1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 161 162 struct bpf_call_arg_meta { 163 struct bpf_map *map_ptr; 164 bool raw_mode; 165 bool pkt_access; 166 int regno; 167 int access_size; 168 s64 msize_smax_value; 169 u64 msize_umax_value; 170 }; 171 172 static DEFINE_MUTEX(bpf_verifier_lock); 173 174 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 175 va_list args) 176 { 177 unsigned int n; 178 179 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 180 181 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 182 "verifier log line truncated - local buffer too short\n"); 183 184 n = min(log->len_total - log->len_used - 1, n); 185 log->kbuf[n] = '\0'; 186 187 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 188 log->len_used += n; 189 else 190 log->ubuf = NULL; 191 } 192 193 /* log_level controls verbosity level of eBPF verifier. 194 * bpf_verifier_log_write() is used to dump the verification trace to the log, 195 * so the user can figure out what's wrong with the program 196 */ 197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 198 const char *fmt, ...) 199 { 200 va_list args; 201 202 if (!bpf_verifier_log_needed(&env->log)) 203 return; 204 205 va_start(args, fmt); 206 bpf_verifier_vlog(&env->log, fmt, args); 207 va_end(args); 208 } 209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 210 211 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 212 { 213 struct bpf_verifier_env *env = private_data; 214 va_list args; 215 216 if (!bpf_verifier_log_needed(&env->log)) 217 return; 218 219 va_start(args, fmt); 220 bpf_verifier_vlog(&env->log, fmt, args); 221 va_end(args); 222 } 223 224 static bool type_is_pkt_pointer(enum bpf_reg_type type) 225 { 226 return type == PTR_TO_PACKET || 227 type == PTR_TO_PACKET_META; 228 } 229 230 /* string representation of 'enum bpf_reg_type' */ 231 static const char * const reg_type_str[] = { 232 [NOT_INIT] = "?", 233 [SCALAR_VALUE] = "inv", 234 [PTR_TO_CTX] = "ctx", 235 [CONST_PTR_TO_MAP] = "map_ptr", 236 [PTR_TO_MAP_VALUE] = "map_value", 237 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 238 [PTR_TO_STACK] = "fp", 239 [PTR_TO_PACKET] = "pkt", 240 [PTR_TO_PACKET_META] = "pkt_meta", 241 [PTR_TO_PACKET_END] = "pkt_end", 242 }; 243 244 static void print_liveness(struct bpf_verifier_env *env, 245 enum bpf_reg_liveness live) 246 { 247 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 248 verbose(env, "_"); 249 if (live & REG_LIVE_READ) 250 verbose(env, "r"); 251 if (live & REG_LIVE_WRITTEN) 252 verbose(env, "w"); 253 } 254 255 static struct bpf_func_state *func(struct bpf_verifier_env *env, 256 const struct bpf_reg_state *reg) 257 { 258 struct bpf_verifier_state *cur = env->cur_state; 259 260 return cur->frame[reg->frameno]; 261 } 262 263 static void print_verifier_state(struct bpf_verifier_env *env, 264 const struct bpf_func_state *state) 265 { 266 const struct bpf_reg_state *reg; 267 enum bpf_reg_type t; 268 int i; 269 270 if (state->frameno) 271 verbose(env, " frame%d:", state->frameno); 272 for (i = 0; i < MAX_BPF_REG; i++) { 273 reg = &state->regs[i]; 274 t = reg->type; 275 if (t == NOT_INIT) 276 continue; 277 verbose(env, " R%d", i); 278 print_liveness(env, reg->live); 279 verbose(env, "=%s", reg_type_str[t]); 280 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 281 tnum_is_const(reg->var_off)) { 282 /* reg->off should be 0 for SCALAR_VALUE */ 283 verbose(env, "%lld", reg->var_off.value + reg->off); 284 if (t == PTR_TO_STACK) 285 verbose(env, ",call_%d", func(env, reg)->callsite); 286 } else { 287 verbose(env, "(id=%d", reg->id); 288 if (t != SCALAR_VALUE) 289 verbose(env, ",off=%d", reg->off); 290 if (type_is_pkt_pointer(t)) 291 verbose(env, ",r=%d", reg->range); 292 else if (t == CONST_PTR_TO_MAP || 293 t == PTR_TO_MAP_VALUE || 294 t == PTR_TO_MAP_VALUE_OR_NULL) 295 verbose(env, ",ks=%d,vs=%d", 296 reg->map_ptr->key_size, 297 reg->map_ptr->value_size); 298 if (tnum_is_const(reg->var_off)) { 299 /* Typically an immediate SCALAR_VALUE, but 300 * could be a pointer whose offset is too big 301 * for reg->off 302 */ 303 verbose(env, ",imm=%llx", reg->var_off.value); 304 } else { 305 if (reg->smin_value != reg->umin_value && 306 reg->smin_value != S64_MIN) 307 verbose(env, ",smin_value=%lld", 308 (long long)reg->smin_value); 309 if (reg->smax_value != reg->umax_value && 310 reg->smax_value != S64_MAX) 311 verbose(env, ",smax_value=%lld", 312 (long long)reg->smax_value); 313 if (reg->umin_value != 0) 314 verbose(env, ",umin_value=%llu", 315 (unsigned long long)reg->umin_value); 316 if (reg->umax_value != U64_MAX) 317 verbose(env, ",umax_value=%llu", 318 (unsigned long long)reg->umax_value); 319 if (!tnum_is_unknown(reg->var_off)) { 320 char tn_buf[48]; 321 322 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 323 verbose(env, ",var_off=%s", tn_buf); 324 } 325 } 326 verbose(env, ")"); 327 } 328 } 329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 330 if (state->stack[i].slot_type[0] == STACK_SPILL) { 331 verbose(env, " fp%d", 332 (-i - 1) * BPF_REG_SIZE); 333 print_liveness(env, state->stack[i].spilled_ptr.live); 334 verbose(env, "=%s", 335 reg_type_str[state->stack[i].spilled_ptr.type]); 336 } 337 if (state->stack[i].slot_type[0] == STACK_ZERO) 338 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 339 } 340 verbose(env, "\n"); 341 } 342 343 static int copy_stack_state(struct bpf_func_state *dst, 344 const struct bpf_func_state *src) 345 { 346 if (!src->stack) 347 return 0; 348 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 349 /* internal bug, make state invalid to reject the program */ 350 memset(dst, 0, sizeof(*dst)); 351 return -EFAULT; 352 } 353 memcpy(dst->stack, src->stack, 354 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 355 return 0; 356 } 357 358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 359 * make it consume minimal amount of memory. check_stack_write() access from 360 * the program calls into realloc_func_state() to grow the stack size. 361 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 362 * which this function copies over. It points to previous bpf_verifier_state 363 * which is never reallocated 364 */ 365 static int realloc_func_state(struct bpf_func_state *state, int size, 366 bool copy_old) 367 { 368 u32 old_size = state->allocated_stack; 369 struct bpf_stack_state *new_stack; 370 int slot = size / BPF_REG_SIZE; 371 372 if (size <= old_size || !size) { 373 if (copy_old) 374 return 0; 375 state->allocated_stack = slot * BPF_REG_SIZE; 376 if (!size && old_size) { 377 kfree(state->stack); 378 state->stack = NULL; 379 } 380 return 0; 381 } 382 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 383 GFP_KERNEL); 384 if (!new_stack) 385 return -ENOMEM; 386 if (copy_old) { 387 if (state->stack) 388 memcpy(new_stack, state->stack, 389 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 390 memset(new_stack + old_size / BPF_REG_SIZE, 0, 391 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 392 } 393 state->allocated_stack = slot * BPF_REG_SIZE; 394 kfree(state->stack); 395 state->stack = new_stack; 396 return 0; 397 } 398 399 static void free_func_state(struct bpf_func_state *state) 400 { 401 if (!state) 402 return; 403 kfree(state->stack); 404 kfree(state); 405 } 406 407 static void free_verifier_state(struct bpf_verifier_state *state, 408 bool free_self) 409 { 410 int i; 411 412 for (i = 0; i <= state->curframe; i++) { 413 free_func_state(state->frame[i]); 414 state->frame[i] = NULL; 415 } 416 if (free_self) 417 kfree(state); 418 } 419 420 /* copy verifier state from src to dst growing dst stack space 421 * when necessary to accommodate larger src stack 422 */ 423 static int copy_func_state(struct bpf_func_state *dst, 424 const struct bpf_func_state *src) 425 { 426 int err; 427 428 err = realloc_func_state(dst, src->allocated_stack, false); 429 if (err) 430 return err; 431 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 432 return copy_stack_state(dst, src); 433 } 434 435 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 436 const struct bpf_verifier_state *src) 437 { 438 struct bpf_func_state *dst; 439 int i, err; 440 441 /* if dst has more stack frames then src frame, free them */ 442 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 443 free_func_state(dst_state->frame[i]); 444 dst_state->frame[i] = NULL; 445 } 446 dst_state->curframe = src->curframe; 447 dst_state->parent = src->parent; 448 for (i = 0; i <= src->curframe; i++) { 449 dst = dst_state->frame[i]; 450 if (!dst) { 451 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 452 if (!dst) 453 return -ENOMEM; 454 dst_state->frame[i] = dst; 455 } 456 err = copy_func_state(dst, src->frame[i]); 457 if (err) 458 return err; 459 } 460 return 0; 461 } 462 463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 464 int *insn_idx) 465 { 466 struct bpf_verifier_state *cur = env->cur_state; 467 struct bpf_verifier_stack_elem *elem, *head = env->head; 468 int err; 469 470 if (env->head == NULL) 471 return -ENOENT; 472 473 if (cur) { 474 err = copy_verifier_state(cur, &head->st); 475 if (err) 476 return err; 477 } 478 if (insn_idx) 479 *insn_idx = head->insn_idx; 480 if (prev_insn_idx) 481 *prev_insn_idx = head->prev_insn_idx; 482 elem = head->next; 483 free_verifier_state(&head->st, false); 484 kfree(head); 485 env->head = elem; 486 env->stack_size--; 487 return 0; 488 } 489 490 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 491 int insn_idx, int prev_insn_idx) 492 { 493 struct bpf_verifier_state *cur = env->cur_state; 494 struct bpf_verifier_stack_elem *elem; 495 int err; 496 497 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 498 if (!elem) 499 goto err; 500 501 elem->insn_idx = insn_idx; 502 elem->prev_insn_idx = prev_insn_idx; 503 elem->next = env->head; 504 env->head = elem; 505 env->stack_size++; 506 err = copy_verifier_state(&elem->st, cur); 507 if (err) 508 goto err; 509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 510 verbose(env, "BPF program is too complex\n"); 511 goto err; 512 } 513 return &elem->st; 514 err: 515 free_verifier_state(env->cur_state, true); 516 env->cur_state = NULL; 517 /* pop all elements and return */ 518 while (!pop_stack(env, NULL, NULL)); 519 return NULL; 520 } 521 522 #define CALLER_SAVED_REGS 6 523 static const int caller_saved[CALLER_SAVED_REGS] = { 524 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 525 }; 526 527 static void __mark_reg_not_init(struct bpf_reg_state *reg); 528 529 /* Mark the unknown part of a register (variable offset or scalar value) as 530 * known to have the value @imm. 531 */ 532 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 533 { 534 reg->id = 0; 535 reg->var_off = tnum_const(imm); 536 reg->smin_value = (s64)imm; 537 reg->smax_value = (s64)imm; 538 reg->umin_value = imm; 539 reg->umax_value = imm; 540 } 541 542 /* Mark the 'variable offset' part of a register as zero. This should be 543 * used only on registers holding a pointer type. 544 */ 545 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 546 { 547 __mark_reg_known(reg, 0); 548 } 549 550 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 551 { 552 __mark_reg_known(reg, 0); 553 reg->off = 0; 554 reg->type = SCALAR_VALUE; 555 } 556 557 static void mark_reg_known_zero(struct bpf_verifier_env *env, 558 struct bpf_reg_state *regs, u32 regno) 559 { 560 if (WARN_ON(regno >= MAX_BPF_REG)) { 561 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 562 /* Something bad happened, let's kill all regs */ 563 for (regno = 0; regno < MAX_BPF_REG; regno++) 564 __mark_reg_not_init(regs + regno); 565 return; 566 } 567 __mark_reg_known_zero(regs + regno); 568 } 569 570 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 571 { 572 return type_is_pkt_pointer(reg->type); 573 } 574 575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 576 { 577 return reg_is_pkt_pointer(reg) || 578 reg->type == PTR_TO_PACKET_END; 579 } 580 581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 583 enum bpf_reg_type which) 584 { 585 /* The register can already have a range from prior markings. 586 * This is fine as long as it hasn't been advanced from its 587 * origin. 588 */ 589 return reg->type == which && 590 reg->id == 0 && 591 reg->off == 0 && 592 tnum_equals_const(reg->var_off, 0); 593 } 594 595 /* Attempts to improve min/max values based on var_off information */ 596 static void __update_reg_bounds(struct bpf_reg_state *reg) 597 { 598 /* min signed is max(sign bit) | min(other bits) */ 599 reg->smin_value = max_t(s64, reg->smin_value, 600 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 601 /* max signed is min(sign bit) | max(other bits) */ 602 reg->smax_value = min_t(s64, reg->smax_value, 603 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 604 reg->umin_value = max(reg->umin_value, reg->var_off.value); 605 reg->umax_value = min(reg->umax_value, 606 reg->var_off.value | reg->var_off.mask); 607 } 608 609 /* Uses signed min/max values to inform unsigned, and vice-versa */ 610 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 611 { 612 /* Learn sign from signed bounds. 613 * If we cannot cross the sign boundary, then signed and unsigned bounds 614 * are the same, so combine. This works even in the negative case, e.g. 615 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 616 */ 617 if (reg->smin_value >= 0 || reg->smax_value < 0) { 618 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 619 reg->umin_value); 620 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 621 reg->umax_value); 622 return; 623 } 624 /* Learn sign from unsigned bounds. Signed bounds cross the sign 625 * boundary, so we must be careful. 626 */ 627 if ((s64)reg->umax_value >= 0) { 628 /* Positive. We can't learn anything from the smin, but smax 629 * is positive, hence safe. 630 */ 631 reg->smin_value = reg->umin_value; 632 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 633 reg->umax_value); 634 } else if ((s64)reg->umin_value < 0) { 635 /* Negative. We can't learn anything from the smax, but smin 636 * is negative, hence safe. 637 */ 638 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 639 reg->umin_value); 640 reg->smax_value = reg->umax_value; 641 } 642 } 643 644 /* Attempts to improve var_off based on unsigned min/max information */ 645 static void __reg_bound_offset(struct bpf_reg_state *reg) 646 { 647 reg->var_off = tnum_intersect(reg->var_off, 648 tnum_range(reg->umin_value, 649 reg->umax_value)); 650 } 651 652 /* Reset the min/max bounds of a register */ 653 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 654 { 655 reg->smin_value = S64_MIN; 656 reg->smax_value = S64_MAX; 657 reg->umin_value = 0; 658 reg->umax_value = U64_MAX; 659 } 660 661 /* Mark a register as having a completely unknown (scalar) value. */ 662 static void __mark_reg_unknown(struct bpf_reg_state *reg) 663 { 664 reg->type = SCALAR_VALUE; 665 reg->id = 0; 666 reg->off = 0; 667 reg->var_off = tnum_unknown; 668 reg->frameno = 0; 669 __mark_reg_unbounded(reg); 670 } 671 672 static void mark_reg_unknown(struct bpf_verifier_env *env, 673 struct bpf_reg_state *regs, u32 regno) 674 { 675 if (WARN_ON(regno >= MAX_BPF_REG)) { 676 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 677 /* Something bad happened, let's kill all regs except FP */ 678 for (regno = 0; regno < BPF_REG_FP; regno++) 679 __mark_reg_not_init(regs + regno); 680 return; 681 } 682 __mark_reg_unknown(regs + regno); 683 } 684 685 static void __mark_reg_not_init(struct bpf_reg_state *reg) 686 { 687 __mark_reg_unknown(reg); 688 reg->type = NOT_INIT; 689 } 690 691 static void mark_reg_not_init(struct bpf_verifier_env *env, 692 struct bpf_reg_state *regs, u32 regno) 693 { 694 if (WARN_ON(regno >= MAX_BPF_REG)) { 695 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 696 /* Something bad happened, let's kill all regs except FP */ 697 for (regno = 0; regno < BPF_REG_FP; regno++) 698 __mark_reg_not_init(regs + regno); 699 return; 700 } 701 __mark_reg_not_init(regs + regno); 702 } 703 704 static void init_reg_state(struct bpf_verifier_env *env, 705 struct bpf_func_state *state) 706 { 707 struct bpf_reg_state *regs = state->regs; 708 int i; 709 710 for (i = 0; i < MAX_BPF_REG; i++) { 711 mark_reg_not_init(env, regs, i); 712 regs[i].live = REG_LIVE_NONE; 713 } 714 715 /* frame pointer */ 716 regs[BPF_REG_FP].type = PTR_TO_STACK; 717 mark_reg_known_zero(env, regs, BPF_REG_FP); 718 regs[BPF_REG_FP].frameno = state->frameno; 719 720 /* 1st arg to a function */ 721 regs[BPF_REG_1].type = PTR_TO_CTX; 722 mark_reg_known_zero(env, regs, BPF_REG_1); 723 } 724 725 #define BPF_MAIN_FUNC (-1) 726 static void init_func_state(struct bpf_verifier_env *env, 727 struct bpf_func_state *state, 728 int callsite, int frameno, int subprogno) 729 { 730 state->callsite = callsite; 731 state->frameno = frameno; 732 state->subprogno = subprogno; 733 init_reg_state(env, state); 734 } 735 736 enum reg_arg_type { 737 SRC_OP, /* register is used as source operand */ 738 DST_OP, /* register is used as destination operand */ 739 DST_OP_NO_MARK /* same as above, check only, don't mark */ 740 }; 741 742 static int cmp_subprogs(const void *a, const void *b) 743 { 744 return ((struct bpf_subprog_info *)a)->start - 745 ((struct bpf_subprog_info *)b)->start; 746 } 747 748 static int find_subprog(struct bpf_verifier_env *env, int off) 749 { 750 struct bpf_subprog_info *p; 751 752 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 753 sizeof(env->subprog_info[0]), cmp_subprogs); 754 if (!p) 755 return -ENOENT; 756 return p - env->subprog_info; 757 758 } 759 760 static int add_subprog(struct bpf_verifier_env *env, int off) 761 { 762 int insn_cnt = env->prog->len; 763 int ret; 764 765 if (off >= insn_cnt || off < 0) { 766 verbose(env, "call to invalid destination\n"); 767 return -EINVAL; 768 } 769 ret = find_subprog(env, off); 770 if (ret >= 0) 771 return 0; 772 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 773 verbose(env, "too many subprograms\n"); 774 return -E2BIG; 775 } 776 env->subprog_info[env->subprog_cnt++].start = off; 777 sort(env->subprog_info, env->subprog_cnt, 778 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 779 return 0; 780 } 781 782 static int check_subprogs(struct bpf_verifier_env *env) 783 { 784 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 785 struct bpf_subprog_info *subprog = env->subprog_info; 786 struct bpf_insn *insn = env->prog->insnsi; 787 int insn_cnt = env->prog->len; 788 789 /* Add entry function. */ 790 ret = add_subprog(env, 0); 791 if (ret < 0) 792 return ret; 793 794 /* determine subprog starts. The end is one before the next starts */ 795 for (i = 0; i < insn_cnt; i++) { 796 if (insn[i].code != (BPF_JMP | BPF_CALL)) 797 continue; 798 if (insn[i].src_reg != BPF_PSEUDO_CALL) 799 continue; 800 if (!env->allow_ptr_leaks) { 801 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 802 return -EPERM; 803 } 804 if (bpf_prog_is_dev_bound(env->prog->aux)) { 805 verbose(env, "function calls in offloaded programs are not supported yet\n"); 806 return -EINVAL; 807 } 808 ret = add_subprog(env, i + insn[i].imm + 1); 809 if (ret < 0) 810 return ret; 811 } 812 813 /* Add a fake 'exit' subprog which could simplify subprog iteration 814 * logic. 'subprog_cnt' should not be increased. 815 */ 816 subprog[env->subprog_cnt].start = insn_cnt; 817 818 if (env->log.level > 1) 819 for (i = 0; i < env->subprog_cnt; i++) 820 verbose(env, "func#%d @%d\n", i, subprog[i].start); 821 822 /* now check that all jumps are within the same subprog */ 823 subprog_start = subprog[cur_subprog].start; 824 subprog_end = subprog[cur_subprog + 1].start; 825 for (i = 0; i < insn_cnt; i++) { 826 u8 code = insn[i].code; 827 828 if (BPF_CLASS(code) != BPF_JMP) 829 goto next; 830 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 831 goto next; 832 off = i + insn[i].off + 1; 833 if (off < subprog_start || off >= subprog_end) { 834 verbose(env, "jump out of range from insn %d to %d\n", i, off); 835 return -EINVAL; 836 } 837 next: 838 if (i == subprog_end - 1) { 839 /* to avoid fall-through from one subprog into another 840 * the last insn of the subprog should be either exit 841 * or unconditional jump back 842 */ 843 if (code != (BPF_JMP | BPF_EXIT) && 844 code != (BPF_JMP | BPF_JA)) { 845 verbose(env, "last insn is not an exit or jmp\n"); 846 return -EINVAL; 847 } 848 subprog_start = subprog_end; 849 cur_subprog++; 850 if (cur_subprog < env->subprog_cnt) 851 subprog_end = subprog[cur_subprog + 1].start; 852 } 853 } 854 return 0; 855 } 856 857 static 858 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 859 const struct bpf_verifier_state *state, 860 struct bpf_verifier_state *parent, 861 u32 regno) 862 { 863 struct bpf_verifier_state *tmp = NULL; 864 865 /* 'parent' could be a state of caller and 866 * 'state' could be a state of callee. In such case 867 * parent->curframe < state->curframe 868 * and it's ok for r1 - r5 registers 869 * 870 * 'parent' could be a callee's state after it bpf_exit-ed. 871 * In such case parent->curframe > state->curframe 872 * and it's ok for r0 only 873 */ 874 if (parent->curframe == state->curframe || 875 (parent->curframe < state->curframe && 876 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 877 (parent->curframe > state->curframe && 878 regno == BPF_REG_0)) 879 return parent; 880 881 if (parent->curframe > state->curframe && 882 regno >= BPF_REG_6) { 883 /* for callee saved regs we have to skip the whole chain 884 * of states that belong to callee and mark as LIVE_READ 885 * the registers before the call 886 */ 887 tmp = parent; 888 while (tmp && tmp->curframe != state->curframe) { 889 tmp = tmp->parent; 890 } 891 if (!tmp) 892 goto bug; 893 parent = tmp; 894 } else { 895 goto bug; 896 } 897 return parent; 898 bug: 899 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 900 verbose(env, "regno %d parent frame %d current frame %d\n", 901 regno, parent->curframe, state->curframe); 902 return NULL; 903 } 904 905 static int mark_reg_read(struct bpf_verifier_env *env, 906 const struct bpf_verifier_state *state, 907 struct bpf_verifier_state *parent, 908 u32 regno) 909 { 910 bool writes = parent == state->parent; /* Observe write marks */ 911 912 if (regno == BPF_REG_FP) 913 /* We don't need to worry about FP liveness because it's read-only */ 914 return 0; 915 916 while (parent) { 917 /* if read wasn't screened by an earlier write ... */ 918 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 919 break; 920 parent = skip_callee(env, state, parent, regno); 921 if (!parent) 922 return -EFAULT; 923 /* ... then we depend on parent's value */ 924 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 925 state = parent; 926 parent = state->parent; 927 writes = true; 928 } 929 return 0; 930 } 931 932 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 933 enum reg_arg_type t) 934 { 935 struct bpf_verifier_state *vstate = env->cur_state; 936 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 937 struct bpf_reg_state *regs = state->regs; 938 939 if (regno >= MAX_BPF_REG) { 940 verbose(env, "R%d is invalid\n", regno); 941 return -EINVAL; 942 } 943 944 if (t == SRC_OP) { 945 /* check whether register used as source operand can be read */ 946 if (regs[regno].type == NOT_INIT) { 947 verbose(env, "R%d !read_ok\n", regno); 948 return -EACCES; 949 } 950 return mark_reg_read(env, vstate, vstate->parent, regno); 951 } else { 952 /* check whether register used as dest operand can be written to */ 953 if (regno == BPF_REG_FP) { 954 verbose(env, "frame pointer is read only\n"); 955 return -EACCES; 956 } 957 regs[regno].live |= REG_LIVE_WRITTEN; 958 if (t == DST_OP) 959 mark_reg_unknown(env, regs, regno); 960 } 961 return 0; 962 } 963 964 static bool is_spillable_regtype(enum bpf_reg_type type) 965 { 966 switch (type) { 967 case PTR_TO_MAP_VALUE: 968 case PTR_TO_MAP_VALUE_OR_NULL: 969 case PTR_TO_STACK: 970 case PTR_TO_CTX: 971 case PTR_TO_PACKET: 972 case PTR_TO_PACKET_META: 973 case PTR_TO_PACKET_END: 974 case CONST_PTR_TO_MAP: 975 return true; 976 default: 977 return false; 978 } 979 } 980 981 /* Does this register contain a constant zero? */ 982 static bool register_is_null(struct bpf_reg_state *reg) 983 { 984 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 985 } 986 987 /* check_stack_read/write functions track spill/fill of registers, 988 * stack boundary and alignment are checked in check_mem_access() 989 */ 990 static int check_stack_write(struct bpf_verifier_env *env, 991 struct bpf_func_state *state, /* func where register points to */ 992 int off, int size, int value_regno) 993 { 994 struct bpf_func_state *cur; /* state of the current function */ 995 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 996 enum bpf_reg_type type; 997 998 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 999 true); 1000 if (err) 1001 return err; 1002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1003 * so it's aligned access and [off, off + size) are within stack limits 1004 */ 1005 if (!env->allow_ptr_leaks && 1006 state->stack[spi].slot_type[0] == STACK_SPILL && 1007 size != BPF_REG_SIZE) { 1008 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1009 return -EACCES; 1010 } 1011 1012 cur = env->cur_state->frame[env->cur_state->curframe]; 1013 if (value_regno >= 0 && 1014 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1015 1016 /* register containing pointer is being spilled into stack */ 1017 if (size != BPF_REG_SIZE) { 1018 verbose(env, "invalid size of register spill\n"); 1019 return -EACCES; 1020 } 1021 1022 if (state != cur && type == PTR_TO_STACK) { 1023 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1024 return -EINVAL; 1025 } 1026 1027 /* save register state */ 1028 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1030 1031 for (i = 0; i < BPF_REG_SIZE; i++) 1032 state->stack[spi].slot_type[i] = STACK_SPILL; 1033 } else { 1034 u8 type = STACK_MISC; 1035 1036 /* regular write of data into stack */ 1037 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1038 1039 /* only mark the slot as written if all 8 bytes were written 1040 * otherwise read propagation may incorrectly stop too soon 1041 * when stack slots are partially written. 1042 * This heuristic means that read propagation will be 1043 * conservative, since it will add reg_live_read marks 1044 * to stack slots all the way to first state when programs 1045 * writes+reads less than 8 bytes 1046 */ 1047 if (size == BPF_REG_SIZE) 1048 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1049 1050 /* when we zero initialize stack slots mark them as such */ 1051 if (value_regno >= 0 && 1052 register_is_null(&cur->regs[value_regno])) 1053 type = STACK_ZERO; 1054 1055 for (i = 0; i < size; i++) 1056 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1057 type; 1058 } 1059 return 0; 1060 } 1061 1062 /* registers of every function are unique and mark_reg_read() propagates 1063 * the liveness in the following cases: 1064 * - from callee into caller for R1 - R5 that were used as arguments 1065 * - from caller into callee for R0 that used as result of the call 1066 * - from caller to the same caller skipping states of the callee for R6 - R9, 1067 * since R6 - R9 are callee saved by implicit function prologue and 1068 * caller's R6 != callee's R6, so when we propagate liveness up to 1069 * parent states we need to skip callee states for R6 - R9. 1070 * 1071 * stack slot marking is different, since stacks of caller and callee are 1072 * accessible in both (since caller can pass a pointer to caller's stack to 1073 * callee which can pass it to another function), hence mark_stack_slot_read() 1074 * has to propagate the stack liveness to all parent states at given frame number. 1075 * Consider code: 1076 * f1() { 1077 * ptr = fp - 8; 1078 * *ptr = ctx; 1079 * call f2 { 1080 * .. = *ptr; 1081 * } 1082 * .. = *ptr; 1083 * } 1084 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1085 * to mark liveness at the f1's frame and not f2's frame. 1086 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1087 * to propagate liveness to f2 states at f1's frame level and further into 1088 * f1 states at f1's frame level until write into that stack slot 1089 */ 1090 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1091 const struct bpf_verifier_state *state, 1092 struct bpf_verifier_state *parent, 1093 int slot, int frameno) 1094 { 1095 bool writes = parent == state->parent; /* Observe write marks */ 1096 1097 while (parent) { 1098 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1099 /* since LIVE_WRITTEN mark is only done for full 8-byte 1100 * write the read marks are conservative and parent 1101 * state may not even have the stack allocated. In such case 1102 * end the propagation, since the loop reached beginning 1103 * of the function 1104 */ 1105 break; 1106 /* if read wasn't screened by an earlier write ... */ 1107 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1108 break; 1109 /* ... then we depend on parent's value */ 1110 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1111 state = parent; 1112 parent = state->parent; 1113 writes = true; 1114 } 1115 } 1116 1117 static int check_stack_read(struct bpf_verifier_env *env, 1118 struct bpf_func_state *reg_state /* func where register points to */, 1119 int off, int size, int value_regno) 1120 { 1121 struct bpf_verifier_state *vstate = env->cur_state; 1122 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1123 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1124 u8 *stype; 1125 1126 if (reg_state->allocated_stack <= slot) { 1127 verbose(env, "invalid read from stack off %d+0 size %d\n", 1128 off, size); 1129 return -EACCES; 1130 } 1131 stype = reg_state->stack[spi].slot_type; 1132 1133 if (stype[0] == STACK_SPILL) { 1134 if (size != BPF_REG_SIZE) { 1135 verbose(env, "invalid size of register spill\n"); 1136 return -EACCES; 1137 } 1138 for (i = 1; i < BPF_REG_SIZE; i++) { 1139 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1140 verbose(env, "corrupted spill memory\n"); 1141 return -EACCES; 1142 } 1143 } 1144 1145 if (value_regno >= 0) { 1146 /* restore register state from stack */ 1147 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1148 /* mark reg as written since spilled pointer state likely 1149 * has its liveness marks cleared by is_state_visited() 1150 * which resets stack/reg liveness for state transitions 1151 */ 1152 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1153 } 1154 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1155 reg_state->frameno); 1156 return 0; 1157 } else { 1158 int zeros = 0; 1159 1160 for (i = 0; i < size; i++) { 1161 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1162 continue; 1163 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1164 zeros++; 1165 continue; 1166 } 1167 verbose(env, "invalid read from stack off %d+%d size %d\n", 1168 off, i, size); 1169 return -EACCES; 1170 } 1171 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1172 reg_state->frameno); 1173 if (value_regno >= 0) { 1174 if (zeros == size) { 1175 /* any size read into register is zero extended, 1176 * so the whole register == const_zero 1177 */ 1178 __mark_reg_const_zero(&state->regs[value_regno]); 1179 } else { 1180 /* have read misc data from the stack */ 1181 mark_reg_unknown(env, state->regs, value_regno); 1182 } 1183 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1184 } 1185 return 0; 1186 } 1187 } 1188 1189 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1190 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1191 int size, bool zero_size_allowed) 1192 { 1193 struct bpf_reg_state *regs = cur_regs(env); 1194 struct bpf_map *map = regs[regno].map_ptr; 1195 1196 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1197 off + size > map->value_size) { 1198 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1199 map->value_size, off, size); 1200 return -EACCES; 1201 } 1202 return 0; 1203 } 1204 1205 /* check read/write into a map element with possible variable offset */ 1206 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1207 int off, int size, bool zero_size_allowed) 1208 { 1209 struct bpf_verifier_state *vstate = env->cur_state; 1210 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1211 struct bpf_reg_state *reg = &state->regs[regno]; 1212 int err; 1213 1214 /* We may have adjusted the register to this map value, so we 1215 * need to try adding each of min_value and max_value to off 1216 * to make sure our theoretical access will be safe. 1217 */ 1218 if (env->log.level) 1219 print_verifier_state(env, state); 1220 /* The minimum value is only important with signed 1221 * comparisons where we can't assume the floor of a 1222 * value is 0. If we are using signed variables for our 1223 * index'es we need to make sure that whatever we use 1224 * will have a set floor within our range. 1225 */ 1226 if (reg->smin_value < 0) { 1227 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1228 regno); 1229 return -EACCES; 1230 } 1231 err = __check_map_access(env, regno, reg->smin_value + off, size, 1232 zero_size_allowed); 1233 if (err) { 1234 verbose(env, "R%d min value is outside of the array range\n", 1235 regno); 1236 return err; 1237 } 1238 1239 /* If we haven't set a max value then we need to bail since we can't be 1240 * sure we won't do bad things. 1241 * If reg->umax_value + off could overflow, treat that as unbounded too. 1242 */ 1243 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1244 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1245 regno); 1246 return -EACCES; 1247 } 1248 err = __check_map_access(env, regno, reg->umax_value + off, size, 1249 zero_size_allowed); 1250 if (err) 1251 verbose(env, "R%d max value is outside of the array range\n", 1252 regno); 1253 return err; 1254 } 1255 1256 #define MAX_PACKET_OFF 0xffff 1257 1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1259 const struct bpf_call_arg_meta *meta, 1260 enum bpf_access_type t) 1261 { 1262 switch (env->prog->type) { 1263 case BPF_PROG_TYPE_LWT_IN: 1264 case BPF_PROG_TYPE_LWT_OUT: 1265 /* dst_input() and dst_output() can't write for now */ 1266 if (t == BPF_WRITE) 1267 return false; 1268 /* fallthrough */ 1269 case BPF_PROG_TYPE_SCHED_CLS: 1270 case BPF_PROG_TYPE_SCHED_ACT: 1271 case BPF_PROG_TYPE_XDP: 1272 case BPF_PROG_TYPE_LWT_XMIT: 1273 case BPF_PROG_TYPE_SK_SKB: 1274 case BPF_PROG_TYPE_SK_MSG: 1275 if (meta) 1276 return meta->pkt_access; 1277 1278 env->seen_direct_write = true; 1279 return true; 1280 default: 1281 return false; 1282 } 1283 } 1284 1285 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1286 int off, int size, bool zero_size_allowed) 1287 { 1288 struct bpf_reg_state *regs = cur_regs(env); 1289 struct bpf_reg_state *reg = ®s[regno]; 1290 1291 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1292 (u64)off + size > reg->range) { 1293 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1294 off, size, regno, reg->id, reg->off, reg->range); 1295 return -EACCES; 1296 } 1297 return 0; 1298 } 1299 1300 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1301 int size, bool zero_size_allowed) 1302 { 1303 struct bpf_reg_state *regs = cur_regs(env); 1304 struct bpf_reg_state *reg = ®s[regno]; 1305 int err; 1306 1307 /* We may have added a variable offset to the packet pointer; but any 1308 * reg->range we have comes after that. We are only checking the fixed 1309 * offset. 1310 */ 1311 1312 /* We don't allow negative numbers, because we aren't tracking enough 1313 * detail to prove they're safe. 1314 */ 1315 if (reg->smin_value < 0) { 1316 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1317 regno); 1318 return -EACCES; 1319 } 1320 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1321 if (err) { 1322 verbose(env, "R%d offset is outside of the packet\n", regno); 1323 return err; 1324 } 1325 return err; 1326 } 1327 1328 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1329 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1330 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1331 { 1332 struct bpf_insn_access_aux info = { 1333 .reg_type = *reg_type, 1334 }; 1335 1336 if (env->ops->is_valid_access && 1337 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1338 /* A non zero info.ctx_field_size indicates that this field is a 1339 * candidate for later verifier transformation to load the whole 1340 * field and then apply a mask when accessed with a narrower 1341 * access than actual ctx access size. A zero info.ctx_field_size 1342 * will only allow for whole field access and rejects any other 1343 * type of narrower access. 1344 */ 1345 *reg_type = info.reg_type; 1346 1347 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1348 /* remember the offset of last byte accessed in ctx */ 1349 if (env->prog->aux->max_ctx_offset < off + size) 1350 env->prog->aux->max_ctx_offset = off + size; 1351 return 0; 1352 } 1353 1354 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1355 return -EACCES; 1356 } 1357 1358 static bool __is_pointer_value(bool allow_ptr_leaks, 1359 const struct bpf_reg_state *reg) 1360 { 1361 if (allow_ptr_leaks) 1362 return false; 1363 1364 return reg->type != SCALAR_VALUE; 1365 } 1366 1367 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1368 { 1369 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1370 } 1371 1372 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1373 { 1374 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1375 1376 return reg->type == PTR_TO_CTX; 1377 } 1378 1379 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1380 { 1381 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1382 1383 return type_is_pkt_pointer(reg->type); 1384 } 1385 1386 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1387 const struct bpf_reg_state *reg, 1388 int off, int size, bool strict) 1389 { 1390 struct tnum reg_off; 1391 int ip_align; 1392 1393 /* Byte size accesses are always allowed. */ 1394 if (!strict || size == 1) 1395 return 0; 1396 1397 /* For platforms that do not have a Kconfig enabling 1398 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1399 * NET_IP_ALIGN is universally set to '2'. And on platforms 1400 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1401 * to this code only in strict mode where we want to emulate 1402 * the NET_IP_ALIGN==2 checking. Therefore use an 1403 * unconditional IP align value of '2'. 1404 */ 1405 ip_align = 2; 1406 1407 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1408 if (!tnum_is_aligned(reg_off, size)) { 1409 char tn_buf[48]; 1410 1411 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1412 verbose(env, 1413 "misaligned packet access off %d+%s+%d+%d size %d\n", 1414 ip_align, tn_buf, reg->off, off, size); 1415 return -EACCES; 1416 } 1417 1418 return 0; 1419 } 1420 1421 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1422 const struct bpf_reg_state *reg, 1423 const char *pointer_desc, 1424 int off, int size, bool strict) 1425 { 1426 struct tnum reg_off; 1427 1428 /* Byte size accesses are always allowed. */ 1429 if (!strict || size == 1) 1430 return 0; 1431 1432 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1433 if (!tnum_is_aligned(reg_off, size)) { 1434 char tn_buf[48]; 1435 1436 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1437 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1438 pointer_desc, tn_buf, reg->off, off, size); 1439 return -EACCES; 1440 } 1441 1442 return 0; 1443 } 1444 1445 static int check_ptr_alignment(struct bpf_verifier_env *env, 1446 const struct bpf_reg_state *reg, int off, 1447 int size, bool strict_alignment_once) 1448 { 1449 bool strict = env->strict_alignment || strict_alignment_once; 1450 const char *pointer_desc = ""; 1451 1452 switch (reg->type) { 1453 case PTR_TO_PACKET: 1454 case PTR_TO_PACKET_META: 1455 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1456 * right in front, treat it the very same way. 1457 */ 1458 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1459 case PTR_TO_MAP_VALUE: 1460 pointer_desc = "value "; 1461 break; 1462 case PTR_TO_CTX: 1463 pointer_desc = "context "; 1464 break; 1465 case PTR_TO_STACK: 1466 pointer_desc = "stack "; 1467 /* The stack spill tracking logic in check_stack_write() 1468 * and check_stack_read() relies on stack accesses being 1469 * aligned. 1470 */ 1471 strict = true; 1472 break; 1473 default: 1474 break; 1475 } 1476 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1477 strict); 1478 } 1479 1480 static int update_stack_depth(struct bpf_verifier_env *env, 1481 const struct bpf_func_state *func, 1482 int off) 1483 { 1484 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1485 1486 if (stack >= -off) 1487 return 0; 1488 1489 /* update known max for given subprogram */ 1490 env->subprog_info[func->subprogno].stack_depth = -off; 1491 return 0; 1492 } 1493 1494 /* starting from main bpf function walk all instructions of the function 1495 * and recursively walk all callees that given function can call. 1496 * Ignore jump and exit insns. 1497 * Since recursion is prevented by check_cfg() this algorithm 1498 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1499 */ 1500 static int check_max_stack_depth(struct bpf_verifier_env *env) 1501 { 1502 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1503 struct bpf_subprog_info *subprog = env->subprog_info; 1504 struct bpf_insn *insn = env->prog->insnsi; 1505 int ret_insn[MAX_CALL_FRAMES]; 1506 int ret_prog[MAX_CALL_FRAMES]; 1507 1508 process_func: 1509 /* round up to 32-bytes, since this is granularity 1510 * of interpreter stack size 1511 */ 1512 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1513 if (depth > MAX_BPF_STACK) { 1514 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1515 frame + 1, depth); 1516 return -EACCES; 1517 } 1518 continue_func: 1519 subprog_end = subprog[idx + 1].start; 1520 for (; i < subprog_end; i++) { 1521 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1522 continue; 1523 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1524 continue; 1525 /* remember insn and function to return to */ 1526 ret_insn[frame] = i + 1; 1527 ret_prog[frame] = idx; 1528 1529 /* find the callee */ 1530 i = i + insn[i].imm + 1; 1531 idx = find_subprog(env, i); 1532 if (idx < 0) { 1533 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1534 i); 1535 return -EFAULT; 1536 } 1537 frame++; 1538 if (frame >= MAX_CALL_FRAMES) { 1539 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1540 return -EFAULT; 1541 } 1542 goto process_func; 1543 } 1544 /* end of for() loop means the last insn of the 'subprog' 1545 * was reached. Doesn't matter whether it was JA or EXIT 1546 */ 1547 if (frame == 0) 1548 return 0; 1549 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1550 frame--; 1551 i = ret_insn[frame]; 1552 idx = ret_prog[frame]; 1553 goto continue_func; 1554 } 1555 1556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1557 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1558 const struct bpf_insn *insn, int idx) 1559 { 1560 int start = idx + insn->imm + 1, subprog; 1561 1562 subprog = find_subprog(env, start); 1563 if (subprog < 0) { 1564 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1565 start); 1566 return -EFAULT; 1567 } 1568 return env->subprog_info[subprog].stack_depth; 1569 } 1570 #endif 1571 1572 /* truncate register to smaller size (in bytes) 1573 * must be called with size < BPF_REG_SIZE 1574 */ 1575 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1576 { 1577 u64 mask; 1578 1579 /* clear high bits in bit representation */ 1580 reg->var_off = tnum_cast(reg->var_off, size); 1581 1582 /* fix arithmetic bounds */ 1583 mask = ((u64)1 << (size * 8)) - 1; 1584 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1585 reg->umin_value &= mask; 1586 reg->umax_value &= mask; 1587 } else { 1588 reg->umin_value = 0; 1589 reg->umax_value = mask; 1590 } 1591 reg->smin_value = reg->umin_value; 1592 reg->smax_value = reg->umax_value; 1593 } 1594 1595 /* check whether memory at (regno + off) is accessible for t = (read | write) 1596 * if t==write, value_regno is a register which value is stored into memory 1597 * if t==read, value_regno is a register which will receive the value from memory 1598 * if t==write && value_regno==-1, some unknown value is stored into memory 1599 * if t==read && value_regno==-1, don't care what we read from memory 1600 */ 1601 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1602 int off, int bpf_size, enum bpf_access_type t, 1603 int value_regno, bool strict_alignment_once) 1604 { 1605 struct bpf_reg_state *regs = cur_regs(env); 1606 struct bpf_reg_state *reg = regs + regno; 1607 struct bpf_func_state *state; 1608 int size, err = 0; 1609 1610 size = bpf_size_to_bytes(bpf_size); 1611 if (size < 0) 1612 return size; 1613 1614 /* alignment checks will add in reg->off themselves */ 1615 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1616 if (err) 1617 return err; 1618 1619 /* for access checks, reg->off is just part of off */ 1620 off += reg->off; 1621 1622 if (reg->type == PTR_TO_MAP_VALUE) { 1623 if (t == BPF_WRITE && value_regno >= 0 && 1624 is_pointer_value(env, value_regno)) { 1625 verbose(env, "R%d leaks addr into map\n", value_regno); 1626 return -EACCES; 1627 } 1628 1629 err = check_map_access(env, regno, off, size, false); 1630 if (!err && t == BPF_READ && value_regno >= 0) 1631 mark_reg_unknown(env, regs, value_regno); 1632 1633 } else if (reg->type == PTR_TO_CTX) { 1634 enum bpf_reg_type reg_type = SCALAR_VALUE; 1635 1636 if (t == BPF_WRITE && value_regno >= 0 && 1637 is_pointer_value(env, value_regno)) { 1638 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1639 return -EACCES; 1640 } 1641 /* ctx accesses must be at a fixed offset, so that we can 1642 * determine what type of data were returned. 1643 */ 1644 if (reg->off) { 1645 verbose(env, 1646 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1647 regno, reg->off, off - reg->off); 1648 return -EACCES; 1649 } 1650 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1651 char tn_buf[48]; 1652 1653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1654 verbose(env, 1655 "variable ctx access var_off=%s off=%d size=%d", 1656 tn_buf, off, size); 1657 return -EACCES; 1658 } 1659 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1660 if (!err && t == BPF_READ && value_regno >= 0) { 1661 /* ctx access returns either a scalar, or a 1662 * PTR_TO_PACKET[_META,_END]. In the latter 1663 * case, we know the offset is zero. 1664 */ 1665 if (reg_type == SCALAR_VALUE) 1666 mark_reg_unknown(env, regs, value_regno); 1667 else 1668 mark_reg_known_zero(env, regs, 1669 value_regno); 1670 regs[value_regno].id = 0; 1671 regs[value_regno].off = 0; 1672 regs[value_regno].range = 0; 1673 regs[value_regno].type = reg_type; 1674 } 1675 1676 } else if (reg->type == PTR_TO_STACK) { 1677 /* stack accesses must be at a fixed offset, so that we can 1678 * determine what type of data were returned. 1679 * See check_stack_read(). 1680 */ 1681 if (!tnum_is_const(reg->var_off)) { 1682 char tn_buf[48]; 1683 1684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1685 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1686 tn_buf, off, size); 1687 return -EACCES; 1688 } 1689 off += reg->var_off.value; 1690 if (off >= 0 || off < -MAX_BPF_STACK) { 1691 verbose(env, "invalid stack off=%d size=%d\n", off, 1692 size); 1693 return -EACCES; 1694 } 1695 1696 state = func(env, reg); 1697 err = update_stack_depth(env, state, off); 1698 if (err) 1699 return err; 1700 1701 if (t == BPF_WRITE) 1702 err = check_stack_write(env, state, off, size, 1703 value_regno); 1704 else 1705 err = check_stack_read(env, state, off, size, 1706 value_regno); 1707 } else if (reg_is_pkt_pointer(reg)) { 1708 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1709 verbose(env, "cannot write into packet\n"); 1710 return -EACCES; 1711 } 1712 if (t == BPF_WRITE && value_regno >= 0 && 1713 is_pointer_value(env, value_regno)) { 1714 verbose(env, "R%d leaks addr into packet\n", 1715 value_regno); 1716 return -EACCES; 1717 } 1718 err = check_packet_access(env, regno, off, size, false); 1719 if (!err && t == BPF_READ && value_regno >= 0) 1720 mark_reg_unknown(env, regs, value_regno); 1721 } else { 1722 verbose(env, "R%d invalid mem access '%s'\n", regno, 1723 reg_type_str[reg->type]); 1724 return -EACCES; 1725 } 1726 1727 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1728 regs[value_regno].type == SCALAR_VALUE) { 1729 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1730 coerce_reg_to_size(®s[value_regno], size); 1731 } 1732 return err; 1733 } 1734 1735 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1736 { 1737 int err; 1738 1739 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1740 insn->imm != 0) { 1741 verbose(env, "BPF_XADD uses reserved fields\n"); 1742 return -EINVAL; 1743 } 1744 1745 /* check src1 operand */ 1746 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1747 if (err) 1748 return err; 1749 1750 /* check src2 operand */ 1751 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1752 if (err) 1753 return err; 1754 1755 if (is_pointer_value(env, insn->src_reg)) { 1756 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1757 return -EACCES; 1758 } 1759 1760 if (is_ctx_reg(env, insn->dst_reg) || 1761 is_pkt_reg(env, insn->dst_reg)) { 1762 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1763 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1764 "context" : "packet"); 1765 return -EACCES; 1766 } 1767 1768 /* check whether atomic_add can read the memory */ 1769 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1770 BPF_SIZE(insn->code), BPF_READ, -1, true); 1771 if (err) 1772 return err; 1773 1774 /* check whether atomic_add can write into the same memory */ 1775 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1776 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1777 } 1778 1779 /* when register 'regno' is passed into function that will read 'access_size' 1780 * bytes from that pointer, make sure that it's within stack boundary 1781 * and all elements of stack are initialized. 1782 * Unlike most pointer bounds-checking functions, this one doesn't take an 1783 * 'off' argument, so it has to add in reg->off itself. 1784 */ 1785 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1786 int access_size, bool zero_size_allowed, 1787 struct bpf_call_arg_meta *meta) 1788 { 1789 struct bpf_reg_state *reg = cur_regs(env) + regno; 1790 struct bpf_func_state *state = func(env, reg); 1791 int off, i, slot, spi; 1792 1793 if (reg->type != PTR_TO_STACK) { 1794 /* Allow zero-byte read from NULL, regardless of pointer type */ 1795 if (zero_size_allowed && access_size == 0 && 1796 register_is_null(reg)) 1797 return 0; 1798 1799 verbose(env, "R%d type=%s expected=%s\n", regno, 1800 reg_type_str[reg->type], 1801 reg_type_str[PTR_TO_STACK]); 1802 return -EACCES; 1803 } 1804 1805 /* Only allow fixed-offset stack reads */ 1806 if (!tnum_is_const(reg->var_off)) { 1807 char tn_buf[48]; 1808 1809 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1810 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1811 regno, tn_buf); 1812 return -EACCES; 1813 } 1814 off = reg->off + reg->var_off.value; 1815 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1816 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1817 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1818 regno, off, access_size); 1819 return -EACCES; 1820 } 1821 1822 if (meta && meta->raw_mode) { 1823 meta->access_size = access_size; 1824 meta->regno = regno; 1825 return 0; 1826 } 1827 1828 for (i = 0; i < access_size; i++) { 1829 u8 *stype; 1830 1831 slot = -(off + i) - 1; 1832 spi = slot / BPF_REG_SIZE; 1833 if (state->allocated_stack <= slot) 1834 goto err; 1835 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1836 if (*stype == STACK_MISC) 1837 goto mark; 1838 if (*stype == STACK_ZERO) { 1839 /* helper can write anything into the stack */ 1840 *stype = STACK_MISC; 1841 goto mark; 1842 } 1843 err: 1844 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1845 off, i, access_size); 1846 return -EACCES; 1847 mark: 1848 /* reading any byte out of 8-byte 'spill_slot' will cause 1849 * the whole slot to be marked as 'read' 1850 */ 1851 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1852 spi, state->frameno); 1853 } 1854 return update_stack_depth(env, state, off); 1855 } 1856 1857 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1858 int access_size, bool zero_size_allowed, 1859 struct bpf_call_arg_meta *meta) 1860 { 1861 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1862 1863 switch (reg->type) { 1864 case PTR_TO_PACKET: 1865 case PTR_TO_PACKET_META: 1866 return check_packet_access(env, regno, reg->off, access_size, 1867 zero_size_allowed); 1868 case PTR_TO_MAP_VALUE: 1869 return check_map_access(env, regno, reg->off, access_size, 1870 zero_size_allowed); 1871 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1872 return check_stack_boundary(env, regno, access_size, 1873 zero_size_allowed, meta); 1874 } 1875 } 1876 1877 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1878 { 1879 return type == ARG_PTR_TO_MEM || 1880 type == ARG_PTR_TO_MEM_OR_NULL || 1881 type == ARG_PTR_TO_UNINIT_MEM; 1882 } 1883 1884 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1885 { 1886 return type == ARG_CONST_SIZE || 1887 type == ARG_CONST_SIZE_OR_ZERO; 1888 } 1889 1890 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1891 enum bpf_arg_type arg_type, 1892 struct bpf_call_arg_meta *meta) 1893 { 1894 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1895 enum bpf_reg_type expected_type, type = reg->type; 1896 int err = 0; 1897 1898 if (arg_type == ARG_DONTCARE) 1899 return 0; 1900 1901 err = check_reg_arg(env, regno, SRC_OP); 1902 if (err) 1903 return err; 1904 1905 if (arg_type == ARG_ANYTHING) { 1906 if (is_pointer_value(env, regno)) { 1907 verbose(env, "R%d leaks addr into helper function\n", 1908 regno); 1909 return -EACCES; 1910 } 1911 return 0; 1912 } 1913 1914 if (type_is_pkt_pointer(type) && 1915 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1916 verbose(env, "helper access to the packet is not allowed\n"); 1917 return -EACCES; 1918 } 1919 1920 if (arg_type == ARG_PTR_TO_MAP_KEY || 1921 arg_type == ARG_PTR_TO_MAP_VALUE) { 1922 expected_type = PTR_TO_STACK; 1923 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1924 type != expected_type) 1925 goto err_type; 1926 } else if (arg_type == ARG_CONST_SIZE || 1927 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1928 expected_type = SCALAR_VALUE; 1929 if (type != expected_type) 1930 goto err_type; 1931 } else if (arg_type == ARG_CONST_MAP_PTR) { 1932 expected_type = CONST_PTR_TO_MAP; 1933 if (type != expected_type) 1934 goto err_type; 1935 } else if (arg_type == ARG_PTR_TO_CTX) { 1936 expected_type = PTR_TO_CTX; 1937 if (type != expected_type) 1938 goto err_type; 1939 } else if (arg_type_is_mem_ptr(arg_type)) { 1940 expected_type = PTR_TO_STACK; 1941 /* One exception here. In case function allows for NULL to be 1942 * passed in as argument, it's a SCALAR_VALUE type. Final test 1943 * happens during stack boundary checking. 1944 */ 1945 if (register_is_null(reg) && 1946 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1947 /* final test in check_stack_boundary() */; 1948 else if (!type_is_pkt_pointer(type) && 1949 type != PTR_TO_MAP_VALUE && 1950 type != expected_type) 1951 goto err_type; 1952 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1953 } else { 1954 verbose(env, "unsupported arg_type %d\n", arg_type); 1955 return -EFAULT; 1956 } 1957 1958 if (arg_type == ARG_CONST_MAP_PTR) { 1959 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1960 meta->map_ptr = reg->map_ptr; 1961 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1962 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1963 * check that [key, key + map->key_size) are within 1964 * stack limits and initialized 1965 */ 1966 if (!meta->map_ptr) { 1967 /* in function declaration map_ptr must come before 1968 * map_key, so that it's verified and known before 1969 * we have to check map_key here. Otherwise it means 1970 * that kernel subsystem misconfigured verifier 1971 */ 1972 verbose(env, "invalid map_ptr to access map->key\n"); 1973 return -EACCES; 1974 } 1975 err = check_helper_mem_access(env, regno, 1976 meta->map_ptr->key_size, false, 1977 NULL); 1978 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1979 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1980 * check [value, value + map->value_size) validity 1981 */ 1982 if (!meta->map_ptr) { 1983 /* kernel subsystem misconfigured verifier */ 1984 verbose(env, "invalid map_ptr to access map->value\n"); 1985 return -EACCES; 1986 } 1987 err = check_helper_mem_access(env, regno, 1988 meta->map_ptr->value_size, false, 1989 NULL); 1990 } else if (arg_type_is_mem_size(arg_type)) { 1991 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1992 1993 /* remember the mem_size which may be used later 1994 * to refine return values. 1995 */ 1996 meta->msize_smax_value = reg->smax_value; 1997 meta->msize_umax_value = reg->umax_value; 1998 1999 /* The register is SCALAR_VALUE; the access check 2000 * happens using its boundaries. 2001 */ 2002 if (!tnum_is_const(reg->var_off)) 2003 /* For unprivileged variable accesses, disable raw 2004 * mode so that the program is required to 2005 * initialize all the memory that the helper could 2006 * just partially fill up. 2007 */ 2008 meta = NULL; 2009 2010 if (reg->smin_value < 0) { 2011 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2012 regno); 2013 return -EACCES; 2014 } 2015 2016 if (reg->umin_value == 0) { 2017 err = check_helper_mem_access(env, regno - 1, 0, 2018 zero_size_allowed, 2019 meta); 2020 if (err) 2021 return err; 2022 } 2023 2024 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2025 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2026 regno); 2027 return -EACCES; 2028 } 2029 err = check_helper_mem_access(env, regno - 1, 2030 reg->umax_value, 2031 zero_size_allowed, meta); 2032 } 2033 2034 return err; 2035 err_type: 2036 verbose(env, "R%d type=%s expected=%s\n", regno, 2037 reg_type_str[type], reg_type_str[expected_type]); 2038 return -EACCES; 2039 } 2040 2041 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2042 struct bpf_map *map, int func_id) 2043 { 2044 if (!map) 2045 return 0; 2046 2047 /* We need a two way check, first is from map perspective ... */ 2048 switch (map->map_type) { 2049 case BPF_MAP_TYPE_PROG_ARRAY: 2050 if (func_id != BPF_FUNC_tail_call) 2051 goto error; 2052 break; 2053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2054 if (func_id != BPF_FUNC_perf_event_read && 2055 func_id != BPF_FUNC_perf_event_output && 2056 func_id != BPF_FUNC_perf_event_read_value) 2057 goto error; 2058 break; 2059 case BPF_MAP_TYPE_STACK_TRACE: 2060 if (func_id != BPF_FUNC_get_stackid) 2061 goto error; 2062 break; 2063 case BPF_MAP_TYPE_CGROUP_ARRAY: 2064 if (func_id != BPF_FUNC_skb_under_cgroup && 2065 func_id != BPF_FUNC_current_task_under_cgroup) 2066 goto error; 2067 break; 2068 /* devmap returns a pointer to a live net_device ifindex that we cannot 2069 * allow to be modified from bpf side. So do not allow lookup elements 2070 * for now. 2071 */ 2072 case BPF_MAP_TYPE_DEVMAP: 2073 if (func_id != BPF_FUNC_redirect_map) 2074 goto error; 2075 break; 2076 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2077 * appear. 2078 */ 2079 case BPF_MAP_TYPE_CPUMAP: 2080 case BPF_MAP_TYPE_XSKMAP: 2081 if (func_id != BPF_FUNC_redirect_map) 2082 goto error; 2083 break; 2084 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2085 case BPF_MAP_TYPE_HASH_OF_MAPS: 2086 if (func_id != BPF_FUNC_map_lookup_elem) 2087 goto error; 2088 break; 2089 case BPF_MAP_TYPE_SOCKMAP: 2090 if (func_id != BPF_FUNC_sk_redirect_map && 2091 func_id != BPF_FUNC_sock_map_update && 2092 func_id != BPF_FUNC_map_delete_elem && 2093 func_id != BPF_FUNC_msg_redirect_map) 2094 goto error; 2095 break; 2096 case BPF_MAP_TYPE_SOCKHASH: 2097 if (func_id != BPF_FUNC_sk_redirect_hash && 2098 func_id != BPF_FUNC_sock_hash_update && 2099 func_id != BPF_FUNC_map_delete_elem && 2100 func_id != BPF_FUNC_msg_redirect_hash) 2101 goto error; 2102 break; 2103 default: 2104 break; 2105 } 2106 2107 /* ... and second from the function itself. */ 2108 switch (func_id) { 2109 case BPF_FUNC_tail_call: 2110 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2111 goto error; 2112 if (env->subprog_cnt > 1) { 2113 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2114 return -EINVAL; 2115 } 2116 break; 2117 case BPF_FUNC_perf_event_read: 2118 case BPF_FUNC_perf_event_output: 2119 case BPF_FUNC_perf_event_read_value: 2120 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2121 goto error; 2122 break; 2123 case BPF_FUNC_get_stackid: 2124 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2125 goto error; 2126 break; 2127 case BPF_FUNC_current_task_under_cgroup: 2128 case BPF_FUNC_skb_under_cgroup: 2129 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2130 goto error; 2131 break; 2132 case BPF_FUNC_redirect_map: 2133 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2134 map->map_type != BPF_MAP_TYPE_CPUMAP && 2135 map->map_type != BPF_MAP_TYPE_XSKMAP) 2136 goto error; 2137 break; 2138 case BPF_FUNC_sk_redirect_map: 2139 case BPF_FUNC_msg_redirect_map: 2140 case BPF_FUNC_sock_map_update: 2141 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2142 goto error; 2143 break; 2144 case BPF_FUNC_sk_redirect_hash: 2145 case BPF_FUNC_msg_redirect_hash: 2146 case BPF_FUNC_sock_hash_update: 2147 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2148 goto error; 2149 break; 2150 default: 2151 break; 2152 } 2153 2154 return 0; 2155 error: 2156 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2157 map->map_type, func_id_name(func_id), func_id); 2158 return -EINVAL; 2159 } 2160 2161 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2162 { 2163 int count = 0; 2164 2165 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2166 count++; 2167 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2168 count++; 2169 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2170 count++; 2171 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2172 count++; 2173 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2174 count++; 2175 2176 /* We only support one arg being in raw mode at the moment, 2177 * which is sufficient for the helper functions we have 2178 * right now. 2179 */ 2180 return count <= 1; 2181 } 2182 2183 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2184 enum bpf_arg_type arg_next) 2185 { 2186 return (arg_type_is_mem_ptr(arg_curr) && 2187 !arg_type_is_mem_size(arg_next)) || 2188 (!arg_type_is_mem_ptr(arg_curr) && 2189 arg_type_is_mem_size(arg_next)); 2190 } 2191 2192 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2193 { 2194 /* bpf_xxx(..., buf, len) call will access 'len' 2195 * bytes from memory 'buf'. Both arg types need 2196 * to be paired, so make sure there's no buggy 2197 * helper function specification. 2198 */ 2199 if (arg_type_is_mem_size(fn->arg1_type) || 2200 arg_type_is_mem_ptr(fn->arg5_type) || 2201 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2202 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2203 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2204 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2205 return false; 2206 2207 return true; 2208 } 2209 2210 static int check_func_proto(const struct bpf_func_proto *fn) 2211 { 2212 return check_raw_mode_ok(fn) && 2213 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2214 } 2215 2216 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2217 * are now invalid, so turn them into unknown SCALAR_VALUE. 2218 */ 2219 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2220 struct bpf_func_state *state) 2221 { 2222 struct bpf_reg_state *regs = state->regs, *reg; 2223 int i; 2224 2225 for (i = 0; i < MAX_BPF_REG; i++) 2226 if (reg_is_pkt_pointer_any(®s[i])) 2227 mark_reg_unknown(env, regs, i); 2228 2229 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2230 if (state->stack[i].slot_type[0] != STACK_SPILL) 2231 continue; 2232 reg = &state->stack[i].spilled_ptr; 2233 if (reg_is_pkt_pointer_any(reg)) 2234 __mark_reg_unknown(reg); 2235 } 2236 } 2237 2238 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2239 { 2240 struct bpf_verifier_state *vstate = env->cur_state; 2241 int i; 2242 2243 for (i = 0; i <= vstate->curframe; i++) 2244 __clear_all_pkt_pointers(env, vstate->frame[i]); 2245 } 2246 2247 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2248 int *insn_idx) 2249 { 2250 struct bpf_verifier_state *state = env->cur_state; 2251 struct bpf_func_state *caller, *callee; 2252 int i, subprog, target_insn; 2253 2254 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2255 verbose(env, "the call stack of %d frames is too deep\n", 2256 state->curframe + 2); 2257 return -E2BIG; 2258 } 2259 2260 target_insn = *insn_idx + insn->imm; 2261 subprog = find_subprog(env, target_insn + 1); 2262 if (subprog < 0) { 2263 verbose(env, "verifier bug. No program starts at insn %d\n", 2264 target_insn + 1); 2265 return -EFAULT; 2266 } 2267 2268 caller = state->frame[state->curframe]; 2269 if (state->frame[state->curframe + 1]) { 2270 verbose(env, "verifier bug. Frame %d already allocated\n", 2271 state->curframe + 1); 2272 return -EFAULT; 2273 } 2274 2275 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2276 if (!callee) 2277 return -ENOMEM; 2278 state->frame[state->curframe + 1] = callee; 2279 2280 /* callee cannot access r0, r6 - r9 for reading and has to write 2281 * into its own stack before reading from it. 2282 * callee can read/write into caller's stack 2283 */ 2284 init_func_state(env, callee, 2285 /* remember the callsite, it will be used by bpf_exit */ 2286 *insn_idx /* callsite */, 2287 state->curframe + 1 /* frameno within this callchain */, 2288 subprog /* subprog number within this prog */); 2289 2290 /* copy r1 - r5 args that callee can access */ 2291 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2292 callee->regs[i] = caller->regs[i]; 2293 2294 /* after the call regsiters r0 - r5 were scratched */ 2295 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2296 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2297 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2298 } 2299 2300 /* only increment it after check_reg_arg() finished */ 2301 state->curframe++; 2302 2303 /* and go analyze first insn of the callee */ 2304 *insn_idx = target_insn; 2305 2306 if (env->log.level) { 2307 verbose(env, "caller:\n"); 2308 print_verifier_state(env, caller); 2309 verbose(env, "callee:\n"); 2310 print_verifier_state(env, callee); 2311 } 2312 return 0; 2313 } 2314 2315 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2316 { 2317 struct bpf_verifier_state *state = env->cur_state; 2318 struct bpf_func_state *caller, *callee; 2319 struct bpf_reg_state *r0; 2320 2321 callee = state->frame[state->curframe]; 2322 r0 = &callee->regs[BPF_REG_0]; 2323 if (r0->type == PTR_TO_STACK) { 2324 /* technically it's ok to return caller's stack pointer 2325 * (or caller's caller's pointer) back to the caller, 2326 * since these pointers are valid. Only current stack 2327 * pointer will be invalid as soon as function exits, 2328 * but let's be conservative 2329 */ 2330 verbose(env, "cannot return stack pointer to the caller\n"); 2331 return -EINVAL; 2332 } 2333 2334 state->curframe--; 2335 caller = state->frame[state->curframe]; 2336 /* return to the caller whatever r0 had in the callee */ 2337 caller->regs[BPF_REG_0] = *r0; 2338 2339 *insn_idx = callee->callsite + 1; 2340 if (env->log.level) { 2341 verbose(env, "returning from callee:\n"); 2342 print_verifier_state(env, callee); 2343 verbose(env, "to caller at %d:\n", *insn_idx); 2344 print_verifier_state(env, caller); 2345 } 2346 /* clear everything in the callee */ 2347 free_func_state(callee); 2348 state->frame[state->curframe + 1] = NULL; 2349 return 0; 2350 } 2351 2352 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2353 int func_id, 2354 struct bpf_call_arg_meta *meta) 2355 { 2356 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2357 2358 if (ret_type != RET_INTEGER || 2359 (func_id != BPF_FUNC_get_stack && 2360 func_id != BPF_FUNC_probe_read_str)) 2361 return; 2362 2363 ret_reg->smax_value = meta->msize_smax_value; 2364 ret_reg->umax_value = meta->msize_umax_value; 2365 __reg_deduce_bounds(ret_reg); 2366 __reg_bound_offset(ret_reg); 2367 } 2368 2369 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2370 { 2371 const struct bpf_func_proto *fn = NULL; 2372 struct bpf_reg_state *regs; 2373 struct bpf_call_arg_meta meta; 2374 bool changes_data; 2375 int i, err; 2376 2377 /* find function prototype */ 2378 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2379 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2380 func_id); 2381 return -EINVAL; 2382 } 2383 2384 if (env->ops->get_func_proto) 2385 fn = env->ops->get_func_proto(func_id, env->prog); 2386 if (!fn) { 2387 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2388 func_id); 2389 return -EINVAL; 2390 } 2391 2392 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2393 if (!env->prog->gpl_compatible && fn->gpl_only) { 2394 verbose(env, "cannot call GPL only function from proprietary program\n"); 2395 return -EINVAL; 2396 } 2397 2398 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2399 changes_data = bpf_helper_changes_pkt_data(fn->func); 2400 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2401 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2402 func_id_name(func_id), func_id); 2403 return -EINVAL; 2404 } 2405 2406 memset(&meta, 0, sizeof(meta)); 2407 meta.pkt_access = fn->pkt_access; 2408 2409 err = check_func_proto(fn); 2410 if (err) { 2411 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2412 func_id_name(func_id), func_id); 2413 return err; 2414 } 2415 2416 /* check args */ 2417 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2418 if (err) 2419 return err; 2420 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2421 if (err) 2422 return err; 2423 if (func_id == BPF_FUNC_tail_call) { 2424 if (meta.map_ptr == NULL) { 2425 verbose(env, "verifier bug\n"); 2426 return -EINVAL; 2427 } 2428 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr; 2429 } 2430 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2431 if (err) 2432 return err; 2433 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2434 if (err) 2435 return err; 2436 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2437 if (err) 2438 return err; 2439 2440 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2441 * is inferred from register state. 2442 */ 2443 for (i = 0; i < meta.access_size; i++) { 2444 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2445 BPF_WRITE, -1, false); 2446 if (err) 2447 return err; 2448 } 2449 2450 regs = cur_regs(env); 2451 /* reset caller saved regs */ 2452 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2453 mark_reg_not_init(env, regs, caller_saved[i]); 2454 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2455 } 2456 2457 /* update return register (already marked as written above) */ 2458 if (fn->ret_type == RET_INTEGER) { 2459 /* sets type to SCALAR_VALUE */ 2460 mark_reg_unknown(env, regs, BPF_REG_0); 2461 } else if (fn->ret_type == RET_VOID) { 2462 regs[BPF_REG_0].type = NOT_INIT; 2463 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 2464 struct bpf_insn_aux_data *insn_aux; 2465 2466 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2467 /* There is no offset yet applied, variable or fixed */ 2468 mark_reg_known_zero(env, regs, BPF_REG_0); 2469 regs[BPF_REG_0].off = 0; 2470 /* remember map_ptr, so that check_map_access() 2471 * can check 'value_size' boundary of memory access 2472 * to map element returned from bpf_map_lookup_elem() 2473 */ 2474 if (meta.map_ptr == NULL) { 2475 verbose(env, 2476 "kernel subsystem misconfigured verifier\n"); 2477 return -EINVAL; 2478 } 2479 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2480 regs[BPF_REG_0].id = ++env->id_gen; 2481 insn_aux = &env->insn_aux_data[insn_idx]; 2482 if (!insn_aux->map_ptr) 2483 insn_aux->map_ptr = meta.map_ptr; 2484 else if (insn_aux->map_ptr != meta.map_ptr) 2485 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 2486 } else { 2487 verbose(env, "unknown return type %d of func %s#%d\n", 2488 fn->ret_type, func_id_name(func_id), func_id); 2489 return -EINVAL; 2490 } 2491 2492 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2493 2494 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2495 if (err) 2496 return err; 2497 2498 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2499 const char *err_str; 2500 2501 #ifdef CONFIG_PERF_EVENTS 2502 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2503 err_str = "cannot get callchain buffer for func %s#%d\n"; 2504 #else 2505 err = -ENOTSUPP; 2506 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2507 #endif 2508 if (err) { 2509 verbose(env, err_str, func_id_name(func_id), func_id); 2510 return err; 2511 } 2512 2513 env->prog->has_callchain_buf = true; 2514 } 2515 2516 if (changes_data) 2517 clear_all_pkt_pointers(env); 2518 return 0; 2519 } 2520 2521 static bool signed_add_overflows(s64 a, s64 b) 2522 { 2523 /* Do the add in u64, where overflow is well-defined */ 2524 s64 res = (s64)((u64)a + (u64)b); 2525 2526 if (b < 0) 2527 return res > a; 2528 return res < a; 2529 } 2530 2531 static bool signed_sub_overflows(s64 a, s64 b) 2532 { 2533 /* Do the sub in u64, where overflow is well-defined */ 2534 s64 res = (s64)((u64)a - (u64)b); 2535 2536 if (b < 0) 2537 return res < a; 2538 return res > a; 2539 } 2540 2541 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2542 const struct bpf_reg_state *reg, 2543 enum bpf_reg_type type) 2544 { 2545 bool known = tnum_is_const(reg->var_off); 2546 s64 val = reg->var_off.value; 2547 s64 smin = reg->smin_value; 2548 2549 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2550 verbose(env, "math between %s pointer and %lld is not allowed\n", 2551 reg_type_str[type], val); 2552 return false; 2553 } 2554 2555 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2556 verbose(env, "%s pointer offset %d is not allowed\n", 2557 reg_type_str[type], reg->off); 2558 return false; 2559 } 2560 2561 if (smin == S64_MIN) { 2562 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2563 reg_type_str[type]); 2564 return false; 2565 } 2566 2567 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2568 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2569 smin, reg_type_str[type]); 2570 return false; 2571 } 2572 2573 return true; 2574 } 2575 2576 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2577 * Caller should also handle BPF_MOV case separately. 2578 * If we return -EACCES, caller may want to try again treating pointer as a 2579 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2580 */ 2581 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2582 struct bpf_insn *insn, 2583 const struct bpf_reg_state *ptr_reg, 2584 const struct bpf_reg_state *off_reg) 2585 { 2586 struct bpf_verifier_state *vstate = env->cur_state; 2587 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2588 struct bpf_reg_state *regs = state->regs, *dst_reg; 2589 bool known = tnum_is_const(off_reg->var_off); 2590 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2591 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2592 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2593 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2594 u8 opcode = BPF_OP(insn->code); 2595 u32 dst = insn->dst_reg; 2596 2597 dst_reg = ®s[dst]; 2598 2599 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2600 smin_val > smax_val || umin_val > umax_val) { 2601 /* Taint dst register if offset had invalid bounds derived from 2602 * e.g. dead branches. 2603 */ 2604 __mark_reg_unknown(dst_reg); 2605 return 0; 2606 } 2607 2608 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2609 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2610 verbose(env, 2611 "R%d 32-bit pointer arithmetic prohibited\n", 2612 dst); 2613 return -EACCES; 2614 } 2615 2616 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2617 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2618 dst); 2619 return -EACCES; 2620 } 2621 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2622 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2623 dst); 2624 return -EACCES; 2625 } 2626 if (ptr_reg->type == PTR_TO_PACKET_END) { 2627 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2628 dst); 2629 return -EACCES; 2630 } 2631 2632 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2633 * The id may be overwritten later if we create a new variable offset. 2634 */ 2635 dst_reg->type = ptr_reg->type; 2636 dst_reg->id = ptr_reg->id; 2637 2638 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2639 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2640 return -EINVAL; 2641 2642 switch (opcode) { 2643 case BPF_ADD: 2644 /* We can take a fixed offset as long as it doesn't overflow 2645 * the s32 'off' field 2646 */ 2647 if (known && (ptr_reg->off + smin_val == 2648 (s64)(s32)(ptr_reg->off + smin_val))) { 2649 /* pointer += K. Accumulate it into fixed offset */ 2650 dst_reg->smin_value = smin_ptr; 2651 dst_reg->smax_value = smax_ptr; 2652 dst_reg->umin_value = umin_ptr; 2653 dst_reg->umax_value = umax_ptr; 2654 dst_reg->var_off = ptr_reg->var_off; 2655 dst_reg->off = ptr_reg->off + smin_val; 2656 dst_reg->range = ptr_reg->range; 2657 break; 2658 } 2659 /* A new variable offset is created. Note that off_reg->off 2660 * == 0, since it's a scalar. 2661 * dst_reg gets the pointer type and since some positive 2662 * integer value was added to the pointer, give it a new 'id' 2663 * if it's a PTR_TO_PACKET. 2664 * this creates a new 'base' pointer, off_reg (variable) gets 2665 * added into the variable offset, and we copy the fixed offset 2666 * from ptr_reg. 2667 */ 2668 if (signed_add_overflows(smin_ptr, smin_val) || 2669 signed_add_overflows(smax_ptr, smax_val)) { 2670 dst_reg->smin_value = S64_MIN; 2671 dst_reg->smax_value = S64_MAX; 2672 } else { 2673 dst_reg->smin_value = smin_ptr + smin_val; 2674 dst_reg->smax_value = smax_ptr + smax_val; 2675 } 2676 if (umin_ptr + umin_val < umin_ptr || 2677 umax_ptr + umax_val < umax_ptr) { 2678 dst_reg->umin_value = 0; 2679 dst_reg->umax_value = U64_MAX; 2680 } else { 2681 dst_reg->umin_value = umin_ptr + umin_val; 2682 dst_reg->umax_value = umax_ptr + umax_val; 2683 } 2684 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2685 dst_reg->off = ptr_reg->off; 2686 if (reg_is_pkt_pointer(ptr_reg)) { 2687 dst_reg->id = ++env->id_gen; 2688 /* something was added to pkt_ptr, set range to zero */ 2689 dst_reg->range = 0; 2690 } 2691 break; 2692 case BPF_SUB: 2693 if (dst_reg == off_reg) { 2694 /* scalar -= pointer. Creates an unknown scalar */ 2695 verbose(env, "R%d tried to subtract pointer from scalar\n", 2696 dst); 2697 return -EACCES; 2698 } 2699 /* We don't allow subtraction from FP, because (according to 2700 * test_verifier.c test "invalid fp arithmetic", JITs might not 2701 * be able to deal with it. 2702 */ 2703 if (ptr_reg->type == PTR_TO_STACK) { 2704 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2705 dst); 2706 return -EACCES; 2707 } 2708 if (known && (ptr_reg->off - smin_val == 2709 (s64)(s32)(ptr_reg->off - smin_val))) { 2710 /* pointer -= K. Subtract it from fixed offset */ 2711 dst_reg->smin_value = smin_ptr; 2712 dst_reg->smax_value = smax_ptr; 2713 dst_reg->umin_value = umin_ptr; 2714 dst_reg->umax_value = umax_ptr; 2715 dst_reg->var_off = ptr_reg->var_off; 2716 dst_reg->id = ptr_reg->id; 2717 dst_reg->off = ptr_reg->off - smin_val; 2718 dst_reg->range = ptr_reg->range; 2719 break; 2720 } 2721 /* A new variable offset is created. If the subtrahend is known 2722 * nonnegative, then any reg->range we had before is still good. 2723 */ 2724 if (signed_sub_overflows(smin_ptr, smax_val) || 2725 signed_sub_overflows(smax_ptr, smin_val)) { 2726 /* Overflow possible, we know nothing */ 2727 dst_reg->smin_value = S64_MIN; 2728 dst_reg->smax_value = S64_MAX; 2729 } else { 2730 dst_reg->smin_value = smin_ptr - smax_val; 2731 dst_reg->smax_value = smax_ptr - smin_val; 2732 } 2733 if (umin_ptr < umax_val) { 2734 /* Overflow possible, we know nothing */ 2735 dst_reg->umin_value = 0; 2736 dst_reg->umax_value = U64_MAX; 2737 } else { 2738 /* Cannot overflow (as long as bounds are consistent) */ 2739 dst_reg->umin_value = umin_ptr - umax_val; 2740 dst_reg->umax_value = umax_ptr - umin_val; 2741 } 2742 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2743 dst_reg->off = ptr_reg->off; 2744 if (reg_is_pkt_pointer(ptr_reg)) { 2745 dst_reg->id = ++env->id_gen; 2746 /* something was added to pkt_ptr, set range to zero */ 2747 if (smin_val < 0) 2748 dst_reg->range = 0; 2749 } 2750 break; 2751 case BPF_AND: 2752 case BPF_OR: 2753 case BPF_XOR: 2754 /* bitwise ops on pointers are troublesome, prohibit. */ 2755 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2756 dst, bpf_alu_string[opcode >> 4]); 2757 return -EACCES; 2758 default: 2759 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2760 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2761 dst, bpf_alu_string[opcode >> 4]); 2762 return -EACCES; 2763 } 2764 2765 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2766 return -EINVAL; 2767 2768 __update_reg_bounds(dst_reg); 2769 __reg_deduce_bounds(dst_reg); 2770 __reg_bound_offset(dst_reg); 2771 return 0; 2772 } 2773 2774 /* WARNING: This function does calculations on 64-bit values, but the actual 2775 * execution may occur on 32-bit values. Therefore, things like bitshifts 2776 * need extra checks in the 32-bit case. 2777 */ 2778 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2779 struct bpf_insn *insn, 2780 struct bpf_reg_state *dst_reg, 2781 struct bpf_reg_state src_reg) 2782 { 2783 struct bpf_reg_state *regs = cur_regs(env); 2784 u8 opcode = BPF_OP(insn->code); 2785 bool src_known, dst_known; 2786 s64 smin_val, smax_val; 2787 u64 umin_val, umax_val; 2788 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2789 2790 smin_val = src_reg.smin_value; 2791 smax_val = src_reg.smax_value; 2792 umin_val = src_reg.umin_value; 2793 umax_val = src_reg.umax_value; 2794 src_known = tnum_is_const(src_reg.var_off); 2795 dst_known = tnum_is_const(dst_reg->var_off); 2796 2797 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2798 smin_val > smax_val || umin_val > umax_val) { 2799 /* Taint dst register if offset had invalid bounds derived from 2800 * e.g. dead branches. 2801 */ 2802 __mark_reg_unknown(dst_reg); 2803 return 0; 2804 } 2805 2806 if (!src_known && 2807 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2808 __mark_reg_unknown(dst_reg); 2809 return 0; 2810 } 2811 2812 switch (opcode) { 2813 case BPF_ADD: 2814 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2815 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2816 dst_reg->smin_value = S64_MIN; 2817 dst_reg->smax_value = S64_MAX; 2818 } else { 2819 dst_reg->smin_value += smin_val; 2820 dst_reg->smax_value += smax_val; 2821 } 2822 if (dst_reg->umin_value + umin_val < umin_val || 2823 dst_reg->umax_value + umax_val < umax_val) { 2824 dst_reg->umin_value = 0; 2825 dst_reg->umax_value = U64_MAX; 2826 } else { 2827 dst_reg->umin_value += umin_val; 2828 dst_reg->umax_value += umax_val; 2829 } 2830 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2831 break; 2832 case BPF_SUB: 2833 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2834 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2835 /* Overflow possible, we know nothing */ 2836 dst_reg->smin_value = S64_MIN; 2837 dst_reg->smax_value = S64_MAX; 2838 } else { 2839 dst_reg->smin_value -= smax_val; 2840 dst_reg->smax_value -= smin_val; 2841 } 2842 if (dst_reg->umin_value < umax_val) { 2843 /* Overflow possible, we know nothing */ 2844 dst_reg->umin_value = 0; 2845 dst_reg->umax_value = U64_MAX; 2846 } else { 2847 /* Cannot overflow (as long as bounds are consistent) */ 2848 dst_reg->umin_value -= umax_val; 2849 dst_reg->umax_value -= umin_val; 2850 } 2851 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2852 break; 2853 case BPF_MUL: 2854 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2855 if (smin_val < 0 || dst_reg->smin_value < 0) { 2856 /* Ain't nobody got time to multiply that sign */ 2857 __mark_reg_unbounded(dst_reg); 2858 __update_reg_bounds(dst_reg); 2859 break; 2860 } 2861 /* Both values are positive, so we can work with unsigned and 2862 * copy the result to signed (unless it exceeds S64_MAX). 2863 */ 2864 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2865 /* Potential overflow, we know nothing */ 2866 __mark_reg_unbounded(dst_reg); 2867 /* (except what we can learn from the var_off) */ 2868 __update_reg_bounds(dst_reg); 2869 break; 2870 } 2871 dst_reg->umin_value *= umin_val; 2872 dst_reg->umax_value *= umax_val; 2873 if (dst_reg->umax_value > S64_MAX) { 2874 /* Overflow possible, we know nothing */ 2875 dst_reg->smin_value = S64_MIN; 2876 dst_reg->smax_value = S64_MAX; 2877 } else { 2878 dst_reg->smin_value = dst_reg->umin_value; 2879 dst_reg->smax_value = dst_reg->umax_value; 2880 } 2881 break; 2882 case BPF_AND: 2883 if (src_known && dst_known) { 2884 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2885 src_reg.var_off.value); 2886 break; 2887 } 2888 /* We get our minimum from the var_off, since that's inherently 2889 * bitwise. Our maximum is the minimum of the operands' maxima. 2890 */ 2891 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2892 dst_reg->umin_value = dst_reg->var_off.value; 2893 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2894 if (dst_reg->smin_value < 0 || smin_val < 0) { 2895 /* Lose signed bounds when ANDing negative numbers, 2896 * ain't nobody got time for that. 2897 */ 2898 dst_reg->smin_value = S64_MIN; 2899 dst_reg->smax_value = S64_MAX; 2900 } else { 2901 /* ANDing two positives gives a positive, so safe to 2902 * cast result into s64. 2903 */ 2904 dst_reg->smin_value = dst_reg->umin_value; 2905 dst_reg->smax_value = dst_reg->umax_value; 2906 } 2907 /* We may learn something more from the var_off */ 2908 __update_reg_bounds(dst_reg); 2909 break; 2910 case BPF_OR: 2911 if (src_known && dst_known) { 2912 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2913 src_reg.var_off.value); 2914 break; 2915 } 2916 /* We get our maximum from the var_off, and our minimum is the 2917 * maximum of the operands' minima 2918 */ 2919 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2920 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2921 dst_reg->umax_value = dst_reg->var_off.value | 2922 dst_reg->var_off.mask; 2923 if (dst_reg->smin_value < 0 || smin_val < 0) { 2924 /* Lose signed bounds when ORing negative numbers, 2925 * ain't nobody got time for that. 2926 */ 2927 dst_reg->smin_value = S64_MIN; 2928 dst_reg->smax_value = S64_MAX; 2929 } else { 2930 /* ORing two positives gives a positive, so safe to 2931 * cast result into s64. 2932 */ 2933 dst_reg->smin_value = dst_reg->umin_value; 2934 dst_reg->smax_value = dst_reg->umax_value; 2935 } 2936 /* We may learn something more from the var_off */ 2937 __update_reg_bounds(dst_reg); 2938 break; 2939 case BPF_LSH: 2940 if (umax_val >= insn_bitness) { 2941 /* Shifts greater than 31 or 63 are undefined. 2942 * This includes shifts by a negative number. 2943 */ 2944 mark_reg_unknown(env, regs, insn->dst_reg); 2945 break; 2946 } 2947 /* We lose all sign bit information (except what we can pick 2948 * up from var_off) 2949 */ 2950 dst_reg->smin_value = S64_MIN; 2951 dst_reg->smax_value = S64_MAX; 2952 /* If we might shift our top bit out, then we know nothing */ 2953 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2954 dst_reg->umin_value = 0; 2955 dst_reg->umax_value = U64_MAX; 2956 } else { 2957 dst_reg->umin_value <<= umin_val; 2958 dst_reg->umax_value <<= umax_val; 2959 } 2960 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2961 /* We may learn something more from the var_off */ 2962 __update_reg_bounds(dst_reg); 2963 break; 2964 case BPF_RSH: 2965 if (umax_val >= insn_bitness) { 2966 /* Shifts greater than 31 or 63 are undefined. 2967 * This includes shifts by a negative number. 2968 */ 2969 mark_reg_unknown(env, regs, insn->dst_reg); 2970 break; 2971 } 2972 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2973 * be negative, then either: 2974 * 1) src_reg might be zero, so the sign bit of the result is 2975 * unknown, so we lose our signed bounds 2976 * 2) it's known negative, thus the unsigned bounds capture the 2977 * signed bounds 2978 * 3) the signed bounds cross zero, so they tell us nothing 2979 * about the result 2980 * If the value in dst_reg is known nonnegative, then again the 2981 * unsigned bounts capture the signed bounds. 2982 * Thus, in all cases it suffices to blow away our signed bounds 2983 * and rely on inferring new ones from the unsigned bounds and 2984 * var_off of the result. 2985 */ 2986 dst_reg->smin_value = S64_MIN; 2987 dst_reg->smax_value = S64_MAX; 2988 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 2989 dst_reg->umin_value >>= umax_val; 2990 dst_reg->umax_value >>= umin_val; 2991 /* We may learn something more from the var_off */ 2992 __update_reg_bounds(dst_reg); 2993 break; 2994 case BPF_ARSH: 2995 if (umax_val >= insn_bitness) { 2996 /* Shifts greater than 31 or 63 are undefined. 2997 * This includes shifts by a negative number. 2998 */ 2999 mark_reg_unknown(env, regs, insn->dst_reg); 3000 break; 3001 } 3002 3003 /* Upon reaching here, src_known is true and 3004 * umax_val is equal to umin_val. 3005 */ 3006 dst_reg->smin_value >>= umin_val; 3007 dst_reg->smax_value >>= umin_val; 3008 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3009 3010 /* blow away the dst_reg umin_value/umax_value and rely on 3011 * dst_reg var_off to refine the result. 3012 */ 3013 dst_reg->umin_value = 0; 3014 dst_reg->umax_value = U64_MAX; 3015 __update_reg_bounds(dst_reg); 3016 break; 3017 default: 3018 mark_reg_unknown(env, regs, insn->dst_reg); 3019 break; 3020 } 3021 3022 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3023 /* 32-bit ALU ops are (32,32)->32 */ 3024 coerce_reg_to_size(dst_reg, 4); 3025 coerce_reg_to_size(&src_reg, 4); 3026 } 3027 3028 __reg_deduce_bounds(dst_reg); 3029 __reg_bound_offset(dst_reg); 3030 return 0; 3031 } 3032 3033 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3034 * and var_off. 3035 */ 3036 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3037 struct bpf_insn *insn) 3038 { 3039 struct bpf_verifier_state *vstate = env->cur_state; 3040 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3041 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3042 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3043 u8 opcode = BPF_OP(insn->code); 3044 3045 dst_reg = ®s[insn->dst_reg]; 3046 src_reg = NULL; 3047 if (dst_reg->type != SCALAR_VALUE) 3048 ptr_reg = dst_reg; 3049 if (BPF_SRC(insn->code) == BPF_X) { 3050 src_reg = ®s[insn->src_reg]; 3051 if (src_reg->type != SCALAR_VALUE) { 3052 if (dst_reg->type != SCALAR_VALUE) { 3053 /* Combining two pointers by any ALU op yields 3054 * an arbitrary scalar. Disallow all math except 3055 * pointer subtraction 3056 */ 3057 if (opcode == BPF_SUB){ 3058 mark_reg_unknown(env, regs, insn->dst_reg); 3059 return 0; 3060 } 3061 verbose(env, "R%d pointer %s pointer prohibited\n", 3062 insn->dst_reg, 3063 bpf_alu_string[opcode >> 4]); 3064 return -EACCES; 3065 } else { 3066 /* scalar += pointer 3067 * This is legal, but we have to reverse our 3068 * src/dest handling in computing the range 3069 */ 3070 return adjust_ptr_min_max_vals(env, insn, 3071 src_reg, dst_reg); 3072 } 3073 } else if (ptr_reg) { 3074 /* pointer += scalar */ 3075 return adjust_ptr_min_max_vals(env, insn, 3076 dst_reg, src_reg); 3077 } 3078 } else { 3079 /* Pretend the src is a reg with a known value, since we only 3080 * need to be able to read from this state. 3081 */ 3082 off_reg.type = SCALAR_VALUE; 3083 __mark_reg_known(&off_reg, insn->imm); 3084 src_reg = &off_reg; 3085 if (ptr_reg) /* pointer += K */ 3086 return adjust_ptr_min_max_vals(env, insn, 3087 ptr_reg, src_reg); 3088 } 3089 3090 /* Got here implies adding two SCALAR_VALUEs */ 3091 if (WARN_ON_ONCE(ptr_reg)) { 3092 print_verifier_state(env, state); 3093 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3094 return -EINVAL; 3095 } 3096 if (WARN_ON(!src_reg)) { 3097 print_verifier_state(env, state); 3098 verbose(env, "verifier internal error: no src_reg\n"); 3099 return -EINVAL; 3100 } 3101 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3102 } 3103 3104 /* check validity of 32-bit and 64-bit arithmetic operations */ 3105 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3106 { 3107 struct bpf_reg_state *regs = cur_regs(env); 3108 u8 opcode = BPF_OP(insn->code); 3109 int err; 3110 3111 if (opcode == BPF_END || opcode == BPF_NEG) { 3112 if (opcode == BPF_NEG) { 3113 if (BPF_SRC(insn->code) != 0 || 3114 insn->src_reg != BPF_REG_0 || 3115 insn->off != 0 || insn->imm != 0) { 3116 verbose(env, "BPF_NEG uses reserved fields\n"); 3117 return -EINVAL; 3118 } 3119 } else { 3120 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3121 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3122 BPF_CLASS(insn->code) == BPF_ALU64) { 3123 verbose(env, "BPF_END uses reserved fields\n"); 3124 return -EINVAL; 3125 } 3126 } 3127 3128 /* check src operand */ 3129 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3130 if (err) 3131 return err; 3132 3133 if (is_pointer_value(env, insn->dst_reg)) { 3134 verbose(env, "R%d pointer arithmetic prohibited\n", 3135 insn->dst_reg); 3136 return -EACCES; 3137 } 3138 3139 /* check dest operand */ 3140 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3141 if (err) 3142 return err; 3143 3144 } else if (opcode == BPF_MOV) { 3145 3146 if (BPF_SRC(insn->code) == BPF_X) { 3147 if (insn->imm != 0 || insn->off != 0) { 3148 verbose(env, "BPF_MOV uses reserved fields\n"); 3149 return -EINVAL; 3150 } 3151 3152 /* check src operand */ 3153 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3154 if (err) 3155 return err; 3156 } else { 3157 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3158 verbose(env, "BPF_MOV uses reserved fields\n"); 3159 return -EINVAL; 3160 } 3161 } 3162 3163 /* check dest operand */ 3164 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3165 if (err) 3166 return err; 3167 3168 if (BPF_SRC(insn->code) == BPF_X) { 3169 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3170 /* case: R1 = R2 3171 * copy register state to dest reg 3172 */ 3173 regs[insn->dst_reg] = regs[insn->src_reg]; 3174 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3175 } else { 3176 /* R1 = (u32) R2 */ 3177 if (is_pointer_value(env, insn->src_reg)) { 3178 verbose(env, 3179 "R%d partial copy of pointer\n", 3180 insn->src_reg); 3181 return -EACCES; 3182 } 3183 mark_reg_unknown(env, regs, insn->dst_reg); 3184 coerce_reg_to_size(®s[insn->dst_reg], 4); 3185 } 3186 } else { 3187 /* case: R = imm 3188 * remember the value we stored into this reg 3189 */ 3190 regs[insn->dst_reg].type = SCALAR_VALUE; 3191 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3192 __mark_reg_known(regs + insn->dst_reg, 3193 insn->imm); 3194 } else { 3195 __mark_reg_known(regs + insn->dst_reg, 3196 (u32)insn->imm); 3197 } 3198 } 3199 3200 } else if (opcode > BPF_END) { 3201 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3202 return -EINVAL; 3203 3204 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3205 3206 if (BPF_SRC(insn->code) == BPF_X) { 3207 if (insn->imm != 0 || insn->off != 0) { 3208 verbose(env, "BPF_ALU uses reserved fields\n"); 3209 return -EINVAL; 3210 } 3211 /* check src1 operand */ 3212 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3213 if (err) 3214 return err; 3215 } else { 3216 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3217 verbose(env, "BPF_ALU uses reserved fields\n"); 3218 return -EINVAL; 3219 } 3220 } 3221 3222 /* check src2 operand */ 3223 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3224 if (err) 3225 return err; 3226 3227 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3228 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3229 verbose(env, "div by zero\n"); 3230 return -EINVAL; 3231 } 3232 3233 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3234 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3235 return -EINVAL; 3236 } 3237 3238 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3239 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3240 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3241 3242 if (insn->imm < 0 || insn->imm >= size) { 3243 verbose(env, "invalid shift %d\n", insn->imm); 3244 return -EINVAL; 3245 } 3246 } 3247 3248 /* check dest operand */ 3249 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3250 if (err) 3251 return err; 3252 3253 return adjust_reg_min_max_vals(env, insn); 3254 } 3255 3256 return 0; 3257 } 3258 3259 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3260 struct bpf_reg_state *dst_reg, 3261 enum bpf_reg_type type, 3262 bool range_right_open) 3263 { 3264 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3265 struct bpf_reg_state *regs = state->regs, *reg; 3266 u16 new_range; 3267 int i, j; 3268 3269 if (dst_reg->off < 0 || 3270 (dst_reg->off == 0 && range_right_open)) 3271 /* This doesn't give us any range */ 3272 return; 3273 3274 if (dst_reg->umax_value > MAX_PACKET_OFF || 3275 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3276 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3277 * than pkt_end, but that's because it's also less than pkt. 3278 */ 3279 return; 3280 3281 new_range = dst_reg->off; 3282 if (range_right_open) 3283 new_range--; 3284 3285 /* Examples for register markings: 3286 * 3287 * pkt_data in dst register: 3288 * 3289 * r2 = r3; 3290 * r2 += 8; 3291 * if (r2 > pkt_end) goto <handle exception> 3292 * <access okay> 3293 * 3294 * r2 = r3; 3295 * r2 += 8; 3296 * if (r2 < pkt_end) goto <access okay> 3297 * <handle exception> 3298 * 3299 * Where: 3300 * r2 == dst_reg, pkt_end == src_reg 3301 * r2=pkt(id=n,off=8,r=0) 3302 * r3=pkt(id=n,off=0,r=0) 3303 * 3304 * pkt_data in src register: 3305 * 3306 * r2 = r3; 3307 * r2 += 8; 3308 * if (pkt_end >= r2) goto <access okay> 3309 * <handle exception> 3310 * 3311 * r2 = r3; 3312 * r2 += 8; 3313 * if (pkt_end <= r2) goto <handle exception> 3314 * <access okay> 3315 * 3316 * Where: 3317 * pkt_end == dst_reg, r2 == src_reg 3318 * r2=pkt(id=n,off=8,r=0) 3319 * r3=pkt(id=n,off=0,r=0) 3320 * 3321 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3322 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3323 * and [r3, r3 + 8-1) respectively is safe to access depending on 3324 * the check. 3325 */ 3326 3327 /* If our ids match, then we must have the same max_value. And we 3328 * don't care about the other reg's fixed offset, since if it's too big 3329 * the range won't allow anything. 3330 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3331 */ 3332 for (i = 0; i < MAX_BPF_REG; i++) 3333 if (regs[i].type == type && regs[i].id == dst_reg->id) 3334 /* keep the maximum range already checked */ 3335 regs[i].range = max(regs[i].range, new_range); 3336 3337 for (j = 0; j <= vstate->curframe; j++) { 3338 state = vstate->frame[j]; 3339 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3340 if (state->stack[i].slot_type[0] != STACK_SPILL) 3341 continue; 3342 reg = &state->stack[i].spilled_ptr; 3343 if (reg->type == type && reg->id == dst_reg->id) 3344 reg->range = max(reg->range, new_range); 3345 } 3346 } 3347 } 3348 3349 /* Adjusts the register min/max values in the case that the dst_reg is the 3350 * variable register that we are working on, and src_reg is a constant or we're 3351 * simply doing a BPF_K check. 3352 * In JEQ/JNE cases we also adjust the var_off values. 3353 */ 3354 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3355 struct bpf_reg_state *false_reg, u64 val, 3356 u8 opcode) 3357 { 3358 /* If the dst_reg is a pointer, we can't learn anything about its 3359 * variable offset from the compare (unless src_reg were a pointer into 3360 * the same object, but we don't bother with that. 3361 * Since false_reg and true_reg have the same type by construction, we 3362 * only need to check one of them for pointerness. 3363 */ 3364 if (__is_pointer_value(false, false_reg)) 3365 return; 3366 3367 switch (opcode) { 3368 case BPF_JEQ: 3369 /* If this is false then we know nothing Jon Snow, but if it is 3370 * true then we know for sure. 3371 */ 3372 __mark_reg_known(true_reg, val); 3373 break; 3374 case BPF_JNE: 3375 /* If this is true we know nothing Jon Snow, but if it is false 3376 * we know the value for sure; 3377 */ 3378 __mark_reg_known(false_reg, val); 3379 break; 3380 case BPF_JGT: 3381 false_reg->umax_value = min(false_reg->umax_value, val); 3382 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3383 break; 3384 case BPF_JSGT: 3385 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3386 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3387 break; 3388 case BPF_JLT: 3389 false_reg->umin_value = max(false_reg->umin_value, val); 3390 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3391 break; 3392 case BPF_JSLT: 3393 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3394 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3395 break; 3396 case BPF_JGE: 3397 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3398 true_reg->umin_value = max(true_reg->umin_value, val); 3399 break; 3400 case BPF_JSGE: 3401 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3402 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3403 break; 3404 case BPF_JLE: 3405 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3406 true_reg->umax_value = min(true_reg->umax_value, val); 3407 break; 3408 case BPF_JSLE: 3409 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3410 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3411 break; 3412 default: 3413 break; 3414 } 3415 3416 __reg_deduce_bounds(false_reg); 3417 __reg_deduce_bounds(true_reg); 3418 /* We might have learned some bits from the bounds. */ 3419 __reg_bound_offset(false_reg); 3420 __reg_bound_offset(true_reg); 3421 /* Intersecting with the old var_off might have improved our bounds 3422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3423 * then new var_off is (0; 0x7f...fc) which improves our umax. 3424 */ 3425 __update_reg_bounds(false_reg); 3426 __update_reg_bounds(true_reg); 3427 } 3428 3429 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3430 * the variable reg. 3431 */ 3432 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3433 struct bpf_reg_state *false_reg, u64 val, 3434 u8 opcode) 3435 { 3436 if (__is_pointer_value(false, false_reg)) 3437 return; 3438 3439 switch (opcode) { 3440 case BPF_JEQ: 3441 /* If this is false then we know nothing Jon Snow, but if it is 3442 * true then we know for sure. 3443 */ 3444 __mark_reg_known(true_reg, val); 3445 break; 3446 case BPF_JNE: 3447 /* If this is true we know nothing Jon Snow, but if it is false 3448 * we know the value for sure; 3449 */ 3450 __mark_reg_known(false_reg, val); 3451 break; 3452 case BPF_JGT: 3453 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3454 false_reg->umin_value = max(false_reg->umin_value, val); 3455 break; 3456 case BPF_JSGT: 3457 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3458 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3459 break; 3460 case BPF_JLT: 3461 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3462 false_reg->umax_value = min(false_reg->umax_value, val); 3463 break; 3464 case BPF_JSLT: 3465 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3466 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3467 break; 3468 case BPF_JGE: 3469 true_reg->umax_value = min(true_reg->umax_value, val); 3470 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3471 break; 3472 case BPF_JSGE: 3473 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3474 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3475 break; 3476 case BPF_JLE: 3477 true_reg->umin_value = max(true_reg->umin_value, val); 3478 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3479 break; 3480 case BPF_JSLE: 3481 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3482 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3483 break; 3484 default: 3485 break; 3486 } 3487 3488 __reg_deduce_bounds(false_reg); 3489 __reg_deduce_bounds(true_reg); 3490 /* We might have learned some bits from the bounds. */ 3491 __reg_bound_offset(false_reg); 3492 __reg_bound_offset(true_reg); 3493 /* Intersecting with the old var_off might have improved our bounds 3494 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3495 * then new var_off is (0; 0x7f...fc) which improves our umax. 3496 */ 3497 __update_reg_bounds(false_reg); 3498 __update_reg_bounds(true_reg); 3499 } 3500 3501 /* Regs are known to be equal, so intersect their min/max/var_off */ 3502 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3503 struct bpf_reg_state *dst_reg) 3504 { 3505 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3506 dst_reg->umin_value); 3507 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3508 dst_reg->umax_value); 3509 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3510 dst_reg->smin_value); 3511 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3512 dst_reg->smax_value); 3513 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3514 dst_reg->var_off); 3515 /* We might have learned new bounds from the var_off. */ 3516 __update_reg_bounds(src_reg); 3517 __update_reg_bounds(dst_reg); 3518 /* We might have learned something about the sign bit. */ 3519 __reg_deduce_bounds(src_reg); 3520 __reg_deduce_bounds(dst_reg); 3521 /* We might have learned some bits from the bounds. */ 3522 __reg_bound_offset(src_reg); 3523 __reg_bound_offset(dst_reg); 3524 /* Intersecting with the old var_off might have improved our bounds 3525 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3526 * then new var_off is (0; 0x7f...fc) which improves our umax. 3527 */ 3528 __update_reg_bounds(src_reg); 3529 __update_reg_bounds(dst_reg); 3530 } 3531 3532 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3533 struct bpf_reg_state *true_dst, 3534 struct bpf_reg_state *false_src, 3535 struct bpf_reg_state *false_dst, 3536 u8 opcode) 3537 { 3538 switch (opcode) { 3539 case BPF_JEQ: 3540 __reg_combine_min_max(true_src, true_dst); 3541 break; 3542 case BPF_JNE: 3543 __reg_combine_min_max(false_src, false_dst); 3544 break; 3545 } 3546 } 3547 3548 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3549 bool is_null) 3550 { 3551 struct bpf_reg_state *reg = ®s[regno]; 3552 3553 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3554 /* Old offset (both fixed and variable parts) should 3555 * have been known-zero, because we don't allow pointer 3556 * arithmetic on pointers that might be NULL. 3557 */ 3558 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3559 !tnum_equals_const(reg->var_off, 0) || 3560 reg->off)) { 3561 __mark_reg_known_zero(reg); 3562 reg->off = 0; 3563 } 3564 if (is_null) { 3565 reg->type = SCALAR_VALUE; 3566 } else if (reg->map_ptr->inner_map_meta) { 3567 reg->type = CONST_PTR_TO_MAP; 3568 reg->map_ptr = reg->map_ptr->inner_map_meta; 3569 } else { 3570 reg->type = PTR_TO_MAP_VALUE; 3571 } 3572 /* We don't need id from this point onwards anymore, thus we 3573 * should better reset it, so that state pruning has chances 3574 * to take effect. 3575 */ 3576 reg->id = 0; 3577 } 3578 } 3579 3580 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3581 * be folded together at some point. 3582 */ 3583 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3584 bool is_null) 3585 { 3586 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3587 struct bpf_reg_state *regs = state->regs; 3588 u32 id = regs[regno].id; 3589 int i, j; 3590 3591 for (i = 0; i < MAX_BPF_REG; i++) 3592 mark_map_reg(regs, i, id, is_null); 3593 3594 for (j = 0; j <= vstate->curframe; j++) { 3595 state = vstate->frame[j]; 3596 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3597 if (state->stack[i].slot_type[0] != STACK_SPILL) 3598 continue; 3599 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3600 } 3601 } 3602 } 3603 3604 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3605 struct bpf_reg_state *dst_reg, 3606 struct bpf_reg_state *src_reg, 3607 struct bpf_verifier_state *this_branch, 3608 struct bpf_verifier_state *other_branch) 3609 { 3610 if (BPF_SRC(insn->code) != BPF_X) 3611 return false; 3612 3613 switch (BPF_OP(insn->code)) { 3614 case BPF_JGT: 3615 if ((dst_reg->type == PTR_TO_PACKET && 3616 src_reg->type == PTR_TO_PACKET_END) || 3617 (dst_reg->type == PTR_TO_PACKET_META && 3618 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3619 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3620 find_good_pkt_pointers(this_branch, dst_reg, 3621 dst_reg->type, false); 3622 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3623 src_reg->type == PTR_TO_PACKET) || 3624 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3625 src_reg->type == PTR_TO_PACKET_META)) { 3626 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3627 find_good_pkt_pointers(other_branch, src_reg, 3628 src_reg->type, true); 3629 } else { 3630 return false; 3631 } 3632 break; 3633 case BPF_JLT: 3634 if ((dst_reg->type == PTR_TO_PACKET && 3635 src_reg->type == PTR_TO_PACKET_END) || 3636 (dst_reg->type == PTR_TO_PACKET_META && 3637 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3638 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3639 find_good_pkt_pointers(other_branch, dst_reg, 3640 dst_reg->type, true); 3641 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3642 src_reg->type == PTR_TO_PACKET) || 3643 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3644 src_reg->type == PTR_TO_PACKET_META)) { 3645 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3646 find_good_pkt_pointers(this_branch, src_reg, 3647 src_reg->type, false); 3648 } else { 3649 return false; 3650 } 3651 break; 3652 case BPF_JGE: 3653 if ((dst_reg->type == PTR_TO_PACKET && 3654 src_reg->type == PTR_TO_PACKET_END) || 3655 (dst_reg->type == PTR_TO_PACKET_META && 3656 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3657 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3658 find_good_pkt_pointers(this_branch, dst_reg, 3659 dst_reg->type, true); 3660 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3661 src_reg->type == PTR_TO_PACKET) || 3662 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3663 src_reg->type == PTR_TO_PACKET_META)) { 3664 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3665 find_good_pkt_pointers(other_branch, src_reg, 3666 src_reg->type, false); 3667 } else { 3668 return false; 3669 } 3670 break; 3671 case BPF_JLE: 3672 if ((dst_reg->type == PTR_TO_PACKET && 3673 src_reg->type == PTR_TO_PACKET_END) || 3674 (dst_reg->type == PTR_TO_PACKET_META && 3675 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3676 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3677 find_good_pkt_pointers(other_branch, dst_reg, 3678 dst_reg->type, false); 3679 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3680 src_reg->type == PTR_TO_PACKET) || 3681 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3682 src_reg->type == PTR_TO_PACKET_META)) { 3683 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3684 find_good_pkt_pointers(this_branch, src_reg, 3685 src_reg->type, true); 3686 } else { 3687 return false; 3688 } 3689 break; 3690 default: 3691 return false; 3692 } 3693 3694 return true; 3695 } 3696 3697 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3698 struct bpf_insn *insn, int *insn_idx) 3699 { 3700 struct bpf_verifier_state *this_branch = env->cur_state; 3701 struct bpf_verifier_state *other_branch; 3702 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3703 struct bpf_reg_state *dst_reg, *other_branch_regs; 3704 u8 opcode = BPF_OP(insn->code); 3705 int err; 3706 3707 if (opcode > BPF_JSLE) { 3708 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3709 return -EINVAL; 3710 } 3711 3712 if (BPF_SRC(insn->code) == BPF_X) { 3713 if (insn->imm != 0) { 3714 verbose(env, "BPF_JMP uses reserved fields\n"); 3715 return -EINVAL; 3716 } 3717 3718 /* check src1 operand */ 3719 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3720 if (err) 3721 return err; 3722 3723 if (is_pointer_value(env, insn->src_reg)) { 3724 verbose(env, "R%d pointer comparison prohibited\n", 3725 insn->src_reg); 3726 return -EACCES; 3727 } 3728 } else { 3729 if (insn->src_reg != BPF_REG_0) { 3730 verbose(env, "BPF_JMP uses reserved fields\n"); 3731 return -EINVAL; 3732 } 3733 } 3734 3735 /* check src2 operand */ 3736 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3737 if (err) 3738 return err; 3739 3740 dst_reg = ®s[insn->dst_reg]; 3741 3742 /* detect if R == 0 where R was initialized to zero earlier */ 3743 if (BPF_SRC(insn->code) == BPF_K && 3744 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3745 dst_reg->type == SCALAR_VALUE && 3746 tnum_is_const(dst_reg->var_off)) { 3747 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3748 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3749 /* if (imm == imm) goto pc+off; 3750 * only follow the goto, ignore fall-through 3751 */ 3752 *insn_idx += insn->off; 3753 return 0; 3754 } else { 3755 /* if (imm != imm) goto pc+off; 3756 * only follow fall-through branch, since 3757 * that's where the program will go 3758 */ 3759 return 0; 3760 } 3761 } 3762 3763 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3764 if (!other_branch) 3765 return -EFAULT; 3766 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3767 3768 /* detect if we are comparing against a constant value so we can adjust 3769 * our min/max values for our dst register. 3770 * this is only legit if both are scalars (or pointers to the same 3771 * object, I suppose, but we don't support that right now), because 3772 * otherwise the different base pointers mean the offsets aren't 3773 * comparable. 3774 */ 3775 if (BPF_SRC(insn->code) == BPF_X) { 3776 if (dst_reg->type == SCALAR_VALUE && 3777 regs[insn->src_reg].type == SCALAR_VALUE) { 3778 if (tnum_is_const(regs[insn->src_reg].var_off)) 3779 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3780 dst_reg, regs[insn->src_reg].var_off.value, 3781 opcode); 3782 else if (tnum_is_const(dst_reg->var_off)) 3783 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3784 ®s[insn->src_reg], 3785 dst_reg->var_off.value, opcode); 3786 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3787 /* Comparing for equality, we can combine knowledge */ 3788 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3789 &other_branch_regs[insn->dst_reg], 3790 ®s[insn->src_reg], 3791 ®s[insn->dst_reg], opcode); 3792 } 3793 } else if (dst_reg->type == SCALAR_VALUE) { 3794 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3795 dst_reg, insn->imm, opcode); 3796 } 3797 3798 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3799 if (BPF_SRC(insn->code) == BPF_K && 3800 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3801 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3802 /* Mark all identical map registers in each branch as either 3803 * safe or unknown depending R == 0 or R != 0 conditional. 3804 */ 3805 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3806 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3807 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3808 this_branch, other_branch) && 3809 is_pointer_value(env, insn->dst_reg)) { 3810 verbose(env, "R%d pointer comparison prohibited\n", 3811 insn->dst_reg); 3812 return -EACCES; 3813 } 3814 if (env->log.level) 3815 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3816 return 0; 3817 } 3818 3819 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3820 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3821 { 3822 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3823 3824 return (struct bpf_map *) (unsigned long) imm64; 3825 } 3826 3827 /* verify BPF_LD_IMM64 instruction */ 3828 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3829 { 3830 struct bpf_reg_state *regs = cur_regs(env); 3831 int err; 3832 3833 if (BPF_SIZE(insn->code) != BPF_DW) { 3834 verbose(env, "invalid BPF_LD_IMM insn\n"); 3835 return -EINVAL; 3836 } 3837 if (insn->off != 0) { 3838 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3839 return -EINVAL; 3840 } 3841 3842 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3843 if (err) 3844 return err; 3845 3846 if (insn->src_reg == 0) { 3847 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3848 3849 regs[insn->dst_reg].type = SCALAR_VALUE; 3850 __mark_reg_known(®s[insn->dst_reg], imm); 3851 return 0; 3852 } 3853 3854 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3855 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3856 3857 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3858 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3859 return 0; 3860 } 3861 3862 static bool may_access_skb(enum bpf_prog_type type) 3863 { 3864 switch (type) { 3865 case BPF_PROG_TYPE_SOCKET_FILTER: 3866 case BPF_PROG_TYPE_SCHED_CLS: 3867 case BPF_PROG_TYPE_SCHED_ACT: 3868 return true; 3869 default: 3870 return false; 3871 } 3872 } 3873 3874 /* verify safety of LD_ABS|LD_IND instructions: 3875 * - they can only appear in the programs where ctx == skb 3876 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3877 * preserve R6-R9, and store return value into R0 3878 * 3879 * Implicit input: 3880 * ctx == skb == R6 == CTX 3881 * 3882 * Explicit input: 3883 * SRC == any register 3884 * IMM == 32-bit immediate 3885 * 3886 * Output: 3887 * R0 - 8/16/32-bit skb data converted to cpu endianness 3888 */ 3889 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3890 { 3891 struct bpf_reg_state *regs = cur_regs(env); 3892 u8 mode = BPF_MODE(insn->code); 3893 int i, err; 3894 3895 if (!may_access_skb(env->prog->type)) { 3896 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3897 return -EINVAL; 3898 } 3899 3900 if (!env->ops->gen_ld_abs) { 3901 verbose(env, "bpf verifier is misconfigured\n"); 3902 return -EINVAL; 3903 } 3904 3905 if (env->subprog_cnt > 1) { 3906 /* when program has LD_ABS insn JITs and interpreter assume 3907 * that r1 == ctx == skb which is not the case for callees 3908 * that can have arbitrary arguments. It's problematic 3909 * for main prog as well since JITs would need to analyze 3910 * all functions in order to make proper register save/restore 3911 * decisions in the main prog. Hence disallow LD_ABS with calls 3912 */ 3913 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3914 return -EINVAL; 3915 } 3916 3917 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3918 BPF_SIZE(insn->code) == BPF_DW || 3919 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3920 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3921 return -EINVAL; 3922 } 3923 3924 /* check whether implicit source operand (register R6) is readable */ 3925 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3926 if (err) 3927 return err; 3928 3929 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3930 verbose(env, 3931 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3932 return -EINVAL; 3933 } 3934 3935 if (mode == BPF_IND) { 3936 /* check explicit source operand */ 3937 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3938 if (err) 3939 return err; 3940 } 3941 3942 /* reset caller saved regs to unreadable */ 3943 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3944 mark_reg_not_init(env, regs, caller_saved[i]); 3945 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3946 } 3947 3948 /* mark destination R0 register as readable, since it contains 3949 * the value fetched from the packet. 3950 * Already marked as written above. 3951 */ 3952 mark_reg_unknown(env, regs, BPF_REG_0); 3953 return 0; 3954 } 3955 3956 static int check_return_code(struct bpf_verifier_env *env) 3957 { 3958 struct bpf_reg_state *reg; 3959 struct tnum range = tnum_range(0, 1); 3960 3961 switch (env->prog->type) { 3962 case BPF_PROG_TYPE_CGROUP_SKB: 3963 case BPF_PROG_TYPE_CGROUP_SOCK: 3964 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 3965 case BPF_PROG_TYPE_SOCK_OPS: 3966 case BPF_PROG_TYPE_CGROUP_DEVICE: 3967 break; 3968 default: 3969 return 0; 3970 } 3971 3972 reg = cur_regs(env) + BPF_REG_0; 3973 if (reg->type != SCALAR_VALUE) { 3974 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3975 reg_type_str[reg->type]); 3976 return -EINVAL; 3977 } 3978 3979 if (!tnum_in(range, reg->var_off)) { 3980 verbose(env, "At program exit the register R0 "); 3981 if (!tnum_is_unknown(reg->var_off)) { 3982 char tn_buf[48]; 3983 3984 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3985 verbose(env, "has value %s", tn_buf); 3986 } else { 3987 verbose(env, "has unknown scalar value"); 3988 } 3989 verbose(env, " should have been 0 or 1\n"); 3990 return -EINVAL; 3991 } 3992 return 0; 3993 } 3994 3995 /* non-recursive DFS pseudo code 3996 * 1 procedure DFS-iterative(G,v): 3997 * 2 label v as discovered 3998 * 3 let S be a stack 3999 * 4 S.push(v) 4000 * 5 while S is not empty 4001 * 6 t <- S.pop() 4002 * 7 if t is what we're looking for: 4003 * 8 return t 4004 * 9 for all edges e in G.adjacentEdges(t) do 4005 * 10 if edge e is already labelled 4006 * 11 continue with the next edge 4007 * 12 w <- G.adjacentVertex(t,e) 4008 * 13 if vertex w is not discovered and not explored 4009 * 14 label e as tree-edge 4010 * 15 label w as discovered 4011 * 16 S.push(w) 4012 * 17 continue at 5 4013 * 18 else if vertex w is discovered 4014 * 19 label e as back-edge 4015 * 20 else 4016 * 21 // vertex w is explored 4017 * 22 label e as forward- or cross-edge 4018 * 23 label t as explored 4019 * 24 S.pop() 4020 * 4021 * convention: 4022 * 0x10 - discovered 4023 * 0x11 - discovered and fall-through edge labelled 4024 * 0x12 - discovered and fall-through and branch edges labelled 4025 * 0x20 - explored 4026 */ 4027 4028 enum { 4029 DISCOVERED = 0x10, 4030 EXPLORED = 0x20, 4031 FALLTHROUGH = 1, 4032 BRANCH = 2, 4033 }; 4034 4035 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4036 4037 static int *insn_stack; /* stack of insns to process */ 4038 static int cur_stack; /* current stack index */ 4039 static int *insn_state; 4040 4041 /* t, w, e - match pseudo-code above: 4042 * t - index of current instruction 4043 * w - next instruction 4044 * e - edge 4045 */ 4046 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4047 { 4048 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4049 return 0; 4050 4051 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4052 return 0; 4053 4054 if (w < 0 || w >= env->prog->len) { 4055 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4056 return -EINVAL; 4057 } 4058 4059 if (e == BRANCH) 4060 /* mark branch target for state pruning */ 4061 env->explored_states[w] = STATE_LIST_MARK; 4062 4063 if (insn_state[w] == 0) { 4064 /* tree-edge */ 4065 insn_state[t] = DISCOVERED | e; 4066 insn_state[w] = DISCOVERED; 4067 if (cur_stack >= env->prog->len) 4068 return -E2BIG; 4069 insn_stack[cur_stack++] = w; 4070 return 1; 4071 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4072 verbose(env, "back-edge from insn %d to %d\n", t, w); 4073 return -EINVAL; 4074 } else if (insn_state[w] == EXPLORED) { 4075 /* forward- or cross-edge */ 4076 insn_state[t] = DISCOVERED | e; 4077 } else { 4078 verbose(env, "insn state internal bug\n"); 4079 return -EFAULT; 4080 } 4081 return 0; 4082 } 4083 4084 /* non-recursive depth-first-search to detect loops in BPF program 4085 * loop == back-edge in directed graph 4086 */ 4087 static int check_cfg(struct bpf_verifier_env *env) 4088 { 4089 struct bpf_insn *insns = env->prog->insnsi; 4090 int insn_cnt = env->prog->len; 4091 int ret = 0; 4092 int i, t; 4093 4094 ret = check_subprogs(env); 4095 if (ret < 0) 4096 return ret; 4097 4098 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4099 if (!insn_state) 4100 return -ENOMEM; 4101 4102 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4103 if (!insn_stack) { 4104 kfree(insn_state); 4105 return -ENOMEM; 4106 } 4107 4108 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4109 insn_stack[0] = 0; /* 0 is the first instruction */ 4110 cur_stack = 1; 4111 4112 peek_stack: 4113 if (cur_stack == 0) 4114 goto check_state; 4115 t = insn_stack[cur_stack - 1]; 4116 4117 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4118 u8 opcode = BPF_OP(insns[t].code); 4119 4120 if (opcode == BPF_EXIT) { 4121 goto mark_explored; 4122 } else if (opcode == BPF_CALL) { 4123 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4124 if (ret == 1) 4125 goto peek_stack; 4126 else if (ret < 0) 4127 goto err_free; 4128 if (t + 1 < insn_cnt) 4129 env->explored_states[t + 1] = STATE_LIST_MARK; 4130 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4131 env->explored_states[t] = STATE_LIST_MARK; 4132 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4133 if (ret == 1) 4134 goto peek_stack; 4135 else if (ret < 0) 4136 goto err_free; 4137 } 4138 } else if (opcode == BPF_JA) { 4139 if (BPF_SRC(insns[t].code) != BPF_K) { 4140 ret = -EINVAL; 4141 goto err_free; 4142 } 4143 /* unconditional jump with single edge */ 4144 ret = push_insn(t, t + insns[t].off + 1, 4145 FALLTHROUGH, env); 4146 if (ret == 1) 4147 goto peek_stack; 4148 else if (ret < 0) 4149 goto err_free; 4150 /* tell verifier to check for equivalent states 4151 * after every call and jump 4152 */ 4153 if (t + 1 < insn_cnt) 4154 env->explored_states[t + 1] = STATE_LIST_MARK; 4155 } else { 4156 /* conditional jump with two edges */ 4157 env->explored_states[t] = STATE_LIST_MARK; 4158 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4159 if (ret == 1) 4160 goto peek_stack; 4161 else if (ret < 0) 4162 goto err_free; 4163 4164 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4165 if (ret == 1) 4166 goto peek_stack; 4167 else if (ret < 0) 4168 goto err_free; 4169 } 4170 } else { 4171 /* all other non-branch instructions with single 4172 * fall-through edge 4173 */ 4174 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4175 if (ret == 1) 4176 goto peek_stack; 4177 else if (ret < 0) 4178 goto err_free; 4179 } 4180 4181 mark_explored: 4182 insn_state[t] = EXPLORED; 4183 if (cur_stack-- <= 0) { 4184 verbose(env, "pop stack internal bug\n"); 4185 ret = -EFAULT; 4186 goto err_free; 4187 } 4188 goto peek_stack; 4189 4190 check_state: 4191 for (i = 0; i < insn_cnt; i++) { 4192 if (insn_state[i] != EXPLORED) { 4193 verbose(env, "unreachable insn %d\n", i); 4194 ret = -EINVAL; 4195 goto err_free; 4196 } 4197 } 4198 ret = 0; /* cfg looks good */ 4199 4200 err_free: 4201 kfree(insn_state); 4202 kfree(insn_stack); 4203 return ret; 4204 } 4205 4206 /* check %cur's range satisfies %old's */ 4207 static bool range_within(struct bpf_reg_state *old, 4208 struct bpf_reg_state *cur) 4209 { 4210 return old->umin_value <= cur->umin_value && 4211 old->umax_value >= cur->umax_value && 4212 old->smin_value <= cur->smin_value && 4213 old->smax_value >= cur->smax_value; 4214 } 4215 4216 /* Maximum number of register states that can exist at once */ 4217 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4218 struct idpair { 4219 u32 old; 4220 u32 cur; 4221 }; 4222 4223 /* If in the old state two registers had the same id, then they need to have 4224 * the same id in the new state as well. But that id could be different from 4225 * the old state, so we need to track the mapping from old to new ids. 4226 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4227 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4228 * regs with a different old id could still have new id 9, we don't care about 4229 * that. 4230 * So we look through our idmap to see if this old id has been seen before. If 4231 * so, we require the new id to match; otherwise, we add the id pair to the map. 4232 */ 4233 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4234 { 4235 unsigned int i; 4236 4237 for (i = 0; i < ID_MAP_SIZE; i++) { 4238 if (!idmap[i].old) { 4239 /* Reached an empty slot; haven't seen this id before */ 4240 idmap[i].old = old_id; 4241 idmap[i].cur = cur_id; 4242 return true; 4243 } 4244 if (idmap[i].old == old_id) 4245 return idmap[i].cur == cur_id; 4246 } 4247 /* We ran out of idmap slots, which should be impossible */ 4248 WARN_ON_ONCE(1); 4249 return false; 4250 } 4251 4252 /* Returns true if (rold safe implies rcur safe) */ 4253 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4254 struct idpair *idmap) 4255 { 4256 bool equal; 4257 4258 if (!(rold->live & REG_LIVE_READ)) 4259 /* explored state didn't use this */ 4260 return true; 4261 4262 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4263 4264 if (rold->type == PTR_TO_STACK) 4265 /* two stack pointers are equal only if they're pointing to 4266 * the same stack frame, since fp-8 in foo != fp-8 in bar 4267 */ 4268 return equal && rold->frameno == rcur->frameno; 4269 4270 if (equal) 4271 return true; 4272 4273 if (rold->type == NOT_INIT) 4274 /* explored state can't have used this */ 4275 return true; 4276 if (rcur->type == NOT_INIT) 4277 return false; 4278 switch (rold->type) { 4279 case SCALAR_VALUE: 4280 if (rcur->type == SCALAR_VALUE) { 4281 /* new val must satisfy old val knowledge */ 4282 return range_within(rold, rcur) && 4283 tnum_in(rold->var_off, rcur->var_off); 4284 } else { 4285 /* We're trying to use a pointer in place of a scalar. 4286 * Even if the scalar was unbounded, this could lead to 4287 * pointer leaks because scalars are allowed to leak 4288 * while pointers are not. We could make this safe in 4289 * special cases if root is calling us, but it's 4290 * probably not worth the hassle. 4291 */ 4292 return false; 4293 } 4294 case PTR_TO_MAP_VALUE: 4295 /* If the new min/max/var_off satisfy the old ones and 4296 * everything else matches, we are OK. 4297 * We don't care about the 'id' value, because nothing 4298 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4299 */ 4300 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4301 range_within(rold, rcur) && 4302 tnum_in(rold->var_off, rcur->var_off); 4303 case PTR_TO_MAP_VALUE_OR_NULL: 4304 /* a PTR_TO_MAP_VALUE could be safe to use as a 4305 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4306 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4307 * checked, doing so could have affected others with the same 4308 * id, and we can't check for that because we lost the id when 4309 * we converted to a PTR_TO_MAP_VALUE. 4310 */ 4311 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4312 return false; 4313 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4314 return false; 4315 /* Check our ids match any regs they're supposed to */ 4316 return check_ids(rold->id, rcur->id, idmap); 4317 case PTR_TO_PACKET_META: 4318 case PTR_TO_PACKET: 4319 if (rcur->type != rold->type) 4320 return false; 4321 /* We must have at least as much range as the old ptr 4322 * did, so that any accesses which were safe before are 4323 * still safe. This is true even if old range < old off, 4324 * since someone could have accessed through (ptr - k), or 4325 * even done ptr -= k in a register, to get a safe access. 4326 */ 4327 if (rold->range > rcur->range) 4328 return false; 4329 /* If the offsets don't match, we can't trust our alignment; 4330 * nor can we be sure that we won't fall out of range. 4331 */ 4332 if (rold->off != rcur->off) 4333 return false; 4334 /* id relations must be preserved */ 4335 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4336 return false; 4337 /* new val must satisfy old val knowledge */ 4338 return range_within(rold, rcur) && 4339 tnum_in(rold->var_off, rcur->var_off); 4340 case PTR_TO_CTX: 4341 case CONST_PTR_TO_MAP: 4342 case PTR_TO_PACKET_END: 4343 /* Only valid matches are exact, which memcmp() above 4344 * would have accepted 4345 */ 4346 default: 4347 /* Don't know what's going on, just say it's not safe */ 4348 return false; 4349 } 4350 4351 /* Shouldn't get here; if we do, say it's not safe */ 4352 WARN_ON_ONCE(1); 4353 return false; 4354 } 4355 4356 static bool stacksafe(struct bpf_func_state *old, 4357 struct bpf_func_state *cur, 4358 struct idpair *idmap) 4359 { 4360 int i, spi; 4361 4362 /* if explored stack has more populated slots than current stack 4363 * such stacks are not equivalent 4364 */ 4365 if (old->allocated_stack > cur->allocated_stack) 4366 return false; 4367 4368 /* walk slots of the explored stack and ignore any additional 4369 * slots in the current stack, since explored(safe) state 4370 * didn't use them 4371 */ 4372 for (i = 0; i < old->allocated_stack; i++) { 4373 spi = i / BPF_REG_SIZE; 4374 4375 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4376 /* explored state didn't use this */ 4377 continue; 4378 4379 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4380 continue; 4381 /* if old state was safe with misc data in the stack 4382 * it will be safe with zero-initialized stack. 4383 * The opposite is not true 4384 */ 4385 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4386 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4387 continue; 4388 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4389 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4390 /* Ex: old explored (safe) state has STACK_SPILL in 4391 * this stack slot, but current has has STACK_MISC -> 4392 * this verifier states are not equivalent, 4393 * return false to continue verification of this path 4394 */ 4395 return false; 4396 if (i % BPF_REG_SIZE) 4397 continue; 4398 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4399 continue; 4400 if (!regsafe(&old->stack[spi].spilled_ptr, 4401 &cur->stack[spi].spilled_ptr, 4402 idmap)) 4403 /* when explored and current stack slot are both storing 4404 * spilled registers, check that stored pointers types 4405 * are the same as well. 4406 * Ex: explored safe path could have stored 4407 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4408 * but current path has stored: 4409 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4410 * such verifier states are not equivalent. 4411 * return false to continue verification of this path 4412 */ 4413 return false; 4414 } 4415 return true; 4416 } 4417 4418 /* compare two verifier states 4419 * 4420 * all states stored in state_list are known to be valid, since 4421 * verifier reached 'bpf_exit' instruction through them 4422 * 4423 * this function is called when verifier exploring different branches of 4424 * execution popped from the state stack. If it sees an old state that has 4425 * more strict register state and more strict stack state then this execution 4426 * branch doesn't need to be explored further, since verifier already 4427 * concluded that more strict state leads to valid finish. 4428 * 4429 * Therefore two states are equivalent if register state is more conservative 4430 * and explored stack state is more conservative than the current one. 4431 * Example: 4432 * explored current 4433 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4434 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4435 * 4436 * In other words if current stack state (one being explored) has more 4437 * valid slots than old one that already passed validation, it means 4438 * the verifier can stop exploring and conclude that current state is valid too 4439 * 4440 * Similarly with registers. If explored state has register type as invalid 4441 * whereas register type in current state is meaningful, it means that 4442 * the current state will reach 'bpf_exit' instruction safely 4443 */ 4444 static bool func_states_equal(struct bpf_func_state *old, 4445 struct bpf_func_state *cur) 4446 { 4447 struct idpair *idmap; 4448 bool ret = false; 4449 int i; 4450 4451 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4452 /* If we failed to allocate the idmap, just say it's not safe */ 4453 if (!idmap) 4454 return false; 4455 4456 for (i = 0; i < MAX_BPF_REG; i++) { 4457 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4458 goto out_free; 4459 } 4460 4461 if (!stacksafe(old, cur, idmap)) 4462 goto out_free; 4463 ret = true; 4464 out_free: 4465 kfree(idmap); 4466 return ret; 4467 } 4468 4469 static bool states_equal(struct bpf_verifier_env *env, 4470 struct bpf_verifier_state *old, 4471 struct bpf_verifier_state *cur) 4472 { 4473 int i; 4474 4475 if (old->curframe != cur->curframe) 4476 return false; 4477 4478 /* for states to be equal callsites have to be the same 4479 * and all frame states need to be equivalent 4480 */ 4481 for (i = 0; i <= old->curframe; i++) { 4482 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4483 return false; 4484 if (!func_states_equal(old->frame[i], cur->frame[i])) 4485 return false; 4486 } 4487 return true; 4488 } 4489 4490 /* A write screens off any subsequent reads; but write marks come from the 4491 * straight-line code between a state and its parent. When we arrive at an 4492 * equivalent state (jump target or such) we didn't arrive by the straight-line 4493 * code, so read marks in the state must propagate to the parent regardless 4494 * of the state's write marks. That's what 'parent == state->parent' comparison 4495 * in mark_reg_read() and mark_stack_slot_read() is for. 4496 */ 4497 static int propagate_liveness(struct bpf_verifier_env *env, 4498 const struct bpf_verifier_state *vstate, 4499 struct bpf_verifier_state *vparent) 4500 { 4501 int i, frame, err = 0; 4502 struct bpf_func_state *state, *parent; 4503 4504 if (vparent->curframe != vstate->curframe) { 4505 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4506 vparent->curframe, vstate->curframe); 4507 return -EFAULT; 4508 } 4509 /* Propagate read liveness of registers... */ 4510 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4511 /* We don't need to worry about FP liveness because it's read-only */ 4512 for (i = 0; i < BPF_REG_FP; i++) { 4513 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4514 continue; 4515 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4516 err = mark_reg_read(env, vstate, vparent, i); 4517 if (err) 4518 return err; 4519 } 4520 } 4521 4522 /* ... and stack slots */ 4523 for (frame = 0; frame <= vstate->curframe; frame++) { 4524 state = vstate->frame[frame]; 4525 parent = vparent->frame[frame]; 4526 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4527 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4528 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4529 continue; 4530 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4531 mark_stack_slot_read(env, vstate, vparent, i, frame); 4532 } 4533 } 4534 return err; 4535 } 4536 4537 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4538 { 4539 struct bpf_verifier_state_list *new_sl; 4540 struct bpf_verifier_state_list *sl; 4541 struct bpf_verifier_state *cur = env->cur_state; 4542 int i, j, err; 4543 4544 sl = env->explored_states[insn_idx]; 4545 if (!sl) 4546 /* this 'insn_idx' instruction wasn't marked, so we will not 4547 * be doing state search here 4548 */ 4549 return 0; 4550 4551 while (sl != STATE_LIST_MARK) { 4552 if (states_equal(env, &sl->state, cur)) { 4553 /* reached equivalent register/stack state, 4554 * prune the search. 4555 * Registers read by the continuation are read by us. 4556 * If we have any write marks in env->cur_state, they 4557 * will prevent corresponding reads in the continuation 4558 * from reaching our parent (an explored_state). Our 4559 * own state will get the read marks recorded, but 4560 * they'll be immediately forgotten as we're pruning 4561 * this state and will pop a new one. 4562 */ 4563 err = propagate_liveness(env, &sl->state, cur); 4564 if (err) 4565 return err; 4566 return 1; 4567 } 4568 sl = sl->next; 4569 } 4570 4571 /* there were no equivalent states, remember current one. 4572 * technically the current state is not proven to be safe yet, 4573 * but it will either reach outer most bpf_exit (which means it's safe) 4574 * or it will be rejected. Since there are no loops, we won't be 4575 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4576 * again on the way to bpf_exit 4577 */ 4578 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4579 if (!new_sl) 4580 return -ENOMEM; 4581 4582 /* add new state to the head of linked list */ 4583 err = copy_verifier_state(&new_sl->state, cur); 4584 if (err) { 4585 free_verifier_state(&new_sl->state, false); 4586 kfree(new_sl); 4587 return err; 4588 } 4589 new_sl->next = env->explored_states[insn_idx]; 4590 env->explored_states[insn_idx] = new_sl; 4591 /* connect new state to parentage chain */ 4592 cur->parent = &new_sl->state; 4593 /* clear write marks in current state: the writes we did are not writes 4594 * our child did, so they don't screen off its reads from us. 4595 * (There are no read marks in current state, because reads always mark 4596 * their parent and current state never has children yet. Only 4597 * explored_states can get read marks.) 4598 */ 4599 for (i = 0; i < BPF_REG_FP; i++) 4600 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4601 4602 /* all stack frames are accessible from callee, clear them all */ 4603 for (j = 0; j <= cur->curframe; j++) { 4604 struct bpf_func_state *frame = cur->frame[j]; 4605 4606 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4607 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4608 } 4609 return 0; 4610 } 4611 4612 static int do_check(struct bpf_verifier_env *env) 4613 { 4614 struct bpf_verifier_state *state; 4615 struct bpf_insn *insns = env->prog->insnsi; 4616 struct bpf_reg_state *regs; 4617 int insn_cnt = env->prog->len, i; 4618 int insn_idx, prev_insn_idx = 0; 4619 int insn_processed = 0; 4620 bool do_print_state = false; 4621 4622 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4623 if (!state) 4624 return -ENOMEM; 4625 state->curframe = 0; 4626 state->parent = NULL; 4627 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4628 if (!state->frame[0]) { 4629 kfree(state); 4630 return -ENOMEM; 4631 } 4632 env->cur_state = state; 4633 init_func_state(env, state->frame[0], 4634 BPF_MAIN_FUNC /* callsite */, 4635 0 /* frameno */, 4636 0 /* subprogno, zero == main subprog */); 4637 insn_idx = 0; 4638 for (;;) { 4639 struct bpf_insn *insn; 4640 u8 class; 4641 int err; 4642 4643 if (insn_idx >= insn_cnt) { 4644 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4645 insn_idx, insn_cnt); 4646 return -EFAULT; 4647 } 4648 4649 insn = &insns[insn_idx]; 4650 class = BPF_CLASS(insn->code); 4651 4652 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4653 verbose(env, 4654 "BPF program is too large. Processed %d insn\n", 4655 insn_processed); 4656 return -E2BIG; 4657 } 4658 4659 err = is_state_visited(env, insn_idx); 4660 if (err < 0) 4661 return err; 4662 if (err == 1) { 4663 /* found equivalent state, can prune the search */ 4664 if (env->log.level) { 4665 if (do_print_state) 4666 verbose(env, "\nfrom %d to %d: safe\n", 4667 prev_insn_idx, insn_idx); 4668 else 4669 verbose(env, "%d: safe\n", insn_idx); 4670 } 4671 goto process_bpf_exit; 4672 } 4673 4674 if (need_resched()) 4675 cond_resched(); 4676 4677 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4678 if (env->log.level > 1) 4679 verbose(env, "%d:", insn_idx); 4680 else 4681 verbose(env, "\nfrom %d to %d:", 4682 prev_insn_idx, insn_idx); 4683 print_verifier_state(env, state->frame[state->curframe]); 4684 do_print_state = false; 4685 } 4686 4687 if (env->log.level) { 4688 const struct bpf_insn_cbs cbs = { 4689 .cb_print = verbose, 4690 .private_data = env, 4691 }; 4692 4693 verbose(env, "%d: ", insn_idx); 4694 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4695 } 4696 4697 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4698 err = bpf_prog_offload_verify_insn(env, insn_idx, 4699 prev_insn_idx); 4700 if (err) 4701 return err; 4702 } 4703 4704 regs = cur_regs(env); 4705 env->insn_aux_data[insn_idx].seen = true; 4706 if (class == BPF_ALU || class == BPF_ALU64) { 4707 err = check_alu_op(env, insn); 4708 if (err) 4709 return err; 4710 4711 } else if (class == BPF_LDX) { 4712 enum bpf_reg_type *prev_src_type, src_reg_type; 4713 4714 /* check for reserved fields is already done */ 4715 4716 /* check src operand */ 4717 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4718 if (err) 4719 return err; 4720 4721 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4722 if (err) 4723 return err; 4724 4725 src_reg_type = regs[insn->src_reg].type; 4726 4727 /* check that memory (src_reg + off) is readable, 4728 * the state of dst_reg will be updated by this func 4729 */ 4730 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4731 BPF_SIZE(insn->code), BPF_READ, 4732 insn->dst_reg, false); 4733 if (err) 4734 return err; 4735 4736 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4737 4738 if (*prev_src_type == NOT_INIT) { 4739 /* saw a valid insn 4740 * dst_reg = *(u32 *)(src_reg + off) 4741 * save type to validate intersecting paths 4742 */ 4743 *prev_src_type = src_reg_type; 4744 4745 } else if (src_reg_type != *prev_src_type && 4746 (src_reg_type == PTR_TO_CTX || 4747 *prev_src_type == PTR_TO_CTX)) { 4748 /* ABuser program is trying to use the same insn 4749 * dst_reg = *(u32*) (src_reg + off) 4750 * with different pointer types: 4751 * src_reg == ctx in one branch and 4752 * src_reg == stack|map in some other branch. 4753 * Reject it. 4754 */ 4755 verbose(env, "same insn cannot be used with different pointers\n"); 4756 return -EINVAL; 4757 } 4758 4759 } else if (class == BPF_STX) { 4760 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4761 4762 if (BPF_MODE(insn->code) == BPF_XADD) { 4763 err = check_xadd(env, insn_idx, insn); 4764 if (err) 4765 return err; 4766 insn_idx++; 4767 continue; 4768 } 4769 4770 /* check src1 operand */ 4771 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4772 if (err) 4773 return err; 4774 /* check src2 operand */ 4775 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4776 if (err) 4777 return err; 4778 4779 dst_reg_type = regs[insn->dst_reg].type; 4780 4781 /* check that memory (dst_reg + off) is writeable */ 4782 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4783 BPF_SIZE(insn->code), BPF_WRITE, 4784 insn->src_reg, false); 4785 if (err) 4786 return err; 4787 4788 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4789 4790 if (*prev_dst_type == NOT_INIT) { 4791 *prev_dst_type = dst_reg_type; 4792 } else if (dst_reg_type != *prev_dst_type && 4793 (dst_reg_type == PTR_TO_CTX || 4794 *prev_dst_type == PTR_TO_CTX)) { 4795 verbose(env, "same insn cannot be used with different pointers\n"); 4796 return -EINVAL; 4797 } 4798 4799 } else if (class == BPF_ST) { 4800 if (BPF_MODE(insn->code) != BPF_MEM || 4801 insn->src_reg != BPF_REG_0) { 4802 verbose(env, "BPF_ST uses reserved fields\n"); 4803 return -EINVAL; 4804 } 4805 /* check src operand */ 4806 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4807 if (err) 4808 return err; 4809 4810 if (is_ctx_reg(env, insn->dst_reg)) { 4811 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4812 insn->dst_reg); 4813 return -EACCES; 4814 } 4815 4816 /* check that memory (dst_reg + off) is writeable */ 4817 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4818 BPF_SIZE(insn->code), BPF_WRITE, 4819 -1, false); 4820 if (err) 4821 return err; 4822 4823 } else if (class == BPF_JMP) { 4824 u8 opcode = BPF_OP(insn->code); 4825 4826 if (opcode == BPF_CALL) { 4827 if (BPF_SRC(insn->code) != BPF_K || 4828 insn->off != 0 || 4829 (insn->src_reg != BPF_REG_0 && 4830 insn->src_reg != BPF_PSEUDO_CALL) || 4831 insn->dst_reg != BPF_REG_0) { 4832 verbose(env, "BPF_CALL uses reserved fields\n"); 4833 return -EINVAL; 4834 } 4835 4836 if (insn->src_reg == BPF_PSEUDO_CALL) 4837 err = check_func_call(env, insn, &insn_idx); 4838 else 4839 err = check_helper_call(env, insn->imm, insn_idx); 4840 if (err) 4841 return err; 4842 4843 } else if (opcode == BPF_JA) { 4844 if (BPF_SRC(insn->code) != BPF_K || 4845 insn->imm != 0 || 4846 insn->src_reg != BPF_REG_0 || 4847 insn->dst_reg != BPF_REG_0) { 4848 verbose(env, "BPF_JA uses reserved fields\n"); 4849 return -EINVAL; 4850 } 4851 4852 insn_idx += insn->off + 1; 4853 continue; 4854 4855 } else if (opcode == BPF_EXIT) { 4856 if (BPF_SRC(insn->code) != BPF_K || 4857 insn->imm != 0 || 4858 insn->src_reg != BPF_REG_0 || 4859 insn->dst_reg != BPF_REG_0) { 4860 verbose(env, "BPF_EXIT uses reserved fields\n"); 4861 return -EINVAL; 4862 } 4863 4864 if (state->curframe) { 4865 /* exit from nested function */ 4866 prev_insn_idx = insn_idx; 4867 err = prepare_func_exit(env, &insn_idx); 4868 if (err) 4869 return err; 4870 do_print_state = true; 4871 continue; 4872 } 4873 4874 /* eBPF calling convetion is such that R0 is used 4875 * to return the value from eBPF program. 4876 * Make sure that it's readable at this time 4877 * of bpf_exit, which means that program wrote 4878 * something into it earlier 4879 */ 4880 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4881 if (err) 4882 return err; 4883 4884 if (is_pointer_value(env, BPF_REG_0)) { 4885 verbose(env, "R0 leaks addr as return value\n"); 4886 return -EACCES; 4887 } 4888 4889 err = check_return_code(env); 4890 if (err) 4891 return err; 4892 process_bpf_exit: 4893 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4894 if (err < 0) { 4895 if (err != -ENOENT) 4896 return err; 4897 break; 4898 } else { 4899 do_print_state = true; 4900 continue; 4901 } 4902 } else { 4903 err = check_cond_jmp_op(env, insn, &insn_idx); 4904 if (err) 4905 return err; 4906 } 4907 } else if (class == BPF_LD) { 4908 u8 mode = BPF_MODE(insn->code); 4909 4910 if (mode == BPF_ABS || mode == BPF_IND) { 4911 err = check_ld_abs(env, insn); 4912 if (err) 4913 return err; 4914 4915 } else if (mode == BPF_IMM) { 4916 err = check_ld_imm(env, insn); 4917 if (err) 4918 return err; 4919 4920 insn_idx++; 4921 env->insn_aux_data[insn_idx].seen = true; 4922 } else { 4923 verbose(env, "invalid BPF_LD mode\n"); 4924 return -EINVAL; 4925 } 4926 } else { 4927 verbose(env, "unknown insn class %d\n", class); 4928 return -EINVAL; 4929 } 4930 4931 insn_idx++; 4932 } 4933 4934 verbose(env, "processed %d insns (limit %d), stack depth ", 4935 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 4936 for (i = 0; i < env->subprog_cnt; i++) { 4937 u32 depth = env->subprog_info[i].stack_depth; 4938 4939 verbose(env, "%d", depth); 4940 if (i + 1 < env->subprog_cnt) 4941 verbose(env, "+"); 4942 } 4943 verbose(env, "\n"); 4944 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 4945 return 0; 4946 } 4947 4948 static int check_map_prealloc(struct bpf_map *map) 4949 { 4950 return (map->map_type != BPF_MAP_TYPE_HASH && 4951 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4952 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4953 !(map->map_flags & BPF_F_NO_PREALLOC); 4954 } 4955 4956 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4957 struct bpf_map *map, 4958 struct bpf_prog *prog) 4959 4960 { 4961 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4962 * preallocated hash maps, since doing memory allocation 4963 * in overflow_handler can crash depending on where nmi got 4964 * triggered. 4965 */ 4966 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4967 if (!check_map_prealloc(map)) { 4968 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4969 return -EINVAL; 4970 } 4971 if (map->inner_map_meta && 4972 !check_map_prealloc(map->inner_map_meta)) { 4973 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4974 return -EINVAL; 4975 } 4976 } 4977 4978 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 4979 !bpf_offload_dev_match(prog, map)) { 4980 verbose(env, "offload device mismatch between prog and map\n"); 4981 return -EINVAL; 4982 } 4983 4984 return 0; 4985 } 4986 4987 /* look for pseudo eBPF instructions that access map FDs and 4988 * replace them with actual map pointers 4989 */ 4990 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4991 { 4992 struct bpf_insn *insn = env->prog->insnsi; 4993 int insn_cnt = env->prog->len; 4994 int i, j, err; 4995 4996 err = bpf_prog_calc_tag(env->prog); 4997 if (err) 4998 return err; 4999 5000 for (i = 0; i < insn_cnt; i++, insn++) { 5001 if (BPF_CLASS(insn->code) == BPF_LDX && 5002 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5003 verbose(env, "BPF_LDX uses reserved fields\n"); 5004 return -EINVAL; 5005 } 5006 5007 if (BPF_CLASS(insn->code) == BPF_STX && 5008 ((BPF_MODE(insn->code) != BPF_MEM && 5009 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5010 verbose(env, "BPF_STX uses reserved fields\n"); 5011 return -EINVAL; 5012 } 5013 5014 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5015 struct bpf_map *map; 5016 struct fd f; 5017 5018 if (i == insn_cnt - 1 || insn[1].code != 0 || 5019 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5020 insn[1].off != 0) { 5021 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5022 return -EINVAL; 5023 } 5024 5025 if (insn->src_reg == 0) 5026 /* valid generic load 64-bit imm */ 5027 goto next_insn; 5028 5029 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5030 verbose(env, 5031 "unrecognized bpf_ld_imm64 insn\n"); 5032 return -EINVAL; 5033 } 5034 5035 f = fdget(insn->imm); 5036 map = __bpf_map_get(f); 5037 if (IS_ERR(map)) { 5038 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5039 insn->imm); 5040 return PTR_ERR(map); 5041 } 5042 5043 err = check_map_prog_compatibility(env, map, env->prog); 5044 if (err) { 5045 fdput(f); 5046 return err; 5047 } 5048 5049 /* store map pointer inside BPF_LD_IMM64 instruction */ 5050 insn[0].imm = (u32) (unsigned long) map; 5051 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5052 5053 /* check whether we recorded this map already */ 5054 for (j = 0; j < env->used_map_cnt; j++) 5055 if (env->used_maps[j] == map) { 5056 fdput(f); 5057 goto next_insn; 5058 } 5059 5060 if (env->used_map_cnt >= MAX_USED_MAPS) { 5061 fdput(f); 5062 return -E2BIG; 5063 } 5064 5065 /* hold the map. If the program is rejected by verifier, 5066 * the map will be released by release_maps() or it 5067 * will be used by the valid program until it's unloaded 5068 * and all maps are released in free_used_maps() 5069 */ 5070 map = bpf_map_inc(map, false); 5071 if (IS_ERR(map)) { 5072 fdput(f); 5073 return PTR_ERR(map); 5074 } 5075 env->used_maps[env->used_map_cnt++] = map; 5076 5077 fdput(f); 5078 next_insn: 5079 insn++; 5080 i++; 5081 continue; 5082 } 5083 5084 /* Basic sanity check before we invest more work here. */ 5085 if (!bpf_opcode_in_insntable(insn->code)) { 5086 verbose(env, "unknown opcode %02x\n", insn->code); 5087 return -EINVAL; 5088 } 5089 } 5090 5091 /* now all pseudo BPF_LD_IMM64 instructions load valid 5092 * 'struct bpf_map *' into a register instead of user map_fd. 5093 * These pointers will be used later by verifier to validate map access. 5094 */ 5095 return 0; 5096 } 5097 5098 /* drop refcnt of maps used by the rejected program */ 5099 static void release_maps(struct bpf_verifier_env *env) 5100 { 5101 int i; 5102 5103 for (i = 0; i < env->used_map_cnt; i++) 5104 bpf_map_put(env->used_maps[i]); 5105 } 5106 5107 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5108 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5109 { 5110 struct bpf_insn *insn = env->prog->insnsi; 5111 int insn_cnt = env->prog->len; 5112 int i; 5113 5114 for (i = 0; i < insn_cnt; i++, insn++) 5115 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5116 insn->src_reg = 0; 5117 } 5118 5119 /* single env->prog->insni[off] instruction was replaced with the range 5120 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5121 * [0, off) and [off, end) to new locations, so the patched range stays zero 5122 */ 5123 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5124 u32 off, u32 cnt) 5125 { 5126 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5127 int i; 5128 5129 if (cnt == 1) 5130 return 0; 5131 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 5132 if (!new_data) 5133 return -ENOMEM; 5134 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5135 memcpy(new_data + off + cnt - 1, old_data + off, 5136 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5137 for (i = off; i < off + cnt - 1; i++) 5138 new_data[i].seen = true; 5139 env->insn_aux_data = new_data; 5140 vfree(old_data); 5141 return 0; 5142 } 5143 5144 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5145 { 5146 int i; 5147 5148 if (len == 1) 5149 return; 5150 /* NOTE: fake 'exit' subprog should be updated as well. */ 5151 for (i = 0; i <= env->subprog_cnt; i++) { 5152 if (env->subprog_info[i].start < off) 5153 continue; 5154 env->subprog_info[i].start += len - 1; 5155 } 5156 } 5157 5158 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5159 const struct bpf_insn *patch, u32 len) 5160 { 5161 struct bpf_prog *new_prog; 5162 5163 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5164 if (!new_prog) 5165 return NULL; 5166 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5167 return NULL; 5168 adjust_subprog_starts(env, off, len); 5169 return new_prog; 5170 } 5171 5172 /* The verifier does more data flow analysis than llvm and will not 5173 * explore branches that are dead at run time. Malicious programs can 5174 * have dead code too. Therefore replace all dead at-run-time code 5175 * with 'ja -1'. 5176 * 5177 * Just nops are not optimal, e.g. if they would sit at the end of the 5178 * program and through another bug we would manage to jump there, then 5179 * we'd execute beyond program memory otherwise. Returning exception 5180 * code also wouldn't work since we can have subprogs where the dead 5181 * code could be located. 5182 */ 5183 static void sanitize_dead_code(struct bpf_verifier_env *env) 5184 { 5185 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5186 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5187 struct bpf_insn *insn = env->prog->insnsi; 5188 const int insn_cnt = env->prog->len; 5189 int i; 5190 5191 for (i = 0; i < insn_cnt; i++) { 5192 if (aux_data[i].seen) 5193 continue; 5194 memcpy(insn + i, &trap, sizeof(trap)); 5195 } 5196 } 5197 5198 /* convert load instructions that access fields of 'struct __sk_buff' 5199 * into sequence of instructions that access fields of 'struct sk_buff' 5200 */ 5201 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5202 { 5203 const struct bpf_verifier_ops *ops = env->ops; 5204 int i, cnt, size, ctx_field_size, delta = 0; 5205 const int insn_cnt = env->prog->len; 5206 struct bpf_insn insn_buf[16], *insn; 5207 struct bpf_prog *new_prog; 5208 enum bpf_access_type type; 5209 bool is_narrower_load; 5210 u32 target_size; 5211 5212 if (ops->gen_prologue) { 5213 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5214 env->prog); 5215 if (cnt >= ARRAY_SIZE(insn_buf)) { 5216 verbose(env, "bpf verifier is misconfigured\n"); 5217 return -EINVAL; 5218 } else if (cnt) { 5219 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5220 if (!new_prog) 5221 return -ENOMEM; 5222 5223 env->prog = new_prog; 5224 delta += cnt - 1; 5225 } 5226 } 5227 5228 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux)) 5229 return 0; 5230 5231 insn = env->prog->insnsi + delta; 5232 5233 for (i = 0; i < insn_cnt; i++, insn++) { 5234 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5235 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5236 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5237 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5238 type = BPF_READ; 5239 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5240 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5241 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5242 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5243 type = BPF_WRITE; 5244 else 5245 continue; 5246 5247 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5248 continue; 5249 5250 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5251 size = BPF_LDST_BYTES(insn); 5252 5253 /* If the read access is a narrower load of the field, 5254 * convert to a 4/8-byte load, to minimum program type specific 5255 * convert_ctx_access changes. If conversion is successful, 5256 * we will apply proper mask to the result. 5257 */ 5258 is_narrower_load = size < ctx_field_size; 5259 if (is_narrower_load) { 5260 u32 off = insn->off; 5261 u8 size_code; 5262 5263 if (type == BPF_WRITE) { 5264 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5265 return -EINVAL; 5266 } 5267 5268 size_code = BPF_H; 5269 if (ctx_field_size == 4) 5270 size_code = BPF_W; 5271 else if (ctx_field_size == 8) 5272 size_code = BPF_DW; 5273 5274 insn->off = off & ~(ctx_field_size - 1); 5275 insn->code = BPF_LDX | BPF_MEM | size_code; 5276 } 5277 5278 target_size = 0; 5279 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5280 &target_size); 5281 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5282 (ctx_field_size && !target_size)) { 5283 verbose(env, "bpf verifier is misconfigured\n"); 5284 return -EINVAL; 5285 } 5286 5287 if (is_narrower_load && size < target_size) { 5288 if (ctx_field_size <= 4) 5289 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5290 (1 << size * 8) - 1); 5291 else 5292 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5293 (1 << size * 8) - 1); 5294 } 5295 5296 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5297 if (!new_prog) 5298 return -ENOMEM; 5299 5300 delta += cnt - 1; 5301 5302 /* keep walking new program and skip insns we just inserted */ 5303 env->prog = new_prog; 5304 insn = new_prog->insnsi + i + delta; 5305 } 5306 5307 return 0; 5308 } 5309 5310 static int jit_subprogs(struct bpf_verifier_env *env) 5311 { 5312 struct bpf_prog *prog = env->prog, **func, *tmp; 5313 int i, j, subprog_start, subprog_end = 0, len, subprog; 5314 struct bpf_insn *insn; 5315 void *old_bpf_func; 5316 int err = -ENOMEM; 5317 5318 if (env->subprog_cnt <= 1) 5319 return 0; 5320 5321 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5322 if (insn->code != (BPF_JMP | BPF_CALL) || 5323 insn->src_reg != BPF_PSEUDO_CALL) 5324 continue; 5325 subprog = find_subprog(env, i + insn->imm + 1); 5326 if (subprog < 0) { 5327 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5328 i + insn->imm + 1); 5329 return -EFAULT; 5330 } 5331 /* temporarily remember subprog id inside insn instead of 5332 * aux_data, since next loop will split up all insns into funcs 5333 */ 5334 insn->off = subprog; 5335 /* remember original imm in case JIT fails and fallback 5336 * to interpreter will be needed 5337 */ 5338 env->insn_aux_data[i].call_imm = insn->imm; 5339 /* point imm to __bpf_call_base+1 from JITs point of view */ 5340 insn->imm = 1; 5341 } 5342 5343 func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL); 5344 if (!func) 5345 return -ENOMEM; 5346 5347 for (i = 0; i < env->subprog_cnt; i++) { 5348 subprog_start = subprog_end; 5349 subprog_end = env->subprog_info[i + 1].start; 5350 5351 len = subprog_end - subprog_start; 5352 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5353 if (!func[i]) 5354 goto out_free; 5355 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5356 len * sizeof(struct bpf_insn)); 5357 func[i]->type = prog->type; 5358 func[i]->len = len; 5359 if (bpf_prog_calc_tag(func[i])) 5360 goto out_free; 5361 func[i]->is_func = 1; 5362 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5363 * Long term would need debug info to populate names 5364 */ 5365 func[i]->aux->name[0] = 'F'; 5366 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5367 func[i]->jit_requested = 1; 5368 func[i] = bpf_int_jit_compile(func[i]); 5369 if (!func[i]->jited) { 5370 err = -ENOTSUPP; 5371 goto out_free; 5372 } 5373 cond_resched(); 5374 } 5375 /* at this point all bpf functions were successfully JITed 5376 * now populate all bpf_calls with correct addresses and 5377 * run last pass of JIT 5378 */ 5379 for (i = 0; i < env->subprog_cnt; i++) { 5380 insn = func[i]->insnsi; 5381 for (j = 0; j < func[i]->len; j++, insn++) { 5382 if (insn->code != (BPF_JMP | BPF_CALL) || 5383 insn->src_reg != BPF_PSEUDO_CALL) 5384 continue; 5385 subprog = insn->off; 5386 insn->off = 0; 5387 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5388 func[subprog]->bpf_func - 5389 __bpf_call_base; 5390 } 5391 } 5392 for (i = 0; i < env->subprog_cnt; i++) { 5393 old_bpf_func = func[i]->bpf_func; 5394 tmp = bpf_int_jit_compile(func[i]); 5395 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5396 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5397 err = -EFAULT; 5398 goto out_free; 5399 } 5400 cond_resched(); 5401 } 5402 5403 /* finally lock prog and jit images for all functions and 5404 * populate kallsysm 5405 */ 5406 for (i = 0; i < env->subprog_cnt; i++) { 5407 bpf_prog_lock_ro(func[i]); 5408 bpf_prog_kallsyms_add(func[i]); 5409 } 5410 5411 /* Last step: make now unused interpreter insns from main 5412 * prog consistent for later dump requests, so they can 5413 * later look the same as if they were interpreted only. 5414 */ 5415 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5416 unsigned long addr; 5417 5418 if (insn->code != (BPF_JMP | BPF_CALL) || 5419 insn->src_reg != BPF_PSEUDO_CALL) 5420 continue; 5421 insn->off = env->insn_aux_data[i].call_imm; 5422 subprog = find_subprog(env, i + insn->off + 1); 5423 addr = (unsigned long)func[subprog]->bpf_func; 5424 addr &= PAGE_MASK; 5425 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5426 addr - __bpf_call_base; 5427 } 5428 5429 prog->jited = 1; 5430 prog->bpf_func = func[0]->bpf_func; 5431 prog->aux->func = func; 5432 prog->aux->func_cnt = env->subprog_cnt; 5433 return 0; 5434 out_free: 5435 for (i = 0; i < env->subprog_cnt; i++) 5436 if (func[i]) 5437 bpf_jit_free(func[i]); 5438 kfree(func); 5439 /* cleanup main prog to be interpreted */ 5440 prog->jit_requested = 0; 5441 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5442 if (insn->code != (BPF_JMP | BPF_CALL) || 5443 insn->src_reg != BPF_PSEUDO_CALL) 5444 continue; 5445 insn->off = 0; 5446 insn->imm = env->insn_aux_data[i].call_imm; 5447 } 5448 return err; 5449 } 5450 5451 static int fixup_call_args(struct bpf_verifier_env *env) 5452 { 5453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5454 struct bpf_prog *prog = env->prog; 5455 struct bpf_insn *insn = prog->insnsi; 5456 int i, depth; 5457 #endif 5458 int err; 5459 5460 err = 0; 5461 if (env->prog->jit_requested) { 5462 err = jit_subprogs(env); 5463 if (err == 0) 5464 return 0; 5465 } 5466 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5467 for (i = 0; i < prog->len; i++, insn++) { 5468 if (insn->code != (BPF_JMP | BPF_CALL) || 5469 insn->src_reg != BPF_PSEUDO_CALL) 5470 continue; 5471 depth = get_callee_stack_depth(env, insn, i); 5472 if (depth < 0) 5473 return depth; 5474 bpf_patch_call_args(insn, depth); 5475 } 5476 err = 0; 5477 #endif 5478 return err; 5479 } 5480 5481 /* fixup insn->imm field of bpf_call instructions 5482 * and inline eligible helpers as explicit sequence of BPF instructions 5483 * 5484 * this function is called after eBPF program passed verification 5485 */ 5486 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5487 { 5488 struct bpf_prog *prog = env->prog; 5489 struct bpf_insn *insn = prog->insnsi; 5490 const struct bpf_func_proto *fn; 5491 const int insn_cnt = prog->len; 5492 struct bpf_insn insn_buf[16]; 5493 struct bpf_prog *new_prog; 5494 struct bpf_map *map_ptr; 5495 int i, cnt, delta = 0; 5496 5497 for (i = 0; i < insn_cnt; i++, insn++) { 5498 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5499 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5500 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5501 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5502 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5503 struct bpf_insn mask_and_div[] = { 5504 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5505 /* Rx div 0 -> 0 */ 5506 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5507 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5508 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5509 *insn, 5510 }; 5511 struct bpf_insn mask_and_mod[] = { 5512 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5513 /* Rx mod 0 -> Rx */ 5514 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5515 *insn, 5516 }; 5517 struct bpf_insn *patchlet; 5518 5519 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5520 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5521 patchlet = mask_and_div + (is64 ? 1 : 0); 5522 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5523 } else { 5524 patchlet = mask_and_mod + (is64 ? 1 : 0); 5525 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5526 } 5527 5528 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5529 if (!new_prog) 5530 return -ENOMEM; 5531 5532 delta += cnt - 1; 5533 env->prog = prog = new_prog; 5534 insn = new_prog->insnsi + i + delta; 5535 continue; 5536 } 5537 5538 if (BPF_CLASS(insn->code) == BPF_LD && 5539 (BPF_MODE(insn->code) == BPF_ABS || 5540 BPF_MODE(insn->code) == BPF_IND)) { 5541 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5542 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5543 verbose(env, "bpf verifier is misconfigured\n"); 5544 return -EINVAL; 5545 } 5546 5547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5548 if (!new_prog) 5549 return -ENOMEM; 5550 5551 delta += cnt - 1; 5552 env->prog = prog = new_prog; 5553 insn = new_prog->insnsi + i + delta; 5554 continue; 5555 } 5556 5557 if (insn->code != (BPF_JMP | BPF_CALL)) 5558 continue; 5559 if (insn->src_reg == BPF_PSEUDO_CALL) 5560 continue; 5561 5562 if (insn->imm == BPF_FUNC_get_route_realm) 5563 prog->dst_needed = 1; 5564 if (insn->imm == BPF_FUNC_get_prandom_u32) 5565 bpf_user_rnd_init_once(); 5566 if (insn->imm == BPF_FUNC_override_return) 5567 prog->kprobe_override = 1; 5568 if (insn->imm == BPF_FUNC_tail_call) { 5569 /* If we tail call into other programs, we 5570 * cannot make any assumptions since they can 5571 * be replaced dynamically during runtime in 5572 * the program array. 5573 */ 5574 prog->cb_access = 1; 5575 env->prog->aux->stack_depth = MAX_BPF_STACK; 5576 5577 /* mark bpf_tail_call as different opcode to avoid 5578 * conditional branch in the interpeter for every normal 5579 * call and to prevent accidental JITing by JIT compiler 5580 * that doesn't support bpf_tail_call yet 5581 */ 5582 insn->imm = 0; 5583 insn->code = BPF_JMP | BPF_TAIL_CALL; 5584 5585 /* instead of changing every JIT dealing with tail_call 5586 * emit two extra insns: 5587 * if (index >= max_entries) goto out; 5588 * index &= array->index_mask; 5589 * to avoid out-of-bounds cpu speculation 5590 */ 5591 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5592 if (map_ptr == BPF_MAP_PTR_POISON) { 5593 verbose(env, "tail_call abusing map_ptr\n"); 5594 return -EINVAL; 5595 } 5596 if (!map_ptr->unpriv_array) 5597 continue; 5598 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5599 map_ptr->max_entries, 2); 5600 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5601 container_of(map_ptr, 5602 struct bpf_array, 5603 map)->index_mask); 5604 insn_buf[2] = *insn; 5605 cnt = 3; 5606 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5607 if (!new_prog) 5608 return -ENOMEM; 5609 5610 delta += cnt - 1; 5611 env->prog = prog = new_prog; 5612 insn = new_prog->insnsi + i + delta; 5613 continue; 5614 } 5615 5616 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5617 * handlers are currently limited to 64 bit only. 5618 */ 5619 if (prog->jit_requested && BITS_PER_LONG == 64 && 5620 insn->imm == BPF_FUNC_map_lookup_elem) { 5621 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5622 if (map_ptr == BPF_MAP_PTR_POISON || 5623 !map_ptr->ops->map_gen_lookup) 5624 goto patch_call_imm; 5625 5626 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 5627 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5628 verbose(env, "bpf verifier is misconfigured\n"); 5629 return -EINVAL; 5630 } 5631 5632 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 5633 cnt); 5634 if (!new_prog) 5635 return -ENOMEM; 5636 5637 delta += cnt - 1; 5638 5639 /* keep walking new program and skip insns we just inserted */ 5640 env->prog = prog = new_prog; 5641 insn = new_prog->insnsi + i + delta; 5642 continue; 5643 } 5644 5645 if (insn->imm == BPF_FUNC_redirect_map) { 5646 /* Note, we cannot use prog directly as imm as subsequent 5647 * rewrites would still change the prog pointer. The only 5648 * stable address we can use is aux, which also works with 5649 * prog clones during blinding. 5650 */ 5651 u64 addr = (unsigned long)prog->aux; 5652 struct bpf_insn r4_ld[] = { 5653 BPF_LD_IMM64(BPF_REG_4, addr), 5654 *insn, 5655 }; 5656 cnt = ARRAY_SIZE(r4_ld); 5657 5658 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 5659 if (!new_prog) 5660 return -ENOMEM; 5661 5662 delta += cnt - 1; 5663 env->prog = prog = new_prog; 5664 insn = new_prog->insnsi + i + delta; 5665 } 5666 patch_call_imm: 5667 fn = env->ops->get_func_proto(insn->imm, env->prog); 5668 /* all functions that have prototype and verifier allowed 5669 * programs to call them, must be real in-kernel functions 5670 */ 5671 if (!fn->func) { 5672 verbose(env, 5673 "kernel subsystem misconfigured func %s#%d\n", 5674 func_id_name(insn->imm), insn->imm); 5675 return -EFAULT; 5676 } 5677 insn->imm = fn->func - __bpf_call_base; 5678 } 5679 5680 return 0; 5681 } 5682 5683 static void free_states(struct bpf_verifier_env *env) 5684 { 5685 struct bpf_verifier_state_list *sl, *sln; 5686 int i; 5687 5688 if (!env->explored_states) 5689 return; 5690 5691 for (i = 0; i < env->prog->len; i++) { 5692 sl = env->explored_states[i]; 5693 5694 if (sl) 5695 while (sl != STATE_LIST_MARK) { 5696 sln = sl->next; 5697 free_verifier_state(&sl->state, false); 5698 kfree(sl); 5699 sl = sln; 5700 } 5701 } 5702 5703 kfree(env->explored_states); 5704 } 5705 5706 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5707 { 5708 struct bpf_verifier_env *env; 5709 struct bpf_verifier_log *log; 5710 int ret = -EINVAL; 5711 5712 /* no program is valid */ 5713 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5714 return -EINVAL; 5715 5716 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5717 * allocate/free it every time bpf_check() is called 5718 */ 5719 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5720 if (!env) 5721 return -ENOMEM; 5722 log = &env->log; 5723 5724 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 5725 (*prog)->len); 5726 ret = -ENOMEM; 5727 if (!env->insn_aux_data) 5728 goto err_free_env; 5729 env->prog = *prog; 5730 env->ops = bpf_verifier_ops[env->prog->type]; 5731 5732 /* grab the mutex to protect few globals used by verifier */ 5733 mutex_lock(&bpf_verifier_lock); 5734 5735 if (attr->log_level || attr->log_buf || attr->log_size) { 5736 /* user requested verbose verifier output 5737 * and supplied buffer to store the verification trace 5738 */ 5739 log->level = attr->log_level; 5740 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5741 log->len_total = attr->log_size; 5742 5743 ret = -EINVAL; 5744 /* log attributes have to be sane */ 5745 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5746 !log->level || !log->ubuf) 5747 goto err_unlock; 5748 } 5749 5750 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5751 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5752 env->strict_alignment = true; 5753 5754 ret = replace_map_fd_with_map_ptr(env); 5755 if (ret < 0) 5756 goto skip_full_check; 5757 5758 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5759 ret = bpf_prog_offload_verifier_prep(env); 5760 if (ret) 5761 goto skip_full_check; 5762 } 5763 5764 env->explored_states = kcalloc(env->prog->len, 5765 sizeof(struct bpf_verifier_state_list *), 5766 GFP_USER); 5767 ret = -ENOMEM; 5768 if (!env->explored_states) 5769 goto skip_full_check; 5770 5771 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5772 5773 ret = check_cfg(env); 5774 if (ret < 0) 5775 goto skip_full_check; 5776 5777 ret = do_check(env); 5778 if (env->cur_state) { 5779 free_verifier_state(env->cur_state, true); 5780 env->cur_state = NULL; 5781 } 5782 5783 skip_full_check: 5784 while (!pop_stack(env, NULL, NULL)); 5785 free_states(env); 5786 5787 if (ret == 0) 5788 sanitize_dead_code(env); 5789 5790 if (ret == 0) 5791 ret = check_max_stack_depth(env); 5792 5793 if (ret == 0) 5794 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5795 ret = convert_ctx_accesses(env); 5796 5797 if (ret == 0) 5798 ret = fixup_bpf_calls(env); 5799 5800 if (ret == 0) 5801 ret = fixup_call_args(env); 5802 5803 if (log->level && bpf_verifier_log_full(log)) 5804 ret = -ENOSPC; 5805 if (log->level && !log->ubuf) { 5806 ret = -EFAULT; 5807 goto err_release_maps; 5808 } 5809 5810 if (ret == 0 && env->used_map_cnt) { 5811 /* if program passed verifier, update used_maps in bpf_prog_info */ 5812 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5813 sizeof(env->used_maps[0]), 5814 GFP_KERNEL); 5815 5816 if (!env->prog->aux->used_maps) { 5817 ret = -ENOMEM; 5818 goto err_release_maps; 5819 } 5820 5821 memcpy(env->prog->aux->used_maps, env->used_maps, 5822 sizeof(env->used_maps[0]) * env->used_map_cnt); 5823 env->prog->aux->used_map_cnt = env->used_map_cnt; 5824 5825 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5826 * bpf_ld_imm64 instructions 5827 */ 5828 convert_pseudo_ld_imm64(env); 5829 } 5830 5831 err_release_maps: 5832 if (!env->prog->aux->used_maps) 5833 /* if we didn't copy map pointers into bpf_prog_info, release 5834 * them now. Otherwise free_used_maps() will release them. 5835 */ 5836 release_maps(env); 5837 *prog = env->prog; 5838 err_unlock: 5839 mutex_unlock(&bpf_verifier_lock); 5840 vfree(env->insn_aux_data); 5841 err_free_env: 5842 kfree(env); 5843 return ret; 5844 } 5845