1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 180 #define BPF_COMPLEXITY_LIMIT_STACK 1024 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 struct bpf_call_arg_meta { 208 struct bpf_map *map_ptr; 209 bool raw_mode; 210 bool pkt_access; 211 int regno; 212 int access_size; 213 s64 msize_smax_value; 214 u64 msize_umax_value; 215 int ptr_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL; 337 } 338 339 static bool type_is_refcounted(enum bpf_reg_type type) 340 { 341 return type == PTR_TO_SOCKET; 342 } 343 344 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 345 { 346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 347 } 348 349 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 350 { 351 return type_is_refcounted(reg->type); 352 } 353 354 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 355 { 356 return type_is_refcounted_or_null(reg->type); 357 } 358 359 static bool arg_type_is_refcounted(enum bpf_arg_type type) 360 { 361 return type == ARG_PTR_TO_SOCKET; 362 } 363 364 /* Determine whether the function releases some resources allocated by another 365 * function call. The first reference type argument will be assumed to be 366 * released by release_reference(). 367 */ 368 static bool is_release_function(enum bpf_func_id func_id) 369 { 370 return func_id == BPF_FUNC_sk_release; 371 } 372 373 /* string representation of 'enum bpf_reg_type' */ 374 static const char * const reg_type_str[] = { 375 [NOT_INIT] = "?", 376 [SCALAR_VALUE] = "inv", 377 [PTR_TO_CTX] = "ctx", 378 [CONST_PTR_TO_MAP] = "map_ptr", 379 [PTR_TO_MAP_VALUE] = "map_value", 380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 381 [PTR_TO_STACK] = "fp", 382 [PTR_TO_PACKET] = "pkt", 383 [PTR_TO_PACKET_META] = "pkt_meta", 384 [PTR_TO_PACKET_END] = "pkt_end", 385 [PTR_TO_FLOW_KEYS] = "flow_keys", 386 [PTR_TO_SOCKET] = "sock", 387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 388 }; 389 390 static char slot_type_char[] = { 391 [STACK_INVALID] = '?', 392 [STACK_SPILL] = 'r', 393 [STACK_MISC] = 'm', 394 [STACK_ZERO] = '0', 395 }; 396 397 static void print_liveness(struct bpf_verifier_env *env, 398 enum bpf_reg_liveness live) 399 { 400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 401 verbose(env, "_"); 402 if (live & REG_LIVE_READ) 403 verbose(env, "r"); 404 if (live & REG_LIVE_WRITTEN) 405 verbose(env, "w"); 406 if (live & REG_LIVE_DONE) 407 verbose(env, "D"); 408 } 409 410 static struct bpf_func_state *func(struct bpf_verifier_env *env, 411 const struct bpf_reg_state *reg) 412 { 413 struct bpf_verifier_state *cur = env->cur_state; 414 415 return cur->frame[reg->frameno]; 416 } 417 418 static void print_verifier_state(struct bpf_verifier_env *env, 419 const struct bpf_func_state *state) 420 { 421 const struct bpf_reg_state *reg; 422 enum bpf_reg_type t; 423 int i; 424 425 if (state->frameno) 426 verbose(env, " frame%d:", state->frameno); 427 for (i = 0; i < MAX_BPF_REG; i++) { 428 reg = &state->regs[i]; 429 t = reg->type; 430 if (t == NOT_INIT) 431 continue; 432 verbose(env, " R%d", i); 433 print_liveness(env, reg->live); 434 verbose(env, "=%s", reg_type_str[t]); 435 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 436 tnum_is_const(reg->var_off)) { 437 /* reg->off should be 0 for SCALAR_VALUE */ 438 verbose(env, "%lld", reg->var_off.value + reg->off); 439 if (t == PTR_TO_STACK) 440 verbose(env, ",call_%d", func(env, reg)->callsite); 441 } else { 442 verbose(env, "(id=%d", reg->id); 443 if (t != SCALAR_VALUE) 444 verbose(env, ",off=%d", reg->off); 445 if (type_is_pkt_pointer(t)) 446 verbose(env, ",r=%d", reg->range); 447 else if (t == CONST_PTR_TO_MAP || 448 t == PTR_TO_MAP_VALUE || 449 t == PTR_TO_MAP_VALUE_OR_NULL) 450 verbose(env, ",ks=%d,vs=%d", 451 reg->map_ptr->key_size, 452 reg->map_ptr->value_size); 453 if (tnum_is_const(reg->var_off)) { 454 /* Typically an immediate SCALAR_VALUE, but 455 * could be a pointer whose offset is too big 456 * for reg->off 457 */ 458 verbose(env, ",imm=%llx", reg->var_off.value); 459 } else { 460 if (reg->smin_value != reg->umin_value && 461 reg->smin_value != S64_MIN) 462 verbose(env, ",smin_value=%lld", 463 (long long)reg->smin_value); 464 if (reg->smax_value != reg->umax_value && 465 reg->smax_value != S64_MAX) 466 verbose(env, ",smax_value=%lld", 467 (long long)reg->smax_value); 468 if (reg->umin_value != 0) 469 verbose(env, ",umin_value=%llu", 470 (unsigned long long)reg->umin_value); 471 if (reg->umax_value != U64_MAX) 472 verbose(env, ",umax_value=%llu", 473 (unsigned long long)reg->umax_value); 474 if (!tnum_is_unknown(reg->var_off)) { 475 char tn_buf[48]; 476 477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 478 verbose(env, ",var_off=%s", tn_buf); 479 } 480 } 481 verbose(env, ")"); 482 } 483 } 484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 485 char types_buf[BPF_REG_SIZE + 1]; 486 bool valid = false; 487 int j; 488 489 for (j = 0; j < BPF_REG_SIZE; j++) { 490 if (state->stack[i].slot_type[j] != STACK_INVALID) 491 valid = true; 492 types_buf[j] = slot_type_char[ 493 state->stack[i].slot_type[j]]; 494 } 495 types_buf[BPF_REG_SIZE] = 0; 496 if (!valid) 497 continue; 498 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 499 print_liveness(env, state->stack[i].spilled_ptr.live); 500 if (state->stack[i].slot_type[0] == STACK_SPILL) 501 verbose(env, "=%s", 502 reg_type_str[state->stack[i].spilled_ptr.type]); 503 else 504 verbose(env, "=%s", types_buf); 505 } 506 if (state->acquired_refs && state->refs[0].id) { 507 verbose(env, " refs=%d", state->refs[0].id); 508 for (i = 1; i < state->acquired_refs; i++) 509 if (state->refs[i].id) 510 verbose(env, ",%d", state->refs[i].id); 511 } 512 verbose(env, "\n"); 513 } 514 515 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 516 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 517 const struct bpf_func_state *src) \ 518 { \ 519 if (!src->FIELD) \ 520 return 0; \ 521 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 522 /* internal bug, make state invalid to reject the program */ \ 523 memset(dst, 0, sizeof(*dst)); \ 524 return -EFAULT; \ 525 } \ 526 memcpy(dst->FIELD, src->FIELD, \ 527 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 528 return 0; \ 529 } 530 /* copy_reference_state() */ 531 COPY_STATE_FN(reference, acquired_refs, refs, 1) 532 /* copy_stack_state() */ 533 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 534 #undef COPY_STATE_FN 535 536 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 537 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 538 bool copy_old) \ 539 { \ 540 u32 old_size = state->COUNT; \ 541 struct bpf_##NAME##_state *new_##FIELD; \ 542 int slot = size / SIZE; \ 543 \ 544 if (size <= old_size || !size) { \ 545 if (copy_old) \ 546 return 0; \ 547 state->COUNT = slot * SIZE; \ 548 if (!size && old_size) { \ 549 kfree(state->FIELD); \ 550 state->FIELD = NULL; \ 551 } \ 552 return 0; \ 553 } \ 554 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 555 GFP_KERNEL); \ 556 if (!new_##FIELD) \ 557 return -ENOMEM; \ 558 if (copy_old) { \ 559 if (state->FIELD) \ 560 memcpy(new_##FIELD, state->FIELD, \ 561 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 562 memset(new_##FIELD + old_size / SIZE, 0, \ 563 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 564 } \ 565 state->COUNT = slot * SIZE; \ 566 kfree(state->FIELD); \ 567 state->FIELD = new_##FIELD; \ 568 return 0; \ 569 } 570 /* realloc_reference_state() */ 571 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 572 /* realloc_stack_state() */ 573 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 574 #undef REALLOC_STATE_FN 575 576 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 577 * make it consume minimal amount of memory. check_stack_write() access from 578 * the program calls into realloc_func_state() to grow the stack size. 579 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 580 * which realloc_stack_state() copies over. It points to previous 581 * bpf_verifier_state which is never reallocated. 582 */ 583 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 584 int refs_size, bool copy_old) 585 { 586 int err = realloc_reference_state(state, refs_size, copy_old); 587 if (err) 588 return err; 589 return realloc_stack_state(state, stack_size, copy_old); 590 } 591 592 /* Acquire a pointer id from the env and update the state->refs to include 593 * this new pointer reference. 594 * On success, returns a valid pointer id to associate with the register 595 * On failure, returns a negative errno. 596 */ 597 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 598 { 599 struct bpf_func_state *state = cur_func(env); 600 int new_ofs = state->acquired_refs; 601 int id, err; 602 603 err = realloc_reference_state(state, state->acquired_refs + 1, true); 604 if (err) 605 return err; 606 id = ++env->id_gen; 607 state->refs[new_ofs].id = id; 608 state->refs[new_ofs].insn_idx = insn_idx; 609 610 return id; 611 } 612 613 /* release function corresponding to acquire_reference_state(). Idempotent. */ 614 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 615 { 616 int i, last_idx; 617 618 if (!ptr_id) 619 return -EFAULT; 620 621 last_idx = state->acquired_refs - 1; 622 for (i = 0; i < state->acquired_refs; i++) { 623 if (state->refs[i].id == ptr_id) { 624 if (last_idx && i != last_idx) 625 memcpy(&state->refs[i], &state->refs[last_idx], 626 sizeof(*state->refs)); 627 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 628 state->acquired_refs--; 629 return 0; 630 } 631 } 632 return -EFAULT; 633 } 634 635 /* variation on the above for cases where we expect that there must be an 636 * outstanding reference for the specified ptr_id. 637 */ 638 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 639 { 640 struct bpf_func_state *state = cur_func(env); 641 int err; 642 643 err = __release_reference_state(state, ptr_id); 644 if (WARN_ON_ONCE(err != 0)) 645 verbose(env, "verifier internal error: can't release reference\n"); 646 return err; 647 } 648 649 static int transfer_reference_state(struct bpf_func_state *dst, 650 struct bpf_func_state *src) 651 { 652 int err = realloc_reference_state(dst, src->acquired_refs, false); 653 if (err) 654 return err; 655 err = copy_reference_state(dst, src); 656 if (err) 657 return err; 658 return 0; 659 } 660 661 static void free_func_state(struct bpf_func_state *state) 662 { 663 if (!state) 664 return; 665 kfree(state->refs); 666 kfree(state->stack); 667 kfree(state); 668 } 669 670 static void free_verifier_state(struct bpf_verifier_state *state, 671 bool free_self) 672 { 673 int i; 674 675 for (i = 0; i <= state->curframe; i++) { 676 free_func_state(state->frame[i]); 677 state->frame[i] = NULL; 678 } 679 if (free_self) 680 kfree(state); 681 } 682 683 /* copy verifier state from src to dst growing dst stack space 684 * when necessary to accommodate larger src stack 685 */ 686 static int copy_func_state(struct bpf_func_state *dst, 687 const struct bpf_func_state *src) 688 { 689 int err; 690 691 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 692 false); 693 if (err) 694 return err; 695 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 696 err = copy_reference_state(dst, src); 697 if (err) 698 return err; 699 return copy_stack_state(dst, src); 700 } 701 702 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 703 const struct bpf_verifier_state *src) 704 { 705 struct bpf_func_state *dst; 706 int i, err; 707 708 /* if dst has more stack frames then src frame, free them */ 709 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 710 free_func_state(dst_state->frame[i]); 711 dst_state->frame[i] = NULL; 712 } 713 dst_state->speculative = src->speculative; 714 dst_state->curframe = src->curframe; 715 for (i = 0; i <= src->curframe; i++) { 716 dst = dst_state->frame[i]; 717 if (!dst) { 718 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 719 if (!dst) 720 return -ENOMEM; 721 dst_state->frame[i] = dst; 722 } 723 err = copy_func_state(dst, src->frame[i]); 724 if (err) 725 return err; 726 } 727 return 0; 728 } 729 730 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 731 int *insn_idx) 732 { 733 struct bpf_verifier_state *cur = env->cur_state; 734 struct bpf_verifier_stack_elem *elem, *head = env->head; 735 int err; 736 737 if (env->head == NULL) 738 return -ENOENT; 739 740 if (cur) { 741 err = copy_verifier_state(cur, &head->st); 742 if (err) 743 return err; 744 } 745 if (insn_idx) 746 *insn_idx = head->insn_idx; 747 if (prev_insn_idx) 748 *prev_insn_idx = head->prev_insn_idx; 749 elem = head->next; 750 free_verifier_state(&head->st, false); 751 kfree(head); 752 env->head = elem; 753 env->stack_size--; 754 return 0; 755 } 756 757 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 758 int insn_idx, int prev_insn_idx, 759 bool speculative) 760 { 761 struct bpf_verifier_state *cur = env->cur_state; 762 struct bpf_verifier_stack_elem *elem; 763 int err; 764 765 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 766 if (!elem) 767 goto err; 768 769 elem->insn_idx = insn_idx; 770 elem->prev_insn_idx = prev_insn_idx; 771 elem->next = env->head; 772 env->head = elem; 773 env->stack_size++; 774 err = copy_verifier_state(&elem->st, cur); 775 if (err) 776 goto err; 777 elem->st.speculative |= speculative; 778 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 779 verbose(env, "BPF program is too complex\n"); 780 goto err; 781 } 782 return &elem->st; 783 err: 784 free_verifier_state(env->cur_state, true); 785 env->cur_state = NULL; 786 /* pop all elements and return */ 787 while (!pop_stack(env, NULL, NULL)); 788 return NULL; 789 } 790 791 #define CALLER_SAVED_REGS 6 792 static const int caller_saved[CALLER_SAVED_REGS] = { 793 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 794 }; 795 796 static void __mark_reg_not_init(struct bpf_reg_state *reg); 797 798 /* Mark the unknown part of a register (variable offset or scalar value) as 799 * known to have the value @imm. 800 */ 801 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 802 { 803 /* Clear id, off, and union(map_ptr, range) */ 804 memset(((u8 *)reg) + sizeof(reg->type), 0, 805 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 806 reg->var_off = tnum_const(imm); 807 reg->smin_value = (s64)imm; 808 reg->smax_value = (s64)imm; 809 reg->umin_value = imm; 810 reg->umax_value = imm; 811 } 812 813 /* Mark the 'variable offset' part of a register as zero. This should be 814 * used only on registers holding a pointer type. 815 */ 816 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 817 { 818 __mark_reg_known(reg, 0); 819 } 820 821 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 822 { 823 __mark_reg_known(reg, 0); 824 reg->type = SCALAR_VALUE; 825 } 826 827 static void mark_reg_known_zero(struct bpf_verifier_env *env, 828 struct bpf_reg_state *regs, u32 regno) 829 { 830 if (WARN_ON(regno >= MAX_BPF_REG)) { 831 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 832 /* Something bad happened, let's kill all regs */ 833 for (regno = 0; regno < MAX_BPF_REG; regno++) 834 __mark_reg_not_init(regs + regno); 835 return; 836 } 837 __mark_reg_known_zero(regs + regno); 838 } 839 840 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 841 { 842 return type_is_pkt_pointer(reg->type); 843 } 844 845 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 846 { 847 return reg_is_pkt_pointer(reg) || 848 reg->type == PTR_TO_PACKET_END; 849 } 850 851 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 852 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 853 enum bpf_reg_type which) 854 { 855 /* The register can already have a range from prior markings. 856 * This is fine as long as it hasn't been advanced from its 857 * origin. 858 */ 859 return reg->type == which && 860 reg->id == 0 && 861 reg->off == 0 && 862 tnum_equals_const(reg->var_off, 0); 863 } 864 865 /* Attempts to improve min/max values based on var_off information */ 866 static void __update_reg_bounds(struct bpf_reg_state *reg) 867 { 868 /* min signed is max(sign bit) | min(other bits) */ 869 reg->smin_value = max_t(s64, reg->smin_value, 870 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 871 /* max signed is min(sign bit) | max(other bits) */ 872 reg->smax_value = min_t(s64, reg->smax_value, 873 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 874 reg->umin_value = max(reg->umin_value, reg->var_off.value); 875 reg->umax_value = min(reg->umax_value, 876 reg->var_off.value | reg->var_off.mask); 877 } 878 879 /* Uses signed min/max values to inform unsigned, and vice-versa */ 880 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 881 { 882 /* Learn sign from signed bounds. 883 * If we cannot cross the sign boundary, then signed and unsigned bounds 884 * are the same, so combine. This works even in the negative case, e.g. 885 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 886 */ 887 if (reg->smin_value >= 0 || reg->smax_value < 0) { 888 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 889 reg->umin_value); 890 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 891 reg->umax_value); 892 return; 893 } 894 /* Learn sign from unsigned bounds. Signed bounds cross the sign 895 * boundary, so we must be careful. 896 */ 897 if ((s64)reg->umax_value >= 0) { 898 /* Positive. We can't learn anything from the smin, but smax 899 * is positive, hence safe. 900 */ 901 reg->smin_value = reg->umin_value; 902 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 903 reg->umax_value); 904 } else if ((s64)reg->umin_value < 0) { 905 /* Negative. We can't learn anything from the smax, but smin 906 * is negative, hence safe. 907 */ 908 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 909 reg->umin_value); 910 reg->smax_value = reg->umax_value; 911 } 912 } 913 914 /* Attempts to improve var_off based on unsigned min/max information */ 915 static void __reg_bound_offset(struct bpf_reg_state *reg) 916 { 917 reg->var_off = tnum_intersect(reg->var_off, 918 tnum_range(reg->umin_value, 919 reg->umax_value)); 920 } 921 922 /* Reset the min/max bounds of a register */ 923 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 924 { 925 reg->smin_value = S64_MIN; 926 reg->smax_value = S64_MAX; 927 reg->umin_value = 0; 928 reg->umax_value = U64_MAX; 929 } 930 931 /* Mark a register as having a completely unknown (scalar) value. */ 932 static void __mark_reg_unknown(struct bpf_reg_state *reg) 933 { 934 /* 935 * Clear type, id, off, and union(map_ptr, range) and 936 * padding between 'type' and union 937 */ 938 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 939 reg->type = SCALAR_VALUE; 940 reg->var_off = tnum_unknown; 941 reg->frameno = 0; 942 __mark_reg_unbounded(reg); 943 } 944 945 static void mark_reg_unknown(struct bpf_verifier_env *env, 946 struct bpf_reg_state *regs, u32 regno) 947 { 948 if (WARN_ON(regno >= MAX_BPF_REG)) { 949 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 950 /* Something bad happened, let's kill all regs except FP */ 951 for (regno = 0; regno < BPF_REG_FP; regno++) 952 __mark_reg_not_init(regs + regno); 953 return; 954 } 955 __mark_reg_unknown(regs + regno); 956 } 957 958 static void __mark_reg_not_init(struct bpf_reg_state *reg) 959 { 960 __mark_reg_unknown(reg); 961 reg->type = NOT_INIT; 962 } 963 964 static void mark_reg_not_init(struct bpf_verifier_env *env, 965 struct bpf_reg_state *regs, u32 regno) 966 { 967 if (WARN_ON(regno >= MAX_BPF_REG)) { 968 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 969 /* Something bad happened, let's kill all regs except FP */ 970 for (regno = 0; regno < BPF_REG_FP; regno++) 971 __mark_reg_not_init(regs + regno); 972 return; 973 } 974 __mark_reg_not_init(regs + regno); 975 } 976 977 static void init_reg_state(struct bpf_verifier_env *env, 978 struct bpf_func_state *state) 979 { 980 struct bpf_reg_state *regs = state->regs; 981 int i; 982 983 for (i = 0; i < MAX_BPF_REG; i++) { 984 mark_reg_not_init(env, regs, i); 985 regs[i].live = REG_LIVE_NONE; 986 regs[i].parent = NULL; 987 } 988 989 /* frame pointer */ 990 regs[BPF_REG_FP].type = PTR_TO_STACK; 991 mark_reg_known_zero(env, regs, BPF_REG_FP); 992 regs[BPF_REG_FP].frameno = state->frameno; 993 994 /* 1st arg to a function */ 995 regs[BPF_REG_1].type = PTR_TO_CTX; 996 mark_reg_known_zero(env, regs, BPF_REG_1); 997 } 998 999 #define BPF_MAIN_FUNC (-1) 1000 static void init_func_state(struct bpf_verifier_env *env, 1001 struct bpf_func_state *state, 1002 int callsite, int frameno, int subprogno) 1003 { 1004 state->callsite = callsite; 1005 state->frameno = frameno; 1006 state->subprogno = subprogno; 1007 init_reg_state(env, state); 1008 } 1009 1010 enum reg_arg_type { 1011 SRC_OP, /* register is used as source operand */ 1012 DST_OP, /* register is used as destination operand */ 1013 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1014 }; 1015 1016 static int cmp_subprogs(const void *a, const void *b) 1017 { 1018 return ((struct bpf_subprog_info *)a)->start - 1019 ((struct bpf_subprog_info *)b)->start; 1020 } 1021 1022 static int find_subprog(struct bpf_verifier_env *env, int off) 1023 { 1024 struct bpf_subprog_info *p; 1025 1026 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1027 sizeof(env->subprog_info[0]), cmp_subprogs); 1028 if (!p) 1029 return -ENOENT; 1030 return p - env->subprog_info; 1031 1032 } 1033 1034 static int add_subprog(struct bpf_verifier_env *env, int off) 1035 { 1036 int insn_cnt = env->prog->len; 1037 int ret; 1038 1039 if (off >= insn_cnt || off < 0) { 1040 verbose(env, "call to invalid destination\n"); 1041 return -EINVAL; 1042 } 1043 ret = find_subprog(env, off); 1044 if (ret >= 0) 1045 return 0; 1046 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1047 verbose(env, "too many subprograms\n"); 1048 return -E2BIG; 1049 } 1050 env->subprog_info[env->subprog_cnt++].start = off; 1051 sort(env->subprog_info, env->subprog_cnt, 1052 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1053 return 0; 1054 } 1055 1056 static int check_subprogs(struct bpf_verifier_env *env) 1057 { 1058 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1059 struct bpf_subprog_info *subprog = env->subprog_info; 1060 struct bpf_insn *insn = env->prog->insnsi; 1061 int insn_cnt = env->prog->len; 1062 1063 /* Add entry function. */ 1064 ret = add_subprog(env, 0); 1065 if (ret < 0) 1066 return ret; 1067 1068 /* determine subprog starts. The end is one before the next starts */ 1069 for (i = 0; i < insn_cnt; i++) { 1070 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1071 continue; 1072 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1073 continue; 1074 if (!env->allow_ptr_leaks) { 1075 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1076 return -EPERM; 1077 } 1078 ret = add_subprog(env, i + insn[i].imm + 1); 1079 if (ret < 0) 1080 return ret; 1081 } 1082 1083 /* Add a fake 'exit' subprog which could simplify subprog iteration 1084 * logic. 'subprog_cnt' should not be increased. 1085 */ 1086 subprog[env->subprog_cnt].start = insn_cnt; 1087 1088 if (env->log.level > 1) 1089 for (i = 0; i < env->subprog_cnt; i++) 1090 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1091 1092 /* now check that all jumps are within the same subprog */ 1093 subprog_start = subprog[cur_subprog].start; 1094 subprog_end = subprog[cur_subprog + 1].start; 1095 for (i = 0; i < insn_cnt; i++) { 1096 u8 code = insn[i].code; 1097 1098 if (BPF_CLASS(code) != BPF_JMP) 1099 goto next; 1100 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1101 goto next; 1102 off = i + insn[i].off + 1; 1103 if (off < subprog_start || off >= subprog_end) { 1104 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1105 return -EINVAL; 1106 } 1107 next: 1108 if (i == subprog_end - 1) { 1109 /* to avoid fall-through from one subprog into another 1110 * the last insn of the subprog should be either exit 1111 * or unconditional jump back 1112 */ 1113 if (code != (BPF_JMP | BPF_EXIT) && 1114 code != (BPF_JMP | BPF_JA)) { 1115 verbose(env, "last insn is not an exit or jmp\n"); 1116 return -EINVAL; 1117 } 1118 subprog_start = subprog_end; 1119 cur_subprog++; 1120 if (cur_subprog < env->subprog_cnt) 1121 subprog_end = subprog[cur_subprog + 1].start; 1122 } 1123 } 1124 return 0; 1125 } 1126 1127 /* Parentage chain of this register (or stack slot) should take care of all 1128 * issues like callee-saved registers, stack slot allocation time, etc. 1129 */ 1130 static int mark_reg_read(struct bpf_verifier_env *env, 1131 const struct bpf_reg_state *state, 1132 struct bpf_reg_state *parent) 1133 { 1134 bool writes = parent == state->parent; /* Observe write marks */ 1135 1136 while (parent) { 1137 /* if read wasn't screened by an earlier write ... */ 1138 if (writes && state->live & REG_LIVE_WRITTEN) 1139 break; 1140 if (parent->live & REG_LIVE_DONE) { 1141 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1142 reg_type_str[parent->type], 1143 parent->var_off.value, parent->off); 1144 return -EFAULT; 1145 } 1146 /* ... then we depend on parent's value */ 1147 parent->live |= REG_LIVE_READ; 1148 state = parent; 1149 parent = state->parent; 1150 writes = true; 1151 } 1152 return 0; 1153 } 1154 1155 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1156 enum reg_arg_type t) 1157 { 1158 struct bpf_verifier_state *vstate = env->cur_state; 1159 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1160 struct bpf_reg_state *regs = state->regs; 1161 1162 if (regno >= MAX_BPF_REG) { 1163 verbose(env, "R%d is invalid\n", regno); 1164 return -EINVAL; 1165 } 1166 1167 if (t == SRC_OP) { 1168 /* check whether register used as source operand can be read */ 1169 if (regs[regno].type == NOT_INIT) { 1170 verbose(env, "R%d !read_ok\n", regno); 1171 return -EACCES; 1172 } 1173 /* We don't need to worry about FP liveness because it's read-only */ 1174 if (regno != BPF_REG_FP) 1175 return mark_reg_read(env, ®s[regno], 1176 regs[regno].parent); 1177 } else { 1178 /* check whether register used as dest operand can be written to */ 1179 if (regno == BPF_REG_FP) { 1180 verbose(env, "frame pointer is read only\n"); 1181 return -EACCES; 1182 } 1183 regs[regno].live |= REG_LIVE_WRITTEN; 1184 if (t == DST_OP) 1185 mark_reg_unknown(env, regs, regno); 1186 } 1187 return 0; 1188 } 1189 1190 static bool is_spillable_regtype(enum bpf_reg_type type) 1191 { 1192 switch (type) { 1193 case PTR_TO_MAP_VALUE: 1194 case PTR_TO_MAP_VALUE_OR_NULL: 1195 case PTR_TO_STACK: 1196 case PTR_TO_CTX: 1197 case PTR_TO_PACKET: 1198 case PTR_TO_PACKET_META: 1199 case PTR_TO_PACKET_END: 1200 case PTR_TO_FLOW_KEYS: 1201 case CONST_PTR_TO_MAP: 1202 case PTR_TO_SOCKET: 1203 case PTR_TO_SOCKET_OR_NULL: 1204 return true; 1205 default: 1206 return false; 1207 } 1208 } 1209 1210 /* Does this register contain a constant zero? */ 1211 static bool register_is_null(struct bpf_reg_state *reg) 1212 { 1213 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1214 } 1215 1216 /* check_stack_read/write functions track spill/fill of registers, 1217 * stack boundary and alignment are checked in check_mem_access() 1218 */ 1219 static int check_stack_write(struct bpf_verifier_env *env, 1220 struct bpf_func_state *state, /* func where register points to */ 1221 int off, int size, int value_regno, int insn_idx) 1222 { 1223 struct bpf_func_state *cur; /* state of the current function */ 1224 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1225 enum bpf_reg_type type; 1226 1227 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1228 state->acquired_refs, true); 1229 if (err) 1230 return err; 1231 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1232 * so it's aligned access and [off, off + size) are within stack limits 1233 */ 1234 if (!env->allow_ptr_leaks && 1235 state->stack[spi].slot_type[0] == STACK_SPILL && 1236 size != BPF_REG_SIZE) { 1237 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1238 return -EACCES; 1239 } 1240 1241 cur = env->cur_state->frame[env->cur_state->curframe]; 1242 if (value_regno >= 0 && 1243 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1244 1245 /* register containing pointer is being spilled into stack */ 1246 if (size != BPF_REG_SIZE) { 1247 verbose(env, "invalid size of register spill\n"); 1248 return -EACCES; 1249 } 1250 1251 if (state != cur && type == PTR_TO_STACK) { 1252 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1253 return -EINVAL; 1254 } 1255 1256 /* save register state */ 1257 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1258 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1259 1260 for (i = 0; i < BPF_REG_SIZE; i++) { 1261 if (state->stack[spi].slot_type[i] == STACK_MISC && 1262 !env->allow_ptr_leaks) { 1263 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1264 int soff = (-spi - 1) * BPF_REG_SIZE; 1265 1266 /* detected reuse of integer stack slot with a pointer 1267 * which means either llvm is reusing stack slot or 1268 * an attacker is trying to exploit CVE-2018-3639 1269 * (speculative store bypass) 1270 * Have to sanitize that slot with preemptive 1271 * store of zero. 1272 */ 1273 if (*poff && *poff != soff) { 1274 /* disallow programs where single insn stores 1275 * into two different stack slots, since verifier 1276 * cannot sanitize them 1277 */ 1278 verbose(env, 1279 "insn %d cannot access two stack slots fp%d and fp%d", 1280 insn_idx, *poff, soff); 1281 return -EINVAL; 1282 } 1283 *poff = soff; 1284 } 1285 state->stack[spi].slot_type[i] = STACK_SPILL; 1286 } 1287 } else { 1288 u8 type = STACK_MISC; 1289 1290 /* regular write of data into stack destroys any spilled ptr */ 1291 state->stack[spi].spilled_ptr.type = NOT_INIT; 1292 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1293 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1294 for (i = 0; i < BPF_REG_SIZE; i++) 1295 state->stack[spi].slot_type[i] = STACK_MISC; 1296 1297 /* only mark the slot as written if all 8 bytes were written 1298 * otherwise read propagation may incorrectly stop too soon 1299 * when stack slots are partially written. 1300 * This heuristic means that read propagation will be 1301 * conservative, since it will add reg_live_read marks 1302 * to stack slots all the way to first state when programs 1303 * writes+reads less than 8 bytes 1304 */ 1305 if (size == BPF_REG_SIZE) 1306 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1307 1308 /* when we zero initialize stack slots mark them as such */ 1309 if (value_regno >= 0 && 1310 register_is_null(&cur->regs[value_regno])) 1311 type = STACK_ZERO; 1312 1313 /* Mark slots affected by this stack write. */ 1314 for (i = 0; i < size; i++) 1315 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1316 type; 1317 } 1318 return 0; 1319 } 1320 1321 static int check_stack_read(struct bpf_verifier_env *env, 1322 struct bpf_func_state *reg_state /* func where register points to */, 1323 int off, int size, int value_regno) 1324 { 1325 struct bpf_verifier_state *vstate = env->cur_state; 1326 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1327 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1328 u8 *stype; 1329 1330 if (reg_state->allocated_stack <= slot) { 1331 verbose(env, "invalid read from stack off %d+0 size %d\n", 1332 off, size); 1333 return -EACCES; 1334 } 1335 stype = reg_state->stack[spi].slot_type; 1336 1337 if (stype[0] == STACK_SPILL) { 1338 if (size != BPF_REG_SIZE) { 1339 verbose(env, "invalid size of register spill\n"); 1340 return -EACCES; 1341 } 1342 for (i = 1; i < BPF_REG_SIZE; i++) { 1343 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1344 verbose(env, "corrupted spill memory\n"); 1345 return -EACCES; 1346 } 1347 } 1348 1349 if (value_regno >= 0) { 1350 /* restore register state from stack */ 1351 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1352 /* mark reg as written since spilled pointer state likely 1353 * has its liveness marks cleared by is_state_visited() 1354 * which resets stack/reg liveness for state transitions 1355 */ 1356 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1357 } 1358 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1359 reg_state->stack[spi].spilled_ptr.parent); 1360 return 0; 1361 } else { 1362 int zeros = 0; 1363 1364 for (i = 0; i < size; i++) { 1365 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1366 continue; 1367 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1368 zeros++; 1369 continue; 1370 } 1371 verbose(env, "invalid read from stack off %d+%d size %d\n", 1372 off, i, size); 1373 return -EACCES; 1374 } 1375 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1376 reg_state->stack[spi].spilled_ptr.parent); 1377 if (value_regno >= 0) { 1378 if (zeros == size) { 1379 /* any size read into register is zero extended, 1380 * so the whole register == const_zero 1381 */ 1382 __mark_reg_const_zero(&state->regs[value_regno]); 1383 } else { 1384 /* have read misc data from the stack */ 1385 mark_reg_unknown(env, state->regs, value_regno); 1386 } 1387 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1388 } 1389 return 0; 1390 } 1391 } 1392 1393 static int check_stack_access(struct bpf_verifier_env *env, 1394 const struct bpf_reg_state *reg, 1395 int off, int size) 1396 { 1397 /* Stack accesses must be at a fixed offset, so that we 1398 * can determine what type of data were returned. See 1399 * check_stack_read(). 1400 */ 1401 if (!tnum_is_const(reg->var_off)) { 1402 char tn_buf[48]; 1403 1404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1405 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1406 tn_buf, off, size); 1407 return -EACCES; 1408 } 1409 1410 if (off >= 0 || off < -MAX_BPF_STACK) { 1411 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1412 return -EACCES; 1413 } 1414 1415 return 0; 1416 } 1417 1418 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1419 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1420 int size, bool zero_size_allowed) 1421 { 1422 struct bpf_reg_state *regs = cur_regs(env); 1423 struct bpf_map *map = regs[regno].map_ptr; 1424 1425 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1426 off + size > map->value_size) { 1427 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1428 map->value_size, off, size); 1429 return -EACCES; 1430 } 1431 return 0; 1432 } 1433 1434 /* check read/write into a map element with possible variable offset */ 1435 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1436 int off, int size, bool zero_size_allowed) 1437 { 1438 struct bpf_verifier_state *vstate = env->cur_state; 1439 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1440 struct bpf_reg_state *reg = &state->regs[regno]; 1441 int err; 1442 1443 /* We may have adjusted the register to this map value, so we 1444 * need to try adding each of min_value and max_value to off 1445 * to make sure our theoretical access will be safe. 1446 */ 1447 if (env->log.level) 1448 print_verifier_state(env, state); 1449 1450 /* The minimum value is only important with signed 1451 * comparisons where we can't assume the floor of a 1452 * value is 0. If we are using signed variables for our 1453 * index'es we need to make sure that whatever we use 1454 * will have a set floor within our range. 1455 */ 1456 if (reg->smin_value < 0 && 1457 (reg->smin_value == S64_MIN || 1458 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1459 reg->smin_value + off < 0)) { 1460 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1461 regno); 1462 return -EACCES; 1463 } 1464 err = __check_map_access(env, regno, reg->smin_value + off, size, 1465 zero_size_allowed); 1466 if (err) { 1467 verbose(env, "R%d min value is outside of the array range\n", 1468 regno); 1469 return err; 1470 } 1471 1472 /* If we haven't set a max value then we need to bail since we can't be 1473 * sure we won't do bad things. 1474 * If reg->umax_value + off could overflow, treat that as unbounded too. 1475 */ 1476 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1477 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1478 regno); 1479 return -EACCES; 1480 } 1481 err = __check_map_access(env, regno, reg->umax_value + off, size, 1482 zero_size_allowed); 1483 if (err) 1484 verbose(env, "R%d max value is outside of the array range\n", 1485 regno); 1486 return err; 1487 } 1488 1489 #define MAX_PACKET_OFF 0xffff 1490 1491 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1492 const struct bpf_call_arg_meta *meta, 1493 enum bpf_access_type t) 1494 { 1495 switch (env->prog->type) { 1496 /* Program types only with direct read access go here! */ 1497 case BPF_PROG_TYPE_LWT_IN: 1498 case BPF_PROG_TYPE_LWT_OUT: 1499 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1500 case BPF_PROG_TYPE_SK_REUSEPORT: 1501 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1502 case BPF_PROG_TYPE_CGROUP_SKB: 1503 if (t == BPF_WRITE) 1504 return false; 1505 /* fallthrough */ 1506 1507 /* Program types with direct read + write access go here! */ 1508 case BPF_PROG_TYPE_SCHED_CLS: 1509 case BPF_PROG_TYPE_SCHED_ACT: 1510 case BPF_PROG_TYPE_XDP: 1511 case BPF_PROG_TYPE_LWT_XMIT: 1512 case BPF_PROG_TYPE_SK_SKB: 1513 case BPF_PROG_TYPE_SK_MSG: 1514 if (meta) 1515 return meta->pkt_access; 1516 1517 env->seen_direct_write = true; 1518 return true; 1519 default: 1520 return false; 1521 } 1522 } 1523 1524 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1525 int off, int size, bool zero_size_allowed) 1526 { 1527 struct bpf_reg_state *regs = cur_regs(env); 1528 struct bpf_reg_state *reg = ®s[regno]; 1529 1530 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1531 (u64)off + size > reg->range) { 1532 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1533 off, size, regno, reg->id, reg->off, reg->range); 1534 return -EACCES; 1535 } 1536 return 0; 1537 } 1538 1539 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1540 int size, bool zero_size_allowed) 1541 { 1542 struct bpf_reg_state *regs = cur_regs(env); 1543 struct bpf_reg_state *reg = ®s[regno]; 1544 int err; 1545 1546 /* We may have added a variable offset to the packet pointer; but any 1547 * reg->range we have comes after that. We are only checking the fixed 1548 * offset. 1549 */ 1550 1551 /* We don't allow negative numbers, because we aren't tracking enough 1552 * detail to prove they're safe. 1553 */ 1554 if (reg->smin_value < 0) { 1555 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1556 regno); 1557 return -EACCES; 1558 } 1559 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1560 if (err) { 1561 verbose(env, "R%d offset is outside of the packet\n", regno); 1562 return err; 1563 } 1564 1565 /* __check_packet_access has made sure "off + size - 1" is within u16. 1566 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1567 * otherwise find_good_pkt_pointers would have refused to set range info 1568 * that __check_packet_access would have rejected this pkt access. 1569 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1570 */ 1571 env->prog->aux->max_pkt_offset = 1572 max_t(u32, env->prog->aux->max_pkt_offset, 1573 off + reg->umax_value + size - 1); 1574 1575 return err; 1576 } 1577 1578 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1579 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1580 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1581 { 1582 struct bpf_insn_access_aux info = { 1583 .reg_type = *reg_type, 1584 }; 1585 1586 if (env->ops->is_valid_access && 1587 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1588 /* A non zero info.ctx_field_size indicates that this field is a 1589 * candidate for later verifier transformation to load the whole 1590 * field and then apply a mask when accessed with a narrower 1591 * access than actual ctx access size. A zero info.ctx_field_size 1592 * will only allow for whole field access and rejects any other 1593 * type of narrower access. 1594 */ 1595 *reg_type = info.reg_type; 1596 1597 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1598 /* remember the offset of last byte accessed in ctx */ 1599 if (env->prog->aux->max_ctx_offset < off + size) 1600 env->prog->aux->max_ctx_offset = off + size; 1601 return 0; 1602 } 1603 1604 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1605 return -EACCES; 1606 } 1607 1608 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1609 int size) 1610 { 1611 if (size < 0 || off < 0 || 1612 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1613 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1614 off, size); 1615 return -EACCES; 1616 } 1617 return 0; 1618 } 1619 1620 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1621 int size, enum bpf_access_type t) 1622 { 1623 struct bpf_reg_state *regs = cur_regs(env); 1624 struct bpf_reg_state *reg = ®s[regno]; 1625 struct bpf_insn_access_aux info; 1626 1627 if (reg->smin_value < 0) { 1628 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1629 regno); 1630 return -EACCES; 1631 } 1632 1633 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1634 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1635 off, size); 1636 return -EACCES; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static bool __is_pointer_value(bool allow_ptr_leaks, 1643 const struct bpf_reg_state *reg) 1644 { 1645 if (allow_ptr_leaks) 1646 return false; 1647 1648 return reg->type != SCALAR_VALUE; 1649 } 1650 1651 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1652 { 1653 return cur_regs(env) + regno; 1654 } 1655 1656 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1657 { 1658 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1659 } 1660 1661 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1662 { 1663 const struct bpf_reg_state *reg = reg_state(env, regno); 1664 1665 return reg->type == PTR_TO_CTX || 1666 reg->type == PTR_TO_SOCKET; 1667 } 1668 1669 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1670 { 1671 const struct bpf_reg_state *reg = reg_state(env, regno); 1672 1673 return type_is_pkt_pointer(reg->type); 1674 } 1675 1676 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1677 { 1678 const struct bpf_reg_state *reg = reg_state(env, regno); 1679 1680 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1681 return reg->type == PTR_TO_FLOW_KEYS; 1682 } 1683 1684 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1685 const struct bpf_reg_state *reg, 1686 int off, int size, bool strict) 1687 { 1688 struct tnum reg_off; 1689 int ip_align; 1690 1691 /* Byte size accesses are always allowed. */ 1692 if (!strict || size == 1) 1693 return 0; 1694 1695 /* For platforms that do not have a Kconfig enabling 1696 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1697 * NET_IP_ALIGN is universally set to '2'. And on platforms 1698 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1699 * to this code only in strict mode where we want to emulate 1700 * the NET_IP_ALIGN==2 checking. Therefore use an 1701 * unconditional IP align value of '2'. 1702 */ 1703 ip_align = 2; 1704 1705 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1706 if (!tnum_is_aligned(reg_off, size)) { 1707 char tn_buf[48]; 1708 1709 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1710 verbose(env, 1711 "misaligned packet access off %d+%s+%d+%d size %d\n", 1712 ip_align, tn_buf, reg->off, off, size); 1713 return -EACCES; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1720 const struct bpf_reg_state *reg, 1721 const char *pointer_desc, 1722 int off, int size, bool strict) 1723 { 1724 struct tnum reg_off; 1725 1726 /* Byte size accesses are always allowed. */ 1727 if (!strict || size == 1) 1728 return 0; 1729 1730 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1731 if (!tnum_is_aligned(reg_off, size)) { 1732 char tn_buf[48]; 1733 1734 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1735 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1736 pointer_desc, tn_buf, reg->off, off, size); 1737 return -EACCES; 1738 } 1739 1740 return 0; 1741 } 1742 1743 static int check_ptr_alignment(struct bpf_verifier_env *env, 1744 const struct bpf_reg_state *reg, int off, 1745 int size, bool strict_alignment_once) 1746 { 1747 bool strict = env->strict_alignment || strict_alignment_once; 1748 const char *pointer_desc = ""; 1749 1750 switch (reg->type) { 1751 case PTR_TO_PACKET: 1752 case PTR_TO_PACKET_META: 1753 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1754 * right in front, treat it the very same way. 1755 */ 1756 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1757 case PTR_TO_FLOW_KEYS: 1758 pointer_desc = "flow keys "; 1759 break; 1760 case PTR_TO_MAP_VALUE: 1761 pointer_desc = "value "; 1762 break; 1763 case PTR_TO_CTX: 1764 pointer_desc = "context "; 1765 break; 1766 case PTR_TO_STACK: 1767 pointer_desc = "stack "; 1768 /* The stack spill tracking logic in check_stack_write() 1769 * and check_stack_read() relies on stack accesses being 1770 * aligned. 1771 */ 1772 strict = true; 1773 break; 1774 case PTR_TO_SOCKET: 1775 pointer_desc = "sock "; 1776 break; 1777 default: 1778 break; 1779 } 1780 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1781 strict); 1782 } 1783 1784 static int update_stack_depth(struct bpf_verifier_env *env, 1785 const struct bpf_func_state *func, 1786 int off) 1787 { 1788 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1789 1790 if (stack >= -off) 1791 return 0; 1792 1793 /* update known max for given subprogram */ 1794 env->subprog_info[func->subprogno].stack_depth = -off; 1795 return 0; 1796 } 1797 1798 /* starting from main bpf function walk all instructions of the function 1799 * and recursively walk all callees that given function can call. 1800 * Ignore jump and exit insns. 1801 * Since recursion is prevented by check_cfg() this algorithm 1802 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1803 */ 1804 static int check_max_stack_depth(struct bpf_verifier_env *env) 1805 { 1806 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1807 struct bpf_subprog_info *subprog = env->subprog_info; 1808 struct bpf_insn *insn = env->prog->insnsi; 1809 int ret_insn[MAX_CALL_FRAMES]; 1810 int ret_prog[MAX_CALL_FRAMES]; 1811 1812 process_func: 1813 /* round up to 32-bytes, since this is granularity 1814 * of interpreter stack size 1815 */ 1816 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1817 if (depth > MAX_BPF_STACK) { 1818 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1819 frame + 1, depth); 1820 return -EACCES; 1821 } 1822 continue_func: 1823 subprog_end = subprog[idx + 1].start; 1824 for (; i < subprog_end; i++) { 1825 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1826 continue; 1827 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1828 continue; 1829 /* remember insn and function to return to */ 1830 ret_insn[frame] = i + 1; 1831 ret_prog[frame] = idx; 1832 1833 /* find the callee */ 1834 i = i + insn[i].imm + 1; 1835 idx = find_subprog(env, i); 1836 if (idx < 0) { 1837 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1838 i); 1839 return -EFAULT; 1840 } 1841 frame++; 1842 if (frame >= MAX_CALL_FRAMES) { 1843 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1844 return -EFAULT; 1845 } 1846 goto process_func; 1847 } 1848 /* end of for() loop means the last insn of the 'subprog' 1849 * was reached. Doesn't matter whether it was JA or EXIT 1850 */ 1851 if (frame == 0) 1852 return 0; 1853 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1854 frame--; 1855 i = ret_insn[frame]; 1856 idx = ret_prog[frame]; 1857 goto continue_func; 1858 } 1859 1860 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1861 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1862 const struct bpf_insn *insn, int idx) 1863 { 1864 int start = idx + insn->imm + 1, subprog; 1865 1866 subprog = find_subprog(env, start); 1867 if (subprog < 0) { 1868 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1869 start); 1870 return -EFAULT; 1871 } 1872 return env->subprog_info[subprog].stack_depth; 1873 } 1874 #endif 1875 1876 static int check_ctx_reg(struct bpf_verifier_env *env, 1877 const struct bpf_reg_state *reg, int regno) 1878 { 1879 /* Access to ctx or passing it to a helper is only allowed in 1880 * its original, unmodified form. 1881 */ 1882 1883 if (reg->off) { 1884 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1885 regno, reg->off); 1886 return -EACCES; 1887 } 1888 1889 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1890 char tn_buf[48]; 1891 1892 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1893 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1894 return -EACCES; 1895 } 1896 1897 return 0; 1898 } 1899 1900 /* truncate register to smaller size (in bytes) 1901 * must be called with size < BPF_REG_SIZE 1902 */ 1903 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1904 { 1905 u64 mask; 1906 1907 /* clear high bits in bit representation */ 1908 reg->var_off = tnum_cast(reg->var_off, size); 1909 1910 /* fix arithmetic bounds */ 1911 mask = ((u64)1 << (size * 8)) - 1; 1912 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1913 reg->umin_value &= mask; 1914 reg->umax_value &= mask; 1915 } else { 1916 reg->umin_value = 0; 1917 reg->umax_value = mask; 1918 } 1919 reg->smin_value = reg->umin_value; 1920 reg->smax_value = reg->umax_value; 1921 } 1922 1923 /* check whether memory at (regno + off) is accessible for t = (read | write) 1924 * if t==write, value_regno is a register which value is stored into memory 1925 * if t==read, value_regno is a register which will receive the value from memory 1926 * if t==write && value_regno==-1, some unknown value is stored into memory 1927 * if t==read && value_regno==-1, don't care what we read from memory 1928 */ 1929 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1930 int off, int bpf_size, enum bpf_access_type t, 1931 int value_regno, bool strict_alignment_once) 1932 { 1933 struct bpf_reg_state *regs = cur_regs(env); 1934 struct bpf_reg_state *reg = regs + regno; 1935 struct bpf_func_state *state; 1936 int size, err = 0; 1937 1938 size = bpf_size_to_bytes(bpf_size); 1939 if (size < 0) 1940 return size; 1941 1942 /* alignment checks will add in reg->off themselves */ 1943 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1944 if (err) 1945 return err; 1946 1947 /* for access checks, reg->off is just part of off */ 1948 off += reg->off; 1949 1950 if (reg->type == PTR_TO_MAP_VALUE) { 1951 if (t == BPF_WRITE && value_regno >= 0 && 1952 is_pointer_value(env, value_regno)) { 1953 verbose(env, "R%d leaks addr into map\n", value_regno); 1954 return -EACCES; 1955 } 1956 1957 err = check_map_access(env, regno, off, size, false); 1958 if (!err && t == BPF_READ && value_regno >= 0) 1959 mark_reg_unknown(env, regs, value_regno); 1960 1961 } else if (reg->type == PTR_TO_CTX) { 1962 enum bpf_reg_type reg_type = SCALAR_VALUE; 1963 1964 if (t == BPF_WRITE && value_regno >= 0 && 1965 is_pointer_value(env, value_regno)) { 1966 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1967 return -EACCES; 1968 } 1969 1970 err = check_ctx_reg(env, reg, regno); 1971 if (err < 0) 1972 return err; 1973 1974 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1975 if (!err && t == BPF_READ && value_regno >= 0) { 1976 /* ctx access returns either a scalar, or a 1977 * PTR_TO_PACKET[_META,_END]. In the latter 1978 * case, we know the offset is zero. 1979 */ 1980 if (reg_type == SCALAR_VALUE) 1981 mark_reg_unknown(env, regs, value_regno); 1982 else 1983 mark_reg_known_zero(env, regs, 1984 value_regno); 1985 regs[value_regno].type = reg_type; 1986 } 1987 1988 } else if (reg->type == PTR_TO_STACK) { 1989 off += reg->var_off.value; 1990 err = check_stack_access(env, reg, off, size); 1991 if (err) 1992 return err; 1993 1994 state = func(env, reg); 1995 err = update_stack_depth(env, state, off); 1996 if (err) 1997 return err; 1998 1999 if (t == BPF_WRITE) 2000 err = check_stack_write(env, state, off, size, 2001 value_regno, insn_idx); 2002 else 2003 err = check_stack_read(env, state, off, size, 2004 value_regno); 2005 } else if (reg_is_pkt_pointer(reg)) { 2006 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2007 verbose(env, "cannot write into packet\n"); 2008 return -EACCES; 2009 } 2010 if (t == BPF_WRITE && value_regno >= 0 && 2011 is_pointer_value(env, value_regno)) { 2012 verbose(env, "R%d leaks addr into packet\n", 2013 value_regno); 2014 return -EACCES; 2015 } 2016 err = check_packet_access(env, regno, off, size, false); 2017 if (!err && t == BPF_READ && value_regno >= 0) 2018 mark_reg_unknown(env, regs, value_regno); 2019 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2020 if (t == BPF_WRITE && value_regno >= 0 && 2021 is_pointer_value(env, value_regno)) { 2022 verbose(env, "R%d leaks addr into flow keys\n", 2023 value_regno); 2024 return -EACCES; 2025 } 2026 2027 err = check_flow_keys_access(env, off, size); 2028 if (!err && t == BPF_READ && value_regno >= 0) 2029 mark_reg_unknown(env, regs, value_regno); 2030 } else if (reg->type == PTR_TO_SOCKET) { 2031 if (t == BPF_WRITE) { 2032 verbose(env, "cannot write into socket\n"); 2033 return -EACCES; 2034 } 2035 err = check_sock_access(env, regno, off, size, t); 2036 if (!err && value_regno >= 0) 2037 mark_reg_unknown(env, regs, value_regno); 2038 } else { 2039 verbose(env, "R%d invalid mem access '%s'\n", regno, 2040 reg_type_str[reg->type]); 2041 return -EACCES; 2042 } 2043 2044 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2045 regs[value_regno].type == SCALAR_VALUE) { 2046 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2047 coerce_reg_to_size(®s[value_regno], size); 2048 } 2049 return err; 2050 } 2051 2052 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2053 { 2054 int err; 2055 2056 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2057 insn->imm != 0) { 2058 verbose(env, "BPF_XADD uses reserved fields\n"); 2059 return -EINVAL; 2060 } 2061 2062 /* check src1 operand */ 2063 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2064 if (err) 2065 return err; 2066 2067 /* check src2 operand */ 2068 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2069 if (err) 2070 return err; 2071 2072 if (is_pointer_value(env, insn->src_reg)) { 2073 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2074 return -EACCES; 2075 } 2076 2077 if (is_ctx_reg(env, insn->dst_reg) || 2078 is_pkt_reg(env, insn->dst_reg) || 2079 is_flow_key_reg(env, insn->dst_reg)) { 2080 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2081 insn->dst_reg, 2082 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2083 return -EACCES; 2084 } 2085 2086 /* check whether atomic_add can read the memory */ 2087 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2088 BPF_SIZE(insn->code), BPF_READ, -1, true); 2089 if (err) 2090 return err; 2091 2092 /* check whether atomic_add can write into the same memory */ 2093 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2094 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2095 } 2096 2097 /* when register 'regno' is passed into function that will read 'access_size' 2098 * bytes from that pointer, make sure that it's within stack boundary 2099 * and all elements of stack are initialized. 2100 * Unlike most pointer bounds-checking functions, this one doesn't take an 2101 * 'off' argument, so it has to add in reg->off itself. 2102 */ 2103 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2104 int access_size, bool zero_size_allowed, 2105 struct bpf_call_arg_meta *meta) 2106 { 2107 struct bpf_reg_state *reg = reg_state(env, regno); 2108 struct bpf_func_state *state = func(env, reg); 2109 int off, i, slot, spi; 2110 2111 if (reg->type != PTR_TO_STACK) { 2112 /* Allow zero-byte read from NULL, regardless of pointer type */ 2113 if (zero_size_allowed && access_size == 0 && 2114 register_is_null(reg)) 2115 return 0; 2116 2117 verbose(env, "R%d type=%s expected=%s\n", regno, 2118 reg_type_str[reg->type], 2119 reg_type_str[PTR_TO_STACK]); 2120 return -EACCES; 2121 } 2122 2123 /* Only allow fixed-offset stack reads */ 2124 if (!tnum_is_const(reg->var_off)) { 2125 char tn_buf[48]; 2126 2127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2128 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2129 regno, tn_buf); 2130 return -EACCES; 2131 } 2132 off = reg->off + reg->var_off.value; 2133 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2134 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2135 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2136 regno, off, access_size); 2137 return -EACCES; 2138 } 2139 2140 if (meta && meta->raw_mode) { 2141 meta->access_size = access_size; 2142 meta->regno = regno; 2143 return 0; 2144 } 2145 2146 for (i = 0; i < access_size; i++) { 2147 u8 *stype; 2148 2149 slot = -(off + i) - 1; 2150 spi = slot / BPF_REG_SIZE; 2151 if (state->allocated_stack <= slot) 2152 goto err; 2153 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2154 if (*stype == STACK_MISC) 2155 goto mark; 2156 if (*stype == STACK_ZERO) { 2157 /* helper can write anything into the stack */ 2158 *stype = STACK_MISC; 2159 goto mark; 2160 } 2161 err: 2162 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2163 off, i, access_size); 2164 return -EACCES; 2165 mark: 2166 /* reading any byte out of 8-byte 'spill_slot' will cause 2167 * the whole slot to be marked as 'read' 2168 */ 2169 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2170 state->stack[spi].spilled_ptr.parent); 2171 } 2172 return update_stack_depth(env, state, off); 2173 } 2174 2175 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2176 int access_size, bool zero_size_allowed, 2177 struct bpf_call_arg_meta *meta) 2178 { 2179 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2180 2181 switch (reg->type) { 2182 case PTR_TO_PACKET: 2183 case PTR_TO_PACKET_META: 2184 return check_packet_access(env, regno, reg->off, access_size, 2185 zero_size_allowed); 2186 case PTR_TO_MAP_VALUE: 2187 return check_map_access(env, regno, reg->off, access_size, 2188 zero_size_allowed); 2189 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2190 return check_stack_boundary(env, regno, access_size, 2191 zero_size_allowed, meta); 2192 } 2193 } 2194 2195 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2196 { 2197 return type == ARG_PTR_TO_MEM || 2198 type == ARG_PTR_TO_MEM_OR_NULL || 2199 type == ARG_PTR_TO_UNINIT_MEM; 2200 } 2201 2202 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2203 { 2204 return type == ARG_CONST_SIZE || 2205 type == ARG_CONST_SIZE_OR_ZERO; 2206 } 2207 2208 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2209 enum bpf_arg_type arg_type, 2210 struct bpf_call_arg_meta *meta) 2211 { 2212 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2213 enum bpf_reg_type expected_type, type = reg->type; 2214 int err = 0; 2215 2216 if (arg_type == ARG_DONTCARE) 2217 return 0; 2218 2219 err = check_reg_arg(env, regno, SRC_OP); 2220 if (err) 2221 return err; 2222 2223 if (arg_type == ARG_ANYTHING) { 2224 if (is_pointer_value(env, regno)) { 2225 verbose(env, "R%d leaks addr into helper function\n", 2226 regno); 2227 return -EACCES; 2228 } 2229 return 0; 2230 } 2231 2232 if (type_is_pkt_pointer(type) && 2233 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2234 verbose(env, "helper access to the packet is not allowed\n"); 2235 return -EACCES; 2236 } 2237 2238 if (arg_type == ARG_PTR_TO_MAP_KEY || 2239 arg_type == ARG_PTR_TO_MAP_VALUE || 2240 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2241 expected_type = PTR_TO_STACK; 2242 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2243 type != expected_type) 2244 goto err_type; 2245 } else if (arg_type == ARG_CONST_SIZE || 2246 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2247 expected_type = SCALAR_VALUE; 2248 if (type != expected_type) 2249 goto err_type; 2250 } else if (arg_type == ARG_CONST_MAP_PTR) { 2251 expected_type = CONST_PTR_TO_MAP; 2252 if (type != expected_type) 2253 goto err_type; 2254 } else if (arg_type == ARG_PTR_TO_CTX) { 2255 expected_type = PTR_TO_CTX; 2256 if (type != expected_type) 2257 goto err_type; 2258 err = check_ctx_reg(env, reg, regno); 2259 if (err < 0) 2260 return err; 2261 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2262 expected_type = PTR_TO_SOCKET; 2263 if (type != expected_type) 2264 goto err_type; 2265 if (meta->ptr_id || !reg->id) { 2266 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2267 meta->ptr_id, reg->id); 2268 return -EFAULT; 2269 } 2270 meta->ptr_id = reg->id; 2271 } else if (arg_type_is_mem_ptr(arg_type)) { 2272 expected_type = PTR_TO_STACK; 2273 /* One exception here. In case function allows for NULL to be 2274 * passed in as argument, it's a SCALAR_VALUE type. Final test 2275 * happens during stack boundary checking. 2276 */ 2277 if (register_is_null(reg) && 2278 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2279 /* final test in check_stack_boundary() */; 2280 else if (!type_is_pkt_pointer(type) && 2281 type != PTR_TO_MAP_VALUE && 2282 type != expected_type) 2283 goto err_type; 2284 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2285 } else { 2286 verbose(env, "unsupported arg_type %d\n", arg_type); 2287 return -EFAULT; 2288 } 2289 2290 if (arg_type == ARG_CONST_MAP_PTR) { 2291 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2292 meta->map_ptr = reg->map_ptr; 2293 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2294 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2295 * check that [key, key + map->key_size) are within 2296 * stack limits and initialized 2297 */ 2298 if (!meta->map_ptr) { 2299 /* in function declaration map_ptr must come before 2300 * map_key, so that it's verified and known before 2301 * we have to check map_key here. Otherwise it means 2302 * that kernel subsystem misconfigured verifier 2303 */ 2304 verbose(env, "invalid map_ptr to access map->key\n"); 2305 return -EACCES; 2306 } 2307 err = check_helper_mem_access(env, regno, 2308 meta->map_ptr->key_size, false, 2309 NULL); 2310 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2311 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2312 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2313 * check [value, value + map->value_size) validity 2314 */ 2315 if (!meta->map_ptr) { 2316 /* kernel subsystem misconfigured verifier */ 2317 verbose(env, "invalid map_ptr to access map->value\n"); 2318 return -EACCES; 2319 } 2320 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2321 err = check_helper_mem_access(env, regno, 2322 meta->map_ptr->value_size, false, 2323 meta); 2324 } else if (arg_type_is_mem_size(arg_type)) { 2325 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2326 2327 /* remember the mem_size which may be used later 2328 * to refine return values. 2329 */ 2330 meta->msize_smax_value = reg->smax_value; 2331 meta->msize_umax_value = reg->umax_value; 2332 2333 /* The register is SCALAR_VALUE; the access check 2334 * happens using its boundaries. 2335 */ 2336 if (!tnum_is_const(reg->var_off)) 2337 /* For unprivileged variable accesses, disable raw 2338 * mode so that the program is required to 2339 * initialize all the memory that the helper could 2340 * just partially fill up. 2341 */ 2342 meta = NULL; 2343 2344 if (reg->smin_value < 0) { 2345 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2346 regno); 2347 return -EACCES; 2348 } 2349 2350 if (reg->umin_value == 0) { 2351 err = check_helper_mem_access(env, regno - 1, 0, 2352 zero_size_allowed, 2353 meta); 2354 if (err) 2355 return err; 2356 } 2357 2358 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2359 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2360 regno); 2361 return -EACCES; 2362 } 2363 err = check_helper_mem_access(env, regno - 1, 2364 reg->umax_value, 2365 zero_size_allowed, meta); 2366 } 2367 2368 return err; 2369 err_type: 2370 verbose(env, "R%d type=%s expected=%s\n", regno, 2371 reg_type_str[type], reg_type_str[expected_type]); 2372 return -EACCES; 2373 } 2374 2375 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2376 struct bpf_map *map, int func_id) 2377 { 2378 if (!map) 2379 return 0; 2380 2381 /* We need a two way check, first is from map perspective ... */ 2382 switch (map->map_type) { 2383 case BPF_MAP_TYPE_PROG_ARRAY: 2384 if (func_id != BPF_FUNC_tail_call) 2385 goto error; 2386 break; 2387 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2388 if (func_id != BPF_FUNC_perf_event_read && 2389 func_id != BPF_FUNC_perf_event_output && 2390 func_id != BPF_FUNC_perf_event_read_value) 2391 goto error; 2392 break; 2393 case BPF_MAP_TYPE_STACK_TRACE: 2394 if (func_id != BPF_FUNC_get_stackid) 2395 goto error; 2396 break; 2397 case BPF_MAP_TYPE_CGROUP_ARRAY: 2398 if (func_id != BPF_FUNC_skb_under_cgroup && 2399 func_id != BPF_FUNC_current_task_under_cgroup) 2400 goto error; 2401 break; 2402 case BPF_MAP_TYPE_CGROUP_STORAGE: 2403 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2404 if (func_id != BPF_FUNC_get_local_storage) 2405 goto error; 2406 break; 2407 /* devmap returns a pointer to a live net_device ifindex that we cannot 2408 * allow to be modified from bpf side. So do not allow lookup elements 2409 * for now. 2410 */ 2411 case BPF_MAP_TYPE_DEVMAP: 2412 if (func_id != BPF_FUNC_redirect_map) 2413 goto error; 2414 break; 2415 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2416 * appear. 2417 */ 2418 case BPF_MAP_TYPE_CPUMAP: 2419 case BPF_MAP_TYPE_XSKMAP: 2420 if (func_id != BPF_FUNC_redirect_map) 2421 goto error; 2422 break; 2423 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2424 case BPF_MAP_TYPE_HASH_OF_MAPS: 2425 if (func_id != BPF_FUNC_map_lookup_elem) 2426 goto error; 2427 break; 2428 case BPF_MAP_TYPE_SOCKMAP: 2429 if (func_id != BPF_FUNC_sk_redirect_map && 2430 func_id != BPF_FUNC_sock_map_update && 2431 func_id != BPF_FUNC_map_delete_elem && 2432 func_id != BPF_FUNC_msg_redirect_map) 2433 goto error; 2434 break; 2435 case BPF_MAP_TYPE_SOCKHASH: 2436 if (func_id != BPF_FUNC_sk_redirect_hash && 2437 func_id != BPF_FUNC_sock_hash_update && 2438 func_id != BPF_FUNC_map_delete_elem && 2439 func_id != BPF_FUNC_msg_redirect_hash) 2440 goto error; 2441 break; 2442 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2443 if (func_id != BPF_FUNC_sk_select_reuseport) 2444 goto error; 2445 break; 2446 case BPF_MAP_TYPE_QUEUE: 2447 case BPF_MAP_TYPE_STACK: 2448 if (func_id != BPF_FUNC_map_peek_elem && 2449 func_id != BPF_FUNC_map_pop_elem && 2450 func_id != BPF_FUNC_map_push_elem) 2451 goto error; 2452 break; 2453 default: 2454 break; 2455 } 2456 2457 /* ... and second from the function itself. */ 2458 switch (func_id) { 2459 case BPF_FUNC_tail_call: 2460 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2461 goto error; 2462 if (env->subprog_cnt > 1) { 2463 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2464 return -EINVAL; 2465 } 2466 break; 2467 case BPF_FUNC_perf_event_read: 2468 case BPF_FUNC_perf_event_output: 2469 case BPF_FUNC_perf_event_read_value: 2470 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2471 goto error; 2472 break; 2473 case BPF_FUNC_get_stackid: 2474 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2475 goto error; 2476 break; 2477 case BPF_FUNC_current_task_under_cgroup: 2478 case BPF_FUNC_skb_under_cgroup: 2479 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2480 goto error; 2481 break; 2482 case BPF_FUNC_redirect_map: 2483 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2484 map->map_type != BPF_MAP_TYPE_CPUMAP && 2485 map->map_type != BPF_MAP_TYPE_XSKMAP) 2486 goto error; 2487 break; 2488 case BPF_FUNC_sk_redirect_map: 2489 case BPF_FUNC_msg_redirect_map: 2490 case BPF_FUNC_sock_map_update: 2491 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2492 goto error; 2493 break; 2494 case BPF_FUNC_sk_redirect_hash: 2495 case BPF_FUNC_msg_redirect_hash: 2496 case BPF_FUNC_sock_hash_update: 2497 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2498 goto error; 2499 break; 2500 case BPF_FUNC_get_local_storage: 2501 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2502 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2503 goto error; 2504 break; 2505 case BPF_FUNC_sk_select_reuseport: 2506 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2507 goto error; 2508 break; 2509 case BPF_FUNC_map_peek_elem: 2510 case BPF_FUNC_map_pop_elem: 2511 case BPF_FUNC_map_push_elem: 2512 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2513 map->map_type != BPF_MAP_TYPE_STACK) 2514 goto error; 2515 break; 2516 default: 2517 break; 2518 } 2519 2520 return 0; 2521 error: 2522 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2523 map->map_type, func_id_name(func_id), func_id); 2524 return -EINVAL; 2525 } 2526 2527 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2528 { 2529 int count = 0; 2530 2531 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2532 count++; 2533 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2534 count++; 2535 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2536 count++; 2537 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2538 count++; 2539 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2540 count++; 2541 2542 /* We only support one arg being in raw mode at the moment, 2543 * which is sufficient for the helper functions we have 2544 * right now. 2545 */ 2546 return count <= 1; 2547 } 2548 2549 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2550 enum bpf_arg_type arg_next) 2551 { 2552 return (arg_type_is_mem_ptr(arg_curr) && 2553 !arg_type_is_mem_size(arg_next)) || 2554 (!arg_type_is_mem_ptr(arg_curr) && 2555 arg_type_is_mem_size(arg_next)); 2556 } 2557 2558 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2559 { 2560 /* bpf_xxx(..., buf, len) call will access 'len' 2561 * bytes from memory 'buf'. Both arg types need 2562 * to be paired, so make sure there's no buggy 2563 * helper function specification. 2564 */ 2565 if (arg_type_is_mem_size(fn->arg1_type) || 2566 arg_type_is_mem_ptr(fn->arg5_type) || 2567 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2568 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2569 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2570 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2571 return false; 2572 2573 return true; 2574 } 2575 2576 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2577 { 2578 int count = 0; 2579 2580 if (arg_type_is_refcounted(fn->arg1_type)) 2581 count++; 2582 if (arg_type_is_refcounted(fn->arg2_type)) 2583 count++; 2584 if (arg_type_is_refcounted(fn->arg3_type)) 2585 count++; 2586 if (arg_type_is_refcounted(fn->arg4_type)) 2587 count++; 2588 if (arg_type_is_refcounted(fn->arg5_type)) 2589 count++; 2590 2591 /* We only support one arg being unreferenced at the moment, 2592 * which is sufficient for the helper functions we have right now. 2593 */ 2594 return count <= 1; 2595 } 2596 2597 static int check_func_proto(const struct bpf_func_proto *fn) 2598 { 2599 return check_raw_mode_ok(fn) && 2600 check_arg_pair_ok(fn) && 2601 check_refcount_ok(fn) ? 0 : -EINVAL; 2602 } 2603 2604 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2605 * are now invalid, so turn them into unknown SCALAR_VALUE. 2606 */ 2607 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2608 struct bpf_func_state *state) 2609 { 2610 struct bpf_reg_state *regs = state->regs, *reg; 2611 int i; 2612 2613 for (i = 0; i < MAX_BPF_REG; i++) 2614 if (reg_is_pkt_pointer_any(®s[i])) 2615 mark_reg_unknown(env, regs, i); 2616 2617 bpf_for_each_spilled_reg(i, state, reg) { 2618 if (!reg) 2619 continue; 2620 if (reg_is_pkt_pointer_any(reg)) 2621 __mark_reg_unknown(reg); 2622 } 2623 } 2624 2625 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2626 { 2627 struct bpf_verifier_state *vstate = env->cur_state; 2628 int i; 2629 2630 for (i = 0; i <= vstate->curframe; i++) 2631 __clear_all_pkt_pointers(env, vstate->frame[i]); 2632 } 2633 2634 static void release_reg_references(struct bpf_verifier_env *env, 2635 struct bpf_func_state *state, int id) 2636 { 2637 struct bpf_reg_state *regs = state->regs, *reg; 2638 int i; 2639 2640 for (i = 0; i < MAX_BPF_REG; i++) 2641 if (regs[i].id == id) 2642 mark_reg_unknown(env, regs, i); 2643 2644 bpf_for_each_spilled_reg(i, state, reg) { 2645 if (!reg) 2646 continue; 2647 if (reg_is_refcounted(reg) && reg->id == id) 2648 __mark_reg_unknown(reg); 2649 } 2650 } 2651 2652 /* The pointer with the specified id has released its reference to kernel 2653 * resources. Identify all copies of the same pointer and clear the reference. 2654 */ 2655 static int release_reference(struct bpf_verifier_env *env, 2656 struct bpf_call_arg_meta *meta) 2657 { 2658 struct bpf_verifier_state *vstate = env->cur_state; 2659 int i; 2660 2661 for (i = 0; i <= vstate->curframe; i++) 2662 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2663 2664 return release_reference_state(env, meta->ptr_id); 2665 } 2666 2667 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2668 int *insn_idx) 2669 { 2670 struct bpf_verifier_state *state = env->cur_state; 2671 struct bpf_func_state *caller, *callee; 2672 int i, err, subprog, target_insn; 2673 2674 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2675 verbose(env, "the call stack of %d frames is too deep\n", 2676 state->curframe + 2); 2677 return -E2BIG; 2678 } 2679 2680 target_insn = *insn_idx + insn->imm; 2681 subprog = find_subprog(env, target_insn + 1); 2682 if (subprog < 0) { 2683 verbose(env, "verifier bug. No program starts at insn %d\n", 2684 target_insn + 1); 2685 return -EFAULT; 2686 } 2687 2688 caller = state->frame[state->curframe]; 2689 if (state->frame[state->curframe + 1]) { 2690 verbose(env, "verifier bug. Frame %d already allocated\n", 2691 state->curframe + 1); 2692 return -EFAULT; 2693 } 2694 2695 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2696 if (!callee) 2697 return -ENOMEM; 2698 state->frame[state->curframe + 1] = callee; 2699 2700 /* callee cannot access r0, r6 - r9 for reading and has to write 2701 * into its own stack before reading from it. 2702 * callee can read/write into caller's stack 2703 */ 2704 init_func_state(env, callee, 2705 /* remember the callsite, it will be used by bpf_exit */ 2706 *insn_idx /* callsite */, 2707 state->curframe + 1 /* frameno within this callchain */, 2708 subprog /* subprog number within this prog */); 2709 2710 /* Transfer references to the callee */ 2711 err = transfer_reference_state(callee, caller); 2712 if (err) 2713 return err; 2714 2715 /* copy r1 - r5 args that callee can access. The copy includes parent 2716 * pointers, which connects us up to the liveness chain 2717 */ 2718 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2719 callee->regs[i] = caller->regs[i]; 2720 2721 /* after the call registers r0 - r5 were scratched */ 2722 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2723 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2724 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2725 } 2726 2727 /* only increment it after check_reg_arg() finished */ 2728 state->curframe++; 2729 2730 /* and go analyze first insn of the callee */ 2731 *insn_idx = target_insn; 2732 2733 if (env->log.level) { 2734 verbose(env, "caller:\n"); 2735 print_verifier_state(env, caller); 2736 verbose(env, "callee:\n"); 2737 print_verifier_state(env, callee); 2738 } 2739 return 0; 2740 } 2741 2742 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2743 { 2744 struct bpf_verifier_state *state = env->cur_state; 2745 struct bpf_func_state *caller, *callee; 2746 struct bpf_reg_state *r0; 2747 int err; 2748 2749 callee = state->frame[state->curframe]; 2750 r0 = &callee->regs[BPF_REG_0]; 2751 if (r0->type == PTR_TO_STACK) { 2752 /* technically it's ok to return caller's stack pointer 2753 * (or caller's caller's pointer) back to the caller, 2754 * since these pointers are valid. Only current stack 2755 * pointer will be invalid as soon as function exits, 2756 * but let's be conservative 2757 */ 2758 verbose(env, "cannot return stack pointer to the caller\n"); 2759 return -EINVAL; 2760 } 2761 2762 state->curframe--; 2763 caller = state->frame[state->curframe]; 2764 /* return to the caller whatever r0 had in the callee */ 2765 caller->regs[BPF_REG_0] = *r0; 2766 2767 /* Transfer references to the caller */ 2768 err = transfer_reference_state(caller, callee); 2769 if (err) 2770 return err; 2771 2772 *insn_idx = callee->callsite + 1; 2773 if (env->log.level) { 2774 verbose(env, "returning from callee:\n"); 2775 print_verifier_state(env, callee); 2776 verbose(env, "to caller at %d:\n", *insn_idx); 2777 print_verifier_state(env, caller); 2778 } 2779 /* clear everything in the callee */ 2780 free_func_state(callee); 2781 state->frame[state->curframe + 1] = NULL; 2782 return 0; 2783 } 2784 2785 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2786 int func_id, 2787 struct bpf_call_arg_meta *meta) 2788 { 2789 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2790 2791 if (ret_type != RET_INTEGER || 2792 (func_id != BPF_FUNC_get_stack && 2793 func_id != BPF_FUNC_probe_read_str)) 2794 return; 2795 2796 ret_reg->smax_value = meta->msize_smax_value; 2797 ret_reg->umax_value = meta->msize_umax_value; 2798 __reg_deduce_bounds(ret_reg); 2799 __reg_bound_offset(ret_reg); 2800 } 2801 2802 static int 2803 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2804 int func_id, int insn_idx) 2805 { 2806 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2807 2808 if (func_id != BPF_FUNC_tail_call && 2809 func_id != BPF_FUNC_map_lookup_elem && 2810 func_id != BPF_FUNC_map_update_elem && 2811 func_id != BPF_FUNC_map_delete_elem && 2812 func_id != BPF_FUNC_map_push_elem && 2813 func_id != BPF_FUNC_map_pop_elem && 2814 func_id != BPF_FUNC_map_peek_elem) 2815 return 0; 2816 2817 if (meta->map_ptr == NULL) { 2818 verbose(env, "kernel subsystem misconfigured verifier\n"); 2819 return -EINVAL; 2820 } 2821 2822 if (!BPF_MAP_PTR(aux->map_state)) 2823 bpf_map_ptr_store(aux, meta->map_ptr, 2824 meta->map_ptr->unpriv_array); 2825 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2826 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2827 meta->map_ptr->unpriv_array); 2828 return 0; 2829 } 2830 2831 static int check_reference_leak(struct bpf_verifier_env *env) 2832 { 2833 struct bpf_func_state *state = cur_func(env); 2834 int i; 2835 2836 for (i = 0; i < state->acquired_refs; i++) { 2837 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2838 state->refs[i].id, state->refs[i].insn_idx); 2839 } 2840 return state->acquired_refs ? -EINVAL : 0; 2841 } 2842 2843 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2844 { 2845 const struct bpf_func_proto *fn = NULL; 2846 struct bpf_reg_state *regs; 2847 struct bpf_call_arg_meta meta; 2848 bool changes_data; 2849 int i, err; 2850 2851 /* find function prototype */ 2852 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2853 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2854 func_id); 2855 return -EINVAL; 2856 } 2857 2858 if (env->ops->get_func_proto) 2859 fn = env->ops->get_func_proto(func_id, env->prog); 2860 if (!fn) { 2861 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2862 func_id); 2863 return -EINVAL; 2864 } 2865 2866 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2867 if (!env->prog->gpl_compatible && fn->gpl_only) { 2868 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2869 return -EINVAL; 2870 } 2871 2872 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2873 changes_data = bpf_helper_changes_pkt_data(fn->func); 2874 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2875 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2876 func_id_name(func_id), func_id); 2877 return -EINVAL; 2878 } 2879 2880 memset(&meta, 0, sizeof(meta)); 2881 meta.pkt_access = fn->pkt_access; 2882 2883 err = check_func_proto(fn); 2884 if (err) { 2885 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2886 func_id_name(func_id), func_id); 2887 return err; 2888 } 2889 2890 /* check args */ 2891 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2892 if (err) 2893 return err; 2894 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2895 if (err) 2896 return err; 2897 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2898 if (err) 2899 return err; 2900 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2901 if (err) 2902 return err; 2903 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2904 if (err) 2905 return err; 2906 2907 err = record_func_map(env, &meta, func_id, insn_idx); 2908 if (err) 2909 return err; 2910 2911 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2912 * is inferred from register state. 2913 */ 2914 for (i = 0; i < meta.access_size; i++) { 2915 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2916 BPF_WRITE, -1, false); 2917 if (err) 2918 return err; 2919 } 2920 2921 if (func_id == BPF_FUNC_tail_call) { 2922 err = check_reference_leak(env); 2923 if (err) { 2924 verbose(env, "tail_call would lead to reference leak\n"); 2925 return err; 2926 } 2927 } else if (is_release_function(func_id)) { 2928 err = release_reference(env, &meta); 2929 if (err) 2930 return err; 2931 } 2932 2933 regs = cur_regs(env); 2934 2935 /* check that flags argument in get_local_storage(map, flags) is 0, 2936 * this is required because get_local_storage() can't return an error. 2937 */ 2938 if (func_id == BPF_FUNC_get_local_storage && 2939 !register_is_null(®s[BPF_REG_2])) { 2940 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2941 return -EINVAL; 2942 } 2943 2944 /* reset caller saved regs */ 2945 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2946 mark_reg_not_init(env, regs, caller_saved[i]); 2947 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2948 } 2949 2950 /* update return register (already marked as written above) */ 2951 if (fn->ret_type == RET_INTEGER) { 2952 /* sets type to SCALAR_VALUE */ 2953 mark_reg_unknown(env, regs, BPF_REG_0); 2954 } else if (fn->ret_type == RET_VOID) { 2955 regs[BPF_REG_0].type = NOT_INIT; 2956 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2957 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2958 /* There is no offset yet applied, variable or fixed */ 2959 mark_reg_known_zero(env, regs, BPF_REG_0); 2960 /* remember map_ptr, so that check_map_access() 2961 * can check 'value_size' boundary of memory access 2962 * to map element returned from bpf_map_lookup_elem() 2963 */ 2964 if (meta.map_ptr == NULL) { 2965 verbose(env, 2966 "kernel subsystem misconfigured verifier\n"); 2967 return -EINVAL; 2968 } 2969 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2970 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2971 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2972 } else { 2973 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2974 regs[BPF_REG_0].id = ++env->id_gen; 2975 } 2976 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2977 int id = acquire_reference_state(env, insn_idx); 2978 if (id < 0) 2979 return id; 2980 mark_reg_known_zero(env, regs, BPF_REG_0); 2981 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2982 regs[BPF_REG_0].id = id; 2983 } else { 2984 verbose(env, "unknown return type %d of func %s#%d\n", 2985 fn->ret_type, func_id_name(func_id), func_id); 2986 return -EINVAL; 2987 } 2988 2989 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2990 2991 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2992 if (err) 2993 return err; 2994 2995 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2996 const char *err_str; 2997 2998 #ifdef CONFIG_PERF_EVENTS 2999 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3000 err_str = "cannot get callchain buffer for func %s#%d\n"; 3001 #else 3002 err = -ENOTSUPP; 3003 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3004 #endif 3005 if (err) { 3006 verbose(env, err_str, func_id_name(func_id), func_id); 3007 return err; 3008 } 3009 3010 env->prog->has_callchain_buf = true; 3011 } 3012 3013 if (changes_data) 3014 clear_all_pkt_pointers(env); 3015 return 0; 3016 } 3017 3018 static bool signed_add_overflows(s64 a, s64 b) 3019 { 3020 /* Do the add in u64, where overflow is well-defined */ 3021 s64 res = (s64)((u64)a + (u64)b); 3022 3023 if (b < 0) 3024 return res > a; 3025 return res < a; 3026 } 3027 3028 static bool signed_sub_overflows(s64 a, s64 b) 3029 { 3030 /* Do the sub in u64, where overflow is well-defined */ 3031 s64 res = (s64)((u64)a - (u64)b); 3032 3033 if (b < 0) 3034 return res < a; 3035 return res > a; 3036 } 3037 3038 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3039 const struct bpf_reg_state *reg, 3040 enum bpf_reg_type type) 3041 { 3042 bool known = tnum_is_const(reg->var_off); 3043 s64 val = reg->var_off.value; 3044 s64 smin = reg->smin_value; 3045 3046 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3047 verbose(env, "math between %s pointer and %lld is not allowed\n", 3048 reg_type_str[type], val); 3049 return false; 3050 } 3051 3052 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3053 verbose(env, "%s pointer offset %d is not allowed\n", 3054 reg_type_str[type], reg->off); 3055 return false; 3056 } 3057 3058 if (smin == S64_MIN) { 3059 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3060 reg_type_str[type]); 3061 return false; 3062 } 3063 3064 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3065 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3066 smin, reg_type_str[type]); 3067 return false; 3068 } 3069 3070 return true; 3071 } 3072 3073 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3074 { 3075 return &env->insn_aux_data[env->insn_idx]; 3076 } 3077 3078 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3079 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3080 { 3081 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3082 (opcode == BPF_SUB && !off_is_neg); 3083 u32 off; 3084 3085 switch (ptr_reg->type) { 3086 case PTR_TO_STACK: 3087 off = ptr_reg->off + ptr_reg->var_off.value; 3088 if (mask_to_left) 3089 *ptr_limit = MAX_BPF_STACK + off; 3090 else 3091 *ptr_limit = -off; 3092 return 0; 3093 case PTR_TO_MAP_VALUE: 3094 if (mask_to_left) { 3095 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3096 } else { 3097 off = ptr_reg->smin_value + ptr_reg->off; 3098 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3099 } 3100 return 0; 3101 default: 3102 return -EINVAL; 3103 } 3104 } 3105 3106 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3107 struct bpf_insn *insn, 3108 const struct bpf_reg_state *ptr_reg, 3109 struct bpf_reg_state *dst_reg, 3110 bool off_is_neg) 3111 { 3112 struct bpf_verifier_state *vstate = env->cur_state; 3113 struct bpf_insn_aux_data *aux = cur_aux(env); 3114 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3115 u8 opcode = BPF_OP(insn->code); 3116 u32 alu_state, alu_limit; 3117 struct bpf_reg_state tmp; 3118 bool ret; 3119 3120 if (env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K) 3121 return 0; 3122 3123 /* We already marked aux for masking from non-speculative 3124 * paths, thus we got here in the first place. We only care 3125 * to explore bad access from here. 3126 */ 3127 if (vstate->speculative) 3128 goto do_sim; 3129 3130 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3131 alu_state |= ptr_is_dst_reg ? 3132 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3133 3134 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3135 return 0; 3136 3137 /* If we arrived here from different branches with different 3138 * limits to sanitize, then this won't work. 3139 */ 3140 if (aux->alu_state && 3141 (aux->alu_state != alu_state || 3142 aux->alu_limit != alu_limit)) 3143 return -EACCES; 3144 3145 /* Corresponding fixup done in fixup_bpf_calls(). */ 3146 aux->alu_state = alu_state; 3147 aux->alu_limit = alu_limit; 3148 3149 do_sim: 3150 /* Simulate and find potential out-of-bounds access under 3151 * speculative execution from truncation as a result of 3152 * masking when off was not within expected range. If off 3153 * sits in dst, then we temporarily need to move ptr there 3154 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3155 * for cases where we use K-based arithmetic in one direction 3156 * and truncated reg-based in the other in order to explore 3157 * bad access. 3158 */ 3159 if (!ptr_is_dst_reg) { 3160 tmp = *dst_reg; 3161 *dst_reg = *ptr_reg; 3162 } 3163 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3164 if (!ptr_is_dst_reg) 3165 *dst_reg = tmp; 3166 return !ret ? -EFAULT : 0; 3167 } 3168 3169 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3170 * Caller should also handle BPF_MOV case separately. 3171 * If we return -EACCES, caller may want to try again treating pointer as a 3172 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3173 */ 3174 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3175 struct bpf_insn *insn, 3176 const struct bpf_reg_state *ptr_reg, 3177 const struct bpf_reg_state *off_reg) 3178 { 3179 struct bpf_verifier_state *vstate = env->cur_state; 3180 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3181 struct bpf_reg_state *regs = state->regs, *dst_reg; 3182 bool known = tnum_is_const(off_reg->var_off); 3183 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3184 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3185 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3186 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3187 u32 dst = insn->dst_reg, src = insn->src_reg; 3188 u8 opcode = BPF_OP(insn->code); 3189 int ret; 3190 3191 dst_reg = ®s[dst]; 3192 3193 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3194 smin_val > smax_val || umin_val > umax_val) { 3195 /* Taint dst register if offset had invalid bounds derived from 3196 * e.g. dead branches. 3197 */ 3198 __mark_reg_unknown(dst_reg); 3199 return 0; 3200 } 3201 3202 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3203 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3204 verbose(env, 3205 "R%d 32-bit pointer arithmetic prohibited\n", 3206 dst); 3207 return -EACCES; 3208 } 3209 3210 switch (ptr_reg->type) { 3211 case PTR_TO_MAP_VALUE_OR_NULL: 3212 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3213 dst, reg_type_str[ptr_reg->type]); 3214 return -EACCES; 3215 case CONST_PTR_TO_MAP: 3216 case PTR_TO_PACKET_END: 3217 case PTR_TO_SOCKET: 3218 case PTR_TO_SOCKET_OR_NULL: 3219 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3220 dst, reg_type_str[ptr_reg->type]); 3221 return -EACCES; 3222 case PTR_TO_MAP_VALUE: 3223 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3224 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3225 off_reg == dst_reg ? dst : src); 3226 return -EACCES; 3227 } 3228 /* fall-through */ 3229 default: 3230 break; 3231 } 3232 3233 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3234 * The id may be overwritten later if we create a new variable offset. 3235 */ 3236 dst_reg->type = ptr_reg->type; 3237 dst_reg->id = ptr_reg->id; 3238 3239 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3240 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3241 return -EINVAL; 3242 3243 switch (opcode) { 3244 case BPF_ADD: 3245 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3246 if (ret < 0) { 3247 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3248 return ret; 3249 } 3250 /* We can take a fixed offset as long as it doesn't overflow 3251 * the s32 'off' field 3252 */ 3253 if (known && (ptr_reg->off + smin_val == 3254 (s64)(s32)(ptr_reg->off + smin_val))) { 3255 /* pointer += K. Accumulate it into fixed offset */ 3256 dst_reg->smin_value = smin_ptr; 3257 dst_reg->smax_value = smax_ptr; 3258 dst_reg->umin_value = umin_ptr; 3259 dst_reg->umax_value = umax_ptr; 3260 dst_reg->var_off = ptr_reg->var_off; 3261 dst_reg->off = ptr_reg->off + smin_val; 3262 dst_reg->raw = ptr_reg->raw; 3263 break; 3264 } 3265 /* A new variable offset is created. Note that off_reg->off 3266 * == 0, since it's a scalar. 3267 * dst_reg gets the pointer type and since some positive 3268 * integer value was added to the pointer, give it a new 'id' 3269 * if it's a PTR_TO_PACKET. 3270 * this creates a new 'base' pointer, off_reg (variable) gets 3271 * added into the variable offset, and we copy the fixed offset 3272 * from ptr_reg. 3273 */ 3274 if (signed_add_overflows(smin_ptr, smin_val) || 3275 signed_add_overflows(smax_ptr, smax_val)) { 3276 dst_reg->smin_value = S64_MIN; 3277 dst_reg->smax_value = S64_MAX; 3278 } else { 3279 dst_reg->smin_value = smin_ptr + smin_val; 3280 dst_reg->smax_value = smax_ptr + smax_val; 3281 } 3282 if (umin_ptr + umin_val < umin_ptr || 3283 umax_ptr + umax_val < umax_ptr) { 3284 dst_reg->umin_value = 0; 3285 dst_reg->umax_value = U64_MAX; 3286 } else { 3287 dst_reg->umin_value = umin_ptr + umin_val; 3288 dst_reg->umax_value = umax_ptr + umax_val; 3289 } 3290 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3291 dst_reg->off = ptr_reg->off; 3292 dst_reg->raw = ptr_reg->raw; 3293 if (reg_is_pkt_pointer(ptr_reg)) { 3294 dst_reg->id = ++env->id_gen; 3295 /* something was added to pkt_ptr, set range to zero */ 3296 dst_reg->raw = 0; 3297 } 3298 break; 3299 case BPF_SUB: 3300 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3301 if (ret < 0) { 3302 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3303 return ret; 3304 } 3305 if (dst_reg == off_reg) { 3306 /* scalar -= pointer. Creates an unknown scalar */ 3307 verbose(env, "R%d tried to subtract pointer from scalar\n", 3308 dst); 3309 return -EACCES; 3310 } 3311 /* We don't allow subtraction from FP, because (according to 3312 * test_verifier.c test "invalid fp arithmetic", JITs might not 3313 * be able to deal with it. 3314 */ 3315 if (ptr_reg->type == PTR_TO_STACK) { 3316 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3317 dst); 3318 return -EACCES; 3319 } 3320 if (known && (ptr_reg->off - smin_val == 3321 (s64)(s32)(ptr_reg->off - smin_val))) { 3322 /* pointer -= K. Subtract it from fixed offset */ 3323 dst_reg->smin_value = smin_ptr; 3324 dst_reg->smax_value = smax_ptr; 3325 dst_reg->umin_value = umin_ptr; 3326 dst_reg->umax_value = umax_ptr; 3327 dst_reg->var_off = ptr_reg->var_off; 3328 dst_reg->id = ptr_reg->id; 3329 dst_reg->off = ptr_reg->off - smin_val; 3330 dst_reg->raw = ptr_reg->raw; 3331 break; 3332 } 3333 /* A new variable offset is created. If the subtrahend is known 3334 * nonnegative, then any reg->range we had before is still good. 3335 */ 3336 if (signed_sub_overflows(smin_ptr, smax_val) || 3337 signed_sub_overflows(smax_ptr, smin_val)) { 3338 /* Overflow possible, we know nothing */ 3339 dst_reg->smin_value = S64_MIN; 3340 dst_reg->smax_value = S64_MAX; 3341 } else { 3342 dst_reg->smin_value = smin_ptr - smax_val; 3343 dst_reg->smax_value = smax_ptr - smin_val; 3344 } 3345 if (umin_ptr < umax_val) { 3346 /* Overflow possible, we know nothing */ 3347 dst_reg->umin_value = 0; 3348 dst_reg->umax_value = U64_MAX; 3349 } else { 3350 /* Cannot overflow (as long as bounds are consistent) */ 3351 dst_reg->umin_value = umin_ptr - umax_val; 3352 dst_reg->umax_value = umax_ptr - umin_val; 3353 } 3354 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3355 dst_reg->off = ptr_reg->off; 3356 dst_reg->raw = ptr_reg->raw; 3357 if (reg_is_pkt_pointer(ptr_reg)) { 3358 dst_reg->id = ++env->id_gen; 3359 /* something was added to pkt_ptr, set range to zero */ 3360 if (smin_val < 0) 3361 dst_reg->raw = 0; 3362 } 3363 break; 3364 case BPF_AND: 3365 case BPF_OR: 3366 case BPF_XOR: 3367 /* bitwise ops on pointers are troublesome, prohibit. */ 3368 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3369 dst, bpf_alu_string[opcode >> 4]); 3370 return -EACCES; 3371 default: 3372 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3373 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3374 dst, bpf_alu_string[opcode >> 4]); 3375 return -EACCES; 3376 } 3377 3378 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3379 return -EINVAL; 3380 3381 __update_reg_bounds(dst_reg); 3382 __reg_deduce_bounds(dst_reg); 3383 __reg_bound_offset(dst_reg); 3384 3385 /* For unprivileged we require that resulting offset must be in bounds 3386 * in order to be able to sanitize access later on. 3387 */ 3388 if (!env->allow_ptr_leaks) { 3389 if (dst_reg->type == PTR_TO_MAP_VALUE && 3390 check_map_access(env, dst, dst_reg->off, 1, false)) { 3391 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3392 "prohibited for !root\n", dst); 3393 return -EACCES; 3394 } else if (dst_reg->type == PTR_TO_STACK && 3395 check_stack_access(env, dst_reg, dst_reg->off + 3396 dst_reg->var_off.value, 1)) { 3397 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3398 "prohibited for !root\n", dst); 3399 return -EACCES; 3400 } 3401 } 3402 3403 return 0; 3404 } 3405 3406 /* WARNING: This function does calculations on 64-bit values, but the actual 3407 * execution may occur on 32-bit values. Therefore, things like bitshifts 3408 * need extra checks in the 32-bit case. 3409 */ 3410 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3411 struct bpf_insn *insn, 3412 struct bpf_reg_state *dst_reg, 3413 struct bpf_reg_state src_reg) 3414 { 3415 struct bpf_reg_state *regs = cur_regs(env); 3416 u8 opcode = BPF_OP(insn->code); 3417 bool src_known, dst_known; 3418 s64 smin_val, smax_val; 3419 u64 umin_val, umax_val; 3420 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3421 3422 if (insn_bitness == 32) { 3423 /* Relevant for 32-bit RSH: Information can propagate towards 3424 * LSB, so it isn't sufficient to only truncate the output to 3425 * 32 bits. 3426 */ 3427 coerce_reg_to_size(dst_reg, 4); 3428 coerce_reg_to_size(&src_reg, 4); 3429 } 3430 3431 smin_val = src_reg.smin_value; 3432 smax_val = src_reg.smax_value; 3433 umin_val = src_reg.umin_value; 3434 umax_val = src_reg.umax_value; 3435 src_known = tnum_is_const(src_reg.var_off); 3436 dst_known = tnum_is_const(dst_reg->var_off); 3437 3438 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3439 smin_val > smax_val || umin_val > umax_val) { 3440 /* Taint dst register if offset had invalid bounds derived from 3441 * e.g. dead branches. 3442 */ 3443 __mark_reg_unknown(dst_reg); 3444 return 0; 3445 } 3446 3447 if (!src_known && 3448 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3449 __mark_reg_unknown(dst_reg); 3450 return 0; 3451 } 3452 3453 switch (opcode) { 3454 case BPF_ADD: 3455 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3456 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3457 dst_reg->smin_value = S64_MIN; 3458 dst_reg->smax_value = S64_MAX; 3459 } else { 3460 dst_reg->smin_value += smin_val; 3461 dst_reg->smax_value += smax_val; 3462 } 3463 if (dst_reg->umin_value + umin_val < umin_val || 3464 dst_reg->umax_value + umax_val < umax_val) { 3465 dst_reg->umin_value = 0; 3466 dst_reg->umax_value = U64_MAX; 3467 } else { 3468 dst_reg->umin_value += umin_val; 3469 dst_reg->umax_value += umax_val; 3470 } 3471 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3472 break; 3473 case BPF_SUB: 3474 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3475 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3476 /* Overflow possible, we know nothing */ 3477 dst_reg->smin_value = S64_MIN; 3478 dst_reg->smax_value = S64_MAX; 3479 } else { 3480 dst_reg->smin_value -= smax_val; 3481 dst_reg->smax_value -= smin_val; 3482 } 3483 if (dst_reg->umin_value < umax_val) { 3484 /* Overflow possible, we know nothing */ 3485 dst_reg->umin_value = 0; 3486 dst_reg->umax_value = U64_MAX; 3487 } else { 3488 /* Cannot overflow (as long as bounds are consistent) */ 3489 dst_reg->umin_value -= umax_val; 3490 dst_reg->umax_value -= umin_val; 3491 } 3492 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3493 break; 3494 case BPF_MUL: 3495 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3496 if (smin_val < 0 || dst_reg->smin_value < 0) { 3497 /* Ain't nobody got time to multiply that sign */ 3498 __mark_reg_unbounded(dst_reg); 3499 __update_reg_bounds(dst_reg); 3500 break; 3501 } 3502 /* Both values are positive, so we can work with unsigned and 3503 * copy the result to signed (unless it exceeds S64_MAX). 3504 */ 3505 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3506 /* Potential overflow, we know nothing */ 3507 __mark_reg_unbounded(dst_reg); 3508 /* (except what we can learn from the var_off) */ 3509 __update_reg_bounds(dst_reg); 3510 break; 3511 } 3512 dst_reg->umin_value *= umin_val; 3513 dst_reg->umax_value *= umax_val; 3514 if (dst_reg->umax_value > S64_MAX) { 3515 /* Overflow possible, we know nothing */ 3516 dst_reg->smin_value = S64_MIN; 3517 dst_reg->smax_value = S64_MAX; 3518 } else { 3519 dst_reg->smin_value = dst_reg->umin_value; 3520 dst_reg->smax_value = dst_reg->umax_value; 3521 } 3522 break; 3523 case BPF_AND: 3524 if (src_known && dst_known) { 3525 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3526 src_reg.var_off.value); 3527 break; 3528 } 3529 /* We get our minimum from the var_off, since that's inherently 3530 * bitwise. Our maximum is the minimum of the operands' maxima. 3531 */ 3532 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3533 dst_reg->umin_value = dst_reg->var_off.value; 3534 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3535 if (dst_reg->smin_value < 0 || smin_val < 0) { 3536 /* Lose signed bounds when ANDing negative numbers, 3537 * ain't nobody got time for that. 3538 */ 3539 dst_reg->smin_value = S64_MIN; 3540 dst_reg->smax_value = S64_MAX; 3541 } else { 3542 /* ANDing two positives gives a positive, so safe to 3543 * cast result into s64. 3544 */ 3545 dst_reg->smin_value = dst_reg->umin_value; 3546 dst_reg->smax_value = dst_reg->umax_value; 3547 } 3548 /* We may learn something more from the var_off */ 3549 __update_reg_bounds(dst_reg); 3550 break; 3551 case BPF_OR: 3552 if (src_known && dst_known) { 3553 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3554 src_reg.var_off.value); 3555 break; 3556 } 3557 /* We get our maximum from the var_off, and our minimum is the 3558 * maximum of the operands' minima 3559 */ 3560 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3561 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3562 dst_reg->umax_value = dst_reg->var_off.value | 3563 dst_reg->var_off.mask; 3564 if (dst_reg->smin_value < 0 || smin_val < 0) { 3565 /* Lose signed bounds when ORing negative numbers, 3566 * ain't nobody got time for that. 3567 */ 3568 dst_reg->smin_value = S64_MIN; 3569 dst_reg->smax_value = S64_MAX; 3570 } else { 3571 /* ORing two positives gives a positive, so safe to 3572 * cast result into s64. 3573 */ 3574 dst_reg->smin_value = dst_reg->umin_value; 3575 dst_reg->smax_value = dst_reg->umax_value; 3576 } 3577 /* We may learn something more from the var_off */ 3578 __update_reg_bounds(dst_reg); 3579 break; 3580 case BPF_LSH: 3581 if (umax_val >= insn_bitness) { 3582 /* Shifts greater than 31 or 63 are undefined. 3583 * This includes shifts by a negative number. 3584 */ 3585 mark_reg_unknown(env, regs, insn->dst_reg); 3586 break; 3587 } 3588 /* We lose all sign bit information (except what we can pick 3589 * up from var_off) 3590 */ 3591 dst_reg->smin_value = S64_MIN; 3592 dst_reg->smax_value = S64_MAX; 3593 /* If we might shift our top bit out, then we know nothing */ 3594 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3595 dst_reg->umin_value = 0; 3596 dst_reg->umax_value = U64_MAX; 3597 } else { 3598 dst_reg->umin_value <<= umin_val; 3599 dst_reg->umax_value <<= umax_val; 3600 } 3601 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3602 /* We may learn something more from the var_off */ 3603 __update_reg_bounds(dst_reg); 3604 break; 3605 case BPF_RSH: 3606 if (umax_val >= insn_bitness) { 3607 /* Shifts greater than 31 or 63 are undefined. 3608 * This includes shifts by a negative number. 3609 */ 3610 mark_reg_unknown(env, regs, insn->dst_reg); 3611 break; 3612 } 3613 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3614 * be negative, then either: 3615 * 1) src_reg might be zero, so the sign bit of the result is 3616 * unknown, so we lose our signed bounds 3617 * 2) it's known negative, thus the unsigned bounds capture the 3618 * signed bounds 3619 * 3) the signed bounds cross zero, so they tell us nothing 3620 * about the result 3621 * If the value in dst_reg is known nonnegative, then again the 3622 * unsigned bounts capture the signed bounds. 3623 * Thus, in all cases it suffices to blow away our signed bounds 3624 * and rely on inferring new ones from the unsigned bounds and 3625 * var_off of the result. 3626 */ 3627 dst_reg->smin_value = S64_MIN; 3628 dst_reg->smax_value = S64_MAX; 3629 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3630 dst_reg->umin_value >>= umax_val; 3631 dst_reg->umax_value >>= umin_val; 3632 /* We may learn something more from the var_off */ 3633 __update_reg_bounds(dst_reg); 3634 break; 3635 case BPF_ARSH: 3636 if (umax_val >= insn_bitness) { 3637 /* Shifts greater than 31 or 63 are undefined. 3638 * This includes shifts by a negative number. 3639 */ 3640 mark_reg_unknown(env, regs, insn->dst_reg); 3641 break; 3642 } 3643 3644 /* Upon reaching here, src_known is true and 3645 * umax_val is equal to umin_val. 3646 */ 3647 dst_reg->smin_value >>= umin_val; 3648 dst_reg->smax_value >>= umin_val; 3649 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3650 3651 /* blow away the dst_reg umin_value/umax_value and rely on 3652 * dst_reg var_off to refine the result. 3653 */ 3654 dst_reg->umin_value = 0; 3655 dst_reg->umax_value = U64_MAX; 3656 __update_reg_bounds(dst_reg); 3657 break; 3658 default: 3659 mark_reg_unknown(env, regs, insn->dst_reg); 3660 break; 3661 } 3662 3663 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3664 /* 32-bit ALU ops are (32,32)->32 */ 3665 coerce_reg_to_size(dst_reg, 4); 3666 } 3667 3668 __reg_deduce_bounds(dst_reg); 3669 __reg_bound_offset(dst_reg); 3670 return 0; 3671 } 3672 3673 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3674 * and var_off. 3675 */ 3676 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3677 struct bpf_insn *insn) 3678 { 3679 struct bpf_verifier_state *vstate = env->cur_state; 3680 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3681 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3682 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3683 u8 opcode = BPF_OP(insn->code); 3684 3685 dst_reg = ®s[insn->dst_reg]; 3686 src_reg = NULL; 3687 if (dst_reg->type != SCALAR_VALUE) 3688 ptr_reg = dst_reg; 3689 if (BPF_SRC(insn->code) == BPF_X) { 3690 src_reg = ®s[insn->src_reg]; 3691 if (src_reg->type != SCALAR_VALUE) { 3692 if (dst_reg->type != SCALAR_VALUE) { 3693 /* Combining two pointers by any ALU op yields 3694 * an arbitrary scalar. Disallow all math except 3695 * pointer subtraction 3696 */ 3697 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3698 mark_reg_unknown(env, regs, insn->dst_reg); 3699 return 0; 3700 } 3701 verbose(env, "R%d pointer %s pointer prohibited\n", 3702 insn->dst_reg, 3703 bpf_alu_string[opcode >> 4]); 3704 return -EACCES; 3705 } else { 3706 /* scalar += pointer 3707 * This is legal, but we have to reverse our 3708 * src/dest handling in computing the range 3709 */ 3710 return adjust_ptr_min_max_vals(env, insn, 3711 src_reg, dst_reg); 3712 } 3713 } else if (ptr_reg) { 3714 /* pointer += scalar */ 3715 return adjust_ptr_min_max_vals(env, insn, 3716 dst_reg, src_reg); 3717 } 3718 } else { 3719 /* Pretend the src is a reg with a known value, since we only 3720 * need to be able to read from this state. 3721 */ 3722 off_reg.type = SCALAR_VALUE; 3723 __mark_reg_known(&off_reg, insn->imm); 3724 src_reg = &off_reg; 3725 if (ptr_reg) /* pointer += K */ 3726 return adjust_ptr_min_max_vals(env, insn, 3727 ptr_reg, src_reg); 3728 } 3729 3730 /* Got here implies adding two SCALAR_VALUEs */ 3731 if (WARN_ON_ONCE(ptr_reg)) { 3732 print_verifier_state(env, state); 3733 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3734 return -EINVAL; 3735 } 3736 if (WARN_ON(!src_reg)) { 3737 print_verifier_state(env, state); 3738 verbose(env, "verifier internal error: no src_reg\n"); 3739 return -EINVAL; 3740 } 3741 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3742 } 3743 3744 /* check validity of 32-bit and 64-bit arithmetic operations */ 3745 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3746 { 3747 struct bpf_reg_state *regs = cur_regs(env); 3748 u8 opcode = BPF_OP(insn->code); 3749 int err; 3750 3751 if (opcode == BPF_END || opcode == BPF_NEG) { 3752 if (opcode == BPF_NEG) { 3753 if (BPF_SRC(insn->code) != 0 || 3754 insn->src_reg != BPF_REG_0 || 3755 insn->off != 0 || insn->imm != 0) { 3756 verbose(env, "BPF_NEG uses reserved fields\n"); 3757 return -EINVAL; 3758 } 3759 } else { 3760 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3761 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3762 BPF_CLASS(insn->code) == BPF_ALU64) { 3763 verbose(env, "BPF_END uses reserved fields\n"); 3764 return -EINVAL; 3765 } 3766 } 3767 3768 /* check src operand */ 3769 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3770 if (err) 3771 return err; 3772 3773 if (is_pointer_value(env, insn->dst_reg)) { 3774 verbose(env, "R%d pointer arithmetic prohibited\n", 3775 insn->dst_reg); 3776 return -EACCES; 3777 } 3778 3779 /* check dest operand */ 3780 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3781 if (err) 3782 return err; 3783 3784 } else if (opcode == BPF_MOV) { 3785 3786 if (BPF_SRC(insn->code) == BPF_X) { 3787 if (insn->imm != 0 || insn->off != 0) { 3788 verbose(env, "BPF_MOV uses reserved fields\n"); 3789 return -EINVAL; 3790 } 3791 3792 /* check src operand */ 3793 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3794 if (err) 3795 return err; 3796 } else { 3797 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3798 verbose(env, "BPF_MOV uses reserved fields\n"); 3799 return -EINVAL; 3800 } 3801 } 3802 3803 /* check dest operand, mark as required later */ 3804 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3805 if (err) 3806 return err; 3807 3808 if (BPF_SRC(insn->code) == BPF_X) { 3809 struct bpf_reg_state *src_reg = regs + insn->src_reg; 3810 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 3811 3812 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3813 /* case: R1 = R2 3814 * copy register state to dest reg 3815 */ 3816 *dst_reg = *src_reg; 3817 dst_reg->live |= REG_LIVE_WRITTEN; 3818 } else { 3819 /* R1 = (u32) R2 */ 3820 if (is_pointer_value(env, insn->src_reg)) { 3821 verbose(env, 3822 "R%d partial copy of pointer\n", 3823 insn->src_reg); 3824 return -EACCES; 3825 } else if (src_reg->type == SCALAR_VALUE) { 3826 *dst_reg = *src_reg; 3827 dst_reg->live |= REG_LIVE_WRITTEN; 3828 } else { 3829 mark_reg_unknown(env, regs, 3830 insn->dst_reg); 3831 } 3832 coerce_reg_to_size(dst_reg, 4); 3833 } 3834 } else { 3835 /* case: R = imm 3836 * remember the value we stored into this reg 3837 */ 3838 /* clear any state __mark_reg_known doesn't set */ 3839 mark_reg_unknown(env, regs, insn->dst_reg); 3840 regs[insn->dst_reg].type = SCALAR_VALUE; 3841 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3842 __mark_reg_known(regs + insn->dst_reg, 3843 insn->imm); 3844 } else { 3845 __mark_reg_known(regs + insn->dst_reg, 3846 (u32)insn->imm); 3847 } 3848 } 3849 3850 } else if (opcode > BPF_END) { 3851 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3852 return -EINVAL; 3853 3854 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3855 3856 if (BPF_SRC(insn->code) == BPF_X) { 3857 if (insn->imm != 0 || insn->off != 0) { 3858 verbose(env, "BPF_ALU uses reserved fields\n"); 3859 return -EINVAL; 3860 } 3861 /* check src1 operand */ 3862 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3863 if (err) 3864 return err; 3865 } else { 3866 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3867 verbose(env, "BPF_ALU uses reserved fields\n"); 3868 return -EINVAL; 3869 } 3870 } 3871 3872 /* check src2 operand */ 3873 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3874 if (err) 3875 return err; 3876 3877 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3878 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3879 verbose(env, "div by zero\n"); 3880 return -EINVAL; 3881 } 3882 3883 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3884 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3885 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3886 3887 if (insn->imm < 0 || insn->imm >= size) { 3888 verbose(env, "invalid shift %d\n", insn->imm); 3889 return -EINVAL; 3890 } 3891 } 3892 3893 /* check dest operand */ 3894 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3895 if (err) 3896 return err; 3897 3898 return adjust_reg_min_max_vals(env, insn); 3899 } 3900 3901 return 0; 3902 } 3903 3904 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3905 struct bpf_reg_state *dst_reg, 3906 enum bpf_reg_type type, 3907 bool range_right_open) 3908 { 3909 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3910 struct bpf_reg_state *regs = state->regs, *reg; 3911 u16 new_range; 3912 int i, j; 3913 3914 if (dst_reg->off < 0 || 3915 (dst_reg->off == 0 && range_right_open)) 3916 /* This doesn't give us any range */ 3917 return; 3918 3919 if (dst_reg->umax_value > MAX_PACKET_OFF || 3920 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3921 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3922 * than pkt_end, but that's because it's also less than pkt. 3923 */ 3924 return; 3925 3926 new_range = dst_reg->off; 3927 if (range_right_open) 3928 new_range--; 3929 3930 /* Examples for register markings: 3931 * 3932 * pkt_data in dst register: 3933 * 3934 * r2 = r3; 3935 * r2 += 8; 3936 * if (r2 > pkt_end) goto <handle exception> 3937 * <access okay> 3938 * 3939 * r2 = r3; 3940 * r2 += 8; 3941 * if (r2 < pkt_end) goto <access okay> 3942 * <handle exception> 3943 * 3944 * Where: 3945 * r2 == dst_reg, pkt_end == src_reg 3946 * r2=pkt(id=n,off=8,r=0) 3947 * r3=pkt(id=n,off=0,r=0) 3948 * 3949 * pkt_data in src register: 3950 * 3951 * r2 = r3; 3952 * r2 += 8; 3953 * if (pkt_end >= r2) goto <access okay> 3954 * <handle exception> 3955 * 3956 * r2 = r3; 3957 * r2 += 8; 3958 * if (pkt_end <= r2) goto <handle exception> 3959 * <access okay> 3960 * 3961 * Where: 3962 * pkt_end == dst_reg, r2 == src_reg 3963 * r2=pkt(id=n,off=8,r=0) 3964 * r3=pkt(id=n,off=0,r=0) 3965 * 3966 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3967 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3968 * and [r3, r3 + 8-1) respectively is safe to access depending on 3969 * the check. 3970 */ 3971 3972 /* If our ids match, then we must have the same max_value. And we 3973 * don't care about the other reg's fixed offset, since if it's too big 3974 * the range won't allow anything. 3975 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3976 */ 3977 for (i = 0; i < MAX_BPF_REG; i++) 3978 if (regs[i].type == type && regs[i].id == dst_reg->id) 3979 /* keep the maximum range already checked */ 3980 regs[i].range = max(regs[i].range, new_range); 3981 3982 for (j = 0; j <= vstate->curframe; j++) { 3983 state = vstate->frame[j]; 3984 bpf_for_each_spilled_reg(i, state, reg) { 3985 if (!reg) 3986 continue; 3987 if (reg->type == type && reg->id == dst_reg->id) 3988 reg->range = max(reg->range, new_range); 3989 } 3990 } 3991 } 3992 3993 /* compute branch direction of the expression "if (reg opcode val) goto target;" 3994 * and return: 3995 * 1 - branch will be taken and "goto target" will be executed 3996 * 0 - branch will not be taken and fall-through to next insn 3997 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 3998 */ 3999 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 4000 { 4001 if (__is_pointer_value(false, reg)) 4002 return -1; 4003 4004 switch (opcode) { 4005 case BPF_JEQ: 4006 if (tnum_is_const(reg->var_off)) 4007 return !!tnum_equals_const(reg->var_off, val); 4008 break; 4009 case BPF_JNE: 4010 if (tnum_is_const(reg->var_off)) 4011 return !tnum_equals_const(reg->var_off, val); 4012 break; 4013 case BPF_JSET: 4014 if ((~reg->var_off.mask & reg->var_off.value) & val) 4015 return 1; 4016 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4017 return 0; 4018 break; 4019 case BPF_JGT: 4020 if (reg->umin_value > val) 4021 return 1; 4022 else if (reg->umax_value <= val) 4023 return 0; 4024 break; 4025 case BPF_JSGT: 4026 if (reg->smin_value > (s64)val) 4027 return 1; 4028 else if (reg->smax_value < (s64)val) 4029 return 0; 4030 break; 4031 case BPF_JLT: 4032 if (reg->umax_value < val) 4033 return 1; 4034 else if (reg->umin_value >= val) 4035 return 0; 4036 break; 4037 case BPF_JSLT: 4038 if (reg->smax_value < (s64)val) 4039 return 1; 4040 else if (reg->smin_value >= (s64)val) 4041 return 0; 4042 break; 4043 case BPF_JGE: 4044 if (reg->umin_value >= val) 4045 return 1; 4046 else if (reg->umax_value < val) 4047 return 0; 4048 break; 4049 case BPF_JSGE: 4050 if (reg->smin_value >= (s64)val) 4051 return 1; 4052 else if (reg->smax_value < (s64)val) 4053 return 0; 4054 break; 4055 case BPF_JLE: 4056 if (reg->umax_value <= val) 4057 return 1; 4058 else if (reg->umin_value > val) 4059 return 0; 4060 break; 4061 case BPF_JSLE: 4062 if (reg->smax_value <= (s64)val) 4063 return 1; 4064 else if (reg->smin_value > (s64)val) 4065 return 0; 4066 break; 4067 } 4068 4069 return -1; 4070 } 4071 4072 /* Adjusts the register min/max values in the case that the dst_reg is the 4073 * variable register that we are working on, and src_reg is a constant or we're 4074 * simply doing a BPF_K check. 4075 * In JEQ/JNE cases we also adjust the var_off values. 4076 */ 4077 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4078 struct bpf_reg_state *false_reg, u64 val, 4079 u8 opcode) 4080 { 4081 /* If the dst_reg is a pointer, we can't learn anything about its 4082 * variable offset from the compare (unless src_reg were a pointer into 4083 * the same object, but we don't bother with that. 4084 * Since false_reg and true_reg have the same type by construction, we 4085 * only need to check one of them for pointerness. 4086 */ 4087 if (__is_pointer_value(false, false_reg)) 4088 return; 4089 4090 switch (opcode) { 4091 case BPF_JEQ: 4092 /* If this is false then we know nothing Jon Snow, but if it is 4093 * true then we know for sure. 4094 */ 4095 __mark_reg_known(true_reg, val); 4096 break; 4097 case BPF_JNE: 4098 /* If this is true we know nothing Jon Snow, but if it is false 4099 * we know the value for sure; 4100 */ 4101 __mark_reg_known(false_reg, val); 4102 break; 4103 case BPF_JSET: 4104 false_reg->var_off = tnum_and(false_reg->var_off, 4105 tnum_const(~val)); 4106 if (is_power_of_2(val)) 4107 true_reg->var_off = tnum_or(true_reg->var_off, 4108 tnum_const(val)); 4109 break; 4110 case BPF_JGT: 4111 false_reg->umax_value = min(false_reg->umax_value, val); 4112 true_reg->umin_value = max(true_reg->umin_value, val + 1); 4113 break; 4114 case BPF_JSGT: 4115 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 4116 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 4117 break; 4118 case BPF_JLT: 4119 false_reg->umin_value = max(false_reg->umin_value, val); 4120 true_reg->umax_value = min(true_reg->umax_value, val - 1); 4121 break; 4122 case BPF_JSLT: 4123 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 4124 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 4125 break; 4126 case BPF_JGE: 4127 false_reg->umax_value = min(false_reg->umax_value, val - 1); 4128 true_reg->umin_value = max(true_reg->umin_value, val); 4129 break; 4130 case BPF_JSGE: 4131 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 4132 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 4133 break; 4134 case BPF_JLE: 4135 false_reg->umin_value = max(false_reg->umin_value, val + 1); 4136 true_reg->umax_value = min(true_reg->umax_value, val); 4137 break; 4138 case BPF_JSLE: 4139 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 4140 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 4141 break; 4142 default: 4143 break; 4144 } 4145 4146 __reg_deduce_bounds(false_reg); 4147 __reg_deduce_bounds(true_reg); 4148 /* We might have learned some bits from the bounds. */ 4149 __reg_bound_offset(false_reg); 4150 __reg_bound_offset(true_reg); 4151 /* Intersecting with the old var_off might have improved our bounds 4152 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4153 * then new var_off is (0; 0x7f...fc) which improves our umax. 4154 */ 4155 __update_reg_bounds(false_reg); 4156 __update_reg_bounds(true_reg); 4157 } 4158 4159 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4160 * the variable reg. 4161 */ 4162 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4163 struct bpf_reg_state *false_reg, u64 val, 4164 u8 opcode) 4165 { 4166 if (__is_pointer_value(false, false_reg)) 4167 return; 4168 4169 switch (opcode) { 4170 case BPF_JEQ: 4171 /* If this is false then we know nothing Jon Snow, but if it is 4172 * true then we know for sure. 4173 */ 4174 __mark_reg_known(true_reg, val); 4175 break; 4176 case BPF_JNE: 4177 /* If this is true we know nothing Jon Snow, but if it is false 4178 * we know the value for sure; 4179 */ 4180 __mark_reg_known(false_reg, val); 4181 break; 4182 case BPF_JSET: 4183 false_reg->var_off = tnum_and(false_reg->var_off, 4184 tnum_const(~val)); 4185 if (is_power_of_2(val)) 4186 true_reg->var_off = tnum_or(true_reg->var_off, 4187 tnum_const(val)); 4188 break; 4189 case BPF_JGT: 4190 true_reg->umax_value = min(true_reg->umax_value, val - 1); 4191 false_reg->umin_value = max(false_reg->umin_value, val); 4192 break; 4193 case BPF_JSGT: 4194 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 4195 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 4196 break; 4197 case BPF_JLT: 4198 true_reg->umin_value = max(true_reg->umin_value, val + 1); 4199 false_reg->umax_value = min(false_reg->umax_value, val); 4200 break; 4201 case BPF_JSLT: 4202 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 4203 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 4204 break; 4205 case BPF_JGE: 4206 true_reg->umax_value = min(true_reg->umax_value, val); 4207 false_reg->umin_value = max(false_reg->umin_value, val + 1); 4208 break; 4209 case BPF_JSGE: 4210 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 4211 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 4212 break; 4213 case BPF_JLE: 4214 true_reg->umin_value = max(true_reg->umin_value, val); 4215 false_reg->umax_value = min(false_reg->umax_value, val - 1); 4216 break; 4217 case BPF_JSLE: 4218 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 4219 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 4220 break; 4221 default: 4222 break; 4223 } 4224 4225 __reg_deduce_bounds(false_reg); 4226 __reg_deduce_bounds(true_reg); 4227 /* We might have learned some bits from the bounds. */ 4228 __reg_bound_offset(false_reg); 4229 __reg_bound_offset(true_reg); 4230 /* Intersecting with the old var_off might have improved our bounds 4231 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4232 * then new var_off is (0; 0x7f...fc) which improves our umax. 4233 */ 4234 __update_reg_bounds(false_reg); 4235 __update_reg_bounds(true_reg); 4236 } 4237 4238 /* Regs are known to be equal, so intersect their min/max/var_off */ 4239 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4240 struct bpf_reg_state *dst_reg) 4241 { 4242 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4243 dst_reg->umin_value); 4244 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4245 dst_reg->umax_value); 4246 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4247 dst_reg->smin_value); 4248 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4249 dst_reg->smax_value); 4250 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4251 dst_reg->var_off); 4252 /* We might have learned new bounds from the var_off. */ 4253 __update_reg_bounds(src_reg); 4254 __update_reg_bounds(dst_reg); 4255 /* We might have learned something about the sign bit. */ 4256 __reg_deduce_bounds(src_reg); 4257 __reg_deduce_bounds(dst_reg); 4258 /* We might have learned some bits from the bounds. */ 4259 __reg_bound_offset(src_reg); 4260 __reg_bound_offset(dst_reg); 4261 /* Intersecting with the old var_off might have improved our bounds 4262 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4263 * then new var_off is (0; 0x7f...fc) which improves our umax. 4264 */ 4265 __update_reg_bounds(src_reg); 4266 __update_reg_bounds(dst_reg); 4267 } 4268 4269 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4270 struct bpf_reg_state *true_dst, 4271 struct bpf_reg_state *false_src, 4272 struct bpf_reg_state *false_dst, 4273 u8 opcode) 4274 { 4275 switch (opcode) { 4276 case BPF_JEQ: 4277 __reg_combine_min_max(true_src, true_dst); 4278 break; 4279 case BPF_JNE: 4280 __reg_combine_min_max(false_src, false_dst); 4281 break; 4282 } 4283 } 4284 4285 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4286 struct bpf_reg_state *reg, u32 id, 4287 bool is_null) 4288 { 4289 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4290 /* Old offset (both fixed and variable parts) should 4291 * have been known-zero, because we don't allow pointer 4292 * arithmetic on pointers that might be NULL. 4293 */ 4294 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4295 !tnum_equals_const(reg->var_off, 0) || 4296 reg->off)) { 4297 __mark_reg_known_zero(reg); 4298 reg->off = 0; 4299 } 4300 if (is_null) { 4301 reg->type = SCALAR_VALUE; 4302 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4303 if (reg->map_ptr->inner_map_meta) { 4304 reg->type = CONST_PTR_TO_MAP; 4305 reg->map_ptr = reg->map_ptr->inner_map_meta; 4306 } else { 4307 reg->type = PTR_TO_MAP_VALUE; 4308 } 4309 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4310 reg->type = PTR_TO_SOCKET; 4311 } 4312 if (is_null || !reg_is_refcounted(reg)) { 4313 /* We don't need id from this point onwards anymore, 4314 * thus we should better reset it, so that state 4315 * pruning has chances to take effect. 4316 */ 4317 reg->id = 0; 4318 } 4319 } 4320 } 4321 4322 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4323 * be folded together at some point. 4324 */ 4325 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4326 bool is_null) 4327 { 4328 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4329 struct bpf_reg_state *reg, *regs = state->regs; 4330 u32 id = regs[regno].id; 4331 int i, j; 4332 4333 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4334 __release_reference_state(state, id); 4335 4336 for (i = 0; i < MAX_BPF_REG; i++) 4337 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4338 4339 for (j = 0; j <= vstate->curframe; j++) { 4340 state = vstate->frame[j]; 4341 bpf_for_each_spilled_reg(i, state, reg) { 4342 if (!reg) 4343 continue; 4344 mark_ptr_or_null_reg(state, reg, id, is_null); 4345 } 4346 } 4347 } 4348 4349 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4350 struct bpf_reg_state *dst_reg, 4351 struct bpf_reg_state *src_reg, 4352 struct bpf_verifier_state *this_branch, 4353 struct bpf_verifier_state *other_branch) 4354 { 4355 if (BPF_SRC(insn->code) != BPF_X) 4356 return false; 4357 4358 switch (BPF_OP(insn->code)) { 4359 case BPF_JGT: 4360 if ((dst_reg->type == PTR_TO_PACKET && 4361 src_reg->type == PTR_TO_PACKET_END) || 4362 (dst_reg->type == PTR_TO_PACKET_META && 4363 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4364 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4365 find_good_pkt_pointers(this_branch, dst_reg, 4366 dst_reg->type, false); 4367 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4368 src_reg->type == PTR_TO_PACKET) || 4369 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4370 src_reg->type == PTR_TO_PACKET_META)) { 4371 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4372 find_good_pkt_pointers(other_branch, src_reg, 4373 src_reg->type, true); 4374 } else { 4375 return false; 4376 } 4377 break; 4378 case BPF_JLT: 4379 if ((dst_reg->type == PTR_TO_PACKET && 4380 src_reg->type == PTR_TO_PACKET_END) || 4381 (dst_reg->type == PTR_TO_PACKET_META && 4382 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4383 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4384 find_good_pkt_pointers(other_branch, dst_reg, 4385 dst_reg->type, true); 4386 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4387 src_reg->type == PTR_TO_PACKET) || 4388 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4389 src_reg->type == PTR_TO_PACKET_META)) { 4390 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4391 find_good_pkt_pointers(this_branch, src_reg, 4392 src_reg->type, false); 4393 } else { 4394 return false; 4395 } 4396 break; 4397 case BPF_JGE: 4398 if ((dst_reg->type == PTR_TO_PACKET && 4399 src_reg->type == PTR_TO_PACKET_END) || 4400 (dst_reg->type == PTR_TO_PACKET_META && 4401 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4402 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4403 find_good_pkt_pointers(this_branch, dst_reg, 4404 dst_reg->type, true); 4405 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4406 src_reg->type == PTR_TO_PACKET) || 4407 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4408 src_reg->type == PTR_TO_PACKET_META)) { 4409 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4410 find_good_pkt_pointers(other_branch, src_reg, 4411 src_reg->type, false); 4412 } else { 4413 return false; 4414 } 4415 break; 4416 case BPF_JLE: 4417 if ((dst_reg->type == PTR_TO_PACKET && 4418 src_reg->type == PTR_TO_PACKET_END) || 4419 (dst_reg->type == PTR_TO_PACKET_META && 4420 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4421 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4422 find_good_pkt_pointers(other_branch, dst_reg, 4423 dst_reg->type, false); 4424 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4425 src_reg->type == PTR_TO_PACKET) || 4426 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4427 src_reg->type == PTR_TO_PACKET_META)) { 4428 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4429 find_good_pkt_pointers(this_branch, src_reg, 4430 src_reg->type, true); 4431 } else { 4432 return false; 4433 } 4434 break; 4435 default: 4436 return false; 4437 } 4438 4439 return true; 4440 } 4441 4442 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4443 struct bpf_insn *insn, int *insn_idx) 4444 { 4445 struct bpf_verifier_state *this_branch = env->cur_state; 4446 struct bpf_verifier_state *other_branch; 4447 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4448 struct bpf_reg_state *dst_reg, *other_branch_regs; 4449 u8 opcode = BPF_OP(insn->code); 4450 int err; 4451 4452 if (opcode > BPF_JSLE) { 4453 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4454 return -EINVAL; 4455 } 4456 4457 if (BPF_SRC(insn->code) == BPF_X) { 4458 if (insn->imm != 0) { 4459 verbose(env, "BPF_JMP uses reserved fields\n"); 4460 return -EINVAL; 4461 } 4462 4463 /* check src1 operand */ 4464 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4465 if (err) 4466 return err; 4467 4468 if (is_pointer_value(env, insn->src_reg)) { 4469 verbose(env, "R%d pointer comparison prohibited\n", 4470 insn->src_reg); 4471 return -EACCES; 4472 } 4473 } else { 4474 if (insn->src_reg != BPF_REG_0) { 4475 verbose(env, "BPF_JMP uses reserved fields\n"); 4476 return -EINVAL; 4477 } 4478 } 4479 4480 /* check src2 operand */ 4481 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4482 if (err) 4483 return err; 4484 4485 dst_reg = ®s[insn->dst_reg]; 4486 4487 if (BPF_SRC(insn->code) == BPF_K) { 4488 int pred = is_branch_taken(dst_reg, insn->imm, opcode); 4489 4490 if (pred == 1) { 4491 /* only follow the goto, ignore fall-through */ 4492 *insn_idx += insn->off; 4493 return 0; 4494 } else if (pred == 0) { 4495 /* only follow fall-through branch, since 4496 * that's where the program will go 4497 */ 4498 return 0; 4499 } 4500 } 4501 4502 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 4503 false); 4504 if (!other_branch) 4505 return -EFAULT; 4506 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4507 4508 /* detect if we are comparing against a constant value so we can adjust 4509 * our min/max values for our dst register. 4510 * this is only legit if both are scalars (or pointers to the same 4511 * object, I suppose, but we don't support that right now), because 4512 * otherwise the different base pointers mean the offsets aren't 4513 * comparable. 4514 */ 4515 if (BPF_SRC(insn->code) == BPF_X) { 4516 if (dst_reg->type == SCALAR_VALUE && 4517 regs[insn->src_reg].type == SCALAR_VALUE) { 4518 if (tnum_is_const(regs[insn->src_reg].var_off)) 4519 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4520 dst_reg, regs[insn->src_reg].var_off.value, 4521 opcode); 4522 else if (tnum_is_const(dst_reg->var_off)) 4523 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4524 ®s[insn->src_reg], 4525 dst_reg->var_off.value, opcode); 4526 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4527 /* Comparing for equality, we can combine knowledge */ 4528 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4529 &other_branch_regs[insn->dst_reg], 4530 ®s[insn->src_reg], 4531 ®s[insn->dst_reg], opcode); 4532 } 4533 } else if (dst_reg->type == SCALAR_VALUE) { 4534 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4535 dst_reg, insn->imm, opcode); 4536 } 4537 4538 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4539 if (BPF_SRC(insn->code) == BPF_K && 4540 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4541 reg_type_may_be_null(dst_reg->type)) { 4542 /* Mark all identical registers in each branch as either 4543 * safe or unknown depending R == 0 or R != 0 conditional. 4544 */ 4545 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4546 opcode == BPF_JNE); 4547 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4548 opcode == BPF_JEQ); 4549 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4550 this_branch, other_branch) && 4551 is_pointer_value(env, insn->dst_reg)) { 4552 verbose(env, "R%d pointer comparison prohibited\n", 4553 insn->dst_reg); 4554 return -EACCES; 4555 } 4556 if (env->log.level) 4557 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4558 return 0; 4559 } 4560 4561 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4562 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4563 { 4564 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4565 4566 return (struct bpf_map *) (unsigned long) imm64; 4567 } 4568 4569 /* verify BPF_LD_IMM64 instruction */ 4570 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4571 { 4572 struct bpf_reg_state *regs = cur_regs(env); 4573 int err; 4574 4575 if (BPF_SIZE(insn->code) != BPF_DW) { 4576 verbose(env, "invalid BPF_LD_IMM insn\n"); 4577 return -EINVAL; 4578 } 4579 if (insn->off != 0) { 4580 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4581 return -EINVAL; 4582 } 4583 4584 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4585 if (err) 4586 return err; 4587 4588 if (insn->src_reg == 0) { 4589 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4590 4591 regs[insn->dst_reg].type = SCALAR_VALUE; 4592 __mark_reg_known(®s[insn->dst_reg], imm); 4593 return 0; 4594 } 4595 4596 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4597 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4598 4599 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4600 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4601 return 0; 4602 } 4603 4604 static bool may_access_skb(enum bpf_prog_type type) 4605 { 4606 switch (type) { 4607 case BPF_PROG_TYPE_SOCKET_FILTER: 4608 case BPF_PROG_TYPE_SCHED_CLS: 4609 case BPF_PROG_TYPE_SCHED_ACT: 4610 return true; 4611 default: 4612 return false; 4613 } 4614 } 4615 4616 /* verify safety of LD_ABS|LD_IND instructions: 4617 * - they can only appear in the programs where ctx == skb 4618 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4619 * preserve R6-R9, and store return value into R0 4620 * 4621 * Implicit input: 4622 * ctx == skb == R6 == CTX 4623 * 4624 * Explicit input: 4625 * SRC == any register 4626 * IMM == 32-bit immediate 4627 * 4628 * Output: 4629 * R0 - 8/16/32-bit skb data converted to cpu endianness 4630 */ 4631 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4632 { 4633 struct bpf_reg_state *regs = cur_regs(env); 4634 u8 mode = BPF_MODE(insn->code); 4635 int i, err; 4636 4637 if (!may_access_skb(env->prog->type)) { 4638 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4639 return -EINVAL; 4640 } 4641 4642 if (!env->ops->gen_ld_abs) { 4643 verbose(env, "bpf verifier is misconfigured\n"); 4644 return -EINVAL; 4645 } 4646 4647 if (env->subprog_cnt > 1) { 4648 /* when program has LD_ABS insn JITs and interpreter assume 4649 * that r1 == ctx == skb which is not the case for callees 4650 * that can have arbitrary arguments. It's problematic 4651 * for main prog as well since JITs would need to analyze 4652 * all functions in order to make proper register save/restore 4653 * decisions in the main prog. Hence disallow LD_ABS with calls 4654 */ 4655 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4656 return -EINVAL; 4657 } 4658 4659 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4660 BPF_SIZE(insn->code) == BPF_DW || 4661 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4662 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4663 return -EINVAL; 4664 } 4665 4666 /* check whether implicit source operand (register R6) is readable */ 4667 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4668 if (err) 4669 return err; 4670 4671 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4672 * gen_ld_abs() may terminate the program at runtime, leading to 4673 * reference leak. 4674 */ 4675 err = check_reference_leak(env); 4676 if (err) { 4677 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4678 return err; 4679 } 4680 4681 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4682 verbose(env, 4683 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4684 return -EINVAL; 4685 } 4686 4687 if (mode == BPF_IND) { 4688 /* check explicit source operand */ 4689 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4690 if (err) 4691 return err; 4692 } 4693 4694 /* reset caller saved regs to unreadable */ 4695 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4696 mark_reg_not_init(env, regs, caller_saved[i]); 4697 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4698 } 4699 4700 /* mark destination R0 register as readable, since it contains 4701 * the value fetched from the packet. 4702 * Already marked as written above. 4703 */ 4704 mark_reg_unknown(env, regs, BPF_REG_0); 4705 return 0; 4706 } 4707 4708 static int check_return_code(struct bpf_verifier_env *env) 4709 { 4710 struct bpf_reg_state *reg; 4711 struct tnum range = tnum_range(0, 1); 4712 4713 switch (env->prog->type) { 4714 case BPF_PROG_TYPE_CGROUP_SKB: 4715 case BPF_PROG_TYPE_CGROUP_SOCK: 4716 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4717 case BPF_PROG_TYPE_SOCK_OPS: 4718 case BPF_PROG_TYPE_CGROUP_DEVICE: 4719 break; 4720 default: 4721 return 0; 4722 } 4723 4724 reg = cur_regs(env) + BPF_REG_0; 4725 if (reg->type != SCALAR_VALUE) { 4726 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4727 reg_type_str[reg->type]); 4728 return -EINVAL; 4729 } 4730 4731 if (!tnum_in(range, reg->var_off)) { 4732 verbose(env, "At program exit the register R0 "); 4733 if (!tnum_is_unknown(reg->var_off)) { 4734 char tn_buf[48]; 4735 4736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4737 verbose(env, "has value %s", tn_buf); 4738 } else { 4739 verbose(env, "has unknown scalar value"); 4740 } 4741 verbose(env, " should have been 0 or 1\n"); 4742 return -EINVAL; 4743 } 4744 return 0; 4745 } 4746 4747 /* non-recursive DFS pseudo code 4748 * 1 procedure DFS-iterative(G,v): 4749 * 2 label v as discovered 4750 * 3 let S be a stack 4751 * 4 S.push(v) 4752 * 5 while S is not empty 4753 * 6 t <- S.pop() 4754 * 7 if t is what we're looking for: 4755 * 8 return t 4756 * 9 for all edges e in G.adjacentEdges(t) do 4757 * 10 if edge e is already labelled 4758 * 11 continue with the next edge 4759 * 12 w <- G.adjacentVertex(t,e) 4760 * 13 if vertex w is not discovered and not explored 4761 * 14 label e as tree-edge 4762 * 15 label w as discovered 4763 * 16 S.push(w) 4764 * 17 continue at 5 4765 * 18 else if vertex w is discovered 4766 * 19 label e as back-edge 4767 * 20 else 4768 * 21 // vertex w is explored 4769 * 22 label e as forward- or cross-edge 4770 * 23 label t as explored 4771 * 24 S.pop() 4772 * 4773 * convention: 4774 * 0x10 - discovered 4775 * 0x11 - discovered and fall-through edge labelled 4776 * 0x12 - discovered and fall-through and branch edges labelled 4777 * 0x20 - explored 4778 */ 4779 4780 enum { 4781 DISCOVERED = 0x10, 4782 EXPLORED = 0x20, 4783 FALLTHROUGH = 1, 4784 BRANCH = 2, 4785 }; 4786 4787 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4788 4789 static int *insn_stack; /* stack of insns to process */ 4790 static int cur_stack; /* current stack index */ 4791 static int *insn_state; 4792 4793 /* t, w, e - match pseudo-code above: 4794 * t - index of current instruction 4795 * w - next instruction 4796 * e - edge 4797 */ 4798 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4799 { 4800 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4801 return 0; 4802 4803 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4804 return 0; 4805 4806 if (w < 0 || w >= env->prog->len) { 4807 verbose_linfo(env, t, "%d: ", t); 4808 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4809 return -EINVAL; 4810 } 4811 4812 if (e == BRANCH) 4813 /* mark branch target for state pruning */ 4814 env->explored_states[w] = STATE_LIST_MARK; 4815 4816 if (insn_state[w] == 0) { 4817 /* tree-edge */ 4818 insn_state[t] = DISCOVERED | e; 4819 insn_state[w] = DISCOVERED; 4820 if (cur_stack >= env->prog->len) 4821 return -E2BIG; 4822 insn_stack[cur_stack++] = w; 4823 return 1; 4824 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4825 verbose_linfo(env, t, "%d: ", t); 4826 verbose_linfo(env, w, "%d: ", w); 4827 verbose(env, "back-edge from insn %d to %d\n", t, w); 4828 return -EINVAL; 4829 } else if (insn_state[w] == EXPLORED) { 4830 /* forward- or cross-edge */ 4831 insn_state[t] = DISCOVERED | e; 4832 } else { 4833 verbose(env, "insn state internal bug\n"); 4834 return -EFAULT; 4835 } 4836 return 0; 4837 } 4838 4839 /* non-recursive depth-first-search to detect loops in BPF program 4840 * loop == back-edge in directed graph 4841 */ 4842 static int check_cfg(struct bpf_verifier_env *env) 4843 { 4844 struct bpf_insn *insns = env->prog->insnsi; 4845 int insn_cnt = env->prog->len; 4846 int ret = 0; 4847 int i, t; 4848 4849 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4850 if (!insn_state) 4851 return -ENOMEM; 4852 4853 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4854 if (!insn_stack) { 4855 kfree(insn_state); 4856 return -ENOMEM; 4857 } 4858 4859 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4860 insn_stack[0] = 0; /* 0 is the first instruction */ 4861 cur_stack = 1; 4862 4863 peek_stack: 4864 if (cur_stack == 0) 4865 goto check_state; 4866 t = insn_stack[cur_stack - 1]; 4867 4868 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4869 u8 opcode = BPF_OP(insns[t].code); 4870 4871 if (opcode == BPF_EXIT) { 4872 goto mark_explored; 4873 } else if (opcode == BPF_CALL) { 4874 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4875 if (ret == 1) 4876 goto peek_stack; 4877 else if (ret < 0) 4878 goto err_free; 4879 if (t + 1 < insn_cnt) 4880 env->explored_states[t + 1] = STATE_LIST_MARK; 4881 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4882 env->explored_states[t] = STATE_LIST_MARK; 4883 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4884 if (ret == 1) 4885 goto peek_stack; 4886 else if (ret < 0) 4887 goto err_free; 4888 } 4889 } else if (opcode == BPF_JA) { 4890 if (BPF_SRC(insns[t].code) != BPF_K) { 4891 ret = -EINVAL; 4892 goto err_free; 4893 } 4894 /* unconditional jump with single edge */ 4895 ret = push_insn(t, t + insns[t].off + 1, 4896 FALLTHROUGH, env); 4897 if (ret == 1) 4898 goto peek_stack; 4899 else if (ret < 0) 4900 goto err_free; 4901 /* tell verifier to check for equivalent states 4902 * after every call and jump 4903 */ 4904 if (t + 1 < insn_cnt) 4905 env->explored_states[t + 1] = STATE_LIST_MARK; 4906 } else { 4907 /* conditional jump with two edges */ 4908 env->explored_states[t] = STATE_LIST_MARK; 4909 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4910 if (ret == 1) 4911 goto peek_stack; 4912 else if (ret < 0) 4913 goto err_free; 4914 4915 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4916 if (ret == 1) 4917 goto peek_stack; 4918 else if (ret < 0) 4919 goto err_free; 4920 } 4921 } else { 4922 /* all other non-branch instructions with single 4923 * fall-through edge 4924 */ 4925 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4926 if (ret == 1) 4927 goto peek_stack; 4928 else if (ret < 0) 4929 goto err_free; 4930 } 4931 4932 mark_explored: 4933 insn_state[t] = EXPLORED; 4934 if (cur_stack-- <= 0) { 4935 verbose(env, "pop stack internal bug\n"); 4936 ret = -EFAULT; 4937 goto err_free; 4938 } 4939 goto peek_stack; 4940 4941 check_state: 4942 for (i = 0; i < insn_cnt; i++) { 4943 if (insn_state[i] != EXPLORED) { 4944 verbose(env, "unreachable insn %d\n", i); 4945 ret = -EINVAL; 4946 goto err_free; 4947 } 4948 } 4949 ret = 0; /* cfg looks good */ 4950 4951 err_free: 4952 kfree(insn_state); 4953 kfree(insn_stack); 4954 return ret; 4955 } 4956 4957 /* The minimum supported BTF func info size */ 4958 #define MIN_BPF_FUNCINFO_SIZE 8 4959 #define MAX_FUNCINFO_REC_SIZE 252 4960 4961 static int check_btf_func(struct bpf_verifier_env *env, 4962 const union bpf_attr *attr, 4963 union bpf_attr __user *uattr) 4964 { 4965 u32 i, nfuncs, urec_size, min_size, prev_offset; 4966 u32 krec_size = sizeof(struct bpf_func_info); 4967 struct bpf_func_info *krecord; 4968 const struct btf_type *type; 4969 struct bpf_prog *prog; 4970 const struct btf *btf; 4971 void __user *urecord; 4972 int ret = 0; 4973 4974 nfuncs = attr->func_info_cnt; 4975 if (!nfuncs) 4976 return 0; 4977 4978 if (nfuncs != env->subprog_cnt) { 4979 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 4980 return -EINVAL; 4981 } 4982 4983 urec_size = attr->func_info_rec_size; 4984 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 4985 urec_size > MAX_FUNCINFO_REC_SIZE || 4986 urec_size % sizeof(u32)) { 4987 verbose(env, "invalid func info rec size %u\n", urec_size); 4988 return -EINVAL; 4989 } 4990 4991 prog = env->prog; 4992 btf = prog->aux->btf; 4993 4994 urecord = u64_to_user_ptr(attr->func_info); 4995 min_size = min_t(u32, krec_size, urec_size); 4996 4997 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 4998 if (!krecord) 4999 return -ENOMEM; 5000 5001 for (i = 0; i < nfuncs; i++) { 5002 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5003 if (ret) { 5004 if (ret == -E2BIG) { 5005 verbose(env, "nonzero tailing record in func info"); 5006 /* set the size kernel expects so loader can zero 5007 * out the rest of the record. 5008 */ 5009 if (put_user(min_size, &uattr->func_info_rec_size)) 5010 ret = -EFAULT; 5011 } 5012 goto err_free; 5013 } 5014 5015 if (copy_from_user(&krecord[i], urecord, min_size)) { 5016 ret = -EFAULT; 5017 goto err_free; 5018 } 5019 5020 /* check insn_off */ 5021 if (i == 0) { 5022 if (krecord[i].insn_off) { 5023 verbose(env, 5024 "nonzero insn_off %u for the first func info record", 5025 krecord[i].insn_off); 5026 ret = -EINVAL; 5027 goto err_free; 5028 } 5029 } else if (krecord[i].insn_off <= prev_offset) { 5030 verbose(env, 5031 "same or smaller insn offset (%u) than previous func info record (%u)", 5032 krecord[i].insn_off, prev_offset); 5033 ret = -EINVAL; 5034 goto err_free; 5035 } 5036 5037 if (env->subprog_info[i].start != krecord[i].insn_off) { 5038 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5039 ret = -EINVAL; 5040 goto err_free; 5041 } 5042 5043 /* check type_id */ 5044 type = btf_type_by_id(btf, krecord[i].type_id); 5045 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5046 verbose(env, "invalid type id %d in func info", 5047 krecord[i].type_id); 5048 ret = -EINVAL; 5049 goto err_free; 5050 } 5051 5052 prev_offset = krecord[i].insn_off; 5053 urecord += urec_size; 5054 } 5055 5056 prog->aux->func_info = krecord; 5057 prog->aux->func_info_cnt = nfuncs; 5058 return 0; 5059 5060 err_free: 5061 kvfree(krecord); 5062 return ret; 5063 } 5064 5065 static void adjust_btf_func(struct bpf_verifier_env *env) 5066 { 5067 int i; 5068 5069 if (!env->prog->aux->func_info) 5070 return; 5071 5072 for (i = 0; i < env->subprog_cnt; i++) 5073 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5074 } 5075 5076 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5077 sizeof(((struct bpf_line_info *)(0))->line_col)) 5078 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5079 5080 static int check_btf_line(struct bpf_verifier_env *env, 5081 const union bpf_attr *attr, 5082 union bpf_attr __user *uattr) 5083 { 5084 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5085 struct bpf_subprog_info *sub; 5086 struct bpf_line_info *linfo; 5087 struct bpf_prog *prog; 5088 const struct btf *btf; 5089 void __user *ulinfo; 5090 int err; 5091 5092 nr_linfo = attr->line_info_cnt; 5093 if (!nr_linfo) 5094 return 0; 5095 5096 rec_size = attr->line_info_rec_size; 5097 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5098 rec_size > MAX_LINEINFO_REC_SIZE || 5099 rec_size & (sizeof(u32) - 1)) 5100 return -EINVAL; 5101 5102 /* Need to zero it in case the userspace may 5103 * pass in a smaller bpf_line_info object. 5104 */ 5105 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5106 GFP_KERNEL | __GFP_NOWARN); 5107 if (!linfo) 5108 return -ENOMEM; 5109 5110 prog = env->prog; 5111 btf = prog->aux->btf; 5112 5113 s = 0; 5114 sub = env->subprog_info; 5115 ulinfo = u64_to_user_ptr(attr->line_info); 5116 expected_size = sizeof(struct bpf_line_info); 5117 ncopy = min_t(u32, expected_size, rec_size); 5118 for (i = 0; i < nr_linfo; i++) { 5119 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5120 if (err) { 5121 if (err == -E2BIG) { 5122 verbose(env, "nonzero tailing record in line_info"); 5123 if (put_user(expected_size, 5124 &uattr->line_info_rec_size)) 5125 err = -EFAULT; 5126 } 5127 goto err_free; 5128 } 5129 5130 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5131 err = -EFAULT; 5132 goto err_free; 5133 } 5134 5135 /* 5136 * Check insn_off to ensure 5137 * 1) strictly increasing AND 5138 * 2) bounded by prog->len 5139 * 5140 * The linfo[0].insn_off == 0 check logically falls into 5141 * the later "missing bpf_line_info for func..." case 5142 * because the first linfo[0].insn_off must be the 5143 * first sub also and the first sub must have 5144 * subprog_info[0].start == 0. 5145 */ 5146 if ((i && linfo[i].insn_off <= prev_offset) || 5147 linfo[i].insn_off >= prog->len) { 5148 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5149 i, linfo[i].insn_off, prev_offset, 5150 prog->len); 5151 err = -EINVAL; 5152 goto err_free; 5153 } 5154 5155 if (!prog->insnsi[linfo[i].insn_off].code) { 5156 verbose(env, 5157 "Invalid insn code at line_info[%u].insn_off\n", 5158 i); 5159 err = -EINVAL; 5160 goto err_free; 5161 } 5162 5163 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5164 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5165 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5166 err = -EINVAL; 5167 goto err_free; 5168 } 5169 5170 if (s != env->subprog_cnt) { 5171 if (linfo[i].insn_off == sub[s].start) { 5172 sub[s].linfo_idx = i; 5173 s++; 5174 } else if (sub[s].start < linfo[i].insn_off) { 5175 verbose(env, "missing bpf_line_info for func#%u\n", s); 5176 err = -EINVAL; 5177 goto err_free; 5178 } 5179 } 5180 5181 prev_offset = linfo[i].insn_off; 5182 ulinfo += rec_size; 5183 } 5184 5185 if (s != env->subprog_cnt) { 5186 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5187 env->subprog_cnt - s, s); 5188 err = -EINVAL; 5189 goto err_free; 5190 } 5191 5192 prog->aux->linfo = linfo; 5193 prog->aux->nr_linfo = nr_linfo; 5194 5195 return 0; 5196 5197 err_free: 5198 kvfree(linfo); 5199 return err; 5200 } 5201 5202 static int check_btf_info(struct bpf_verifier_env *env, 5203 const union bpf_attr *attr, 5204 union bpf_attr __user *uattr) 5205 { 5206 struct btf *btf; 5207 int err; 5208 5209 if (!attr->func_info_cnt && !attr->line_info_cnt) 5210 return 0; 5211 5212 btf = btf_get_by_fd(attr->prog_btf_fd); 5213 if (IS_ERR(btf)) 5214 return PTR_ERR(btf); 5215 env->prog->aux->btf = btf; 5216 5217 err = check_btf_func(env, attr, uattr); 5218 if (err) 5219 return err; 5220 5221 err = check_btf_line(env, attr, uattr); 5222 if (err) 5223 return err; 5224 5225 return 0; 5226 } 5227 5228 /* check %cur's range satisfies %old's */ 5229 static bool range_within(struct bpf_reg_state *old, 5230 struct bpf_reg_state *cur) 5231 { 5232 return old->umin_value <= cur->umin_value && 5233 old->umax_value >= cur->umax_value && 5234 old->smin_value <= cur->smin_value && 5235 old->smax_value >= cur->smax_value; 5236 } 5237 5238 /* Maximum number of register states that can exist at once */ 5239 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5240 struct idpair { 5241 u32 old; 5242 u32 cur; 5243 }; 5244 5245 /* If in the old state two registers had the same id, then they need to have 5246 * the same id in the new state as well. But that id could be different from 5247 * the old state, so we need to track the mapping from old to new ids. 5248 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5249 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5250 * regs with a different old id could still have new id 9, we don't care about 5251 * that. 5252 * So we look through our idmap to see if this old id has been seen before. If 5253 * so, we require the new id to match; otherwise, we add the id pair to the map. 5254 */ 5255 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5256 { 5257 unsigned int i; 5258 5259 for (i = 0; i < ID_MAP_SIZE; i++) { 5260 if (!idmap[i].old) { 5261 /* Reached an empty slot; haven't seen this id before */ 5262 idmap[i].old = old_id; 5263 idmap[i].cur = cur_id; 5264 return true; 5265 } 5266 if (idmap[i].old == old_id) 5267 return idmap[i].cur == cur_id; 5268 } 5269 /* We ran out of idmap slots, which should be impossible */ 5270 WARN_ON_ONCE(1); 5271 return false; 5272 } 5273 5274 static void clean_func_state(struct bpf_verifier_env *env, 5275 struct bpf_func_state *st) 5276 { 5277 enum bpf_reg_liveness live; 5278 int i, j; 5279 5280 for (i = 0; i < BPF_REG_FP; i++) { 5281 live = st->regs[i].live; 5282 /* liveness must not touch this register anymore */ 5283 st->regs[i].live |= REG_LIVE_DONE; 5284 if (!(live & REG_LIVE_READ)) 5285 /* since the register is unused, clear its state 5286 * to make further comparison simpler 5287 */ 5288 __mark_reg_not_init(&st->regs[i]); 5289 } 5290 5291 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5292 live = st->stack[i].spilled_ptr.live; 5293 /* liveness must not touch this stack slot anymore */ 5294 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5295 if (!(live & REG_LIVE_READ)) { 5296 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5297 for (j = 0; j < BPF_REG_SIZE; j++) 5298 st->stack[i].slot_type[j] = STACK_INVALID; 5299 } 5300 } 5301 } 5302 5303 static void clean_verifier_state(struct bpf_verifier_env *env, 5304 struct bpf_verifier_state *st) 5305 { 5306 int i; 5307 5308 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5309 /* all regs in this state in all frames were already marked */ 5310 return; 5311 5312 for (i = 0; i <= st->curframe; i++) 5313 clean_func_state(env, st->frame[i]); 5314 } 5315 5316 /* the parentage chains form a tree. 5317 * the verifier states are added to state lists at given insn and 5318 * pushed into state stack for future exploration. 5319 * when the verifier reaches bpf_exit insn some of the verifer states 5320 * stored in the state lists have their final liveness state already, 5321 * but a lot of states will get revised from liveness point of view when 5322 * the verifier explores other branches. 5323 * Example: 5324 * 1: r0 = 1 5325 * 2: if r1 == 100 goto pc+1 5326 * 3: r0 = 2 5327 * 4: exit 5328 * when the verifier reaches exit insn the register r0 in the state list of 5329 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5330 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5331 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5332 * 5333 * Since the verifier pushes the branch states as it sees them while exploring 5334 * the program the condition of walking the branch instruction for the second 5335 * time means that all states below this branch were already explored and 5336 * their final liveness markes are already propagated. 5337 * Hence when the verifier completes the search of state list in is_state_visited() 5338 * we can call this clean_live_states() function to mark all liveness states 5339 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5340 * will not be used. 5341 * This function also clears the registers and stack for states that !READ 5342 * to simplify state merging. 5343 * 5344 * Important note here that walking the same branch instruction in the callee 5345 * doesn't meant that the states are DONE. The verifier has to compare 5346 * the callsites 5347 */ 5348 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5349 struct bpf_verifier_state *cur) 5350 { 5351 struct bpf_verifier_state_list *sl; 5352 int i; 5353 5354 sl = env->explored_states[insn]; 5355 if (!sl) 5356 return; 5357 5358 while (sl != STATE_LIST_MARK) { 5359 if (sl->state.curframe != cur->curframe) 5360 goto next; 5361 for (i = 0; i <= cur->curframe; i++) 5362 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5363 goto next; 5364 clean_verifier_state(env, &sl->state); 5365 next: 5366 sl = sl->next; 5367 } 5368 } 5369 5370 /* Returns true if (rold safe implies rcur safe) */ 5371 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5372 struct idpair *idmap) 5373 { 5374 bool equal; 5375 5376 if (!(rold->live & REG_LIVE_READ)) 5377 /* explored state didn't use this */ 5378 return true; 5379 5380 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5381 5382 if (rold->type == PTR_TO_STACK) 5383 /* two stack pointers are equal only if they're pointing to 5384 * the same stack frame, since fp-8 in foo != fp-8 in bar 5385 */ 5386 return equal && rold->frameno == rcur->frameno; 5387 5388 if (equal) 5389 return true; 5390 5391 if (rold->type == NOT_INIT) 5392 /* explored state can't have used this */ 5393 return true; 5394 if (rcur->type == NOT_INIT) 5395 return false; 5396 switch (rold->type) { 5397 case SCALAR_VALUE: 5398 if (rcur->type == SCALAR_VALUE) { 5399 /* new val must satisfy old val knowledge */ 5400 return range_within(rold, rcur) && 5401 tnum_in(rold->var_off, rcur->var_off); 5402 } else { 5403 /* We're trying to use a pointer in place of a scalar. 5404 * Even if the scalar was unbounded, this could lead to 5405 * pointer leaks because scalars are allowed to leak 5406 * while pointers are not. We could make this safe in 5407 * special cases if root is calling us, but it's 5408 * probably not worth the hassle. 5409 */ 5410 return false; 5411 } 5412 case PTR_TO_MAP_VALUE: 5413 /* If the new min/max/var_off satisfy the old ones and 5414 * everything else matches, we are OK. 5415 * We don't care about the 'id' value, because nothing 5416 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 5417 */ 5418 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5419 range_within(rold, rcur) && 5420 tnum_in(rold->var_off, rcur->var_off); 5421 case PTR_TO_MAP_VALUE_OR_NULL: 5422 /* a PTR_TO_MAP_VALUE could be safe to use as a 5423 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5424 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5425 * checked, doing so could have affected others with the same 5426 * id, and we can't check for that because we lost the id when 5427 * we converted to a PTR_TO_MAP_VALUE. 5428 */ 5429 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5430 return false; 5431 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5432 return false; 5433 /* Check our ids match any regs they're supposed to */ 5434 return check_ids(rold->id, rcur->id, idmap); 5435 case PTR_TO_PACKET_META: 5436 case PTR_TO_PACKET: 5437 if (rcur->type != rold->type) 5438 return false; 5439 /* We must have at least as much range as the old ptr 5440 * did, so that any accesses which were safe before are 5441 * still safe. This is true even if old range < old off, 5442 * since someone could have accessed through (ptr - k), or 5443 * even done ptr -= k in a register, to get a safe access. 5444 */ 5445 if (rold->range > rcur->range) 5446 return false; 5447 /* If the offsets don't match, we can't trust our alignment; 5448 * nor can we be sure that we won't fall out of range. 5449 */ 5450 if (rold->off != rcur->off) 5451 return false; 5452 /* id relations must be preserved */ 5453 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5454 return false; 5455 /* new val must satisfy old val knowledge */ 5456 return range_within(rold, rcur) && 5457 tnum_in(rold->var_off, rcur->var_off); 5458 case PTR_TO_CTX: 5459 case CONST_PTR_TO_MAP: 5460 case PTR_TO_PACKET_END: 5461 case PTR_TO_FLOW_KEYS: 5462 case PTR_TO_SOCKET: 5463 case PTR_TO_SOCKET_OR_NULL: 5464 /* Only valid matches are exact, which memcmp() above 5465 * would have accepted 5466 */ 5467 default: 5468 /* Don't know what's going on, just say it's not safe */ 5469 return false; 5470 } 5471 5472 /* Shouldn't get here; if we do, say it's not safe */ 5473 WARN_ON_ONCE(1); 5474 return false; 5475 } 5476 5477 static bool stacksafe(struct bpf_func_state *old, 5478 struct bpf_func_state *cur, 5479 struct idpair *idmap) 5480 { 5481 int i, spi; 5482 5483 /* walk slots of the explored stack and ignore any additional 5484 * slots in the current stack, since explored(safe) state 5485 * didn't use them 5486 */ 5487 for (i = 0; i < old->allocated_stack; i++) { 5488 spi = i / BPF_REG_SIZE; 5489 5490 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 5491 i += BPF_REG_SIZE - 1; 5492 /* explored state didn't use this */ 5493 continue; 5494 } 5495 5496 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5497 continue; 5498 5499 /* explored stack has more populated slots than current stack 5500 * and these slots were used 5501 */ 5502 if (i >= cur->allocated_stack) 5503 return false; 5504 5505 /* if old state was safe with misc data in the stack 5506 * it will be safe with zero-initialized stack. 5507 * The opposite is not true 5508 */ 5509 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5510 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5511 continue; 5512 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5513 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5514 /* Ex: old explored (safe) state has STACK_SPILL in 5515 * this stack slot, but current has has STACK_MISC -> 5516 * this verifier states are not equivalent, 5517 * return false to continue verification of this path 5518 */ 5519 return false; 5520 if (i % BPF_REG_SIZE) 5521 continue; 5522 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5523 continue; 5524 if (!regsafe(&old->stack[spi].spilled_ptr, 5525 &cur->stack[spi].spilled_ptr, 5526 idmap)) 5527 /* when explored and current stack slot are both storing 5528 * spilled registers, check that stored pointers types 5529 * are the same as well. 5530 * Ex: explored safe path could have stored 5531 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5532 * but current path has stored: 5533 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5534 * such verifier states are not equivalent. 5535 * return false to continue verification of this path 5536 */ 5537 return false; 5538 } 5539 return true; 5540 } 5541 5542 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5543 { 5544 if (old->acquired_refs != cur->acquired_refs) 5545 return false; 5546 return !memcmp(old->refs, cur->refs, 5547 sizeof(*old->refs) * old->acquired_refs); 5548 } 5549 5550 /* compare two verifier states 5551 * 5552 * all states stored in state_list are known to be valid, since 5553 * verifier reached 'bpf_exit' instruction through them 5554 * 5555 * this function is called when verifier exploring different branches of 5556 * execution popped from the state stack. If it sees an old state that has 5557 * more strict register state and more strict stack state then this execution 5558 * branch doesn't need to be explored further, since verifier already 5559 * concluded that more strict state leads to valid finish. 5560 * 5561 * Therefore two states are equivalent if register state is more conservative 5562 * and explored stack state is more conservative than the current one. 5563 * Example: 5564 * explored current 5565 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5566 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5567 * 5568 * In other words if current stack state (one being explored) has more 5569 * valid slots than old one that already passed validation, it means 5570 * the verifier can stop exploring and conclude that current state is valid too 5571 * 5572 * Similarly with registers. If explored state has register type as invalid 5573 * whereas register type in current state is meaningful, it means that 5574 * the current state will reach 'bpf_exit' instruction safely 5575 */ 5576 static bool func_states_equal(struct bpf_func_state *old, 5577 struct bpf_func_state *cur) 5578 { 5579 struct idpair *idmap; 5580 bool ret = false; 5581 int i; 5582 5583 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 5584 /* If we failed to allocate the idmap, just say it's not safe */ 5585 if (!idmap) 5586 return false; 5587 5588 for (i = 0; i < MAX_BPF_REG; i++) { 5589 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 5590 goto out_free; 5591 } 5592 5593 if (!stacksafe(old, cur, idmap)) 5594 goto out_free; 5595 5596 if (!refsafe(old, cur)) 5597 goto out_free; 5598 ret = true; 5599 out_free: 5600 kfree(idmap); 5601 return ret; 5602 } 5603 5604 static bool states_equal(struct bpf_verifier_env *env, 5605 struct bpf_verifier_state *old, 5606 struct bpf_verifier_state *cur) 5607 { 5608 int i; 5609 5610 if (old->curframe != cur->curframe) 5611 return false; 5612 5613 /* Verification state from speculative execution simulation 5614 * must never prune a non-speculative execution one. 5615 */ 5616 if (old->speculative && !cur->speculative) 5617 return false; 5618 5619 /* for states to be equal callsites have to be the same 5620 * and all frame states need to be equivalent 5621 */ 5622 for (i = 0; i <= old->curframe; i++) { 5623 if (old->frame[i]->callsite != cur->frame[i]->callsite) 5624 return false; 5625 if (!func_states_equal(old->frame[i], cur->frame[i])) 5626 return false; 5627 } 5628 return true; 5629 } 5630 5631 /* A write screens off any subsequent reads; but write marks come from the 5632 * straight-line code between a state and its parent. When we arrive at an 5633 * equivalent state (jump target or such) we didn't arrive by the straight-line 5634 * code, so read marks in the state must propagate to the parent regardless 5635 * of the state's write marks. That's what 'parent == state->parent' comparison 5636 * in mark_reg_read() is for. 5637 */ 5638 static int propagate_liveness(struct bpf_verifier_env *env, 5639 const struct bpf_verifier_state *vstate, 5640 struct bpf_verifier_state *vparent) 5641 { 5642 int i, frame, err = 0; 5643 struct bpf_func_state *state, *parent; 5644 5645 if (vparent->curframe != vstate->curframe) { 5646 WARN(1, "propagate_live: parent frame %d current frame %d\n", 5647 vparent->curframe, vstate->curframe); 5648 return -EFAULT; 5649 } 5650 /* Propagate read liveness of registers... */ 5651 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 5652 /* We don't need to worry about FP liveness because it's read-only */ 5653 for (i = 0; i < BPF_REG_FP; i++) { 5654 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 5655 continue; 5656 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 5657 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 5658 &vparent->frame[vstate->curframe]->regs[i]); 5659 if (err) 5660 return err; 5661 } 5662 } 5663 5664 /* ... and stack slots */ 5665 for (frame = 0; frame <= vstate->curframe; frame++) { 5666 state = vstate->frame[frame]; 5667 parent = vparent->frame[frame]; 5668 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 5669 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 5670 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 5671 continue; 5672 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 5673 mark_reg_read(env, &state->stack[i].spilled_ptr, 5674 &parent->stack[i].spilled_ptr); 5675 } 5676 } 5677 return err; 5678 } 5679 5680 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 5681 { 5682 struct bpf_verifier_state_list *new_sl; 5683 struct bpf_verifier_state_list *sl; 5684 struct bpf_verifier_state *cur = env->cur_state, *new; 5685 int i, j, err, states_cnt = 0; 5686 5687 sl = env->explored_states[insn_idx]; 5688 if (!sl) 5689 /* this 'insn_idx' instruction wasn't marked, so we will not 5690 * be doing state search here 5691 */ 5692 return 0; 5693 5694 clean_live_states(env, insn_idx, cur); 5695 5696 while (sl != STATE_LIST_MARK) { 5697 if (states_equal(env, &sl->state, cur)) { 5698 /* reached equivalent register/stack state, 5699 * prune the search. 5700 * Registers read by the continuation are read by us. 5701 * If we have any write marks in env->cur_state, they 5702 * will prevent corresponding reads in the continuation 5703 * from reaching our parent (an explored_state). Our 5704 * own state will get the read marks recorded, but 5705 * they'll be immediately forgotten as we're pruning 5706 * this state and will pop a new one. 5707 */ 5708 err = propagate_liveness(env, &sl->state, cur); 5709 if (err) 5710 return err; 5711 return 1; 5712 } 5713 sl = sl->next; 5714 states_cnt++; 5715 } 5716 5717 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 5718 return 0; 5719 5720 /* there were no equivalent states, remember current one. 5721 * technically the current state is not proven to be safe yet, 5722 * but it will either reach outer most bpf_exit (which means it's safe) 5723 * or it will be rejected. Since there are no loops, we won't be 5724 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5725 * again on the way to bpf_exit 5726 */ 5727 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5728 if (!new_sl) 5729 return -ENOMEM; 5730 5731 /* add new state to the head of linked list */ 5732 new = &new_sl->state; 5733 err = copy_verifier_state(new, cur); 5734 if (err) { 5735 free_verifier_state(new, false); 5736 kfree(new_sl); 5737 return err; 5738 } 5739 new_sl->next = env->explored_states[insn_idx]; 5740 env->explored_states[insn_idx] = new_sl; 5741 /* connect new state to parentage chain. Current frame needs all 5742 * registers connected. Only r6 - r9 of the callers are alive (pushed 5743 * to the stack implicitly by JITs) so in callers' frames connect just 5744 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 5745 * the state of the call instruction (with WRITTEN set), and r0 comes 5746 * from callee with its full parentage chain, anyway. 5747 */ 5748 for (j = 0; j <= cur->curframe; j++) 5749 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 5750 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 5751 /* clear write marks in current state: the writes we did are not writes 5752 * our child did, so they don't screen off its reads from us. 5753 * (There are no read marks in current state, because reads always mark 5754 * their parent and current state never has children yet. Only 5755 * explored_states can get read marks.) 5756 */ 5757 for (i = 0; i < BPF_REG_FP; i++) 5758 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5759 5760 /* all stack frames are accessible from callee, clear them all */ 5761 for (j = 0; j <= cur->curframe; j++) { 5762 struct bpf_func_state *frame = cur->frame[j]; 5763 struct bpf_func_state *newframe = new->frame[j]; 5764 5765 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5766 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5767 frame->stack[i].spilled_ptr.parent = 5768 &newframe->stack[i].spilled_ptr; 5769 } 5770 } 5771 return 0; 5772 } 5773 5774 /* Return true if it's OK to have the same insn return a different type. */ 5775 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5776 { 5777 switch (type) { 5778 case PTR_TO_CTX: 5779 case PTR_TO_SOCKET: 5780 case PTR_TO_SOCKET_OR_NULL: 5781 return false; 5782 default: 5783 return true; 5784 } 5785 } 5786 5787 /* If an instruction was previously used with particular pointer types, then we 5788 * need to be careful to avoid cases such as the below, where it may be ok 5789 * for one branch accessing the pointer, but not ok for the other branch: 5790 * 5791 * R1 = sock_ptr 5792 * goto X; 5793 * ... 5794 * R1 = some_other_valid_ptr; 5795 * goto X; 5796 * ... 5797 * R2 = *(u32 *)(R1 + 0); 5798 */ 5799 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5800 { 5801 return src != prev && (!reg_type_mismatch_ok(src) || 5802 !reg_type_mismatch_ok(prev)); 5803 } 5804 5805 static int do_check(struct bpf_verifier_env *env) 5806 { 5807 struct bpf_verifier_state *state; 5808 struct bpf_insn *insns = env->prog->insnsi; 5809 struct bpf_reg_state *regs; 5810 int insn_cnt = env->prog->len, i; 5811 int insn_processed = 0; 5812 bool do_print_state = false; 5813 5814 env->prev_linfo = NULL; 5815 5816 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5817 if (!state) 5818 return -ENOMEM; 5819 state->curframe = 0; 5820 state->speculative = false; 5821 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5822 if (!state->frame[0]) { 5823 kfree(state); 5824 return -ENOMEM; 5825 } 5826 env->cur_state = state; 5827 init_func_state(env, state->frame[0], 5828 BPF_MAIN_FUNC /* callsite */, 5829 0 /* frameno */, 5830 0 /* subprogno, zero == main subprog */); 5831 5832 for (;;) { 5833 struct bpf_insn *insn; 5834 u8 class; 5835 int err; 5836 5837 if (env->insn_idx >= insn_cnt) { 5838 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5839 env->insn_idx, insn_cnt); 5840 return -EFAULT; 5841 } 5842 5843 insn = &insns[env->insn_idx]; 5844 class = BPF_CLASS(insn->code); 5845 5846 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5847 verbose(env, 5848 "BPF program is too large. Processed %d insn\n", 5849 insn_processed); 5850 return -E2BIG; 5851 } 5852 5853 err = is_state_visited(env, env->insn_idx); 5854 if (err < 0) 5855 return err; 5856 if (err == 1) { 5857 /* found equivalent state, can prune the search */ 5858 if (env->log.level) { 5859 if (do_print_state) 5860 verbose(env, "\nfrom %d to %d%s: safe\n", 5861 env->prev_insn_idx, env->insn_idx, 5862 env->cur_state->speculative ? 5863 " (speculative execution)" : ""); 5864 else 5865 verbose(env, "%d: safe\n", env->insn_idx); 5866 } 5867 goto process_bpf_exit; 5868 } 5869 5870 if (signal_pending(current)) 5871 return -EAGAIN; 5872 5873 if (need_resched()) 5874 cond_resched(); 5875 5876 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5877 if (env->log.level > 1) 5878 verbose(env, "%d:", env->insn_idx); 5879 else 5880 verbose(env, "\nfrom %d to %d%s:", 5881 env->prev_insn_idx, env->insn_idx, 5882 env->cur_state->speculative ? 5883 " (speculative execution)" : ""); 5884 print_verifier_state(env, state->frame[state->curframe]); 5885 do_print_state = false; 5886 } 5887 5888 if (env->log.level) { 5889 const struct bpf_insn_cbs cbs = { 5890 .cb_print = verbose, 5891 .private_data = env, 5892 }; 5893 5894 verbose_linfo(env, env->insn_idx, "; "); 5895 verbose(env, "%d: ", env->insn_idx); 5896 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5897 } 5898 5899 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5900 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 5901 env->prev_insn_idx); 5902 if (err) 5903 return err; 5904 } 5905 5906 regs = cur_regs(env); 5907 env->insn_aux_data[env->insn_idx].seen = true; 5908 5909 if (class == BPF_ALU || class == BPF_ALU64) { 5910 err = check_alu_op(env, insn); 5911 if (err) 5912 return err; 5913 5914 } else if (class == BPF_LDX) { 5915 enum bpf_reg_type *prev_src_type, src_reg_type; 5916 5917 /* check for reserved fields is already done */ 5918 5919 /* check src operand */ 5920 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5921 if (err) 5922 return err; 5923 5924 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5925 if (err) 5926 return err; 5927 5928 src_reg_type = regs[insn->src_reg].type; 5929 5930 /* check that memory (src_reg + off) is readable, 5931 * the state of dst_reg will be updated by this func 5932 */ 5933 err = check_mem_access(env, env->insn_idx, insn->src_reg, 5934 insn->off, BPF_SIZE(insn->code), 5935 BPF_READ, insn->dst_reg, false); 5936 if (err) 5937 return err; 5938 5939 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 5940 5941 if (*prev_src_type == NOT_INIT) { 5942 /* saw a valid insn 5943 * dst_reg = *(u32 *)(src_reg + off) 5944 * save type to validate intersecting paths 5945 */ 5946 *prev_src_type = src_reg_type; 5947 5948 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5949 /* ABuser program is trying to use the same insn 5950 * dst_reg = *(u32*) (src_reg + off) 5951 * with different pointer types: 5952 * src_reg == ctx in one branch and 5953 * src_reg == stack|map in some other branch. 5954 * Reject it. 5955 */ 5956 verbose(env, "same insn cannot be used with different pointers\n"); 5957 return -EINVAL; 5958 } 5959 5960 } else if (class == BPF_STX) { 5961 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5962 5963 if (BPF_MODE(insn->code) == BPF_XADD) { 5964 err = check_xadd(env, env->insn_idx, insn); 5965 if (err) 5966 return err; 5967 env->insn_idx++; 5968 continue; 5969 } 5970 5971 /* check src1 operand */ 5972 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5973 if (err) 5974 return err; 5975 /* check src2 operand */ 5976 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5977 if (err) 5978 return err; 5979 5980 dst_reg_type = regs[insn->dst_reg].type; 5981 5982 /* check that memory (dst_reg + off) is writeable */ 5983 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 5984 insn->off, BPF_SIZE(insn->code), 5985 BPF_WRITE, insn->src_reg, false); 5986 if (err) 5987 return err; 5988 5989 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 5990 5991 if (*prev_dst_type == NOT_INIT) { 5992 *prev_dst_type = dst_reg_type; 5993 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5994 verbose(env, "same insn cannot be used with different pointers\n"); 5995 return -EINVAL; 5996 } 5997 5998 } else if (class == BPF_ST) { 5999 if (BPF_MODE(insn->code) != BPF_MEM || 6000 insn->src_reg != BPF_REG_0) { 6001 verbose(env, "BPF_ST uses reserved fields\n"); 6002 return -EINVAL; 6003 } 6004 /* check src operand */ 6005 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6006 if (err) 6007 return err; 6008 6009 if (is_ctx_reg(env, insn->dst_reg)) { 6010 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6011 insn->dst_reg, 6012 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6013 return -EACCES; 6014 } 6015 6016 /* check that memory (dst_reg + off) is writeable */ 6017 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6018 insn->off, BPF_SIZE(insn->code), 6019 BPF_WRITE, -1, false); 6020 if (err) 6021 return err; 6022 6023 } else if (class == BPF_JMP) { 6024 u8 opcode = BPF_OP(insn->code); 6025 6026 if (opcode == BPF_CALL) { 6027 if (BPF_SRC(insn->code) != BPF_K || 6028 insn->off != 0 || 6029 (insn->src_reg != BPF_REG_0 && 6030 insn->src_reg != BPF_PSEUDO_CALL) || 6031 insn->dst_reg != BPF_REG_0) { 6032 verbose(env, "BPF_CALL uses reserved fields\n"); 6033 return -EINVAL; 6034 } 6035 6036 if (insn->src_reg == BPF_PSEUDO_CALL) 6037 err = check_func_call(env, insn, &env->insn_idx); 6038 else 6039 err = check_helper_call(env, insn->imm, env->insn_idx); 6040 if (err) 6041 return err; 6042 6043 } else if (opcode == BPF_JA) { 6044 if (BPF_SRC(insn->code) != BPF_K || 6045 insn->imm != 0 || 6046 insn->src_reg != BPF_REG_0 || 6047 insn->dst_reg != BPF_REG_0) { 6048 verbose(env, "BPF_JA uses reserved fields\n"); 6049 return -EINVAL; 6050 } 6051 6052 env->insn_idx += insn->off + 1; 6053 continue; 6054 6055 } else if (opcode == BPF_EXIT) { 6056 if (BPF_SRC(insn->code) != BPF_K || 6057 insn->imm != 0 || 6058 insn->src_reg != BPF_REG_0 || 6059 insn->dst_reg != BPF_REG_0) { 6060 verbose(env, "BPF_EXIT uses reserved fields\n"); 6061 return -EINVAL; 6062 } 6063 6064 if (state->curframe) { 6065 /* exit from nested function */ 6066 env->prev_insn_idx = env->insn_idx; 6067 err = prepare_func_exit(env, &env->insn_idx); 6068 if (err) 6069 return err; 6070 do_print_state = true; 6071 continue; 6072 } 6073 6074 err = check_reference_leak(env); 6075 if (err) 6076 return err; 6077 6078 /* eBPF calling convetion is such that R0 is used 6079 * to return the value from eBPF program. 6080 * Make sure that it's readable at this time 6081 * of bpf_exit, which means that program wrote 6082 * something into it earlier 6083 */ 6084 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6085 if (err) 6086 return err; 6087 6088 if (is_pointer_value(env, BPF_REG_0)) { 6089 verbose(env, "R0 leaks addr as return value\n"); 6090 return -EACCES; 6091 } 6092 6093 err = check_return_code(env); 6094 if (err) 6095 return err; 6096 process_bpf_exit: 6097 err = pop_stack(env, &env->prev_insn_idx, 6098 &env->insn_idx); 6099 if (err < 0) { 6100 if (err != -ENOENT) 6101 return err; 6102 break; 6103 } else { 6104 do_print_state = true; 6105 continue; 6106 } 6107 } else { 6108 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6109 if (err) 6110 return err; 6111 } 6112 } else if (class == BPF_LD) { 6113 u8 mode = BPF_MODE(insn->code); 6114 6115 if (mode == BPF_ABS || mode == BPF_IND) { 6116 err = check_ld_abs(env, insn); 6117 if (err) 6118 return err; 6119 6120 } else if (mode == BPF_IMM) { 6121 err = check_ld_imm(env, insn); 6122 if (err) 6123 return err; 6124 6125 env->insn_idx++; 6126 env->insn_aux_data[env->insn_idx].seen = true; 6127 } else { 6128 verbose(env, "invalid BPF_LD mode\n"); 6129 return -EINVAL; 6130 } 6131 } else { 6132 verbose(env, "unknown insn class %d\n", class); 6133 return -EINVAL; 6134 } 6135 6136 env->insn_idx++; 6137 } 6138 6139 verbose(env, "processed %d insns (limit %d), stack depth ", 6140 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 6141 for (i = 0; i < env->subprog_cnt; i++) { 6142 u32 depth = env->subprog_info[i].stack_depth; 6143 6144 verbose(env, "%d", depth); 6145 if (i + 1 < env->subprog_cnt) 6146 verbose(env, "+"); 6147 } 6148 verbose(env, "\n"); 6149 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6150 return 0; 6151 } 6152 6153 static int check_map_prealloc(struct bpf_map *map) 6154 { 6155 return (map->map_type != BPF_MAP_TYPE_HASH && 6156 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6157 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6158 !(map->map_flags & BPF_F_NO_PREALLOC); 6159 } 6160 6161 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6162 struct bpf_map *map, 6163 struct bpf_prog *prog) 6164 6165 { 6166 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6167 * preallocated hash maps, since doing memory allocation 6168 * in overflow_handler can crash depending on where nmi got 6169 * triggered. 6170 */ 6171 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6172 if (!check_map_prealloc(map)) { 6173 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6174 return -EINVAL; 6175 } 6176 if (map->inner_map_meta && 6177 !check_map_prealloc(map->inner_map_meta)) { 6178 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6179 return -EINVAL; 6180 } 6181 } 6182 6183 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6184 !bpf_offload_prog_map_match(prog, map)) { 6185 verbose(env, "offload device mismatch between prog and map\n"); 6186 return -EINVAL; 6187 } 6188 6189 return 0; 6190 } 6191 6192 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6193 { 6194 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6195 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6196 } 6197 6198 /* look for pseudo eBPF instructions that access map FDs and 6199 * replace them with actual map pointers 6200 */ 6201 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6202 { 6203 struct bpf_insn *insn = env->prog->insnsi; 6204 int insn_cnt = env->prog->len; 6205 int i, j, err; 6206 6207 err = bpf_prog_calc_tag(env->prog); 6208 if (err) 6209 return err; 6210 6211 for (i = 0; i < insn_cnt; i++, insn++) { 6212 if (BPF_CLASS(insn->code) == BPF_LDX && 6213 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6214 verbose(env, "BPF_LDX uses reserved fields\n"); 6215 return -EINVAL; 6216 } 6217 6218 if (BPF_CLASS(insn->code) == BPF_STX && 6219 ((BPF_MODE(insn->code) != BPF_MEM && 6220 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6221 verbose(env, "BPF_STX uses reserved fields\n"); 6222 return -EINVAL; 6223 } 6224 6225 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6226 struct bpf_map *map; 6227 struct fd f; 6228 6229 if (i == insn_cnt - 1 || insn[1].code != 0 || 6230 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6231 insn[1].off != 0) { 6232 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6233 return -EINVAL; 6234 } 6235 6236 if (insn->src_reg == 0) 6237 /* valid generic load 64-bit imm */ 6238 goto next_insn; 6239 6240 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 6241 verbose(env, 6242 "unrecognized bpf_ld_imm64 insn\n"); 6243 return -EINVAL; 6244 } 6245 6246 f = fdget(insn->imm); 6247 map = __bpf_map_get(f); 6248 if (IS_ERR(map)) { 6249 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6250 insn->imm); 6251 return PTR_ERR(map); 6252 } 6253 6254 err = check_map_prog_compatibility(env, map, env->prog); 6255 if (err) { 6256 fdput(f); 6257 return err; 6258 } 6259 6260 /* store map pointer inside BPF_LD_IMM64 instruction */ 6261 insn[0].imm = (u32) (unsigned long) map; 6262 insn[1].imm = ((u64) (unsigned long) map) >> 32; 6263 6264 /* check whether we recorded this map already */ 6265 for (j = 0; j < env->used_map_cnt; j++) 6266 if (env->used_maps[j] == map) { 6267 fdput(f); 6268 goto next_insn; 6269 } 6270 6271 if (env->used_map_cnt >= MAX_USED_MAPS) { 6272 fdput(f); 6273 return -E2BIG; 6274 } 6275 6276 /* hold the map. If the program is rejected by verifier, 6277 * the map will be released by release_maps() or it 6278 * will be used by the valid program until it's unloaded 6279 * and all maps are released in free_used_maps() 6280 */ 6281 map = bpf_map_inc(map, false); 6282 if (IS_ERR(map)) { 6283 fdput(f); 6284 return PTR_ERR(map); 6285 } 6286 env->used_maps[env->used_map_cnt++] = map; 6287 6288 if (bpf_map_is_cgroup_storage(map) && 6289 bpf_cgroup_storage_assign(env->prog, map)) { 6290 verbose(env, "only one cgroup storage of each type is allowed\n"); 6291 fdput(f); 6292 return -EBUSY; 6293 } 6294 6295 fdput(f); 6296 next_insn: 6297 insn++; 6298 i++; 6299 continue; 6300 } 6301 6302 /* Basic sanity check before we invest more work here. */ 6303 if (!bpf_opcode_in_insntable(insn->code)) { 6304 verbose(env, "unknown opcode %02x\n", insn->code); 6305 return -EINVAL; 6306 } 6307 } 6308 6309 /* now all pseudo BPF_LD_IMM64 instructions load valid 6310 * 'struct bpf_map *' into a register instead of user map_fd. 6311 * These pointers will be used later by verifier to validate map access. 6312 */ 6313 return 0; 6314 } 6315 6316 /* drop refcnt of maps used by the rejected program */ 6317 static void release_maps(struct bpf_verifier_env *env) 6318 { 6319 enum bpf_cgroup_storage_type stype; 6320 int i; 6321 6322 for_each_cgroup_storage_type(stype) { 6323 if (!env->prog->aux->cgroup_storage[stype]) 6324 continue; 6325 bpf_cgroup_storage_release(env->prog, 6326 env->prog->aux->cgroup_storage[stype]); 6327 } 6328 6329 for (i = 0; i < env->used_map_cnt; i++) 6330 bpf_map_put(env->used_maps[i]); 6331 } 6332 6333 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 6334 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 6335 { 6336 struct bpf_insn *insn = env->prog->insnsi; 6337 int insn_cnt = env->prog->len; 6338 int i; 6339 6340 for (i = 0; i < insn_cnt; i++, insn++) 6341 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 6342 insn->src_reg = 0; 6343 } 6344 6345 /* single env->prog->insni[off] instruction was replaced with the range 6346 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 6347 * [0, off) and [off, end) to new locations, so the patched range stays zero 6348 */ 6349 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 6350 u32 off, u32 cnt) 6351 { 6352 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 6353 int i; 6354 6355 if (cnt == 1) 6356 return 0; 6357 new_data = vzalloc(array_size(prog_len, 6358 sizeof(struct bpf_insn_aux_data))); 6359 if (!new_data) 6360 return -ENOMEM; 6361 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 6362 memcpy(new_data + off + cnt - 1, old_data + off, 6363 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 6364 for (i = off; i < off + cnt - 1; i++) 6365 new_data[i].seen = true; 6366 env->insn_aux_data = new_data; 6367 vfree(old_data); 6368 return 0; 6369 } 6370 6371 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6372 { 6373 int i; 6374 6375 if (len == 1) 6376 return; 6377 /* NOTE: fake 'exit' subprog should be updated as well. */ 6378 for (i = 0; i <= env->subprog_cnt; i++) { 6379 if (env->subprog_info[i].start <= off) 6380 continue; 6381 env->subprog_info[i].start += len - 1; 6382 } 6383 } 6384 6385 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6386 const struct bpf_insn *patch, u32 len) 6387 { 6388 struct bpf_prog *new_prog; 6389 6390 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6391 if (!new_prog) 6392 return NULL; 6393 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6394 return NULL; 6395 adjust_subprog_starts(env, off, len); 6396 return new_prog; 6397 } 6398 6399 /* The verifier does more data flow analysis than llvm and will not 6400 * explore branches that are dead at run time. Malicious programs can 6401 * have dead code too. Therefore replace all dead at-run-time code 6402 * with 'ja -1'. 6403 * 6404 * Just nops are not optimal, e.g. if they would sit at the end of the 6405 * program and through another bug we would manage to jump there, then 6406 * we'd execute beyond program memory otherwise. Returning exception 6407 * code also wouldn't work since we can have subprogs where the dead 6408 * code could be located. 6409 */ 6410 static void sanitize_dead_code(struct bpf_verifier_env *env) 6411 { 6412 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6413 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 6414 struct bpf_insn *insn = env->prog->insnsi; 6415 const int insn_cnt = env->prog->len; 6416 int i; 6417 6418 for (i = 0; i < insn_cnt; i++) { 6419 if (aux_data[i].seen) 6420 continue; 6421 memcpy(insn + i, &trap, sizeof(trap)); 6422 } 6423 } 6424 6425 /* convert load instructions that access fields of a context type into a 6426 * sequence of instructions that access fields of the underlying structure: 6427 * struct __sk_buff -> struct sk_buff 6428 * struct bpf_sock_ops -> struct sock 6429 */ 6430 static int convert_ctx_accesses(struct bpf_verifier_env *env) 6431 { 6432 const struct bpf_verifier_ops *ops = env->ops; 6433 int i, cnt, size, ctx_field_size, delta = 0; 6434 const int insn_cnt = env->prog->len; 6435 struct bpf_insn insn_buf[16], *insn; 6436 u32 target_size, size_default, off; 6437 struct bpf_prog *new_prog; 6438 enum bpf_access_type type; 6439 bool is_narrower_load; 6440 6441 if (ops->gen_prologue || env->seen_direct_write) { 6442 if (!ops->gen_prologue) { 6443 verbose(env, "bpf verifier is misconfigured\n"); 6444 return -EINVAL; 6445 } 6446 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 6447 env->prog); 6448 if (cnt >= ARRAY_SIZE(insn_buf)) { 6449 verbose(env, "bpf verifier is misconfigured\n"); 6450 return -EINVAL; 6451 } else if (cnt) { 6452 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 6453 if (!new_prog) 6454 return -ENOMEM; 6455 6456 env->prog = new_prog; 6457 delta += cnt - 1; 6458 } 6459 } 6460 6461 if (bpf_prog_is_dev_bound(env->prog->aux)) 6462 return 0; 6463 6464 insn = env->prog->insnsi + delta; 6465 6466 for (i = 0; i < insn_cnt; i++, insn++) { 6467 bpf_convert_ctx_access_t convert_ctx_access; 6468 6469 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 6470 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 6471 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 6472 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 6473 type = BPF_READ; 6474 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 6475 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 6476 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 6477 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 6478 type = BPF_WRITE; 6479 else 6480 continue; 6481 6482 if (type == BPF_WRITE && 6483 env->insn_aux_data[i + delta].sanitize_stack_off) { 6484 struct bpf_insn patch[] = { 6485 /* Sanitize suspicious stack slot with zero. 6486 * There are no memory dependencies for this store, 6487 * since it's only using frame pointer and immediate 6488 * constant of zero 6489 */ 6490 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 6491 env->insn_aux_data[i + delta].sanitize_stack_off, 6492 0), 6493 /* the original STX instruction will immediately 6494 * overwrite the same stack slot with appropriate value 6495 */ 6496 *insn, 6497 }; 6498 6499 cnt = ARRAY_SIZE(patch); 6500 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 6501 if (!new_prog) 6502 return -ENOMEM; 6503 6504 delta += cnt - 1; 6505 env->prog = new_prog; 6506 insn = new_prog->insnsi + i + delta; 6507 continue; 6508 } 6509 6510 switch (env->insn_aux_data[i + delta].ptr_type) { 6511 case PTR_TO_CTX: 6512 if (!ops->convert_ctx_access) 6513 continue; 6514 convert_ctx_access = ops->convert_ctx_access; 6515 break; 6516 case PTR_TO_SOCKET: 6517 convert_ctx_access = bpf_sock_convert_ctx_access; 6518 break; 6519 default: 6520 continue; 6521 } 6522 6523 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 6524 size = BPF_LDST_BYTES(insn); 6525 6526 /* If the read access is a narrower load of the field, 6527 * convert to a 4/8-byte load, to minimum program type specific 6528 * convert_ctx_access changes. If conversion is successful, 6529 * we will apply proper mask to the result. 6530 */ 6531 is_narrower_load = size < ctx_field_size; 6532 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 6533 off = insn->off; 6534 if (is_narrower_load) { 6535 u8 size_code; 6536 6537 if (type == BPF_WRITE) { 6538 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 6539 return -EINVAL; 6540 } 6541 6542 size_code = BPF_H; 6543 if (ctx_field_size == 4) 6544 size_code = BPF_W; 6545 else if (ctx_field_size == 8) 6546 size_code = BPF_DW; 6547 6548 insn->off = off & ~(size_default - 1); 6549 insn->code = BPF_LDX | BPF_MEM | size_code; 6550 } 6551 6552 target_size = 0; 6553 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 6554 &target_size); 6555 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 6556 (ctx_field_size && !target_size)) { 6557 verbose(env, "bpf verifier is misconfigured\n"); 6558 return -EINVAL; 6559 } 6560 6561 if (is_narrower_load && size < target_size) { 6562 u8 shift = (off & (size_default - 1)) * 8; 6563 6564 if (ctx_field_size <= 4) { 6565 if (shift) 6566 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 6567 insn->dst_reg, 6568 shift); 6569 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 6570 (1 << size * 8) - 1); 6571 } else { 6572 if (shift) 6573 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 6574 insn->dst_reg, 6575 shift); 6576 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 6577 (1 << size * 8) - 1); 6578 } 6579 } 6580 6581 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6582 if (!new_prog) 6583 return -ENOMEM; 6584 6585 delta += cnt - 1; 6586 6587 /* keep walking new program and skip insns we just inserted */ 6588 env->prog = new_prog; 6589 insn = new_prog->insnsi + i + delta; 6590 } 6591 6592 return 0; 6593 } 6594 6595 static int jit_subprogs(struct bpf_verifier_env *env) 6596 { 6597 struct bpf_prog *prog = env->prog, **func, *tmp; 6598 int i, j, subprog_start, subprog_end = 0, len, subprog; 6599 struct bpf_insn *insn; 6600 void *old_bpf_func; 6601 int err; 6602 6603 if (env->subprog_cnt <= 1) 6604 return 0; 6605 6606 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6607 if (insn->code != (BPF_JMP | BPF_CALL) || 6608 insn->src_reg != BPF_PSEUDO_CALL) 6609 continue; 6610 /* Upon error here we cannot fall back to interpreter but 6611 * need a hard reject of the program. Thus -EFAULT is 6612 * propagated in any case. 6613 */ 6614 subprog = find_subprog(env, i + insn->imm + 1); 6615 if (subprog < 0) { 6616 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6617 i + insn->imm + 1); 6618 return -EFAULT; 6619 } 6620 /* temporarily remember subprog id inside insn instead of 6621 * aux_data, since next loop will split up all insns into funcs 6622 */ 6623 insn->off = subprog; 6624 /* remember original imm in case JIT fails and fallback 6625 * to interpreter will be needed 6626 */ 6627 env->insn_aux_data[i].call_imm = insn->imm; 6628 /* point imm to __bpf_call_base+1 from JITs point of view */ 6629 insn->imm = 1; 6630 } 6631 6632 err = bpf_prog_alloc_jited_linfo(prog); 6633 if (err) 6634 goto out_undo_insn; 6635 6636 err = -ENOMEM; 6637 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 6638 if (!func) 6639 goto out_undo_insn; 6640 6641 for (i = 0; i < env->subprog_cnt; i++) { 6642 subprog_start = subprog_end; 6643 subprog_end = env->subprog_info[i + 1].start; 6644 6645 len = subprog_end - subprog_start; 6646 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 6647 if (!func[i]) 6648 goto out_free; 6649 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 6650 len * sizeof(struct bpf_insn)); 6651 func[i]->type = prog->type; 6652 func[i]->len = len; 6653 if (bpf_prog_calc_tag(func[i])) 6654 goto out_free; 6655 func[i]->is_func = 1; 6656 func[i]->aux->func_idx = i; 6657 /* the btf and func_info will be freed only at prog->aux */ 6658 func[i]->aux->btf = prog->aux->btf; 6659 func[i]->aux->func_info = prog->aux->func_info; 6660 6661 /* Use bpf_prog_F_tag to indicate functions in stack traces. 6662 * Long term would need debug info to populate names 6663 */ 6664 func[i]->aux->name[0] = 'F'; 6665 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 6666 func[i]->jit_requested = 1; 6667 func[i]->aux->linfo = prog->aux->linfo; 6668 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 6669 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 6670 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 6671 func[i] = bpf_int_jit_compile(func[i]); 6672 if (!func[i]->jited) { 6673 err = -ENOTSUPP; 6674 goto out_free; 6675 } 6676 cond_resched(); 6677 } 6678 /* at this point all bpf functions were successfully JITed 6679 * now populate all bpf_calls with correct addresses and 6680 * run last pass of JIT 6681 */ 6682 for (i = 0; i < env->subprog_cnt; i++) { 6683 insn = func[i]->insnsi; 6684 for (j = 0; j < func[i]->len; j++, insn++) { 6685 if (insn->code != (BPF_JMP | BPF_CALL) || 6686 insn->src_reg != BPF_PSEUDO_CALL) 6687 continue; 6688 subprog = insn->off; 6689 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 6690 func[subprog]->bpf_func - 6691 __bpf_call_base; 6692 } 6693 6694 /* we use the aux data to keep a list of the start addresses 6695 * of the JITed images for each function in the program 6696 * 6697 * for some architectures, such as powerpc64, the imm field 6698 * might not be large enough to hold the offset of the start 6699 * address of the callee's JITed image from __bpf_call_base 6700 * 6701 * in such cases, we can lookup the start address of a callee 6702 * by using its subprog id, available from the off field of 6703 * the call instruction, as an index for this list 6704 */ 6705 func[i]->aux->func = func; 6706 func[i]->aux->func_cnt = env->subprog_cnt; 6707 } 6708 for (i = 0; i < env->subprog_cnt; i++) { 6709 old_bpf_func = func[i]->bpf_func; 6710 tmp = bpf_int_jit_compile(func[i]); 6711 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 6712 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 6713 err = -ENOTSUPP; 6714 goto out_free; 6715 } 6716 cond_resched(); 6717 } 6718 6719 /* finally lock prog and jit images for all functions and 6720 * populate kallsysm 6721 */ 6722 for (i = 0; i < env->subprog_cnt; i++) { 6723 bpf_prog_lock_ro(func[i]); 6724 bpf_prog_kallsyms_add(func[i]); 6725 } 6726 6727 /* Last step: make now unused interpreter insns from main 6728 * prog consistent for later dump requests, so they can 6729 * later look the same as if they were interpreted only. 6730 */ 6731 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6732 if (insn->code != (BPF_JMP | BPF_CALL) || 6733 insn->src_reg != BPF_PSEUDO_CALL) 6734 continue; 6735 insn->off = env->insn_aux_data[i].call_imm; 6736 subprog = find_subprog(env, i + insn->off + 1); 6737 insn->imm = subprog; 6738 } 6739 6740 prog->jited = 1; 6741 prog->bpf_func = func[0]->bpf_func; 6742 prog->aux->func = func; 6743 prog->aux->func_cnt = env->subprog_cnt; 6744 bpf_prog_free_unused_jited_linfo(prog); 6745 return 0; 6746 out_free: 6747 for (i = 0; i < env->subprog_cnt; i++) 6748 if (func[i]) 6749 bpf_jit_free(func[i]); 6750 kfree(func); 6751 out_undo_insn: 6752 /* cleanup main prog to be interpreted */ 6753 prog->jit_requested = 0; 6754 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6755 if (insn->code != (BPF_JMP | BPF_CALL) || 6756 insn->src_reg != BPF_PSEUDO_CALL) 6757 continue; 6758 insn->off = 0; 6759 insn->imm = env->insn_aux_data[i].call_imm; 6760 } 6761 bpf_prog_free_jited_linfo(prog); 6762 return err; 6763 } 6764 6765 static int fixup_call_args(struct bpf_verifier_env *env) 6766 { 6767 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6768 struct bpf_prog *prog = env->prog; 6769 struct bpf_insn *insn = prog->insnsi; 6770 int i, depth; 6771 #endif 6772 int err = 0; 6773 6774 if (env->prog->jit_requested && 6775 !bpf_prog_is_dev_bound(env->prog->aux)) { 6776 err = jit_subprogs(env); 6777 if (err == 0) 6778 return 0; 6779 if (err == -EFAULT) 6780 return err; 6781 } 6782 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6783 for (i = 0; i < prog->len; i++, insn++) { 6784 if (insn->code != (BPF_JMP | BPF_CALL) || 6785 insn->src_reg != BPF_PSEUDO_CALL) 6786 continue; 6787 depth = get_callee_stack_depth(env, insn, i); 6788 if (depth < 0) 6789 return depth; 6790 bpf_patch_call_args(insn, depth); 6791 } 6792 err = 0; 6793 #endif 6794 return err; 6795 } 6796 6797 /* fixup insn->imm field of bpf_call instructions 6798 * and inline eligible helpers as explicit sequence of BPF instructions 6799 * 6800 * this function is called after eBPF program passed verification 6801 */ 6802 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6803 { 6804 struct bpf_prog *prog = env->prog; 6805 struct bpf_insn *insn = prog->insnsi; 6806 const struct bpf_func_proto *fn; 6807 const int insn_cnt = prog->len; 6808 const struct bpf_map_ops *ops; 6809 struct bpf_insn_aux_data *aux; 6810 struct bpf_insn insn_buf[16]; 6811 struct bpf_prog *new_prog; 6812 struct bpf_map *map_ptr; 6813 int i, cnt, delta = 0; 6814 6815 for (i = 0; i < insn_cnt; i++, insn++) { 6816 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6817 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6818 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6819 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6820 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6821 struct bpf_insn mask_and_div[] = { 6822 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6823 /* Rx div 0 -> 0 */ 6824 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6825 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6826 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6827 *insn, 6828 }; 6829 struct bpf_insn mask_and_mod[] = { 6830 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6831 /* Rx mod 0 -> Rx */ 6832 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6833 *insn, 6834 }; 6835 struct bpf_insn *patchlet; 6836 6837 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6838 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6839 patchlet = mask_and_div + (is64 ? 1 : 0); 6840 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6841 } else { 6842 patchlet = mask_and_mod + (is64 ? 1 : 0); 6843 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6844 } 6845 6846 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6847 if (!new_prog) 6848 return -ENOMEM; 6849 6850 delta += cnt - 1; 6851 env->prog = prog = new_prog; 6852 insn = new_prog->insnsi + i + delta; 6853 continue; 6854 } 6855 6856 if (BPF_CLASS(insn->code) == BPF_LD && 6857 (BPF_MODE(insn->code) == BPF_ABS || 6858 BPF_MODE(insn->code) == BPF_IND)) { 6859 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6860 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6861 verbose(env, "bpf verifier is misconfigured\n"); 6862 return -EINVAL; 6863 } 6864 6865 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6866 if (!new_prog) 6867 return -ENOMEM; 6868 6869 delta += cnt - 1; 6870 env->prog = prog = new_prog; 6871 insn = new_prog->insnsi + i + delta; 6872 continue; 6873 } 6874 6875 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 6876 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 6877 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 6878 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 6879 struct bpf_insn insn_buf[16]; 6880 struct bpf_insn *patch = &insn_buf[0]; 6881 bool issrc, isneg; 6882 u32 off_reg; 6883 6884 aux = &env->insn_aux_data[i + delta]; 6885 if (!aux->alu_state) 6886 continue; 6887 6888 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 6889 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 6890 BPF_ALU_SANITIZE_SRC; 6891 6892 off_reg = issrc ? insn->src_reg : insn->dst_reg; 6893 if (isneg) 6894 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 6895 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 6896 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 6897 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 6898 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 6899 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 6900 if (issrc) { 6901 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 6902 off_reg); 6903 insn->src_reg = BPF_REG_AX; 6904 } else { 6905 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 6906 BPF_REG_AX); 6907 } 6908 if (isneg) 6909 insn->code = insn->code == code_add ? 6910 code_sub : code_add; 6911 *patch++ = *insn; 6912 if (issrc && isneg) 6913 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 6914 cnt = patch - insn_buf; 6915 6916 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6917 if (!new_prog) 6918 return -ENOMEM; 6919 6920 delta += cnt - 1; 6921 env->prog = prog = new_prog; 6922 insn = new_prog->insnsi + i + delta; 6923 continue; 6924 } 6925 6926 if (insn->code != (BPF_JMP | BPF_CALL)) 6927 continue; 6928 if (insn->src_reg == BPF_PSEUDO_CALL) 6929 continue; 6930 6931 if (insn->imm == BPF_FUNC_get_route_realm) 6932 prog->dst_needed = 1; 6933 if (insn->imm == BPF_FUNC_get_prandom_u32) 6934 bpf_user_rnd_init_once(); 6935 if (insn->imm == BPF_FUNC_override_return) 6936 prog->kprobe_override = 1; 6937 if (insn->imm == BPF_FUNC_tail_call) { 6938 /* If we tail call into other programs, we 6939 * cannot make any assumptions since they can 6940 * be replaced dynamically during runtime in 6941 * the program array. 6942 */ 6943 prog->cb_access = 1; 6944 env->prog->aux->stack_depth = MAX_BPF_STACK; 6945 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 6946 6947 /* mark bpf_tail_call as different opcode to avoid 6948 * conditional branch in the interpeter for every normal 6949 * call and to prevent accidental JITing by JIT compiler 6950 * that doesn't support bpf_tail_call yet 6951 */ 6952 insn->imm = 0; 6953 insn->code = BPF_JMP | BPF_TAIL_CALL; 6954 6955 aux = &env->insn_aux_data[i + delta]; 6956 if (!bpf_map_ptr_unpriv(aux)) 6957 continue; 6958 6959 /* instead of changing every JIT dealing with tail_call 6960 * emit two extra insns: 6961 * if (index >= max_entries) goto out; 6962 * index &= array->index_mask; 6963 * to avoid out-of-bounds cpu speculation 6964 */ 6965 if (bpf_map_ptr_poisoned(aux)) { 6966 verbose(env, "tail_call abusing map_ptr\n"); 6967 return -EINVAL; 6968 } 6969 6970 map_ptr = BPF_MAP_PTR(aux->map_state); 6971 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6972 map_ptr->max_entries, 2); 6973 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6974 container_of(map_ptr, 6975 struct bpf_array, 6976 map)->index_mask); 6977 insn_buf[2] = *insn; 6978 cnt = 3; 6979 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6980 if (!new_prog) 6981 return -ENOMEM; 6982 6983 delta += cnt - 1; 6984 env->prog = prog = new_prog; 6985 insn = new_prog->insnsi + i + delta; 6986 continue; 6987 } 6988 6989 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6990 * and other inlining handlers are currently limited to 64 bit 6991 * only. 6992 */ 6993 if (prog->jit_requested && BITS_PER_LONG == 64 && 6994 (insn->imm == BPF_FUNC_map_lookup_elem || 6995 insn->imm == BPF_FUNC_map_update_elem || 6996 insn->imm == BPF_FUNC_map_delete_elem || 6997 insn->imm == BPF_FUNC_map_push_elem || 6998 insn->imm == BPF_FUNC_map_pop_elem || 6999 insn->imm == BPF_FUNC_map_peek_elem)) { 7000 aux = &env->insn_aux_data[i + delta]; 7001 if (bpf_map_ptr_poisoned(aux)) 7002 goto patch_call_imm; 7003 7004 map_ptr = BPF_MAP_PTR(aux->map_state); 7005 ops = map_ptr->ops; 7006 if (insn->imm == BPF_FUNC_map_lookup_elem && 7007 ops->map_gen_lookup) { 7008 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 7009 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7010 verbose(env, "bpf verifier is misconfigured\n"); 7011 return -EINVAL; 7012 } 7013 7014 new_prog = bpf_patch_insn_data(env, i + delta, 7015 insn_buf, cnt); 7016 if (!new_prog) 7017 return -ENOMEM; 7018 7019 delta += cnt - 1; 7020 env->prog = prog = new_prog; 7021 insn = new_prog->insnsi + i + delta; 7022 continue; 7023 } 7024 7025 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 7026 (void *(*)(struct bpf_map *map, void *key))NULL)); 7027 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 7028 (int (*)(struct bpf_map *map, void *key))NULL)); 7029 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 7030 (int (*)(struct bpf_map *map, void *key, void *value, 7031 u64 flags))NULL)); 7032 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 7033 (int (*)(struct bpf_map *map, void *value, 7034 u64 flags))NULL)); 7035 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 7036 (int (*)(struct bpf_map *map, void *value))NULL)); 7037 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 7038 (int (*)(struct bpf_map *map, void *value))NULL)); 7039 7040 switch (insn->imm) { 7041 case BPF_FUNC_map_lookup_elem: 7042 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 7043 __bpf_call_base; 7044 continue; 7045 case BPF_FUNC_map_update_elem: 7046 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 7047 __bpf_call_base; 7048 continue; 7049 case BPF_FUNC_map_delete_elem: 7050 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 7051 __bpf_call_base; 7052 continue; 7053 case BPF_FUNC_map_push_elem: 7054 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 7055 __bpf_call_base; 7056 continue; 7057 case BPF_FUNC_map_pop_elem: 7058 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 7059 __bpf_call_base; 7060 continue; 7061 case BPF_FUNC_map_peek_elem: 7062 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 7063 __bpf_call_base; 7064 continue; 7065 } 7066 7067 goto patch_call_imm; 7068 } 7069 7070 patch_call_imm: 7071 fn = env->ops->get_func_proto(insn->imm, env->prog); 7072 /* all functions that have prototype and verifier allowed 7073 * programs to call them, must be real in-kernel functions 7074 */ 7075 if (!fn->func) { 7076 verbose(env, 7077 "kernel subsystem misconfigured func %s#%d\n", 7078 func_id_name(insn->imm), insn->imm); 7079 return -EFAULT; 7080 } 7081 insn->imm = fn->func - __bpf_call_base; 7082 } 7083 7084 return 0; 7085 } 7086 7087 static void free_states(struct bpf_verifier_env *env) 7088 { 7089 struct bpf_verifier_state_list *sl, *sln; 7090 int i; 7091 7092 if (!env->explored_states) 7093 return; 7094 7095 for (i = 0; i < env->prog->len; i++) { 7096 sl = env->explored_states[i]; 7097 7098 if (sl) 7099 while (sl != STATE_LIST_MARK) { 7100 sln = sl->next; 7101 free_verifier_state(&sl->state, false); 7102 kfree(sl); 7103 sl = sln; 7104 } 7105 } 7106 7107 kfree(env->explored_states); 7108 } 7109 7110 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 7111 union bpf_attr __user *uattr) 7112 { 7113 struct bpf_verifier_env *env; 7114 struct bpf_verifier_log *log; 7115 int ret = -EINVAL; 7116 7117 /* no program is valid */ 7118 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 7119 return -EINVAL; 7120 7121 /* 'struct bpf_verifier_env' can be global, but since it's not small, 7122 * allocate/free it every time bpf_check() is called 7123 */ 7124 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 7125 if (!env) 7126 return -ENOMEM; 7127 log = &env->log; 7128 7129 env->insn_aux_data = 7130 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 7131 (*prog)->len)); 7132 ret = -ENOMEM; 7133 if (!env->insn_aux_data) 7134 goto err_free_env; 7135 env->prog = *prog; 7136 env->ops = bpf_verifier_ops[env->prog->type]; 7137 7138 /* grab the mutex to protect few globals used by verifier */ 7139 mutex_lock(&bpf_verifier_lock); 7140 7141 if (attr->log_level || attr->log_buf || attr->log_size) { 7142 /* user requested verbose verifier output 7143 * and supplied buffer to store the verification trace 7144 */ 7145 log->level = attr->log_level; 7146 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 7147 log->len_total = attr->log_size; 7148 7149 ret = -EINVAL; 7150 /* log attributes have to be sane */ 7151 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 7152 !log->level || !log->ubuf) 7153 goto err_unlock; 7154 } 7155 7156 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 7157 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 7158 env->strict_alignment = true; 7159 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 7160 env->strict_alignment = false; 7161 7162 ret = replace_map_fd_with_map_ptr(env); 7163 if (ret < 0) 7164 goto skip_full_check; 7165 7166 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7167 ret = bpf_prog_offload_verifier_prep(env->prog); 7168 if (ret) 7169 goto skip_full_check; 7170 } 7171 7172 env->explored_states = kcalloc(env->prog->len, 7173 sizeof(struct bpf_verifier_state_list *), 7174 GFP_USER); 7175 ret = -ENOMEM; 7176 if (!env->explored_states) 7177 goto skip_full_check; 7178 7179 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 7180 7181 ret = check_subprogs(env); 7182 if (ret < 0) 7183 goto skip_full_check; 7184 7185 ret = check_btf_info(env, attr, uattr); 7186 if (ret < 0) 7187 goto skip_full_check; 7188 7189 ret = check_cfg(env); 7190 if (ret < 0) 7191 goto skip_full_check; 7192 7193 ret = do_check(env); 7194 if (env->cur_state) { 7195 free_verifier_state(env->cur_state, true); 7196 env->cur_state = NULL; 7197 } 7198 7199 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 7200 ret = bpf_prog_offload_finalize(env); 7201 7202 skip_full_check: 7203 while (!pop_stack(env, NULL, NULL)); 7204 free_states(env); 7205 7206 if (ret == 0) 7207 ret = check_max_stack_depth(env); 7208 7209 /* instruction rewrites happen after this point */ 7210 if (ret == 0) 7211 sanitize_dead_code(env); 7212 7213 if (ret == 0) 7214 /* program is valid, convert *(u32*)(ctx + off) accesses */ 7215 ret = convert_ctx_accesses(env); 7216 7217 if (ret == 0) 7218 ret = fixup_bpf_calls(env); 7219 7220 if (ret == 0) 7221 ret = fixup_call_args(env); 7222 7223 if (log->level && bpf_verifier_log_full(log)) 7224 ret = -ENOSPC; 7225 if (log->level && !log->ubuf) { 7226 ret = -EFAULT; 7227 goto err_release_maps; 7228 } 7229 7230 if (ret == 0 && env->used_map_cnt) { 7231 /* if program passed verifier, update used_maps in bpf_prog_info */ 7232 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 7233 sizeof(env->used_maps[0]), 7234 GFP_KERNEL); 7235 7236 if (!env->prog->aux->used_maps) { 7237 ret = -ENOMEM; 7238 goto err_release_maps; 7239 } 7240 7241 memcpy(env->prog->aux->used_maps, env->used_maps, 7242 sizeof(env->used_maps[0]) * env->used_map_cnt); 7243 env->prog->aux->used_map_cnt = env->used_map_cnt; 7244 7245 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 7246 * bpf_ld_imm64 instructions 7247 */ 7248 convert_pseudo_ld_imm64(env); 7249 } 7250 7251 if (ret == 0) 7252 adjust_btf_func(env); 7253 7254 err_release_maps: 7255 if (!env->prog->aux->used_maps) 7256 /* if we didn't copy map pointers into bpf_prog_info, release 7257 * them now. Otherwise free_used_maps() will release them. 7258 */ 7259 release_maps(env); 7260 *prog = env->prog; 7261 err_unlock: 7262 mutex_unlock(&bpf_verifier_lock); 7263 vfree(env->insn_aux_data); 7264 err_free_env: 7265 kfree(env); 7266 return ret; 7267 } 7268