132 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12133 reg_type_str(env, type)); 12134 return false; 12135 } 12136 12137 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12138 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12139 smin, reg_type_str(env, type)); 12140 return false; 12141 } 12142 12143 return true; 12144 } 12145 12146 enum { 12147 REASON_BOUNDS = -1, 12148 REASON_TYPE = -2, 12149 REASON_PATHS = -3, 12150 REASON_LIMIT = -4, 12151 REASON_STACK = -5, 12152 }; 12153 12154 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12155 u32 *alu_limit, bool mask_to_left) 12156 { 12157 u32 max = 0, ptr_limit = 0; 12158 12159 switch (ptr_reg->type) { 12160 case PTR_TO_STACK: 12161 /* Offset 0 is out-of-bounds, but acceptable start for the 12162 * left direction, see BPF_REG_FP. Also, unknown scalar 12163 * offset where we would need to deal with min/max bounds is 12164 * currently prohibited for unprivileged. 12165 */ 12166 max = MAX_BPF_STACK + mask_to_left; 12167 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12168 break; 12169 case PTR_TO_MAP_VALUE: 12170 max = ptr_reg->map_ptr->value_size; 12171 ptr_limit = (mask_to_left ? 12172 ptr_reg->smin_value : 12173 ptr_reg->umax_value) + ptr_reg->off; 12174 break; 12175 default: 12176 return REASON_TYPE; 12177 } 12178 12179 if (ptr_limit >= max) 12180 return REASON_LIMIT; 12181 *alu_limit = ptr_limit; 12182 return 0; 12183 } 12184 12185 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12186 const struct bpf_insn *insn) 12187 { 12188 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12189 } 12190 12191 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12192 u32 alu_state, u32 alu_limit) 12193 { 12194 /* If we arrived here from different branches with different 12195 * state or limits to sanitize, then this won't work. 12196 */ 12197 if (aux->alu_state && 12198 (aux->alu_state != alu_state || 12199 aux->alu_limit != alu_limit)) 12200 return REASON_PATHS; 12201 12202 /* Corresponding fixup done in do_misc_fixups(). */ 12203 aux->alu_state = alu_state; 12204 aux->alu_limit = alu_limit; 12205 return 0; 12206 } 12207 12208 static int sanitize_val_alu(struct bpf_verifier_env *env, 12209 struct bpf_insn *insn) 12210 { 12211 struct bpf_insn_aux_data *aux = cur_aux(env); 12212 12213 if (can_skip_alu_sanitation(env, insn)) 12214 return 0; 12215 12216 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12217 } 12218 12219 static bool sanitize_needed(u8 opcode) 12220 { 12221 return opcode == BPF_ADD || opcode == BPF_SUB; 12222 } 12223 12224 struct bpf_sanitize_info { 12225 struct bpf_insn_aux_data aux; 12226 bool mask_to_left; 12227 }; 12228 12229 static struct bpf_verifier_state * 12230 sanitize_speculative_path(struct bpf_verifier_env *env, 12231 const struct bpf_insn *insn, 12232 u32 next_idx, u32 curr_idx) 12233 { 12234 struct bpf_verifier_state *branch; 12235 struct bpf_reg_state *regs; 12236 12237 branch = push_stack(env, next_idx, curr_idx, true); 12238 if (branch && insn) { 12239 regs = branch->frame[branch->curframe]->regs; 12240 if (BPF_SRC(insn->code) == BPF_K) { 12241 mark_reg_unknown(env, regs, insn->dst_reg); 12242 } else if (BPF_SRC(insn->code) == BPF_X) { 12243 mark_reg_unknown(env, regs, insn->dst_reg); 12244 mark_reg_unknown(env, regs, insn->src_reg); 12245 } 12246 } 12247 return branch; 12248 } 12249 12250 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12251 struct bpf_insn *insn, 12252 const struct bpf_reg_state *ptr_reg, 12253 const struct bpf_reg_state *off_reg, 12254 struct bpf_reg_state *dst_reg, 12255 struct bpf_sanitize_info *info, 12256 const bool commit_window) 12257 { 12258 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12259 struct bpf_verifier_state *vstate = env->cur_state; 12260 bool off_is_imm = tnum_is_const(off_reg->var_off); 12261 bool off_is_neg = off_reg->smin_value < 0; 12262 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12263 u8 opcode = BPF_OP(insn->code); 12264 u32 alu_state, alu_limit; 12265 struct bpf_reg_state tmp; 12266 bool ret; 12267 int err; 12268 12269 if (can_skip_alu_sanitation(env, insn)) 12270 return 0; 12271 12272 /* We already marked aux for masking from non-speculative 12273 * paths, thus we got here in the first place. We only care 12274 * to explore bad access from here. 12275 */ 12276 if (vstate->speculative) 12277 goto do_sim; 12278 12279 if (!commit_window) { 12280 if (!tnum_is_const(off_reg->var_off) && 12281 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12282 return REASON_BOUNDS; 12283 12284 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12285 (opcode == BPF_SUB && !off_is_neg); 12286 } 12287 12288 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12289 if (err < 0) 12290 return err; 12291 12292 if (commit_window) { 12293 /* In commit phase we narrow the masking window based on 12294 * the observed pointer move after the simulated operation. 12295 */ 12296 alu_state = info->aux.alu_state; 12297 alu_limit = abs(info->aux.alu_limit - alu_limit); 12298 } else { 12299 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12300 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12301 alu_state |= ptr_is_dst_reg ? 12302 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12303 12304 /* Limit pruning on unknown scalars to enable deep search for 12305 * potential masking differences from other program paths. 12306 */ 12307 if (!off_is_imm) 12308 env->explore_alu_limits = true; 12309 } 12310 12311 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12312 if (err < 0) 12313 return err; 12314 do_sim: 12315 /* If we're in commit phase, we're done here given we already 12316 * pushed the truncated dst_reg into the speculative verification 12317 * stack. 12318 * 12319 * Also, when register is a known constant, we rewrite register-based 12320 * operation to immediate-based, and thus do not need masking (and as 12321 * a consequence, do not need to simulate the zero-truncation either). 12322 */ 12323 if (commit_window || off_is_imm) 12324 return 0; 12325 12326 /* Simulate and find potential out-of-bounds access under 12327 * speculative execution from truncation as a result of 12328 * masking when off was not within expected range. If off 12329 * sits in dst, then we temporarily need to move ptr there 12330 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12331 * for cases where we use K-based arithmetic in one direction 12332 * and truncated reg-based in the other in order to explore 12333 * bad access. 12334 */ 12335 if (!ptr_is_dst_reg) { 12336 tmp = *dst_reg; 12337 copy_register_state(dst_reg, ptr_reg); 12338 } 12339 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12340 env->insn_idx); 12341 if (!ptr_is_dst_reg && ret) 12342 *dst_reg = tmp; 12343 return !ret ? REASON_STACK : 0; 12344 } 12345 12346 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12347 { 12348 struct bpf_verifier_state *vstate = env->cur_state; 12349 12350 /* If we simulate paths under speculation, we don't update the 12351 * insn as 'seen' such that when we verify unreachable paths in 12352 * the non-speculative domain, sanitize_dead_code() can still 12353 * rewrite/sanitize them. 12354 */ 12355 if (!vstate->speculative) 12356 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12357 } 12358 12359 static int sanitize_err(struct bpf_verifier_env *env, 12360 const struct bpf_insn *insn, int reason, 12361 const struct bpf_reg_state *off_reg, 12362 const struct bpf_reg_state *dst_reg) 12363 { 12364 static const char *err = "pointer arithmetic with it prohibited for !root"; 12365 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12366 u32 dst = insn->dst_reg, src = insn->src_reg; 12367 12368 switch (reason) { 12369 case REASON_BOUNDS: 12370 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12371 off_reg == dst_reg ? dst : src, err); 12372 break; 12373 case REASON_TYPE: 12374 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12375 off_reg == dst_reg ? src : dst, err); 12376 break; 12377 case REASON_PATHS: 12378 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12379 dst, op, err); 12380 break; 12381 case REASON_LIMIT: 12382 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12383 dst, op, err); 12384 break; 12385 case REASON_STACK: 12386 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12387 dst, err); 12388 break; 12389 default: 12390 verbose(env, "verifier internal error: unknown reason (%d)\n", 12391 reason); 12392 break; 12393 } 12394 12395 return -EACCES; 12396 } 12397 12398 /* check that stack access falls within stack limits and that 'reg' doesn't 12399 * have a variable offset. 12400 * 12401 * Variable offset is prohibited for unprivileged mode for simplicity since it 12402 * requires corresponding support in Spectre masking for stack ALU. See also 12403 * retrieve_ptr_limit(). 12404 * 12405 * 12406 * 'off' includes 'reg->off'. 12407 */ 12408 static int check_stack_access_for_ptr_arithmetic( 12409 struct bpf_verifier_env *env, 12410 int regno, 12411 const struct bpf_reg_state *reg, 12412 int off) 12413 { 12414 if (!tnum_is_const(reg->var_off)) { 12415 char tn_buf[48]; 12416 12417 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12418 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12419 regno, tn_buf, off); 12420 return -EACCES; 12421 } 12422 12423 if (off >= 0 || off < -MAX_BPF_STACK) { 12424 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12425 "prohibited for !root; off=%d\n", regno, off); 12426 return -EACCES; 12427 } 12428 12429 return 0; 12430 } 12431 12432 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12433 const struct bpf_insn *insn, 12434 const struct bpf_reg_state *dst_reg) 12435 { 12436 u32 dst = insn->dst_reg; 12437 12438 /* For unprivileged we require that resulting offset must be in bounds 12439 * in order to be able to sanitize access later on. 12440 */ 12441 if (env->bypass_spec_v1) 12442 return 0; 12443 12444 switch (dst_reg->type) { 12445 case PTR_TO_STACK: 12446 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12447 dst_reg->off + dst_reg->var_off.value)) 12448 return -EACCES; 12449 break; 12450 case PTR_TO_MAP_VALUE: 12451 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12452 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12453 "prohibited for !root\n", dst); 12454 return -EACCES; 12455 } 12456 break; 12457 default: 12458 break; 12459 } 12460 12461 return 0; 12462 } 12463 12464 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12465 * Caller should also handle BPF_MOV case separately. 12466 * If we return -EACCES, caller may want to try again treating pointer as a 12467 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12468 */ 12469 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12470 struct bpf_insn *insn, 12471 const struct bpf_reg_state *ptr_reg, 12472 const struct bpf_reg_state *off_reg) 12473 { 12474 struct bpf_verifier_state *vstate = env->cur_state; 12475 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12476 struct bpf_reg_state *regs = state->regs, *dst_reg; 12477 bool known = tnum_is_const(off_reg->var_off); 12478 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12479 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12480 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12481 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12482 struct bpf_sanitize_info info = {}; 12483 u8 opcode = BPF_OP(insn->code); 12484 u32 dst = insn->dst_reg; 12485 int ret; 12486 12487 dst_reg = ®s[dst]; 12488 12489 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12490 smin_val > smax_val || umin_val > umax_val) { 12491 /* Taint dst register if offset had invalid bounds derived from 12492 * e.g. dead branches. 12493 */ 12494 __mark_reg_unknown(env, dst_reg); 12495 return 0; 12496 } 12497 12498 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12499 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12500 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12501 __mark_reg_unknown(env, dst_reg); 12502 return 0; 12503 } 12504 12505 verbose(env, 12506 "R%d 32-bit pointer arithmetic prohibited\n", 12507 dst); 12508 return -EACCES; 12509 } 12510 12511 if (ptr_reg->type & PTR_MAYBE_NULL) { 12512 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12513 dst, reg_type_str(env, ptr_reg->type)); 12514 return -EACCES; 12515 } 12516 12517 switch (base_type(ptr_reg->type)) { 12518 case PTR_TO_FLOW_KEYS: 12519 if (known) 12520 break; 12521 fallthrough; 12522 case CONST_PTR_TO_MAP: 12523 /* smin_val represents the known value */ 12524 if (known && smin_val == 0 && opcode == BPF_ADD) 12525 break; 12526 fallthrough; 12527 case PTR_TO_PACKET_END: 12528 case PTR_TO_SOCKET: 12529 case PTR_TO_SOCK_COMMON: 12530 case PTR_TO_TCP_SOCK: 12531 case PTR_TO_XDP_SOCK: 12532 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12533 dst, reg_type_str(env, ptr_reg->type)); 12534 return -EACCES; 12535 default: 12536 break; 12537 } 12538 12539 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12540 * The id may be overwritten later if we create a new variable offset. 12541 */ 12542 dst_reg->type = ptr_reg->type; 12543 dst_reg->id = ptr_reg->id; 12544 12545 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12546 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12547 return -EINVAL; 12548 12549 /* pointer types do not carry 32-bit bounds at the moment. */ 12550 __mark_reg32_unbounded(dst_reg); 12551 12552 if (sanitize_needed(opcode)) { 12553 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12554 &info, false); 12555 if (ret < 0) 12556 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12557 } 12558 12559 switch (opcode) { 12560 case BPF_ADD: 12561 /* We can take a fixed offset as long as it doesn't overflow 12562 * the s32 'off' field 12563 */ 12564 if (known && (ptr_reg->off + smin_val == 12565 (s64)(s32)(ptr_reg->off + smin_val))) { 12566 /* pointer += K. Accumulate it into fixed offset */ 12567 dst_reg->smin_value = smin_ptr; 12568 dst_reg->smax_value = smax_ptr; 12569 dst_reg->umin_value = umin_ptr; 12570 dst_reg->umax_value = umax_ptr; 12571 dst_reg->var_off = ptr_reg->var_off; 12572 dst_reg->off = ptr_reg->off + smin_val; 12573 dst_reg->raw = ptr_reg->raw; 12574 break; 12575 } 12576 /* A new variable offset is created. Note that off_reg->off 12577 * == 0, since it's a scalar. 12578 * dst_reg gets the pointer type and since some positive 12579 * integer value was added to the pointer, give it a new 'id' 12580 * if it's a PTR_TO_PACKET. 12581 * this creates a new 'base' pointer, off_reg (variable) gets 12582 * added into the variable offset, and we copy the fixed offset 12583 * from ptr_reg. 12584 */ 12585 if (signed_add_overflows(smin_ptr, smin_val) || 12586 signed_add_overflows(smax_ptr, smax_val)) { 12587 dst_reg->smin_value = S64_MIN; 12588 dst_reg->smax_value = S64_MAX; 12589 } else { 12590 dst_reg->smin_value = smin_ptr + smin_val; 12591 dst_reg->smax_value = smax_ptr + smax_val; 12592 } 12593 if (umin_ptr + umin_val < umin_ptr || 12594 umax_ptr + umax_val < umax_ptr) { 12595 dst_reg->umin_value = 0; 12596 dst_reg->umax_value = U64_MAX; 12597 } else { 12598 dst_reg->umin_value = umin_ptr + umin_val; 12599 dst_reg->umax_value = umax_ptr + umax_val; 12600 } 12601 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12602 dst_reg->off = ptr_reg->off; 12603 dst_reg->raw = ptr_reg->raw; 12604 if (reg_is_pkt_pointer(ptr_reg)) { 12605 dst_reg->id = ++env->id_gen; 12606 /* something was added to pkt_ptr, set range to zero */ 12607 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12608 } 12609 break; 12610 case BPF_SUB: 12611 if (dst_reg == off_reg) { 12612 /* scalar -= pointer. Creates an unknown scalar */ 12613 verbose(env, "R%d tried to subtract pointer from scalar\n", 12614 dst); 12615 return -EACCES; 12616 } 12617 /* We don't allow subtraction from FP, because (according to 12618 * test_verifier.c test "invalid fp arithmetic", JITs might not 12619 * be able to deal with it. 12620 */ 12621 if (ptr_reg->type == PTR_TO_STACK) { 12622 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12623 dst); 12624 return -EACCES; 12625 } 12626 if (known && (ptr_reg->off - smin_val == 12627 (s64)(s32)(ptr_reg->off - smin_val))) { 12628 /* pointer -= K. Subtract it from fixed offset */ 12629 dst_reg->smin_value = smin_ptr; 12630 dst_reg->smax_value = smax_ptr; 12631 dst_reg->umin_value = umin_ptr; 12632 dst_reg->umax_value = umax_ptr; 12633 dst_reg->var_off = ptr_reg->var_off; 12634 dst_reg->id = ptr_reg->id; 12635 dst_reg->off = ptr_reg->off - smin_val; 12636 dst_reg->raw = ptr_reg->raw; 12637 break; 12638 } 12639 /* A new variable offset is created. If the subtrahend is known 12640 * nonnegative, then any reg->range we had before is still good. 12641 */ 12642 if (signed_sub_overflows(smin_ptr, smax_val) || 12643 signed_sub_overflows(smax_ptr, smin_val)) { 12644 /* Overflow possible, we know nothing */ 12645 dst_reg->smin_value = S64_MIN; 12646 dst_reg->smax_value = S64_MAX; 12647 } else { 12648 dst_reg->smin_value = smin_ptr - smax_val; 12649 dst_reg->smax_value = smax_ptr - smin_val; 12650 } 12651 if (umin_ptr < umax_val) { 12652 /* Overflow possible, we know nothing */ 12653 dst_reg->umin_value = 0; 12654 dst_reg->umax_value = U64_MAX; 12655 } else { 12656 /* Cannot overflow (as long as bounds are consistent) */ 12657 dst_reg->umin_value = umin_ptr - umax_val; 12658 dst_reg->umax_value = umax_ptr - umin_val; 12659 } 12660 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12661 dst_reg->off = ptr_reg->off; 12662 dst_reg->raw = ptr_reg->raw; 12663 if (reg_is_pkt_pointer(ptr_reg)) { 12664 dst_reg->id = ++env->id_gen; 12665 /* something was added to pkt_ptr, set range to zero */ 12666 if (smin_val < 0) 12667 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12668 } 12669 break; 12670 case BPF_AND: 12671 case BPF_OR: 12672 case BPF_XOR: 12673 /* bitwise ops on pointers are troublesome, prohibit. */ 12674 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12675 dst, bpf_alu_string[opcode >> 4]); 12676 return -EACCES; 12677 default: 12678 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12679 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12680 dst, bpf_alu_string[opcode >> 4]); 12681 return -EACCES; 12682 } 12683 12684 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12685 return -EINVAL; 12686 reg_bounds_sync(dst_reg); 12687 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12688 return -EACCES; 12689 if (sanitize_needed(opcode)) { 12690 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12691 &info, true); 12692 if (ret < 0) 12693 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12694 } 12695 12696 return 0; 12697 } 12698 12699 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12700 struct bpf_reg_state *src_reg) 12701 { 12702 s32 smin_val = src_reg->s32_min_value; 12703 s32 smax_val = src_reg->s32_max_value; 12704 u32 umin_val = src_reg->u32_min_value; 12705 u32 umax_val = src_reg->u32_max_value; 12706 12707 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12708 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12709 dst_reg->s32_min_value = S32_MIN; 12710 dst_reg->s32_max_value = S32_MAX; 12711 } else { 12712 dst_reg->s32_min_value += smin_val; 12713 dst_reg->s32_max_value += smax_val; 12714 } 12715 if (dst_reg->u32_min_value + umin_val < umin_val || 12716 dst_reg->u32_max_value + umax_val < umax_val) { 12717 dst_reg->u32_min_value = 0; 12718 dst_reg->u32_max_value = U32_MAX; 12719 } else { 12720 dst_reg->u32_min_value += umin_val; 12721 dst_reg->u32_max_value += umax_val; 12722 } 12723 } 12724 12725 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12726 struct bpf_reg_state *src_reg) 12727 { 12728 s64 smin_val = src_reg->smin_value; 12729 s64 smax_val = src_reg->smax_value; 12730 u64 umin_val = src_reg->umin_value; 12731 u64 umax_val = src_reg->umax_value; 12732 12733 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12734 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12735 dst_reg->smin_value = S64_MIN; 12736 dst_reg->smax_value = S64_MAX; 12737 } else { 12738 dst_reg->smin_value += smin_val; 12739 dst_reg->smax_value += smax_val; 12740 } 12741 if (dst_reg->umin_value + umin_val < umin_val || 12742 dst_reg->umax_value + umax_val < umax_val) { 12743 dst_reg->umin_value = 0; 12744 dst_reg->umax_value = U64_MAX; 12745 } else { 12746 dst_reg->umin_value += umin_val; 12747 dst_reg->umax_value += umax_val; 12748 } 12749 } 12750 12751 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12752 struct bpf_reg_state *src_reg) 12753 { 12754 s32 smin_val = src_reg->s32_min_value; 12755 s32 smax_val = src_reg->s32_max_value; 12756 u32 umin_val = src_reg->u32_min_value; 12757 u32 umax_val = src_reg->u32_max_value; 12758 12759 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12760 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12761 /* Overflow possible, we know nothing */ 12762 dst_reg->s32_min_value = S32_MIN; 12763 dst_reg->s32_max_value = S32_MAX; 12764 } else { 12765 dst_reg->s32_min_value -= smax_val; 12766 dst_reg->s32_max_value -= smin_val; 12767 } 12768 if (dst_reg->u32_min_value < umax_val) { 12769 /* Overflow possible, we know nothing */ 12770 dst_reg->u32_min_value = 0; 12771 dst_reg->u32_max_value = U32_MAX; 12772 } else { 12773 /* Cannot overflow (as long as bounds are consistent) */ 12774 dst_reg->u32_min_value -= umax_val; 12775 dst_reg->u32_max_value -= umin_val; 12776 } 12777 } 12778 12779 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12780 struct bpf_reg_state *src_reg) 12781 { 12782 s64 smin_val = src_reg->smin_value; 12783 s64 smax_val = src_reg->smax_value; 12784 u64 umin_val = src_reg->umin_value; 12785 u64 umax_val = src_reg->umax_value; 12786 12787 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12788 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12789 /* Overflow possible, we know nothing */ 12790 dst_reg->smin_value = S64_MIN; 12791 dst_reg->smax_value = S64_MAX; 12792 } else { 12793 dst_reg->smin_value -= smax_val; 12794 dst_reg->smax_value -= smin_val; 12795 } 12796 if (dst_reg->umin_value < umax_val) { 12797 /* Overflow possible, we know nothing */ 12798 dst_reg->umin_value = 0; 12799 dst_reg->umax_value = U64_MAX; 12800 } else { 12801 /* Cannot overflow (as long as bounds are consistent) */ 12802 dst_reg->umin_value -= umax_val; 12803 dst_reg->umax_value -= umin_val; 12804 } 12805 } 12806 12807 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12808 struct bpf_reg_state *src_reg) 12809 { 12810 s32 smin_val = src_reg->s32_min_value; 12811 u32 umin_val = src_reg->u32_min_value; 12812 u32 umax_val = src_reg->u32_max_value; 12813 12814 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12815 /* Ain't nobody got time to multiply that sign */ 12816 __mark_reg32_unbounded(dst_reg); 12817 return; 12818 } 12819 /* Both values are positive, so we can work with unsigned and 12820 * copy the result to signed (unless it exceeds S32_MAX). 12821 */ 12822 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12823 /* Potential overflow, we know nothing */ 12824 __mark_reg32_unbounded(dst_reg); 12825 return; 12826 } 12827 dst_reg->u32_min_value *= umin_val; 12828 dst_reg->u32_max_value *= umax_val; 12829 if (dst_reg->u32_max_value > S32_MAX) { 12830 /* Overflow possible, we know nothing */ 12831 dst_reg->s32_min_value = S32_MIN; 12832 dst_reg->s32_max_value = S32_MAX; 12833 } else { 12834 dst_reg->s32_min_value = dst_reg->u32_min_value; 12835 dst_reg->s32_max_value = dst_reg->u32_max_value; 12836 } 12837 } 12838 12839 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12840 struct bpf_reg_state *src_reg) 12841 { 12842 s64 smin_val = src_reg->smin_value; 12843 u64 umin_val = src_reg->umin_value; 12844 u64 umax_val = src_reg->umax_value; 12845 12846 if (smin_val < 0 || dst_reg->smin_value < 0) { 12847 /* Ain't nobody got time to multiply that sign */ 12848 __mark_reg64_unbounded(dst_reg); 12849 return; 12850 } 12851 /* Both values are positive, so we can work with unsigned and 12852 * copy the result to signed (unless it exceeds S64_MAX). 12853 */ 12854 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12855 /* Potential overflow, we know nothing */ 12856 __mark_reg64_unbounded(dst_reg); 12857 return; 12858 } 12859 dst_reg->umin_value *= umin_val; 12860 dst_reg->umax_value *= umax_val; 12861 if (dst_reg->umax_value > S64_MAX) { 12862 /* Overflow possible, we know nothing */ 12863 dst_reg->smin_value = S64_MIN; 12864 dst_reg->smax_value = S64_MAX; 12865 } else { 12866 dst_reg->smin_value = dst_reg->umin_value; 12867 dst_reg->smax_value = dst_reg->umax_value; 12868 } 12869 } 12870 12871 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12872 struct bpf_reg_state *src_reg) 12873 { 12874 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12875 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12876 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12877 s32 smin_val = src_reg->s32_min_value; 12878 u32 umax_val = src_reg->u32_max_value; 12879 12880 if (src_known && dst_known) { 12881 __mark_reg32_known(dst_reg, var32_off.value); 12882 return; 12883 } 12884 12885 /* We get our minimum from the var_off, since that's inherently 12886 * bitwise. Our maximum is the minimum of the operands' maxima. 12887 */ 12888 dst_reg->u32_min_value = var32_off.value; 12889 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12890 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12891 /* Lose signed bounds when ANDing negative numbers, 12892 * ain't nobody got time for that. 12893 */ 12894 dst_reg->s32_min_value = S32_MIN; 12895 dst_reg->s32_max_value = S32_MAX; 12896 } else { 12897 /* ANDing two positives gives a positive, so safe to 12898 * cast result into s64. 12899 */ 12900 dst_reg->s32_min_value = dst_reg->u32_min_value; 12901 dst_reg->s32_max_value = dst_reg->u32_max_value; 12902 } 12903 } 12904 12905 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12906 struct bpf_reg_state *src_reg) 12907 { 12908 bool src_known = tnum_is_const(src_reg->var_off); 12909 bool dst_known = tnum_is_const(dst_reg->var_off); 12910 s64 smin_val = src_reg->smin_value; 12911 u64 umax_val = src_reg->umax_value; 12912 12913 if (src_known && dst_known) { 12914 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12915 return; 12916 } 12917 12918 /* We get our minimum from the var_off, since that's inherently 12919 * bitwise. Our maximum is the minimum of the operands' maxima. 12920 */ 12921 dst_reg->umin_value = dst_reg->var_off.value; 12922 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12923 if (dst_reg->smin_value < 0 || smin_val < 0) { 12924 /* Lose signed bounds when ANDing negative numbers, 12925 * ain't nobody got time for that. 12926 */ 12927 dst_reg->smin_value = S64_MIN; 12928 dst_reg->smax_value = S64_MAX; 12929 } else { 12930 /* ANDing two positives gives a positive, so safe to 12931 * cast result into s64. 12932 */ 12933 dst_reg->smin_value = dst_reg->umin_value; 12934 dst_reg->smax_value = dst_reg->umax_value; 12935 } 12936 /* We may learn something more from the var_off */ 12937 __update_reg_bounds(dst_reg); 12938 } 12939 12940 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12941 struct bpf_reg_state *src_reg) 12942 { 12943 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12944 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12945 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12946 s32 smin_val = src_reg->s32_min_value; 12947 u32 umin_val = src_reg->u32_min_value; 12948 12949 if (src_known && dst_known) { 12950 __mark_reg32_known(dst_reg, var32_off.value); 12951 return; 12952 } 12953 12954 /* We get our maximum from the var_off, and our minimum is the 12955 * maximum of the operands' minima 12956 */ 12957 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12958 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12959 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12960 /* Lose signed bounds when ORing negative numbers, 12961 * ain't nobody got time for that. 12962 */ 12963 dst_reg->s32_min_value = S32_MIN; 12964 dst_reg->s32_max_value = S32_MAX; 12965 } else { 12966 /* ORing two positives gives a positive, so safe to 12967 * cast result into s64. 12968 */ 12969 dst_reg->s32_min_value = dst_reg->u32_min_value; 12970 dst_reg->s32_max_value = dst_reg->u32_max_value; 12971 } 12972 } 12973 12974 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12975 struct bpf_reg_state *src_reg) 12976 { 12977 bool src_known = tnum_is_const(src_reg->var_off); 12978 bool dst_known = tnum_is_const(dst_reg->var_off); 12979 s64 smin_val = src_reg->smin_value; 12980 u64 umin_val = src_reg->umin_value; 12981 12982 if (src_known && dst_known) { 12983 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12984 return; 12985 } 12986 12987 /* We get our maximum from the var_off, and our minimum is the 12988 * maximum of the operands' minima 12989 */ 12990 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12991 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12992 if (dst_reg->smin_value < 0 || smin_val < 0) { 12993 /* Lose signed bounds when ORing negative numbers, 12994 * ain't nobody got time for that. 12995 */ 12996 dst_reg->smin_value = S64_MIN; 12997 dst_reg->smax_value = S64_MAX; 12998 } else { 12999 /* ORing two positives gives a positive, so safe to 13000 * cast result into s64. 13001 */ 13002 dst_reg->smin_value = dst_reg->umin_value; 13003 dst_reg->smax_value = dst_reg->umax_value; 13004 } 13005 /* We may learn something more from the var_off */ 13006 __update_reg_bounds(dst_reg); 13007 } 13008 13009 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13010 struct bpf_reg_state *src_reg) 13011 { 13012 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13013 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13014 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13015 s32 smin_val = src_reg->s32_min_value; 13016 13017 if (src_known && dst_known) { 13018 __mark_reg32_known(dst_reg, var32_off.value); 13019 return; 13020 } 13021 13022 /* We get both minimum and maximum from the var32_off. */ 13023 dst_reg->u32_min_value = var32_off.value; 13024 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13025 13026 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13027 /* XORing two positive sign numbers gives a positive, 13028 * so safe to cast u32 result into s32. 13029 */ 13030 dst_reg->s32_min_value = dst_reg->u32_min_value; 13031 dst_reg->s32_max_value = dst_reg->u32_max_value; 13032 } else { 13033 dst_reg->s32_min_value = S32_MIN; 13034 dst_reg->s32_max_value = S32_MAX; 13035 } 13036 } 13037 13038 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13039 struct bpf_reg_state *src_reg) 13040 { 13041 bool src_known = tnum_is_const(src_reg->var_off); 13042 bool dst_known = tnum_is_const(dst_reg->var_off); 13043 s64 smin_val = src_reg->smin_value; 13044 13045 if (src_known && dst_known) { 13046 /* dst_reg->var_off.value has been updated earlier */ 13047 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13048 return; 13049 } 13050 13051 /* We get both minimum and maximum from the var_off. */ 13052 dst_reg->umin_value = dst_reg->var_off.value; 13053 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13054 13055 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13056 /* XORing two positive sign numbers gives a positive, 13057 * so safe to cast u64 result into s64. 13058 */ 13059 dst_reg->smin_value = dst_reg->umin_value; 13060 dst_reg->smax_value = dst_reg->umax_value; 13061 } else { 13062 dst_reg->smin_value = S64_MIN; 13063 dst_reg->smax_value = S64_MAX; 13064 } 13065 13066 __update_reg_bounds(dst_reg); 13067 } 13068 13069 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13070 u64 umin_val, u64 umax_val) 13071 { 13072 /* We lose all sign bit information (except what we can pick 13073 * up from var_off) 13074 */ 13075 dst_reg->s32_min_value = S32_MIN; 13076 dst_reg->s32_max_value = S32_MAX; 13077 /* If we might shift our top bit out, then we know nothing */ 13078 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13079 dst_reg->u32_min_value = 0; 13080 dst_reg->u32_max_value = U32_MAX; 13081 } else { 13082 dst_reg->u32_min_value <<= umin_val; 13083 dst_reg->u32_max_value <<= umax_val; 13084 } 13085 } 13086 13087 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13088 struct bpf_reg_state *src_reg) 13089 { 13090 u32 umax_val = src_reg->u32_max_value; 13091 u32 umin_val = src_reg->u32_min_value; 13092 /* u32 alu operation will zext upper bits */ 13093 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13094 13095 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13096 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13097 /* Not required but being careful mark reg64 bounds as unknown so 13098 * that we are forced to pick them up from tnum and zext later and 13099 * if some path skips this step we are still safe. 13100 */ 13101 __mark_reg64_unbounded(dst_reg); 13102 __update_reg32_bounds(dst_reg); 13103 } 13104 13105 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13106 u64 umin_val, u64 umax_val) 13107 { 13108 /* Special case <<32 because it is a common compiler pattern to sign 13109 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13110 * positive we know this shift will also be positive so we can track 13111 * bounds correctly. Otherwise we lose all sign bit information except 13112 * what we can pick up from var_off. Perhaps we can generalize this 13113 * later to shifts of any length. 13114 */ 13115 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13116 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13117 else 13118 dst_reg->smax_value = S64_MAX; 13119 13120 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13121 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13122 else 13123 dst_reg->smin_value = S64_MIN; 13124 13125 /* If we might shift our top bit out, then we know nothing */ 13126 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13127 dst_reg->umin_value = 0; 13128 dst_reg->umax_value = U64_MAX; 13129 } else { 13130 dst_reg->umin_value <<= umin_val; 13131 dst_reg->umax_value <<= umax_val; 13132 } 13133 } 13134 13135 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13136 struct bpf_reg_state *src_reg) 13137 { 13138 u64 umax_val = src_reg->umax_value; 13139 u64 umin_val = src_reg->umin_value; 13140 13141 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13142 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13143 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13144 13145 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13146 /* We may learn something more from the var_off */ 13147 __update_reg_bounds(dst_reg); 13148 } 13149 13150 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13151 struct bpf_reg_state *src_reg) 13152 { 13153 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13154 u32 umax_val = src_reg->u32_max_value; 13155 u32 umin_val = src_reg->u32_min_value; 13156 13157 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13158 * be negative, then either: 13159 * 1) src_reg might be zero, so the sign bit of the result is 13160 * unknown, so we lose our signed bounds 13161 * 2) it's known negative, thus the unsigned bounds capture the 13162 * signed bounds 13163 * 3) the signed bounds cross zero, so they tell us nothing 13164 * about the result 13165 * If the value in dst_reg is known nonnegative, then again the 13166 * unsigned bounds capture the signed bounds. 13167 * Thus, in all cases it suffices to blow away our signed bounds 13168 * and rely on inferring new ones from the unsigned bounds and 13169 * var_off of the result. 13170 */ 13171 dst_reg->s32_min_value = S32_MIN; 13172 dst_reg->s32_max_value = S32_MAX; 13173 13174 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13175 dst_reg->u32_min_value >>= umax_val; 13176 dst_reg->u32_max_value >>= umin_val; 13177 13178 __mark_reg64_unbounded(dst_reg); 13179 __update_reg32_bounds(dst_reg); 13180 } 13181 13182 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13183 struct bpf_reg_state *src_reg) 13184 { 13185 u64 umax_val = src_reg->umax_value; 13186 u64 umin_val = src_reg->umin_value; 13187 13188 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13189 * be negative, then either: 13190 * 1) src_reg might be zero, so the sign bit of the result is 13191 * unknown, so we lose our signed bounds 13192 * 2) it's known negative, thus the unsigned bounds capture the 13193 * signed bounds 13194 * 3) the signed bounds cross zero, so they tell us nothing 13195 * about the result 13196 * If the value in dst_reg is known nonnegative, then again the 13197 * unsigned bounds capture the signed bounds. 13198 * Thus, in all cases it suffices to blow away our signed bounds 13199 * and rely on inferring new ones from the unsigned bounds and 13200 * var_off of the result. 13201 */ 13202 dst_reg->smin_value = S64_MIN; 13203 dst_reg->smax_value = S64_MAX; 13204 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13205 dst_reg->umin_value >>= umax_val; 13206 dst_reg->umax_value >>= umin_val; 13207 13208 /* Its not easy to operate on alu32 bounds here because it depends 13209 * on bits being shifted in. Take easy way out and mark unbounded 13210 * so we can recalculate later from tnum. 13211 */ 13212 __mark_reg32_unbounded(dst_reg); 13213 __update_reg_bounds(dst_reg); 13214 } 13215 13216 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13217 struct bpf_reg_state *src_reg) 13218 { 13219 u64 umin_val = src_reg->u32_min_value; 13220 13221 /* Upon reaching here, src_known is true and 13222 * umax_val is equal to umin_val. 13223 */ 13224 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13225 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13226 13227 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13228 13229 /* blow away the dst_reg umin_value/umax_value and rely on 13230 * dst_reg var_off to refine the result. 13231 */ 13232 dst_reg->u32_min_value = 0; 13233 dst_reg->u32_max_value = U32_MAX; 13234 13235 __mark_reg64_unbounded(dst_reg); 13236 __update_reg32_bounds(dst_reg); 13237 } 13238 13239 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13240 struct bpf_reg_state *src_reg) 13241 { 13242 u64 umin_val = src_reg->umin_value; 13243 13244 /* Upon reaching here, src_known is true and umax_val is equal 13245 * to umin_val. 13246 */ 13247 dst_reg->smin_value >>= umin_val; 13248 dst_reg->smax_value >>= umin_val; 13249 13250 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13251 13252 /* blow away the dst_reg umin_value/umax_value and rely on 13253 * dst_reg var_off to refine the result. 13254 */ 13255 dst_reg->umin_value = 0; 13256 dst_reg->umax_value = U64_MAX; 13257 13258 /* Its not easy to operate on alu32 bounds here because it depends 13259 * on bits being shifted in from upper 32-bits. Take easy way out 13260 * and mark unbounded so we can recalculate later from tnum. 13261 */ 13262 __mark_reg32_unbounded(dst_reg); 13263 __update_reg_bounds(dst_reg); 13264 } 13265 13266 /* WARNING: This function does calculations on 64-bit values, but the actual 13267 * execution may occur on 32-bit values. Therefore, things like bitshifts 13268 * need extra checks in the 32-bit case. 13269 */ 13270 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13271 struct bpf_insn *insn, 13272 struct bpf_reg_state *dst_reg, 13273 struct bpf_reg_state src_reg) 13274 { 13275 struct bpf_reg_state *regs = cur_regs(env); 13276 u8 opcode = BPF_OP(insn->code); 13277 bool src_known; 13278 s64 smin_val, smax_val; 13279 u64 umin_val, umax_val; 13280 s32 s32_min_val, s32_max_val; 13281 u32 u32_min_val, u32_max_val; 13282 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13283 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13284 int ret; 13285 13286 smin_val = src_reg.smin_value; 13287 smax_val = src_reg.smax_value; 13288 umin_val = src_reg.umin_value; 13289 umax_val = src_reg.umax_value; 13290 13291 s32_min_val = src_reg.s32_min_value; 13292 s32_max_val = src_reg.s32_max_value; 13293 u32_min_val = src_reg.u32_min_value; 13294 u32_max_val = src_reg.u32_max_value; 13295 13296 if (alu32) { 13297 src_known = tnum_subreg_is_const(src_reg.var_off); 13298 if ((src_known && 13299 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13300 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13301 /* Taint dst register if offset had invalid bounds 13302 * derived from e.g. dead branches. 13303 */ 13304 __mark_reg_unknown(env, dst_reg); 13305 return 0; 13306 } 13307 } else { 13308 src_known = tnum_is_const(src_reg.var_off); 13309 if ((src_known && 13310 (smin_val != smax_val || umin_val != umax_val)) || 13311 smin_val > smax_val || umin_val > umax_val) { 13312 /* Taint dst register if offset had invalid bounds 13313 * derived from e.g. dead branches. 13314 */ 13315 __mark_reg_unknown(env, dst_reg); 13316 return 0; 13317 } 13318 } 13319 13320 if (!src_known && 13321 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13322 __mark_reg_unknown(env, dst_reg); 13323 return 0; 13324 } 13325 13326 if (sanitize_needed(opcode)) { 13327 ret = sanitize_val_alu(env, insn); 13328 if (ret < 0) 13329 return sanitize_err(env, insn, ret, NULL, NULL); 13330 } 13331 13332 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13333 * There are two classes of instructions: The first class we track both 13334 * alu32 and alu64 sign/unsigned bounds independently this provides the 13335 * greatest amount of precision when alu operations are mixed with jmp32 13336 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13337 * and BPF_OR. This is possible because these ops have fairly easy to 13338 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13339 * See alu32 verifier tests for examples. The second class of 13340 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13341 * with regards to tracking sign/unsigned bounds because the bits may 13342 * cross subreg boundaries in the alu64 case. When this happens we mark 13343 * the reg unbounded in the subreg bound space and use the resulting 13344 * tnum to calculate an approximation of the sign/unsigned bounds. 13345 */ 13346 switch (opcode) { 13347 case BPF_ADD: 13348 scalar32_min_max_add(dst_reg, &src_reg); 13349 scalar_min_max_add(dst_reg, &src_reg); 13350 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13351 break; 13352 case BPF_SUB: 13353 scalar32_min_max_sub(dst_reg, &src_reg); 13354 scalar_min_max_sub(dst_reg, &src_reg); 13355 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13356 break; 13357 case BPF_MUL: 13358 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13359 scalar32_min_max_mul(dst_reg, &src_reg); 13360 scalar_min_max_mul(dst_reg, &src_reg); 13361 break; 13362 case BPF_AND: 13363 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13364 scalar32_min_max_and(dst_reg, &src_reg); 13365 scalar_min_max_and(dst_reg, &src_reg); 13366 break; 13367 case BPF_OR: 13368 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13369 scalar32_min_max_or(dst_reg, &src_reg); 13370 scalar_min_max_or(dst_reg, &src_reg); 13371 break; 13372 case BPF_XOR: 13373 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13374 scalar32_min_max_xor(dst_reg, &src_reg); 13375 scalar_min_max_xor(dst_reg, &src_reg); 13376 break; 13377 case BPF_LSH: 13378 if (umax_val >= insn_bitness) { 13379 /* Shifts greater than 31 or 63 are undefined. 13380 * This includes shifts by a negative number. 13381 */ 13382 mark_reg_unknown(env, regs, insn->dst_reg); 13383 break; 13384 } 13385 if (alu32) 13386 scalar32_min_max_lsh(dst_reg, &src_reg); 13387 else 13388 scalar_min_max_lsh(dst_reg, &src_reg); 13389 break; 13390 case BPF_RSH: 13391 if (umax_val >= insn_bitness) { 13392 /* Shifts greater than 31 or 63 are undefined. 13393 * This includes shifts by a negative number. 13394 */ 13395 mark_reg_unknown(env, regs, insn->dst_reg); 13396 break; 13397 } 13398 if (alu32) 13399 scalar32_min_max_rsh(dst_reg, &src_reg); 13400 else 13401 scalar_min_max_rsh(dst_reg, &src_reg); 13402 break; 13403 case BPF_ARSH: 13404 if (umax_val >= insn_bitness) { 13405 /* Shifts greater than 31 or 63 are undefined. 13406 * This includes shifts by a negative number. 13407 */ 13408 mark_reg_unknown(env, regs, insn->dst_reg); 13409 break; 13410 } 13411 if (alu32) 13412 scalar32_min_max_arsh(dst_reg, &src_reg); 13413 else 13414 scalar_min_max_arsh(dst_reg, &src_reg); 13415 break; 13416 default: 13417 mark_reg_unknown(env, regs, insn->dst_reg); 13418 break; 13419 } 13420 13421 /* ALU32 ops are zero extended into 64bit register */ 13422 if (alu32) 13423 zext_32_to_64(dst_reg); 13424 reg_bounds_sync(dst_reg); 13425 return 0; 13426 } 13427 13428 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13429 * and var_off. 13430 */ 13431 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13432 struct bpf_insn *insn) 13433 { 13434 struct bpf_verifier_state *vstate = env->cur_state; 13435 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13436 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13437 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13438 u8 opcode = BPF_OP(insn->code); 13439 int err; 13440 13441 dst_reg = ®s[insn->dst_reg]; 13442 src_reg = NULL; 13443 if (dst_reg->type != SCALAR_VALUE) 13444 ptr_reg = dst_reg; 13445 else 13446 /* Make sure ID is cleared otherwise dst_reg min/max could be 13447 * incorrectly propagated into other registers by find_equal_scalars() 13448 */ 13449 dst_reg->id = 0; 13450 if (BPF_SRC(insn->code) == BPF_X) { 13451 src_reg = ®s[insn->src_reg]; 13452 if (src_reg->type != SCALAR_VALUE) { 13453 if (dst_reg->type != SCALAR_VALUE) { 13454 /* Combining two pointers by any ALU op yields 13455 * an arbitrary scalar. Disallow all math except 13456 * pointer subtraction 13457 */ 13458 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13459 mark_reg_unknown(env, regs, insn->dst_reg); 13460 return 0; 13461 } 13462 verbose(env, "R%d pointer %s pointer prohibited\n", 13463 insn->dst_reg, 13464 bpf_alu_string[opcode >> 4]); 13465 return -EACCES; 13466 } else { 13467 /* scalar += pointer 13468 * This is legal, but we have to reverse our 13469 * src/dest handling in computing the range 13470 */ 13471 err = mark_chain_precision(env, insn->dst_reg); 13472 if (err) 13473 return err; 13474 return adjust_ptr_min_max_vals(env, insn, 13475 src_reg, dst_reg); 13476 } 13477 } else if (ptr_reg) { 13478 /* pointer += scalar */ 13479 err = mark_chain_precision(env, insn->src_reg); 13480 if (err) 13481 return err; 13482 return adjust_ptr_min_max_vals(env, insn, 13483 dst_reg, src_reg); 13484 } else if (dst_reg->precise) { 13485 /* if dst_reg is precise, src_reg should be precise as well */ 13486 err = mark_chain_precision(env, insn->src_reg); 13487 if (err) 13488 return err; 13489 } 13490 } else { 13491 /* Pretend the src is a reg with a known value, since we only 13492 * need to be able to read from this state. 13493 */ 13494 off_reg.type = SCALAR_VALUE; 13495 __mark_reg_known(&off_reg, insn->imm); 13496 src_reg = &off_reg; 13497 if (ptr_reg) /* pointer += K */ 13498 return adjust_ptr_min_max_vals(env, insn, 13499 ptr_reg, src_reg); 13500 } 13501 13502 /* Got here implies adding two SCALAR_VALUEs */ 13503 if (WARN_ON_ONCE(ptr_reg)) { 13504 print_verifier_state(env, state, true); 13505 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13506 return -EINVAL; 13507 } 13508 if (WARN_ON(!src_reg)) { 13509 print_verifier_state(env, state, true); 13510 verbose(env, "verifier internal error: no src_reg\n"); 13511 return -EINVAL; 13512 } 13513 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13514 } 13515 13516 /* check validity of 32-bit and 64-bit arithmetic operations */ 13517 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13518 { 13519 struct bpf_reg_state *regs = cur_regs(env); 13520 u8 opcode = BPF_OP(insn->code); 13521 int err; 13522 13523 if (opcode == BPF_END || opcode == BPF_NEG) { 13524 if (opcode == BPF_NEG) { 13525 if (BPF_SRC(insn->code) != BPF_K || 13526 insn->src_reg != BPF_REG_0 || 13527 insn->off != 0 || insn->imm != 0) { 13528 verbose(env, "BPF_NEG uses reserved fields\n"); 13529 return -EINVAL; 13530 } 13531 } else { 13532 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13533 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13534 (BPF_CLASS(insn->code) == BPF_ALU64 && 13535 BPF_SRC(insn->code) != BPF_TO_LE)) { 13536 verbose(env, "BPF_END uses reserved fields\n"); 13537 return -EINVAL; 13538 } 13539 } 13540 13541 /* check src operand */ 13542 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13543 if (err) 13544 return err; 13545 13546 if (is_pointer_value(env, insn->dst_reg)) { 13547 verbose(env, "R%d pointer arithmetic prohibited\n", 13548 insn->dst_reg); 13549 return -EACCES; 13550 } 13551 13552 /* check dest operand */ 13553 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13554 if (err) 13555 return err; 13556 13557 } else if (opcode == BPF_MOV) { 13558 13559 if (BPF_SRC(insn->code) == BPF_X) { 13560 if (insn->imm != 0) { 13561 verbose(env, "BPF_MOV uses reserved fields\n"); 13562 return -EINVAL; 13563 } 13564 13565 if (BPF_CLASS(insn->code) == BPF_ALU) { 13566 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13567 verbose(env, "BPF_MOV uses reserved fields\n"); 13568 return -EINVAL; 13569 } 13570 } else { 13571 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13572 insn->off != 32) { 13573 verbose(env, "BPF_MOV uses reserved fields\n"); 13574 return -EINVAL; 13575 } 13576 } 13577 13578 /* check src operand */ 13579 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13580 if (err) 13581 return err; 13582 } else { 13583 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13584 verbose(env, "BPF_MOV uses reserved fields\n"); 13585 return -EINVAL; 13586 } 13587 } 13588 13589 /* check dest operand, mark as required later */ 13590 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13591 if (err) 13592 return err; 13593 13594 if (BPF_SRC(insn->code) == BPF_X) { 13595 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13596 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13597 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13598 !tnum_is_const(src_reg->var_off); 13599 13600 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13601 if (insn->off == 0) { 13602 /* case: R1 = R2 13603 * copy register state to dest reg 13604 */ 13605 if (need_id) 13606 /* Assign src and dst registers the same ID 13607 * that will be used by find_equal_scalars() 13608 * to propagate min/max range. 13609 */ 13610 src_reg->id = ++env->id_gen; 13611 copy_register_state(dst_reg, src_reg); 13612 dst_reg->live |= REG_LIVE_WRITTEN; 13613 dst_reg->subreg_def = DEF_NOT_SUBREG; 13614 } else { 13615 /* case: R1 = (s8, s16 s32)R2 */ 13616 if (is_pointer_value(env, insn->src_reg)) { 13617 verbose(env, 13618 "R%d sign-extension part of pointer\n", 13619 insn->src_reg); 13620 return -EACCES; 13621 } else if (src_reg->type == SCALAR_VALUE) { 13622 bool no_sext; 13623 13624 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13625 if (no_sext && need_id) 13626 src_reg->id = ++env->id_gen; 13627 copy_register_state(dst_reg, src_reg); 13628 if (!no_sext) 13629 dst_reg->id = 0; 13630 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13631 dst_reg->live |= REG_LIVE_WRITTEN; 13632 dst_reg->subreg_def = DEF_NOT_SUBREG; 13633 } else { 13634 mark_reg_unknown(env, regs, insn->dst_reg); 13635 } 13636 } 13637 } else { 13638 /* R1 = (u32) R2 */ 13639 if (is_pointer_value(env, insn->src_reg)) { 13640 verbose(env, 13641 "R%d partial copy of pointer\n", 13642 insn->src_reg); 13643 return -EACCES; 13644 } else if (src_reg->type == SCALAR_VALUE) { 13645 if (insn->off == 0) { 13646 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13647 13648 if (is_src_reg_u32 && need_id) 13649 src_reg->id = ++env->id_gen; 13650 copy_register_state(dst_reg, src_reg); 13651 /* Make sure ID is cleared if src_reg is not in u32 13652 * range otherwise dst_reg min/max could be incorrectly 13653 * propagated into src_reg by find_equal_scalars() 13654 */ 13655 if (!is_src_reg_u32) 13656 dst_reg->id = 0; 13657 dst_reg->live |= REG_LIVE_WRITTEN; 13658 dst_reg->subreg_def = env->insn_idx + 1; 13659 } else { 13660 /* case: W1 = (s8, s16)W2 */ 13661 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13662 13663 if (no_sext && need_id) 13664 src_reg->id = ++env->id_gen; 13665 copy_register_state(dst_reg, src_reg); 13666 if (!no_sext) 13667 dst_reg->id = 0; 13668 dst_reg->live |= REG_LIVE_WRITTEN; 13669 dst_reg->subreg_def = env->insn_idx + 1; 13670 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13671 } 13672 } else { 13673 mark_reg_unknown(env, regs, 13674 insn->dst_reg); 13675 } 13676 zext_32_to_64(dst_reg); 13677 reg_bounds_sync(dst_reg); 13678 } 13679 } else { 13680 /* case: R = imm 13681 * remember the value we stored into this reg 13682 */ 13683 /* clear any state __mark_reg_known doesn't set */ 13684 mark_reg_unknown(env, regs, insn->dst_reg); 13685 regs[insn->dst_reg].type = SCALAR_VALUE; 13686 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13687 __mark_reg_known(regs + insn->dst_reg, 13688 insn->imm); 13689 } else { 13690 __mark_reg_known(regs + insn->dst_reg, 13691 (u32)insn->imm); 13692 } 13693 } 13694 13695 } else if (opcode > BPF_END) { 13696 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13697 return -EINVAL; 13698 13699 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13700 13701 if (BPF_SRC(insn->code) == BPF_X) { 13702 if (insn->imm != 0 || insn->off > 1 || 13703 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13704 verbose(env, "BPF_ALU uses reserved fields\n"); 13705 return -EINVAL; 13706 } 13707 /* check src1 operand */ 13708 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13709 if (err) 13710 return err; 13711 } else { 13712 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13713 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13714 verbose(env, "BPF_ALU uses reserved fields\n"); 13715 return -EINVAL; 13716 } 13717 } 13718 13719 /* check src2 operand */ 13720 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13721 if (err) 13722 return err; 13723 13724 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13725 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13726 verbose(env, "div by zero\n"); 13727 return -EINVAL; 13728 } 13729 13730 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13731 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13732 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13733 13734 if (insn->imm < 0 || insn->imm >= size) { 13735 verbose(env, "invalid shift %d\n", insn->imm); 13736 return -EINVAL; 13737 } 13738 } 13739 13740 /* check dest operand */ 13741 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13742 if (err) 13743 return err; 13744 13745 return adjust_reg_min_max_vals(env, insn); 13746 } 13747 13748 return 0; 13749 } 13750 13751 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13752 struct bpf_reg_state *dst_reg, 13753 enum bpf_reg_type type, 13754 bool range_right_open) 13755 { 13756 struct bpf_func_state *state; 13757 struct bpf_reg_state *reg; 13758 int new_range; 13759 13760 if (dst_reg->off < 0 || 13761 (dst_reg->off == 0 && range_right_open)) 13762 /* This doesn't give us any range */ 13763 return; 13764 13765 if (dst_reg->umax_value > MAX_PACKET_OFF || 13766 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13767 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13768 * than pkt_end, but that's because it's also less than pkt. 13769 */ 13770 return; 13771 13772 new_range = dst_reg->off; 13773 if (range_right_open) 13774 new_range++; 13775 13776 /* Examples for register markings: 13777 * 13778 * pkt_data in dst register: 13779 * 13780 * r2 = r3; 13781 * r2 += 8; 13782 * if (r2 > pkt_end) goto <handle exception> 13783 * <access okay> 13784 * 13785 * r2 = r3; 13786 * r2 += 8; 13787 * if (r2 < pkt_end) goto <access okay> 13788 * <handle exception> 13789 * 13790 * Where: 13791 * r2 == dst_reg, pkt_end == src_reg 13792 * r2=pkt(id=n,off=8,r=0) 13793 * r3=pkt(id=n,off=0,r=0) 13794 * 13795 * pkt_data in src register: 13796 * 13797 * r2 = r3; 13798 * r2 += 8; 13799 * if (pkt_end >= r2) goto <access okay> 13800 * <handle exception> 13801 * 13802 * r2 = r3; 13803 * r2 += 8; 13804 * if (pkt_end <= r2) goto <handle exception> 13805 * <access okay> 13806 * 13807 * Where: 13808 * pkt_end == dst_reg, r2 == src_reg 13809 * r2=pkt(id=n,off=8,r=0) 13810 * r3=pkt(id=n,off=0,r=0) 13811 * 13812 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13813 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13814 * and [r3, r3 + 8-1) respectively is safe to access depending on 13815 * the check. 13816 */ 13817 13818 /* If our ids match, then we must have the same max_value. And we 13819 * don't care about the other reg's fixed offset, since if it's too big 13820 * the range won't allow anything. 13821 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13822 */ 13823 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13824 if (reg->type == type && reg->id == dst_reg->id) 13825 /* keep the maximum range already checked */ 13826 reg->range = max(reg->range, new_range); 13827 })); 13828 } 13829 13830 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13831 { 13832 struct tnum subreg = tnum_subreg(reg->var_off); 13833 s32 sval = (s32)val; 13834 13835 switch (opcode) { 13836 case BPF_JEQ: 13837 if (tnum_is_const(subreg)) 13838 return !!tnum_equals_const(subreg, val); 13839 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13840 return 0; 13841 break; 13842 case BPF_JNE: 13843 if (tnum_is_const(subreg)) 13844 return !tnum_equals_const(subreg, val); 13845 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13846 return 1; 13847 break; 13848 case BPF_JSET: 13849 if ((~subreg.mask & subreg.value) & val) 13850 return 1; 13851 if (!((subreg.mask | subreg.value) & val)) 13852 return 0; 13853 break; 13854 case BPF_JGT: 13855 if (reg->u32_min_value > val) 13856 return 1; 13857 else if (reg->u32_max_value <= val) 13858 return 0; 13859 break; 13860 case BPF_JSGT: 13861 if (reg->s32_min_value > sval) 13862 return 1; 13863 else if (reg->s32_max_value <= sval) 13864 return 0; 13865 break; 13866 case BPF_JLT: 13867 if (reg->u32_max_value < val) 13868 return 1; 13869 else if (reg->u32_min_value >= val) 13870 return 0; 13871 break; 13872 case BPF_JSLT: 13873 if (reg->s32_max_value < sval) 13874 return 1; 13875 else if (reg->s32_min_value >= sval) 13876 return 0; 13877 break; 13878 case BPF_JGE: 13879 if (reg->u32_min_value >= val) 13880 return 1; 13881 else if (reg->u32_max_value < val) 13882 return 0; 13883 break; 13884 case BPF_JSGE: 13885 if (reg->s32_min_value >= sval) 13886 return 1; 13887 else if (reg->s32_max_value < sval) 13888 return 0; 13889 break; 13890 case BPF_JLE: 13891 if (reg->u32_max_value <= val) 13892 return 1; 13893 else if (reg->u32_min_value > val) 13894 return 0; 13895 break; 13896 case BPF_JSLE: 13897 if (reg->s32_max_value <= sval) 13898 return 1; 13899 else if (reg->s32_min_value > sval) 13900 return 0; 13901 break; 13902 } 13903 13904 return -1; 13905 } 13906 13907 13908 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13909 { 13910 s64 sval = (s64)val; 13911 13912 switch (opcode) { 13913 case BPF_JEQ: 13914 if (tnum_is_const(reg->var_off)) 13915 return !!tnum_equals_const(reg->var_off, val); 13916 else if (val < reg->umin_value || val > reg->umax_value) 13917 return 0; 13918 break; 13919 case BPF_JNE: 13920 if (tnum_is_const(reg->var_off)) 13921 return !tnum_equals_const(reg->var_off, val); 13922 else if (val < reg->umin_value || val > reg->umax_value) 13923 return 1; 13924 break; 13925 case BPF_JSET: 13926 if ((~reg->var_off.mask & reg->var_off.value) & val) 13927 return 1; 13928 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13929 return 0; 13930 break; 13931 case BPF_JGT: 13932 if (reg->umin_value > val) 13933 return 1; 13934 else if (reg->umax_value <= val) 13935 return 0; 13936 break; 13937 case BPF_JSGT: 13938 if (reg->smin_value > sval) 13939 return 1; 13940 else if (reg->smax_value <= sval) 13941 return 0; 13942 break; 13943 case BPF_JLT: 13944 if (reg->umax_value < val) 13945 return 1; 13946 else if (reg->umin_value >= val) 13947 return 0; 13948 break; 13949 case BPF_JSLT: 13950 if (reg->smax_value < sval) 13951 return 1; 13952 else if (reg->smin_value >= sval) 13953 return 0; 13954 break; 13955 case BPF_JGE: 13956 if (reg->umin_value >= val) 13957 return 1; 13958 else if (reg->umax_value < val) 13959 return 0; 13960 break; 13961 case BPF_JSGE: 13962 if (reg->smin_value >= sval) 13963 return 1; 13964 else if (reg->smax_value < sval) 13965 return 0; 13966 break; 13967 case BPF_JLE: 13968 if (reg->umax_value <= val) 13969 return 1; 13970 else if (reg->umin_value > val) 13971 return 0; 13972 break; 13973 case BPF_JSLE: 13974 if (reg->smax_value <= sval) 13975 return 1; 13976 else if (reg->smin_value > sval) 13977 return 0; 13978 break; 13979 } 13980 13981 return -1; 13982 } 13983 13984 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13985 * and return: 13986 * 1 - branch will be taken and "goto target" will be executed 13987 * 0 - branch will not be taken and fall-through to next insn 13988 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13989 * range [0,10] 13990 */ 13991 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13992 bool is_jmp32) 13993 { 13994 if (__is_pointer_value(false, reg)) { 13995 if (!reg_not_null(reg)) 13996 return -1; 13997 13998 /* If pointer is valid tests against zero will fail so we can 13999 * use this to direct branch taken. 14000 */ 14001 if (val != 0) 14002 return -1; 14003 14004 switch (opcode) { 14005 case BPF_JEQ: 14006 return 0; 14007 case BPF_JNE: 14008 return 1; 14009 default: 14010 return -1; 14011 } 14012 } 14013 14014 if (is_jmp32) 14015 return is_branch32_taken(reg, val, opcode); 14016 return is_branch64_taken(reg, val, opcode); 14017 } 14018 14019 static int flip_opcode(u32 opcode) 14020 { 14021 /* How can we transform "a <op> b" into "b <op> a"? */ 14022 static const u8 opcode_flip[16] = { 14023 /* these stay the same */ 14024 [BPF_JEQ >> 4] = BPF_JEQ, 14025 [BPF_JNE >> 4] = BPF_JNE, 14026 [BPF_JSET >> 4] = BPF_JSET, 14027 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14028 [BPF_JGE >> 4] = BPF_JLE, 14029 [BPF_JGT >> 4] = BPF_JLT, 14030 [BPF_JLE >> 4] = BPF_JGE, 14031 [BPF_JLT >> 4] = BPF_JGT, 14032 [BPF_JSGE >> 4] = BPF_JSLE, 14033 [BPF_JSGT >> 4] = BPF_JSLT, 14034 [BPF_JSLE >> 4] = BPF_JSGE, 14035 [BPF_JSLT >> 4] = BPF_JSGT 14036 }; 14037 return opcode_flip[opcode >> 4]; 14038 } 14039 14040 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14041 struct bpf_reg_state *src_reg, 14042 u8 opcode) 14043 { 14044 struct bpf_reg_state *pkt; 14045 14046 if (src_reg->type == PTR_TO_PACKET_END) { 14047 pkt = dst_reg; 14048 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14049 pkt = src_reg; 14050 opcode = flip_opcode(opcode); 14051 } else { 14052 return -1; 14053 } 14054 14055 if (pkt->range >= 0) 14056 return -1; 14057 14058 switch (opcode) { 14059 case BPF_JLE: 14060 /* pkt <= pkt_end */ 14061 fallthrough; 14062 case BPF_JGT: 14063 /* pkt > pkt_end */ 14064 if (pkt->range == BEYOND_PKT_END) 14065 /* pkt has at last one extra byte beyond pkt_end */ 14066 return opcode == BPF_JGT; 14067 break; 14068 case BPF_JLT: 14069 /* pkt < pkt_end */ 14070 fallthrough; 14071 case BPF_JGE: 14072 /* pkt >= pkt_end */ 14073 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14074 return opcode == BPF_JGE; 14075 break; 14076 } 14077 return -1; 14078 } 14079 14080 /* Adjusts the register min/max values in the case that the dst_reg is the 14081 * variable register that we are working on, and src_reg is a constant or we're 14082 * simply doing a BPF_K check. 14083 * In JEQ/JNE cases we also adjust the var_off values. 14084 */ 14085 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14086 struct bpf_reg_state *false_reg, 14087 u64 val, u32 val32, 14088 u8 opcode, bool is_jmp32) 14089 { 14090 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14091 struct tnum false_64off = false_reg->var_off; 14092 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14093 struct tnum true_64off = true_reg->var_off; 14094 s64 sval = (s64)val; 14095 s32 sval32 = (s32)val32; 14096 14097 /* If the dst_reg is a pointer, we can't learn anything about its 14098 * variable offset from the compare (unless src_reg were a pointer into 14099 * the same object, but we don't bother with that. 14100 * Since false_reg and true_reg have the same type by construction, we 14101 * only need to check one of them for pointerness. 14102 */ 14103 if (__is_pointer_value(false, false_reg)) 14104 return; 14105 14106 switch (opcode) { 14107 /* JEQ/JNE comparison doesn't change the register equivalence. 14108 * 14109 * r1 = r2; 14110 * if (r1 == 42) goto label; 14111 * ... 14112 * label: // here both r1 and r2 are known to be 42. 14113 * 14114 * Hence when marking register as known preserve it's ID. 14115 */ 14116 case BPF_JEQ: 14117 if (is_jmp32) { 14118 __mark_reg32_known(true_reg, val32); 14119 true_32off = tnum_subreg(true_reg->var_off); 14120 } else { 14121 ___mark_reg_known(true_reg, val); 14122 true_64off = true_reg->var_off; 14123 } 14124 break; 14125 case BPF_JNE: 14126 if (is_jmp32) { 14127 __mark_reg32_known(false_reg, val32); 14128 false_32off = tnum_subreg(false_reg->var_off); 14129 } else { 14130 ___mark_reg_known(false_reg, val); 14131 false_64off = false_reg->var_off; 14132 } 14133 break; 14134 case BPF_JSET: 14135 if (is_jmp32) { 14136 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14137 if (is_power_of_2(val32)) 14138 true_32off = tnum_or(true_32off, 14139 tnum_const(val32)); 14140 } else { 14141 false_64off = tnum_and(false_64off, tnum_const(~val)); 14142 if (is_power_of_2(val)) 14143 true_64off = tnum_or(true_64off, 14144 tnum_const(val)); 14145 } 14146 break; 14147 case BPF_JGE: 14148 case BPF_JGT: 14149 { 14150 if (is_jmp32) { 14151 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14152 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14153 14154 false_reg->u32_max_value = min(false_reg->u32_max_value, 14155 false_umax); 14156 true_reg->u32_min_value = max(true_reg->u32_min_value, 14157 true_umin); 14158 } else { 14159 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14160 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14161 14162 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14163 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14164 } 14165 break; 14166 } 14167 case BPF_JSGE: 14168 case BPF_JSGT: 14169 { 14170 if (is_jmp32) { 14171 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14172 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14173 14174 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14175 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14176 } else { 14177 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14178 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14179 14180 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14181 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14182 } 14183 break; 14184 } 14185 case BPF_JLE: 14186 case BPF_JLT: 14187 { 14188 if (is_jmp32) { 14189 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14190 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14191 14192 false_reg->u32_min_value = max(false_reg->u32_min_value, 14193 false_umin); 14194 true_reg->u32_max_value = min(true_reg->u32_max_value, 14195 true_umax); 14196 } else { 14197 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14198 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14199 14200 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14201 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14202 } 14203 break; 14204 } 14205 case BPF_JSLE: 14206 case BPF_JSLT: 14207 { 14208 if (is_jmp32) { 14209 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14210 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14211 14212 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14213 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14214 } else { 14215 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14216 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14217 14218 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14219 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14220 } 14221 break; 14222 } 14223 default: 14224 return; 14225 } 14226 14227 if (is_jmp32) { 14228 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14229 tnum_subreg(false_32off)); 14230 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14231 tnum_subreg(true_32off)); 14232 __reg_combine_32_into_64(false_reg); 14233 __reg_combine_32_into_64(true_reg); 14234 } else { 14235 false_reg->var_off = false_64off; 14236 true_reg->var_off = true_64off; 14237 __reg_combine_64_into_32(false_reg); 14238 __reg_combine_64_into_32(true_reg); 14239 } 14240 } 14241 14242 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14243 * the variable reg. 14244 */ 14245 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14246 struct bpf_reg_state *false_reg, 14247 u64 val, u32 val32, 14248 u8 opcode, bool is_jmp32) 14249 { 14250 opcode = flip_opcode(opcode); 14251 /* This uses zero as "not present in table"; luckily the zero opcode, 14252 * BPF_JA, can't get here. 14253 */ 14254 if (opcode) 14255 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14256 } 14257 14258 /* Regs are known to be equal, so intersect their min/max/var_off */ 14259 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14260 struct bpf_reg_state *dst_reg) 14261 { 14262 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14263 dst_reg->umin_value); 14264 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14265 dst_reg->umax_value); 14266 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14267 dst_reg->smin_value); 14268 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14269 dst_reg->smax_value); 14270 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14271 dst_reg->var_off); 14272 reg_bounds_sync(src_reg); 14273 reg_bounds_sync(dst_reg); 14274 } 14275 14276 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14277 struct bpf_reg_state *true_dst, 14278 struct bpf_reg_state *false_src, 14279 struct bpf_reg_state *false_dst, 14280 u8 opcode) 14281 { 14282 switch (opcode) { 14283 case BPF_JEQ: 14284 __reg_combine_min_max(true_src, true_dst); 14285 break; 14286 case BPF_JNE: 14287 __reg_combine_min_max(false_src, false_dst); 14288 break; 14289 } 14290 } 14291 14292 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14293 struct bpf_reg_state *reg, u32 id, 14294 bool is_null) 14295 { 14296 if (type_may_be_null(reg->type) && reg->id == id && 14297 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14298 /* Old offset (both fixed and variable parts) should have been 14299 * known-zero, because we don't allow pointer arithmetic on 14300 * pointers that might be NULL. If we see this happening, don't 14301 * convert the register. 14302 * 14303 * But in some cases, some helpers that return local kptrs 14304 * advance offset for the returned pointer. In those cases, it 14305 * is fine to expect to see reg->off. 14306 */ 14307 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14308 return; 14309 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14310 WARN_ON_ONCE(reg->off)) 14311 return; 14312 14313 if (is_null) { 14314 reg->type = SCALAR_VALUE; 14315 /* We don't need id and ref_obj_id from this point 14316 * onwards anymore, thus we should better reset it, 14317 * so that state pruning has chances to take effect. 14318 */ 14319 reg->id = 0; 14320 reg->ref_obj_id = 0; 14321 14322 return; 14323 } 14324 14325 mark_ptr_not_null_reg(reg); 14326 14327 if (!reg_may_point_to_spin_lock(reg)) { 14328 /* For not-NULL ptr, reg->ref_obj_id will be reset 14329 * in release_reference(). 14330 * 14331 * reg->id is still used by spin_lock ptr. Other 14332 * than spin_lock ptr type, reg->id can be reset. 14333 */ 14334 reg->id = 0; 14335 } 14336 } 14337 } 14338 14339 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14340 * be folded together at some point. 14341 */ 14342 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14343 bool is_null) 14344 { 14345 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14346 struct bpf_reg_state *regs = state->regs, *reg; 14347 u32 ref_obj_id = regs[regno].ref_obj_id; 14348 u32 id = regs[regno].id; 14349 14350 if (ref_obj_id && ref_obj_id == id && is_null) 14351 /* regs[regno] is in the " == NULL" branch. 14352 * No one could have freed the reference state before 14353 * doing the NULL check. 14354 */ 14355 WARN_ON_ONCE(release_reference_state(state, id)); 14356 14357 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14358 mark_ptr_or_null_reg(state, reg, id, is_null); 14359 })); 14360 } 14361 14362 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14363 struct bpf_reg_state *dst_reg, 14364 struct bpf_reg_state *src_reg, 14365 struct bpf_verifier_state *this_branch, 14366 struct bpf_verifier_state *other_branch) 14367 { 14368 if (BPF_SRC(insn->code) != BPF_X) 14369 return false; 14370 14371 /* Pointers are always 64-bit. */ 14372 if (BPF_CLASS(insn->code) == BPF_JMP32) 14373 return false; 14374 14375 switch (BPF_OP(insn->code)) { 14376 case BPF_JGT: 14377 if ((dst_reg->type == PTR_TO_PACKET && 14378 src_reg->type == PTR_TO_PACKET_END) || 14379 (dst_reg->type == PTR_TO_PACKET_META && 14380 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14381 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14382 find_good_pkt_pointers(this_branch, dst_reg, 14383 dst_reg->type, false); 14384 mark_pkt_end(other_branch, insn->dst_reg, true); 14385 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14386 src_reg->type == PTR_TO_PACKET) || 14387 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14388 src_reg->type == PTR_TO_PACKET_META)) { 14389 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14390 find_good_pkt_pointers(other_branch, src_reg, 14391 src_reg->type, true); 14392 mark_pkt_end(this_branch, insn->src_reg, false); 14393 } else { 14394 return false; 14395 } 14396 break; 14397 case BPF_JLT: 14398 if ((dst_reg->type == PTR_TO_PACKET && 14399 src_reg->type == PTR_TO_PACKET_END) || 14400 (dst_reg->type == PTR_TO_PACKET_META && 14401 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14402 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14403 find_good_pkt_pointers(other_branch, dst_reg, 14404 dst_reg->type, true); 14405 mark_pkt_end(this_branch, insn->dst_reg, false); 14406 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14407 src_reg->type == PTR_TO_PACKET) || 14408 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14409 src_reg->type == PTR_TO_PACKET_META)) { 14410 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14411 find_good_pkt_pointers(this_branch, src_reg, 14412 src_reg->type, false); 14413 mark_pkt_end(other_branch, insn->src_reg, true); 14414 } else { 14415 return false; 14416 } 14417 break; 14418 case BPF_JGE: 14419 if ((dst_reg->type == PTR_TO_PACKET && 14420 src_reg->type == PTR_TO_PACKET_END) || 14421 (dst_reg->type == PTR_TO_PACKET_META && 14422 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14423 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14424 find_good_pkt_pointers(this_branch, dst_reg, 14425 dst_reg->type, true); 14426 mark_pkt_end(other_branch, insn->dst_reg, false); 14427 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14428 src_reg->type == PTR_TO_PACKET) || 14429 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14430 src_reg->type == PTR_TO_PACKET_META)) { 14431 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14432 find_good_pkt_pointers(other_branch, src_reg, 14433 src_reg->type, false); 14434 mark_pkt_end(this_branch, insn->src_reg, true); 14435 } else { 14436 return false; 14437 } 14438 break; 14439 case BPF_JLE: 14440 if ((dst_reg->type == PTR_TO_PACKET && 14441 src_reg->type == PTR_TO_PACKET_END) || 14442 (dst_reg->type == PTR_TO_PACKET_META && 14443 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14444 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14445 find_good_pkt_pointers(other_branch, dst_reg, 14446 dst_reg->type, false); 14447 mark_pkt_end(this_branch, insn->dst_reg, true); 14448 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14449 src_reg->type == PTR_TO_PACKET) || 14450 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14451 src_reg->type == PTR_TO_PACKET_META)) { 14452 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14453 find_good_pkt_pointers(this_branch, src_reg, 14454 src_reg->type, true); 14455 mark_pkt_end(other_branch, insn->src_reg, false); 14456 } else { 14457 return false; 14458 } 14459 break; 14460 default: 14461 return false; 14462 } 14463 14464 return true; 14465 } 14466 14467 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14468 struct bpf_reg_state *known_reg) 14469 { 14470 struct bpf_func_state *state; 14471 struct bpf_reg_state *reg; 14472 14473 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14474 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14475 copy_register_state(reg, known_reg); 14476 })); 14477 } 14478 14479 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14480 struct bpf_insn *insn, int *insn_idx) 14481 { 14482 struct bpf_verifier_state *this_branch = env->cur_state; 14483 struct bpf_verifier_state *other_branch; 14484 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14485 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14486 struct bpf_reg_state *eq_branch_regs; 14487 u8 opcode = BPF_OP(insn->code); 14488 bool is_jmp32; 14489 int pred = -1; 14490 int err; 14491 14492 /* Only conditional jumps are expected to reach here. */ 14493 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14494 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14495 return -EINVAL; 14496 } 14497 14498 /* check src2 operand */ 14499 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14500 if (err) 14501 return err; 14502 14503 dst_reg = ®s[insn->dst_reg]; 14504 if (BPF_SRC(insn->code) == BPF_X) { 14505 if (insn->imm != 0) { 14506 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14507 return -EINVAL; 14508 } 14509 14510 /* check src1 operand */ 14511 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14512 if (err) 14513 return err; 14514 14515 src_reg = ®s[insn->src_reg]; 14516 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14517 is_pointer_value(env, insn->src_reg)) { 14518 verbose(env, "R%d pointer comparison prohibited\n", 14519 insn->src_reg); 14520 return -EACCES; 14521 } 14522 } else { 14523 if (insn->src_reg != BPF_REG_0) { 14524 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14525 return -EINVAL; 14526 } 14527 } 14528 14529 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14530 14531 if (BPF_SRC(insn->code) == BPF_K) { 14532 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14533 } else if (src_reg->type == SCALAR_VALUE && 14534 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14535 pred = is_branch_taken(dst_reg, 14536 tnum_subreg(src_reg->var_off).value, 14537 opcode, 14538 is_jmp32); 14539 } else if (src_reg->type == SCALAR_VALUE && 14540 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14541 pred = is_branch_taken(dst_reg, 14542 src_reg->var_off.value, 14543 opcode, 14544 is_jmp32); 14545 } else if (dst_reg->type == SCALAR_VALUE && 14546 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14547 pred = is_branch_taken(src_reg, 14548 tnum_subreg(dst_reg->var_off).value, 14549 flip_opcode(opcode), 14550 is_jmp32); 14551 } else if (dst_reg->type == SCALAR_VALUE && 14552 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14553 pred = is_branch_taken(src_reg, 14554 dst_reg->var_off.value, 14555 flip_opcode(opcode), 14556 is_jmp32); 14557 } else if (reg_is_pkt_pointer_any(dst_reg) && 14558 reg_is_pkt_pointer_any(src_reg) && 14559 !is_jmp32) { 14560 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14561 } 14562 14563 if (pred >= 0) { 14564 /* If we get here with a dst_reg pointer type it is because 14565 * above is_branch_taken() special cased the 0 comparison. 14566 */ 14567 if (!__is_pointer_value(false, dst_reg)) 14568 err = mark_chain_precision(env, insn->dst_reg); 14569 if (BPF_SRC(insn->code) == BPF_X && !err && 14570 !__is_pointer_value(false, src_reg)) 14571 err = mark_chain_precision(env, insn->src_reg); 14572 if (err) 14573 return err; 14574 } 14575 14576 if (pred == 1) { 14577 /* Only follow the goto, ignore fall-through. If needed, push 14578 * the fall-through branch for simulation under speculative 14579 * execution. 14580 */ 14581 if (!env->bypass_spec_v1 && 14582 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14583 *insn_idx)) 14584 return -EFAULT; 14585 if (env->log.level & BPF_LOG_LEVEL) 14586 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14587 *insn_idx += insn->off; 14588 return 0; 14589 } else if (pred == 0) { 14590 /* Only follow the fall-through branch, since that's where the 14591 * program will go. If needed, push the goto branch for 14592 * simulation under speculative execution. 14593 */ 14594 if (!env->bypass_spec_v1 && 14595 !sanitize_speculative_path(env, insn, 14596 *insn_idx + insn->off + 1, 14597 *insn_idx)) 14598 return -EFAULT; 14599 if (env->log.level & BPF_LOG_LEVEL) 14600 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14601 return 0; 14602 } 14603 14604 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14605 false); 14606 if (!other_branch) 14607 return -EFAULT; 14608 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14609 14610 /* detect if we are comparing against a constant value so we can adjust 14611 * our min/max values for our dst register. 14612 * this is only legit if both are scalars (or pointers to the same 14613 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14614 * because otherwise the different base pointers mean the offsets aren't 14615 * comparable. 14616 */ 14617 if (BPF_SRC(insn->code) == BPF_X) { 14618 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14619 14620 if (dst_reg->type == SCALAR_VALUE && 14621 src_reg->type == SCALAR_VALUE) { 14622 if (tnum_is_const(src_reg->var_off) || 14623 (is_jmp32 && 14624 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14625 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14626 dst_reg, 14627 src_reg->var_off.value, 14628 tnum_subreg(src_reg->var_off).value, 14629 opcode, is_jmp32); 14630 else if (tnum_is_const(dst_reg->var_off) || 14631 (is_jmp32 && 14632 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14633 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14634 src_reg, 14635 dst_reg->var_off.value, 14636 tnum_subreg(dst_reg->var_off).value, 14637 opcode, is_jmp32); 14638 else if (!is_jmp32 && 14639 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14640 /* Comparing for equality, we can combine knowledge */ 14641 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14642 &other_branch_regs[insn->dst_reg], 14643 src_reg, dst_reg, opcode); 14644 if (src_reg->id && 14645 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14646 find_equal_scalars(this_branch, src_reg); 14647 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14648 } 14649 14650 } 14651 } else if (dst_reg->type == SCALAR_VALUE) { 14652 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14653 dst_reg, insn->imm, (u32)insn->imm, 14654 opcode, is_jmp32); 14655 } 14656 14657 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14658 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14659 find_equal_scalars(this_branch, dst_reg); 14660 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14661 } 14662 14663 /* if one pointer register is compared to another pointer 14664 * register check if PTR_MAYBE_NULL could be lifted. 14665 * E.g. register A - maybe null 14666 * register B - not null 14667 * for JNE A, B, ... - A is not null in the false branch; 14668 * for JEQ A, B, ... - A is not null in the true branch. 14669 * 14670 * Since PTR_TO_BTF_ID points to a kernel struct that does 14671 * not need to be null checked by the BPF program, i.e., 14672 * could be null even without PTR_MAYBE_NULL marking, so 14673 * only propagate nullness when neither reg is that type. 14674 */ 14675 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14676 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14677 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14678 base_type(src_reg->type) != PTR_TO_BTF_ID && 14679 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14680 eq_branch_regs = NULL; 14681 switch (opcode) { 14682 case BPF_JEQ: 14683 eq_branch_regs = other_branch_regs; 14684 break; 14685 case BPF_JNE: 14686 eq_branch_regs = regs; 14687 break; 14688 default: 14689 /* do nothing */ 14690 break; 14691 } 14692 if (eq_branch_regs) { 14693 if (type_may_be_null(src_reg->type)) 14694 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14695 else 14696 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14697 } 14698 } 14699 14700 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14701 * NOTE: these optimizations below are related with pointer comparison 14702 * which will never be JMP32. 14703 */ 14704 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14705 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14706 type_may_be_null(dst_reg->type)) { 14707 /* Mark all identical registers in each branch as either 14708 * safe or unknown depending R == 0 or R != 0 conditional. 14709 */ 14710 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14711 opcode == BPF_JNE); 14712 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14713 opcode == BPF_JEQ); 14714 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14715 this_branch, other_branch) && 14716 is_pointer_value(env, insn->dst_reg)) { 14717 verbose(env, "R%d pointer comparison prohibited\n", 14718 insn->dst_reg); 14719 return -EACCES; 14720 } 14721 if (env->log.level & BPF_LOG_LEVEL) 14722 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14723 return 0; 14724 } 14725 14726 /* verify BPF_LD_IMM64 instruction */ 14727 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14728 { 14729 struct bpf_insn_aux_data *aux = cur_aux(env); 14730 struct bpf_reg_state *regs = cur_regs(env); 14731 struct bpf_reg_state *dst_reg; 14732 struct bpf_map *map; 14733 int err; 14734 14735 if (BPF_SIZE(insn->code) != BPF_DW) { 14736 verbose(env, "invalid BPF_LD_IMM insn\n"); 14737 return -EINVAL; 14738 } 14739 if (insn->off != 0) { 14740 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14741 return -EINVAL; 14742 } 14743 14744 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14745 if (err) 14746 return err; 14747 14748 dst_reg = ®s[insn->dst_reg]; 14749 if (insn->src_reg == 0) { 14750 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14751 14752 dst_reg->type = SCALAR_VALUE; 14753 __mark_reg_known(®s[insn->dst_reg], imm); 14754 return 0; 14755 } 14756 14757 /* All special src_reg cases are listed below. From this point onwards 14758 * we either succeed and assign a corresponding dst_reg->type after 14759 * zeroing the offset, or fail and reject the program. 14760 */ 14761 mark_reg_known_zero(env, regs, insn->dst_reg); 14762 14763 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14764 dst_reg->type = aux->btf_var.reg_type; 14765 switch (base_type(dst_reg->type)) { 14766 case PTR_TO_MEM: 14767 dst_reg->mem_size = aux->btf_var.mem_size; 14768 break; 14769 case PTR_TO_BTF_ID: 14770 dst_reg->btf = aux->btf_var.btf; 14771 dst_reg->btf_id = aux->btf_var.btf_id; 14772 break; 14773 default: 14774 verbose(env, "bpf verifier is misconfigured\n"); 14775 return -EFAULT; 14776 } 14777 return 0; 14778 } 14779 14780 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14781 struct bpf_prog_aux *aux = env->prog->aux; 14782 u32 subprogno = find_subprog(env, 14783 env->insn_idx + insn->imm + 1); 14784 14785 if (!aux->func_info) { 14786 verbose(env, "missing btf func_info\n"); 14787 return -EINVAL; 14788 } 14789 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14790 verbose(env, "callback function not static\n"); 14791 return -EINVAL; 14792 } 14793 14794 dst_reg->type = PTR_TO_FUNC; 14795 dst_reg->subprogno = subprogno; 14796 return 0; 14797 } 14798 14799 map = env->used_maps[aux->map_index]; 14800 dst_reg->map_ptr = map; 14801 14802 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14803 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14804 dst_reg->type = PTR_TO_MAP_VALUE; 14805 dst_reg->off = aux->map_off; 14806 WARN_ON_ONCE(map->max_entries != 1); 14807 /* We want reg->id to be same (0) as map_value is not distinct */ 14808 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14809 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14810 dst_reg->type = CONST_PTR_TO_MAP; 14811 } else { 14812 verbose(env, "bpf verifier is misconfigured\n"); 14813 return -EINVAL; 14814 } 14815 14816 return 0; 14817 } 14818 14819 static bool may_access_skb(enum bpf_prog_type type) 14820 { 14821 switch (type) { 14822 case BPF_PROG_TYPE_SOCKET_FILTER: 14823 case BPF_PROG_TYPE_SCHED_CLS: 14824 case BPF_PROG_TYPE_SCHED_ACT: 14825 return true; 14826 default: 14827 return false; 14828 } 14829 } 14830 14831 /* verify safety of LD_ABS|LD_IND instructions: 14832 * - they can only appear in the programs where ctx == skb 14833 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14834 * preserve R6-R9, and store return value into R0 14835 * 14836 * Implicit input: 14837 * ctx == skb == R6 == CTX 14838 * 14839 * Explicit input: 14840 * SRC == any register 14841 * IMM == 32-bit immediate 14842 * 14843 * Output: 14844 * R0 - 8/16/32-bit skb data converted to cpu endianness 14845 */ 14846 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14847 { 14848 struct bpf_reg_state *regs = cur_regs(env); 14849 static const int ctx_reg = BPF_REG_6; 14850 u8 mode = BPF_MODE(insn->code); 14851 int i, err; 14852 14853 if (!may_access_skb(resolve_prog_type(env->prog))) { 14854 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14855 return -EINVAL; 14856 } 14857 14858 if (!env->ops->gen_ld_abs) { 14859 verbose(env, "bpf verifier is misconfigured\n"); 14860 return -EINVAL; 14861 } 14862 14863 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14864 BPF_SIZE(insn->code) == BPF_DW || 14865 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14866 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14867 return -EINVAL; 14868 } 14869 14870 /* check whether implicit source operand (register R6) is readable */ 14871 err = check_reg_arg(env, ctx_reg, SRC_OP); 14872 if (err) 14873 return err; 14874 14875 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14876 * gen_ld_abs() may terminate the program at runtime, leading to 14877 * reference leak. 14878 */ 14879 err = check_reference_leak(env); 14880 if (err) { 14881 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14882 return err; 14883 } 14884 14885 if (env->cur_state->active_lock.ptr) { 14886 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14887 return -EINVAL; 14888 } 14889 14890 if (env->cur_state->active_rcu_lock) { 14891 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14892 return -EINVAL; 14893 } 14894 14895 if (regs[ctx_reg].type != PTR_TO_CTX) { 14896 verbose(env, 14897 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14898 return -EINVAL; 14899 } 14900 14901 if (mode == BPF_IND) { 14902 /* check explicit source operand */ 14903 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14904 if (err) 14905 return err; 14906 } 14907 14908 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14909 if (err < 0) 14910 return err; 14911 14912 /* reset caller saved regs to unreadable */ 14913 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14914 mark_reg_not_init(env, regs, caller_saved[i]); 14915 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14916 } 14917 14918 /* mark destination R0 register as readable, since it contains 14919 * the value fetched from the packet. 14920 * Already marked as written above. 14921 */ 14922 mark_reg_unknown(env, regs, BPF_REG_0); 14923 /* ld_abs load up to 32-bit skb data. */ 14924 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14925 return 0; 14926 } 14927 14928 static int check_return_code(struct bpf_verifier_env *env) 14929 { 14930 struct tnum enforce_attach_type_range = tnum_unknown; 14931 const struct bpf_prog *prog = env->prog; 14932 struct bpf_reg_state *reg; 14933 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14934 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14935 int err; 14936 struct bpf_func_state *frame = env->cur_state->frame[0]; 14937 const bool is_subprog = frame->subprogno; 14938 14939 /* LSM and struct_ops func-ptr's return type could be "void" */ 14940 if (!is_subprog) { 14941 switch (prog_type) { 14942 case BPF_PROG_TYPE_LSM: 14943 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14944 /* See below, can be 0 or 0-1 depending on hook. */ 14945 break; 14946 fallthrough; 14947 case BPF_PROG_TYPE_STRUCT_OPS: 14948 if (!prog->aux->attach_func_proto->type) 14949 return 0; 14950 break; 14951 default: 14952 break; 14953 } 14954 } 14955 14956 /* eBPF calling convention is such that R0 is used 14957 * to return the value from eBPF program. 14958 * Make sure that it's readable at this time 14959 * of bpf_exit, which means that program wrote 14960 * something into it earlier 14961 */ 14962 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14963 if (err) 14964 return err; 14965 14966 if (is_pointer_value(env, BPF_REG_0)) { 14967 verbose(env, "R0 leaks addr as return value\n"); 14968 return -EACCES; 14969 } 14970 14971 reg = cur_regs(env) + BPF_REG_0; 14972 14973 if (frame->in_async_callback_fn) { 14974 /* enforce return zero from async callbacks like timer */ 14975 if (reg->type != SCALAR_VALUE) { 14976 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14977 reg_type_str(env, reg->type)); 14978 return -EINVAL; 14979 } 14980 14981 if (!tnum_in(const_0, reg->var_off)) { 14982 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14983 return -EINVAL; 14984 } 14985 return 0; 14986 } 14987 14988 if (is_subprog) { 14989 if (reg->type != SCALAR_VALUE) { 14990 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14991 reg_type_str(env, reg->type)); 14992 return -EINVAL; 14993 } 14994 return 0; 14995 } 14996 14997 switch (prog_type) { 14998 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14999 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15000 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15001 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15002 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15003 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15004 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 15005 range = tnum_range(1, 1); 15006 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15007 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15008 range = tnum_range(0, 3); 15009 break; 15010 case BPF_PROG_TYPE_CGROUP_SKB: 15011 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15012 range = tnum_range(0, 3); 15013 enforce_attach_type_range = tnum_range(2, 3); 15014 } 15015 break; 15016 case BPF_PROG_TYPE_CGROUP_SOCK: 15017 case BPF_PROG_TYPE_SOCK_OPS: 15018 case BPF_PROG_TYPE_CGROUP_DEVICE: 15019 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15020 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15021 break; 15022 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15023 if (!env->prog->aux->attach_btf_id) 15024 return 0; 15025 range = tnum_const(0); 15026 break; 15027 case BPF_PROG_TYPE_TRACING: 15028 switch (env->prog->expected_attach_type) { 15029 case BPF_TRACE_FENTRY: 15030 case BPF_TRACE_FEXIT: 15031 range = tnum_const(0); 15032 break; 15033 case BPF_TRACE_RAW_TP: 15034 case BPF_MODIFY_RETURN: 15035 return 0; 15036 case BPF_TRACE_ITER: 15037 break; 15038 default: 15039 return -ENOTSUPP; 15040 } 15041 break; 15042 case BPF_PROG_TYPE_SK_LOOKUP: 15043 range = tnum_range(SK_DROP, SK_PASS); 15044 break; 15045 15046 case BPF_PROG_TYPE_LSM: 15047 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15048 /* Regular BPF_PROG_TYPE_LSM programs can return 15049 * any value. 15050 */ 15051 return 0; 15052 } 15053 if (!env->prog->aux->attach_func_proto->type) { 15054 /* Make sure programs that attach to void 15055 * hooks don't try to modify return value. 15056 */ 15057 range = tnum_range(1, 1); 15058 } 15059 break; 15060 15061 case BPF_PROG_TYPE_NETFILTER: 15062 range = tnum_range(NF_DROP, NF_ACCEPT); 15063 break; 15064 case BPF_PROG_TYPE_EXT: 15065 /* freplace program can return anything as its return value 15066 * depends on the to-be-replaced kernel func or bpf program. 15067 */ 15068 default: 15069 return 0; 15070 } 15071 15072 if (reg->type != SCALAR_VALUE) { 15073 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15074 reg_type_str(env, reg->type)); 15075 return -EINVAL; 15076 } 15077 15078 if (!tnum_in(range, reg->var_off)) { 15079 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15080 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15081 prog_type == BPF_PROG_TYPE_LSM && 15082 !prog->aux->attach_func_proto->type) 15083 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15084 return -EINVAL; 15085 } 15086 15087 if (!tnum_is_unknown(enforce_attach_type_range) && 15088 tnum_in(enforce_attach_type_range, reg->var_off)) 15089 env->prog->enforce_expected_attach_type = 1; 15090 return 0; 15091 } 15092 15093 /* non-recursive DFS pseudo code 15094 * 1 procedure DFS-iterative(G,v): 15095 * 2 label v as discovered 15096 * 3 let S be a stack 15097 * 4 S.push(v) 15098 * 5 while S is not empty 15099 * 6 t <- S.peek() 15100 * 7 if t is what we're looking for: 15101 * 8 return t 15102 * 9 for all edges e in G.adjacentEdges(t) do 15103 * 10 if edge e is already labelled 15104 * 11 continue with the next edge 15105 * 12 w <- G.adjacentVertex(t,e) 15106 * 13 if vertex w is not discovered and not explored 15107 * 14 label e as tree-edge 15108 * 15 label w as discovered 15109 * 16 S.push(w) 15110 * 17 continue at 5 15111 * 18 else if vertex w is discovered 15112 * 19 label e as back-edge 15113 * 20 else 15114 * 21 // vertex w is explored 15115 * 22 label e as forward- or cross-edge 15116 * 23 label t as explored 15117 * 24 S.pop() 15118 * 15119 * convention: 15120 * 0x10 - discovered 15121 * 0x11 - discovered and fall-through edge labelled 15122 * 0x12 - discovered and fall-through and branch edges labelled 15123 * 0x20 - explored 15124 */ 15125 15126 enum { 15127 DISCOVERED = 0x10, 15128 EXPLORED = 0x20, 15129 FALLTHROUGH = 1, 15130 BRANCH = 2, 15131 }; 15132 15133 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15134 { 15135 env->insn_aux_data[idx].prune_point = true; 15136 } 15137 15138 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15139 { 15140 return env->insn_aux_data[insn_idx].prune_point; 15141 } 15142 15143 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15144 { 15145 env->insn_aux_data[idx].force_checkpoint = true; 15146 } 15147 15148 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15149 { 15150 return env->insn_aux_data[insn_idx].force_checkpoint; 15151 } 15152 15153 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15154 { 15155 env->insn_aux_data[idx].calls_callback = true; 15156 } 15157 15158 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15159 { 15160 return env->insn_aux_data[insn_idx].calls_callback; 15161 } 15162 15163 enum { 15164 DONE_EXPLORING = 0, 15165 KEEP_EXPLORING = 1, 15166 }; 15167 15168 /* t, w, e - match pseudo-code above: 15169 * t - index of current instruction 15170 * w - next instruction 15171 * e - edge 15172 */ 15173 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15174 { 15175 int *insn_stack = env->cfg.insn_stack; 15176 int *insn_state = env->cfg.insn_state; 15177 15178 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15179 return DONE_EXPLORING; 15180 15181 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15182 return DONE_EXPLORING; 15183 15184 if (w < 0 || w >= env->prog->len) { 15185 verbose_linfo(env, t, "%d: ", t); 15186 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15187 return -EINVAL; 15188 } 15189 15190 if (e == BRANCH) { 15191 /* mark branch target for state pruning */ 15192 mark_prune_point(env, w); 15193 mark_jmp_point(env, w); 15194 } 15195 15196 if (insn_state[w] == 0) { 15197 /* tree-edge */ 15198 insn_state[t] = DISCOVERED | e; 15199 insn_state[w] = DISCOVERED; 15200 if (env->cfg.cur_stack >= env->prog->len) 15201 return -E2BIG; 15202 insn_stack[env->cfg.cur_stack++] = w; 15203 return KEEP_EXPLORING; 15204 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15205 if (env->bpf_capable) 15206 return DONE_EXPLORING; 15207 verbose_linfo(env, t, "%d: ", t); 15208 verbose_linfo(env, w, "%d: ", w); 15209 verbose(env, "back-edge from insn %d to %d\n", t, w); 15210 return -EINVAL; 15211 } else if (insn_state[w] == EXPLORED) { 15212 /* forward- or cross-edge */ 15213 insn_state[t] = DISCOVERED | e; 15214 } else { 15215 verbose(env, "insn state internal bug\n"); 15216 return -EFAULT; 15217 } 15218 return DONE_EXPLORING; 15219 } 15220 15221 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15222 struct bpf_verifier_env *env, 15223 bool visit_callee) 15224 { 15225 int ret, insn_sz; 15226 15227 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15228 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15229 if (ret) 15230 return ret; 15231 15232 mark_prune_point(env, t + insn_sz); 15233 /* when we exit from subprog, we need to record non-linear history */ 15234 mark_jmp_point(env, t + insn_sz); 15235 15236 if (visit_callee) { 15237 mark_prune_point(env, t); 15238 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15239 } 15240 return ret; 15241 } 15242 15243 /* Visits the instruction at index t and returns one of the following: 15244 * < 0 - an error occurred 15245 * DONE_EXPLORING - the instruction was fully explored 15246 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15247 */ 15248 static int visit_insn(int t, struct bpf_verifier_env *env) 15249 { 15250 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15251 int ret, off, insn_sz; 15252 15253 if (bpf_pseudo_func(insn)) 15254 return visit_func_call_insn(t, insns, env, true); 15255 15256 /* All non-branch instructions have a single fall-through edge. */ 15257 if (BPF_CLASS(insn->code) != BPF_JMP && 15258 BPF_CLASS(insn->code) != BPF_JMP32) { 15259 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15260 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15261 } 15262 15263 switch (BPF_OP(insn->code)) { 15264 case BPF_EXIT: 15265 return DONE_EXPLORING; 15266 15267 case BPF_CALL: 15268 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15269 /* Mark this call insn as a prune point to trigger 15270 * is_state_visited() check before call itself is 15271 * processed by __check_func_call(). Otherwise new 15272 * async state will be pushed for further exploration. 15273 */ 15274 mark_prune_point(env, t); 15275 /* For functions that invoke callbacks it is not known how many times 15276 * callback would be called. Verifier models callback calling functions 15277 * by repeatedly visiting callback bodies and returning to origin call 15278 * instruction. 15279 * In order to stop such iteration verifier needs to identify when a 15280 * state identical some state from a previous iteration is reached. 15281 * Check below forces creation of checkpoint before callback calling 15282 * instruction to allow search for such identical states. 15283 */ 15284 if (is_sync_callback_calling_insn(insn)) { 15285 mark_calls_callback(env, t); 15286 mark_force_checkpoint(env, t); 15287 mark_prune_point(env, t); 15288 mark_jmp_point(env, t); 15289 } 15290 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15291 struct bpf_kfunc_call_arg_meta meta; 15292 15293 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15294 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15295 mark_prune_point(env, t); 15296 /* Checking and saving state checkpoints at iter_next() call 15297 * is crucial for fast convergence of open-coded iterator loop 15298 * logic, so we need to force it. If we don't do that, 15299 * is_state_visited() might skip saving a checkpoint, causing 15300 * unnecessarily long sequence of not checkpointed 15301 * instructions and jumps, leading to exhaustion of jump 15302 * history buffer, and potentially other undesired outcomes. 15303 * It is expected that with correct open-coded iterators 15304 * convergence will happen quickly, so we don't run a risk of 15305 * exhausting memory. 15306 */ 15307 mark_force_checkpoint(env, t); 15308 } 15309 } 15310 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15311 15312 case BPF_JA: 15313 if (BPF_SRC(insn->code) != BPF_K) 15314 return -EINVAL; 15315 15316 if (BPF_CLASS(insn->code) == BPF_JMP) 15317 off = insn->off; 15318 else 15319 off = insn->imm; 15320 15321 /* unconditional jump with single edge */ 15322 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15323 if (ret) 15324 return ret; 15325 15326 mark_prune_point(env, t + off + 1); 15327 mark_jmp_point(env, t + off + 1); 15328 15329 return ret; 15330 15331 default: 15332 /* conditional jump with two edges */ 15333 mark_prune_point(env, t); 15334 15335 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15336 if (ret) 15337 return ret; 15338 15339 return push_insn(t, t + insn->off + 1, BRANCH, env); 15340 } 15341 } 15342 15343 /* non-recursive depth-first-search to detect loops in BPF program 15344 * loop == back-edge in directed graph 15345 */ 15346 static int check_cfg(struct bpf_verifier_env *env) 15347 { 15348 int insn_cnt = env->prog->len; 15349 int *insn_stack, *insn_state; 15350 int ret = 0; 15351 int i; 15352 15353 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15354 if (!insn_state) 15355 return -ENOMEM; 15356 15357 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15358 if (!insn_stack) { 15359 kvfree(insn_state); 15360 return -ENOMEM; 15361 } 15362 15363 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15364 insn_stack[0] = 0; /* 0 is the first instruction */ 15365 env->cfg.cur_stack = 1; 15366 15367 while (env->cfg.cur_stack > 0) { 15368 int t = insn_stack[env->cfg.cur_stack - 1]; 15369 15370 ret = visit_insn(t, env); 15371 switch (ret) { 15372 case DONE_EXPLORING: 15373 insn_state[t] = EXPLORED; 15374 env->cfg.cur_stack--; 15375 break; 15376 case KEEP_EXPLORING: 15377 break; 15378 default: 15379 if (ret > 0) { 15380 verbose(env, "visit_insn internal bug\n"); 15381 ret = -EFAULT; 15382 } 15383 goto err_free; 15384 } 15385 } 15386 15387 if (env->cfg.cur_stack < 0) { 15388 verbose(env, "pop stack internal bug\n"); 15389 ret = -EFAULT; 15390 goto err_free; 15391 } 15392 15393 for (i = 0; i < insn_cnt; i++) { 15394 struct bpf_insn *insn = &env->prog->insnsi[i]; 15395 15396 if (insn_state[i] != EXPLORED) { 15397 verbose(env, "unreachable insn %d\n", i); 15398 ret = -EINVAL; 15399 goto err_free; 15400 } 15401 if (bpf_is_ldimm64(insn)) { 15402 if (insn_state[i + 1] != 0) { 15403 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15404 ret = -EINVAL; 15405 goto err_free; 15406 } 15407 i++; /* skip second half of ldimm64 */ 15408 } 15409 } 15410 ret = 0; /* cfg looks good */ 15411 15412 err_free: 15413 kvfree(insn_state); 15414 kvfree(insn_stack); 15415 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15416 return ret; 15417 } 15418 15419 static int check_abnormal_return(struct bpf_verifier_env *env) 15420 { 15421 int i; 15422 15423 for (i = 1; i < env->subprog_cnt; i++) { 15424 if (env->subprog_info[i].has_ld_abs) { 15425 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15426 return -EINVAL; 15427 } 15428 if (env->subprog_info[i].has_tail_call) { 15429 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15430 return -EINVAL; 15431 } 15432 } 15433 return 0; 15434 } 15435 15436 /* The minimum supported BTF func info size */ 15437 #define MIN_BPF_FUNCINFO_SIZE 8 15438 #define MAX_FUNCINFO_REC_SIZE 252 15439 15440 static int check_btf_func(struct bpf_verifier_env *env, 15441 const union bpf_attr *attr, 15442 bpfptr_t uattr) 15443 { 15444 const struct btf_type *type, *func_proto, *ret_type; 15445 u32 i, nfuncs, urec_size, min_size; 15446 u32 krec_size = sizeof(struct bpf_func_info); 15447 struct bpf_func_info *krecord; 15448 struct bpf_func_info_aux *info_aux = NULL; 15449 struct bpf_prog *prog; 15450 const struct btf *btf; 15451 bpfptr_t urecord; 15452 u32 prev_offset = 0; 15453 bool scalar_return; 15454 int ret = -ENOMEM; 15455 15456 nfuncs = attr->func_info_cnt; 15457 if (!nfuncs) { 15458 if (check_abnormal_return(env)) 15459 return -EINVAL; 15460 return 0; 15461 } 15462 15463 if (nfuncs != env->subprog_cnt) { 15464 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15465 return -EINVAL; 15466 } 15467 15468 urec_size = attr->func_info_rec_size; 15469 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15470 urec_size > MAX_FUNCINFO_REC_SIZE || 15471 urec_size % sizeof(u32)) { 15472 verbose(env, "invalid func info rec size %u\n", urec_size); 15473 return -EINVAL; 15474 } 15475 15476 prog = env->prog; 15477 btf = prog->aux->btf; 15478 15479 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15480 min_size = min_t(u32, krec_size, urec_size); 15481 15482 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15483 if (!krecord) 15484 return -ENOMEM; 15485 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15486 if (!info_aux) 15487 goto err_free; 15488 15489 for (i = 0; i < nfuncs; i++) { 15490 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15491 if (ret) { 15492 if (ret == -E2BIG) { 15493 verbose(env, "nonzero tailing record in func info"); 15494 /* set the size kernel expects so loader can zero 15495 * out the rest of the record. 15496 */ 15497 if (copy_to_bpfptr_offset(uattr, 15498 offsetof(union bpf_attr, func_info_rec_size), 15499 &min_size, sizeof(min_size))) 15500 ret = -EFAULT; 15501 } 15502 goto err_free; 15503 } 15504 15505 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15506 ret = -EFAULT; 15507 goto err_free; 15508 } 15509 15510 /* check insn_off */ 15511 ret = -EINVAL; 15512 if (i == 0) { 15513 if (krecord[i].insn_off) { 15514 verbose(env, 15515 "nonzero insn_off %u for the first func info record", 15516 krecord[i].insn_off); 15517 goto err_free; 15518 } 15519 } else if (krecord[i].insn_off <= prev_offset) { 15520 verbose(env, 15521 "same or smaller insn offset (%u) than previous func info record (%u)", 15522 krecord[i].insn_off, prev_offset); 15523 goto err_free; 15524 } 15525 15526 if (env->subprog_info[i].start != krecord[i].insn_off) { 15527 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15528 goto err_free; 15529 } 15530 15531 /* check type_id */ 15532 type = btf_type_by_id(btf, krecord[i].type_id); 15533 if (!type || !btf_type_is_func(type)) { 15534 verbose(env, "invalid type id %d in func info", 15535 krecord[i].type_id); 15536 goto err_free; 15537 } 15538 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15539 15540 func_proto = btf_type_by_id(btf, type->type); 15541 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15542 /* btf_func_check() already verified it during BTF load */ 15543 goto err_free; 15544 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15545 scalar_return = 15546 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15547 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15548 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15549 goto err_free; 15550 } 15551 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15552 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15553 goto err_free; 15554 } 15555 15556 prev_offset = krecord[i].insn_off; 15557 bpfptr_add(&urecord, urec_size); 15558 } 15559 15560 prog->aux->func_info = krecord; 15561 prog->aux->func_info_cnt = nfuncs; 15562 prog->aux->func_info_aux = info_aux; 15563 return 0; 15564 15565 err_free: 15566 kvfree(krecord); 15567 kfree(info_aux); 15568 return ret; 15569 } 15570 15571 static void adjust_btf_func(struct bpf_verifier_env *env) 15572 { 15573 struct bpf_prog_aux *aux = env->prog->aux; 15574 int i; 15575 15576 if (!aux->func_info) 15577 return; 15578 15579 for (i = 0; i < env->subprog_cnt; i++) 15580 aux->func_info[i].insn_off = env->subprog_info[i].start; 15581 } 15582 15583 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15584 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15585 15586 static int check_btf_line(struct bpf_verifier_env *env, 15587 const union bpf_attr *attr, 15588 bpfptr_t uattr) 15589 { 15590 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15591 struct bpf_subprog_info *sub; 15592 struct bpf_line_info *linfo; 15593 struct bpf_prog *prog; 15594 const struct btf *btf; 15595 bpfptr_t ulinfo; 15596 int err; 15597 15598 nr_linfo = attr->line_info_cnt; 15599 if (!nr_linfo) 15600 return 0; 15601 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15602 return -EINVAL; 15603 15604 rec_size = attr->line_info_rec_size; 15605 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15606 rec_size > MAX_LINEINFO_REC_SIZE || 15607 rec_size & (sizeof(u32) - 1)) 15608 return -EINVAL; 15609 15610 /* Need to zero it in case the userspace may 15611 * pass in a smaller bpf_line_info object. 15612 */ 15613 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15614 GFP_KERNEL | __GFP_NOWARN); 15615 if (!linfo) 15616 return -ENOMEM; 15617 15618 prog = env->prog; 15619 btf = prog->aux->btf; 15620 15621 s = 0; 15622 sub = env->subprog_info; 15623 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15624 expected_size = sizeof(struct bpf_line_info); 15625 ncopy = min_t(u32, expected_size, rec_size); 15626 for (i = 0; i < nr_linfo; i++) { 15627 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15628 if (err) { 15629 if (err == -E2BIG) { 15630 verbose(env, "nonzero tailing record in line_info"); 15631 if (copy_to_bpfptr_offset(uattr, 15632 offsetof(union bpf_attr, line_info_rec_size), 15633 &expected_size, sizeof(expected_size))) 15634 err = -EFAULT; 15635 } 15636 goto err_free; 15637 } 15638 15639 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15640 err = -EFAULT; 15641 goto err_free; 15642 } 15643 15644 /* 15645 * Check insn_off to ensure 15646 * 1) strictly increasing AND 15647 * 2) bounded by prog->len 15648 * 15649 * The linfo[0].insn_off == 0 check logically falls into 15650 * the later "missing bpf_line_info for func..." case 15651 * because the first linfo[0].insn_off must be the 15652 * first sub also and the first sub must have 15653 * subprog_info[0].start == 0. 15654 */ 15655 if ((i && linfo[i].insn_off <= prev_offset) || 15656 linfo[i].insn_off >= prog->len) { 15657 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15658 i, linfo[i].insn_off, prev_offset, 15659 prog->len); 15660 err = -EINVAL; 15661 goto err_free; 15662 } 15663 15664 if (!prog->insnsi[linfo[i].insn_off].code) { 15665 verbose(env, 15666 "Invalid insn code at line_info[%u].insn_off\n", 15667 i); 15668 err = -EINVAL; 15669 goto err_free; 15670 } 15671 15672 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15673 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15674 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15675 err = -EINVAL; 15676 goto err_free; 15677 } 15678 15679 if (s != env->subprog_cnt) { 15680 if (linfo[i].insn_off == sub[s].start) { 15681 sub[s].linfo_idx = i; 15682 s++; 15683 } else if (sub[s].start < linfo[i].insn_off) { 15684 verbose(env, "missing bpf_line_info for func#%u\n", s); 15685 err = -EINVAL; 15686 goto err_free; 15687 } 15688 } 15689 15690 prev_offset = linfo[i].insn_off; 15691 bpfptr_add(&ulinfo, rec_size); 15692 } 15693 15694 if (s != env->subprog_cnt) { 15695 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15696 env->subprog_cnt - s, s); 15697 err = -EINVAL; 15698 goto err_free; 15699 } 15700 15701 prog->aux->linfo = linfo; 15702 prog->aux->nr_linfo = nr_linfo; 15703 15704 return 0; 15705 15706 err_free: 15707 kvfree(linfo); 15708 return err; 15709 } 15710 15711 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15712 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15713 15714 static int check_core_relo(struct bpf_verifier_env *env, 15715 const union bpf_attr *attr, 15716 bpfptr_t uattr) 15717 { 15718 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15719 struct bpf_core_relo core_relo = {}; 15720 struct bpf_prog *prog = env->prog; 15721 const struct btf *btf = prog->aux->btf; 15722 struct bpf_core_ctx ctx = { 15723 .log = &env->log, 15724 .btf = btf, 15725 }; 15726 bpfptr_t u_core_relo; 15727 int err; 15728 15729 nr_core_relo = attr->core_relo_cnt; 15730 if (!nr_core_relo) 15731 return 0; 15732 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15733 return -EINVAL; 15734 15735 rec_size = attr->core_relo_rec_size; 15736 if (rec_size < MIN_CORE_RELO_SIZE || 15737 rec_size > MAX_CORE_RELO_SIZE || 15738 rec_size % sizeof(u32)) 15739 return -EINVAL; 15740 15741 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15742 expected_size = sizeof(struct bpf_core_relo); 15743 ncopy = min_t(u32, expected_size, rec_size); 15744 15745 /* Unlike func_info and line_info, copy and apply each CO-RE 15746 * relocation record one at a time. 15747 */ 15748 for (i = 0; i < nr_core_relo; i++) { 15749 /* future proofing when sizeof(bpf_core_relo) changes */ 15750 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15751 if (err) { 15752 if (err == -E2BIG) { 15753 verbose(env, "nonzero tailing record in core_relo"); 15754 if (copy_to_bpfptr_offset(uattr, 15755 offsetof(union bpf_attr, core_relo_rec_size), 15756 &expected_size, sizeof(expected_size))) 15757 err = -EFAULT; 15758 } 15759 break; 15760 } 15761 15762 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15763 err = -EFAULT; 15764 break; 15765 } 15766 15767 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15768 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15769 i, core_relo.insn_off, prog->len); 15770 err = -EINVAL; 15771 break; 15772 } 15773 15774 err = bpf_core_apply(&ctx, &core_relo, i, 15775 &prog->insnsi[core_relo.insn_off / 8]); 15776 if (err) 15777 break; 15778 bpfptr_add(&u_core_relo, rec_size); 15779 } 15780 return err; 15781 } 15782 15783 static int check_btf_info(struct bpf_verifier_env *env, 15784 const union bpf_attr *attr, 15785 bpfptr_t uattr) 15786 { 15787 struct btf *btf; 15788 int err; 15789 15790 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15791 if (check_abnormal_return(env)) 15792 return -EINVAL; 15793 return 0; 15794 } 15795 15796 btf = btf_get_by_fd(attr->prog_btf_fd); 15797 if (IS_ERR(btf)) 15798 return PTR_ERR(btf); 15799 if (btf_is_kernel(btf)) { 15800 btf_put(btf); 15801 return -EACCES; 15802 } 15803 env->prog->aux->btf = btf; 15804 15805 err = check_btf_func(env, attr, uattr); 15806 if (err) 15807 return err; 15808 15809 err = check_btf_line(env, attr, uattr); 15810 if (err) 15811 return err; 15812 15813 err = check_core_relo(env, attr, uattr); 15814 if (err) 15815 return err; 15816 15817 return 0; 15818 } 15819 15820 /* check %cur's range satisfies %old's */ 15821 static bool range_within(struct bpf_reg_state *old, 15822 struct bpf_reg_state *cur) 15823 { 15824 return old->umin_value <= cur->umin_value && 15825 old->umax_value >= cur->umax_value && 15826 old->smin_value <= cur->smin_value && 15827 old->smax_value >= cur->smax_value && 15828 old->u32_min_value <= cur->u32_min_value && 15829 old->u32_max_value >= cur->u32_max_value && 15830 old->s32_min_value <= cur->s32_min_value && 15831 old->s32_max_value >= cur->s32_max_value; 15832 } 15833 15834 /* If in the old state two registers had the same id, then they need to have 15835 * the same id in the new state as well. But that id could be different from 15836 * the old state, so we need to track the mapping from old to new ids. 15837 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15838 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15839 * regs with a different old id could still have new id 9, we don't care about 15840 * that. 15841 * So we look through our idmap to see if this old id has been seen before. If 15842 * so, we require the new id to match; otherwise, we add the id pair to the map. 15843 */ 15844 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15845 { 15846 struct bpf_id_pair *map = idmap->map; 15847 unsigned int i; 15848 15849 /* either both IDs should be set or both should be zero */ 15850 if (!!old_id != !!cur_id) 15851 return false; 15852 15853 if (old_id == 0) /* cur_id == 0 as well */ 15854 return true; 15855 15856 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15857 if (!map[i].old) { 15858 /* Reached an empty slot; haven't seen this id before */ 15859 map[i].old = old_id; 15860 map[i].cur = cur_id; 15861 return true; 15862 } 15863 if (map[i].old == old_id) 15864 return map[i].cur == cur_id; 15865 if (map[i].cur == cur_id) 15866 return false; 15867 } 15868 /* We ran out of idmap slots, which should be impossible */ 15869 WARN_ON_ONCE(1); 15870 return false; 15871 } 15872 15873 /* Similar to check_ids(), but allocate a unique temporary ID 15874 * for 'old_id' or 'cur_id' of zero. 15875 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15876 */ 15877 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15878 { 15879 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15880 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15881 15882 return check_ids(old_id, cur_id, idmap); 15883 } 15884 15885 static void clean_func_state(struct bpf_verifier_env *env, 15886 struct bpf_func_state *st) 15887 { 15888 enum bpf_reg_liveness live; 15889 int i, j; 15890 15891 for (i = 0; i < BPF_REG_FP; i++) { 15892 live = st->regs[i].live; 15893 /* liveness must not touch this register anymore */ 15894 st->regs[i].live |= REG_LIVE_DONE; 15895 if (!(live & REG_LIVE_READ)) 15896 /* since the register is unused, clear its state 15897 * to make further comparison simpler 15898 */ 15899 __mark_reg_not_init(env, &st->regs[i]); 15900 } 15901 15902 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15903 live = st->stack[i].spilled_ptr.live; 15904 /* liveness must not touch this stack slot anymore */ 15905 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15906 if (!(live & REG_LIVE_READ)) { 15907 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15908 for (j = 0; j < BPF_REG_SIZE; j++) 15909 st->stack[i].slot_type[j] = STACK_INVALID; 15910 } 15911 } 15912 } 15913 15914 static void clean_verifier_state(struct bpf_verifier_env *env, 15915 struct bpf_verifier_state *st) 15916 { 15917 int i; 15918 15919 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15920 /* all regs in this state in all frames were already marked */ 15921 return; 15922 15923 for (i = 0; i <= st->curframe; i++) 15924 clean_func_state(env, st->frame[i]); 15925 } 15926 15927 /* the parentage chains form a tree. 15928 * the verifier states are added to state lists at given insn and 15929 * pushed into state stack for future exploration. 15930 * when the verifier reaches bpf_exit insn some of the verifer states 15931 * stored in the state lists have their final liveness state already, 15932 * but a lot of states will get revised from liveness point of view when 15933 * the verifier explores other branches. 15934 * Example: 15935 * 1: r0 = 1 15936 * 2: if r1 == 100 goto pc+1 15937 * 3: r0 = 2 15938 * 4: exit 15939 * when the verifier reaches exit insn the register r0 in the state list of 15940 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15941 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15942 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15943 * 15944 * Since the verifier pushes the branch states as it sees them while exploring 15945 * the program the condition of walking the branch instruction for the second 15946 * time means that all states below this branch were already explored and 15947 * their final liveness marks are already propagated. 15948 * Hence when the verifier completes the search of state list in is_state_visited() 15949 * we can call this clean_live_states() function to mark all liveness states 15950 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15951 * will not be used. 15952 * This function also clears the registers and stack for states that !READ 15953 * to simplify state merging. 15954 * 15955 * Important note here that walking the same branch instruction in the callee 15956 * doesn't meant that the states are DONE. The verifier has to compare 15957 * the callsites 15958 */ 15959 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15960 struct bpf_verifier_state *cur) 15961 { 15962 struct bpf_verifier_state_list *sl; 15963 15964 sl = *explored_state(env, insn); 15965 while (sl) { 15966 if (sl->state.branches) 15967 goto next; 15968 if (sl->state.insn_idx != insn || 15969 !same_callsites(&sl->state, cur)) 15970 goto next; 15971 clean_verifier_state(env, &sl->state); 15972 next: 15973 sl = sl->next; 15974 } 15975 } 15976 15977 static bool regs_exact(const struct bpf_reg_state *rold, 15978 const struct bpf_reg_state *rcur, 15979 struct bpf_idmap *idmap) 15980 { 15981 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15982 check_ids(rold->id, rcur->id, idmap) && 15983 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15984 } 15985 15986 /* Returns true if (rold safe implies rcur safe) */ 15987 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15988 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15989 { 15990 if (exact) 15991 return regs_exact(rold, rcur, idmap); 15992 15993 if (!(rold->live & REG_LIVE_READ)) 15994 /* explored state didn't use this */ 15995 return true; 15996 if (rold->type == NOT_INIT) 15997 /* explored state can't have used this */ 15998 return true; 15999 if (rcur->type == NOT_INIT) 16000 return false; 16001 16002 /* Enforce that register types have to match exactly, including their 16003 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16004 * rule. 16005 * 16006 * One can make a point that using a pointer register as unbounded 16007 * SCALAR would be technically acceptable, but this could lead to 16008 * pointer leaks because scalars are allowed to leak while pointers 16009 * are not. We could make this safe in special cases if root is 16010 * calling us, but it's probably not worth the hassle. 16011 * 16012 * Also, register types that are *not* MAYBE_NULL could technically be 16013 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16014 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16015 * to the same map). 16016 * However, if the old MAYBE_NULL register then got NULL checked, 16017 * doing so could have affected others with the same id, and we can't 16018 * check for that because we lost the id when we converted to 16019 * a non-MAYBE_NULL variant. 16020 * So, as a general rule we don't allow mixing MAYBE_NULL and 16021 * non-MAYBE_NULL registers as well. 16022 */ 16023 if (rold->type != rcur->type) 16024 return false; 16025 16026 switch (base_type(rold->type)) { 16027 case SCALAR_VALUE: 16028 if (env->explore_alu_limits) { 16029 /* explore_alu_limits disables tnum_in() and range_within() 16030 * logic and requires everything to be strict 16031 */ 16032 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16033 check_scalar_ids(rold->id, rcur->id, idmap); 16034 } 16035 if (!rold->precise) 16036 return true; 16037 /* Why check_ids() for scalar registers? 16038 * 16039 * Consider the following BPF code: 16040 * 1: r6 = ... unbound scalar, ID=a ... 16041 * 2: r7 = ... unbound scalar, ID=b ... 16042 * 3: if (r6 > r7) goto +1 16043 * 4: r6 = r7 16044 * 5: if (r6 > X) goto ... 16045 * 6: ... memory operation using r7 ... 16046 * 16047 * First verification path is [1-6]: 16048 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16049 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16050 * r7 <= X, because r6 and r7 share same id. 16051 * Next verification path is [1-4, 6]. 16052 * 16053 * Instruction (6) would be reached in two states: 16054 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16055 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16056 * 16057 * Use check_ids() to distinguish these states. 16058 * --- 16059 * Also verify that new value satisfies old value range knowledge. 16060 */ 16061 return range_within(rold, rcur) && 16062 tnum_in(rold->var_off, rcur->var_off) && 16063 check_scalar_ids(rold->id, rcur->id, idmap); 16064 case PTR_TO_MAP_KEY: 16065 case PTR_TO_MAP_VALUE: 16066 case PTR_TO_MEM: 16067 case PTR_TO_BUF: 16068 case PTR_TO_TP_BUFFER: 16069 /* If the new min/max/var_off satisfy the old ones and 16070 * everything else matches, we are OK. 16071 */ 16072 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16073 range_within(rold, rcur) && 16074 tnum_in(rold->var_off, rcur->var_off) && 16075 check_ids(rold->id, rcur->id, idmap) && 16076 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16077 case PTR_TO_PACKET_META: 16078 case PTR_TO_PACKET: 16079 /* We must have at least as much range as the old ptr 16080 * did, so that any accesses which were safe before are 16081 * still safe. This is true even if old range < old off, 16082 * since someone could have accessed through (ptr - k), or 16083 * even done ptr -= k in a register, to get a safe access. 16084 */ 16085 if (rold->range > rcur->range) 16086 return false; 16087 /* If the offsets don't match, we can't trust our alignment; 16088 * nor can we be sure that we won't fall out of range. 16089 */ 16090 if (rold->off != rcur->off) 16091 return false; 16092 /* id relations must be preserved */ 16093 if (!check_ids(rold->id, rcur->id, idmap)) 16094 return false; 16095 /* new val must satisfy old val knowledge */ 16096 return range_within(rold, rcur) && 16097 tnum_in(rold->var_off, rcur->var_off); 16098 case PTR_TO_STACK: 16099 /* two stack pointers are equal only if they're pointing to 16100 * the same stack frame, since fp-8 in foo != fp-8 in bar 16101 */ 16102 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16103 default: 16104 return regs_exact(rold, rcur, idmap); 16105 } 16106 } 16107 16108 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16109 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16110 { 16111 int i, spi; 16112 16113 /* walk slots of the explored stack and ignore any additional 16114 * slots in the current stack, since explored(safe) state 16115 * didn't use them 16116 */ 16117 for (i = 0; i < old->allocated_stack; i++) { 16118 struct bpf_reg_state *old_reg, *cur_reg; 16119 16120 spi = i / BPF_REG_SIZE; 16121 16122 if (exact && 16123 (i >= cur->allocated_stack || 16124 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16125 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 16126 return false; 16127 16128 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16129 i += BPF_REG_SIZE - 1; 16130 /* explored state didn't use this */ 16131 continue; 16132 } 16133 16134 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16135 continue; 16136 16137 if (env->allow_uninit_stack && 16138 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16139 continue; 16140 16141 /* explored stack has more populated slots than current stack 16142 * and these slots were used 16143 */ 16144 if (i >= cur->allocated_stack) 16145 return false; 16146 16147 /* if old state was safe with misc data in the stack 16148 * it will be safe with zero-initialized stack. 16149 * The opposite is not true 16150 */ 16151 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16152 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16153 continue; 16154 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16155 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16156 /* Ex: old explored (safe) state has STACK_SPILL in 16157 * this stack slot, but current has STACK_MISC -> 16158 * this verifier states are not equivalent, 16159 * return false to continue verification of this path 16160 */ 16161 return false; 16162 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16163 continue; 16164 /* Both old and cur are having same slot_type */ 16165 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16166 case STACK_SPILL: 16167 /* when explored and current stack slot are both storing 16168 * spilled registers, check that stored pointers types 16169 * are the same as well. 16170 * Ex: explored safe path could have stored 16171 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16172 * but current path has stored: 16173 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16174 * such verifier states are not equivalent. 16175 * return false to continue verification of this path 16176 */ 16177 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16178 &cur->stack[spi].spilled_ptr, idmap, exact)) 16179 return false; 16180 break; 16181 case STACK_DYNPTR: 16182 old_reg = &old->stack[spi].spilled_ptr; 16183 cur_reg = &cur->stack[spi].spilled_ptr; 16184 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16185 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16186 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16187 return false; 16188 break; 16189 case STACK_ITER: 16190 old_reg = &old->stack[spi].spilled_ptr; 16191 cur_reg = &cur->stack[spi].spilled_ptr; 16192 /* iter.depth is not compared between states as it 16193 * doesn't matter for correctness and would otherwise 16194 * prevent convergence; we maintain it only to prevent 16195 * infinite loop check triggering, see 16196 * iter_active_depths_differ() 16197 */ 16198 if (old_reg->iter.btf != cur_reg->iter.btf || 16199 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16200 old_reg->iter.state != cur_reg->iter.state || 16201 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16202 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16203 return false; 16204 break; 16205 case STACK_MISC: 16206 case STACK_ZERO: 16207 case STACK_INVALID: 16208 continue; 16209 /* Ensure that new unhandled slot types return false by default */ 16210 default: 16211 return false; 16212 } 16213 } 16214 return true; 16215 } 16216 16217 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16218 struct bpf_idmap *idmap) 16219 { 16220 int i; 16221 16222 if (old->acquired_refs != cur->acquired_refs) 16223 return false; 16224 16225 for (i = 0; i < old->acquired_refs; i++) { 16226 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16227 return false; 16228 } 16229 16230 return true; 16231 } 16232 16233 /* compare two verifier states 16234 * 16235 * all states stored in state_list are known to be valid, since 16236 * verifier reached 'bpf_exit' instruction through them 16237 * 16238 * this function is called when verifier exploring different branches of 16239 * execution popped from the state stack. If it sees an old state that has 16240 * more strict register state and more strict stack state then this execution 16241 * branch doesn't need to be explored further, since verifier already 16242 * concluded that more strict state leads to valid finish. 16243 * 16244 * Therefore two states are equivalent if register state is more conservative 16245 * and explored stack state is more conservative than the current one. 16246 * Example: 16247 * explored current 16248 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16249 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16250 * 16251 * In other words if current stack state (one being explored) has more 16252 * valid slots than old one that already passed validation, it means 16253 * the verifier can stop exploring and conclude that current state is valid too 16254 * 16255 * Similarly with registers. If explored state has register type as invalid 16256 * whereas register type in current state is meaningful, it means that 16257 * the current state will reach 'bpf_exit' instruction safely 16258 */ 16259 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16260 struct bpf_func_state *cur, bool exact) 16261 { 16262 int i; 16263 16264 if (old->callback_depth > cur->callback_depth) 16265 return false; 16266 16267 for (i = 0; i < MAX_BPF_REG; i++) 16268 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16269 &env->idmap_scratch, exact)) 16270 return false; 16271 16272 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16273 return false; 16274 16275 if (!refsafe(old, cur, &env->idmap_scratch)) 16276 return false; 16277 16278 return true; 16279 } 16280 16281 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16282 { 16283 env->idmap_scratch.tmp_id_gen = env->id_gen; 16284 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16285 } 16286 16287 static bool states_equal(struct bpf_verifier_env *env, 16288 struct bpf_verifier_state *old, 16289 struct bpf_verifier_state *cur, 16290 bool exact) 16291 { 16292 int i; 16293 16294 if (old->curframe != cur->curframe) 16295 return false; 16296 16297 reset_idmap_scratch(env); 16298 16299 /* Verification state from speculative execution simulation 16300 * must never prune a non-speculative execution one. 16301 */ 16302 if (old->speculative && !cur->speculative) 16303 return false; 16304 16305 if (old->active_lock.ptr != cur->active_lock.ptr) 16306 return false; 16307 16308 /* Old and cur active_lock's have to be either both present 16309 * or both absent. 16310 */ 16311 if (!!old->active_lock.id != !!cur->active_lock.id) 16312 return false; 16313 16314 if (old->active_lock.id && 16315 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16316 return false; 16317 16318 if (old->active_rcu_lock != cur->active_rcu_lock) 16319 return false; 16320 16321 /* for states to be equal callsites have to be the same 16322 * and all frame states need to be equivalent 16323 */ 16324 for (i = 0; i <= old->curframe; i++) { 16325 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16326 return false; 16327 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16328 return false; 16329 } 16330 return true; 16331 } 16332 16333 /* Return 0 if no propagation happened. Return negative error code if error 16334 * happened. Otherwise, return the propagated bit. 16335 */ 16336 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16337 struct bpf_reg_state *reg, 16338 struct bpf_reg_state *parent_reg) 16339 { 16340 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16341 u8 flag = reg->live & REG_LIVE_READ; 16342 int err; 16343 16344 /* When comes here, read flags of PARENT_REG or REG could be any of 16345 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16346 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16347 */ 16348 if (parent_flag == REG_LIVE_READ64 || 16349 /* Or if there is no read flag from REG. */ 16350 !flag || 16351 /* Or if the read flag from REG is the same as PARENT_REG. */ 16352 parent_flag == flag) 16353 return 0; 16354 16355 err = mark_reg_read(env, reg, parent_reg, flag); 16356 if (err) 16357 return err; 16358 16359 return flag; 16360 } 16361 16362 /* A write screens off any subsequent reads; but write marks come from the 16363 * straight-line code between a state and its parent. When we arrive at an 16364 * equivalent state (jump target or such) we didn't arrive by the straight-line 16365 * code, so read marks in the state must propagate to the parent regardless 16366 * of the state's write marks. That's what 'parent == state->parent' comparison 16367 * in mark_reg_read() is for. 16368 */ 16369 static int propagate_liveness(struct bpf_verifier_env *env, 16370 const struct bpf_verifier_state *vstate, 16371 struct bpf_verifier_state *vparent) 16372 { 16373 struct bpf_reg_state *state_reg, *parent_reg; 16374 struct bpf_func_state *state, *parent; 16375 int i, frame, err = 0; 16376 16377 if (vparent->curframe != vstate->curframe) { 16378 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16379 vparent->curframe, vstate->curframe); 16380 return -EFAULT; 16381 } 16382 /* Propagate read liveness of registers... */ 16383 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16384 for (frame = 0; frame <= vstate->curframe; frame++) { 16385 parent = vparent->frame[frame]; 16386 state = vstate->frame[frame]; 16387 parent_reg = parent->regs; 16388 state_reg = state->regs; 16389 /* We don't need to worry about FP liveness, it's read-only */ 16390 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16391 err = propagate_liveness_reg(env, &state_reg[i], 16392 &parent_reg[i]); 16393 if (err < 0) 16394 return err; 16395 if (err == REG_LIVE_READ64) 16396 mark_insn_zext(env, &parent_reg[i]); 16397 } 16398 16399 /* Propagate stack slots. */ 16400 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16401 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16402 parent_reg = &parent->stack[i].spilled_ptr; 16403 state_reg = &state->stack[i].spilled_ptr; 16404 err = propagate_liveness_reg(env, state_reg, 16405 parent_reg); 16406 if (err < 0) 16407 return err; 16408 } 16409 } 16410 return 0; 16411 } 16412 16413 /* find precise scalars in the previous equivalent state and 16414 * propagate them into the current state 16415 */ 16416 static int propagate_precision(struct bpf_verifier_env *env, 16417 const struct bpf_verifier_state *old) 16418 { 16419 struct bpf_reg_state *state_reg; 16420 struct bpf_func_state *state; 16421 int i, err = 0, fr; 16422 bool first; 16423 16424 for (fr = old->curframe; fr >= 0; fr--) { 16425 state = old->frame[fr]; 16426 state_reg = state->regs; 16427 first = true; 16428 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16429 if (state_reg->type != SCALAR_VALUE || 16430 !state_reg->precise || 16431 !(state_reg->live & REG_LIVE_READ)) 16432 continue; 16433 if (env->log.level & BPF_LOG_LEVEL2) { 16434 if (first) 16435 verbose(env, "frame %d: propagating r%d", fr, i); 16436 else 16437 verbose(env, ",r%d", i); 16438 } 16439 bt_set_frame_reg(&env->bt, fr, i); 16440 first = false; 16441 } 16442 16443 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16444 if (!is_spilled_reg(&state->stack[i])) 16445 continue; 16446 state_reg = &state->stack[i].spilled_ptr; 16447 if (state_reg->type != SCALAR_VALUE || 16448 !state_reg->precise || 16449 !(state_reg->live & REG_LIVE_READ)) 16450 continue; 16451 if (env->log.level & BPF_LOG_LEVEL2) { 16452 if (first) 16453 verbose(env, "frame %d: propagating fp%d", 16454 fr, (-i - 1) * BPF_REG_SIZE); 16455 else 16456 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16457 } 16458 bt_set_frame_slot(&env->bt, fr, i); 16459 first = false; 16460 } 16461 if (!first) 16462 verbose(env, "\n"); 16463 } 16464 16465 err = mark_chain_precision_batch(env); 16466 if (err < 0) 16467 return err; 16468 16469 return 0; 16470 } 16471 16472 static bool states_maybe_looping(struct bpf_verifier_state *old, 16473 struct bpf_verifier_state *cur) 16474 { 16475 struct bpf_func_state *fold, *fcur; 16476 int i, fr = cur->curframe; 16477 16478 if (old->curframe != fr) 16479 return false; 16480 16481 fold = old->frame[fr]; 16482 fcur = cur->frame[fr]; 16483 for (i = 0; i < MAX_BPF_REG; i++) 16484 if (memcmp(&fold->regs[i], &fcur->regs[i], 16485 offsetof(struct bpf_reg_state, parent))) 16486 return false; 16487 return true; 16488 } 16489 16490 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16491 { 16492 return env->insn_aux_data[insn_idx].is_iter_next; 16493 } 16494 16495 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16496 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16497 * states to match, which otherwise would look like an infinite loop. So while 16498 * iter_next() calls are taken care of, we still need to be careful and 16499 * prevent erroneous and too eager declaration of "ininite loop", when 16500 * iterators are involved. 16501 * 16502 * Here's a situation in pseudo-BPF assembly form: 16503 * 16504 * 0: again: ; set up iter_next() call args 16505 * 1: r1 = &it ; <CHECKPOINT HERE> 16506 * 2: call bpf_iter_num_next ; this is iter_next() call 16507 * 3: if r0 == 0 goto done 16508 * 4: ... something useful here ... 16509 * 5: goto again ; another iteration 16510 * 6: done: 16511 * 7: r1 = &it 16512 * 8: call bpf_iter_num_destroy ; clean up iter state 16513 * 9: exit 16514 * 16515 * This is a typical loop. Let's assume that we have a prune point at 1:, 16516 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16517 * again`, assuming other heuristics don't get in a way). 16518 * 16519 * When we first time come to 1:, let's say we have some state X. We proceed 16520 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16521 * Now we come back to validate that forked ACTIVE state. We proceed through 16522 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16523 * are converging. But the problem is that we don't know that yet, as this 16524 * convergence has to happen at iter_next() call site only. So if nothing is 16525 * done, at 1: verifier will use bounded loop logic and declare infinite 16526 * looping (and would be *technically* correct, if not for iterator's 16527 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16528 * don't want that. So what we do in process_iter_next_call() when we go on 16529 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16530 * a different iteration. So when we suspect an infinite loop, we additionally 16531 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16532 * pretend we are not looping and wait for next iter_next() call. 16533 * 16534 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16535 * loop, because that would actually mean infinite loop, as DRAINED state is 16536 * "sticky", and so we'll keep returning into the same instruction with the 16537 * same state (at least in one of possible code paths). 16538 * 16539 * This approach allows to keep infinite loop heuristic even in the face of 16540 * active iterator. E.g., C snippet below is and will be detected as 16541 * inifintely looping: 16542 * 16543 * struct bpf_iter_num it; 16544 * int *p, x; 16545 * 16546 * bpf_iter_num_new(&it, 0, 10); 16547 * while ((p = bpf_iter_num_next(&t))) { 16548 * x = p; 16549 * while (x--) {} // <<-- infinite loop here 16550 * } 16551 * 16552 */ 16553 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16554 { 16555 struct bpf_reg_state *slot, *cur_slot; 16556 struct bpf_func_state *state; 16557 int i, fr; 16558 16559 for (fr = old->curframe; fr >= 0; fr--) { 16560 state = old->frame[fr]; 16561 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16562 if (state->stack[i].slot_type[0] != STACK_ITER) 16563 continue; 16564 16565 slot = &state->stack[i].spilled_ptr; 16566 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16567 continue; 16568 16569 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16570 if (cur_slot->iter.depth != slot->iter.depth) 16571 return true; 16572 } 16573 } 16574 return false; 16575 } 16576 16577 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16578 { 16579 struct bpf_verifier_state_list *new_sl; 16580 struct bpf_verifier_state_list *sl, **pprev; 16581 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16582 int i, j, n, err, states_cnt = 0; 16583 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16584 bool add_new_state = force_new_state; 16585 bool force_exact; 16586 16587 /* bpf progs typically have pruning point every 4 instructions 16588 * http://vger.kernel.org/bpfconf2019.html#session-1 16589 * Do not add new state for future pruning if the verifier hasn't seen 16590 * at least 2 jumps and at least 8 instructions. 16591 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16592 * In tests that amounts to up to 50% reduction into total verifier 16593 * memory consumption and 20% verifier time speedup. 16594 */ 16595 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16596 env->insn_processed - env->prev_insn_processed >= 8) 16597 add_new_state = true; 16598 16599 pprev = explored_state(env, insn_idx); 16600 sl = *pprev; 16601 16602 clean_live_states(env, insn_idx, cur); 16603 16604 while (sl) { 16605 states_cnt++; 16606 if (sl->state.insn_idx != insn_idx) 16607 goto next; 16608 16609 if (sl->state.branches) { 16610 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16611 16612 if (frame->in_async_callback_fn && 16613 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16614 /* Different async_entry_cnt means that the verifier is 16615 * processing another entry into async callback. 16616 * Seeing the same state is not an indication of infinite 16617 * loop or infinite recursion. 16618 * But finding the same state doesn't mean that it's safe 16619 * to stop processing the current state. The previous state 16620 * hasn't yet reached bpf_exit, since state.branches > 0. 16621 * Checking in_async_callback_fn alone is not enough either. 16622 * Since the verifier still needs to catch infinite loops 16623 * inside async callbacks. 16624 */ 16625 goto skip_inf_loop_check; 16626 } 16627 /* BPF open-coded iterators loop detection is special. 16628 * states_maybe_looping() logic is too simplistic in detecting 16629 * states that *might* be equivalent, because it doesn't know 16630 * about ID remapping, so don't even perform it. 16631 * See process_iter_next_call() and iter_active_depths_differ() 16632 * for overview of the logic. When current and one of parent 16633 * states are detected as equivalent, it's a good thing: we prove 16634 * convergence and can stop simulating further iterations. 16635 * It's safe to assume that iterator loop will finish, taking into 16636 * account iter_next() contract of eventually returning 16637 * sticky NULL result. 16638 * 16639 * Note, that states have to be compared exactly in this case because 16640 * read and precision marks might not be finalized inside the loop. 16641 * E.g. as in the program below: 16642 * 16643 * 1. r7 = -16 16644 * 2. r6 = bpf_get_prandom_u32() 16645 * 3. while (bpf_iter_num_next(&fp[-8])) { 16646 * 4. if (r6 != 42) { 16647 * 5. r7 = -32 16648 * 6. r6 = bpf_get_prandom_u32() 16649 * 7. continue 16650 * 8. } 16651 * 9. r0 = r10 16652 * 10. r0 += r7 16653 * 11. r8 = *(u64 *)(r0 + 0) 16654 * 12. r6 = bpf_get_prandom_u32() 16655 * 13. } 16656 * 16657 * Here verifier would first visit path 1-3, create a checkpoint at 3 16658 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16659 * not have read or precision mark for r7 yet, thus inexact states 16660 * comparison would discard current state with r7=-32 16661 * => unsafe memory access at 11 would not be caught. 16662 */ 16663 if (is_iter_next_insn(env, insn_idx)) { 16664 if (states_equal(env, &sl->state, cur, true)) { 16665 struct bpf_func_state *cur_frame; 16666 struct bpf_reg_state *iter_state, *iter_reg; 16667 int spi; 16668 16669 cur_frame = cur->frame[cur->curframe]; 16670 /* btf_check_iter_kfuncs() enforces that 16671 * iter state pointer is always the first arg 16672 */ 16673 iter_reg = &cur_frame->regs[BPF_REG_1]; 16674 /* current state is valid due to states_equal(), 16675 * so we can assume valid iter and reg state, 16676 * no need for extra (re-)validations 16677 */ 16678 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16679 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16680 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16681 update_loop_entry(cur, &sl->state); 16682 goto hit; 16683 } 16684 } 16685 goto skip_inf_loop_check; 16686 } 16687 if (calls_callback(env, insn_idx)) { 16688 if (states_equal(env, &sl->state, cur, true)) 16689 goto hit; 16690 goto skip_inf_loop_check; 16691 } 16692 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16693 if (states_maybe_looping(&sl->state, cur) && 16694 states_equal(env, &sl->state, cur, false) && 16695 !iter_active_depths_differ(&sl->state, cur) && 16696 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16697 verbose_linfo(env, insn_idx, "; "); 16698 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16699 verbose(env, "cur state:"); 16700 print_verifier_state(env, cur->frame[cur->curframe], true); 16701 verbose(env, "old state:"); 16702 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16703 return -EINVAL; 16704 } 16705 /* if the verifier is processing a loop, avoid adding new state 16706 * too often, since different loop iterations have distinct 16707 * states and may not help future pruning. 16708 * This threshold shouldn't be too low to make sure that 16709 * a loop with large bound will be rejected quickly. 16710 * The most abusive loop will be: 16711 * r1 += 1 16712 * if r1 < 1000000 goto pc-2 16713 * 1M insn_procssed limit / 100 == 10k peak states. 16714 * This threshold shouldn't be too high either, since states 16715 * at the end of the loop are likely to be useful in pruning. 16716 */ 16717 skip_inf_loop_check: 16718 if (!force_new_state && 16719 env->jmps_processed - env->prev_jmps_processed < 20 && 16720 env->insn_processed - env->prev_insn_processed < 100) 16721 add_new_state = false; 16722 goto miss; 16723 } 16724 /* If sl->state is a part of a loop and this loop's entry is a part of 16725 * current verification path then states have to be compared exactly. 16726 * 'force_exact' is needed to catch the following case: 16727 * 16728 * initial Here state 'succ' was processed first, 16729 * | it was eventually tracked to produce a 16730 * V state identical to 'hdr'. 16731 * .---------> hdr All branches from 'succ' had been explored 16732 * | | and thus 'succ' has its .branches == 0. 16733 * | V 16734 * | .------... Suppose states 'cur' and 'succ' correspond 16735 * | | | to the same instruction + callsites. 16736 * | V V In such case it is necessary to check 16737 * | ... ... if 'succ' and 'cur' are states_equal(). 16738 * | | | If 'succ' and 'cur' are a part of the 16739 * | V V same loop exact flag has to be set. 16740 * | succ <- cur To check if that is the case, verify 16741 * | | if loop entry of 'succ' is in current 16742 * | V DFS path. 16743 * | ... 16744 * | | 16745 * '----' 16746 * 16747 * Additional details are in the comment before get_loop_entry(). 16748 */ 16749 loop_entry = get_loop_entry(&sl->state); 16750 force_exact = loop_entry && loop_entry->branches > 0; 16751 if (states_equal(env, &sl->state, cur, force_exact)) { 16752 if (force_exact) 16753 update_loop_entry(cur, loop_entry); 16754 hit: 16755 sl->hit_cnt++; 16756 /* reached equivalent register/stack state, 16757 * prune the search. 16758 * Registers read by the continuation are read by us. 16759 * If we have any write marks in env->cur_state, they 16760 * will prevent corresponding reads in the continuation 16761 * from reaching our parent (an explored_state). Our 16762 * own state will get the read marks recorded, but 16763 * they'll be immediately forgotten as we're pruning 16764 * this state and will pop a new one. 16765 */ 16766 err = propagate_liveness(env, &sl->state, cur); 16767 16768 /* if previous state reached the exit with precision and 16769 * current state is equivalent to it (except precsion marks) 16770 * the precision needs to be propagated back in 16771 * the current state. 16772 */ 16773 err = err ? : push_jmp_history(env, cur); 16774 err = err ? : propagate_precision(env, &sl->state); 16775 if (err) 16776 return err; 16777 return 1; 16778 } 16779 miss: 16780 /* when new state is not going to be added do not increase miss count. 16781 * Otherwise several loop iterations will remove the state 16782 * recorded earlier. The goal of these heuristics is to have 16783 * states from some iterations of the loop (some in the beginning 16784 * and some at the end) to help pruning. 16785 */ 16786 if (add_new_state) 16787 sl->miss_cnt++; 16788 /* heuristic to determine whether this state is beneficial 16789 * to keep checking from state equivalence point of view. 16790 * Higher numbers increase max_states_per_insn and verification time, 16791 * but do not meaningfully decrease insn_processed. 16792 * 'n' controls how many times state could miss before eviction. 16793 * Use bigger 'n' for checkpoints because evicting checkpoint states 16794 * too early would hinder iterator convergence. 16795 */ 16796 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16797 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16798 /* the state is unlikely to be useful. Remove it to 16799 * speed up verification 16800 */ 16801 *pprev = sl->next; 16802 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16803 !sl->state.used_as_loop_entry) { 16804 u32 br = sl->state.branches; 16805 16806 WARN_ONCE(br, 16807 "BUG live_done but branches_to_explore %d\n", 16808 br); 16809 free_verifier_state(&sl->state, false); 16810 kfree(sl); 16811 env->peak_states--; 16812 } else { 16813 /* cannot free this state, since parentage chain may 16814 * walk it later. Add it for free_list instead to 16815 * be freed at the end of verification 16816 */ 16817 sl->next = env->free_list; 16818 env->free_list = sl; 16819 } 16820 sl = *pprev; 16821 continue; 16822 } 16823 next: 16824 pprev = &sl->next; 16825 sl = *pprev; 16826 } 16827 16828 if (env->max_states_per_insn < states_cnt) 16829 env->max_states_per_insn = states_cnt; 16830 16831 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16832 return 0; 16833 16834 if (!add_new_state) 16835 return 0; 16836 16837 /* There were no equivalent states, remember the current one. 16838 * Technically the current state is not proven to be safe yet, 16839 * but it will either reach outer most bpf_exit (which means it's safe) 16840 * or it will be rejected. When there are no loops the verifier won't be 16841 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16842 * again on the way to bpf_exit. 16843 * When looping the sl->state.branches will be > 0 and this state 16844 * will not be considered for equivalence until branches == 0. 16845 */ 16846 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16847 if (!new_sl) 16848 return -ENOMEM; 16849 env->total_states++; 16850 env->peak_states++; 16851 env->prev_jmps_processed = env->jmps_processed; 16852 env->prev_insn_processed = env->insn_processed; 16853 16854 /* forget precise markings we inherited, see __mark_chain_precision */ 16855 if (env->bpf_capable) 16856 mark_all_scalars_imprecise(env, cur); 16857 16858 /* add new state to the head of linked list */ 16859 new = &new_sl->state; 16860 err = copy_verifier_state(new, cur); 16861 if (err) { 16862 free_verifier_state(new, false); 16863 kfree(new_sl); 16864 return err; 16865 } 16866 new->insn_idx = insn_idx; 16867 WARN_ONCE(new->branches != 1, 16868 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16869 16870 cur->parent = new; 16871 cur->first_insn_idx = insn_idx; 16872 cur->dfs_depth = new->dfs_depth + 1; 16873 clear_jmp_history(cur); 16874 new_sl->next = *explored_state(env, insn_idx); 16875 *explored_state(env, insn_idx) = new_sl; 16876 /* connect new state to parentage chain. Current frame needs all 16877 * registers connected. Only r6 - r9 of the callers are alive (pushed 16878 * to the stack implicitly by JITs) so in callers' frames connect just 16879 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16880 * the state of the call instruction (with WRITTEN set), and r0 comes 16881 * from callee with its full parentage chain, anyway. 16882 */ 16883 /* clear write marks in current state: the writes we did are not writes 16884 * our child did, so they don't screen off its reads from us. 16885 * (There are no read marks in current state, because reads always mark 16886 * their parent and current state never has children yet. Only 16887 * explored_states can get read marks.) 16888 */ 16889 for (j = 0; j <= cur->curframe; j++) { 16890 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16891 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16892 for (i = 0; i < BPF_REG_FP; i++) 16893 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16894 } 16895 16896 /* all stack frames are accessible from callee, clear them all */ 16897 for (j = 0; j <= cur->curframe; j++) { 16898 struct bpf_func_state *frame = cur->frame[j]; 16899 struct bpf_func_state *newframe = new->frame[j]; 16900 16901 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16902 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16903 frame->stack[i].spilled_ptr.parent = 16904 &newframe->stack[i].spilled_ptr; 16905 } 16906 } 16907 return 0; 16908 } 16909 16910 /* Return true if it's OK to have the same insn return a different type. */ 16911 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16912 { 16913 switch (base_type(type)) { 16914 case PTR_TO_CTX: 16915 case PTR_TO_SOCKET: 16916 case PTR_TO_SOCK_COMMON: 16917 case PTR_TO_TCP_SOCK: 16918 case PTR_TO_XDP_SOCK: 16919 case PTR_TO_BTF_ID: 16920 return false; 16921 default: 16922 return true; 16923 } 16924 } 16925 16926 /* If an instruction was previously used with particular pointer types, then we 16927 * need to be careful to avoid cases such as the below, where it may be ok 16928 * for one branch accessing the pointer, but not ok for the other branch: 16929 * 16930 * R1 = sock_ptr 16931 * goto X; 16932 * ... 16933 * R1 = some_other_valid_ptr; 16934 * goto X; 16935 * ... 16936 * R2 = *(u32 *)(R1 + 0); 16937 */ 16938 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16939 { 16940 return src != prev && (!reg_type_mismatch_ok(src) || 16941 !reg_type_mismatch_ok(prev)); 16942 } 16943 16944 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16945 bool allow_trust_missmatch) 16946 { 16947 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16948 16949 if (*prev_type == NOT_INIT) { 16950 /* Saw a valid insn 16951 * dst_reg = *(u32 *)(src_reg + off) 16952 * save type to validate intersecting paths 16953 */ 16954 *prev_type = type; 16955 } else if (reg_type_mismatch(type, *prev_type)) { 16956 /* Abuser program is trying to use the same insn 16957 * dst_reg = *(u32*) (src_reg + off) 16958 * with different pointer types: 16959 * src_reg == ctx in one branch and 16960 * src_reg == stack|map in some other branch. 16961 * Reject it. 16962 */ 16963 if (allow_trust_missmatch && 16964 base_type(type) == PTR_TO_BTF_ID && 16965 base_type(*prev_type) == PTR_TO_BTF_ID) { 16966 /* 16967 * Have to support a use case when one path through 16968 * the program yields TRUSTED pointer while another 16969 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16970 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16971 */ 16972 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16973 } else { 16974 verbose(env, "same insn cannot be used with different pointers\n"); 16975 return -EINVAL; 16976 } 16977 } 16978 16979 return 0; 16980 } 16981 16982 static int do_check(struct bpf_verifier_env *env) 16983 { 16984 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16985 struct bpf_verifier_state *state = env->cur_state; 16986 struct bpf_insn *insns = env->prog->insnsi; 16987 struct bpf_reg_state *regs; 16988 int insn_cnt = env->prog->len; 16989 bool do_print_state = false; 16990 int prev_insn_idx = -1; 16991 16992 for (;;) { 16993 struct bpf_insn *insn; 16994 u8 class; 16995 int err; 16996 16997 env->prev_insn_idx = prev_insn_idx; 16998 if (env->insn_idx >= insn_cnt) { 16999 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17000 env->insn_idx, insn_cnt); 17001 return -EFAULT; 17002 } 17003 17004 insn = &insns[env->insn_idx]; 17005 class = BPF_CLASS(insn->code); 17006 17007 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17008 verbose(env, 17009 "BPF program is too large. Processed %d insn\n", 17010 env->insn_processed); 17011 return -E2BIG; 17012 } 17013 17014 state->last_insn_idx = env->prev_insn_idx; 17015 17016 if (is_prune_point(env, env->insn_idx)) { 17017 err = is_state_visited(env, env->insn_idx); 17018 if (err < 0) 17019 return err; 17020 if (err == 1) { 17021 /* found equivalent state, can prune the search */ 17022 if (env->log.level & BPF_LOG_LEVEL) { 17023 if (do_print_state) 17024 verbose(env, "\nfrom %d to %d%s: safe\n", 17025 env->prev_insn_idx, env->insn_idx, 17026 env->cur_state->speculative ? 17027 " (speculative execution)" : ""); 17028 else 17029 verbose(env, "%d: safe\n", env->insn_idx); 17030 } 17031 goto process_bpf_exit; 17032 } 17033 } 17034 17035 if (is_jmp_point(env, env->insn_idx)) { 17036 err = push_jmp_history(env, state); 17037 if (err) 17038 return err; 17039 } 17040 17041 if (signal_pending(current)) 17042 return -EAGAIN; 17043 17044 if (need_resched()) 17045 cond_resched(); 17046 17047 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17048 verbose(env, "\nfrom %d to %d%s:", 17049 env->prev_insn_idx, env->insn_idx, 17050 env->cur_state->speculative ? 17051 " (speculative execution)" : ""); 17052 print_verifier_state(env, state->frame[state->curframe], true); 17053 do_print_state = false; 17054 } 17055 17056 if (env->log.level & BPF_LOG_LEVEL) { 17057 const struct bpf_insn_cbs cbs = { 17058 .cb_call = disasm_kfunc_name, 17059 .cb_print = verbose, 17060 .private_data = env, 17061 }; 17062 17063 if (verifier_state_scratched(env)) 17064 print_insn_state(env, state->frame[state->curframe]); 17065 17066 verbose_linfo(env, env->insn_idx, "; "); 17067 env->prev_log_pos = env->log.end_pos; 17068 verbose(env, "%d: ", env->insn_idx); 17069 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17070 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17071 env->prev_log_pos = env->log.end_pos; 17072 } 17073 17074 if (bpf_prog_is_offloaded(env->prog->aux)) { 17075 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17076 env->prev_insn_idx); 17077 if (err) 17078 return err; 17079 } 17080 17081 regs = cur_regs(env); 17082 sanitize_mark_insn_seen(env); 17083 prev_insn_idx = env->insn_idx; 17084 17085 if (class == BPF_ALU || class == BPF_ALU64) { 17086 err = check_alu_op(env, insn); 17087 if (err) 17088 return err; 17089 17090 } else if (class == BPF_LDX) { 17091 enum bpf_reg_type src_reg_type; 17092 17093 /* check for reserved fields is already done */ 17094 17095 /* check src operand */ 17096 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17097 if (err) 17098 return err; 17099 17100 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17101 if (err) 17102 return err; 17103 17104 src_reg_type = regs[insn->src_reg].type; 17105 17106 /* check that memory (src_reg + off) is readable, 17107 * the state of dst_reg will be updated by this func 17108 */ 17109 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17110 insn->off, BPF_SIZE(insn->code), 17111 BPF_READ, insn->dst_reg, false, 17112 BPF_MODE(insn->code) == BPF_MEMSX); 17113 if (err) 17114 return err; 17115 17116 err = save_aux_ptr_type(env, src_reg_type, true); 17117 if (err) 17118 return err; 17119 } else if (class == BPF_STX) { 17120 enum bpf_reg_type dst_reg_type; 17121 17122 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17123 err = check_atomic(env, env->insn_idx, insn); 17124 if (err) 17125 return err; 17126 env->insn_idx++; 17127 continue; 17128 } 17129 17130 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17131 verbose(env, "BPF_STX uses reserved fields\n"); 17132 return -EINVAL; 17133 } 17134 17135 /* check src1 operand */ 17136 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17137 if (err) 17138 return err; 17139 /* check src2 operand */ 17140 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17141 if (err) 17142 return err; 17143 17144 dst_reg_type = regs[insn->dst_reg].type; 17145 17146 /* check that memory (dst_reg + off) is writeable */ 17147 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17148 insn->off, BPF_SIZE(insn->code), 17149 BPF_WRITE, insn->src_reg, false, false); 17150 if (err) 17151 return err; 17152 17153 err = save_aux_ptr_type(env, dst_reg_type, false); 17154 if (err) 17155 return err; 17156 } else if (class == BPF_ST) { 17157 enum bpf_reg_type dst_reg_type; 17158 17159 if (BPF_MODE(insn->code) != BPF_MEM || 17160 insn->src_reg != BPF_REG_0) { 17161 verbose(env, "BPF_ST uses reserved fields\n"); 17162 return -EINVAL; 17163 } 17164 /* check src operand */ 17165 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17166 if (err) 17167 return err; 17168 17169 dst_reg_type = regs[insn->dst_reg].type; 17170 17171 /* check that memory (dst_reg + off) is writeable */ 17172 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17173 insn->off, BPF_SIZE(insn->code), 17174 BPF_WRITE, -1, false, false); 17175 if (err) 17176 return err; 17177 17178 err = save_aux_ptr_type(env, dst_reg_type, false); 17179 if (err) 17180 return err; 17181 } else if (class == BPF_JMP || class == BPF_JMP32) { 17182 u8 opcode = BPF_OP(insn->code); 17183 17184 env->jmps_processed++; 17185 if (opcode == BPF_CALL) { 17186 if (BPF_SRC(insn->code) != BPF_K || 17187 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17188 && insn->off != 0) || 17189 (insn->src_reg != BPF_REG_0 && 17190 insn->src_reg != BPF_PSEUDO_CALL && 17191 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17192 insn->dst_reg != BPF_REG_0 || 17193 class == BPF_JMP32) { 17194 verbose(env, "BPF_CALL uses reserved fields\n"); 17195 return -EINVAL; 17196 } 17197 17198 if (env->cur_state->active_lock.ptr) { 17199 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17200 (insn->src_reg == BPF_PSEUDO_CALL) || 17201 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17202 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17203 verbose(env, "function calls are not allowed while holding a lock\n"); 17204 return -EINVAL; 17205 } 17206 } 17207 if (insn->src_reg == BPF_PSEUDO_CALL) 17208 err = check_func_call(env, insn, &env->insn_idx); 17209 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17210 err = check_kfunc_call(env, insn, &env->insn_idx); 17211 else 17212 err = check_helper_call(env, insn, &env->insn_idx); 17213 if (err) 17214 return err; 17215 17216 mark_reg_scratched(env, BPF_REG_0); 17217 } else if (opcode == BPF_JA) { 17218 if (BPF_SRC(insn->code) != BPF_K || 17219 insn->src_reg != BPF_REG_0 || 17220 insn->dst_reg != BPF_REG_0 || 17221 (class == BPF_JMP && insn->imm != 0) || 17222 (class == BPF_JMP32 && insn->off != 0)) { 17223 verbose(env, "BPF_JA uses reserved fields\n"); 17224 return -EINVAL; 17225 } 17226 17227 if (class == BPF_JMP) 17228 env->insn_idx += insn->off + 1; 17229 else 17230 env->insn_idx += insn->imm + 1; 17231 continue; 17232 17233 } else if (opcode == BPF_EXIT) { 17234 if (BPF_SRC(insn->code) != BPF_K || 17235 insn->imm != 0 || 17236 insn->src_reg != BPF_REG_0 || 17237 insn->dst_reg != BPF_REG_0 || 17238 class == BPF_JMP32) { 17239 verbose(env, "BPF_EXIT uses reserved fields\n"); 17240 return -EINVAL; 17241 } 17242 17243 if (env->cur_state->active_lock.ptr && 17244 !in_rbtree_lock_required_cb(env)) { 17245 verbose(env, "bpf_spin_unlock is missing\n"); 17246 return -EINVAL; 17247 } 17248 17249 if (env->cur_state->active_rcu_lock && 17250 !in_rbtree_lock_required_cb(env)) { 17251 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17252 return -EINVAL; 17253 } 17254 17255 /* We must do check_reference_leak here before 17256 * prepare_func_exit to handle the case when 17257 * state->curframe > 0, it may be a callback 17258 * function, for which reference_state must 17259 * match caller reference state when it exits. 17260 */ 17261 err = check_reference_leak(env); 17262 if (err) 17263 return err; 17264 17265 if (state->curframe) { 17266 /* exit from nested function */ 17267 err = prepare_func_exit(env, &env->insn_idx); 17268 if (err) 17269 return err; 17270 do_print_state = true; 17271 continue; 17272 } 17273 17274 err = check_return_code(env); 17275 if (err) 17276 return err; 17277 process_bpf_exit: 17278 mark_verifier_state_scratched(env); 17279 update_branch_counts(env, env->cur_state); 17280 err = pop_stack(env, &prev_insn_idx, 17281 &env->insn_idx, pop_log); 17282 if (err < 0) { 17283 if (err != -ENOENT) 17284 return err; 17285 break; 17286 } else { 17287 do_print_state = true; 17288 continue; 17289 } 17290 } else { 17291 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17292 if (err) 17293 return err; 17294 } 17295 } else if (class == BPF_LD) { 17296 u8 mode = BPF_MODE(insn->code); 17297 17298 if (mode == BPF_ABS || mode == BPF_IND) { 17299 err = check_ld_abs(env, insn); 17300 if (err) 17301 return err; 17302 17303 } else if (mode == BPF_IMM) { 17304 err = check_ld_imm(env, insn); 17305 if (err) 17306 return err; 17307 17308 env->insn_idx++; 17309 sanitize_mark_insn_seen(env); 17310 } else { 17311 verbose(env, "invalid BPF_LD mode\n"); 17312 return -EINVAL; 17313 } 17314 } else { 17315 verbose(env, "unknown insn class %d\n", class); 17316 return -EINVAL; 17317 } 17318 17319 env->insn_idx++; 17320 } 17321 17322 return 0; 17323 } 17324 17325 static int find_btf_percpu_datasec(struct btf *btf) 17326 { 17327 const struct btf_type *t; 17328 const char *tname; 17329 int i, n; 17330 17331 /* 17332 * Both vmlinux and module each have their own ".data..percpu" 17333 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17334 * types to look at only module's own BTF types. 17335 */ 17336 n = btf_nr_types(btf); 17337 if (btf_is_module(btf)) 17338 i = btf_nr_types(btf_vmlinux); 17339 else 17340 i = 1; 17341 17342 for(; i < n; i++) { 17343 t = btf_type_by_id(btf, i); 17344 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17345 continue; 17346 17347 tname = btf_name_by_offset(btf, t->name_off); 17348 if (!strcmp(tname, ".data..percpu")) 17349 return i; 17350 } 17351 17352 return -ENOENT; 17353 } 17354 17355 /* replace pseudo btf_id with kernel symbol address */ 17356 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17357 struct bpf_insn *insn, 17358 struct bpf_insn_aux_data *aux) 17359 { 17360 const struct btf_var_secinfo *vsi; 17361 const struct btf_type *datasec; 17362 struct btf_mod_pair *btf_mod; 17363 const struct btf_type *t; 17364 const char *sym_name; 17365 bool percpu = false; 17366 u32 type, id = insn->imm; 17367 struct btf *btf; 17368 s32 datasec_id; 17369 u64 addr; 17370 int i, btf_fd, err; 17371 17372 btf_fd = insn[1].imm; 17373 if (btf_fd) { 17374 btf = btf_get_by_fd(btf_fd); 17375 if (IS_ERR(btf)) { 17376 verbose(env, "invalid module BTF object FD specified.\n"); 17377 return -EINVAL; 17378 } 17379 } else { 17380 if (!btf_vmlinux) { 17381 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17382 return -EINVAL; 17383 } 17384 btf = btf_vmlinux; 17385 btf_get(btf); 17386 } 17387 17388 t = btf_type_by_id(btf, id); 17389 if (!t) { 17390 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17391 err = -ENOENT; 17392 goto err_put; 17393 } 17394 17395 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17396 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17397 err = -EINVAL; 17398 goto err_put; 17399 } 17400 17401 sym_name = btf_name_by_offset(btf, t->name_off); 17402 addr = kallsyms_lookup_name(sym_name); 17403 if (!addr) { 17404 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17405 sym_name); 17406 err = -ENOENT; 17407 goto err_put; 17408 } 17409 insn[0].imm = (u32)addr; 17410 insn[1].imm = addr >> 32; 17411 17412 if (btf_type_is_func(t)) { 17413 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17414 aux->btf_var.mem_size = 0; 17415 goto check_btf; 17416 } 17417 17418 datasec_id = find_btf_percpu_datasec(btf); 17419 if (datasec_id > 0) { 17420 datasec = btf_type_by_id(btf, datasec_id); 17421 for_each_vsi(i, datasec, vsi) { 17422 if (vsi->type == id) { 17423 percpu = true; 17424 break; 17425 } 17426 } 17427 } 17428 17429 type = t->type; 17430 t = btf_type_skip_modifiers(btf, type, NULL); 17431 if (percpu) { 17432 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17433 aux->btf_var.btf = btf; 17434 aux->btf_var.btf_id = type; 17435 } else if (!btf_type_is_struct(t)) { 17436 const struct btf_type *ret; 17437 const char *tname; 17438 u32 tsize; 17439 17440 /* resolve the type size of ksym. */ 17441 ret = btf_resolve_size(btf, t, &tsize); 17442 if (IS_ERR(ret)) { 17443 tname = btf_name_by_offset(btf, t->name_off); 17444 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17445 tname, PTR_ERR(ret)); 17446 err = -EINVAL; 17447 goto err_put; 17448 } 17449 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17450 aux->btf_var.mem_size = tsize; 17451 } else { 17452 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17453 aux->btf_var.btf = btf; 17454 aux->btf_var.btf_id = type; 17455 } 17456 check_btf: 17457 /* check whether we recorded this BTF (and maybe module) already */ 17458 for (i = 0; i < env->used_btf_cnt; i++) { 17459 if (env->used_btfs[i].btf == btf) { 17460 btf_put(btf); 17461 return 0; 17462 } 17463 } 17464 17465 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17466 err = -E2BIG; 17467 goto err_put; 17468 } 17469 17470 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17471 btf_mod->btf = btf; 17472 btf_mod->module = NULL; 17473 17474 /* if we reference variables from kernel module, bump its refcount */ 17475 if (btf_is_module(btf)) { 17476 btf_mod->module = btf_try_get_module(btf); 17477 if (!btf_mod->module) { 17478 err = -ENXIO; 17479 goto err_put; 17480 } 17481 } 17482 17483 env->used_btf_cnt++; 17484 17485 return 0; 17486 err_put: 17487 btf_put(btf); 17488 return err; 17489 } 17490 17491 static bool is_tracing_prog_type(enum bpf_prog_type type) 17492 { 17493 switch (type) { 17494 case BPF_PROG_TYPE_KPROBE: 17495 case BPF_PROG_TYPE_TRACEPOINT: 17496 case BPF_PROG_TYPE_PERF_EVENT: 17497 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17498 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17499 return true; 17500 default: 17501 return false; 17502 } 17503 } 17504 17505 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17506 struct bpf_map *map, 17507 struct bpf_prog *prog) 17508 17509 { 17510 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17511 17512 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17513 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17514 if (is_tracing_prog_type(prog_type)) { 17515 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17516 return -EINVAL; 17517 } 17518 } 17519 17520 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17521 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17522 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17523 return -EINVAL; 17524 } 17525 17526 if (is_tracing_prog_type(prog_type)) { 17527 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17528 return -EINVAL; 17529 } 17530 } 17531 17532 if (btf_record_has_field(map->record, BPF_TIMER)) { 17533 if (is_tracing_prog_type(prog_type)) { 17534 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17535 return -EINVAL; 17536 } 17537 } 17538 17539 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17540 !bpf_offload_prog_map_match(prog, map)) { 17541 verbose(env, "offload device mismatch between prog and map\n"); 17542 return -EINVAL; 17543 } 17544 17545 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17546 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17547 return -EINVAL; 17548 } 17549 17550 if (prog->aux->sleepable) 17551 switch (map->map_type) { 17552 case BPF_MAP_TYPE_HASH: 17553 case BPF_MAP_TYPE_LRU_HASH: 17554 case BPF_MAP_TYPE_ARRAY: 17555 case BPF_MAP_TYPE_PERCPU_HASH: 17556 case BPF_MAP_TYPE_PERCPU_ARRAY: 17557 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17558 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17559 case BPF_MAP_TYPE_HASH_OF_MAPS: 17560 case BPF_MAP_TYPE_RINGBUF: 17561 case BPF_MAP_TYPE_USER_RINGBUF: 17562 case BPF_MAP_TYPE_INODE_STORAGE: 17563 case BPF_MAP_TYPE_SK_STORAGE: 17564 case BPF_MAP_TYPE_TASK_STORAGE: 17565 case BPF_MAP_TYPE_CGRP_STORAGE: 17566 break; 17567 default: 17568 verbose(env, 17569 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17570 return -EINVAL; 17571 } 17572 17573 return 0; 17574 } 17575 17576 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17577 { 17578 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17579 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17580 } 17581 17582 /* find and rewrite pseudo imm in ld_imm64 instructions: 17583 * 17584 * 1. if it accesses map FD, replace it with actual map pointer. 17585 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17586 * 17587 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17588 */ 17589 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17590 { 17591 struct bpf_insn *insn = env->prog->insnsi; 17592 int insn_cnt = env->prog->len; 17593 int i, j, err; 17594 17595 err = bpf_prog_calc_tag(env->prog); 17596 if (err) 17597 return err; 17598 17599 for (i = 0; i < insn_cnt; i++, insn++) { 17600 if (BPF_CLASS(insn->code) == BPF_LDX && 17601 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17602 insn->imm != 0)) { 17603 verbose(env, "BPF_LDX uses reserved fields\n"); 17604 return -EINVAL; 17605 } 17606 17607 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17608 struct bpf_insn_aux_data *aux; 17609 struct bpf_map *map; 17610 struct fd f; 17611 u64 addr; 17612 u32 fd; 17613 17614 if (i == insn_cnt - 1 || insn[1].code != 0 || 17615 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17616 insn[1].off != 0) { 17617 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17618 return -EINVAL; 17619 } 17620 17621 if (insn[0].src_reg == 0) 17622 /* valid generic load 64-bit imm */ 17623 goto next_insn; 17624 17625 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17626 aux = &env->insn_aux_data[i]; 17627 err = check_pseudo_btf_id(env, insn, aux); 17628 if (err) 17629 return err; 17630 goto next_insn; 17631 } 17632 17633 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17634 aux = &env->insn_aux_data[i]; 17635 aux->ptr_type = PTR_TO_FUNC; 17636 goto next_insn; 17637 } 17638 17639 /* In final convert_pseudo_ld_imm64() step, this is 17640 * converted into regular 64-bit imm load insn. 17641 */ 17642 switch (insn[0].src_reg) { 17643 case BPF_PSEUDO_MAP_VALUE: 17644 case BPF_PSEUDO_MAP_IDX_VALUE: 17645 break; 17646 case BPF_PSEUDO_MAP_FD: 17647 case BPF_PSEUDO_MAP_IDX: 17648 if (insn[1].imm == 0) 17649 break; 17650 fallthrough; 17651 default: 17652 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17653 return -EINVAL; 17654 } 17655 17656 switch (insn[0].src_reg) { 17657 case BPF_PSEUDO_MAP_IDX_VALUE: 17658 case BPF_PSEUDO_MAP_IDX: 17659 if (bpfptr_is_null(env->fd_array)) { 17660 verbose(env, "fd_idx without fd_array is invalid\n"); 17661 return -EPROTO; 17662 } 17663 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17664 insn[0].imm * sizeof(fd), 17665 sizeof(fd))) 17666 return -EFAULT; 17667 break; 17668 default: 17669 fd = insn[0].imm; 17670 break; 17671 } 17672 17673 f = fdget(fd); 17674 map = __bpf_map_get(f); 17675 if (IS_ERR(map)) { 17676 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 17677 return PTR_ERR(map); 17678 } 17679 17680 err = check_map_prog_compatibility(env, map, env->prog); 17681 if (err) { 17682 fdput(f); 17683 return err; 17684 } 17685 17686 aux = &env->insn_aux_data[i]; 17687 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17688 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17689 addr = (unsigned long)map; 17690 } else { 17691 u32 off = insn[1].imm; 17692 17693 if (off >= BPF_MAX_VAR_OFF) { 17694 verbose(env, "direct value offset of %u is not allowed\n", off); 17695 fdput(f); 17696 return -EINVAL; 17697 } 17698 17699 if (!map->ops->map_direct_value_addr) { 17700 verbose(env, "no direct value access support for this map type\n"); 17701 fdput(f); 17702 return -EINVAL; 17703 } 17704 17705 err = map->ops->map_direct_value_addr(map, &addr, off); 17706 if (err) { 17707 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17708 map->value_size, off); 17709 fdput(f); 17710 return err; 17711 } 17712 17713 aux->map_off = off; 17714 addr += off; 17715 } 17716 17717 insn[0].imm = (u32)addr; 17718 insn[1].imm = addr >> 32; 17719 17720 /* check whether we recorded this map already */ 17721 for (j = 0; j < env->used_map_cnt; j++) { 17722 if (env->used_maps[j] == map) { 17723 aux->map_index = j; 17724 fdput(f); 17725 goto next_insn; 17726 } 17727 } 17728 17729 if (env->used_map_cnt >= MAX_USED_MAPS) { 17730 fdput(f); 17731 return -E2BIG; 17732 } 17733 17734 if (env->prog->aux->sleepable) 17735 atomic64_inc(&map->sleepable_refcnt); 17736 /* hold the map. If the program is rejected by verifier, 17737 * the map will be released by release_maps() or it 17738 * will be used by the valid program until it's unloaded 17739 * and all maps are released in bpf_free_used_maps() 17740 */ 17741 bpf_map_inc(map); 17742 17743 aux->map_index = env->used_map_cnt; 17744 env->used_maps[env->used_map_cnt++] = map; 17745 17746 if (bpf_map_is_cgroup_storage(map) && 17747 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17748 verbose(env, "only one cgroup storage of each type is allowed\n"); 17749 fdput(f); 17750 return -EBUSY; 17751 } 17752 17753 fdput(f); 17754 next_insn: 17755 insn++; 17756 i++; 17757 continue; 17758 } 17759 17760 /* Basic sanity check before we invest more work here. */ 17761 if (!bpf_opcode_in_insntable(insn->code)) { 17762 verbose(env, "unknown opcode %02x\n", insn->code); 17763 return -EINVAL; 17764 } 17765 } 17766 17767 /* now all pseudo BPF_LD_IMM64 instructions load valid 17768 * 'struct bpf_map *' into a register instead of user map_fd. 17769 * These pointers will be used later by verifier to validate map access. 17770 */ 17771 return 0; 17772 } 17773 17774 /* drop refcnt of maps used by the rejected program */ 17775 static void release_maps(struct bpf_verifier_env *env) 17776 { 17777 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17778 env->used_map_cnt); 17779 } 17780 17781 /* drop refcnt of maps used by the rejected program */ 17782 static void release_btfs(struct bpf_verifier_env *env) 17783 { 17784 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17785 env->used_btf_cnt); 17786 } 17787 17788 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17789 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17790 { 17791 struct bpf_insn *insn = env->prog->insnsi; 17792 int insn_cnt = env->prog->len; 17793 int i; 17794 17795 for (i = 0; i < insn_cnt; i++, insn++) { 17796 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17797 continue; 17798 if (insn->src_reg == BPF_PSEUDO_FUNC) 17799 continue; 17800 insn->src_reg = 0; 17801 } 17802 } 17803 17804 /* single env->prog->insni[off] instruction was replaced with the range 17805 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17806 * [0, off) and [off, end) to new locations, so the patched range stays zero 17807 */ 17808 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17809 struct bpf_insn_aux_data *new_data, 17810 struct bpf_prog *new_prog, u32 off, u32 cnt) 17811 { 17812 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17813 struct bpf_insn *insn = new_prog->insnsi; 17814 u32 old_seen = old_data[off].seen; 17815 u32 prog_len; 17816 int i; 17817 17818 /* aux info at OFF always needs adjustment, no matter fast path 17819 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17820 * original insn at old prog. 17821 */ 17822 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17823 17824 if (cnt == 1) 17825 return; 17826 prog_len = new_prog->len; 17827 17828 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17829 memcpy(new_data + off + cnt - 1, old_data + off, 17830 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17831 for (i = off; i < off + cnt - 1; i++) { 17832 /* Expand insni[off]'s seen count to the patched range. */ 17833 new_data[i].seen = old_seen; 17834 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17835 } 17836 env->insn_aux_data = new_data; 17837 vfree(old_data); 17838 } 17839 17840 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17841 { 17842 int i; 17843 17844 if (len == 1) 17845 return; 17846 /* NOTE: fake 'exit' subprog should be updated as well. */ 17847 for (i = 0; i <= env->subprog_cnt; i++) { 17848 if (env->subprog_info[i].start <= off) 17849 continue; 17850 env->subprog_info[i].start += len - 1; 17851 } 17852 } 17853 17854 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17855 { 17856 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17857 int i, sz = prog->aux->size_poke_tab; 17858 struct bpf_jit_poke_descriptor *desc; 17859 17860 for (i = 0; i < sz; i++) { 17861 desc = &tab[i]; 17862 if (desc->insn_idx <= off) 17863 continue; 17864 desc->insn_idx += len - 1; 17865 } 17866 } 17867 17868 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17869 const struct bpf_insn *patch, u32 len) 17870 { 17871 struct bpf_prog *new_prog; 17872 struct bpf_insn_aux_data *new_data = NULL; 17873 17874 if (len > 1) { 17875 new_data = vzalloc(array_size(env->prog->len + len - 1, 17876 sizeof(struct bpf_insn_aux_data))); 17877 if (!new_data) 17878 return NULL; 17879 } 17880 17881 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17882 if (IS_ERR(new_prog)) { 17883 if (PTR_ERR(new_prog) == -ERANGE) 17884 verbose(env, 17885 "insn %d cannot be patched due to 16-bit range\n", 17886 env->insn_aux_data[off].orig_idx); 17887 vfree(new_data); 17888 return NULL; 17889 } 17890 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17891 adjust_subprog_starts(env, off, len); 17892 adjust_poke_descs(new_prog, off, len); 17893 return new_prog; 17894 } 17895 17896 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17897 u32 off, u32 cnt) 17898 { 17899 int i, j; 17900 17901 /* find first prog starting at or after off (first to remove) */ 17902 for (i = 0; i < env->subprog_cnt; i++) 17903 if (env->subprog_info[i].start >= off) 17904 break; 17905 /* find first prog starting at or after off + cnt (first to stay) */ 17906 for (j = i; j < env->subprog_cnt; j++) 17907 if (env->subprog_info[j].start >= off + cnt) 17908 break; 17909 /* if j doesn't start exactly at off + cnt, we are just removing 17910 * the front of previous prog 17911 */ 17912 if (env->subprog_info[j].start != off + cnt) 17913 j--; 17914 17915 if (j > i) { 17916 struct bpf_prog_aux *aux = env->prog->aux; 17917 int move; 17918 17919 /* move fake 'exit' subprog as well */ 17920 move = env->subprog_cnt + 1 - j; 17921 17922 memmove(env->subprog_info + i, 17923 env->subprog_info + j, 17924 sizeof(*env->subprog_info) * move); 17925 env->subprog_cnt -= j - i; 17926 17927 /* remove func_info */ 17928 if (aux->func_info) { 17929 move = aux->func_info_cnt - j; 17930 17931 memmove(aux->func_info + i, 17932 aux->func_info + j, 17933 sizeof(*aux->func_info) * move); 17934 aux->func_info_cnt -= j - i; 17935 /* func_info->insn_off is set after all code rewrites, 17936 * in adjust_btf_func() - no need to adjust 17937 */ 17938 } 17939 } else { 17940 /* convert i from "first prog to remove" to "first to adjust" */ 17941 if (env->subprog_info[i].start == off) 17942 i++; 17943 } 17944 17945 /* update fake 'exit' subprog as well */ 17946 for (; i <= env->subprog_cnt; i++) 17947 env->subprog_info[i].start -= cnt; 17948 17949 return 0; 17950 } 17951 17952 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17953 u32 cnt) 17954 { 17955 struct bpf_prog *prog = env->prog; 17956 u32 i, l_off, l_cnt, nr_linfo; 17957 struct bpf_line_info *linfo; 17958 17959 nr_linfo = prog->aux->nr_linfo; 17960 if (!nr_linfo) 17961 return 0; 17962 17963 linfo = prog->aux->linfo; 17964 17965 /* find first line info to remove, count lines to be removed */ 17966 for (i = 0; i < nr_linfo; i++) 17967 if (linfo[i].insn_off >= off) 17968 break; 17969 17970 l_off = i; 17971 l_cnt = 0; 17972 for (; i < nr_linfo; i++) 17973 if (linfo[i].insn_off < off + cnt) 17974 l_cnt++; 17975 else 17976 break; 17977 17978 /* First live insn doesn't match first live linfo, it needs to "inherit" 17979 * last removed linfo. prog is already modified, so prog->len == off 17980 * means no live instructions after (tail of the program was removed). 17981 */ 17982 if (prog->len != off && l_cnt && 17983 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17984 l_cnt--; 17985 linfo[--i].insn_off = off + cnt; 17986 } 17987 17988 /* remove the line info which refer to the removed instructions */ 17989 if (l_cnt) { 17990 memmove(linfo + l_off, linfo + i, 17991 sizeof(*linfo) * (nr_linfo - i)); 17992 17993 prog->aux->nr_linfo -= l_cnt; 17994 nr_linfo = prog->aux->nr_linfo; 17995 } 17996 17997 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17998 for (i = l_off; i < nr_linfo; i++) 17999 linfo[i].insn_off -= cnt; 18000 18001 /* fix up all subprogs (incl. 'exit') which start >= off */ 18002 for (i = 0; i <= env->subprog_cnt; i++) 18003 if (env->subprog_info[i].linfo_idx > l_off) { 18004 /* program may have started in the removed region but 18005 * may not be fully removed 18006 */ 18007 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18008 env->subprog_info[i].linfo_idx -= l_cnt; 18009 else 18010 env->subprog_info[i].linfo_idx = l_off; 18011 } 18012 18013 return 0; 18014 } 18015 18016 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18017 { 18018 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18019 unsigned int orig_prog_len = env->prog->len; 18020 int err; 18021 18022 if (bpf_prog_is_offloaded(env->prog->aux)) 18023 bpf_prog_offload_remove_insns(env, off, cnt); 18024 18025 err = bpf_remove_insns(env->prog, off, cnt); 18026 if (err) 18027 return err; 18028 18029 err = adjust_subprog_starts_after_remove(env, off, cnt); 18030 if (err) 18031 return err; 18032 18033 err = bpf_adj_linfo_after_remove(env, off, cnt); 18034 if (err) 18035 return err; 18036 18037 memmove(aux_data + off, aux_data + off + cnt, 18038 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18039 18040 return 0; 18041 } 18042 18043 /* The verifier does more data flow analysis than llvm and will not 18044 * explore branches that are dead at run time. Malicious programs can 18045 * have dead code too. Therefore replace all dead at-run-time code 18046 * with 'ja -1'. 18047 * 18048 * Just nops are not optimal, e.g. if they would sit at the end of the 18049 * program and through another bug we would manage to jump there, then 18050 * we'd execute beyond program memory otherwise. Returning exception 18051 * code also wouldn't work since we can have subprogs where the dead 18052 * code could be located. 18053 */ 18054 static void sanitize_dead_code(struct bpf_verifier_env *env) 18055 { 18056 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18057 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18058 struct bpf_insn *insn = env->prog->insnsi; 18059 const int insn_cnt = env->prog->len; 18060 int i; 18061 18062 for (i = 0; i < insn_cnt; i++) { 18063 if (aux_data[i].seen) 18064 continue; 18065 memcpy(insn + i, &trap, sizeof(trap)); 18066 aux_data[i].zext_dst = false; 18067 } 18068 } 18069 18070 static bool insn_is_cond_jump(u8 code) 18071 { 18072 u8 op; 18073 18074 op = BPF_OP(code); 18075 if (BPF_CLASS(code) == BPF_JMP32) 18076 return op != BPF_JA; 18077 18078 if (BPF_CLASS(code) != BPF_JMP) 18079 return false; 18080 18081 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18082 } 18083 18084 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18085 { 18086 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18087 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18088 struct bpf_insn *insn = env->prog->insnsi; 18089 const int insn_cnt = env->prog->len; 18090 int i; 18091 18092 for (i = 0; i < insn_cnt; i++, insn++) { 18093 if (!insn_is_cond_jump(insn->code)) 18094 continue; 18095 18096 if (!aux_data[i + 1].seen) 18097 ja.off = insn->off; 18098 else if (!aux_data[i + 1 + insn->off].seen) 18099 ja.off = 0; 18100 else 18101 continue; 18102 18103 if (bpf_prog_is_offloaded(env->prog->aux)) 18104 bpf_prog_offload_replace_insn(env, i, &ja); 18105 18106 memcpy(insn, &ja, sizeof(ja)); 18107 } 18108 } 18109 18110 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18111 { 18112 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18113 int insn_cnt = env->prog->len; 18114 int i, err; 18115 18116 for (i = 0; i < insn_cnt; i++) { 18117 int j; 18118 18119 j = 0; 18120 while (i + j < insn_cnt && !aux_data[i + j].seen) 18121 j++; 18122 if (!j) 18123 continue; 18124 18125 err = verifier_remove_insns(env, i, j); 18126 if (err) 18127 return err; 18128 insn_cnt = env->prog->len; 18129 } 18130 18131 return 0; 18132 } 18133 18134 static int opt_remove_nops(struct bpf_verifier_env *env) 18135 { 18136 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18137 struct bpf_insn *insn = env->prog->insnsi; 18138 int insn_cnt = env->prog->len; 18139 int i, err; 18140 18141 for (i = 0; i < insn_cnt; i++) { 18142 if (memcmp(&insn[i], &ja, sizeof(ja))) 18143 continue; 18144 18145 err = verifier_remove_insns(env, i, 1); 18146 if (err) 18147 return err; 18148 insn_cnt--; 18149 i--; 18150 } 18151 18152 return 0; 18153 } 18154 18155 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18156 const union bpf_attr *attr) 18157 { 18158 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18159 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18160 int i, patch_len, delta = 0, len = env->prog->len; 18161 struct bpf_insn *insns = env->prog->insnsi; 18162 struct bpf_prog *new_prog; 18163 bool rnd_hi32; 18164 18165 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18166 zext_patch[1] = BPF_ZEXT_REG(0); 18167 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18168 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18169 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18170 for (i = 0; i < len; i++) { 18171 int adj_idx = i + delta; 18172 struct bpf_insn insn; 18173 int load_reg; 18174 18175 insn = insns[adj_idx]; 18176 load_reg = insn_def_regno(&insn); 18177 if (!aux[adj_idx].zext_dst) { 18178 u8 code, class; 18179 u32 imm_rnd; 18180 18181 if (!rnd_hi32) 18182 continue; 18183 18184 code = insn.code; 18185 class = BPF_CLASS(code); 18186 if (load_reg == -1) 18187 continue; 18188 18189 /* NOTE: arg "reg" (the fourth one) is only used for 18190 * BPF_STX + SRC_OP, so it is safe to pass NULL 18191 * here. 18192 */ 18193 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18194 if (class == BPF_LD && 18195 BPF_MODE(code) == BPF_IMM) 18196 i++; 18197 continue; 18198 } 18199 18200 /* ctx load could be transformed into wider load. */ 18201 if (class == BPF_LDX && 18202 aux[adj_idx].ptr_type == PTR_TO_CTX) 18203 continue; 18204 18205 imm_rnd = get_random_u32(); 18206 rnd_hi32_patch[0] = insn; 18207 rnd_hi32_patch[1].imm = imm_rnd; 18208 rnd_hi32_patch[3].dst_reg = load_reg; 18209 patch = rnd_hi32_patch; 18210 patch_len = 4; 18211 goto apply_patch_buffer; 18212 } 18213 18214 /* Add in an zero-extend instruction if a) the JIT has requested 18215 * it or b) it's a CMPXCHG. 18216 * 18217 * The latter is because: BPF_CMPXCHG always loads a value into 18218 * R0, therefore always zero-extends. However some archs' 18219 * equivalent instruction only does this load when the 18220 * comparison is successful. This detail of CMPXCHG is 18221 * orthogonal to the general zero-extension behaviour of the 18222 * CPU, so it's treated independently of bpf_jit_needs_zext. 18223 */ 18224 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18225 continue; 18226 18227 /* Zero-extension is done by the caller. */ 18228 if (bpf_pseudo_kfunc_call(&insn)) 18229 continue; 18230 18231 if (WARN_ON(load_reg == -1)) { 18232 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18233 return -EFAULT; 18234 } 18235 18236 zext_patch[0] = insn; 18237 zext_patch[1].dst_reg = load_reg; 18238 zext_patch[1].src_reg = load_reg; 18239 patch = zext_patch; 18240 patch_len = 2; 18241 apply_patch_buffer: 18242 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18243 if (!new_prog) 18244 return -ENOMEM; 18245 env->prog = new_prog; 18246 insns = new_prog->insnsi; 18247 aux = env->insn_aux_data; 18248 delta += patch_len - 1; 18249 } 18250 18251 return 0; 18252 } 18253 18254 /* convert load instructions that access fields of a context type into a 18255 * sequence of instructions that access fields of the underlying structure: 18256 * struct __sk_buff -> struct sk_buff 18257 * struct bpf_sock_ops -> struct sock 18258 */ 18259 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18260 { 18261 const struct bpf_verifier_ops *ops = env->ops; 18262 int i, cnt, size, ctx_field_size, delta = 0; 18263 const int insn_cnt = env->prog->len; 18264 struct bpf_insn insn_buf[16], *insn; 18265 u32 target_size, size_default, off; 18266 struct bpf_prog *new_prog; 18267 enum bpf_access_type type; 18268 bool is_narrower_load; 18269 18270 if (ops->gen_prologue || env->seen_direct_write) { 18271 if (!ops->gen_prologue) { 18272 verbose(env, "bpf verifier is misconfigured\n"); 18273 return -EINVAL; 18274 } 18275 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18276 env->prog); 18277 if (cnt >= ARRAY_SIZE(insn_buf)) { 18278 verbose(env, "bpf verifier is misconfigured\n"); 18279 return -EINVAL; 18280 } else if (cnt) { 18281 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18282 if (!new_prog) 18283 return -ENOMEM; 18284 18285 env->prog = new_prog; 18286 delta += cnt - 1; 18287 } 18288 } 18289 18290 if (bpf_prog_is_offloaded(env->prog->aux)) 18291 return 0; 18292 18293 insn = env->prog->insnsi + delta; 18294 18295 for (i = 0; i < insn_cnt; i++, insn++) { 18296 bpf_convert_ctx_access_t convert_ctx_access; 18297 u8 mode; 18298 18299 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18300 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18301 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18302 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18303 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18304 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18305 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18306 type = BPF_READ; 18307 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18308 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18309 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18310 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18311 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18312 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18313 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18314 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18315 type = BPF_WRITE; 18316 } else { 18317 continue; 18318 } 18319 18320 if (type == BPF_WRITE && 18321 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18322 struct bpf_insn patch[] = { 18323 *insn, 18324 BPF_ST_NOSPEC(), 18325 }; 18326 18327 cnt = ARRAY_SIZE(patch); 18328 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18329 if (!new_prog) 18330 return -ENOMEM; 18331 18332 delta += cnt - 1; 18333 env->prog = new_prog; 18334 insn = new_prog->insnsi + i + delta; 18335 continue; 18336 } 18337 18338 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18339 case PTR_TO_CTX: 18340 if (!ops->convert_ctx_access) 18341 continue; 18342 convert_ctx_access = ops->convert_ctx_access; 18343 break; 18344 case PTR_TO_SOCKET: 18345 case PTR_TO_SOCK_COMMON: 18346 convert_ctx_access = bpf_sock_convert_ctx_access; 18347 break; 18348 case PTR_TO_TCP_SOCK: 18349 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18350 break; 18351 case PTR_TO_XDP_SOCK: 18352 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18353 break; 18354 case PTR_TO_BTF_ID: 18355 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18356 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18357 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18358 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18359 * any faults for loads into such types. BPF_WRITE is disallowed 18360 * for this case. 18361 */ 18362 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18363 if (type == BPF_READ) { 18364 if (BPF_MODE(insn->code) == BPF_MEM) 18365 insn->code = BPF_LDX | BPF_PROBE_MEM | 18366 BPF_SIZE((insn)->code); 18367 else 18368 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18369 BPF_SIZE((insn)->code); 18370 env->prog->aux->num_exentries++; 18371 } 18372 continue; 18373 default: 18374 continue; 18375 } 18376 18377 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18378 size = BPF_LDST_BYTES(insn); 18379 mode = BPF_MODE(insn->code); 18380 18381 /* If the read access is a narrower load of the field, 18382 * convert to a 4/8-byte load, to minimum program type specific 18383 * convert_ctx_access changes. If conversion is successful, 18384 * we will apply proper mask to the result. 18385 */ 18386 is_narrower_load = size < ctx_field_size; 18387 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18388 off = insn->off; 18389 if (is_narrower_load) { 18390 u8 size_code; 18391 18392 if (type == BPF_WRITE) { 18393 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18394 return -EINVAL; 18395 } 18396 18397 size_code = BPF_H; 18398 if (ctx_field_size == 4) 18399 size_code = BPF_W; 18400 else if (ctx_field_size == 8) 18401 size_code = BPF_DW; 18402 18403 insn->off = off & ~(size_default - 1); 18404 insn->code = BPF_LDX | BPF_MEM | size_code; 18405 } 18406 18407 target_size = 0; 18408 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18409 &target_size); 18410 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18411 (ctx_field_size && !target_size)) { 18412 verbose(env, "bpf verifier is misconfigured\n"); 18413 return -EINVAL; 18414 } 18415 18416 if (is_narrower_load && size < target_size) { 18417 u8 shift = bpf_ctx_narrow_access_offset( 18418 off, size, size_default) * 8; 18419 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18420 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18421 return -EINVAL; 18422 } 18423 if (ctx_field_size <= 4) { 18424 if (shift) 18425 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18426 insn->dst_reg, 18427 shift); 18428 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18429 (1 << size * 8) - 1); 18430 } else { 18431 if (shift) 18432 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18433 insn->dst_reg, 18434 shift); 18435 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18436 (1ULL << size * 8) - 1); 18437 } 18438 } 18439 if (mode == BPF_MEMSX) 18440 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18441 insn->dst_reg, insn->dst_reg, 18442 size * 8, 0); 18443 18444 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18445 if (!new_prog) 18446 return -ENOMEM; 18447 18448 delta += cnt - 1; 18449 18450 /* keep walking new program and skip insns we just inserted */ 18451 env->prog = new_prog; 18452 insn = new_prog->insnsi + i + delta; 18453 } 18454 18455 return 0; 18456 } 18457 18458 static int jit_subprogs(struct bpf_verifier_env *env) 18459 { 18460 struct bpf_prog *prog = env->prog, **func, *tmp; 18461 int i, j, subprog_start, subprog_end = 0, len, subprog; 18462 struct bpf_map *map_ptr; 18463 struct bpf_insn *insn; 18464 void *old_bpf_func; 18465 int err, num_exentries; 18466 18467 if (env->subprog_cnt <= 1) 18468 return 0; 18469 18470 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18471 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18472 continue; 18473 18474 /* Upon error here we cannot fall back to interpreter but 18475 * need a hard reject of the program. Thus -EFAULT is 18476 * propagated in any case. 18477 */ 18478 subprog = find_subprog(env, i + insn->imm + 1); 18479 if (subprog < 0) { 18480 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18481 i + insn->imm + 1); 18482 return -EFAULT; 18483 } 18484 /* temporarily remember subprog id inside insn instead of 18485 * aux_data, since next loop will split up all insns into funcs 18486 */ 18487 insn->off = subprog; 18488 /* remember original imm in case JIT fails and fallback 18489 * to interpreter will be needed 18490 */ 18491 env->insn_aux_data[i].call_imm = insn->imm; 18492 /* point imm to __bpf_call_base+1 from JITs point of view */ 18493 insn->imm = 1; 18494 if (bpf_pseudo_func(insn)) 18495 /* jit (e.g. x86_64) may emit fewer instructions 18496 * if it learns a u32 imm is the same as a u64 imm. 18497 * Force a non zero here. 18498 */ 18499 insn[1].imm = 1; 18500 } 18501 18502 err = bpf_prog_alloc_jited_linfo(prog); 18503 if (err) 18504 goto out_undo_insn; 18505 18506 err = -ENOMEM; 18507 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18508 if (!func) 18509 goto out_undo_insn; 18510 18511 for (i = 0; i < env->subprog_cnt; i++) { 18512 subprog_start = subprog_end; 18513 subprog_end = env->subprog_info[i + 1].start; 18514 18515 len = subprog_end - subprog_start; 18516 /* bpf_prog_run() doesn't call subprogs directly, 18517 * hence main prog stats include the runtime of subprogs. 18518 * subprogs don't have IDs and not reachable via prog_get_next_id 18519 * func[i]->stats will never be accessed and stays NULL 18520 */ 18521 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18522 if (!func[i]) 18523 goto out_free; 18524 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18525 len * sizeof(struct bpf_insn)); 18526 func[i]->type = prog->type; 18527 func[i]->len = len; 18528 if (bpf_prog_calc_tag(func[i])) 18529 goto out_free; 18530 func[i]->is_func = 1; 18531 func[i]->aux->func_idx = i; 18532 /* Below members will be freed only at prog->aux */ 18533 func[i]->aux->btf = prog->aux->btf; 18534 func[i]->aux->func_info = prog->aux->func_info; 18535 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18536 func[i]->aux->poke_tab = prog->aux->poke_tab; 18537 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18538 18539 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18540 struct bpf_jit_poke_descriptor *poke; 18541 18542 poke = &prog->aux->poke_tab[j]; 18543 if (poke->insn_idx < subprog_end && 18544 poke->insn_idx >= subprog_start) 18545 poke->aux = func[i]->aux; 18546 } 18547 18548 func[i]->aux->name[0] = 'F'; 18549 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18550 func[i]->jit_requested = 1; 18551 func[i]->blinding_requested = prog->blinding_requested; 18552 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18553 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18554 func[i]->aux->linfo = prog->aux->linfo; 18555 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18556 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18557 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18558 num_exentries = 0; 18559 insn = func[i]->insnsi; 18560 for (j = 0; j < func[i]->len; j++, insn++) { 18561 if (BPF_CLASS(insn->code) == BPF_LDX && 18562 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18563 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18564 num_exentries++; 18565 } 18566 func[i]->aux->num_exentries = num_exentries; 18567 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18568 func[i] = bpf_int_jit_compile(func[i]); 18569 if (!func[i]->jited) { 18570 err = -ENOTSUPP; 18571 goto out_free; 18572 } 18573 cond_resched(); 18574 } 18575 18576 /* at this point all bpf functions were successfully JITed 18577 * now populate all bpf_calls with correct addresses and 18578 * run last pass of JIT 18579 */ 18580 for (i = 0; i < env->subprog_cnt; i++) { 18581 insn = func[i]->insnsi; 18582 for (j = 0; j < func[i]->len; j++, insn++) { 18583 if (bpf_pseudo_func(insn)) { 18584 subprog = insn->off; 18585 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18586 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18587 continue; 18588 } 18589 if (!bpf_pseudo_call(insn)) 18590 continue; 18591 subprog = insn->off; 18592 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18593 } 18594 18595 /* we use the aux data to keep a list of the start addresses 18596 * of the JITed images for each function in the program 18597 * 18598 * for some architectures, such as powerpc64, the imm field 18599 * might not be large enough to hold the offset of the start 18600 * address of the callee's JITed image from __bpf_call_base 18601 * 18602 * in such cases, we can lookup the start address of a callee 18603 * by using its subprog id, available from the off field of 18604 * the call instruction, as an index for this list 18605 */ 18606 func[i]->aux->func = func; 18607 func[i]->aux->func_cnt = env->subprog_cnt; 18608 } 18609 for (i = 0; i < env->subprog_cnt; i++) { 18610 old_bpf_func = func[i]->bpf_func; 18611 tmp = bpf_int_jit_compile(func[i]); 18612 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18613 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18614 err = -ENOTSUPP; 18615 goto out_free; 18616 } 18617 cond_resched(); 18618 } 18619 18620 /* finally lock prog and jit images for all functions and 18621 * populate kallsysm. Begin at the first subprogram, since 18622 * bpf_prog_load will add the kallsyms for the main program. 18623 */ 18624 for (i = 1; i < env->subprog_cnt; i++) { 18625 bpf_prog_lock_ro(func[i]); 18626 bpf_prog_kallsyms_add(func[i]); 18627 } 18628 18629 /* Last step: make now unused interpreter insns from main 18630 * prog consistent for later dump requests, so they can 18631 * later look the same as if they were interpreted only. 18632 */ 18633 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18634 if (bpf_pseudo_func(insn)) { 18635 insn[0].imm = env->insn_aux_data[i].call_imm; 18636 insn[1].imm = insn->off; 18637 insn->off = 0; 18638 continue; 18639 } 18640 if (!bpf_pseudo_call(insn)) 18641 continue; 18642 insn->off = env->insn_aux_data[i].call_imm; 18643 subprog = find_subprog(env, i + insn->off + 1); 18644 insn->imm = subprog; 18645 } 18646 18647 prog->jited = 1; 18648 prog->bpf_func = func[0]->bpf_func; 18649 prog->jited_len = func[0]->jited_len; 18650 prog->aux->extable = func[0]->aux->extable; 18651 prog->aux->num_exentries = func[0]->aux->num_exentries; 18652 prog->aux->func = func; 18653 prog->aux->func_cnt = env->subprog_cnt; 18654 bpf_prog_jit_attempt_done(prog); 18655 return 0; 18656 out_free: 18657 /* We failed JIT'ing, so at this point we need to unregister poke 18658 * descriptors from subprogs, so that kernel is not attempting to 18659 * patch it anymore as we're freeing the subprog JIT memory. 18660 */ 18661 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18662 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18663 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18664 } 18665 /* At this point we're guaranteed that poke descriptors are not 18666 * live anymore. We can just unlink its descriptor table as it's 18667 * released with the main prog. 18668 */ 18669 for (i = 0; i < env->subprog_cnt; i++) { 18670 if (!func[i]) 18671 continue; 18672 func[i]->aux->poke_tab = NULL; 18673 bpf_jit_free(func[i]); 18674 } 18675 kfree(func); 18676 out_undo_insn: 18677 /* cleanup main prog to be interpreted */ 18678 prog->jit_requested = 0; 18679 prog->blinding_requested = 0; 18680 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18681 if (!bpf_pseudo_call(insn)) 18682 continue; 18683 insn->off = 0; 18684 insn->imm = env->insn_aux_data[i].call_imm; 18685 } 18686 bpf_prog_jit_attempt_done(prog); 18687 return err; 18688 } 18689 18690 static int fixup_call_args(struct bpf_verifier_env *env) 18691 { 18692 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18693 struct bpf_prog *prog = env->prog; 18694 struct bpf_insn *insn = prog->insnsi; 18695 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18696 int i, depth; 18697 #endif 18698 int err = 0; 18699 18700 if (env->prog->jit_requested && 18701 !bpf_prog_is_offloaded(env->prog->aux)) { 18702 err = jit_subprogs(env); 18703 if (err == 0) 18704 return 0; 18705 if (err == -EFAULT) 18706 return err; 18707 } 18708 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18709 if (has_kfunc_call) { 18710 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18711 return -EINVAL; 18712 } 18713 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18714 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18715 * have to be rejected, since interpreter doesn't support them yet. 18716 */ 18717 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18718 return -EINVAL; 18719 } 18720 for (i = 0; i < prog->len; i++, insn++) { 18721 if (bpf_pseudo_func(insn)) { 18722 /* When JIT fails the progs with callback calls 18723 * have to be rejected, since interpreter doesn't support them yet. 18724 */ 18725 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18726 return -EINVAL; 18727 } 18728 18729 if (!bpf_pseudo_call(insn)) 18730 continue; 18731 depth = get_callee_stack_depth(env, insn, i); 18732 if (depth < 0) 18733 return depth; 18734 bpf_patch_call_args(insn, depth); 18735 } 18736 err = 0; 18737 #endif 18738 return err; 18739 } 18740 18741 /* replace a generic kfunc with a specialized version if necessary */ 18742 static void specialize_kfunc(struct bpf_verifier_env *env, 18743 u32 func_id, u16 offset, unsigned long *addr) 18744 { 18745 struct bpf_prog *prog = env->prog; 18746 bool seen_direct_write; 18747 void *xdp_kfunc; 18748 bool is_rdonly; 18749 18750 if (bpf_dev_bound_kfunc_id(func_id)) { 18751 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18752 if (xdp_kfunc) { 18753 *addr = (unsigned long)xdp_kfunc; 18754 return; 18755 } 18756 /* fallback to default kfunc when not supported by netdev */ 18757 } 18758 18759 if (offset) 18760 return; 18761 18762 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18763 seen_direct_write = env->seen_direct_write; 18764 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18765 18766 if (is_rdonly) 18767 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18768 18769 /* restore env->seen_direct_write to its original value, since 18770 * may_access_direct_pkt_data mutates it 18771 */ 18772 env->seen_direct_write = seen_direct_write; 18773 } 18774 } 18775 18776 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18777 u16 struct_meta_reg, 18778 u16 node_offset_reg, 18779 struct bpf_insn *insn, 18780 struct bpf_insn *insn_buf, 18781 int *cnt) 18782 { 18783 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18784 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18785 18786 insn_buf[0] = addr[0]; 18787 insn_buf[1] = addr[1]; 18788 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18789 insn_buf[3] = *insn; 18790 *cnt = 4; 18791 } 18792 18793 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18794 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18795 { 18796 const struct bpf_kfunc_desc *desc; 18797 18798 if (!insn->imm) { 18799 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18800 return -EINVAL; 18801 } 18802 18803 *cnt = 0; 18804 18805 /* insn->imm has the btf func_id. Replace it with an offset relative to 18806 * __bpf_call_base, unless the JIT needs to call functions that are 18807 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18808 */ 18809 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18810 if (!desc) { 18811 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18812 insn->imm); 18813 return -EFAULT; 18814 } 18815 18816 if (!bpf_jit_supports_far_kfunc_call()) 18817 insn->imm = BPF_CALL_IMM(desc->addr); 18818 if (insn->off) 18819 return 0; 18820 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18821 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18822 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18823 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18824 18825 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18826 insn_buf[1] = addr[0]; 18827 insn_buf[2] = addr[1]; 18828 insn_buf[3] = *insn; 18829 *cnt = 4; 18830 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18831 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18832 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18833 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18834 18835 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18836 !kptr_struct_meta) { 18837 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18838 insn_idx); 18839 return -EFAULT; 18840 } 18841 18842 insn_buf[0] = addr[0]; 18843 insn_buf[1] = addr[1]; 18844 insn_buf[2] = *insn; 18845 *cnt = 3; 18846 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18847 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18848 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18849 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18850 int struct_meta_reg = BPF_REG_3; 18851 int node_offset_reg = BPF_REG_4; 18852 18853 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18854 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18855 struct_meta_reg = BPF_REG_4; 18856 node_offset_reg = BPF_REG_5; 18857 } 18858 18859 if (!kptr_struct_meta) { 18860 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18861 insn_idx); 18862 return -EFAULT; 18863 } 18864 18865 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18866 node_offset_reg, insn, insn_buf, cnt); 18867 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18868 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18869 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18870 *cnt = 1; 18871 } 18872 return 0; 18873 } 18874 18875 /* Do various post-verification rewrites in a single program pass. 18876 * These rewrites simplify JIT and interpreter implementations. 18877 */ 18878 static int do_misc_fixups(struct bpf_verifier_env *env) 18879 { 18880 struct bpf_prog *prog = env->prog; 18881 enum bpf_attach_type eatype = prog->expected_attach_type; 18882 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18883 struct bpf_insn *insn = prog->insnsi; 18884 const struct bpf_func_proto *fn; 18885 const int insn_cnt = prog->len; 18886 const struct bpf_map_ops *ops; 18887 struct bpf_insn_aux_data *aux; 18888 struct bpf_insn insn_buf[16]; 18889 struct bpf_prog *new_prog; 18890 struct bpf_map *map_ptr; 18891 int i, ret, cnt, delta = 0; 18892 18893 for (i = 0; i < insn_cnt; i++, insn++) { 18894 /* Make divide-by-zero exceptions impossible. */ 18895 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18896 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18897 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18898 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18899 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18900 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18901 struct bpf_insn *patchlet; 18902 struct bpf_insn chk_and_div[] = { 18903 /* [R,W]x div 0 -> 0 */ 18904 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18905 BPF_JNE | BPF_K, insn->src_reg, 18906 0, 2, 0), 18907 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18908 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18909 *insn, 18910 }; 18911 struct bpf_insn chk_and_mod[] = { 18912 /* [R,W]x mod 0 -> [R,W]x */ 18913 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18914 BPF_JEQ | BPF_K, insn->src_reg, 18915 0, 1 + (is64 ? 0 : 1), 0), 18916 *insn, 18917 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18918 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18919 }; 18920 18921 patchlet = isdiv ? chk_and_div : chk_and_mod; 18922 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18923 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18924 18925 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18926 if (!new_prog) 18927 return -ENOMEM; 18928 18929 delta += cnt - 1; 18930 env->prog = prog = new_prog; 18931 insn = new_prog->insnsi + i + delta; 18932 continue; 18933 } 18934 18935 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18936 if (BPF_CLASS(insn->code) == BPF_LD && 18937 (BPF_MODE(insn->code) == BPF_ABS || 18938 BPF_MODE(insn->code) == BPF_IND)) { 18939 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18940 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18941 verbose(env, "bpf verifier is misconfigured\n"); 18942 return -EINVAL; 18943 } 18944 18945 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18946 if (!new_prog) 18947 return -ENOMEM; 18948 18949 delta += cnt - 1; 18950 env->prog = prog = new_prog; 18951 insn = new_prog->insnsi + i + delta; 18952 continue; 18953 } 18954 18955 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18956 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18957 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18958 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18959 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18960 struct bpf_insn *patch = &insn_buf[0]; 18961 bool issrc, isneg, isimm; 18962 u32 off_reg; 18963 18964 aux = &env->insn_aux_data[i + delta]; 18965 if (!aux->alu_state || 18966 aux->alu_state == BPF_ALU_NON_POINTER) 18967 continue; 18968 18969 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18970 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18971 BPF_ALU_SANITIZE_SRC; 18972 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18973 18974 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18975 if (isimm) { 18976 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18977 } else { 18978 if (isneg) 18979 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18980 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18981 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18982 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18983 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18984 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18985 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18986 } 18987 if (!issrc) 18988 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18989 insn->src_reg = BPF_REG_AX; 18990 if (isneg) 18991 insn->code = insn->code == code_add ? 18992 code_sub : code_add; 18993 *patch++ = *insn; 18994 if (issrc && isneg && !isimm) 18995 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18996 cnt = patch - insn_buf; 18997 18998 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18999 if (!new_prog) 19000 return -ENOMEM; 19001 19002 delta += cnt - 1; 19003 env->prog = prog = new_prog; 19004 insn = new_prog->insnsi + i + delta; 19005 continue; 19006 } 19007 19008 if (insn->code != (BPF_JMP | BPF_CALL)) 19009 continue; 19010 if (insn->src_reg == BPF_PSEUDO_CALL) 19011 continue; 19012 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19013 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19014 if (ret) 19015 return ret; 19016 if (cnt == 0) 19017 continue; 19018 19019 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19020 if (!new_prog) 19021 return -ENOMEM; 19022 19023 delta += cnt - 1; 19024 env->prog = prog = new_prog; 19025 insn = new_prog->insnsi + i + delta; 19026 continue; 19027 } 19028 19029 if (insn->imm == BPF_FUNC_get_route_realm) 19030 prog->dst_needed = 1; 19031 if (insn->imm == BPF_FUNC_get_prandom_u32) 19032 bpf_user_rnd_init_once(); 19033 if (insn->imm == BPF_FUNC_override_return) 19034 prog->kprobe_override = 1; 19035 if (insn->imm == BPF_FUNC_tail_call) { 19036 /* If we tail call into other programs, we 19037 * cannot make any assumptions since they can 19038 * be replaced dynamically during runtime in 19039 * the program array. 19040 */ 19041 prog->cb_access = 1; 19042 if (!allow_tail_call_in_subprogs(env)) 19043 prog->aux->stack_depth = MAX_BPF_STACK; 19044 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19045 19046 /* mark bpf_tail_call as different opcode to avoid 19047 * conditional branch in the interpreter for every normal 19048 * call and to prevent accidental JITing by JIT compiler 19049 * that doesn't support bpf_tail_call yet 19050 */ 19051 insn->imm = 0; 19052 insn->code = BPF_JMP | BPF_TAIL_CALL; 19053 19054 aux = &env->insn_aux_data[i + delta]; 19055 if (env->bpf_capable && !prog->blinding_requested && 19056 prog->jit_requested && 19057 !bpf_map_key_poisoned(aux) && 19058 !bpf_map_ptr_poisoned(aux) && 19059 !bpf_map_ptr_unpriv(aux)) { 19060 struct bpf_jit_poke_descriptor desc = { 19061 .reason = BPF_POKE_REASON_TAIL_CALL, 19062 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19063 .tail_call.key = bpf_map_key_immediate(aux), 19064 .insn_idx = i + delta, 19065 }; 19066 19067 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19068 if (ret < 0) { 19069 verbose(env, "adding tail call poke descriptor failed\n"); 19070 return ret; 19071 } 19072 19073 insn->imm = ret + 1; 19074 continue; 19075 } 19076 19077 if (!bpf_map_ptr_unpriv(aux)) 19078 continue; 19079 19080 /* instead of changing every JIT dealing with tail_call 19081 * emit two extra insns: 19082 * if (index >= max_entries) goto out; 19083 * index &= array->index_mask; 19084 * to avoid out-of-bounds cpu speculation 19085 */ 19086 if (bpf_map_ptr_poisoned(aux)) { 19087 verbose(env, "tail_call abusing map_ptr\n"); 19088 return -EINVAL; 19089 } 19090 19091 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19092 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19093 map_ptr->max_entries, 2); 19094 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19095 container_of(map_ptr, 19096 struct bpf_array, 19097 map)->index_mask); 19098 insn_buf[2] = *insn; 19099 cnt = 3; 19100 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19101 if (!new_prog) 19102 return -ENOMEM; 19103 19104 delta += cnt - 1; 19105 env->prog = prog = new_prog; 19106 insn = new_prog->insnsi + i + delta; 19107 continue; 19108 } 19109 19110 if (insn->imm == BPF_FUNC_timer_set_callback) { 19111 /* The verifier will process callback_fn as many times as necessary 19112 * with different maps and the register states prepared by 19113 * set_timer_callback_state will be accurate. 19114 * 19115 * The following use case is valid: 19116 * map1 is shared by prog1, prog2, prog3. 19117 * prog1 calls bpf_timer_init for some map1 elements 19118 * prog2 calls bpf_timer_set_callback for some map1 elements. 19119 * Those that were not bpf_timer_init-ed will return -EINVAL. 19120 * prog3 calls bpf_timer_start for some map1 elements. 19121 * Those that were not both bpf_timer_init-ed and 19122 * bpf_timer_set_callback-ed will return -EINVAL. 19123 */ 19124 struct bpf_insn ld_addrs[2] = { 19125 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19126 }; 19127 19128 insn_buf[0] = ld_addrs[0]; 19129 insn_buf[1] = ld_addrs[1]; 19130 insn_buf[2] = *insn; 19131 cnt = 3; 19132 19133 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19134 if (!new_prog) 19135 return -ENOMEM; 19136 19137 delta += cnt - 1; 19138 env->prog = prog = new_prog; 19139 insn = new_prog->insnsi + i + delta; 19140 goto patch_call_imm; 19141 } 19142 19143 if (is_storage_get_function(insn->imm)) { 19144 if (!env->prog->aux->sleepable || 19145 env->insn_aux_data[i + delta].storage_get_func_atomic) 19146 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19147 else 19148 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19149 insn_buf[1] = *insn; 19150 cnt = 2; 19151 19152 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19153 if (!new_prog) 19154 return -ENOMEM; 19155 19156 delta += cnt - 1; 19157 env->prog = prog = new_prog; 19158 insn = new_prog->insnsi + i + delta; 19159 goto patch_call_imm; 19160 } 19161 19162 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19163 * and other inlining handlers are currently limited to 64 bit 19164 * only. 19165 */ 19166 if (prog->jit_requested && BITS_PER_LONG == 64 && 19167 (insn->imm == BPF_FUNC_map_lookup_elem || 19168 insn->imm == BPF_FUNC_map_update_elem || 19169 insn->imm == BPF_FUNC_map_delete_elem || 19170 insn->imm == BPF_FUNC_map_push_elem || 19171 insn->imm == BPF_FUNC_map_pop_elem || 19172 insn->imm == BPF_FUNC_map_peek_elem || 19173 insn->imm == BPF_FUNC_redirect_map || 19174 insn->imm == BPF_FUNC_for_each_map_elem || 19175 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19176 aux = &env->insn_aux_data[i + delta]; 19177 if (bpf_map_ptr_poisoned(aux)) 19178 goto patch_call_imm; 19179 19180 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19181 ops = map_ptr->ops; 19182 if (insn->imm == BPF_FUNC_map_lookup_elem && 19183 ops->map_gen_lookup) { 19184 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19185 if (cnt == -EOPNOTSUPP) 19186 goto patch_map_ops_generic; 19187 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19188 verbose(env, "bpf verifier is misconfigured\n"); 19189 return -EINVAL; 19190 } 19191 19192 new_prog = bpf_patch_insn_data(env, i + delta, 19193 insn_buf, cnt); 19194 if (!new_prog) 19195 return -ENOMEM; 19196 19197 delta += cnt - 1; 19198 env->prog = prog = new_prog; 19199 insn = new_prog->insnsi + i + delta; 19200 continue; 19201 } 19202 19203 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19204 (void *(*)(struct bpf_map *map, void *key))NULL)); 19205 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19206 (long (*)(struct bpf_map *map, void *key))NULL)); 19207 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19208 (long (*)(struct bpf_map *map, void *key, void *value, 19209 u64 flags))NULL)); 19210 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19211 (long (*)(struct bpf_map *map, void *value, 19212 u64 flags))NULL)); 19213 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19214 (long (*)(struct bpf_map *map, void *value))NULL)); 19215 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19216 (long (*)(struct bpf_map *map, void *value))NULL)); 19217 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19218 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19219 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19220 (long (*)(struct bpf_map *map, 19221 bpf_callback_t callback_fn, 19222 void *callback_ctx, 19223 u64 flags))NULL)); 19224 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19225 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19226 19227 patch_map_ops_generic: 19228 switch (insn->imm) { 19229 case BPF_FUNC_map_lookup_elem: 19230 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19231 continue; 19232 case BPF_FUNC_map_update_elem: 19233 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19234 continue; 19235 case BPF_FUNC_map_delete_elem: 19236 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19237 continue; 19238 case BPF_FUNC_map_push_elem: 19239 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19240 continue; 19241 case BPF_FUNC_map_pop_elem: 19242 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19243 continue; 19244 case BPF_FUNC_map_peek_elem: 19245 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19246 continue; 19247 case BPF_FUNC_redirect_map: 19248 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19249 continue; 19250 case BPF_FUNC_for_each_map_elem: 19251 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19252 continue; 19253 case BPF_FUNC_map_lookup_percpu_elem: 19254 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19255 continue; 19256 } 19257 19258 goto patch_call_imm; 19259 } 19260 19261 /* Implement bpf_jiffies64 inline. */ 19262 if (prog->jit_requested && BITS_PER_LONG == 64 && 19263 insn->imm == BPF_FUNC_jiffies64) { 19264 struct bpf_insn ld_jiffies_addr[2] = { 19265 BPF_LD_IMM64(BPF_REG_0, 19266 (unsigned long)&jiffies), 19267 }; 19268 19269 insn_buf[0] = ld_jiffies_addr[0]; 19270 insn_buf[1] = ld_jiffies_addr[1]; 19271 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19272 BPF_REG_0, 0); 19273 cnt = 3; 19274 19275 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19276 cnt); 19277 if (!new_prog) 19278 return -ENOMEM; 19279 19280 delta += cnt - 1; 19281 env->prog = prog = new_prog; 19282 insn = new_prog->insnsi + i + delta; 19283 continue; 19284 } 19285 19286 /* Implement bpf_get_func_arg inline. */ 19287 if (prog_type == BPF_PROG_TYPE_TRACING && 19288 insn->imm == BPF_FUNC_get_func_arg) { 19289 /* Load nr_args from ctx - 8 */ 19290 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19291 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19292 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19293 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19294 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19295 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19296 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19297 insn_buf[7] = BPF_JMP_A(1); 19298 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19299 cnt = 9; 19300 19301 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19302 if (!new_prog) 19303 return -ENOMEM; 19304 19305 delta += cnt - 1; 19306 env->prog = prog = new_prog; 19307 insn = new_prog->insnsi + i + delta; 19308 continue; 19309 } 19310 19311 /* Implement bpf_get_func_ret inline. */ 19312 if (prog_type == BPF_PROG_TYPE_TRACING && 19313 insn->imm == BPF_FUNC_get_func_ret) { 19314 if (eatype == BPF_TRACE_FEXIT || 19315 eatype == BPF_MODIFY_RETURN) { 19316 /* Load nr_args from ctx - 8 */ 19317 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19318 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19319 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19320 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19321 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19322 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19323 cnt = 6; 19324 } else { 19325 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19326 cnt = 1; 19327 } 19328 19329 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19330 if (!new_prog) 19331 return -ENOMEM; 19332 19333 delta += cnt - 1; 19334 env->prog = prog = new_prog; 19335 insn = new_prog->insnsi + i + delta; 19336 continue; 19337 } 19338 19339 /* Implement get_func_arg_cnt inline. */ 19340 if (prog_type == BPF_PROG_TYPE_TRACING && 19341 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19342 /* Load nr_args from ctx - 8 */ 19343 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19344 19345 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19346 if (!new_prog) 19347 return -ENOMEM; 19348 19349 env->prog = prog = new_prog; 19350 insn = new_prog->insnsi + i + delta; 19351 continue; 19352 } 19353 19354 /* Implement bpf_get_func_ip inline. */ 19355 if (prog_type == BPF_PROG_TYPE_TRACING && 19356 insn->imm == BPF_FUNC_get_func_ip) { 19357 /* Load IP address from ctx - 16 */ 19358 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19359 19360 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19361 if (!new_prog) 19362 return -ENOMEM; 19363 19364 env->prog = prog = new_prog; 19365 insn = new_prog->insnsi + i + delta; 19366 continue; 19367 } 19368 19369 patch_call_imm: 19370 fn = env->ops->get_func_proto(insn->imm, env->prog); 19371 /* all functions that have prototype and verifier allowed 19372 * programs to call them, must be real in-kernel functions 19373 */ 19374 if (!fn->func) { 19375 verbose(env, 19376 "kernel subsystem misconfigured func %s#%d\n", 19377 func_id_name(insn->imm), insn->imm); 19378 return -EFAULT; 19379 } 19380 insn->imm = fn->func - __bpf_call_base; 19381 } 19382 19383 /* Since poke tab is now finalized, publish aux to tracker. */ 19384 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19385 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19386 if (!map_ptr->ops->map_poke_track || 19387 !map_ptr->ops->map_poke_untrack || 19388 !map_ptr->ops->map_poke_run) { 19389 verbose(env, "bpf verifier is misconfigured\n"); 19390 return -EINVAL; 19391 } 19392 19393 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19394 if (ret < 0) { 19395 verbose(env, "tracking tail call prog failed\n"); 19396 return ret; 19397 } 19398 } 19399 19400 sort_kfunc_descs_by_imm_off(env->prog); 19401 19402 return 0; 19403 } 19404 19405 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19406 int position, 19407 s32 stack_base, 19408 u32 callback_subprogno, 19409 u32 *cnt) 19410 { 19411 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19412 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19413 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19414 int reg_loop_max = BPF_REG_6; 19415 int reg_loop_cnt = BPF_REG_7; 19416 int reg_loop_ctx = BPF_REG_8; 19417 19418 struct bpf_prog *new_prog; 19419 u32 callback_start; 19420 u32 call_insn_offset; 19421 s32 callback_offset; 19422 19423 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19424 * be careful to modify this code in sync. 19425 */ 19426 struct bpf_insn insn_buf[] = { 19427 /* Return error and jump to the end of the patch if 19428 * expected number of iterations is too big. 19429 */ 19430 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19431 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19432 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19433 /* spill R6, R7, R8 to use these as loop vars */ 19434 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19435 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19436 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19437 /* initialize loop vars */ 19438 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19439 BPF_MOV32_IMM(reg_loop_cnt, 0), 19440 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19441 /* loop header, 19442 * if reg_loop_cnt >= reg_loop_max skip the loop body 19443 */ 19444 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19445 /* callback call, 19446 * correct callback offset would be set after patching 19447 */ 19448 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19449 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19450 BPF_CALL_REL(0), 19451 /* increment loop counter */ 19452 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19453 /* jump to loop header if callback returned 0 */ 19454 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19455 /* return value of bpf_loop, 19456 * set R0 to the number of iterations 19457 */ 19458 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19459 /* restore original values of R6, R7, R8 */ 19460 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19461 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19462 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19463 }; 19464 19465 *cnt = ARRAY_SIZE(insn_buf); 19466 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19467 if (!new_prog) 19468 return new_prog; 19469 19470 /* callback start is known only after patching */ 19471 callback_start = env->subprog_info[callback_subprogno].start; 19472 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19473 call_insn_offset = position + 12; 19474 callback_offset = callback_start - call_insn_offset - 1; 19475 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19476 19477 return new_prog; 19478 } 19479 19480 static bool is_bpf_loop_call(struct bpf_insn *insn) 19481 { 19482 return insn->code == (BPF_JMP | BPF_CALL) && 19483 insn->src_reg == 0 && 19484 insn->imm == BPF_FUNC_loop; 19485 } 19486 19487 /* For all sub-programs in the program (including main) check 19488 * insn_aux_data to see if there are bpf_loop calls that require 19489 * inlining. If such calls are found the calls are replaced with a 19490 * sequence of instructions produced by `inline_bpf_loop` function and 19491 * subprog stack_depth is increased by the size of 3 registers. 19492 * This stack space is used to spill values of the R6, R7, R8. These 19493 * registers are used to store the loop bound, counter and context 19494 * variables. 19495 */ 19496 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19497 { 19498 struct bpf_subprog_info *subprogs = env->subprog_info; 19499 int i, cur_subprog = 0, cnt, delta = 0; 19500 struct bpf_insn *insn = env->prog->insnsi; 19501 int insn_cnt = env->prog->len; 19502 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19503 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19504 u16 stack_depth_extra = 0; 19505 19506 for (i = 0; i < insn_cnt; i++, insn++) { 19507 struct bpf_loop_inline_state *inline_state = 19508 &env->insn_aux_data[i + delta].loop_inline_state; 19509 19510 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19511 struct bpf_prog *new_prog; 19512 19513 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19514 new_prog = inline_bpf_loop(env, 19515 i + delta, 19516 -(stack_depth + stack_depth_extra), 19517 inline_state->callback_subprogno, 19518 &cnt); 19519 if (!new_prog) 19520 return -ENOMEM; 19521 19522 delta += cnt - 1; 19523 env->prog = new_prog; 19524 insn = new_prog->insnsi + i + delta; 19525 } 19526 19527 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19528 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19529 cur_subprog++; 19530 stack_depth = subprogs[cur_subprog].stack_depth; 19531 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19532 stack_depth_extra = 0; 19533 } 19534 } 19535 19536 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19537 19538 return 0; 19539 } 19540 19541 static void free_states(struct bpf_verifier_env *env) 19542 { 19543 struct bpf_verifier_state_list *sl, *sln; 19544 int i; 19545 19546 sl = env->free_list; 19547 while (sl) { 19548 sln = sl->next; 19549 free_verifier_state(&sl->state, false); 19550 kfree(sl); 19551 sl = sln; 19552 } 19553 env->free_list = NULL; 19554 19555 if (!env->explored_states) 19556 return; 19557 19558 for (i = 0; i < state_htab_size(env); i++) { 19559 sl = env->explored_states[i]; 19560 19561 while (sl) { 19562 sln = sl->next; 19563 free_verifier_state(&sl->state, false); 19564 kfree(sl); 19565 sl = sln; 19566 } 19567 env->explored_states[i] = NULL; 19568 } 19569 } 19570 19571 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19572 { 19573 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19574 struct bpf_verifier_state *state; 19575 struct bpf_reg_state *regs; 19576 int ret, i; 19577 19578 env->prev_linfo = NULL; 19579 env->pass_cnt++; 19580 19581 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19582 if (!state) 19583 return -ENOMEM; 19584 state->curframe = 0; 19585 state->speculative = false; 19586 state->branches = 1; 19587 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19588 if (!state->frame[0]) { 19589 kfree(state); 19590 return -ENOMEM; 19591 } 19592 env->cur_state = state; 19593 init_func_state(env, state->frame[0], 19594 BPF_MAIN_FUNC /* callsite */, 19595 0 /* frameno */, 19596 subprog); 19597 state->first_insn_idx = env->subprog_info[subprog].start; 19598 state->last_insn_idx = -1; 19599 19600 regs = state->frame[state->curframe]->regs; 19601 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19602 ret = btf_prepare_func_args(env, subprog, regs); 19603 if (ret) 19604 goto out; 19605 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19606 if (regs[i].type == PTR_TO_CTX) 19607 mark_reg_known_zero(env, regs, i); 19608 else if (regs[i].type == SCALAR_VALUE) 19609 mark_reg_unknown(env, regs, i); 19610 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19611 const u32 mem_size = regs[i].mem_size; 19612 19613 mark_reg_known_zero(env, regs, i); 19614 regs[i].mem_size = mem_size; 19615 regs[i].id = ++env->id_gen; 19616 } 19617 } 19618 } else { 19619 /* 1st arg to a function */ 19620 regs[BPF_REG_1].type = PTR_TO_CTX; 19621 mark_reg_known_zero(env, regs, BPF_REG_1); 19622 ret = btf_check_subprog_arg_match(env, subprog, regs); 19623 if (ret == -EFAULT) 19624 /* unlikely verifier bug. abort. 19625 * ret == 0 and ret < 0 are sadly acceptable for 19626 * main() function due to backward compatibility. 19627 * Like socket filter program may be written as: 19628 * int bpf_prog(struct pt_regs *ctx) 19629 * and never dereference that ctx in the program. 19630 * 'struct pt_regs' is a type mismatch for socket 19631 * filter that should be using 'struct __sk_buff'. 19632 */ 19633 goto out; 19634 } 19635 19636 ret = do_check(env); 19637 out: 19638 /* check for NULL is necessary, since cur_state can be freed inside 19639 * do_check() under memory pressure. 19640 */ 19641 if (env->cur_state) { 19642 free_verifier_state(env->cur_state, true); 19643 env->cur_state = NULL; 19644 } 19645 while (!pop_stack(env, NULL, NULL, false)); 19646 if (!ret && pop_log) 19647 bpf_vlog_reset(&env->log, 0); 19648 free_states(env); 19649 return ret; 19650 } 19651 19652 /* Verify all global functions in a BPF program one by one based on their BTF. 19653 * All global functions must pass verification. Otherwise the whole program is rejected. 19654 * Consider: 19655 * int bar(int); 19656 * int foo(int f) 19657 * { 19658 * return bar(f); 19659 * } 19660 * int bar(int b) 19661 * { 19662 * ... 19663 * } 19664 * foo() will be verified first for R1=any_scalar_value. During verification it 19665 * will be assumed that bar() already verified successfully and call to bar() 19666 * from foo() will be checked for type match only. Later bar() will be verified 19667 * independently to check that it's safe for R1=any_scalar_value. 19668 */ 19669 static int do_check_subprogs(struct bpf_verifier_env *env) 19670 { 19671 struct bpf_prog_aux *aux = env->prog->aux; 19672 int i, ret; 19673 19674 if (!aux->func_info) 19675 return 0; 19676 19677 for (i = 1; i < env->subprog_cnt; i++) { 19678 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19679 continue; 19680 env->insn_idx = env->subprog_info[i].start; 19681 WARN_ON_ONCE(env->insn_idx == 0); 19682 ret = do_check_common(env, i); 19683 if (ret) { 19684 return ret; 19685 } else if (env->log.level & BPF_LOG_LEVEL) { 19686 verbose(env, 19687 "Func#%d is safe for any args that match its prototype\n", 19688 i); 19689 } 19690 } 19691 return 0; 19692 } 19693 19694 static int do_check_main(struct bpf_verifier_env *env) 19695 { 19696 int ret; 19697 19698 env->insn_idx = 0; 19699 ret = do_check_common(env, 0); 19700 if (!ret) 19701 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19702 return ret; 19703 } 19704 19705 19706 static void print_verification_stats(struct bpf_verifier_env *env) 19707 { 19708 int i; 19709 19710 if (env->log.level & BPF_LOG_STATS) { 19711 verbose(env, "verification time %lld usec\n", 19712 div_u64(env->verification_time, 1000)); 19713 verbose(env, "stack depth "); 19714 for (i = 0; i < env->subprog_cnt; i++) { 19715 u32 depth = env->subprog_info[i].stack_depth; 19716 19717 verbose(env, "%d", depth); 19718 if (i + 1 < env->subprog_cnt) 19719 verbose(env, "+"); 19720 } 19721 verbose(env, "\n"); 19722 } 19723 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19724 "total_states %d peak_states %d mark_read %d\n", 19725 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19726 env->max_states_per_insn, env->total_states, 19727 env->peak_states, env->longest_mark_read_walk); 19728 } 19729 19730 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19731 { 19732 const struct btf_type *t, *func_proto; 19733 const struct bpf_struct_ops *st_ops; 19734 const struct btf_member *member; 19735 struct bpf_prog *prog = env->prog; 19736 u32 btf_id, member_idx; 19737 const char *mname; 19738 19739 if (!prog->gpl_compatible) { 19740 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19741 return -EINVAL; 19742 } 19743 19744 btf_id = prog->aux->attach_btf_id; 19745 st_ops = bpf_struct_ops_find(btf_id); 19746 if (!st_ops) { 19747 verbose(env, "attach_btf_id %u is not a supported struct\n", 19748 btf_id); 19749 return -ENOTSUPP; 19750 } 19751 19752 t = st_ops->type; 19753 member_idx = prog->expected_attach_type; 19754 if (member_idx >= btf_type_vlen(t)) { 19755 verbose(env, "attach to invalid member idx %u of struct %s\n", 19756 member_idx, st_ops->name); 19757 return -EINVAL; 19758 } 19759 19760 member = &btf_type_member(t)[member_idx]; 19761 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19762 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19763 NULL); 19764 if (!func_proto) { 19765 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19766 mname, member_idx, st_ops->name); 19767 return -EINVAL; 19768 } 19769 19770 if (st_ops->check_member) { 19771 int err = st_ops->check_member(t, member, prog); 19772 19773 if (err) { 19774 verbose(env, "attach to unsupported member %s of struct %s\n", 19775 mname, st_ops->name); 19776 return err; 19777 } 19778 } 19779 19780 prog->aux->attach_func_proto = func_proto; 19781 prog->aux->attach_func_name = mname; 19782 env->ops = st_ops->verifier_ops; 19783 19784 return 0; 19785 } 19786 #define SECURITY_PREFIX "security_" 19787 19788 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19789 { 19790 if (within_error_injection_list(addr) || 19791 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19792 return 0; 19793 19794 return -EINVAL; 19795 } 19796 19797 /* list of non-sleepable functions that are otherwise on 19798 * ALLOW_ERROR_INJECTION list 19799 */ 19800 BTF_SET_START(btf_non_sleepable_error_inject) 19801 /* Three functions below can be called from sleepable and non-sleepable context. 19802 * Assume non-sleepable from bpf safety point of view. 19803 */ 19804 BTF_ID(func, __filemap_add_folio) 19805 BTF_ID(func, should_fail_alloc_page) 19806 BTF_ID(func, should_failslab) 19807 BTF_SET_END(btf_non_sleepable_error_inject) 19808 19809 static int check_non_sleepable_error_inject(u32 btf_id) 19810 { 19811 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19812 } 19813 19814 int bpf_check_attach_target(struct bpf_verifier_log *log, 19815 const struct bpf_prog *prog, 19816 const struct bpf_prog *tgt_prog, 19817 u32 btf_id, 19818 struct bpf_attach_target_info *tgt_info) 19819 { 19820 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19821 const char prefix[] = "btf_trace_"; 19822 int ret = 0, subprog = -1, i; 19823 const struct btf_type *t; 19824 bool conservative = true; 19825 const char *tname; 19826 struct btf *btf; 19827 long addr = 0; 19828 struct module *mod = NULL; 19829 19830 if (!btf_id) { 19831 bpf_log(log, "Tracing programs must provide btf_id\n"); 19832 return -EINVAL; 19833 } 19834 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19835 if (!btf) { 19836 bpf_log(log, 19837 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19838 return -EINVAL; 19839 } 19840 t = btf_type_by_id(btf, btf_id); 19841 if (!t) { 19842 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19843 return -EINVAL; 19844 } 19845 tname = btf_name_by_offset(btf, t->name_off); 19846 if (!tname) { 19847 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19848 return -EINVAL; 19849 } 19850 if (tgt_prog) { 19851 struct bpf_prog_aux *aux = tgt_prog->aux; 19852 19853 if (bpf_prog_is_dev_bound(prog->aux) && 19854 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19855 bpf_log(log, "Target program bound device mismatch"); 19856 return -EINVAL; 19857 } 19858 19859 for (i = 0; i < aux->func_info_cnt; i++) 19860 if (aux->func_info[i].type_id == btf_id) { 19861 subprog = i; 19862 break; 19863 } 19864 if (subprog == -1) { 19865 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19866 return -EINVAL; 19867 } 19868 conservative = aux->func_info_aux[subprog].unreliable; 19869 if (prog_extension) { 19870 if (conservative) { 19871 bpf_log(log, 19872 "Cannot replace static functions\n"); 19873 return -EINVAL; 19874 } 19875 if (!prog->jit_requested) { 19876 bpf_log(log, 19877 "Extension programs should be JITed\n"); 19878 return -EINVAL; 19879 } 19880 } 19881 if (!tgt_prog->jited) { 19882 bpf_log(log, "Can attach to only JITed progs\n"); 19883 return -EINVAL; 19884 } 19885 if (tgt_prog->type == prog->type) { 19886 /* Cannot fentry/fexit another fentry/fexit program. 19887 * Cannot attach program extension to another extension. 19888 * It's ok to attach fentry/fexit to extension program. 19889 */ 19890 bpf_log(log, "Cannot recursively attach\n"); 19891 return -EINVAL; 19892 } 19893 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19894 prog_extension && 19895 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19896 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19897 /* Program extensions can extend all program types 19898 * except fentry/fexit. The reason is the following. 19899 * The fentry/fexit programs are used for performance 19900 * analysis, stats and can be attached to any program 19901 * type except themselves. When extension program is 19902 * replacing XDP function it is necessary to allow 19903 * performance analysis of all functions. Both original 19904 * XDP program and its program extension. Hence 19905 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19906 * allowed. If extending of fentry/fexit was allowed it 19907 * would be possible to create long call chain 19908 * fentry->extension->fentry->extension beyond 19909 * reasonable stack size. Hence extending fentry is not 19910 * allowed. 19911 */ 19912 bpf_log(log, "Cannot extend fentry/fexit\n"); 19913 return -EINVAL; 19914 } 19915 } else { 19916 if (prog_extension) { 19917 bpf_log(log, "Cannot replace kernel functions\n"); 19918 return -EINVAL; 19919 } 19920 } 19921 19922 switch (prog->expected_attach_type) { 19923 case BPF_TRACE_RAW_TP: 19924 if (tgt_prog) { 19925 bpf_log(log, 19926 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19927 return -EINVAL; 19928 } 19929 if (!btf_type_is_typedef(t)) { 19930 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19931 btf_id); 19932 return -EINVAL; 19933 } 19934 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19935 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19936 btf_id, tname); 19937 return -EINVAL; 19938 } 19939 tname += sizeof(prefix) - 1; 19940 t = btf_type_by_id(btf, t->type); 19941 if (!btf_type_is_ptr(t)) 19942 /* should never happen in valid vmlinux build */ 19943 return -EINVAL; 19944 t = btf_type_by_id(btf, t->type); 19945 if (!btf_type_is_func_proto(t)) 19946 /* should never happen in valid vmlinux build */ 19947 return -EINVAL; 19948 19949 break; 19950 case BPF_TRACE_ITER: 19951 if (!btf_type_is_func(t)) { 19952 bpf_log(log, "attach_btf_id %u is not a function\n", 19953 btf_id); 19954 return -EINVAL; 19955 } 19956 t = btf_type_by_id(btf, t->type); 19957 if (!btf_type_is_func_proto(t)) 19958 return -EINVAL; 19959 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19960 if (ret) 19961 return ret; 19962 break; 19963 default: 19964 if (!prog_extension) 19965 return -EINVAL; 19966 fallthrough; 19967 case BPF_MODIFY_RETURN: 19968 case BPF_LSM_MAC: 19969 case BPF_LSM_CGROUP: 19970 case BPF_TRACE_FENTRY: 19971 case BPF_TRACE_FEXIT: 19972 if (!btf_type_is_func(t)) { 19973 bpf_log(log, "attach_btf_id %u is not a function\n", 19974 btf_id); 19975 return -EINVAL; 19976 } 19977 if (prog_extension && 19978 btf_check_type_match(log, prog, btf, t)) 19979 return -EINVAL; 19980 t = btf_type_by_id(btf, t->type); 19981 if (!btf_type_is_func_proto(t)) 19982 return -EINVAL; 19983 19984 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19985 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19986 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19987 return -EINVAL; 19988 19989 if (tgt_prog && conservative) 19990 t = NULL; 19991 19992 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19993 if (ret < 0) 19994 return ret; 19995 19996 if (tgt_prog) { 19997 if (subprog == 0) 19998 addr = (long) tgt_prog->bpf_func; 19999 else 20000 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20001 } else { 20002 if (btf_is_module(btf)) { 20003 mod = btf_try_get_module(btf); 20004 if (mod) 20005 addr = find_kallsyms_symbol_value(mod, tname); 20006 else 20007 addr = 0; 20008 } else { 20009 addr = kallsyms_lookup_name(tname); 20010 } 20011 if (!addr) { 20012 module_put(mod); 20013 bpf_log(log, 20014 "The address of function %s cannot be found\n", 20015 tname); 20016 return -ENOENT; 20017 } 20018 } 20019 20020 if (prog->aux->sleepable) { 20021 ret = -EINVAL; 20022 switch (prog->type) { 20023 case BPF_PROG_TYPE_TRACING: 20024 20025 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20026 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20027 */ 20028 if (!check_non_sleepable_error_inject(btf_id) && 20029 within_error_injection_list(addr)) 20030 ret = 0; 20031 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20032 * in the fmodret id set with the KF_SLEEPABLE flag. 20033 */ 20034 else { 20035 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20036 prog); 20037 20038 if (flags && (*flags & KF_SLEEPABLE)) 20039 ret = 0; 20040 } 20041 break; 20042 case BPF_PROG_TYPE_LSM: 20043 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20044 * Only some of them are sleepable. 20045 */ 20046 if (bpf_lsm_is_sleepable_hook(btf_id)) 20047 ret = 0; 20048 break; 20049 default: 20050 break; 20051 } 20052 if (ret) { 20053 module_put(mod); 20054 bpf_log(log, "%s is not sleepable\n", tname); 20055 return ret; 20056 } 20057 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20058 if (tgt_prog) { 20059 module_put(mod); 20060 bpf_log(log, "can't modify return codes of BPF programs\n"); 20061 return -EINVAL; 20062 } 20063 ret = -EINVAL; 20064 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20065 !check_attach_modify_return(addr, tname)) 20066 ret = 0; 20067 if (ret) { 20068 module_put(mod); 20069 bpf_log(log, "%s() is not modifiable\n", tname); 20070 return ret; 20071 } 20072 } 20073 20074 break; 20075 } 20076 tgt_info->tgt_addr = addr; 20077 tgt_info->tgt_name = tname; 20078 tgt_info->tgt_type = t; 20079 tgt_info->tgt_mod = mod; 20080 return 0; 20081 } 20082 20083 BTF_SET_START(btf_id_deny) 20084 BTF_ID_UNUSED 20085 #ifdef CONFIG_SMP 20086 BTF_ID(func, migrate_disable) 20087 BTF_ID(func, migrate_enable) 20088 #endif 20089 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20090 BTF_ID(func, rcu_read_unlock_strict) 20091 #endif 20092 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20093 BTF_ID(func, preempt_count_add) 20094 BTF_ID(func, preempt_count_sub) 20095 #endif 20096 #ifdef CONFIG_PREEMPT_RCU 20097 BTF_ID(func, __rcu_read_lock) 20098 BTF_ID(func, __rcu_read_unlock) 20099 #endif 20100 BTF_SET_END(btf_id_deny) 20101 20102 static bool can_be_sleepable(struct bpf_prog *prog) 20103 { 20104 if (prog->type == BPF_PROG_TYPE_TRACING) { 20105 switch (prog->expected_attach_type) { 20106 case BPF_TRACE_FENTRY: 20107 case BPF_TRACE_FEXIT: 20108 case BPF_MODIFY_RETURN: 20109 case BPF_TRACE_ITER: 20110 return true; 20111 default: 20112 return false; 20113 } 20114 } 20115 return prog->type == BPF_PROG_TYPE_LSM || 20116 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20117 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20118 } 20119 20120 static int check_attach_btf_id(struct bpf_verifier_env *env) 20121 { 20122 struct bpf_prog *prog = env->prog; 20123 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20124 struct bpf_attach_target_info tgt_info = {}; 20125 u32 btf_id = prog->aux->attach_btf_id; 20126 struct bpf_trampoline *tr; 20127 int ret; 20128 u64 key; 20129 20130 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20131 if (prog->aux->sleepable) 20132 /* attach_btf_id checked to be zero already */ 20133 return 0; 20134 verbose(env, "Syscall programs can only be sleepable\n"); 20135 return -EINVAL; 20136 } 20137 20138 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20139 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20140 return -EINVAL; 20141 } 20142 20143 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20144 return check_struct_ops_btf_id(env); 20145 20146 if (prog->type != BPF_PROG_TYPE_TRACING && 20147 prog->type != BPF_PROG_TYPE_LSM && 20148 prog->type != BPF_PROG_TYPE_EXT) 20149 return 0; 20150 20151 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20152 if (ret) 20153 return ret; 20154 20155 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20156 /* to make freplace equivalent to their targets, they need to 20157 * inherit env->ops and expected_attach_type for the rest of the 20158 * verification 20159 */ 20160 env->ops = bpf_verifier_ops[tgt_prog->type]; 20161 prog->expected_attach_type = tgt_prog->expected_attach_type; 20162 } 20163 20164 /* store info about the attachment target that will be used later */ 20165 prog->aux->attach_func_proto = tgt_info.tgt_type; 20166 prog->aux->attach_func_name = tgt_info.tgt_name; 20167 prog->aux->mod = tgt_info.tgt_mod; 20168 20169 if (tgt_prog) { 20170 prog->aux->saved_dst_prog_type = tgt_prog->type; 20171 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20172 } 20173 20174 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20175 prog->aux->attach_btf_trace = true; 20176 return 0; 20177 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20178 if (!bpf_iter_prog_supported(prog)) 20179 return -EINVAL; 20180 return 0; 20181 } 20182 20183 if (prog->type == BPF_PROG_TYPE_LSM) { 20184 ret = bpf_lsm_verify_prog(&env->log, prog); 20185 if (ret < 0) 20186 return ret; 20187 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20188 btf_id_set_contains(&btf_id_deny, btf_id)) { 20189 return -EINVAL; 20190 } 20191 20192 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20193 tr = bpf_trampoline_get(key, &tgt_info); 20194 if (!tr) 20195 return -ENOMEM; 20196 20197 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20198 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20199 20200 prog->aux->dst_trampoline = tr; 20201 return 0; 20202 } 20203 20204 struct btf *bpf_get_btf_vmlinux(void) 20205 { 20206 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20207 mutex_lock(&bpf_verifier_lock); 20208 if (!btf_vmlinux) 20209 btf_vmlinux = btf_parse_vmlinux(); 20210 mutex_unlock(&bpf_verifier_lock); 20211 } 20212 return btf_vmlinux; 20213 } 20214 20215 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20216 { 20217 u64 start_time = ktime_get_ns(); 20218 struct bpf_verifier_env *env; 20219 int i, len, ret = -EINVAL, err; 20220 u32 log_true_size; 20221 bool is_priv; 20222 20223 /* no program is valid */ 20224 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20225 return -EINVAL; 20226 20227 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20228 * allocate/free it every time bpf_check() is called 20229 */ 20230 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20231 if (!env) 20232 return -ENOMEM; 20233 20234 env->bt.env = env; 20235 20236 len = (*prog)->len; 20237 env->insn_aux_data = 20238 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20239 ret = -ENOMEM; 20240 if (!env->insn_aux_data) 20241 goto err_free_env; 20242 for (i = 0; i < len; i++) 20243 env->insn_aux_data[i].orig_idx = i; 20244 env->prog = *prog; 20245 env->ops = bpf_verifier_ops[env->prog->type]; 20246 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20247 is_priv = bpf_capable(); 20248 20249 bpf_get_btf_vmlinux(); 20250 20251 /* grab the mutex to protect few globals used by verifier */ 20252 if (!is_priv) 20253 mutex_lock(&bpf_verifier_lock); 20254 20255 /* user could have requested verbose verifier output 20256 * and supplied buffer to store the verification trace 20257 */ 20258 ret = bpf_vlog_init(&env->log, attr->log_level, 20259 (char __user *) (unsigned long) attr->log_buf, 20260 attr->log_size); 20261 if (ret) 20262 goto err_unlock; 20263 20264 mark_verifier_state_clean(env); 20265 20266 if (IS_ERR(btf_vmlinux)) { 20267 /* Either gcc or pahole or kernel are broken. */ 20268 verbose(env, "in-kernel BTF is malformed\n"); 20269 ret = PTR_ERR(btf_vmlinux); 20270 goto skip_full_check; 20271 } 20272 20273 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20274 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20275 env->strict_alignment = true; 20276 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20277 env->strict_alignment = false; 20278 20279 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20280 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20281 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20282 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20283 env->bpf_capable = bpf_capable(); 20284 20285 if (is_priv) 20286 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20287 20288 env->explored_states = kvcalloc(state_htab_size(env), 20289 sizeof(struct bpf_verifier_state_list *), 20290 GFP_USER); 20291 ret = -ENOMEM; 20292 if (!env->explored_states) 20293 goto skip_full_check; 20294 20295 ret = add_subprog_and_kfunc(env); 20296 if (ret < 0) 20297 goto skip_full_check; 20298 20299 ret = check_subprogs(env); 20300 if (ret < 0) 20301 goto skip_full_check; 20302 20303 ret = check_btf_info(env, attr, uattr); 20304 if (ret < 0) 20305 goto skip_full_check; 20306 20307 ret = check_attach_btf_id(env); 20308 if (ret) 20309 goto skip_full_check; 20310 20311 ret = resolve_pseudo_ldimm64(env); 20312 if (ret < 0) 20313 goto skip_full_check; 20314 20315 if (bpf_prog_is_offloaded(env->prog->aux)) { 20316 ret = bpf_prog_offload_verifier_prep(env->prog); 20317 if (ret) 20318 goto skip_full_check; 20319 } 20320 20321 ret = check_cfg(env); 20322 if (ret < 0) 20323 goto skip_full_check; 20324 20325 ret = do_check_subprogs(env); 20326 ret = ret ?: do_check_main(env); 20327 20328 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20329 ret = bpf_prog_offload_finalize(env); 20330 20331 skip_full_check: 20332 kvfree(env->explored_states); 20333 20334 if (ret == 0) 20335 ret = check_max_stack_depth(env); 20336 20337 /* instruction rewrites happen after this point */ 20338 if (ret == 0) 20339 ret = optimize_bpf_loop(env); 20340 20341 if (is_priv) { 20342 if (ret == 0) 20343 opt_hard_wire_dead_code_branches(env); 20344 if (ret == 0) 20345 ret = opt_remove_dead_code(env); 20346 if (ret == 0) 20347 ret = opt_remove_nops(env); 20348 } else { 20349 if (ret == 0) 20350 sanitize_dead_code(env); 20351 } 20352 20353 if (ret == 0) 20354 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20355 ret = convert_ctx_accesses(env); 20356 20357 if (ret == 0) 20358 ret = do_misc_fixups(env); 20359 20360 /* do 32-bit optimization after insn patching has done so those patched 20361 * insns could be handled correctly. 20362 */ 20363 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20364 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20365 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20366 : false; 20367 } 20368 20369 if (ret == 0) 20370 ret = fixup_call_args(env); 20371 20372 env->verification_time = ktime_get_ns() - start_time; 20373 print_verification_stats(env); 20374 env->prog->aux->verified_insns = env->insn_processed; 20375 20376 /* preserve original error even if log finalization is successful */ 20377 err = bpf_vlog_finalize(&env->log, &log_true_size); 20378 if (err) 20379 ret = err; 20380 20381 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20382 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20383 &log_true_size, sizeof(log_true_size))) { 20384 ret = -EFAULT; 20385 goto err_release_maps; 20386 } 20387 20388 if (ret) 20389 goto err_release_maps; 20390 20391 if (env->used_map_cnt) { 20392 /* if program passed verifier, update used_maps in bpf_prog_info */ 20393 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20394 sizeof(env->used_maps[0]), 20395 GFP_KERNEL); 20396 20397 if (!env->prog->aux->used_maps) { 20398 ret = -ENOMEM; 20399 goto err_release_maps; 20400 } 20401 20402 memcpy(env->prog->aux->used_maps, env->used_maps, 20403 sizeof(env->used_maps[0]) * env->used_map_cnt); 20404 env->prog->aux->used_map_cnt = env->used_map_cnt; 20405 } 20406 if (env->used_btf_cnt) { 20407 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20408 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20409 sizeof(env->used_btfs[0]), 20410 GFP_KERNEL); 20411 if (!env->prog->aux->used_btfs) { 20412 ret = -ENOMEM; 20413 goto err_release_maps; 20414 } 20415 20416 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20417 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20418 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20419 } 20420 if (env->used_map_cnt || env->used_btf_cnt) { 20421 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20422 * bpf_ld_imm64 instructions 20423 */ 20424 convert_pseudo_ld_imm64(env); 20425 } 20426 20427 adjust_btf_func(env); 20428 20429 err_release_maps: 20430 if (!env->prog->aux->used_maps) 20431 /* if we didn't copy map pointers into bpf_prog_info, release 20432 * them now. Otherwise free_used_maps() will release them. 20433 */ 20434 release_maps(env); 20435 if (!env->prog->aux->used_btfs) 20436 release_btfs(env); 20437 20438 /* extension progs temporarily inherit the attach_type of their targets 20439 for verification purposes, so set it back to zero before returning 20440 */ 20441 if (env->prog->type == BPF_PROG_TYPE_EXT) 20442 env->prog->expected_attach_type = 0; 20443 20444 *prog = env->prog; 20445 err_unlock: 20446 if (!is_priv) 20447 mutex_unlock(&bpf_verifier_lock); 20448 vfree(env->insn_aux_data); 20449 err_free_env: 20450 kfree(env); 20451 return ret; 20452 } 20453