1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct bpf_map_value_off_desc *kptr_off_desc; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 455 { 456 return reg->type == PTR_TO_MAP_VALUE && 457 map_value_has_spin_lock(reg->map_ptr); 458 } 459 460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 461 { 462 type = base_type(type); 463 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK || 464 type == PTR_TO_MEM || type == PTR_TO_BTF_ID; 465 } 466 467 static bool type_is_rdonly_mem(u32 type) 468 { 469 return type & MEM_RDONLY; 470 } 471 472 static bool type_may_be_null(u32 type) 473 { 474 return type & PTR_MAYBE_NULL; 475 } 476 477 static bool is_acquire_function(enum bpf_func_id func_id, 478 const struct bpf_map *map) 479 { 480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 481 482 if (func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_ringbuf_reserve || 486 func_id == BPF_FUNC_kptr_xchg) 487 return true; 488 489 if (func_id == BPF_FUNC_map_lookup_elem && 490 (map_type == BPF_MAP_TYPE_SOCKMAP || 491 map_type == BPF_MAP_TYPE_SOCKHASH)) 492 return true; 493 494 return false; 495 } 496 497 static bool is_ptr_cast_function(enum bpf_func_id func_id) 498 { 499 return func_id == BPF_FUNC_tcp_sock || 500 func_id == BPF_FUNC_sk_fullsock || 501 func_id == BPF_FUNC_skc_to_tcp_sock || 502 func_id == BPF_FUNC_skc_to_tcp6_sock || 503 func_id == BPF_FUNC_skc_to_udp6_sock || 504 func_id == BPF_FUNC_skc_to_mptcp_sock || 505 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 506 func_id == BPF_FUNC_skc_to_tcp_request_sock; 507 } 508 509 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_dynptr_data; 512 } 513 514 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 515 const struct bpf_map *map) 516 { 517 int ref_obj_uses = 0; 518 519 if (is_ptr_cast_function(func_id)) 520 ref_obj_uses++; 521 if (is_acquire_function(func_id, map)) 522 ref_obj_uses++; 523 if (is_dynptr_ref_function(func_id)) 524 ref_obj_uses++; 525 526 return ref_obj_uses > 1; 527 } 528 529 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 530 { 531 return BPF_CLASS(insn->code) == BPF_STX && 532 BPF_MODE(insn->code) == BPF_ATOMIC && 533 insn->imm == BPF_CMPXCHG; 534 } 535 536 /* string representation of 'enum bpf_reg_type' 537 * 538 * Note that reg_type_str() can not appear more than once in a single verbose() 539 * statement. 540 */ 541 static const char *reg_type_str(struct bpf_verifier_env *env, 542 enum bpf_reg_type type) 543 { 544 char postfix[16] = {0}, prefix[32] = {0}; 545 static const char * const str[] = { 546 [NOT_INIT] = "?", 547 [SCALAR_VALUE] = "scalar", 548 [PTR_TO_CTX] = "ctx", 549 [CONST_PTR_TO_MAP] = "map_ptr", 550 [PTR_TO_MAP_VALUE] = "map_value", 551 [PTR_TO_STACK] = "fp", 552 [PTR_TO_PACKET] = "pkt", 553 [PTR_TO_PACKET_META] = "pkt_meta", 554 [PTR_TO_PACKET_END] = "pkt_end", 555 [PTR_TO_FLOW_KEYS] = "flow_keys", 556 [PTR_TO_SOCKET] = "sock", 557 [PTR_TO_SOCK_COMMON] = "sock_common", 558 [PTR_TO_TCP_SOCK] = "tcp_sock", 559 [PTR_TO_TP_BUFFER] = "tp_buffer", 560 [PTR_TO_XDP_SOCK] = "xdp_sock", 561 [PTR_TO_BTF_ID] = "ptr_", 562 [PTR_TO_MEM] = "mem", 563 [PTR_TO_BUF] = "buf", 564 [PTR_TO_FUNC] = "func", 565 [PTR_TO_MAP_KEY] = "map_key", 566 [PTR_TO_DYNPTR] = "dynptr_ptr", 567 }; 568 569 if (type & PTR_MAYBE_NULL) { 570 if (base_type(type) == PTR_TO_BTF_ID) 571 strncpy(postfix, "or_null_", 16); 572 else 573 strncpy(postfix, "_or_null", 16); 574 } 575 576 if (type & MEM_RDONLY) 577 strncpy(prefix, "rdonly_", 32); 578 if (type & MEM_ALLOC) 579 strncpy(prefix, "alloc_", 32); 580 if (type & MEM_USER) 581 strncpy(prefix, "user_", 32); 582 if (type & MEM_PERCPU) 583 strncpy(prefix, "percpu_", 32); 584 if (type & PTR_UNTRUSTED) 585 strncpy(prefix, "untrusted_", 32); 586 587 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 588 prefix, str[base_type(type)], postfix); 589 return env->type_str_buf; 590 } 591 592 static char slot_type_char[] = { 593 [STACK_INVALID] = '?', 594 [STACK_SPILL] = 'r', 595 [STACK_MISC] = 'm', 596 [STACK_ZERO] = '0', 597 [STACK_DYNPTR] = 'd', 598 }; 599 600 static void print_liveness(struct bpf_verifier_env *env, 601 enum bpf_reg_liveness live) 602 { 603 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 604 verbose(env, "_"); 605 if (live & REG_LIVE_READ) 606 verbose(env, "r"); 607 if (live & REG_LIVE_WRITTEN) 608 verbose(env, "w"); 609 if (live & REG_LIVE_DONE) 610 verbose(env, "D"); 611 } 612 613 static int get_spi(s32 off) 614 { 615 return (-off - 1) / BPF_REG_SIZE; 616 } 617 618 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 619 { 620 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 621 622 /* We need to check that slots between [spi - nr_slots + 1, spi] are 623 * within [0, allocated_stack). 624 * 625 * Please note that the spi grows downwards. For example, a dynptr 626 * takes the size of two stack slots; the first slot will be at 627 * spi and the second slot will be at spi - 1. 628 */ 629 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 630 } 631 632 static struct bpf_func_state *func(struct bpf_verifier_env *env, 633 const struct bpf_reg_state *reg) 634 { 635 struct bpf_verifier_state *cur = env->cur_state; 636 637 return cur->frame[reg->frameno]; 638 } 639 640 static const char *kernel_type_name(const struct btf* btf, u32 id) 641 { 642 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 643 } 644 645 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 646 { 647 env->scratched_regs |= 1U << regno; 648 } 649 650 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 651 { 652 env->scratched_stack_slots |= 1ULL << spi; 653 } 654 655 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 656 { 657 return (env->scratched_regs >> regno) & 1; 658 } 659 660 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 661 { 662 return (env->scratched_stack_slots >> regno) & 1; 663 } 664 665 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 666 { 667 return env->scratched_regs || env->scratched_stack_slots; 668 } 669 670 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 671 { 672 env->scratched_regs = 0U; 673 env->scratched_stack_slots = 0ULL; 674 } 675 676 /* Used for printing the entire verifier state. */ 677 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 678 { 679 env->scratched_regs = ~0U; 680 env->scratched_stack_slots = ~0ULL; 681 } 682 683 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 684 { 685 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 686 case DYNPTR_TYPE_LOCAL: 687 return BPF_DYNPTR_TYPE_LOCAL; 688 case DYNPTR_TYPE_RINGBUF: 689 return BPF_DYNPTR_TYPE_RINGBUF; 690 default: 691 return BPF_DYNPTR_TYPE_INVALID; 692 } 693 } 694 695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 696 { 697 return type == BPF_DYNPTR_TYPE_RINGBUF; 698 } 699 700 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 701 enum bpf_arg_type arg_type, int insn_idx) 702 { 703 struct bpf_func_state *state = func(env, reg); 704 enum bpf_dynptr_type type; 705 int spi, i, id; 706 707 spi = get_spi(reg->off); 708 709 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 710 return -EINVAL; 711 712 for (i = 0; i < BPF_REG_SIZE; i++) { 713 state->stack[spi].slot_type[i] = STACK_DYNPTR; 714 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 715 } 716 717 type = arg_to_dynptr_type(arg_type); 718 if (type == BPF_DYNPTR_TYPE_INVALID) 719 return -EINVAL; 720 721 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 722 state->stack[spi].spilled_ptr.dynptr.type = type; 723 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 724 725 if (dynptr_type_refcounted(type)) { 726 /* The id is used to track proper releasing */ 727 id = acquire_reference_state(env, insn_idx); 728 if (id < 0) 729 return id; 730 731 state->stack[spi].spilled_ptr.id = id; 732 state->stack[spi - 1].spilled_ptr.id = id; 733 } 734 735 return 0; 736 } 737 738 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 739 { 740 struct bpf_func_state *state = func(env, reg); 741 int spi, i; 742 743 spi = get_spi(reg->off); 744 745 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 746 return -EINVAL; 747 748 for (i = 0; i < BPF_REG_SIZE; i++) { 749 state->stack[spi].slot_type[i] = STACK_INVALID; 750 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 751 } 752 753 /* Invalidate any slices associated with this dynptr */ 754 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 755 release_reference(env, state->stack[spi].spilled_ptr.id); 756 state->stack[spi].spilled_ptr.id = 0; 757 state->stack[spi - 1].spilled_ptr.id = 0; 758 } 759 760 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 761 state->stack[spi].spilled_ptr.dynptr.type = 0; 762 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 763 764 return 0; 765 } 766 767 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 768 { 769 struct bpf_func_state *state = func(env, reg); 770 int spi = get_spi(reg->off); 771 int i; 772 773 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 774 return true; 775 776 for (i = 0; i < BPF_REG_SIZE; i++) { 777 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 778 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 779 return false; 780 } 781 782 return true; 783 } 784 785 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, 786 struct bpf_reg_state *reg) 787 { 788 struct bpf_func_state *state = func(env, reg); 789 int spi = get_spi(reg->off); 790 int i; 791 792 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 793 !state->stack[spi].spilled_ptr.dynptr.first_slot) 794 return false; 795 796 for (i = 0; i < BPF_REG_SIZE; i++) { 797 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 798 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 799 return false; 800 } 801 802 return true; 803 } 804 805 bool is_dynptr_type_expected(struct bpf_verifier_env *env, 806 struct bpf_reg_state *reg, 807 enum bpf_arg_type arg_type) 808 { 809 struct bpf_func_state *state = func(env, reg); 810 enum bpf_dynptr_type dynptr_type; 811 int spi = get_spi(reg->off); 812 813 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 814 if (arg_type == ARG_PTR_TO_DYNPTR) 815 return true; 816 817 dynptr_type = arg_to_dynptr_type(arg_type); 818 819 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 820 } 821 822 /* The reg state of a pointer or a bounded scalar was saved when 823 * it was spilled to the stack. 824 */ 825 static bool is_spilled_reg(const struct bpf_stack_state *stack) 826 { 827 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 828 } 829 830 static void scrub_spilled_slot(u8 *stype) 831 { 832 if (*stype != STACK_INVALID) 833 *stype = STACK_MISC; 834 } 835 836 static void print_verifier_state(struct bpf_verifier_env *env, 837 const struct bpf_func_state *state, 838 bool print_all) 839 { 840 const struct bpf_reg_state *reg; 841 enum bpf_reg_type t; 842 int i; 843 844 if (state->frameno) 845 verbose(env, " frame%d:", state->frameno); 846 for (i = 0; i < MAX_BPF_REG; i++) { 847 reg = &state->regs[i]; 848 t = reg->type; 849 if (t == NOT_INIT) 850 continue; 851 if (!print_all && !reg_scratched(env, i)) 852 continue; 853 verbose(env, " R%d", i); 854 print_liveness(env, reg->live); 855 verbose(env, "="); 856 if (t == SCALAR_VALUE && reg->precise) 857 verbose(env, "P"); 858 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 859 tnum_is_const(reg->var_off)) { 860 /* reg->off should be 0 for SCALAR_VALUE */ 861 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 862 verbose(env, "%lld", reg->var_off.value + reg->off); 863 } else { 864 const char *sep = ""; 865 866 verbose(env, "%s", reg_type_str(env, t)); 867 if (base_type(t) == PTR_TO_BTF_ID) 868 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 869 verbose(env, "("); 870 /* 871 * _a stands for append, was shortened to avoid multiline statements below. 872 * This macro is used to output a comma separated list of attributes. 873 */ 874 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 875 876 if (reg->id) 877 verbose_a("id=%d", reg->id); 878 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 879 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 880 if (t != SCALAR_VALUE) 881 verbose_a("off=%d", reg->off); 882 if (type_is_pkt_pointer(t)) 883 verbose_a("r=%d", reg->range); 884 else if (base_type(t) == CONST_PTR_TO_MAP || 885 base_type(t) == PTR_TO_MAP_KEY || 886 base_type(t) == PTR_TO_MAP_VALUE) 887 verbose_a("ks=%d,vs=%d", 888 reg->map_ptr->key_size, 889 reg->map_ptr->value_size); 890 if (tnum_is_const(reg->var_off)) { 891 /* Typically an immediate SCALAR_VALUE, but 892 * could be a pointer whose offset is too big 893 * for reg->off 894 */ 895 verbose_a("imm=%llx", reg->var_off.value); 896 } else { 897 if (reg->smin_value != reg->umin_value && 898 reg->smin_value != S64_MIN) 899 verbose_a("smin=%lld", (long long)reg->smin_value); 900 if (reg->smax_value != reg->umax_value && 901 reg->smax_value != S64_MAX) 902 verbose_a("smax=%lld", (long long)reg->smax_value); 903 if (reg->umin_value != 0) 904 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 905 if (reg->umax_value != U64_MAX) 906 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 907 if (!tnum_is_unknown(reg->var_off)) { 908 char tn_buf[48]; 909 910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 911 verbose_a("var_off=%s", tn_buf); 912 } 913 if (reg->s32_min_value != reg->smin_value && 914 reg->s32_min_value != S32_MIN) 915 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 916 if (reg->s32_max_value != reg->smax_value && 917 reg->s32_max_value != S32_MAX) 918 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 919 if (reg->u32_min_value != reg->umin_value && 920 reg->u32_min_value != U32_MIN) 921 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 922 if (reg->u32_max_value != reg->umax_value && 923 reg->u32_max_value != U32_MAX) 924 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 925 } 926 #undef verbose_a 927 928 verbose(env, ")"); 929 } 930 } 931 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 932 char types_buf[BPF_REG_SIZE + 1]; 933 bool valid = false; 934 int j; 935 936 for (j = 0; j < BPF_REG_SIZE; j++) { 937 if (state->stack[i].slot_type[j] != STACK_INVALID) 938 valid = true; 939 types_buf[j] = slot_type_char[ 940 state->stack[i].slot_type[j]]; 941 } 942 types_buf[BPF_REG_SIZE] = 0; 943 if (!valid) 944 continue; 945 if (!print_all && !stack_slot_scratched(env, i)) 946 continue; 947 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 948 print_liveness(env, state->stack[i].spilled_ptr.live); 949 if (is_spilled_reg(&state->stack[i])) { 950 reg = &state->stack[i].spilled_ptr; 951 t = reg->type; 952 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 953 if (t == SCALAR_VALUE && reg->precise) 954 verbose(env, "P"); 955 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 956 verbose(env, "%lld", reg->var_off.value + reg->off); 957 } else { 958 verbose(env, "=%s", types_buf); 959 } 960 } 961 if (state->acquired_refs && state->refs[0].id) { 962 verbose(env, " refs=%d", state->refs[0].id); 963 for (i = 1; i < state->acquired_refs; i++) 964 if (state->refs[i].id) 965 verbose(env, ",%d", state->refs[i].id); 966 } 967 if (state->in_callback_fn) 968 verbose(env, " cb"); 969 if (state->in_async_callback_fn) 970 verbose(env, " async_cb"); 971 verbose(env, "\n"); 972 mark_verifier_state_clean(env); 973 } 974 975 static inline u32 vlog_alignment(u32 pos) 976 { 977 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 978 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 979 } 980 981 static void print_insn_state(struct bpf_verifier_env *env, 982 const struct bpf_func_state *state) 983 { 984 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 985 /* remove new line character */ 986 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 987 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 988 } else { 989 verbose(env, "%d:", env->insn_idx); 990 } 991 print_verifier_state(env, state, false); 992 } 993 994 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 995 * small to hold src. This is different from krealloc since we don't want to preserve 996 * the contents of dst. 997 * 998 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 999 * not be allocated. 1000 */ 1001 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1002 { 1003 size_t bytes; 1004 1005 if (ZERO_OR_NULL_PTR(src)) 1006 goto out; 1007 1008 if (unlikely(check_mul_overflow(n, size, &bytes))) 1009 return NULL; 1010 1011 if (ksize(dst) < bytes) { 1012 kfree(dst); 1013 dst = kmalloc_track_caller(bytes, flags); 1014 if (!dst) 1015 return NULL; 1016 } 1017 1018 memcpy(dst, src, bytes); 1019 out: 1020 return dst ? dst : ZERO_SIZE_PTR; 1021 } 1022 1023 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1024 * small to hold new_n items. new items are zeroed out if the array grows. 1025 * 1026 * Contrary to krealloc_array, does not free arr if new_n is zero. 1027 */ 1028 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1029 { 1030 if (!new_n || old_n == new_n) 1031 goto out; 1032 1033 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1034 if (!arr) 1035 return NULL; 1036 1037 if (new_n > old_n) 1038 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1039 1040 out: 1041 return arr ? arr : ZERO_SIZE_PTR; 1042 } 1043 1044 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1045 { 1046 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1047 sizeof(struct bpf_reference_state), GFP_KERNEL); 1048 if (!dst->refs) 1049 return -ENOMEM; 1050 1051 dst->acquired_refs = src->acquired_refs; 1052 return 0; 1053 } 1054 1055 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1056 { 1057 size_t n = src->allocated_stack / BPF_REG_SIZE; 1058 1059 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1060 GFP_KERNEL); 1061 if (!dst->stack) 1062 return -ENOMEM; 1063 1064 dst->allocated_stack = src->allocated_stack; 1065 return 0; 1066 } 1067 1068 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1069 { 1070 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1071 sizeof(struct bpf_reference_state)); 1072 if (!state->refs) 1073 return -ENOMEM; 1074 1075 state->acquired_refs = n; 1076 return 0; 1077 } 1078 1079 static int grow_stack_state(struct bpf_func_state *state, int size) 1080 { 1081 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1082 1083 if (old_n >= n) 1084 return 0; 1085 1086 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1087 if (!state->stack) 1088 return -ENOMEM; 1089 1090 state->allocated_stack = size; 1091 return 0; 1092 } 1093 1094 /* Acquire a pointer id from the env and update the state->refs to include 1095 * this new pointer reference. 1096 * On success, returns a valid pointer id to associate with the register 1097 * On failure, returns a negative errno. 1098 */ 1099 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1100 { 1101 struct bpf_func_state *state = cur_func(env); 1102 int new_ofs = state->acquired_refs; 1103 int id, err; 1104 1105 err = resize_reference_state(state, state->acquired_refs + 1); 1106 if (err) 1107 return err; 1108 id = ++env->id_gen; 1109 state->refs[new_ofs].id = id; 1110 state->refs[new_ofs].insn_idx = insn_idx; 1111 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1112 1113 return id; 1114 } 1115 1116 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1117 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1118 { 1119 int i, last_idx; 1120 1121 last_idx = state->acquired_refs - 1; 1122 for (i = 0; i < state->acquired_refs; i++) { 1123 if (state->refs[i].id == ptr_id) { 1124 /* Cannot release caller references in callbacks */ 1125 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1126 return -EINVAL; 1127 if (last_idx && i != last_idx) 1128 memcpy(&state->refs[i], &state->refs[last_idx], 1129 sizeof(*state->refs)); 1130 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1131 state->acquired_refs--; 1132 return 0; 1133 } 1134 } 1135 return -EINVAL; 1136 } 1137 1138 static void free_func_state(struct bpf_func_state *state) 1139 { 1140 if (!state) 1141 return; 1142 kfree(state->refs); 1143 kfree(state->stack); 1144 kfree(state); 1145 } 1146 1147 static void clear_jmp_history(struct bpf_verifier_state *state) 1148 { 1149 kfree(state->jmp_history); 1150 state->jmp_history = NULL; 1151 state->jmp_history_cnt = 0; 1152 } 1153 1154 static void free_verifier_state(struct bpf_verifier_state *state, 1155 bool free_self) 1156 { 1157 int i; 1158 1159 for (i = 0; i <= state->curframe; i++) { 1160 free_func_state(state->frame[i]); 1161 state->frame[i] = NULL; 1162 } 1163 clear_jmp_history(state); 1164 if (free_self) 1165 kfree(state); 1166 } 1167 1168 /* copy verifier state from src to dst growing dst stack space 1169 * when necessary to accommodate larger src stack 1170 */ 1171 static int copy_func_state(struct bpf_func_state *dst, 1172 const struct bpf_func_state *src) 1173 { 1174 int err; 1175 1176 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1177 err = copy_reference_state(dst, src); 1178 if (err) 1179 return err; 1180 return copy_stack_state(dst, src); 1181 } 1182 1183 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1184 const struct bpf_verifier_state *src) 1185 { 1186 struct bpf_func_state *dst; 1187 int i, err; 1188 1189 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1190 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1191 GFP_USER); 1192 if (!dst_state->jmp_history) 1193 return -ENOMEM; 1194 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1195 1196 /* if dst has more stack frames then src frame, free them */ 1197 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1198 free_func_state(dst_state->frame[i]); 1199 dst_state->frame[i] = NULL; 1200 } 1201 dst_state->speculative = src->speculative; 1202 dst_state->curframe = src->curframe; 1203 dst_state->active_spin_lock = src->active_spin_lock; 1204 dst_state->branches = src->branches; 1205 dst_state->parent = src->parent; 1206 dst_state->first_insn_idx = src->first_insn_idx; 1207 dst_state->last_insn_idx = src->last_insn_idx; 1208 for (i = 0; i <= src->curframe; i++) { 1209 dst = dst_state->frame[i]; 1210 if (!dst) { 1211 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1212 if (!dst) 1213 return -ENOMEM; 1214 dst_state->frame[i] = dst; 1215 } 1216 err = copy_func_state(dst, src->frame[i]); 1217 if (err) 1218 return err; 1219 } 1220 return 0; 1221 } 1222 1223 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1224 { 1225 while (st) { 1226 u32 br = --st->branches; 1227 1228 /* WARN_ON(br > 1) technically makes sense here, 1229 * but see comment in push_stack(), hence: 1230 */ 1231 WARN_ONCE((int)br < 0, 1232 "BUG update_branch_counts:branches_to_explore=%d\n", 1233 br); 1234 if (br) 1235 break; 1236 st = st->parent; 1237 } 1238 } 1239 1240 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1241 int *insn_idx, bool pop_log) 1242 { 1243 struct bpf_verifier_state *cur = env->cur_state; 1244 struct bpf_verifier_stack_elem *elem, *head = env->head; 1245 int err; 1246 1247 if (env->head == NULL) 1248 return -ENOENT; 1249 1250 if (cur) { 1251 err = copy_verifier_state(cur, &head->st); 1252 if (err) 1253 return err; 1254 } 1255 if (pop_log) 1256 bpf_vlog_reset(&env->log, head->log_pos); 1257 if (insn_idx) 1258 *insn_idx = head->insn_idx; 1259 if (prev_insn_idx) 1260 *prev_insn_idx = head->prev_insn_idx; 1261 elem = head->next; 1262 free_verifier_state(&head->st, false); 1263 kfree(head); 1264 env->head = elem; 1265 env->stack_size--; 1266 return 0; 1267 } 1268 1269 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1270 int insn_idx, int prev_insn_idx, 1271 bool speculative) 1272 { 1273 struct bpf_verifier_state *cur = env->cur_state; 1274 struct bpf_verifier_stack_elem *elem; 1275 int err; 1276 1277 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1278 if (!elem) 1279 goto err; 1280 1281 elem->insn_idx = insn_idx; 1282 elem->prev_insn_idx = prev_insn_idx; 1283 elem->next = env->head; 1284 elem->log_pos = env->log.len_used; 1285 env->head = elem; 1286 env->stack_size++; 1287 err = copy_verifier_state(&elem->st, cur); 1288 if (err) 1289 goto err; 1290 elem->st.speculative |= speculative; 1291 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1292 verbose(env, "The sequence of %d jumps is too complex.\n", 1293 env->stack_size); 1294 goto err; 1295 } 1296 if (elem->st.parent) { 1297 ++elem->st.parent->branches; 1298 /* WARN_ON(branches > 2) technically makes sense here, 1299 * but 1300 * 1. speculative states will bump 'branches' for non-branch 1301 * instructions 1302 * 2. is_state_visited() heuristics may decide not to create 1303 * a new state for a sequence of branches and all such current 1304 * and cloned states will be pointing to a single parent state 1305 * which might have large 'branches' count. 1306 */ 1307 } 1308 return &elem->st; 1309 err: 1310 free_verifier_state(env->cur_state, true); 1311 env->cur_state = NULL; 1312 /* pop all elements and return */ 1313 while (!pop_stack(env, NULL, NULL, false)); 1314 return NULL; 1315 } 1316 1317 #define CALLER_SAVED_REGS 6 1318 static const int caller_saved[CALLER_SAVED_REGS] = { 1319 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1320 }; 1321 1322 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1323 struct bpf_reg_state *reg); 1324 1325 /* This helper doesn't clear reg->id */ 1326 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1327 { 1328 reg->var_off = tnum_const(imm); 1329 reg->smin_value = (s64)imm; 1330 reg->smax_value = (s64)imm; 1331 reg->umin_value = imm; 1332 reg->umax_value = imm; 1333 1334 reg->s32_min_value = (s32)imm; 1335 reg->s32_max_value = (s32)imm; 1336 reg->u32_min_value = (u32)imm; 1337 reg->u32_max_value = (u32)imm; 1338 } 1339 1340 /* Mark the unknown part of a register (variable offset or scalar value) as 1341 * known to have the value @imm. 1342 */ 1343 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1344 { 1345 /* Clear id, off, and union(map_ptr, range) */ 1346 memset(((u8 *)reg) + sizeof(reg->type), 0, 1347 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1348 ___mark_reg_known(reg, imm); 1349 } 1350 1351 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1352 { 1353 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1354 reg->s32_min_value = (s32)imm; 1355 reg->s32_max_value = (s32)imm; 1356 reg->u32_min_value = (u32)imm; 1357 reg->u32_max_value = (u32)imm; 1358 } 1359 1360 /* Mark the 'variable offset' part of a register as zero. This should be 1361 * used only on registers holding a pointer type. 1362 */ 1363 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1364 { 1365 __mark_reg_known(reg, 0); 1366 } 1367 1368 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1369 { 1370 __mark_reg_known(reg, 0); 1371 reg->type = SCALAR_VALUE; 1372 } 1373 1374 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1375 struct bpf_reg_state *regs, u32 regno) 1376 { 1377 if (WARN_ON(regno >= MAX_BPF_REG)) { 1378 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1379 /* Something bad happened, let's kill all regs */ 1380 for (regno = 0; regno < MAX_BPF_REG; regno++) 1381 __mark_reg_not_init(env, regs + regno); 1382 return; 1383 } 1384 __mark_reg_known_zero(regs + regno); 1385 } 1386 1387 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1388 { 1389 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1390 const struct bpf_map *map = reg->map_ptr; 1391 1392 if (map->inner_map_meta) { 1393 reg->type = CONST_PTR_TO_MAP; 1394 reg->map_ptr = map->inner_map_meta; 1395 /* transfer reg's id which is unique for every map_lookup_elem 1396 * as UID of the inner map. 1397 */ 1398 if (map_value_has_timer(map->inner_map_meta)) 1399 reg->map_uid = reg->id; 1400 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1401 reg->type = PTR_TO_XDP_SOCK; 1402 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1403 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1404 reg->type = PTR_TO_SOCKET; 1405 } else { 1406 reg->type = PTR_TO_MAP_VALUE; 1407 } 1408 return; 1409 } 1410 1411 reg->type &= ~PTR_MAYBE_NULL; 1412 } 1413 1414 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1415 { 1416 return type_is_pkt_pointer(reg->type); 1417 } 1418 1419 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1420 { 1421 return reg_is_pkt_pointer(reg) || 1422 reg->type == PTR_TO_PACKET_END; 1423 } 1424 1425 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1426 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1427 enum bpf_reg_type which) 1428 { 1429 /* The register can already have a range from prior markings. 1430 * This is fine as long as it hasn't been advanced from its 1431 * origin. 1432 */ 1433 return reg->type == which && 1434 reg->id == 0 && 1435 reg->off == 0 && 1436 tnum_equals_const(reg->var_off, 0); 1437 } 1438 1439 /* Reset the min/max bounds of a register */ 1440 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1441 { 1442 reg->smin_value = S64_MIN; 1443 reg->smax_value = S64_MAX; 1444 reg->umin_value = 0; 1445 reg->umax_value = U64_MAX; 1446 1447 reg->s32_min_value = S32_MIN; 1448 reg->s32_max_value = S32_MAX; 1449 reg->u32_min_value = 0; 1450 reg->u32_max_value = U32_MAX; 1451 } 1452 1453 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1454 { 1455 reg->smin_value = S64_MIN; 1456 reg->smax_value = S64_MAX; 1457 reg->umin_value = 0; 1458 reg->umax_value = U64_MAX; 1459 } 1460 1461 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1462 { 1463 reg->s32_min_value = S32_MIN; 1464 reg->s32_max_value = S32_MAX; 1465 reg->u32_min_value = 0; 1466 reg->u32_max_value = U32_MAX; 1467 } 1468 1469 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1470 { 1471 struct tnum var32_off = tnum_subreg(reg->var_off); 1472 1473 /* min signed is max(sign bit) | min(other bits) */ 1474 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1475 var32_off.value | (var32_off.mask & S32_MIN)); 1476 /* max signed is min(sign bit) | max(other bits) */ 1477 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1478 var32_off.value | (var32_off.mask & S32_MAX)); 1479 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1480 reg->u32_max_value = min(reg->u32_max_value, 1481 (u32)(var32_off.value | var32_off.mask)); 1482 } 1483 1484 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1485 { 1486 /* min signed is max(sign bit) | min(other bits) */ 1487 reg->smin_value = max_t(s64, reg->smin_value, 1488 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1489 /* max signed is min(sign bit) | max(other bits) */ 1490 reg->smax_value = min_t(s64, reg->smax_value, 1491 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1492 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1493 reg->umax_value = min(reg->umax_value, 1494 reg->var_off.value | reg->var_off.mask); 1495 } 1496 1497 static void __update_reg_bounds(struct bpf_reg_state *reg) 1498 { 1499 __update_reg32_bounds(reg); 1500 __update_reg64_bounds(reg); 1501 } 1502 1503 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1504 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1505 { 1506 /* Learn sign from signed bounds. 1507 * If we cannot cross the sign boundary, then signed and unsigned bounds 1508 * are the same, so combine. This works even in the negative case, e.g. 1509 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1510 */ 1511 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1512 reg->s32_min_value = reg->u32_min_value = 1513 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1514 reg->s32_max_value = reg->u32_max_value = 1515 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1516 return; 1517 } 1518 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1519 * boundary, so we must be careful. 1520 */ 1521 if ((s32)reg->u32_max_value >= 0) { 1522 /* Positive. We can't learn anything from the smin, but smax 1523 * is positive, hence safe. 1524 */ 1525 reg->s32_min_value = reg->u32_min_value; 1526 reg->s32_max_value = reg->u32_max_value = 1527 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1528 } else if ((s32)reg->u32_min_value < 0) { 1529 /* Negative. We can't learn anything from the smax, but smin 1530 * is negative, hence safe. 1531 */ 1532 reg->s32_min_value = reg->u32_min_value = 1533 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1534 reg->s32_max_value = reg->u32_max_value; 1535 } 1536 } 1537 1538 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1539 { 1540 /* Learn sign from signed bounds. 1541 * If we cannot cross the sign boundary, then signed and unsigned bounds 1542 * are the same, so combine. This works even in the negative case, e.g. 1543 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1544 */ 1545 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1546 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1547 reg->umin_value); 1548 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1549 reg->umax_value); 1550 return; 1551 } 1552 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1553 * boundary, so we must be careful. 1554 */ 1555 if ((s64)reg->umax_value >= 0) { 1556 /* Positive. We can't learn anything from the smin, but smax 1557 * is positive, hence safe. 1558 */ 1559 reg->smin_value = reg->umin_value; 1560 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1561 reg->umax_value); 1562 } else if ((s64)reg->umin_value < 0) { 1563 /* Negative. We can't learn anything from the smax, but smin 1564 * is negative, hence safe. 1565 */ 1566 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1567 reg->umin_value); 1568 reg->smax_value = reg->umax_value; 1569 } 1570 } 1571 1572 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1573 { 1574 __reg32_deduce_bounds(reg); 1575 __reg64_deduce_bounds(reg); 1576 } 1577 1578 /* Attempts to improve var_off based on unsigned min/max information */ 1579 static void __reg_bound_offset(struct bpf_reg_state *reg) 1580 { 1581 struct tnum var64_off = tnum_intersect(reg->var_off, 1582 tnum_range(reg->umin_value, 1583 reg->umax_value)); 1584 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1585 tnum_range(reg->u32_min_value, 1586 reg->u32_max_value)); 1587 1588 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1589 } 1590 1591 static void reg_bounds_sync(struct bpf_reg_state *reg) 1592 { 1593 /* We might have learned new bounds from the var_off. */ 1594 __update_reg_bounds(reg); 1595 /* We might have learned something about the sign bit. */ 1596 __reg_deduce_bounds(reg); 1597 /* We might have learned some bits from the bounds. */ 1598 __reg_bound_offset(reg); 1599 /* Intersecting with the old var_off might have improved our bounds 1600 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1601 * then new var_off is (0; 0x7f...fc) which improves our umax. 1602 */ 1603 __update_reg_bounds(reg); 1604 } 1605 1606 static bool __reg32_bound_s64(s32 a) 1607 { 1608 return a >= 0 && a <= S32_MAX; 1609 } 1610 1611 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1612 { 1613 reg->umin_value = reg->u32_min_value; 1614 reg->umax_value = reg->u32_max_value; 1615 1616 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1617 * be positive otherwise set to worse case bounds and refine later 1618 * from tnum. 1619 */ 1620 if (__reg32_bound_s64(reg->s32_min_value) && 1621 __reg32_bound_s64(reg->s32_max_value)) { 1622 reg->smin_value = reg->s32_min_value; 1623 reg->smax_value = reg->s32_max_value; 1624 } else { 1625 reg->smin_value = 0; 1626 reg->smax_value = U32_MAX; 1627 } 1628 } 1629 1630 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1631 { 1632 /* special case when 64-bit register has upper 32-bit register 1633 * zeroed. Typically happens after zext or <<32, >>32 sequence 1634 * allowing us to use 32-bit bounds directly, 1635 */ 1636 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1637 __reg_assign_32_into_64(reg); 1638 } else { 1639 /* Otherwise the best we can do is push lower 32bit known and 1640 * unknown bits into register (var_off set from jmp logic) 1641 * then learn as much as possible from the 64-bit tnum 1642 * known and unknown bits. The previous smin/smax bounds are 1643 * invalid here because of jmp32 compare so mark them unknown 1644 * so they do not impact tnum bounds calculation. 1645 */ 1646 __mark_reg64_unbounded(reg); 1647 } 1648 reg_bounds_sync(reg); 1649 } 1650 1651 static bool __reg64_bound_s32(s64 a) 1652 { 1653 return a >= S32_MIN && a <= S32_MAX; 1654 } 1655 1656 static bool __reg64_bound_u32(u64 a) 1657 { 1658 return a >= U32_MIN && a <= U32_MAX; 1659 } 1660 1661 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1662 { 1663 __mark_reg32_unbounded(reg); 1664 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1665 reg->s32_min_value = (s32)reg->smin_value; 1666 reg->s32_max_value = (s32)reg->smax_value; 1667 } 1668 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1669 reg->u32_min_value = (u32)reg->umin_value; 1670 reg->u32_max_value = (u32)reg->umax_value; 1671 } 1672 reg_bounds_sync(reg); 1673 } 1674 1675 /* Mark a register as having a completely unknown (scalar) value. */ 1676 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1677 struct bpf_reg_state *reg) 1678 { 1679 /* 1680 * Clear type, id, off, and union(map_ptr, range) and 1681 * padding between 'type' and union 1682 */ 1683 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1684 reg->type = SCALAR_VALUE; 1685 reg->var_off = tnum_unknown; 1686 reg->frameno = 0; 1687 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1688 __mark_reg_unbounded(reg); 1689 } 1690 1691 static void mark_reg_unknown(struct bpf_verifier_env *env, 1692 struct bpf_reg_state *regs, u32 regno) 1693 { 1694 if (WARN_ON(regno >= MAX_BPF_REG)) { 1695 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1696 /* Something bad happened, let's kill all regs except FP */ 1697 for (regno = 0; regno < BPF_REG_FP; regno++) 1698 __mark_reg_not_init(env, regs + regno); 1699 return; 1700 } 1701 __mark_reg_unknown(env, regs + regno); 1702 } 1703 1704 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1705 struct bpf_reg_state *reg) 1706 { 1707 __mark_reg_unknown(env, reg); 1708 reg->type = NOT_INIT; 1709 } 1710 1711 static void mark_reg_not_init(struct bpf_verifier_env *env, 1712 struct bpf_reg_state *regs, u32 regno) 1713 { 1714 if (WARN_ON(regno >= MAX_BPF_REG)) { 1715 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1716 /* Something bad happened, let's kill all regs except FP */ 1717 for (regno = 0; regno < BPF_REG_FP; regno++) 1718 __mark_reg_not_init(env, regs + regno); 1719 return; 1720 } 1721 __mark_reg_not_init(env, regs + regno); 1722 } 1723 1724 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1725 struct bpf_reg_state *regs, u32 regno, 1726 enum bpf_reg_type reg_type, 1727 struct btf *btf, u32 btf_id, 1728 enum bpf_type_flag flag) 1729 { 1730 if (reg_type == SCALAR_VALUE) { 1731 mark_reg_unknown(env, regs, regno); 1732 return; 1733 } 1734 mark_reg_known_zero(env, regs, regno); 1735 regs[regno].type = PTR_TO_BTF_ID | flag; 1736 regs[regno].btf = btf; 1737 regs[regno].btf_id = btf_id; 1738 } 1739 1740 #define DEF_NOT_SUBREG (0) 1741 static void init_reg_state(struct bpf_verifier_env *env, 1742 struct bpf_func_state *state) 1743 { 1744 struct bpf_reg_state *regs = state->regs; 1745 int i; 1746 1747 for (i = 0; i < MAX_BPF_REG; i++) { 1748 mark_reg_not_init(env, regs, i); 1749 regs[i].live = REG_LIVE_NONE; 1750 regs[i].parent = NULL; 1751 regs[i].subreg_def = DEF_NOT_SUBREG; 1752 } 1753 1754 /* frame pointer */ 1755 regs[BPF_REG_FP].type = PTR_TO_STACK; 1756 mark_reg_known_zero(env, regs, BPF_REG_FP); 1757 regs[BPF_REG_FP].frameno = state->frameno; 1758 } 1759 1760 #define BPF_MAIN_FUNC (-1) 1761 static void init_func_state(struct bpf_verifier_env *env, 1762 struct bpf_func_state *state, 1763 int callsite, int frameno, int subprogno) 1764 { 1765 state->callsite = callsite; 1766 state->frameno = frameno; 1767 state->subprogno = subprogno; 1768 state->callback_ret_range = tnum_range(0, 0); 1769 init_reg_state(env, state); 1770 mark_verifier_state_scratched(env); 1771 } 1772 1773 /* Similar to push_stack(), but for async callbacks */ 1774 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1775 int insn_idx, int prev_insn_idx, 1776 int subprog) 1777 { 1778 struct bpf_verifier_stack_elem *elem; 1779 struct bpf_func_state *frame; 1780 1781 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1782 if (!elem) 1783 goto err; 1784 1785 elem->insn_idx = insn_idx; 1786 elem->prev_insn_idx = prev_insn_idx; 1787 elem->next = env->head; 1788 elem->log_pos = env->log.len_used; 1789 env->head = elem; 1790 env->stack_size++; 1791 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1792 verbose(env, 1793 "The sequence of %d jumps is too complex for async cb.\n", 1794 env->stack_size); 1795 goto err; 1796 } 1797 /* Unlike push_stack() do not copy_verifier_state(). 1798 * The caller state doesn't matter. 1799 * This is async callback. It starts in a fresh stack. 1800 * Initialize it similar to do_check_common(). 1801 */ 1802 elem->st.branches = 1; 1803 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1804 if (!frame) 1805 goto err; 1806 init_func_state(env, frame, 1807 BPF_MAIN_FUNC /* callsite */, 1808 0 /* frameno within this callchain */, 1809 subprog /* subprog number within this prog */); 1810 elem->st.frame[0] = frame; 1811 return &elem->st; 1812 err: 1813 free_verifier_state(env->cur_state, true); 1814 env->cur_state = NULL; 1815 /* pop all elements and return */ 1816 while (!pop_stack(env, NULL, NULL, false)); 1817 return NULL; 1818 } 1819 1820 1821 enum reg_arg_type { 1822 SRC_OP, /* register is used as source operand */ 1823 DST_OP, /* register is used as destination operand */ 1824 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1825 }; 1826 1827 static int cmp_subprogs(const void *a, const void *b) 1828 { 1829 return ((struct bpf_subprog_info *)a)->start - 1830 ((struct bpf_subprog_info *)b)->start; 1831 } 1832 1833 static int find_subprog(struct bpf_verifier_env *env, int off) 1834 { 1835 struct bpf_subprog_info *p; 1836 1837 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1838 sizeof(env->subprog_info[0]), cmp_subprogs); 1839 if (!p) 1840 return -ENOENT; 1841 return p - env->subprog_info; 1842 1843 } 1844 1845 static int add_subprog(struct bpf_verifier_env *env, int off) 1846 { 1847 int insn_cnt = env->prog->len; 1848 int ret; 1849 1850 if (off >= insn_cnt || off < 0) { 1851 verbose(env, "call to invalid destination\n"); 1852 return -EINVAL; 1853 } 1854 ret = find_subprog(env, off); 1855 if (ret >= 0) 1856 return ret; 1857 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1858 verbose(env, "too many subprograms\n"); 1859 return -E2BIG; 1860 } 1861 /* determine subprog starts. The end is one before the next starts */ 1862 env->subprog_info[env->subprog_cnt++].start = off; 1863 sort(env->subprog_info, env->subprog_cnt, 1864 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1865 return env->subprog_cnt - 1; 1866 } 1867 1868 #define MAX_KFUNC_DESCS 256 1869 #define MAX_KFUNC_BTFS 256 1870 1871 struct bpf_kfunc_desc { 1872 struct btf_func_model func_model; 1873 u32 func_id; 1874 s32 imm; 1875 u16 offset; 1876 }; 1877 1878 struct bpf_kfunc_btf { 1879 struct btf *btf; 1880 struct module *module; 1881 u16 offset; 1882 }; 1883 1884 struct bpf_kfunc_desc_tab { 1885 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1886 u32 nr_descs; 1887 }; 1888 1889 struct bpf_kfunc_btf_tab { 1890 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1891 u32 nr_descs; 1892 }; 1893 1894 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1895 { 1896 const struct bpf_kfunc_desc *d0 = a; 1897 const struct bpf_kfunc_desc *d1 = b; 1898 1899 /* func_id is not greater than BTF_MAX_TYPE */ 1900 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1901 } 1902 1903 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1904 { 1905 const struct bpf_kfunc_btf *d0 = a; 1906 const struct bpf_kfunc_btf *d1 = b; 1907 1908 return d0->offset - d1->offset; 1909 } 1910 1911 static const struct bpf_kfunc_desc * 1912 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1913 { 1914 struct bpf_kfunc_desc desc = { 1915 .func_id = func_id, 1916 .offset = offset, 1917 }; 1918 struct bpf_kfunc_desc_tab *tab; 1919 1920 tab = prog->aux->kfunc_tab; 1921 return bsearch(&desc, tab->descs, tab->nr_descs, 1922 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1923 } 1924 1925 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1926 s16 offset) 1927 { 1928 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1929 struct bpf_kfunc_btf_tab *tab; 1930 struct bpf_kfunc_btf *b; 1931 struct module *mod; 1932 struct btf *btf; 1933 int btf_fd; 1934 1935 tab = env->prog->aux->kfunc_btf_tab; 1936 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1937 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1938 if (!b) { 1939 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1940 verbose(env, "too many different module BTFs\n"); 1941 return ERR_PTR(-E2BIG); 1942 } 1943 1944 if (bpfptr_is_null(env->fd_array)) { 1945 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1946 return ERR_PTR(-EPROTO); 1947 } 1948 1949 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1950 offset * sizeof(btf_fd), 1951 sizeof(btf_fd))) 1952 return ERR_PTR(-EFAULT); 1953 1954 btf = btf_get_by_fd(btf_fd); 1955 if (IS_ERR(btf)) { 1956 verbose(env, "invalid module BTF fd specified\n"); 1957 return btf; 1958 } 1959 1960 if (!btf_is_module(btf)) { 1961 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1962 btf_put(btf); 1963 return ERR_PTR(-EINVAL); 1964 } 1965 1966 mod = btf_try_get_module(btf); 1967 if (!mod) { 1968 btf_put(btf); 1969 return ERR_PTR(-ENXIO); 1970 } 1971 1972 b = &tab->descs[tab->nr_descs++]; 1973 b->btf = btf; 1974 b->module = mod; 1975 b->offset = offset; 1976 1977 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1978 kfunc_btf_cmp_by_off, NULL); 1979 } 1980 return b->btf; 1981 } 1982 1983 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1984 { 1985 if (!tab) 1986 return; 1987 1988 while (tab->nr_descs--) { 1989 module_put(tab->descs[tab->nr_descs].module); 1990 btf_put(tab->descs[tab->nr_descs].btf); 1991 } 1992 kfree(tab); 1993 } 1994 1995 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1996 { 1997 if (offset) { 1998 if (offset < 0) { 1999 /* In the future, this can be allowed to increase limit 2000 * of fd index into fd_array, interpreted as u16. 2001 */ 2002 verbose(env, "negative offset disallowed for kernel module function call\n"); 2003 return ERR_PTR(-EINVAL); 2004 } 2005 2006 return __find_kfunc_desc_btf(env, offset); 2007 } 2008 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2009 } 2010 2011 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2012 { 2013 const struct btf_type *func, *func_proto; 2014 struct bpf_kfunc_btf_tab *btf_tab; 2015 struct bpf_kfunc_desc_tab *tab; 2016 struct bpf_prog_aux *prog_aux; 2017 struct bpf_kfunc_desc *desc; 2018 const char *func_name; 2019 struct btf *desc_btf; 2020 unsigned long call_imm; 2021 unsigned long addr; 2022 int err; 2023 2024 prog_aux = env->prog->aux; 2025 tab = prog_aux->kfunc_tab; 2026 btf_tab = prog_aux->kfunc_btf_tab; 2027 if (!tab) { 2028 if (!btf_vmlinux) { 2029 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2030 return -ENOTSUPP; 2031 } 2032 2033 if (!env->prog->jit_requested) { 2034 verbose(env, "JIT is required for calling kernel function\n"); 2035 return -ENOTSUPP; 2036 } 2037 2038 if (!bpf_jit_supports_kfunc_call()) { 2039 verbose(env, "JIT does not support calling kernel function\n"); 2040 return -ENOTSUPP; 2041 } 2042 2043 if (!env->prog->gpl_compatible) { 2044 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2045 return -EINVAL; 2046 } 2047 2048 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2049 if (!tab) 2050 return -ENOMEM; 2051 prog_aux->kfunc_tab = tab; 2052 } 2053 2054 /* func_id == 0 is always invalid, but instead of returning an error, be 2055 * conservative and wait until the code elimination pass before returning 2056 * error, so that invalid calls that get pruned out can be in BPF programs 2057 * loaded from userspace. It is also required that offset be untouched 2058 * for such calls. 2059 */ 2060 if (!func_id && !offset) 2061 return 0; 2062 2063 if (!btf_tab && offset) { 2064 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2065 if (!btf_tab) 2066 return -ENOMEM; 2067 prog_aux->kfunc_btf_tab = btf_tab; 2068 } 2069 2070 desc_btf = find_kfunc_desc_btf(env, offset); 2071 if (IS_ERR(desc_btf)) { 2072 verbose(env, "failed to find BTF for kernel function\n"); 2073 return PTR_ERR(desc_btf); 2074 } 2075 2076 if (find_kfunc_desc(env->prog, func_id, offset)) 2077 return 0; 2078 2079 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2080 verbose(env, "too many different kernel function calls\n"); 2081 return -E2BIG; 2082 } 2083 2084 func = btf_type_by_id(desc_btf, func_id); 2085 if (!func || !btf_type_is_func(func)) { 2086 verbose(env, "kernel btf_id %u is not a function\n", 2087 func_id); 2088 return -EINVAL; 2089 } 2090 func_proto = btf_type_by_id(desc_btf, func->type); 2091 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2092 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2093 func_id); 2094 return -EINVAL; 2095 } 2096 2097 func_name = btf_name_by_offset(desc_btf, func->name_off); 2098 addr = kallsyms_lookup_name(func_name); 2099 if (!addr) { 2100 verbose(env, "cannot find address for kernel function %s\n", 2101 func_name); 2102 return -EINVAL; 2103 } 2104 2105 call_imm = BPF_CALL_IMM(addr); 2106 /* Check whether or not the relative offset overflows desc->imm */ 2107 if ((unsigned long)(s32)call_imm != call_imm) { 2108 verbose(env, "address of kernel function %s is out of range\n", 2109 func_name); 2110 return -EINVAL; 2111 } 2112 2113 desc = &tab->descs[tab->nr_descs++]; 2114 desc->func_id = func_id; 2115 desc->imm = call_imm; 2116 desc->offset = offset; 2117 err = btf_distill_func_proto(&env->log, desc_btf, 2118 func_proto, func_name, 2119 &desc->func_model); 2120 if (!err) 2121 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2122 kfunc_desc_cmp_by_id_off, NULL); 2123 return err; 2124 } 2125 2126 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2127 { 2128 const struct bpf_kfunc_desc *d0 = a; 2129 const struct bpf_kfunc_desc *d1 = b; 2130 2131 if (d0->imm > d1->imm) 2132 return 1; 2133 else if (d0->imm < d1->imm) 2134 return -1; 2135 return 0; 2136 } 2137 2138 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2139 { 2140 struct bpf_kfunc_desc_tab *tab; 2141 2142 tab = prog->aux->kfunc_tab; 2143 if (!tab) 2144 return; 2145 2146 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2147 kfunc_desc_cmp_by_imm, NULL); 2148 } 2149 2150 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2151 { 2152 return !!prog->aux->kfunc_tab; 2153 } 2154 2155 const struct btf_func_model * 2156 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2157 const struct bpf_insn *insn) 2158 { 2159 const struct bpf_kfunc_desc desc = { 2160 .imm = insn->imm, 2161 }; 2162 const struct bpf_kfunc_desc *res; 2163 struct bpf_kfunc_desc_tab *tab; 2164 2165 tab = prog->aux->kfunc_tab; 2166 res = bsearch(&desc, tab->descs, tab->nr_descs, 2167 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2168 2169 return res ? &res->func_model : NULL; 2170 } 2171 2172 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2173 { 2174 struct bpf_subprog_info *subprog = env->subprog_info; 2175 struct bpf_insn *insn = env->prog->insnsi; 2176 int i, ret, insn_cnt = env->prog->len; 2177 2178 /* Add entry function. */ 2179 ret = add_subprog(env, 0); 2180 if (ret) 2181 return ret; 2182 2183 for (i = 0; i < insn_cnt; i++, insn++) { 2184 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2185 !bpf_pseudo_kfunc_call(insn)) 2186 continue; 2187 2188 if (!env->bpf_capable) { 2189 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2190 return -EPERM; 2191 } 2192 2193 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2194 ret = add_subprog(env, i + insn->imm + 1); 2195 else 2196 ret = add_kfunc_call(env, insn->imm, insn->off); 2197 2198 if (ret < 0) 2199 return ret; 2200 } 2201 2202 /* Add a fake 'exit' subprog which could simplify subprog iteration 2203 * logic. 'subprog_cnt' should not be increased. 2204 */ 2205 subprog[env->subprog_cnt].start = insn_cnt; 2206 2207 if (env->log.level & BPF_LOG_LEVEL2) 2208 for (i = 0; i < env->subprog_cnt; i++) 2209 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2210 2211 return 0; 2212 } 2213 2214 static int check_subprogs(struct bpf_verifier_env *env) 2215 { 2216 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2217 struct bpf_subprog_info *subprog = env->subprog_info; 2218 struct bpf_insn *insn = env->prog->insnsi; 2219 int insn_cnt = env->prog->len; 2220 2221 /* now check that all jumps are within the same subprog */ 2222 subprog_start = subprog[cur_subprog].start; 2223 subprog_end = subprog[cur_subprog + 1].start; 2224 for (i = 0; i < insn_cnt; i++) { 2225 u8 code = insn[i].code; 2226 2227 if (code == (BPF_JMP | BPF_CALL) && 2228 insn[i].imm == BPF_FUNC_tail_call && 2229 insn[i].src_reg != BPF_PSEUDO_CALL) 2230 subprog[cur_subprog].has_tail_call = true; 2231 if (BPF_CLASS(code) == BPF_LD && 2232 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2233 subprog[cur_subprog].has_ld_abs = true; 2234 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2235 goto next; 2236 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2237 goto next; 2238 off = i + insn[i].off + 1; 2239 if (off < subprog_start || off >= subprog_end) { 2240 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2241 return -EINVAL; 2242 } 2243 next: 2244 if (i == subprog_end - 1) { 2245 /* to avoid fall-through from one subprog into another 2246 * the last insn of the subprog should be either exit 2247 * or unconditional jump back 2248 */ 2249 if (code != (BPF_JMP | BPF_EXIT) && 2250 code != (BPF_JMP | BPF_JA)) { 2251 verbose(env, "last insn is not an exit or jmp\n"); 2252 return -EINVAL; 2253 } 2254 subprog_start = subprog_end; 2255 cur_subprog++; 2256 if (cur_subprog < env->subprog_cnt) 2257 subprog_end = subprog[cur_subprog + 1].start; 2258 } 2259 } 2260 return 0; 2261 } 2262 2263 /* Parentage chain of this register (or stack slot) should take care of all 2264 * issues like callee-saved registers, stack slot allocation time, etc. 2265 */ 2266 static int mark_reg_read(struct bpf_verifier_env *env, 2267 const struct bpf_reg_state *state, 2268 struct bpf_reg_state *parent, u8 flag) 2269 { 2270 bool writes = parent == state->parent; /* Observe write marks */ 2271 int cnt = 0; 2272 2273 while (parent) { 2274 /* if read wasn't screened by an earlier write ... */ 2275 if (writes && state->live & REG_LIVE_WRITTEN) 2276 break; 2277 if (parent->live & REG_LIVE_DONE) { 2278 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2279 reg_type_str(env, parent->type), 2280 parent->var_off.value, parent->off); 2281 return -EFAULT; 2282 } 2283 /* The first condition is more likely to be true than the 2284 * second, checked it first. 2285 */ 2286 if ((parent->live & REG_LIVE_READ) == flag || 2287 parent->live & REG_LIVE_READ64) 2288 /* The parentage chain never changes and 2289 * this parent was already marked as LIVE_READ. 2290 * There is no need to keep walking the chain again and 2291 * keep re-marking all parents as LIVE_READ. 2292 * This case happens when the same register is read 2293 * multiple times without writes into it in-between. 2294 * Also, if parent has the stronger REG_LIVE_READ64 set, 2295 * then no need to set the weak REG_LIVE_READ32. 2296 */ 2297 break; 2298 /* ... then we depend on parent's value */ 2299 parent->live |= flag; 2300 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2301 if (flag == REG_LIVE_READ64) 2302 parent->live &= ~REG_LIVE_READ32; 2303 state = parent; 2304 parent = state->parent; 2305 writes = true; 2306 cnt++; 2307 } 2308 2309 if (env->longest_mark_read_walk < cnt) 2310 env->longest_mark_read_walk = cnt; 2311 return 0; 2312 } 2313 2314 /* This function is supposed to be used by the following 32-bit optimization 2315 * code only. It returns TRUE if the source or destination register operates 2316 * on 64-bit, otherwise return FALSE. 2317 */ 2318 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2319 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2320 { 2321 u8 code, class, op; 2322 2323 code = insn->code; 2324 class = BPF_CLASS(code); 2325 op = BPF_OP(code); 2326 if (class == BPF_JMP) { 2327 /* BPF_EXIT for "main" will reach here. Return TRUE 2328 * conservatively. 2329 */ 2330 if (op == BPF_EXIT) 2331 return true; 2332 if (op == BPF_CALL) { 2333 /* BPF to BPF call will reach here because of marking 2334 * caller saved clobber with DST_OP_NO_MARK for which we 2335 * don't care the register def because they are anyway 2336 * marked as NOT_INIT already. 2337 */ 2338 if (insn->src_reg == BPF_PSEUDO_CALL) 2339 return false; 2340 /* Helper call will reach here because of arg type 2341 * check, conservatively return TRUE. 2342 */ 2343 if (t == SRC_OP) 2344 return true; 2345 2346 return false; 2347 } 2348 } 2349 2350 if (class == BPF_ALU64 || class == BPF_JMP || 2351 /* BPF_END always use BPF_ALU class. */ 2352 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2353 return true; 2354 2355 if (class == BPF_ALU || class == BPF_JMP32) 2356 return false; 2357 2358 if (class == BPF_LDX) { 2359 if (t != SRC_OP) 2360 return BPF_SIZE(code) == BPF_DW; 2361 /* LDX source must be ptr. */ 2362 return true; 2363 } 2364 2365 if (class == BPF_STX) { 2366 /* BPF_STX (including atomic variants) has multiple source 2367 * operands, one of which is a ptr. Check whether the caller is 2368 * asking about it. 2369 */ 2370 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2371 return true; 2372 return BPF_SIZE(code) == BPF_DW; 2373 } 2374 2375 if (class == BPF_LD) { 2376 u8 mode = BPF_MODE(code); 2377 2378 /* LD_IMM64 */ 2379 if (mode == BPF_IMM) 2380 return true; 2381 2382 /* Both LD_IND and LD_ABS return 32-bit data. */ 2383 if (t != SRC_OP) 2384 return false; 2385 2386 /* Implicit ctx ptr. */ 2387 if (regno == BPF_REG_6) 2388 return true; 2389 2390 /* Explicit source could be any width. */ 2391 return true; 2392 } 2393 2394 if (class == BPF_ST) 2395 /* The only source register for BPF_ST is a ptr. */ 2396 return true; 2397 2398 /* Conservatively return true at default. */ 2399 return true; 2400 } 2401 2402 /* Return the regno defined by the insn, or -1. */ 2403 static int insn_def_regno(const struct bpf_insn *insn) 2404 { 2405 switch (BPF_CLASS(insn->code)) { 2406 case BPF_JMP: 2407 case BPF_JMP32: 2408 case BPF_ST: 2409 return -1; 2410 case BPF_STX: 2411 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2412 (insn->imm & BPF_FETCH)) { 2413 if (insn->imm == BPF_CMPXCHG) 2414 return BPF_REG_0; 2415 else 2416 return insn->src_reg; 2417 } else { 2418 return -1; 2419 } 2420 default: 2421 return insn->dst_reg; 2422 } 2423 } 2424 2425 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2426 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2427 { 2428 int dst_reg = insn_def_regno(insn); 2429 2430 if (dst_reg == -1) 2431 return false; 2432 2433 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2434 } 2435 2436 static void mark_insn_zext(struct bpf_verifier_env *env, 2437 struct bpf_reg_state *reg) 2438 { 2439 s32 def_idx = reg->subreg_def; 2440 2441 if (def_idx == DEF_NOT_SUBREG) 2442 return; 2443 2444 env->insn_aux_data[def_idx - 1].zext_dst = true; 2445 /* The dst will be zero extended, so won't be sub-register anymore. */ 2446 reg->subreg_def = DEF_NOT_SUBREG; 2447 } 2448 2449 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2450 enum reg_arg_type t) 2451 { 2452 struct bpf_verifier_state *vstate = env->cur_state; 2453 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2454 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2455 struct bpf_reg_state *reg, *regs = state->regs; 2456 bool rw64; 2457 2458 if (regno >= MAX_BPF_REG) { 2459 verbose(env, "R%d is invalid\n", regno); 2460 return -EINVAL; 2461 } 2462 2463 mark_reg_scratched(env, regno); 2464 2465 reg = ®s[regno]; 2466 rw64 = is_reg64(env, insn, regno, reg, t); 2467 if (t == SRC_OP) { 2468 /* check whether register used as source operand can be read */ 2469 if (reg->type == NOT_INIT) { 2470 verbose(env, "R%d !read_ok\n", regno); 2471 return -EACCES; 2472 } 2473 /* We don't need to worry about FP liveness because it's read-only */ 2474 if (regno == BPF_REG_FP) 2475 return 0; 2476 2477 if (rw64) 2478 mark_insn_zext(env, reg); 2479 2480 return mark_reg_read(env, reg, reg->parent, 2481 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2482 } else { 2483 /* check whether register used as dest operand can be written to */ 2484 if (regno == BPF_REG_FP) { 2485 verbose(env, "frame pointer is read only\n"); 2486 return -EACCES; 2487 } 2488 reg->live |= REG_LIVE_WRITTEN; 2489 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2490 if (t == DST_OP) 2491 mark_reg_unknown(env, regs, regno); 2492 } 2493 return 0; 2494 } 2495 2496 /* for any branch, call, exit record the history of jmps in the given state */ 2497 static int push_jmp_history(struct bpf_verifier_env *env, 2498 struct bpf_verifier_state *cur) 2499 { 2500 u32 cnt = cur->jmp_history_cnt; 2501 struct bpf_idx_pair *p; 2502 2503 cnt++; 2504 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2505 if (!p) 2506 return -ENOMEM; 2507 p[cnt - 1].idx = env->insn_idx; 2508 p[cnt - 1].prev_idx = env->prev_insn_idx; 2509 cur->jmp_history = p; 2510 cur->jmp_history_cnt = cnt; 2511 return 0; 2512 } 2513 2514 /* Backtrack one insn at a time. If idx is not at the top of recorded 2515 * history then previous instruction came from straight line execution. 2516 */ 2517 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2518 u32 *history) 2519 { 2520 u32 cnt = *history; 2521 2522 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2523 i = st->jmp_history[cnt - 1].prev_idx; 2524 (*history)--; 2525 } else { 2526 i--; 2527 } 2528 return i; 2529 } 2530 2531 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2532 { 2533 const struct btf_type *func; 2534 struct btf *desc_btf; 2535 2536 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2537 return NULL; 2538 2539 desc_btf = find_kfunc_desc_btf(data, insn->off); 2540 if (IS_ERR(desc_btf)) 2541 return "<error>"; 2542 2543 func = btf_type_by_id(desc_btf, insn->imm); 2544 return btf_name_by_offset(desc_btf, func->name_off); 2545 } 2546 2547 /* For given verifier state backtrack_insn() is called from the last insn to 2548 * the first insn. Its purpose is to compute a bitmask of registers and 2549 * stack slots that needs precision in the parent verifier state. 2550 */ 2551 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2552 u32 *reg_mask, u64 *stack_mask) 2553 { 2554 const struct bpf_insn_cbs cbs = { 2555 .cb_call = disasm_kfunc_name, 2556 .cb_print = verbose, 2557 .private_data = env, 2558 }; 2559 struct bpf_insn *insn = env->prog->insnsi + idx; 2560 u8 class = BPF_CLASS(insn->code); 2561 u8 opcode = BPF_OP(insn->code); 2562 u8 mode = BPF_MODE(insn->code); 2563 u32 dreg = 1u << insn->dst_reg; 2564 u32 sreg = 1u << insn->src_reg; 2565 u32 spi; 2566 2567 if (insn->code == 0) 2568 return 0; 2569 if (env->log.level & BPF_LOG_LEVEL2) { 2570 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2571 verbose(env, "%d: ", idx); 2572 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2573 } 2574 2575 if (class == BPF_ALU || class == BPF_ALU64) { 2576 if (!(*reg_mask & dreg)) 2577 return 0; 2578 if (opcode == BPF_MOV) { 2579 if (BPF_SRC(insn->code) == BPF_X) { 2580 /* dreg = sreg 2581 * dreg needs precision after this insn 2582 * sreg needs precision before this insn 2583 */ 2584 *reg_mask &= ~dreg; 2585 *reg_mask |= sreg; 2586 } else { 2587 /* dreg = K 2588 * dreg needs precision after this insn. 2589 * Corresponding register is already marked 2590 * as precise=true in this verifier state. 2591 * No further markings in parent are necessary 2592 */ 2593 *reg_mask &= ~dreg; 2594 } 2595 } else { 2596 if (BPF_SRC(insn->code) == BPF_X) { 2597 /* dreg += sreg 2598 * both dreg and sreg need precision 2599 * before this insn 2600 */ 2601 *reg_mask |= sreg; 2602 } /* else dreg += K 2603 * dreg still needs precision before this insn 2604 */ 2605 } 2606 } else if (class == BPF_LDX) { 2607 if (!(*reg_mask & dreg)) 2608 return 0; 2609 *reg_mask &= ~dreg; 2610 2611 /* scalars can only be spilled into stack w/o losing precision. 2612 * Load from any other memory can be zero extended. 2613 * The desire to keep that precision is already indicated 2614 * by 'precise' mark in corresponding register of this state. 2615 * No further tracking necessary. 2616 */ 2617 if (insn->src_reg != BPF_REG_FP) 2618 return 0; 2619 2620 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2621 * that [fp - off] slot contains scalar that needs to be 2622 * tracked with precision 2623 */ 2624 spi = (-insn->off - 1) / BPF_REG_SIZE; 2625 if (spi >= 64) { 2626 verbose(env, "BUG spi %d\n", spi); 2627 WARN_ONCE(1, "verifier backtracking bug"); 2628 return -EFAULT; 2629 } 2630 *stack_mask |= 1ull << spi; 2631 } else if (class == BPF_STX || class == BPF_ST) { 2632 if (*reg_mask & dreg) 2633 /* stx & st shouldn't be using _scalar_ dst_reg 2634 * to access memory. It means backtracking 2635 * encountered a case of pointer subtraction. 2636 */ 2637 return -ENOTSUPP; 2638 /* scalars can only be spilled into stack */ 2639 if (insn->dst_reg != BPF_REG_FP) 2640 return 0; 2641 spi = (-insn->off - 1) / BPF_REG_SIZE; 2642 if (spi >= 64) { 2643 verbose(env, "BUG spi %d\n", spi); 2644 WARN_ONCE(1, "verifier backtracking bug"); 2645 return -EFAULT; 2646 } 2647 if (!(*stack_mask & (1ull << spi))) 2648 return 0; 2649 *stack_mask &= ~(1ull << spi); 2650 if (class == BPF_STX) 2651 *reg_mask |= sreg; 2652 } else if (class == BPF_JMP || class == BPF_JMP32) { 2653 if (opcode == BPF_CALL) { 2654 if (insn->src_reg == BPF_PSEUDO_CALL) 2655 return -ENOTSUPP; 2656 /* regular helper call sets R0 */ 2657 *reg_mask &= ~1; 2658 if (*reg_mask & 0x3f) { 2659 /* if backtracing was looking for registers R1-R5 2660 * they should have been found already. 2661 */ 2662 verbose(env, "BUG regs %x\n", *reg_mask); 2663 WARN_ONCE(1, "verifier backtracking bug"); 2664 return -EFAULT; 2665 } 2666 } else if (opcode == BPF_EXIT) { 2667 return -ENOTSUPP; 2668 } 2669 } else if (class == BPF_LD) { 2670 if (!(*reg_mask & dreg)) 2671 return 0; 2672 *reg_mask &= ~dreg; 2673 /* It's ld_imm64 or ld_abs or ld_ind. 2674 * For ld_imm64 no further tracking of precision 2675 * into parent is necessary 2676 */ 2677 if (mode == BPF_IND || mode == BPF_ABS) 2678 /* to be analyzed */ 2679 return -ENOTSUPP; 2680 } 2681 return 0; 2682 } 2683 2684 /* the scalar precision tracking algorithm: 2685 * . at the start all registers have precise=false. 2686 * . scalar ranges are tracked as normal through alu and jmp insns. 2687 * . once precise value of the scalar register is used in: 2688 * . ptr + scalar alu 2689 * . if (scalar cond K|scalar) 2690 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2691 * backtrack through the verifier states and mark all registers and 2692 * stack slots with spilled constants that these scalar regisers 2693 * should be precise. 2694 * . during state pruning two registers (or spilled stack slots) 2695 * are equivalent if both are not precise. 2696 * 2697 * Note the verifier cannot simply walk register parentage chain, 2698 * since many different registers and stack slots could have been 2699 * used to compute single precise scalar. 2700 * 2701 * The approach of starting with precise=true for all registers and then 2702 * backtrack to mark a register as not precise when the verifier detects 2703 * that program doesn't care about specific value (e.g., when helper 2704 * takes register as ARG_ANYTHING parameter) is not safe. 2705 * 2706 * It's ok to walk single parentage chain of the verifier states. 2707 * It's possible that this backtracking will go all the way till 1st insn. 2708 * All other branches will be explored for needing precision later. 2709 * 2710 * The backtracking needs to deal with cases like: 2711 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2712 * r9 -= r8 2713 * r5 = r9 2714 * if r5 > 0x79f goto pc+7 2715 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2716 * r5 += 1 2717 * ... 2718 * call bpf_perf_event_output#25 2719 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2720 * 2721 * and this case: 2722 * r6 = 1 2723 * call foo // uses callee's r6 inside to compute r0 2724 * r0 += r6 2725 * if r0 == 0 goto 2726 * 2727 * to track above reg_mask/stack_mask needs to be independent for each frame. 2728 * 2729 * Also if parent's curframe > frame where backtracking started, 2730 * the verifier need to mark registers in both frames, otherwise callees 2731 * may incorrectly prune callers. This is similar to 2732 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2733 * 2734 * For now backtracking falls back into conservative marking. 2735 */ 2736 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2737 struct bpf_verifier_state *st) 2738 { 2739 struct bpf_func_state *func; 2740 struct bpf_reg_state *reg; 2741 int i, j; 2742 2743 /* big hammer: mark all scalars precise in this path. 2744 * pop_stack may still get !precise scalars. 2745 */ 2746 for (; st; st = st->parent) 2747 for (i = 0; i <= st->curframe; i++) { 2748 func = st->frame[i]; 2749 for (j = 0; j < BPF_REG_FP; j++) { 2750 reg = &func->regs[j]; 2751 if (reg->type != SCALAR_VALUE) 2752 continue; 2753 reg->precise = true; 2754 } 2755 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2756 if (!is_spilled_reg(&func->stack[j])) 2757 continue; 2758 reg = &func->stack[j].spilled_ptr; 2759 if (reg->type != SCALAR_VALUE) 2760 continue; 2761 reg->precise = true; 2762 } 2763 } 2764 } 2765 2766 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2767 int spi) 2768 { 2769 struct bpf_verifier_state *st = env->cur_state; 2770 int first_idx = st->first_insn_idx; 2771 int last_idx = env->insn_idx; 2772 struct bpf_func_state *func; 2773 struct bpf_reg_state *reg; 2774 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2775 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2776 bool skip_first = true; 2777 bool new_marks = false; 2778 int i, err; 2779 2780 if (!env->bpf_capable) 2781 return 0; 2782 2783 func = st->frame[st->curframe]; 2784 if (regno >= 0) { 2785 reg = &func->regs[regno]; 2786 if (reg->type != SCALAR_VALUE) { 2787 WARN_ONCE(1, "backtracing misuse"); 2788 return -EFAULT; 2789 } 2790 if (!reg->precise) 2791 new_marks = true; 2792 else 2793 reg_mask = 0; 2794 reg->precise = true; 2795 } 2796 2797 while (spi >= 0) { 2798 if (!is_spilled_reg(&func->stack[spi])) { 2799 stack_mask = 0; 2800 break; 2801 } 2802 reg = &func->stack[spi].spilled_ptr; 2803 if (reg->type != SCALAR_VALUE) { 2804 stack_mask = 0; 2805 break; 2806 } 2807 if (!reg->precise) 2808 new_marks = true; 2809 else 2810 stack_mask = 0; 2811 reg->precise = true; 2812 break; 2813 } 2814 2815 if (!new_marks) 2816 return 0; 2817 if (!reg_mask && !stack_mask) 2818 return 0; 2819 for (;;) { 2820 DECLARE_BITMAP(mask, 64); 2821 u32 history = st->jmp_history_cnt; 2822 2823 if (env->log.level & BPF_LOG_LEVEL2) 2824 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2825 for (i = last_idx;;) { 2826 if (skip_first) { 2827 err = 0; 2828 skip_first = false; 2829 } else { 2830 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2831 } 2832 if (err == -ENOTSUPP) { 2833 mark_all_scalars_precise(env, st); 2834 return 0; 2835 } else if (err) { 2836 return err; 2837 } 2838 if (!reg_mask && !stack_mask) 2839 /* Found assignment(s) into tracked register in this state. 2840 * Since this state is already marked, just return. 2841 * Nothing to be tracked further in the parent state. 2842 */ 2843 return 0; 2844 if (i == first_idx) 2845 break; 2846 i = get_prev_insn_idx(st, i, &history); 2847 if (i >= env->prog->len) { 2848 /* This can happen if backtracking reached insn 0 2849 * and there are still reg_mask or stack_mask 2850 * to backtrack. 2851 * It means the backtracking missed the spot where 2852 * particular register was initialized with a constant. 2853 */ 2854 verbose(env, "BUG backtracking idx %d\n", i); 2855 WARN_ONCE(1, "verifier backtracking bug"); 2856 return -EFAULT; 2857 } 2858 } 2859 st = st->parent; 2860 if (!st) 2861 break; 2862 2863 new_marks = false; 2864 func = st->frame[st->curframe]; 2865 bitmap_from_u64(mask, reg_mask); 2866 for_each_set_bit(i, mask, 32) { 2867 reg = &func->regs[i]; 2868 if (reg->type != SCALAR_VALUE) { 2869 reg_mask &= ~(1u << i); 2870 continue; 2871 } 2872 if (!reg->precise) 2873 new_marks = true; 2874 reg->precise = true; 2875 } 2876 2877 bitmap_from_u64(mask, stack_mask); 2878 for_each_set_bit(i, mask, 64) { 2879 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2880 /* the sequence of instructions: 2881 * 2: (bf) r3 = r10 2882 * 3: (7b) *(u64 *)(r3 -8) = r0 2883 * 4: (79) r4 = *(u64 *)(r10 -8) 2884 * doesn't contain jmps. It's backtracked 2885 * as a single block. 2886 * During backtracking insn 3 is not recognized as 2887 * stack access, so at the end of backtracking 2888 * stack slot fp-8 is still marked in stack_mask. 2889 * However the parent state may not have accessed 2890 * fp-8 and it's "unallocated" stack space. 2891 * In such case fallback to conservative. 2892 */ 2893 mark_all_scalars_precise(env, st); 2894 return 0; 2895 } 2896 2897 if (!is_spilled_reg(&func->stack[i])) { 2898 stack_mask &= ~(1ull << i); 2899 continue; 2900 } 2901 reg = &func->stack[i].spilled_ptr; 2902 if (reg->type != SCALAR_VALUE) { 2903 stack_mask &= ~(1ull << i); 2904 continue; 2905 } 2906 if (!reg->precise) 2907 new_marks = true; 2908 reg->precise = true; 2909 } 2910 if (env->log.level & BPF_LOG_LEVEL2) { 2911 verbose(env, "parent %s regs=%x stack=%llx marks:", 2912 new_marks ? "didn't have" : "already had", 2913 reg_mask, stack_mask); 2914 print_verifier_state(env, func, true); 2915 } 2916 2917 if (!reg_mask && !stack_mask) 2918 break; 2919 if (!new_marks) 2920 break; 2921 2922 last_idx = st->last_insn_idx; 2923 first_idx = st->first_insn_idx; 2924 } 2925 return 0; 2926 } 2927 2928 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2929 { 2930 return __mark_chain_precision(env, regno, -1); 2931 } 2932 2933 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2934 { 2935 return __mark_chain_precision(env, -1, spi); 2936 } 2937 2938 static bool is_spillable_regtype(enum bpf_reg_type type) 2939 { 2940 switch (base_type(type)) { 2941 case PTR_TO_MAP_VALUE: 2942 case PTR_TO_STACK: 2943 case PTR_TO_CTX: 2944 case PTR_TO_PACKET: 2945 case PTR_TO_PACKET_META: 2946 case PTR_TO_PACKET_END: 2947 case PTR_TO_FLOW_KEYS: 2948 case CONST_PTR_TO_MAP: 2949 case PTR_TO_SOCKET: 2950 case PTR_TO_SOCK_COMMON: 2951 case PTR_TO_TCP_SOCK: 2952 case PTR_TO_XDP_SOCK: 2953 case PTR_TO_BTF_ID: 2954 case PTR_TO_BUF: 2955 case PTR_TO_MEM: 2956 case PTR_TO_FUNC: 2957 case PTR_TO_MAP_KEY: 2958 return true; 2959 default: 2960 return false; 2961 } 2962 } 2963 2964 /* Does this register contain a constant zero? */ 2965 static bool register_is_null(struct bpf_reg_state *reg) 2966 { 2967 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2968 } 2969 2970 static bool register_is_const(struct bpf_reg_state *reg) 2971 { 2972 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2973 } 2974 2975 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2976 { 2977 return tnum_is_unknown(reg->var_off) && 2978 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2979 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2980 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2981 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2982 } 2983 2984 static bool register_is_bounded(struct bpf_reg_state *reg) 2985 { 2986 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2987 } 2988 2989 static bool __is_pointer_value(bool allow_ptr_leaks, 2990 const struct bpf_reg_state *reg) 2991 { 2992 if (allow_ptr_leaks) 2993 return false; 2994 2995 return reg->type != SCALAR_VALUE; 2996 } 2997 2998 static void save_register_state(struct bpf_func_state *state, 2999 int spi, struct bpf_reg_state *reg, 3000 int size) 3001 { 3002 int i; 3003 3004 state->stack[spi].spilled_ptr = *reg; 3005 if (size == BPF_REG_SIZE) 3006 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3007 3008 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3009 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3010 3011 /* size < 8 bytes spill */ 3012 for (; i; i--) 3013 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3014 } 3015 3016 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3017 * stack boundary and alignment are checked in check_mem_access() 3018 */ 3019 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3020 /* stack frame we're writing to */ 3021 struct bpf_func_state *state, 3022 int off, int size, int value_regno, 3023 int insn_idx) 3024 { 3025 struct bpf_func_state *cur; /* state of the current function */ 3026 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3027 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3028 struct bpf_reg_state *reg = NULL; 3029 3030 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3031 if (err) 3032 return err; 3033 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3034 * so it's aligned access and [off, off + size) are within stack limits 3035 */ 3036 if (!env->allow_ptr_leaks && 3037 state->stack[spi].slot_type[0] == STACK_SPILL && 3038 size != BPF_REG_SIZE) { 3039 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3040 return -EACCES; 3041 } 3042 3043 cur = env->cur_state->frame[env->cur_state->curframe]; 3044 if (value_regno >= 0) 3045 reg = &cur->regs[value_regno]; 3046 if (!env->bypass_spec_v4) { 3047 bool sanitize = reg && is_spillable_regtype(reg->type); 3048 3049 for (i = 0; i < size; i++) { 3050 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3051 sanitize = true; 3052 break; 3053 } 3054 } 3055 3056 if (sanitize) 3057 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3058 } 3059 3060 mark_stack_slot_scratched(env, spi); 3061 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3062 !register_is_null(reg) && env->bpf_capable) { 3063 if (dst_reg != BPF_REG_FP) { 3064 /* The backtracking logic can only recognize explicit 3065 * stack slot address like [fp - 8]. Other spill of 3066 * scalar via different register has to be conservative. 3067 * Backtrack from here and mark all registers as precise 3068 * that contributed into 'reg' being a constant. 3069 */ 3070 err = mark_chain_precision(env, value_regno); 3071 if (err) 3072 return err; 3073 } 3074 save_register_state(state, spi, reg, size); 3075 } else if (reg && is_spillable_regtype(reg->type)) { 3076 /* register containing pointer is being spilled into stack */ 3077 if (size != BPF_REG_SIZE) { 3078 verbose_linfo(env, insn_idx, "; "); 3079 verbose(env, "invalid size of register spill\n"); 3080 return -EACCES; 3081 } 3082 if (state != cur && reg->type == PTR_TO_STACK) { 3083 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3084 return -EINVAL; 3085 } 3086 save_register_state(state, spi, reg, size); 3087 } else { 3088 u8 type = STACK_MISC; 3089 3090 /* regular write of data into stack destroys any spilled ptr */ 3091 state->stack[spi].spilled_ptr.type = NOT_INIT; 3092 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3093 if (is_spilled_reg(&state->stack[spi])) 3094 for (i = 0; i < BPF_REG_SIZE; i++) 3095 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3096 3097 /* only mark the slot as written if all 8 bytes were written 3098 * otherwise read propagation may incorrectly stop too soon 3099 * when stack slots are partially written. 3100 * This heuristic means that read propagation will be 3101 * conservative, since it will add reg_live_read marks 3102 * to stack slots all the way to first state when programs 3103 * writes+reads less than 8 bytes 3104 */ 3105 if (size == BPF_REG_SIZE) 3106 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3107 3108 /* when we zero initialize stack slots mark them as such */ 3109 if (reg && register_is_null(reg)) { 3110 /* backtracking doesn't work for STACK_ZERO yet. */ 3111 err = mark_chain_precision(env, value_regno); 3112 if (err) 3113 return err; 3114 type = STACK_ZERO; 3115 } 3116 3117 /* Mark slots affected by this stack write. */ 3118 for (i = 0; i < size; i++) 3119 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3120 type; 3121 } 3122 return 0; 3123 } 3124 3125 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3126 * known to contain a variable offset. 3127 * This function checks whether the write is permitted and conservatively 3128 * tracks the effects of the write, considering that each stack slot in the 3129 * dynamic range is potentially written to. 3130 * 3131 * 'off' includes 'regno->off'. 3132 * 'value_regno' can be -1, meaning that an unknown value is being written to 3133 * the stack. 3134 * 3135 * Spilled pointers in range are not marked as written because we don't know 3136 * what's going to be actually written. This means that read propagation for 3137 * future reads cannot be terminated by this write. 3138 * 3139 * For privileged programs, uninitialized stack slots are considered 3140 * initialized by this write (even though we don't know exactly what offsets 3141 * are going to be written to). The idea is that we don't want the verifier to 3142 * reject future reads that access slots written to through variable offsets. 3143 */ 3144 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3145 /* func where register points to */ 3146 struct bpf_func_state *state, 3147 int ptr_regno, int off, int size, 3148 int value_regno, int insn_idx) 3149 { 3150 struct bpf_func_state *cur; /* state of the current function */ 3151 int min_off, max_off; 3152 int i, err; 3153 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3154 bool writing_zero = false; 3155 /* set if the fact that we're writing a zero is used to let any 3156 * stack slots remain STACK_ZERO 3157 */ 3158 bool zero_used = false; 3159 3160 cur = env->cur_state->frame[env->cur_state->curframe]; 3161 ptr_reg = &cur->regs[ptr_regno]; 3162 min_off = ptr_reg->smin_value + off; 3163 max_off = ptr_reg->smax_value + off + size; 3164 if (value_regno >= 0) 3165 value_reg = &cur->regs[value_regno]; 3166 if (value_reg && register_is_null(value_reg)) 3167 writing_zero = true; 3168 3169 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3170 if (err) 3171 return err; 3172 3173 3174 /* Variable offset writes destroy any spilled pointers in range. */ 3175 for (i = min_off; i < max_off; i++) { 3176 u8 new_type, *stype; 3177 int slot, spi; 3178 3179 slot = -i - 1; 3180 spi = slot / BPF_REG_SIZE; 3181 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3182 mark_stack_slot_scratched(env, spi); 3183 3184 if (!env->allow_ptr_leaks 3185 && *stype != NOT_INIT 3186 && *stype != SCALAR_VALUE) { 3187 /* Reject the write if there's are spilled pointers in 3188 * range. If we didn't reject here, the ptr status 3189 * would be erased below (even though not all slots are 3190 * actually overwritten), possibly opening the door to 3191 * leaks. 3192 */ 3193 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3194 insn_idx, i); 3195 return -EINVAL; 3196 } 3197 3198 /* Erase all spilled pointers. */ 3199 state->stack[spi].spilled_ptr.type = NOT_INIT; 3200 3201 /* Update the slot type. */ 3202 new_type = STACK_MISC; 3203 if (writing_zero && *stype == STACK_ZERO) { 3204 new_type = STACK_ZERO; 3205 zero_used = true; 3206 } 3207 /* If the slot is STACK_INVALID, we check whether it's OK to 3208 * pretend that it will be initialized by this write. The slot 3209 * might not actually be written to, and so if we mark it as 3210 * initialized future reads might leak uninitialized memory. 3211 * For privileged programs, we will accept such reads to slots 3212 * that may or may not be written because, if we're reject 3213 * them, the error would be too confusing. 3214 */ 3215 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3216 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3217 insn_idx, i); 3218 return -EINVAL; 3219 } 3220 *stype = new_type; 3221 } 3222 if (zero_used) { 3223 /* backtracking doesn't work for STACK_ZERO yet. */ 3224 err = mark_chain_precision(env, value_regno); 3225 if (err) 3226 return err; 3227 } 3228 return 0; 3229 } 3230 3231 /* When register 'dst_regno' is assigned some values from stack[min_off, 3232 * max_off), we set the register's type according to the types of the 3233 * respective stack slots. If all the stack values are known to be zeros, then 3234 * so is the destination reg. Otherwise, the register is considered to be 3235 * SCALAR. This function does not deal with register filling; the caller must 3236 * ensure that all spilled registers in the stack range have been marked as 3237 * read. 3238 */ 3239 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3240 /* func where src register points to */ 3241 struct bpf_func_state *ptr_state, 3242 int min_off, int max_off, int dst_regno) 3243 { 3244 struct bpf_verifier_state *vstate = env->cur_state; 3245 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3246 int i, slot, spi; 3247 u8 *stype; 3248 int zeros = 0; 3249 3250 for (i = min_off; i < max_off; i++) { 3251 slot = -i - 1; 3252 spi = slot / BPF_REG_SIZE; 3253 stype = ptr_state->stack[spi].slot_type; 3254 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3255 break; 3256 zeros++; 3257 } 3258 if (zeros == max_off - min_off) { 3259 /* any access_size read into register is zero extended, 3260 * so the whole register == const_zero 3261 */ 3262 __mark_reg_const_zero(&state->regs[dst_regno]); 3263 /* backtracking doesn't support STACK_ZERO yet, 3264 * so mark it precise here, so that later 3265 * backtracking can stop here. 3266 * Backtracking may not need this if this register 3267 * doesn't participate in pointer adjustment. 3268 * Forward propagation of precise flag is not 3269 * necessary either. This mark is only to stop 3270 * backtracking. Any register that contributed 3271 * to const 0 was marked precise before spill. 3272 */ 3273 state->regs[dst_regno].precise = true; 3274 } else { 3275 /* have read misc data from the stack */ 3276 mark_reg_unknown(env, state->regs, dst_regno); 3277 } 3278 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3279 } 3280 3281 /* Read the stack at 'off' and put the results into the register indicated by 3282 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3283 * spilled reg. 3284 * 3285 * 'dst_regno' can be -1, meaning that the read value is not going to a 3286 * register. 3287 * 3288 * The access is assumed to be within the current stack bounds. 3289 */ 3290 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3291 /* func where src register points to */ 3292 struct bpf_func_state *reg_state, 3293 int off, int size, int dst_regno) 3294 { 3295 struct bpf_verifier_state *vstate = env->cur_state; 3296 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3297 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3298 struct bpf_reg_state *reg; 3299 u8 *stype, type; 3300 3301 stype = reg_state->stack[spi].slot_type; 3302 reg = ®_state->stack[spi].spilled_ptr; 3303 3304 if (is_spilled_reg(®_state->stack[spi])) { 3305 u8 spill_size = 1; 3306 3307 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3308 spill_size++; 3309 3310 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3311 if (reg->type != SCALAR_VALUE) { 3312 verbose_linfo(env, env->insn_idx, "; "); 3313 verbose(env, "invalid size of register fill\n"); 3314 return -EACCES; 3315 } 3316 3317 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3318 if (dst_regno < 0) 3319 return 0; 3320 3321 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3322 /* The earlier check_reg_arg() has decided the 3323 * subreg_def for this insn. Save it first. 3324 */ 3325 s32 subreg_def = state->regs[dst_regno].subreg_def; 3326 3327 state->regs[dst_regno] = *reg; 3328 state->regs[dst_regno].subreg_def = subreg_def; 3329 } else { 3330 for (i = 0; i < size; i++) { 3331 type = stype[(slot - i) % BPF_REG_SIZE]; 3332 if (type == STACK_SPILL) 3333 continue; 3334 if (type == STACK_MISC) 3335 continue; 3336 verbose(env, "invalid read from stack off %d+%d size %d\n", 3337 off, i, size); 3338 return -EACCES; 3339 } 3340 mark_reg_unknown(env, state->regs, dst_regno); 3341 } 3342 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3343 return 0; 3344 } 3345 3346 if (dst_regno >= 0) { 3347 /* restore register state from stack */ 3348 state->regs[dst_regno] = *reg; 3349 /* mark reg as written since spilled pointer state likely 3350 * has its liveness marks cleared by is_state_visited() 3351 * which resets stack/reg liveness for state transitions 3352 */ 3353 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3354 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3355 /* If dst_regno==-1, the caller is asking us whether 3356 * it is acceptable to use this value as a SCALAR_VALUE 3357 * (e.g. for XADD). 3358 * We must not allow unprivileged callers to do that 3359 * with spilled pointers. 3360 */ 3361 verbose(env, "leaking pointer from stack off %d\n", 3362 off); 3363 return -EACCES; 3364 } 3365 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3366 } else { 3367 for (i = 0; i < size; i++) { 3368 type = stype[(slot - i) % BPF_REG_SIZE]; 3369 if (type == STACK_MISC) 3370 continue; 3371 if (type == STACK_ZERO) 3372 continue; 3373 verbose(env, "invalid read from stack off %d+%d size %d\n", 3374 off, i, size); 3375 return -EACCES; 3376 } 3377 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3378 if (dst_regno >= 0) 3379 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3380 } 3381 return 0; 3382 } 3383 3384 enum bpf_access_src { 3385 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3386 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3387 }; 3388 3389 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3390 int regno, int off, int access_size, 3391 bool zero_size_allowed, 3392 enum bpf_access_src type, 3393 struct bpf_call_arg_meta *meta); 3394 3395 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3396 { 3397 return cur_regs(env) + regno; 3398 } 3399 3400 /* Read the stack at 'ptr_regno + off' and put the result into the register 3401 * 'dst_regno'. 3402 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3403 * but not its variable offset. 3404 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3405 * 3406 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3407 * filling registers (i.e. reads of spilled register cannot be detected when 3408 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3409 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3410 * offset; for a fixed offset check_stack_read_fixed_off should be used 3411 * instead. 3412 */ 3413 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3414 int ptr_regno, int off, int size, int dst_regno) 3415 { 3416 /* The state of the source register. */ 3417 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3418 struct bpf_func_state *ptr_state = func(env, reg); 3419 int err; 3420 int min_off, max_off; 3421 3422 /* Note that we pass a NULL meta, so raw access will not be permitted. 3423 */ 3424 err = check_stack_range_initialized(env, ptr_regno, off, size, 3425 false, ACCESS_DIRECT, NULL); 3426 if (err) 3427 return err; 3428 3429 min_off = reg->smin_value + off; 3430 max_off = reg->smax_value + off; 3431 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3432 return 0; 3433 } 3434 3435 /* check_stack_read dispatches to check_stack_read_fixed_off or 3436 * check_stack_read_var_off. 3437 * 3438 * The caller must ensure that the offset falls within the allocated stack 3439 * bounds. 3440 * 3441 * 'dst_regno' is a register which will receive the value from the stack. It 3442 * can be -1, meaning that the read value is not going to a register. 3443 */ 3444 static int check_stack_read(struct bpf_verifier_env *env, 3445 int ptr_regno, int off, int size, 3446 int dst_regno) 3447 { 3448 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3449 struct bpf_func_state *state = func(env, reg); 3450 int err; 3451 /* Some accesses are only permitted with a static offset. */ 3452 bool var_off = !tnum_is_const(reg->var_off); 3453 3454 /* The offset is required to be static when reads don't go to a 3455 * register, in order to not leak pointers (see 3456 * check_stack_read_fixed_off). 3457 */ 3458 if (dst_regno < 0 && var_off) { 3459 char tn_buf[48]; 3460 3461 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3462 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3463 tn_buf, off, size); 3464 return -EACCES; 3465 } 3466 /* Variable offset is prohibited for unprivileged mode for simplicity 3467 * since it requires corresponding support in Spectre masking for stack 3468 * ALU. See also retrieve_ptr_limit(). 3469 */ 3470 if (!env->bypass_spec_v1 && var_off) { 3471 char tn_buf[48]; 3472 3473 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3474 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3475 ptr_regno, tn_buf); 3476 return -EACCES; 3477 } 3478 3479 if (!var_off) { 3480 off += reg->var_off.value; 3481 err = check_stack_read_fixed_off(env, state, off, size, 3482 dst_regno); 3483 } else { 3484 /* Variable offset stack reads need more conservative handling 3485 * than fixed offset ones. Note that dst_regno >= 0 on this 3486 * branch. 3487 */ 3488 err = check_stack_read_var_off(env, ptr_regno, off, size, 3489 dst_regno); 3490 } 3491 return err; 3492 } 3493 3494 3495 /* check_stack_write dispatches to check_stack_write_fixed_off or 3496 * check_stack_write_var_off. 3497 * 3498 * 'ptr_regno' is the register used as a pointer into the stack. 3499 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3500 * 'value_regno' is the register whose value we're writing to the stack. It can 3501 * be -1, meaning that we're not writing from a register. 3502 * 3503 * The caller must ensure that the offset falls within the maximum stack size. 3504 */ 3505 static int check_stack_write(struct bpf_verifier_env *env, 3506 int ptr_regno, int off, int size, 3507 int value_regno, int insn_idx) 3508 { 3509 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3510 struct bpf_func_state *state = func(env, reg); 3511 int err; 3512 3513 if (tnum_is_const(reg->var_off)) { 3514 off += reg->var_off.value; 3515 err = check_stack_write_fixed_off(env, state, off, size, 3516 value_regno, insn_idx); 3517 } else { 3518 /* Variable offset stack reads need more conservative handling 3519 * than fixed offset ones. 3520 */ 3521 err = check_stack_write_var_off(env, state, 3522 ptr_regno, off, size, 3523 value_regno, insn_idx); 3524 } 3525 return err; 3526 } 3527 3528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3529 int off, int size, enum bpf_access_type type) 3530 { 3531 struct bpf_reg_state *regs = cur_regs(env); 3532 struct bpf_map *map = regs[regno].map_ptr; 3533 u32 cap = bpf_map_flags_to_cap(map); 3534 3535 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3536 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3537 map->value_size, off, size); 3538 return -EACCES; 3539 } 3540 3541 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3542 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3543 map->value_size, off, size); 3544 return -EACCES; 3545 } 3546 3547 return 0; 3548 } 3549 3550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3551 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3552 int off, int size, u32 mem_size, 3553 bool zero_size_allowed) 3554 { 3555 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3556 struct bpf_reg_state *reg; 3557 3558 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3559 return 0; 3560 3561 reg = &cur_regs(env)[regno]; 3562 switch (reg->type) { 3563 case PTR_TO_MAP_KEY: 3564 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3565 mem_size, off, size); 3566 break; 3567 case PTR_TO_MAP_VALUE: 3568 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3569 mem_size, off, size); 3570 break; 3571 case PTR_TO_PACKET: 3572 case PTR_TO_PACKET_META: 3573 case PTR_TO_PACKET_END: 3574 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3575 off, size, regno, reg->id, off, mem_size); 3576 break; 3577 case PTR_TO_MEM: 3578 default: 3579 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3580 mem_size, off, size); 3581 } 3582 3583 return -EACCES; 3584 } 3585 3586 /* check read/write into a memory region with possible variable offset */ 3587 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3588 int off, int size, u32 mem_size, 3589 bool zero_size_allowed) 3590 { 3591 struct bpf_verifier_state *vstate = env->cur_state; 3592 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3593 struct bpf_reg_state *reg = &state->regs[regno]; 3594 int err; 3595 3596 /* We may have adjusted the register pointing to memory region, so we 3597 * need to try adding each of min_value and max_value to off 3598 * to make sure our theoretical access will be safe. 3599 * 3600 * The minimum value is only important with signed 3601 * comparisons where we can't assume the floor of a 3602 * value is 0. If we are using signed variables for our 3603 * index'es we need to make sure that whatever we use 3604 * will have a set floor within our range. 3605 */ 3606 if (reg->smin_value < 0 && 3607 (reg->smin_value == S64_MIN || 3608 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3609 reg->smin_value + off < 0)) { 3610 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3611 regno); 3612 return -EACCES; 3613 } 3614 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3615 mem_size, zero_size_allowed); 3616 if (err) { 3617 verbose(env, "R%d min value is outside of the allowed memory range\n", 3618 regno); 3619 return err; 3620 } 3621 3622 /* If we haven't set a max value then we need to bail since we can't be 3623 * sure we won't do bad things. 3624 * If reg->umax_value + off could overflow, treat that as unbounded too. 3625 */ 3626 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3627 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3628 regno); 3629 return -EACCES; 3630 } 3631 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3632 mem_size, zero_size_allowed); 3633 if (err) { 3634 verbose(env, "R%d max value is outside of the allowed memory range\n", 3635 regno); 3636 return err; 3637 } 3638 3639 return 0; 3640 } 3641 3642 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3643 const struct bpf_reg_state *reg, int regno, 3644 bool fixed_off_ok) 3645 { 3646 /* Access to this pointer-typed register or passing it to a helper 3647 * is only allowed in its original, unmodified form. 3648 */ 3649 3650 if (reg->off < 0) { 3651 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3652 reg_type_str(env, reg->type), regno, reg->off); 3653 return -EACCES; 3654 } 3655 3656 if (!fixed_off_ok && reg->off) { 3657 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3658 reg_type_str(env, reg->type), regno, reg->off); 3659 return -EACCES; 3660 } 3661 3662 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3663 char tn_buf[48]; 3664 3665 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3666 verbose(env, "variable %s access var_off=%s disallowed\n", 3667 reg_type_str(env, reg->type), tn_buf); 3668 return -EACCES; 3669 } 3670 3671 return 0; 3672 } 3673 3674 int check_ptr_off_reg(struct bpf_verifier_env *env, 3675 const struct bpf_reg_state *reg, int regno) 3676 { 3677 return __check_ptr_off_reg(env, reg, regno, false); 3678 } 3679 3680 static int map_kptr_match_type(struct bpf_verifier_env *env, 3681 struct bpf_map_value_off_desc *off_desc, 3682 struct bpf_reg_state *reg, u32 regno) 3683 { 3684 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3685 int perm_flags = PTR_MAYBE_NULL; 3686 const char *reg_name = ""; 3687 3688 /* Only unreferenced case accepts untrusted pointers */ 3689 if (off_desc->type == BPF_KPTR_UNREF) 3690 perm_flags |= PTR_UNTRUSTED; 3691 3692 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3693 goto bad_type; 3694 3695 if (!btf_is_kernel(reg->btf)) { 3696 verbose(env, "R%d must point to kernel BTF\n", regno); 3697 return -EINVAL; 3698 } 3699 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3700 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3701 3702 /* For ref_ptr case, release function check should ensure we get one 3703 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3704 * normal store of unreferenced kptr, we must ensure var_off is zero. 3705 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3706 * reg->off and reg->ref_obj_id are not needed here. 3707 */ 3708 if (__check_ptr_off_reg(env, reg, regno, true)) 3709 return -EACCES; 3710 3711 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3712 * we also need to take into account the reg->off. 3713 * 3714 * We want to support cases like: 3715 * 3716 * struct foo { 3717 * struct bar br; 3718 * struct baz bz; 3719 * }; 3720 * 3721 * struct foo *v; 3722 * v = func(); // PTR_TO_BTF_ID 3723 * val->foo = v; // reg->off is zero, btf and btf_id match type 3724 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3725 * // first member type of struct after comparison fails 3726 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3727 * // to match type 3728 * 3729 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3730 * is zero. We must also ensure that btf_struct_ids_match does not walk 3731 * the struct to match type against first member of struct, i.e. reject 3732 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3733 * strict mode to true for type match. 3734 */ 3735 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3736 off_desc->kptr.btf, off_desc->kptr.btf_id, 3737 off_desc->type == BPF_KPTR_REF)) 3738 goto bad_type; 3739 return 0; 3740 bad_type: 3741 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3742 reg_type_str(env, reg->type), reg_name); 3743 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3744 if (off_desc->type == BPF_KPTR_UNREF) 3745 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3746 targ_name); 3747 else 3748 verbose(env, "\n"); 3749 return -EINVAL; 3750 } 3751 3752 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3753 int value_regno, int insn_idx, 3754 struct bpf_map_value_off_desc *off_desc) 3755 { 3756 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3757 int class = BPF_CLASS(insn->code); 3758 struct bpf_reg_state *val_reg; 3759 3760 /* Things we already checked for in check_map_access and caller: 3761 * - Reject cases where variable offset may touch kptr 3762 * - size of access (must be BPF_DW) 3763 * - tnum_is_const(reg->var_off) 3764 * - off_desc->offset == off + reg->var_off.value 3765 */ 3766 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3767 if (BPF_MODE(insn->code) != BPF_MEM) { 3768 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3769 return -EACCES; 3770 } 3771 3772 /* We only allow loading referenced kptr, since it will be marked as 3773 * untrusted, similar to unreferenced kptr. 3774 */ 3775 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3776 verbose(env, "store to referenced kptr disallowed\n"); 3777 return -EACCES; 3778 } 3779 3780 if (class == BPF_LDX) { 3781 val_reg = reg_state(env, value_regno); 3782 /* We can simply mark the value_regno receiving the pointer 3783 * value from map as PTR_TO_BTF_ID, with the correct type. 3784 */ 3785 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3786 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3787 /* For mark_ptr_or_null_reg */ 3788 val_reg->id = ++env->id_gen; 3789 } else if (class == BPF_STX) { 3790 val_reg = reg_state(env, value_regno); 3791 if (!register_is_null(val_reg) && 3792 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3793 return -EACCES; 3794 } else if (class == BPF_ST) { 3795 if (insn->imm) { 3796 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3797 off_desc->offset); 3798 return -EACCES; 3799 } 3800 } else { 3801 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3802 return -EACCES; 3803 } 3804 return 0; 3805 } 3806 3807 /* check read/write into a map element with possible variable offset */ 3808 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3809 int off, int size, bool zero_size_allowed, 3810 enum bpf_access_src src) 3811 { 3812 struct bpf_verifier_state *vstate = env->cur_state; 3813 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3814 struct bpf_reg_state *reg = &state->regs[regno]; 3815 struct bpf_map *map = reg->map_ptr; 3816 int err; 3817 3818 err = check_mem_region_access(env, regno, off, size, map->value_size, 3819 zero_size_allowed); 3820 if (err) 3821 return err; 3822 3823 if (map_value_has_spin_lock(map)) { 3824 u32 lock = map->spin_lock_off; 3825 3826 /* if any part of struct bpf_spin_lock can be touched by 3827 * load/store reject this program. 3828 * To check that [x1, x2) overlaps with [y1, y2) 3829 * it is sufficient to check x1 < y2 && y1 < x2. 3830 */ 3831 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3832 lock < reg->umax_value + off + size) { 3833 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3834 return -EACCES; 3835 } 3836 } 3837 if (map_value_has_timer(map)) { 3838 u32 t = map->timer_off; 3839 3840 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3841 t < reg->umax_value + off + size) { 3842 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3843 return -EACCES; 3844 } 3845 } 3846 if (map_value_has_kptrs(map)) { 3847 struct bpf_map_value_off *tab = map->kptr_off_tab; 3848 int i; 3849 3850 for (i = 0; i < tab->nr_off; i++) { 3851 u32 p = tab->off[i].offset; 3852 3853 if (reg->smin_value + off < p + sizeof(u64) && 3854 p < reg->umax_value + off + size) { 3855 if (src != ACCESS_DIRECT) { 3856 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3857 return -EACCES; 3858 } 3859 if (!tnum_is_const(reg->var_off)) { 3860 verbose(env, "kptr access cannot have variable offset\n"); 3861 return -EACCES; 3862 } 3863 if (p != off + reg->var_off.value) { 3864 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3865 p, off + reg->var_off.value); 3866 return -EACCES; 3867 } 3868 if (size != bpf_size_to_bytes(BPF_DW)) { 3869 verbose(env, "kptr access size must be BPF_DW\n"); 3870 return -EACCES; 3871 } 3872 break; 3873 } 3874 } 3875 } 3876 return err; 3877 } 3878 3879 #define MAX_PACKET_OFF 0xffff 3880 3881 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3882 const struct bpf_call_arg_meta *meta, 3883 enum bpf_access_type t) 3884 { 3885 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3886 3887 switch (prog_type) { 3888 /* Program types only with direct read access go here! */ 3889 case BPF_PROG_TYPE_LWT_IN: 3890 case BPF_PROG_TYPE_LWT_OUT: 3891 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3892 case BPF_PROG_TYPE_SK_REUSEPORT: 3893 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3894 case BPF_PROG_TYPE_CGROUP_SKB: 3895 if (t == BPF_WRITE) 3896 return false; 3897 fallthrough; 3898 3899 /* Program types with direct read + write access go here! */ 3900 case BPF_PROG_TYPE_SCHED_CLS: 3901 case BPF_PROG_TYPE_SCHED_ACT: 3902 case BPF_PROG_TYPE_XDP: 3903 case BPF_PROG_TYPE_LWT_XMIT: 3904 case BPF_PROG_TYPE_SK_SKB: 3905 case BPF_PROG_TYPE_SK_MSG: 3906 if (meta) 3907 return meta->pkt_access; 3908 3909 env->seen_direct_write = true; 3910 return true; 3911 3912 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3913 if (t == BPF_WRITE) 3914 env->seen_direct_write = true; 3915 3916 return true; 3917 3918 default: 3919 return false; 3920 } 3921 } 3922 3923 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3924 int size, bool zero_size_allowed) 3925 { 3926 struct bpf_reg_state *regs = cur_regs(env); 3927 struct bpf_reg_state *reg = ®s[regno]; 3928 int err; 3929 3930 /* We may have added a variable offset to the packet pointer; but any 3931 * reg->range we have comes after that. We are only checking the fixed 3932 * offset. 3933 */ 3934 3935 /* We don't allow negative numbers, because we aren't tracking enough 3936 * detail to prove they're safe. 3937 */ 3938 if (reg->smin_value < 0) { 3939 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3940 regno); 3941 return -EACCES; 3942 } 3943 3944 err = reg->range < 0 ? -EINVAL : 3945 __check_mem_access(env, regno, off, size, reg->range, 3946 zero_size_allowed); 3947 if (err) { 3948 verbose(env, "R%d offset is outside of the packet\n", regno); 3949 return err; 3950 } 3951 3952 /* __check_mem_access has made sure "off + size - 1" is within u16. 3953 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3954 * otherwise find_good_pkt_pointers would have refused to set range info 3955 * that __check_mem_access would have rejected this pkt access. 3956 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3957 */ 3958 env->prog->aux->max_pkt_offset = 3959 max_t(u32, env->prog->aux->max_pkt_offset, 3960 off + reg->umax_value + size - 1); 3961 3962 return err; 3963 } 3964 3965 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3966 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3967 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3968 struct btf **btf, u32 *btf_id) 3969 { 3970 struct bpf_insn_access_aux info = { 3971 .reg_type = *reg_type, 3972 .log = &env->log, 3973 }; 3974 3975 if (env->ops->is_valid_access && 3976 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3977 /* A non zero info.ctx_field_size indicates that this field is a 3978 * candidate for later verifier transformation to load the whole 3979 * field and then apply a mask when accessed with a narrower 3980 * access than actual ctx access size. A zero info.ctx_field_size 3981 * will only allow for whole field access and rejects any other 3982 * type of narrower access. 3983 */ 3984 *reg_type = info.reg_type; 3985 3986 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3987 *btf = info.btf; 3988 *btf_id = info.btf_id; 3989 } else { 3990 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3991 } 3992 /* remember the offset of last byte accessed in ctx */ 3993 if (env->prog->aux->max_ctx_offset < off + size) 3994 env->prog->aux->max_ctx_offset = off + size; 3995 return 0; 3996 } 3997 3998 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3999 return -EACCES; 4000 } 4001 4002 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4003 int size) 4004 { 4005 if (size < 0 || off < 0 || 4006 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4007 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4008 off, size); 4009 return -EACCES; 4010 } 4011 return 0; 4012 } 4013 4014 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4015 u32 regno, int off, int size, 4016 enum bpf_access_type t) 4017 { 4018 struct bpf_reg_state *regs = cur_regs(env); 4019 struct bpf_reg_state *reg = ®s[regno]; 4020 struct bpf_insn_access_aux info = {}; 4021 bool valid; 4022 4023 if (reg->smin_value < 0) { 4024 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4025 regno); 4026 return -EACCES; 4027 } 4028 4029 switch (reg->type) { 4030 case PTR_TO_SOCK_COMMON: 4031 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4032 break; 4033 case PTR_TO_SOCKET: 4034 valid = bpf_sock_is_valid_access(off, size, t, &info); 4035 break; 4036 case PTR_TO_TCP_SOCK: 4037 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4038 break; 4039 case PTR_TO_XDP_SOCK: 4040 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4041 break; 4042 default: 4043 valid = false; 4044 } 4045 4046 4047 if (valid) { 4048 env->insn_aux_data[insn_idx].ctx_field_size = 4049 info.ctx_field_size; 4050 return 0; 4051 } 4052 4053 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4054 regno, reg_type_str(env, reg->type), off, size); 4055 4056 return -EACCES; 4057 } 4058 4059 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4060 { 4061 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4062 } 4063 4064 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4065 { 4066 const struct bpf_reg_state *reg = reg_state(env, regno); 4067 4068 return reg->type == PTR_TO_CTX; 4069 } 4070 4071 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4072 { 4073 const struct bpf_reg_state *reg = reg_state(env, regno); 4074 4075 return type_is_sk_pointer(reg->type); 4076 } 4077 4078 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4079 { 4080 const struct bpf_reg_state *reg = reg_state(env, regno); 4081 4082 return type_is_pkt_pointer(reg->type); 4083 } 4084 4085 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4086 { 4087 const struct bpf_reg_state *reg = reg_state(env, regno); 4088 4089 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4090 return reg->type == PTR_TO_FLOW_KEYS; 4091 } 4092 4093 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4094 const struct bpf_reg_state *reg, 4095 int off, int size, bool strict) 4096 { 4097 struct tnum reg_off; 4098 int ip_align; 4099 4100 /* Byte size accesses are always allowed. */ 4101 if (!strict || size == 1) 4102 return 0; 4103 4104 /* For platforms that do not have a Kconfig enabling 4105 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4106 * NET_IP_ALIGN is universally set to '2'. And on platforms 4107 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4108 * to this code only in strict mode where we want to emulate 4109 * the NET_IP_ALIGN==2 checking. Therefore use an 4110 * unconditional IP align value of '2'. 4111 */ 4112 ip_align = 2; 4113 4114 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4115 if (!tnum_is_aligned(reg_off, size)) { 4116 char tn_buf[48]; 4117 4118 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4119 verbose(env, 4120 "misaligned packet access off %d+%s+%d+%d size %d\n", 4121 ip_align, tn_buf, reg->off, off, size); 4122 return -EACCES; 4123 } 4124 4125 return 0; 4126 } 4127 4128 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4129 const struct bpf_reg_state *reg, 4130 const char *pointer_desc, 4131 int off, int size, bool strict) 4132 { 4133 struct tnum reg_off; 4134 4135 /* Byte size accesses are always allowed. */ 4136 if (!strict || size == 1) 4137 return 0; 4138 4139 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4140 if (!tnum_is_aligned(reg_off, size)) { 4141 char tn_buf[48]; 4142 4143 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4144 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4145 pointer_desc, tn_buf, reg->off, off, size); 4146 return -EACCES; 4147 } 4148 4149 return 0; 4150 } 4151 4152 static int check_ptr_alignment(struct bpf_verifier_env *env, 4153 const struct bpf_reg_state *reg, int off, 4154 int size, bool strict_alignment_once) 4155 { 4156 bool strict = env->strict_alignment || strict_alignment_once; 4157 const char *pointer_desc = ""; 4158 4159 switch (reg->type) { 4160 case PTR_TO_PACKET: 4161 case PTR_TO_PACKET_META: 4162 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4163 * right in front, treat it the very same way. 4164 */ 4165 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4166 case PTR_TO_FLOW_KEYS: 4167 pointer_desc = "flow keys "; 4168 break; 4169 case PTR_TO_MAP_KEY: 4170 pointer_desc = "key "; 4171 break; 4172 case PTR_TO_MAP_VALUE: 4173 pointer_desc = "value "; 4174 break; 4175 case PTR_TO_CTX: 4176 pointer_desc = "context "; 4177 break; 4178 case PTR_TO_STACK: 4179 pointer_desc = "stack "; 4180 /* The stack spill tracking logic in check_stack_write_fixed_off() 4181 * and check_stack_read_fixed_off() relies on stack accesses being 4182 * aligned. 4183 */ 4184 strict = true; 4185 break; 4186 case PTR_TO_SOCKET: 4187 pointer_desc = "sock "; 4188 break; 4189 case PTR_TO_SOCK_COMMON: 4190 pointer_desc = "sock_common "; 4191 break; 4192 case PTR_TO_TCP_SOCK: 4193 pointer_desc = "tcp_sock "; 4194 break; 4195 case PTR_TO_XDP_SOCK: 4196 pointer_desc = "xdp_sock "; 4197 break; 4198 default: 4199 break; 4200 } 4201 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4202 strict); 4203 } 4204 4205 static int update_stack_depth(struct bpf_verifier_env *env, 4206 const struct bpf_func_state *func, 4207 int off) 4208 { 4209 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4210 4211 if (stack >= -off) 4212 return 0; 4213 4214 /* update known max for given subprogram */ 4215 env->subprog_info[func->subprogno].stack_depth = -off; 4216 return 0; 4217 } 4218 4219 /* starting from main bpf function walk all instructions of the function 4220 * and recursively walk all callees that given function can call. 4221 * Ignore jump and exit insns. 4222 * Since recursion is prevented by check_cfg() this algorithm 4223 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4224 */ 4225 static int check_max_stack_depth(struct bpf_verifier_env *env) 4226 { 4227 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4228 struct bpf_subprog_info *subprog = env->subprog_info; 4229 struct bpf_insn *insn = env->prog->insnsi; 4230 bool tail_call_reachable = false; 4231 int ret_insn[MAX_CALL_FRAMES]; 4232 int ret_prog[MAX_CALL_FRAMES]; 4233 int j; 4234 4235 process_func: 4236 /* protect against potential stack overflow that might happen when 4237 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4238 * depth for such case down to 256 so that the worst case scenario 4239 * would result in 8k stack size (32 which is tailcall limit * 256 = 4240 * 8k). 4241 * 4242 * To get the idea what might happen, see an example: 4243 * func1 -> sub rsp, 128 4244 * subfunc1 -> sub rsp, 256 4245 * tailcall1 -> add rsp, 256 4246 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4247 * subfunc2 -> sub rsp, 64 4248 * subfunc22 -> sub rsp, 128 4249 * tailcall2 -> add rsp, 128 4250 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4251 * 4252 * tailcall will unwind the current stack frame but it will not get rid 4253 * of caller's stack as shown on the example above. 4254 */ 4255 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4256 verbose(env, 4257 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4258 depth); 4259 return -EACCES; 4260 } 4261 /* round up to 32-bytes, since this is granularity 4262 * of interpreter stack size 4263 */ 4264 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4265 if (depth > MAX_BPF_STACK) { 4266 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4267 frame + 1, depth); 4268 return -EACCES; 4269 } 4270 continue_func: 4271 subprog_end = subprog[idx + 1].start; 4272 for (; i < subprog_end; i++) { 4273 int next_insn; 4274 4275 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4276 continue; 4277 /* remember insn and function to return to */ 4278 ret_insn[frame] = i + 1; 4279 ret_prog[frame] = idx; 4280 4281 /* find the callee */ 4282 next_insn = i + insn[i].imm + 1; 4283 idx = find_subprog(env, next_insn); 4284 if (idx < 0) { 4285 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4286 next_insn); 4287 return -EFAULT; 4288 } 4289 if (subprog[idx].is_async_cb) { 4290 if (subprog[idx].has_tail_call) { 4291 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4292 return -EFAULT; 4293 } 4294 /* async callbacks don't increase bpf prog stack size */ 4295 continue; 4296 } 4297 i = next_insn; 4298 4299 if (subprog[idx].has_tail_call) 4300 tail_call_reachable = true; 4301 4302 frame++; 4303 if (frame >= MAX_CALL_FRAMES) { 4304 verbose(env, "the call stack of %d frames is too deep !\n", 4305 frame); 4306 return -E2BIG; 4307 } 4308 goto process_func; 4309 } 4310 /* if tail call got detected across bpf2bpf calls then mark each of the 4311 * currently present subprog frames as tail call reachable subprogs; 4312 * this info will be utilized by JIT so that we will be preserving the 4313 * tail call counter throughout bpf2bpf calls combined with tailcalls 4314 */ 4315 if (tail_call_reachable) 4316 for (j = 0; j < frame; j++) 4317 subprog[ret_prog[j]].tail_call_reachable = true; 4318 if (subprog[0].tail_call_reachable) 4319 env->prog->aux->tail_call_reachable = true; 4320 4321 /* end of for() loop means the last insn of the 'subprog' 4322 * was reached. Doesn't matter whether it was JA or EXIT 4323 */ 4324 if (frame == 0) 4325 return 0; 4326 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4327 frame--; 4328 i = ret_insn[frame]; 4329 idx = ret_prog[frame]; 4330 goto continue_func; 4331 } 4332 4333 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4334 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4335 const struct bpf_insn *insn, int idx) 4336 { 4337 int start = idx + insn->imm + 1, subprog; 4338 4339 subprog = find_subprog(env, start); 4340 if (subprog < 0) { 4341 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4342 start); 4343 return -EFAULT; 4344 } 4345 return env->subprog_info[subprog].stack_depth; 4346 } 4347 #endif 4348 4349 static int __check_buffer_access(struct bpf_verifier_env *env, 4350 const char *buf_info, 4351 const struct bpf_reg_state *reg, 4352 int regno, int off, int size) 4353 { 4354 if (off < 0) { 4355 verbose(env, 4356 "R%d invalid %s buffer access: off=%d, size=%d\n", 4357 regno, buf_info, off, size); 4358 return -EACCES; 4359 } 4360 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4361 char tn_buf[48]; 4362 4363 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4364 verbose(env, 4365 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4366 regno, off, tn_buf); 4367 return -EACCES; 4368 } 4369 4370 return 0; 4371 } 4372 4373 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4374 const struct bpf_reg_state *reg, 4375 int regno, int off, int size) 4376 { 4377 int err; 4378 4379 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4380 if (err) 4381 return err; 4382 4383 if (off + size > env->prog->aux->max_tp_access) 4384 env->prog->aux->max_tp_access = off + size; 4385 4386 return 0; 4387 } 4388 4389 static int check_buffer_access(struct bpf_verifier_env *env, 4390 const struct bpf_reg_state *reg, 4391 int regno, int off, int size, 4392 bool zero_size_allowed, 4393 u32 *max_access) 4394 { 4395 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4396 int err; 4397 4398 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4399 if (err) 4400 return err; 4401 4402 if (off + size > *max_access) 4403 *max_access = off + size; 4404 4405 return 0; 4406 } 4407 4408 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4409 static void zext_32_to_64(struct bpf_reg_state *reg) 4410 { 4411 reg->var_off = tnum_subreg(reg->var_off); 4412 __reg_assign_32_into_64(reg); 4413 } 4414 4415 /* truncate register to smaller size (in bytes) 4416 * must be called with size < BPF_REG_SIZE 4417 */ 4418 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4419 { 4420 u64 mask; 4421 4422 /* clear high bits in bit representation */ 4423 reg->var_off = tnum_cast(reg->var_off, size); 4424 4425 /* fix arithmetic bounds */ 4426 mask = ((u64)1 << (size * 8)) - 1; 4427 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4428 reg->umin_value &= mask; 4429 reg->umax_value &= mask; 4430 } else { 4431 reg->umin_value = 0; 4432 reg->umax_value = mask; 4433 } 4434 reg->smin_value = reg->umin_value; 4435 reg->smax_value = reg->umax_value; 4436 4437 /* If size is smaller than 32bit register the 32bit register 4438 * values are also truncated so we push 64-bit bounds into 4439 * 32-bit bounds. Above were truncated < 32-bits already. 4440 */ 4441 if (size >= 4) 4442 return; 4443 __reg_combine_64_into_32(reg); 4444 } 4445 4446 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4447 { 4448 /* A map is considered read-only if the following condition are true: 4449 * 4450 * 1) BPF program side cannot change any of the map content. The 4451 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4452 * and was set at map creation time. 4453 * 2) The map value(s) have been initialized from user space by a 4454 * loader and then "frozen", such that no new map update/delete 4455 * operations from syscall side are possible for the rest of 4456 * the map's lifetime from that point onwards. 4457 * 3) Any parallel/pending map update/delete operations from syscall 4458 * side have been completed. Only after that point, it's safe to 4459 * assume that map value(s) are immutable. 4460 */ 4461 return (map->map_flags & BPF_F_RDONLY_PROG) && 4462 READ_ONCE(map->frozen) && 4463 !bpf_map_write_active(map); 4464 } 4465 4466 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4467 { 4468 void *ptr; 4469 u64 addr; 4470 int err; 4471 4472 err = map->ops->map_direct_value_addr(map, &addr, off); 4473 if (err) 4474 return err; 4475 ptr = (void *)(long)addr + off; 4476 4477 switch (size) { 4478 case sizeof(u8): 4479 *val = (u64)*(u8 *)ptr; 4480 break; 4481 case sizeof(u16): 4482 *val = (u64)*(u16 *)ptr; 4483 break; 4484 case sizeof(u32): 4485 *val = (u64)*(u32 *)ptr; 4486 break; 4487 case sizeof(u64): 4488 *val = *(u64 *)ptr; 4489 break; 4490 default: 4491 return -EINVAL; 4492 } 4493 return 0; 4494 } 4495 4496 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4497 struct bpf_reg_state *regs, 4498 int regno, int off, int size, 4499 enum bpf_access_type atype, 4500 int value_regno) 4501 { 4502 struct bpf_reg_state *reg = regs + regno; 4503 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4504 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4505 enum bpf_type_flag flag = 0; 4506 u32 btf_id; 4507 int ret; 4508 4509 if (off < 0) { 4510 verbose(env, 4511 "R%d is ptr_%s invalid negative access: off=%d\n", 4512 regno, tname, off); 4513 return -EACCES; 4514 } 4515 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4516 char tn_buf[48]; 4517 4518 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4519 verbose(env, 4520 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4521 regno, tname, off, tn_buf); 4522 return -EACCES; 4523 } 4524 4525 if (reg->type & MEM_USER) { 4526 verbose(env, 4527 "R%d is ptr_%s access user memory: off=%d\n", 4528 regno, tname, off); 4529 return -EACCES; 4530 } 4531 4532 if (reg->type & MEM_PERCPU) { 4533 verbose(env, 4534 "R%d is ptr_%s access percpu memory: off=%d\n", 4535 regno, tname, off); 4536 return -EACCES; 4537 } 4538 4539 if (env->ops->btf_struct_access) { 4540 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4541 off, size, atype, &btf_id, &flag); 4542 } else { 4543 if (atype != BPF_READ) { 4544 verbose(env, "only read is supported\n"); 4545 return -EACCES; 4546 } 4547 4548 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4549 atype, &btf_id, &flag); 4550 } 4551 4552 if (ret < 0) 4553 return ret; 4554 4555 /* If this is an untrusted pointer, all pointers formed by walking it 4556 * also inherit the untrusted flag. 4557 */ 4558 if (type_flag(reg->type) & PTR_UNTRUSTED) 4559 flag |= PTR_UNTRUSTED; 4560 4561 if (atype == BPF_READ && value_regno >= 0) 4562 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4563 4564 return 0; 4565 } 4566 4567 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4568 struct bpf_reg_state *regs, 4569 int regno, int off, int size, 4570 enum bpf_access_type atype, 4571 int value_regno) 4572 { 4573 struct bpf_reg_state *reg = regs + regno; 4574 struct bpf_map *map = reg->map_ptr; 4575 enum bpf_type_flag flag = 0; 4576 const struct btf_type *t; 4577 const char *tname; 4578 u32 btf_id; 4579 int ret; 4580 4581 if (!btf_vmlinux) { 4582 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4583 return -ENOTSUPP; 4584 } 4585 4586 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4587 verbose(env, "map_ptr access not supported for map type %d\n", 4588 map->map_type); 4589 return -ENOTSUPP; 4590 } 4591 4592 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4593 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4594 4595 if (!env->allow_ptr_to_map_access) { 4596 verbose(env, 4597 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4598 tname); 4599 return -EPERM; 4600 } 4601 4602 if (off < 0) { 4603 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4604 regno, tname, off); 4605 return -EACCES; 4606 } 4607 4608 if (atype != BPF_READ) { 4609 verbose(env, "only read from %s is supported\n", tname); 4610 return -EACCES; 4611 } 4612 4613 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4614 if (ret < 0) 4615 return ret; 4616 4617 if (value_regno >= 0) 4618 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4619 4620 return 0; 4621 } 4622 4623 /* Check that the stack access at the given offset is within bounds. The 4624 * maximum valid offset is -1. 4625 * 4626 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4627 * -state->allocated_stack for reads. 4628 */ 4629 static int check_stack_slot_within_bounds(int off, 4630 struct bpf_func_state *state, 4631 enum bpf_access_type t) 4632 { 4633 int min_valid_off; 4634 4635 if (t == BPF_WRITE) 4636 min_valid_off = -MAX_BPF_STACK; 4637 else 4638 min_valid_off = -state->allocated_stack; 4639 4640 if (off < min_valid_off || off > -1) 4641 return -EACCES; 4642 return 0; 4643 } 4644 4645 /* Check that the stack access at 'regno + off' falls within the maximum stack 4646 * bounds. 4647 * 4648 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4649 */ 4650 static int check_stack_access_within_bounds( 4651 struct bpf_verifier_env *env, 4652 int regno, int off, int access_size, 4653 enum bpf_access_src src, enum bpf_access_type type) 4654 { 4655 struct bpf_reg_state *regs = cur_regs(env); 4656 struct bpf_reg_state *reg = regs + regno; 4657 struct bpf_func_state *state = func(env, reg); 4658 int min_off, max_off; 4659 int err; 4660 char *err_extra; 4661 4662 if (src == ACCESS_HELPER) 4663 /* We don't know if helpers are reading or writing (or both). */ 4664 err_extra = " indirect access to"; 4665 else if (type == BPF_READ) 4666 err_extra = " read from"; 4667 else 4668 err_extra = " write to"; 4669 4670 if (tnum_is_const(reg->var_off)) { 4671 min_off = reg->var_off.value + off; 4672 if (access_size > 0) 4673 max_off = min_off + access_size - 1; 4674 else 4675 max_off = min_off; 4676 } else { 4677 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4678 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4679 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4680 err_extra, regno); 4681 return -EACCES; 4682 } 4683 min_off = reg->smin_value + off; 4684 if (access_size > 0) 4685 max_off = reg->smax_value + off + access_size - 1; 4686 else 4687 max_off = min_off; 4688 } 4689 4690 err = check_stack_slot_within_bounds(min_off, state, type); 4691 if (!err) 4692 err = check_stack_slot_within_bounds(max_off, state, type); 4693 4694 if (err) { 4695 if (tnum_is_const(reg->var_off)) { 4696 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4697 err_extra, regno, off, access_size); 4698 } else { 4699 char tn_buf[48]; 4700 4701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4702 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4703 err_extra, regno, tn_buf, access_size); 4704 } 4705 } 4706 return err; 4707 } 4708 4709 /* check whether memory at (regno + off) is accessible for t = (read | write) 4710 * if t==write, value_regno is a register which value is stored into memory 4711 * if t==read, value_regno is a register which will receive the value from memory 4712 * if t==write && value_regno==-1, some unknown value is stored into memory 4713 * if t==read && value_regno==-1, don't care what we read from memory 4714 */ 4715 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4716 int off, int bpf_size, enum bpf_access_type t, 4717 int value_regno, bool strict_alignment_once) 4718 { 4719 struct bpf_reg_state *regs = cur_regs(env); 4720 struct bpf_reg_state *reg = regs + regno; 4721 struct bpf_func_state *state; 4722 int size, err = 0; 4723 4724 size = bpf_size_to_bytes(bpf_size); 4725 if (size < 0) 4726 return size; 4727 4728 /* alignment checks will add in reg->off themselves */ 4729 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4730 if (err) 4731 return err; 4732 4733 /* for access checks, reg->off is just part of off */ 4734 off += reg->off; 4735 4736 if (reg->type == PTR_TO_MAP_KEY) { 4737 if (t == BPF_WRITE) { 4738 verbose(env, "write to change key R%d not allowed\n", regno); 4739 return -EACCES; 4740 } 4741 4742 err = check_mem_region_access(env, regno, off, size, 4743 reg->map_ptr->key_size, false); 4744 if (err) 4745 return err; 4746 if (value_regno >= 0) 4747 mark_reg_unknown(env, regs, value_regno); 4748 } else if (reg->type == PTR_TO_MAP_VALUE) { 4749 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4750 4751 if (t == BPF_WRITE && value_regno >= 0 && 4752 is_pointer_value(env, value_regno)) { 4753 verbose(env, "R%d leaks addr into map\n", value_regno); 4754 return -EACCES; 4755 } 4756 err = check_map_access_type(env, regno, off, size, t); 4757 if (err) 4758 return err; 4759 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4760 if (err) 4761 return err; 4762 if (tnum_is_const(reg->var_off)) 4763 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4764 off + reg->var_off.value); 4765 if (kptr_off_desc) { 4766 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4767 kptr_off_desc); 4768 } else if (t == BPF_READ && value_regno >= 0) { 4769 struct bpf_map *map = reg->map_ptr; 4770 4771 /* if map is read-only, track its contents as scalars */ 4772 if (tnum_is_const(reg->var_off) && 4773 bpf_map_is_rdonly(map) && 4774 map->ops->map_direct_value_addr) { 4775 int map_off = off + reg->var_off.value; 4776 u64 val = 0; 4777 4778 err = bpf_map_direct_read(map, map_off, size, 4779 &val); 4780 if (err) 4781 return err; 4782 4783 regs[value_regno].type = SCALAR_VALUE; 4784 __mark_reg_known(®s[value_regno], val); 4785 } else { 4786 mark_reg_unknown(env, regs, value_regno); 4787 } 4788 } 4789 } else if (base_type(reg->type) == PTR_TO_MEM) { 4790 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4791 4792 if (type_may_be_null(reg->type)) { 4793 verbose(env, "R%d invalid mem access '%s'\n", regno, 4794 reg_type_str(env, reg->type)); 4795 return -EACCES; 4796 } 4797 4798 if (t == BPF_WRITE && rdonly_mem) { 4799 verbose(env, "R%d cannot write into %s\n", 4800 regno, reg_type_str(env, reg->type)); 4801 return -EACCES; 4802 } 4803 4804 if (t == BPF_WRITE && value_regno >= 0 && 4805 is_pointer_value(env, value_regno)) { 4806 verbose(env, "R%d leaks addr into mem\n", value_regno); 4807 return -EACCES; 4808 } 4809 4810 err = check_mem_region_access(env, regno, off, size, 4811 reg->mem_size, false); 4812 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4813 mark_reg_unknown(env, regs, value_regno); 4814 } else if (reg->type == PTR_TO_CTX) { 4815 enum bpf_reg_type reg_type = SCALAR_VALUE; 4816 struct btf *btf = NULL; 4817 u32 btf_id = 0; 4818 4819 if (t == BPF_WRITE && value_regno >= 0 && 4820 is_pointer_value(env, value_regno)) { 4821 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4822 return -EACCES; 4823 } 4824 4825 err = check_ptr_off_reg(env, reg, regno); 4826 if (err < 0) 4827 return err; 4828 4829 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4830 &btf_id); 4831 if (err) 4832 verbose_linfo(env, insn_idx, "; "); 4833 if (!err && t == BPF_READ && value_regno >= 0) { 4834 /* ctx access returns either a scalar, or a 4835 * PTR_TO_PACKET[_META,_END]. In the latter 4836 * case, we know the offset is zero. 4837 */ 4838 if (reg_type == SCALAR_VALUE) { 4839 mark_reg_unknown(env, regs, value_regno); 4840 } else { 4841 mark_reg_known_zero(env, regs, 4842 value_regno); 4843 if (type_may_be_null(reg_type)) 4844 regs[value_regno].id = ++env->id_gen; 4845 /* A load of ctx field could have different 4846 * actual load size with the one encoded in the 4847 * insn. When the dst is PTR, it is for sure not 4848 * a sub-register. 4849 */ 4850 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4851 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4852 regs[value_regno].btf = btf; 4853 regs[value_regno].btf_id = btf_id; 4854 } 4855 } 4856 regs[value_regno].type = reg_type; 4857 } 4858 4859 } else if (reg->type == PTR_TO_STACK) { 4860 /* Basic bounds checks. */ 4861 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4862 if (err) 4863 return err; 4864 4865 state = func(env, reg); 4866 err = update_stack_depth(env, state, off); 4867 if (err) 4868 return err; 4869 4870 if (t == BPF_READ) 4871 err = check_stack_read(env, regno, off, size, 4872 value_regno); 4873 else 4874 err = check_stack_write(env, regno, off, size, 4875 value_regno, insn_idx); 4876 } else if (reg_is_pkt_pointer(reg)) { 4877 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4878 verbose(env, "cannot write into packet\n"); 4879 return -EACCES; 4880 } 4881 if (t == BPF_WRITE && value_regno >= 0 && 4882 is_pointer_value(env, value_regno)) { 4883 verbose(env, "R%d leaks addr into packet\n", 4884 value_regno); 4885 return -EACCES; 4886 } 4887 err = check_packet_access(env, regno, off, size, false); 4888 if (!err && t == BPF_READ && value_regno >= 0) 4889 mark_reg_unknown(env, regs, value_regno); 4890 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4891 if (t == BPF_WRITE && value_regno >= 0 && 4892 is_pointer_value(env, value_regno)) { 4893 verbose(env, "R%d leaks addr into flow keys\n", 4894 value_regno); 4895 return -EACCES; 4896 } 4897 4898 err = check_flow_keys_access(env, off, size); 4899 if (!err && t == BPF_READ && value_regno >= 0) 4900 mark_reg_unknown(env, regs, value_regno); 4901 } else if (type_is_sk_pointer(reg->type)) { 4902 if (t == BPF_WRITE) { 4903 verbose(env, "R%d cannot write into %s\n", 4904 regno, reg_type_str(env, reg->type)); 4905 return -EACCES; 4906 } 4907 err = check_sock_access(env, insn_idx, regno, off, size, t); 4908 if (!err && value_regno >= 0) 4909 mark_reg_unknown(env, regs, value_regno); 4910 } else if (reg->type == PTR_TO_TP_BUFFER) { 4911 err = check_tp_buffer_access(env, reg, regno, off, size); 4912 if (!err && t == BPF_READ && value_regno >= 0) 4913 mark_reg_unknown(env, regs, value_regno); 4914 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4915 !type_may_be_null(reg->type)) { 4916 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4917 value_regno); 4918 } else if (reg->type == CONST_PTR_TO_MAP) { 4919 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4920 value_regno); 4921 } else if (base_type(reg->type) == PTR_TO_BUF) { 4922 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4923 u32 *max_access; 4924 4925 if (rdonly_mem) { 4926 if (t == BPF_WRITE) { 4927 verbose(env, "R%d cannot write into %s\n", 4928 regno, reg_type_str(env, reg->type)); 4929 return -EACCES; 4930 } 4931 max_access = &env->prog->aux->max_rdonly_access; 4932 } else { 4933 max_access = &env->prog->aux->max_rdwr_access; 4934 } 4935 4936 err = check_buffer_access(env, reg, regno, off, size, false, 4937 max_access); 4938 4939 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4940 mark_reg_unknown(env, regs, value_regno); 4941 } else { 4942 verbose(env, "R%d invalid mem access '%s'\n", regno, 4943 reg_type_str(env, reg->type)); 4944 return -EACCES; 4945 } 4946 4947 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4948 regs[value_regno].type == SCALAR_VALUE) { 4949 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4950 coerce_reg_to_size(®s[value_regno], size); 4951 } 4952 return err; 4953 } 4954 4955 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4956 { 4957 int load_reg; 4958 int err; 4959 4960 switch (insn->imm) { 4961 case BPF_ADD: 4962 case BPF_ADD | BPF_FETCH: 4963 case BPF_AND: 4964 case BPF_AND | BPF_FETCH: 4965 case BPF_OR: 4966 case BPF_OR | BPF_FETCH: 4967 case BPF_XOR: 4968 case BPF_XOR | BPF_FETCH: 4969 case BPF_XCHG: 4970 case BPF_CMPXCHG: 4971 break; 4972 default: 4973 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4974 return -EINVAL; 4975 } 4976 4977 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4978 verbose(env, "invalid atomic operand size\n"); 4979 return -EINVAL; 4980 } 4981 4982 /* check src1 operand */ 4983 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4984 if (err) 4985 return err; 4986 4987 /* check src2 operand */ 4988 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4989 if (err) 4990 return err; 4991 4992 if (insn->imm == BPF_CMPXCHG) { 4993 /* Check comparison of R0 with memory location */ 4994 const u32 aux_reg = BPF_REG_0; 4995 4996 err = check_reg_arg(env, aux_reg, SRC_OP); 4997 if (err) 4998 return err; 4999 5000 if (is_pointer_value(env, aux_reg)) { 5001 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5002 return -EACCES; 5003 } 5004 } 5005 5006 if (is_pointer_value(env, insn->src_reg)) { 5007 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5008 return -EACCES; 5009 } 5010 5011 if (is_ctx_reg(env, insn->dst_reg) || 5012 is_pkt_reg(env, insn->dst_reg) || 5013 is_flow_key_reg(env, insn->dst_reg) || 5014 is_sk_reg(env, insn->dst_reg)) { 5015 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5016 insn->dst_reg, 5017 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5018 return -EACCES; 5019 } 5020 5021 if (insn->imm & BPF_FETCH) { 5022 if (insn->imm == BPF_CMPXCHG) 5023 load_reg = BPF_REG_0; 5024 else 5025 load_reg = insn->src_reg; 5026 5027 /* check and record load of old value */ 5028 err = check_reg_arg(env, load_reg, DST_OP); 5029 if (err) 5030 return err; 5031 } else { 5032 /* This instruction accesses a memory location but doesn't 5033 * actually load it into a register. 5034 */ 5035 load_reg = -1; 5036 } 5037 5038 /* Check whether we can read the memory, with second call for fetch 5039 * case to simulate the register fill. 5040 */ 5041 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5042 BPF_SIZE(insn->code), BPF_READ, -1, true); 5043 if (!err && load_reg >= 0) 5044 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5045 BPF_SIZE(insn->code), BPF_READ, load_reg, 5046 true); 5047 if (err) 5048 return err; 5049 5050 /* Check whether we can write into the same memory. */ 5051 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5052 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5053 if (err) 5054 return err; 5055 5056 return 0; 5057 } 5058 5059 /* When register 'regno' is used to read the stack (either directly or through 5060 * a helper function) make sure that it's within stack boundary and, depending 5061 * on the access type, that all elements of the stack are initialized. 5062 * 5063 * 'off' includes 'regno->off', but not its dynamic part (if any). 5064 * 5065 * All registers that have been spilled on the stack in the slots within the 5066 * read offsets are marked as read. 5067 */ 5068 static int check_stack_range_initialized( 5069 struct bpf_verifier_env *env, int regno, int off, 5070 int access_size, bool zero_size_allowed, 5071 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5072 { 5073 struct bpf_reg_state *reg = reg_state(env, regno); 5074 struct bpf_func_state *state = func(env, reg); 5075 int err, min_off, max_off, i, j, slot, spi; 5076 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5077 enum bpf_access_type bounds_check_type; 5078 /* Some accesses can write anything into the stack, others are 5079 * read-only. 5080 */ 5081 bool clobber = false; 5082 5083 if (access_size == 0 && !zero_size_allowed) { 5084 verbose(env, "invalid zero-sized read\n"); 5085 return -EACCES; 5086 } 5087 5088 if (type == ACCESS_HELPER) { 5089 /* The bounds checks for writes are more permissive than for 5090 * reads. However, if raw_mode is not set, we'll do extra 5091 * checks below. 5092 */ 5093 bounds_check_type = BPF_WRITE; 5094 clobber = true; 5095 } else { 5096 bounds_check_type = BPF_READ; 5097 } 5098 err = check_stack_access_within_bounds(env, regno, off, access_size, 5099 type, bounds_check_type); 5100 if (err) 5101 return err; 5102 5103 5104 if (tnum_is_const(reg->var_off)) { 5105 min_off = max_off = reg->var_off.value + off; 5106 } else { 5107 /* Variable offset is prohibited for unprivileged mode for 5108 * simplicity since it requires corresponding support in 5109 * Spectre masking for stack ALU. 5110 * See also retrieve_ptr_limit(). 5111 */ 5112 if (!env->bypass_spec_v1) { 5113 char tn_buf[48]; 5114 5115 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5116 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5117 regno, err_extra, tn_buf); 5118 return -EACCES; 5119 } 5120 /* Only initialized buffer on stack is allowed to be accessed 5121 * with variable offset. With uninitialized buffer it's hard to 5122 * guarantee that whole memory is marked as initialized on 5123 * helper return since specific bounds are unknown what may 5124 * cause uninitialized stack leaking. 5125 */ 5126 if (meta && meta->raw_mode) 5127 meta = NULL; 5128 5129 min_off = reg->smin_value + off; 5130 max_off = reg->smax_value + off; 5131 } 5132 5133 if (meta && meta->raw_mode) { 5134 meta->access_size = access_size; 5135 meta->regno = regno; 5136 return 0; 5137 } 5138 5139 for (i = min_off; i < max_off + access_size; i++) { 5140 u8 *stype; 5141 5142 slot = -i - 1; 5143 spi = slot / BPF_REG_SIZE; 5144 if (state->allocated_stack <= slot) 5145 goto err; 5146 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5147 if (*stype == STACK_MISC) 5148 goto mark; 5149 if (*stype == STACK_ZERO) { 5150 if (clobber) { 5151 /* helper can write anything into the stack */ 5152 *stype = STACK_MISC; 5153 } 5154 goto mark; 5155 } 5156 5157 if (is_spilled_reg(&state->stack[spi]) && 5158 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5159 goto mark; 5160 5161 if (is_spilled_reg(&state->stack[spi]) && 5162 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5163 env->allow_ptr_leaks)) { 5164 if (clobber) { 5165 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5166 for (j = 0; j < BPF_REG_SIZE; j++) 5167 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5168 } 5169 goto mark; 5170 } 5171 5172 err: 5173 if (tnum_is_const(reg->var_off)) { 5174 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5175 err_extra, regno, min_off, i - min_off, access_size); 5176 } else { 5177 char tn_buf[48]; 5178 5179 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5180 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5181 err_extra, regno, tn_buf, i - min_off, access_size); 5182 } 5183 return -EACCES; 5184 mark: 5185 /* reading any byte out of 8-byte 'spill_slot' will cause 5186 * the whole slot to be marked as 'read' 5187 */ 5188 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5189 state->stack[spi].spilled_ptr.parent, 5190 REG_LIVE_READ64); 5191 } 5192 return update_stack_depth(env, state, min_off); 5193 } 5194 5195 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5196 int access_size, bool zero_size_allowed, 5197 struct bpf_call_arg_meta *meta) 5198 { 5199 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5200 u32 *max_access; 5201 5202 switch (base_type(reg->type)) { 5203 case PTR_TO_PACKET: 5204 case PTR_TO_PACKET_META: 5205 return check_packet_access(env, regno, reg->off, access_size, 5206 zero_size_allowed); 5207 case PTR_TO_MAP_KEY: 5208 if (meta && meta->raw_mode) { 5209 verbose(env, "R%d cannot write into %s\n", regno, 5210 reg_type_str(env, reg->type)); 5211 return -EACCES; 5212 } 5213 return check_mem_region_access(env, regno, reg->off, access_size, 5214 reg->map_ptr->key_size, false); 5215 case PTR_TO_MAP_VALUE: 5216 if (check_map_access_type(env, regno, reg->off, access_size, 5217 meta && meta->raw_mode ? BPF_WRITE : 5218 BPF_READ)) 5219 return -EACCES; 5220 return check_map_access(env, regno, reg->off, access_size, 5221 zero_size_allowed, ACCESS_HELPER); 5222 case PTR_TO_MEM: 5223 if (type_is_rdonly_mem(reg->type)) { 5224 if (meta && meta->raw_mode) { 5225 verbose(env, "R%d cannot write into %s\n", regno, 5226 reg_type_str(env, reg->type)); 5227 return -EACCES; 5228 } 5229 } 5230 return check_mem_region_access(env, regno, reg->off, 5231 access_size, reg->mem_size, 5232 zero_size_allowed); 5233 case PTR_TO_BUF: 5234 if (type_is_rdonly_mem(reg->type)) { 5235 if (meta && meta->raw_mode) { 5236 verbose(env, "R%d cannot write into %s\n", regno, 5237 reg_type_str(env, reg->type)); 5238 return -EACCES; 5239 } 5240 5241 max_access = &env->prog->aux->max_rdonly_access; 5242 } else { 5243 max_access = &env->prog->aux->max_rdwr_access; 5244 } 5245 return check_buffer_access(env, reg, regno, reg->off, 5246 access_size, zero_size_allowed, 5247 max_access); 5248 case PTR_TO_STACK: 5249 return check_stack_range_initialized( 5250 env, 5251 regno, reg->off, access_size, 5252 zero_size_allowed, ACCESS_HELPER, meta); 5253 case PTR_TO_CTX: 5254 /* in case the function doesn't know how to access the context, 5255 * (because we are in a program of type SYSCALL for example), we 5256 * can not statically check its size. 5257 * Dynamically check it now. 5258 */ 5259 if (!env->ops->convert_ctx_access) { 5260 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5261 int offset = access_size - 1; 5262 5263 /* Allow zero-byte read from PTR_TO_CTX */ 5264 if (access_size == 0) 5265 return zero_size_allowed ? 0 : -EACCES; 5266 5267 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5268 atype, -1, false); 5269 } 5270 5271 fallthrough; 5272 default: /* scalar_value or invalid ptr */ 5273 /* Allow zero-byte read from NULL, regardless of pointer type */ 5274 if (zero_size_allowed && access_size == 0 && 5275 register_is_null(reg)) 5276 return 0; 5277 5278 verbose(env, "R%d type=%s ", regno, 5279 reg_type_str(env, reg->type)); 5280 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5281 return -EACCES; 5282 } 5283 } 5284 5285 static int check_mem_size_reg(struct bpf_verifier_env *env, 5286 struct bpf_reg_state *reg, u32 regno, 5287 bool zero_size_allowed, 5288 struct bpf_call_arg_meta *meta) 5289 { 5290 int err; 5291 5292 /* This is used to refine r0 return value bounds for helpers 5293 * that enforce this value as an upper bound on return values. 5294 * See do_refine_retval_range() for helpers that can refine 5295 * the return value. C type of helper is u32 so we pull register 5296 * bound from umax_value however, if negative verifier errors 5297 * out. Only upper bounds can be learned because retval is an 5298 * int type and negative retvals are allowed. 5299 */ 5300 meta->msize_max_value = reg->umax_value; 5301 5302 /* The register is SCALAR_VALUE; the access check 5303 * happens using its boundaries. 5304 */ 5305 if (!tnum_is_const(reg->var_off)) 5306 /* For unprivileged variable accesses, disable raw 5307 * mode so that the program is required to 5308 * initialize all the memory that the helper could 5309 * just partially fill up. 5310 */ 5311 meta = NULL; 5312 5313 if (reg->smin_value < 0) { 5314 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5315 regno); 5316 return -EACCES; 5317 } 5318 5319 if (reg->umin_value == 0) { 5320 err = check_helper_mem_access(env, regno - 1, 0, 5321 zero_size_allowed, 5322 meta); 5323 if (err) 5324 return err; 5325 } 5326 5327 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5328 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5329 regno); 5330 return -EACCES; 5331 } 5332 err = check_helper_mem_access(env, regno - 1, 5333 reg->umax_value, 5334 zero_size_allowed, meta); 5335 if (!err) 5336 err = mark_chain_precision(env, regno); 5337 return err; 5338 } 5339 5340 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5341 u32 regno, u32 mem_size) 5342 { 5343 bool may_be_null = type_may_be_null(reg->type); 5344 struct bpf_reg_state saved_reg; 5345 struct bpf_call_arg_meta meta; 5346 int err; 5347 5348 if (register_is_null(reg)) 5349 return 0; 5350 5351 memset(&meta, 0, sizeof(meta)); 5352 /* Assuming that the register contains a value check if the memory 5353 * access is safe. Temporarily save and restore the register's state as 5354 * the conversion shouldn't be visible to a caller. 5355 */ 5356 if (may_be_null) { 5357 saved_reg = *reg; 5358 mark_ptr_not_null_reg(reg); 5359 } 5360 5361 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5362 /* Check access for BPF_WRITE */ 5363 meta.raw_mode = true; 5364 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5365 5366 if (may_be_null) 5367 *reg = saved_reg; 5368 5369 return err; 5370 } 5371 5372 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5373 u32 regno) 5374 { 5375 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5376 bool may_be_null = type_may_be_null(mem_reg->type); 5377 struct bpf_reg_state saved_reg; 5378 struct bpf_call_arg_meta meta; 5379 int err; 5380 5381 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5382 5383 memset(&meta, 0, sizeof(meta)); 5384 5385 if (may_be_null) { 5386 saved_reg = *mem_reg; 5387 mark_ptr_not_null_reg(mem_reg); 5388 } 5389 5390 err = check_mem_size_reg(env, reg, regno, true, &meta); 5391 /* Check access for BPF_WRITE */ 5392 meta.raw_mode = true; 5393 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5394 5395 if (may_be_null) 5396 *mem_reg = saved_reg; 5397 return err; 5398 } 5399 5400 /* Implementation details: 5401 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5402 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5403 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5404 * value_or_null->value transition, since the verifier only cares about 5405 * the range of access to valid map value pointer and doesn't care about actual 5406 * address of the map element. 5407 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5408 * reg->id > 0 after value_or_null->value transition. By doing so 5409 * two bpf_map_lookups will be considered two different pointers that 5410 * point to different bpf_spin_locks. 5411 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5412 * dead-locks. 5413 * Since only one bpf_spin_lock is allowed the checks are simpler than 5414 * reg_is_refcounted() logic. The verifier needs to remember only 5415 * one spin_lock instead of array of acquired_refs. 5416 * cur_state->active_spin_lock remembers which map value element got locked 5417 * and clears it after bpf_spin_unlock. 5418 */ 5419 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5420 bool is_lock) 5421 { 5422 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5423 struct bpf_verifier_state *cur = env->cur_state; 5424 bool is_const = tnum_is_const(reg->var_off); 5425 struct bpf_map *map = reg->map_ptr; 5426 u64 val = reg->var_off.value; 5427 5428 if (!is_const) { 5429 verbose(env, 5430 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5431 regno); 5432 return -EINVAL; 5433 } 5434 if (!map->btf) { 5435 verbose(env, 5436 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5437 map->name); 5438 return -EINVAL; 5439 } 5440 if (!map_value_has_spin_lock(map)) { 5441 if (map->spin_lock_off == -E2BIG) 5442 verbose(env, 5443 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5444 map->name); 5445 else if (map->spin_lock_off == -ENOENT) 5446 verbose(env, 5447 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5448 map->name); 5449 else 5450 verbose(env, 5451 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5452 map->name); 5453 return -EINVAL; 5454 } 5455 if (map->spin_lock_off != val + reg->off) { 5456 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5457 val + reg->off); 5458 return -EINVAL; 5459 } 5460 if (is_lock) { 5461 if (cur->active_spin_lock) { 5462 verbose(env, 5463 "Locking two bpf_spin_locks are not allowed\n"); 5464 return -EINVAL; 5465 } 5466 cur->active_spin_lock = reg->id; 5467 } else { 5468 if (!cur->active_spin_lock) { 5469 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5470 return -EINVAL; 5471 } 5472 if (cur->active_spin_lock != reg->id) { 5473 verbose(env, "bpf_spin_unlock of different lock\n"); 5474 return -EINVAL; 5475 } 5476 cur->active_spin_lock = 0; 5477 } 5478 return 0; 5479 } 5480 5481 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5482 struct bpf_call_arg_meta *meta) 5483 { 5484 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5485 bool is_const = tnum_is_const(reg->var_off); 5486 struct bpf_map *map = reg->map_ptr; 5487 u64 val = reg->var_off.value; 5488 5489 if (!is_const) { 5490 verbose(env, 5491 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5492 regno); 5493 return -EINVAL; 5494 } 5495 if (!map->btf) { 5496 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5497 map->name); 5498 return -EINVAL; 5499 } 5500 if (!map_value_has_timer(map)) { 5501 if (map->timer_off == -E2BIG) 5502 verbose(env, 5503 "map '%s' has more than one 'struct bpf_timer'\n", 5504 map->name); 5505 else if (map->timer_off == -ENOENT) 5506 verbose(env, 5507 "map '%s' doesn't have 'struct bpf_timer'\n", 5508 map->name); 5509 else 5510 verbose(env, 5511 "map '%s' is not a struct type or bpf_timer is mangled\n", 5512 map->name); 5513 return -EINVAL; 5514 } 5515 if (map->timer_off != val + reg->off) { 5516 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5517 val + reg->off, map->timer_off); 5518 return -EINVAL; 5519 } 5520 if (meta->map_ptr) { 5521 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5522 return -EFAULT; 5523 } 5524 meta->map_uid = reg->map_uid; 5525 meta->map_ptr = map; 5526 return 0; 5527 } 5528 5529 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5530 struct bpf_call_arg_meta *meta) 5531 { 5532 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5533 struct bpf_map_value_off_desc *off_desc; 5534 struct bpf_map *map_ptr = reg->map_ptr; 5535 u32 kptr_off; 5536 int ret; 5537 5538 if (!tnum_is_const(reg->var_off)) { 5539 verbose(env, 5540 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5541 regno); 5542 return -EINVAL; 5543 } 5544 if (!map_ptr->btf) { 5545 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5546 map_ptr->name); 5547 return -EINVAL; 5548 } 5549 if (!map_value_has_kptrs(map_ptr)) { 5550 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5551 if (ret == -E2BIG) 5552 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5553 BPF_MAP_VALUE_OFF_MAX); 5554 else if (ret == -EEXIST) 5555 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5556 else 5557 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5558 return -EINVAL; 5559 } 5560 5561 meta->map_ptr = map_ptr; 5562 kptr_off = reg->off + reg->var_off.value; 5563 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5564 if (!off_desc) { 5565 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5566 return -EACCES; 5567 } 5568 if (off_desc->type != BPF_KPTR_REF) { 5569 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5570 return -EACCES; 5571 } 5572 meta->kptr_off_desc = off_desc; 5573 return 0; 5574 } 5575 5576 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5577 { 5578 return type == ARG_CONST_SIZE || 5579 type == ARG_CONST_SIZE_OR_ZERO; 5580 } 5581 5582 static bool arg_type_is_release(enum bpf_arg_type type) 5583 { 5584 return type & OBJ_RELEASE; 5585 } 5586 5587 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5588 { 5589 return base_type(type) == ARG_PTR_TO_DYNPTR; 5590 } 5591 5592 static int int_ptr_type_to_size(enum bpf_arg_type type) 5593 { 5594 if (type == ARG_PTR_TO_INT) 5595 return sizeof(u32); 5596 else if (type == ARG_PTR_TO_LONG) 5597 return sizeof(u64); 5598 5599 return -EINVAL; 5600 } 5601 5602 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5603 const struct bpf_call_arg_meta *meta, 5604 enum bpf_arg_type *arg_type) 5605 { 5606 if (!meta->map_ptr) { 5607 /* kernel subsystem misconfigured verifier */ 5608 verbose(env, "invalid map_ptr to access map->type\n"); 5609 return -EACCES; 5610 } 5611 5612 switch (meta->map_ptr->map_type) { 5613 case BPF_MAP_TYPE_SOCKMAP: 5614 case BPF_MAP_TYPE_SOCKHASH: 5615 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5616 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5617 } else { 5618 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5619 return -EINVAL; 5620 } 5621 break; 5622 case BPF_MAP_TYPE_BLOOM_FILTER: 5623 if (meta->func_id == BPF_FUNC_map_peek_elem) 5624 *arg_type = ARG_PTR_TO_MAP_VALUE; 5625 break; 5626 default: 5627 break; 5628 } 5629 return 0; 5630 } 5631 5632 struct bpf_reg_types { 5633 const enum bpf_reg_type types[10]; 5634 u32 *btf_id; 5635 }; 5636 5637 static const struct bpf_reg_types map_key_value_types = { 5638 .types = { 5639 PTR_TO_STACK, 5640 PTR_TO_PACKET, 5641 PTR_TO_PACKET_META, 5642 PTR_TO_MAP_KEY, 5643 PTR_TO_MAP_VALUE, 5644 }, 5645 }; 5646 5647 static const struct bpf_reg_types sock_types = { 5648 .types = { 5649 PTR_TO_SOCK_COMMON, 5650 PTR_TO_SOCKET, 5651 PTR_TO_TCP_SOCK, 5652 PTR_TO_XDP_SOCK, 5653 }, 5654 }; 5655 5656 #ifdef CONFIG_NET 5657 static const struct bpf_reg_types btf_id_sock_common_types = { 5658 .types = { 5659 PTR_TO_SOCK_COMMON, 5660 PTR_TO_SOCKET, 5661 PTR_TO_TCP_SOCK, 5662 PTR_TO_XDP_SOCK, 5663 PTR_TO_BTF_ID, 5664 }, 5665 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5666 }; 5667 #endif 5668 5669 static const struct bpf_reg_types mem_types = { 5670 .types = { 5671 PTR_TO_STACK, 5672 PTR_TO_PACKET, 5673 PTR_TO_PACKET_META, 5674 PTR_TO_MAP_KEY, 5675 PTR_TO_MAP_VALUE, 5676 PTR_TO_MEM, 5677 PTR_TO_MEM | MEM_ALLOC, 5678 PTR_TO_BUF, 5679 }, 5680 }; 5681 5682 static const struct bpf_reg_types int_ptr_types = { 5683 .types = { 5684 PTR_TO_STACK, 5685 PTR_TO_PACKET, 5686 PTR_TO_PACKET_META, 5687 PTR_TO_MAP_KEY, 5688 PTR_TO_MAP_VALUE, 5689 }, 5690 }; 5691 5692 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5693 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5694 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5695 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5696 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5697 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5698 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5699 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5700 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5701 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5702 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5703 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5704 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5705 static const struct bpf_reg_types dynptr_types = { 5706 .types = { 5707 PTR_TO_STACK, 5708 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL, 5709 } 5710 }; 5711 5712 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5713 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5714 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5715 [ARG_CONST_SIZE] = &scalar_types, 5716 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5717 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5718 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5719 [ARG_PTR_TO_CTX] = &context_types, 5720 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5721 #ifdef CONFIG_NET 5722 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5723 #endif 5724 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5725 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5726 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5727 [ARG_PTR_TO_MEM] = &mem_types, 5728 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5729 [ARG_PTR_TO_INT] = &int_ptr_types, 5730 [ARG_PTR_TO_LONG] = &int_ptr_types, 5731 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5732 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5733 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5734 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5735 [ARG_PTR_TO_TIMER] = &timer_types, 5736 [ARG_PTR_TO_KPTR] = &kptr_types, 5737 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 5738 }; 5739 5740 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5741 enum bpf_arg_type arg_type, 5742 const u32 *arg_btf_id, 5743 struct bpf_call_arg_meta *meta) 5744 { 5745 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5746 enum bpf_reg_type expected, type = reg->type; 5747 const struct bpf_reg_types *compatible; 5748 int i, j; 5749 5750 compatible = compatible_reg_types[base_type(arg_type)]; 5751 if (!compatible) { 5752 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5753 return -EFAULT; 5754 } 5755 5756 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5757 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5758 * 5759 * Same for MAYBE_NULL: 5760 * 5761 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5762 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5763 * 5764 * Therefore we fold these flags depending on the arg_type before comparison. 5765 */ 5766 if (arg_type & MEM_RDONLY) 5767 type &= ~MEM_RDONLY; 5768 if (arg_type & PTR_MAYBE_NULL) 5769 type &= ~PTR_MAYBE_NULL; 5770 5771 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5772 expected = compatible->types[i]; 5773 if (expected == NOT_INIT) 5774 break; 5775 5776 if (type == expected) 5777 goto found; 5778 } 5779 5780 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5781 for (j = 0; j + 1 < i; j++) 5782 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5783 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5784 return -EACCES; 5785 5786 found: 5787 if (reg->type == PTR_TO_BTF_ID) { 5788 /* For bpf_sk_release, it needs to match against first member 5789 * 'struct sock_common', hence make an exception for it. This 5790 * allows bpf_sk_release to work for multiple socket types. 5791 */ 5792 bool strict_type_match = arg_type_is_release(arg_type) && 5793 meta->func_id != BPF_FUNC_sk_release; 5794 5795 if (!arg_btf_id) { 5796 if (!compatible->btf_id) { 5797 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5798 return -EFAULT; 5799 } 5800 arg_btf_id = compatible->btf_id; 5801 } 5802 5803 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5804 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5805 return -EACCES; 5806 } else { 5807 if (arg_btf_id == BPF_PTR_POISON) { 5808 verbose(env, "verifier internal error:"); 5809 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 5810 regno); 5811 return -EACCES; 5812 } 5813 5814 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5815 btf_vmlinux, *arg_btf_id, 5816 strict_type_match)) { 5817 verbose(env, "R%d is of type %s but %s is expected\n", 5818 regno, kernel_type_name(reg->btf, reg->btf_id), 5819 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5820 return -EACCES; 5821 } 5822 } 5823 } 5824 5825 return 0; 5826 } 5827 5828 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5829 const struct bpf_reg_state *reg, int regno, 5830 enum bpf_arg_type arg_type) 5831 { 5832 enum bpf_reg_type type = reg->type; 5833 bool fixed_off_ok = false; 5834 5835 switch ((u32)type) { 5836 /* Pointer types where reg offset is explicitly allowed: */ 5837 case PTR_TO_STACK: 5838 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5839 verbose(env, "cannot pass in dynptr at an offset\n"); 5840 return -EINVAL; 5841 } 5842 fallthrough; 5843 case PTR_TO_PACKET: 5844 case PTR_TO_PACKET_META: 5845 case PTR_TO_MAP_KEY: 5846 case PTR_TO_MAP_VALUE: 5847 case PTR_TO_MEM: 5848 case PTR_TO_MEM | MEM_RDONLY: 5849 case PTR_TO_MEM | MEM_ALLOC: 5850 case PTR_TO_BUF: 5851 case PTR_TO_BUF | MEM_RDONLY: 5852 case SCALAR_VALUE: 5853 /* Some of the argument types nevertheless require a 5854 * zero register offset. 5855 */ 5856 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5857 return 0; 5858 break; 5859 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5860 * fixed offset. 5861 */ 5862 case PTR_TO_BTF_ID: 5863 /* When referenced PTR_TO_BTF_ID is passed to release function, 5864 * it's fixed offset must be 0. In the other cases, fixed offset 5865 * can be non-zero. 5866 */ 5867 if (arg_type_is_release(arg_type) && reg->off) { 5868 verbose(env, "R%d must have zero offset when passed to release func\n", 5869 regno); 5870 return -EINVAL; 5871 } 5872 /* For arg is release pointer, fixed_off_ok must be false, but 5873 * we already checked and rejected reg->off != 0 above, so set 5874 * to true to allow fixed offset for all other cases. 5875 */ 5876 fixed_off_ok = true; 5877 break; 5878 default: 5879 break; 5880 } 5881 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5882 } 5883 5884 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5885 { 5886 struct bpf_func_state *state = func(env, reg); 5887 int spi = get_spi(reg->off); 5888 5889 return state->stack[spi].spilled_ptr.id; 5890 } 5891 5892 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5893 struct bpf_call_arg_meta *meta, 5894 const struct bpf_func_proto *fn) 5895 { 5896 u32 regno = BPF_REG_1 + arg; 5897 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5898 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5899 enum bpf_reg_type type = reg->type; 5900 u32 *arg_btf_id = NULL; 5901 int err = 0; 5902 5903 if (arg_type == ARG_DONTCARE) 5904 return 0; 5905 5906 err = check_reg_arg(env, regno, SRC_OP); 5907 if (err) 5908 return err; 5909 5910 if (arg_type == ARG_ANYTHING) { 5911 if (is_pointer_value(env, regno)) { 5912 verbose(env, "R%d leaks addr into helper function\n", 5913 regno); 5914 return -EACCES; 5915 } 5916 return 0; 5917 } 5918 5919 if (type_is_pkt_pointer(type) && 5920 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5921 verbose(env, "helper access to the packet is not allowed\n"); 5922 return -EACCES; 5923 } 5924 5925 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5926 err = resolve_map_arg_type(env, meta, &arg_type); 5927 if (err) 5928 return err; 5929 } 5930 5931 if (register_is_null(reg) && type_may_be_null(arg_type)) 5932 /* A NULL register has a SCALAR_VALUE type, so skip 5933 * type checking. 5934 */ 5935 goto skip_type_check; 5936 5937 /* arg_btf_id and arg_size are in a union. */ 5938 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5939 arg_btf_id = fn->arg_btf_id[arg]; 5940 5941 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5942 if (err) 5943 return err; 5944 5945 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5946 if (err) 5947 return err; 5948 5949 skip_type_check: 5950 if (arg_type_is_release(arg_type)) { 5951 if (arg_type_is_dynptr(arg_type)) { 5952 struct bpf_func_state *state = func(env, reg); 5953 int spi = get_spi(reg->off); 5954 5955 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5956 !state->stack[spi].spilled_ptr.id) { 5957 verbose(env, "arg %d is an unacquired reference\n", regno); 5958 return -EINVAL; 5959 } 5960 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5961 verbose(env, "R%d must be referenced when passed to release function\n", 5962 regno); 5963 return -EINVAL; 5964 } 5965 if (meta->release_regno) { 5966 verbose(env, "verifier internal error: more than one release argument\n"); 5967 return -EFAULT; 5968 } 5969 meta->release_regno = regno; 5970 } 5971 5972 if (reg->ref_obj_id) { 5973 if (meta->ref_obj_id) { 5974 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5975 regno, reg->ref_obj_id, 5976 meta->ref_obj_id); 5977 return -EFAULT; 5978 } 5979 meta->ref_obj_id = reg->ref_obj_id; 5980 } 5981 5982 switch (base_type(arg_type)) { 5983 case ARG_CONST_MAP_PTR: 5984 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5985 if (meta->map_ptr) { 5986 /* Use map_uid (which is unique id of inner map) to reject: 5987 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5988 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5989 * if (inner_map1 && inner_map2) { 5990 * timer = bpf_map_lookup_elem(inner_map1); 5991 * if (timer) 5992 * // mismatch would have been allowed 5993 * bpf_timer_init(timer, inner_map2); 5994 * } 5995 * 5996 * Comparing map_ptr is enough to distinguish normal and outer maps. 5997 */ 5998 if (meta->map_ptr != reg->map_ptr || 5999 meta->map_uid != reg->map_uid) { 6000 verbose(env, 6001 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6002 meta->map_uid, reg->map_uid); 6003 return -EINVAL; 6004 } 6005 } 6006 meta->map_ptr = reg->map_ptr; 6007 meta->map_uid = reg->map_uid; 6008 break; 6009 case ARG_PTR_TO_MAP_KEY: 6010 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6011 * check that [key, key + map->key_size) are within 6012 * stack limits and initialized 6013 */ 6014 if (!meta->map_ptr) { 6015 /* in function declaration map_ptr must come before 6016 * map_key, so that it's verified and known before 6017 * we have to check map_key here. Otherwise it means 6018 * that kernel subsystem misconfigured verifier 6019 */ 6020 verbose(env, "invalid map_ptr to access map->key\n"); 6021 return -EACCES; 6022 } 6023 err = check_helper_mem_access(env, regno, 6024 meta->map_ptr->key_size, false, 6025 NULL); 6026 break; 6027 case ARG_PTR_TO_MAP_VALUE: 6028 if (type_may_be_null(arg_type) && register_is_null(reg)) 6029 return 0; 6030 6031 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6032 * check [value, value + map->value_size) validity 6033 */ 6034 if (!meta->map_ptr) { 6035 /* kernel subsystem misconfigured verifier */ 6036 verbose(env, "invalid map_ptr to access map->value\n"); 6037 return -EACCES; 6038 } 6039 meta->raw_mode = arg_type & MEM_UNINIT; 6040 err = check_helper_mem_access(env, regno, 6041 meta->map_ptr->value_size, false, 6042 meta); 6043 break; 6044 case ARG_PTR_TO_PERCPU_BTF_ID: 6045 if (!reg->btf_id) { 6046 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6047 return -EACCES; 6048 } 6049 meta->ret_btf = reg->btf; 6050 meta->ret_btf_id = reg->btf_id; 6051 break; 6052 case ARG_PTR_TO_SPIN_LOCK: 6053 if (meta->func_id == BPF_FUNC_spin_lock) { 6054 if (process_spin_lock(env, regno, true)) 6055 return -EACCES; 6056 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6057 if (process_spin_lock(env, regno, false)) 6058 return -EACCES; 6059 } else { 6060 verbose(env, "verifier internal error\n"); 6061 return -EFAULT; 6062 } 6063 break; 6064 case ARG_PTR_TO_TIMER: 6065 if (process_timer_func(env, regno, meta)) 6066 return -EACCES; 6067 break; 6068 case ARG_PTR_TO_FUNC: 6069 meta->subprogno = reg->subprogno; 6070 break; 6071 case ARG_PTR_TO_MEM: 6072 /* The access to this pointer is only checked when we hit the 6073 * next is_mem_size argument below. 6074 */ 6075 meta->raw_mode = arg_type & MEM_UNINIT; 6076 if (arg_type & MEM_FIXED_SIZE) { 6077 err = check_helper_mem_access(env, regno, 6078 fn->arg_size[arg], false, 6079 meta); 6080 } 6081 break; 6082 case ARG_CONST_SIZE: 6083 err = check_mem_size_reg(env, reg, regno, false, meta); 6084 break; 6085 case ARG_CONST_SIZE_OR_ZERO: 6086 err = check_mem_size_reg(env, reg, regno, true, meta); 6087 break; 6088 case ARG_PTR_TO_DYNPTR: 6089 /* We only need to check for initialized / uninitialized helper 6090 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the 6091 * assumption is that if it is, that a helper function 6092 * initialized the dynptr on behalf of the BPF program. 6093 */ 6094 if (base_type(reg->type) == PTR_TO_DYNPTR) 6095 break; 6096 if (arg_type & MEM_UNINIT) { 6097 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6098 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6099 return -EINVAL; 6100 } 6101 6102 /* We only support one dynptr being uninitialized at the moment, 6103 * which is sufficient for the helper functions we have right now. 6104 */ 6105 if (meta->uninit_dynptr_regno) { 6106 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6107 return -EFAULT; 6108 } 6109 6110 meta->uninit_dynptr_regno = regno; 6111 } else if (!is_dynptr_reg_valid_init(env, reg)) { 6112 verbose(env, 6113 "Expected an initialized dynptr as arg #%d\n", 6114 arg + 1); 6115 return -EINVAL; 6116 } else if (!is_dynptr_type_expected(env, reg, arg_type)) { 6117 const char *err_extra = ""; 6118 6119 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6120 case DYNPTR_TYPE_LOCAL: 6121 err_extra = "local"; 6122 break; 6123 case DYNPTR_TYPE_RINGBUF: 6124 err_extra = "ringbuf"; 6125 break; 6126 default: 6127 err_extra = "<unknown>"; 6128 break; 6129 } 6130 verbose(env, 6131 "Expected a dynptr of type %s as arg #%d\n", 6132 err_extra, arg + 1); 6133 return -EINVAL; 6134 } 6135 break; 6136 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6137 if (!tnum_is_const(reg->var_off)) { 6138 verbose(env, "R%d is not a known constant'\n", 6139 regno); 6140 return -EACCES; 6141 } 6142 meta->mem_size = reg->var_off.value; 6143 err = mark_chain_precision(env, regno); 6144 if (err) 6145 return err; 6146 break; 6147 case ARG_PTR_TO_INT: 6148 case ARG_PTR_TO_LONG: 6149 { 6150 int size = int_ptr_type_to_size(arg_type); 6151 6152 err = check_helper_mem_access(env, regno, size, false, meta); 6153 if (err) 6154 return err; 6155 err = check_ptr_alignment(env, reg, 0, size, true); 6156 break; 6157 } 6158 case ARG_PTR_TO_CONST_STR: 6159 { 6160 struct bpf_map *map = reg->map_ptr; 6161 int map_off; 6162 u64 map_addr; 6163 char *str_ptr; 6164 6165 if (!bpf_map_is_rdonly(map)) { 6166 verbose(env, "R%d does not point to a readonly map'\n", regno); 6167 return -EACCES; 6168 } 6169 6170 if (!tnum_is_const(reg->var_off)) { 6171 verbose(env, "R%d is not a constant address'\n", regno); 6172 return -EACCES; 6173 } 6174 6175 if (!map->ops->map_direct_value_addr) { 6176 verbose(env, "no direct value access support for this map type\n"); 6177 return -EACCES; 6178 } 6179 6180 err = check_map_access(env, regno, reg->off, 6181 map->value_size - reg->off, false, 6182 ACCESS_HELPER); 6183 if (err) 6184 return err; 6185 6186 map_off = reg->off + reg->var_off.value; 6187 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6188 if (err) { 6189 verbose(env, "direct value access on string failed\n"); 6190 return err; 6191 } 6192 6193 str_ptr = (char *)(long)(map_addr); 6194 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6195 verbose(env, "string is not zero-terminated\n"); 6196 return -EINVAL; 6197 } 6198 break; 6199 } 6200 case ARG_PTR_TO_KPTR: 6201 if (process_kptr_func(env, regno, meta)) 6202 return -EACCES; 6203 break; 6204 } 6205 6206 return err; 6207 } 6208 6209 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6210 { 6211 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6212 enum bpf_prog_type type = resolve_prog_type(env->prog); 6213 6214 if (func_id != BPF_FUNC_map_update_elem) 6215 return false; 6216 6217 /* It's not possible to get access to a locked struct sock in these 6218 * contexts, so updating is safe. 6219 */ 6220 switch (type) { 6221 case BPF_PROG_TYPE_TRACING: 6222 if (eatype == BPF_TRACE_ITER) 6223 return true; 6224 break; 6225 case BPF_PROG_TYPE_SOCKET_FILTER: 6226 case BPF_PROG_TYPE_SCHED_CLS: 6227 case BPF_PROG_TYPE_SCHED_ACT: 6228 case BPF_PROG_TYPE_XDP: 6229 case BPF_PROG_TYPE_SK_REUSEPORT: 6230 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6231 case BPF_PROG_TYPE_SK_LOOKUP: 6232 return true; 6233 default: 6234 break; 6235 } 6236 6237 verbose(env, "cannot update sockmap in this context\n"); 6238 return false; 6239 } 6240 6241 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6242 { 6243 return env->prog->jit_requested && 6244 bpf_jit_supports_subprog_tailcalls(); 6245 } 6246 6247 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6248 struct bpf_map *map, int func_id) 6249 { 6250 if (!map) 6251 return 0; 6252 6253 /* We need a two way check, first is from map perspective ... */ 6254 switch (map->map_type) { 6255 case BPF_MAP_TYPE_PROG_ARRAY: 6256 if (func_id != BPF_FUNC_tail_call) 6257 goto error; 6258 break; 6259 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6260 if (func_id != BPF_FUNC_perf_event_read && 6261 func_id != BPF_FUNC_perf_event_output && 6262 func_id != BPF_FUNC_skb_output && 6263 func_id != BPF_FUNC_perf_event_read_value && 6264 func_id != BPF_FUNC_xdp_output) 6265 goto error; 6266 break; 6267 case BPF_MAP_TYPE_RINGBUF: 6268 if (func_id != BPF_FUNC_ringbuf_output && 6269 func_id != BPF_FUNC_ringbuf_reserve && 6270 func_id != BPF_FUNC_ringbuf_query && 6271 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6272 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6273 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6274 goto error; 6275 break; 6276 case BPF_MAP_TYPE_USER_RINGBUF: 6277 if (func_id != BPF_FUNC_user_ringbuf_drain) 6278 goto error; 6279 break; 6280 case BPF_MAP_TYPE_STACK_TRACE: 6281 if (func_id != BPF_FUNC_get_stackid) 6282 goto error; 6283 break; 6284 case BPF_MAP_TYPE_CGROUP_ARRAY: 6285 if (func_id != BPF_FUNC_skb_under_cgroup && 6286 func_id != BPF_FUNC_current_task_under_cgroup) 6287 goto error; 6288 break; 6289 case BPF_MAP_TYPE_CGROUP_STORAGE: 6290 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6291 if (func_id != BPF_FUNC_get_local_storage) 6292 goto error; 6293 break; 6294 case BPF_MAP_TYPE_DEVMAP: 6295 case BPF_MAP_TYPE_DEVMAP_HASH: 6296 if (func_id != BPF_FUNC_redirect_map && 6297 func_id != BPF_FUNC_map_lookup_elem) 6298 goto error; 6299 break; 6300 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6301 * appear. 6302 */ 6303 case BPF_MAP_TYPE_CPUMAP: 6304 if (func_id != BPF_FUNC_redirect_map) 6305 goto error; 6306 break; 6307 case BPF_MAP_TYPE_XSKMAP: 6308 if (func_id != BPF_FUNC_redirect_map && 6309 func_id != BPF_FUNC_map_lookup_elem) 6310 goto error; 6311 break; 6312 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6313 case BPF_MAP_TYPE_HASH_OF_MAPS: 6314 if (func_id != BPF_FUNC_map_lookup_elem) 6315 goto error; 6316 break; 6317 case BPF_MAP_TYPE_SOCKMAP: 6318 if (func_id != BPF_FUNC_sk_redirect_map && 6319 func_id != BPF_FUNC_sock_map_update && 6320 func_id != BPF_FUNC_map_delete_elem && 6321 func_id != BPF_FUNC_msg_redirect_map && 6322 func_id != BPF_FUNC_sk_select_reuseport && 6323 func_id != BPF_FUNC_map_lookup_elem && 6324 !may_update_sockmap(env, func_id)) 6325 goto error; 6326 break; 6327 case BPF_MAP_TYPE_SOCKHASH: 6328 if (func_id != BPF_FUNC_sk_redirect_hash && 6329 func_id != BPF_FUNC_sock_hash_update && 6330 func_id != BPF_FUNC_map_delete_elem && 6331 func_id != BPF_FUNC_msg_redirect_hash && 6332 func_id != BPF_FUNC_sk_select_reuseport && 6333 func_id != BPF_FUNC_map_lookup_elem && 6334 !may_update_sockmap(env, func_id)) 6335 goto error; 6336 break; 6337 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6338 if (func_id != BPF_FUNC_sk_select_reuseport) 6339 goto error; 6340 break; 6341 case BPF_MAP_TYPE_QUEUE: 6342 case BPF_MAP_TYPE_STACK: 6343 if (func_id != BPF_FUNC_map_peek_elem && 6344 func_id != BPF_FUNC_map_pop_elem && 6345 func_id != BPF_FUNC_map_push_elem) 6346 goto error; 6347 break; 6348 case BPF_MAP_TYPE_SK_STORAGE: 6349 if (func_id != BPF_FUNC_sk_storage_get && 6350 func_id != BPF_FUNC_sk_storage_delete) 6351 goto error; 6352 break; 6353 case BPF_MAP_TYPE_INODE_STORAGE: 6354 if (func_id != BPF_FUNC_inode_storage_get && 6355 func_id != BPF_FUNC_inode_storage_delete) 6356 goto error; 6357 break; 6358 case BPF_MAP_TYPE_TASK_STORAGE: 6359 if (func_id != BPF_FUNC_task_storage_get && 6360 func_id != BPF_FUNC_task_storage_delete) 6361 goto error; 6362 break; 6363 case BPF_MAP_TYPE_BLOOM_FILTER: 6364 if (func_id != BPF_FUNC_map_peek_elem && 6365 func_id != BPF_FUNC_map_push_elem) 6366 goto error; 6367 break; 6368 default: 6369 break; 6370 } 6371 6372 /* ... and second from the function itself. */ 6373 switch (func_id) { 6374 case BPF_FUNC_tail_call: 6375 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6376 goto error; 6377 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6378 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6379 return -EINVAL; 6380 } 6381 break; 6382 case BPF_FUNC_perf_event_read: 6383 case BPF_FUNC_perf_event_output: 6384 case BPF_FUNC_perf_event_read_value: 6385 case BPF_FUNC_skb_output: 6386 case BPF_FUNC_xdp_output: 6387 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6388 goto error; 6389 break; 6390 case BPF_FUNC_ringbuf_output: 6391 case BPF_FUNC_ringbuf_reserve: 6392 case BPF_FUNC_ringbuf_query: 6393 case BPF_FUNC_ringbuf_reserve_dynptr: 6394 case BPF_FUNC_ringbuf_submit_dynptr: 6395 case BPF_FUNC_ringbuf_discard_dynptr: 6396 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6397 goto error; 6398 break; 6399 case BPF_FUNC_user_ringbuf_drain: 6400 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6401 goto error; 6402 break; 6403 case BPF_FUNC_get_stackid: 6404 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6405 goto error; 6406 break; 6407 case BPF_FUNC_current_task_under_cgroup: 6408 case BPF_FUNC_skb_under_cgroup: 6409 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6410 goto error; 6411 break; 6412 case BPF_FUNC_redirect_map: 6413 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6414 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6415 map->map_type != BPF_MAP_TYPE_CPUMAP && 6416 map->map_type != BPF_MAP_TYPE_XSKMAP) 6417 goto error; 6418 break; 6419 case BPF_FUNC_sk_redirect_map: 6420 case BPF_FUNC_msg_redirect_map: 6421 case BPF_FUNC_sock_map_update: 6422 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6423 goto error; 6424 break; 6425 case BPF_FUNC_sk_redirect_hash: 6426 case BPF_FUNC_msg_redirect_hash: 6427 case BPF_FUNC_sock_hash_update: 6428 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6429 goto error; 6430 break; 6431 case BPF_FUNC_get_local_storage: 6432 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6433 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6434 goto error; 6435 break; 6436 case BPF_FUNC_sk_select_reuseport: 6437 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6438 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6439 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6440 goto error; 6441 break; 6442 case BPF_FUNC_map_pop_elem: 6443 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6444 map->map_type != BPF_MAP_TYPE_STACK) 6445 goto error; 6446 break; 6447 case BPF_FUNC_map_peek_elem: 6448 case BPF_FUNC_map_push_elem: 6449 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6450 map->map_type != BPF_MAP_TYPE_STACK && 6451 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6452 goto error; 6453 break; 6454 case BPF_FUNC_map_lookup_percpu_elem: 6455 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6456 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6457 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6458 goto error; 6459 break; 6460 case BPF_FUNC_sk_storage_get: 6461 case BPF_FUNC_sk_storage_delete: 6462 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6463 goto error; 6464 break; 6465 case BPF_FUNC_inode_storage_get: 6466 case BPF_FUNC_inode_storage_delete: 6467 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6468 goto error; 6469 break; 6470 case BPF_FUNC_task_storage_get: 6471 case BPF_FUNC_task_storage_delete: 6472 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6473 goto error; 6474 break; 6475 default: 6476 break; 6477 } 6478 6479 return 0; 6480 error: 6481 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6482 map->map_type, func_id_name(func_id), func_id); 6483 return -EINVAL; 6484 } 6485 6486 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6487 { 6488 int count = 0; 6489 6490 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6491 count++; 6492 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6493 count++; 6494 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6495 count++; 6496 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6497 count++; 6498 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6499 count++; 6500 6501 /* We only support one arg being in raw mode at the moment, 6502 * which is sufficient for the helper functions we have 6503 * right now. 6504 */ 6505 return count <= 1; 6506 } 6507 6508 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6509 { 6510 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6511 bool has_size = fn->arg_size[arg] != 0; 6512 bool is_next_size = false; 6513 6514 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6515 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6516 6517 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6518 return is_next_size; 6519 6520 return has_size == is_next_size || is_next_size == is_fixed; 6521 } 6522 6523 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6524 { 6525 /* bpf_xxx(..., buf, len) call will access 'len' 6526 * bytes from memory 'buf'. Both arg types need 6527 * to be paired, so make sure there's no buggy 6528 * helper function specification. 6529 */ 6530 if (arg_type_is_mem_size(fn->arg1_type) || 6531 check_args_pair_invalid(fn, 0) || 6532 check_args_pair_invalid(fn, 1) || 6533 check_args_pair_invalid(fn, 2) || 6534 check_args_pair_invalid(fn, 3) || 6535 check_args_pair_invalid(fn, 4)) 6536 return false; 6537 6538 return true; 6539 } 6540 6541 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6542 { 6543 int i; 6544 6545 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6546 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6547 return false; 6548 6549 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6550 /* arg_btf_id and arg_size are in a union. */ 6551 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6552 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6553 return false; 6554 } 6555 6556 return true; 6557 } 6558 6559 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6560 { 6561 return check_raw_mode_ok(fn) && 6562 check_arg_pair_ok(fn) && 6563 check_btf_id_ok(fn) ? 0 : -EINVAL; 6564 } 6565 6566 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6567 * are now invalid, so turn them into unknown SCALAR_VALUE. 6568 */ 6569 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6570 { 6571 struct bpf_func_state *state; 6572 struct bpf_reg_state *reg; 6573 6574 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6575 if (reg_is_pkt_pointer_any(reg)) 6576 __mark_reg_unknown(env, reg); 6577 })); 6578 } 6579 6580 enum { 6581 AT_PKT_END = -1, 6582 BEYOND_PKT_END = -2, 6583 }; 6584 6585 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6586 { 6587 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6588 struct bpf_reg_state *reg = &state->regs[regn]; 6589 6590 if (reg->type != PTR_TO_PACKET) 6591 /* PTR_TO_PACKET_META is not supported yet */ 6592 return; 6593 6594 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6595 * How far beyond pkt_end it goes is unknown. 6596 * if (!range_open) it's the case of pkt >= pkt_end 6597 * if (range_open) it's the case of pkt > pkt_end 6598 * hence this pointer is at least 1 byte bigger than pkt_end 6599 */ 6600 if (range_open) 6601 reg->range = BEYOND_PKT_END; 6602 else 6603 reg->range = AT_PKT_END; 6604 } 6605 6606 /* The pointer with the specified id has released its reference to kernel 6607 * resources. Identify all copies of the same pointer and clear the reference. 6608 */ 6609 static int release_reference(struct bpf_verifier_env *env, 6610 int ref_obj_id) 6611 { 6612 struct bpf_func_state *state; 6613 struct bpf_reg_state *reg; 6614 int err; 6615 6616 err = release_reference_state(cur_func(env), ref_obj_id); 6617 if (err) 6618 return err; 6619 6620 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6621 if (reg->ref_obj_id == ref_obj_id) 6622 __mark_reg_unknown(env, reg); 6623 })); 6624 6625 return 0; 6626 } 6627 6628 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6629 struct bpf_reg_state *regs) 6630 { 6631 int i; 6632 6633 /* after the call registers r0 - r5 were scratched */ 6634 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6635 mark_reg_not_init(env, regs, caller_saved[i]); 6636 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6637 } 6638 } 6639 6640 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6641 struct bpf_func_state *caller, 6642 struct bpf_func_state *callee, 6643 int insn_idx); 6644 6645 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6646 int *insn_idx, int subprog, 6647 set_callee_state_fn set_callee_state_cb) 6648 { 6649 struct bpf_verifier_state *state = env->cur_state; 6650 struct bpf_func_info_aux *func_info_aux; 6651 struct bpf_func_state *caller, *callee; 6652 int err; 6653 bool is_global = false; 6654 6655 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6656 verbose(env, "the call stack of %d frames is too deep\n", 6657 state->curframe + 2); 6658 return -E2BIG; 6659 } 6660 6661 caller = state->frame[state->curframe]; 6662 if (state->frame[state->curframe + 1]) { 6663 verbose(env, "verifier bug. Frame %d already allocated\n", 6664 state->curframe + 1); 6665 return -EFAULT; 6666 } 6667 6668 func_info_aux = env->prog->aux->func_info_aux; 6669 if (func_info_aux) 6670 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6671 err = btf_check_subprog_call(env, subprog, caller->regs); 6672 if (err == -EFAULT) 6673 return err; 6674 if (is_global) { 6675 if (err) { 6676 verbose(env, "Caller passes invalid args into func#%d\n", 6677 subprog); 6678 return err; 6679 } else { 6680 if (env->log.level & BPF_LOG_LEVEL) 6681 verbose(env, 6682 "Func#%d is global and valid. Skipping.\n", 6683 subprog); 6684 clear_caller_saved_regs(env, caller->regs); 6685 6686 /* All global functions return a 64-bit SCALAR_VALUE */ 6687 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6688 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6689 6690 /* continue with next insn after call */ 6691 return 0; 6692 } 6693 } 6694 6695 if (insn->code == (BPF_JMP | BPF_CALL) && 6696 insn->src_reg == 0 && 6697 insn->imm == BPF_FUNC_timer_set_callback) { 6698 struct bpf_verifier_state *async_cb; 6699 6700 /* there is no real recursion here. timer callbacks are async */ 6701 env->subprog_info[subprog].is_async_cb = true; 6702 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6703 *insn_idx, subprog); 6704 if (!async_cb) 6705 return -EFAULT; 6706 callee = async_cb->frame[0]; 6707 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6708 6709 /* Convert bpf_timer_set_callback() args into timer callback args */ 6710 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6711 if (err) 6712 return err; 6713 6714 clear_caller_saved_regs(env, caller->regs); 6715 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6716 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6717 /* continue with next insn after call */ 6718 return 0; 6719 } 6720 6721 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6722 if (!callee) 6723 return -ENOMEM; 6724 state->frame[state->curframe + 1] = callee; 6725 6726 /* callee cannot access r0, r6 - r9 for reading and has to write 6727 * into its own stack before reading from it. 6728 * callee can read/write into caller's stack 6729 */ 6730 init_func_state(env, callee, 6731 /* remember the callsite, it will be used by bpf_exit */ 6732 *insn_idx /* callsite */, 6733 state->curframe + 1 /* frameno within this callchain */, 6734 subprog /* subprog number within this prog */); 6735 6736 /* Transfer references to the callee */ 6737 err = copy_reference_state(callee, caller); 6738 if (err) 6739 return err; 6740 6741 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6742 if (err) 6743 return err; 6744 6745 clear_caller_saved_regs(env, caller->regs); 6746 6747 /* only increment it after check_reg_arg() finished */ 6748 state->curframe++; 6749 6750 /* and go analyze first insn of the callee */ 6751 *insn_idx = env->subprog_info[subprog].start - 1; 6752 6753 if (env->log.level & BPF_LOG_LEVEL) { 6754 verbose(env, "caller:\n"); 6755 print_verifier_state(env, caller, true); 6756 verbose(env, "callee:\n"); 6757 print_verifier_state(env, callee, true); 6758 } 6759 return 0; 6760 } 6761 6762 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6763 struct bpf_func_state *caller, 6764 struct bpf_func_state *callee) 6765 { 6766 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6767 * void *callback_ctx, u64 flags); 6768 * callback_fn(struct bpf_map *map, void *key, void *value, 6769 * void *callback_ctx); 6770 */ 6771 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6772 6773 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6774 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6775 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6776 6777 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6778 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6779 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6780 6781 /* pointer to stack or null */ 6782 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6783 6784 /* unused */ 6785 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6786 return 0; 6787 } 6788 6789 static int set_callee_state(struct bpf_verifier_env *env, 6790 struct bpf_func_state *caller, 6791 struct bpf_func_state *callee, int insn_idx) 6792 { 6793 int i; 6794 6795 /* copy r1 - r5 args that callee can access. The copy includes parent 6796 * pointers, which connects us up to the liveness chain 6797 */ 6798 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6799 callee->regs[i] = caller->regs[i]; 6800 return 0; 6801 } 6802 6803 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6804 int *insn_idx) 6805 { 6806 int subprog, target_insn; 6807 6808 target_insn = *insn_idx + insn->imm + 1; 6809 subprog = find_subprog(env, target_insn); 6810 if (subprog < 0) { 6811 verbose(env, "verifier bug. No program starts at insn %d\n", 6812 target_insn); 6813 return -EFAULT; 6814 } 6815 6816 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6817 } 6818 6819 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6820 struct bpf_func_state *caller, 6821 struct bpf_func_state *callee, 6822 int insn_idx) 6823 { 6824 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6825 struct bpf_map *map; 6826 int err; 6827 6828 if (bpf_map_ptr_poisoned(insn_aux)) { 6829 verbose(env, "tail_call abusing map_ptr\n"); 6830 return -EINVAL; 6831 } 6832 6833 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6834 if (!map->ops->map_set_for_each_callback_args || 6835 !map->ops->map_for_each_callback) { 6836 verbose(env, "callback function not allowed for map\n"); 6837 return -ENOTSUPP; 6838 } 6839 6840 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6841 if (err) 6842 return err; 6843 6844 callee->in_callback_fn = true; 6845 callee->callback_ret_range = tnum_range(0, 1); 6846 return 0; 6847 } 6848 6849 static int set_loop_callback_state(struct bpf_verifier_env *env, 6850 struct bpf_func_state *caller, 6851 struct bpf_func_state *callee, 6852 int insn_idx) 6853 { 6854 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6855 * u64 flags); 6856 * callback_fn(u32 index, void *callback_ctx); 6857 */ 6858 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6859 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6860 6861 /* unused */ 6862 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6863 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6864 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6865 6866 callee->in_callback_fn = true; 6867 callee->callback_ret_range = tnum_range(0, 1); 6868 return 0; 6869 } 6870 6871 static int set_timer_callback_state(struct bpf_verifier_env *env, 6872 struct bpf_func_state *caller, 6873 struct bpf_func_state *callee, 6874 int insn_idx) 6875 { 6876 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6877 6878 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6879 * callback_fn(struct bpf_map *map, void *key, void *value); 6880 */ 6881 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6882 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6883 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6884 6885 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6886 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6887 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6888 6889 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6890 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6891 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6892 6893 /* unused */ 6894 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6895 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6896 callee->in_async_callback_fn = true; 6897 callee->callback_ret_range = tnum_range(0, 1); 6898 return 0; 6899 } 6900 6901 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6902 struct bpf_func_state *caller, 6903 struct bpf_func_state *callee, 6904 int insn_idx) 6905 { 6906 /* bpf_find_vma(struct task_struct *task, u64 addr, 6907 * void *callback_fn, void *callback_ctx, u64 flags) 6908 * (callback_fn)(struct task_struct *task, 6909 * struct vm_area_struct *vma, void *callback_ctx); 6910 */ 6911 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6912 6913 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6914 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6915 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6916 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6917 6918 /* pointer to stack or null */ 6919 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6920 6921 /* unused */ 6922 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6923 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6924 callee->in_callback_fn = true; 6925 callee->callback_ret_range = tnum_range(0, 1); 6926 return 0; 6927 } 6928 6929 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 6930 struct bpf_func_state *caller, 6931 struct bpf_func_state *callee, 6932 int insn_idx) 6933 { 6934 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 6935 * callback_ctx, u64 flags); 6936 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx); 6937 */ 6938 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 6939 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL; 6940 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6941 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6942 6943 /* unused */ 6944 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6945 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6946 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6947 6948 callee->in_callback_fn = true; 6949 callee->callback_ret_range = tnum_range(0, 1); 6950 return 0; 6951 } 6952 6953 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6954 { 6955 struct bpf_verifier_state *state = env->cur_state; 6956 struct bpf_func_state *caller, *callee; 6957 struct bpf_reg_state *r0; 6958 int err; 6959 6960 callee = state->frame[state->curframe]; 6961 r0 = &callee->regs[BPF_REG_0]; 6962 if (r0->type == PTR_TO_STACK) { 6963 /* technically it's ok to return caller's stack pointer 6964 * (or caller's caller's pointer) back to the caller, 6965 * since these pointers are valid. Only current stack 6966 * pointer will be invalid as soon as function exits, 6967 * but let's be conservative 6968 */ 6969 verbose(env, "cannot return stack pointer to the caller\n"); 6970 return -EINVAL; 6971 } 6972 6973 state->curframe--; 6974 caller = state->frame[state->curframe]; 6975 if (callee->in_callback_fn) { 6976 /* enforce R0 return value range [0, 1]. */ 6977 struct tnum range = callee->callback_ret_range; 6978 6979 if (r0->type != SCALAR_VALUE) { 6980 verbose(env, "R0 not a scalar value\n"); 6981 return -EACCES; 6982 } 6983 if (!tnum_in(range, r0->var_off)) { 6984 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6985 return -EINVAL; 6986 } 6987 } else { 6988 /* return to the caller whatever r0 had in the callee */ 6989 caller->regs[BPF_REG_0] = *r0; 6990 } 6991 6992 /* callback_fn frame should have released its own additions to parent's 6993 * reference state at this point, or check_reference_leak would 6994 * complain, hence it must be the same as the caller. There is no need 6995 * to copy it back. 6996 */ 6997 if (!callee->in_callback_fn) { 6998 /* Transfer references to the caller */ 6999 err = copy_reference_state(caller, callee); 7000 if (err) 7001 return err; 7002 } 7003 7004 *insn_idx = callee->callsite + 1; 7005 if (env->log.level & BPF_LOG_LEVEL) { 7006 verbose(env, "returning from callee:\n"); 7007 print_verifier_state(env, callee, true); 7008 verbose(env, "to caller at %d:\n", *insn_idx); 7009 print_verifier_state(env, caller, true); 7010 } 7011 /* clear everything in the callee */ 7012 free_func_state(callee); 7013 state->frame[state->curframe + 1] = NULL; 7014 return 0; 7015 } 7016 7017 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7018 int func_id, 7019 struct bpf_call_arg_meta *meta) 7020 { 7021 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7022 7023 if (ret_type != RET_INTEGER || 7024 (func_id != BPF_FUNC_get_stack && 7025 func_id != BPF_FUNC_get_task_stack && 7026 func_id != BPF_FUNC_probe_read_str && 7027 func_id != BPF_FUNC_probe_read_kernel_str && 7028 func_id != BPF_FUNC_probe_read_user_str)) 7029 return; 7030 7031 ret_reg->smax_value = meta->msize_max_value; 7032 ret_reg->s32_max_value = meta->msize_max_value; 7033 ret_reg->smin_value = -MAX_ERRNO; 7034 ret_reg->s32_min_value = -MAX_ERRNO; 7035 reg_bounds_sync(ret_reg); 7036 } 7037 7038 static int 7039 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7040 int func_id, int insn_idx) 7041 { 7042 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7043 struct bpf_map *map = meta->map_ptr; 7044 7045 if (func_id != BPF_FUNC_tail_call && 7046 func_id != BPF_FUNC_map_lookup_elem && 7047 func_id != BPF_FUNC_map_update_elem && 7048 func_id != BPF_FUNC_map_delete_elem && 7049 func_id != BPF_FUNC_map_push_elem && 7050 func_id != BPF_FUNC_map_pop_elem && 7051 func_id != BPF_FUNC_map_peek_elem && 7052 func_id != BPF_FUNC_for_each_map_elem && 7053 func_id != BPF_FUNC_redirect_map && 7054 func_id != BPF_FUNC_map_lookup_percpu_elem) 7055 return 0; 7056 7057 if (map == NULL) { 7058 verbose(env, "kernel subsystem misconfigured verifier\n"); 7059 return -EINVAL; 7060 } 7061 7062 /* In case of read-only, some additional restrictions 7063 * need to be applied in order to prevent altering the 7064 * state of the map from program side. 7065 */ 7066 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7067 (func_id == BPF_FUNC_map_delete_elem || 7068 func_id == BPF_FUNC_map_update_elem || 7069 func_id == BPF_FUNC_map_push_elem || 7070 func_id == BPF_FUNC_map_pop_elem)) { 7071 verbose(env, "write into map forbidden\n"); 7072 return -EACCES; 7073 } 7074 7075 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7076 bpf_map_ptr_store(aux, meta->map_ptr, 7077 !meta->map_ptr->bypass_spec_v1); 7078 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7079 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7080 !meta->map_ptr->bypass_spec_v1); 7081 return 0; 7082 } 7083 7084 static int 7085 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7086 int func_id, int insn_idx) 7087 { 7088 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7089 struct bpf_reg_state *regs = cur_regs(env), *reg; 7090 struct bpf_map *map = meta->map_ptr; 7091 u64 val, max; 7092 int err; 7093 7094 if (func_id != BPF_FUNC_tail_call) 7095 return 0; 7096 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7097 verbose(env, "kernel subsystem misconfigured verifier\n"); 7098 return -EINVAL; 7099 } 7100 7101 reg = ®s[BPF_REG_3]; 7102 val = reg->var_off.value; 7103 max = map->max_entries; 7104 7105 if (!(register_is_const(reg) && val < max)) { 7106 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7107 return 0; 7108 } 7109 7110 err = mark_chain_precision(env, BPF_REG_3); 7111 if (err) 7112 return err; 7113 if (bpf_map_key_unseen(aux)) 7114 bpf_map_key_store(aux, val); 7115 else if (!bpf_map_key_poisoned(aux) && 7116 bpf_map_key_immediate(aux) != val) 7117 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7118 return 0; 7119 } 7120 7121 static int check_reference_leak(struct bpf_verifier_env *env) 7122 { 7123 struct bpf_func_state *state = cur_func(env); 7124 bool refs_lingering = false; 7125 int i; 7126 7127 if (state->frameno && !state->in_callback_fn) 7128 return 0; 7129 7130 for (i = 0; i < state->acquired_refs; i++) { 7131 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7132 continue; 7133 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7134 state->refs[i].id, state->refs[i].insn_idx); 7135 refs_lingering = true; 7136 } 7137 return refs_lingering ? -EINVAL : 0; 7138 } 7139 7140 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7141 struct bpf_reg_state *regs) 7142 { 7143 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7144 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7145 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7146 int err, fmt_map_off, num_args; 7147 u64 fmt_addr; 7148 char *fmt; 7149 7150 /* data must be an array of u64 */ 7151 if (data_len_reg->var_off.value % 8) 7152 return -EINVAL; 7153 num_args = data_len_reg->var_off.value / 8; 7154 7155 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7156 * and map_direct_value_addr is set. 7157 */ 7158 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7159 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7160 fmt_map_off); 7161 if (err) { 7162 verbose(env, "verifier bug\n"); 7163 return -EFAULT; 7164 } 7165 fmt = (char *)(long)fmt_addr + fmt_map_off; 7166 7167 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7168 * can focus on validating the format specifiers. 7169 */ 7170 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7171 if (err < 0) 7172 verbose(env, "Invalid format string\n"); 7173 7174 return err; 7175 } 7176 7177 static int check_get_func_ip(struct bpf_verifier_env *env) 7178 { 7179 enum bpf_prog_type type = resolve_prog_type(env->prog); 7180 int func_id = BPF_FUNC_get_func_ip; 7181 7182 if (type == BPF_PROG_TYPE_TRACING) { 7183 if (!bpf_prog_has_trampoline(env->prog)) { 7184 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7185 func_id_name(func_id), func_id); 7186 return -ENOTSUPP; 7187 } 7188 return 0; 7189 } else if (type == BPF_PROG_TYPE_KPROBE) { 7190 return 0; 7191 } 7192 7193 verbose(env, "func %s#%d not supported for program type %d\n", 7194 func_id_name(func_id), func_id, type); 7195 return -ENOTSUPP; 7196 } 7197 7198 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7199 { 7200 return &env->insn_aux_data[env->insn_idx]; 7201 } 7202 7203 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7204 { 7205 struct bpf_reg_state *regs = cur_regs(env); 7206 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7207 bool reg_is_null = register_is_null(reg); 7208 7209 if (reg_is_null) 7210 mark_chain_precision(env, BPF_REG_4); 7211 7212 return reg_is_null; 7213 } 7214 7215 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7216 { 7217 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7218 7219 if (!state->initialized) { 7220 state->initialized = 1; 7221 state->fit_for_inline = loop_flag_is_zero(env); 7222 state->callback_subprogno = subprogno; 7223 return; 7224 } 7225 7226 if (!state->fit_for_inline) 7227 return; 7228 7229 state->fit_for_inline = (loop_flag_is_zero(env) && 7230 state->callback_subprogno == subprogno); 7231 } 7232 7233 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7234 int *insn_idx_p) 7235 { 7236 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7237 const struct bpf_func_proto *fn = NULL; 7238 enum bpf_return_type ret_type; 7239 enum bpf_type_flag ret_flag; 7240 struct bpf_reg_state *regs; 7241 struct bpf_call_arg_meta meta; 7242 int insn_idx = *insn_idx_p; 7243 bool changes_data; 7244 int i, err, func_id; 7245 7246 /* find function prototype */ 7247 func_id = insn->imm; 7248 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7249 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7250 func_id); 7251 return -EINVAL; 7252 } 7253 7254 if (env->ops->get_func_proto) 7255 fn = env->ops->get_func_proto(func_id, env->prog); 7256 if (!fn) { 7257 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7258 func_id); 7259 return -EINVAL; 7260 } 7261 7262 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7263 if (!env->prog->gpl_compatible && fn->gpl_only) { 7264 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7265 return -EINVAL; 7266 } 7267 7268 if (fn->allowed && !fn->allowed(env->prog)) { 7269 verbose(env, "helper call is not allowed in probe\n"); 7270 return -EINVAL; 7271 } 7272 7273 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7274 changes_data = bpf_helper_changes_pkt_data(fn->func); 7275 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7276 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7277 func_id_name(func_id), func_id); 7278 return -EINVAL; 7279 } 7280 7281 memset(&meta, 0, sizeof(meta)); 7282 meta.pkt_access = fn->pkt_access; 7283 7284 err = check_func_proto(fn, func_id); 7285 if (err) { 7286 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7287 func_id_name(func_id), func_id); 7288 return err; 7289 } 7290 7291 meta.func_id = func_id; 7292 /* check args */ 7293 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7294 err = check_func_arg(env, i, &meta, fn); 7295 if (err) 7296 return err; 7297 } 7298 7299 err = record_func_map(env, &meta, func_id, insn_idx); 7300 if (err) 7301 return err; 7302 7303 err = record_func_key(env, &meta, func_id, insn_idx); 7304 if (err) 7305 return err; 7306 7307 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7308 * is inferred from register state. 7309 */ 7310 for (i = 0; i < meta.access_size; i++) { 7311 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7312 BPF_WRITE, -1, false); 7313 if (err) 7314 return err; 7315 } 7316 7317 regs = cur_regs(env); 7318 7319 if (meta.uninit_dynptr_regno) { 7320 /* we write BPF_DW bits (8 bytes) at a time */ 7321 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7322 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7323 i, BPF_DW, BPF_WRITE, -1, false); 7324 if (err) 7325 return err; 7326 } 7327 7328 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7329 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7330 insn_idx); 7331 if (err) 7332 return err; 7333 } 7334 7335 if (meta.release_regno) { 7336 err = -EINVAL; 7337 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7338 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7339 else if (meta.ref_obj_id) 7340 err = release_reference(env, meta.ref_obj_id); 7341 /* meta.ref_obj_id can only be 0 if register that is meant to be 7342 * released is NULL, which must be > R0. 7343 */ 7344 else if (register_is_null(®s[meta.release_regno])) 7345 err = 0; 7346 if (err) { 7347 verbose(env, "func %s#%d reference has not been acquired before\n", 7348 func_id_name(func_id), func_id); 7349 return err; 7350 } 7351 } 7352 7353 switch (func_id) { 7354 case BPF_FUNC_tail_call: 7355 err = check_reference_leak(env); 7356 if (err) { 7357 verbose(env, "tail_call would lead to reference leak\n"); 7358 return err; 7359 } 7360 break; 7361 case BPF_FUNC_get_local_storage: 7362 /* check that flags argument in get_local_storage(map, flags) is 0, 7363 * this is required because get_local_storage() can't return an error. 7364 */ 7365 if (!register_is_null(®s[BPF_REG_2])) { 7366 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7367 return -EINVAL; 7368 } 7369 break; 7370 case BPF_FUNC_for_each_map_elem: 7371 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7372 set_map_elem_callback_state); 7373 break; 7374 case BPF_FUNC_timer_set_callback: 7375 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7376 set_timer_callback_state); 7377 break; 7378 case BPF_FUNC_find_vma: 7379 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7380 set_find_vma_callback_state); 7381 break; 7382 case BPF_FUNC_snprintf: 7383 err = check_bpf_snprintf_call(env, regs); 7384 break; 7385 case BPF_FUNC_loop: 7386 update_loop_inline_state(env, meta.subprogno); 7387 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7388 set_loop_callback_state); 7389 break; 7390 case BPF_FUNC_dynptr_from_mem: 7391 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7392 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7393 reg_type_str(env, regs[BPF_REG_1].type)); 7394 return -EACCES; 7395 } 7396 break; 7397 case BPF_FUNC_set_retval: 7398 if (prog_type == BPF_PROG_TYPE_LSM && 7399 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7400 if (!env->prog->aux->attach_func_proto->type) { 7401 /* Make sure programs that attach to void 7402 * hooks don't try to modify return value. 7403 */ 7404 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7405 return -EINVAL; 7406 } 7407 } 7408 break; 7409 case BPF_FUNC_dynptr_data: 7410 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7411 if (arg_type_is_dynptr(fn->arg_type[i])) { 7412 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7413 7414 if (meta.ref_obj_id) { 7415 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7416 return -EFAULT; 7417 } 7418 7419 if (base_type(reg->type) != PTR_TO_DYNPTR) 7420 /* Find the id of the dynptr we're 7421 * tracking the reference of 7422 */ 7423 meta.ref_obj_id = stack_slot_get_id(env, reg); 7424 break; 7425 } 7426 } 7427 if (i == MAX_BPF_FUNC_REG_ARGS) { 7428 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7429 return -EFAULT; 7430 } 7431 break; 7432 case BPF_FUNC_user_ringbuf_drain: 7433 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7434 set_user_ringbuf_callback_state); 7435 break; 7436 } 7437 7438 if (err) 7439 return err; 7440 7441 /* reset caller saved regs */ 7442 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7443 mark_reg_not_init(env, regs, caller_saved[i]); 7444 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7445 } 7446 7447 /* helper call returns 64-bit value. */ 7448 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7449 7450 /* update return register (already marked as written above) */ 7451 ret_type = fn->ret_type; 7452 ret_flag = type_flag(ret_type); 7453 7454 switch (base_type(ret_type)) { 7455 case RET_INTEGER: 7456 /* sets type to SCALAR_VALUE */ 7457 mark_reg_unknown(env, regs, BPF_REG_0); 7458 break; 7459 case RET_VOID: 7460 regs[BPF_REG_0].type = NOT_INIT; 7461 break; 7462 case RET_PTR_TO_MAP_VALUE: 7463 /* There is no offset yet applied, variable or fixed */ 7464 mark_reg_known_zero(env, regs, BPF_REG_0); 7465 /* remember map_ptr, so that check_map_access() 7466 * can check 'value_size' boundary of memory access 7467 * to map element returned from bpf_map_lookup_elem() 7468 */ 7469 if (meta.map_ptr == NULL) { 7470 verbose(env, 7471 "kernel subsystem misconfigured verifier\n"); 7472 return -EINVAL; 7473 } 7474 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7475 regs[BPF_REG_0].map_uid = meta.map_uid; 7476 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7477 if (!type_may_be_null(ret_type) && 7478 map_value_has_spin_lock(meta.map_ptr)) { 7479 regs[BPF_REG_0].id = ++env->id_gen; 7480 } 7481 break; 7482 case RET_PTR_TO_SOCKET: 7483 mark_reg_known_zero(env, regs, BPF_REG_0); 7484 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7485 break; 7486 case RET_PTR_TO_SOCK_COMMON: 7487 mark_reg_known_zero(env, regs, BPF_REG_0); 7488 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7489 break; 7490 case RET_PTR_TO_TCP_SOCK: 7491 mark_reg_known_zero(env, regs, BPF_REG_0); 7492 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7493 break; 7494 case RET_PTR_TO_ALLOC_MEM: 7495 mark_reg_known_zero(env, regs, BPF_REG_0); 7496 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7497 regs[BPF_REG_0].mem_size = meta.mem_size; 7498 break; 7499 case RET_PTR_TO_MEM_OR_BTF_ID: 7500 { 7501 const struct btf_type *t; 7502 7503 mark_reg_known_zero(env, regs, BPF_REG_0); 7504 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7505 if (!btf_type_is_struct(t)) { 7506 u32 tsize; 7507 const struct btf_type *ret; 7508 const char *tname; 7509 7510 /* resolve the type size of ksym. */ 7511 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7512 if (IS_ERR(ret)) { 7513 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7514 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7515 tname, PTR_ERR(ret)); 7516 return -EINVAL; 7517 } 7518 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7519 regs[BPF_REG_0].mem_size = tsize; 7520 } else { 7521 /* MEM_RDONLY may be carried from ret_flag, but it 7522 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7523 * it will confuse the check of PTR_TO_BTF_ID in 7524 * check_mem_access(). 7525 */ 7526 ret_flag &= ~MEM_RDONLY; 7527 7528 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7529 regs[BPF_REG_0].btf = meta.ret_btf; 7530 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7531 } 7532 break; 7533 } 7534 case RET_PTR_TO_BTF_ID: 7535 { 7536 struct btf *ret_btf; 7537 int ret_btf_id; 7538 7539 mark_reg_known_zero(env, regs, BPF_REG_0); 7540 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7541 if (func_id == BPF_FUNC_kptr_xchg) { 7542 ret_btf = meta.kptr_off_desc->kptr.btf; 7543 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7544 } else { 7545 if (fn->ret_btf_id == BPF_PTR_POISON) { 7546 verbose(env, "verifier internal error:"); 7547 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 7548 func_id_name(func_id)); 7549 return -EINVAL; 7550 } 7551 ret_btf = btf_vmlinux; 7552 ret_btf_id = *fn->ret_btf_id; 7553 } 7554 if (ret_btf_id == 0) { 7555 verbose(env, "invalid return type %u of func %s#%d\n", 7556 base_type(ret_type), func_id_name(func_id), 7557 func_id); 7558 return -EINVAL; 7559 } 7560 regs[BPF_REG_0].btf = ret_btf; 7561 regs[BPF_REG_0].btf_id = ret_btf_id; 7562 break; 7563 } 7564 default: 7565 verbose(env, "unknown return type %u of func %s#%d\n", 7566 base_type(ret_type), func_id_name(func_id), func_id); 7567 return -EINVAL; 7568 } 7569 7570 if (type_may_be_null(regs[BPF_REG_0].type)) 7571 regs[BPF_REG_0].id = ++env->id_gen; 7572 7573 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7574 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7575 func_id_name(func_id), func_id); 7576 return -EFAULT; 7577 } 7578 7579 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7580 /* For release_reference() */ 7581 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7582 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7583 int id = acquire_reference_state(env, insn_idx); 7584 7585 if (id < 0) 7586 return id; 7587 /* For mark_ptr_or_null_reg() */ 7588 regs[BPF_REG_0].id = id; 7589 /* For release_reference() */ 7590 regs[BPF_REG_0].ref_obj_id = id; 7591 } 7592 7593 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7594 7595 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7596 if (err) 7597 return err; 7598 7599 if ((func_id == BPF_FUNC_get_stack || 7600 func_id == BPF_FUNC_get_task_stack) && 7601 !env->prog->has_callchain_buf) { 7602 const char *err_str; 7603 7604 #ifdef CONFIG_PERF_EVENTS 7605 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7606 err_str = "cannot get callchain buffer for func %s#%d\n"; 7607 #else 7608 err = -ENOTSUPP; 7609 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7610 #endif 7611 if (err) { 7612 verbose(env, err_str, func_id_name(func_id), func_id); 7613 return err; 7614 } 7615 7616 env->prog->has_callchain_buf = true; 7617 } 7618 7619 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7620 env->prog->call_get_stack = true; 7621 7622 if (func_id == BPF_FUNC_get_func_ip) { 7623 if (check_get_func_ip(env)) 7624 return -ENOTSUPP; 7625 env->prog->call_get_func_ip = true; 7626 } 7627 7628 if (changes_data) 7629 clear_all_pkt_pointers(env); 7630 return 0; 7631 } 7632 7633 /* mark_btf_func_reg_size() is used when the reg size is determined by 7634 * the BTF func_proto's return value size and argument. 7635 */ 7636 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7637 size_t reg_size) 7638 { 7639 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7640 7641 if (regno == BPF_REG_0) { 7642 /* Function return value */ 7643 reg->live |= REG_LIVE_WRITTEN; 7644 reg->subreg_def = reg_size == sizeof(u64) ? 7645 DEF_NOT_SUBREG : env->insn_idx + 1; 7646 } else { 7647 /* Function argument */ 7648 if (reg_size == sizeof(u64)) { 7649 mark_insn_zext(env, reg); 7650 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7651 } else { 7652 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7653 } 7654 } 7655 } 7656 7657 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7658 int *insn_idx_p) 7659 { 7660 const struct btf_type *t, *func, *func_proto, *ptr_type; 7661 struct bpf_reg_state *regs = cur_regs(env); 7662 struct bpf_kfunc_arg_meta meta = { 0 }; 7663 const char *func_name, *ptr_type_name; 7664 u32 i, nargs, func_id, ptr_type_id; 7665 int err, insn_idx = *insn_idx_p; 7666 const struct btf_param *args; 7667 struct btf *desc_btf; 7668 u32 *kfunc_flags; 7669 bool acq; 7670 7671 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7672 if (!insn->imm) 7673 return 0; 7674 7675 desc_btf = find_kfunc_desc_btf(env, insn->off); 7676 if (IS_ERR(desc_btf)) 7677 return PTR_ERR(desc_btf); 7678 7679 func_id = insn->imm; 7680 func = btf_type_by_id(desc_btf, func_id); 7681 func_name = btf_name_by_offset(desc_btf, func->name_off); 7682 func_proto = btf_type_by_id(desc_btf, func->type); 7683 7684 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7685 if (!kfunc_flags) { 7686 verbose(env, "calling kernel function %s is not allowed\n", 7687 func_name); 7688 return -EACCES; 7689 } 7690 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) { 7691 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n"); 7692 return -EACCES; 7693 } 7694 7695 acq = *kfunc_flags & KF_ACQUIRE; 7696 7697 meta.flags = *kfunc_flags; 7698 7699 /* Check the arguments */ 7700 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta); 7701 if (err < 0) 7702 return err; 7703 /* In case of release function, we get register number of refcounted 7704 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7705 */ 7706 if (err) { 7707 err = release_reference(env, regs[err].ref_obj_id); 7708 if (err) { 7709 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7710 func_name, func_id); 7711 return err; 7712 } 7713 } 7714 7715 for (i = 0; i < CALLER_SAVED_REGS; i++) 7716 mark_reg_not_init(env, regs, caller_saved[i]); 7717 7718 /* Check return type */ 7719 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7720 7721 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) { 7722 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7723 return -EINVAL; 7724 } 7725 7726 if (btf_type_is_scalar(t)) { 7727 mark_reg_unknown(env, regs, BPF_REG_0); 7728 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7729 } else if (btf_type_is_ptr(t)) { 7730 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7731 &ptr_type_id); 7732 if (!btf_type_is_struct(ptr_type)) { 7733 if (!meta.r0_size) { 7734 ptr_type_name = btf_name_by_offset(desc_btf, 7735 ptr_type->name_off); 7736 verbose(env, 7737 "kernel function %s returns pointer type %s %s is not supported\n", 7738 func_name, 7739 btf_type_str(ptr_type), 7740 ptr_type_name); 7741 return -EINVAL; 7742 } 7743 7744 mark_reg_known_zero(env, regs, BPF_REG_0); 7745 regs[BPF_REG_0].type = PTR_TO_MEM; 7746 regs[BPF_REG_0].mem_size = meta.r0_size; 7747 7748 if (meta.r0_rdonly) 7749 regs[BPF_REG_0].type |= MEM_RDONLY; 7750 7751 /* Ensures we don't access the memory after a release_reference() */ 7752 if (meta.ref_obj_id) 7753 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7754 } else { 7755 mark_reg_known_zero(env, regs, BPF_REG_0); 7756 regs[BPF_REG_0].btf = desc_btf; 7757 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7758 regs[BPF_REG_0].btf_id = ptr_type_id; 7759 } 7760 if (*kfunc_flags & KF_RET_NULL) { 7761 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7762 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7763 regs[BPF_REG_0].id = ++env->id_gen; 7764 } 7765 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7766 if (acq) { 7767 int id = acquire_reference_state(env, insn_idx); 7768 7769 if (id < 0) 7770 return id; 7771 regs[BPF_REG_0].id = id; 7772 regs[BPF_REG_0].ref_obj_id = id; 7773 } 7774 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7775 7776 nargs = btf_type_vlen(func_proto); 7777 args = (const struct btf_param *)(func_proto + 1); 7778 for (i = 0; i < nargs; i++) { 7779 u32 regno = i + 1; 7780 7781 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7782 if (btf_type_is_ptr(t)) 7783 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7784 else 7785 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7786 mark_btf_func_reg_size(env, regno, t->size); 7787 } 7788 7789 return 0; 7790 } 7791 7792 static bool signed_add_overflows(s64 a, s64 b) 7793 { 7794 /* Do the add in u64, where overflow is well-defined */ 7795 s64 res = (s64)((u64)a + (u64)b); 7796 7797 if (b < 0) 7798 return res > a; 7799 return res < a; 7800 } 7801 7802 static bool signed_add32_overflows(s32 a, s32 b) 7803 { 7804 /* Do the add in u32, where overflow is well-defined */ 7805 s32 res = (s32)((u32)a + (u32)b); 7806 7807 if (b < 0) 7808 return res > a; 7809 return res < a; 7810 } 7811 7812 static bool signed_sub_overflows(s64 a, s64 b) 7813 { 7814 /* Do the sub in u64, where overflow is well-defined */ 7815 s64 res = (s64)((u64)a - (u64)b); 7816 7817 if (b < 0) 7818 return res < a; 7819 return res > a; 7820 } 7821 7822 static bool signed_sub32_overflows(s32 a, s32 b) 7823 { 7824 /* Do the sub in u32, where overflow is well-defined */ 7825 s32 res = (s32)((u32)a - (u32)b); 7826 7827 if (b < 0) 7828 return res < a; 7829 return res > a; 7830 } 7831 7832 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7833 const struct bpf_reg_state *reg, 7834 enum bpf_reg_type type) 7835 { 7836 bool known = tnum_is_const(reg->var_off); 7837 s64 val = reg->var_off.value; 7838 s64 smin = reg->smin_value; 7839 7840 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7841 verbose(env, "math between %s pointer and %lld is not allowed\n", 7842 reg_type_str(env, type), val); 7843 return false; 7844 } 7845 7846 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7847 verbose(env, "%s pointer offset %d is not allowed\n", 7848 reg_type_str(env, type), reg->off); 7849 return false; 7850 } 7851 7852 if (smin == S64_MIN) { 7853 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7854 reg_type_str(env, type)); 7855 return false; 7856 } 7857 7858 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7859 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7860 smin, reg_type_str(env, type)); 7861 return false; 7862 } 7863 7864 return true; 7865 } 7866 7867 enum { 7868 REASON_BOUNDS = -1, 7869 REASON_TYPE = -2, 7870 REASON_PATHS = -3, 7871 REASON_LIMIT = -4, 7872 REASON_STACK = -5, 7873 }; 7874 7875 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7876 u32 *alu_limit, bool mask_to_left) 7877 { 7878 u32 max = 0, ptr_limit = 0; 7879 7880 switch (ptr_reg->type) { 7881 case PTR_TO_STACK: 7882 /* Offset 0 is out-of-bounds, but acceptable start for the 7883 * left direction, see BPF_REG_FP. Also, unknown scalar 7884 * offset where we would need to deal with min/max bounds is 7885 * currently prohibited for unprivileged. 7886 */ 7887 max = MAX_BPF_STACK + mask_to_left; 7888 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7889 break; 7890 case PTR_TO_MAP_VALUE: 7891 max = ptr_reg->map_ptr->value_size; 7892 ptr_limit = (mask_to_left ? 7893 ptr_reg->smin_value : 7894 ptr_reg->umax_value) + ptr_reg->off; 7895 break; 7896 default: 7897 return REASON_TYPE; 7898 } 7899 7900 if (ptr_limit >= max) 7901 return REASON_LIMIT; 7902 *alu_limit = ptr_limit; 7903 return 0; 7904 } 7905 7906 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7907 const struct bpf_insn *insn) 7908 { 7909 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7910 } 7911 7912 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7913 u32 alu_state, u32 alu_limit) 7914 { 7915 /* If we arrived here from different branches with different 7916 * state or limits to sanitize, then this won't work. 7917 */ 7918 if (aux->alu_state && 7919 (aux->alu_state != alu_state || 7920 aux->alu_limit != alu_limit)) 7921 return REASON_PATHS; 7922 7923 /* Corresponding fixup done in do_misc_fixups(). */ 7924 aux->alu_state = alu_state; 7925 aux->alu_limit = alu_limit; 7926 return 0; 7927 } 7928 7929 static int sanitize_val_alu(struct bpf_verifier_env *env, 7930 struct bpf_insn *insn) 7931 { 7932 struct bpf_insn_aux_data *aux = cur_aux(env); 7933 7934 if (can_skip_alu_sanitation(env, insn)) 7935 return 0; 7936 7937 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7938 } 7939 7940 static bool sanitize_needed(u8 opcode) 7941 { 7942 return opcode == BPF_ADD || opcode == BPF_SUB; 7943 } 7944 7945 struct bpf_sanitize_info { 7946 struct bpf_insn_aux_data aux; 7947 bool mask_to_left; 7948 }; 7949 7950 static struct bpf_verifier_state * 7951 sanitize_speculative_path(struct bpf_verifier_env *env, 7952 const struct bpf_insn *insn, 7953 u32 next_idx, u32 curr_idx) 7954 { 7955 struct bpf_verifier_state *branch; 7956 struct bpf_reg_state *regs; 7957 7958 branch = push_stack(env, next_idx, curr_idx, true); 7959 if (branch && insn) { 7960 regs = branch->frame[branch->curframe]->regs; 7961 if (BPF_SRC(insn->code) == BPF_K) { 7962 mark_reg_unknown(env, regs, insn->dst_reg); 7963 } else if (BPF_SRC(insn->code) == BPF_X) { 7964 mark_reg_unknown(env, regs, insn->dst_reg); 7965 mark_reg_unknown(env, regs, insn->src_reg); 7966 } 7967 } 7968 return branch; 7969 } 7970 7971 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7972 struct bpf_insn *insn, 7973 const struct bpf_reg_state *ptr_reg, 7974 const struct bpf_reg_state *off_reg, 7975 struct bpf_reg_state *dst_reg, 7976 struct bpf_sanitize_info *info, 7977 const bool commit_window) 7978 { 7979 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7980 struct bpf_verifier_state *vstate = env->cur_state; 7981 bool off_is_imm = tnum_is_const(off_reg->var_off); 7982 bool off_is_neg = off_reg->smin_value < 0; 7983 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7984 u8 opcode = BPF_OP(insn->code); 7985 u32 alu_state, alu_limit; 7986 struct bpf_reg_state tmp; 7987 bool ret; 7988 int err; 7989 7990 if (can_skip_alu_sanitation(env, insn)) 7991 return 0; 7992 7993 /* We already marked aux for masking from non-speculative 7994 * paths, thus we got here in the first place. We only care 7995 * to explore bad access from here. 7996 */ 7997 if (vstate->speculative) 7998 goto do_sim; 7999 8000 if (!commit_window) { 8001 if (!tnum_is_const(off_reg->var_off) && 8002 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 8003 return REASON_BOUNDS; 8004 8005 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 8006 (opcode == BPF_SUB && !off_is_neg); 8007 } 8008 8009 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 8010 if (err < 0) 8011 return err; 8012 8013 if (commit_window) { 8014 /* In commit phase we narrow the masking window based on 8015 * the observed pointer move after the simulated operation. 8016 */ 8017 alu_state = info->aux.alu_state; 8018 alu_limit = abs(info->aux.alu_limit - alu_limit); 8019 } else { 8020 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 8021 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 8022 alu_state |= ptr_is_dst_reg ? 8023 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 8024 8025 /* Limit pruning on unknown scalars to enable deep search for 8026 * potential masking differences from other program paths. 8027 */ 8028 if (!off_is_imm) 8029 env->explore_alu_limits = true; 8030 } 8031 8032 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 8033 if (err < 0) 8034 return err; 8035 do_sim: 8036 /* If we're in commit phase, we're done here given we already 8037 * pushed the truncated dst_reg into the speculative verification 8038 * stack. 8039 * 8040 * Also, when register is a known constant, we rewrite register-based 8041 * operation to immediate-based, and thus do not need masking (and as 8042 * a consequence, do not need to simulate the zero-truncation either). 8043 */ 8044 if (commit_window || off_is_imm) 8045 return 0; 8046 8047 /* Simulate and find potential out-of-bounds access under 8048 * speculative execution from truncation as a result of 8049 * masking when off was not within expected range. If off 8050 * sits in dst, then we temporarily need to move ptr there 8051 * to simulate dst (== 0) +/-= ptr. Needed, for example, 8052 * for cases where we use K-based arithmetic in one direction 8053 * and truncated reg-based in the other in order to explore 8054 * bad access. 8055 */ 8056 if (!ptr_is_dst_reg) { 8057 tmp = *dst_reg; 8058 *dst_reg = *ptr_reg; 8059 } 8060 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 8061 env->insn_idx); 8062 if (!ptr_is_dst_reg && ret) 8063 *dst_reg = tmp; 8064 return !ret ? REASON_STACK : 0; 8065 } 8066 8067 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 8068 { 8069 struct bpf_verifier_state *vstate = env->cur_state; 8070 8071 /* If we simulate paths under speculation, we don't update the 8072 * insn as 'seen' such that when we verify unreachable paths in 8073 * the non-speculative domain, sanitize_dead_code() can still 8074 * rewrite/sanitize them. 8075 */ 8076 if (!vstate->speculative) 8077 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8078 } 8079 8080 static int sanitize_err(struct bpf_verifier_env *env, 8081 const struct bpf_insn *insn, int reason, 8082 const struct bpf_reg_state *off_reg, 8083 const struct bpf_reg_state *dst_reg) 8084 { 8085 static const char *err = "pointer arithmetic with it prohibited for !root"; 8086 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 8087 u32 dst = insn->dst_reg, src = insn->src_reg; 8088 8089 switch (reason) { 8090 case REASON_BOUNDS: 8091 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 8092 off_reg == dst_reg ? dst : src, err); 8093 break; 8094 case REASON_TYPE: 8095 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 8096 off_reg == dst_reg ? src : dst, err); 8097 break; 8098 case REASON_PATHS: 8099 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 8100 dst, op, err); 8101 break; 8102 case REASON_LIMIT: 8103 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 8104 dst, op, err); 8105 break; 8106 case REASON_STACK: 8107 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 8108 dst, err); 8109 break; 8110 default: 8111 verbose(env, "verifier internal error: unknown reason (%d)\n", 8112 reason); 8113 break; 8114 } 8115 8116 return -EACCES; 8117 } 8118 8119 /* check that stack access falls within stack limits and that 'reg' doesn't 8120 * have a variable offset. 8121 * 8122 * Variable offset is prohibited for unprivileged mode for simplicity since it 8123 * requires corresponding support in Spectre masking for stack ALU. See also 8124 * retrieve_ptr_limit(). 8125 * 8126 * 8127 * 'off' includes 'reg->off'. 8128 */ 8129 static int check_stack_access_for_ptr_arithmetic( 8130 struct bpf_verifier_env *env, 8131 int regno, 8132 const struct bpf_reg_state *reg, 8133 int off) 8134 { 8135 if (!tnum_is_const(reg->var_off)) { 8136 char tn_buf[48]; 8137 8138 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8139 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8140 regno, tn_buf, off); 8141 return -EACCES; 8142 } 8143 8144 if (off >= 0 || off < -MAX_BPF_STACK) { 8145 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8146 "prohibited for !root; off=%d\n", regno, off); 8147 return -EACCES; 8148 } 8149 8150 return 0; 8151 } 8152 8153 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8154 const struct bpf_insn *insn, 8155 const struct bpf_reg_state *dst_reg) 8156 { 8157 u32 dst = insn->dst_reg; 8158 8159 /* For unprivileged we require that resulting offset must be in bounds 8160 * in order to be able to sanitize access later on. 8161 */ 8162 if (env->bypass_spec_v1) 8163 return 0; 8164 8165 switch (dst_reg->type) { 8166 case PTR_TO_STACK: 8167 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8168 dst_reg->off + dst_reg->var_off.value)) 8169 return -EACCES; 8170 break; 8171 case PTR_TO_MAP_VALUE: 8172 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8173 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8174 "prohibited for !root\n", dst); 8175 return -EACCES; 8176 } 8177 break; 8178 default: 8179 break; 8180 } 8181 8182 return 0; 8183 } 8184 8185 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8186 * Caller should also handle BPF_MOV case separately. 8187 * If we return -EACCES, caller may want to try again treating pointer as a 8188 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8189 */ 8190 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8191 struct bpf_insn *insn, 8192 const struct bpf_reg_state *ptr_reg, 8193 const struct bpf_reg_state *off_reg) 8194 { 8195 struct bpf_verifier_state *vstate = env->cur_state; 8196 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8197 struct bpf_reg_state *regs = state->regs, *dst_reg; 8198 bool known = tnum_is_const(off_reg->var_off); 8199 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8200 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8201 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8202 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8203 struct bpf_sanitize_info info = {}; 8204 u8 opcode = BPF_OP(insn->code); 8205 u32 dst = insn->dst_reg; 8206 int ret; 8207 8208 dst_reg = ®s[dst]; 8209 8210 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8211 smin_val > smax_val || umin_val > umax_val) { 8212 /* Taint dst register if offset had invalid bounds derived from 8213 * e.g. dead branches. 8214 */ 8215 __mark_reg_unknown(env, dst_reg); 8216 return 0; 8217 } 8218 8219 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8220 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8221 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8222 __mark_reg_unknown(env, dst_reg); 8223 return 0; 8224 } 8225 8226 verbose(env, 8227 "R%d 32-bit pointer arithmetic prohibited\n", 8228 dst); 8229 return -EACCES; 8230 } 8231 8232 if (ptr_reg->type & PTR_MAYBE_NULL) { 8233 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8234 dst, reg_type_str(env, ptr_reg->type)); 8235 return -EACCES; 8236 } 8237 8238 switch (base_type(ptr_reg->type)) { 8239 case CONST_PTR_TO_MAP: 8240 /* smin_val represents the known value */ 8241 if (known && smin_val == 0 && opcode == BPF_ADD) 8242 break; 8243 fallthrough; 8244 case PTR_TO_PACKET_END: 8245 case PTR_TO_SOCKET: 8246 case PTR_TO_SOCK_COMMON: 8247 case PTR_TO_TCP_SOCK: 8248 case PTR_TO_XDP_SOCK: 8249 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8250 dst, reg_type_str(env, ptr_reg->type)); 8251 return -EACCES; 8252 default: 8253 break; 8254 } 8255 8256 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8257 * The id may be overwritten later if we create a new variable offset. 8258 */ 8259 dst_reg->type = ptr_reg->type; 8260 dst_reg->id = ptr_reg->id; 8261 8262 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8263 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8264 return -EINVAL; 8265 8266 /* pointer types do not carry 32-bit bounds at the moment. */ 8267 __mark_reg32_unbounded(dst_reg); 8268 8269 if (sanitize_needed(opcode)) { 8270 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8271 &info, false); 8272 if (ret < 0) 8273 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8274 } 8275 8276 switch (opcode) { 8277 case BPF_ADD: 8278 /* We can take a fixed offset as long as it doesn't overflow 8279 * the s32 'off' field 8280 */ 8281 if (known && (ptr_reg->off + smin_val == 8282 (s64)(s32)(ptr_reg->off + smin_val))) { 8283 /* pointer += K. Accumulate it into fixed offset */ 8284 dst_reg->smin_value = smin_ptr; 8285 dst_reg->smax_value = smax_ptr; 8286 dst_reg->umin_value = umin_ptr; 8287 dst_reg->umax_value = umax_ptr; 8288 dst_reg->var_off = ptr_reg->var_off; 8289 dst_reg->off = ptr_reg->off + smin_val; 8290 dst_reg->raw = ptr_reg->raw; 8291 break; 8292 } 8293 /* A new variable offset is created. Note that off_reg->off 8294 * == 0, since it's a scalar. 8295 * dst_reg gets the pointer type and since some positive 8296 * integer value was added to the pointer, give it a new 'id' 8297 * if it's a PTR_TO_PACKET. 8298 * this creates a new 'base' pointer, off_reg (variable) gets 8299 * added into the variable offset, and we copy the fixed offset 8300 * from ptr_reg. 8301 */ 8302 if (signed_add_overflows(smin_ptr, smin_val) || 8303 signed_add_overflows(smax_ptr, smax_val)) { 8304 dst_reg->smin_value = S64_MIN; 8305 dst_reg->smax_value = S64_MAX; 8306 } else { 8307 dst_reg->smin_value = smin_ptr + smin_val; 8308 dst_reg->smax_value = smax_ptr + smax_val; 8309 } 8310 if (umin_ptr + umin_val < umin_ptr || 8311 umax_ptr + umax_val < umax_ptr) { 8312 dst_reg->umin_value = 0; 8313 dst_reg->umax_value = U64_MAX; 8314 } else { 8315 dst_reg->umin_value = umin_ptr + umin_val; 8316 dst_reg->umax_value = umax_ptr + umax_val; 8317 } 8318 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8319 dst_reg->off = ptr_reg->off; 8320 dst_reg->raw = ptr_reg->raw; 8321 if (reg_is_pkt_pointer(ptr_reg)) { 8322 dst_reg->id = ++env->id_gen; 8323 /* something was added to pkt_ptr, set range to zero */ 8324 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8325 } 8326 break; 8327 case BPF_SUB: 8328 if (dst_reg == off_reg) { 8329 /* scalar -= pointer. Creates an unknown scalar */ 8330 verbose(env, "R%d tried to subtract pointer from scalar\n", 8331 dst); 8332 return -EACCES; 8333 } 8334 /* We don't allow subtraction from FP, because (according to 8335 * test_verifier.c test "invalid fp arithmetic", JITs might not 8336 * be able to deal with it. 8337 */ 8338 if (ptr_reg->type == PTR_TO_STACK) { 8339 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8340 dst); 8341 return -EACCES; 8342 } 8343 if (known && (ptr_reg->off - smin_val == 8344 (s64)(s32)(ptr_reg->off - smin_val))) { 8345 /* pointer -= K. Subtract it from fixed offset */ 8346 dst_reg->smin_value = smin_ptr; 8347 dst_reg->smax_value = smax_ptr; 8348 dst_reg->umin_value = umin_ptr; 8349 dst_reg->umax_value = umax_ptr; 8350 dst_reg->var_off = ptr_reg->var_off; 8351 dst_reg->id = ptr_reg->id; 8352 dst_reg->off = ptr_reg->off - smin_val; 8353 dst_reg->raw = ptr_reg->raw; 8354 break; 8355 } 8356 /* A new variable offset is created. If the subtrahend is known 8357 * nonnegative, then any reg->range we had before is still good. 8358 */ 8359 if (signed_sub_overflows(smin_ptr, smax_val) || 8360 signed_sub_overflows(smax_ptr, smin_val)) { 8361 /* Overflow possible, we know nothing */ 8362 dst_reg->smin_value = S64_MIN; 8363 dst_reg->smax_value = S64_MAX; 8364 } else { 8365 dst_reg->smin_value = smin_ptr - smax_val; 8366 dst_reg->smax_value = smax_ptr - smin_val; 8367 } 8368 if (umin_ptr < umax_val) { 8369 /* Overflow possible, we know nothing */ 8370 dst_reg->umin_value = 0; 8371 dst_reg->umax_value = U64_MAX; 8372 } else { 8373 /* Cannot overflow (as long as bounds are consistent) */ 8374 dst_reg->umin_value = umin_ptr - umax_val; 8375 dst_reg->umax_value = umax_ptr - umin_val; 8376 } 8377 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8378 dst_reg->off = ptr_reg->off; 8379 dst_reg->raw = ptr_reg->raw; 8380 if (reg_is_pkt_pointer(ptr_reg)) { 8381 dst_reg->id = ++env->id_gen; 8382 /* something was added to pkt_ptr, set range to zero */ 8383 if (smin_val < 0) 8384 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8385 } 8386 break; 8387 case BPF_AND: 8388 case BPF_OR: 8389 case BPF_XOR: 8390 /* bitwise ops on pointers are troublesome, prohibit. */ 8391 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8392 dst, bpf_alu_string[opcode >> 4]); 8393 return -EACCES; 8394 default: 8395 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8396 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8397 dst, bpf_alu_string[opcode >> 4]); 8398 return -EACCES; 8399 } 8400 8401 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8402 return -EINVAL; 8403 reg_bounds_sync(dst_reg); 8404 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8405 return -EACCES; 8406 if (sanitize_needed(opcode)) { 8407 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8408 &info, true); 8409 if (ret < 0) 8410 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8411 } 8412 8413 return 0; 8414 } 8415 8416 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8417 struct bpf_reg_state *src_reg) 8418 { 8419 s32 smin_val = src_reg->s32_min_value; 8420 s32 smax_val = src_reg->s32_max_value; 8421 u32 umin_val = src_reg->u32_min_value; 8422 u32 umax_val = src_reg->u32_max_value; 8423 8424 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8425 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8426 dst_reg->s32_min_value = S32_MIN; 8427 dst_reg->s32_max_value = S32_MAX; 8428 } else { 8429 dst_reg->s32_min_value += smin_val; 8430 dst_reg->s32_max_value += smax_val; 8431 } 8432 if (dst_reg->u32_min_value + umin_val < umin_val || 8433 dst_reg->u32_max_value + umax_val < umax_val) { 8434 dst_reg->u32_min_value = 0; 8435 dst_reg->u32_max_value = U32_MAX; 8436 } else { 8437 dst_reg->u32_min_value += umin_val; 8438 dst_reg->u32_max_value += umax_val; 8439 } 8440 } 8441 8442 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8443 struct bpf_reg_state *src_reg) 8444 { 8445 s64 smin_val = src_reg->smin_value; 8446 s64 smax_val = src_reg->smax_value; 8447 u64 umin_val = src_reg->umin_value; 8448 u64 umax_val = src_reg->umax_value; 8449 8450 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8451 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8452 dst_reg->smin_value = S64_MIN; 8453 dst_reg->smax_value = S64_MAX; 8454 } else { 8455 dst_reg->smin_value += smin_val; 8456 dst_reg->smax_value += smax_val; 8457 } 8458 if (dst_reg->umin_value + umin_val < umin_val || 8459 dst_reg->umax_value + umax_val < umax_val) { 8460 dst_reg->umin_value = 0; 8461 dst_reg->umax_value = U64_MAX; 8462 } else { 8463 dst_reg->umin_value += umin_val; 8464 dst_reg->umax_value += umax_val; 8465 } 8466 } 8467 8468 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8469 struct bpf_reg_state *src_reg) 8470 { 8471 s32 smin_val = src_reg->s32_min_value; 8472 s32 smax_val = src_reg->s32_max_value; 8473 u32 umin_val = src_reg->u32_min_value; 8474 u32 umax_val = src_reg->u32_max_value; 8475 8476 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8477 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8478 /* Overflow possible, we know nothing */ 8479 dst_reg->s32_min_value = S32_MIN; 8480 dst_reg->s32_max_value = S32_MAX; 8481 } else { 8482 dst_reg->s32_min_value -= smax_val; 8483 dst_reg->s32_max_value -= smin_val; 8484 } 8485 if (dst_reg->u32_min_value < umax_val) { 8486 /* Overflow possible, we know nothing */ 8487 dst_reg->u32_min_value = 0; 8488 dst_reg->u32_max_value = U32_MAX; 8489 } else { 8490 /* Cannot overflow (as long as bounds are consistent) */ 8491 dst_reg->u32_min_value -= umax_val; 8492 dst_reg->u32_max_value -= umin_val; 8493 } 8494 } 8495 8496 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8497 struct bpf_reg_state *src_reg) 8498 { 8499 s64 smin_val = src_reg->smin_value; 8500 s64 smax_val = src_reg->smax_value; 8501 u64 umin_val = src_reg->umin_value; 8502 u64 umax_val = src_reg->umax_value; 8503 8504 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8505 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8506 /* Overflow possible, we know nothing */ 8507 dst_reg->smin_value = S64_MIN; 8508 dst_reg->smax_value = S64_MAX; 8509 } else { 8510 dst_reg->smin_value -= smax_val; 8511 dst_reg->smax_value -= smin_val; 8512 } 8513 if (dst_reg->umin_value < umax_val) { 8514 /* Overflow possible, we know nothing */ 8515 dst_reg->umin_value = 0; 8516 dst_reg->umax_value = U64_MAX; 8517 } else { 8518 /* Cannot overflow (as long as bounds are consistent) */ 8519 dst_reg->umin_value -= umax_val; 8520 dst_reg->umax_value -= umin_val; 8521 } 8522 } 8523 8524 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8525 struct bpf_reg_state *src_reg) 8526 { 8527 s32 smin_val = src_reg->s32_min_value; 8528 u32 umin_val = src_reg->u32_min_value; 8529 u32 umax_val = src_reg->u32_max_value; 8530 8531 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8532 /* Ain't nobody got time to multiply that sign */ 8533 __mark_reg32_unbounded(dst_reg); 8534 return; 8535 } 8536 /* Both values are positive, so we can work with unsigned and 8537 * copy the result to signed (unless it exceeds S32_MAX). 8538 */ 8539 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8540 /* Potential overflow, we know nothing */ 8541 __mark_reg32_unbounded(dst_reg); 8542 return; 8543 } 8544 dst_reg->u32_min_value *= umin_val; 8545 dst_reg->u32_max_value *= umax_val; 8546 if (dst_reg->u32_max_value > S32_MAX) { 8547 /* Overflow possible, we know nothing */ 8548 dst_reg->s32_min_value = S32_MIN; 8549 dst_reg->s32_max_value = S32_MAX; 8550 } else { 8551 dst_reg->s32_min_value = dst_reg->u32_min_value; 8552 dst_reg->s32_max_value = dst_reg->u32_max_value; 8553 } 8554 } 8555 8556 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8557 struct bpf_reg_state *src_reg) 8558 { 8559 s64 smin_val = src_reg->smin_value; 8560 u64 umin_val = src_reg->umin_value; 8561 u64 umax_val = src_reg->umax_value; 8562 8563 if (smin_val < 0 || dst_reg->smin_value < 0) { 8564 /* Ain't nobody got time to multiply that sign */ 8565 __mark_reg64_unbounded(dst_reg); 8566 return; 8567 } 8568 /* Both values are positive, so we can work with unsigned and 8569 * copy the result to signed (unless it exceeds S64_MAX). 8570 */ 8571 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8572 /* Potential overflow, we know nothing */ 8573 __mark_reg64_unbounded(dst_reg); 8574 return; 8575 } 8576 dst_reg->umin_value *= umin_val; 8577 dst_reg->umax_value *= umax_val; 8578 if (dst_reg->umax_value > S64_MAX) { 8579 /* Overflow possible, we know nothing */ 8580 dst_reg->smin_value = S64_MIN; 8581 dst_reg->smax_value = S64_MAX; 8582 } else { 8583 dst_reg->smin_value = dst_reg->umin_value; 8584 dst_reg->smax_value = dst_reg->umax_value; 8585 } 8586 } 8587 8588 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8589 struct bpf_reg_state *src_reg) 8590 { 8591 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8592 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8593 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8594 s32 smin_val = src_reg->s32_min_value; 8595 u32 umax_val = src_reg->u32_max_value; 8596 8597 if (src_known && dst_known) { 8598 __mark_reg32_known(dst_reg, var32_off.value); 8599 return; 8600 } 8601 8602 /* We get our minimum from the var_off, since that's inherently 8603 * bitwise. Our maximum is the minimum of the operands' maxima. 8604 */ 8605 dst_reg->u32_min_value = var32_off.value; 8606 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8607 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8608 /* Lose signed bounds when ANDing negative numbers, 8609 * ain't nobody got time for that. 8610 */ 8611 dst_reg->s32_min_value = S32_MIN; 8612 dst_reg->s32_max_value = S32_MAX; 8613 } else { 8614 /* ANDing two positives gives a positive, so safe to 8615 * cast result into s64. 8616 */ 8617 dst_reg->s32_min_value = dst_reg->u32_min_value; 8618 dst_reg->s32_max_value = dst_reg->u32_max_value; 8619 } 8620 } 8621 8622 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8623 struct bpf_reg_state *src_reg) 8624 { 8625 bool src_known = tnum_is_const(src_reg->var_off); 8626 bool dst_known = tnum_is_const(dst_reg->var_off); 8627 s64 smin_val = src_reg->smin_value; 8628 u64 umax_val = src_reg->umax_value; 8629 8630 if (src_known && dst_known) { 8631 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8632 return; 8633 } 8634 8635 /* We get our minimum from the var_off, since that's inherently 8636 * bitwise. Our maximum is the minimum of the operands' maxima. 8637 */ 8638 dst_reg->umin_value = dst_reg->var_off.value; 8639 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8640 if (dst_reg->smin_value < 0 || smin_val < 0) { 8641 /* Lose signed bounds when ANDing negative numbers, 8642 * ain't nobody got time for that. 8643 */ 8644 dst_reg->smin_value = S64_MIN; 8645 dst_reg->smax_value = S64_MAX; 8646 } else { 8647 /* ANDing two positives gives a positive, so safe to 8648 * cast result into s64. 8649 */ 8650 dst_reg->smin_value = dst_reg->umin_value; 8651 dst_reg->smax_value = dst_reg->umax_value; 8652 } 8653 /* We may learn something more from the var_off */ 8654 __update_reg_bounds(dst_reg); 8655 } 8656 8657 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8658 struct bpf_reg_state *src_reg) 8659 { 8660 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8661 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8662 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8663 s32 smin_val = src_reg->s32_min_value; 8664 u32 umin_val = src_reg->u32_min_value; 8665 8666 if (src_known && dst_known) { 8667 __mark_reg32_known(dst_reg, var32_off.value); 8668 return; 8669 } 8670 8671 /* We get our maximum from the var_off, and our minimum is the 8672 * maximum of the operands' minima 8673 */ 8674 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8675 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8676 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8677 /* Lose signed bounds when ORing negative numbers, 8678 * ain't nobody got time for that. 8679 */ 8680 dst_reg->s32_min_value = S32_MIN; 8681 dst_reg->s32_max_value = S32_MAX; 8682 } else { 8683 /* ORing two positives gives a positive, so safe to 8684 * cast result into s64. 8685 */ 8686 dst_reg->s32_min_value = dst_reg->u32_min_value; 8687 dst_reg->s32_max_value = dst_reg->u32_max_value; 8688 } 8689 } 8690 8691 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8692 struct bpf_reg_state *src_reg) 8693 { 8694 bool src_known = tnum_is_const(src_reg->var_off); 8695 bool dst_known = tnum_is_const(dst_reg->var_off); 8696 s64 smin_val = src_reg->smin_value; 8697 u64 umin_val = src_reg->umin_value; 8698 8699 if (src_known && dst_known) { 8700 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8701 return; 8702 } 8703 8704 /* We get our maximum from the var_off, and our minimum is the 8705 * maximum of the operands' minima 8706 */ 8707 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8708 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8709 if (dst_reg->smin_value < 0 || smin_val < 0) { 8710 /* Lose signed bounds when ORing negative numbers, 8711 * ain't nobody got time for that. 8712 */ 8713 dst_reg->smin_value = S64_MIN; 8714 dst_reg->smax_value = S64_MAX; 8715 } else { 8716 /* ORing two positives gives a positive, so safe to 8717 * cast result into s64. 8718 */ 8719 dst_reg->smin_value = dst_reg->umin_value; 8720 dst_reg->smax_value = dst_reg->umax_value; 8721 } 8722 /* We may learn something more from the var_off */ 8723 __update_reg_bounds(dst_reg); 8724 } 8725 8726 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8727 struct bpf_reg_state *src_reg) 8728 { 8729 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8730 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8731 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8732 s32 smin_val = src_reg->s32_min_value; 8733 8734 if (src_known && dst_known) { 8735 __mark_reg32_known(dst_reg, var32_off.value); 8736 return; 8737 } 8738 8739 /* We get both minimum and maximum from the var32_off. */ 8740 dst_reg->u32_min_value = var32_off.value; 8741 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8742 8743 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8744 /* XORing two positive sign numbers gives a positive, 8745 * so safe to cast u32 result into s32. 8746 */ 8747 dst_reg->s32_min_value = dst_reg->u32_min_value; 8748 dst_reg->s32_max_value = dst_reg->u32_max_value; 8749 } else { 8750 dst_reg->s32_min_value = S32_MIN; 8751 dst_reg->s32_max_value = S32_MAX; 8752 } 8753 } 8754 8755 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8756 struct bpf_reg_state *src_reg) 8757 { 8758 bool src_known = tnum_is_const(src_reg->var_off); 8759 bool dst_known = tnum_is_const(dst_reg->var_off); 8760 s64 smin_val = src_reg->smin_value; 8761 8762 if (src_known && dst_known) { 8763 /* dst_reg->var_off.value has been updated earlier */ 8764 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8765 return; 8766 } 8767 8768 /* We get both minimum and maximum from the var_off. */ 8769 dst_reg->umin_value = dst_reg->var_off.value; 8770 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8771 8772 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8773 /* XORing two positive sign numbers gives a positive, 8774 * so safe to cast u64 result into s64. 8775 */ 8776 dst_reg->smin_value = dst_reg->umin_value; 8777 dst_reg->smax_value = dst_reg->umax_value; 8778 } else { 8779 dst_reg->smin_value = S64_MIN; 8780 dst_reg->smax_value = S64_MAX; 8781 } 8782 8783 __update_reg_bounds(dst_reg); 8784 } 8785 8786 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8787 u64 umin_val, u64 umax_val) 8788 { 8789 /* We lose all sign bit information (except what we can pick 8790 * up from var_off) 8791 */ 8792 dst_reg->s32_min_value = S32_MIN; 8793 dst_reg->s32_max_value = S32_MAX; 8794 /* If we might shift our top bit out, then we know nothing */ 8795 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8796 dst_reg->u32_min_value = 0; 8797 dst_reg->u32_max_value = U32_MAX; 8798 } else { 8799 dst_reg->u32_min_value <<= umin_val; 8800 dst_reg->u32_max_value <<= umax_val; 8801 } 8802 } 8803 8804 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8805 struct bpf_reg_state *src_reg) 8806 { 8807 u32 umax_val = src_reg->u32_max_value; 8808 u32 umin_val = src_reg->u32_min_value; 8809 /* u32 alu operation will zext upper bits */ 8810 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8811 8812 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8813 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8814 /* Not required but being careful mark reg64 bounds as unknown so 8815 * that we are forced to pick them up from tnum and zext later and 8816 * if some path skips this step we are still safe. 8817 */ 8818 __mark_reg64_unbounded(dst_reg); 8819 __update_reg32_bounds(dst_reg); 8820 } 8821 8822 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8823 u64 umin_val, u64 umax_val) 8824 { 8825 /* Special case <<32 because it is a common compiler pattern to sign 8826 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8827 * positive we know this shift will also be positive so we can track 8828 * bounds correctly. Otherwise we lose all sign bit information except 8829 * what we can pick up from var_off. Perhaps we can generalize this 8830 * later to shifts of any length. 8831 */ 8832 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8833 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8834 else 8835 dst_reg->smax_value = S64_MAX; 8836 8837 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8838 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8839 else 8840 dst_reg->smin_value = S64_MIN; 8841 8842 /* If we might shift our top bit out, then we know nothing */ 8843 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8844 dst_reg->umin_value = 0; 8845 dst_reg->umax_value = U64_MAX; 8846 } else { 8847 dst_reg->umin_value <<= umin_val; 8848 dst_reg->umax_value <<= umax_val; 8849 } 8850 } 8851 8852 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8853 struct bpf_reg_state *src_reg) 8854 { 8855 u64 umax_val = src_reg->umax_value; 8856 u64 umin_val = src_reg->umin_value; 8857 8858 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8859 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8860 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8861 8862 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8863 /* We may learn something more from the var_off */ 8864 __update_reg_bounds(dst_reg); 8865 } 8866 8867 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8868 struct bpf_reg_state *src_reg) 8869 { 8870 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8871 u32 umax_val = src_reg->u32_max_value; 8872 u32 umin_val = src_reg->u32_min_value; 8873 8874 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8875 * be negative, then either: 8876 * 1) src_reg might be zero, so the sign bit of the result is 8877 * unknown, so we lose our signed bounds 8878 * 2) it's known negative, thus the unsigned bounds capture the 8879 * signed bounds 8880 * 3) the signed bounds cross zero, so they tell us nothing 8881 * about the result 8882 * If the value in dst_reg is known nonnegative, then again the 8883 * unsigned bounds capture the signed bounds. 8884 * Thus, in all cases it suffices to blow away our signed bounds 8885 * and rely on inferring new ones from the unsigned bounds and 8886 * var_off of the result. 8887 */ 8888 dst_reg->s32_min_value = S32_MIN; 8889 dst_reg->s32_max_value = S32_MAX; 8890 8891 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8892 dst_reg->u32_min_value >>= umax_val; 8893 dst_reg->u32_max_value >>= umin_val; 8894 8895 __mark_reg64_unbounded(dst_reg); 8896 __update_reg32_bounds(dst_reg); 8897 } 8898 8899 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8900 struct bpf_reg_state *src_reg) 8901 { 8902 u64 umax_val = src_reg->umax_value; 8903 u64 umin_val = src_reg->umin_value; 8904 8905 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8906 * be negative, then either: 8907 * 1) src_reg might be zero, so the sign bit of the result is 8908 * unknown, so we lose our signed bounds 8909 * 2) it's known negative, thus the unsigned bounds capture the 8910 * signed bounds 8911 * 3) the signed bounds cross zero, so they tell us nothing 8912 * about the result 8913 * If the value in dst_reg is known nonnegative, then again the 8914 * unsigned bounds capture the signed bounds. 8915 * Thus, in all cases it suffices to blow away our signed bounds 8916 * and rely on inferring new ones from the unsigned bounds and 8917 * var_off of the result. 8918 */ 8919 dst_reg->smin_value = S64_MIN; 8920 dst_reg->smax_value = S64_MAX; 8921 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8922 dst_reg->umin_value >>= umax_val; 8923 dst_reg->umax_value >>= umin_val; 8924 8925 /* Its not easy to operate on alu32 bounds here because it depends 8926 * on bits being shifted in. Take easy way out and mark unbounded 8927 * so we can recalculate later from tnum. 8928 */ 8929 __mark_reg32_unbounded(dst_reg); 8930 __update_reg_bounds(dst_reg); 8931 } 8932 8933 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8934 struct bpf_reg_state *src_reg) 8935 { 8936 u64 umin_val = src_reg->u32_min_value; 8937 8938 /* Upon reaching here, src_known is true and 8939 * umax_val is equal to umin_val. 8940 */ 8941 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8942 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8943 8944 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8945 8946 /* blow away the dst_reg umin_value/umax_value and rely on 8947 * dst_reg var_off to refine the result. 8948 */ 8949 dst_reg->u32_min_value = 0; 8950 dst_reg->u32_max_value = U32_MAX; 8951 8952 __mark_reg64_unbounded(dst_reg); 8953 __update_reg32_bounds(dst_reg); 8954 } 8955 8956 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8957 struct bpf_reg_state *src_reg) 8958 { 8959 u64 umin_val = src_reg->umin_value; 8960 8961 /* Upon reaching here, src_known is true and umax_val is equal 8962 * to umin_val. 8963 */ 8964 dst_reg->smin_value >>= umin_val; 8965 dst_reg->smax_value >>= umin_val; 8966 8967 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8968 8969 /* blow away the dst_reg umin_value/umax_value and rely on 8970 * dst_reg var_off to refine the result. 8971 */ 8972 dst_reg->umin_value = 0; 8973 dst_reg->umax_value = U64_MAX; 8974 8975 /* Its not easy to operate on alu32 bounds here because it depends 8976 * on bits being shifted in from upper 32-bits. Take easy way out 8977 * and mark unbounded so we can recalculate later from tnum. 8978 */ 8979 __mark_reg32_unbounded(dst_reg); 8980 __update_reg_bounds(dst_reg); 8981 } 8982 8983 /* WARNING: This function does calculations on 64-bit values, but the actual 8984 * execution may occur on 32-bit values. Therefore, things like bitshifts 8985 * need extra checks in the 32-bit case. 8986 */ 8987 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8988 struct bpf_insn *insn, 8989 struct bpf_reg_state *dst_reg, 8990 struct bpf_reg_state src_reg) 8991 { 8992 struct bpf_reg_state *regs = cur_regs(env); 8993 u8 opcode = BPF_OP(insn->code); 8994 bool src_known; 8995 s64 smin_val, smax_val; 8996 u64 umin_val, umax_val; 8997 s32 s32_min_val, s32_max_val; 8998 u32 u32_min_val, u32_max_val; 8999 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 9000 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 9001 int ret; 9002 9003 smin_val = src_reg.smin_value; 9004 smax_val = src_reg.smax_value; 9005 umin_val = src_reg.umin_value; 9006 umax_val = src_reg.umax_value; 9007 9008 s32_min_val = src_reg.s32_min_value; 9009 s32_max_val = src_reg.s32_max_value; 9010 u32_min_val = src_reg.u32_min_value; 9011 u32_max_val = src_reg.u32_max_value; 9012 9013 if (alu32) { 9014 src_known = tnum_subreg_is_const(src_reg.var_off); 9015 if ((src_known && 9016 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 9017 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 9018 /* Taint dst register if offset had invalid bounds 9019 * derived from e.g. dead branches. 9020 */ 9021 __mark_reg_unknown(env, dst_reg); 9022 return 0; 9023 } 9024 } else { 9025 src_known = tnum_is_const(src_reg.var_off); 9026 if ((src_known && 9027 (smin_val != smax_val || umin_val != umax_val)) || 9028 smin_val > smax_val || umin_val > umax_val) { 9029 /* Taint dst register if offset had invalid bounds 9030 * derived from e.g. dead branches. 9031 */ 9032 __mark_reg_unknown(env, dst_reg); 9033 return 0; 9034 } 9035 } 9036 9037 if (!src_known && 9038 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 9039 __mark_reg_unknown(env, dst_reg); 9040 return 0; 9041 } 9042 9043 if (sanitize_needed(opcode)) { 9044 ret = sanitize_val_alu(env, insn); 9045 if (ret < 0) 9046 return sanitize_err(env, insn, ret, NULL, NULL); 9047 } 9048 9049 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 9050 * There are two classes of instructions: The first class we track both 9051 * alu32 and alu64 sign/unsigned bounds independently this provides the 9052 * greatest amount of precision when alu operations are mixed with jmp32 9053 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 9054 * and BPF_OR. This is possible because these ops have fairly easy to 9055 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 9056 * See alu32 verifier tests for examples. The second class of 9057 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 9058 * with regards to tracking sign/unsigned bounds because the bits may 9059 * cross subreg boundaries in the alu64 case. When this happens we mark 9060 * the reg unbounded in the subreg bound space and use the resulting 9061 * tnum to calculate an approximation of the sign/unsigned bounds. 9062 */ 9063 switch (opcode) { 9064 case BPF_ADD: 9065 scalar32_min_max_add(dst_reg, &src_reg); 9066 scalar_min_max_add(dst_reg, &src_reg); 9067 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 9068 break; 9069 case BPF_SUB: 9070 scalar32_min_max_sub(dst_reg, &src_reg); 9071 scalar_min_max_sub(dst_reg, &src_reg); 9072 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 9073 break; 9074 case BPF_MUL: 9075 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 9076 scalar32_min_max_mul(dst_reg, &src_reg); 9077 scalar_min_max_mul(dst_reg, &src_reg); 9078 break; 9079 case BPF_AND: 9080 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 9081 scalar32_min_max_and(dst_reg, &src_reg); 9082 scalar_min_max_and(dst_reg, &src_reg); 9083 break; 9084 case BPF_OR: 9085 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 9086 scalar32_min_max_or(dst_reg, &src_reg); 9087 scalar_min_max_or(dst_reg, &src_reg); 9088 break; 9089 case BPF_XOR: 9090 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 9091 scalar32_min_max_xor(dst_reg, &src_reg); 9092 scalar_min_max_xor(dst_reg, &src_reg); 9093 break; 9094 case BPF_LSH: 9095 if (umax_val >= insn_bitness) { 9096 /* Shifts greater than 31 or 63 are undefined. 9097 * This includes shifts by a negative number. 9098 */ 9099 mark_reg_unknown(env, regs, insn->dst_reg); 9100 break; 9101 } 9102 if (alu32) 9103 scalar32_min_max_lsh(dst_reg, &src_reg); 9104 else 9105 scalar_min_max_lsh(dst_reg, &src_reg); 9106 break; 9107 case BPF_RSH: 9108 if (umax_val >= insn_bitness) { 9109 /* Shifts greater than 31 or 63 are undefined. 9110 * This includes shifts by a negative number. 9111 */ 9112 mark_reg_unknown(env, regs, insn->dst_reg); 9113 break; 9114 } 9115 if (alu32) 9116 scalar32_min_max_rsh(dst_reg, &src_reg); 9117 else 9118 scalar_min_max_rsh(dst_reg, &src_reg); 9119 break; 9120 case BPF_ARSH: 9121 if (umax_val >= insn_bitness) { 9122 /* Shifts greater than 31 or 63 are undefined. 9123 * This includes shifts by a negative number. 9124 */ 9125 mark_reg_unknown(env, regs, insn->dst_reg); 9126 break; 9127 } 9128 if (alu32) 9129 scalar32_min_max_arsh(dst_reg, &src_reg); 9130 else 9131 scalar_min_max_arsh(dst_reg, &src_reg); 9132 break; 9133 default: 9134 mark_reg_unknown(env, regs, insn->dst_reg); 9135 break; 9136 } 9137 9138 /* ALU32 ops are zero extended into 64bit register */ 9139 if (alu32) 9140 zext_32_to_64(dst_reg); 9141 reg_bounds_sync(dst_reg); 9142 return 0; 9143 } 9144 9145 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9146 * and var_off. 9147 */ 9148 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9149 struct bpf_insn *insn) 9150 { 9151 struct bpf_verifier_state *vstate = env->cur_state; 9152 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9153 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9154 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9155 u8 opcode = BPF_OP(insn->code); 9156 int err; 9157 9158 dst_reg = ®s[insn->dst_reg]; 9159 src_reg = NULL; 9160 if (dst_reg->type != SCALAR_VALUE) 9161 ptr_reg = dst_reg; 9162 else 9163 /* Make sure ID is cleared otherwise dst_reg min/max could be 9164 * incorrectly propagated into other registers by find_equal_scalars() 9165 */ 9166 dst_reg->id = 0; 9167 if (BPF_SRC(insn->code) == BPF_X) { 9168 src_reg = ®s[insn->src_reg]; 9169 if (src_reg->type != SCALAR_VALUE) { 9170 if (dst_reg->type != SCALAR_VALUE) { 9171 /* Combining two pointers by any ALU op yields 9172 * an arbitrary scalar. Disallow all math except 9173 * pointer subtraction 9174 */ 9175 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9176 mark_reg_unknown(env, regs, insn->dst_reg); 9177 return 0; 9178 } 9179 verbose(env, "R%d pointer %s pointer prohibited\n", 9180 insn->dst_reg, 9181 bpf_alu_string[opcode >> 4]); 9182 return -EACCES; 9183 } else { 9184 /* scalar += pointer 9185 * This is legal, but we have to reverse our 9186 * src/dest handling in computing the range 9187 */ 9188 err = mark_chain_precision(env, insn->dst_reg); 9189 if (err) 9190 return err; 9191 return adjust_ptr_min_max_vals(env, insn, 9192 src_reg, dst_reg); 9193 } 9194 } else if (ptr_reg) { 9195 /* pointer += scalar */ 9196 err = mark_chain_precision(env, insn->src_reg); 9197 if (err) 9198 return err; 9199 return adjust_ptr_min_max_vals(env, insn, 9200 dst_reg, src_reg); 9201 } 9202 } else { 9203 /* Pretend the src is a reg with a known value, since we only 9204 * need to be able to read from this state. 9205 */ 9206 off_reg.type = SCALAR_VALUE; 9207 __mark_reg_known(&off_reg, insn->imm); 9208 src_reg = &off_reg; 9209 if (ptr_reg) /* pointer += K */ 9210 return adjust_ptr_min_max_vals(env, insn, 9211 ptr_reg, src_reg); 9212 } 9213 9214 /* Got here implies adding two SCALAR_VALUEs */ 9215 if (WARN_ON_ONCE(ptr_reg)) { 9216 print_verifier_state(env, state, true); 9217 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9218 return -EINVAL; 9219 } 9220 if (WARN_ON(!src_reg)) { 9221 print_verifier_state(env, state, true); 9222 verbose(env, "verifier internal error: no src_reg\n"); 9223 return -EINVAL; 9224 } 9225 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9226 } 9227 9228 /* check validity of 32-bit and 64-bit arithmetic operations */ 9229 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9230 { 9231 struct bpf_reg_state *regs = cur_regs(env); 9232 u8 opcode = BPF_OP(insn->code); 9233 int err; 9234 9235 if (opcode == BPF_END || opcode == BPF_NEG) { 9236 if (opcode == BPF_NEG) { 9237 if (BPF_SRC(insn->code) != BPF_K || 9238 insn->src_reg != BPF_REG_0 || 9239 insn->off != 0 || insn->imm != 0) { 9240 verbose(env, "BPF_NEG uses reserved fields\n"); 9241 return -EINVAL; 9242 } 9243 } else { 9244 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9245 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9246 BPF_CLASS(insn->code) == BPF_ALU64) { 9247 verbose(env, "BPF_END uses reserved fields\n"); 9248 return -EINVAL; 9249 } 9250 } 9251 9252 /* check src operand */ 9253 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9254 if (err) 9255 return err; 9256 9257 if (is_pointer_value(env, insn->dst_reg)) { 9258 verbose(env, "R%d pointer arithmetic prohibited\n", 9259 insn->dst_reg); 9260 return -EACCES; 9261 } 9262 9263 /* check dest operand */ 9264 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9265 if (err) 9266 return err; 9267 9268 } else if (opcode == BPF_MOV) { 9269 9270 if (BPF_SRC(insn->code) == BPF_X) { 9271 if (insn->imm != 0 || insn->off != 0) { 9272 verbose(env, "BPF_MOV uses reserved fields\n"); 9273 return -EINVAL; 9274 } 9275 9276 /* check src operand */ 9277 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9278 if (err) 9279 return err; 9280 } else { 9281 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9282 verbose(env, "BPF_MOV uses reserved fields\n"); 9283 return -EINVAL; 9284 } 9285 } 9286 9287 /* check dest operand, mark as required later */ 9288 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9289 if (err) 9290 return err; 9291 9292 if (BPF_SRC(insn->code) == BPF_X) { 9293 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9294 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9295 9296 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9297 /* case: R1 = R2 9298 * copy register state to dest reg 9299 */ 9300 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9301 /* Assign src and dst registers the same ID 9302 * that will be used by find_equal_scalars() 9303 * to propagate min/max range. 9304 */ 9305 src_reg->id = ++env->id_gen; 9306 *dst_reg = *src_reg; 9307 dst_reg->live |= REG_LIVE_WRITTEN; 9308 dst_reg->subreg_def = DEF_NOT_SUBREG; 9309 } else { 9310 /* R1 = (u32) R2 */ 9311 if (is_pointer_value(env, insn->src_reg)) { 9312 verbose(env, 9313 "R%d partial copy of pointer\n", 9314 insn->src_reg); 9315 return -EACCES; 9316 } else if (src_reg->type == SCALAR_VALUE) { 9317 *dst_reg = *src_reg; 9318 /* Make sure ID is cleared otherwise 9319 * dst_reg min/max could be incorrectly 9320 * propagated into src_reg by find_equal_scalars() 9321 */ 9322 dst_reg->id = 0; 9323 dst_reg->live |= REG_LIVE_WRITTEN; 9324 dst_reg->subreg_def = env->insn_idx + 1; 9325 } else { 9326 mark_reg_unknown(env, regs, 9327 insn->dst_reg); 9328 } 9329 zext_32_to_64(dst_reg); 9330 reg_bounds_sync(dst_reg); 9331 } 9332 } else { 9333 /* case: R = imm 9334 * remember the value we stored into this reg 9335 */ 9336 /* clear any state __mark_reg_known doesn't set */ 9337 mark_reg_unknown(env, regs, insn->dst_reg); 9338 regs[insn->dst_reg].type = SCALAR_VALUE; 9339 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9340 __mark_reg_known(regs + insn->dst_reg, 9341 insn->imm); 9342 } else { 9343 __mark_reg_known(regs + insn->dst_reg, 9344 (u32)insn->imm); 9345 } 9346 } 9347 9348 } else if (opcode > BPF_END) { 9349 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9350 return -EINVAL; 9351 9352 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9353 9354 if (BPF_SRC(insn->code) == BPF_X) { 9355 if (insn->imm != 0 || insn->off != 0) { 9356 verbose(env, "BPF_ALU uses reserved fields\n"); 9357 return -EINVAL; 9358 } 9359 /* check src1 operand */ 9360 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9361 if (err) 9362 return err; 9363 } else { 9364 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9365 verbose(env, "BPF_ALU uses reserved fields\n"); 9366 return -EINVAL; 9367 } 9368 } 9369 9370 /* check src2 operand */ 9371 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9372 if (err) 9373 return err; 9374 9375 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9376 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9377 verbose(env, "div by zero\n"); 9378 return -EINVAL; 9379 } 9380 9381 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9382 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9383 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9384 9385 if (insn->imm < 0 || insn->imm >= size) { 9386 verbose(env, "invalid shift %d\n", insn->imm); 9387 return -EINVAL; 9388 } 9389 } 9390 9391 /* check dest operand */ 9392 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9393 if (err) 9394 return err; 9395 9396 return adjust_reg_min_max_vals(env, insn); 9397 } 9398 9399 return 0; 9400 } 9401 9402 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9403 struct bpf_reg_state *dst_reg, 9404 enum bpf_reg_type type, 9405 bool range_right_open) 9406 { 9407 struct bpf_func_state *state; 9408 struct bpf_reg_state *reg; 9409 int new_range; 9410 9411 if (dst_reg->off < 0 || 9412 (dst_reg->off == 0 && range_right_open)) 9413 /* This doesn't give us any range */ 9414 return; 9415 9416 if (dst_reg->umax_value > MAX_PACKET_OFF || 9417 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9418 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9419 * than pkt_end, but that's because it's also less than pkt. 9420 */ 9421 return; 9422 9423 new_range = dst_reg->off; 9424 if (range_right_open) 9425 new_range++; 9426 9427 /* Examples for register markings: 9428 * 9429 * pkt_data in dst register: 9430 * 9431 * r2 = r3; 9432 * r2 += 8; 9433 * if (r2 > pkt_end) goto <handle exception> 9434 * <access okay> 9435 * 9436 * r2 = r3; 9437 * r2 += 8; 9438 * if (r2 < pkt_end) goto <access okay> 9439 * <handle exception> 9440 * 9441 * Where: 9442 * r2 == dst_reg, pkt_end == src_reg 9443 * r2=pkt(id=n,off=8,r=0) 9444 * r3=pkt(id=n,off=0,r=0) 9445 * 9446 * pkt_data in src register: 9447 * 9448 * r2 = r3; 9449 * r2 += 8; 9450 * if (pkt_end >= r2) goto <access okay> 9451 * <handle exception> 9452 * 9453 * r2 = r3; 9454 * r2 += 8; 9455 * if (pkt_end <= r2) goto <handle exception> 9456 * <access okay> 9457 * 9458 * Where: 9459 * pkt_end == dst_reg, r2 == src_reg 9460 * r2=pkt(id=n,off=8,r=0) 9461 * r3=pkt(id=n,off=0,r=0) 9462 * 9463 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9464 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9465 * and [r3, r3 + 8-1) respectively is safe to access depending on 9466 * the check. 9467 */ 9468 9469 /* If our ids match, then we must have the same max_value. And we 9470 * don't care about the other reg's fixed offset, since if it's too big 9471 * the range won't allow anything. 9472 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9473 */ 9474 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9475 if (reg->type == type && reg->id == dst_reg->id) 9476 /* keep the maximum range already checked */ 9477 reg->range = max(reg->range, new_range); 9478 })); 9479 } 9480 9481 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9482 { 9483 struct tnum subreg = tnum_subreg(reg->var_off); 9484 s32 sval = (s32)val; 9485 9486 switch (opcode) { 9487 case BPF_JEQ: 9488 if (tnum_is_const(subreg)) 9489 return !!tnum_equals_const(subreg, val); 9490 break; 9491 case BPF_JNE: 9492 if (tnum_is_const(subreg)) 9493 return !tnum_equals_const(subreg, val); 9494 break; 9495 case BPF_JSET: 9496 if ((~subreg.mask & subreg.value) & val) 9497 return 1; 9498 if (!((subreg.mask | subreg.value) & val)) 9499 return 0; 9500 break; 9501 case BPF_JGT: 9502 if (reg->u32_min_value > val) 9503 return 1; 9504 else if (reg->u32_max_value <= val) 9505 return 0; 9506 break; 9507 case BPF_JSGT: 9508 if (reg->s32_min_value > sval) 9509 return 1; 9510 else if (reg->s32_max_value <= sval) 9511 return 0; 9512 break; 9513 case BPF_JLT: 9514 if (reg->u32_max_value < val) 9515 return 1; 9516 else if (reg->u32_min_value >= val) 9517 return 0; 9518 break; 9519 case BPF_JSLT: 9520 if (reg->s32_max_value < sval) 9521 return 1; 9522 else if (reg->s32_min_value >= sval) 9523 return 0; 9524 break; 9525 case BPF_JGE: 9526 if (reg->u32_min_value >= val) 9527 return 1; 9528 else if (reg->u32_max_value < val) 9529 return 0; 9530 break; 9531 case BPF_JSGE: 9532 if (reg->s32_min_value >= sval) 9533 return 1; 9534 else if (reg->s32_max_value < sval) 9535 return 0; 9536 break; 9537 case BPF_JLE: 9538 if (reg->u32_max_value <= val) 9539 return 1; 9540 else if (reg->u32_min_value > val) 9541 return 0; 9542 break; 9543 case BPF_JSLE: 9544 if (reg->s32_max_value <= sval) 9545 return 1; 9546 else if (reg->s32_min_value > sval) 9547 return 0; 9548 break; 9549 } 9550 9551 return -1; 9552 } 9553 9554 9555 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9556 { 9557 s64 sval = (s64)val; 9558 9559 switch (opcode) { 9560 case BPF_JEQ: 9561 if (tnum_is_const(reg->var_off)) 9562 return !!tnum_equals_const(reg->var_off, val); 9563 break; 9564 case BPF_JNE: 9565 if (tnum_is_const(reg->var_off)) 9566 return !tnum_equals_const(reg->var_off, val); 9567 break; 9568 case BPF_JSET: 9569 if ((~reg->var_off.mask & reg->var_off.value) & val) 9570 return 1; 9571 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9572 return 0; 9573 break; 9574 case BPF_JGT: 9575 if (reg->umin_value > val) 9576 return 1; 9577 else if (reg->umax_value <= val) 9578 return 0; 9579 break; 9580 case BPF_JSGT: 9581 if (reg->smin_value > sval) 9582 return 1; 9583 else if (reg->smax_value <= sval) 9584 return 0; 9585 break; 9586 case BPF_JLT: 9587 if (reg->umax_value < val) 9588 return 1; 9589 else if (reg->umin_value >= val) 9590 return 0; 9591 break; 9592 case BPF_JSLT: 9593 if (reg->smax_value < sval) 9594 return 1; 9595 else if (reg->smin_value >= sval) 9596 return 0; 9597 break; 9598 case BPF_JGE: 9599 if (reg->umin_value >= val) 9600 return 1; 9601 else if (reg->umax_value < val) 9602 return 0; 9603 break; 9604 case BPF_JSGE: 9605 if (reg->smin_value >= sval) 9606 return 1; 9607 else if (reg->smax_value < sval) 9608 return 0; 9609 break; 9610 case BPF_JLE: 9611 if (reg->umax_value <= val) 9612 return 1; 9613 else if (reg->umin_value > val) 9614 return 0; 9615 break; 9616 case BPF_JSLE: 9617 if (reg->smax_value <= sval) 9618 return 1; 9619 else if (reg->smin_value > sval) 9620 return 0; 9621 break; 9622 } 9623 9624 return -1; 9625 } 9626 9627 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9628 * and return: 9629 * 1 - branch will be taken and "goto target" will be executed 9630 * 0 - branch will not be taken and fall-through to next insn 9631 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9632 * range [0,10] 9633 */ 9634 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9635 bool is_jmp32) 9636 { 9637 if (__is_pointer_value(false, reg)) { 9638 if (!reg_type_not_null(reg->type)) 9639 return -1; 9640 9641 /* If pointer is valid tests against zero will fail so we can 9642 * use this to direct branch taken. 9643 */ 9644 if (val != 0) 9645 return -1; 9646 9647 switch (opcode) { 9648 case BPF_JEQ: 9649 return 0; 9650 case BPF_JNE: 9651 return 1; 9652 default: 9653 return -1; 9654 } 9655 } 9656 9657 if (is_jmp32) 9658 return is_branch32_taken(reg, val, opcode); 9659 return is_branch64_taken(reg, val, opcode); 9660 } 9661 9662 static int flip_opcode(u32 opcode) 9663 { 9664 /* How can we transform "a <op> b" into "b <op> a"? */ 9665 static const u8 opcode_flip[16] = { 9666 /* these stay the same */ 9667 [BPF_JEQ >> 4] = BPF_JEQ, 9668 [BPF_JNE >> 4] = BPF_JNE, 9669 [BPF_JSET >> 4] = BPF_JSET, 9670 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9671 [BPF_JGE >> 4] = BPF_JLE, 9672 [BPF_JGT >> 4] = BPF_JLT, 9673 [BPF_JLE >> 4] = BPF_JGE, 9674 [BPF_JLT >> 4] = BPF_JGT, 9675 [BPF_JSGE >> 4] = BPF_JSLE, 9676 [BPF_JSGT >> 4] = BPF_JSLT, 9677 [BPF_JSLE >> 4] = BPF_JSGE, 9678 [BPF_JSLT >> 4] = BPF_JSGT 9679 }; 9680 return opcode_flip[opcode >> 4]; 9681 } 9682 9683 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9684 struct bpf_reg_state *src_reg, 9685 u8 opcode) 9686 { 9687 struct bpf_reg_state *pkt; 9688 9689 if (src_reg->type == PTR_TO_PACKET_END) { 9690 pkt = dst_reg; 9691 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9692 pkt = src_reg; 9693 opcode = flip_opcode(opcode); 9694 } else { 9695 return -1; 9696 } 9697 9698 if (pkt->range >= 0) 9699 return -1; 9700 9701 switch (opcode) { 9702 case BPF_JLE: 9703 /* pkt <= pkt_end */ 9704 fallthrough; 9705 case BPF_JGT: 9706 /* pkt > pkt_end */ 9707 if (pkt->range == BEYOND_PKT_END) 9708 /* pkt has at last one extra byte beyond pkt_end */ 9709 return opcode == BPF_JGT; 9710 break; 9711 case BPF_JLT: 9712 /* pkt < pkt_end */ 9713 fallthrough; 9714 case BPF_JGE: 9715 /* pkt >= pkt_end */ 9716 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9717 return opcode == BPF_JGE; 9718 break; 9719 } 9720 return -1; 9721 } 9722 9723 /* Adjusts the register min/max values in the case that the dst_reg is the 9724 * variable register that we are working on, and src_reg is a constant or we're 9725 * simply doing a BPF_K check. 9726 * In JEQ/JNE cases we also adjust the var_off values. 9727 */ 9728 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9729 struct bpf_reg_state *false_reg, 9730 u64 val, u32 val32, 9731 u8 opcode, bool is_jmp32) 9732 { 9733 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9734 struct tnum false_64off = false_reg->var_off; 9735 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9736 struct tnum true_64off = true_reg->var_off; 9737 s64 sval = (s64)val; 9738 s32 sval32 = (s32)val32; 9739 9740 /* If the dst_reg is a pointer, we can't learn anything about its 9741 * variable offset from the compare (unless src_reg were a pointer into 9742 * the same object, but we don't bother with that. 9743 * Since false_reg and true_reg have the same type by construction, we 9744 * only need to check one of them for pointerness. 9745 */ 9746 if (__is_pointer_value(false, false_reg)) 9747 return; 9748 9749 switch (opcode) { 9750 /* JEQ/JNE comparison doesn't change the register equivalence. 9751 * 9752 * r1 = r2; 9753 * if (r1 == 42) goto label; 9754 * ... 9755 * label: // here both r1 and r2 are known to be 42. 9756 * 9757 * Hence when marking register as known preserve it's ID. 9758 */ 9759 case BPF_JEQ: 9760 if (is_jmp32) { 9761 __mark_reg32_known(true_reg, val32); 9762 true_32off = tnum_subreg(true_reg->var_off); 9763 } else { 9764 ___mark_reg_known(true_reg, val); 9765 true_64off = true_reg->var_off; 9766 } 9767 break; 9768 case BPF_JNE: 9769 if (is_jmp32) { 9770 __mark_reg32_known(false_reg, val32); 9771 false_32off = tnum_subreg(false_reg->var_off); 9772 } else { 9773 ___mark_reg_known(false_reg, val); 9774 false_64off = false_reg->var_off; 9775 } 9776 break; 9777 case BPF_JSET: 9778 if (is_jmp32) { 9779 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9780 if (is_power_of_2(val32)) 9781 true_32off = tnum_or(true_32off, 9782 tnum_const(val32)); 9783 } else { 9784 false_64off = tnum_and(false_64off, tnum_const(~val)); 9785 if (is_power_of_2(val)) 9786 true_64off = tnum_or(true_64off, 9787 tnum_const(val)); 9788 } 9789 break; 9790 case BPF_JGE: 9791 case BPF_JGT: 9792 { 9793 if (is_jmp32) { 9794 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9795 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9796 9797 false_reg->u32_max_value = min(false_reg->u32_max_value, 9798 false_umax); 9799 true_reg->u32_min_value = max(true_reg->u32_min_value, 9800 true_umin); 9801 } else { 9802 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9803 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9804 9805 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9806 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9807 } 9808 break; 9809 } 9810 case BPF_JSGE: 9811 case BPF_JSGT: 9812 { 9813 if (is_jmp32) { 9814 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9815 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9816 9817 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9818 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9819 } else { 9820 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9821 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9822 9823 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9824 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9825 } 9826 break; 9827 } 9828 case BPF_JLE: 9829 case BPF_JLT: 9830 { 9831 if (is_jmp32) { 9832 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9833 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9834 9835 false_reg->u32_min_value = max(false_reg->u32_min_value, 9836 false_umin); 9837 true_reg->u32_max_value = min(true_reg->u32_max_value, 9838 true_umax); 9839 } else { 9840 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9841 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9842 9843 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9844 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9845 } 9846 break; 9847 } 9848 case BPF_JSLE: 9849 case BPF_JSLT: 9850 { 9851 if (is_jmp32) { 9852 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9853 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9854 9855 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9856 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9857 } else { 9858 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9859 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9860 9861 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9862 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9863 } 9864 break; 9865 } 9866 default: 9867 return; 9868 } 9869 9870 if (is_jmp32) { 9871 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9872 tnum_subreg(false_32off)); 9873 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9874 tnum_subreg(true_32off)); 9875 __reg_combine_32_into_64(false_reg); 9876 __reg_combine_32_into_64(true_reg); 9877 } else { 9878 false_reg->var_off = false_64off; 9879 true_reg->var_off = true_64off; 9880 __reg_combine_64_into_32(false_reg); 9881 __reg_combine_64_into_32(true_reg); 9882 } 9883 } 9884 9885 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9886 * the variable reg. 9887 */ 9888 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9889 struct bpf_reg_state *false_reg, 9890 u64 val, u32 val32, 9891 u8 opcode, bool is_jmp32) 9892 { 9893 opcode = flip_opcode(opcode); 9894 /* This uses zero as "not present in table"; luckily the zero opcode, 9895 * BPF_JA, can't get here. 9896 */ 9897 if (opcode) 9898 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9899 } 9900 9901 /* Regs are known to be equal, so intersect their min/max/var_off */ 9902 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9903 struct bpf_reg_state *dst_reg) 9904 { 9905 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9906 dst_reg->umin_value); 9907 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9908 dst_reg->umax_value); 9909 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9910 dst_reg->smin_value); 9911 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9912 dst_reg->smax_value); 9913 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9914 dst_reg->var_off); 9915 reg_bounds_sync(src_reg); 9916 reg_bounds_sync(dst_reg); 9917 } 9918 9919 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9920 struct bpf_reg_state *true_dst, 9921 struct bpf_reg_state *false_src, 9922 struct bpf_reg_state *false_dst, 9923 u8 opcode) 9924 { 9925 switch (opcode) { 9926 case BPF_JEQ: 9927 __reg_combine_min_max(true_src, true_dst); 9928 break; 9929 case BPF_JNE: 9930 __reg_combine_min_max(false_src, false_dst); 9931 break; 9932 } 9933 } 9934 9935 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9936 struct bpf_reg_state *reg, u32 id, 9937 bool is_null) 9938 { 9939 if (type_may_be_null(reg->type) && reg->id == id && 9940 !WARN_ON_ONCE(!reg->id)) { 9941 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9942 !tnum_equals_const(reg->var_off, 0) || 9943 reg->off)) { 9944 /* Old offset (both fixed and variable parts) should 9945 * have been known-zero, because we don't allow pointer 9946 * arithmetic on pointers that might be NULL. If we 9947 * see this happening, don't convert the register. 9948 */ 9949 return; 9950 } 9951 if (is_null) { 9952 reg->type = SCALAR_VALUE; 9953 /* We don't need id and ref_obj_id from this point 9954 * onwards anymore, thus we should better reset it, 9955 * so that state pruning has chances to take effect. 9956 */ 9957 reg->id = 0; 9958 reg->ref_obj_id = 0; 9959 9960 return; 9961 } 9962 9963 mark_ptr_not_null_reg(reg); 9964 9965 if (!reg_may_point_to_spin_lock(reg)) { 9966 /* For not-NULL ptr, reg->ref_obj_id will be reset 9967 * in release_reference(). 9968 * 9969 * reg->id is still used by spin_lock ptr. Other 9970 * than spin_lock ptr type, reg->id can be reset. 9971 */ 9972 reg->id = 0; 9973 } 9974 } 9975 } 9976 9977 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9978 * be folded together at some point. 9979 */ 9980 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9981 bool is_null) 9982 { 9983 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9984 struct bpf_reg_state *regs = state->regs, *reg; 9985 u32 ref_obj_id = regs[regno].ref_obj_id; 9986 u32 id = regs[regno].id; 9987 9988 if (ref_obj_id && ref_obj_id == id && is_null) 9989 /* regs[regno] is in the " == NULL" branch. 9990 * No one could have freed the reference state before 9991 * doing the NULL check. 9992 */ 9993 WARN_ON_ONCE(release_reference_state(state, id)); 9994 9995 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9996 mark_ptr_or_null_reg(state, reg, id, is_null); 9997 })); 9998 } 9999 10000 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 10001 struct bpf_reg_state *dst_reg, 10002 struct bpf_reg_state *src_reg, 10003 struct bpf_verifier_state *this_branch, 10004 struct bpf_verifier_state *other_branch) 10005 { 10006 if (BPF_SRC(insn->code) != BPF_X) 10007 return false; 10008 10009 /* Pointers are always 64-bit. */ 10010 if (BPF_CLASS(insn->code) == BPF_JMP32) 10011 return false; 10012 10013 switch (BPF_OP(insn->code)) { 10014 case BPF_JGT: 10015 if ((dst_reg->type == PTR_TO_PACKET && 10016 src_reg->type == PTR_TO_PACKET_END) || 10017 (dst_reg->type == PTR_TO_PACKET_META && 10018 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10019 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 10020 find_good_pkt_pointers(this_branch, dst_reg, 10021 dst_reg->type, false); 10022 mark_pkt_end(other_branch, insn->dst_reg, true); 10023 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10024 src_reg->type == PTR_TO_PACKET) || 10025 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10026 src_reg->type == PTR_TO_PACKET_META)) { 10027 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 10028 find_good_pkt_pointers(other_branch, src_reg, 10029 src_reg->type, true); 10030 mark_pkt_end(this_branch, insn->src_reg, false); 10031 } else { 10032 return false; 10033 } 10034 break; 10035 case BPF_JLT: 10036 if ((dst_reg->type == PTR_TO_PACKET && 10037 src_reg->type == PTR_TO_PACKET_END) || 10038 (dst_reg->type == PTR_TO_PACKET_META && 10039 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10040 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 10041 find_good_pkt_pointers(other_branch, dst_reg, 10042 dst_reg->type, true); 10043 mark_pkt_end(this_branch, insn->dst_reg, false); 10044 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10045 src_reg->type == PTR_TO_PACKET) || 10046 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10047 src_reg->type == PTR_TO_PACKET_META)) { 10048 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 10049 find_good_pkt_pointers(this_branch, src_reg, 10050 src_reg->type, false); 10051 mark_pkt_end(other_branch, insn->src_reg, true); 10052 } else { 10053 return false; 10054 } 10055 break; 10056 case BPF_JGE: 10057 if ((dst_reg->type == PTR_TO_PACKET && 10058 src_reg->type == PTR_TO_PACKET_END) || 10059 (dst_reg->type == PTR_TO_PACKET_META && 10060 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10061 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 10062 find_good_pkt_pointers(this_branch, dst_reg, 10063 dst_reg->type, true); 10064 mark_pkt_end(other_branch, insn->dst_reg, false); 10065 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10066 src_reg->type == PTR_TO_PACKET) || 10067 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10068 src_reg->type == PTR_TO_PACKET_META)) { 10069 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 10070 find_good_pkt_pointers(other_branch, src_reg, 10071 src_reg->type, false); 10072 mark_pkt_end(this_branch, insn->src_reg, true); 10073 } else { 10074 return false; 10075 } 10076 break; 10077 case BPF_JLE: 10078 if ((dst_reg->type == PTR_TO_PACKET && 10079 src_reg->type == PTR_TO_PACKET_END) || 10080 (dst_reg->type == PTR_TO_PACKET_META && 10081 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10082 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 10083 find_good_pkt_pointers(other_branch, dst_reg, 10084 dst_reg->type, false); 10085 mark_pkt_end(this_branch, insn->dst_reg, true); 10086 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10087 src_reg->type == PTR_TO_PACKET) || 10088 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10089 src_reg->type == PTR_TO_PACKET_META)) { 10090 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 10091 find_good_pkt_pointers(this_branch, src_reg, 10092 src_reg->type, true); 10093 mark_pkt_end(other_branch, insn->src_reg, false); 10094 } else { 10095 return false; 10096 } 10097 break; 10098 default: 10099 return false; 10100 } 10101 10102 return true; 10103 } 10104 10105 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10106 struct bpf_reg_state *known_reg) 10107 { 10108 struct bpf_func_state *state; 10109 struct bpf_reg_state *reg; 10110 10111 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10112 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10113 *reg = *known_reg; 10114 })); 10115 } 10116 10117 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10118 struct bpf_insn *insn, int *insn_idx) 10119 { 10120 struct bpf_verifier_state *this_branch = env->cur_state; 10121 struct bpf_verifier_state *other_branch; 10122 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10123 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10124 u8 opcode = BPF_OP(insn->code); 10125 bool is_jmp32; 10126 int pred = -1; 10127 int err; 10128 10129 /* Only conditional jumps are expected to reach here. */ 10130 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10131 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10132 return -EINVAL; 10133 } 10134 10135 if (BPF_SRC(insn->code) == BPF_X) { 10136 if (insn->imm != 0) { 10137 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10138 return -EINVAL; 10139 } 10140 10141 /* check src1 operand */ 10142 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10143 if (err) 10144 return err; 10145 10146 if (is_pointer_value(env, insn->src_reg)) { 10147 verbose(env, "R%d pointer comparison prohibited\n", 10148 insn->src_reg); 10149 return -EACCES; 10150 } 10151 src_reg = ®s[insn->src_reg]; 10152 } else { 10153 if (insn->src_reg != BPF_REG_0) { 10154 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10155 return -EINVAL; 10156 } 10157 } 10158 10159 /* check src2 operand */ 10160 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10161 if (err) 10162 return err; 10163 10164 dst_reg = ®s[insn->dst_reg]; 10165 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10166 10167 if (BPF_SRC(insn->code) == BPF_K) { 10168 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10169 } else if (src_reg->type == SCALAR_VALUE && 10170 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10171 pred = is_branch_taken(dst_reg, 10172 tnum_subreg(src_reg->var_off).value, 10173 opcode, 10174 is_jmp32); 10175 } else if (src_reg->type == SCALAR_VALUE && 10176 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10177 pred = is_branch_taken(dst_reg, 10178 src_reg->var_off.value, 10179 opcode, 10180 is_jmp32); 10181 } else if (reg_is_pkt_pointer_any(dst_reg) && 10182 reg_is_pkt_pointer_any(src_reg) && 10183 !is_jmp32) { 10184 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10185 } 10186 10187 if (pred >= 0) { 10188 /* If we get here with a dst_reg pointer type it is because 10189 * above is_branch_taken() special cased the 0 comparison. 10190 */ 10191 if (!__is_pointer_value(false, dst_reg)) 10192 err = mark_chain_precision(env, insn->dst_reg); 10193 if (BPF_SRC(insn->code) == BPF_X && !err && 10194 !__is_pointer_value(false, src_reg)) 10195 err = mark_chain_precision(env, insn->src_reg); 10196 if (err) 10197 return err; 10198 } 10199 10200 if (pred == 1) { 10201 /* Only follow the goto, ignore fall-through. If needed, push 10202 * the fall-through branch for simulation under speculative 10203 * execution. 10204 */ 10205 if (!env->bypass_spec_v1 && 10206 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10207 *insn_idx)) 10208 return -EFAULT; 10209 *insn_idx += insn->off; 10210 return 0; 10211 } else if (pred == 0) { 10212 /* Only follow the fall-through branch, since that's where the 10213 * program will go. If needed, push the goto branch for 10214 * simulation under speculative execution. 10215 */ 10216 if (!env->bypass_spec_v1 && 10217 !sanitize_speculative_path(env, insn, 10218 *insn_idx + insn->off + 1, 10219 *insn_idx)) 10220 return -EFAULT; 10221 return 0; 10222 } 10223 10224 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10225 false); 10226 if (!other_branch) 10227 return -EFAULT; 10228 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10229 10230 /* detect if we are comparing against a constant value so we can adjust 10231 * our min/max values for our dst register. 10232 * this is only legit if both are scalars (or pointers to the same 10233 * object, I suppose, but we don't support that right now), because 10234 * otherwise the different base pointers mean the offsets aren't 10235 * comparable. 10236 */ 10237 if (BPF_SRC(insn->code) == BPF_X) { 10238 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10239 10240 if (dst_reg->type == SCALAR_VALUE && 10241 src_reg->type == SCALAR_VALUE) { 10242 if (tnum_is_const(src_reg->var_off) || 10243 (is_jmp32 && 10244 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10245 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10246 dst_reg, 10247 src_reg->var_off.value, 10248 tnum_subreg(src_reg->var_off).value, 10249 opcode, is_jmp32); 10250 else if (tnum_is_const(dst_reg->var_off) || 10251 (is_jmp32 && 10252 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10253 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10254 src_reg, 10255 dst_reg->var_off.value, 10256 tnum_subreg(dst_reg->var_off).value, 10257 opcode, is_jmp32); 10258 else if (!is_jmp32 && 10259 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10260 /* Comparing for equality, we can combine knowledge */ 10261 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10262 &other_branch_regs[insn->dst_reg], 10263 src_reg, dst_reg, opcode); 10264 if (src_reg->id && 10265 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10266 find_equal_scalars(this_branch, src_reg); 10267 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10268 } 10269 10270 } 10271 } else if (dst_reg->type == SCALAR_VALUE) { 10272 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10273 dst_reg, insn->imm, (u32)insn->imm, 10274 opcode, is_jmp32); 10275 } 10276 10277 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10278 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10279 find_equal_scalars(this_branch, dst_reg); 10280 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10281 } 10282 10283 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10284 * NOTE: these optimizations below are related with pointer comparison 10285 * which will never be JMP32. 10286 */ 10287 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10288 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10289 type_may_be_null(dst_reg->type)) { 10290 /* Mark all identical registers in each branch as either 10291 * safe or unknown depending R == 0 or R != 0 conditional. 10292 */ 10293 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10294 opcode == BPF_JNE); 10295 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10296 opcode == BPF_JEQ); 10297 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10298 this_branch, other_branch) && 10299 is_pointer_value(env, insn->dst_reg)) { 10300 verbose(env, "R%d pointer comparison prohibited\n", 10301 insn->dst_reg); 10302 return -EACCES; 10303 } 10304 if (env->log.level & BPF_LOG_LEVEL) 10305 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10306 return 0; 10307 } 10308 10309 /* verify BPF_LD_IMM64 instruction */ 10310 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10311 { 10312 struct bpf_insn_aux_data *aux = cur_aux(env); 10313 struct bpf_reg_state *regs = cur_regs(env); 10314 struct bpf_reg_state *dst_reg; 10315 struct bpf_map *map; 10316 int err; 10317 10318 if (BPF_SIZE(insn->code) != BPF_DW) { 10319 verbose(env, "invalid BPF_LD_IMM insn\n"); 10320 return -EINVAL; 10321 } 10322 if (insn->off != 0) { 10323 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10324 return -EINVAL; 10325 } 10326 10327 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10328 if (err) 10329 return err; 10330 10331 dst_reg = ®s[insn->dst_reg]; 10332 if (insn->src_reg == 0) { 10333 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10334 10335 dst_reg->type = SCALAR_VALUE; 10336 __mark_reg_known(®s[insn->dst_reg], imm); 10337 return 0; 10338 } 10339 10340 /* All special src_reg cases are listed below. From this point onwards 10341 * we either succeed and assign a corresponding dst_reg->type after 10342 * zeroing the offset, or fail and reject the program. 10343 */ 10344 mark_reg_known_zero(env, regs, insn->dst_reg); 10345 10346 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10347 dst_reg->type = aux->btf_var.reg_type; 10348 switch (base_type(dst_reg->type)) { 10349 case PTR_TO_MEM: 10350 dst_reg->mem_size = aux->btf_var.mem_size; 10351 break; 10352 case PTR_TO_BTF_ID: 10353 dst_reg->btf = aux->btf_var.btf; 10354 dst_reg->btf_id = aux->btf_var.btf_id; 10355 break; 10356 default: 10357 verbose(env, "bpf verifier is misconfigured\n"); 10358 return -EFAULT; 10359 } 10360 return 0; 10361 } 10362 10363 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10364 struct bpf_prog_aux *aux = env->prog->aux; 10365 u32 subprogno = find_subprog(env, 10366 env->insn_idx + insn->imm + 1); 10367 10368 if (!aux->func_info) { 10369 verbose(env, "missing btf func_info\n"); 10370 return -EINVAL; 10371 } 10372 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10373 verbose(env, "callback function not static\n"); 10374 return -EINVAL; 10375 } 10376 10377 dst_reg->type = PTR_TO_FUNC; 10378 dst_reg->subprogno = subprogno; 10379 return 0; 10380 } 10381 10382 map = env->used_maps[aux->map_index]; 10383 dst_reg->map_ptr = map; 10384 10385 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10386 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10387 dst_reg->type = PTR_TO_MAP_VALUE; 10388 dst_reg->off = aux->map_off; 10389 if (map_value_has_spin_lock(map)) 10390 dst_reg->id = ++env->id_gen; 10391 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10392 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10393 dst_reg->type = CONST_PTR_TO_MAP; 10394 } else { 10395 verbose(env, "bpf verifier is misconfigured\n"); 10396 return -EINVAL; 10397 } 10398 10399 return 0; 10400 } 10401 10402 static bool may_access_skb(enum bpf_prog_type type) 10403 { 10404 switch (type) { 10405 case BPF_PROG_TYPE_SOCKET_FILTER: 10406 case BPF_PROG_TYPE_SCHED_CLS: 10407 case BPF_PROG_TYPE_SCHED_ACT: 10408 return true; 10409 default: 10410 return false; 10411 } 10412 } 10413 10414 /* verify safety of LD_ABS|LD_IND instructions: 10415 * - they can only appear in the programs where ctx == skb 10416 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10417 * preserve R6-R9, and store return value into R0 10418 * 10419 * Implicit input: 10420 * ctx == skb == R6 == CTX 10421 * 10422 * Explicit input: 10423 * SRC == any register 10424 * IMM == 32-bit immediate 10425 * 10426 * Output: 10427 * R0 - 8/16/32-bit skb data converted to cpu endianness 10428 */ 10429 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10430 { 10431 struct bpf_reg_state *regs = cur_regs(env); 10432 static const int ctx_reg = BPF_REG_6; 10433 u8 mode = BPF_MODE(insn->code); 10434 int i, err; 10435 10436 if (!may_access_skb(resolve_prog_type(env->prog))) { 10437 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10438 return -EINVAL; 10439 } 10440 10441 if (!env->ops->gen_ld_abs) { 10442 verbose(env, "bpf verifier is misconfigured\n"); 10443 return -EINVAL; 10444 } 10445 10446 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10447 BPF_SIZE(insn->code) == BPF_DW || 10448 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10449 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10450 return -EINVAL; 10451 } 10452 10453 /* check whether implicit source operand (register R6) is readable */ 10454 err = check_reg_arg(env, ctx_reg, SRC_OP); 10455 if (err) 10456 return err; 10457 10458 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10459 * gen_ld_abs() may terminate the program at runtime, leading to 10460 * reference leak. 10461 */ 10462 err = check_reference_leak(env); 10463 if (err) { 10464 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10465 return err; 10466 } 10467 10468 if (env->cur_state->active_spin_lock) { 10469 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10470 return -EINVAL; 10471 } 10472 10473 if (regs[ctx_reg].type != PTR_TO_CTX) { 10474 verbose(env, 10475 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10476 return -EINVAL; 10477 } 10478 10479 if (mode == BPF_IND) { 10480 /* check explicit source operand */ 10481 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10482 if (err) 10483 return err; 10484 } 10485 10486 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10487 if (err < 0) 10488 return err; 10489 10490 /* reset caller saved regs to unreadable */ 10491 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10492 mark_reg_not_init(env, regs, caller_saved[i]); 10493 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10494 } 10495 10496 /* mark destination R0 register as readable, since it contains 10497 * the value fetched from the packet. 10498 * Already marked as written above. 10499 */ 10500 mark_reg_unknown(env, regs, BPF_REG_0); 10501 /* ld_abs load up to 32-bit skb data. */ 10502 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10503 return 0; 10504 } 10505 10506 static int check_return_code(struct bpf_verifier_env *env) 10507 { 10508 struct tnum enforce_attach_type_range = tnum_unknown; 10509 const struct bpf_prog *prog = env->prog; 10510 struct bpf_reg_state *reg; 10511 struct tnum range = tnum_range(0, 1); 10512 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10513 int err; 10514 struct bpf_func_state *frame = env->cur_state->frame[0]; 10515 const bool is_subprog = frame->subprogno; 10516 10517 /* LSM and struct_ops func-ptr's return type could be "void" */ 10518 if (!is_subprog) { 10519 switch (prog_type) { 10520 case BPF_PROG_TYPE_LSM: 10521 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10522 /* See below, can be 0 or 0-1 depending on hook. */ 10523 break; 10524 fallthrough; 10525 case BPF_PROG_TYPE_STRUCT_OPS: 10526 if (!prog->aux->attach_func_proto->type) 10527 return 0; 10528 break; 10529 default: 10530 break; 10531 } 10532 } 10533 10534 /* eBPF calling convention is such that R0 is used 10535 * to return the value from eBPF program. 10536 * Make sure that it's readable at this time 10537 * of bpf_exit, which means that program wrote 10538 * something into it earlier 10539 */ 10540 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10541 if (err) 10542 return err; 10543 10544 if (is_pointer_value(env, BPF_REG_0)) { 10545 verbose(env, "R0 leaks addr as return value\n"); 10546 return -EACCES; 10547 } 10548 10549 reg = cur_regs(env) + BPF_REG_0; 10550 10551 if (frame->in_async_callback_fn) { 10552 /* enforce return zero from async callbacks like timer */ 10553 if (reg->type != SCALAR_VALUE) { 10554 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10555 reg_type_str(env, reg->type)); 10556 return -EINVAL; 10557 } 10558 10559 if (!tnum_in(tnum_const(0), reg->var_off)) { 10560 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10561 return -EINVAL; 10562 } 10563 return 0; 10564 } 10565 10566 if (is_subprog) { 10567 if (reg->type != SCALAR_VALUE) { 10568 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10569 reg_type_str(env, reg->type)); 10570 return -EINVAL; 10571 } 10572 return 0; 10573 } 10574 10575 switch (prog_type) { 10576 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10577 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10578 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10579 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10580 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10581 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10582 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10583 range = tnum_range(1, 1); 10584 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10585 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10586 range = tnum_range(0, 3); 10587 break; 10588 case BPF_PROG_TYPE_CGROUP_SKB: 10589 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10590 range = tnum_range(0, 3); 10591 enforce_attach_type_range = tnum_range(2, 3); 10592 } 10593 break; 10594 case BPF_PROG_TYPE_CGROUP_SOCK: 10595 case BPF_PROG_TYPE_SOCK_OPS: 10596 case BPF_PROG_TYPE_CGROUP_DEVICE: 10597 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10598 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10599 break; 10600 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10601 if (!env->prog->aux->attach_btf_id) 10602 return 0; 10603 range = tnum_const(0); 10604 break; 10605 case BPF_PROG_TYPE_TRACING: 10606 switch (env->prog->expected_attach_type) { 10607 case BPF_TRACE_FENTRY: 10608 case BPF_TRACE_FEXIT: 10609 range = tnum_const(0); 10610 break; 10611 case BPF_TRACE_RAW_TP: 10612 case BPF_MODIFY_RETURN: 10613 return 0; 10614 case BPF_TRACE_ITER: 10615 break; 10616 default: 10617 return -ENOTSUPP; 10618 } 10619 break; 10620 case BPF_PROG_TYPE_SK_LOOKUP: 10621 range = tnum_range(SK_DROP, SK_PASS); 10622 break; 10623 10624 case BPF_PROG_TYPE_LSM: 10625 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10626 /* Regular BPF_PROG_TYPE_LSM programs can return 10627 * any value. 10628 */ 10629 return 0; 10630 } 10631 if (!env->prog->aux->attach_func_proto->type) { 10632 /* Make sure programs that attach to void 10633 * hooks don't try to modify return value. 10634 */ 10635 range = tnum_range(1, 1); 10636 } 10637 break; 10638 10639 case BPF_PROG_TYPE_EXT: 10640 /* freplace program can return anything as its return value 10641 * depends on the to-be-replaced kernel func or bpf program. 10642 */ 10643 default: 10644 return 0; 10645 } 10646 10647 if (reg->type != SCALAR_VALUE) { 10648 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10649 reg_type_str(env, reg->type)); 10650 return -EINVAL; 10651 } 10652 10653 if (!tnum_in(range, reg->var_off)) { 10654 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10655 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10656 prog_type == BPF_PROG_TYPE_LSM && 10657 !prog->aux->attach_func_proto->type) 10658 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10659 return -EINVAL; 10660 } 10661 10662 if (!tnum_is_unknown(enforce_attach_type_range) && 10663 tnum_in(enforce_attach_type_range, reg->var_off)) 10664 env->prog->enforce_expected_attach_type = 1; 10665 return 0; 10666 } 10667 10668 /* non-recursive DFS pseudo code 10669 * 1 procedure DFS-iterative(G,v): 10670 * 2 label v as discovered 10671 * 3 let S be a stack 10672 * 4 S.push(v) 10673 * 5 while S is not empty 10674 * 6 t <- S.pop() 10675 * 7 if t is what we're looking for: 10676 * 8 return t 10677 * 9 for all edges e in G.adjacentEdges(t) do 10678 * 10 if edge e is already labelled 10679 * 11 continue with the next edge 10680 * 12 w <- G.adjacentVertex(t,e) 10681 * 13 if vertex w is not discovered and not explored 10682 * 14 label e as tree-edge 10683 * 15 label w as discovered 10684 * 16 S.push(w) 10685 * 17 continue at 5 10686 * 18 else if vertex w is discovered 10687 * 19 label e as back-edge 10688 * 20 else 10689 * 21 // vertex w is explored 10690 * 22 label e as forward- or cross-edge 10691 * 23 label t as explored 10692 * 24 S.pop() 10693 * 10694 * convention: 10695 * 0x10 - discovered 10696 * 0x11 - discovered and fall-through edge labelled 10697 * 0x12 - discovered and fall-through and branch edges labelled 10698 * 0x20 - explored 10699 */ 10700 10701 enum { 10702 DISCOVERED = 0x10, 10703 EXPLORED = 0x20, 10704 FALLTHROUGH = 1, 10705 BRANCH = 2, 10706 }; 10707 10708 static u32 state_htab_size(struct bpf_verifier_env *env) 10709 { 10710 return env->prog->len; 10711 } 10712 10713 static struct bpf_verifier_state_list **explored_state( 10714 struct bpf_verifier_env *env, 10715 int idx) 10716 { 10717 struct bpf_verifier_state *cur = env->cur_state; 10718 struct bpf_func_state *state = cur->frame[cur->curframe]; 10719 10720 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10721 } 10722 10723 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10724 { 10725 env->insn_aux_data[idx].prune_point = true; 10726 } 10727 10728 enum { 10729 DONE_EXPLORING = 0, 10730 KEEP_EXPLORING = 1, 10731 }; 10732 10733 /* t, w, e - match pseudo-code above: 10734 * t - index of current instruction 10735 * w - next instruction 10736 * e - edge 10737 */ 10738 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10739 bool loop_ok) 10740 { 10741 int *insn_stack = env->cfg.insn_stack; 10742 int *insn_state = env->cfg.insn_state; 10743 10744 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10745 return DONE_EXPLORING; 10746 10747 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10748 return DONE_EXPLORING; 10749 10750 if (w < 0 || w >= env->prog->len) { 10751 verbose_linfo(env, t, "%d: ", t); 10752 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10753 return -EINVAL; 10754 } 10755 10756 if (e == BRANCH) 10757 /* mark branch target for state pruning */ 10758 init_explored_state(env, w); 10759 10760 if (insn_state[w] == 0) { 10761 /* tree-edge */ 10762 insn_state[t] = DISCOVERED | e; 10763 insn_state[w] = DISCOVERED; 10764 if (env->cfg.cur_stack >= env->prog->len) 10765 return -E2BIG; 10766 insn_stack[env->cfg.cur_stack++] = w; 10767 return KEEP_EXPLORING; 10768 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10769 if (loop_ok && env->bpf_capable) 10770 return DONE_EXPLORING; 10771 verbose_linfo(env, t, "%d: ", t); 10772 verbose_linfo(env, w, "%d: ", w); 10773 verbose(env, "back-edge from insn %d to %d\n", t, w); 10774 return -EINVAL; 10775 } else if (insn_state[w] == EXPLORED) { 10776 /* forward- or cross-edge */ 10777 insn_state[t] = DISCOVERED | e; 10778 } else { 10779 verbose(env, "insn state internal bug\n"); 10780 return -EFAULT; 10781 } 10782 return DONE_EXPLORING; 10783 } 10784 10785 static int visit_func_call_insn(int t, int insn_cnt, 10786 struct bpf_insn *insns, 10787 struct bpf_verifier_env *env, 10788 bool visit_callee) 10789 { 10790 int ret; 10791 10792 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10793 if (ret) 10794 return ret; 10795 10796 if (t + 1 < insn_cnt) 10797 init_explored_state(env, t + 1); 10798 if (visit_callee) { 10799 init_explored_state(env, t); 10800 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10801 /* It's ok to allow recursion from CFG point of 10802 * view. __check_func_call() will do the actual 10803 * check. 10804 */ 10805 bpf_pseudo_func(insns + t)); 10806 } 10807 return ret; 10808 } 10809 10810 /* Visits the instruction at index t and returns one of the following: 10811 * < 0 - an error occurred 10812 * DONE_EXPLORING - the instruction was fully explored 10813 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10814 */ 10815 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10816 { 10817 struct bpf_insn *insns = env->prog->insnsi; 10818 int ret; 10819 10820 if (bpf_pseudo_func(insns + t)) 10821 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10822 10823 /* All non-branch instructions have a single fall-through edge. */ 10824 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10825 BPF_CLASS(insns[t].code) != BPF_JMP32) 10826 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10827 10828 switch (BPF_OP(insns[t].code)) { 10829 case BPF_EXIT: 10830 return DONE_EXPLORING; 10831 10832 case BPF_CALL: 10833 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10834 /* Mark this call insn to trigger is_state_visited() check 10835 * before call itself is processed by __check_func_call(). 10836 * Otherwise new async state will be pushed for further 10837 * exploration. 10838 */ 10839 init_explored_state(env, t); 10840 return visit_func_call_insn(t, insn_cnt, insns, env, 10841 insns[t].src_reg == BPF_PSEUDO_CALL); 10842 10843 case BPF_JA: 10844 if (BPF_SRC(insns[t].code) != BPF_K) 10845 return -EINVAL; 10846 10847 /* unconditional jump with single edge */ 10848 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10849 true); 10850 if (ret) 10851 return ret; 10852 10853 /* unconditional jmp is not a good pruning point, 10854 * but it's marked, since backtracking needs 10855 * to record jmp history in is_state_visited(). 10856 */ 10857 init_explored_state(env, t + insns[t].off + 1); 10858 /* tell verifier to check for equivalent states 10859 * after every call and jump 10860 */ 10861 if (t + 1 < insn_cnt) 10862 init_explored_state(env, t + 1); 10863 10864 return ret; 10865 10866 default: 10867 /* conditional jump with two edges */ 10868 init_explored_state(env, t); 10869 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10870 if (ret) 10871 return ret; 10872 10873 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10874 } 10875 } 10876 10877 /* non-recursive depth-first-search to detect loops in BPF program 10878 * loop == back-edge in directed graph 10879 */ 10880 static int check_cfg(struct bpf_verifier_env *env) 10881 { 10882 int insn_cnt = env->prog->len; 10883 int *insn_stack, *insn_state; 10884 int ret = 0; 10885 int i; 10886 10887 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10888 if (!insn_state) 10889 return -ENOMEM; 10890 10891 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10892 if (!insn_stack) { 10893 kvfree(insn_state); 10894 return -ENOMEM; 10895 } 10896 10897 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10898 insn_stack[0] = 0; /* 0 is the first instruction */ 10899 env->cfg.cur_stack = 1; 10900 10901 while (env->cfg.cur_stack > 0) { 10902 int t = insn_stack[env->cfg.cur_stack - 1]; 10903 10904 ret = visit_insn(t, insn_cnt, env); 10905 switch (ret) { 10906 case DONE_EXPLORING: 10907 insn_state[t] = EXPLORED; 10908 env->cfg.cur_stack--; 10909 break; 10910 case KEEP_EXPLORING: 10911 break; 10912 default: 10913 if (ret > 0) { 10914 verbose(env, "visit_insn internal bug\n"); 10915 ret = -EFAULT; 10916 } 10917 goto err_free; 10918 } 10919 } 10920 10921 if (env->cfg.cur_stack < 0) { 10922 verbose(env, "pop stack internal bug\n"); 10923 ret = -EFAULT; 10924 goto err_free; 10925 } 10926 10927 for (i = 0; i < insn_cnt; i++) { 10928 if (insn_state[i] != EXPLORED) { 10929 verbose(env, "unreachable insn %d\n", i); 10930 ret = -EINVAL; 10931 goto err_free; 10932 } 10933 } 10934 ret = 0; /* cfg looks good */ 10935 10936 err_free: 10937 kvfree(insn_state); 10938 kvfree(insn_stack); 10939 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10940 return ret; 10941 } 10942 10943 static int check_abnormal_return(struct bpf_verifier_env *env) 10944 { 10945 int i; 10946 10947 for (i = 1; i < env->subprog_cnt; i++) { 10948 if (env->subprog_info[i].has_ld_abs) { 10949 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10950 return -EINVAL; 10951 } 10952 if (env->subprog_info[i].has_tail_call) { 10953 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10954 return -EINVAL; 10955 } 10956 } 10957 return 0; 10958 } 10959 10960 /* The minimum supported BTF func info size */ 10961 #define MIN_BPF_FUNCINFO_SIZE 8 10962 #define MAX_FUNCINFO_REC_SIZE 252 10963 10964 static int check_btf_func(struct bpf_verifier_env *env, 10965 const union bpf_attr *attr, 10966 bpfptr_t uattr) 10967 { 10968 const struct btf_type *type, *func_proto, *ret_type; 10969 u32 i, nfuncs, urec_size, min_size; 10970 u32 krec_size = sizeof(struct bpf_func_info); 10971 struct bpf_func_info *krecord; 10972 struct bpf_func_info_aux *info_aux = NULL; 10973 struct bpf_prog *prog; 10974 const struct btf *btf; 10975 bpfptr_t urecord; 10976 u32 prev_offset = 0; 10977 bool scalar_return; 10978 int ret = -ENOMEM; 10979 10980 nfuncs = attr->func_info_cnt; 10981 if (!nfuncs) { 10982 if (check_abnormal_return(env)) 10983 return -EINVAL; 10984 return 0; 10985 } 10986 10987 if (nfuncs != env->subprog_cnt) { 10988 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10989 return -EINVAL; 10990 } 10991 10992 urec_size = attr->func_info_rec_size; 10993 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10994 urec_size > MAX_FUNCINFO_REC_SIZE || 10995 urec_size % sizeof(u32)) { 10996 verbose(env, "invalid func info rec size %u\n", urec_size); 10997 return -EINVAL; 10998 } 10999 11000 prog = env->prog; 11001 btf = prog->aux->btf; 11002 11003 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 11004 min_size = min_t(u32, krec_size, urec_size); 11005 11006 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 11007 if (!krecord) 11008 return -ENOMEM; 11009 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 11010 if (!info_aux) 11011 goto err_free; 11012 11013 for (i = 0; i < nfuncs; i++) { 11014 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 11015 if (ret) { 11016 if (ret == -E2BIG) { 11017 verbose(env, "nonzero tailing record in func info"); 11018 /* set the size kernel expects so loader can zero 11019 * out the rest of the record. 11020 */ 11021 if (copy_to_bpfptr_offset(uattr, 11022 offsetof(union bpf_attr, func_info_rec_size), 11023 &min_size, sizeof(min_size))) 11024 ret = -EFAULT; 11025 } 11026 goto err_free; 11027 } 11028 11029 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 11030 ret = -EFAULT; 11031 goto err_free; 11032 } 11033 11034 /* check insn_off */ 11035 ret = -EINVAL; 11036 if (i == 0) { 11037 if (krecord[i].insn_off) { 11038 verbose(env, 11039 "nonzero insn_off %u for the first func info record", 11040 krecord[i].insn_off); 11041 goto err_free; 11042 } 11043 } else if (krecord[i].insn_off <= prev_offset) { 11044 verbose(env, 11045 "same or smaller insn offset (%u) than previous func info record (%u)", 11046 krecord[i].insn_off, prev_offset); 11047 goto err_free; 11048 } 11049 11050 if (env->subprog_info[i].start != krecord[i].insn_off) { 11051 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 11052 goto err_free; 11053 } 11054 11055 /* check type_id */ 11056 type = btf_type_by_id(btf, krecord[i].type_id); 11057 if (!type || !btf_type_is_func(type)) { 11058 verbose(env, "invalid type id %d in func info", 11059 krecord[i].type_id); 11060 goto err_free; 11061 } 11062 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 11063 11064 func_proto = btf_type_by_id(btf, type->type); 11065 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 11066 /* btf_func_check() already verified it during BTF load */ 11067 goto err_free; 11068 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 11069 scalar_return = 11070 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 11071 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 11072 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 11073 goto err_free; 11074 } 11075 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 11076 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 11077 goto err_free; 11078 } 11079 11080 prev_offset = krecord[i].insn_off; 11081 bpfptr_add(&urecord, urec_size); 11082 } 11083 11084 prog->aux->func_info = krecord; 11085 prog->aux->func_info_cnt = nfuncs; 11086 prog->aux->func_info_aux = info_aux; 11087 return 0; 11088 11089 err_free: 11090 kvfree(krecord); 11091 kfree(info_aux); 11092 return ret; 11093 } 11094 11095 static void adjust_btf_func(struct bpf_verifier_env *env) 11096 { 11097 struct bpf_prog_aux *aux = env->prog->aux; 11098 int i; 11099 11100 if (!aux->func_info) 11101 return; 11102 11103 for (i = 0; i < env->subprog_cnt; i++) 11104 aux->func_info[i].insn_off = env->subprog_info[i].start; 11105 } 11106 11107 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11108 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11109 11110 static int check_btf_line(struct bpf_verifier_env *env, 11111 const union bpf_attr *attr, 11112 bpfptr_t uattr) 11113 { 11114 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11115 struct bpf_subprog_info *sub; 11116 struct bpf_line_info *linfo; 11117 struct bpf_prog *prog; 11118 const struct btf *btf; 11119 bpfptr_t ulinfo; 11120 int err; 11121 11122 nr_linfo = attr->line_info_cnt; 11123 if (!nr_linfo) 11124 return 0; 11125 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11126 return -EINVAL; 11127 11128 rec_size = attr->line_info_rec_size; 11129 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11130 rec_size > MAX_LINEINFO_REC_SIZE || 11131 rec_size & (sizeof(u32) - 1)) 11132 return -EINVAL; 11133 11134 /* Need to zero it in case the userspace may 11135 * pass in a smaller bpf_line_info object. 11136 */ 11137 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11138 GFP_KERNEL | __GFP_NOWARN); 11139 if (!linfo) 11140 return -ENOMEM; 11141 11142 prog = env->prog; 11143 btf = prog->aux->btf; 11144 11145 s = 0; 11146 sub = env->subprog_info; 11147 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11148 expected_size = sizeof(struct bpf_line_info); 11149 ncopy = min_t(u32, expected_size, rec_size); 11150 for (i = 0; i < nr_linfo; i++) { 11151 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11152 if (err) { 11153 if (err == -E2BIG) { 11154 verbose(env, "nonzero tailing record in line_info"); 11155 if (copy_to_bpfptr_offset(uattr, 11156 offsetof(union bpf_attr, line_info_rec_size), 11157 &expected_size, sizeof(expected_size))) 11158 err = -EFAULT; 11159 } 11160 goto err_free; 11161 } 11162 11163 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11164 err = -EFAULT; 11165 goto err_free; 11166 } 11167 11168 /* 11169 * Check insn_off to ensure 11170 * 1) strictly increasing AND 11171 * 2) bounded by prog->len 11172 * 11173 * The linfo[0].insn_off == 0 check logically falls into 11174 * the later "missing bpf_line_info for func..." case 11175 * because the first linfo[0].insn_off must be the 11176 * first sub also and the first sub must have 11177 * subprog_info[0].start == 0. 11178 */ 11179 if ((i && linfo[i].insn_off <= prev_offset) || 11180 linfo[i].insn_off >= prog->len) { 11181 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11182 i, linfo[i].insn_off, prev_offset, 11183 prog->len); 11184 err = -EINVAL; 11185 goto err_free; 11186 } 11187 11188 if (!prog->insnsi[linfo[i].insn_off].code) { 11189 verbose(env, 11190 "Invalid insn code at line_info[%u].insn_off\n", 11191 i); 11192 err = -EINVAL; 11193 goto err_free; 11194 } 11195 11196 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11197 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11198 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11199 err = -EINVAL; 11200 goto err_free; 11201 } 11202 11203 if (s != env->subprog_cnt) { 11204 if (linfo[i].insn_off == sub[s].start) { 11205 sub[s].linfo_idx = i; 11206 s++; 11207 } else if (sub[s].start < linfo[i].insn_off) { 11208 verbose(env, "missing bpf_line_info for func#%u\n", s); 11209 err = -EINVAL; 11210 goto err_free; 11211 } 11212 } 11213 11214 prev_offset = linfo[i].insn_off; 11215 bpfptr_add(&ulinfo, rec_size); 11216 } 11217 11218 if (s != env->subprog_cnt) { 11219 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11220 env->subprog_cnt - s, s); 11221 err = -EINVAL; 11222 goto err_free; 11223 } 11224 11225 prog->aux->linfo = linfo; 11226 prog->aux->nr_linfo = nr_linfo; 11227 11228 return 0; 11229 11230 err_free: 11231 kvfree(linfo); 11232 return err; 11233 } 11234 11235 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11236 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11237 11238 static int check_core_relo(struct bpf_verifier_env *env, 11239 const union bpf_attr *attr, 11240 bpfptr_t uattr) 11241 { 11242 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11243 struct bpf_core_relo core_relo = {}; 11244 struct bpf_prog *prog = env->prog; 11245 const struct btf *btf = prog->aux->btf; 11246 struct bpf_core_ctx ctx = { 11247 .log = &env->log, 11248 .btf = btf, 11249 }; 11250 bpfptr_t u_core_relo; 11251 int err; 11252 11253 nr_core_relo = attr->core_relo_cnt; 11254 if (!nr_core_relo) 11255 return 0; 11256 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11257 return -EINVAL; 11258 11259 rec_size = attr->core_relo_rec_size; 11260 if (rec_size < MIN_CORE_RELO_SIZE || 11261 rec_size > MAX_CORE_RELO_SIZE || 11262 rec_size % sizeof(u32)) 11263 return -EINVAL; 11264 11265 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11266 expected_size = sizeof(struct bpf_core_relo); 11267 ncopy = min_t(u32, expected_size, rec_size); 11268 11269 /* Unlike func_info and line_info, copy and apply each CO-RE 11270 * relocation record one at a time. 11271 */ 11272 for (i = 0; i < nr_core_relo; i++) { 11273 /* future proofing when sizeof(bpf_core_relo) changes */ 11274 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11275 if (err) { 11276 if (err == -E2BIG) { 11277 verbose(env, "nonzero tailing record in core_relo"); 11278 if (copy_to_bpfptr_offset(uattr, 11279 offsetof(union bpf_attr, core_relo_rec_size), 11280 &expected_size, sizeof(expected_size))) 11281 err = -EFAULT; 11282 } 11283 break; 11284 } 11285 11286 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11287 err = -EFAULT; 11288 break; 11289 } 11290 11291 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11292 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11293 i, core_relo.insn_off, prog->len); 11294 err = -EINVAL; 11295 break; 11296 } 11297 11298 err = bpf_core_apply(&ctx, &core_relo, i, 11299 &prog->insnsi[core_relo.insn_off / 8]); 11300 if (err) 11301 break; 11302 bpfptr_add(&u_core_relo, rec_size); 11303 } 11304 return err; 11305 } 11306 11307 static int check_btf_info(struct bpf_verifier_env *env, 11308 const union bpf_attr *attr, 11309 bpfptr_t uattr) 11310 { 11311 struct btf *btf; 11312 int err; 11313 11314 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11315 if (check_abnormal_return(env)) 11316 return -EINVAL; 11317 return 0; 11318 } 11319 11320 btf = btf_get_by_fd(attr->prog_btf_fd); 11321 if (IS_ERR(btf)) 11322 return PTR_ERR(btf); 11323 if (btf_is_kernel(btf)) { 11324 btf_put(btf); 11325 return -EACCES; 11326 } 11327 env->prog->aux->btf = btf; 11328 11329 err = check_btf_func(env, attr, uattr); 11330 if (err) 11331 return err; 11332 11333 err = check_btf_line(env, attr, uattr); 11334 if (err) 11335 return err; 11336 11337 err = check_core_relo(env, attr, uattr); 11338 if (err) 11339 return err; 11340 11341 return 0; 11342 } 11343 11344 /* check %cur's range satisfies %old's */ 11345 static bool range_within(struct bpf_reg_state *old, 11346 struct bpf_reg_state *cur) 11347 { 11348 return old->umin_value <= cur->umin_value && 11349 old->umax_value >= cur->umax_value && 11350 old->smin_value <= cur->smin_value && 11351 old->smax_value >= cur->smax_value && 11352 old->u32_min_value <= cur->u32_min_value && 11353 old->u32_max_value >= cur->u32_max_value && 11354 old->s32_min_value <= cur->s32_min_value && 11355 old->s32_max_value >= cur->s32_max_value; 11356 } 11357 11358 /* If in the old state two registers had the same id, then they need to have 11359 * the same id in the new state as well. But that id could be different from 11360 * the old state, so we need to track the mapping from old to new ids. 11361 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11362 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11363 * regs with a different old id could still have new id 9, we don't care about 11364 * that. 11365 * So we look through our idmap to see if this old id has been seen before. If 11366 * so, we require the new id to match; otherwise, we add the id pair to the map. 11367 */ 11368 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11369 { 11370 unsigned int i; 11371 11372 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11373 if (!idmap[i].old) { 11374 /* Reached an empty slot; haven't seen this id before */ 11375 idmap[i].old = old_id; 11376 idmap[i].cur = cur_id; 11377 return true; 11378 } 11379 if (idmap[i].old == old_id) 11380 return idmap[i].cur == cur_id; 11381 } 11382 /* We ran out of idmap slots, which should be impossible */ 11383 WARN_ON_ONCE(1); 11384 return false; 11385 } 11386 11387 static void clean_func_state(struct bpf_verifier_env *env, 11388 struct bpf_func_state *st) 11389 { 11390 enum bpf_reg_liveness live; 11391 int i, j; 11392 11393 for (i = 0; i < BPF_REG_FP; i++) { 11394 live = st->regs[i].live; 11395 /* liveness must not touch this register anymore */ 11396 st->regs[i].live |= REG_LIVE_DONE; 11397 if (!(live & REG_LIVE_READ)) 11398 /* since the register is unused, clear its state 11399 * to make further comparison simpler 11400 */ 11401 __mark_reg_not_init(env, &st->regs[i]); 11402 } 11403 11404 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11405 live = st->stack[i].spilled_ptr.live; 11406 /* liveness must not touch this stack slot anymore */ 11407 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11408 if (!(live & REG_LIVE_READ)) { 11409 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11410 for (j = 0; j < BPF_REG_SIZE; j++) 11411 st->stack[i].slot_type[j] = STACK_INVALID; 11412 } 11413 } 11414 } 11415 11416 static void clean_verifier_state(struct bpf_verifier_env *env, 11417 struct bpf_verifier_state *st) 11418 { 11419 int i; 11420 11421 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11422 /* all regs in this state in all frames were already marked */ 11423 return; 11424 11425 for (i = 0; i <= st->curframe; i++) 11426 clean_func_state(env, st->frame[i]); 11427 } 11428 11429 /* the parentage chains form a tree. 11430 * the verifier states are added to state lists at given insn and 11431 * pushed into state stack for future exploration. 11432 * when the verifier reaches bpf_exit insn some of the verifer states 11433 * stored in the state lists have their final liveness state already, 11434 * but a lot of states will get revised from liveness point of view when 11435 * the verifier explores other branches. 11436 * Example: 11437 * 1: r0 = 1 11438 * 2: if r1 == 100 goto pc+1 11439 * 3: r0 = 2 11440 * 4: exit 11441 * when the verifier reaches exit insn the register r0 in the state list of 11442 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11443 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11444 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11445 * 11446 * Since the verifier pushes the branch states as it sees them while exploring 11447 * the program the condition of walking the branch instruction for the second 11448 * time means that all states below this branch were already explored and 11449 * their final liveness marks are already propagated. 11450 * Hence when the verifier completes the search of state list in is_state_visited() 11451 * we can call this clean_live_states() function to mark all liveness states 11452 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11453 * will not be used. 11454 * This function also clears the registers and stack for states that !READ 11455 * to simplify state merging. 11456 * 11457 * Important note here that walking the same branch instruction in the callee 11458 * doesn't meant that the states are DONE. The verifier has to compare 11459 * the callsites 11460 */ 11461 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11462 struct bpf_verifier_state *cur) 11463 { 11464 struct bpf_verifier_state_list *sl; 11465 int i; 11466 11467 sl = *explored_state(env, insn); 11468 while (sl) { 11469 if (sl->state.branches) 11470 goto next; 11471 if (sl->state.insn_idx != insn || 11472 sl->state.curframe != cur->curframe) 11473 goto next; 11474 for (i = 0; i <= cur->curframe; i++) 11475 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11476 goto next; 11477 clean_verifier_state(env, &sl->state); 11478 next: 11479 sl = sl->next; 11480 } 11481 } 11482 11483 /* Returns true if (rold safe implies rcur safe) */ 11484 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11485 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11486 { 11487 bool equal; 11488 11489 if (!(rold->live & REG_LIVE_READ)) 11490 /* explored state didn't use this */ 11491 return true; 11492 11493 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11494 11495 if (rold->type == PTR_TO_STACK) 11496 /* two stack pointers are equal only if they're pointing to 11497 * the same stack frame, since fp-8 in foo != fp-8 in bar 11498 */ 11499 return equal && rold->frameno == rcur->frameno; 11500 11501 if (equal) 11502 return true; 11503 11504 if (rold->type == NOT_INIT) 11505 /* explored state can't have used this */ 11506 return true; 11507 if (rcur->type == NOT_INIT) 11508 return false; 11509 switch (base_type(rold->type)) { 11510 case SCALAR_VALUE: 11511 if (env->explore_alu_limits) 11512 return false; 11513 if (rcur->type == SCALAR_VALUE) { 11514 if (!rold->precise && !rcur->precise) 11515 return true; 11516 /* new val must satisfy old val knowledge */ 11517 return range_within(rold, rcur) && 11518 tnum_in(rold->var_off, rcur->var_off); 11519 } else { 11520 /* We're trying to use a pointer in place of a scalar. 11521 * Even if the scalar was unbounded, this could lead to 11522 * pointer leaks because scalars are allowed to leak 11523 * while pointers are not. We could make this safe in 11524 * special cases if root is calling us, but it's 11525 * probably not worth the hassle. 11526 */ 11527 return false; 11528 } 11529 case PTR_TO_MAP_KEY: 11530 case PTR_TO_MAP_VALUE: 11531 /* a PTR_TO_MAP_VALUE could be safe to use as a 11532 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11533 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11534 * checked, doing so could have affected others with the same 11535 * id, and we can't check for that because we lost the id when 11536 * we converted to a PTR_TO_MAP_VALUE. 11537 */ 11538 if (type_may_be_null(rold->type)) { 11539 if (!type_may_be_null(rcur->type)) 11540 return false; 11541 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11542 return false; 11543 /* Check our ids match any regs they're supposed to */ 11544 return check_ids(rold->id, rcur->id, idmap); 11545 } 11546 11547 /* If the new min/max/var_off satisfy the old ones and 11548 * everything else matches, we are OK. 11549 * 'id' is not compared, since it's only used for maps with 11550 * bpf_spin_lock inside map element and in such cases if 11551 * the rest of the prog is valid for one map element then 11552 * it's valid for all map elements regardless of the key 11553 * used in bpf_map_lookup() 11554 */ 11555 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11556 range_within(rold, rcur) && 11557 tnum_in(rold->var_off, rcur->var_off); 11558 case PTR_TO_PACKET_META: 11559 case PTR_TO_PACKET: 11560 if (rcur->type != rold->type) 11561 return false; 11562 /* We must have at least as much range as the old ptr 11563 * did, so that any accesses which were safe before are 11564 * still safe. This is true even if old range < old off, 11565 * since someone could have accessed through (ptr - k), or 11566 * even done ptr -= k in a register, to get a safe access. 11567 */ 11568 if (rold->range > rcur->range) 11569 return false; 11570 /* If the offsets don't match, we can't trust our alignment; 11571 * nor can we be sure that we won't fall out of range. 11572 */ 11573 if (rold->off != rcur->off) 11574 return false; 11575 /* id relations must be preserved */ 11576 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11577 return false; 11578 /* new val must satisfy old val knowledge */ 11579 return range_within(rold, rcur) && 11580 tnum_in(rold->var_off, rcur->var_off); 11581 case PTR_TO_CTX: 11582 case CONST_PTR_TO_MAP: 11583 case PTR_TO_PACKET_END: 11584 case PTR_TO_FLOW_KEYS: 11585 case PTR_TO_SOCKET: 11586 case PTR_TO_SOCK_COMMON: 11587 case PTR_TO_TCP_SOCK: 11588 case PTR_TO_XDP_SOCK: 11589 /* Only valid matches are exact, which memcmp() above 11590 * would have accepted 11591 */ 11592 default: 11593 /* Don't know what's going on, just say it's not safe */ 11594 return false; 11595 } 11596 11597 /* Shouldn't get here; if we do, say it's not safe */ 11598 WARN_ON_ONCE(1); 11599 return false; 11600 } 11601 11602 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11603 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11604 { 11605 int i, spi; 11606 11607 /* walk slots of the explored stack and ignore any additional 11608 * slots in the current stack, since explored(safe) state 11609 * didn't use them 11610 */ 11611 for (i = 0; i < old->allocated_stack; i++) { 11612 spi = i / BPF_REG_SIZE; 11613 11614 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11615 i += BPF_REG_SIZE - 1; 11616 /* explored state didn't use this */ 11617 continue; 11618 } 11619 11620 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11621 continue; 11622 11623 /* explored stack has more populated slots than current stack 11624 * and these slots were used 11625 */ 11626 if (i >= cur->allocated_stack) 11627 return false; 11628 11629 /* if old state was safe with misc data in the stack 11630 * it will be safe with zero-initialized stack. 11631 * The opposite is not true 11632 */ 11633 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11634 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11635 continue; 11636 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11637 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11638 /* Ex: old explored (safe) state has STACK_SPILL in 11639 * this stack slot, but current has STACK_MISC -> 11640 * this verifier states are not equivalent, 11641 * return false to continue verification of this path 11642 */ 11643 return false; 11644 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11645 continue; 11646 if (!is_spilled_reg(&old->stack[spi])) 11647 continue; 11648 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11649 &cur->stack[spi].spilled_ptr, idmap)) 11650 /* when explored and current stack slot are both storing 11651 * spilled registers, check that stored pointers types 11652 * are the same as well. 11653 * Ex: explored safe path could have stored 11654 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11655 * but current path has stored: 11656 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11657 * such verifier states are not equivalent. 11658 * return false to continue verification of this path 11659 */ 11660 return false; 11661 } 11662 return true; 11663 } 11664 11665 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11666 { 11667 if (old->acquired_refs != cur->acquired_refs) 11668 return false; 11669 return !memcmp(old->refs, cur->refs, 11670 sizeof(*old->refs) * old->acquired_refs); 11671 } 11672 11673 /* compare two verifier states 11674 * 11675 * all states stored in state_list are known to be valid, since 11676 * verifier reached 'bpf_exit' instruction through them 11677 * 11678 * this function is called when verifier exploring different branches of 11679 * execution popped from the state stack. If it sees an old state that has 11680 * more strict register state and more strict stack state then this execution 11681 * branch doesn't need to be explored further, since verifier already 11682 * concluded that more strict state leads to valid finish. 11683 * 11684 * Therefore two states are equivalent if register state is more conservative 11685 * and explored stack state is more conservative than the current one. 11686 * Example: 11687 * explored current 11688 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11689 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11690 * 11691 * In other words if current stack state (one being explored) has more 11692 * valid slots than old one that already passed validation, it means 11693 * the verifier can stop exploring and conclude that current state is valid too 11694 * 11695 * Similarly with registers. If explored state has register type as invalid 11696 * whereas register type in current state is meaningful, it means that 11697 * the current state will reach 'bpf_exit' instruction safely 11698 */ 11699 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11700 struct bpf_func_state *cur) 11701 { 11702 int i; 11703 11704 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11705 for (i = 0; i < MAX_BPF_REG; i++) 11706 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11707 env->idmap_scratch)) 11708 return false; 11709 11710 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11711 return false; 11712 11713 if (!refsafe(old, cur)) 11714 return false; 11715 11716 return true; 11717 } 11718 11719 static bool states_equal(struct bpf_verifier_env *env, 11720 struct bpf_verifier_state *old, 11721 struct bpf_verifier_state *cur) 11722 { 11723 int i; 11724 11725 if (old->curframe != cur->curframe) 11726 return false; 11727 11728 /* Verification state from speculative execution simulation 11729 * must never prune a non-speculative execution one. 11730 */ 11731 if (old->speculative && !cur->speculative) 11732 return false; 11733 11734 if (old->active_spin_lock != cur->active_spin_lock) 11735 return false; 11736 11737 /* for states to be equal callsites have to be the same 11738 * and all frame states need to be equivalent 11739 */ 11740 for (i = 0; i <= old->curframe; i++) { 11741 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11742 return false; 11743 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11744 return false; 11745 } 11746 return true; 11747 } 11748 11749 /* Return 0 if no propagation happened. Return negative error code if error 11750 * happened. Otherwise, return the propagated bit. 11751 */ 11752 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11753 struct bpf_reg_state *reg, 11754 struct bpf_reg_state *parent_reg) 11755 { 11756 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11757 u8 flag = reg->live & REG_LIVE_READ; 11758 int err; 11759 11760 /* When comes here, read flags of PARENT_REG or REG could be any of 11761 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11762 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11763 */ 11764 if (parent_flag == REG_LIVE_READ64 || 11765 /* Or if there is no read flag from REG. */ 11766 !flag || 11767 /* Or if the read flag from REG is the same as PARENT_REG. */ 11768 parent_flag == flag) 11769 return 0; 11770 11771 err = mark_reg_read(env, reg, parent_reg, flag); 11772 if (err) 11773 return err; 11774 11775 return flag; 11776 } 11777 11778 /* A write screens off any subsequent reads; but write marks come from the 11779 * straight-line code between a state and its parent. When we arrive at an 11780 * equivalent state (jump target or such) we didn't arrive by the straight-line 11781 * code, so read marks in the state must propagate to the parent regardless 11782 * of the state's write marks. That's what 'parent == state->parent' comparison 11783 * in mark_reg_read() is for. 11784 */ 11785 static int propagate_liveness(struct bpf_verifier_env *env, 11786 const struct bpf_verifier_state *vstate, 11787 struct bpf_verifier_state *vparent) 11788 { 11789 struct bpf_reg_state *state_reg, *parent_reg; 11790 struct bpf_func_state *state, *parent; 11791 int i, frame, err = 0; 11792 11793 if (vparent->curframe != vstate->curframe) { 11794 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11795 vparent->curframe, vstate->curframe); 11796 return -EFAULT; 11797 } 11798 /* Propagate read liveness of registers... */ 11799 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11800 for (frame = 0; frame <= vstate->curframe; frame++) { 11801 parent = vparent->frame[frame]; 11802 state = vstate->frame[frame]; 11803 parent_reg = parent->regs; 11804 state_reg = state->regs; 11805 /* We don't need to worry about FP liveness, it's read-only */ 11806 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11807 err = propagate_liveness_reg(env, &state_reg[i], 11808 &parent_reg[i]); 11809 if (err < 0) 11810 return err; 11811 if (err == REG_LIVE_READ64) 11812 mark_insn_zext(env, &parent_reg[i]); 11813 } 11814 11815 /* Propagate stack slots. */ 11816 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11817 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11818 parent_reg = &parent->stack[i].spilled_ptr; 11819 state_reg = &state->stack[i].spilled_ptr; 11820 err = propagate_liveness_reg(env, state_reg, 11821 parent_reg); 11822 if (err < 0) 11823 return err; 11824 } 11825 } 11826 return 0; 11827 } 11828 11829 /* find precise scalars in the previous equivalent state and 11830 * propagate them into the current state 11831 */ 11832 static int propagate_precision(struct bpf_verifier_env *env, 11833 const struct bpf_verifier_state *old) 11834 { 11835 struct bpf_reg_state *state_reg; 11836 struct bpf_func_state *state; 11837 int i, err = 0; 11838 11839 state = old->frame[old->curframe]; 11840 state_reg = state->regs; 11841 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11842 if (state_reg->type != SCALAR_VALUE || 11843 !state_reg->precise) 11844 continue; 11845 if (env->log.level & BPF_LOG_LEVEL2) 11846 verbose(env, "propagating r%d\n", i); 11847 err = mark_chain_precision(env, i); 11848 if (err < 0) 11849 return err; 11850 } 11851 11852 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11853 if (!is_spilled_reg(&state->stack[i])) 11854 continue; 11855 state_reg = &state->stack[i].spilled_ptr; 11856 if (state_reg->type != SCALAR_VALUE || 11857 !state_reg->precise) 11858 continue; 11859 if (env->log.level & BPF_LOG_LEVEL2) 11860 verbose(env, "propagating fp%d\n", 11861 (-i - 1) * BPF_REG_SIZE); 11862 err = mark_chain_precision_stack(env, i); 11863 if (err < 0) 11864 return err; 11865 } 11866 return 0; 11867 } 11868 11869 static bool states_maybe_looping(struct bpf_verifier_state *old, 11870 struct bpf_verifier_state *cur) 11871 { 11872 struct bpf_func_state *fold, *fcur; 11873 int i, fr = cur->curframe; 11874 11875 if (old->curframe != fr) 11876 return false; 11877 11878 fold = old->frame[fr]; 11879 fcur = cur->frame[fr]; 11880 for (i = 0; i < MAX_BPF_REG; i++) 11881 if (memcmp(&fold->regs[i], &fcur->regs[i], 11882 offsetof(struct bpf_reg_state, parent))) 11883 return false; 11884 return true; 11885 } 11886 11887 11888 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11889 { 11890 struct bpf_verifier_state_list *new_sl; 11891 struct bpf_verifier_state_list *sl, **pprev; 11892 struct bpf_verifier_state *cur = env->cur_state, *new; 11893 int i, j, err, states_cnt = 0; 11894 bool add_new_state = env->test_state_freq ? true : false; 11895 11896 cur->last_insn_idx = env->prev_insn_idx; 11897 if (!env->insn_aux_data[insn_idx].prune_point) 11898 /* this 'insn_idx' instruction wasn't marked, so we will not 11899 * be doing state search here 11900 */ 11901 return 0; 11902 11903 /* bpf progs typically have pruning point every 4 instructions 11904 * http://vger.kernel.org/bpfconf2019.html#session-1 11905 * Do not add new state for future pruning if the verifier hasn't seen 11906 * at least 2 jumps and at least 8 instructions. 11907 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11908 * In tests that amounts to up to 50% reduction into total verifier 11909 * memory consumption and 20% verifier time speedup. 11910 */ 11911 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11912 env->insn_processed - env->prev_insn_processed >= 8) 11913 add_new_state = true; 11914 11915 pprev = explored_state(env, insn_idx); 11916 sl = *pprev; 11917 11918 clean_live_states(env, insn_idx, cur); 11919 11920 while (sl) { 11921 states_cnt++; 11922 if (sl->state.insn_idx != insn_idx) 11923 goto next; 11924 11925 if (sl->state.branches) { 11926 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11927 11928 if (frame->in_async_callback_fn && 11929 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11930 /* Different async_entry_cnt means that the verifier is 11931 * processing another entry into async callback. 11932 * Seeing the same state is not an indication of infinite 11933 * loop or infinite recursion. 11934 * But finding the same state doesn't mean that it's safe 11935 * to stop processing the current state. The previous state 11936 * hasn't yet reached bpf_exit, since state.branches > 0. 11937 * Checking in_async_callback_fn alone is not enough either. 11938 * Since the verifier still needs to catch infinite loops 11939 * inside async callbacks. 11940 */ 11941 } else if (states_maybe_looping(&sl->state, cur) && 11942 states_equal(env, &sl->state, cur)) { 11943 verbose_linfo(env, insn_idx, "; "); 11944 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11945 return -EINVAL; 11946 } 11947 /* if the verifier is processing a loop, avoid adding new state 11948 * too often, since different loop iterations have distinct 11949 * states and may not help future pruning. 11950 * This threshold shouldn't be too low to make sure that 11951 * a loop with large bound will be rejected quickly. 11952 * The most abusive loop will be: 11953 * r1 += 1 11954 * if r1 < 1000000 goto pc-2 11955 * 1M insn_procssed limit / 100 == 10k peak states. 11956 * This threshold shouldn't be too high either, since states 11957 * at the end of the loop are likely to be useful in pruning. 11958 */ 11959 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11960 env->insn_processed - env->prev_insn_processed < 100) 11961 add_new_state = false; 11962 goto miss; 11963 } 11964 if (states_equal(env, &sl->state, cur)) { 11965 sl->hit_cnt++; 11966 /* reached equivalent register/stack state, 11967 * prune the search. 11968 * Registers read by the continuation are read by us. 11969 * If we have any write marks in env->cur_state, they 11970 * will prevent corresponding reads in the continuation 11971 * from reaching our parent (an explored_state). Our 11972 * own state will get the read marks recorded, but 11973 * they'll be immediately forgotten as we're pruning 11974 * this state and will pop a new one. 11975 */ 11976 err = propagate_liveness(env, &sl->state, cur); 11977 11978 /* if previous state reached the exit with precision and 11979 * current state is equivalent to it (except precsion marks) 11980 * the precision needs to be propagated back in 11981 * the current state. 11982 */ 11983 err = err ? : push_jmp_history(env, cur); 11984 err = err ? : propagate_precision(env, &sl->state); 11985 if (err) 11986 return err; 11987 return 1; 11988 } 11989 miss: 11990 /* when new state is not going to be added do not increase miss count. 11991 * Otherwise several loop iterations will remove the state 11992 * recorded earlier. The goal of these heuristics is to have 11993 * states from some iterations of the loop (some in the beginning 11994 * and some at the end) to help pruning. 11995 */ 11996 if (add_new_state) 11997 sl->miss_cnt++; 11998 /* heuristic to determine whether this state is beneficial 11999 * to keep checking from state equivalence point of view. 12000 * Higher numbers increase max_states_per_insn and verification time, 12001 * but do not meaningfully decrease insn_processed. 12002 */ 12003 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 12004 /* the state is unlikely to be useful. Remove it to 12005 * speed up verification 12006 */ 12007 *pprev = sl->next; 12008 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 12009 u32 br = sl->state.branches; 12010 12011 WARN_ONCE(br, 12012 "BUG live_done but branches_to_explore %d\n", 12013 br); 12014 free_verifier_state(&sl->state, false); 12015 kfree(sl); 12016 env->peak_states--; 12017 } else { 12018 /* cannot free this state, since parentage chain may 12019 * walk it later. Add it for free_list instead to 12020 * be freed at the end of verification 12021 */ 12022 sl->next = env->free_list; 12023 env->free_list = sl; 12024 } 12025 sl = *pprev; 12026 continue; 12027 } 12028 next: 12029 pprev = &sl->next; 12030 sl = *pprev; 12031 } 12032 12033 if (env->max_states_per_insn < states_cnt) 12034 env->max_states_per_insn = states_cnt; 12035 12036 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 12037 return push_jmp_history(env, cur); 12038 12039 if (!add_new_state) 12040 return push_jmp_history(env, cur); 12041 12042 /* There were no equivalent states, remember the current one. 12043 * Technically the current state is not proven to be safe yet, 12044 * but it will either reach outer most bpf_exit (which means it's safe) 12045 * or it will be rejected. When there are no loops the verifier won't be 12046 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 12047 * again on the way to bpf_exit. 12048 * When looping the sl->state.branches will be > 0 and this state 12049 * will not be considered for equivalence until branches == 0. 12050 */ 12051 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 12052 if (!new_sl) 12053 return -ENOMEM; 12054 env->total_states++; 12055 env->peak_states++; 12056 env->prev_jmps_processed = env->jmps_processed; 12057 env->prev_insn_processed = env->insn_processed; 12058 12059 /* add new state to the head of linked list */ 12060 new = &new_sl->state; 12061 err = copy_verifier_state(new, cur); 12062 if (err) { 12063 free_verifier_state(new, false); 12064 kfree(new_sl); 12065 return err; 12066 } 12067 new->insn_idx = insn_idx; 12068 WARN_ONCE(new->branches != 1, 12069 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 12070 12071 cur->parent = new; 12072 cur->first_insn_idx = insn_idx; 12073 clear_jmp_history(cur); 12074 new_sl->next = *explored_state(env, insn_idx); 12075 *explored_state(env, insn_idx) = new_sl; 12076 /* connect new state to parentage chain. Current frame needs all 12077 * registers connected. Only r6 - r9 of the callers are alive (pushed 12078 * to the stack implicitly by JITs) so in callers' frames connect just 12079 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12080 * the state of the call instruction (with WRITTEN set), and r0 comes 12081 * from callee with its full parentage chain, anyway. 12082 */ 12083 /* clear write marks in current state: the writes we did are not writes 12084 * our child did, so they don't screen off its reads from us. 12085 * (There are no read marks in current state, because reads always mark 12086 * their parent and current state never has children yet. Only 12087 * explored_states can get read marks.) 12088 */ 12089 for (j = 0; j <= cur->curframe; j++) { 12090 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12091 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12092 for (i = 0; i < BPF_REG_FP; i++) 12093 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12094 } 12095 12096 /* all stack frames are accessible from callee, clear them all */ 12097 for (j = 0; j <= cur->curframe; j++) { 12098 struct bpf_func_state *frame = cur->frame[j]; 12099 struct bpf_func_state *newframe = new->frame[j]; 12100 12101 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12102 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12103 frame->stack[i].spilled_ptr.parent = 12104 &newframe->stack[i].spilled_ptr; 12105 } 12106 } 12107 return 0; 12108 } 12109 12110 /* Return true if it's OK to have the same insn return a different type. */ 12111 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12112 { 12113 switch (base_type(type)) { 12114 case PTR_TO_CTX: 12115 case PTR_TO_SOCKET: 12116 case PTR_TO_SOCK_COMMON: 12117 case PTR_TO_TCP_SOCK: 12118 case PTR_TO_XDP_SOCK: 12119 case PTR_TO_BTF_ID: 12120 return false; 12121 default: 12122 return true; 12123 } 12124 } 12125 12126 /* If an instruction was previously used with particular pointer types, then we 12127 * need to be careful to avoid cases such as the below, where it may be ok 12128 * for one branch accessing the pointer, but not ok for the other branch: 12129 * 12130 * R1 = sock_ptr 12131 * goto X; 12132 * ... 12133 * R1 = some_other_valid_ptr; 12134 * goto X; 12135 * ... 12136 * R2 = *(u32 *)(R1 + 0); 12137 */ 12138 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12139 { 12140 return src != prev && (!reg_type_mismatch_ok(src) || 12141 !reg_type_mismatch_ok(prev)); 12142 } 12143 12144 static int do_check(struct bpf_verifier_env *env) 12145 { 12146 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12147 struct bpf_verifier_state *state = env->cur_state; 12148 struct bpf_insn *insns = env->prog->insnsi; 12149 struct bpf_reg_state *regs; 12150 int insn_cnt = env->prog->len; 12151 bool do_print_state = false; 12152 int prev_insn_idx = -1; 12153 12154 for (;;) { 12155 struct bpf_insn *insn; 12156 u8 class; 12157 int err; 12158 12159 env->prev_insn_idx = prev_insn_idx; 12160 if (env->insn_idx >= insn_cnt) { 12161 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12162 env->insn_idx, insn_cnt); 12163 return -EFAULT; 12164 } 12165 12166 insn = &insns[env->insn_idx]; 12167 class = BPF_CLASS(insn->code); 12168 12169 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12170 verbose(env, 12171 "BPF program is too large. Processed %d insn\n", 12172 env->insn_processed); 12173 return -E2BIG; 12174 } 12175 12176 err = is_state_visited(env, env->insn_idx); 12177 if (err < 0) 12178 return err; 12179 if (err == 1) { 12180 /* found equivalent state, can prune the search */ 12181 if (env->log.level & BPF_LOG_LEVEL) { 12182 if (do_print_state) 12183 verbose(env, "\nfrom %d to %d%s: safe\n", 12184 env->prev_insn_idx, env->insn_idx, 12185 env->cur_state->speculative ? 12186 " (speculative execution)" : ""); 12187 else 12188 verbose(env, "%d: safe\n", env->insn_idx); 12189 } 12190 goto process_bpf_exit; 12191 } 12192 12193 if (signal_pending(current)) 12194 return -EAGAIN; 12195 12196 if (need_resched()) 12197 cond_resched(); 12198 12199 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12200 verbose(env, "\nfrom %d to %d%s:", 12201 env->prev_insn_idx, env->insn_idx, 12202 env->cur_state->speculative ? 12203 " (speculative execution)" : ""); 12204 print_verifier_state(env, state->frame[state->curframe], true); 12205 do_print_state = false; 12206 } 12207 12208 if (env->log.level & BPF_LOG_LEVEL) { 12209 const struct bpf_insn_cbs cbs = { 12210 .cb_call = disasm_kfunc_name, 12211 .cb_print = verbose, 12212 .private_data = env, 12213 }; 12214 12215 if (verifier_state_scratched(env)) 12216 print_insn_state(env, state->frame[state->curframe]); 12217 12218 verbose_linfo(env, env->insn_idx, "; "); 12219 env->prev_log_len = env->log.len_used; 12220 verbose(env, "%d: ", env->insn_idx); 12221 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12222 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12223 env->prev_log_len = env->log.len_used; 12224 } 12225 12226 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12227 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12228 env->prev_insn_idx); 12229 if (err) 12230 return err; 12231 } 12232 12233 regs = cur_regs(env); 12234 sanitize_mark_insn_seen(env); 12235 prev_insn_idx = env->insn_idx; 12236 12237 if (class == BPF_ALU || class == BPF_ALU64) { 12238 err = check_alu_op(env, insn); 12239 if (err) 12240 return err; 12241 12242 } else if (class == BPF_LDX) { 12243 enum bpf_reg_type *prev_src_type, src_reg_type; 12244 12245 /* check for reserved fields is already done */ 12246 12247 /* check src operand */ 12248 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12249 if (err) 12250 return err; 12251 12252 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12253 if (err) 12254 return err; 12255 12256 src_reg_type = regs[insn->src_reg].type; 12257 12258 /* check that memory (src_reg + off) is readable, 12259 * the state of dst_reg will be updated by this func 12260 */ 12261 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12262 insn->off, BPF_SIZE(insn->code), 12263 BPF_READ, insn->dst_reg, false); 12264 if (err) 12265 return err; 12266 12267 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12268 12269 if (*prev_src_type == NOT_INIT) { 12270 /* saw a valid insn 12271 * dst_reg = *(u32 *)(src_reg + off) 12272 * save type to validate intersecting paths 12273 */ 12274 *prev_src_type = src_reg_type; 12275 12276 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12277 /* ABuser program is trying to use the same insn 12278 * dst_reg = *(u32*) (src_reg + off) 12279 * with different pointer types: 12280 * src_reg == ctx in one branch and 12281 * src_reg == stack|map in some other branch. 12282 * Reject it. 12283 */ 12284 verbose(env, "same insn cannot be used with different pointers\n"); 12285 return -EINVAL; 12286 } 12287 12288 } else if (class == BPF_STX) { 12289 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12290 12291 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12292 err = check_atomic(env, env->insn_idx, insn); 12293 if (err) 12294 return err; 12295 env->insn_idx++; 12296 continue; 12297 } 12298 12299 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12300 verbose(env, "BPF_STX uses reserved fields\n"); 12301 return -EINVAL; 12302 } 12303 12304 /* check src1 operand */ 12305 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12306 if (err) 12307 return err; 12308 /* check src2 operand */ 12309 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12310 if (err) 12311 return err; 12312 12313 dst_reg_type = regs[insn->dst_reg].type; 12314 12315 /* check that memory (dst_reg + off) is writeable */ 12316 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12317 insn->off, BPF_SIZE(insn->code), 12318 BPF_WRITE, insn->src_reg, false); 12319 if (err) 12320 return err; 12321 12322 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12323 12324 if (*prev_dst_type == NOT_INIT) { 12325 *prev_dst_type = dst_reg_type; 12326 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12327 verbose(env, "same insn cannot be used with different pointers\n"); 12328 return -EINVAL; 12329 } 12330 12331 } else if (class == BPF_ST) { 12332 if (BPF_MODE(insn->code) != BPF_MEM || 12333 insn->src_reg != BPF_REG_0) { 12334 verbose(env, "BPF_ST uses reserved fields\n"); 12335 return -EINVAL; 12336 } 12337 /* check src operand */ 12338 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12339 if (err) 12340 return err; 12341 12342 if (is_ctx_reg(env, insn->dst_reg)) { 12343 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12344 insn->dst_reg, 12345 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12346 return -EACCES; 12347 } 12348 12349 /* check that memory (dst_reg + off) is writeable */ 12350 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12351 insn->off, BPF_SIZE(insn->code), 12352 BPF_WRITE, -1, false); 12353 if (err) 12354 return err; 12355 12356 } else if (class == BPF_JMP || class == BPF_JMP32) { 12357 u8 opcode = BPF_OP(insn->code); 12358 12359 env->jmps_processed++; 12360 if (opcode == BPF_CALL) { 12361 if (BPF_SRC(insn->code) != BPF_K || 12362 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12363 && insn->off != 0) || 12364 (insn->src_reg != BPF_REG_0 && 12365 insn->src_reg != BPF_PSEUDO_CALL && 12366 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12367 insn->dst_reg != BPF_REG_0 || 12368 class == BPF_JMP32) { 12369 verbose(env, "BPF_CALL uses reserved fields\n"); 12370 return -EINVAL; 12371 } 12372 12373 if (env->cur_state->active_spin_lock && 12374 (insn->src_reg == BPF_PSEUDO_CALL || 12375 insn->imm != BPF_FUNC_spin_unlock)) { 12376 verbose(env, "function calls are not allowed while holding a lock\n"); 12377 return -EINVAL; 12378 } 12379 if (insn->src_reg == BPF_PSEUDO_CALL) 12380 err = check_func_call(env, insn, &env->insn_idx); 12381 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12382 err = check_kfunc_call(env, insn, &env->insn_idx); 12383 else 12384 err = check_helper_call(env, insn, &env->insn_idx); 12385 if (err) 12386 return err; 12387 } else if (opcode == BPF_JA) { 12388 if (BPF_SRC(insn->code) != BPF_K || 12389 insn->imm != 0 || 12390 insn->src_reg != BPF_REG_0 || 12391 insn->dst_reg != BPF_REG_0 || 12392 class == BPF_JMP32) { 12393 verbose(env, "BPF_JA uses reserved fields\n"); 12394 return -EINVAL; 12395 } 12396 12397 env->insn_idx += insn->off + 1; 12398 continue; 12399 12400 } else if (opcode == BPF_EXIT) { 12401 if (BPF_SRC(insn->code) != BPF_K || 12402 insn->imm != 0 || 12403 insn->src_reg != BPF_REG_0 || 12404 insn->dst_reg != BPF_REG_0 || 12405 class == BPF_JMP32) { 12406 verbose(env, "BPF_EXIT uses reserved fields\n"); 12407 return -EINVAL; 12408 } 12409 12410 if (env->cur_state->active_spin_lock) { 12411 verbose(env, "bpf_spin_unlock is missing\n"); 12412 return -EINVAL; 12413 } 12414 12415 /* We must do check_reference_leak here before 12416 * prepare_func_exit to handle the case when 12417 * state->curframe > 0, it may be a callback 12418 * function, for which reference_state must 12419 * match caller reference state when it exits. 12420 */ 12421 err = check_reference_leak(env); 12422 if (err) 12423 return err; 12424 12425 if (state->curframe) { 12426 /* exit from nested function */ 12427 err = prepare_func_exit(env, &env->insn_idx); 12428 if (err) 12429 return err; 12430 do_print_state = true; 12431 continue; 12432 } 12433 12434 err = check_return_code(env); 12435 if (err) 12436 return err; 12437 process_bpf_exit: 12438 mark_verifier_state_scratched(env); 12439 update_branch_counts(env, env->cur_state); 12440 err = pop_stack(env, &prev_insn_idx, 12441 &env->insn_idx, pop_log); 12442 if (err < 0) { 12443 if (err != -ENOENT) 12444 return err; 12445 break; 12446 } else { 12447 do_print_state = true; 12448 continue; 12449 } 12450 } else { 12451 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12452 if (err) 12453 return err; 12454 } 12455 } else if (class == BPF_LD) { 12456 u8 mode = BPF_MODE(insn->code); 12457 12458 if (mode == BPF_ABS || mode == BPF_IND) { 12459 err = check_ld_abs(env, insn); 12460 if (err) 12461 return err; 12462 12463 } else if (mode == BPF_IMM) { 12464 err = check_ld_imm(env, insn); 12465 if (err) 12466 return err; 12467 12468 env->insn_idx++; 12469 sanitize_mark_insn_seen(env); 12470 } else { 12471 verbose(env, "invalid BPF_LD mode\n"); 12472 return -EINVAL; 12473 } 12474 } else { 12475 verbose(env, "unknown insn class %d\n", class); 12476 return -EINVAL; 12477 } 12478 12479 env->insn_idx++; 12480 } 12481 12482 return 0; 12483 } 12484 12485 static int find_btf_percpu_datasec(struct btf *btf) 12486 { 12487 const struct btf_type *t; 12488 const char *tname; 12489 int i, n; 12490 12491 /* 12492 * Both vmlinux and module each have their own ".data..percpu" 12493 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12494 * types to look at only module's own BTF types. 12495 */ 12496 n = btf_nr_types(btf); 12497 if (btf_is_module(btf)) 12498 i = btf_nr_types(btf_vmlinux); 12499 else 12500 i = 1; 12501 12502 for(; i < n; i++) { 12503 t = btf_type_by_id(btf, i); 12504 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12505 continue; 12506 12507 tname = btf_name_by_offset(btf, t->name_off); 12508 if (!strcmp(tname, ".data..percpu")) 12509 return i; 12510 } 12511 12512 return -ENOENT; 12513 } 12514 12515 /* replace pseudo btf_id with kernel symbol address */ 12516 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12517 struct bpf_insn *insn, 12518 struct bpf_insn_aux_data *aux) 12519 { 12520 const struct btf_var_secinfo *vsi; 12521 const struct btf_type *datasec; 12522 struct btf_mod_pair *btf_mod; 12523 const struct btf_type *t; 12524 const char *sym_name; 12525 bool percpu = false; 12526 u32 type, id = insn->imm; 12527 struct btf *btf; 12528 s32 datasec_id; 12529 u64 addr; 12530 int i, btf_fd, err; 12531 12532 btf_fd = insn[1].imm; 12533 if (btf_fd) { 12534 btf = btf_get_by_fd(btf_fd); 12535 if (IS_ERR(btf)) { 12536 verbose(env, "invalid module BTF object FD specified.\n"); 12537 return -EINVAL; 12538 } 12539 } else { 12540 if (!btf_vmlinux) { 12541 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12542 return -EINVAL; 12543 } 12544 btf = btf_vmlinux; 12545 btf_get(btf); 12546 } 12547 12548 t = btf_type_by_id(btf, id); 12549 if (!t) { 12550 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12551 err = -ENOENT; 12552 goto err_put; 12553 } 12554 12555 if (!btf_type_is_var(t)) { 12556 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12557 err = -EINVAL; 12558 goto err_put; 12559 } 12560 12561 sym_name = btf_name_by_offset(btf, t->name_off); 12562 addr = kallsyms_lookup_name(sym_name); 12563 if (!addr) { 12564 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12565 sym_name); 12566 err = -ENOENT; 12567 goto err_put; 12568 } 12569 12570 datasec_id = find_btf_percpu_datasec(btf); 12571 if (datasec_id > 0) { 12572 datasec = btf_type_by_id(btf, datasec_id); 12573 for_each_vsi(i, datasec, vsi) { 12574 if (vsi->type == id) { 12575 percpu = true; 12576 break; 12577 } 12578 } 12579 } 12580 12581 insn[0].imm = (u32)addr; 12582 insn[1].imm = addr >> 32; 12583 12584 type = t->type; 12585 t = btf_type_skip_modifiers(btf, type, NULL); 12586 if (percpu) { 12587 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12588 aux->btf_var.btf = btf; 12589 aux->btf_var.btf_id = type; 12590 } else if (!btf_type_is_struct(t)) { 12591 const struct btf_type *ret; 12592 const char *tname; 12593 u32 tsize; 12594 12595 /* resolve the type size of ksym. */ 12596 ret = btf_resolve_size(btf, t, &tsize); 12597 if (IS_ERR(ret)) { 12598 tname = btf_name_by_offset(btf, t->name_off); 12599 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12600 tname, PTR_ERR(ret)); 12601 err = -EINVAL; 12602 goto err_put; 12603 } 12604 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12605 aux->btf_var.mem_size = tsize; 12606 } else { 12607 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12608 aux->btf_var.btf = btf; 12609 aux->btf_var.btf_id = type; 12610 } 12611 12612 /* check whether we recorded this BTF (and maybe module) already */ 12613 for (i = 0; i < env->used_btf_cnt; i++) { 12614 if (env->used_btfs[i].btf == btf) { 12615 btf_put(btf); 12616 return 0; 12617 } 12618 } 12619 12620 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12621 err = -E2BIG; 12622 goto err_put; 12623 } 12624 12625 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12626 btf_mod->btf = btf; 12627 btf_mod->module = NULL; 12628 12629 /* if we reference variables from kernel module, bump its refcount */ 12630 if (btf_is_module(btf)) { 12631 btf_mod->module = btf_try_get_module(btf); 12632 if (!btf_mod->module) { 12633 err = -ENXIO; 12634 goto err_put; 12635 } 12636 } 12637 12638 env->used_btf_cnt++; 12639 12640 return 0; 12641 err_put: 12642 btf_put(btf); 12643 return err; 12644 } 12645 12646 static bool is_tracing_prog_type(enum bpf_prog_type type) 12647 { 12648 switch (type) { 12649 case BPF_PROG_TYPE_KPROBE: 12650 case BPF_PROG_TYPE_TRACEPOINT: 12651 case BPF_PROG_TYPE_PERF_EVENT: 12652 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12653 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12654 return true; 12655 default: 12656 return false; 12657 } 12658 } 12659 12660 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12661 struct bpf_map *map, 12662 struct bpf_prog *prog) 12663 12664 { 12665 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12666 12667 if (map_value_has_spin_lock(map)) { 12668 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12669 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12670 return -EINVAL; 12671 } 12672 12673 if (is_tracing_prog_type(prog_type)) { 12674 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12675 return -EINVAL; 12676 } 12677 12678 if (prog->aux->sleepable) { 12679 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12680 return -EINVAL; 12681 } 12682 } 12683 12684 if (map_value_has_timer(map)) { 12685 if (is_tracing_prog_type(prog_type)) { 12686 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12687 return -EINVAL; 12688 } 12689 } 12690 12691 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12692 !bpf_offload_prog_map_match(prog, map)) { 12693 verbose(env, "offload device mismatch between prog and map\n"); 12694 return -EINVAL; 12695 } 12696 12697 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12698 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12699 return -EINVAL; 12700 } 12701 12702 if (prog->aux->sleepable) 12703 switch (map->map_type) { 12704 case BPF_MAP_TYPE_HASH: 12705 case BPF_MAP_TYPE_LRU_HASH: 12706 case BPF_MAP_TYPE_ARRAY: 12707 case BPF_MAP_TYPE_PERCPU_HASH: 12708 case BPF_MAP_TYPE_PERCPU_ARRAY: 12709 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12710 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12711 case BPF_MAP_TYPE_HASH_OF_MAPS: 12712 case BPF_MAP_TYPE_RINGBUF: 12713 case BPF_MAP_TYPE_USER_RINGBUF: 12714 case BPF_MAP_TYPE_INODE_STORAGE: 12715 case BPF_MAP_TYPE_SK_STORAGE: 12716 case BPF_MAP_TYPE_TASK_STORAGE: 12717 break; 12718 default: 12719 verbose(env, 12720 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12721 return -EINVAL; 12722 } 12723 12724 return 0; 12725 } 12726 12727 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12728 { 12729 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12730 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12731 } 12732 12733 /* find and rewrite pseudo imm in ld_imm64 instructions: 12734 * 12735 * 1. if it accesses map FD, replace it with actual map pointer. 12736 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12737 * 12738 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12739 */ 12740 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12741 { 12742 struct bpf_insn *insn = env->prog->insnsi; 12743 int insn_cnt = env->prog->len; 12744 int i, j, err; 12745 12746 err = bpf_prog_calc_tag(env->prog); 12747 if (err) 12748 return err; 12749 12750 for (i = 0; i < insn_cnt; i++, insn++) { 12751 if (BPF_CLASS(insn->code) == BPF_LDX && 12752 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12753 verbose(env, "BPF_LDX uses reserved fields\n"); 12754 return -EINVAL; 12755 } 12756 12757 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12758 struct bpf_insn_aux_data *aux; 12759 struct bpf_map *map; 12760 struct fd f; 12761 u64 addr; 12762 u32 fd; 12763 12764 if (i == insn_cnt - 1 || insn[1].code != 0 || 12765 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12766 insn[1].off != 0) { 12767 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12768 return -EINVAL; 12769 } 12770 12771 if (insn[0].src_reg == 0) 12772 /* valid generic load 64-bit imm */ 12773 goto next_insn; 12774 12775 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12776 aux = &env->insn_aux_data[i]; 12777 err = check_pseudo_btf_id(env, insn, aux); 12778 if (err) 12779 return err; 12780 goto next_insn; 12781 } 12782 12783 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12784 aux = &env->insn_aux_data[i]; 12785 aux->ptr_type = PTR_TO_FUNC; 12786 goto next_insn; 12787 } 12788 12789 /* In final convert_pseudo_ld_imm64() step, this is 12790 * converted into regular 64-bit imm load insn. 12791 */ 12792 switch (insn[0].src_reg) { 12793 case BPF_PSEUDO_MAP_VALUE: 12794 case BPF_PSEUDO_MAP_IDX_VALUE: 12795 break; 12796 case BPF_PSEUDO_MAP_FD: 12797 case BPF_PSEUDO_MAP_IDX: 12798 if (insn[1].imm == 0) 12799 break; 12800 fallthrough; 12801 default: 12802 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12803 return -EINVAL; 12804 } 12805 12806 switch (insn[0].src_reg) { 12807 case BPF_PSEUDO_MAP_IDX_VALUE: 12808 case BPF_PSEUDO_MAP_IDX: 12809 if (bpfptr_is_null(env->fd_array)) { 12810 verbose(env, "fd_idx without fd_array is invalid\n"); 12811 return -EPROTO; 12812 } 12813 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12814 insn[0].imm * sizeof(fd), 12815 sizeof(fd))) 12816 return -EFAULT; 12817 break; 12818 default: 12819 fd = insn[0].imm; 12820 break; 12821 } 12822 12823 f = fdget(fd); 12824 map = __bpf_map_get(f); 12825 if (IS_ERR(map)) { 12826 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12827 insn[0].imm); 12828 return PTR_ERR(map); 12829 } 12830 12831 err = check_map_prog_compatibility(env, map, env->prog); 12832 if (err) { 12833 fdput(f); 12834 return err; 12835 } 12836 12837 aux = &env->insn_aux_data[i]; 12838 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12839 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12840 addr = (unsigned long)map; 12841 } else { 12842 u32 off = insn[1].imm; 12843 12844 if (off >= BPF_MAX_VAR_OFF) { 12845 verbose(env, "direct value offset of %u is not allowed\n", off); 12846 fdput(f); 12847 return -EINVAL; 12848 } 12849 12850 if (!map->ops->map_direct_value_addr) { 12851 verbose(env, "no direct value access support for this map type\n"); 12852 fdput(f); 12853 return -EINVAL; 12854 } 12855 12856 err = map->ops->map_direct_value_addr(map, &addr, off); 12857 if (err) { 12858 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12859 map->value_size, off); 12860 fdput(f); 12861 return err; 12862 } 12863 12864 aux->map_off = off; 12865 addr += off; 12866 } 12867 12868 insn[0].imm = (u32)addr; 12869 insn[1].imm = addr >> 32; 12870 12871 /* check whether we recorded this map already */ 12872 for (j = 0; j < env->used_map_cnt; j++) { 12873 if (env->used_maps[j] == map) { 12874 aux->map_index = j; 12875 fdput(f); 12876 goto next_insn; 12877 } 12878 } 12879 12880 if (env->used_map_cnt >= MAX_USED_MAPS) { 12881 fdput(f); 12882 return -E2BIG; 12883 } 12884 12885 /* hold the map. If the program is rejected by verifier, 12886 * the map will be released by release_maps() or it 12887 * will be used by the valid program until it's unloaded 12888 * and all maps are released in free_used_maps() 12889 */ 12890 bpf_map_inc(map); 12891 12892 aux->map_index = env->used_map_cnt; 12893 env->used_maps[env->used_map_cnt++] = map; 12894 12895 if (bpf_map_is_cgroup_storage(map) && 12896 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12897 verbose(env, "only one cgroup storage of each type is allowed\n"); 12898 fdput(f); 12899 return -EBUSY; 12900 } 12901 12902 fdput(f); 12903 next_insn: 12904 insn++; 12905 i++; 12906 continue; 12907 } 12908 12909 /* Basic sanity check before we invest more work here. */ 12910 if (!bpf_opcode_in_insntable(insn->code)) { 12911 verbose(env, "unknown opcode %02x\n", insn->code); 12912 return -EINVAL; 12913 } 12914 } 12915 12916 /* now all pseudo BPF_LD_IMM64 instructions load valid 12917 * 'struct bpf_map *' into a register instead of user map_fd. 12918 * These pointers will be used later by verifier to validate map access. 12919 */ 12920 return 0; 12921 } 12922 12923 /* drop refcnt of maps used by the rejected program */ 12924 static void release_maps(struct bpf_verifier_env *env) 12925 { 12926 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12927 env->used_map_cnt); 12928 } 12929 12930 /* drop refcnt of maps used by the rejected program */ 12931 static void release_btfs(struct bpf_verifier_env *env) 12932 { 12933 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12934 env->used_btf_cnt); 12935 } 12936 12937 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12938 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12939 { 12940 struct bpf_insn *insn = env->prog->insnsi; 12941 int insn_cnt = env->prog->len; 12942 int i; 12943 12944 for (i = 0; i < insn_cnt; i++, insn++) { 12945 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12946 continue; 12947 if (insn->src_reg == BPF_PSEUDO_FUNC) 12948 continue; 12949 insn->src_reg = 0; 12950 } 12951 } 12952 12953 /* single env->prog->insni[off] instruction was replaced with the range 12954 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12955 * [0, off) and [off, end) to new locations, so the patched range stays zero 12956 */ 12957 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12958 struct bpf_insn_aux_data *new_data, 12959 struct bpf_prog *new_prog, u32 off, u32 cnt) 12960 { 12961 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12962 struct bpf_insn *insn = new_prog->insnsi; 12963 u32 old_seen = old_data[off].seen; 12964 u32 prog_len; 12965 int i; 12966 12967 /* aux info at OFF always needs adjustment, no matter fast path 12968 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12969 * original insn at old prog. 12970 */ 12971 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12972 12973 if (cnt == 1) 12974 return; 12975 prog_len = new_prog->len; 12976 12977 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12978 memcpy(new_data + off + cnt - 1, old_data + off, 12979 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12980 for (i = off; i < off + cnt - 1; i++) { 12981 /* Expand insni[off]'s seen count to the patched range. */ 12982 new_data[i].seen = old_seen; 12983 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12984 } 12985 env->insn_aux_data = new_data; 12986 vfree(old_data); 12987 } 12988 12989 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12990 { 12991 int i; 12992 12993 if (len == 1) 12994 return; 12995 /* NOTE: fake 'exit' subprog should be updated as well. */ 12996 for (i = 0; i <= env->subprog_cnt; i++) { 12997 if (env->subprog_info[i].start <= off) 12998 continue; 12999 env->subprog_info[i].start += len - 1; 13000 } 13001 } 13002 13003 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 13004 { 13005 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 13006 int i, sz = prog->aux->size_poke_tab; 13007 struct bpf_jit_poke_descriptor *desc; 13008 13009 for (i = 0; i < sz; i++) { 13010 desc = &tab[i]; 13011 if (desc->insn_idx <= off) 13012 continue; 13013 desc->insn_idx += len - 1; 13014 } 13015 } 13016 13017 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 13018 const struct bpf_insn *patch, u32 len) 13019 { 13020 struct bpf_prog *new_prog; 13021 struct bpf_insn_aux_data *new_data = NULL; 13022 13023 if (len > 1) { 13024 new_data = vzalloc(array_size(env->prog->len + len - 1, 13025 sizeof(struct bpf_insn_aux_data))); 13026 if (!new_data) 13027 return NULL; 13028 } 13029 13030 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 13031 if (IS_ERR(new_prog)) { 13032 if (PTR_ERR(new_prog) == -ERANGE) 13033 verbose(env, 13034 "insn %d cannot be patched due to 16-bit range\n", 13035 env->insn_aux_data[off].orig_idx); 13036 vfree(new_data); 13037 return NULL; 13038 } 13039 adjust_insn_aux_data(env, new_data, new_prog, off, len); 13040 adjust_subprog_starts(env, off, len); 13041 adjust_poke_descs(new_prog, off, len); 13042 return new_prog; 13043 } 13044 13045 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13046 u32 off, u32 cnt) 13047 { 13048 int i, j; 13049 13050 /* find first prog starting at or after off (first to remove) */ 13051 for (i = 0; i < env->subprog_cnt; i++) 13052 if (env->subprog_info[i].start >= off) 13053 break; 13054 /* find first prog starting at or after off + cnt (first to stay) */ 13055 for (j = i; j < env->subprog_cnt; j++) 13056 if (env->subprog_info[j].start >= off + cnt) 13057 break; 13058 /* if j doesn't start exactly at off + cnt, we are just removing 13059 * the front of previous prog 13060 */ 13061 if (env->subprog_info[j].start != off + cnt) 13062 j--; 13063 13064 if (j > i) { 13065 struct bpf_prog_aux *aux = env->prog->aux; 13066 int move; 13067 13068 /* move fake 'exit' subprog as well */ 13069 move = env->subprog_cnt + 1 - j; 13070 13071 memmove(env->subprog_info + i, 13072 env->subprog_info + j, 13073 sizeof(*env->subprog_info) * move); 13074 env->subprog_cnt -= j - i; 13075 13076 /* remove func_info */ 13077 if (aux->func_info) { 13078 move = aux->func_info_cnt - j; 13079 13080 memmove(aux->func_info + i, 13081 aux->func_info + j, 13082 sizeof(*aux->func_info) * move); 13083 aux->func_info_cnt -= j - i; 13084 /* func_info->insn_off is set after all code rewrites, 13085 * in adjust_btf_func() - no need to adjust 13086 */ 13087 } 13088 } else { 13089 /* convert i from "first prog to remove" to "first to adjust" */ 13090 if (env->subprog_info[i].start == off) 13091 i++; 13092 } 13093 13094 /* update fake 'exit' subprog as well */ 13095 for (; i <= env->subprog_cnt; i++) 13096 env->subprog_info[i].start -= cnt; 13097 13098 return 0; 13099 } 13100 13101 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13102 u32 cnt) 13103 { 13104 struct bpf_prog *prog = env->prog; 13105 u32 i, l_off, l_cnt, nr_linfo; 13106 struct bpf_line_info *linfo; 13107 13108 nr_linfo = prog->aux->nr_linfo; 13109 if (!nr_linfo) 13110 return 0; 13111 13112 linfo = prog->aux->linfo; 13113 13114 /* find first line info to remove, count lines to be removed */ 13115 for (i = 0; i < nr_linfo; i++) 13116 if (linfo[i].insn_off >= off) 13117 break; 13118 13119 l_off = i; 13120 l_cnt = 0; 13121 for (; i < nr_linfo; i++) 13122 if (linfo[i].insn_off < off + cnt) 13123 l_cnt++; 13124 else 13125 break; 13126 13127 /* First live insn doesn't match first live linfo, it needs to "inherit" 13128 * last removed linfo. prog is already modified, so prog->len == off 13129 * means no live instructions after (tail of the program was removed). 13130 */ 13131 if (prog->len != off && l_cnt && 13132 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13133 l_cnt--; 13134 linfo[--i].insn_off = off + cnt; 13135 } 13136 13137 /* remove the line info which refer to the removed instructions */ 13138 if (l_cnt) { 13139 memmove(linfo + l_off, linfo + i, 13140 sizeof(*linfo) * (nr_linfo - i)); 13141 13142 prog->aux->nr_linfo -= l_cnt; 13143 nr_linfo = prog->aux->nr_linfo; 13144 } 13145 13146 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13147 for (i = l_off; i < nr_linfo; i++) 13148 linfo[i].insn_off -= cnt; 13149 13150 /* fix up all subprogs (incl. 'exit') which start >= off */ 13151 for (i = 0; i <= env->subprog_cnt; i++) 13152 if (env->subprog_info[i].linfo_idx > l_off) { 13153 /* program may have started in the removed region but 13154 * may not be fully removed 13155 */ 13156 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13157 env->subprog_info[i].linfo_idx -= l_cnt; 13158 else 13159 env->subprog_info[i].linfo_idx = l_off; 13160 } 13161 13162 return 0; 13163 } 13164 13165 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13166 { 13167 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13168 unsigned int orig_prog_len = env->prog->len; 13169 int err; 13170 13171 if (bpf_prog_is_dev_bound(env->prog->aux)) 13172 bpf_prog_offload_remove_insns(env, off, cnt); 13173 13174 err = bpf_remove_insns(env->prog, off, cnt); 13175 if (err) 13176 return err; 13177 13178 err = adjust_subprog_starts_after_remove(env, off, cnt); 13179 if (err) 13180 return err; 13181 13182 err = bpf_adj_linfo_after_remove(env, off, cnt); 13183 if (err) 13184 return err; 13185 13186 memmove(aux_data + off, aux_data + off + cnt, 13187 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13188 13189 return 0; 13190 } 13191 13192 /* The verifier does more data flow analysis than llvm and will not 13193 * explore branches that are dead at run time. Malicious programs can 13194 * have dead code too. Therefore replace all dead at-run-time code 13195 * with 'ja -1'. 13196 * 13197 * Just nops are not optimal, e.g. if they would sit at the end of the 13198 * program and through another bug we would manage to jump there, then 13199 * we'd execute beyond program memory otherwise. Returning exception 13200 * code also wouldn't work since we can have subprogs where the dead 13201 * code could be located. 13202 */ 13203 static void sanitize_dead_code(struct bpf_verifier_env *env) 13204 { 13205 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13206 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13207 struct bpf_insn *insn = env->prog->insnsi; 13208 const int insn_cnt = env->prog->len; 13209 int i; 13210 13211 for (i = 0; i < insn_cnt; i++) { 13212 if (aux_data[i].seen) 13213 continue; 13214 memcpy(insn + i, &trap, sizeof(trap)); 13215 aux_data[i].zext_dst = false; 13216 } 13217 } 13218 13219 static bool insn_is_cond_jump(u8 code) 13220 { 13221 u8 op; 13222 13223 if (BPF_CLASS(code) == BPF_JMP32) 13224 return true; 13225 13226 if (BPF_CLASS(code) != BPF_JMP) 13227 return false; 13228 13229 op = BPF_OP(code); 13230 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13231 } 13232 13233 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13234 { 13235 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13236 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13237 struct bpf_insn *insn = env->prog->insnsi; 13238 const int insn_cnt = env->prog->len; 13239 int i; 13240 13241 for (i = 0; i < insn_cnt; i++, insn++) { 13242 if (!insn_is_cond_jump(insn->code)) 13243 continue; 13244 13245 if (!aux_data[i + 1].seen) 13246 ja.off = insn->off; 13247 else if (!aux_data[i + 1 + insn->off].seen) 13248 ja.off = 0; 13249 else 13250 continue; 13251 13252 if (bpf_prog_is_dev_bound(env->prog->aux)) 13253 bpf_prog_offload_replace_insn(env, i, &ja); 13254 13255 memcpy(insn, &ja, sizeof(ja)); 13256 } 13257 } 13258 13259 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13260 { 13261 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13262 int insn_cnt = env->prog->len; 13263 int i, err; 13264 13265 for (i = 0; i < insn_cnt; i++) { 13266 int j; 13267 13268 j = 0; 13269 while (i + j < insn_cnt && !aux_data[i + j].seen) 13270 j++; 13271 if (!j) 13272 continue; 13273 13274 err = verifier_remove_insns(env, i, j); 13275 if (err) 13276 return err; 13277 insn_cnt = env->prog->len; 13278 } 13279 13280 return 0; 13281 } 13282 13283 static int opt_remove_nops(struct bpf_verifier_env *env) 13284 { 13285 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13286 struct bpf_insn *insn = env->prog->insnsi; 13287 int insn_cnt = env->prog->len; 13288 int i, err; 13289 13290 for (i = 0; i < insn_cnt; i++) { 13291 if (memcmp(&insn[i], &ja, sizeof(ja))) 13292 continue; 13293 13294 err = verifier_remove_insns(env, i, 1); 13295 if (err) 13296 return err; 13297 insn_cnt--; 13298 i--; 13299 } 13300 13301 return 0; 13302 } 13303 13304 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13305 const union bpf_attr *attr) 13306 { 13307 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13308 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13309 int i, patch_len, delta = 0, len = env->prog->len; 13310 struct bpf_insn *insns = env->prog->insnsi; 13311 struct bpf_prog *new_prog; 13312 bool rnd_hi32; 13313 13314 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13315 zext_patch[1] = BPF_ZEXT_REG(0); 13316 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13317 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13318 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13319 for (i = 0; i < len; i++) { 13320 int adj_idx = i + delta; 13321 struct bpf_insn insn; 13322 int load_reg; 13323 13324 insn = insns[adj_idx]; 13325 load_reg = insn_def_regno(&insn); 13326 if (!aux[adj_idx].zext_dst) { 13327 u8 code, class; 13328 u32 imm_rnd; 13329 13330 if (!rnd_hi32) 13331 continue; 13332 13333 code = insn.code; 13334 class = BPF_CLASS(code); 13335 if (load_reg == -1) 13336 continue; 13337 13338 /* NOTE: arg "reg" (the fourth one) is only used for 13339 * BPF_STX + SRC_OP, so it is safe to pass NULL 13340 * here. 13341 */ 13342 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13343 if (class == BPF_LD && 13344 BPF_MODE(code) == BPF_IMM) 13345 i++; 13346 continue; 13347 } 13348 13349 /* ctx load could be transformed into wider load. */ 13350 if (class == BPF_LDX && 13351 aux[adj_idx].ptr_type == PTR_TO_CTX) 13352 continue; 13353 13354 imm_rnd = get_random_u32(); 13355 rnd_hi32_patch[0] = insn; 13356 rnd_hi32_patch[1].imm = imm_rnd; 13357 rnd_hi32_patch[3].dst_reg = load_reg; 13358 patch = rnd_hi32_patch; 13359 patch_len = 4; 13360 goto apply_patch_buffer; 13361 } 13362 13363 /* Add in an zero-extend instruction if a) the JIT has requested 13364 * it or b) it's a CMPXCHG. 13365 * 13366 * The latter is because: BPF_CMPXCHG always loads a value into 13367 * R0, therefore always zero-extends. However some archs' 13368 * equivalent instruction only does this load when the 13369 * comparison is successful. This detail of CMPXCHG is 13370 * orthogonal to the general zero-extension behaviour of the 13371 * CPU, so it's treated independently of bpf_jit_needs_zext. 13372 */ 13373 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13374 continue; 13375 13376 if (WARN_ON(load_reg == -1)) { 13377 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13378 return -EFAULT; 13379 } 13380 13381 zext_patch[0] = insn; 13382 zext_patch[1].dst_reg = load_reg; 13383 zext_patch[1].src_reg = load_reg; 13384 patch = zext_patch; 13385 patch_len = 2; 13386 apply_patch_buffer: 13387 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13388 if (!new_prog) 13389 return -ENOMEM; 13390 env->prog = new_prog; 13391 insns = new_prog->insnsi; 13392 aux = env->insn_aux_data; 13393 delta += patch_len - 1; 13394 } 13395 13396 return 0; 13397 } 13398 13399 /* convert load instructions that access fields of a context type into a 13400 * sequence of instructions that access fields of the underlying structure: 13401 * struct __sk_buff -> struct sk_buff 13402 * struct bpf_sock_ops -> struct sock 13403 */ 13404 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13405 { 13406 const struct bpf_verifier_ops *ops = env->ops; 13407 int i, cnt, size, ctx_field_size, delta = 0; 13408 const int insn_cnt = env->prog->len; 13409 struct bpf_insn insn_buf[16], *insn; 13410 u32 target_size, size_default, off; 13411 struct bpf_prog *new_prog; 13412 enum bpf_access_type type; 13413 bool is_narrower_load; 13414 13415 if (ops->gen_prologue || env->seen_direct_write) { 13416 if (!ops->gen_prologue) { 13417 verbose(env, "bpf verifier is misconfigured\n"); 13418 return -EINVAL; 13419 } 13420 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13421 env->prog); 13422 if (cnt >= ARRAY_SIZE(insn_buf)) { 13423 verbose(env, "bpf verifier is misconfigured\n"); 13424 return -EINVAL; 13425 } else if (cnt) { 13426 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13427 if (!new_prog) 13428 return -ENOMEM; 13429 13430 env->prog = new_prog; 13431 delta += cnt - 1; 13432 } 13433 } 13434 13435 if (bpf_prog_is_dev_bound(env->prog->aux)) 13436 return 0; 13437 13438 insn = env->prog->insnsi + delta; 13439 13440 for (i = 0; i < insn_cnt; i++, insn++) { 13441 bpf_convert_ctx_access_t convert_ctx_access; 13442 bool ctx_access; 13443 13444 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13445 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13446 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13447 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13448 type = BPF_READ; 13449 ctx_access = true; 13450 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13451 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13452 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13453 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13454 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13455 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13456 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13457 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13458 type = BPF_WRITE; 13459 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13460 } else { 13461 continue; 13462 } 13463 13464 if (type == BPF_WRITE && 13465 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13466 struct bpf_insn patch[] = { 13467 *insn, 13468 BPF_ST_NOSPEC(), 13469 }; 13470 13471 cnt = ARRAY_SIZE(patch); 13472 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13473 if (!new_prog) 13474 return -ENOMEM; 13475 13476 delta += cnt - 1; 13477 env->prog = new_prog; 13478 insn = new_prog->insnsi + i + delta; 13479 continue; 13480 } 13481 13482 if (!ctx_access) 13483 continue; 13484 13485 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13486 case PTR_TO_CTX: 13487 if (!ops->convert_ctx_access) 13488 continue; 13489 convert_ctx_access = ops->convert_ctx_access; 13490 break; 13491 case PTR_TO_SOCKET: 13492 case PTR_TO_SOCK_COMMON: 13493 convert_ctx_access = bpf_sock_convert_ctx_access; 13494 break; 13495 case PTR_TO_TCP_SOCK: 13496 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13497 break; 13498 case PTR_TO_XDP_SOCK: 13499 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13500 break; 13501 case PTR_TO_BTF_ID: 13502 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13503 if (type == BPF_READ) { 13504 insn->code = BPF_LDX | BPF_PROBE_MEM | 13505 BPF_SIZE((insn)->code); 13506 env->prog->aux->num_exentries++; 13507 } 13508 continue; 13509 default: 13510 continue; 13511 } 13512 13513 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13514 size = BPF_LDST_BYTES(insn); 13515 13516 /* If the read access is a narrower load of the field, 13517 * convert to a 4/8-byte load, to minimum program type specific 13518 * convert_ctx_access changes. If conversion is successful, 13519 * we will apply proper mask to the result. 13520 */ 13521 is_narrower_load = size < ctx_field_size; 13522 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13523 off = insn->off; 13524 if (is_narrower_load) { 13525 u8 size_code; 13526 13527 if (type == BPF_WRITE) { 13528 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13529 return -EINVAL; 13530 } 13531 13532 size_code = BPF_H; 13533 if (ctx_field_size == 4) 13534 size_code = BPF_W; 13535 else if (ctx_field_size == 8) 13536 size_code = BPF_DW; 13537 13538 insn->off = off & ~(size_default - 1); 13539 insn->code = BPF_LDX | BPF_MEM | size_code; 13540 } 13541 13542 target_size = 0; 13543 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13544 &target_size); 13545 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13546 (ctx_field_size && !target_size)) { 13547 verbose(env, "bpf verifier is misconfigured\n"); 13548 return -EINVAL; 13549 } 13550 13551 if (is_narrower_load && size < target_size) { 13552 u8 shift = bpf_ctx_narrow_access_offset( 13553 off, size, size_default) * 8; 13554 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13555 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13556 return -EINVAL; 13557 } 13558 if (ctx_field_size <= 4) { 13559 if (shift) 13560 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13561 insn->dst_reg, 13562 shift); 13563 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13564 (1 << size * 8) - 1); 13565 } else { 13566 if (shift) 13567 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13568 insn->dst_reg, 13569 shift); 13570 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13571 (1ULL << size * 8) - 1); 13572 } 13573 } 13574 13575 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13576 if (!new_prog) 13577 return -ENOMEM; 13578 13579 delta += cnt - 1; 13580 13581 /* keep walking new program and skip insns we just inserted */ 13582 env->prog = new_prog; 13583 insn = new_prog->insnsi + i + delta; 13584 } 13585 13586 return 0; 13587 } 13588 13589 static int jit_subprogs(struct bpf_verifier_env *env) 13590 { 13591 struct bpf_prog *prog = env->prog, **func, *tmp; 13592 int i, j, subprog_start, subprog_end = 0, len, subprog; 13593 struct bpf_map *map_ptr; 13594 struct bpf_insn *insn; 13595 void *old_bpf_func; 13596 int err, num_exentries; 13597 13598 if (env->subprog_cnt <= 1) 13599 return 0; 13600 13601 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13602 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13603 continue; 13604 13605 /* Upon error here we cannot fall back to interpreter but 13606 * need a hard reject of the program. Thus -EFAULT is 13607 * propagated in any case. 13608 */ 13609 subprog = find_subprog(env, i + insn->imm + 1); 13610 if (subprog < 0) { 13611 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13612 i + insn->imm + 1); 13613 return -EFAULT; 13614 } 13615 /* temporarily remember subprog id inside insn instead of 13616 * aux_data, since next loop will split up all insns into funcs 13617 */ 13618 insn->off = subprog; 13619 /* remember original imm in case JIT fails and fallback 13620 * to interpreter will be needed 13621 */ 13622 env->insn_aux_data[i].call_imm = insn->imm; 13623 /* point imm to __bpf_call_base+1 from JITs point of view */ 13624 insn->imm = 1; 13625 if (bpf_pseudo_func(insn)) 13626 /* jit (e.g. x86_64) may emit fewer instructions 13627 * if it learns a u32 imm is the same as a u64 imm. 13628 * Force a non zero here. 13629 */ 13630 insn[1].imm = 1; 13631 } 13632 13633 err = bpf_prog_alloc_jited_linfo(prog); 13634 if (err) 13635 goto out_undo_insn; 13636 13637 err = -ENOMEM; 13638 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13639 if (!func) 13640 goto out_undo_insn; 13641 13642 for (i = 0; i < env->subprog_cnt; i++) { 13643 subprog_start = subprog_end; 13644 subprog_end = env->subprog_info[i + 1].start; 13645 13646 len = subprog_end - subprog_start; 13647 /* bpf_prog_run() doesn't call subprogs directly, 13648 * hence main prog stats include the runtime of subprogs. 13649 * subprogs don't have IDs and not reachable via prog_get_next_id 13650 * func[i]->stats will never be accessed and stays NULL 13651 */ 13652 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13653 if (!func[i]) 13654 goto out_free; 13655 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13656 len * sizeof(struct bpf_insn)); 13657 func[i]->type = prog->type; 13658 func[i]->len = len; 13659 if (bpf_prog_calc_tag(func[i])) 13660 goto out_free; 13661 func[i]->is_func = 1; 13662 func[i]->aux->func_idx = i; 13663 /* Below members will be freed only at prog->aux */ 13664 func[i]->aux->btf = prog->aux->btf; 13665 func[i]->aux->func_info = prog->aux->func_info; 13666 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13667 func[i]->aux->poke_tab = prog->aux->poke_tab; 13668 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13669 13670 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13671 struct bpf_jit_poke_descriptor *poke; 13672 13673 poke = &prog->aux->poke_tab[j]; 13674 if (poke->insn_idx < subprog_end && 13675 poke->insn_idx >= subprog_start) 13676 poke->aux = func[i]->aux; 13677 } 13678 13679 func[i]->aux->name[0] = 'F'; 13680 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13681 func[i]->jit_requested = 1; 13682 func[i]->blinding_requested = prog->blinding_requested; 13683 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13684 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13685 func[i]->aux->linfo = prog->aux->linfo; 13686 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13687 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13688 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13689 num_exentries = 0; 13690 insn = func[i]->insnsi; 13691 for (j = 0; j < func[i]->len; j++, insn++) { 13692 if (BPF_CLASS(insn->code) == BPF_LDX && 13693 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13694 num_exentries++; 13695 } 13696 func[i]->aux->num_exentries = num_exentries; 13697 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13698 func[i] = bpf_int_jit_compile(func[i]); 13699 if (!func[i]->jited) { 13700 err = -ENOTSUPP; 13701 goto out_free; 13702 } 13703 cond_resched(); 13704 } 13705 13706 /* at this point all bpf functions were successfully JITed 13707 * now populate all bpf_calls with correct addresses and 13708 * run last pass of JIT 13709 */ 13710 for (i = 0; i < env->subprog_cnt; i++) { 13711 insn = func[i]->insnsi; 13712 for (j = 0; j < func[i]->len; j++, insn++) { 13713 if (bpf_pseudo_func(insn)) { 13714 subprog = insn->off; 13715 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13716 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13717 continue; 13718 } 13719 if (!bpf_pseudo_call(insn)) 13720 continue; 13721 subprog = insn->off; 13722 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13723 } 13724 13725 /* we use the aux data to keep a list of the start addresses 13726 * of the JITed images for each function in the program 13727 * 13728 * for some architectures, such as powerpc64, the imm field 13729 * might not be large enough to hold the offset of the start 13730 * address of the callee's JITed image from __bpf_call_base 13731 * 13732 * in such cases, we can lookup the start address of a callee 13733 * by using its subprog id, available from the off field of 13734 * the call instruction, as an index for this list 13735 */ 13736 func[i]->aux->func = func; 13737 func[i]->aux->func_cnt = env->subprog_cnt; 13738 } 13739 for (i = 0; i < env->subprog_cnt; i++) { 13740 old_bpf_func = func[i]->bpf_func; 13741 tmp = bpf_int_jit_compile(func[i]); 13742 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13743 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13744 err = -ENOTSUPP; 13745 goto out_free; 13746 } 13747 cond_resched(); 13748 } 13749 13750 /* finally lock prog and jit images for all functions and 13751 * populate kallsysm 13752 */ 13753 for (i = 0; i < env->subprog_cnt; i++) { 13754 bpf_prog_lock_ro(func[i]); 13755 bpf_prog_kallsyms_add(func[i]); 13756 } 13757 13758 /* Last step: make now unused interpreter insns from main 13759 * prog consistent for later dump requests, so they can 13760 * later look the same as if they were interpreted only. 13761 */ 13762 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13763 if (bpf_pseudo_func(insn)) { 13764 insn[0].imm = env->insn_aux_data[i].call_imm; 13765 insn[1].imm = insn->off; 13766 insn->off = 0; 13767 continue; 13768 } 13769 if (!bpf_pseudo_call(insn)) 13770 continue; 13771 insn->off = env->insn_aux_data[i].call_imm; 13772 subprog = find_subprog(env, i + insn->off + 1); 13773 insn->imm = subprog; 13774 } 13775 13776 prog->jited = 1; 13777 prog->bpf_func = func[0]->bpf_func; 13778 prog->jited_len = func[0]->jited_len; 13779 prog->aux->func = func; 13780 prog->aux->func_cnt = env->subprog_cnt; 13781 bpf_prog_jit_attempt_done(prog); 13782 return 0; 13783 out_free: 13784 /* We failed JIT'ing, so at this point we need to unregister poke 13785 * descriptors from subprogs, so that kernel is not attempting to 13786 * patch it anymore as we're freeing the subprog JIT memory. 13787 */ 13788 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13789 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13790 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13791 } 13792 /* At this point we're guaranteed that poke descriptors are not 13793 * live anymore. We can just unlink its descriptor table as it's 13794 * released with the main prog. 13795 */ 13796 for (i = 0; i < env->subprog_cnt; i++) { 13797 if (!func[i]) 13798 continue; 13799 func[i]->aux->poke_tab = NULL; 13800 bpf_jit_free(func[i]); 13801 } 13802 kfree(func); 13803 out_undo_insn: 13804 /* cleanup main prog to be interpreted */ 13805 prog->jit_requested = 0; 13806 prog->blinding_requested = 0; 13807 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13808 if (!bpf_pseudo_call(insn)) 13809 continue; 13810 insn->off = 0; 13811 insn->imm = env->insn_aux_data[i].call_imm; 13812 } 13813 bpf_prog_jit_attempt_done(prog); 13814 return err; 13815 } 13816 13817 static int fixup_call_args(struct bpf_verifier_env *env) 13818 { 13819 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13820 struct bpf_prog *prog = env->prog; 13821 struct bpf_insn *insn = prog->insnsi; 13822 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13823 int i, depth; 13824 #endif 13825 int err = 0; 13826 13827 if (env->prog->jit_requested && 13828 !bpf_prog_is_dev_bound(env->prog->aux)) { 13829 err = jit_subprogs(env); 13830 if (err == 0) 13831 return 0; 13832 if (err == -EFAULT) 13833 return err; 13834 } 13835 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13836 if (has_kfunc_call) { 13837 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13838 return -EINVAL; 13839 } 13840 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13841 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13842 * have to be rejected, since interpreter doesn't support them yet. 13843 */ 13844 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13845 return -EINVAL; 13846 } 13847 for (i = 0; i < prog->len; i++, insn++) { 13848 if (bpf_pseudo_func(insn)) { 13849 /* When JIT fails the progs with callback calls 13850 * have to be rejected, since interpreter doesn't support them yet. 13851 */ 13852 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13853 return -EINVAL; 13854 } 13855 13856 if (!bpf_pseudo_call(insn)) 13857 continue; 13858 depth = get_callee_stack_depth(env, insn, i); 13859 if (depth < 0) 13860 return depth; 13861 bpf_patch_call_args(insn, depth); 13862 } 13863 err = 0; 13864 #endif 13865 return err; 13866 } 13867 13868 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13869 struct bpf_insn *insn) 13870 { 13871 const struct bpf_kfunc_desc *desc; 13872 13873 if (!insn->imm) { 13874 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13875 return -EINVAL; 13876 } 13877 13878 /* insn->imm has the btf func_id. Replace it with 13879 * an address (relative to __bpf_base_call). 13880 */ 13881 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13882 if (!desc) { 13883 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13884 insn->imm); 13885 return -EFAULT; 13886 } 13887 13888 insn->imm = desc->imm; 13889 13890 return 0; 13891 } 13892 13893 /* Do various post-verification rewrites in a single program pass. 13894 * These rewrites simplify JIT and interpreter implementations. 13895 */ 13896 static int do_misc_fixups(struct bpf_verifier_env *env) 13897 { 13898 struct bpf_prog *prog = env->prog; 13899 enum bpf_attach_type eatype = prog->expected_attach_type; 13900 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13901 struct bpf_insn *insn = prog->insnsi; 13902 const struct bpf_func_proto *fn; 13903 const int insn_cnt = prog->len; 13904 const struct bpf_map_ops *ops; 13905 struct bpf_insn_aux_data *aux; 13906 struct bpf_insn insn_buf[16]; 13907 struct bpf_prog *new_prog; 13908 struct bpf_map *map_ptr; 13909 int i, ret, cnt, delta = 0; 13910 13911 for (i = 0; i < insn_cnt; i++, insn++) { 13912 /* Make divide-by-zero exceptions impossible. */ 13913 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13914 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13915 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13916 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13917 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13918 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13919 struct bpf_insn *patchlet; 13920 struct bpf_insn chk_and_div[] = { 13921 /* [R,W]x div 0 -> 0 */ 13922 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13923 BPF_JNE | BPF_K, insn->src_reg, 13924 0, 2, 0), 13925 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13926 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13927 *insn, 13928 }; 13929 struct bpf_insn chk_and_mod[] = { 13930 /* [R,W]x mod 0 -> [R,W]x */ 13931 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13932 BPF_JEQ | BPF_K, insn->src_reg, 13933 0, 1 + (is64 ? 0 : 1), 0), 13934 *insn, 13935 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13936 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13937 }; 13938 13939 patchlet = isdiv ? chk_and_div : chk_and_mod; 13940 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13941 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13942 13943 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13944 if (!new_prog) 13945 return -ENOMEM; 13946 13947 delta += cnt - 1; 13948 env->prog = prog = new_prog; 13949 insn = new_prog->insnsi + i + delta; 13950 continue; 13951 } 13952 13953 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13954 if (BPF_CLASS(insn->code) == BPF_LD && 13955 (BPF_MODE(insn->code) == BPF_ABS || 13956 BPF_MODE(insn->code) == BPF_IND)) { 13957 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13958 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13959 verbose(env, "bpf verifier is misconfigured\n"); 13960 return -EINVAL; 13961 } 13962 13963 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13964 if (!new_prog) 13965 return -ENOMEM; 13966 13967 delta += cnt - 1; 13968 env->prog = prog = new_prog; 13969 insn = new_prog->insnsi + i + delta; 13970 continue; 13971 } 13972 13973 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13974 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13975 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13976 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13977 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13978 struct bpf_insn *patch = &insn_buf[0]; 13979 bool issrc, isneg, isimm; 13980 u32 off_reg; 13981 13982 aux = &env->insn_aux_data[i + delta]; 13983 if (!aux->alu_state || 13984 aux->alu_state == BPF_ALU_NON_POINTER) 13985 continue; 13986 13987 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13988 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13989 BPF_ALU_SANITIZE_SRC; 13990 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13991 13992 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13993 if (isimm) { 13994 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13995 } else { 13996 if (isneg) 13997 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13998 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13999 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 14000 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 14001 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 14002 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 14003 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 14004 } 14005 if (!issrc) 14006 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 14007 insn->src_reg = BPF_REG_AX; 14008 if (isneg) 14009 insn->code = insn->code == code_add ? 14010 code_sub : code_add; 14011 *patch++ = *insn; 14012 if (issrc && isneg && !isimm) 14013 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 14014 cnt = patch - insn_buf; 14015 14016 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14017 if (!new_prog) 14018 return -ENOMEM; 14019 14020 delta += cnt - 1; 14021 env->prog = prog = new_prog; 14022 insn = new_prog->insnsi + i + delta; 14023 continue; 14024 } 14025 14026 if (insn->code != (BPF_JMP | BPF_CALL)) 14027 continue; 14028 if (insn->src_reg == BPF_PSEUDO_CALL) 14029 continue; 14030 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14031 ret = fixup_kfunc_call(env, insn); 14032 if (ret) 14033 return ret; 14034 continue; 14035 } 14036 14037 if (insn->imm == BPF_FUNC_get_route_realm) 14038 prog->dst_needed = 1; 14039 if (insn->imm == BPF_FUNC_get_prandom_u32) 14040 bpf_user_rnd_init_once(); 14041 if (insn->imm == BPF_FUNC_override_return) 14042 prog->kprobe_override = 1; 14043 if (insn->imm == BPF_FUNC_tail_call) { 14044 /* If we tail call into other programs, we 14045 * cannot make any assumptions since they can 14046 * be replaced dynamically during runtime in 14047 * the program array. 14048 */ 14049 prog->cb_access = 1; 14050 if (!allow_tail_call_in_subprogs(env)) 14051 prog->aux->stack_depth = MAX_BPF_STACK; 14052 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14053 14054 /* mark bpf_tail_call as different opcode to avoid 14055 * conditional branch in the interpreter for every normal 14056 * call and to prevent accidental JITing by JIT compiler 14057 * that doesn't support bpf_tail_call yet 14058 */ 14059 insn->imm = 0; 14060 insn->code = BPF_JMP | BPF_TAIL_CALL; 14061 14062 aux = &env->insn_aux_data[i + delta]; 14063 if (env->bpf_capable && !prog->blinding_requested && 14064 prog->jit_requested && 14065 !bpf_map_key_poisoned(aux) && 14066 !bpf_map_ptr_poisoned(aux) && 14067 !bpf_map_ptr_unpriv(aux)) { 14068 struct bpf_jit_poke_descriptor desc = { 14069 .reason = BPF_POKE_REASON_TAIL_CALL, 14070 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14071 .tail_call.key = bpf_map_key_immediate(aux), 14072 .insn_idx = i + delta, 14073 }; 14074 14075 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14076 if (ret < 0) { 14077 verbose(env, "adding tail call poke descriptor failed\n"); 14078 return ret; 14079 } 14080 14081 insn->imm = ret + 1; 14082 continue; 14083 } 14084 14085 if (!bpf_map_ptr_unpriv(aux)) 14086 continue; 14087 14088 /* instead of changing every JIT dealing with tail_call 14089 * emit two extra insns: 14090 * if (index >= max_entries) goto out; 14091 * index &= array->index_mask; 14092 * to avoid out-of-bounds cpu speculation 14093 */ 14094 if (bpf_map_ptr_poisoned(aux)) { 14095 verbose(env, "tail_call abusing map_ptr\n"); 14096 return -EINVAL; 14097 } 14098 14099 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14100 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14101 map_ptr->max_entries, 2); 14102 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14103 container_of(map_ptr, 14104 struct bpf_array, 14105 map)->index_mask); 14106 insn_buf[2] = *insn; 14107 cnt = 3; 14108 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14109 if (!new_prog) 14110 return -ENOMEM; 14111 14112 delta += cnt - 1; 14113 env->prog = prog = new_prog; 14114 insn = new_prog->insnsi + i + delta; 14115 continue; 14116 } 14117 14118 if (insn->imm == BPF_FUNC_timer_set_callback) { 14119 /* The verifier will process callback_fn as many times as necessary 14120 * with different maps and the register states prepared by 14121 * set_timer_callback_state will be accurate. 14122 * 14123 * The following use case is valid: 14124 * map1 is shared by prog1, prog2, prog3. 14125 * prog1 calls bpf_timer_init for some map1 elements 14126 * prog2 calls bpf_timer_set_callback for some map1 elements. 14127 * Those that were not bpf_timer_init-ed will return -EINVAL. 14128 * prog3 calls bpf_timer_start for some map1 elements. 14129 * Those that were not both bpf_timer_init-ed and 14130 * bpf_timer_set_callback-ed will return -EINVAL. 14131 */ 14132 struct bpf_insn ld_addrs[2] = { 14133 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14134 }; 14135 14136 insn_buf[0] = ld_addrs[0]; 14137 insn_buf[1] = ld_addrs[1]; 14138 insn_buf[2] = *insn; 14139 cnt = 3; 14140 14141 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14142 if (!new_prog) 14143 return -ENOMEM; 14144 14145 delta += cnt - 1; 14146 env->prog = prog = new_prog; 14147 insn = new_prog->insnsi + i + delta; 14148 goto patch_call_imm; 14149 } 14150 14151 if (insn->imm == BPF_FUNC_task_storage_get || 14152 insn->imm == BPF_FUNC_sk_storage_get || 14153 insn->imm == BPF_FUNC_inode_storage_get) { 14154 if (env->prog->aux->sleepable) 14155 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14156 else 14157 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14158 insn_buf[1] = *insn; 14159 cnt = 2; 14160 14161 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14162 if (!new_prog) 14163 return -ENOMEM; 14164 14165 delta += cnt - 1; 14166 env->prog = prog = new_prog; 14167 insn = new_prog->insnsi + i + delta; 14168 goto patch_call_imm; 14169 } 14170 14171 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14172 * and other inlining handlers are currently limited to 64 bit 14173 * only. 14174 */ 14175 if (prog->jit_requested && BITS_PER_LONG == 64 && 14176 (insn->imm == BPF_FUNC_map_lookup_elem || 14177 insn->imm == BPF_FUNC_map_update_elem || 14178 insn->imm == BPF_FUNC_map_delete_elem || 14179 insn->imm == BPF_FUNC_map_push_elem || 14180 insn->imm == BPF_FUNC_map_pop_elem || 14181 insn->imm == BPF_FUNC_map_peek_elem || 14182 insn->imm == BPF_FUNC_redirect_map || 14183 insn->imm == BPF_FUNC_for_each_map_elem || 14184 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14185 aux = &env->insn_aux_data[i + delta]; 14186 if (bpf_map_ptr_poisoned(aux)) 14187 goto patch_call_imm; 14188 14189 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14190 ops = map_ptr->ops; 14191 if (insn->imm == BPF_FUNC_map_lookup_elem && 14192 ops->map_gen_lookup) { 14193 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14194 if (cnt == -EOPNOTSUPP) 14195 goto patch_map_ops_generic; 14196 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14197 verbose(env, "bpf verifier is misconfigured\n"); 14198 return -EINVAL; 14199 } 14200 14201 new_prog = bpf_patch_insn_data(env, i + delta, 14202 insn_buf, cnt); 14203 if (!new_prog) 14204 return -ENOMEM; 14205 14206 delta += cnt - 1; 14207 env->prog = prog = new_prog; 14208 insn = new_prog->insnsi + i + delta; 14209 continue; 14210 } 14211 14212 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14213 (void *(*)(struct bpf_map *map, void *key))NULL)); 14214 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14215 (int (*)(struct bpf_map *map, void *key))NULL)); 14216 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14217 (int (*)(struct bpf_map *map, void *key, void *value, 14218 u64 flags))NULL)); 14219 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14220 (int (*)(struct bpf_map *map, void *value, 14221 u64 flags))NULL)); 14222 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14223 (int (*)(struct bpf_map *map, void *value))NULL)); 14224 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14225 (int (*)(struct bpf_map *map, void *value))NULL)); 14226 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14227 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14228 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14229 (int (*)(struct bpf_map *map, 14230 bpf_callback_t callback_fn, 14231 void *callback_ctx, 14232 u64 flags))NULL)); 14233 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14234 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14235 14236 patch_map_ops_generic: 14237 switch (insn->imm) { 14238 case BPF_FUNC_map_lookup_elem: 14239 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14240 continue; 14241 case BPF_FUNC_map_update_elem: 14242 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14243 continue; 14244 case BPF_FUNC_map_delete_elem: 14245 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14246 continue; 14247 case BPF_FUNC_map_push_elem: 14248 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14249 continue; 14250 case BPF_FUNC_map_pop_elem: 14251 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14252 continue; 14253 case BPF_FUNC_map_peek_elem: 14254 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14255 continue; 14256 case BPF_FUNC_redirect_map: 14257 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14258 continue; 14259 case BPF_FUNC_for_each_map_elem: 14260 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14261 continue; 14262 case BPF_FUNC_map_lookup_percpu_elem: 14263 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14264 continue; 14265 } 14266 14267 goto patch_call_imm; 14268 } 14269 14270 /* Implement bpf_jiffies64 inline. */ 14271 if (prog->jit_requested && BITS_PER_LONG == 64 && 14272 insn->imm == BPF_FUNC_jiffies64) { 14273 struct bpf_insn ld_jiffies_addr[2] = { 14274 BPF_LD_IMM64(BPF_REG_0, 14275 (unsigned long)&jiffies), 14276 }; 14277 14278 insn_buf[0] = ld_jiffies_addr[0]; 14279 insn_buf[1] = ld_jiffies_addr[1]; 14280 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14281 BPF_REG_0, 0); 14282 cnt = 3; 14283 14284 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14285 cnt); 14286 if (!new_prog) 14287 return -ENOMEM; 14288 14289 delta += cnt - 1; 14290 env->prog = prog = new_prog; 14291 insn = new_prog->insnsi + i + delta; 14292 continue; 14293 } 14294 14295 /* Implement bpf_get_func_arg inline. */ 14296 if (prog_type == BPF_PROG_TYPE_TRACING && 14297 insn->imm == BPF_FUNC_get_func_arg) { 14298 /* Load nr_args from ctx - 8 */ 14299 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14300 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14301 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14302 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14303 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14304 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14305 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14306 insn_buf[7] = BPF_JMP_A(1); 14307 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14308 cnt = 9; 14309 14310 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14311 if (!new_prog) 14312 return -ENOMEM; 14313 14314 delta += cnt - 1; 14315 env->prog = prog = new_prog; 14316 insn = new_prog->insnsi + i + delta; 14317 continue; 14318 } 14319 14320 /* Implement bpf_get_func_ret inline. */ 14321 if (prog_type == BPF_PROG_TYPE_TRACING && 14322 insn->imm == BPF_FUNC_get_func_ret) { 14323 if (eatype == BPF_TRACE_FEXIT || 14324 eatype == BPF_MODIFY_RETURN) { 14325 /* Load nr_args from ctx - 8 */ 14326 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14327 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14328 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14329 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14330 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14331 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14332 cnt = 6; 14333 } else { 14334 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14335 cnt = 1; 14336 } 14337 14338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14339 if (!new_prog) 14340 return -ENOMEM; 14341 14342 delta += cnt - 1; 14343 env->prog = prog = new_prog; 14344 insn = new_prog->insnsi + i + delta; 14345 continue; 14346 } 14347 14348 /* Implement get_func_arg_cnt inline. */ 14349 if (prog_type == BPF_PROG_TYPE_TRACING && 14350 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14351 /* Load nr_args from ctx - 8 */ 14352 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14353 14354 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14355 if (!new_prog) 14356 return -ENOMEM; 14357 14358 env->prog = prog = new_prog; 14359 insn = new_prog->insnsi + i + delta; 14360 continue; 14361 } 14362 14363 /* Implement bpf_get_func_ip inline. */ 14364 if (prog_type == BPF_PROG_TYPE_TRACING && 14365 insn->imm == BPF_FUNC_get_func_ip) { 14366 /* Load IP address from ctx - 16 */ 14367 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14368 14369 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14370 if (!new_prog) 14371 return -ENOMEM; 14372 14373 env->prog = prog = new_prog; 14374 insn = new_prog->insnsi + i + delta; 14375 continue; 14376 } 14377 14378 patch_call_imm: 14379 fn = env->ops->get_func_proto(insn->imm, env->prog); 14380 /* all functions that have prototype and verifier allowed 14381 * programs to call them, must be real in-kernel functions 14382 */ 14383 if (!fn->func) { 14384 verbose(env, 14385 "kernel subsystem misconfigured func %s#%d\n", 14386 func_id_name(insn->imm), insn->imm); 14387 return -EFAULT; 14388 } 14389 insn->imm = fn->func - __bpf_call_base; 14390 } 14391 14392 /* Since poke tab is now finalized, publish aux to tracker. */ 14393 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14394 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14395 if (!map_ptr->ops->map_poke_track || 14396 !map_ptr->ops->map_poke_untrack || 14397 !map_ptr->ops->map_poke_run) { 14398 verbose(env, "bpf verifier is misconfigured\n"); 14399 return -EINVAL; 14400 } 14401 14402 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14403 if (ret < 0) { 14404 verbose(env, "tracking tail call prog failed\n"); 14405 return ret; 14406 } 14407 } 14408 14409 sort_kfunc_descs_by_imm(env->prog); 14410 14411 return 0; 14412 } 14413 14414 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14415 int position, 14416 s32 stack_base, 14417 u32 callback_subprogno, 14418 u32 *cnt) 14419 { 14420 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14421 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14422 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14423 int reg_loop_max = BPF_REG_6; 14424 int reg_loop_cnt = BPF_REG_7; 14425 int reg_loop_ctx = BPF_REG_8; 14426 14427 struct bpf_prog *new_prog; 14428 u32 callback_start; 14429 u32 call_insn_offset; 14430 s32 callback_offset; 14431 14432 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14433 * be careful to modify this code in sync. 14434 */ 14435 struct bpf_insn insn_buf[] = { 14436 /* Return error and jump to the end of the patch if 14437 * expected number of iterations is too big. 14438 */ 14439 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14440 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14441 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14442 /* spill R6, R7, R8 to use these as loop vars */ 14443 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14444 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14445 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14446 /* initialize loop vars */ 14447 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14448 BPF_MOV32_IMM(reg_loop_cnt, 0), 14449 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14450 /* loop header, 14451 * if reg_loop_cnt >= reg_loop_max skip the loop body 14452 */ 14453 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14454 /* callback call, 14455 * correct callback offset would be set after patching 14456 */ 14457 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14458 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14459 BPF_CALL_REL(0), 14460 /* increment loop counter */ 14461 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14462 /* jump to loop header if callback returned 0 */ 14463 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14464 /* return value of bpf_loop, 14465 * set R0 to the number of iterations 14466 */ 14467 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14468 /* restore original values of R6, R7, R8 */ 14469 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14470 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14471 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14472 }; 14473 14474 *cnt = ARRAY_SIZE(insn_buf); 14475 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14476 if (!new_prog) 14477 return new_prog; 14478 14479 /* callback start is known only after patching */ 14480 callback_start = env->subprog_info[callback_subprogno].start; 14481 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14482 call_insn_offset = position + 12; 14483 callback_offset = callback_start - call_insn_offset - 1; 14484 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14485 14486 return new_prog; 14487 } 14488 14489 static bool is_bpf_loop_call(struct bpf_insn *insn) 14490 { 14491 return insn->code == (BPF_JMP | BPF_CALL) && 14492 insn->src_reg == 0 && 14493 insn->imm == BPF_FUNC_loop; 14494 } 14495 14496 /* For all sub-programs in the program (including main) check 14497 * insn_aux_data to see if there are bpf_loop calls that require 14498 * inlining. If such calls are found the calls are replaced with a 14499 * sequence of instructions produced by `inline_bpf_loop` function and 14500 * subprog stack_depth is increased by the size of 3 registers. 14501 * This stack space is used to spill values of the R6, R7, R8. These 14502 * registers are used to store the loop bound, counter and context 14503 * variables. 14504 */ 14505 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14506 { 14507 struct bpf_subprog_info *subprogs = env->subprog_info; 14508 int i, cur_subprog = 0, cnt, delta = 0; 14509 struct bpf_insn *insn = env->prog->insnsi; 14510 int insn_cnt = env->prog->len; 14511 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14512 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14513 u16 stack_depth_extra = 0; 14514 14515 for (i = 0; i < insn_cnt; i++, insn++) { 14516 struct bpf_loop_inline_state *inline_state = 14517 &env->insn_aux_data[i + delta].loop_inline_state; 14518 14519 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14520 struct bpf_prog *new_prog; 14521 14522 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14523 new_prog = inline_bpf_loop(env, 14524 i + delta, 14525 -(stack_depth + stack_depth_extra), 14526 inline_state->callback_subprogno, 14527 &cnt); 14528 if (!new_prog) 14529 return -ENOMEM; 14530 14531 delta += cnt - 1; 14532 env->prog = new_prog; 14533 insn = new_prog->insnsi + i + delta; 14534 } 14535 14536 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14537 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14538 cur_subprog++; 14539 stack_depth = subprogs[cur_subprog].stack_depth; 14540 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14541 stack_depth_extra = 0; 14542 } 14543 } 14544 14545 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14546 14547 return 0; 14548 } 14549 14550 static void free_states(struct bpf_verifier_env *env) 14551 { 14552 struct bpf_verifier_state_list *sl, *sln; 14553 int i; 14554 14555 sl = env->free_list; 14556 while (sl) { 14557 sln = sl->next; 14558 free_verifier_state(&sl->state, false); 14559 kfree(sl); 14560 sl = sln; 14561 } 14562 env->free_list = NULL; 14563 14564 if (!env->explored_states) 14565 return; 14566 14567 for (i = 0; i < state_htab_size(env); i++) { 14568 sl = env->explored_states[i]; 14569 14570 while (sl) { 14571 sln = sl->next; 14572 free_verifier_state(&sl->state, false); 14573 kfree(sl); 14574 sl = sln; 14575 } 14576 env->explored_states[i] = NULL; 14577 } 14578 } 14579 14580 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14581 { 14582 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14583 struct bpf_verifier_state *state; 14584 struct bpf_reg_state *regs; 14585 int ret, i; 14586 14587 env->prev_linfo = NULL; 14588 env->pass_cnt++; 14589 14590 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14591 if (!state) 14592 return -ENOMEM; 14593 state->curframe = 0; 14594 state->speculative = false; 14595 state->branches = 1; 14596 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14597 if (!state->frame[0]) { 14598 kfree(state); 14599 return -ENOMEM; 14600 } 14601 env->cur_state = state; 14602 init_func_state(env, state->frame[0], 14603 BPF_MAIN_FUNC /* callsite */, 14604 0 /* frameno */, 14605 subprog); 14606 14607 regs = state->frame[state->curframe]->regs; 14608 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14609 ret = btf_prepare_func_args(env, subprog, regs); 14610 if (ret) 14611 goto out; 14612 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14613 if (regs[i].type == PTR_TO_CTX) 14614 mark_reg_known_zero(env, regs, i); 14615 else if (regs[i].type == SCALAR_VALUE) 14616 mark_reg_unknown(env, regs, i); 14617 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14618 const u32 mem_size = regs[i].mem_size; 14619 14620 mark_reg_known_zero(env, regs, i); 14621 regs[i].mem_size = mem_size; 14622 regs[i].id = ++env->id_gen; 14623 } 14624 } 14625 } else { 14626 /* 1st arg to a function */ 14627 regs[BPF_REG_1].type = PTR_TO_CTX; 14628 mark_reg_known_zero(env, regs, BPF_REG_1); 14629 ret = btf_check_subprog_arg_match(env, subprog, regs); 14630 if (ret == -EFAULT) 14631 /* unlikely verifier bug. abort. 14632 * ret == 0 and ret < 0 are sadly acceptable for 14633 * main() function due to backward compatibility. 14634 * Like socket filter program may be written as: 14635 * int bpf_prog(struct pt_regs *ctx) 14636 * and never dereference that ctx in the program. 14637 * 'struct pt_regs' is a type mismatch for socket 14638 * filter that should be using 'struct __sk_buff'. 14639 */ 14640 goto out; 14641 } 14642 14643 ret = do_check(env); 14644 out: 14645 /* check for NULL is necessary, since cur_state can be freed inside 14646 * do_check() under memory pressure. 14647 */ 14648 if (env->cur_state) { 14649 free_verifier_state(env->cur_state, true); 14650 env->cur_state = NULL; 14651 } 14652 while (!pop_stack(env, NULL, NULL, false)); 14653 if (!ret && pop_log) 14654 bpf_vlog_reset(&env->log, 0); 14655 free_states(env); 14656 return ret; 14657 } 14658 14659 /* Verify all global functions in a BPF program one by one based on their BTF. 14660 * All global functions must pass verification. Otherwise the whole program is rejected. 14661 * Consider: 14662 * int bar(int); 14663 * int foo(int f) 14664 * { 14665 * return bar(f); 14666 * } 14667 * int bar(int b) 14668 * { 14669 * ... 14670 * } 14671 * foo() will be verified first for R1=any_scalar_value. During verification it 14672 * will be assumed that bar() already verified successfully and call to bar() 14673 * from foo() will be checked for type match only. Later bar() will be verified 14674 * independently to check that it's safe for R1=any_scalar_value. 14675 */ 14676 static int do_check_subprogs(struct bpf_verifier_env *env) 14677 { 14678 struct bpf_prog_aux *aux = env->prog->aux; 14679 int i, ret; 14680 14681 if (!aux->func_info) 14682 return 0; 14683 14684 for (i = 1; i < env->subprog_cnt; i++) { 14685 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14686 continue; 14687 env->insn_idx = env->subprog_info[i].start; 14688 WARN_ON_ONCE(env->insn_idx == 0); 14689 ret = do_check_common(env, i); 14690 if (ret) { 14691 return ret; 14692 } else if (env->log.level & BPF_LOG_LEVEL) { 14693 verbose(env, 14694 "Func#%d is safe for any args that match its prototype\n", 14695 i); 14696 } 14697 } 14698 return 0; 14699 } 14700 14701 static int do_check_main(struct bpf_verifier_env *env) 14702 { 14703 int ret; 14704 14705 env->insn_idx = 0; 14706 ret = do_check_common(env, 0); 14707 if (!ret) 14708 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14709 return ret; 14710 } 14711 14712 14713 static void print_verification_stats(struct bpf_verifier_env *env) 14714 { 14715 int i; 14716 14717 if (env->log.level & BPF_LOG_STATS) { 14718 verbose(env, "verification time %lld usec\n", 14719 div_u64(env->verification_time, 1000)); 14720 verbose(env, "stack depth "); 14721 for (i = 0; i < env->subprog_cnt; i++) { 14722 u32 depth = env->subprog_info[i].stack_depth; 14723 14724 verbose(env, "%d", depth); 14725 if (i + 1 < env->subprog_cnt) 14726 verbose(env, "+"); 14727 } 14728 verbose(env, "\n"); 14729 } 14730 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14731 "total_states %d peak_states %d mark_read %d\n", 14732 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14733 env->max_states_per_insn, env->total_states, 14734 env->peak_states, env->longest_mark_read_walk); 14735 } 14736 14737 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14738 { 14739 const struct btf_type *t, *func_proto; 14740 const struct bpf_struct_ops *st_ops; 14741 const struct btf_member *member; 14742 struct bpf_prog *prog = env->prog; 14743 u32 btf_id, member_idx; 14744 const char *mname; 14745 14746 if (!prog->gpl_compatible) { 14747 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14748 return -EINVAL; 14749 } 14750 14751 btf_id = prog->aux->attach_btf_id; 14752 st_ops = bpf_struct_ops_find(btf_id); 14753 if (!st_ops) { 14754 verbose(env, "attach_btf_id %u is not a supported struct\n", 14755 btf_id); 14756 return -ENOTSUPP; 14757 } 14758 14759 t = st_ops->type; 14760 member_idx = prog->expected_attach_type; 14761 if (member_idx >= btf_type_vlen(t)) { 14762 verbose(env, "attach to invalid member idx %u of struct %s\n", 14763 member_idx, st_ops->name); 14764 return -EINVAL; 14765 } 14766 14767 member = &btf_type_member(t)[member_idx]; 14768 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14769 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14770 NULL); 14771 if (!func_proto) { 14772 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14773 mname, member_idx, st_ops->name); 14774 return -EINVAL; 14775 } 14776 14777 if (st_ops->check_member) { 14778 int err = st_ops->check_member(t, member); 14779 14780 if (err) { 14781 verbose(env, "attach to unsupported member %s of struct %s\n", 14782 mname, st_ops->name); 14783 return err; 14784 } 14785 } 14786 14787 prog->aux->attach_func_proto = func_proto; 14788 prog->aux->attach_func_name = mname; 14789 env->ops = st_ops->verifier_ops; 14790 14791 return 0; 14792 } 14793 #define SECURITY_PREFIX "security_" 14794 14795 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14796 { 14797 if (within_error_injection_list(addr) || 14798 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14799 return 0; 14800 14801 return -EINVAL; 14802 } 14803 14804 /* list of non-sleepable functions that are otherwise on 14805 * ALLOW_ERROR_INJECTION list 14806 */ 14807 BTF_SET_START(btf_non_sleepable_error_inject) 14808 /* Three functions below can be called from sleepable and non-sleepable context. 14809 * Assume non-sleepable from bpf safety point of view. 14810 */ 14811 BTF_ID(func, __filemap_add_folio) 14812 BTF_ID(func, should_fail_alloc_page) 14813 BTF_ID(func, should_failslab) 14814 BTF_SET_END(btf_non_sleepable_error_inject) 14815 14816 static int check_non_sleepable_error_inject(u32 btf_id) 14817 { 14818 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14819 } 14820 14821 int bpf_check_attach_target(struct bpf_verifier_log *log, 14822 const struct bpf_prog *prog, 14823 const struct bpf_prog *tgt_prog, 14824 u32 btf_id, 14825 struct bpf_attach_target_info *tgt_info) 14826 { 14827 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14828 const char prefix[] = "btf_trace_"; 14829 int ret = 0, subprog = -1, i; 14830 const struct btf_type *t; 14831 bool conservative = true; 14832 const char *tname; 14833 struct btf *btf; 14834 long addr = 0; 14835 14836 if (!btf_id) { 14837 bpf_log(log, "Tracing programs must provide btf_id\n"); 14838 return -EINVAL; 14839 } 14840 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14841 if (!btf) { 14842 bpf_log(log, 14843 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14844 return -EINVAL; 14845 } 14846 t = btf_type_by_id(btf, btf_id); 14847 if (!t) { 14848 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14849 return -EINVAL; 14850 } 14851 tname = btf_name_by_offset(btf, t->name_off); 14852 if (!tname) { 14853 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14854 return -EINVAL; 14855 } 14856 if (tgt_prog) { 14857 struct bpf_prog_aux *aux = tgt_prog->aux; 14858 14859 for (i = 0; i < aux->func_info_cnt; i++) 14860 if (aux->func_info[i].type_id == btf_id) { 14861 subprog = i; 14862 break; 14863 } 14864 if (subprog == -1) { 14865 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14866 return -EINVAL; 14867 } 14868 conservative = aux->func_info_aux[subprog].unreliable; 14869 if (prog_extension) { 14870 if (conservative) { 14871 bpf_log(log, 14872 "Cannot replace static functions\n"); 14873 return -EINVAL; 14874 } 14875 if (!prog->jit_requested) { 14876 bpf_log(log, 14877 "Extension programs should be JITed\n"); 14878 return -EINVAL; 14879 } 14880 } 14881 if (!tgt_prog->jited) { 14882 bpf_log(log, "Can attach to only JITed progs\n"); 14883 return -EINVAL; 14884 } 14885 if (tgt_prog->type == prog->type) { 14886 /* Cannot fentry/fexit another fentry/fexit program. 14887 * Cannot attach program extension to another extension. 14888 * It's ok to attach fentry/fexit to extension program. 14889 */ 14890 bpf_log(log, "Cannot recursively attach\n"); 14891 return -EINVAL; 14892 } 14893 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14894 prog_extension && 14895 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14896 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14897 /* Program extensions can extend all program types 14898 * except fentry/fexit. The reason is the following. 14899 * The fentry/fexit programs are used for performance 14900 * analysis, stats and can be attached to any program 14901 * type except themselves. When extension program is 14902 * replacing XDP function it is necessary to allow 14903 * performance analysis of all functions. Both original 14904 * XDP program and its program extension. Hence 14905 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14906 * allowed. If extending of fentry/fexit was allowed it 14907 * would be possible to create long call chain 14908 * fentry->extension->fentry->extension beyond 14909 * reasonable stack size. Hence extending fentry is not 14910 * allowed. 14911 */ 14912 bpf_log(log, "Cannot extend fentry/fexit\n"); 14913 return -EINVAL; 14914 } 14915 } else { 14916 if (prog_extension) { 14917 bpf_log(log, "Cannot replace kernel functions\n"); 14918 return -EINVAL; 14919 } 14920 } 14921 14922 switch (prog->expected_attach_type) { 14923 case BPF_TRACE_RAW_TP: 14924 if (tgt_prog) { 14925 bpf_log(log, 14926 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14927 return -EINVAL; 14928 } 14929 if (!btf_type_is_typedef(t)) { 14930 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14931 btf_id); 14932 return -EINVAL; 14933 } 14934 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14935 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14936 btf_id, tname); 14937 return -EINVAL; 14938 } 14939 tname += sizeof(prefix) - 1; 14940 t = btf_type_by_id(btf, t->type); 14941 if (!btf_type_is_ptr(t)) 14942 /* should never happen in valid vmlinux build */ 14943 return -EINVAL; 14944 t = btf_type_by_id(btf, t->type); 14945 if (!btf_type_is_func_proto(t)) 14946 /* should never happen in valid vmlinux build */ 14947 return -EINVAL; 14948 14949 break; 14950 case BPF_TRACE_ITER: 14951 if (!btf_type_is_func(t)) { 14952 bpf_log(log, "attach_btf_id %u is not a function\n", 14953 btf_id); 14954 return -EINVAL; 14955 } 14956 t = btf_type_by_id(btf, t->type); 14957 if (!btf_type_is_func_proto(t)) 14958 return -EINVAL; 14959 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14960 if (ret) 14961 return ret; 14962 break; 14963 default: 14964 if (!prog_extension) 14965 return -EINVAL; 14966 fallthrough; 14967 case BPF_MODIFY_RETURN: 14968 case BPF_LSM_MAC: 14969 case BPF_LSM_CGROUP: 14970 case BPF_TRACE_FENTRY: 14971 case BPF_TRACE_FEXIT: 14972 if (!btf_type_is_func(t)) { 14973 bpf_log(log, "attach_btf_id %u is not a function\n", 14974 btf_id); 14975 return -EINVAL; 14976 } 14977 if (prog_extension && 14978 btf_check_type_match(log, prog, btf, t)) 14979 return -EINVAL; 14980 t = btf_type_by_id(btf, t->type); 14981 if (!btf_type_is_func_proto(t)) 14982 return -EINVAL; 14983 14984 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14985 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14986 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14987 return -EINVAL; 14988 14989 if (tgt_prog && conservative) 14990 t = NULL; 14991 14992 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14993 if (ret < 0) 14994 return ret; 14995 14996 if (tgt_prog) { 14997 if (subprog == 0) 14998 addr = (long) tgt_prog->bpf_func; 14999 else 15000 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 15001 } else { 15002 addr = kallsyms_lookup_name(tname); 15003 if (!addr) { 15004 bpf_log(log, 15005 "The address of function %s cannot be found\n", 15006 tname); 15007 return -ENOENT; 15008 } 15009 } 15010 15011 if (prog->aux->sleepable) { 15012 ret = -EINVAL; 15013 switch (prog->type) { 15014 case BPF_PROG_TYPE_TRACING: 15015 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 15016 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 15017 */ 15018 if (!check_non_sleepable_error_inject(btf_id) && 15019 within_error_injection_list(addr)) 15020 ret = 0; 15021 break; 15022 case BPF_PROG_TYPE_LSM: 15023 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 15024 * Only some of them are sleepable. 15025 */ 15026 if (bpf_lsm_is_sleepable_hook(btf_id)) 15027 ret = 0; 15028 break; 15029 default: 15030 break; 15031 } 15032 if (ret) { 15033 bpf_log(log, "%s is not sleepable\n", tname); 15034 return ret; 15035 } 15036 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 15037 if (tgt_prog) { 15038 bpf_log(log, "can't modify return codes of BPF programs\n"); 15039 return -EINVAL; 15040 } 15041 ret = check_attach_modify_return(addr, tname); 15042 if (ret) { 15043 bpf_log(log, "%s() is not modifiable\n", tname); 15044 return ret; 15045 } 15046 } 15047 15048 break; 15049 } 15050 tgt_info->tgt_addr = addr; 15051 tgt_info->tgt_name = tname; 15052 tgt_info->tgt_type = t; 15053 return 0; 15054 } 15055 15056 BTF_SET_START(btf_id_deny) 15057 BTF_ID_UNUSED 15058 #ifdef CONFIG_SMP 15059 BTF_ID(func, migrate_disable) 15060 BTF_ID(func, migrate_enable) 15061 #endif 15062 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15063 BTF_ID(func, rcu_read_unlock_strict) 15064 #endif 15065 BTF_SET_END(btf_id_deny) 15066 15067 static int check_attach_btf_id(struct bpf_verifier_env *env) 15068 { 15069 struct bpf_prog *prog = env->prog; 15070 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15071 struct bpf_attach_target_info tgt_info = {}; 15072 u32 btf_id = prog->aux->attach_btf_id; 15073 struct bpf_trampoline *tr; 15074 int ret; 15075 u64 key; 15076 15077 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15078 if (prog->aux->sleepable) 15079 /* attach_btf_id checked to be zero already */ 15080 return 0; 15081 verbose(env, "Syscall programs can only be sleepable\n"); 15082 return -EINVAL; 15083 } 15084 15085 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15086 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15087 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15088 return -EINVAL; 15089 } 15090 15091 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15092 return check_struct_ops_btf_id(env); 15093 15094 if (prog->type != BPF_PROG_TYPE_TRACING && 15095 prog->type != BPF_PROG_TYPE_LSM && 15096 prog->type != BPF_PROG_TYPE_EXT) 15097 return 0; 15098 15099 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15100 if (ret) 15101 return ret; 15102 15103 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15104 /* to make freplace equivalent to their targets, they need to 15105 * inherit env->ops and expected_attach_type for the rest of the 15106 * verification 15107 */ 15108 env->ops = bpf_verifier_ops[tgt_prog->type]; 15109 prog->expected_attach_type = tgt_prog->expected_attach_type; 15110 } 15111 15112 /* store info about the attachment target that will be used later */ 15113 prog->aux->attach_func_proto = tgt_info.tgt_type; 15114 prog->aux->attach_func_name = tgt_info.tgt_name; 15115 15116 if (tgt_prog) { 15117 prog->aux->saved_dst_prog_type = tgt_prog->type; 15118 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15119 } 15120 15121 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15122 prog->aux->attach_btf_trace = true; 15123 return 0; 15124 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15125 if (!bpf_iter_prog_supported(prog)) 15126 return -EINVAL; 15127 return 0; 15128 } 15129 15130 if (prog->type == BPF_PROG_TYPE_LSM) { 15131 ret = bpf_lsm_verify_prog(&env->log, prog); 15132 if (ret < 0) 15133 return ret; 15134 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15135 btf_id_set_contains(&btf_id_deny, btf_id)) { 15136 return -EINVAL; 15137 } 15138 15139 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15140 tr = bpf_trampoline_get(key, &tgt_info); 15141 if (!tr) 15142 return -ENOMEM; 15143 15144 prog->aux->dst_trampoline = tr; 15145 return 0; 15146 } 15147 15148 struct btf *bpf_get_btf_vmlinux(void) 15149 { 15150 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15151 mutex_lock(&bpf_verifier_lock); 15152 if (!btf_vmlinux) 15153 btf_vmlinux = btf_parse_vmlinux(); 15154 mutex_unlock(&bpf_verifier_lock); 15155 } 15156 return btf_vmlinux; 15157 } 15158 15159 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15160 { 15161 u64 start_time = ktime_get_ns(); 15162 struct bpf_verifier_env *env; 15163 struct bpf_verifier_log *log; 15164 int i, len, ret = -EINVAL; 15165 bool is_priv; 15166 15167 /* no program is valid */ 15168 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15169 return -EINVAL; 15170 15171 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15172 * allocate/free it every time bpf_check() is called 15173 */ 15174 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15175 if (!env) 15176 return -ENOMEM; 15177 log = &env->log; 15178 15179 len = (*prog)->len; 15180 env->insn_aux_data = 15181 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15182 ret = -ENOMEM; 15183 if (!env->insn_aux_data) 15184 goto err_free_env; 15185 for (i = 0; i < len; i++) 15186 env->insn_aux_data[i].orig_idx = i; 15187 env->prog = *prog; 15188 env->ops = bpf_verifier_ops[env->prog->type]; 15189 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15190 is_priv = bpf_capable(); 15191 15192 bpf_get_btf_vmlinux(); 15193 15194 /* grab the mutex to protect few globals used by verifier */ 15195 if (!is_priv) 15196 mutex_lock(&bpf_verifier_lock); 15197 15198 if (attr->log_level || attr->log_buf || attr->log_size) { 15199 /* user requested verbose verifier output 15200 * and supplied buffer to store the verification trace 15201 */ 15202 log->level = attr->log_level; 15203 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15204 log->len_total = attr->log_size; 15205 15206 /* log attributes have to be sane */ 15207 if (!bpf_verifier_log_attr_valid(log)) { 15208 ret = -EINVAL; 15209 goto err_unlock; 15210 } 15211 } 15212 15213 mark_verifier_state_clean(env); 15214 15215 if (IS_ERR(btf_vmlinux)) { 15216 /* Either gcc or pahole or kernel are broken. */ 15217 verbose(env, "in-kernel BTF is malformed\n"); 15218 ret = PTR_ERR(btf_vmlinux); 15219 goto skip_full_check; 15220 } 15221 15222 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15223 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15224 env->strict_alignment = true; 15225 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15226 env->strict_alignment = false; 15227 15228 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15229 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15230 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15231 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15232 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15233 env->bpf_capable = bpf_capable(); 15234 15235 if (is_priv) 15236 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15237 15238 env->explored_states = kvcalloc(state_htab_size(env), 15239 sizeof(struct bpf_verifier_state_list *), 15240 GFP_USER); 15241 ret = -ENOMEM; 15242 if (!env->explored_states) 15243 goto skip_full_check; 15244 15245 ret = add_subprog_and_kfunc(env); 15246 if (ret < 0) 15247 goto skip_full_check; 15248 15249 ret = check_subprogs(env); 15250 if (ret < 0) 15251 goto skip_full_check; 15252 15253 ret = check_btf_info(env, attr, uattr); 15254 if (ret < 0) 15255 goto skip_full_check; 15256 15257 ret = check_attach_btf_id(env); 15258 if (ret) 15259 goto skip_full_check; 15260 15261 ret = resolve_pseudo_ldimm64(env); 15262 if (ret < 0) 15263 goto skip_full_check; 15264 15265 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15266 ret = bpf_prog_offload_verifier_prep(env->prog); 15267 if (ret) 15268 goto skip_full_check; 15269 } 15270 15271 ret = check_cfg(env); 15272 if (ret < 0) 15273 goto skip_full_check; 15274 15275 ret = do_check_subprogs(env); 15276 ret = ret ?: do_check_main(env); 15277 15278 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15279 ret = bpf_prog_offload_finalize(env); 15280 15281 skip_full_check: 15282 kvfree(env->explored_states); 15283 15284 if (ret == 0) 15285 ret = check_max_stack_depth(env); 15286 15287 /* instruction rewrites happen after this point */ 15288 if (ret == 0) 15289 ret = optimize_bpf_loop(env); 15290 15291 if (is_priv) { 15292 if (ret == 0) 15293 opt_hard_wire_dead_code_branches(env); 15294 if (ret == 0) 15295 ret = opt_remove_dead_code(env); 15296 if (ret == 0) 15297 ret = opt_remove_nops(env); 15298 } else { 15299 if (ret == 0) 15300 sanitize_dead_code(env); 15301 } 15302 15303 if (ret == 0) 15304 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15305 ret = convert_ctx_accesses(env); 15306 15307 if (ret == 0) 15308 ret = do_misc_fixups(env); 15309 15310 /* do 32-bit optimization after insn patching has done so those patched 15311 * insns could be handled correctly. 15312 */ 15313 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15314 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15315 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15316 : false; 15317 } 15318 15319 if (ret == 0) 15320 ret = fixup_call_args(env); 15321 15322 env->verification_time = ktime_get_ns() - start_time; 15323 print_verification_stats(env); 15324 env->prog->aux->verified_insns = env->insn_processed; 15325 15326 if (log->level && bpf_verifier_log_full(log)) 15327 ret = -ENOSPC; 15328 if (log->level && !log->ubuf) { 15329 ret = -EFAULT; 15330 goto err_release_maps; 15331 } 15332 15333 if (ret) 15334 goto err_release_maps; 15335 15336 if (env->used_map_cnt) { 15337 /* if program passed verifier, update used_maps in bpf_prog_info */ 15338 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15339 sizeof(env->used_maps[0]), 15340 GFP_KERNEL); 15341 15342 if (!env->prog->aux->used_maps) { 15343 ret = -ENOMEM; 15344 goto err_release_maps; 15345 } 15346 15347 memcpy(env->prog->aux->used_maps, env->used_maps, 15348 sizeof(env->used_maps[0]) * env->used_map_cnt); 15349 env->prog->aux->used_map_cnt = env->used_map_cnt; 15350 } 15351 if (env->used_btf_cnt) { 15352 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15353 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15354 sizeof(env->used_btfs[0]), 15355 GFP_KERNEL); 15356 if (!env->prog->aux->used_btfs) { 15357 ret = -ENOMEM; 15358 goto err_release_maps; 15359 } 15360 15361 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15362 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15363 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15364 } 15365 if (env->used_map_cnt || env->used_btf_cnt) { 15366 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15367 * bpf_ld_imm64 instructions 15368 */ 15369 convert_pseudo_ld_imm64(env); 15370 } 15371 15372 adjust_btf_func(env); 15373 15374 err_release_maps: 15375 if (!env->prog->aux->used_maps) 15376 /* if we didn't copy map pointers into bpf_prog_info, release 15377 * them now. Otherwise free_used_maps() will release them. 15378 */ 15379 release_maps(env); 15380 if (!env->prog->aux->used_btfs) 15381 release_btfs(env); 15382 15383 /* extension progs temporarily inherit the attach_type of their targets 15384 for verification purposes, so set it back to zero before returning 15385 */ 15386 if (env->prog->type == BPF_PROG_TYPE_EXT) 15387 env->prog->expected_attach_type = 0; 15388 15389 *prog = env->prog; 15390 err_unlock: 15391 if (!is_priv) 15392 mutex_unlock(&bpf_verifier_lock); 15393 vfree(env->insn_aux_data); 15394 err_free_env: 15395 kfree(env); 15396 return ret; 15397 } 15398