xref: /openbmc/linux/kernel/bpf/verifier.c (revision d2ba09c1)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84  * types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  */
144 
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 	/* verifer state is 'st'
148 	 * before processing instruction 'insn_idx'
149 	 * and after processing instruction 'prev_insn_idx'
150 	 */
151 	struct bpf_verifier_state st;
152 	int insn_idx;
153 	int prev_insn_idx;
154 	struct bpf_verifier_stack_elem *next;
155 };
156 
157 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 #define BPF_COMPLEXITY_LIMIT_STACK	1024
159 
160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 
162 struct bpf_call_arg_meta {
163 	struct bpf_map *map_ptr;
164 	bool raw_mode;
165 	bool pkt_access;
166 	int regno;
167 	int access_size;
168 	s64 msize_smax_value;
169 	u64 msize_umax_value;
170 };
171 
172 static DEFINE_MUTEX(bpf_verifier_lock);
173 
174 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
175 		       va_list args)
176 {
177 	unsigned int n;
178 
179 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
180 
181 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
182 		  "verifier log line truncated - local buffer too short\n");
183 
184 	n = min(log->len_total - log->len_used - 1, n);
185 	log->kbuf[n] = '\0';
186 
187 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
188 		log->len_used += n;
189 	else
190 		log->ubuf = NULL;
191 }
192 
193 /* log_level controls verbosity level of eBPF verifier.
194  * bpf_verifier_log_write() is used to dump the verification trace to the log,
195  * so the user can figure out what's wrong with the program
196  */
197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
198 					   const char *fmt, ...)
199 {
200 	va_list args;
201 
202 	if (!bpf_verifier_log_needed(&env->log))
203 		return;
204 
205 	va_start(args, fmt);
206 	bpf_verifier_vlog(&env->log, fmt, args);
207 	va_end(args);
208 }
209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
210 
211 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
212 {
213 	struct bpf_verifier_env *env = private_data;
214 	va_list args;
215 
216 	if (!bpf_verifier_log_needed(&env->log))
217 		return;
218 
219 	va_start(args, fmt);
220 	bpf_verifier_vlog(&env->log, fmt, args);
221 	va_end(args);
222 }
223 
224 static bool type_is_pkt_pointer(enum bpf_reg_type type)
225 {
226 	return type == PTR_TO_PACKET ||
227 	       type == PTR_TO_PACKET_META;
228 }
229 
230 /* string representation of 'enum bpf_reg_type' */
231 static const char * const reg_type_str[] = {
232 	[NOT_INIT]		= "?",
233 	[SCALAR_VALUE]		= "inv",
234 	[PTR_TO_CTX]		= "ctx",
235 	[CONST_PTR_TO_MAP]	= "map_ptr",
236 	[PTR_TO_MAP_VALUE]	= "map_value",
237 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
238 	[PTR_TO_STACK]		= "fp",
239 	[PTR_TO_PACKET]		= "pkt",
240 	[PTR_TO_PACKET_META]	= "pkt_meta",
241 	[PTR_TO_PACKET_END]	= "pkt_end",
242 };
243 
244 static void print_liveness(struct bpf_verifier_env *env,
245 			   enum bpf_reg_liveness live)
246 {
247 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
248 	    verbose(env, "_");
249 	if (live & REG_LIVE_READ)
250 		verbose(env, "r");
251 	if (live & REG_LIVE_WRITTEN)
252 		verbose(env, "w");
253 }
254 
255 static struct bpf_func_state *func(struct bpf_verifier_env *env,
256 				   const struct bpf_reg_state *reg)
257 {
258 	struct bpf_verifier_state *cur = env->cur_state;
259 
260 	return cur->frame[reg->frameno];
261 }
262 
263 static void print_verifier_state(struct bpf_verifier_env *env,
264 				 const struct bpf_func_state *state)
265 {
266 	const struct bpf_reg_state *reg;
267 	enum bpf_reg_type t;
268 	int i;
269 
270 	if (state->frameno)
271 		verbose(env, " frame%d:", state->frameno);
272 	for (i = 0; i < MAX_BPF_REG; i++) {
273 		reg = &state->regs[i];
274 		t = reg->type;
275 		if (t == NOT_INIT)
276 			continue;
277 		verbose(env, " R%d", i);
278 		print_liveness(env, reg->live);
279 		verbose(env, "=%s", reg_type_str[t]);
280 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
281 		    tnum_is_const(reg->var_off)) {
282 			/* reg->off should be 0 for SCALAR_VALUE */
283 			verbose(env, "%lld", reg->var_off.value + reg->off);
284 			if (t == PTR_TO_STACK)
285 				verbose(env, ",call_%d", func(env, reg)->callsite);
286 		} else {
287 			verbose(env, "(id=%d", reg->id);
288 			if (t != SCALAR_VALUE)
289 				verbose(env, ",off=%d", reg->off);
290 			if (type_is_pkt_pointer(t))
291 				verbose(env, ",r=%d", reg->range);
292 			else if (t == CONST_PTR_TO_MAP ||
293 				 t == PTR_TO_MAP_VALUE ||
294 				 t == PTR_TO_MAP_VALUE_OR_NULL)
295 				verbose(env, ",ks=%d,vs=%d",
296 					reg->map_ptr->key_size,
297 					reg->map_ptr->value_size);
298 			if (tnum_is_const(reg->var_off)) {
299 				/* Typically an immediate SCALAR_VALUE, but
300 				 * could be a pointer whose offset is too big
301 				 * for reg->off
302 				 */
303 				verbose(env, ",imm=%llx", reg->var_off.value);
304 			} else {
305 				if (reg->smin_value != reg->umin_value &&
306 				    reg->smin_value != S64_MIN)
307 					verbose(env, ",smin_value=%lld",
308 						(long long)reg->smin_value);
309 				if (reg->smax_value != reg->umax_value &&
310 				    reg->smax_value != S64_MAX)
311 					verbose(env, ",smax_value=%lld",
312 						(long long)reg->smax_value);
313 				if (reg->umin_value != 0)
314 					verbose(env, ",umin_value=%llu",
315 						(unsigned long long)reg->umin_value);
316 				if (reg->umax_value != U64_MAX)
317 					verbose(env, ",umax_value=%llu",
318 						(unsigned long long)reg->umax_value);
319 				if (!tnum_is_unknown(reg->var_off)) {
320 					char tn_buf[48];
321 
322 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323 					verbose(env, ",var_off=%s", tn_buf);
324 				}
325 			}
326 			verbose(env, ")");
327 		}
328 	}
329 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
331 			verbose(env, " fp%d",
332 				(-i - 1) * BPF_REG_SIZE);
333 			print_liveness(env, state->stack[i].spilled_ptr.live);
334 			verbose(env, "=%s",
335 				reg_type_str[state->stack[i].spilled_ptr.type]);
336 		}
337 		if (state->stack[i].slot_type[0] == STACK_ZERO)
338 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339 	}
340 	verbose(env, "\n");
341 }
342 
343 static int copy_stack_state(struct bpf_func_state *dst,
344 			    const struct bpf_func_state *src)
345 {
346 	if (!src->stack)
347 		return 0;
348 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
349 		/* internal bug, make state invalid to reject the program */
350 		memset(dst, 0, sizeof(*dst));
351 		return -EFAULT;
352 	}
353 	memcpy(dst->stack, src->stack,
354 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
355 	return 0;
356 }
357 
358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359  * make it consume minimal amount of memory. check_stack_write() access from
360  * the program calls into realloc_func_state() to grow the stack size.
361  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362  * which this function copies over. It points to previous bpf_verifier_state
363  * which is never reallocated
364  */
365 static int realloc_func_state(struct bpf_func_state *state, int size,
366 			      bool copy_old)
367 {
368 	u32 old_size = state->allocated_stack;
369 	struct bpf_stack_state *new_stack;
370 	int slot = size / BPF_REG_SIZE;
371 
372 	if (size <= old_size || !size) {
373 		if (copy_old)
374 			return 0;
375 		state->allocated_stack = slot * BPF_REG_SIZE;
376 		if (!size && old_size) {
377 			kfree(state->stack);
378 			state->stack = NULL;
379 		}
380 		return 0;
381 	}
382 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
383 				  GFP_KERNEL);
384 	if (!new_stack)
385 		return -ENOMEM;
386 	if (copy_old) {
387 		if (state->stack)
388 			memcpy(new_stack, state->stack,
389 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
390 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
391 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
392 	}
393 	state->allocated_stack = slot * BPF_REG_SIZE;
394 	kfree(state->stack);
395 	state->stack = new_stack;
396 	return 0;
397 }
398 
399 static void free_func_state(struct bpf_func_state *state)
400 {
401 	if (!state)
402 		return;
403 	kfree(state->stack);
404 	kfree(state);
405 }
406 
407 static void free_verifier_state(struct bpf_verifier_state *state,
408 				bool free_self)
409 {
410 	int i;
411 
412 	for (i = 0; i <= state->curframe; i++) {
413 		free_func_state(state->frame[i]);
414 		state->frame[i] = NULL;
415 	}
416 	if (free_self)
417 		kfree(state);
418 }
419 
420 /* copy verifier state from src to dst growing dst stack space
421  * when necessary to accommodate larger src stack
422  */
423 static int copy_func_state(struct bpf_func_state *dst,
424 			   const struct bpf_func_state *src)
425 {
426 	int err;
427 
428 	err = realloc_func_state(dst, src->allocated_stack, false);
429 	if (err)
430 		return err;
431 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 	return copy_stack_state(dst, src);
433 }
434 
435 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
436 			       const struct bpf_verifier_state *src)
437 {
438 	struct bpf_func_state *dst;
439 	int i, err;
440 
441 	/* if dst has more stack frames then src frame, free them */
442 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
443 		free_func_state(dst_state->frame[i]);
444 		dst_state->frame[i] = NULL;
445 	}
446 	dst_state->curframe = src->curframe;
447 	dst_state->parent = src->parent;
448 	for (i = 0; i <= src->curframe; i++) {
449 		dst = dst_state->frame[i];
450 		if (!dst) {
451 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
452 			if (!dst)
453 				return -ENOMEM;
454 			dst_state->frame[i] = dst;
455 		}
456 		err = copy_func_state(dst, src->frame[i]);
457 		if (err)
458 			return err;
459 	}
460 	return 0;
461 }
462 
463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
464 		     int *insn_idx)
465 {
466 	struct bpf_verifier_state *cur = env->cur_state;
467 	struct bpf_verifier_stack_elem *elem, *head = env->head;
468 	int err;
469 
470 	if (env->head == NULL)
471 		return -ENOENT;
472 
473 	if (cur) {
474 		err = copy_verifier_state(cur, &head->st);
475 		if (err)
476 			return err;
477 	}
478 	if (insn_idx)
479 		*insn_idx = head->insn_idx;
480 	if (prev_insn_idx)
481 		*prev_insn_idx = head->prev_insn_idx;
482 	elem = head->next;
483 	free_verifier_state(&head->st, false);
484 	kfree(head);
485 	env->head = elem;
486 	env->stack_size--;
487 	return 0;
488 }
489 
490 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
491 					     int insn_idx, int prev_insn_idx)
492 {
493 	struct bpf_verifier_state *cur = env->cur_state;
494 	struct bpf_verifier_stack_elem *elem;
495 	int err;
496 
497 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 	if (!elem)
499 		goto err;
500 
501 	elem->insn_idx = insn_idx;
502 	elem->prev_insn_idx = prev_insn_idx;
503 	elem->next = env->head;
504 	env->head = elem;
505 	env->stack_size++;
506 	err = copy_verifier_state(&elem->st, cur);
507 	if (err)
508 		goto err;
509 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510 		verbose(env, "BPF program is too complex\n");
511 		goto err;
512 	}
513 	return &elem->st;
514 err:
515 	free_verifier_state(env->cur_state, true);
516 	env->cur_state = NULL;
517 	/* pop all elements and return */
518 	while (!pop_stack(env, NULL, NULL));
519 	return NULL;
520 }
521 
522 #define CALLER_SAVED_REGS 6
523 static const int caller_saved[CALLER_SAVED_REGS] = {
524 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
525 };
526 
527 static void __mark_reg_not_init(struct bpf_reg_state *reg);
528 
529 /* Mark the unknown part of a register (variable offset or scalar value) as
530  * known to have the value @imm.
531  */
532 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
533 {
534 	reg->id = 0;
535 	reg->var_off = tnum_const(imm);
536 	reg->smin_value = (s64)imm;
537 	reg->smax_value = (s64)imm;
538 	reg->umin_value = imm;
539 	reg->umax_value = imm;
540 }
541 
542 /* Mark the 'variable offset' part of a register as zero.  This should be
543  * used only on registers holding a pointer type.
544  */
545 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546 {
547 	__mark_reg_known(reg, 0);
548 }
549 
550 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
551 {
552 	__mark_reg_known(reg, 0);
553 	reg->off = 0;
554 	reg->type = SCALAR_VALUE;
555 }
556 
557 static void mark_reg_known_zero(struct bpf_verifier_env *env,
558 				struct bpf_reg_state *regs, u32 regno)
559 {
560 	if (WARN_ON(regno >= MAX_BPF_REG)) {
561 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 		/* Something bad happened, let's kill all regs */
563 		for (regno = 0; regno < MAX_BPF_REG; regno++)
564 			__mark_reg_not_init(regs + regno);
565 		return;
566 	}
567 	__mark_reg_known_zero(regs + regno);
568 }
569 
570 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
571 {
572 	return type_is_pkt_pointer(reg->type);
573 }
574 
575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
576 {
577 	return reg_is_pkt_pointer(reg) ||
578 	       reg->type == PTR_TO_PACKET_END;
579 }
580 
581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
583 				    enum bpf_reg_type which)
584 {
585 	/* The register can already have a range from prior markings.
586 	 * This is fine as long as it hasn't been advanced from its
587 	 * origin.
588 	 */
589 	return reg->type == which &&
590 	       reg->id == 0 &&
591 	       reg->off == 0 &&
592 	       tnum_equals_const(reg->var_off, 0);
593 }
594 
595 /* Attempts to improve min/max values based on var_off information */
596 static void __update_reg_bounds(struct bpf_reg_state *reg)
597 {
598 	/* min signed is max(sign bit) | min(other bits) */
599 	reg->smin_value = max_t(s64, reg->smin_value,
600 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
601 	/* max signed is min(sign bit) | max(other bits) */
602 	reg->smax_value = min_t(s64, reg->smax_value,
603 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
604 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
605 	reg->umax_value = min(reg->umax_value,
606 			      reg->var_off.value | reg->var_off.mask);
607 }
608 
609 /* Uses signed min/max values to inform unsigned, and vice-versa */
610 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
611 {
612 	/* Learn sign from signed bounds.
613 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 	 * are the same, so combine.  This works even in the negative case, e.g.
615 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
616 	 */
617 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
618 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
619 							  reg->umin_value);
620 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
621 							  reg->umax_value);
622 		return;
623 	}
624 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
625 	 * boundary, so we must be careful.
626 	 */
627 	if ((s64)reg->umax_value >= 0) {
628 		/* Positive.  We can't learn anything from the smin, but smax
629 		 * is positive, hence safe.
630 		 */
631 		reg->smin_value = reg->umin_value;
632 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
633 							  reg->umax_value);
634 	} else if ((s64)reg->umin_value < 0) {
635 		/* Negative.  We can't learn anything from the smax, but smin
636 		 * is negative, hence safe.
637 		 */
638 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
639 							  reg->umin_value);
640 		reg->smax_value = reg->umax_value;
641 	}
642 }
643 
644 /* Attempts to improve var_off based on unsigned min/max information */
645 static void __reg_bound_offset(struct bpf_reg_state *reg)
646 {
647 	reg->var_off = tnum_intersect(reg->var_off,
648 				      tnum_range(reg->umin_value,
649 						 reg->umax_value));
650 }
651 
652 /* Reset the min/max bounds of a register */
653 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
654 {
655 	reg->smin_value = S64_MIN;
656 	reg->smax_value = S64_MAX;
657 	reg->umin_value = 0;
658 	reg->umax_value = U64_MAX;
659 }
660 
661 /* Mark a register as having a completely unknown (scalar) value. */
662 static void __mark_reg_unknown(struct bpf_reg_state *reg)
663 {
664 	reg->type = SCALAR_VALUE;
665 	reg->id = 0;
666 	reg->off = 0;
667 	reg->var_off = tnum_unknown;
668 	reg->frameno = 0;
669 	__mark_reg_unbounded(reg);
670 }
671 
672 static void mark_reg_unknown(struct bpf_verifier_env *env,
673 			     struct bpf_reg_state *regs, u32 regno)
674 {
675 	if (WARN_ON(regno >= MAX_BPF_REG)) {
676 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 		/* Something bad happened, let's kill all regs except FP */
678 		for (regno = 0; regno < BPF_REG_FP; regno++)
679 			__mark_reg_not_init(regs + regno);
680 		return;
681 	}
682 	__mark_reg_unknown(regs + regno);
683 }
684 
685 static void __mark_reg_not_init(struct bpf_reg_state *reg)
686 {
687 	__mark_reg_unknown(reg);
688 	reg->type = NOT_INIT;
689 }
690 
691 static void mark_reg_not_init(struct bpf_verifier_env *env,
692 			      struct bpf_reg_state *regs, u32 regno)
693 {
694 	if (WARN_ON(regno >= MAX_BPF_REG)) {
695 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 		/* Something bad happened, let's kill all regs except FP */
697 		for (regno = 0; regno < BPF_REG_FP; regno++)
698 			__mark_reg_not_init(regs + regno);
699 		return;
700 	}
701 	__mark_reg_not_init(regs + regno);
702 }
703 
704 static void init_reg_state(struct bpf_verifier_env *env,
705 			   struct bpf_func_state *state)
706 {
707 	struct bpf_reg_state *regs = state->regs;
708 	int i;
709 
710 	for (i = 0; i < MAX_BPF_REG; i++) {
711 		mark_reg_not_init(env, regs, i);
712 		regs[i].live = REG_LIVE_NONE;
713 	}
714 
715 	/* frame pointer */
716 	regs[BPF_REG_FP].type = PTR_TO_STACK;
717 	mark_reg_known_zero(env, regs, BPF_REG_FP);
718 	regs[BPF_REG_FP].frameno = state->frameno;
719 
720 	/* 1st arg to a function */
721 	regs[BPF_REG_1].type = PTR_TO_CTX;
722 	mark_reg_known_zero(env, regs, BPF_REG_1);
723 }
724 
725 #define BPF_MAIN_FUNC (-1)
726 static void init_func_state(struct bpf_verifier_env *env,
727 			    struct bpf_func_state *state,
728 			    int callsite, int frameno, int subprogno)
729 {
730 	state->callsite = callsite;
731 	state->frameno = frameno;
732 	state->subprogno = subprogno;
733 	init_reg_state(env, state);
734 }
735 
736 enum reg_arg_type {
737 	SRC_OP,		/* register is used as source operand */
738 	DST_OP,		/* register is used as destination operand */
739 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
740 };
741 
742 static int cmp_subprogs(const void *a, const void *b)
743 {
744 	return ((struct bpf_subprog_info *)a)->start -
745 	       ((struct bpf_subprog_info *)b)->start;
746 }
747 
748 static int find_subprog(struct bpf_verifier_env *env, int off)
749 {
750 	struct bpf_subprog_info *p;
751 
752 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
753 		    sizeof(env->subprog_info[0]), cmp_subprogs);
754 	if (!p)
755 		return -ENOENT;
756 	return p - env->subprog_info;
757 
758 }
759 
760 static int add_subprog(struct bpf_verifier_env *env, int off)
761 {
762 	int insn_cnt = env->prog->len;
763 	int ret;
764 
765 	if (off >= insn_cnt || off < 0) {
766 		verbose(env, "call to invalid destination\n");
767 		return -EINVAL;
768 	}
769 	ret = find_subprog(env, off);
770 	if (ret >= 0)
771 		return 0;
772 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
773 		verbose(env, "too many subprograms\n");
774 		return -E2BIG;
775 	}
776 	env->subprog_info[env->subprog_cnt++].start = off;
777 	sort(env->subprog_info, env->subprog_cnt,
778 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
779 	return 0;
780 }
781 
782 static int check_subprogs(struct bpf_verifier_env *env)
783 {
784 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
785 	struct bpf_subprog_info *subprog = env->subprog_info;
786 	struct bpf_insn *insn = env->prog->insnsi;
787 	int insn_cnt = env->prog->len;
788 
789 	/* Add entry function. */
790 	ret = add_subprog(env, 0);
791 	if (ret < 0)
792 		return ret;
793 
794 	/* determine subprog starts. The end is one before the next starts */
795 	for (i = 0; i < insn_cnt; i++) {
796 		if (insn[i].code != (BPF_JMP | BPF_CALL))
797 			continue;
798 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
799 			continue;
800 		if (!env->allow_ptr_leaks) {
801 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
802 			return -EPERM;
803 		}
804 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
805 			verbose(env, "function calls in offloaded programs are not supported yet\n");
806 			return -EINVAL;
807 		}
808 		ret = add_subprog(env, i + insn[i].imm + 1);
809 		if (ret < 0)
810 			return ret;
811 	}
812 
813 	/* Add a fake 'exit' subprog which could simplify subprog iteration
814 	 * logic. 'subprog_cnt' should not be increased.
815 	 */
816 	subprog[env->subprog_cnt].start = insn_cnt;
817 
818 	if (env->log.level > 1)
819 		for (i = 0; i < env->subprog_cnt; i++)
820 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
821 
822 	/* now check that all jumps are within the same subprog */
823 	subprog_start = subprog[cur_subprog].start;
824 	subprog_end = subprog[cur_subprog + 1].start;
825 	for (i = 0; i < insn_cnt; i++) {
826 		u8 code = insn[i].code;
827 
828 		if (BPF_CLASS(code) != BPF_JMP)
829 			goto next;
830 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
831 			goto next;
832 		off = i + insn[i].off + 1;
833 		if (off < subprog_start || off >= subprog_end) {
834 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
835 			return -EINVAL;
836 		}
837 next:
838 		if (i == subprog_end - 1) {
839 			/* to avoid fall-through from one subprog into another
840 			 * the last insn of the subprog should be either exit
841 			 * or unconditional jump back
842 			 */
843 			if (code != (BPF_JMP | BPF_EXIT) &&
844 			    code != (BPF_JMP | BPF_JA)) {
845 				verbose(env, "last insn is not an exit or jmp\n");
846 				return -EINVAL;
847 			}
848 			subprog_start = subprog_end;
849 			cur_subprog++;
850 			if (cur_subprog < env->subprog_cnt)
851 				subprog_end = subprog[cur_subprog + 1].start;
852 		}
853 	}
854 	return 0;
855 }
856 
857 static
858 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
859 				       const struct bpf_verifier_state *state,
860 				       struct bpf_verifier_state *parent,
861 				       u32 regno)
862 {
863 	struct bpf_verifier_state *tmp = NULL;
864 
865 	/* 'parent' could be a state of caller and
866 	 * 'state' could be a state of callee. In such case
867 	 * parent->curframe < state->curframe
868 	 * and it's ok for r1 - r5 registers
869 	 *
870 	 * 'parent' could be a callee's state after it bpf_exit-ed.
871 	 * In such case parent->curframe > state->curframe
872 	 * and it's ok for r0 only
873 	 */
874 	if (parent->curframe == state->curframe ||
875 	    (parent->curframe < state->curframe &&
876 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
877 	    (parent->curframe > state->curframe &&
878 	       regno == BPF_REG_0))
879 		return parent;
880 
881 	if (parent->curframe > state->curframe &&
882 	    regno >= BPF_REG_6) {
883 		/* for callee saved regs we have to skip the whole chain
884 		 * of states that belong to callee and mark as LIVE_READ
885 		 * the registers before the call
886 		 */
887 		tmp = parent;
888 		while (tmp && tmp->curframe != state->curframe) {
889 			tmp = tmp->parent;
890 		}
891 		if (!tmp)
892 			goto bug;
893 		parent = tmp;
894 	} else {
895 		goto bug;
896 	}
897 	return parent;
898 bug:
899 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
900 	verbose(env, "regno %d parent frame %d current frame %d\n",
901 		regno, parent->curframe, state->curframe);
902 	return NULL;
903 }
904 
905 static int mark_reg_read(struct bpf_verifier_env *env,
906 			 const struct bpf_verifier_state *state,
907 			 struct bpf_verifier_state *parent,
908 			 u32 regno)
909 {
910 	bool writes = parent == state->parent; /* Observe write marks */
911 
912 	if (regno == BPF_REG_FP)
913 		/* We don't need to worry about FP liveness because it's read-only */
914 		return 0;
915 
916 	while (parent) {
917 		/* if read wasn't screened by an earlier write ... */
918 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
919 			break;
920 		parent = skip_callee(env, state, parent, regno);
921 		if (!parent)
922 			return -EFAULT;
923 		/* ... then we depend on parent's value */
924 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
925 		state = parent;
926 		parent = state->parent;
927 		writes = true;
928 	}
929 	return 0;
930 }
931 
932 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
933 			 enum reg_arg_type t)
934 {
935 	struct bpf_verifier_state *vstate = env->cur_state;
936 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
937 	struct bpf_reg_state *regs = state->regs;
938 
939 	if (regno >= MAX_BPF_REG) {
940 		verbose(env, "R%d is invalid\n", regno);
941 		return -EINVAL;
942 	}
943 
944 	if (t == SRC_OP) {
945 		/* check whether register used as source operand can be read */
946 		if (regs[regno].type == NOT_INIT) {
947 			verbose(env, "R%d !read_ok\n", regno);
948 			return -EACCES;
949 		}
950 		return mark_reg_read(env, vstate, vstate->parent, regno);
951 	} else {
952 		/* check whether register used as dest operand can be written to */
953 		if (regno == BPF_REG_FP) {
954 			verbose(env, "frame pointer is read only\n");
955 			return -EACCES;
956 		}
957 		regs[regno].live |= REG_LIVE_WRITTEN;
958 		if (t == DST_OP)
959 			mark_reg_unknown(env, regs, regno);
960 	}
961 	return 0;
962 }
963 
964 static bool is_spillable_regtype(enum bpf_reg_type type)
965 {
966 	switch (type) {
967 	case PTR_TO_MAP_VALUE:
968 	case PTR_TO_MAP_VALUE_OR_NULL:
969 	case PTR_TO_STACK:
970 	case PTR_TO_CTX:
971 	case PTR_TO_PACKET:
972 	case PTR_TO_PACKET_META:
973 	case PTR_TO_PACKET_END:
974 	case CONST_PTR_TO_MAP:
975 		return true;
976 	default:
977 		return false;
978 	}
979 }
980 
981 /* Does this register contain a constant zero? */
982 static bool register_is_null(struct bpf_reg_state *reg)
983 {
984 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
985 }
986 
987 /* check_stack_read/write functions track spill/fill of registers,
988  * stack boundary and alignment are checked in check_mem_access()
989  */
990 static int check_stack_write(struct bpf_verifier_env *env,
991 			     struct bpf_func_state *state, /* func where register points to */
992 			     int off, int size, int value_regno)
993 {
994 	struct bpf_func_state *cur; /* state of the current function */
995 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
996 	enum bpf_reg_type type;
997 
998 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
999 				 true);
1000 	if (err)
1001 		return err;
1002 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 	 * so it's aligned access and [off, off + size) are within stack limits
1004 	 */
1005 	if (!env->allow_ptr_leaks &&
1006 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1007 	    size != BPF_REG_SIZE) {
1008 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1009 		return -EACCES;
1010 	}
1011 
1012 	cur = env->cur_state->frame[env->cur_state->curframe];
1013 	if (value_regno >= 0 &&
1014 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1015 
1016 		/* register containing pointer is being spilled into stack */
1017 		if (size != BPF_REG_SIZE) {
1018 			verbose(env, "invalid size of register spill\n");
1019 			return -EACCES;
1020 		}
1021 
1022 		if (state != cur && type == PTR_TO_STACK) {
1023 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1024 			return -EINVAL;
1025 		}
1026 
1027 		/* save register state */
1028 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1029 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030 
1031 		for (i = 0; i < BPF_REG_SIZE; i++)
1032 			state->stack[spi].slot_type[i] = STACK_SPILL;
1033 	} else {
1034 		u8 type = STACK_MISC;
1035 
1036 		/* regular write of data into stack */
1037 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1038 
1039 		/* only mark the slot as written if all 8 bytes were written
1040 		 * otherwise read propagation may incorrectly stop too soon
1041 		 * when stack slots are partially written.
1042 		 * This heuristic means that read propagation will be
1043 		 * conservative, since it will add reg_live_read marks
1044 		 * to stack slots all the way to first state when programs
1045 		 * writes+reads less than 8 bytes
1046 		 */
1047 		if (size == BPF_REG_SIZE)
1048 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1049 
1050 		/* when we zero initialize stack slots mark them as such */
1051 		if (value_regno >= 0 &&
1052 		    register_is_null(&cur->regs[value_regno]))
1053 			type = STACK_ZERO;
1054 
1055 		for (i = 0; i < size; i++)
1056 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1057 				type;
1058 	}
1059 	return 0;
1060 }
1061 
1062 /* registers of every function are unique and mark_reg_read() propagates
1063  * the liveness in the following cases:
1064  * - from callee into caller for R1 - R5 that were used as arguments
1065  * - from caller into callee for R0 that used as result of the call
1066  * - from caller to the same caller skipping states of the callee for R6 - R9,
1067  *   since R6 - R9 are callee saved by implicit function prologue and
1068  *   caller's R6 != callee's R6, so when we propagate liveness up to
1069  *   parent states we need to skip callee states for R6 - R9.
1070  *
1071  * stack slot marking is different, since stacks of caller and callee are
1072  * accessible in both (since caller can pass a pointer to caller's stack to
1073  * callee which can pass it to another function), hence mark_stack_slot_read()
1074  * has to propagate the stack liveness to all parent states at given frame number.
1075  * Consider code:
1076  * f1() {
1077  *   ptr = fp - 8;
1078  *   *ptr = ctx;
1079  *   call f2 {
1080  *      .. = *ptr;
1081  *   }
1082  *   .. = *ptr;
1083  * }
1084  * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085  * to mark liveness at the f1's frame and not f2's frame.
1086  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087  * to propagate liveness to f2 states at f1's frame level and further into
1088  * f1 states at f1's frame level until write into that stack slot
1089  */
1090 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1091 				 const struct bpf_verifier_state *state,
1092 				 struct bpf_verifier_state *parent,
1093 				 int slot, int frameno)
1094 {
1095 	bool writes = parent == state->parent; /* Observe write marks */
1096 
1097 	while (parent) {
1098 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1099 			/* since LIVE_WRITTEN mark is only done for full 8-byte
1100 			 * write the read marks are conservative and parent
1101 			 * state may not even have the stack allocated. In such case
1102 			 * end the propagation, since the loop reached beginning
1103 			 * of the function
1104 			 */
1105 			break;
1106 		/* if read wasn't screened by an earlier write ... */
1107 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1108 			break;
1109 		/* ... then we depend on parent's value */
1110 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1111 		state = parent;
1112 		parent = state->parent;
1113 		writes = true;
1114 	}
1115 }
1116 
1117 static int check_stack_read(struct bpf_verifier_env *env,
1118 			    struct bpf_func_state *reg_state /* func where register points to */,
1119 			    int off, int size, int value_regno)
1120 {
1121 	struct bpf_verifier_state *vstate = env->cur_state;
1122 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1123 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1124 	u8 *stype;
1125 
1126 	if (reg_state->allocated_stack <= slot) {
1127 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1128 			off, size);
1129 		return -EACCES;
1130 	}
1131 	stype = reg_state->stack[spi].slot_type;
1132 
1133 	if (stype[0] == STACK_SPILL) {
1134 		if (size != BPF_REG_SIZE) {
1135 			verbose(env, "invalid size of register spill\n");
1136 			return -EACCES;
1137 		}
1138 		for (i = 1; i < BPF_REG_SIZE; i++) {
1139 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1140 				verbose(env, "corrupted spill memory\n");
1141 				return -EACCES;
1142 			}
1143 		}
1144 
1145 		if (value_regno >= 0) {
1146 			/* restore register state from stack */
1147 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1148 			/* mark reg as written since spilled pointer state likely
1149 			 * has its liveness marks cleared by is_state_visited()
1150 			 * which resets stack/reg liveness for state transitions
1151 			 */
1152 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1153 		}
1154 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1155 				     reg_state->frameno);
1156 		return 0;
1157 	} else {
1158 		int zeros = 0;
1159 
1160 		for (i = 0; i < size; i++) {
1161 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1162 				continue;
1163 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1164 				zeros++;
1165 				continue;
1166 			}
1167 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1168 				off, i, size);
1169 			return -EACCES;
1170 		}
1171 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1172 				     reg_state->frameno);
1173 		if (value_regno >= 0) {
1174 			if (zeros == size) {
1175 				/* any size read into register is zero extended,
1176 				 * so the whole register == const_zero
1177 				 */
1178 				__mark_reg_const_zero(&state->regs[value_regno]);
1179 			} else {
1180 				/* have read misc data from the stack */
1181 				mark_reg_unknown(env, state->regs, value_regno);
1182 			}
1183 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1184 		}
1185 		return 0;
1186 	}
1187 }
1188 
1189 /* check read/write into map element returned by bpf_map_lookup_elem() */
1190 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1191 			      int size, bool zero_size_allowed)
1192 {
1193 	struct bpf_reg_state *regs = cur_regs(env);
1194 	struct bpf_map *map = regs[regno].map_ptr;
1195 
1196 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1197 	    off + size > map->value_size) {
1198 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 			map->value_size, off, size);
1200 		return -EACCES;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /* check read/write into a map element with possible variable offset */
1206 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1207 			    int off, int size, bool zero_size_allowed)
1208 {
1209 	struct bpf_verifier_state *vstate = env->cur_state;
1210 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1211 	struct bpf_reg_state *reg = &state->regs[regno];
1212 	int err;
1213 
1214 	/* We may have adjusted the register to this map value, so we
1215 	 * need to try adding each of min_value and max_value to off
1216 	 * to make sure our theoretical access will be safe.
1217 	 */
1218 	if (env->log.level)
1219 		print_verifier_state(env, state);
1220 	/* The minimum value is only important with signed
1221 	 * comparisons where we can't assume the floor of a
1222 	 * value is 0.  If we are using signed variables for our
1223 	 * index'es we need to make sure that whatever we use
1224 	 * will have a set floor within our range.
1225 	 */
1226 	if (reg->smin_value < 0) {
1227 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1228 			regno);
1229 		return -EACCES;
1230 	}
1231 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1232 				 zero_size_allowed);
1233 	if (err) {
1234 		verbose(env, "R%d min value is outside of the array range\n",
1235 			regno);
1236 		return err;
1237 	}
1238 
1239 	/* If we haven't set a max value then we need to bail since we can't be
1240 	 * sure we won't do bad things.
1241 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1242 	 */
1243 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1244 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1245 			regno);
1246 		return -EACCES;
1247 	}
1248 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1249 				 zero_size_allowed);
1250 	if (err)
1251 		verbose(env, "R%d max value is outside of the array range\n",
1252 			regno);
1253 	return err;
1254 }
1255 
1256 #define MAX_PACKET_OFF 0xffff
1257 
1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1259 				       const struct bpf_call_arg_meta *meta,
1260 				       enum bpf_access_type t)
1261 {
1262 	switch (env->prog->type) {
1263 	case BPF_PROG_TYPE_LWT_IN:
1264 	case BPF_PROG_TYPE_LWT_OUT:
1265 		/* dst_input() and dst_output() can't write for now */
1266 		if (t == BPF_WRITE)
1267 			return false;
1268 		/* fallthrough */
1269 	case BPF_PROG_TYPE_SCHED_CLS:
1270 	case BPF_PROG_TYPE_SCHED_ACT:
1271 	case BPF_PROG_TYPE_XDP:
1272 	case BPF_PROG_TYPE_LWT_XMIT:
1273 	case BPF_PROG_TYPE_SK_SKB:
1274 	case BPF_PROG_TYPE_SK_MSG:
1275 		if (meta)
1276 			return meta->pkt_access;
1277 
1278 		env->seen_direct_write = true;
1279 		return true;
1280 	default:
1281 		return false;
1282 	}
1283 }
1284 
1285 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1286 				 int off, int size, bool zero_size_allowed)
1287 {
1288 	struct bpf_reg_state *regs = cur_regs(env);
1289 	struct bpf_reg_state *reg = &regs[regno];
1290 
1291 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1292 	    (u64)off + size > reg->range) {
1293 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1294 			off, size, regno, reg->id, reg->off, reg->range);
1295 		return -EACCES;
1296 	}
1297 	return 0;
1298 }
1299 
1300 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1301 			       int size, bool zero_size_allowed)
1302 {
1303 	struct bpf_reg_state *regs = cur_regs(env);
1304 	struct bpf_reg_state *reg = &regs[regno];
1305 	int err;
1306 
1307 	/* We may have added a variable offset to the packet pointer; but any
1308 	 * reg->range we have comes after that.  We are only checking the fixed
1309 	 * offset.
1310 	 */
1311 
1312 	/* We don't allow negative numbers, because we aren't tracking enough
1313 	 * detail to prove they're safe.
1314 	 */
1315 	if (reg->smin_value < 0) {
1316 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1317 			regno);
1318 		return -EACCES;
1319 	}
1320 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1321 	if (err) {
1322 		verbose(env, "R%d offset is outside of the packet\n", regno);
1323 		return err;
1324 	}
1325 	return err;
1326 }
1327 
1328 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1329 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1330 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1331 {
1332 	struct bpf_insn_access_aux info = {
1333 		.reg_type = *reg_type,
1334 	};
1335 
1336 	if (env->ops->is_valid_access &&
1337 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1338 		/* A non zero info.ctx_field_size indicates that this field is a
1339 		 * candidate for later verifier transformation to load the whole
1340 		 * field and then apply a mask when accessed with a narrower
1341 		 * access than actual ctx access size. A zero info.ctx_field_size
1342 		 * will only allow for whole field access and rejects any other
1343 		 * type of narrower access.
1344 		 */
1345 		*reg_type = info.reg_type;
1346 
1347 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1348 		/* remember the offset of last byte accessed in ctx */
1349 		if (env->prog->aux->max_ctx_offset < off + size)
1350 			env->prog->aux->max_ctx_offset = off + size;
1351 		return 0;
1352 	}
1353 
1354 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1355 	return -EACCES;
1356 }
1357 
1358 static bool __is_pointer_value(bool allow_ptr_leaks,
1359 			       const struct bpf_reg_state *reg)
1360 {
1361 	if (allow_ptr_leaks)
1362 		return false;
1363 
1364 	return reg->type != SCALAR_VALUE;
1365 }
1366 
1367 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1368 {
1369 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1370 }
1371 
1372 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1373 {
1374 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1375 
1376 	return reg->type == PTR_TO_CTX;
1377 }
1378 
1379 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1380 {
1381 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1382 
1383 	return type_is_pkt_pointer(reg->type);
1384 }
1385 
1386 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1387 				   const struct bpf_reg_state *reg,
1388 				   int off, int size, bool strict)
1389 {
1390 	struct tnum reg_off;
1391 	int ip_align;
1392 
1393 	/* Byte size accesses are always allowed. */
1394 	if (!strict || size == 1)
1395 		return 0;
1396 
1397 	/* For platforms that do not have a Kconfig enabling
1398 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1399 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1400 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1401 	 * to this code only in strict mode where we want to emulate
1402 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1403 	 * unconditional IP align value of '2'.
1404 	 */
1405 	ip_align = 2;
1406 
1407 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1408 	if (!tnum_is_aligned(reg_off, size)) {
1409 		char tn_buf[48];
1410 
1411 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1412 		verbose(env,
1413 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1414 			ip_align, tn_buf, reg->off, off, size);
1415 		return -EACCES;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1422 				       const struct bpf_reg_state *reg,
1423 				       const char *pointer_desc,
1424 				       int off, int size, bool strict)
1425 {
1426 	struct tnum reg_off;
1427 
1428 	/* Byte size accesses are always allowed. */
1429 	if (!strict || size == 1)
1430 		return 0;
1431 
1432 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1433 	if (!tnum_is_aligned(reg_off, size)) {
1434 		char tn_buf[48];
1435 
1436 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1437 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1438 			pointer_desc, tn_buf, reg->off, off, size);
1439 		return -EACCES;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 static int check_ptr_alignment(struct bpf_verifier_env *env,
1446 			       const struct bpf_reg_state *reg, int off,
1447 			       int size, bool strict_alignment_once)
1448 {
1449 	bool strict = env->strict_alignment || strict_alignment_once;
1450 	const char *pointer_desc = "";
1451 
1452 	switch (reg->type) {
1453 	case PTR_TO_PACKET:
1454 	case PTR_TO_PACKET_META:
1455 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1456 		 * right in front, treat it the very same way.
1457 		 */
1458 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1459 	case PTR_TO_MAP_VALUE:
1460 		pointer_desc = "value ";
1461 		break;
1462 	case PTR_TO_CTX:
1463 		pointer_desc = "context ";
1464 		break;
1465 	case PTR_TO_STACK:
1466 		pointer_desc = "stack ";
1467 		/* The stack spill tracking logic in check_stack_write()
1468 		 * and check_stack_read() relies on stack accesses being
1469 		 * aligned.
1470 		 */
1471 		strict = true;
1472 		break;
1473 	default:
1474 		break;
1475 	}
1476 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1477 					   strict);
1478 }
1479 
1480 static int update_stack_depth(struct bpf_verifier_env *env,
1481 			      const struct bpf_func_state *func,
1482 			      int off)
1483 {
1484 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1485 
1486 	if (stack >= -off)
1487 		return 0;
1488 
1489 	/* update known max for given subprogram */
1490 	env->subprog_info[func->subprogno].stack_depth = -off;
1491 	return 0;
1492 }
1493 
1494 /* starting from main bpf function walk all instructions of the function
1495  * and recursively walk all callees that given function can call.
1496  * Ignore jump and exit insns.
1497  * Since recursion is prevented by check_cfg() this algorithm
1498  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1499  */
1500 static int check_max_stack_depth(struct bpf_verifier_env *env)
1501 {
1502 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1503 	struct bpf_subprog_info *subprog = env->subprog_info;
1504 	struct bpf_insn *insn = env->prog->insnsi;
1505 	int ret_insn[MAX_CALL_FRAMES];
1506 	int ret_prog[MAX_CALL_FRAMES];
1507 
1508 process_func:
1509 	/* round up to 32-bytes, since this is granularity
1510 	 * of interpreter stack size
1511 	 */
1512 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1513 	if (depth > MAX_BPF_STACK) {
1514 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1515 			frame + 1, depth);
1516 		return -EACCES;
1517 	}
1518 continue_func:
1519 	subprog_end = subprog[idx + 1].start;
1520 	for (; i < subprog_end; i++) {
1521 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1522 			continue;
1523 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1524 			continue;
1525 		/* remember insn and function to return to */
1526 		ret_insn[frame] = i + 1;
1527 		ret_prog[frame] = idx;
1528 
1529 		/* find the callee */
1530 		i = i + insn[i].imm + 1;
1531 		idx = find_subprog(env, i);
1532 		if (idx < 0) {
1533 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1534 				  i);
1535 			return -EFAULT;
1536 		}
1537 		frame++;
1538 		if (frame >= MAX_CALL_FRAMES) {
1539 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1540 			return -EFAULT;
1541 		}
1542 		goto process_func;
1543 	}
1544 	/* end of for() loop means the last insn of the 'subprog'
1545 	 * was reached. Doesn't matter whether it was JA or EXIT
1546 	 */
1547 	if (frame == 0)
1548 		return 0;
1549 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1550 	frame--;
1551 	i = ret_insn[frame];
1552 	idx = ret_prog[frame];
1553 	goto continue_func;
1554 }
1555 
1556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1557 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1558 				  const struct bpf_insn *insn, int idx)
1559 {
1560 	int start = idx + insn->imm + 1, subprog;
1561 
1562 	subprog = find_subprog(env, start);
1563 	if (subprog < 0) {
1564 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1565 			  start);
1566 		return -EFAULT;
1567 	}
1568 	return env->subprog_info[subprog].stack_depth;
1569 }
1570 #endif
1571 
1572 /* truncate register to smaller size (in bytes)
1573  * must be called with size < BPF_REG_SIZE
1574  */
1575 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1576 {
1577 	u64 mask;
1578 
1579 	/* clear high bits in bit representation */
1580 	reg->var_off = tnum_cast(reg->var_off, size);
1581 
1582 	/* fix arithmetic bounds */
1583 	mask = ((u64)1 << (size * 8)) - 1;
1584 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1585 		reg->umin_value &= mask;
1586 		reg->umax_value &= mask;
1587 	} else {
1588 		reg->umin_value = 0;
1589 		reg->umax_value = mask;
1590 	}
1591 	reg->smin_value = reg->umin_value;
1592 	reg->smax_value = reg->umax_value;
1593 }
1594 
1595 /* check whether memory at (regno + off) is accessible for t = (read | write)
1596  * if t==write, value_regno is a register which value is stored into memory
1597  * if t==read, value_regno is a register which will receive the value from memory
1598  * if t==write && value_regno==-1, some unknown value is stored into memory
1599  * if t==read && value_regno==-1, don't care what we read from memory
1600  */
1601 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1602 			    int off, int bpf_size, enum bpf_access_type t,
1603 			    int value_regno, bool strict_alignment_once)
1604 {
1605 	struct bpf_reg_state *regs = cur_regs(env);
1606 	struct bpf_reg_state *reg = regs + regno;
1607 	struct bpf_func_state *state;
1608 	int size, err = 0;
1609 
1610 	size = bpf_size_to_bytes(bpf_size);
1611 	if (size < 0)
1612 		return size;
1613 
1614 	/* alignment checks will add in reg->off themselves */
1615 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1616 	if (err)
1617 		return err;
1618 
1619 	/* for access checks, reg->off is just part of off */
1620 	off += reg->off;
1621 
1622 	if (reg->type == PTR_TO_MAP_VALUE) {
1623 		if (t == BPF_WRITE && value_regno >= 0 &&
1624 		    is_pointer_value(env, value_regno)) {
1625 			verbose(env, "R%d leaks addr into map\n", value_regno);
1626 			return -EACCES;
1627 		}
1628 
1629 		err = check_map_access(env, regno, off, size, false);
1630 		if (!err && t == BPF_READ && value_regno >= 0)
1631 			mark_reg_unknown(env, regs, value_regno);
1632 
1633 	} else if (reg->type == PTR_TO_CTX) {
1634 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1635 
1636 		if (t == BPF_WRITE && value_regno >= 0 &&
1637 		    is_pointer_value(env, value_regno)) {
1638 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1639 			return -EACCES;
1640 		}
1641 		/* ctx accesses must be at a fixed offset, so that we can
1642 		 * determine what type of data were returned.
1643 		 */
1644 		if (reg->off) {
1645 			verbose(env,
1646 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1647 				regno, reg->off, off - reg->off);
1648 			return -EACCES;
1649 		}
1650 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1651 			char tn_buf[48];
1652 
1653 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1654 			verbose(env,
1655 				"variable ctx access var_off=%s off=%d size=%d",
1656 				tn_buf, off, size);
1657 			return -EACCES;
1658 		}
1659 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1660 		if (!err && t == BPF_READ && value_regno >= 0) {
1661 			/* ctx access returns either a scalar, or a
1662 			 * PTR_TO_PACKET[_META,_END]. In the latter
1663 			 * case, we know the offset is zero.
1664 			 */
1665 			if (reg_type == SCALAR_VALUE)
1666 				mark_reg_unknown(env, regs, value_regno);
1667 			else
1668 				mark_reg_known_zero(env, regs,
1669 						    value_regno);
1670 			regs[value_regno].id = 0;
1671 			regs[value_regno].off = 0;
1672 			regs[value_regno].range = 0;
1673 			regs[value_regno].type = reg_type;
1674 		}
1675 
1676 	} else if (reg->type == PTR_TO_STACK) {
1677 		/* stack accesses must be at a fixed offset, so that we can
1678 		 * determine what type of data were returned.
1679 		 * See check_stack_read().
1680 		 */
1681 		if (!tnum_is_const(reg->var_off)) {
1682 			char tn_buf[48];
1683 
1684 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1685 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1686 				tn_buf, off, size);
1687 			return -EACCES;
1688 		}
1689 		off += reg->var_off.value;
1690 		if (off >= 0 || off < -MAX_BPF_STACK) {
1691 			verbose(env, "invalid stack off=%d size=%d\n", off,
1692 				size);
1693 			return -EACCES;
1694 		}
1695 
1696 		state = func(env, reg);
1697 		err = update_stack_depth(env, state, off);
1698 		if (err)
1699 			return err;
1700 
1701 		if (t == BPF_WRITE)
1702 			err = check_stack_write(env, state, off, size,
1703 						value_regno);
1704 		else
1705 			err = check_stack_read(env, state, off, size,
1706 					       value_regno);
1707 	} else if (reg_is_pkt_pointer(reg)) {
1708 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1709 			verbose(env, "cannot write into packet\n");
1710 			return -EACCES;
1711 		}
1712 		if (t == BPF_WRITE && value_regno >= 0 &&
1713 		    is_pointer_value(env, value_regno)) {
1714 			verbose(env, "R%d leaks addr into packet\n",
1715 				value_regno);
1716 			return -EACCES;
1717 		}
1718 		err = check_packet_access(env, regno, off, size, false);
1719 		if (!err && t == BPF_READ && value_regno >= 0)
1720 			mark_reg_unknown(env, regs, value_regno);
1721 	} else {
1722 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1723 			reg_type_str[reg->type]);
1724 		return -EACCES;
1725 	}
1726 
1727 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1728 	    regs[value_regno].type == SCALAR_VALUE) {
1729 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1730 		coerce_reg_to_size(&regs[value_regno], size);
1731 	}
1732 	return err;
1733 }
1734 
1735 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1736 {
1737 	int err;
1738 
1739 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1740 	    insn->imm != 0) {
1741 		verbose(env, "BPF_XADD uses reserved fields\n");
1742 		return -EINVAL;
1743 	}
1744 
1745 	/* check src1 operand */
1746 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1747 	if (err)
1748 		return err;
1749 
1750 	/* check src2 operand */
1751 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1752 	if (err)
1753 		return err;
1754 
1755 	if (is_pointer_value(env, insn->src_reg)) {
1756 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1757 		return -EACCES;
1758 	}
1759 
1760 	if (is_ctx_reg(env, insn->dst_reg) ||
1761 	    is_pkt_reg(env, insn->dst_reg)) {
1762 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1763 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1764 			"context" : "packet");
1765 		return -EACCES;
1766 	}
1767 
1768 	/* check whether atomic_add can read the memory */
1769 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1770 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1771 	if (err)
1772 		return err;
1773 
1774 	/* check whether atomic_add can write into the same memory */
1775 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1776 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1777 }
1778 
1779 /* when register 'regno' is passed into function that will read 'access_size'
1780  * bytes from that pointer, make sure that it's within stack boundary
1781  * and all elements of stack are initialized.
1782  * Unlike most pointer bounds-checking functions, this one doesn't take an
1783  * 'off' argument, so it has to add in reg->off itself.
1784  */
1785 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1786 				int access_size, bool zero_size_allowed,
1787 				struct bpf_call_arg_meta *meta)
1788 {
1789 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1790 	struct bpf_func_state *state = func(env, reg);
1791 	int off, i, slot, spi;
1792 
1793 	if (reg->type != PTR_TO_STACK) {
1794 		/* Allow zero-byte read from NULL, regardless of pointer type */
1795 		if (zero_size_allowed && access_size == 0 &&
1796 		    register_is_null(reg))
1797 			return 0;
1798 
1799 		verbose(env, "R%d type=%s expected=%s\n", regno,
1800 			reg_type_str[reg->type],
1801 			reg_type_str[PTR_TO_STACK]);
1802 		return -EACCES;
1803 	}
1804 
1805 	/* Only allow fixed-offset stack reads */
1806 	if (!tnum_is_const(reg->var_off)) {
1807 		char tn_buf[48];
1808 
1809 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1810 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1811 			regno, tn_buf);
1812 		return -EACCES;
1813 	}
1814 	off = reg->off + reg->var_off.value;
1815 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1816 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1817 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1818 			regno, off, access_size);
1819 		return -EACCES;
1820 	}
1821 
1822 	if (meta && meta->raw_mode) {
1823 		meta->access_size = access_size;
1824 		meta->regno = regno;
1825 		return 0;
1826 	}
1827 
1828 	for (i = 0; i < access_size; i++) {
1829 		u8 *stype;
1830 
1831 		slot = -(off + i) - 1;
1832 		spi = slot / BPF_REG_SIZE;
1833 		if (state->allocated_stack <= slot)
1834 			goto err;
1835 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1836 		if (*stype == STACK_MISC)
1837 			goto mark;
1838 		if (*stype == STACK_ZERO) {
1839 			/* helper can write anything into the stack */
1840 			*stype = STACK_MISC;
1841 			goto mark;
1842 		}
1843 err:
1844 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1845 			off, i, access_size);
1846 		return -EACCES;
1847 mark:
1848 		/* reading any byte out of 8-byte 'spill_slot' will cause
1849 		 * the whole slot to be marked as 'read'
1850 		 */
1851 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1852 				     spi, state->frameno);
1853 	}
1854 	return update_stack_depth(env, state, off);
1855 }
1856 
1857 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1858 				   int access_size, bool zero_size_allowed,
1859 				   struct bpf_call_arg_meta *meta)
1860 {
1861 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1862 
1863 	switch (reg->type) {
1864 	case PTR_TO_PACKET:
1865 	case PTR_TO_PACKET_META:
1866 		return check_packet_access(env, regno, reg->off, access_size,
1867 					   zero_size_allowed);
1868 	case PTR_TO_MAP_VALUE:
1869 		return check_map_access(env, regno, reg->off, access_size,
1870 					zero_size_allowed);
1871 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1872 		return check_stack_boundary(env, regno, access_size,
1873 					    zero_size_allowed, meta);
1874 	}
1875 }
1876 
1877 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1878 {
1879 	return type == ARG_PTR_TO_MEM ||
1880 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1881 	       type == ARG_PTR_TO_UNINIT_MEM;
1882 }
1883 
1884 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1885 {
1886 	return type == ARG_CONST_SIZE ||
1887 	       type == ARG_CONST_SIZE_OR_ZERO;
1888 }
1889 
1890 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1891 			  enum bpf_arg_type arg_type,
1892 			  struct bpf_call_arg_meta *meta)
1893 {
1894 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1895 	enum bpf_reg_type expected_type, type = reg->type;
1896 	int err = 0;
1897 
1898 	if (arg_type == ARG_DONTCARE)
1899 		return 0;
1900 
1901 	err = check_reg_arg(env, regno, SRC_OP);
1902 	if (err)
1903 		return err;
1904 
1905 	if (arg_type == ARG_ANYTHING) {
1906 		if (is_pointer_value(env, regno)) {
1907 			verbose(env, "R%d leaks addr into helper function\n",
1908 				regno);
1909 			return -EACCES;
1910 		}
1911 		return 0;
1912 	}
1913 
1914 	if (type_is_pkt_pointer(type) &&
1915 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1916 		verbose(env, "helper access to the packet is not allowed\n");
1917 		return -EACCES;
1918 	}
1919 
1920 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1921 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1922 		expected_type = PTR_TO_STACK;
1923 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1924 		    type != expected_type)
1925 			goto err_type;
1926 	} else if (arg_type == ARG_CONST_SIZE ||
1927 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1928 		expected_type = SCALAR_VALUE;
1929 		if (type != expected_type)
1930 			goto err_type;
1931 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1932 		expected_type = CONST_PTR_TO_MAP;
1933 		if (type != expected_type)
1934 			goto err_type;
1935 	} else if (arg_type == ARG_PTR_TO_CTX) {
1936 		expected_type = PTR_TO_CTX;
1937 		if (type != expected_type)
1938 			goto err_type;
1939 	} else if (arg_type_is_mem_ptr(arg_type)) {
1940 		expected_type = PTR_TO_STACK;
1941 		/* One exception here. In case function allows for NULL to be
1942 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1943 		 * happens during stack boundary checking.
1944 		 */
1945 		if (register_is_null(reg) &&
1946 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1947 			/* final test in check_stack_boundary() */;
1948 		else if (!type_is_pkt_pointer(type) &&
1949 			 type != PTR_TO_MAP_VALUE &&
1950 			 type != expected_type)
1951 			goto err_type;
1952 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1953 	} else {
1954 		verbose(env, "unsupported arg_type %d\n", arg_type);
1955 		return -EFAULT;
1956 	}
1957 
1958 	if (arg_type == ARG_CONST_MAP_PTR) {
1959 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1960 		meta->map_ptr = reg->map_ptr;
1961 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1962 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1963 		 * check that [key, key + map->key_size) are within
1964 		 * stack limits and initialized
1965 		 */
1966 		if (!meta->map_ptr) {
1967 			/* in function declaration map_ptr must come before
1968 			 * map_key, so that it's verified and known before
1969 			 * we have to check map_key here. Otherwise it means
1970 			 * that kernel subsystem misconfigured verifier
1971 			 */
1972 			verbose(env, "invalid map_ptr to access map->key\n");
1973 			return -EACCES;
1974 		}
1975 		err = check_helper_mem_access(env, regno,
1976 					      meta->map_ptr->key_size, false,
1977 					      NULL);
1978 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1979 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1980 		 * check [value, value + map->value_size) validity
1981 		 */
1982 		if (!meta->map_ptr) {
1983 			/* kernel subsystem misconfigured verifier */
1984 			verbose(env, "invalid map_ptr to access map->value\n");
1985 			return -EACCES;
1986 		}
1987 		err = check_helper_mem_access(env, regno,
1988 					      meta->map_ptr->value_size, false,
1989 					      NULL);
1990 	} else if (arg_type_is_mem_size(arg_type)) {
1991 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1992 
1993 		/* remember the mem_size which may be used later
1994 		 * to refine return values.
1995 		 */
1996 		meta->msize_smax_value = reg->smax_value;
1997 		meta->msize_umax_value = reg->umax_value;
1998 
1999 		/* The register is SCALAR_VALUE; the access check
2000 		 * happens using its boundaries.
2001 		 */
2002 		if (!tnum_is_const(reg->var_off))
2003 			/* For unprivileged variable accesses, disable raw
2004 			 * mode so that the program is required to
2005 			 * initialize all the memory that the helper could
2006 			 * just partially fill up.
2007 			 */
2008 			meta = NULL;
2009 
2010 		if (reg->smin_value < 0) {
2011 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2012 				regno);
2013 			return -EACCES;
2014 		}
2015 
2016 		if (reg->umin_value == 0) {
2017 			err = check_helper_mem_access(env, regno - 1, 0,
2018 						      zero_size_allowed,
2019 						      meta);
2020 			if (err)
2021 				return err;
2022 		}
2023 
2024 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2025 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2026 				regno);
2027 			return -EACCES;
2028 		}
2029 		err = check_helper_mem_access(env, regno - 1,
2030 					      reg->umax_value,
2031 					      zero_size_allowed, meta);
2032 	}
2033 
2034 	return err;
2035 err_type:
2036 	verbose(env, "R%d type=%s expected=%s\n", regno,
2037 		reg_type_str[type], reg_type_str[expected_type]);
2038 	return -EACCES;
2039 }
2040 
2041 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2042 					struct bpf_map *map, int func_id)
2043 {
2044 	if (!map)
2045 		return 0;
2046 
2047 	/* We need a two way check, first is from map perspective ... */
2048 	switch (map->map_type) {
2049 	case BPF_MAP_TYPE_PROG_ARRAY:
2050 		if (func_id != BPF_FUNC_tail_call)
2051 			goto error;
2052 		break;
2053 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2054 		if (func_id != BPF_FUNC_perf_event_read &&
2055 		    func_id != BPF_FUNC_perf_event_output &&
2056 		    func_id != BPF_FUNC_perf_event_read_value)
2057 			goto error;
2058 		break;
2059 	case BPF_MAP_TYPE_STACK_TRACE:
2060 		if (func_id != BPF_FUNC_get_stackid)
2061 			goto error;
2062 		break;
2063 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2064 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2065 		    func_id != BPF_FUNC_current_task_under_cgroup)
2066 			goto error;
2067 		break;
2068 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2069 	 * allow to be modified from bpf side. So do not allow lookup elements
2070 	 * for now.
2071 	 */
2072 	case BPF_MAP_TYPE_DEVMAP:
2073 		if (func_id != BPF_FUNC_redirect_map)
2074 			goto error;
2075 		break;
2076 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2077 	 * appear.
2078 	 */
2079 	case BPF_MAP_TYPE_CPUMAP:
2080 	case BPF_MAP_TYPE_XSKMAP:
2081 		if (func_id != BPF_FUNC_redirect_map)
2082 			goto error;
2083 		break;
2084 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2085 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2086 		if (func_id != BPF_FUNC_map_lookup_elem)
2087 			goto error;
2088 		break;
2089 	case BPF_MAP_TYPE_SOCKMAP:
2090 		if (func_id != BPF_FUNC_sk_redirect_map &&
2091 		    func_id != BPF_FUNC_sock_map_update &&
2092 		    func_id != BPF_FUNC_map_delete_elem &&
2093 		    func_id != BPF_FUNC_msg_redirect_map)
2094 			goto error;
2095 		break;
2096 	case BPF_MAP_TYPE_SOCKHASH:
2097 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2098 		    func_id != BPF_FUNC_sock_hash_update &&
2099 		    func_id != BPF_FUNC_map_delete_elem &&
2100 		    func_id != BPF_FUNC_msg_redirect_hash)
2101 			goto error;
2102 		break;
2103 	default:
2104 		break;
2105 	}
2106 
2107 	/* ... and second from the function itself. */
2108 	switch (func_id) {
2109 	case BPF_FUNC_tail_call:
2110 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2111 			goto error;
2112 		if (env->subprog_cnt > 1) {
2113 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2114 			return -EINVAL;
2115 		}
2116 		break;
2117 	case BPF_FUNC_perf_event_read:
2118 	case BPF_FUNC_perf_event_output:
2119 	case BPF_FUNC_perf_event_read_value:
2120 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2121 			goto error;
2122 		break;
2123 	case BPF_FUNC_get_stackid:
2124 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2125 			goto error;
2126 		break;
2127 	case BPF_FUNC_current_task_under_cgroup:
2128 	case BPF_FUNC_skb_under_cgroup:
2129 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2130 			goto error;
2131 		break;
2132 	case BPF_FUNC_redirect_map:
2133 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2134 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2135 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2136 			goto error;
2137 		break;
2138 	case BPF_FUNC_sk_redirect_map:
2139 	case BPF_FUNC_msg_redirect_map:
2140 	case BPF_FUNC_sock_map_update:
2141 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2142 			goto error;
2143 		break;
2144 	case BPF_FUNC_sk_redirect_hash:
2145 	case BPF_FUNC_msg_redirect_hash:
2146 	case BPF_FUNC_sock_hash_update:
2147 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2148 			goto error;
2149 		break;
2150 	default:
2151 		break;
2152 	}
2153 
2154 	return 0;
2155 error:
2156 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2157 		map->map_type, func_id_name(func_id), func_id);
2158 	return -EINVAL;
2159 }
2160 
2161 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2162 {
2163 	int count = 0;
2164 
2165 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2166 		count++;
2167 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2168 		count++;
2169 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2170 		count++;
2171 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2172 		count++;
2173 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2174 		count++;
2175 
2176 	/* We only support one arg being in raw mode at the moment,
2177 	 * which is sufficient for the helper functions we have
2178 	 * right now.
2179 	 */
2180 	return count <= 1;
2181 }
2182 
2183 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2184 				    enum bpf_arg_type arg_next)
2185 {
2186 	return (arg_type_is_mem_ptr(arg_curr) &&
2187 	        !arg_type_is_mem_size(arg_next)) ||
2188 	       (!arg_type_is_mem_ptr(arg_curr) &&
2189 		arg_type_is_mem_size(arg_next));
2190 }
2191 
2192 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2193 {
2194 	/* bpf_xxx(..., buf, len) call will access 'len'
2195 	 * bytes from memory 'buf'. Both arg types need
2196 	 * to be paired, so make sure there's no buggy
2197 	 * helper function specification.
2198 	 */
2199 	if (arg_type_is_mem_size(fn->arg1_type) ||
2200 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2201 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2202 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2203 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2204 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2205 		return false;
2206 
2207 	return true;
2208 }
2209 
2210 static int check_func_proto(const struct bpf_func_proto *fn)
2211 {
2212 	return check_raw_mode_ok(fn) &&
2213 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2214 }
2215 
2216 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2217  * are now invalid, so turn them into unknown SCALAR_VALUE.
2218  */
2219 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2220 				     struct bpf_func_state *state)
2221 {
2222 	struct bpf_reg_state *regs = state->regs, *reg;
2223 	int i;
2224 
2225 	for (i = 0; i < MAX_BPF_REG; i++)
2226 		if (reg_is_pkt_pointer_any(&regs[i]))
2227 			mark_reg_unknown(env, regs, i);
2228 
2229 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2230 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2231 			continue;
2232 		reg = &state->stack[i].spilled_ptr;
2233 		if (reg_is_pkt_pointer_any(reg))
2234 			__mark_reg_unknown(reg);
2235 	}
2236 }
2237 
2238 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2239 {
2240 	struct bpf_verifier_state *vstate = env->cur_state;
2241 	int i;
2242 
2243 	for (i = 0; i <= vstate->curframe; i++)
2244 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2245 }
2246 
2247 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2248 			   int *insn_idx)
2249 {
2250 	struct bpf_verifier_state *state = env->cur_state;
2251 	struct bpf_func_state *caller, *callee;
2252 	int i, subprog, target_insn;
2253 
2254 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2255 		verbose(env, "the call stack of %d frames is too deep\n",
2256 			state->curframe + 2);
2257 		return -E2BIG;
2258 	}
2259 
2260 	target_insn = *insn_idx + insn->imm;
2261 	subprog = find_subprog(env, target_insn + 1);
2262 	if (subprog < 0) {
2263 		verbose(env, "verifier bug. No program starts at insn %d\n",
2264 			target_insn + 1);
2265 		return -EFAULT;
2266 	}
2267 
2268 	caller = state->frame[state->curframe];
2269 	if (state->frame[state->curframe + 1]) {
2270 		verbose(env, "verifier bug. Frame %d already allocated\n",
2271 			state->curframe + 1);
2272 		return -EFAULT;
2273 	}
2274 
2275 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2276 	if (!callee)
2277 		return -ENOMEM;
2278 	state->frame[state->curframe + 1] = callee;
2279 
2280 	/* callee cannot access r0, r6 - r9 for reading and has to write
2281 	 * into its own stack before reading from it.
2282 	 * callee can read/write into caller's stack
2283 	 */
2284 	init_func_state(env, callee,
2285 			/* remember the callsite, it will be used by bpf_exit */
2286 			*insn_idx /* callsite */,
2287 			state->curframe + 1 /* frameno within this callchain */,
2288 			subprog /* subprog number within this prog */);
2289 
2290 	/* copy r1 - r5 args that callee can access */
2291 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2292 		callee->regs[i] = caller->regs[i];
2293 
2294 	/* after the call regsiters r0 - r5 were scratched */
2295 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2296 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2297 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2298 	}
2299 
2300 	/* only increment it after check_reg_arg() finished */
2301 	state->curframe++;
2302 
2303 	/* and go analyze first insn of the callee */
2304 	*insn_idx = target_insn;
2305 
2306 	if (env->log.level) {
2307 		verbose(env, "caller:\n");
2308 		print_verifier_state(env, caller);
2309 		verbose(env, "callee:\n");
2310 		print_verifier_state(env, callee);
2311 	}
2312 	return 0;
2313 }
2314 
2315 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2316 {
2317 	struct bpf_verifier_state *state = env->cur_state;
2318 	struct bpf_func_state *caller, *callee;
2319 	struct bpf_reg_state *r0;
2320 
2321 	callee = state->frame[state->curframe];
2322 	r0 = &callee->regs[BPF_REG_0];
2323 	if (r0->type == PTR_TO_STACK) {
2324 		/* technically it's ok to return caller's stack pointer
2325 		 * (or caller's caller's pointer) back to the caller,
2326 		 * since these pointers are valid. Only current stack
2327 		 * pointer will be invalid as soon as function exits,
2328 		 * but let's be conservative
2329 		 */
2330 		verbose(env, "cannot return stack pointer to the caller\n");
2331 		return -EINVAL;
2332 	}
2333 
2334 	state->curframe--;
2335 	caller = state->frame[state->curframe];
2336 	/* return to the caller whatever r0 had in the callee */
2337 	caller->regs[BPF_REG_0] = *r0;
2338 
2339 	*insn_idx = callee->callsite + 1;
2340 	if (env->log.level) {
2341 		verbose(env, "returning from callee:\n");
2342 		print_verifier_state(env, callee);
2343 		verbose(env, "to caller at %d:\n", *insn_idx);
2344 		print_verifier_state(env, caller);
2345 	}
2346 	/* clear everything in the callee */
2347 	free_func_state(callee);
2348 	state->frame[state->curframe + 1] = NULL;
2349 	return 0;
2350 }
2351 
2352 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2353 				   int func_id,
2354 				   struct bpf_call_arg_meta *meta)
2355 {
2356 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2357 
2358 	if (ret_type != RET_INTEGER ||
2359 	    (func_id != BPF_FUNC_get_stack &&
2360 	     func_id != BPF_FUNC_probe_read_str))
2361 		return;
2362 
2363 	ret_reg->smax_value = meta->msize_smax_value;
2364 	ret_reg->umax_value = meta->msize_umax_value;
2365 	__reg_deduce_bounds(ret_reg);
2366 	__reg_bound_offset(ret_reg);
2367 }
2368 
2369 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2370 {
2371 	const struct bpf_func_proto *fn = NULL;
2372 	struct bpf_reg_state *regs;
2373 	struct bpf_call_arg_meta meta;
2374 	bool changes_data;
2375 	int i, err;
2376 
2377 	/* find function prototype */
2378 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2379 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2380 			func_id);
2381 		return -EINVAL;
2382 	}
2383 
2384 	if (env->ops->get_func_proto)
2385 		fn = env->ops->get_func_proto(func_id, env->prog);
2386 	if (!fn) {
2387 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2388 			func_id);
2389 		return -EINVAL;
2390 	}
2391 
2392 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2393 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2394 		verbose(env, "cannot call GPL only function from proprietary program\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2399 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2400 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2401 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2402 			func_id_name(func_id), func_id);
2403 		return -EINVAL;
2404 	}
2405 
2406 	memset(&meta, 0, sizeof(meta));
2407 	meta.pkt_access = fn->pkt_access;
2408 
2409 	err = check_func_proto(fn);
2410 	if (err) {
2411 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2412 			func_id_name(func_id), func_id);
2413 		return err;
2414 	}
2415 
2416 	/* check args */
2417 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2418 	if (err)
2419 		return err;
2420 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2421 	if (err)
2422 		return err;
2423 	if (func_id == BPF_FUNC_tail_call) {
2424 		if (meta.map_ptr == NULL) {
2425 			verbose(env, "verifier bug\n");
2426 			return -EINVAL;
2427 		}
2428 		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2429 	}
2430 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2431 	if (err)
2432 		return err;
2433 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2434 	if (err)
2435 		return err;
2436 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2437 	if (err)
2438 		return err;
2439 
2440 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2441 	 * is inferred from register state.
2442 	 */
2443 	for (i = 0; i < meta.access_size; i++) {
2444 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2445 				       BPF_WRITE, -1, false);
2446 		if (err)
2447 			return err;
2448 	}
2449 
2450 	regs = cur_regs(env);
2451 	/* reset caller saved regs */
2452 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2453 		mark_reg_not_init(env, regs, caller_saved[i]);
2454 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2455 	}
2456 
2457 	/* update return register (already marked as written above) */
2458 	if (fn->ret_type == RET_INTEGER) {
2459 		/* sets type to SCALAR_VALUE */
2460 		mark_reg_unknown(env, regs, BPF_REG_0);
2461 	} else if (fn->ret_type == RET_VOID) {
2462 		regs[BPF_REG_0].type = NOT_INIT;
2463 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2464 		struct bpf_insn_aux_data *insn_aux;
2465 
2466 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2467 		/* There is no offset yet applied, variable or fixed */
2468 		mark_reg_known_zero(env, regs, BPF_REG_0);
2469 		regs[BPF_REG_0].off = 0;
2470 		/* remember map_ptr, so that check_map_access()
2471 		 * can check 'value_size' boundary of memory access
2472 		 * to map element returned from bpf_map_lookup_elem()
2473 		 */
2474 		if (meta.map_ptr == NULL) {
2475 			verbose(env,
2476 				"kernel subsystem misconfigured verifier\n");
2477 			return -EINVAL;
2478 		}
2479 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2480 		regs[BPF_REG_0].id = ++env->id_gen;
2481 		insn_aux = &env->insn_aux_data[insn_idx];
2482 		if (!insn_aux->map_ptr)
2483 			insn_aux->map_ptr = meta.map_ptr;
2484 		else if (insn_aux->map_ptr != meta.map_ptr)
2485 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2486 	} else {
2487 		verbose(env, "unknown return type %d of func %s#%d\n",
2488 			fn->ret_type, func_id_name(func_id), func_id);
2489 		return -EINVAL;
2490 	}
2491 
2492 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2493 
2494 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2495 	if (err)
2496 		return err;
2497 
2498 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2499 		const char *err_str;
2500 
2501 #ifdef CONFIG_PERF_EVENTS
2502 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2503 		err_str = "cannot get callchain buffer for func %s#%d\n";
2504 #else
2505 		err = -ENOTSUPP;
2506 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2507 #endif
2508 		if (err) {
2509 			verbose(env, err_str, func_id_name(func_id), func_id);
2510 			return err;
2511 		}
2512 
2513 		env->prog->has_callchain_buf = true;
2514 	}
2515 
2516 	if (changes_data)
2517 		clear_all_pkt_pointers(env);
2518 	return 0;
2519 }
2520 
2521 static bool signed_add_overflows(s64 a, s64 b)
2522 {
2523 	/* Do the add in u64, where overflow is well-defined */
2524 	s64 res = (s64)((u64)a + (u64)b);
2525 
2526 	if (b < 0)
2527 		return res > a;
2528 	return res < a;
2529 }
2530 
2531 static bool signed_sub_overflows(s64 a, s64 b)
2532 {
2533 	/* Do the sub in u64, where overflow is well-defined */
2534 	s64 res = (s64)((u64)a - (u64)b);
2535 
2536 	if (b < 0)
2537 		return res < a;
2538 	return res > a;
2539 }
2540 
2541 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2542 				  const struct bpf_reg_state *reg,
2543 				  enum bpf_reg_type type)
2544 {
2545 	bool known = tnum_is_const(reg->var_off);
2546 	s64 val = reg->var_off.value;
2547 	s64 smin = reg->smin_value;
2548 
2549 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2550 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2551 			reg_type_str[type], val);
2552 		return false;
2553 	}
2554 
2555 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2556 		verbose(env, "%s pointer offset %d is not allowed\n",
2557 			reg_type_str[type], reg->off);
2558 		return false;
2559 	}
2560 
2561 	if (smin == S64_MIN) {
2562 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2563 			reg_type_str[type]);
2564 		return false;
2565 	}
2566 
2567 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2568 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2569 			smin, reg_type_str[type]);
2570 		return false;
2571 	}
2572 
2573 	return true;
2574 }
2575 
2576 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2577  * Caller should also handle BPF_MOV case separately.
2578  * If we return -EACCES, caller may want to try again treating pointer as a
2579  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2580  */
2581 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2582 				   struct bpf_insn *insn,
2583 				   const struct bpf_reg_state *ptr_reg,
2584 				   const struct bpf_reg_state *off_reg)
2585 {
2586 	struct bpf_verifier_state *vstate = env->cur_state;
2587 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2588 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2589 	bool known = tnum_is_const(off_reg->var_off);
2590 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2591 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2592 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2593 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2594 	u8 opcode = BPF_OP(insn->code);
2595 	u32 dst = insn->dst_reg;
2596 
2597 	dst_reg = &regs[dst];
2598 
2599 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2600 	    smin_val > smax_val || umin_val > umax_val) {
2601 		/* Taint dst register if offset had invalid bounds derived from
2602 		 * e.g. dead branches.
2603 		 */
2604 		__mark_reg_unknown(dst_reg);
2605 		return 0;
2606 	}
2607 
2608 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2609 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2610 		verbose(env,
2611 			"R%d 32-bit pointer arithmetic prohibited\n",
2612 			dst);
2613 		return -EACCES;
2614 	}
2615 
2616 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2617 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2618 			dst);
2619 		return -EACCES;
2620 	}
2621 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2622 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2623 			dst);
2624 		return -EACCES;
2625 	}
2626 	if (ptr_reg->type == PTR_TO_PACKET_END) {
2627 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2628 			dst);
2629 		return -EACCES;
2630 	}
2631 
2632 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2633 	 * The id may be overwritten later if we create a new variable offset.
2634 	 */
2635 	dst_reg->type = ptr_reg->type;
2636 	dst_reg->id = ptr_reg->id;
2637 
2638 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2639 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2640 		return -EINVAL;
2641 
2642 	switch (opcode) {
2643 	case BPF_ADD:
2644 		/* We can take a fixed offset as long as it doesn't overflow
2645 		 * the s32 'off' field
2646 		 */
2647 		if (known && (ptr_reg->off + smin_val ==
2648 			      (s64)(s32)(ptr_reg->off + smin_val))) {
2649 			/* pointer += K.  Accumulate it into fixed offset */
2650 			dst_reg->smin_value = smin_ptr;
2651 			dst_reg->smax_value = smax_ptr;
2652 			dst_reg->umin_value = umin_ptr;
2653 			dst_reg->umax_value = umax_ptr;
2654 			dst_reg->var_off = ptr_reg->var_off;
2655 			dst_reg->off = ptr_reg->off + smin_val;
2656 			dst_reg->range = ptr_reg->range;
2657 			break;
2658 		}
2659 		/* A new variable offset is created.  Note that off_reg->off
2660 		 * == 0, since it's a scalar.
2661 		 * dst_reg gets the pointer type and since some positive
2662 		 * integer value was added to the pointer, give it a new 'id'
2663 		 * if it's a PTR_TO_PACKET.
2664 		 * this creates a new 'base' pointer, off_reg (variable) gets
2665 		 * added into the variable offset, and we copy the fixed offset
2666 		 * from ptr_reg.
2667 		 */
2668 		if (signed_add_overflows(smin_ptr, smin_val) ||
2669 		    signed_add_overflows(smax_ptr, smax_val)) {
2670 			dst_reg->smin_value = S64_MIN;
2671 			dst_reg->smax_value = S64_MAX;
2672 		} else {
2673 			dst_reg->smin_value = smin_ptr + smin_val;
2674 			dst_reg->smax_value = smax_ptr + smax_val;
2675 		}
2676 		if (umin_ptr + umin_val < umin_ptr ||
2677 		    umax_ptr + umax_val < umax_ptr) {
2678 			dst_reg->umin_value = 0;
2679 			dst_reg->umax_value = U64_MAX;
2680 		} else {
2681 			dst_reg->umin_value = umin_ptr + umin_val;
2682 			dst_reg->umax_value = umax_ptr + umax_val;
2683 		}
2684 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2685 		dst_reg->off = ptr_reg->off;
2686 		if (reg_is_pkt_pointer(ptr_reg)) {
2687 			dst_reg->id = ++env->id_gen;
2688 			/* something was added to pkt_ptr, set range to zero */
2689 			dst_reg->range = 0;
2690 		}
2691 		break;
2692 	case BPF_SUB:
2693 		if (dst_reg == off_reg) {
2694 			/* scalar -= pointer.  Creates an unknown scalar */
2695 			verbose(env, "R%d tried to subtract pointer from scalar\n",
2696 				dst);
2697 			return -EACCES;
2698 		}
2699 		/* We don't allow subtraction from FP, because (according to
2700 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2701 		 * be able to deal with it.
2702 		 */
2703 		if (ptr_reg->type == PTR_TO_STACK) {
2704 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2705 				dst);
2706 			return -EACCES;
2707 		}
2708 		if (known && (ptr_reg->off - smin_val ==
2709 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2710 			/* pointer -= K.  Subtract it from fixed offset */
2711 			dst_reg->smin_value = smin_ptr;
2712 			dst_reg->smax_value = smax_ptr;
2713 			dst_reg->umin_value = umin_ptr;
2714 			dst_reg->umax_value = umax_ptr;
2715 			dst_reg->var_off = ptr_reg->var_off;
2716 			dst_reg->id = ptr_reg->id;
2717 			dst_reg->off = ptr_reg->off - smin_val;
2718 			dst_reg->range = ptr_reg->range;
2719 			break;
2720 		}
2721 		/* A new variable offset is created.  If the subtrahend is known
2722 		 * nonnegative, then any reg->range we had before is still good.
2723 		 */
2724 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2725 		    signed_sub_overflows(smax_ptr, smin_val)) {
2726 			/* Overflow possible, we know nothing */
2727 			dst_reg->smin_value = S64_MIN;
2728 			dst_reg->smax_value = S64_MAX;
2729 		} else {
2730 			dst_reg->smin_value = smin_ptr - smax_val;
2731 			dst_reg->smax_value = smax_ptr - smin_val;
2732 		}
2733 		if (umin_ptr < umax_val) {
2734 			/* Overflow possible, we know nothing */
2735 			dst_reg->umin_value = 0;
2736 			dst_reg->umax_value = U64_MAX;
2737 		} else {
2738 			/* Cannot overflow (as long as bounds are consistent) */
2739 			dst_reg->umin_value = umin_ptr - umax_val;
2740 			dst_reg->umax_value = umax_ptr - umin_val;
2741 		}
2742 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2743 		dst_reg->off = ptr_reg->off;
2744 		if (reg_is_pkt_pointer(ptr_reg)) {
2745 			dst_reg->id = ++env->id_gen;
2746 			/* something was added to pkt_ptr, set range to zero */
2747 			if (smin_val < 0)
2748 				dst_reg->range = 0;
2749 		}
2750 		break;
2751 	case BPF_AND:
2752 	case BPF_OR:
2753 	case BPF_XOR:
2754 		/* bitwise ops on pointers are troublesome, prohibit. */
2755 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2756 			dst, bpf_alu_string[opcode >> 4]);
2757 		return -EACCES;
2758 	default:
2759 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2760 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2761 			dst, bpf_alu_string[opcode >> 4]);
2762 		return -EACCES;
2763 	}
2764 
2765 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2766 		return -EINVAL;
2767 
2768 	__update_reg_bounds(dst_reg);
2769 	__reg_deduce_bounds(dst_reg);
2770 	__reg_bound_offset(dst_reg);
2771 	return 0;
2772 }
2773 
2774 /* WARNING: This function does calculations on 64-bit values, but the actual
2775  * execution may occur on 32-bit values. Therefore, things like bitshifts
2776  * need extra checks in the 32-bit case.
2777  */
2778 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2779 				      struct bpf_insn *insn,
2780 				      struct bpf_reg_state *dst_reg,
2781 				      struct bpf_reg_state src_reg)
2782 {
2783 	struct bpf_reg_state *regs = cur_regs(env);
2784 	u8 opcode = BPF_OP(insn->code);
2785 	bool src_known, dst_known;
2786 	s64 smin_val, smax_val;
2787 	u64 umin_val, umax_val;
2788 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2789 
2790 	smin_val = src_reg.smin_value;
2791 	smax_val = src_reg.smax_value;
2792 	umin_val = src_reg.umin_value;
2793 	umax_val = src_reg.umax_value;
2794 	src_known = tnum_is_const(src_reg.var_off);
2795 	dst_known = tnum_is_const(dst_reg->var_off);
2796 
2797 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2798 	    smin_val > smax_val || umin_val > umax_val) {
2799 		/* Taint dst register if offset had invalid bounds derived from
2800 		 * e.g. dead branches.
2801 		 */
2802 		__mark_reg_unknown(dst_reg);
2803 		return 0;
2804 	}
2805 
2806 	if (!src_known &&
2807 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2808 		__mark_reg_unknown(dst_reg);
2809 		return 0;
2810 	}
2811 
2812 	switch (opcode) {
2813 	case BPF_ADD:
2814 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2815 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2816 			dst_reg->smin_value = S64_MIN;
2817 			dst_reg->smax_value = S64_MAX;
2818 		} else {
2819 			dst_reg->smin_value += smin_val;
2820 			dst_reg->smax_value += smax_val;
2821 		}
2822 		if (dst_reg->umin_value + umin_val < umin_val ||
2823 		    dst_reg->umax_value + umax_val < umax_val) {
2824 			dst_reg->umin_value = 0;
2825 			dst_reg->umax_value = U64_MAX;
2826 		} else {
2827 			dst_reg->umin_value += umin_val;
2828 			dst_reg->umax_value += umax_val;
2829 		}
2830 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2831 		break;
2832 	case BPF_SUB:
2833 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2834 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2835 			/* Overflow possible, we know nothing */
2836 			dst_reg->smin_value = S64_MIN;
2837 			dst_reg->smax_value = S64_MAX;
2838 		} else {
2839 			dst_reg->smin_value -= smax_val;
2840 			dst_reg->smax_value -= smin_val;
2841 		}
2842 		if (dst_reg->umin_value < umax_val) {
2843 			/* Overflow possible, we know nothing */
2844 			dst_reg->umin_value = 0;
2845 			dst_reg->umax_value = U64_MAX;
2846 		} else {
2847 			/* Cannot overflow (as long as bounds are consistent) */
2848 			dst_reg->umin_value -= umax_val;
2849 			dst_reg->umax_value -= umin_val;
2850 		}
2851 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2852 		break;
2853 	case BPF_MUL:
2854 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2855 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2856 			/* Ain't nobody got time to multiply that sign */
2857 			__mark_reg_unbounded(dst_reg);
2858 			__update_reg_bounds(dst_reg);
2859 			break;
2860 		}
2861 		/* Both values are positive, so we can work with unsigned and
2862 		 * copy the result to signed (unless it exceeds S64_MAX).
2863 		 */
2864 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2865 			/* Potential overflow, we know nothing */
2866 			__mark_reg_unbounded(dst_reg);
2867 			/* (except what we can learn from the var_off) */
2868 			__update_reg_bounds(dst_reg);
2869 			break;
2870 		}
2871 		dst_reg->umin_value *= umin_val;
2872 		dst_reg->umax_value *= umax_val;
2873 		if (dst_reg->umax_value > S64_MAX) {
2874 			/* Overflow possible, we know nothing */
2875 			dst_reg->smin_value = S64_MIN;
2876 			dst_reg->smax_value = S64_MAX;
2877 		} else {
2878 			dst_reg->smin_value = dst_reg->umin_value;
2879 			dst_reg->smax_value = dst_reg->umax_value;
2880 		}
2881 		break;
2882 	case BPF_AND:
2883 		if (src_known && dst_known) {
2884 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2885 						  src_reg.var_off.value);
2886 			break;
2887 		}
2888 		/* We get our minimum from the var_off, since that's inherently
2889 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2890 		 */
2891 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2892 		dst_reg->umin_value = dst_reg->var_off.value;
2893 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2894 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2895 			/* Lose signed bounds when ANDing negative numbers,
2896 			 * ain't nobody got time for that.
2897 			 */
2898 			dst_reg->smin_value = S64_MIN;
2899 			dst_reg->smax_value = S64_MAX;
2900 		} else {
2901 			/* ANDing two positives gives a positive, so safe to
2902 			 * cast result into s64.
2903 			 */
2904 			dst_reg->smin_value = dst_reg->umin_value;
2905 			dst_reg->smax_value = dst_reg->umax_value;
2906 		}
2907 		/* We may learn something more from the var_off */
2908 		__update_reg_bounds(dst_reg);
2909 		break;
2910 	case BPF_OR:
2911 		if (src_known && dst_known) {
2912 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2913 						  src_reg.var_off.value);
2914 			break;
2915 		}
2916 		/* We get our maximum from the var_off, and our minimum is the
2917 		 * maximum of the operands' minima
2918 		 */
2919 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2920 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2921 		dst_reg->umax_value = dst_reg->var_off.value |
2922 				      dst_reg->var_off.mask;
2923 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2924 			/* Lose signed bounds when ORing negative numbers,
2925 			 * ain't nobody got time for that.
2926 			 */
2927 			dst_reg->smin_value = S64_MIN;
2928 			dst_reg->smax_value = S64_MAX;
2929 		} else {
2930 			/* ORing two positives gives a positive, so safe to
2931 			 * cast result into s64.
2932 			 */
2933 			dst_reg->smin_value = dst_reg->umin_value;
2934 			dst_reg->smax_value = dst_reg->umax_value;
2935 		}
2936 		/* We may learn something more from the var_off */
2937 		__update_reg_bounds(dst_reg);
2938 		break;
2939 	case BPF_LSH:
2940 		if (umax_val >= insn_bitness) {
2941 			/* Shifts greater than 31 or 63 are undefined.
2942 			 * This includes shifts by a negative number.
2943 			 */
2944 			mark_reg_unknown(env, regs, insn->dst_reg);
2945 			break;
2946 		}
2947 		/* We lose all sign bit information (except what we can pick
2948 		 * up from var_off)
2949 		 */
2950 		dst_reg->smin_value = S64_MIN;
2951 		dst_reg->smax_value = S64_MAX;
2952 		/* If we might shift our top bit out, then we know nothing */
2953 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2954 			dst_reg->umin_value = 0;
2955 			dst_reg->umax_value = U64_MAX;
2956 		} else {
2957 			dst_reg->umin_value <<= umin_val;
2958 			dst_reg->umax_value <<= umax_val;
2959 		}
2960 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2961 		/* We may learn something more from the var_off */
2962 		__update_reg_bounds(dst_reg);
2963 		break;
2964 	case BPF_RSH:
2965 		if (umax_val >= insn_bitness) {
2966 			/* Shifts greater than 31 or 63 are undefined.
2967 			 * This includes shifts by a negative number.
2968 			 */
2969 			mark_reg_unknown(env, regs, insn->dst_reg);
2970 			break;
2971 		}
2972 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
2973 		 * be negative, then either:
2974 		 * 1) src_reg might be zero, so the sign bit of the result is
2975 		 *    unknown, so we lose our signed bounds
2976 		 * 2) it's known negative, thus the unsigned bounds capture the
2977 		 *    signed bounds
2978 		 * 3) the signed bounds cross zero, so they tell us nothing
2979 		 *    about the result
2980 		 * If the value in dst_reg is known nonnegative, then again the
2981 		 * unsigned bounts capture the signed bounds.
2982 		 * Thus, in all cases it suffices to blow away our signed bounds
2983 		 * and rely on inferring new ones from the unsigned bounds and
2984 		 * var_off of the result.
2985 		 */
2986 		dst_reg->smin_value = S64_MIN;
2987 		dst_reg->smax_value = S64_MAX;
2988 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2989 		dst_reg->umin_value >>= umax_val;
2990 		dst_reg->umax_value >>= umin_val;
2991 		/* We may learn something more from the var_off */
2992 		__update_reg_bounds(dst_reg);
2993 		break;
2994 	case BPF_ARSH:
2995 		if (umax_val >= insn_bitness) {
2996 			/* Shifts greater than 31 or 63 are undefined.
2997 			 * This includes shifts by a negative number.
2998 			 */
2999 			mark_reg_unknown(env, regs, insn->dst_reg);
3000 			break;
3001 		}
3002 
3003 		/* Upon reaching here, src_known is true and
3004 		 * umax_val is equal to umin_val.
3005 		 */
3006 		dst_reg->smin_value >>= umin_val;
3007 		dst_reg->smax_value >>= umin_val;
3008 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3009 
3010 		/* blow away the dst_reg umin_value/umax_value and rely on
3011 		 * dst_reg var_off to refine the result.
3012 		 */
3013 		dst_reg->umin_value = 0;
3014 		dst_reg->umax_value = U64_MAX;
3015 		__update_reg_bounds(dst_reg);
3016 		break;
3017 	default:
3018 		mark_reg_unknown(env, regs, insn->dst_reg);
3019 		break;
3020 	}
3021 
3022 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3023 		/* 32-bit ALU ops are (32,32)->32 */
3024 		coerce_reg_to_size(dst_reg, 4);
3025 		coerce_reg_to_size(&src_reg, 4);
3026 	}
3027 
3028 	__reg_deduce_bounds(dst_reg);
3029 	__reg_bound_offset(dst_reg);
3030 	return 0;
3031 }
3032 
3033 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3034  * and var_off.
3035  */
3036 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3037 				   struct bpf_insn *insn)
3038 {
3039 	struct bpf_verifier_state *vstate = env->cur_state;
3040 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3041 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3042 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3043 	u8 opcode = BPF_OP(insn->code);
3044 
3045 	dst_reg = &regs[insn->dst_reg];
3046 	src_reg = NULL;
3047 	if (dst_reg->type != SCALAR_VALUE)
3048 		ptr_reg = dst_reg;
3049 	if (BPF_SRC(insn->code) == BPF_X) {
3050 		src_reg = &regs[insn->src_reg];
3051 		if (src_reg->type != SCALAR_VALUE) {
3052 			if (dst_reg->type != SCALAR_VALUE) {
3053 				/* Combining two pointers by any ALU op yields
3054 				 * an arbitrary scalar. Disallow all math except
3055 				 * pointer subtraction
3056 				 */
3057 				if (opcode == BPF_SUB){
3058 					mark_reg_unknown(env, regs, insn->dst_reg);
3059 					return 0;
3060 				}
3061 				verbose(env, "R%d pointer %s pointer prohibited\n",
3062 					insn->dst_reg,
3063 					bpf_alu_string[opcode >> 4]);
3064 				return -EACCES;
3065 			} else {
3066 				/* scalar += pointer
3067 				 * This is legal, but we have to reverse our
3068 				 * src/dest handling in computing the range
3069 				 */
3070 				return adjust_ptr_min_max_vals(env, insn,
3071 							       src_reg, dst_reg);
3072 			}
3073 		} else if (ptr_reg) {
3074 			/* pointer += scalar */
3075 			return adjust_ptr_min_max_vals(env, insn,
3076 						       dst_reg, src_reg);
3077 		}
3078 	} else {
3079 		/* Pretend the src is a reg with a known value, since we only
3080 		 * need to be able to read from this state.
3081 		 */
3082 		off_reg.type = SCALAR_VALUE;
3083 		__mark_reg_known(&off_reg, insn->imm);
3084 		src_reg = &off_reg;
3085 		if (ptr_reg) /* pointer += K */
3086 			return adjust_ptr_min_max_vals(env, insn,
3087 						       ptr_reg, src_reg);
3088 	}
3089 
3090 	/* Got here implies adding two SCALAR_VALUEs */
3091 	if (WARN_ON_ONCE(ptr_reg)) {
3092 		print_verifier_state(env, state);
3093 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3094 		return -EINVAL;
3095 	}
3096 	if (WARN_ON(!src_reg)) {
3097 		print_verifier_state(env, state);
3098 		verbose(env, "verifier internal error: no src_reg\n");
3099 		return -EINVAL;
3100 	}
3101 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3102 }
3103 
3104 /* check validity of 32-bit and 64-bit arithmetic operations */
3105 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3106 {
3107 	struct bpf_reg_state *regs = cur_regs(env);
3108 	u8 opcode = BPF_OP(insn->code);
3109 	int err;
3110 
3111 	if (opcode == BPF_END || opcode == BPF_NEG) {
3112 		if (opcode == BPF_NEG) {
3113 			if (BPF_SRC(insn->code) != 0 ||
3114 			    insn->src_reg != BPF_REG_0 ||
3115 			    insn->off != 0 || insn->imm != 0) {
3116 				verbose(env, "BPF_NEG uses reserved fields\n");
3117 				return -EINVAL;
3118 			}
3119 		} else {
3120 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3121 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3122 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3123 				verbose(env, "BPF_END uses reserved fields\n");
3124 				return -EINVAL;
3125 			}
3126 		}
3127 
3128 		/* check src operand */
3129 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3130 		if (err)
3131 			return err;
3132 
3133 		if (is_pointer_value(env, insn->dst_reg)) {
3134 			verbose(env, "R%d pointer arithmetic prohibited\n",
3135 				insn->dst_reg);
3136 			return -EACCES;
3137 		}
3138 
3139 		/* check dest operand */
3140 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3141 		if (err)
3142 			return err;
3143 
3144 	} else if (opcode == BPF_MOV) {
3145 
3146 		if (BPF_SRC(insn->code) == BPF_X) {
3147 			if (insn->imm != 0 || insn->off != 0) {
3148 				verbose(env, "BPF_MOV uses reserved fields\n");
3149 				return -EINVAL;
3150 			}
3151 
3152 			/* check src operand */
3153 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3154 			if (err)
3155 				return err;
3156 		} else {
3157 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3158 				verbose(env, "BPF_MOV uses reserved fields\n");
3159 				return -EINVAL;
3160 			}
3161 		}
3162 
3163 		/* check dest operand */
3164 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3165 		if (err)
3166 			return err;
3167 
3168 		if (BPF_SRC(insn->code) == BPF_X) {
3169 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3170 				/* case: R1 = R2
3171 				 * copy register state to dest reg
3172 				 */
3173 				regs[insn->dst_reg] = regs[insn->src_reg];
3174 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3175 			} else {
3176 				/* R1 = (u32) R2 */
3177 				if (is_pointer_value(env, insn->src_reg)) {
3178 					verbose(env,
3179 						"R%d partial copy of pointer\n",
3180 						insn->src_reg);
3181 					return -EACCES;
3182 				}
3183 				mark_reg_unknown(env, regs, insn->dst_reg);
3184 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3185 			}
3186 		} else {
3187 			/* case: R = imm
3188 			 * remember the value we stored into this reg
3189 			 */
3190 			regs[insn->dst_reg].type = SCALAR_VALUE;
3191 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3192 				__mark_reg_known(regs + insn->dst_reg,
3193 						 insn->imm);
3194 			} else {
3195 				__mark_reg_known(regs + insn->dst_reg,
3196 						 (u32)insn->imm);
3197 			}
3198 		}
3199 
3200 	} else if (opcode > BPF_END) {
3201 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3202 		return -EINVAL;
3203 
3204 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3205 
3206 		if (BPF_SRC(insn->code) == BPF_X) {
3207 			if (insn->imm != 0 || insn->off != 0) {
3208 				verbose(env, "BPF_ALU uses reserved fields\n");
3209 				return -EINVAL;
3210 			}
3211 			/* check src1 operand */
3212 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3213 			if (err)
3214 				return err;
3215 		} else {
3216 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3217 				verbose(env, "BPF_ALU uses reserved fields\n");
3218 				return -EINVAL;
3219 			}
3220 		}
3221 
3222 		/* check src2 operand */
3223 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3224 		if (err)
3225 			return err;
3226 
3227 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3228 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3229 			verbose(env, "div by zero\n");
3230 			return -EINVAL;
3231 		}
3232 
3233 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3234 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3235 			return -EINVAL;
3236 		}
3237 
3238 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3239 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3240 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3241 
3242 			if (insn->imm < 0 || insn->imm >= size) {
3243 				verbose(env, "invalid shift %d\n", insn->imm);
3244 				return -EINVAL;
3245 			}
3246 		}
3247 
3248 		/* check dest operand */
3249 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3250 		if (err)
3251 			return err;
3252 
3253 		return adjust_reg_min_max_vals(env, insn);
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3260 				   struct bpf_reg_state *dst_reg,
3261 				   enum bpf_reg_type type,
3262 				   bool range_right_open)
3263 {
3264 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3265 	struct bpf_reg_state *regs = state->regs, *reg;
3266 	u16 new_range;
3267 	int i, j;
3268 
3269 	if (dst_reg->off < 0 ||
3270 	    (dst_reg->off == 0 && range_right_open))
3271 		/* This doesn't give us any range */
3272 		return;
3273 
3274 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3275 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3276 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3277 		 * than pkt_end, but that's because it's also less than pkt.
3278 		 */
3279 		return;
3280 
3281 	new_range = dst_reg->off;
3282 	if (range_right_open)
3283 		new_range--;
3284 
3285 	/* Examples for register markings:
3286 	 *
3287 	 * pkt_data in dst register:
3288 	 *
3289 	 *   r2 = r3;
3290 	 *   r2 += 8;
3291 	 *   if (r2 > pkt_end) goto <handle exception>
3292 	 *   <access okay>
3293 	 *
3294 	 *   r2 = r3;
3295 	 *   r2 += 8;
3296 	 *   if (r2 < pkt_end) goto <access okay>
3297 	 *   <handle exception>
3298 	 *
3299 	 *   Where:
3300 	 *     r2 == dst_reg, pkt_end == src_reg
3301 	 *     r2=pkt(id=n,off=8,r=0)
3302 	 *     r3=pkt(id=n,off=0,r=0)
3303 	 *
3304 	 * pkt_data in src register:
3305 	 *
3306 	 *   r2 = r3;
3307 	 *   r2 += 8;
3308 	 *   if (pkt_end >= r2) goto <access okay>
3309 	 *   <handle exception>
3310 	 *
3311 	 *   r2 = r3;
3312 	 *   r2 += 8;
3313 	 *   if (pkt_end <= r2) goto <handle exception>
3314 	 *   <access okay>
3315 	 *
3316 	 *   Where:
3317 	 *     pkt_end == dst_reg, r2 == src_reg
3318 	 *     r2=pkt(id=n,off=8,r=0)
3319 	 *     r3=pkt(id=n,off=0,r=0)
3320 	 *
3321 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3322 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3323 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3324 	 * the check.
3325 	 */
3326 
3327 	/* If our ids match, then we must have the same max_value.  And we
3328 	 * don't care about the other reg's fixed offset, since if it's too big
3329 	 * the range won't allow anything.
3330 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3331 	 */
3332 	for (i = 0; i < MAX_BPF_REG; i++)
3333 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3334 			/* keep the maximum range already checked */
3335 			regs[i].range = max(regs[i].range, new_range);
3336 
3337 	for (j = 0; j <= vstate->curframe; j++) {
3338 		state = vstate->frame[j];
3339 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3340 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3341 				continue;
3342 			reg = &state->stack[i].spilled_ptr;
3343 			if (reg->type == type && reg->id == dst_reg->id)
3344 				reg->range = max(reg->range, new_range);
3345 		}
3346 	}
3347 }
3348 
3349 /* Adjusts the register min/max values in the case that the dst_reg is the
3350  * variable register that we are working on, and src_reg is a constant or we're
3351  * simply doing a BPF_K check.
3352  * In JEQ/JNE cases we also adjust the var_off values.
3353  */
3354 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3355 			    struct bpf_reg_state *false_reg, u64 val,
3356 			    u8 opcode)
3357 {
3358 	/* If the dst_reg is a pointer, we can't learn anything about its
3359 	 * variable offset from the compare (unless src_reg were a pointer into
3360 	 * the same object, but we don't bother with that.
3361 	 * Since false_reg and true_reg have the same type by construction, we
3362 	 * only need to check one of them for pointerness.
3363 	 */
3364 	if (__is_pointer_value(false, false_reg))
3365 		return;
3366 
3367 	switch (opcode) {
3368 	case BPF_JEQ:
3369 		/* If this is false then we know nothing Jon Snow, but if it is
3370 		 * true then we know for sure.
3371 		 */
3372 		__mark_reg_known(true_reg, val);
3373 		break;
3374 	case BPF_JNE:
3375 		/* If this is true we know nothing Jon Snow, but if it is false
3376 		 * we know the value for sure;
3377 		 */
3378 		__mark_reg_known(false_reg, val);
3379 		break;
3380 	case BPF_JGT:
3381 		false_reg->umax_value = min(false_reg->umax_value, val);
3382 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3383 		break;
3384 	case BPF_JSGT:
3385 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3386 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3387 		break;
3388 	case BPF_JLT:
3389 		false_reg->umin_value = max(false_reg->umin_value, val);
3390 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3391 		break;
3392 	case BPF_JSLT:
3393 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3394 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3395 		break;
3396 	case BPF_JGE:
3397 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3398 		true_reg->umin_value = max(true_reg->umin_value, val);
3399 		break;
3400 	case BPF_JSGE:
3401 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3402 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3403 		break;
3404 	case BPF_JLE:
3405 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3406 		true_reg->umax_value = min(true_reg->umax_value, val);
3407 		break;
3408 	case BPF_JSLE:
3409 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3410 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3411 		break;
3412 	default:
3413 		break;
3414 	}
3415 
3416 	__reg_deduce_bounds(false_reg);
3417 	__reg_deduce_bounds(true_reg);
3418 	/* We might have learned some bits from the bounds. */
3419 	__reg_bound_offset(false_reg);
3420 	__reg_bound_offset(true_reg);
3421 	/* Intersecting with the old var_off might have improved our bounds
3422 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3423 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3424 	 */
3425 	__update_reg_bounds(false_reg);
3426 	__update_reg_bounds(true_reg);
3427 }
3428 
3429 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3430  * the variable reg.
3431  */
3432 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3433 				struct bpf_reg_state *false_reg, u64 val,
3434 				u8 opcode)
3435 {
3436 	if (__is_pointer_value(false, false_reg))
3437 		return;
3438 
3439 	switch (opcode) {
3440 	case BPF_JEQ:
3441 		/* If this is false then we know nothing Jon Snow, but if it is
3442 		 * true then we know for sure.
3443 		 */
3444 		__mark_reg_known(true_reg, val);
3445 		break;
3446 	case BPF_JNE:
3447 		/* If this is true we know nothing Jon Snow, but if it is false
3448 		 * we know the value for sure;
3449 		 */
3450 		__mark_reg_known(false_reg, val);
3451 		break;
3452 	case BPF_JGT:
3453 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3454 		false_reg->umin_value = max(false_reg->umin_value, val);
3455 		break;
3456 	case BPF_JSGT:
3457 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3458 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3459 		break;
3460 	case BPF_JLT:
3461 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3462 		false_reg->umax_value = min(false_reg->umax_value, val);
3463 		break;
3464 	case BPF_JSLT:
3465 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3466 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3467 		break;
3468 	case BPF_JGE:
3469 		true_reg->umax_value = min(true_reg->umax_value, val);
3470 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3471 		break;
3472 	case BPF_JSGE:
3473 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3474 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3475 		break;
3476 	case BPF_JLE:
3477 		true_reg->umin_value = max(true_reg->umin_value, val);
3478 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3479 		break;
3480 	case BPF_JSLE:
3481 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3482 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3483 		break;
3484 	default:
3485 		break;
3486 	}
3487 
3488 	__reg_deduce_bounds(false_reg);
3489 	__reg_deduce_bounds(true_reg);
3490 	/* We might have learned some bits from the bounds. */
3491 	__reg_bound_offset(false_reg);
3492 	__reg_bound_offset(true_reg);
3493 	/* Intersecting with the old var_off might have improved our bounds
3494 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3495 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3496 	 */
3497 	__update_reg_bounds(false_reg);
3498 	__update_reg_bounds(true_reg);
3499 }
3500 
3501 /* Regs are known to be equal, so intersect their min/max/var_off */
3502 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3503 				  struct bpf_reg_state *dst_reg)
3504 {
3505 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3506 							dst_reg->umin_value);
3507 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3508 							dst_reg->umax_value);
3509 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3510 							dst_reg->smin_value);
3511 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3512 							dst_reg->smax_value);
3513 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3514 							     dst_reg->var_off);
3515 	/* We might have learned new bounds from the var_off. */
3516 	__update_reg_bounds(src_reg);
3517 	__update_reg_bounds(dst_reg);
3518 	/* We might have learned something about the sign bit. */
3519 	__reg_deduce_bounds(src_reg);
3520 	__reg_deduce_bounds(dst_reg);
3521 	/* We might have learned some bits from the bounds. */
3522 	__reg_bound_offset(src_reg);
3523 	__reg_bound_offset(dst_reg);
3524 	/* Intersecting with the old var_off might have improved our bounds
3525 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3526 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3527 	 */
3528 	__update_reg_bounds(src_reg);
3529 	__update_reg_bounds(dst_reg);
3530 }
3531 
3532 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3533 				struct bpf_reg_state *true_dst,
3534 				struct bpf_reg_state *false_src,
3535 				struct bpf_reg_state *false_dst,
3536 				u8 opcode)
3537 {
3538 	switch (opcode) {
3539 	case BPF_JEQ:
3540 		__reg_combine_min_max(true_src, true_dst);
3541 		break;
3542 	case BPF_JNE:
3543 		__reg_combine_min_max(false_src, false_dst);
3544 		break;
3545 	}
3546 }
3547 
3548 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3549 			 bool is_null)
3550 {
3551 	struct bpf_reg_state *reg = &regs[regno];
3552 
3553 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3554 		/* Old offset (both fixed and variable parts) should
3555 		 * have been known-zero, because we don't allow pointer
3556 		 * arithmetic on pointers that might be NULL.
3557 		 */
3558 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3559 				 !tnum_equals_const(reg->var_off, 0) ||
3560 				 reg->off)) {
3561 			__mark_reg_known_zero(reg);
3562 			reg->off = 0;
3563 		}
3564 		if (is_null) {
3565 			reg->type = SCALAR_VALUE;
3566 		} else if (reg->map_ptr->inner_map_meta) {
3567 			reg->type = CONST_PTR_TO_MAP;
3568 			reg->map_ptr = reg->map_ptr->inner_map_meta;
3569 		} else {
3570 			reg->type = PTR_TO_MAP_VALUE;
3571 		}
3572 		/* We don't need id from this point onwards anymore, thus we
3573 		 * should better reset it, so that state pruning has chances
3574 		 * to take effect.
3575 		 */
3576 		reg->id = 0;
3577 	}
3578 }
3579 
3580 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3581  * be folded together at some point.
3582  */
3583 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3584 			  bool is_null)
3585 {
3586 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3587 	struct bpf_reg_state *regs = state->regs;
3588 	u32 id = regs[regno].id;
3589 	int i, j;
3590 
3591 	for (i = 0; i < MAX_BPF_REG; i++)
3592 		mark_map_reg(regs, i, id, is_null);
3593 
3594 	for (j = 0; j <= vstate->curframe; j++) {
3595 		state = vstate->frame[j];
3596 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3597 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3598 				continue;
3599 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3600 		}
3601 	}
3602 }
3603 
3604 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3605 				   struct bpf_reg_state *dst_reg,
3606 				   struct bpf_reg_state *src_reg,
3607 				   struct bpf_verifier_state *this_branch,
3608 				   struct bpf_verifier_state *other_branch)
3609 {
3610 	if (BPF_SRC(insn->code) != BPF_X)
3611 		return false;
3612 
3613 	switch (BPF_OP(insn->code)) {
3614 	case BPF_JGT:
3615 		if ((dst_reg->type == PTR_TO_PACKET &&
3616 		     src_reg->type == PTR_TO_PACKET_END) ||
3617 		    (dst_reg->type == PTR_TO_PACKET_META &&
3618 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3619 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3620 			find_good_pkt_pointers(this_branch, dst_reg,
3621 					       dst_reg->type, false);
3622 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3623 			    src_reg->type == PTR_TO_PACKET) ||
3624 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3625 			    src_reg->type == PTR_TO_PACKET_META)) {
3626 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
3627 			find_good_pkt_pointers(other_branch, src_reg,
3628 					       src_reg->type, true);
3629 		} else {
3630 			return false;
3631 		}
3632 		break;
3633 	case BPF_JLT:
3634 		if ((dst_reg->type == PTR_TO_PACKET &&
3635 		     src_reg->type == PTR_TO_PACKET_END) ||
3636 		    (dst_reg->type == PTR_TO_PACKET_META &&
3637 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3638 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3639 			find_good_pkt_pointers(other_branch, dst_reg,
3640 					       dst_reg->type, true);
3641 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3642 			    src_reg->type == PTR_TO_PACKET) ||
3643 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3644 			    src_reg->type == PTR_TO_PACKET_META)) {
3645 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
3646 			find_good_pkt_pointers(this_branch, src_reg,
3647 					       src_reg->type, false);
3648 		} else {
3649 			return false;
3650 		}
3651 		break;
3652 	case BPF_JGE:
3653 		if ((dst_reg->type == PTR_TO_PACKET &&
3654 		     src_reg->type == PTR_TO_PACKET_END) ||
3655 		    (dst_reg->type == PTR_TO_PACKET_META &&
3656 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3657 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3658 			find_good_pkt_pointers(this_branch, dst_reg,
3659 					       dst_reg->type, true);
3660 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3661 			    src_reg->type == PTR_TO_PACKET) ||
3662 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3663 			    src_reg->type == PTR_TO_PACKET_META)) {
3664 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3665 			find_good_pkt_pointers(other_branch, src_reg,
3666 					       src_reg->type, false);
3667 		} else {
3668 			return false;
3669 		}
3670 		break;
3671 	case BPF_JLE:
3672 		if ((dst_reg->type == PTR_TO_PACKET &&
3673 		     src_reg->type == PTR_TO_PACKET_END) ||
3674 		    (dst_reg->type == PTR_TO_PACKET_META &&
3675 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3676 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3677 			find_good_pkt_pointers(other_branch, dst_reg,
3678 					       dst_reg->type, false);
3679 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3680 			    src_reg->type == PTR_TO_PACKET) ||
3681 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3682 			    src_reg->type == PTR_TO_PACKET_META)) {
3683 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3684 			find_good_pkt_pointers(this_branch, src_reg,
3685 					       src_reg->type, true);
3686 		} else {
3687 			return false;
3688 		}
3689 		break;
3690 	default:
3691 		return false;
3692 	}
3693 
3694 	return true;
3695 }
3696 
3697 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3698 			     struct bpf_insn *insn, int *insn_idx)
3699 {
3700 	struct bpf_verifier_state *this_branch = env->cur_state;
3701 	struct bpf_verifier_state *other_branch;
3702 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3703 	struct bpf_reg_state *dst_reg, *other_branch_regs;
3704 	u8 opcode = BPF_OP(insn->code);
3705 	int err;
3706 
3707 	if (opcode > BPF_JSLE) {
3708 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3709 		return -EINVAL;
3710 	}
3711 
3712 	if (BPF_SRC(insn->code) == BPF_X) {
3713 		if (insn->imm != 0) {
3714 			verbose(env, "BPF_JMP uses reserved fields\n");
3715 			return -EINVAL;
3716 		}
3717 
3718 		/* check src1 operand */
3719 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3720 		if (err)
3721 			return err;
3722 
3723 		if (is_pointer_value(env, insn->src_reg)) {
3724 			verbose(env, "R%d pointer comparison prohibited\n",
3725 				insn->src_reg);
3726 			return -EACCES;
3727 		}
3728 	} else {
3729 		if (insn->src_reg != BPF_REG_0) {
3730 			verbose(env, "BPF_JMP uses reserved fields\n");
3731 			return -EINVAL;
3732 		}
3733 	}
3734 
3735 	/* check src2 operand */
3736 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3737 	if (err)
3738 		return err;
3739 
3740 	dst_reg = &regs[insn->dst_reg];
3741 
3742 	/* detect if R == 0 where R was initialized to zero earlier */
3743 	if (BPF_SRC(insn->code) == BPF_K &&
3744 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3745 	    dst_reg->type == SCALAR_VALUE &&
3746 	    tnum_is_const(dst_reg->var_off)) {
3747 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3748 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3749 			/* if (imm == imm) goto pc+off;
3750 			 * only follow the goto, ignore fall-through
3751 			 */
3752 			*insn_idx += insn->off;
3753 			return 0;
3754 		} else {
3755 			/* if (imm != imm) goto pc+off;
3756 			 * only follow fall-through branch, since
3757 			 * that's where the program will go
3758 			 */
3759 			return 0;
3760 		}
3761 	}
3762 
3763 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3764 	if (!other_branch)
3765 		return -EFAULT;
3766 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3767 
3768 	/* detect if we are comparing against a constant value so we can adjust
3769 	 * our min/max values for our dst register.
3770 	 * this is only legit if both are scalars (or pointers to the same
3771 	 * object, I suppose, but we don't support that right now), because
3772 	 * otherwise the different base pointers mean the offsets aren't
3773 	 * comparable.
3774 	 */
3775 	if (BPF_SRC(insn->code) == BPF_X) {
3776 		if (dst_reg->type == SCALAR_VALUE &&
3777 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3778 			if (tnum_is_const(regs[insn->src_reg].var_off))
3779 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3780 						dst_reg, regs[insn->src_reg].var_off.value,
3781 						opcode);
3782 			else if (tnum_is_const(dst_reg->var_off))
3783 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3784 						    &regs[insn->src_reg],
3785 						    dst_reg->var_off.value, opcode);
3786 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3787 				/* Comparing for equality, we can combine knowledge */
3788 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
3789 						    &other_branch_regs[insn->dst_reg],
3790 						    &regs[insn->src_reg],
3791 						    &regs[insn->dst_reg], opcode);
3792 		}
3793 	} else if (dst_reg->type == SCALAR_VALUE) {
3794 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3795 					dst_reg, insn->imm, opcode);
3796 	}
3797 
3798 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3799 	if (BPF_SRC(insn->code) == BPF_K &&
3800 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3801 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3802 		/* Mark all identical map registers in each branch as either
3803 		 * safe or unknown depending R == 0 or R != 0 conditional.
3804 		 */
3805 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3806 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3807 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3808 					   this_branch, other_branch) &&
3809 		   is_pointer_value(env, insn->dst_reg)) {
3810 		verbose(env, "R%d pointer comparison prohibited\n",
3811 			insn->dst_reg);
3812 		return -EACCES;
3813 	}
3814 	if (env->log.level)
3815 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3816 	return 0;
3817 }
3818 
3819 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3820 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3821 {
3822 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3823 
3824 	return (struct bpf_map *) (unsigned long) imm64;
3825 }
3826 
3827 /* verify BPF_LD_IMM64 instruction */
3828 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3829 {
3830 	struct bpf_reg_state *regs = cur_regs(env);
3831 	int err;
3832 
3833 	if (BPF_SIZE(insn->code) != BPF_DW) {
3834 		verbose(env, "invalid BPF_LD_IMM insn\n");
3835 		return -EINVAL;
3836 	}
3837 	if (insn->off != 0) {
3838 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3839 		return -EINVAL;
3840 	}
3841 
3842 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3843 	if (err)
3844 		return err;
3845 
3846 	if (insn->src_reg == 0) {
3847 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3848 
3849 		regs[insn->dst_reg].type = SCALAR_VALUE;
3850 		__mark_reg_known(&regs[insn->dst_reg], imm);
3851 		return 0;
3852 	}
3853 
3854 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3855 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3856 
3857 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3858 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3859 	return 0;
3860 }
3861 
3862 static bool may_access_skb(enum bpf_prog_type type)
3863 {
3864 	switch (type) {
3865 	case BPF_PROG_TYPE_SOCKET_FILTER:
3866 	case BPF_PROG_TYPE_SCHED_CLS:
3867 	case BPF_PROG_TYPE_SCHED_ACT:
3868 		return true;
3869 	default:
3870 		return false;
3871 	}
3872 }
3873 
3874 /* verify safety of LD_ABS|LD_IND instructions:
3875  * - they can only appear in the programs where ctx == skb
3876  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3877  *   preserve R6-R9, and store return value into R0
3878  *
3879  * Implicit input:
3880  *   ctx == skb == R6 == CTX
3881  *
3882  * Explicit input:
3883  *   SRC == any register
3884  *   IMM == 32-bit immediate
3885  *
3886  * Output:
3887  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3888  */
3889 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3890 {
3891 	struct bpf_reg_state *regs = cur_regs(env);
3892 	u8 mode = BPF_MODE(insn->code);
3893 	int i, err;
3894 
3895 	if (!may_access_skb(env->prog->type)) {
3896 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3897 		return -EINVAL;
3898 	}
3899 
3900 	if (!env->ops->gen_ld_abs) {
3901 		verbose(env, "bpf verifier is misconfigured\n");
3902 		return -EINVAL;
3903 	}
3904 
3905 	if (env->subprog_cnt > 1) {
3906 		/* when program has LD_ABS insn JITs and interpreter assume
3907 		 * that r1 == ctx == skb which is not the case for callees
3908 		 * that can have arbitrary arguments. It's problematic
3909 		 * for main prog as well since JITs would need to analyze
3910 		 * all functions in order to make proper register save/restore
3911 		 * decisions in the main prog. Hence disallow LD_ABS with calls
3912 		 */
3913 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3914 		return -EINVAL;
3915 	}
3916 
3917 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3918 	    BPF_SIZE(insn->code) == BPF_DW ||
3919 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3920 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3921 		return -EINVAL;
3922 	}
3923 
3924 	/* check whether implicit source operand (register R6) is readable */
3925 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3926 	if (err)
3927 		return err;
3928 
3929 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3930 		verbose(env,
3931 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3932 		return -EINVAL;
3933 	}
3934 
3935 	if (mode == BPF_IND) {
3936 		/* check explicit source operand */
3937 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3938 		if (err)
3939 			return err;
3940 	}
3941 
3942 	/* reset caller saved regs to unreadable */
3943 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3944 		mark_reg_not_init(env, regs, caller_saved[i]);
3945 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3946 	}
3947 
3948 	/* mark destination R0 register as readable, since it contains
3949 	 * the value fetched from the packet.
3950 	 * Already marked as written above.
3951 	 */
3952 	mark_reg_unknown(env, regs, BPF_REG_0);
3953 	return 0;
3954 }
3955 
3956 static int check_return_code(struct bpf_verifier_env *env)
3957 {
3958 	struct bpf_reg_state *reg;
3959 	struct tnum range = tnum_range(0, 1);
3960 
3961 	switch (env->prog->type) {
3962 	case BPF_PROG_TYPE_CGROUP_SKB:
3963 	case BPF_PROG_TYPE_CGROUP_SOCK:
3964 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3965 	case BPF_PROG_TYPE_SOCK_OPS:
3966 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3967 		break;
3968 	default:
3969 		return 0;
3970 	}
3971 
3972 	reg = cur_regs(env) + BPF_REG_0;
3973 	if (reg->type != SCALAR_VALUE) {
3974 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3975 			reg_type_str[reg->type]);
3976 		return -EINVAL;
3977 	}
3978 
3979 	if (!tnum_in(range, reg->var_off)) {
3980 		verbose(env, "At program exit the register R0 ");
3981 		if (!tnum_is_unknown(reg->var_off)) {
3982 			char tn_buf[48];
3983 
3984 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3985 			verbose(env, "has value %s", tn_buf);
3986 		} else {
3987 			verbose(env, "has unknown scalar value");
3988 		}
3989 		verbose(env, " should have been 0 or 1\n");
3990 		return -EINVAL;
3991 	}
3992 	return 0;
3993 }
3994 
3995 /* non-recursive DFS pseudo code
3996  * 1  procedure DFS-iterative(G,v):
3997  * 2      label v as discovered
3998  * 3      let S be a stack
3999  * 4      S.push(v)
4000  * 5      while S is not empty
4001  * 6            t <- S.pop()
4002  * 7            if t is what we're looking for:
4003  * 8                return t
4004  * 9            for all edges e in G.adjacentEdges(t) do
4005  * 10               if edge e is already labelled
4006  * 11                   continue with the next edge
4007  * 12               w <- G.adjacentVertex(t,e)
4008  * 13               if vertex w is not discovered and not explored
4009  * 14                   label e as tree-edge
4010  * 15                   label w as discovered
4011  * 16                   S.push(w)
4012  * 17                   continue at 5
4013  * 18               else if vertex w is discovered
4014  * 19                   label e as back-edge
4015  * 20               else
4016  * 21                   // vertex w is explored
4017  * 22                   label e as forward- or cross-edge
4018  * 23           label t as explored
4019  * 24           S.pop()
4020  *
4021  * convention:
4022  * 0x10 - discovered
4023  * 0x11 - discovered and fall-through edge labelled
4024  * 0x12 - discovered and fall-through and branch edges labelled
4025  * 0x20 - explored
4026  */
4027 
4028 enum {
4029 	DISCOVERED = 0x10,
4030 	EXPLORED = 0x20,
4031 	FALLTHROUGH = 1,
4032 	BRANCH = 2,
4033 };
4034 
4035 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4036 
4037 static int *insn_stack;	/* stack of insns to process */
4038 static int cur_stack;	/* current stack index */
4039 static int *insn_state;
4040 
4041 /* t, w, e - match pseudo-code above:
4042  * t - index of current instruction
4043  * w - next instruction
4044  * e - edge
4045  */
4046 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4047 {
4048 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4049 		return 0;
4050 
4051 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4052 		return 0;
4053 
4054 	if (w < 0 || w >= env->prog->len) {
4055 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4056 		return -EINVAL;
4057 	}
4058 
4059 	if (e == BRANCH)
4060 		/* mark branch target for state pruning */
4061 		env->explored_states[w] = STATE_LIST_MARK;
4062 
4063 	if (insn_state[w] == 0) {
4064 		/* tree-edge */
4065 		insn_state[t] = DISCOVERED | e;
4066 		insn_state[w] = DISCOVERED;
4067 		if (cur_stack >= env->prog->len)
4068 			return -E2BIG;
4069 		insn_stack[cur_stack++] = w;
4070 		return 1;
4071 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4072 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4073 		return -EINVAL;
4074 	} else if (insn_state[w] == EXPLORED) {
4075 		/* forward- or cross-edge */
4076 		insn_state[t] = DISCOVERED | e;
4077 	} else {
4078 		verbose(env, "insn state internal bug\n");
4079 		return -EFAULT;
4080 	}
4081 	return 0;
4082 }
4083 
4084 /* non-recursive depth-first-search to detect loops in BPF program
4085  * loop == back-edge in directed graph
4086  */
4087 static int check_cfg(struct bpf_verifier_env *env)
4088 {
4089 	struct bpf_insn *insns = env->prog->insnsi;
4090 	int insn_cnt = env->prog->len;
4091 	int ret = 0;
4092 	int i, t;
4093 
4094 	ret = check_subprogs(env);
4095 	if (ret < 0)
4096 		return ret;
4097 
4098 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4099 	if (!insn_state)
4100 		return -ENOMEM;
4101 
4102 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4103 	if (!insn_stack) {
4104 		kfree(insn_state);
4105 		return -ENOMEM;
4106 	}
4107 
4108 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4109 	insn_stack[0] = 0; /* 0 is the first instruction */
4110 	cur_stack = 1;
4111 
4112 peek_stack:
4113 	if (cur_stack == 0)
4114 		goto check_state;
4115 	t = insn_stack[cur_stack - 1];
4116 
4117 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4118 		u8 opcode = BPF_OP(insns[t].code);
4119 
4120 		if (opcode == BPF_EXIT) {
4121 			goto mark_explored;
4122 		} else if (opcode == BPF_CALL) {
4123 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4124 			if (ret == 1)
4125 				goto peek_stack;
4126 			else if (ret < 0)
4127 				goto err_free;
4128 			if (t + 1 < insn_cnt)
4129 				env->explored_states[t + 1] = STATE_LIST_MARK;
4130 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4131 				env->explored_states[t] = STATE_LIST_MARK;
4132 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4133 				if (ret == 1)
4134 					goto peek_stack;
4135 				else if (ret < 0)
4136 					goto err_free;
4137 			}
4138 		} else if (opcode == BPF_JA) {
4139 			if (BPF_SRC(insns[t].code) != BPF_K) {
4140 				ret = -EINVAL;
4141 				goto err_free;
4142 			}
4143 			/* unconditional jump with single edge */
4144 			ret = push_insn(t, t + insns[t].off + 1,
4145 					FALLTHROUGH, env);
4146 			if (ret == 1)
4147 				goto peek_stack;
4148 			else if (ret < 0)
4149 				goto err_free;
4150 			/* tell verifier to check for equivalent states
4151 			 * after every call and jump
4152 			 */
4153 			if (t + 1 < insn_cnt)
4154 				env->explored_states[t + 1] = STATE_LIST_MARK;
4155 		} else {
4156 			/* conditional jump with two edges */
4157 			env->explored_states[t] = STATE_LIST_MARK;
4158 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4159 			if (ret == 1)
4160 				goto peek_stack;
4161 			else if (ret < 0)
4162 				goto err_free;
4163 
4164 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4165 			if (ret == 1)
4166 				goto peek_stack;
4167 			else if (ret < 0)
4168 				goto err_free;
4169 		}
4170 	} else {
4171 		/* all other non-branch instructions with single
4172 		 * fall-through edge
4173 		 */
4174 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4175 		if (ret == 1)
4176 			goto peek_stack;
4177 		else if (ret < 0)
4178 			goto err_free;
4179 	}
4180 
4181 mark_explored:
4182 	insn_state[t] = EXPLORED;
4183 	if (cur_stack-- <= 0) {
4184 		verbose(env, "pop stack internal bug\n");
4185 		ret = -EFAULT;
4186 		goto err_free;
4187 	}
4188 	goto peek_stack;
4189 
4190 check_state:
4191 	for (i = 0; i < insn_cnt; i++) {
4192 		if (insn_state[i] != EXPLORED) {
4193 			verbose(env, "unreachable insn %d\n", i);
4194 			ret = -EINVAL;
4195 			goto err_free;
4196 		}
4197 	}
4198 	ret = 0; /* cfg looks good */
4199 
4200 err_free:
4201 	kfree(insn_state);
4202 	kfree(insn_stack);
4203 	return ret;
4204 }
4205 
4206 /* check %cur's range satisfies %old's */
4207 static bool range_within(struct bpf_reg_state *old,
4208 			 struct bpf_reg_state *cur)
4209 {
4210 	return old->umin_value <= cur->umin_value &&
4211 	       old->umax_value >= cur->umax_value &&
4212 	       old->smin_value <= cur->smin_value &&
4213 	       old->smax_value >= cur->smax_value;
4214 }
4215 
4216 /* Maximum number of register states that can exist at once */
4217 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4218 struct idpair {
4219 	u32 old;
4220 	u32 cur;
4221 };
4222 
4223 /* If in the old state two registers had the same id, then they need to have
4224  * the same id in the new state as well.  But that id could be different from
4225  * the old state, so we need to track the mapping from old to new ids.
4226  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4227  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4228  * regs with a different old id could still have new id 9, we don't care about
4229  * that.
4230  * So we look through our idmap to see if this old id has been seen before.  If
4231  * so, we require the new id to match; otherwise, we add the id pair to the map.
4232  */
4233 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4234 {
4235 	unsigned int i;
4236 
4237 	for (i = 0; i < ID_MAP_SIZE; i++) {
4238 		if (!idmap[i].old) {
4239 			/* Reached an empty slot; haven't seen this id before */
4240 			idmap[i].old = old_id;
4241 			idmap[i].cur = cur_id;
4242 			return true;
4243 		}
4244 		if (idmap[i].old == old_id)
4245 			return idmap[i].cur == cur_id;
4246 	}
4247 	/* We ran out of idmap slots, which should be impossible */
4248 	WARN_ON_ONCE(1);
4249 	return false;
4250 }
4251 
4252 /* Returns true if (rold safe implies rcur safe) */
4253 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4254 		    struct idpair *idmap)
4255 {
4256 	bool equal;
4257 
4258 	if (!(rold->live & REG_LIVE_READ))
4259 		/* explored state didn't use this */
4260 		return true;
4261 
4262 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4263 
4264 	if (rold->type == PTR_TO_STACK)
4265 		/* two stack pointers are equal only if they're pointing to
4266 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4267 		 */
4268 		return equal && rold->frameno == rcur->frameno;
4269 
4270 	if (equal)
4271 		return true;
4272 
4273 	if (rold->type == NOT_INIT)
4274 		/* explored state can't have used this */
4275 		return true;
4276 	if (rcur->type == NOT_INIT)
4277 		return false;
4278 	switch (rold->type) {
4279 	case SCALAR_VALUE:
4280 		if (rcur->type == SCALAR_VALUE) {
4281 			/* new val must satisfy old val knowledge */
4282 			return range_within(rold, rcur) &&
4283 			       tnum_in(rold->var_off, rcur->var_off);
4284 		} else {
4285 			/* We're trying to use a pointer in place of a scalar.
4286 			 * Even if the scalar was unbounded, this could lead to
4287 			 * pointer leaks because scalars are allowed to leak
4288 			 * while pointers are not. We could make this safe in
4289 			 * special cases if root is calling us, but it's
4290 			 * probably not worth the hassle.
4291 			 */
4292 			return false;
4293 		}
4294 	case PTR_TO_MAP_VALUE:
4295 		/* If the new min/max/var_off satisfy the old ones and
4296 		 * everything else matches, we are OK.
4297 		 * We don't care about the 'id' value, because nothing
4298 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4299 		 */
4300 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4301 		       range_within(rold, rcur) &&
4302 		       tnum_in(rold->var_off, rcur->var_off);
4303 	case PTR_TO_MAP_VALUE_OR_NULL:
4304 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4305 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4306 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4307 		 * checked, doing so could have affected others with the same
4308 		 * id, and we can't check for that because we lost the id when
4309 		 * we converted to a PTR_TO_MAP_VALUE.
4310 		 */
4311 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4312 			return false;
4313 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4314 			return false;
4315 		/* Check our ids match any regs they're supposed to */
4316 		return check_ids(rold->id, rcur->id, idmap);
4317 	case PTR_TO_PACKET_META:
4318 	case PTR_TO_PACKET:
4319 		if (rcur->type != rold->type)
4320 			return false;
4321 		/* We must have at least as much range as the old ptr
4322 		 * did, so that any accesses which were safe before are
4323 		 * still safe.  This is true even if old range < old off,
4324 		 * since someone could have accessed through (ptr - k), or
4325 		 * even done ptr -= k in a register, to get a safe access.
4326 		 */
4327 		if (rold->range > rcur->range)
4328 			return false;
4329 		/* If the offsets don't match, we can't trust our alignment;
4330 		 * nor can we be sure that we won't fall out of range.
4331 		 */
4332 		if (rold->off != rcur->off)
4333 			return false;
4334 		/* id relations must be preserved */
4335 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4336 			return false;
4337 		/* new val must satisfy old val knowledge */
4338 		return range_within(rold, rcur) &&
4339 		       tnum_in(rold->var_off, rcur->var_off);
4340 	case PTR_TO_CTX:
4341 	case CONST_PTR_TO_MAP:
4342 	case PTR_TO_PACKET_END:
4343 		/* Only valid matches are exact, which memcmp() above
4344 		 * would have accepted
4345 		 */
4346 	default:
4347 		/* Don't know what's going on, just say it's not safe */
4348 		return false;
4349 	}
4350 
4351 	/* Shouldn't get here; if we do, say it's not safe */
4352 	WARN_ON_ONCE(1);
4353 	return false;
4354 }
4355 
4356 static bool stacksafe(struct bpf_func_state *old,
4357 		      struct bpf_func_state *cur,
4358 		      struct idpair *idmap)
4359 {
4360 	int i, spi;
4361 
4362 	/* if explored stack has more populated slots than current stack
4363 	 * such stacks are not equivalent
4364 	 */
4365 	if (old->allocated_stack > cur->allocated_stack)
4366 		return false;
4367 
4368 	/* walk slots of the explored stack and ignore any additional
4369 	 * slots in the current stack, since explored(safe) state
4370 	 * didn't use them
4371 	 */
4372 	for (i = 0; i < old->allocated_stack; i++) {
4373 		spi = i / BPF_REG_SIZE;
4374 
4375 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4376 			/* explored state didn't use this */
4377 			continue;
4378 
4379 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4380 			continue;
4381 		/* if old state was safe with misc data in the stack
4382 		 * it will be safe with zero-initialized stack.
4383 		 * The opposite is not true
4384 		 */
4385 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4386 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4387 			continue;
4388 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4389 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4390 			/* Ex: old explored (safe) state has STACK_SPILL in
4391 			 * this stack slot, but current has has STACK_MISC ->
4392 			 * this verifier states are not equivalent,
4393 			 * return false to continue verification of this path
4394 			 */
4395 			return false;
4396 		if (i % BPF_REG_SIZE)
4397 			continue;
4398 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4399 			continue;
4400 		if (!regsafe(&old->stack[spi].spilled_ptr,
4401 			     &cur->stack[spi].spilled_ptr,
4402 			     idmap))
4403 			/* when explored and current stack slot are both storing
4404 			 * spilled registers, check that stored pointers types
4405 			 * are the same as well.
4406 			 * Ex: explored safe path could have stored
4407 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4408 			 * but current path has stored:
4409 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4410 			 * such verifier states are not equivalent.
4411 			 * return false to continue verification of this path
4412 			 */
4413 			return false;
4414 	}
4415 	return true;
4416 }
4417 
4418 /* compare two verifier states
4419  *
4420  * all states stored in state_list are known to be valid, since
4421  * verifier reached 'bpf_exit' instruction through them
4422  *
4423  * this function is called when verifier exploring different branches of
4424  * execution popped from the state stack. If it sees an old state that has
4425  * more strict register state and more strict stack state then this execution
4426  * branch doesn't need to be explored further, since verifier already
4427  * concluded that more strict state leads to valid finish.
4428  *
4429  * Therefore two states are equivalent if register state is more conservative
4430  * and explored stack state is more conservative than the current one.
4431  * Example:
4432  *       explored                   current
4433  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4434  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4435  *
4436  * In other words if current stack state (one being explored) has more
4437  * valid slots than old one that already passed validation, it means
4438  * the verifier can stop exploring and conclude that current state is valid too
4439  *
4440  * Similarly with registers. If explored state has register type as invalid
4441  * whereas register type in current state is meaningful, it means that
4442  * the current state will reach 'bpf_exit' instruction safely
4443  */
4444 static bool func_states_equal(struct bpf_func_state *old,
4445 			      struct bpf_func_state *cur)
4446 {
4447 	struct idpair *idmap;
4448 	bool ret = false;
4449 	int i;
4450 
4451 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4452 	/* If we failed to allocate the idmap, just say it's not safe */
4453 	if (!idmap)
4454 		return false;
4455 
4456 	for (i = 0; i < MAX_BPF_REG; i++) {
4457 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4458 			goto out_free;
4459 	}
4460 
4461 	if (!stacksafe(old, cur, idmap))
4462 		goto out_free;
4463 	ret = true;
4464 out_free:
4465 	kfree(idmap);
4466 	return ret;
4467 }
4468 
4469 static bool states_equal(struct bpf_verifier_env *env,
4470 			 struct bpf_verifier_state *old,
4471 			 struct bpf_verifier_state *cur)
4472 {
4473 	int i;
4474 
4475 	if (old->curframe != cur->curframe)
4476 		return false;
4477 
4478 	/* for states to be equal callsites have to be the same
4479 	 * and all frame states need to be equivalent
4480 	 */
4481 	for (i = 0; i <= old->curframe; i++) {
4482 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4483 			return false;
4484 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4485 			return false;
4486 	}
4487 	return true;
4488 }
4489 
4490 /* A write screens off any subsequent reads; but write marks come from the
4491  * straight-line code between a state and its parent.  When we arrive at an
4492  * equivalent state (jump target or such) we didn't arrive by the straight-line
4493  * code, so read marks in the state must propagate to the parent regardless
4494  * of the state's write marks. That's what 'parent == state->parent' comparison
4495  * in mark_reg_read() and mark_stack_slot_read() is for.
4496  */
4497 static int propagate_liveness(struct bpf_verifier_env *env,
4498 			      const struct bpf_verifier_state *vstate,
4499 			      struct bpf_verifier_state *vparent)
4500 {
4501 	int i, frame, err = 0;
4502 	struct bpf_func_state *state, *parent;
4503 
4504 	if (vparent->curframe != vstate->curframe) {
4505 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4506 		     vparent->curframe, vstate->curframe);
4507 		return -EFAULT;
4508 	}
4509 	/* Propagate read liveness of registers... */
4510 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4511 	/* We don't need to worry about FP liveness because it's read-only */
4512 	for (i = 0; i < BPF_REG_FP; i++) {
4513 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4514 			continue;
4515 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4516 			err = mark_reg_read(env, vstate, vparent, i);
4517 			if (err)
4518 				return err;
4519 		}
4520 	}
4521 
4522 	/* ... and stack slots */
4523 	for (frame = 0; frame <= vstate->curframe; frame++) {
4524 		state = vstate->frame[frame];
4525 		parent = vparent->frame[frame];
4526 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4527 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4528 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4529 				continue;
4530 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4531 				mark_stack_slot_read(env, vstate, vparent, i, frame);
4532 		}
4533 	}
4534 	return err;
4535 }
4536 
4537 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4538 {
4539 	struct bpf_verifier_state_list *new_sl;
4540 	struct bpf_verifier_state_list *sl;
4541 	struct bpf_verifier_state *cur = env->cur_state;
4542 	int i, j, err;
4543 
4544 	sl = env->explored_states[insn_idx];
4545 	if (!sl)
4546 		/* this 'insn_idx' instruction wasn't marked, so we will not
4547 		 * be doing state search here
4548 		 */
4549 		return 0;
4550 
4551 	while (sl != STATE_LIST_MARK) {
4552 		if (states_equal(env, &sl->state, cur)) {
4553 			/* reached equivalent register/stack state,
4554 			 * prune the search.
4555 			 * Registers read by the continuation are read by us.
4556 			 * If we have any write marks in env->cur_state, they
4557 			 * will prevent corresponding reads in the continuation
4558 			 * from reaching our parent (an explored_state).  Our
4559 			 * own state will get the read marks recorded, but
4560 			 * they'll be immediately forgotten as we're pruning
4561 			 * this state and will pop a new one.
4562 			 */
4563 			err = propagate_liveness(env, &sl->state, cur);
4564 			if (err)
4565 				return err;
4566 			return 1;
4567 		}
4568 		sl = sl->next;
4569 	}
4570 
4571 	/* there were no equivalent states, remember current one.
4572 	 * technically the current state is not proven to be safe yet,
4573 	 * but it will either reach outer most bpf_exit (which means it's safe)
4574 	 * or it will be rejected. Since there are no loops, we won't be
4575 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4576 	 * again on the way to bpf_exit
4577 	 */
4578 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4579 	if (!new_sl)
4580 		return -ENOMEM;
4581 
4582 	/* add new state to the head of linked list */
4583 	err = copy_verifier_state(&new_sl->state, cur);
4584 	if (err) {
4585 		free_verifier_state(&new_sl->state, false);
4586 		kfree(new_sl);
4587 		return err;
4588 	}
4589 	new_sl->next = env->explored_states[insn_idx];
4590 	env->explored_states[insn_idx] = new_sl;
4591 	/* connect new state to parentage chain */
4592 	cur->parent = &new_sl->state;
4593 	/* clear write marks in current state: the writes we did are not writes
4594 	 * our child did, so they don't screen off its reads from us.
4595 	 * (There are no read marks in current state, because reads always mark
4596 	 * their parent and current state never has children yet.  Only
4597 	 * explored_states can get read marks.)
4598 	 */
4599 	for (i = 0; i < BPF_REG_FP; i++)
4600 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4601 
4602 	/* all stack frames are accessible from callee, clear them all */
4603 	for (j = 0; j <= cur->curframe; j++) {
4604 		struct bpf_func_state *frame = cur->frame[j];
4605 
4606 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4607 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4608 	}
4609 	return 0;
4610 }
4611 
4612 static int do_check(struct bpf_verifier_env *env)
4613 {
4614 	struct bpf_verifier_state *state;
4615 	struct bpf_insn *insns = env->prog->insnsi;
4616 	struct bpf_reg_state *regs;
4617 	int insn_cnt = env->prog->len, i;
4618 	int insn_idx, prev_insn_idx = 0;
4619 	int insn_processed = 0;
4620 	bool do_print_state = false;
4621 
4622 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4623 	if (!state)
4624 		return -ENOMEM;
4625 	state->curframe = 0;
4626 	state->parent = NULL;
4627 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4628 	if (!state->frame[0]) {
4629 		kfree(state);
4630 		return -ENOMEM;
4631 	}
4632 	env->cur_state = state;
4633 	init_func_state(env, state->frame[0],
4634 			BPF_MAIN_FUNC /* callsite */,
4635 			0 /* frameno */,
4636 			0 /* subprogno, zero == main subprog */);
4637 	insn_idx = 0;
4638 	for (;;) {
4639 		struct bpf_insn *insn;
4640 		u8 class;
4641 		int err;
4642 
4643 		if (insn_idx >= insn_cnt) {
4644 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4645 				insn_idx, insn_cnt);
4646 			return -EFAULT;
4647 		}
4648 
4649 		insn = &insns[insn_idx];
4650 		class = BPF_CLASS(insn->code);
4651 
4652 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4653 			verbose(env,
4654 				"BPF program is too large. Processed %d insn\n",
4655 				insn_processed);
4656 			return -E2BIG;
4657 		}
4658 
4659 		err = is_state_visited(env, insn_idx);
4660 		if (err < 0)
4661 			return err;
4662 		if (err == 1) {
4663 			/* found equivalent state, can prune the search */
4664 			if (env->log.level) {
4665 				if (do_print_state)
4666 					verbose(env, "\nfrom %d to %d: safe\n",
4667 						prev_insn_idx, insn_idx);
4668 				else
4669 					verbose(env, "%d: safe\n", insn_idx);
4670 			}
4671 			goto process_bpf_exit;
4672 		}
4673 
4674 		if (need_resched())
4675 			cond_resched();
4676 
4677 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
4678 			if (env->log.level > 1)
4679 				verbose(env, "%d:", insn_idx);
4680 			else
4681 				verbose(env, "\nfrom %d to %d:",
4682 					prev_insn_idx, insn_idx);
4683 			print_verifier_state(env, state->frame[state->curframe]);
4684 			do_print_state = false;
4685 		}
4686 
4687 		if (env->log.level) {
4688 			const struct bpf_insn_cbs cbs = {
4689 				.cb_print	= verbose,
4690 				.private_data	= env,
4691 			};
4692 
4693 			verbose(env, "%d: ", insn_idx);
4694 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4695 		}
4696 
4697 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
4698 			err = bpf_prog_offload_verify_insn(env, insn_idx,
4699 							   prev_insn_idx);
4700 			if (err)
4701 				return err;
4702 		}
4703 
4704 		regs = cur_regs(env);
4705 		env->insn_aux_data[insn_idx].seen = true;
4706 		if (class == BPF_ALU || class == BPF_ALU64) {
4707 			err = check_alu_op(env, insn);
4708 			if (err)
4709 				return err;
4710 
4711 		} else if (class == BPF_LDX) {
4712 			enum bpf_reg_type *prev_src_type, src_reg_type;
4713 
4714 			/* check for reserved fields is already done */
4715 
4716 			/* check src operand */
4717 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4718 			if (err)
4719 				return err;
4720 
4721 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4722 			if (err)
4723 				return err;
4724 
4725 			src_reg_type = regs[insn->src_reg].type;
4726 
4727 			/* check that memory (src_reg + off) is readable,
4728 			 * the state of dst_reg will be updated by this func
4729 			 */
4730 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4731 					       BPF_SIZE(insn->code), BPF_READ,
4732 					       insn->dst_reg, false);
4733 			if (err)
4734 				return err;
4735 
4736 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4737 
4738 			if (*prev_src_type == NOT_INIT) {
4739 				/* saw a valid insn
4740 				 * dst_reg = *(u32 *)(src_reg + off)
4741 				 * save type to validate intersecting paths
4742 				 */
4743 				*prev_src_type = src_reg_type;
4744 
4745 			} else if (src_reg_type != *prev_src_type &&
4746 				   (src_reg_type == PTR_TO_CTX ||
4747 				    *prev_src_type == PTR_TO_CTX)) {
4748 				/* ABuser program is trying to use the same insn
4749 				 * dst_reg = *(u32*) (src_reg + off)
4750 				 * with different pointer types:
4751 				 * src_reg == ctx in one branch and
4752 				 * src_reg == stack|map in some other branch.
4753 				 * Reject it.
4754 				 */
4755 				verbose(env, "same insn cannot be used with different pointers\n");
4756 				return -EINVAL;
4757 			}
4758 
4759 		} else if (class == BPF_STX) {
4760 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4761 
4762 			if (BPF_MODE(insn->code) == BPF_XADD) {
4763 				err = check_xadd(env, insn_idx, insn);
4764 				if (err)
4765 					return err;
4766 				insn_idx++;
4767 				continue;
4768 			}
4769 
4770 			/* check src1 operand */
4771 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4772 			if (err)
4773 				return err;
4774 			/* check src2 operand */
4775 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4776 			if (err)
4777 				return err;
4778 
4779 			dst_reg_type = regs[insn->dst_reg].type;
4780 
4781 			/* check that memory (dst_reg + off) is writeable */
4782 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4783 					       BPF_SIZE(insn->code), BPF_WRITE,
4784 					       insn->src_reg, false);
4785 			if (err)
4786 				return err;
4787 
4788 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4789 
4790 			if (*prev_dst_type == NOT_INIT) {
4791 				*prev_dst_type = dst_reg_type;
4792 			} else if (dst_reg_type != *prev_dst_type &&
4793 				   (dst_reg_type == PTR_TO_CTX ||
4794 				    *prev_dst_type == PTR_TO_CTX)) {
4795 				verbose(env, "same insn cannot be used with different pointers\n");
4796 				return -EINVAL;
4797 			}
4798 
4799 		} else if (class == BPF_ST) {
4800 			if (BPF_MODE(insn->code) != BPF_MEM ||
4801 			    insn->src_reg != BPF_REG_0) {
4802 				verbose(env, "BPF_ST uses reserved fields\n");
4803 				return -EINVAL;
4804 			}
4805 			/* check src operand */
4806 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4807 			if (err)
4808 				return err;
4809 
4810 			if (is_ctx_reg(env, insn->dst_reg)) {
4811 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4812 					insn->dst_reg);
4813 				return -EACCES;
4814 			}
4815 
4816 			/* check that memory (dst_reg + off) is writeable */
4817 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4818 					       BPF_SIZE(insn->code), BPF_WRITE,
4819 					       -1, false);
4820 			if (err)
4821 				return err;
4822 
4823 		} else if (class == BPF_JMP) {
4824 			u8 opcode = BPF_OP(insn->code);
4825 
4826 			if (opcode == BPF_CALL) {
4827 				if (BPF_SRC(insn->code) != BPF_K ||
4828 				    insn->off != 0 ||
4829 				    (insn->src_reg != BPF_REG_0 &&
4830 				     insn->src_reg != BPF_PSEUDO_CALL) ||
4831 				    insn->dst_reg != BPF_REG_0) {
4832 					verbose(env, "BPF_CALL uses reserved fields\n");
4833 					return -EINVAL;
4834 				}
4835 
4836 				if (insn->src_reg == BPF_PSEUDO_CALL)
4837 					err = check_func_call(env, insn, &insn_idx);
4838 				else
4839 					err = check_helper_call(env, insn->imm, insn_idx);
4840 				if (err)
4841 					return err;
4842 
4843 			} else if (opcode == BPF_JA) {
4844 				if (BPF_SRC(insn->code) != BPF_K ||
4845 				    insn->imm != 0 ||
4846 				    insn->src_reg != BPF_REG_0 ||
4847 				    insn->dst_reg != BPF_REG_0) {
4848 					verbose(env, "BPF_JA uses reserved fields\n");
4849 					return -EINVAL;
4850 				}
4851 
4852 				insn_idx += insn->off + 1;
4853 				continue;
4854 
4855 			} else if (opcode == BPF_EXIT) {
4856 				if (BPF_SRC(insn->code) != BPF_K ||
4857 				    insn->imm != 0 ||
4858 				    insn->src_reg != BPF_REG_0 ||
4859 				    insn->dst_reg != BPF_REG_0) {
4860 					verbose(env, "BPF_EXIT uses reserved fields\n");
4861 					return -EINVAL;
4862 				}
4863 
4864 				if (state->curframe) {
4865 					/* exit from nested function */
4866 					prev_insn_idx = insn_idx;
4867 					err = prepare_func_exit(env, &insn_idx);
4868 					if (err)
4869 						return err;
4870 					do_print_state = true;
4871 					continue;
4872 				}
4873 
4874 				/* eBPF calling convetion is such that R0 is used
4875 				 * to return the value from eBPF program.
4876 				 * Make sure that it's readable at this time
4877 				 * of bpf_exit, which means that program wrote
4878 				 * something into it earlier
4879 				 */
4880 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4881 				if (err)
4882 					return err;
4883 
4884 				if (is_pointer_value(env, BPF_REG_0)) {
4885 					verbose(env, "R0 leaks addr as return value\n");
4886 					return -EACCES;
4887 				}
4888 
4889 				err = check_return_code(env);
4890 				if (err)
4891 					return err;
4892 process_bpf_exit:
4893 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4894 				if (err < 0) {
4895 					if (err != -ENOENT)
4896 						return err;
4897 					break;
4898 				} else {
4899 					do_print_state = true;
4900 					continue;
4901 				}
4902 			} else {
4903 				err = check_cond_jmp_op(env, insn, &insn_idx);
4904 				if (err)
4905 					return err;
4906 			}
4907 		} else if (class == BPF_LD) {
4908 			u8 mode = BPF_MODE(insn->code);
4909 
4910 			if (mode == BPF_ABS || mode == BPF_IND) {
4911 				err = check_ld_abs(env, insn);
4912 				if (err)
4913 					return err;
4914 
4915 			} else if (mode == BPF_IMM) {
4916 				err = check_ld_imm(env, insn);
4917 				if (err)
4918 					return err;
4919 
4920 				insn_idx++;
4921 				env->insn_aux_data[insn_idx].seen = true;
4922 			} else {
4923 				verbose(env, "invalid BPF_LD mode\n");
4924 				return -EINVAL;
4925 			}
4926 		} else {
4927 			verbose(env, "unknown insn class %d\n", class);
4928 			return -EINVAL;
4929 		}
4930 
4931 		insn_idx++;
4932 	}
4933 
4934 	verbose(env, "processed %d insns (limit %d), stack depth ",
4935 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4936 	for (i = 0; i < env->subprog_cnt; i++) {
4937 		u32 depth = env->subprog_info[i].stack_depth;
4938 
4939 		verbose(env, "%d", depth);
4940 		if (i + 1 < env->subprog_cnt)
4941 			verbose(env, "+");
4942 	}
4943 	verbose(env, "\n");
4944 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
4945 	return 0;
4946 }
4947 
4948 static int check_map_prealloc(struct bpf_map *map)
4949 {
4950 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4951 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4952 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4953 		!(map->map_flags & BPF_F_NO_PREALLOC);
4954 }
4955 
4956 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4957 					struct bpf_map *map,
4958 					struct bpf_prog *prog)
4959 
4960 {
4961 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4962 	 * preallocated hash maps, since doing memory allocation
4963 	 * in overflow_handler can crash depending on where nmi got
4964 	 * triggered.
4965 	 */
4966 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4967 		if (!check_map_prealloc(map)) {
4968 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4969 			return -EINVAL;
4970 		}
4971 		if (map->inner_map_meta &&
4972 		    !check_map_prealloc(map->inner_map_meta)) {
4973 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4974 			return -EINVAL;
4975 		}
4976 	}
4977 
4978 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4979 	    !bpf_offload_dev_match(prog, map)) {
4980 		verbose(env, "offload device mismatch between prog and map\n");
4981 		return -EINVAL;
4982 	}
4983 
4984 	return 0;
4985 }
4986 
4987 /* look for pseudo eBPF instructions that access map FDs and
4988  * replace them with actual map pointers
4989  */
4990 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4991 {
4992 	struct bpf_insn *insn = env->prog->insnsi;
4993 	int insn_cnt = env->prog->len;
4994 	int i, j, err;
4995 
4996 	err = bpf_prog_calc_tag(env->prog);
4997 	if (err)
4998 		return err;
4999 
5000 	for (i = 0; i < insn_cnt; i++, insn++) {
5001 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5002 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5003 			verbose(env, "BPF_LDX uses reserved fields\n");
5004 			return -EINVAL;
5005 		}
5006 
5007 		if (BPF_CLASS(insn->code) == BPF_STX &&
5008 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5009 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5010 			verbose(env, "BPF_STX uses reserved fields\n");
5011 			return -EINVAL;
5012 		}
5013 
5014 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5015 			struct bpf_map *map;
5016 			struct fd f;
5017 
5018 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5019 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5020 			    insn[1].off != 0) {
5021 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5022 				return -EINVAL;
5023 			}
5024 
5025 			if (insn->src_reg == 0)
5026 				/* valid generic load 64-bit imm */
5027 				goto next_insn;
5028 
5029 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5030 				verbose(env,
5031 					"unrecognized bpf_ld_imm64 insn\n");
5032 				return -EINVAL;
5033 			}
5034 
5035 			f = fdget(insn->imm);
5036 			map = __bpf_map_get(f);
5037 			if (IS_ERR(map)) {
5038 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5039 					insn->imm);
5040 				return PTR_ERR(map);
5041 			}
5042 
5043 			err = check_map_prog_compatibility(env, map, env->prog);
5044 			if (err) {
5045 				fdput(f);
5046 				return err;
5047 			}
5048 
5049 			/* store map pointer inside BPF_LD_IMM64 instruction */
5050 			insn[0].imm = (u32) (unsigned long) map;
5051 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5052 
5053 			/* check whether we recorded this map already */
5054 			for (j = 0; j < env->used_map_cnt; j++)
5055 				if (env->used_maps[j] == map) {
5056 					fdput(f);
5057 					goto next_insn;
5058 				}
5059 
5060 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5061 				fdput(f);
5062 				return -E2BIG;
5063 			}
5064 
5065 			/* hold the map. If the program is rejected by verifier,
5066 			 * the map will be released by release_maps() or it
5067 			 * will be used by the valid program until it's unloaded
5068 			 * and all maps are released in free_used_maps()
5069 			 */
5070 			map = bpf_map_inc(map, false);
5071 			if (IS_ERR(map)) {
5072 				fdput(f);
5073 				return PTR_ERR(map);
5074 			}
5075 			env->used_maps[env->used_map_cnt++] = map;
5076 
5077 			fdput(f);
5078 next_insn:
5079 			insn++;
5080 			i++;
5081 			continue;
5082 		}
5083 
5084 		/* Basic sanity check before we invest more work here. */
5085 		if (!bpf_opcode_in_insntable(insn->code)) {
5086 			verbose(env, "unknown opcode %02x\n", insn->code);
5087 			return -EINVAL;
5088 		}
5089 	}
5090 
5091 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5092 	 * 'struct bpf_map *' into a register instead of user map_fd.
5093 	 * These pointers will be used later by verifier to validate map access.
5094 	 */
5095 	return 0;
5096 }
5097 
5098 /* drop refcnt of maps used by the rejected program */
5099 static void release_maps(struct bpf_verifier_env *env)
5100 {
5101 	int i;
5102 
5103 	for (i = 0; i < env->used_map_cnt; i++)
5104 		bpf_map_put(env->used_maps[i]);
5105 }
5106 
5107 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5108 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5109 {
5110 	struct bpf_insn *insn = env->prog->insnsi;
5111 	int insn_cnt = env->prog->len;
5112 	int i;
5113 
5114 	for (i = 0; i < insn_cnt; i++, insn++)
5115 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5116 			insn->src_reg = 0;
5117 }
5118 
5119 /* single env->prog->insni[off] instruction was replaced with the range
5120  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5121  * [0, off) and [off, end) to new locations, so the patched range stays zero
5122  */
5123 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5124 				u32 off, u32 cnt)
5125 {
5126 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5127 	int i;
5128 
5129 	if (cnt == 1)
5130 		return 0;
5131 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5132 	if (!new_data)
5133 		return -ENOMEM;
5134 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5135 	memcpy(new_data + off + cnt - 1, old_data + off,
5136 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5137 	for (i = off; i < off + cnt - 1; i++)
5138 		new_data[i].seen = true;
5139 	env->insn_aux_data = new_data;
5140 	vfree(old_data);
5141 	return 0;
5142 }
5143 
5144 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5145 {
5146 	int i;
5147 
5148 	if (len == 1)
5149 		return;
5150 	/* NOTE: fake 'exit' subprog should be updated as well. */
5151 	for (i = 0; i <= env->subprog_cnt; i++) {
5152 		if (env->subprog_info[i].start < off)
5153 			continue;
5154 		env->subprog_info[i].start += len - 1;
5155 	}
5156 }
5157 
5158 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5159 					    const struct bpf_insn *patch, u32 len)
5160 {
5161 	struct bpf_prog *new_prog;
5162 
5163 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5164 	if (!new_prog)
5165 		return NULL;
5166 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5167 		return NULL;
5168 	adjust_subprog_starts(env, off, len);
5169 	return new_prog;
5170 }
5171 
5172 /* The verifier does more data flow analysis than llvm and will not
5173  * explore branches that are dead at run time. Malicious programs can
5174  * have dead code too. Therefore replace all dead at-run-time code
5175  * with 'ja -1'.
5176  *
5177  * Just nops are not optimal, e.g. if they would sit at the end of the
5178  * program and through another bug we would manage to jump there, then
5179  * we'd execute beyond program memory otherwise. Returning exception
5180  * code also wouldn't work since we can have subprogs where the dead
5181  * code could be located.
5182  */
5183 static void sanitize_dead_code(struct bpf_verifier_env *env)
5184 {
5185 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5186 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5187 	struct bpf_insn *insn = env->prog->insnsi;
5188 	const int insn_cnt = env->prog->len;
5189 	int i;
5190 
5191 	for (i = 0; i < insn_cnt; i++) {
5192 		if (aux_data[i].seen)
5193 			continue;
5194 		memcpy(insn + i, &trap, sizeof(trap));
5195 	}
5196 }
5197 
5198 /* convert load instructions that access fields of 'struct __sk_buff'
5199  * into sequence of instructions that access fields of 'struct sk_buff'
5200  */
5201 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5202 {
5203 	const struct bpf_verifier_ops *ops = env->ops;
5204 	int i, cnt, size, ctx_field_size, delta = 0;
5205 	const int insn_cnt = env->prog->len;
5206 	struct bpf_insn insn_buf[16], *insn;
5207 	struct bpf_prog *new_prog;
5208 	enum bpf_access_type type;
5209 	bool is_narrower_load;
5210 	u32 target_size;
5211 
5212 	if (ops->gen_prologue) {
5213 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5214 					env->prog);
5215 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5216 			verbose(env, "bpf verifier is misconfigured\n");
5217 			return -EINVAL;
5218 		} else if (cnt) {
5219 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5220 			if (!new_prog)
5221 				return -ENOMEM;
5222 
5223 			env->prog = new_prog;
5224 			delta += cnt - 1;
5225 		}
5226 	}
5227 
5228 	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5229 		return 0;
5230 
5231 	insn = env->prog->insnsi + delta;
5232 
5233 	for (i = 0; i < insn_cnt; i++, insn++) {
5234 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5235 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5236 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5237 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5238 			type = BPF_READ;
5239 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5240 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5241 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5242 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5243 			type = BPF_WRITE;
5244 		else
5245 			continue;
5246 
5247 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5248 			continue;
5249 
5250 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5251 		size = BPF_LDST_BYTES(insn);
5252 
5253 		/* If the read access is a narrower load of the field,
5254 		 * convert to a 4/8-byte load, to minimum program type specific
5255 		 * convert_ctx_access changes. If conversion is successful,
5256 		 * we will apply proper mask to the result.
5257 		 */
5258 		is_narrower_load = size < ctx_field_size;
5259 		if (is_narrower_load) {
5260 			u32 off = insn->off;
5261 			u8 size_code;
5262 
5263 			if (type == BPF_WRITE) {
5264 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5265 				return -EINVAL;
5266 			}
5267 
5268 			size_code = BPF_H;
5269 			if (ctx_field_size == 4)
5270 				size_code = BPF_W;
5271 			else if (ctx_field_size == 8)
5272 				size_code = BPF_DW;
5273 
5274 			insn->off = off & ~(ctx_field_size - 1);
5275 			insn->code = BPF_LDX | BPF_MEM | size_code;
5276 		}
5277 
5278 		target_size = 0;
5279 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5280 					      &target_size);
5281 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5282 		    (ctx_field_size && !target_size)) {
5283 			verbose(env, "bpf verifier is misconfigured\n");
5284 			return -EINVAL;
5285 		}
5286 
5287 		if (is_narrower_load && size < target_size) {
5288 			if (ctx_field_size <= 4)
5289 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5290 								(1 << size * 8) - 1);
5291 			else
5292 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5293 								(1 << size * 8) - 1);
5294 		}
5295 
5296 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5297 		if (!new_prog)
5298 			return -ENOMEM;
5299 
5300 		delta += cnt - 1;
5301 
5302 		/* keep walking new program and skip insns we just inserted */
5303 		env->prog = new_prog;
5304 		insn      = new_prog->insnsi + i + delta;
5305 	}
5306 
5307 	return 0;
5308 }
5309 
5310 static int jit_subprogs(struct bpf_verifier_env *env)
5311 {
5312 	struct bpf_prog *prog = env->prog, **func, *tmp;
5313 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5314 	struct bpf_insn *insn;
5315 	void *old_bpf_func;
5316 	int err = -ENOMEM;
5317 
5318 	if (env->subprog_cnt <= 1)
5319 		return 0;
5320 
5321 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5322 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5323 		    insn->src_reg != BPF_PSEUDO_CALL)
5324 			continue;
5325 		subprog = find_subprog(env, i + insn->imm + 1);
5326 		if (subprog < 0) {
5327 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5328 				  i + insn->imm + 1);
5329 			return -EFAULT;
5330 		}
5331 		/* temporarily remember subprog id inside insn instead of
5332 		 * aux_data, since next loop will split up all insns into funcs
5333 		 */
5334 		insn->off = subprog;
5335 		/* remember original imm in case JIT fails and fallback
5336 		 * to interpreter will be needed
5337 		 */
5338 		env->insn_aux_data[i].call_imm = insn->imm;
5339 		/* point imm to __bpf_call_base+1 from JITs point of view */
5340 		insn->imm = 1;
5341 	}
5342 
5343 	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5344 	if (!func)
5345 		return -ENOMEM;
5346 
5347 	for (i = 0; i < env->subprog_cnt; i++) {
5348 		subprog_start = subprog_end;
5349 		subprog_end = env->subprog_info[i + 1].start;
5350 
5351 		len = subprog_end - subprog_start;
5352 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5353 		if (!func[i])
5354 			goto out_free;
5355 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5356 		       len * sizeof(struct bpf_insn));
5357 		func[i]->type = prog->type;
5358 		func[i]->len = len;
5359 		if (bpf_prog_calc_tag(func[i]))
5360 			goto out_free;
5361 		func[i]->is_func = 1;
5362 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5363 		 * Long term would need debug info to populate names
5364 		 */
5365 		func[i]->aux->name[0] = 'F';
5366 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5367 		func[i]->jit_requested = 1;
5368 		func[i] = bpf_int_jit_compile(func[i]);
5369 		if (!func[i]->jited) {
5370 			err = -ENOTSUPP;
5371 			goto out_free;
5372 		}
5373 		cond_resched();
5374 	}
5375 	/* at this point all bpf functions were successfully JITed
5376 	 * now populate all bpf_calls with correct addresses and
5377 	 * run last pass of JIT
5378 	 */
5379 	for (i = 0; i < env->subprog_cnt; i++) {
5380 		insn = func[i]->insnsi;
5381 		for (j = 0; j < func[i]->len; j++, insn++) {
5382 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5383 			    insn->src_reg != BPF_PSEUDO_CALL)
5384 				continue;
5385 			subprog = insn->off;
5386 			insn->off = 0;
5387 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5388 				func[subprog]->bpf_func -
5389 				__bpf_call_base;
5390 		}
5391 	}
5392 	for (i = 0; i < env->subprog_cnt; i++) {
5393 		old_bpf_func = func[i]->bpf_func;
5394 		tmp = bpf_int_jit_compile(func[i]);
5395 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5396 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5397 			err = -EFAULT;
5398 			goto out_free;
5399 		}
5400 		cond_resched();
5401 	}
5402 
5403 	/* finally lock prog and jit images for all functions and
5404 	 * populate kallsysm
5405 	 */
5406 	for (i = 0; i < env->subprog_cnt; i++) {
5407 		bpf_prog_lock_ro(func[i]);
5408 		bpf_prog_kallsyms_add(func[i]);
5409 	}
5410 
5411 	/* Last step: make now unused interpreter insns from main
5412 	 * prog consistent for later dump requests, so they can
5413 	 * later look the same as if they were interpreted only.
5414 	 */
5415 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5416 		unsigned long addr;
5417 
5418 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5419 		    insn->src_reg != BPF_PSEUDO_CALL)
5420 			continue;
5421 		insn->off = env->insn_aux_data[i].call_imm;
5422 		subprog = find_subprog(env, i + insn->off + 1);
5423 		addr  = (unsigned long)func[subprog]->bpf_func;
5424 		addr &= PAGE_MASK;
5425 		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5426 			    addr - __bpf_call_base;
5427 	}
5428 
5429 	prog->jited = 1;
5430 	prog->bpf_func = func[0]->bpf_func;
5431 	prog->aux->func = func;
5432 	prog->aux->func_cnt = env->subprog_cnt;
5433 	return 0;
5434 out_free:
5435 	for (i = 0; i < env->subprog_cnt; i++)
5436 		if (func[i])
5437 			bpf_jit_free(func[i]);
5438 	kfree(func);
5439 	/* cleanup main prog to be interpreted */
5440 	prog->jit_requested = 0;
5441 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5442 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5443 		    insn->src_reg != BPF_PSEUDO_CALL)
5444 			continue;
5445 		insn->off = 0;
5446 		insn->imm = env->insn_aux_data[i].call_imm;
5447 	}
5448 	return err;
5449 }
5450 
5451 static int fixup_call_args(struct bpf_verifier_env *env)
5452 {
5453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5454 	struct bpf_prog *prog = env->prog;
5455 	struct bpf_insn *insn = prog->insnsi;
5456 	int i, depth;
5457 #endif
5458 	int err;
5459 
5460 	err = 0;
5461 	if (env->prog->jit_requested) {
5462 		err = jit_subprogs(env);
5463 		if (err == 0)
5464 			return 0;
5465 	}
5466 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5467 	for (i = 0; i < prog->len; i++, insn++) {
5468 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5469 		    insn->src_reg != BPF_PSEUDO_CALL)
5470 			continue;
5471 		depth = get_callee_stack_depth(env, insn, i);
5472 		if (depth < 0)
5473 			return depth;
5474 		bpf_patch_call_args(insn, depth);
5475 	}
5476 	err = 0;
5477 #endif
5478 	return err;
5479 }
5480 
5481 /* fixup insn->imm field of bpf_call instructions
5482  * and inline eligible helpers as explicit sequence of BPF instructions
5483  *
5484  * this function is called after eBPF program passed verification
5485  */
5486 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5487 {
5488 	struct bpf_prog *prog = env->prog;
5489 	struct bpf_insn *insn = prog->insnsi;
5490 	const struct bpf_func_proto *fn;
5491 	const int insn_cnt = prog->len;
5492 	struct bpf_insn insn_buf[16];
5493 	struct bpf_prog *new_prog;
5494 	struct bpf_map *map_ptr;
5495 	int i, cnt, delta = 0;
5496 
5497 	for (i = 0; i < insn_cnt; i++, insn++) {
5498 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5499 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5500 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5501 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5502 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5503 			struct bpf_insn mask_and_div[] = {
5504 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5505 				/* Rx div 0 -> 0 */
5506 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5507 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5508 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5509 				*insn,
5510 			};
5511 			struct bpf_insn mask_and_mod[] = {
5512 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5513 				/* Rx mod 0 -> Rx */
5514 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5515 				*insn,
5516 			};
5517 			struct bpf_insn *patchlet;
5518 
5519 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5520 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5521 				patchlet = mask_and_div + (is64 ? 1 : 0);
5522 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5523 			} else {
5524 				patchlet = mask_and_mod + (is64 ? 1 : 0);
5525 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5526 			}
5527 
5528 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5529 			if (!new_prog)
5530 				return -ENOMEM;
5531 
5532 			delta    += cnt - 1;
5533 			env->prog = prog = new_prog;
5534 			insn      = new_prog->insnsi + i + delta;
5535 			continue;
5536 		}
5537 
5538 		if (BPF_CLASS(insn->code) == BPF_LD &&
5539 		    (BPF_MODE(insn->code) == BPF_ABS ||
5540 		     BPF_MODE(insn->code) == BPF_IND)) {
5541 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
5542 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5543 				verbose(env, "bpf verifier is misconfigured\n");
5544 				return -EINVAL;
5545 			}
5546 
5547 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5548 			if (!new_prog)
5549 				return -ENOMEM;
5550 
5551 			delta    += cnt - 1;
5552 			env->prog = prog = new_prog;
5553 			insn      = new_prog->insnsi + i + delta;
5554 			continue;
5555 		}
5556 
5557 		if (insn->code != (BPF_JMP | BPF_CALL))
5558 			continue;
5559 		if (insn->src_reg == BPF_PSEUDO_CALL)
5560 			continue;
5561 
5562 		if (insn->imm == BPF_FUNC_get_route_realm)
5563 			prog->dst_needed = 1;
5564 		if (insn->imm == BPF_FUNC_get_prandom_u32)
5565 			bpf_user_rnd_init_once();
5566 		if (insn->imm == BPF_FUNC_override_return)
5567 			prog->kprobe_override = 1;
5568 		if (insn->imm == BPF_FUNC_tail_call) {
5569 			/* If we tail call into other programs, we
5570 			 * cannot make any assumptions since they can
5571 			 * be replaced dynamically during runtime in
5572 			 * the program array.
5573 			 */
5574 			prog->cb_access = 1;
5575 			env->prog->aux->stack_depth = MAX_BPF_STACK;
5576 
5577 			/* mark bpf_tail_call as different opcode to avoid
5578 			 * conditional branch in the interpeter for every normal
5579 			 * call and to prevent accidental JITing by JIT compiler
5580 			 * that doesn't support bpf_tail_call yet
5581 			 */
5582 			insn->imm = 0;
5583 			insn->code = BPF_JMP | BPF_TAIL_CALL;
5584 
5585 			/* instead of changing every JIT dealing with tail_call
5586 			 * emit two extra insns:
5587 			 * if (index >= max_entries) goto out;
5588 			 * index &= array->index_mask;
5589 			 * to avoid out-of-bounds cpu speculation
5590 			 */
5591 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5592 			if (map_ptr == BPF_MAP_PTR_POISON) {
5593 				verbose(env, "tail_call abusing map_ptr\n");
5594 				return -EINVAL;
5595 			}
5596 			if (!map_ptr->unpriv_array)
5597 				continue;
5598 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5599 						  map_ptr->max_entries, 2);
5600 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5601 						    container_of(map_ptr,
5602 								 struct bpf_array,
5603 								 map)->index_mask);
5604 			insn_buf[2] = *insn;
5605 			cnt = 3;
5606 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5607 			if (!new_prog)
5608 				return -ENOMEM;
5609 
5610 			delta    += cnt - 1;
5611 			env->prog = prog = new_prog;
5612 			insn      = new_prog->insnsi + i + delta;
5613 			continue;
5614 		}
5615 
5616 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5617 		 * handlers are currently limited to 64 bit only.
5618 		 */
5619 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5620 		    insn->imm == BPF_FUNC_map_lookup_elem) {
5621 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5622 			if (map_ptr == BPF_MAP_PTR_POISON ||
5623 			    !map_ptr->ops->map_gen_lookup)
5624 				goto patch_call_imm;
5625 
5626 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5627 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5628 				verbose(env, "bpf verifier is misconfigured\n");
5629 				return -EINVAL;
5630 			}
5631 
5632 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5633 						       cnt);
5634 			if (!new_prog)
5635 				return -ENOMEM;
5636 
5637 			delta += cnt - 1;
5638 
5639 			/* keep walking new program and skip insns we just inserted */
5640 			env->prog = prog = new_prog;
5641 			insn      = new_prog->insnsi + i + delta;
5642 			continue;
5643 		}
5644 
5645 		if (insn->imm == BPF_FUNC_redirect_map) {
5646 			/* Note, we cannot use prog directly as imm as subsequent
5647 			 * rewrites would still change the prog pointer. The only
5648 			 * stable address we can use is aux, which also works with
5649 			 * prog clones during blinding.
5650 			 */
5651 			u64 addr = (unsigned long)prog->aux;
5652 			struct bpf_insn r4_ld[] = {
5653 				BPF_LD_IMM64(BPF_REG_4, addr),
5654 				*insn,
5655 			};
5656 			cnt = ARRAY_SIZE(r4_ld);
5657 
5658 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5659 			if (!new_prog)
5660 				return -ENOMEM;
5661 
5662 			delta    += cnt - 1;
5663 			env->prog = prog = new_prog;
5664 			insn      = new_prog->insnsi + i + delta;
5665 		}
5666 patch_call_imm:
5667 		fn = env->ops->get_func_proto(insn->imm, env->prog);
5668 		/* all functions that have prototype and verifier allowed
5669 		 * programs to call them, must be real in-kernel functions
5670 		 */
5671 		if (!fn->func) {
5672 			verbose(env,
5673 				"kernel subsystem misconfigured func %s#%d\n",
5674 				func_id_name(insn->imm), insn->imm);
5675 			return -EFAULT;
5676 		}
5677 		insn->imm = fn->func - __bpf_call_base;
5678 	}
5679 
5680 	return 0;
5681 }
5682 
5683 static void free_states(struct bpf_verifier_env *env)
5684 {
5685 	struct bpf_verifier_state_list *sl, *sln;
5686 	int i;
5687 
5688 	if (!env->explored_states)
5689 		return;
5690 
5691 	for (i = 0; i < env->prog->len; i++) {
5692 		sl = env->explored_states[i];
5693 
5694 		if (sl)
5695 			while (sl != STATE_LIST_MARK) {
5696 				sln = sl->next;
5697 				free_verifier_state(&sl->state, false);
5698 				kfree(sl);
5699 				sl = sln;
5700 			}
5701 	}
5702 
5703 	kfree(env->explored_states);
5704 }
5705 
5706 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5707 {
5708 	struct bpf_verifier_env *env;
5709 	struct bpf_verifier_log *log;
5710 	int ret = -EINVAL;
5711 
5712 	/* no program is valid */
5713 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5714 		return -EINVAL;
5715 
5716 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5717 	 * allocate/free it every time bpf_check() is called
5718 	 */
5719 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5720 	if (!env)
5721 		return -ENOMEM;
5722 	log = &env->log;
5723 
5724 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5725 				     (*prog)->len);
5726 	ret = -ENOMEM;
5727 	if (!env->insn_aux_data)
5728 		goto err_free_env;
5729 	env->prog = *prog;
5730 	env->ops = bpf_verifier_ops[env->prog->type];
5731 
5732 	/* grab the mutex to protect few globals used by verifier */
5733 	mutex_lock(&bpf_verifier_lock);
5734 
5735 	if (attr->log_level || attr->log_buf || attr->log_size) {
5736 		/* user requested verbose verifier output
5737 		 * and supplied buffer to store the verification trace
5738 		 */
5739 		log->level = attr->log_level;
5740 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5741 		log->len_total = attr->log_size;
5742 
5743 		ret = -EINVAL;
5744 		/* log attributes have to be sane */
5745 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5746 		    !log->level || !log->ubuf)
5747 			goto err_unlock;
5748 	}
5749 
5750 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5751 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5752 		env->strict_alignment = true;
5753 
5754 	ret = replace_map_fd_with_map_ptr(env);
5755 	if (ret < 0)
5756 		goto skip_full_check;
5757 
5758 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5759 		ret = bpf_prog_offload_verifier_prep(env);
5760 		if (ret)
5761 			goto skip_full_check;
5762 	}
5763 
5764 	env->explored_states = kcalloc(env->prog->len,
5765 				       sizeof(struct bpf_verifier_state_list *),
5766 				       GFP_USER);
5767 	ret = -ENOMEM;
5768 	if (!env->explored_states)
5769 		goto skip_full_check;
5770 
5771 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5772 
5773 	ret = check_cfg(env);
5774 	if (ret < 0)
5775 		goto skip_full_check;
5776 
5777 	ret = do_check(env);
5778 	if (env->cur_state) {
5779 		free_verifier_state(env->cur_state, true);
5780 		env->cur_state = NULL;
5781 	}
5782 
5783 skip_full_check:
5784 	while (!pop_stack(env, NULL, NULL));
5785 	free_states(env);
5786 
5787 	if (ret == 0)
5788 		sanitize_dead_code(env);
5789 
5790 	if (ret == 0)
5791 		ret = check_max_stack_depth(env);
5792 
5793 	if (ret == 0)
5794 		/* program is valid, convert *(u32*)(ctx + off) accesses */
5795 		ret = convert_ctx_accesses(env);
5796 
5797 	if (ret == 0)
5798 		ret = fixup_bpf_calls(env);
5799 
5800 	if (ret == 0)
5801 		ret = fixup_call_args(env);
5802 
5803 	if (log->level && bpf_verifier_log_full(log))
5804 		ret = -ENOSPC;
5805 	if (log->level && !log->ubuf) {
5806 		ret = -EFAULT;
5807 		goto err_release_maps;
5808 	}
5809 
5810 	if (ret == 0 && env->used_map_cnt) {
5811 		/* if program passed verifier, update used_maps in bpf_prog_info */
5812 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5813 							  sizeof(env->used_maps[0]),
5814 							  GFP_KERNEL);
5815 
5816 		if (!env->prog->aux->used_maps) {
5817 			ret = -ENOMEM;
5818 			goto err_release_maps;
5819 		}
5820 
5821 		memcpy(env->prog->aux->used_maps, env->used_maps,
5822 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5823 		env->prog->aux->used_map_cnt = env->used_map_cnt;
5824 
5825 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
5826 		 * bpf_ld_imm64 instructions
5827 		 */
5828 		convert_pseudo_ld_imm64(env);
5829 	}
5830 
5831 err_release_maps:
5832 	if (!env->prog->aux->used_maps)
5833 		/* if we didn't copy map pointers into bpf_prog_info, release
5834 		 * them now. Otherwise free_used_maps() will release them.
5835 		 */
5836 		release_maps(env);
5837 	*prog = env->prog;
5838 err_unlock:
5839 	mutex_unlock(&bpf_verifier_lock);
5840 	vfree(env->insn_aux_data);
5841 err_free_env:
5842 	kfree(env);
5843 	return ret;
5844 }
5845