1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 struct bpf_call_arg_meta { 238 struct bpf_map *map_ptr; 239 bool raw_mode; 240 bool pkt_access; 241 int regno; 242 int access_size; 243 int mem_size; 244 u64 msize_max_value; 245 int ref_obj_id; 246 int func_id; 247 struct btf *btf; 248 u32 btf_id; 249 struct btf *ret_btf; 250 u32 ret_btf_id; 251 }; 252 253 struct btf *btf_vmlinux; 254 255 static DEFINE_MUTEX(bpf_verifier_lock); 256 257 static const struct bpf_line_info * 258 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 259 { 260 const struct bpf_line_info *linfo; 261 const struct bpf_prog *prog; 262 u32 i, nr_linfo; 263 264 prog = env->prog; 265 nr_linfo = prog->aux->nr_linfo; 266 267 if (!nr_linfo || insn_off >= prog->len) 268 return NULL; 269 270 linfo = prog->aux->linfo; 271 for (i = 1; i < nr_linfo; i++) 272 if (insn_off < linfo[i].insn_off) 273 break; 274 275 return &linfo[i - 1]; 276 } 277 278 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 279 va_list args) 280 { 281 unsigned int n; 282 283 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 284 285 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 286 "verifier log line truncated - local buffer too short\n"); 287 288 n = min(log->len_total - log->len_used - 1, n); 289 log->kbuf[n] = '\0'; 290 291 if (log->level == BPF_LOG_KERNEL) { 292 pr_err("BPF:%s\n", log->kbuf); 293 return; 294 } 295 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 296 log->len_used += n; 297 else 298 log->ubuf = NULL; 299 } 300 301 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 302 { 303 char zero = 0; 304 305 if (!bpf_verifier_log_needed(log)) 306 return; 307 308 log->len_used = new_pos; 309 if (put_user(zero, log->ubuf + new_pos)) 310 log->ubuf = NULL; 311 } 312 313 /* log_level controls verbosity level of eBPF verifier. 314 * bpf_verifier_log_write() is used to dump the verification trace to the log, 315 * so the user can figure out what's wrong with the program 316 */ 317 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 318 const char *fmt, ...) 319 { 320 va_list args; 321 322 if (!bpf_verifier_log_needed(&env->log)) 323 return; 324 325 va_start(args, fmt); 326 bpf_verifier_vlog(&env->log, fmt, args); 327 va_end(args); 328 } 329 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 330 331 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 332 { 333 struct bpf_verifier_env *env = private_data; 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 344 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 345 const char *fmt, ...) 346 { 347 va_list args; 348 349 if (!bpf_verifier_log_needed(log)) 350 return; 351 352 va_start(args, fmt); 353 bpf_verifier_vlog(log, fmt, args); 354 va_end(args); 355 } 356 357 static const char *ltrim(const char *s) 358 { 359 while (isspace(*s)) 360 s++; 361 362 return s; 363 } 364 365 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 366 u32 insn_off, 367 const char *prefix_fmt, ...) 368 { 369 const struct bpf_line_info *linfo; 370 371 if (!bpf_verifier_log_needed(&env->log)) 372 return; 373 374 linfo = find_linfo(env, insn_off); 375 if (!linfo || linfo == env->prev_linfo) 376 return; 377 378 if (prefix_fmt) { 379 va_list args; 380 381 va_start(args, prefix_fmt); 382 bpf_verifier_vlog(&env->log, prefix_fmt, args); 383 va_end(args); 384 } 385 386 verbose(env, "%s\n", 387 ltrim(btf_name_by_offset(env->prog->aux->btf, 388 linfo->line_off))); 389 390 env->prev_linfo = linfo; 391 } 392 393 static bool type_is_pkt_pointer(enum bpf_reg_type type) 394 { 395 return type == PTR_TO_PACKET || 396 type == PTR_TO_PACKET_META; 397 } 398 399 static bool type_is_sk_pointer(enum bpf_reg_type type) 400 { 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_SOCK_COMMON || 403 type == PTR_TO_TCP_SOCK || 404 type == PTR_TO_XDP_SOCK; 405 } 406 407 static bool reg_type_not_null(enum bpf_reg_type type) 408 { 409 return type == PTR_TO_SOCKET || 410 type == PTR_TO_TCP_SOCK || 411 type == PTR_TO_MAP_VALUE || 412 type == PTR_TO_SOCK_COMMON; 413 } 414 415 static bool reg_type_may_be_null(enum bpf_reg_type type) 416 { 417 return type == PTR_TO_MAP_VALUE_OR_NULL || 418 type == PTR_TO_SOCKET_OR_NULL || 419 type == PTR_TO_SOCK_COMMON_OR_NULL || 420 type == PTR_TO_TCP_SOCK_OR_NULL || 421 type == PTR_TO_BTF_ID_OR_NULL || 422 type == PTR_TO_MEM_OR_NULL || 423 type == PTR_TO_RDONLY_BUF_OR_NULL || 424 type == PTR_TO_RDWR_BUF_OR_NULL; 425 } 426 427 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 428 { 429 return reg->type == PTR_TO_MAP_VALUE && 430 map_value_has_spin_lock(reg->map_ptr); 431 } 432 433 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 434 { 435 return type == PTR_TO_SOCKET || 436 type == PTR_TO_SOCKET_OR_NULL || 437 type == PTR_TO_TCP_SOCK || 438 type == PTR_TO_TCP_SOCK_OR_NULL || 439 type == PTR_TO_MEM || 440 type == PTR_TO_MEM_OR_NULL; 441 } 442 443 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 444 { 445 return type == ARG_PTR_TO_SOCK_COMMON; 446 } 447 448 static bool arg_type_may_be_null(enum bpf_arg_type type) 449 { 450 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 451 type == ARG_PTR_TO_MEM_OR_NULL || 452 type == ARG_PTR_TO_CTX_OR_NULL || 453 type == ARG_PTR_TO_SOCKET_OR_NULL || 454 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 455 } 456 457 /* Determine whether the function releases some resources allocated by another 458 * function call. The first reference type argument will be assumed to be 459 * released by release_reference(). 460 */ 461 static bool is_release_function(enum bpf_func_id func_id) 462 { 463 return func_id == BPF_FUNC_sk_release || 464 func_id == BPF_FUNC_ringbuf_submit || 465 func_id == BPF_FUNC_ringbuf_discard; 466 } 467 468 static bool may_be_acquire_function(enum bpf_func_id func_id) 469 { 470 return func_id == BPF_FUNC_sk_lookup_tcp || 471 func_id == BPF_FUNC_sk_lookup_udp || 472 func_id == BPF_FUNC_skc_lookup_tcp || 473 func_id == BPF_FUNC_map_lookup_elem || 474 func_id == BPF_FUNC_ringbuf_reserve; 475 } 476 477 static bool is_acquire_function(enum bpf_func_id func_id, 478 const struct bpf_map *map) 479 { 480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 481 482 if (func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_ringbuf_reserve) 486 return true; 487 488 if (func_id == BPF_FUNC_map_lookup_elem && 489 (map_type == BPF_MAP_TYPE_SOCKMAP || 490 map_type == BPF_MAP_TYPE_SOCKHASH)) 491 return true; 492 493 return false; 494 } 495 496 static bool is_ptr_cast_function(enum bpf_func_id func_id) 497 { 498 return func_id == BPF_FUNC_tcp_sock || 499 func_id == BPF_FUNC_sk_fullsock || 500 func_id == BPF_FUNC_skc_to_tcp_sock || 501 func_id == BPF_FUNC_skc_to_tcp6_sock || 502 func_id == BPF_FUNC_skc_to_udp6_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 /* string representation of 'enum bpf_reg_type' */ 508 static const char * const reg_type_str[] = { 509 [NOT_INIT] = "?", 510 [SCALAR_VALUE] = "inv", 511 [PTR_TO_CTX] = "ctx", 512 [CONST_PTR_TO_MAP] = "map_ptr", 513 [PTR_TO_MAP_VALUE] = "map_value", 514 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 515 [PTR_TO_STACK] = "fp", 516 [PTR_TO_PACKET] = "pkt", 517 [PTR_TO_PACKET_META] = "pkt_meta", 518 [PTR_TO_PACKET_END] = "pkt_end", 519 [PTR_TO_FLOW_KEYS] = "flow_keys", 520 [PTR_TO_SOCKET] = "sock", 521 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 522 [PTR_TO_SOCK_COMMON] = "sock_common", 523 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 524 [PTR_TO_TCP_SOCK] = "tcp_sock", 525 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 526 [PTR_TO_TP_BUFFER] = "tp_buffer", 527 [PTR_TO_XDP_SOCK] = "xdp_sock", 528 [PTR_TO_BTF_ID] = "ptr_", 529 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 530 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 531 [PTR_TO_MEM] = "mem", 532 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 533 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 534 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 535 [PTR_TO_RDWR_BUF] = "rdwr_buf", 536 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 537 }; 538 539 static char slot_type_char[] = { 540 [STACK_INVALID] = '?', 541 [STACK_SPILL] = 'r', 542 [STACK_MISC] = 'm', 543 [STACK_ZERO] = '0', 544 }; 545 546 static void print_liveness(struct bpf_verifier_env *env, 547 enum bpf_reg_liveness live) 548 { 549 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 550 verbose(env, "_"); 551 if (live & REG_LIVE_READ) 552 verbose(env, "r"); 553 if (live & REG_LIVE_WRITTEN) 554 verbose(env, "w"); 555 if (live & REG_LIVE_DONE) 556 verbose(env, "D"); 557 } 558 559 static struct bpf_func_state *func(struct bpf_verifier_env *env, 560 const struct bpf_reg_state *reg) 561 { 562 struct bpf_verifier_state *cur = env->cur_state; 563 564 return cur->frame[reg->frameno]; 565 } 566 567 static const char *kernel_type_name(const struct btf* btf, u32 id) 568 { 569 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 570 } 571 572 static void print_verifier_state(struct bpf_verifier_env *env, 573 const struct bpf_func_state *state) 574 { 575 const struct bpf_reg_state *reg; 576 enum bpf_reg_type t; 577 int i; 578 579 if (state->frameno) 580 verbose(env, " frame%d:", state->frameno); 581 for (i = 0; i < MAX_BPF_REG; i++) { 582 reg = &state->regs[i]; 583 t = reg->type; 584 if (t == NOT_INIT) 585 continue; 586 verbose(env, " R%d", i); 587 print_liveness(env, reg->live); 588 verbose(env, "=%s", reg_type_str[t]); 589 if (t == SCALAR_VALUE && reg->precise) 590 verbose(env, "P"); 591 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 592 tnum_is_const(reg->var_off)) { 593 /* reg->off should be 0 for SCALAR_VALUE */ 594 verbose(env, "%lld", reg->var_off.value + reg->off); 595 } else { 596 if (t == PTR_TO_BTF_ID || 597 t == PTR_TO_BTF_ID_OR_NULL || 598 t == PTR_TO_PERCPU_BTF_ID) 599 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 600 verbose(env, "(id=%d", reg->id); 601 if (reg_type_may_be_refcounted_or_null(t)) 602 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 603 if (t != SCALAR_VALUE) 604 verbose(env, ",off=%d", reg->off); 605 if (type_is_pkt_pointer(t)) 606 verbose(env, ",r=%d", reg->range); 607 else if (t == CONST_PTR_TO_MAP || 608 t == PTR_TO_MAP_VALUE || 609 t == PTR_TO_MAP_VALUE_OR_NULL) 610 verbose(env, ",ks=%d,vs=%d", 611 reg->map_ptr->key_size, 612 reg->map_ptr->value_size); 613 if (tnum_is_const(reg->var_off)) { 614 /* Typically an immediate SCALAR_VALUE, but 615 * could be a pointer whose offset is too big 616 * for reg->off 617 */ 618 verbose(env, ",imm=%llx", reg->var_off.value); 619 } else { 620 if (reg->smin_value != reg->umin_value && 621 reg->smin_value != S64_MIN) 622 verbose(env, ",smin_value=%lld", 623 (long long)reg->smin_value); 624 if (reg->smax_value != reg->umax_value && 625 reg->smax_value != S64_MAX) 626 verbose(env, ",smax_value=%lld", 627 (long long)reg->smax_value); 628 if (reg->umin_value != 0) 629 verbose(env, ",umin_value=%llu", 630 (unsigned long long)reg->umin_value); 631 if (reg->umax_value != U64_MAX) 632 verbose(env, ",umax_value=%llu", 633 (unsigned long long)reg->umax_value); 634 if (!tnum_is_unknown(reg->var_off)) { 635 char tn_buf[48]; 636 637 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 638 verbose(env, ",var_off=%s", tn_buf); 639 } 640 if (reg->s32_min_value != reg->smin_value && 641 reg->s32_min_value != S32_MIN) 642 verbose(env, ",s32_min_value=%d", 643 (int)(reg->s32_min_value)); 644 if (reg->s32_max_value != reg->smax_value && 645 reg->s32_max_value != S32_MAX) 646 verbose(env, ",s32_max_value=%d", 647 (int)(reg->s32_max_value)); 648 if (reg->u32_min_value != reg->umin_value && 649 reg->u32_min_value != U32_MIN) 650 verbose(env, ",u32_min_value=%d", 651 (int)(reg->u32_min_value)); 652 if (reg->u32_max_value != reg->umax_value && 653 reg->u32_max_value != U32_MAX) 654 verbose(env, ",u32_max_value=%d", 655 (int)(reg->u32_max_value)); 656 } 657 verbose(env, ")"); 658 } 659 } 660 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 661 char types_buf[BPF_REG_SIZE + 1]; 662 bool valid = false; 663 int j; 664 665 for (j = 0; j < BPF_REG_SIZE; j++) { 666 if (state->stack[i].slot_type[j] != STACK_INVALID) 667 valid = true; 668 types_buf[j] = slot_type_char[ 669 state->stack[i].slot_type[j]]; 670 } 671 types_buf[BPF_REG_SIZE] = 0; 672 if (!valid) 673 continue; 674 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 675 print_liveness(env, state->stack[i].spilled_ptr.live); 676 if (state->stack[i].slot_type[0] == STACK_SPILL) { 677 reg = &state->stack[i].spilled_ptr; 678 t = reg->type; 679 verbose(env, "=%s", reg_type_str[t]); 680 if (t == SCALAR_VALUE && reg->precise) 681 verbose(env, "P"); 682 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 683 verbose(env, "%lld", reg->var_off.value + reg->off); 684 } else { 685 verbose(env, "=%s", types_buf); 686 } 687 } 688 if (state->acquired_refs && state->refs[0].id) { 689 verbose(env, " refs=%d", state->refs[0].id); 690 for (i = 1; i < state->acquired_refs; i++) 691 if (state->refs[i].id) 692 verbose(env, ",%d", state->refs[i].id); 693 } 694 verbose(env, "\n"); 695 } 696 697 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 698 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 699 const struct bpf_func_state *src) \ 700 { \ 701 if (!src->FIELD) \ 702 return 0; \ 703 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 704 /* internal bug, make state invalid to reject the program */ \ 705 memset(dst, 0, sizeof(*dst)); \ 706 return -EFAULT; \ 707 } \ 708 memcpy(dst->FIELD, src->FIELD, \ 709 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 710 return 0; \ 711 } 712 /* copy_reference_state() */ 713 COPY_STATE_FN(reference, acquired_refs, refs, 1) 714 /* copy_stack_state() */ 715 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 716 #undef COPY_STATE_FN 717 718 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 719 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 720 bool copy_old) \ 721 { \ 722 u32 old_size = state->COUNT; \ 723 struct bpf_##NAME##_state *new_##FIELD; \ 724 int slot = size / SIZE; \ 725 \ 726 if (size <= old_size || !size) { \ 727 if (copy_old) \ 728 return 0; \ 729 state->COUNT = slot * SIZE; \ 730 if (!size && old_size) { \ 731 kfree(state->FIELD); \ 732 state->FIELD = NULL; \ 733 } \ 734 return 0; \ 735 } \ 736 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 737 GFP_KERNEL); \ 738 if (!new_##FIELD) \ 739 return -ENOMEM; \ 740 if (copy_old) { \ 741 if (state->FIELD) \ 742 memcpy(new_##FIELD, state->FIELD, \ 743 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 744 memset(new_##FIELD + old_size / SIZE, 0, \ 745 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 746 } \ 747 state->COUNT = slot * SIZE; \ 748 kfree(state->FIELD); \ 749 state->FIELD = new_##FIELD; \ 750 return 0; \ 751 } 752 /* realloc_reference_state() */ 753 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 754 /* realloc_stack_state() */ 755 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 756 #undef REALLOC_STATE_FN 757 758 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 759 * make it consume minimal amount of memory. check_stack_write() access from 760 * the program calls into realloc_func_state() to grow the stack size. 761 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 762 * which realloc_stack_state() copies over. It points to previous 763 * bpf_verifier_state which is never reallocated. 764 */ 765 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 766 int refs_size, bool copy_old) 767 { 768 int err = realloc_reference_state(state, refs_size, copy_old); 769 if (err) 770 return err; 771 return realloc_stack_state(state, stack_size, copy_old); 772 } 773 774 /* Acquire a pointer id from the env and update the state->refs to include 775 * this new pointer reference. 776 * On success, returns a valid pointer id to associate with the register 777 * On failure, returns a negative errno. 778 */ 779 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 780 { 781 struct bpf_func_state *state = cur_func(env); 782 int new_ofs = state->acquired_refs; 783 int id, err; 784 785 err = realloc_reference_state(state, state->acquired_refs + 1, true); 786 if (err) 787 return err; 788 id = ++env->id_gen; 789 state->refs[new_ofs].id = id; 790 state->refs[new_ofs].insn_idx = insn_idx; 791 792 return id; 793 } 794 795 /* release function corresponding to acquire_reference_state(). Idempotent. */ 796 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 797 { 798 int i, last_idx; 799 800 last_idx = state->acquired_refs - 1; 801 for (i = 0; i < state->acquired_refs; i++) { 802 if (state->refs[i].id == ptr_id) { 803 if (last_idx && i != last_idx) 804 memcpy(&state->refs[i], &state->refs[last_idx], 805 sizeof(*state->refs)); 806 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 807 state->acquired_refs--; 808 return 0; 809 } 810 } 811 return -EINVAL; 812 } 813 814 static int transfer_reference_state(struct bpf_func_state *dst, 815 struct bpf_func_state *src) 816 { 817 int err = realloc_reference_state(dst, src->acquired_refs, false); 818 if (err) 819 return err; 820 err = copy_reference_state(dst, src); 821 if (err) 822 return err; 823 return 0; 824 } 825 826 static void free_func_state(struct bpf_func_state *state) 827 { 828 if (!state) 829 return; 830 kfree(state->refs); 831 kfree(state->stack); 832 kfree(state); 833 } 834 835 static void clear_jmp_history(struct bpf_verifier_state *state) 836 { 837 kfree(state->jmp_history); 838 state->jmp_history = NULL; 839 state->jmp_history_cnt = 0; 840 } 841 842 static void free_verifier_state(struct bpf_verifier_state *state, 843 bool free_self) 844 { 845 int i; 846 847 for (i = 0; i <= state->curframe; i++) { 848 free_func_state(state->frame[i]); 849 state->frame[i] = NULL; 850 } 851 clear_jmp_history(state); 852 if (free_self) 853 kfree(state); 854 } 855 856 /* copy verifier state from src to dst growing dst stack space 857 * when necessary to accommodate larger src stack 858 */ 859 static int copy_func_state(struct bpf_func_state *dst, 860 const struct bpf_func_state *src) 861 { 862 int err; 863 864 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 865 false); 866 if (err) 867 return err; 868 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 869 err = copy_reference_state(dst, src); 870 if (err) 871 return err; 872 return copy_stack_state(dst, src); 873 } 874 875 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 876 const struct bpf_verifier_state *src) 877 { 878 struct bpf_func_state *dst; 879 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 880 int i, err; 881 882 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 883 kfree(dst_state->jmp_history); 884 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 885 if (!dst_state->jmp_history) 886 return -ENOMEM; 887 } 888 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 889 dst_state->jmp_history_cnt = src->jmp_history_cnt; 890 891 /* if dst has more stack frames then src frame, free them */ 892 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 893 free_func_state(dst_state->frame[i]); 894 dst_state->frame[i] = NULL; 895 } 896 dst_state->speculative = src->speculative; 897 dst_state->curframe = src->curframe; 898 dst_state->active_spin_lock = src->active_spin_lock; 899 dst_state->branches = src->branches; 900 dst_state->parent = src->parent; 901 dst_state->first_insn_idx = src->first_insn_idx; 902 dst_state->last_insn_idx = src->last_insn_idx; 903 for (i = 0; i <= src->curframe; i++) { 904 dst = dst_state->frame[i]; 905 if (!dst) { 906 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 907 if (!dst) 908 return -ENOMEM; 909 dst_state->frame[i] = dst; 910 } 911 err = copy_func_state(dst, src->frame[i]); 912 if (err) 913 return err; 914 } 915 return 0; 916 } 917 918 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 919 { 920 while (st) { 921 u32 br = --st->branches; 922 923 /* WARN_ON(br > 1) technically makes sense here, 924 * but see comment in push_stack(), hence: 925 */ 926 WARN_ONCE((int)br < 0, 927 "BUG update_branch_counts:branches_to_explore=%d\n", 928 br); 929 if (br) 930 break; 931 st = st->parent; 932 } 933 } 934 935 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 936 int *insn_idx, bool pop_log) 937 { 938 struct bpf_verifier_state *cur = env->cur_state; 939 struct bpf_verifier_stack_elem *elem, *head = env->head; 940 int err; 941 942 if (env->head == NULL) 943 return -ENOENT; 944 945 if (cur) { 946 err = copy_verifier_state(cur, &head->st); 947 if (err) 948 return err; 949 } 950 if (pop_log) 951 bpf_vlog_reset(&env->log, head->log_pos); 952 if (insn_idx) 953 *insn_idx = head->insn_idx; 954 if (prev_insn_idx) 955 *prev_insn_idx = head->prev_insn_idx; 956 elem = head->next; 957 free_verifier_state(&head->st, false); 958 kfree(head); 959 env->head = elem; 960 env->stack_size--; 961 return 0; 962 } 963 964 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 965 int insn_idx, int prev_insn_idx, 966 bool speculative) 967 { 968 struct bpf_verifier_state *cur = env->cur_state; 969 struct bpf_verifier_stack_elem *elem; 970 int err; 971 972 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 973 if (!elem) 974 goto err; 975 976 elem->insn_idx = insn_idx; 977 elem->prev_insn_idx = prev_insn_idx; 978 elem->next = env->head; 979 elem->log_pos = env->log.len_used; 980 env->head = elem; 981 env->stack_size++; 982 err = copy_verifier_state(&elem->st, cur); 983 if (err) 984 goto err; 985 elem->st.speculative |= speculative; 986 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 987 verbose(env, "The sequence of %d jumps is too complex.\n", 988 env->stack_size); 989 goto err; 990 } 991 if (elem->st.parent) { 992 ++elem->st.parent->branches; 993 /* WARN_ON(branches > 2) technically makes sense here, 994 * but 995 * 1. speculative states will bump 'branches' for non-branch 996 * instructions 997 * 2. is_state_visited() heuristics may decide not to create 998 * a new state for a sequence of branches and all such current 999 * and cloned states will be pointing to a single parent state 1000 * which might have large 'branches' count. 1001 */ 1002 } 1003 return &elem->st; 1004 err: 1005 free_verifier_state(env->cur_state, true); 1006 env->cur_state = NULL; 1007 /* pop all elements and return */ 1008 while (!pop_stack(env, NULL, NULL, false)); 1009 return NULL; 1010 } 1011 1012 #define CALLER_SAVED_REGS 6 1013 static const int caller_saved[CALLER_SAVED_REGS] = { 1014 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1015 }; 1016 1017 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1018 struct bpf_reg_state *reg); 1019 1020 /* This helper doesn't clear reg->id */ 1021 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1022 { 1023 reg->var_off = tnum_const(imm); 1024 reg->smin_value = (s64)imm; 1025 reg->smax_value = (s64)imm; 1026 reg->umin_value = imm; 1027 reg->umax_value = imm; 1028 1029 reg->s32_min_value = (s32)imm; 1030 reg->s32_max_value = (s32)imm; 1031 reg->u32_min_value = (u32)imm; 1032 reg->u32_max_value = (u32)imm; 1033 } 1034 1035 /* Mark the unknown part of a register (variable offset or scalar value) as 1036 * known to have the value @imm. 1037 */ 1038 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1039 { 1040 /* Clear id, off, and union(map_ptr, range) */ 1041 memset(((u8 *)reg) + sizeof(reg->type), 0, 1042 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1043 ___mark_reg_known(reg, imm); 1044 } 1045 1046 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1047 { 1048 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1049 reg->s32_min_value = (s32)imm; 1050 reg->s32_max_value = (s32)imm; 1051 reg->u32_min_value = (u32)imm; 1052 reg->u32_max_value = (u32)imm; 1053 } 1054 1055 /* Mark the 'variable offset' part of a register as zero. This should be 1056 * used only on registers holding a pointer type. 1057 */ 1058 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1059 { 1060 __mark_reg_known(reg, 0); 1061 } 1062 1063 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1064 { 1065 __mark_reg_known(reg, 0); 1066 reg->type = SCALAR_VALUE; 1067 } 1068 1069 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1070 struct bpf_reg_state *regs, u32 regno) 1071 { 1072 if (WARN_ON(regno >= MAX_BPF_REG)) { 1073 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1074 /* Something bad happened, let's kill all regs */ 1075 for (regno = 0; regno < MAX_BPF_REG; regno++) 1076 __mark_reg_not_init(env, regs + regno); 1077 return; 1078 } 1079 __mark_reg_known_zero(regs + regno); 1080 } 1081 1082 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1083 { 1084 switch (reg->type) { 1085 case PTR_TO_MAP_VALUE_OR_NULL: { 1086 const struct bpf_map *map = reg->map_ptr; 1087 1088 if (map->inner_map_meta) { 1089 reg->type = CONST_PTR_TO_MAP; 1090 reg->map_ptr = map->inner_map_meta; 1091 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1092 reg->type = PTR_TO_XDP_SOCK; 1093 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1094 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1095 reg->type = PTR_TO_SOCKET; 1096 } else { 1097 reg->type = PTR_TO_MAP_VALUE; 1098 } 1099 break; 1100 } 1101 case PTR_TO_SOCKET_OR_NULL: 1102 reg->type = PTR_TO_SOCKET; 1103 break; 1104 case PTR_TO_SOCK_COMMON_OR_NULL: 1105 reg->type = PTR_TO_SOCK_COMMON; 1106 break; 1107 case PTR_TO_TCP_SOCK_OR_NULL: 1108 reg->type = PTR_TO_TCP_SOCK; 1109 break; 1110 case PTR_TO_BTF_ID_OR_NULL: 1111 reg->type = PTR_TO_BTF_ID; 1112 break; 1113 case PTR_TO_MEM_OR_NULL: 1114 reg->type = PTR_TO_MEM; 1115 break; 1116 case PTR_TO_RDONLY_BUF_OR_NULL: 1117 reg->type = PTR_TO_RDONLY_BUF; 1118 break; 1119 case PTR_TO_RDWR_BUF_OR_NULL: 1120 reg->type = PTR_TO_RDWR_BUF; 1121 break; 1122 default: 1123 WARN_ON("unknown nullable register type"); 1124 } 1125 } 1126 1127 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1128 { 1129 return type_is_pkt_pointer(reg->type); 1130 } 1131 1132 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1133 { 1134 return reg_is_pkt_pointer(reg) || 1135 reg->type == PTR_TO_PACKET_END; 1136 } 1137 1138 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1139 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1140 enum bpf_reg_type which) 1141 { 1142 /* The register can already have a range from prior markings. 1143 * This is fine as long as it hasn't been advanced from its 1144 * origin. 1145 */ 1146 return reg->type == which && 1147 reg->id == 0 && 1148 reg->off == 0 && 1149 tnum_equals_const(reg->var_off, 0); 1150 } 1151 1152 /* Reset the min/max bounds of a register */ 1153 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1154 { 1155 reg->smin_value = S64_MIN; 1156 reg->smax_value = S64_MAX; 1157 reg->umin_value = 0; 1158 reg->umax_value = U64_MAX; 1159 1160 reg->s32_min_value = S32_MIN; 1161 reg->s32_max_value = S32_MAX; 1162 reg->u32_min_value = 0; 1163 reg->u32_max_value = U32_MAX; 1164 } 1165 1166 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1167 { 1168 reg->smin_value = S64_MIN; 1169 reg->smax_value = S64_MAX; 1170 reg->umin_value = 0; 1171 reg->umax_value = U64_MAX; 1172 } 1173 1174 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1175 { 1176 reg->s32_min_value = S32_MIN; 1177 reg->s32_max_value = S32_MAX; 1178 reg->u32_min_value = 0; 1179 reg->u32_max_value = U32_MAX; 1180 } 1181 1182 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1183 { 1184 struct tnum var32_off = tnum_subreg(reg->var_off); 1185 1186 /* min signed is max(sign bit) | min(other bits) */ 1187 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1188 var32_off.value | (var32_off.mask & S32_MIN)); 1189 /* max signed is min(sign bit) | max(other bits) */ 1190 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1191 var32_off.value | (var32_off.mask & S32_MAX)); 1192 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1193 reg->u32_max_value = min(reg->u32_max_value, 1194 (u32)(var32_off.value | var32_off.mask)); 1195 } 1196 1197 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1198 { 1199 /* min signed is max(sign bit) | min(other bits) */ 1200 reg->smin_value = max_t(s64, reg->smin_value, 1201 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1202 /* max signed is min(sign bit) | max(other bits) */ 1203 reg->smax_value = min_t(s64, reg->smax_value, 1204 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1205 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1206 reg->umax_value = min(reg->umax_value, 1207 reg->var_off.value | reg->var_off.mask); 1208 } 1209 1210 static void __update_reg_bounds(struct bpf_reg_state *reg) 1211 { 1212 __update_reg32_bounds(reg); 1213 __update_reg64_bounds(reg); 1214 } 1215 1216 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1217 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1218 { 1219 /* Learn sign from signed bounds. 1220 * If we cannot cross the sign boundary, then signed and unsigned bounds 1221 * are the same, so combine. This works even in the negative case, e.g. 1222 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1223 */ 1224 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1225 reg->s32_min_value = reg->u32_min_value = 1226 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1227 reg->s32_max_value = reg->u32_max_value = 1228 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1229 return; 1230 } 1231 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1232 * boundary, so we must be careful. 1233 */ 1234 if ((s32)reg->u32_max_value >= 0) { 1235 /* Positive. We can't learn anything from the smin, but smax 1236 * is positive, hence safe. 1237 */ 1238 reg->s32_min_value = reg->u32_min_value; 1239 reg->s32_max_value = reg->u32_max_value = 1240 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1241 } else if ((s32)reg->u32_min_value < 0) { 1242 /* Negative. We can't learn anything from the smax, but smin 1243 * is negative, hence safe. 1244 */ 1245 reg->s32_min_value = reg->u32_min_value = 1246 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1247 reg->s32_max_value = reg->u32_max_value; 1248 } 1249 } 1250 1251 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1252 { 1253 /* Learn sign from signed bounds. 1254 * If we cannot cross the sign boundary, then signed and unsigned bounds 1255 * are the same, so combine. This works even in the negative case, e.g. 1256 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1257 */ 1258 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1259 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1260 reg->umin_value); 1261 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1262 reg->umax_value); 1263 return; 1264 } 1265 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1266 * boundary, so we must be careful. 1267 */ 1268 if ((s64)reg->umax_value >= 0) { 1269 /* Positive. We can't learn anything from the smin, but smax 1270 * is positive, hence safe. 1271 */ 1272 reg->smin_value = reg->umin_value; 1273 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1274 reg->umax_value); 1275 } else if ((s64)reg->umin_value < 0) { 1276 /* Negative. We can't learn anything from the smax, but smin 1277 * is negative, hence safe. 1278 */ 1279 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1280 reg->umin_value); 1281 reg->smax_value = reg->umax_value; 1282 } 1283 } 1284 1285 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1286 { 1287 __reg32_deduce_bounds(reg); 1288 __reg64_deduce_bounds(reg); 1289 } 1290 1291 /* Attempts to improve var_off based on unsigned min/max information */ 1292 static void __reg_bound_offset(struct bpf_reg_state *reg) 1293 { 1294 struct tnum var64_off = tnum_intersect(reg->var_off, 1295 tnum_range(reg->umin_value, 1296 reg->umax_value)); 1297 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1298 tnum_range(reg->u32_min_value, 1299 reg->u32_max_value)); 1300 1301 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1302 } 1303 1304 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1305 { 1306 reg->umin_value = reg->u32_min_value; 1307 reg->umax_value = reg->u32_max_value; 1308 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1309 * but must be positive otherwise set to worse case bounds 1310 * and refine later from tnum. 1311 */ 1312 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1313 reg->smax_value = reg->s32_max_value; 1314 else 1315 reg->smax_value = U32_MAX; 1316 if (reg->s32_min_value >= 0) 1317 reg->smin_value = reg->s32_min_value; 1318 else 1319 reg->smin_value = 0; 1320 } 1321 1322 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1323 { 1324 /* special case when 64-bit register has upper 32-bit register 1325 * zeroed. Typically happens after zext or <<32, >>32 sequence 1326 * allowing us to use 32-bit bounds directly, 1327 */ 1328 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1329 __reg_assign_32_into_64(reg); 1330 } else { 1331 /* Otherwise the best we can do is push lower 32bit known and 1332 * unknown bits into register (var_off set from jmp logic) 1333 * then learn as much as possible from the 64-bit tnum 1334 * known and unknown bits. The previous smin/smax bounds are 1335 * invalid here because of jmp32 compare so mark them unknown 1336 * so they do not impact tnum bounds calculation. 1337 */ 1338 __mark_reg64_unbounded(reg); 1339 __update_reg_bounds(reg); 1340 } 1341 1342 /* Intersecting with the old var_off might have improved our bounds 1343 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1344 * then new var_off is (0; 0x7f...fc) which improves our umax. 1345 */ 1346 __reg_deduce_bounds(reg); 1347 __reg_bound_offset(reg); 1348 __update_reg_bounds(reg); 1349 } 1350 1351 static bool __reg64_bound_s32(s64 a) 1352 { 1353 return a > S32_MIN && a < S32_MAX; 1354 } 1355 1356 static bool __reg64_bound_u32(u64 a) 1357 { 1358 if (a > U32_MIN && a < U32_MAX) 1359 return true; 1360 return false; 1361 } 1362 1363 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1364 { 1365 __mark_reg32_unbounded(reg); 1366 1367 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1368 reg->s32_min_value = (s32)reg->smin_value; 1369 reg->s32_max_value = (s32)reg->smax_value; 1370 } 1371 if (__reg64_bound_u32(reg->umin_value)) 1372 reg->u32_min_value = (u32)reg->umin_value; 1373 if (__reg64_bound_u32(reg->umax_value)) 1374 reg->u32_max_value = (u32)reg->umax_value; 1375 1376 /* Intersecting with the old var_off might have improved our bounds 1377 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1378 * then new var_off is (0; 0x7f...fc) which improves our umax. 1379 */ 1380 __reg_deduce_bounds(reg); 1381 __reg_bound_offset(reg); 1382 __update_reg_bounds(reg); 1383 } 1384 1385 /* Mark a register as having a completely unknown (scalar) value. */ 1386 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1387 struct bpf_reg_state *reg) 1388 { 1389 /* 1390 * Clear type, id, off, and union(map_ptr, range) and 1391 * padding between 'type' and union 1392 */ 1393 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1394 reg->type = SCALAR_VALUE; 1395 reg->var_off = tnum_unknown; 1396 reg->frameno = 0; 1397 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1398 __mark_reg_unbounded(reg); 1399 } 1400 1401 static void mark_reg_unknown(struct bpf_verifier_env *env, 1402 struct bpf_reg_state *regs, u32 regno) 1403 { 1404 if (WARN_ON(regno >= MAX_BPF_REG)) { 1405 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1406 /* Something bad happened, let's kill all regs except FP */ 1407 for (regno = 0; regno < BPF_REG_FP; regno++) 1408 __mark_reg_not_init(env, regs + regno); 1409 return; 1410 } 1411 __mark_reg_unknown(env, regs + regno); 1412 } 1413 1414 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1415 struct bpf_reg_state *reg) 1416 { 1417 __mark_reg_unknown(env, reg); 1418 reg->type = NOT_INIT; 1419 } 1420 1421 static void mark_reg_not_init(struct bpf_verifier_env *env, 1422 struct bpf_reg_state *regs, u32 regno) 1423 { 1424 if (WARN_ON(regno >= MAX_BPF_REG)) { 1425 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1426 /* Something bad happened, let's kill all regs except FP */ 1427 for (regno = 0; regno < BPF_REG_FP; regno++) 1428 __mark_reg_not_init(env, regs + regno); 1429 return; 1430 } 1431 __mark_reg_not_init(env, regs + regno); 1432 } 1433 1434 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1435 struct bpf_reg_state *regs, u32 regno, 1436 enum bpf_reg_type reg_type, 1437 struct btf *btf, u32 btf_id) 1438 { 1439 if (reg_type == SCALAR_VALUE) { 1440 mark_reg_unknown(env, regs, regno); 1441 return; 1442 } 1443 mark_reg_known_zero(env, regs, regno); 1444 regs[regno].type = PTR_TO_BTF_ID; 1445 regs[regno].btf = btf; 1446 regs[regno].btf_id = btf_id; 1447 } 1448 1449 #define DEF_NOT_SUBREG (0) 1450 static void init_reg_state(struct bpf_verifier_env *env, 1451 struct bpf_func_state *state) 1452 { 1453 struct bpf_reg_state *regs = state->regs; 1454 int i; 1455 1456 for (i = 0; i < MAX_BPF_REG; i++) { 1457 mark_reg_not_init(env, regs, i); 1458 regs[i].live = REG_LIVE_NONE; 1459 regs[i].parent = NULL; 1460 regs[i].subreg_def = DEF_NOT_SUBREG; 1461 } 1462 1463 /* frame pointer */ 1464 regs[BPF_REG_FP].type = PTR_TO_STACK; 1465 mark_reg_known_zero(env, regs, BPF_REG_FP); 1466 regs[BPF_REG_FP].frameno = state->frameno; 1467 } 1468 1469 #define BPF_MAIN_FUNC (-1) 1470 static void init_func_state(struct bpf_verifier_env *env, 1471 struct bpf_func_state *state, 1472 int callsite, int frameno, int subprogno) 1473 { 1474 state->callsite = callsite; 1475 state->frameno = frameno; 1476 state->subprogno = subprogno; 1477 init_reg_state(env, state); 1478 } 1479 1480 enum reg_arg_type { 1481 SRC_OP, /* register is used as source operand */ 1482 DST_OP, /* register is used as destination operand */ 1483 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1484 }; 1485 1486 static int cmp_subprogs(const void *a, const void *b) 1487 { 1488 return ((struct bpf_subprog_info *)a)->start - 1489 ((struct bpf_subprog_info *)b)->start; 1490 } 1491 1492 static int find_subprog(struct bpf_verifier_env *env, int off) 1493 { 1494 struct bpf_subprog_info *p; 1495 1496 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1497 sizeof(env->subprog_info[0]), cmp_subprogs); 1498 if (!p) 1499 return -ENOENT; 1500 return p - env->subprog_info; 1501 1502 } 1503 1504 static int add_subprog(struct bpf_verifier_env *env, int off) 1505 { 1506 int insn_cnt = env->prog->len; 1507 int ret; 1508 1509 if (off >= insn_cnt || off < 0) { 1510 verbose(env, "call to invalid destination\n"); 1511 return -EINVAL; 1512 } 1513 ret = find_subprog(env, off); 1514 if (ret >= 0) 1515 return 0; 1516 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1517 verbose(env, "too many subprograms\n"); 1518 return -E2BIG; 1519 } 1520 env->subprog_info[env->subprog_cnt++].start = off; 1521 sort(env->subprog_info, env->subprog_cnt, 1522 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1523 return 0; 1524 } 1525 1526 static int check_subprogs(struct bpf_verifier_env *env) 1527 { 1528 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1529 struct bpf_subprog_info *subprog = env->subprog_info; 1530 struct bpf_insn *insn = env->prog->insnsi; 1531 int insn_cnt = env->prog->len; 1532 1533 /* Add entry function. */ 1534 ret = add_subprog(env, 0); 1535 if (ret < 0) 1536 return ret; 1537 1538 /* determine subprog starts. The end is one before the next starts */ 1539 for (i = 0; i < insn_cnt; i++) { 1540 if (!bpf_pseudo_call(insn + i)) 1541 continue; 1542 if (!env->bpf_capable) { 1543 verbose(env, 1544 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1545 return -EPERM; 1546 } 1547 ret = add_subprog(env, i + insn[i].imm + 1); 1548 if (ret < 0) 1549 return ret; 1550 } 1551 1552 /* Add a fake 'exit' subprog which could simplify subprog iteration 1553 * logic. 'subprog_cnt' should not be increased. 1554 */ 1555 subprog[env->subprog_cnt].start = insn_cnt; 1556 1557 if (env->log.level & BPF_LOG_LEVEL2) 1558 for (i = 0; i < env->subprog_cnt; i++) 1559 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1560 1561 /* now check that all jumps are within the same subprog */ 1562 subprog_start = subprog[cur_subprog].start; 1563 subprog_end = subprog[cur_subprog + 1].start; 1564 for (i = 0; i < insn_cnt; i++) { 1565 u8 code = insn[i].code; 1566 1567 if (code == (BPF_JMP | BPF_CALL) && 1568 insn[i].imm == BPF_FUNC_tail_call && 1569 insn[i].src_reg != BPF_PSEUDO_CALL) 1570 subprog[cur_subprog].has_tail_call = true; 1571 if (BPF_CLASS(code) == BPF_LD && 1572 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1573 subprog[cur_subprog].has_ld_abs = true; 1574 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1575 goto next; 1576 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1577 goto next; 1578 off = i + insn[i].off + 1; 1579 if (off < subprog_start || off >= subprog_end) { 1580 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1581 return -EINVAL; 1582 } 1583 next: 1584 if (i == subprog_end - 1) { 1585 /* to avoid fall-through from one subprog into another 1586 * the last insn of the subprog should be either exit 1587 * or unconditional jump back 1588 */ 1589 if (code != (BPF_JMP | BPF_EXIT) && 1590 code != (BPF_JMP | BPF_JA)) { 1591 verbose(env, "last insn is not an exit or jmp\n"); 1592 return -EINVAL; 1593 } 1594 subprog_start = subprog_end; 1595 cur_subprog++; 1596 if (cur_subprog < env->subprog_cnt) 1597 subprog_end = subprog[cur_subprog + 1].start; 1598 } 1599 } 1600 return 0; 1601 } 1602 1603 /* Parentage chain of this register (or stack slot) should take care of all 1604 * issues like callee-saved registers, stack slot allocation time, etc. 1605 */ 1606 static int mark_reg_read(struct bpf_verifier_env *env, 1607 const struct bpf_reg_state *state, 1608 struct bpf_reg_state *parent, u8 flag) 1609 { 1610 bool writes = parent == state->parent; /* Observe write marks */ 1611 int cnt = 0; 1612 1613 while (parent) { 1614 /* if read wasn't screened by an earlier write ... */ 1615 if (writes && state->live & REG_LIVE_WRITTEN) 1616 break; 1617 if (parent->live & REG_LIVE_DONE) { 1618 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1619 reg_type_str[parent->type], 1620 parent->var_off.value, parent->off); 1621 return -EFAULT; 1622 } 1623 /* The first condition is more likely to be true than the 1624 * second, checked it first. 1625 */ 1626 if ((parent->live & REG_LIVE_READ) == flag || 1627 parent->live & REG_LIVE_READ64) 1628 /* The parentage chain never changes and 1629 * this parent was already marked as LIVE_READ. 1630 * There is no need to keep walking the chain again and 1631 * keep re-marking all parents as LIVE_READ. 1632 * This case happens when the same register is read 1633 * multiple times without writes into it in-between. 1634 * Also, if parent has the stronger REG_LIVE_READ64 set, 1635 * then no need to set the weak REG_LIVE_READ32. 1636 */ 1637 break; 1638 /* ... then we depend on parent's value */ 1639 parent->live |= flag; 1640 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1641 if (flag == REG_LIVE_READ64) 1642 parent->live &= ~REG_LIVE_READ32; 1643 state = parent; 1644 parent = state->parent; 1645 writes = true; 1646 cnt++; 1647 } 1648 1649 if (env->longest_mark_read_walk < cnt) 1650 env->longest_mark_read_walk = cnt; 1651 return 0; 1652 } 1653 1654 /* This function is supposed to be used by the following 32-bit optimization 1655 * code only. It returns TRUE if the source or destination register operates 1656 * on 64-bit, otherwise return FALSE. 1657 */ 1658 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1659 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1660 { 1661 u8 code, class, op; 1662 1663 code = insn->code; 1664 class = BPF_CLASS(code); 1665 op = BPF_OP(code); 1666 if (class == BPF_JMP) { 1667 /* BPF_EXIT for "main" will reach here. Return TRUE 1668 * conservatively. 1669 */ 1670 if (op == BPF_EXIT) 1671 return true; 1672 if (op == BPF_CALL) { 1673 /* BPF to BPF call will reach here because of marking 1674 * caller saved clobber with DST_OP_NO_MARK for which we 1675 * don't care the register def because they are anyway 1676 * marked as NOT_INIT already. 1677 */ 1678 if (insn->src_reg == BPF_PSEUDO_CALL) 1679 return false; 1680 /* Helper call will reach here because of arg type 1681 * check, conservatively return TRUE. 1682 */ 1683 if (t == SRC_OP) 1684 return true; 1685 1686 return false; 1687 } 1688 } 1689 1690 if (class == BPF_ALU64 || class == BPF_JMP || 1691 /* BPF_END always use BPF_ALU class. */ 1692 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1693 return true; 1694 1695 if (class == BPF_ALU || class == BPF_JMP32) 1696 return false; 1697 1698 if (class == BPF_LDX) { 1699 if (t != SRC_OP) 1700 return BPF_SIZE(code) == BPF_DW; 1701 /* LDX source must be ptr. */ 1702 return true; 1703 } 1704 1705 if (class == BPF_STX) { 1706 if (reg->type != SCALAR_VALUE) 1707 return true; 1708 return BPF_SIZE(code) == BPF_DW; 1709 } 1710 1711 if (class == BPF_LD) { 1712 u8 mode = BPF_MODE(code); 1713 1714 /* LD_IMM64 */ 1715 if (mode == BPF_IMM) 1716 return true; 1717 1718 /* Both LD_IND and LD_ABS return 32-bit data. */ 1719 if (t != SRC_OP) 1720 return false; 1721 1722 /* Implicit ctx ptr. */ 1723 if (regno == BPF_REG_6) 1724 return true; 1725 1726 /* Explicit source could be any width. */ 1727 return true; 1728 } 1729 1730 if (class == BPF_ST) 1731 /* The only source register for BPF_ST is a ptr. */ 1732 return true; 1733 1734 /* Conservatively return true at default. */ 1735 return true; 1736 } 1737 1738 /* Return TRUE if INSN doesn't have explicit value define. */ 1739 static bool insn_no_def(struct bpf_insn *insn) 1740 { 1741 u8 class = BPF_CLASS(insn->code); 1742 1743 return (class == BPF_JMP || class == BPF_JMP32 || 1744 class == BPF_STX || class == BPF_ST); 1745 } 1746 1747 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1748 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1749 { 1750 if (insn_no_def(insn)) 1751 return false; 1752 1753 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1754 } 1755 1756 static void mark_insn_zext(struct bpf_verifier_env *env, 1757 struct bpf_reg_state *reg) 1758 { 1759 s32 def_idx = reg->subreg_def; 1760 1761 if (def_idx == DEF_NOT_SUBREG) 1762 return; 1763 1764 env->insn_aux_data[def_idx - 1].zext_dst = true; 1765 /* The dst will be zero extended, so won't be sub-register anymore. */ 1766 reg->subreg_def = DEF_NOT_SUBREG; 1767 } 1768 1769 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1770 enum reg_arg_type t) 1771 { 1772 struct bpf_verifier_state *vstate = env->cur_state; 1773 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1774 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1775 struct bpf_reg_state *reg, *regs = state->regs; 1776 bool rw64; 1777 1778 if (regno >= MAX_BPF_REG) { 1779 verbose(env, "R%d is invalid\n", regno); 1780 return -EINVAL; 1781 } 1782 1783 reg = ®s[regno]; 1784 rw64 = is_reg64(env, insn, regno, reg, t); 1785 if (t == SRC_OP) { 1786 /* check whether register used as source operand can be read */ 1787 if (reg->type == NOT_INIT) { 1788 verbose(env, "R%d !read_ok\n", regno); 1789 return -EACCES; 1790 } 1791 /* We don't need to worry about FP liveness because it's read-only */ 1792 if (regno == BPF_REG_FP) 1793 return 0; 1794 1795 if (rw64) 1796 mark_insn_zext(env, reg); 1797 1798 return mark_reg_read(env, reg, reg->parent, 1799 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1800 } else { 1801 /* check whether register used as dest operand can be written to */ 1802 if (regno == BPF_REG_FP) { 1803 verbose(env, "frame pointer is read only\n"); 1804 return -EACCES; 1805 } 1806 reg->live |= REG_LIVE_WRITTEN; 1807 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1808 if (t == DST_OP) 1809 mark_reg_unknown(env, regs, regno); 1810 } 1811 return 0; 1812 } 1813 1814 /* for any branch, call, exit record the history of jmps in the given state */ 1815 static int push_jmp_history(struct bpf_verifier_env *env, 1816 struct bpf_verifier_state *cur) 1817 { 1818 u32 cnt = cur->jmp_history_cnt; 1819 struct bpf_idx_pair *p; 1820 1821 cnt++; 1822 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1823 if (!p) 1824 return -ENOMEM; 1825 p[cnt - 1].idx = env->insn_idx; 1826 p[cnt - 1].prev_idx = env->prev_insn_idx; 1827 cur->jmp_history = p; 1828 cur->jmp_history_cnt = cnt; 1829 return 0; 1830 } 1831 1832 /* Backtrack one insn at a time. If idx is not at the top of recorded 1833 * history then previous instruction came from straight line execution. 1834 */ 1835 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1836 u32 *history) 1837 { 1838 u32 cnt = *history; 1839 1840 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1841 i = st->jmp_history[cnt - 1].prev_idx; 1842 (*history)--; 1843 } else { 1844 i--; 1845 } 1846 return i; 1847 } 1848 1849 /* For given verifier state backtrack_insn() is called from the last insn to 1850 * the first insn. Its purpose is to compute a bitmask of registers and 1851 * stack slots that needs precision in the parent verifier state. 1852 */ 1853 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1854 u32 *reg_mask, u64 *stack_mask) 1855 { 1856 const struct bpf_insn_cbs cbs = { 1857 .cb_print = verbose, 1858 .private_data = env, 1859 }; 1860 struct bpf_insn *insn = env->prog->insnsi + idx; 1861 u8 class = BPF_CLASS(insn->code); 1862 u8 opcode = BPF_OP(insn->code); 1863 u8 mode = BPF_MODE(insn->code); 1864 u32 dreg = 1u << insn->dst_reg; 1865 u32 sreg = 1u << insn->src_reg; 1866 u32 spi; 1867 1868 if (insn->code == 0) 1869 return 0; 1870 if (env->log.level & BPF_LOG_LEVEL) { 1871 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1872 verbose(env, "%d: ", idx); 1873 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1874 } 1875 1876 if (class == BPF_ALU || class == BPF_ALU64) { 1877 if (!(*reg_mask & dreg)) 1878 return 0; 1879 if (opcode == BPF_MOV) { 1880 if (BPF_SRC(insn->code) == BPF_X) { 1881 /* dreg = sreg 1882 * dreg needs precision after this insn 1883 * sreg needs precision before this insn 1884 */ 1885 *reg_mask &= ~dreg; 1886 *reg_mask |= sreg; 1887 } else { 1888 /* dreg = K 1889 * dreg needs precision after this insn. 1890 * Corresponding register is already marked 1891 * as precise=true in this verifier state. 1892 * No further markings in parent are necessary 1893 */ 1894 *reg_mask &= ~dreg; 1895 } 1896 } else { 1897 if (BPF_SRC(insn->code) == BPF_X) { 1898 /* dreg += sreg 1899 * both dreg and sreg need precision 1900 * before this insn 1901 */ 1902 *reg_mask |= sreg; 1903 } /* else dreg += K 1904 * dreg still needs precision before this insn 1905 */ 1906 } 1907 } else if (class == BPF_LDX) { 1908 if (!(*reg_mask & dreg)) 1909 return 0; 1910 *reg_mask &= ~dreg; 1911 1912 /* scalars can only be spilled into stack w/o losing precision. 1913 * Load from any other memory can be zero extended. 1914 * The desire to keep that precision is already indicated 1915 * by 'precise' mark in corresponding register of this state. 1916 * No further tracking necessary. 1917 */ 1918 if (insn->src_reg != BPF_REG_FP) 1919 return 0; 1920 if (BPF_SIZE(insn->code) != BPF_DW) 1921 return 0; 1922 1923 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1924 * that [fp - off] slot contains scalar that needs to be 1925 * tracked with precision 1926 */ 1927 spi = (-insn->off - 1) / BPF_REG_SIZE; 1928 if (spi >= 64) { 1929 verbose(env, "BUG spi %d\n", spi); 1930 WARN_ONCE(1, "verifier backtracking bug"); 1931 return -EFAULT; 1932 } 1933 *stack_mask |= 1ull << spi; 1934 } else if (class == BPF_STX || class == BPF_ST) { 1935 if (*reg_mask & dreg) 1936 /* stx & st shouldn't be using _scalar_ dst_reg 1937 * to access memory. It means backtracking 1938 * encountered a case of pointer subtraction. 1939 */ 1940 return -ENOTSUPP; 1941 /* scalars can only be spilled into stack */ 1942 if (insn->dst_reg != BPF_REG_FP) 1943 return 0; 1944 if (BPF_SIZE(insn->code) != BPF_DW) 1945 return 0; 1946 spi = (-insn->off - 1) / BPF_REG_SIZE; 1947 if (spi >= 64) { 1948 verbose(env, "BUG spi %d\n", spi); 1949 WARN_ONCE(1, "verifier backtracking bug"); 1950 return -EFAULT; 1951 } 1952 if (!(*stack_mask & (1ull << spi))) 1953 return 0; 1954 *stack_mask &= ~(1ull << spi); 1955 if (class == BPF_STX) 1956 *reg_mask |= sreg; 1957 } else if (class == BPF_JMP || class == BPF_JMP32) { 1958 if (opcode == BPF_CALL) { 1959 if (insn->src_reg == BPF_PSEUDO_CALL) 1960 return -ENOTSUPP; 1961 /* regular helper call sets R0 */ 1962 *reg_mask &= ~1; 1963 if (*reg_mask & 0x3f) { 1964 /* if backtracing was looking for registers R1-R5 1965 * they should have been found already. 1966 */ 1967 verbose(env, "BUG regs %x\n", *reg_mask); 1968 WARN_ONCE(1, "verifier backtracking bug"); 1969 return -EFAULT; 1970 } 1971 } else if (opcode == BPF_EXIT) { 1972 return -ENOTSUPP; 1973 } 1974 } else if (class == BPF_LD) { 1975 if (!(*reg_mask & dreg)) 1976 return 0; 1977 *reg_mask &= ~dreg; 1978 /* It's ld_imm64 or ld_abs or ld_ind. 1979 * For ld_imm64 no further tracking of precision 1980 * into parent is necessary 1981 */ 1982 if (mode == BPF_IND || mode == BPF_ABS) 1983 /* to be analyzed */ 1984 return -ENOTSUPP; 1985 } 1986 return 0; 1987 } 1988 1989 /* the scalar precision tracking algorithm: 1990 * . at the start all registers have precise=false. 1991 * . scalar ranges are tracked as normal through alu and jmp insns. 1992 * . once precise value of the scalar register is used in: 1993 * . ptr + scalar alu 1994 * . if (scalar cond K|scalar) 1995 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1996 * backtrack through the verifier states and mark all registers and 1997 * stack slots with spilled constants that these scalar regisers 1998 * should be precise. 1999 * . during state pruning two registers (or spilled stack slots) 2000 * are equivalent if both are not precise. 2001 * 2002 * Note the verifier cannot simply walk register parentage chain, 2003 * since many different registers and stack slots could have been 2004 * used to compute single precise scalar. 2005 * 2006 * The approach of starting with precise=true for all registers and then 2007 * backtrack to mark a register as not precise when the verifier detects 2008 * that program doesn't care about specific value (e.g., when helper 2009 * takes register as ARG_ANYTHING parameter) is not safe. 2010 * 2011 * It's ok to walk single parentage chain of the verifier states. 2012 * It's possible that this backtracking will go all the way till 1st insn. 2013 * All other branches will be explored for needing precision later. 2014 * 2015 * The backtracking needs to deal with cases like: 2016 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2017 * r9 -= r8 2018 * r5 = r9 2019 * if r5 > 0x79f goto pc+7 2020 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2021 * r5 += 1 2022 * ... 2023 * call bpf_perf_event_output#25 2024 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2025 * 2026 * and this case: 2027 * r6 = 1 2028 * call foo // uses callee's r6 inside to compute r0 2029 * r0 += r6 2030 * if r0 == 0 goto 2031 * 2032 * to track above reg_mask/stack_mask needs to be independent for each frame. 2033 * 2034 * Also if parent's curframe > frame where backtracking started, 2035 * the verifier need to mark registers in both frames, otherwise callees 2036 * may incorrectly prune callers. This is similar to 2037 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2038 * 2039 * For now backtracking falls back into conservative marking. 2040 */ 2041 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2042 struct bpf_verifier_state *st) 2043 { 2044 struct bpf_func_state *func; 2045 struct bpf_reg_state *reg; 2046 int i, j; 2047 2048 /* big hammer: mark all scalars precise in this path. 2049 * pop_stack may still get !precise scalars. 2050 */ 2051 for (; st; st = st->parent) 2052 for (i = 0; i <= st->curframe; i++) { 2053 func = st->frame[i]; 2054 for (j = 0; j < BPF_REG_FP; j++) { 2055 reg = &func->regs[j]; 2056 if (reg->type != SCALAR_VALUE) 2057 continue; 2058 reg->precise = true; 2059 } 2060 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2061 if (func->stack[j].slot_type[0] != STACK_SPILL) 2062 continue; 2063 reg = &func->stack[j].spilled_ptr; 2064 if (reg->type != SCALAR_VALUE) 2065 continue; 2066 reg->precise = true; 2067 } 2068 } 2069 } 2070 2071 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2072 int spi) 2073 { 2074 struct bpf_verifier_state *st = env->cur_state; 2075 int first_idx = st->first_insn_idx; 2076 int last_idx = env->insn_idx; 2077 struct bpf_func_state *func; 2078 struct bpf_reg_state *reg; 2079 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2080 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2081 bool skip_first = true; 2082 bool new_marks = false; 2083 int i, err; 2084 2085 if (!env->bpf_capable) 2086 return 0; 2087 2088 func = st->frame[st->curframe]; 2089 if (regno >= 0) { 2090 reg = &func->regs[regno]; 2091 if (reg->type != SCALAR_VALUE) { 2092 WARN_ONCE(1, "backtracing misuse"); 2093 return -EFAULT; 2094 } 2095 if (!reg->precise) 2096 new_marks = true; 2097 else 2098 reg_mask = 0; 2099 reg->precise = true; 2100 } 2101 2102 while (spi >= 0) { 2103 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2104 stack_mask = 0; 2105 break; 2106 } 2107 reg = &func->stack[spi].spilled_ptr; 2108 if (reg->type != SCALAR_VALUE) { 2109 stack_mask = 0; 2110 break; 2111 } 2112 if (!reg->precise) 2113 new_marks = true; 2114 else 2115 stack_mask = 0; 2116 reg->precise = true; 2117 break; 2118 } 2119 2120 if (!new_marks) 2121 return 0; 2122 if (!reg_mask && !stack_mask) 2123 return 0; 2124 for (;;) { 2125 DECLARE_BITMAP(mask, 64); 2126 u32 history = st->jmp_history_cnt; 2127 2128 if (env->log.level & BPF_LOG_LEVEL) 2129 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2130 for (i = last_idx;;) { 2131 if (skip_first) { 2132 err = 0; 2133 skip_first = false; 2134 } else { 2135 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2136 } 2137 if (err == -ENOTSUPP) { 2138 mark_all_scalars_precise(env, st); 2139 return 0; 2140 } else if (err) { 2141 return err; 2142 } 2143 if (!reg_mask && !stack_mask) 2144 /* Found assignment(s) into tracked register in this state. 2145 * Since this state is already marked, just return. 2146 * Nothing to be tracked further in the parent state. 2147 */ 2148 return 0; 2149 if (i == first_idx) 2150 break; 2151 i = get_prev_insn_idx(st, i, &history); 2152 if (i >= env->prog->len) { 2153 /* This can happen if backtracking reached insn 0 2154 * and there are still reg_mask or stack_mask 2155 * to backtrack. 2156 * It means the backtracking missed the spot where 2157 * particular register was initialized with a constant. 2158 */ 2159 verbose(env, "BUG backtracking idx %d\n", i); 2160 WARN_ONCE(1, "verifier backtracking bug"); 2161 return -EFAULT; 2162 } 2163 } 2164 st = st->parent; 2165 if (!st) 2166 break; 2167 2168 new_marks = false; 2169 func = st->frame[st->curframe]; 2170 bitmap_from_u64(mask, reg_mask); 2171 for_each_set_bit(i, mask, 32) { 2172 reg = &func->regs[i]; 2173 if (reg->type != SCALAR_VALUE) { 2174 reg_mask &= ~(1u << i); 2175 continue; 2176 } 2177 if (!reg->precise) 2178 new_marks = true; 2179 reg->precise = true; 2180 } 2181 2182 bitmap_from_u64(mask, stack_mask); 2183 for_each_set_bit(i, mask, 64) { 2184 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2185 /* the sequence of instructions: 2186 * 2: (bf) r3 = r10 2187 * 3: (7b) *(u64 *)(r3 -8) = r0 2188 * 4: (79) r4 = *(u64 *)(r10 -8) 2189 * doesn't contain jmps. It's backtracked 2190 * as a single block. 2191 * During backtracking insn 3 is not recognized as 2192 * stack access, so at the end of backtracking 2193 * stack slot fp-8 is still marked in stack_mask. 2194 * However the parent state may not have accessed 2195 * fp-8 and it's "unallocated" stack space. 2196 * In such case fallback to conservative. 2197 */ 2198 mark_all_scalars_precise(env, st); 2199 return 0; 2200 } 2201 2202 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2203 stack_mask &= ~(1ull << i); 2204 continue; 2205 } 2206 reg = &func->stack[i].spilled_ptr; 2207 if (reg->type != SCALAR_VALUE) { 2208 stack_mask &= ~(1ull << i); 2209 continue; 2210 } 2211 if (!reg->precise) 2212 new_marks = true; 2213 reg->precise = true; 2214 } 2215 if (env->log.level & BPF_LOG_LEVEL) { 2216 print_verifier_state(env, func); 2217 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2218 new_marks ? "didn't have" : "already had", 2219 reg_mask, stack_mask); 2220 } 2221 2222 if (!reg_mask && !stack_mask) 2223 break; 2224 if (!new_marks) 2225 break; 2226 2227 last_idx = st->last_insn_idx; 2228 first_idx = st->first_insn_idx; 2229 } 2230 return 0; 2231 } 2232 2233 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2234 { 2235 return __mark_chain_precision(env, regno, -1); 2236 } 2237 2238 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2239 { 2240 return __mark_chain_precision(env, -1, spi); 2241 } 2242 2243 static bool is_spillable_regtype(enum bpf_reg_type type) 2244 { 2245 switch (type) { 2246 case PTR_TO_MAP_VALUE: 2247 case PTR_TO_MAP_VALUE_OR_NULL: 2248 case PTR_TO_STACK: 2249 case PTR_TO_CTX: 2250 case PTR_TO_PACKET: 2251 case PTR_TO_PACKET_META: 2252 case PTR_TO_PACKET_END: 2253 case PTR_TO_FLOW_KEYS: 2254 case CONST_PTR_TO_MAP: 2255 case PTR_TO_SOCKET: 2256 case PTR_TO_SOCKET_OR_NULL: 2257 case PTR_TO_SOCK_COMMON: 2258 case PTR_TO_SOCK_COMMON_OR_NULL: 2259 case PTR_TO_TCP_SOCK: 2260 case PTR_TO_TCP_SOCK_OR_NULL: 2261 case PTR_TO_XDP_SOCK: 2262 case PTR_TO_BTF_ID: 2263 case PTR_TO_BTF_ID_OR_NULL: 2264 case PTR_TO_RDONLY_BUF: 2265 case PTR_TO_RDONLY_BUF_OR_NULL: 2266 case PTR_TO_RDWR_BUF: 2267 case PTR_TO_RDWR_BUF_OR_NULL: 2268 case PTR_TO_PERCPU_BTF_ID: 2269 case PTR_TO_MEM: 2270 case PTR_TO_MEM_OR_NULL: 2271 return true; 2272 default: 2273 return false; 2274 } 2275 } 2276 2277 /* Does this register contain a constant zero? */ 2278 static bool register_is_null(struct bpf_reg_state *reg) 2279 { 2280 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2281 } 2282 2283 static bool register_is_const(struct bpf_reg_state *reg) 2284 { 2285 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2286 } 2287 2288 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2289 { 2290 return tnum_is_unknown(reg->var_off) && 2291 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2292 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2293 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2294 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2295 } 2296 2297 static bool register_is_bounded(struct bpf_reg_state *reg) 2298 { 2299 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2300 } 2301 2302 static bool __is_pointer_value(bool allow_ptr_leaks, 2303 const struct bpf_reg_state *reg) 2304 { 2305 if (allow_ptr_leaks) 2306 return false; 2307 2308 return reg->type != SCALAR_VALUE; 2309 } 2310 2311 static void save_register_state(struct bpf_func_state *state, 2312 int spi, struct bpf_reg_state *reg) 2313 { 2314 int i; 2315 2316 state->stack[spi].spilled_ptr = *reg; 2317 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2318 2319 for (i = 0; i < BPF_REG_SIZE; i++) 2320 state->stack[spi].slot_type[i] = STACK_SPILL; 2321 } 2322 2323 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2324 * stack boundary and alignment are checked in check_mem_access() 2325 */ 2326 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2327 /* stack frame we're writing to */ 2328 struct bpf_func_state *state, 2329 int off, int size, int value_regno, 2330 int insn_idx) 2331 { 2332 struct bpf_func_state *cur; /* state of the current function */ 2333 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2334 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2335 struct bpf_reg_state *reg = NULL; 2336 2337 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2338 state->acquired_refs, true); 2339 if (err) 2340 return err; 2341 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2342 * so it's aligned access and [off, off + size) are within stack limits 2343 */ 2344 if (!env->allow_ptr_leaks && 2345 state->stack[spi].slot_type[0] == STACK_SPILL && 2346 size != BPF_REG_SIZE) { 2347 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2348 return -EACCES; 2349 } 2350 2351 cur = env->cur_state->frame[env->cur_state->curframe]; 2352 if (value_regno >= 0) 2353 reg = &cur->regs[value_regno]; 2354 2355 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2356 !register_is_null(reg) && env->bpf_capable) { 2357 if (dst_reg != BPF_REG_FP) { 2358 /* The backtracking logic can only recognize explicit 2359 * stack slot address like [fp - 8]. Other spill of 2360 * scalar via different register has to be conervative. 2361 * Backtrack from here and mark all registers as precise 2362 * that contributed into 'reg' being a constant. 2363 */ 2364 err = mark_chain_precision(env, value_regno); 2365 if (err) 2366 return err; 2367 } 2368 save_register_state(state, spi, reg); 2369 } else if (reg && is_spillable_regtype(reg->type)) { 2370 /* register containing pointer is being spilled into stack */ 2371 if (size != BPF_REG_SIZE) { 2372 verbose_linfo(env, insn_idx, "; "); 2373 verbose(env, "invalid size of register spill\n"); 2374 return -EACCES; 2375 } 2376 2377 if (state != cur && reg->type == PTR_TO_STACK) { 2378 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2379 return -EINVAL; 2380 } 2381 2382 if (!env->bypass_spec_v4) { 2383 bool sanitize = false; 2384 2385 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2386 register_is_const(&state->stack[spi].spilled_ptr)) 2387 sanitize = true; 2388 for (i = 0; i < BPF_REG_SIZE; i++) 2389 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2390 sanitize = true; 2391 break; 2392 } 2393 if (sanitize) { 2394 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2395 int soff = (-spi - 1) * BPF_REG_SIZE; 2396 2397 /* detected reuse of integer stack slot with a pointer 2398 * which means either llvm is reusing stack slot or 2399 * an attacker is trying to exploit CVE-2018-3639 2400 * (speculative store bypass) 2401 * Have to sanitize that slot with preemptive 2402 * store of zero. 2403 */ 2404 if (*poff && *poff != soff) { 2405 /* disallow programs where single insn stores 2406 * into two different stack slots, since verifier 2407 * cannot sanitize them 2408 */ 2409 verbose(env, 2410 "insn %d cannot access two stack slots fp%d and fp%d", 2411 insn_idx, *poff, soff); 2412 return -EINVAL; 2413 } 2414 *poff = soff; 2415 } 2416 } 2417 save_register_state(state, spi, reg); 2418 } else { 2419 u8 type = STACK_MISC; 2420 2421 /* regular write of data into stack destroys any spilled ptr */ 2422 state->stack[spi].spilled_ptr.type = NOT_INIT; 2423 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2424 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2425 for (i = 0; i < BPF_REG_SIZE; i++) 2426 state->stack[spi].slot_type[i] = STACK_MISC; 2427 2428 /* only mark the slot as written if all 8 bytes were written 2429 * otherwise read propagation may incorrectly stop too soon 2430 * when stack slots are partially written. 2431 * This heuristic means that read propagation will be 2432 * conservative, since it will add reg_live_read marks 2433 * to stack slots all the way to first state when programs 2434 * writes+reads less than 8 bytes 2435 */ 2436 if (size == BPF_REG_SIZE) 2437 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2438 2439 /* when we zero initialize stack slots mark them as such */ 2440 if (reg && register_is_null(reg)) { 2441 /* backtracking doesn't work for STACK_ZERO yet. */ 2442 err = mark_chain_precision(env, value_regno); 2443 if (err) 2444 return err; 2445 type = STACK_ZERO; 2446 } 2447 2448 /* Mark slots affected by this stack write. */ 2449 for (i = 0; i < size; i++) 2450 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2451 type; 2452 } 2453 return 0; 2454 } 2455 2456 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2457 * known to contain a variable offset. 2458 * This function checks whether the write is permitted and conservatively 2459 * tracks the effects of the write, considering that each stack slot in the 2460 * dynamic range is potentially written to. 2461 * 2462 * 'off' includes 'regno->off'. 2463 * 'value_regno' can be -1, meaning that an unknown value is being written to 2464 * the stack. 2465 * 2466 * Spilled pointers in range are not marked as written because we don't know 2467 * what's going to be actually written. This means that read propagation for 2468 * future reads cannot be terminated by this write. 2469 * 2470 * For privileged programs, uninitialized stack slots are considered 2471 * initialized by this write (even though we don't know exactly what offsets 2472 * are going to be written to). The idea is that we don't want the verifier to 2473 * reject future reads that access slots written to through variable offsets. 2474 */ 2475 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2476 /* func where register points to */ 2477 struct bpf_func_state *state, 2478 int ptr_regno, int off, int size, 2479 int value_regno, int insn_idx) 2480 { 2481 struct bpf_func_state *cur; /* state of the current function */ 2482 int min_off, max_off; 2483 int i, err; 2484 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2485 bool writing_zero = false; 2486 /* set if the fact that we're writing a zero is used to let any 2487 * stack slots remain STACK_ZERO 2488 */ 2489 bool zero_used = false; 2490 2491 cur = env->cur_state->frame[env->cur_state->curframe]; 2492 ptr_reg = &cur->regs[ptr_regno]; 2493 min_off = ptr_reg->smin_value + off; 2494 max_off = ptr_reg->smax_value + off + size; 2495 if (value_regno >= 0) 2496 value_reg = &cur->regs[value_regno]; 2497 if (value_reg && register_is_null(value_reg)) 2498 writing_zero = true; 2499 2500 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE), 2501 state->acquired_refs, true); 2502 if (err) 2503 return err; 2504 2505 2506 /* Variable offset writes destroy any spilled pointers in range. */ 2507 for (i = min_off; i < max_off; i++) { 2508 u8 new_type, *stype; 2509 int slot, spi; 2510 2511 slot = -i - 1; 2512 spi = slot / BPF_REG_SIZE; 2513 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2514 2515 if (!env->allow_ptr_leaks 2516 && *stype != NOT_INIT 2517 && *stype != SCALAR_VALUE) { 2518 /* Reject the write if there's are spilled pointers in 2519 * range. If we didn't reject here, the ptr status 2520 * would be erased below (even though not all slots are 2521 * actually overwritten), possibly opening the door to 2522 * leaks. 2523 */ 2524 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2525 insn_idx, i); 2526 return -EINVAL; 2527 } 2528 2529 /* Erase all spilled pointers. */ 2530 state->stack[spi].spilled_ptr.type = NOT_INIT; 2531 2532 /* Update the slot type. */ 2533 new_type = STACK_MISC; 2534 if (writing_zero && *stype == STACK_ZERO) { 2535 new_type = STACK_ZERO; 2536 zero_used = true; 2537 } 2538 /* If the slot is STACK_INVALID, we check whether it's OK to 2539 * pretend that it will be initialized by this write. The slot 2540 * might not actually be written to, and so if we mark it as 2541 * initialized future reads might leak uninitialized memory. 2542 * For privileged programs, we will accept such reads to slots 2543 * that may or may not be written because, if we're reject 2544 * them, the error would be too confusing. 2545 */ 2546 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2547 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2548 insn_idx, i); 2549 return -EINVAL; 2550 } 2551 *stype = new_type; 2552 } 2553 if (zero_used) { 2554 /* backtracking doesn't work for STACK_ZERO yet. */ 2555 err = mark_chain_precision(env, value_regno); 2556 if (err) 2557 return err; 2558 } 2559 return 0; 2560 } 2561 2562 /* When register 'dst_regno' is assigned some values from stack[min_off, 2563 * max_off), we set the register's type according to the types of the 2564 * respective stack slots. If all the stack values are known to be zeros, then 2565 * so is the destination reg. Otherwise, the register is considered to be 2566 * SCALAR. This function does not deal with register filling; the caller must 2567 * ensure that all spilled registers in the stack range have been marked as 2568 * read. 2569 */ 2570 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2571 /* func where src register points to */ 2572 struct bpf_func_state *ptr_state, 2573 int min_off, int max_off, int dst_regno) 2574 { 2575 struct bpf_verifier_state *vstate = env->cur_state; 2576 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2577 int i, slot, spi; 2578 u8 *stype; 2579 int zeros = 0; 2580 2581 for (i = min_off; i < max_off; i++) { 2582 slot = -i - 1; 2583 spi = slot / BPF_REG_SIZE; 2584 stype = ptr_state->stack[spi].slot_type; 2585 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2586 break; 2587 zeros++; 2588 } 2589 if (zeros == max_off - min_off) { 2590 /* any access_size read into register is zero extended, 2591 * so the whole register == const_zero 2592 */ 2593 __mark_reg_const_zero(&state->regs[dst_regno]); 2594 /* backtracking doesn't support STACK_ZERO yet, 2595 * so mark it precise here, so that later 2596 * backtracking can stop here. 2597 * Backtracking may not need this if this register 2598 * doesn't participate in pointer adjustment. 2599 * Forward propagation of precise flag is not 2600 * necessary either. This mark is only to stop 2601 * backtracking. Any register that contributed 2602 * to const 0 was marked precise before spill. 2603 */ 2604 state->regs[dst_regno].precise = true; 2605 } else { 2606 /* have read misc data from the stack */ 2607 mark_reg_unknown(env, state->regs, dst_regno); 2608 } 2609 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2610 } 2611 2612 /* Read the stack at 'off' and put the results into the register indicated by 2613 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2614 * spilled reg. 2615 * 2616 * 'dst_regno' can be -1, meaning that the read value is not going to a 2617 * register. 2618 * 2619 * The access is assumed to be within the current stack bounds. 2620 */ 2621 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2622 /* func where src register points to */ 2623 struct bpf_func_state *reg_state, 2624 int off, int size, int dst_regno) 2625 { 2626 struct bpf_verifier_state *vstate = env->cur_state; 2627 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2628 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2629 struct bpf_reg_state *reg; 2630 u8 *stype; 2631 2632 stype = reg_state->stack[spi].slot_type; 2633 reg = ®_state->stack[spi].spilled_ptr; 2634 2635 if (stype[0] == STACK_SPILL) { 2636 if (size != BPF_REG_SIZE) { 2637 if (reg->type != SCALAR_VALUE) { 2638 verbose_linfo(env, env->insn_idx, "; "); 2639 verbose(env, "invalid size of register fill\n"); 2640 return -EACCES; 2641 } 2642 if (dst_regno >= 0) { 2643 mark_reg_unknown(env, state->regs, dst_regno); 2644 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2645 } 2646 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2647 return 0; 2648 } 2649 for (i = 1; i < BPF_REG_SIZE; i++) { 2650 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2651 verbose(env, "corrupted spill memory\n"); 2652 return -EACCES; 2653 } 2654 } 2655 2656 if (dst_regno >= 0) { 2657 /* restore register state from stack */ 2658 state->regs[dst_regno] = *reg; 2659 /* mark reg as written since spilled pointer state likely 2660 * has its liveness marks cleared by is_state_visited() 2661 * which resets stack/reg liveness for state transitions 2662 */ 2663 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2664 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2665 /* If dst_regno==-1, the caller is asking us whether 2666 * it is acceptable to use this value as a SCALAR_VALUE 2667 * (e.g. for XADD). 2668 * We must not allow unprivileged callers to do that 2669 * with spilled pointers. 2670 */ 2671 verbose(env, "leaking pointer from stack off %d\n", 2672 off); 2673 return -EACCES; 2674 } 2675 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2676 } else { 2677 u8 type; 2678 2679 for (i = 0; i < size; i++) { 2680 type = stype[(slot - i) % BPF_REG_SIZE]; 2681 if (type == STACK_MISC) 2682 continue; 2683 if (type == STACK_ZERO) 2684 continue; 2685 verbose(env, "invalid read from stack off %d+%d size %d\n", 2686 off, i, size); 2687 return -EACCES; 2688 } 2689 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2690 if (dst_regno >= 0) 2691 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2692 } 2693 return 0; 2694 } 2695 2696 enum stack_access_src { 2697 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2698 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2699 }; 2700 2701 static int check_stack_range_initialized(struct bpf_verifier_env *env, 2702 int regno, int off, int access_size, 2703 bool zero_size_allowed, 2704 enum stack_access_src type, 2705 struct bpf_call_arg_meta *meta); 2706 2707 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2708 { 2709 return cur_regs(env) + regno; 2710 } 2711 2712 /* Read the stack at 'ptr_regno + off' and put the result into the register 2713 * 'dst_regno'. 2714 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2715 * but not its variable offset. 2716 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2717 * 2718 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2719 * filling registers (i.e. reads of spilled register cannot be detected when 2720 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2721 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2722 * offset; for a fixed offset check_stack_read_fixed_off should be used 2723 * instead. 2724 */ 2725 static int check_stack_read_var_off(struct bpf_verifier_env *env, 2726 int ptr_regno, int off, int size, int dst_regno) 2727 { 2728 /* The state of the source register. */ 2729 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2730 struct bpf_func_state *ptr_state = func(env, reg); 2731 int err; 2732 int min_off, max_off; 2733 2734 /* Note that we pass a NULL meta, so raw access will not be permitted. 2735 */ 2736 err = check_stack_range_initialized(env, ptr_regno, off, size, 2737 false, ACCESS_DIRECT, NULL); 2738 if (err) 2739 return err; 2740 2741 min_off = reg->smin_value + off; 2742 max_off = reg->smax_value + off; 2743 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 2744 return 0; 2745 } 2746 2747 /* check_stack_read dispatches to check_stack_read_fixed_off or 2748 * check_stack_read_var_off. 2749 * 2750 * The caller must ensure that the offset falls within the allocated stack 2751 * bounds. 2752 * 2753 * 'dst_regno' is a register which will receive the value from the stack. It 2754 * can be -1, meaning that the read value is not going to a register. 2755 */ 2756 static int check_stack_read(struct bpf_verifier_env *env, 2757 int ptr_regno, int off, int size, 2758 int dst_regno) 2759 { 2760 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2761 struct bpf_func_state *state = func(env, reg); 2762 int err; 2763 /* Some accesses are only permitted with a static offset. */ 2764 bool var_off = !tnum_is_const(reg->var_off); 2765 2766 /* The offset is required to be static when reads don't go to a 2767 * register, in order to not leak pointers (see 2768 * check_stack_read_fixed_off). 2769 */ 2770 if (dst_regno < 0 && var_off) { 2771 char tn_buf[48]; 2772 2773 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2774 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 2775 tn_buf, off, size); 2776 return -EACCES; 2777 } 2778 /* Variable offset is prohibited for unprivileged mode for simplicity 2779 * since it requires corresponding support in Spectre masking for stack 2780 * ALU. See also retrieve_ptr_limit(). 2781 */ 2782 if (!env->bypass_spec_v1 && var_off) { 2783 char tn_buf[48]; 2784 2785 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2786 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 2787 ptr_regno, tn_buf); 2788 return -EACCES; 2789 } 2790 2791 if (!var_off) { 2792 off += reg->var_off.value; 2793 err = check_stack_read_fixed_off(env, state, off, size, 2794 dst_regno); 2795 } else { 2796 /* Variable offset stack reads need more conservative handling 2797 * than fixed offset ones. Note that dst_regno >= 0 on this 2798 * branch. 2799 */ 2800 err = check_stack_read_var_off(env, ptr_regno, off, size, 2801 dst_regno); 2802 } 2803 return err; 2804 } 2805 2806 2807 /* check_stack_write dispatches to check_stack_write_fixed_off or 2808 * check_stack_write_var_off. 2809 * 2810 * 'ptr_regno' is the register used as a pointer into the stack. 2811 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 2812 * 'value_regno' is the register whose value we're writing to the stack. It can 2813 * be -1, meaning that we're not writing from a register. 2814 * 2815 * The caller must ensure that the offset falls within the maximum stack size. 2816 */ 2817 static int check_stack_write(struct bpf_verifier_env *env, 2818 int ptr_regno, int off, int size, 2819 int value_regno, int insn_idx) 2820 { 2821 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2822 struct bpf_func_state *state = func(env, reg); 2823 int err; 2824 2825 if (tnum_is_const(reg->var_off)) { 2826 off += reg->var_off.value; 2827 err = check_stack_write_fixed_off(env, state, off, size, 2828 value_regno, insn_idx); 2829 } else { 2830 /* Variable offset stack reads need more conservative handling 2831 * than fixed offset ones. 2832 */ 2833 err = check_stack_write_var_off(env, state, 2834 ptr_regno, off, size, 2835 value_regno, insn_idx); 2836 } 2837 return err; 2838 } 2839 2840 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2841 int off, int size, enum bpf_access_type type) 2842 { 2843 struct bpf_reg_state *regs = cur_regs(env); 2844 struct bpf_map *map = regs[regno].map_ptr; 2845 u32 cap = bpf_map_flags_to_cap(map); 2846 2847 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2848 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2849 map->value_size, off, size); 2850 return -EACCES; 2851 } 2852 2853 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2854 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2855 map->value_size, off, size); 2856 return -EACCES; 2857 } 2858 2859 return 0; 2860 } 2861 2862 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2863 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2864 int off, int size, u32 mem_size, 2865 bool zero_size_allowed) 2866 { 2867 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2868 struct bpf_reg_state *reg; 2869 2870 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2871 return 0; 2872 2873 reg = &cur_regs(env)[regno]; 2874 switch (reg->type) { 2875 case PTR_TO_MAP_VALUE: 2876 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2877 mem_size, off, size); 2878 break; 2879 case PTR_TO_PACKET: 2880 case PTR_TO_PACKET_META: 2881 case PTR_TO_PACKET_END: 2882 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2883 off, size, regno, reg->id, off, mem_size); 2884 break; 2885 case PTR_TO_MEM: 2886 default: 2887 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2888 mem_size, off, size); 2889 } 2890 2891 return -EACCES; 2892 } 2893 2894 /* check read/write into a memory region with possible variable offset */ 2895 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2896 int off, int size, u32 mem_size, 2897 bool zero_size_allowed) 2898 { 2899 struct bpf_verifier_state *vstate = env->cur_state; 2900 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2901 struct bpf_reg_state *reg = &state->regs[regno]; 2902 int err; 2903 2904 /* We may have adjusted the register pointing to memory region, so we 2905 * need to try adding each of min_value and max_value to off 2906 * to make sure our theoretical access will be safe. 2907 */ 2908 if (env->log.level & BPF_LOG_LEVEL) 2909 print_verifier_state(env, state); 2910 2911 /* The minimum value is only important with signed 2912 * comparisons where we can't assume the floor of a 2913 * value is 0. If we are using signed variables for our 2914 * index'es we need to make sure that whatever we use 2915 * will have a set floor within our range. 2916 */ 2917 if (reg->smin_value < 0 && 2918 (reg->smin_value == S64_MIN || 2919 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2920 reg->smin_value + off < 0)) { 2921 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2922 regno); 2923 return -EACCES; 2924 } 2925 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2926 mem_size, zero_size_allowed); 2927 if (err) { 2928 verbose(env, "R%d min value is outside of the allowed memory range\n", 2929 regno); 2930 return err; 2931 } 2932 2933 /* If we haven't set a max value then we need to bail since we can't be 2934 * sure we won't do bad things. 2935 * If reg->umax_value + off could overflow, treat that as unbounded too. 2936 */ 2937 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2938 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2939 regno); 2940 return -EACCES; 2941 } 2942 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2943 mem_size, zero_size_allowed); 2944 if (err) { 2945 verbose(env, "R%d max value is outside of the allowed memory range\n", 2946 regno); 2947 return err; 2948 } 2949 2950 return 0; 2951 } 2952 2953 /* check read/write into a map element with possible variable offset */ 2954 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2955 int off, int size, bool zero_size_allowed) 2956 { 2957 struct bpf_verifier_state *vstate = env->cur_state; 2958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2959 struct bpf_reg_state *reg = &state->regs[regno]; 2960 struct bpf_map *map = reg->map_ptr; 2961 int err; 2962 2963 err = check_mem_region_access(env, regno, off, size, map->value_size, 2964 zero_size_allowed); 2965 if (err) 2966 return err; 2967 2968 if (map_value_has_spin_lock(map)) { 2969 u32 lock = map->spin_lock_off; 2970 2971 /* if any part of struct bpf_spin_lock can be touched by 2972 * load/store reject this program. 2973 * To check that [x1, x2) overlaps with [y1, y2) 2974 * it is sufficient to check x1 < y2 && y1 < x2. 2975 */ 2976 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2977 lock < reg->umax_value + off + size) { 2978 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2979 return -EACCES; 2980 } 2981 } 2982 return err; 2983 } 2984 2985 #define MAX_PACKET_OFF 0xffff 2986 2987 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2988 { 2989 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2990 } 2991 2992 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2993 const struct bpf_call_arg_meta *meta, 2994 enum bpf_access_type t) 2995 { 2996 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2997 2998 switch (prog_type) { 2999 /* Program types only with direct read access go here! */ 3000 case BPF_PROG_TYPE_LWT_IN: 3001 case BPF_PROG_TYPE_LWT_OUT: 3002 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3003 case BPF_PROG_TYPE_SK_REUSEPORT: 3004 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3005 case BPF_PROG_TYPE_CGROUP_SKB: 3006 if (t == BPF_WRITE) 3007 return false; 3008 fallthrough; 3009 3010 /* Program types with direct read + write access go here! */ 3011 case BPF_PROG_TYPE_SCHED_CLS: 3012 case BPF_PROG_TYPE_SCHED_ACT: 3013 case BPF_PROG_TYPE_XDP: 3014 case BPF_PROG_TYPE_LWT_XMIT: 3015 case BPF_PROG_TYPE_SK_SKB: 3016 case BPF_PROG_TYPE_SK_MSG: 3017 if (meta) 3018 return meta->pkt_access; 3019 3020 env->seen_direct_write = true; 3021 return true; 3022 3023 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3024 if (t == BPF_WRITE) 3025 env->seen_direct_write = true; 3026 3027 return true; 3028 3029 default: 3030 return false; 3031 } 3032 } 3033 3034 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3035 int size, bool zero_size_allowed) 3036 { 3037 struct bpf_reg_state *regs = cur_regs(env); 3038 struct bpf_reg_state *reg = ®s[regno]; 3039 int err; 3040 3041 /* We may have added a variable offset to the packet pointer; but any 3042 * reg->range we have comes after that. We are only checking the fixed 3043 * offset. 3044 */ 3045 3046 /* We don't allow negative numbers, because we aren't tracking enough 3047 * detail to prove they're safe. 3048 */ 3049 if (reg->smin_value < 0) { 3050 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3051 regno); 3052 return -EACCES; 3053 } 3054 3055 err = reg->range < 0 ? -EINVAL : 3056 __check_mem_access(env, regno, off, size, reg->range, 3057 zero_size_allowed); 3058 if (err) { 3059 verbose(env, "R%d offset is outside of the packet\n", regno); 3060 return err; 3061 } 3062 3063 /* __check_mem_access has made sure "off + size - 1" is within u16. 3064 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3065 * otherwise find_good_pkt_pointers would have refused to set range info 3066 * that __check_mem_access would have rejected this pkt access. 3067 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3068 */ 3069 env->prog->aux->max_pkt_offset = 3070 max_t(u32, env->prog->aux->max_pkt_offset, 3071 off + reg->umax_value + size - 1); 3072 3073 return err; 3074 } 3075 3076 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3077 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3078 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3079 struct btf **btf, u32 *btf_id) 3080 { 3081 struct bpf_insn_access_aux info = { 3082 .reg_type = *reg_type, 3083 .log = &env->log, 3084 }; 3085 3086 if (env->ops->is_valid_access && 3087 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3088 /* A non zero info.ctx_field_size indicates that this field is a 3089 * candidate for later verifier transformation to load the whole 3090 * field and then apply a mask when accessed with a narrower 3091 * access than actual ctx access size. A zero info.ctx_field_size 3092 * will only allow for whole field access and rejects any other 3093 * type of narrower access. 3094 */ 3095 *reg_type = info.reg_type; 3096 3097 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3098 *btf = info.btf; 3099 *btf_id = info.btf_id; 3100 } else { 3101 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3102 } 3103 /* remember the offset of last byte accessed in ctx */ 3104 if (env->prog->aux->max_ctx_offset < off + size) 3105 env->prog->aux->max_ctx_offset = off + size; 3106 return 0; 3107 } 3108 3109 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3110 return -EACCES; 3111 } 3112 3113 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3114 int size) 3115 { 3116 if (size < 0 || off < 0 || 3117 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3118 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3119 off, size); 3120 return -EACCES; 3121 } 3122 return 0; 3123 } 3124 3125 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3126 u32 regno, int off, int size, 3127 enum bpf_access_type t) 3128 { 3129 struct bpf_reg_state *regs = cur_regs(env); 3130 struct bpf_reg_state *reg = ®s[regno]; 3131 struct bpf_insn_access_aux info = {}; 3132 bool valid; 3133 3134 if (reg->smin_value < 0) { 3135 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3136 regno); 3137 return -EACCES; 3138 } 3139 3140 switch (reg->type) { 3141 case PTR_TO_SOCK_COMMON: 3142 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3143 break; 3144 case PTR_TO_SOCKET: 3145 valid = bpf_sock_is_valid_access(off, size, t, &info); 3146 break; 3147 case PTR_TO_TCP_SOCK: 3148 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3149 break; 3150 case PTR_TO_XDP_SOCK: 3151 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3152 break; 3153 default: 3154 valid = false; 3155 } 3156 3157 3158 if (valid) { 3159 env->insn_aux_data[insn_idx].ctx_field_size = 3160 info.ctx_field_size; 3161 return 0; 3162 } 3163 3164 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3165 regno, reg_type_str[reg->type], off, size); 3166 3167 return -EACCES; 3168 } 3169 3170 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3171 { 3172 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3173 } 3174 3175 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3176 { 3177 const struct bpf_reg_state *reg = reg_state(env, regno); 3178 3179 return reg->type == PTR_TO_CTX; 3180 } 3181 3182 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3183 { 3184 const struct bpf_reg_state *reg = reg_state(env, regno); 3185 3186 return type_is_sk_pointer(reg->type); 3187 } 3188 3189 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3190 { 3191 const struct bpf_reg_state *reg = reg_state(env, regno); 3192 3193 return type_is_pkt_pointer(reg->type); 3194 } 3195 3196 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3197 { 3198 const struct bpf_reg_state *reg = reg_state(env, regno); 3199 3200 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3201 return reg->type == PTR_TO_FLOW_KEYS; 3202 } 3203 3204 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3205 const struct bpf_reg_state *reg, 3206 int off, int size, bool strict) 3207 { 3208 struct tnum reg_off; 3209 int ip_align; 3210 3211 /* Byte size accesses are always allowed. */ 3212 if (!strict || size == 1) 3213 return 0; 3214 3215 /* For platforms that do not have a Kconfig enabling 3216 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3217 * NET_IP_ALIGN is universally set to '2'. And on platforms 3218 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3219 * to this code only in strict mode where we want to emulate 3220 * the NET_IP_ALIGN==2 checking. Therefore use an 3221 * unconditional IP align value of '2'. 3222 */ 3223 ip_align = 2; 3224 3225 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3226 if (!tnum_is_aligned(reg_off, size)) { 3227 char tn_buf[48]; 3228 3229 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3230 verbose(env, 3231 "misaligned packet access off %d+%s+%d+%d size %d\n", 3232 ip_align, tn_buf, reg->off, off, size); 3233 return -EACCES; 3234 } 3235 3236 return 0; 3237 } 3238 3239 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3240 const struct bpf_reg_state *reg, 3241 const char *pointer_desc, 3242 int off, int size, bool strict) 3243 { 3244 struct tnum reg_off; 3245 3246 /* Byte size accesses are always allowed. */ 3247 if (!strict || size == 1) 3248 return 0; 3249 3250 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3251 if (!tnum_is_aligned(reg_off, size)) { 3252 char tn_buf[48]; 3253 3254 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3255 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3256 pointer_desc, tn_buf, reg->off, off, size); 3257 return -EACCES; 3258 } 3259 3260 return 0; 3261 } 3262 3263 static int check_ptr_alignment(struct bpf_verifier_env *env, 3264 const struct bpf_reg_state *reg, int off, 3265 int size, bool strict_alignment_once) 3266 { 3267 bool strict = env->strict_alignment || strict_alignment_once; 3268 const char *pointer_desc = ""; 3269 3270 switch (reg->type) { 3271 case PTR_TO_PACKET: 3272 case PTR_TO_PACKET_META: 3273 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3274 * right in front, treat it the very same way. 3275 */ 3276 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3277 case PTR_TO_FLOW_KEYS: 3278 pointer_desc = "flow keys "; 3279 break; 3280 case PTR_TO_MAP_VALUE: 3281 pointer_desc = "value "; 3282 break; 3283 case PTR_TO_CTX: 3284 pointer_desc = "context "; 3285 break; 3286 case PTR_TO_STACK: 3287 pointer_desc = "stack "; 3288 /* The stack spill tracking logic in check_stack_write_fixed_off() 3289 * and check_stack_read_fixed_off() relies on stack accesses being 3290 * aligned. 3291 */ 3292 strict = true; 3293 break; 3294 case PTR_TO_SOCKET: 3295 pointer_desc = "sock "; 3296 break; 3297 case PTR_TO_SOCK_COMMON: 3298 pointer_desc = "sock_common "; 3299 break; 3300 case PTR_TO_TCP_SOCK: 3301 pointer_desc = "tcp_sock "; 3302 break; 3303 case PTR_TO_XDP_SOCK: 3304 pointer_desc = "xdp_sock "; 3305 break; 3306 default: 3307 break; 3308 } 3309 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3310 strict); 3311 } 3312 3313 static int update_stack_depth(struct bpf_verifier_env *env, 3314 const struct bpf_func_state *func, 3315 int off) 3316 { 3317 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3318 3319 if (stack >= -off) 3320 return 0; 3321 3322 /* update known max for given subprogram */ 3323 env->subprog_info[func->subprogno].stack_depth = -off; 3324 return 0; 3325 } 3326 3327 /* starting from main bpf function walk all instructions of the function 3328 * and recursively walk all callees that given function can call. 3329 * Ignore jump and exit insns. 3330 * Since recursion is prevented by check_cfg() this algorithm 3331 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3332 */ 3333 static int check_max_stack_depth(struct bpf_verifier_env *env) 3334 { 3335 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3336 struct bpf_subprog_info *subprog = env->subprog_info; 3337 struct bpf_insn *insn = env->prog->insnsi; 3338 bool tail_call_reachable = false; 3339 int ret_insn[MAX_CALL_FRAMES]; 3340 int ret_prog[MAX_CALL_FRAMES]; 3341 int j; 3342 3343 process_func: 3344 /* protect against potential stack overflow that might happen when 3345 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3346 * depth for such case down to 256 so that the worst case scenario 3347 * would result in 8k stack size (32 which is tailcall limit * 256 = 3348 * 8k). 3349 * 3350 * To get the idea what might happen, see an example: 3351 * func1 -> sub rsp, 128 3352 * subfunc1 -> sub rsp, 256 3353 * tailcall1 -> add rsp, 256 3354 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3355 * subfunc2 -> sub rsp, 64 3356 * subfunc22 -> sub rsp, 128 3357 * tailcall2 -> add rsp, 128 3358 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3359 * 3360 * tailcall will unwind the current stack frame but it will not get rid 3361 * of caller's stack as shown on the example above. 3362 */ 3363 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3364 verbose(env, 3365 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3366 depth); 3367 return -EACCES; 3368 } 3369 /* round up to 32-bytes, since this is granularity 3370 * of interpreter stack size 3371 */ 3372 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3373 if (depth > MAX_BPF_STACK) { 3374 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3375 frame + 1, depth); 3376 return -EACCES; 3377 } 3378 continue_func: 3379 subprog_end = subprog[idx + 1].start; 3380 for (; i < subprog_end; i++) { 3381 if (!bpf_pseudo_call(insn + i)) 3382 continue; 3383 /* remember insn and function to return to */ 3384 ret_insn[frame] = i + 1; 3385 ret_prog[frame] = idx; 3386 3387 /* find the callee */ 3388 i = i + insn[i].imm + 1; 3389 idx = find_subprog(env, i); 3390 if (idx < 0) { 3391 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3392 i); 3393 return -EFAULT; 3394 } 3395 3396 if (subprog[idx].has_tail_call) 3397 tail_call_reachable = true; 3398 3399 frame++; 3400 if (frame >= MAX_CALL_FRAMES) { 3401 verbose(env, "the call stack of %d frames is too deep !\n", 3402 frame); 3403 return -E2BIG; 3404 } 3405 goto process_func; 3406 } 3407 /* if tail call got detected across bpf2bpf calls then mark each of the 3408 * currently present subprog frames as tail call reachable subprogs; 3409 * this info will be utilized by JIT so that we will be preserving the 3410 * tail call counter throughout bpf2bpf calls combined with tailcalls 3411 */ 3412 if (tail_call_reachable) 3413 for (j = 0; j < frame; j++) 3414 subprog[ret_prog[j]].tail_call_reachable = true; 3415 3416 /* end of for() loop means the last insn of the 'subprog' 3417 * was reached. Doesn't matter whether it was JA or EXIT 3418 */ 3419 if (frame == 0) 3420 return 0; 3421 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3422 frame--; 3423 i = ret_insn[frame]; 3424 idx = ret_prog[frame]; 3425 goto continue_func; 3426 } 3427 3428 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3429 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3430 const struct bpf_insn *insn, int idx) 3431 { 3432 int start = idx + insn->imm + 1, subprog; 3433 3434 subprog = find_subprog(env, start); 3435 if (subprog < 0) { 3436 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3437 start); 3438 return -EFAULT; 3439 } 3440 return env->subprog_info[subprog].stack_depth; 3441 } 3442 #endif 3443 3444 int check_ctx_reg(struct bpf_verifier_env *env, 3445 const struct bpf_reg_state *reg, int regno) 3446 { 3447 /* Access to ctx or passing it to a helper is only allowed in 3448 * its original, unmodified form. 3449 */ 3450 3451 if (reg->off) { 3452 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3453 regno, reg->off); 3454 return -EACCES; 3455 } 3456 3457 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3458 char tn_buf[48]; 3459 3460 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3461 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3462 return -EACCES; 3463 } 3464 3465 return 0; 3466 } 3467 3468 static int __check_buffer_access(struct bpf_verifier_env *env, 3469 const char *buf_info, 3470 const struct bpf_reg_state *reg, 3471 int regno, int off, int size) 3472 { 3473 if (off < 0) { 3474 verbose(env, 3475 "R%d invalid %s buffer access: off=%d, size=%d\n", 3476 regno, buf_info, off, size); 3477 return -EACCES; 3478 } 3479 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3480 char tn_buf[48]; 3481 3482 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3483 verbose(env, 3484 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3485 regno, off, tn_buf); 3486 return -EACCES; 3487 } 3488 3489 return 0; 3490 } 3491 3492 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3493 const struct bpf_reg_state *reg, 3494 int regno, int off, int size) 3495 { 3496 int err; 3497 3498 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3499 if (err) 3500 return err; 3501 3502 if (off + size > env->prog->aux->max_tp_access) 3503 env->prog->aux->max_tp_access = off + size; 3504 3505 return 0; 3506 } 3507 3508 static int check_buffer_access(struct bpf_verifier_env *env, 3509 const struct bpf_reg_state *reg, 3510 int regno, int off, int size, 3511 bool zero_size_allowed, 3512 const char *buf_info, 3513 u32 *max_access) 3514 { 3515 int err; 3516 3517 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3518 if (err) 3519 return err; 3520 3521 if (off + size > *max_access) 3522 *max_access = off + size; 3523 3524 return 0; 3525 } 3526 3527 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3528 static void zext_32_to_64(struct bpf_reg_state *reg) 3529 { 3530 reg->var_off = tnum_subreg(reg->var_off); 3531 __reg_assign_32_into_64(reg); 3532 } 3533 3534 /* truncate register to smaller size (in bytes) 3535 * must be called with size < BPF_REG_SIZE 3536 */ 3537 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3538 { 3539 u64 mask; 3540 3541 /* clear high bits in bit representation */ 3542 reg->var_off = tnum_cast(reg->var_off, size); 3543 3544 /* fix arithmetic bounds */ 3545 mask = ((u64)1 << (size * 8)) - 1; 3546 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3547 reg->umin_value &= mask; 3548 reg->umax_value &= mask; 3549 } else { 3550 reg->umin_value = 0; 3551 reg->umax_value = mask; 3552 } 3553 reg->smin_value = reg->umin_value; 3554 reg->smax_value = reg->umax_value; 3555 3556 /* If size is smaller than 32bit register the 32bit register 3557 * values are also truncated so we push 64-bit bounds into 3558 * 32-bit bounds. Above were truncated < 32-bits already. 3559 */ 3560 if (size >= 4) 3561 return; 3562 __reg_combine_64_into_32(reg); 3563 } 3564 3565 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3566 { 3567 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3568 } 3569 3570 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3571 { 3572 void *ptr; 3573 u64 addr; 3574 int err; 3575 3576 err = map->ops->map_direct_value_addr(map, &addr, off); 3577 if (err) 3578 return err; 3579 ptr = (void *)(long)addr + off; 3580 3581 switch (size) { 3582 case sizeof(u8): 3583 *val = (u64)*(u8 *)ptr; 3584 break; 3585 case sizeof(u16): 3586 *val = (u64)*(u16 *)ptr; 3587 break; 3588 case sizeof(u32): 3589 *val = (u64)*(u32 *)ptr; 3590 break; 3591 case sizeof(u64): 3592 *val = *(u64 *)ptr; 3593 break; 3594 default: 3595 return -EINVAL; 3596 } 3597 return 0; 3598 } 3599 3600 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3601 struct bpf_reg_state *regs, 3602 int regno, int off, int size, 3603 enum bpf_access_type atype, 3604 int value_regno) 3605 { 3606 struct bpf_reg_state *reg = regs + regno; 3607 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3608 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3609 u32 btf_id; 3610 int ret; 3611 3612 if (off < 0) { 3613 verbose(env, 3614 "R%d is ptr_%s invalid negative access: off=%d\n", 3615 regno, tname, off); 3616 return -EACCES; 3617 } 3618 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3619 char tn_buf[48]; 3620 3621 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3622 verbose(env, 3623 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3624 regno, tname, off, tn_buf); 3625 return -EACCES; 3626 } 3627 3628 if (env->ops->btf_struct_access) { 3629 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3630 off, size, atype, &btf_id); 3631 } else { 3632 if (atype != BPF_READ) { 3633 verbose(env, "only read is supported\n"); 3634 return -EACCES; 3635 } 3636 3637 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3638 atype, &btf_id); 3639 } 3640 3641 if (ret < 0) 3642 return ret; 3643 3644 if (atype == BPF_READ && value_regno >= 0) 3645 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3646 3647 return 0; 3648 } 3649 3650 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3651 struct bpf_reg_state *regs, 3652 int regno, int off, int size, 3653 enum bpf_access_type atype, 3654 int value_regno) 3655 { 3656 struct bpf_reg_state *reg = regs + regno; 3657 struct bpf_map *map = reg->map_ptr; 3658 const struct btf_type *t; 3659 const char *tname; 3660 u32 btf_id; 3661 int ret; 3662 3663 if (!btf_vmlinux) { 3664 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3665 return -ENOTSUPP; 3666 } 3667 3668 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3669 verbose(env, "map_ptr access not supported for map type %d\n", 3670 map->map_type); 3671 return -ENOTSUPP; 3672 } 3673 3674 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3675 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3676 3677 if (!env->allow_ptr_to_map_access) { 3678 verbose(env, 3679 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3680 tname); 3681 return -EPERM; 3682 } 3683 3684 if (off < 0) { 3685 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3686 regno, tname, off); 3687 return -EACCES; 3688 } 3689 3690 if (atype != BPF_READ) { 3691 verbose(env, "only read from %s is supported\n", tname); 3692 return -EACCES; 3693 } 3694 3695 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3696 if (ret < 0) 3697 return ret; 3698 3699 if (value_regno >= 0) 3700 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3701 3702 return 0; 3703 } 3704 3705 /* Check that the stack access at the given offset is within bounds. The 3706 * maximum valid offset is -1. 3707 * 3708 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3709 * -state->allocated_stack for reads. 3710 */ 3711 static int check_stack_slot_within_bounds(int off, 3712 struct bpf_func_state *state, 3713 enum bpf_access_type t) 3714 { 3715 int min_valid_off; 3716 3717 if (t == BPF_WRITE) 3718 min_valid_off = -MAX_BPF_STACK; 3719 else 3720 min_valid_off = -state->allocated_stack; 3721 3722 if (off < min_valid_off || off > -1) 3723 return -EACCES; 3724 return 0; 3725 } 3726 3727 /* Check that the stack access at 'regno + off' falls within the maximum stack 3728 * bounds. 3729 * 3730 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3731 */ 3732 static int check_stack_access_within_bounds( 3733 struct bpf_verifier_env *env, 3734 int regno, int off, int access_size, 3735 enum stack_access_src src, enum bpf_access_type type) 3736 { 3737 struct bpf_reg_state *regs = cur_regs(env); 3738 struct bpf_reg_state *reg = regs + regno; 3739 struct bpf_func_state *state = func(env, reg); 3740 int min_off, max_off; 3741 int err; 3742 char *err_extra; 3743 3744 if (src == ACCESS_HELPER) 3745 /* We don't know if helpers are reading or writing (or both). */ 3746 err_extra = " indirect access to"; 3747 else if (type == BPF_READ) 3748 err_extra = " read from"; 3749 else 3750 err_extra = " write to"; 3751 3752 if (tnum_is_const(reg->var_off)) { 3753 min_off = reg->var_off.value + off; 3754 if (access_size > 0) 3755 max_off = min_off + access_size - 1; 3756 else 3757 max_off = min_off; 3758 } else { 3759 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3760 reg->smin_value <= -BPF_MAX_VAR_OFF) { 3761 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 3762 err_extra, regno); 3763 return -EACCES; 3764 } 3765 min_off = reg->smin_value + off; 3766 if (access_size > 0) 3767 max_off = reg->smax_value + off + access_size - 1; 3768 else 3769 max_off = min_off; 3770 } 3771 3772 err = check_stack_slot_within_bounds(min_off, state, type); 3773 if (!err) 3774 err = check_stack_slot_within_bounds(max_off, state, type); 3775 3776 if (err) { 3777 if (tnum_is_const(reg->var_off)) { 3778 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 3779 err_extra, regno, off, access_size); 3780 } else { 3781 char tn_buf[48]; 3782 3783 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3784 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 3785 err_extra, regno, tn_buf, access_size); 3786 } 3787 } 3788 return err; 3789 } 3790 3791 /* check whether memory at (regno + off) is accessible for t = (read | write) 3792 * if t==write, value_regno is a register which value is stored into memory 3793 * if t==read, value_regno is a register which will receive the value from memory 3794 * if t==write && value_regno==-1, some unknown value is stored into memory 3795 * if t==read && value_regno==-1, don't care what we read from memory 3796 */ 3797 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3798 int off, int bpf_size, enum bpf_access_type t, 3799 int value_regno, bool strict_alignment_once) 3800 { 3801 struct bpf_reg_state *regs = cur_regs(env); 3802 struct bpf_reg_state *reg = regs + regno; 3803 struct bpf_func_state *state; 3804 int size, err = 0; 3805 3806 size = bpf_size_to_bytes(bpf_size); 3807 if (size < 0) 3808 return size; 3809 3810 /* alignment checks will add in reg->off themselves */ 3811 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3812 if (err) 3813 return err; 3814 3815 /* for access checks, reg->off is just part of off */ 3816 off += reg->off; 3817 3818 if (reg->type == PTR_TO_MAP_VALUE) { 3819 if (t == BPF_WRITE && value_regno >= 0 && 3820 is_pointer_value(env, value_regno)) { 3821 verbose(env, "R%d leaks addr into map\n", value_regno); 3822 return -EACCES; 3823 } 3824 err = check_map_access_type(env, regno, off, size, t); 3825 if (err) 3826 return err; 3827 err = check_map_access(env, regno, off, size, false); 3828 if (!err && t == BPF_READ && value_regno >= 0) { 3829 struct bpf_map *map = reg->map_ptr; 3830 3831 /* if map is read-only, track its contents as scalars */ 3832 if (tnum_is_const(reg->var_off) && 3833 bpf_map_is_rdonly(map) && 3834 map->ops->map_direct_value_addr) { 3835 int map_off = off + reg->var_off.value; 3836 u64 val = 0; 3837 3838 err = bpf_map_direct_read(map, map_off, size, 3839 &val); 3840 if (err) 3841 return err; 3842 3843 regs[value_regno].type = SCALAR_VALUE; 3844 __mark_reg_known(®s[value_regno], val); 3845 } else { 3846 mark_reg_unknown(env, regs, value_regno); 3847 } 3848 } 3849 } else if (reg->type == PTR_TO_MEM) { 3850 if (t == BPF_WRITE && value_regno >= 0 && 3851 is_pointer_value(env, value_regno)) { 3852 verbose(env, "R%d leaks addr into mem\n", value_regno); 3853 return -EACCES; 3854 } 3855 err = check_mem_region_access(env, regno, off, size, 3856 reg->mem_size, false); 3857 if (!err && t == BPF_READ && value_regno >= 0) 3858 mark_reg_unknown(env, regs, value_regno); 3859 } else if (reg->type == PTR_TO_CTX) { 3860 enum bpf_reg_type reg_type = SCALAR_VALUE; 3861 struct btf *btf = NULL; 3862 u32 btf_id = 0; 3863 3864 if (t == BPF_WRITE && value_regno >= 0 && 3865 is_pointer_value(env, value_regno)) { 3866 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3867 return -EACCES; 3868 } 3869 3870 err = check_ctx_reg(env, reg, regno); 3871 if (err < 0) 3872 return err; 3873 3874 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 3875 if (err) 3876 verbose_linfo(env, insn_idx, "; "); 3877 if (!err && t == BPF_READ && value_regno >= 0) { 3878 /* ctx access returns either a scalar, or a 3879 * PTR_TO_PACKET[_META,_END]. In the latter 3880 * case, we know the offset is zero. 3881 */ 3882 if (reg_type == SCALAR_VALUE) { 3883 mark_reg_unknown(env, regs, value_regno); 3884 } else { 3885 mark_reg_known_zero(env, regs, 3886 value_regno); 3887 if (reg_type_may_be_null(reg_type)) 3888 regs[value_regno].id = ++env->id_gen; 3889 /* A load of ctx field could have different 3890 * actual load size with the one encoded in the 3891 * insn. When the dst is PTR, it is for sure not 3892 * a sub-register. 3893 */ 3894 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3895 if (reg_type == PTR_TO_BTF_ID || 3896 reg_type == PTR_TO_BTF_ID_OR_NULL) { 3897 regs[value_regno].btf = btf; 3898 regs[value_regno].btf_id = btf_id; 3899 } 3900 } 3901 regs[value_regno].type = reg_type; 3902 } 3903 3904 } else if (reg->type == PTR_TO_STACK) { 3905 /* Basic bounds checks. */ 3906 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 3907 if (err) 3908 return err; 3909 3910 state = func(env, reg); 3911 err = update_stack_depth(env, state, off); 3912 if (err) 3913 return err; 3914 3915 if (t == BPF_READ) 3916 err = check_stack_read(env, regno, off, size, 3917 value_regno); 3918 else 3919 err = check_stack_write(env, regno, off, size, 3920 value_regno, insn_idx); 3921 } else if (reg_is_pkt_pointer(reg)) { 3922 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3923 verbose(env, "cannot write into packet\n"); 3924 return -EACCES; 3925 } 3926 if (t == BPF_WRITE && value_regno >= 0 && 3927 is_pointer_value(env, value_regno)) { 3928 verbose(env, "R%d leaks addr into packet\n", 3929 value_regno); 3930 return -EACCES; 3931 } 3932 err = check_packet_access(env, regno, off, size, false); 3933 if (!err && t == BPF_READ && value_regno >= 0) 3934 mark_reg_unknown(env, regs, value_regno); 3935 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3936 if (t == BPF_WRITE && value_regno >= 0 && 3937 is_pointer_value(env, value_regno)) { 3938 verbose(env, "R%d leaks addr into flow keys\n", 3939 value_regno); 3940 return -EACCES; 3941 } 3942 3943 err = check_flow_keys_access(env, off, size); 3944 if (!err && t == BPF_READ && value_regno >= 0) 3945 mark_reg_unknown(env, regs, value_regno); 3946 } else if (type_is_sk_pointer(reg->type)) { 3947 if (t == BPF_WRITE) { 3948 verbose(env, "R%d cannot write into %s\n", 3949 regno, reg_type_str[reg->type]); 3950 return -EACCES; 3951 } 3952 err = check_sock_access(env, insn_idx, regno, off, size, t); 3953 if (!err && value_regno >= 0) 3954 mark_reg_unknown(env, regs, value_regno); 3955 } else if (reg->type == PTR_TO_TP_BUFFER) { 3956 err = check_tp_buffer_access(env, reg, regno, off, size); 3957 if (!err && t == BPF_READ && value_regno >= 0) 3958 mark_reg_unknown(env, regs, value_regno); 3959 } else if (reg->type == PTR_TO_BTF_ID) { 3960 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3961 value_regno); 3962 } else if (reg->type == CONST_PTR_TO_MAP) { 3963 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3964 value_regno); 3965 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3966 if (t == BPF_WRITE) { 3967 verbose(env, "R%d cannot write into %s\n", 3968 regno, reg_type_str[reg->type]); 3969 return -EACCES; 3970 } 3971 err = check_buffer_access(env, reg, regno, off, size, false, 3972 "rdonly", 3973 &env->prog->aux->max_rdonly_access); 3974 if (!err && value_regno >= 0) 3975 mark_reg_unknown(env, regs, value_regno); 3976 } else if (reg->type == PTR_TO_RDWR_BUF) { 3977 err = check_buffer_access(env, reg, regno, off, size, false, 3978 "rdwr", 3979 &env->prog->aux->max_rdwr_access); 3980 if (!err && t == BPF_READ && value_regno >= 0) 3981 mark_reg_unknown(env, regs, value_regno); 3982 } else { 3983 verbose(env, "R%d invalid mem access '%s'\n", regno, 3984 reg_type_str[reg->type]); 3985 return -EACCES; 3986 } 3987 3988 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3989 regs[value_regno].type == SCALAR_VALUE) { 3990 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3991 coerce_reg_to_size(®s[value_regno], size); 3992 } 3993 return err; 3994 } 3995 3996 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3997 { 3998 int load_reg; 3999 int err; 4000 4001 switch (insn->imm) { 4002 case BPF_ADD: 4003 case BPF_ADD | BPF_FETCH: 4004 case BPF_AND: 4005 case BPF_AND | BPF_FETCH: 4006 case BPF_OR: 4007 case BPF_OR | BPF_FETCH: 4008 case BPF_XOR: 4009 case BPF_XOR | BPF_FETCH: 4010 case BPF_XCHG: 4011 case BPF_CMPXCHG: 4012 break; 4013 default: 4014 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4015 return -EINVAL; 4016 } 4017 4018 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4019 verbose(env, "invalid atomic operand size\n"); 4020 return -EINVAL; 4021 } 4022 4023 /* check src1 operand */ 4024 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4025 if (err) 4026 return err; 4027 4028 /* check src2 operand */ 4029 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4030 if (err) 4031 return err; 4032 4033 if (insn->imm == BPF_CMPXCHG) { 4034 /* Check comparison of R0 with memory location */ 4035 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4036 if (err) 4037 return err; 4038 } 4039 4040 if (is_pointer_value(env, insn->src_reg)) { 4041 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4042 return -EACCES; 4043 } 4044 4045 if (is_ctx_reg(env, insn->dst_reg) || 4046 is_pkt_reg(env, insn->dst_reg) || 4047 is_flow_key_reg(env, insn->dst_reg) || 4048 is_sk_reg(env, insn->dst_reg)) { 4049 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4050 insn->dst_reg, 4051 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4052 return -EACCES; 4053 } 4054 4055 if (insn->imm & BPF_FETCH) { 4056 if (insn->imm == BPF_CMPXCHG) 4057 load_reg = BPF_REG_0; 4058 else 4059 load_reg = insn->src_reg; 4060 4061 /* check and record load of old value */ 4062 err = check_reg_arg(env, load_reg, DST_OP); 4063 if (err) 4064 return err; 4065 } else { 4066 /* This instruction accesses a memory location but doesn't 4067 * actually load it into a register. 4068 */ 4069 load_reg = -1; 4070 } 4071 4072 /* check whether we can read the memory */ 4073 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4074 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4075 if (err) 4076 return err; 4077 4078 /* check whether we can write into the same memory */ 4079 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4080 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4081 if (err) 4082 return err; 4083 4084 return 0; 4085 } 4086 4087 /* When register 'regno' is used to read the stack (either directly or through 4088 * a helper function) make sure that it's within stack boundary and, depending 4089 * on the access type, that all elements of the stack are initialized. 4090 * 4091 * 'off' includes 'regno->off', but not its dynamic part (if any). 4092 * 4093 * All registers that have been spilled on the stack in the slots within the 4094 * read offsets are marked as read. 4095 */ 4096 static int check_stack_range_initialized( 4097 struct bpf_verifier_env *env, int regno, int off, 4098 int access_size, bool zero_size_allowed, 4099 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4100 { 4101 struct bpf_reg_state *reg = reg_state(env, regno); 4102 struct bpf_func_state *state = func(env, reg); 4103 int err, min_off, max_off, i, j, slot, spi; 4104 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4105 enum bpf_access_type bounds_check_type; 4106 /* Some accesses can write anything into the stack, others are 4107 * read-only. 4108 */ 4109 bool clobber = false; 4110 4111 if (access_size == 0 && !zero_size_allowed) { 4112 verbose(env, "invalid zero-sized read\n"); 4113 return -EACCES; 4114 } 4115 4116 if (type == ACCESS_HELPER) { 4117 /* The bounds checks for writes are more permissive than for 4118 * reads. However, if raw_mode is not set, we'll do extra 4119 * checks below. 4120 */ 4121 bounds_check_type = BPF_WRITE; 4122 clobber = true; 4123 } else { 4124 bounds_check_type = BPF_READ; 4125 } 4126 err = check_stack_access_within_bounds(env, regno, off, access_size, 4127 type, bounds_check_type); 4128 if (err) 4129 return err; 4130 4131 4132 if (tnum_is_const(reg->var_off)) { 4133 min_off = max_off = reg->var_off.value + off; 4134 } else { 4135 /* Variable offset is prohibited for unprivileged mode for 4136 * simplicity since it requires corresponding support in 4137 * Spectre masking for stack ALU. 4138 * See also retrieve_ptr_limit(). 4139 */ 4140 if (!env->bypass_spec_v1) { 4141 char tn_buf[48]; 4142 4143 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4144 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4145 regno, err_extra, tn_buf); 4146 return -EACCES; 4147 } 4148 /* Only initialized buffer on stack is allowed to be accessed 4149 * with variable offset. With uninitialized buffer it's hard to 4150 * guarantee that whole memory is marked as initialized on 4151 * helper return since specific bounds are unknown what may 4152 * cause uninitialized stack leaking. 4153 */ 4154 if (meta && meta->raw_mode) 4155 meta = NULL; 4156 4157 min_off = reg->smin_value + off; 4158 max_off = reg->smax_value + off; 4159 } 4160 4161 if (meta && meta->raw_mode) { 4162 meta->access_size = access_size; 4163 meta->regno = regno; 4164 return 0; 4165 } 4166 4167 for (i = min_off; i < max_off + access_size; i++) { 4168 u8 *stype; 4169 4170 slot = -i - 1; 4171 spi = slot / BPF_REG_SIZE; 4172 if (state->allocated_stack <= slot) 4173 goto err; 4174 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4175 if (*stype == STACK_MISC) 4176 goto mark; 4177 if (*stype == STACK_ZERO) { 4178 if (clobber) { 4179 /* helper can write anything into the stack */ 4180 *stype = STACK_MISC; 4181 } 4182 goto mark; 4183 } 4184 4185 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4186 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4187 goto mark; 4188 4189 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4190 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4191 env->allow_ptr_leaks)) { 4192 if (clobber) { 4193 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4194 for (j = 0; j < BPF_REG_SIZE; j++) 4195 state->stack[spi].slot_type[j] = STACK_MISC; 4196 } 4197 goto mark; 4198 } 4199 4200 err: 4201 if (tnum_is_const(reg->var_off)) { 4202 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4203 err_extra, regno, min_off, i - min_off, access_size); 4204 } else { 4205 char tn_buf[48]; 4206 4207 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4208 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4209 err_extra, regno, tn_buf, i - min_off, access_size); 4210 } 4211 return -EACCES; 4212 mark: 4213 /* reading any byte out of 8-byte 'spill_slot' will cause 4214 * the whole slot to be marked as 'read' 4215 */ 4216 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4217 state->stack[spi].spilled_ptr.parent, 4218 REG_LIVE_READ64); 4219 } 4220 return update_stack_depth(env, state, min_off); 4221 } 4222 4223 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4224 int access_size, bool zero_size_allowed, 4225 struct bpf_call_arg_meta *meta) 4226 { 4227 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4228 4229 switch (reg->type) { 4230 case PTR_TO_PACKET: 4231 case PTR_TO_PACKET_META: 4232 return check_packet_access(env, regno, reg->off, access_size, 4233 zero_size_allowed); 4234 case PTR_TO_MAP_VALUE: 4235 if (check_map_access_type(env, regno, reg->off, access_size, 4236 meta && meta->raw_mode ? BPF_WRITE : 4237 BPF_READ)) 4238 return -EACCES; 4239 return check_map_access(env, regno, reg->off, access_size, 4240 zero_size_allowed); 4241 case PTR_TO_MEM: 4242 return check_mem_region_access(env, regno, reg->off, 4243 access_size, reg->mem_size, 4244 zero_size_allowed); 4245 case PTR_TO_RDONLY_BUF: 4246 if (meta && meta->raw_mode) 4247 return -EACCES; 4248 return check_buffer_access(env, reg, regno, reg->off, 4249 access_size, zero_size_allowed, 4250 "rdonly", 4251 &env->prog->aux->max_rdonly_access); 4252 case PTR_TO_RDWR_BUF: 4253 return check_buffer_access(env, reg, regno, reg->off, 4254 access_size, zero_size_allowed, 4255 "rdwr", 4256 &env->prog->aux->max_rdwr_access); 4257 case PTR_TO_STACK: 4258 return check_stack_range_initialized( 4259 env, 4260 regno, reg->off, access_size, 4261 zero_size_allowed, ACCESS_HELPER, meta); 4262 default: /* scalar_value or invalid ptr */ 4263 /* Allow zero-byte read from NULL, regardless of pointer type */ 4264 if (zero_size_allowed && access_size == 0 && 4265 register_is_null(reg)) 4266 return 0; 4267 4268 verbose(env, "R%d type=%s expected=%s\n", regno, 4269 reg_type_str[reg->type], 4270 reg_type_str[PTR_TO_STACK]); 4271 return -EACCES; 4272 } 4273 } 4274 4275 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4276 u32 regno, u32 mem_size) 4277 { 4278 if (register_is_null(reg)) 4279 return 0; 4280 4281 if (reg_type_may_be_null(reg->type)) { 4282 /* Assuming that the register contains a value check if the memory 4283 * access is safe. Temporarily save and restore the register's state as 4284 * the conversion shouldn't be visible to a caller. 4285 */ 4286 const struct bpf_reg_state saved_reg = *reg; 4287 int rv; 4288 4289 mark_ptr_not_null_reg(reg); 4290 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4291 *reg = saved_reg; 4292 return rv; 4293 } 4294 4295 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4296 } 4297 4298 /* Implementation details: 4299 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4300 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4301 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4302 * value_or_null->value transition, since the verifier only cares about 4303 * the range of access to valid map value pointer and doesn't care about actual 4304 * address of the map element. 4305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4306 * reg->id > 0 after value_or_null->value transition. By doing so 4307 * two bpf_map_lookups will be considered two different pointers that 4308 * point to different bpf_spin_locks. 4309 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4310 * dead-locks. 4311 * Since only one bpf_spin_lock is allowed the checks are simpler than 4312 * reg_is_refcounted() logic. The verifier needs to remember only 4313 * one spin_lock instead of array of acquired_refs. 4314 * cur_state->active_spin_lock remembers which map value element got locked 4315 * and clears it after bpf_spin_unlock. 4316 */ 4317 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4318 bool is_lock) 4319 { 4320 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4321 struct bpf_verifier_state *cur = env->cur_state; 4322 bool is_const = tnum_is_const(reg->var_off); 4323 struct bpf_map *map = reg->map_ptr; 4324 u64 val = reg->var_off.value; 4325 4326 if (!is_const) { 4327 verbose(env, 4328 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4329 regno); 4330 return -EINVAL; 4331 } 4332 if (!map->btf) { 4333 verbose(env, 4334 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4335 map->name); 4336 return -EINVAL; 4337 } 4338 if (!map_value_has_spin_lock(map)) { 4339 if (map->spin_lock_off == -E2BIG) 4340 verbose(env, 4341 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4342 map->name); 4343 else if (map->spin_lock_off == -ENOENT) 4344 verbose(env, 4345 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4346 map->name); 4347 else 4348 verbose(env, 4349 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4350 map->name); 4351 return -EINVAL; 4352 } 4353 if (map->spin_lock_off != val + reg->off) { 4354 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4355 val + reg->off); 4356 return -EINVAL; 4357 } 4358 if (is_lock) { 4359 if (cur->active_spin_lock) { 4360 verbose(env, 4361 "Locking two bpf_spin_locks are not allowed\n"); 4362 return -EINVAL; 4363 } 4364 cur->active_spin_lock = reg->id; 4365 } else { 4366 if (!cur->active_spin_lock) { 4367 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4368 return -EINVAL; 4369 } 4370 if (cur->active_spin_lock != reg->id) { 4371 verbose(env, "bpf_spin_unlock of different lock\n"); 4372 return -EINVAL; 4373 } 4374 cur->active_spin_lock = 0; 4375 } 4376 return 0; 4377 } 4378 4379 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4380 { 4381 return type == ARG_PTR_TO_MEM || 4382 type == ARG_PTR_TO_MEM_OR_NULL || 4383 type == ARG_PTR_TO_UNINIT_MEM; 4384 } 4385 4386 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4387 { 4388 return type == ARG_CONST_SIZE || 4389 type == ARG_CONST_SIZE_OR_ZERO; 4390 } 4391 4392 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4393 { 4394 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4395 } 4396 4397 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4398 { 4399 return type == ARG_PTR_TO_INT || 4400 type == ARG_PTR_TO_LONG; 4401 } 4402 4403 static int int_ptr_type_to_size(enum bpf_arg_type type) 4404 { 4405 if (type == ARG_PTR_TO_INT) 4406 return sizeof(u32); 4407 else if (type == ARG_PTR_TO_LONG) 4408 return sizeof(u64); 4409 4410 return -EINVAL; 4411 } 4412 4413 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4414 const struct bpf_call_arg_meta *meta, 4415 enum bpf_arg_type *arg_type) 4416 { 4417 if (!meta->map_ptr) { 4418 /* kernel subsystem misconfigured verifier */ 4419 verbose(env, "invalid map_ptr to access map->type\n"); 4420 return -EACCES; 4421 } 4422 4423 switch (meta->map_ptr->map_type) { 4424 case BPF_MAP_TYPE_SOCKMAP: 4425 case BPF_MAP_TYPE_SOCKHASH: 4426 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4427 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4428 } else { 4429 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4430 return -EINVAL; 4431 } 4432 break; 4433 4434 default: 4435 break; 4436 } 4437 return 0; 4438 } 4439 4440 struct bpf_reg_types { 4441 const enum bpf_reg_type types[10]; 4442 u32 *btf_id; 4443 }; 4444 4445 static const struct bpf_reg_types map_key_value_types = { 4446 .types = { 4447 PTR_TO_STACK, 4448 PTR_TO_PACKET, 4449 PTR_TO_PACKET_META, 4450 PTR_TO_MAP_VALUE, 4451 }, 4452 }; 4453 4454 static const struct bpf_reg_types sock_types = { 4455 .types = { 4456 PTR_TO_SOCK_COMMON, 4457 PTR_TO_SOCKET, 4458 PTR_TO_TCP_SOCK, 4459 PTR_TO_XDP_SOCK, 4460 }, 4461 }; 4462 4463 #ifdef CONFIG_NET 4464 static const struct bpf_reg_types btf_id_sock_common_types = { 4465 .types = { 4466 PTR_TO_SOCK_COMMON, 4467 PTR_TO_SOCKET, 4468 PTR_TO_TCP_SOCK, 4469 PTR_TO_XDP_SOCK, 4470 PTR_TO_BTF_ID, 4471 }, 4472 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4473 }; 4474 #endif 4475 4476 static const struct bpf_reg_types mem_types = { 4477 .types = { 4478 PTR_TO_STACK, 4479 PTR_TO_PACKET, 4480 PTR_TO_PACKET_META, 4481 PTR_TO_MAP_VALUE, 4482 PTR_TO_MEM, 4483 PTR_TO_RDONLY_BUF, 4484 PTR_TO_RDWR_BUF, 4485 }, 4486 }; 4487 4488 static const struct bpf_reg_types int_ptr_types = { 4489 .types = { 4490 PTR_TO_STACK, 4491 PTR_TO_PACKET, 4492 PTR_TO_PACKET_META, 4493 PTR_TO_MAP_VALUE, 4494 }, 4495 }; 4496 4497 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4498 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4499 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4500 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4501 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4502 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4503 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4504 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4505 4506 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4507 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4508 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4509 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4510 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4511 [ARG_CONST_SIZE] = &scalar_types, 4512 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4513 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4514 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4515 [ARG_PTR_TO_CTX] = &context_types, 4516 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4517 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4518 #ifdef CONFIG_NET 4519 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4520 #endif 4521 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4522 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4523 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4524 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4525 [ARG_PTR_TO_MEM] = &mem_types, 4526 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4527 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4528 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4529 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4530 [ARG_PTR_TO_INT] = &int_ptr_types, 4531 [ARG_PTR_TO_LONG] = &int_ptr_types, 4532 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4533 }; 4534 4535 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4536 enum bpf_arg_type arg_type, 4537 const u32 *arg_btf_id) 4538 { 4539 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4540 enum bpf_reg_type expected, type = reg->type; 4541 const struct bpf_reg_types *compatible; 4542 int i, j; 4543 4544 compatible = compatible_reg_types[arg_type]; 4545 if (!compatible) { 4546 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4547 return -EFAULT; 4548 } 4549 4550 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4551 expected = compatible->types[i]; 4552 if (expected == NOT_INIT) 4553 break; 4554 4555 if (type == expected) 4556 goto found; 4557 } 4558 4559 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4560 for (j = 0; j + 1 < i; j++) 4561 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4562 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4563 return -EACCES; 4564 4565 found: 4566 if (type == PTR_TO_BTF_ID) { 4567 if (!arg_btf_id) { 4568 if (!compatible->btf_id) { 4569 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4570 return -EFAULT; 4571 } 4572 arg_btf_id = compatible->btf_id; 4573 } 4574 4575 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4576 btf_vmlinux, *arg_btf_id)) { 4577 verbose(env, "R%d is of type %s but %s is expected\n", 4578 regno, kernel_type_name(reg->btf, reg->btf_id), 4579 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4580 return -EACCES; 4581 } 4582 4583 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4584 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4585 regno); 4586 return -EACCES; 4587 } 4588 } 4589 4590 return 0; 4591 } 4592 4593 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4594 struct bpf_call_arg_meta *meta, 4595 const struct bpf_func_proto *fn) 4596 { 4597 u32 regno = BPF_REG_1 + arg; 4598 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4599 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4600 enum bpf_reg_type type = reg->type; 4601 int err = 0; 4602 4603 if (arg_type == ARG_DONTCARE) 4604 return 0; 4605 4606 err = check_reg_arg(env, regno, SRC_OP); 4607 if (err) 4608 return err; 4609 4610 if (arg_type == ARG_ANYTHING) { 4611 if (is_pointer_value(env, regno)) { 4612 verbose(env, "R%d leaks addr into helper function\n", 4613 regno); 4614 return -EACCES; 4615 } 4616 return 0; 4617 } 4618 4619 if (type_is_pkt_pointer(type) && 4620 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4621 verbose(env, "helper access to the packet is not allowed\n"); 4622 return -EACCES; 4623 } 4624 4625 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4626 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4627 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4628 err = resolve_map_arg_type(env, meta, &arg_type); 4629 if (err) 4630 return err; 4631 } 4632 4633 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4634 /* A NULL register has a SCALAR_VALUE type, so skip 4635 * type checking. 4636 */ 4637 goto skip_type_check; 4638 4639 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4640 if (err) 4641 return err; 4642 4643 if (type == PTR_TO_CTX) { 4644 err = check_ctx_reg(env, reg, regno); 4645 if (err < 0) 4646 return err; 4647 } 4648 4649 skip_type_check: 4650 if (reg->ref_obj_id) { 4651 if (meta->ref_obj_id) { 4652 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4653 regno, reg->ref_obj_id, 4654 meta->ref_obj_id); 4655 return -EFAULT; 4656 } 4657 meta->ref_obj_id = reg->ref_obj_id; 4658 } 4659 4660 if (arg_type == ARG_CONST_MAP_PTR) { 4661 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4662 meta->map_ptr = reg->map_ptr; 4663 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4664 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4665 * check that [key, key + map->key_size) are within 4666 * stack limits and initialized 4667 */ 4668 if (!meta->map_ptr) { 4669 /* in function declaration map_ptr must come before 4670 * map_key, so that it's verified and known before 4671 * we have to check map_key here. Otherwise it means 4672 * that kernel subsystem misconfigured verifier 4673 */ 4674 verbose(env, "invalid map_ptr to access map->key\n"); 4675 return -EACCES; 4676 } 4677 err = check_helper_mem_access(env, regno, 4678 meta->map_ptr->key_size, false, 4679 NULL); 4680 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4681 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4682 !register_is_null(reg)) || 4683 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4684 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4685 * check [value, value + map->value_size) validity 4686 */ 4687 if (!meta->map_ptr) { 4688 /* kernel subsystem misconfigured verifier */ 4689 verbose(env, "invalid map_ptr to access map->value\n"); 4690 return -EACCES; 4691 } 4692 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4693 err = check_helper_mem_access(env, regno, 4694 meta->map_ptr->value_size, false, 4695 meta); 4696 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4697 if (!reg->btf_id) { 4698 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4699 return -EACCES; 4700 } 4701 meta->ret_btf = reg->btf; 4702 meta->ret_btf_id = reg->btf_id; 4703 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4704 if (meta->func_id == BPF_FUNC_spin_lock) { 4705 if (process_spin_lock(env, regno, true)) 4706 return -EACCES; 4707 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4708 if (process_spin_lock(env, regno, false)) 4709 return -EACCES; 4710 } else { 4711 verbose(env, "verifier internal error\n"); 4712 return -EFAULT; 4713 } 4714 } else if (arg_type_is_mem_ptr(arg_type)) { 4715 /* The access to this pointer is only checked when we hit the 4716 * next is_mem_size argument below. 4717 */ 4718 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4719 } else if (arg_type_is_mem_size(arg_type)) { 4720 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4721 4722 /* This is used to refine r0 return value bounds for helpers 4723 * that enforce this value as an upper bound on return values. 4724 * See do_refine_retval_range() for helpers that can refine 4725 * the return value. C type of helper is u32 so we pull register 4726 * bound from umax_value however, if negative verifier errors 4727 * out. Only upper bounds can be learned because retval is an 4728 * int type and negative retvals are allowed. 4729 */ 4730 meta->msize_max_value = reg->umax_value; 4731 4732 /* The register is SCALAR_VALUE; the access check 4733 * happens using its boundaries. 4734 */ 4735 if (!tnum_is_const(reg->var_off)) 4736 /* For unprivileged variable accesses, disable raw 4737 * mode so that the program is required to 4738 * initialize all the memory that the helper could 4739 * just partially fill up. 4740 */ 4741 meta = NULL; 4742 4743 if (reg->smin_value < 0) { 4744 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4745 regno); 4746 return -EACCES; 4747 } 4748 4749 if (reg->umin_value == 0) { 4750 err = check_helper_mem_access(env, regno - 1, 0, 4751 zero_size_allowed, 4752 meta); 4753 if (err) 4754 return err; 4755 } 4756 4757 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4758 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4759 regno); 4760 return -EACCES; 4761 } 4762 err = check_helper_mem_access(env, regno - 1, 4763 reg->umax_value, 4764 zero_size_allowed, meta); 4765 if (!err) 4766 err = mark_chain_precision(env, regno); 4767 } else if (arg_type_is_alloc_size(arg_type)) { 4768 if (!tnum_is_const(reg->var_off)) { 4769 verbose(env, "R%d is not a known constant'\n", 4770 regno); 4771 return -EACCES; 4772 } 4773 meta->mem_size = reg->var_off.value; 4774 } else if (arg_type_is_int_ptr(arg_type)) { 4775 int size = int_ptr_type_to_size(arg_type); 4776 4777 err = check_helper_mem_access(env, regno, size, false, meta); 4778 if (err) 4779 return err; 4780 err = check_ptr_alignment(env, reg, 0, size, true); 4781 } 4782 4783 return err; 4784 } 4785 4786 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4787 { 4788 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4789 enum bpf_prog_type type = resolve_prog_type(env->prog); 4790 4791 if (func_id != BPF_FUNC_map_update_elem) 4792 return false; 4793 4794 /* It's not possible to get access to a locked struct sock in these 4795 * contexts, so updating is safe. 4796 */ 4797 switch (type) { 4798 case BPF_PROG_TYPE_TRACING: 4799 if (eatype == BPF_TRACE_ITER) 4800 return true; 4801 break; 4802 case BPF_PROG_TYPE_SOCKET_FILTER: 4803 case BPF_PROG_TYPE_SCHED_CLS: 4804 case BPF_PROG_TYPE_SCHED_ACT: 4805 case BPF_PROG_TYPE_XDP: 4806 case BPF_PROG_TYPE_SK_REUSEPORT: 4807 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4808 case BPF_PROG_TYPE_SK_LOOKUP: 4809 return true; 4810 default: 4811 break; 4812 } 4813 4814 verbose(env, "cannot update sockmap in this context\n"); 4815 return false; 4816 } 4817 4818 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4819 { 4820 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4821 } 4822 4823 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4824 struct bpf_map *map, int func_id) 4825 { 4826 if (!map) 4827 return 0; 4828 4829 /* We need a two way check, first is from map perspective ... */ 4830 switch (map->map_type) { 4831 case BPF_MAP_TYPE_PROG_ARRAY: 4832 if (func_id != BPF_FUNC_tail_call) 4833 goto error; 4834 break; 4835 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4836 if (func_id != BPF_FUNC_perf_event_read && 4837 func_id != BPF_FUNC_perf_event_output && 4838 func_id != BPF_FUNC_skb_output && 4839 func_id != BPF_FUNC_perf_event_read_value && 4840 func_id != BPF_FUNC_xdp_output) 4841 goto error; 4842 break; 4843 case BPF_MAP_TYPE_RINGBUF: 4844 if (func_id != BPF_FUNC_ringbuf_output && 4845 func_id != BPF_FUNC_ringbuf_reserve && 4846 func_id != BPF_FUNC_ringbuf_submit && 4847 func_id != BPF_FUNC_ringbuf_discard && 4848 func_id != BPF_FUNC_ringbuf_query) 4849 goto error; 4850 break; 4851 case BPF_MAP_TYPE_STACK_TRACE: 4852 if (func_id != BPF_FUNC_get_stackid) 4853 goto error; 4854 break; 4855 case BPF_MAP_TYPE_CGROUP_ARRAY: 4856 if (func_id != BPF_FUNC_skb_under_cgroup && 4857 func_id != BPF_FUNC_current_task_under_cgroup) 4858 goto error; 4859 break; 4860 case BPF_MAP_TYPE_CGROUP_STORAGE: 4861 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4862 if (func_id != BPF_FUNC_get_local_storage) 4863 goto error; 4864 break; 4865 case BPF_MAP_TYPE_DEVMAP: 4866 case BPF_MAP_TYPE_DEVMAP_HASH: 4867 if (func_id != BPF_FUNC_redirect_map && 4868 func_id != BPF_FUNC_map_lookup_elem) 4869 goto error; 4870 break; 4871 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4872 * appear. 4873 */ 4874 case BPF_MAP_TYPE_CPUMAP: 4875 if (func_id != BPF_FUNC_redirect_map) 4876 goto error; 4877 break; 4878 case BPF_MAP_TYPE_XSKMAP: 4879 if (func_id != BPF_FUNC_redirect_map && 4880 func_id != BPF_FUNC_map_lookup_elem) 4881 goto error; 4882 break; 4883 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4884 case BPF_MAP_TYPE_HASH_OF_MAPS: 4885 if (func_id != BPF_FUNC_map_lookup_elem) 4886 goto error; 4887 break; 4888 case BPF_MAP_TYPE_SOCKMAP: 4889 if (func_id != BPF_FUNC_sk_redirect_map && 4890 func_id != BPF_FUNC_sock_map_update && 4891 func_id != BPF_FUNC_map_delete_elem && 4892 func_id != BPF_FUNC_msg_redirect_map && 4893 func_id != BPF_FUNC_sk_select_reuseport && 4894 func_id != BPF_FUNC_map_lookup_elem && 4895 !may_update_sockmap(env, func_id)) 4896 goto error; 4897 break; 4898 case BPF_MAP_TYPE_SOCKHASH: 4899 if (func_id != BPF_FUNC_sk_redirect_hash && 4900 func_id != BPF_FUNC_sock_hash_update && 4901 func_id != BPF_FUNC_map_delete_elem && 4902 func_id != BPF_FUNC_msg_redirect_hash && 4903 func_id != BPF_FUNC_sk_select_reuseport && 4904 func_id != BPF_FUNC_map_lookup_elem && 4905 !may_update_sockmap(env, func_id)) 4906 goto error; 4907 break; 4908 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4909 if (func_id != BPF_FUNC_sk_select_reuseport) 4910 goto error; 4911 break; 4912 case BPF_MAP_TYPE_QUEUE: 4913 case BPF_MAP_TYPE_STACK: 4914 if (func_id != BPF_FUNC_map_peek_elem && 4915 func_id != BPF_FUNC_map_pop_elem && 4916 func_id != BPF_FUNC_map_push_elem) 4917 goto error; 4918 break; 4919 case BPF_MAP_TYPE_SK_STORAGE: 4920 if (func_id != BPF_FUNC_sk_storage_get && 4921 func_id != BPF_FUNC_sk_storage_delete) 4922 goto error; 4923 break; 4924 case BPF_MAP_TYPE_INODE_STORAGE: 4925 if (func_id != BPF_FUNC_inode_storage_get && 4926 func_id != BPF_FUNC_inode_storage_delete) 4927 goto error; 4928 break; 4929 case BPF_MAP_TYPE_TASK_STORAGE: 4930 if (func_id != BPF_FUNC_task_storage_get && 4931 func_id != BPF_FUNC_task_storage_delete) 4932 goto error; 4933 break; 4934 default: 4935 break; 4936 } 4937 4938 /* ... and second from the function itself. */ 4939 switch (func_id) { 4940 case BPF_FUNC_tail_call: 4941 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4942 goto error; 4943 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4944 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4945 return -EINVAL; 4946 } 4947 break; 4948 case BPF_FUNC_perf_event_read: 4949 case BPF_FUNC_perf_event_output: 4950 case BPF_FUNC_perf_event_read_value: 4951 case BPF_FUNC_skb_output: 4952 case BPF_FUNC_xdp_output: 4953 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4954 goto error; 4955 break; 4956 case BPF_FUNC_get_stackid: 4957 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4958 goto error; 4959 break; 4960 case BPF_FUNC_current_task_under_cgroup: 4961 case BPF_FUNC_skb_under_cgroup: 4962 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4963 goto error; 4964 break; 4965 case BPF_FUNC_redirect_map: 4966 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4967 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4968 map->map_type != BPF_MAP_TYPE_CPUMAP && 4969 map->map_type != BPF_MAP_TYPE_XSKMAP) 4970 goto error; 4971 break; 4972 case BPF_FUNC_sk_redirect_map: 4973 case BPF_FUNC_msg_redirect_map: 4974 case BPF_FUNC_sock_map_update: 4975 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4976 goto error; 4977 break; 4978 case BPF_FUNC_sk_redirect_hash: 4979 case BPF_FUNC_msg_redirect_hash: 4980 case BPF_FUNC_sock_hash_update: 4981 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4982 goto error; 4983 break; 4984 case BPF_FUNC_get_local_storage: 4985 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4986 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4987 goto error; 4988 break; 4989 case BPF_FUNC_sk_select_reuseport: 4990 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4991 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4992 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4993 goto error; 4994 break; 4995 case BPF_FUNC_map_peek_elem: 4996 case BPF_FUNC_map_pop_elem: 4997 case BPF_FUNC_map_push_elem: 4998 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4999 map->map_type != BPF_MAP_TYPE_STACK) 5000 goto error; 5001 break; 5002 case BPF_FUNC_sk_storage_get: 5003 case BPF_FUNC_sk_storage_delete: 5004 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5005 goto error; 5006 break; 5007 case BPF_FUNC_inode_storage_get: 5008 case BPF_FUNC_inode_storage_delete: 5009 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5010 goto error; 5011 break; 5012 case BPF_FUNC_task_storage_get: 5013 case BPF_FUNC_task_storage_delete: 5014 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5015 goto error; 5016 break; 5017 default: 5018 break; 5019 } 5020 5021 return 0; 5022 error: 5023 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5024 map->map_type, func_id_name(func_id), func_id); 5025 return -EINVAL; 5026 } 5027 5028 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5029 { 5030 int count = 0; 5031 5032 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5033 count++; 5034 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5035 count++; 5036 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5037 count++; 5038 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5039 count++; 5040 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5041 count++; 5042 5043 /* We only support one arg being in raw mode at the moment, 5044 * which is sufficient for the helper functions we have 5045 * right now. 5046 */ 5047 return count <= 1; 5048 } 5049 5050 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5051 enum bpf_arg_type arg_next) 5052 { 5053 return (arg_type_is_mem_ptr(arg_curr) && 5054 !arg_type_is_mem_size(arg_next)) || 5055 (!arg_type_is_mem_ptr(arg_curr) && 5056 arg_type_is_mem_size(arg_next)); 5057 } 5058 5059 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5060 { 5061 /* bpf_xxx(..., buf, len) call will access 'len' 5062 * bytes from memory 'buf'. Both arg types need 5063 * to be paired, so make sure there's no buggy 5064 * helper function specification. 5065 */ 5066 if (arg_type_is_mem_size(fn->arg1_type) || 5067 arg_type_is_mem_ptr(fn->arg5_type) || 5068 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5069 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5070 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5071 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5072 return false; 5073 5074 return true; 5075 } 5076 5077 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5078 { 5079 int count = 0; 5080 5081 if (arg_type_may_be_refcounted(fn->arg1_type)) 5082 count++; 5083 if (arg_type_may_be_refcounted(fn->arg2_type)) 5084 count++; 5085 if (arg_type_may_be_refcounted(fn->arg3_type)) 5086 count++; 5087 if (arg_type_may_be_refcounted(fn->arg4_type)) 5088 count++; 5089 if (arg_type_may_be_refcounted(fn->arg5_type)) 5090 count++; 5091 5092 /* A reference acquiring function cannot acquire 5093 * another refcounted ptr. 5094 */ 5095 if (may_be_acquire_function(func_id) && count) 5096 return false; 5097 5098 /* We only support one arg being unreferenced at the moment, 5099 * which is sufficient for the helper functions we have right now. 5100 */ 5101 return count <= 1; 5102 } 5103 5104 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5105 { 5106 int i; 5107 5108 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5109 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5110 return false; 5111 5112 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5113 return false; 5114 } 5115 5116 return true; 5117 } 5118 5119 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5120 { 5121 return check_raw_mode_ok(fn) && 5122 check_arg_pair_ok(fn) && 5123 check_btf_id_ok(fn) && 5124 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5125 } 5126 5127 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5128 * are now invalid, so turn them into unknown SCALAR_VALUE. 5129 */ 5130 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5131 struct bpf_func_state *state) 5132 { 5133 struct bpf_reg_state *regs = state->regs, *reg; 5134 int i; 5135 5136 for (i = 0; i < MAX_BPF_REG; i++) 5137 if (reg_is_pkt_pointer_any(®s[i])) 5138 mark_reg_unknown(env, regs, i); 5139 5140 bpf_for_each_spilled_reg(i, state, reg) { 5141 if (!reg) 5142 continue; 5143 if (reg_is_pkt_pointer_any(reg)) 5144 __mark_reg_unknown(env, reg); 5145 } 5146 } 5147 5148 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5149 { 5150 struct bpf_verifier_state *vstate = env->cur_state; 5151 int i; 5152 5153 for (i = 0; i <= vstate->curframe; i++) 5154 __clear_all_pkt_pointers(env, vstate->frame[i]); 5155 } 5156 5157 enum { 5158 AT_PKT_END = -1, 5159 BEYOND_PKT_END = -2, 5160 }; 5161 5162 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5163 { 5164 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5165 struct bpf_reg_state *reg = &state->regs[regn]; 5166 5167 if (reg->type != PTR_TO_PACKET) 5168 /* PTR_TO_PACKET_META is not supported yet */ 5169 return; 5170 5171 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5172 * How far beyond pkt_end it goes is unknown. 5173 * if (!range_open) it's the case of pkt >= pkt_end 5174 * if (range_open) it's the case of pkt > pkt_end 5175 * hence this pointer is at least 1 byte bigger than pkt_end 5176 */ 5177 if (range_open) 5178 reg->range = BEYOND_PKT_END; 5179 else 5180 reg->range = AT_PKT_END; 5181 } 5182 5183 static void release_reg_references(struct bpf_verifier_env *env, 5184 struct bpf_func_state *state, 5185 int ref_obj_id) 5186 { 5187 struct bpf_reg_state *regs = state->regs, *reg; 5188 int i; 5189 5190 for (i = 0; i < MAX_BPF_REG; i++) 5191 if (regs[i].ref_obj_id == ref_obj_id) 5192 mark_reg_unknown(env, regs, i); 5193 5194 bpf_for_each_spilled_reg(i, state, reg) { 5195 if (!reg) 5196 continue; 5197 if (reg->ref_obj_id == ref_obj_id) 5198 __mark_reg_unknown(env, reg); 5199 } 5200 } 5201 5202 /* The pointer with the specified id has released its reference to kernel 5203 * resources. Identify all copies of the same pointer and clear the reference. 5204 */ 5205 static int release_reference(struct bpf_verifier_env *env, 5206 int ref_obj_id) 5207 { 5208 struct bpf_verifier_state *vstate = env->cur_state; 5209 int err; 5210 int i; 5211 5212 err = release_reference_state(cur_func(env), ref_obj_id); 5213 if (err) 5214 return err; 5215 5216 for (i = 0; i <= vstate->curframe; i++) 5217 release_reg_references(env, vstate->frame[i], ref_obj_id); 5218 5219 return 0; 5220 } 5221 5222 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5223 struct bpf_reg_state *regs) 5224 { 5225 int i; 5226 5227 /* after the call registers r0 - r5 were scratched */ 5228 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5229 mark_reg_not_init(env, regs, caller_saved[i]); 5230 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5231 } 5232 } 5233 5234 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5235 int *insn_idx) 5236 { 5237 struct bpf_verifier_state *state = env->cur_state; 5238 struct bpf_func_info_aux *func_info_aux; 5239 struct bpf_func_state *caller, *callee; 5240 int i, err, subprog, target_insn; 5241 bool is_global = false; 5242 5243 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5244 verbose(env, "the call stack of %d frames is too deep\n", 5245 state->curframe + 2); 5246 return -E2BIG; 5247 } 5248 5249 target_insn = *insn_idx + insn->imm; 5250 subprog = find_subprog(env, target_insn + 1); 5251 if (subprog < 0) { 5252 verbose(env, "verifier bug. No program starts at insn %d\n", 5253 target_insn + 1); 5254 return -EFAULT; 5255 } 5256 5257 caller = state->frame[state->curframe]; 5258 if (state->frame[state->curframe + 1]) { 5259 verbose(env, "verifier bug. Frame %d already allocated\n", 5260 state->curframe + 1); 5261 return -EFAULT; 5262 } 5263 5264 func_info_aux = env->prog->aux->func_info_aux; 5265 if (func_info_aux) 5266 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5267 err = btf_check_func_arg_match(env, subprog, caller->regs); 5268 if (err == -EFAULT) 5269 return err; 5270 if (is_global) { 5271 if (err) { 5272 verbose(env, "Caller passes invalid args into func#%d\n", 5273 subprog); 5274 return err; 5275 } else { 5276 if (env->log.level & BPF_LOG_LEVEL) 5277 verbose(env, 5278 "Func#%d is global and valid. Skipping.\n", 5279 subprog); 5280 clear_caller_saved_regs(env, caller->regs); 5281 5282 /* All global functions return a 64-bit SCALAR_VALUE */ 5283 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5284 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5285 5286 /* continue with next insn after call */ 5287 return 0; 5288 } 5289 } 5290 5291 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5292 if (!callee) 5293 return -ENOMEM; 5294 state->frame[state->curframe + 1] = callee; 5295 5296 /* callee cannot access r0, r6 - r9 for reading and has to write 5297 * into its own stack before reading from it. 5298 * callee can read/write into caller's stack 5299 */ 5300 init_func_state(env, callee, 5301 /* remember the callsite, it will be used by bpf_exit */ 5302 *insn_idx /* callsite */, 5303 state->curframe + 1 /* frameno within this callchain */, 5304 subprog /* subprog number within this prog */); 5305 5306 /* Transfer references to the callee */ 5307 err = transfer_reference_state(callee, caller); 5308 if (err) 5309 return err; 5310 5311 /* copy r1 - r5 args that callee can access. The copy includes parent 5312 * pointers, which connects us up to the liveness chain 5313 */ 5314 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5315 callee->regs[i] = caller->regs[i]; 5316 5317 clear_caller_saved_regs(env, caller->regs); 5318 5319 /* only increment it after check_reg_arg() finished */ 5320 state->curframe++; 5321 5322 /* and go analyze first insn of the callee */ 5323 *insn_idx = target_insn; 5324 5325 if (env->log.level & BPF_LOG_LEVEL) { 5326 verbose(env, "caller:\n"); 5327 print_verifier_state(env, caller); 5328 verbose(env, "callee:\n"); 5329 print_verifier_state(env, callee); 5330 } 5331 return 0; 5332 } 5333 5334 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5335 { 5336 struct bpf_verifier_state *state = env->cur_state; 5337 struct bpf_func_state *caller, *callee; 5338 struct bpf_reg_state *r0; 5339 int err; 5340 5341 callee = state->frame[state->curframe]; 5342 r0 = &callee->regs[BPF_REG_0]; 5343 if (r0->type == PTR_TO_STACK) { 5344 /* technically it's ok to return caller's stack pointer 5345 * (or caller's caller's pointer) back to the caller, 5346 * since these pointers are valid. Only current stack 5347 * pointer will be invalid as soon as function exits, 5348 * but let's be conservative 5349 */ 5350 verbose(env, "cannot return stack pointer to the caller\n"); 5351 return -EINVAL; 5352 } 5353 5354 state->curframe--; 5355 caller = state->frame[state->curframe]; 5356 /* return to the caller whatever r0 had in the callee */ 5357 caller->regs[BPF_REG_0] = *r0; 5358 5359 /* Transfer references to the caller */ 5360 err = transfer_reference_state(caller, callee); 5361 if (err) 5362 return err; 5363 5364 *insn_idx = callee->callsite + 1; 5365 if (env->log.level & BPF_LOG_LEVEL) { 5366 verbose(env, "returning from callee:\n"); 5367 print_verifier_state(env, callee); 5368 verbose(env, "to caller at %d:\n", *insn_idx); 5369 print_verifier_state(env, caller); 5370 } 5371 /* clear everything in the callee */ 5372 free_func_state(callee); 5373 state->frame[state->curframe + 1] = NULL; 5374 return 0; 5375 } 5376 5377 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 5378 int func_id, 5379 struct bpf_call_arg_meta *meta) 5380 { 5381 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5382 5383 if (ret_type != RET_INTEGER || 5384 (func_id != BPF_FUNC_get_stack && 5385 func_id != BPF_FUNC_probe_read_str && 5386 func_id != BPF_FUNC_probe_read_kernel_str && 5387 func_id != BPF_FUNC_probe_read_user_str)) 5388 return; 5389 5390 ret_reg->smax_value = meta->msize_max_value; 5391 ret_reg->s32_max_value = meta->msize_max_value; 5392 ret_reg->smin_value = -MAX_ERRNO; 5393 ret_reg->s32_min_value = -MAX_ERRNO; 5394 __reg_deduce_bounds(ret_reg); 5395 __reg_bound_offset(ret_reg); 5396 __update_reg_bounds(ret_reg); 5397 } 5398 5399 static int 5400 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5401 int func_id, int insn_idx) 5402 { 5403 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5404 struct bpf_map *map = meta->map_ptr; 5405 5406 if (func_id != BPF_FUNC_tail_call && 5407 func_id != BPF_FUNC_map_lookup_elem && 5408 func_id != BPF_FUNC_map_update_elem && 5409 func_id != BPF_FUNC_map_delete_elem && 5410 func_id != BPF_FUNC_map_push_elem && 5411 func_id != BPF_FUNC_map_pop_elem && 5412 func_id != BPF_FUNC_map_peek_elem) 5413 return 0; 5414 5415 if (map == NULL) { 5416 verbose(env, "kernel subsystem misconfigured verifier\n"); 5417 return -EINVAL; 5418 } 5419 5420 /* In case of read-only, some additional restrictions 5421 * need to be applied in order to prevent altering the 5422 * state of the map from program side. 5423 */ 5424 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5425 (func_id == BPF_FUNC_map_delete_elem || 5426 func_id == BPF_FUNC_map_update_elem || 5427 func_id == BPF_FUNC_map_push_elem || 5428 func_id == BPF_FUNC_map_pop_elem)) { 5429 verbose(env, "write into map forbidden\n"); 5430 return -EACCES; 5431 } 5432 5433 if (!BPF_MAP_PTR(aux->map_ptr_state)) 5434 bpf_map_ptr_store(aux, meta->map_ptr, 5435 !meta->map_ptr->bypass_spec_v1); 5436 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 5437 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 5438 !meta->map_ptr->bypass_spec_v1); 5439 return 0; 5440 } 5441 5442 static int 5443 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5444 int func_id, int insn_idx) 5445 { 5446 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5447 struct bpf_reg_state *regs = cur_regs(env), *reg; 5448 struct bpf_map *map = meta->map_ptr; 5449 struct tnum range; 5450 u64 val; 5451 int err; 5452 5453 if (func_id != BPF_FUNC_tail_call) 5454 return 0; 5455 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5456 verbose(env, "kernel subsystem misconfigured verifier\n"); 5457 return -EINVAL; 5458 } 5459 5460 range = tnum_range(0, map->max_entries - 1); 5461 reg = ®s[BPF_REG_3]; 5462 5463 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5464 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5465 return 0; 5466 } 5467 5468 err = mark_chain_precision(env, BPF_REG_3); 5469 if (err) 5470 return err; 5471 5472 val = reg->var_off.value; 5473 if (bpf_map_key_unseen(aux)) 5474 bpf_map_key_store(aux, val); 5475 else if (!bpf_map_key_poisoned(aux) && 5476 bpf_map_key_immediate(aux) != val) 5477 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5478 return 0; 5479 } 5480 5481 static int check_reference_leak(struct bpf_verifier_env *env) 5482 { 5483 struct bpf_func_state *state = cur_func(env); 5484 int i; 5485 5486 for (i = 0; i < state->acquired_refs; i++) { 5487 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5488 state->refs[i].id, state->refs[i].insn_idx); 5489 } 5490 return state->acquired_refs ? -EINVAL : 0; 5491 } 5492 5493 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 5494 { 5495 const struct bpf_func_proto *fn = NULL; 5496 struct bpf_reg_state *regs; 5497 struct bpf_call_arg_meta meta; 5498 bool changes_data; 5499 int i, err; 5500 5501 /* find function prototype */ 5502 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5503 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5504 func_id); 5505 return -EINVAL; 5506 } 5507 5508 if (env->ops->get_func_proto) 5509 fn = env->ops->get_func_proto(func_id, env->prog); 5510 if (!fn) { 5511 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5512 func_id); 5513 return -EINVAL; 5514 } 5515 5516 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5517 if (!env->prog->gpl_compatible && fn->gpl_only) { 5518 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5519 return -EINVAL; 5520 } 5521 5522 if (fn->allowed && !fn->allowed(env->prog)) { 5523 verbose(env, "helper call is not allowed in probe\n"); 5524 return -EINVAL; 5525 } 5526 5527 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5528 changes_data = bpf_helper_changes_pkt_data(fn->func); 5529 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5530 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5531 func_id_name(func_id), func_id); 5532 return -EINVAL; 5533 } 5534 5535 memset(&meta, 0, sizeof(meta)); 5536 meta.pkt_access = fn->pkt_access; 5537 5538 err = check_func_proto(fn, func_id); 5539 if (err) { 5540 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5541 func_id_name(func_id), func_id); 5542 return err; 5543 } 5544 5545 meta.func_id = func_id; 5546 /* check args */ 5547 for (i = 0; i < 5; i++) { 5548 err = check_func_arg(env, i, &meta, fn); 5549 if (err) 5550 return err; 5551 } 5552 5553 err = record_func_map(env, &meta, func_id, insn_idx); 5554 if (err) 5555 return err; 5556 5557 err = record_func_key(env, &meta, func_id, insn_idx); 5558 if (err) 5559 return err; 5560 5561 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5562 * is inferred from register state. 5563 */ 5564 for (i = 0; i < meta.access_size; i++) { 5565 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5566 BPF_WRITE, -1, false); 5567 if (err) 5568 return err; 5569 } 5570 5571 if (func_id == BPF_FUNC_tail_call) { 5572 err = check_reference_leak(env); 5573 if (err) { 5574 verbose(env, "tail_call would lead to reference leak\n"); 5575 return err; 5576 } 5577 } else if (is_release_function(func_id)) { 5578 err = release_reference(env, meta.ref_obj_id); 5579 if (err) { 5580 verbose(env, "func %s#%d reference has not been acquired before\n", 5581 func_id_name(func_id), func_id); 5582 return err; 5583 } 5584 } 5585 5586 regs = cur_regs(env); 5587 5588 /* check that flags argument in get_local_storage(map, flags) is 0, 5589 * this is required because get_local_storage() can't return an error. 5590 */ 5591 if (func_id == BPF_FUNC_get_local_storage && 5592 !register_is_null(®s[BPF_REG_2])) { 5593 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5594 return -EINVAL; 5595 } 5596 5597 /* reset caller saved regs */ 5598 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5599 mark_reg_not_init(env, regs, caller_saved[i]); 5600 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5601 } 5602 5603 /* helper call returns 64-bit value. */ 5604 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5605 5606 /* update return register (already marked as written above) */ 5607 if (fn->ret_type == RET_INTEGER) { 5608 /* sets type to SCALAR_VALUE */ 5609 mark_reg_unknown(env, regs, BPF_REG_0); 5610 } else if (fn->ret_type == RET_VOID) { 5611 regs[BPF_REG_0].type = NOT_INIT; 5612 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5613 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5614 /* There is no offset yet applied, variable or fixed */ 5615 mark_reg_known_zero(env, regs, BPF_REG_0); 5616 /* remember map_ptr, so that check_map_access() 5617 * can check 'value_size' boundary of memory access 5618 * to map element returned from bpf_map_lookup_elem() 5619 */ 5620 if (meta.map_ptr == NULL) { 5621 verbose(env, 5622 "kernel subsystem misconfigured verifier\n"); 5623 return -EINVAL; 5624 } 5625 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5626 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5627 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5628 if (map_value_has_spin_lock(meta.map_ptr)) 5629 regs[BPF_REG_0].id = ++env->id_gen; 5630 } else { 5631 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5632 } 5633 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5634 mark_reg_known_zero(env, regs, BPF_REG_0); 5635 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5636 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5637 mark_reg_known_zero(env, regs, BPF_REG_0); 5638 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5639 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5640 mark_reg_known_zero(env, regs, BPF_REG_0); 5641 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5642 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5643 mark_reg_known_zero(env, regs, BPF_REG_0); 5644 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5645 regs[BPF_REG_0].mem_size = meta.mem_size; 5646 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5647 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5648 const struct btf_type *t; 5649 5650 mark_reg_known_zero(env, regs, BPF_REG_0); 5651 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 5652 if (!btf_type_is_struct(t)) { 5653 u32 tsize; 5654 const struct btf_type *ret; 5655 const char *tname; 5656 5657 /* resolve the type size of ksym. */ 5658 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 5659 if (IS_ERR(ret)) { 5660 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 5661 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5662 tname, PTR_ERR(ret)); 5663 return -EINVAL; 5664 } 5665 regs[BPF_REG_0].type = 5666 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5667 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5668 regs[BPF_REG_0].mem_size = tsize; 5669 } else { 5670 regs[BPF_REG_0].type = 5671 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5672 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5673 regs[BPF_REG_0].btf = meta.ret_btf; 5674 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5675 } 5676 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 5677 fn->ret_type == RET_PTR_TO_BTF_ID) { 5678 int ret_btf_id; 5679 5680 mark_reg_known_zero(env, regs, BPF_REG_0); 5681 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 5682 PTR_TO_BTF_ID : 5683 PTR_TO_BTF_ID_OR_NULL; 5684 ret_btf_id = *fn->ret_btf_id; 5685 if (ret_btf_id == 0) { 5686 verbose(env, "invalid return type %d of func %s#%d\n", 5687 fn->ret_type, func_id_name(func_id), func_id); 5688 return -EINVAL; 5689 } 5690 /* current BPF helper definitions are only coming from 5691 * built-in code with type IDs from vmlinux BTF 5692 */ 5693 regs[BPF_REG_0].btf = btf_vmlinux; 5694 regs[BPF_REG_0].btf_id = ret_btf_id; 5695 } else { 5696 verbose(env, "unknown return type %d of func %s#%d\n", 5697 fn->ret_type, func_id_name(func_id), func_id); 5698 return -EINVAL; 5699 } 5700 5701 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 5702 regs[BPF_REG_0].id = ++env->id_gen; 5703 5704 if (is_ptr_cast_function(func_id)) { 5705 /* For release_reference() */ 5706 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5707 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5708 int id = acquire_reference_state(env, insn_idx); 5709 5710 if (id < 0) 5711 return id; 5712 /* For mark_ptr_or_null_reg() */ 5713 regs[BPF_REG_0].id = id; 5714 /* For release_reference() */ 5715 regs[BPF_REG_0].ref_obj_id = id; 5716 } 5717 5718 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5719 5720 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5721 if (err) 5722 return err; 5723 5724 if ((func_id == BPF_FUNC_get_stack || 5725 func_id == BPF_FUNC_get_task_stack) && 5726 !env->prog->has_callchain_buf) { 5727 const char *err_str; 5728 5729 #ifdef CONFIG_PERF_EVENTS 5730 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5731 err_str = "cannot get callchain buffer for func %s#%d\n"; 5732 #else 5733 err = -ENOTSUPP; 5734 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5735 #endif 5736 if (err) { 5737 verbose(env, err_str, func_id_name(func_id), func_id); 5738 return err; 5739 } 5740 5741 env->prog->has_callchain_buf = true; 5742 } 5743 5744 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5745 env->prog->call_get_stack = true; 5746 5747 if (changes_data) 5748 clear_all_pkt_pointers(env); 5749 return 0; 5750 } 5751 5752 static bool signed_add_overflows(s64 a, s64 b) 5753 { 5754 /* Do the add in u64, where overflow is well-defined */ 5755 s64 res = (s64)((u64)a + (u64)b); 5756 5757 if (b < 0) 5758 return res > a; 5759 return res < a; 5760 } 5761 5762 static bool signed_add32_overflows(s32 a, s32 b) 5763 { 5764 /* Do the add in u32, where overflow is well-defined */ 5765 s32 res = (s32)((u32)a + (u32)b); 5766 5767 if (b < 0) 5768 return res > a; 5769 return res < a; 5770 } 5771 5772 static bool signed_sub_overflows(s64 a, s64 b) 5773 { 5774 /* Do the sub in u64, where overflow is well-defined */ 5775 s64 res = (s64)((u64)a - (u64)b); 5776 5777 if (b < 0) 5778 return res < a; 5779 return res > a; 5780 } 5781 5782 static bool signed_sub32_overflows(s32 a, s32 b) 5783 { 5784 /* Do the sub in u32, where overflow is well-defined */ 5785 s32 res = (s32)((u32)a - (u32)b); 5786 5787 if (b < 0) 5788 return res < a; 5789 return res > a; 5790 } 5791 5792 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5793 const struct bpf_reg_state *reg, 5794 enum bpf_reg_type type) 5795 { 5796 bool known = tnum_is_const(reg->var_off); 5797 s64 val = reg->var_off.value; 5798 s64 smin = reg->smin_value; 5799 5800 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5801 verbose(env, "math between %s pointer and %lld is not allowed\n", 5802 reg_type_str[type], val); 5803 return false; 5804 } 5805 5806 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5807 verbose(env, "%s pointer offset %d is not allowed\n", 5808 reg_type_str[type], reg->off); 5809 return false; 5810 } 5811 5812 if (smin == S64_MIN) { 5813 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5814 reg_type_str[type]); 5815 return false; 5816 } 5817 5818 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5819 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5820 smin, reg_type_str[type]); 5821 return false; 5822 } 5823 5824 return true; 5825 } 5826 5827 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5828 { 5829 return &env->insn_aux_data[env->insn_idx]; 5830 } 5831 5832 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5833 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5834 { 5835 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5836 (opcode == BPF_SUB && !off_is_neg); 5837 u32 off; 5838 5839 switch (ptr_reg->type) { 5840 case PTR_TO_STACK: 5841 /* Indirect variable offset stack access is prohibited in 5842 * unprivileged mode so it's not handled here. 5843 */ 5844 off = ptr_reg->off + ptr_reg->var_off.value; 5845 if (mask_to_left) 5846 *ptr_limit = MAX_BPF_STACK + off; 5847 else 5848 *ptr_limit = -off; 5849 return 0; 5850 case PTR_TO_MAP_VALUE: 5851 if (mask_to_left) { 5852 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5853 } else { 5854 off = ptr_reg->smin_value + ptr_reg->off; 5855 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5856 } 5857 return 0; 5858 default: 5859 return -EINVAL; 5860 } 5861 } 5862 5863 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5864 const struct bpf_insn *insn) 5865 { 5866 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5867 } 5868 5869 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5870 u32 alu_state, u32 alu_limit) 5871 { 5872 /* If we arrived here from different branches with different 5873 * state or limits to sanitize, then this won't work. 5874 */ 5875 if (aux->alu_state && 5876 (aux->alu_state != alu_state || 5877 aux->alu_limit != alu_limit)) 5878 return -EACCES; 5879 5880 /* Corresponding fixup done in fixup_bpf_calls(). */ 5881 aux->alu_state = alu_state; 5882 aux->alu_limit = alu_limit; 5883 return 0; 5884 } 5885 5886 static int sanitize_val_alu(struct bpf_verifier_env *env, 5887 struct bpf_insn *insn) 5888 { 5889 struct bpf_insn_aux_data *aux = cur_aux(env); 5890 5891 if (can_skip_alu_sanitation(env, insn)) 5892 return 0; 5893 5894 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5895 } 5896 5897 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5898 struct bpf_insn *insn, 5899 const struct bpf_reg_state *ptr_reg, 5900 struct bpf_reg_state *dst_reg, 5901 bool off_is_neg) 5902 { 5903 struct bpf_verifier_state *vstate = env->cur_state; 5904 struct bpf_insn_aux_data *aux = cur_aux(env); 5905 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5906 u8 opcode = BPF_OP(insn->code); 5907 u32 alu_state, alu_limit; 5908 struct bpf_reg_state tmp; 5909 bool ret; 5910 5911 if (can_skip_alu_sanitation(env, insn)) 5912 return 0; 5913 5914 /* We already marked aux for masking from non-speculative 5915 * paths, thus we got here in the first place. We only care 5916 * to explore bad access from here. 5917 */ 5918 if (vstate->speculative) 5919 goto do_sim; 5920 5921 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5922 alu_state |= ptr_is_dst_reg ? 5923 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5924 5925 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5926 return 0; 5927 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5928 return -EACCES; 5929 do_sim: 5930 /* Simulate and find potential out-of-bounds access under 5931 * speculative execution from truncation as a result of 5932 * masking when off was not within expected range. If off 5933 * sits in dst, then we temporarily need to move ptr there 5934 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5935 * for cases where we use K-based arithmetic in one direction 5936 * and truncated reg-based in the other in order to explore 5937 * bad access. 5938 */ 5939 if (!ptr_is_dst_reg) { 5940 tmp = *dst_reg; 5941 *dst_reg = *ptr_reg; 5942 } 5943 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5944 if (!ptr_is_dst_reg && ret) 5945 *dst_reg = tmp; 5946 return !ret ? -EFAULT : 0; 5947 } 5948 5949 /* check that stack access falls within stack limits and that 'reg' doesn't 5950 * have a variable offset. 5951 * 5952 * Variable offset is prohibited for unprivileged mode for simplicity since it 5953 * requires corresponding support in Spectre masking for stack ALU. See also 5954 * retrieve_ptr_limit(). 5955 * 5956 * 5957 * 'off' includes 'reg->off'. 5958 */ 5959 static int check_stack_access_for_ptr_arithmetic( 5960 struct bpf_verifier_env *env, 5961 int regno, 5962 const struct bpf_reg_state *reg, 5963 int off) 5964 { 5965 if (!tnum_is_const(reg->var_off)) { 5966 char tn_buf[48]; 5967 5968 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5969 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 5970 regno, tn_buf, off); 5971 return -EACCES; 5972 } 5973 5974 if (off >= 0 || off < -MAX_BPF_STACK) { 5975 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5976 "prohibited for !root; off=%d\n", regno, off); 5977 return -EACCES; 5978 } 5979 5980 return 0; 5981 } 5982 5983 5984 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5985 * Caller should also handle BPF_MOV case separately. 5986 * If we return -EACCES, caller may want to try again treating pointer as a 5987 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5988 */ 5989 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5990 struct bpf_insn *insn, 5991 const struct bpf_reg_state *ptr_reg, 5992 const struct bpf_reg_state *off_reg) 5993 { 5994 struct bpf_verifier_state *vstate = env->cur_state; 5995 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5996 struct bpf_reg_state *regs = state->regs, *dst_reg; 5997 bool known = tnum_is_const(off_reg->var_off); 5998 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5999 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6000 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6001 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6002 u32 dst = insn->dst_reg, src = insn->src_reg; 6003 u8 opcode = BPF_OP(insn->code); 6004 int ret; 6005 6006 dst_reg = ®s[dst]; 6007 6008 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6009 smin_val > smax_val || umin_val > umax_val) { 6010 /* Taint dst register if offset had invalid bounds derived from 6011 * e.g. dead branches. 6012 */ 6013 __mark_reg_unknown(env, dst_reg); 6014 return 0; 6015 } 6016 6017 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6018 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6019 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6020 __mark_reg_unknown(env, dst_reg); 6021 return 0; 6022 } 6023 6024 verbose(env, 6025 "R%d 32-bit pointer arithmetic prohibited\n", 6026 dst); 6027 return -EACCES; 6028 } 6029 6030 switch (ptr_reg->type) { 6031 case PTR_TO_MAP_VALUE_OR_NULL: 6032 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 6033 dst, reg_type_str[ptr_reg->type]); 6034 return -EACCES; 6035 case CONST_PTR_TO_MAP: 6036 /* smin_val represents the known value */ 6037 if (known && smin_val == 0 && opcode == BPF_ADD) 6038 break; 6039 fallthrough; 6040 case PTR_TO_PACKET_END: 6041 case PTR_TO_SOCKET: 6042 case PTR_TO_SOCKET_OR_NULL: 6043 case PTR_TO_SOCK_COMMON: 6044 case PTR_TO_SOCK_COMMON_OR_NULL: 6045 case PTR_TO_TCP_SOCK: 6046 case PTR_TO_TCP_SOCK_OR_NULL: 6047 case PTR_TO_XDP_SOCK: 6048 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 6049 dst, reg_type_str[ptr_reg->type]); 6050 return -EACCES; 6051 case PTR_TO_MAP_VALUE: 6052 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 6053 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 6054 off_reg == dst_reg ? dst : src); 6055 return -EACCES; 6056 } 6057 fallthrough; 6058 default: 6059 break; 6060 } 6061 6062 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6063 * The id may be overwritten later if we create a new variable offset. 6064 */ 6065 dst_reg->type = ptr_reg->type; 6066 dst_reg->id = ptr_reg->id; 6067 6068 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 6069 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 6070 return -EINVAL; 6071 6072 /* pointer types do not carry 32-bit bounds at the moment. */ 6073 __mark_reg32_unbounded(dst_reg); 6074 6075 switch (opcode) { 6076 case BPF_ADD: 6077 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 6078 if (ret < 0) { 6079 verbose(env, "R%d tried to add from different maps or paths\n", dst); 6080 return ret; 6081 } 6082 /* We can take a fixed offset as long as it doesn't overflow 6083 * the s32 'off' field 6084 */ 6085 if (known && (ptr_reg->off + smin_val == 6086 (s64)(s32)(ptr_reg->off + smin_val))) { 6087 /* pointer += K. Accumulate it into fixed offset */ 6088 dst_reg->smin_value = smin_ptr; 6089 dst_reg->smax_value = smax_ptr; 6090 dst_reg->umin_value = umin_ptr; 6091 dst_reg->umax_value = umax_ptr; 6092 dst_reg->var_off = ptr_reg->var_off; 6093 dst_reg->off = ptr_reg->off + smin_val; 6094 dst_reg->raw = ptr_reg->raw; 6095 break; 6096 } 6097 /* A new variable offset is created. Note that off_reg->off 6098 * == 0, since it's a scalar. 6099 * dst_reg gets the pointer type and since some positive 6100 * integer value was added to the pointer, give it a new 'id' 6101 * if it's a PTR_TO_PACKET. 6102 * this creates a new 'base' pointer, off_reg (variable) gets 6103 * added into the variable offset, and we copy the fixed offset 6104 * from ptr_reg. 6105 */ 6106 if (signed_add_overflows(smin_ptr, smin_val) || 6107 signed_add_overflows(smax_ptr, smax_val)) { 6108 dst_reg->smin_value = S64_MIN; 6109 dst_reg->smax_value = S64_MAX; 6110 } else { 6111 dst_reg->smin_value = smin_ptr + smin_val; 6112 dst_reg->smax_value = smax_ptr + smax_val; 6113 } 6114 if (umin_ptr + umin_val < umin_ptr || 6115 umax_ptr + umax_val < umax_ptr) { 6116 dst_reg->umin_value = 0; 6117 dst_reg->umax_value = U64_MAX; 6118 } else { 6119 dst_reg->umin_value = umin_ptr + umin_val; 6120 dst_reg->umax_value = umax_ptr + umax_val; 6121 } 6122 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6123 dst_reg->off = ptr_reg->off; 6124 dst_reg->raw = ptr_reg->raw; 6125 if (reg_is_pkt_pointer(ptr_reg)) { 6126 dst_reg->id = ++env->id_gen; 6127 /* something was added to pkt_ptr, set range to zero */ 6128 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6129 } 6130 break; 6131 case BPF_SUB: 6132 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 6133 if (ret < 0) { 6134 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 6135 return ret; 6136 } 6137 if (dst_reg == off_reg) { 6138 /* scalar -= pointer. Creates an unknown scalar */ 6139 verbose(env, "R%d tried to subtract pointer from scalar\n", 6140 dst); 6141 return -EACCES; 6142 } 6143 /* We don't allow subtraction from FP, because (according to 6144 * test_verifier.c test "invalid fp arithmetic", JITs might not 6145 * be able to deal with it. 6146 */ 6147 if (ptr_reg->type == PTR_TO_STACK) { 6148 verbose(env, "R%d subtraction from stack pointer prohibited\n", 6149 dst); 6150 return -EACCES; 6151 } 6152 if (known && (ptr_reg->off - smin_val == 6153 (s64)(s32)(ptr_reg->off - smin_val))) { 6154 /* pointer -= K. Subtract it from fixed offset */ 6155 dst_reg->smin_value = smin_ptr; 6156 dst_reg->smax_value = smax_ptr; 6157 dst_reg->umin_value = umin_ptr; 6158 dst_reg->umax_value = umax_ptr; 6159 dst_reg->var_off = ptr_reg->var_off; 6160 dst_reg->id = ptr_reg->id; 6161 dst_reg->off = ptr_reg->off - smin_val; 6162 dst_reg->raw = ptr_reg->raw; 6163 break; 6164 } 6165 /* A new variable offset is created. If the subtrahend is known 6166 * nonnegative, then any reg->range we had before is still good. 6167 */ 6168 if (signed_sub_overflows(smin_ptr, smax_val) || 6169 signed_sub_overflows(smax_ptr, smin_val)) { 6170 /* Overflow possible, we know nothing */ 6171 dst_reg->smin_value = S64_MIN; 6172 dst_reg->smax_value = S64_MAX; 6173 } else { 6174 dst_reg->smin_value = smin_ptr - smax_val; 6175 dst_reg->smax_value = smax_ptr - smin_val; 6176 } 6177 if (umin_ptr < umax_val) { 6178 /* Overflow possible, we know nothing */ 6179 dst_reg->umin_value = 0; 6180 dst_reg->umax_value = U64_MAX; 6181 } else { 6182 /* Cannot overflow (as long as bounds are consistent) */ 6183 dst_reg->umin_value = umin_ptr - umax_val; 6184 dst_reg->umax_value = umax_ptr - umin_val; 6185 } 6186 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6187 dst_reg->off = ptr_reg->off; 6188 dst_reg->raw = ptr_reg->raw; 6189 if (reg_is_pkt_pointer(ptr_reg)) { 6190 dst_reg->id = ++env->id_gen; 6191 /* something was added to pkt_ptr, set range to zero */ 6192 if (smin_val < 0) 6193 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6194 } 6195 break; 6196 case BPF_AND: 6197 case BPF_OR: 6198 case BPF_XOR: 6199 /* bitwise ops on pointers are troublesome, prohibit. */ 6200 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 6201 dst, bpf_alu_string[opcode >> 4]); 6202 return -EACCES; 6203 default: 6204 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6205 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 6206 dst, bpf_alu_string[opcode >> 4]); 6207 return -EACCES; 6208 } 6209 6210 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 6211 return -EINVAL; 6212 6213 __update_reg_bounds(dst_reg); 6214 __reg_deduce_bounds(dst_reg); 6215 __reg_bound_offset(dst_reg); 6216 6217 /* For unprivileged we require that resulting offset must be in bounds 6218 * in order to be able to sanitize access later on. 6219 */ 6220 if (!env->bypass_spec_v1) { 6221 if (dst_reg->type == PTR_TO_MAP_VALUE && 6222 check_map_access(env, dst, dst_reg->off, 1, false)) { 6223 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6224 "prohibited for !root\n", dst); 6225 return -EACCES; 6226 } else if (dst_reg->type == PTR_TO_STACK && 6227 check_stack_access_for_ptr_arithmetic( 6228 env, dst, dst_reg, dst_reg->off + 6229 dst_reg->var_off.value)) { 6230 return -EACCES; 6231 } 6232 } 6233 6234 return 0; 6235 } 6236 6237 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 6238 struct bpf_reg_state *src_reg) 6239 { 6240 s32 smin_val = src_reg->s32_min_value; 6241 s32 smax_val = src_reg->s32_max_value; 6242 u32 umin_val = src_reg->u32_min_value; 6243 u32 umax_val = src_reg->u32_max_value; 6244 6245 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6246 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6247 dst_reg->s32_min_value = S32_MIN; 6248 dst_reg->s32_max_value = S32_MAX; 6249 } else { 6250 dst_reg->s32_min_value += smin_val; 6251 dst_reg->s32_max_value += smax_val; 6252 } 6253 if (dst_reg->u32_min_value + umin_val < umin_val || 6254 dst_reg->u32_max_value + umax_val < umax_val) { 6255 dst_reg->u32_min_value = 0; 6256 dst_reg->u32_max_value = U32_MAX; 6257 } else { 6258 dst_reg->u32_min_value += umin_val; 6259 dst_reg->u32_max_value += umax_val; 6260 } 6261 } 6262 6263 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 6264 struct bpf_reg_state *src_reg) 6265 { 6266 s64 smin_val = src_reg->smin_value; 6267 s64 smax_val = src_reg->smax_value; 6268 u64 umin_val = src_reg->umin_value; 6269 u64 umax_val = src_reg->umax_value; 6270 6271 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 6272 signed_add_overflows(dst_reg->smax_value, smax_val)) { 6273 dst_reg->smin_value = S64_MIN; 6274 dst_reg->smax_value = S64_MAX; 6275 } else { 6276 dst_reg->smin_value += smin_val; 6277 dst_reg->smax_value += smax_val; 6278 } 6279 if (dst_reg->umin_value + umin_val < umin_val || 6280 dst_reg->umax_value + umax_val < umax_val) { 6281 dst_reg->umin_value = 0; 6282 dst_reg->umax_value = U64_MAX; 6283 } else { 6284 dst_reg->umin_value += umin_val; 6285 dst_reg->umax_value += umax_val; 6286 } 6287 } 6288 6289 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 6290 struct bpf_reg_state *src_reg) 6291 { 6292 s32 smin_val = src_reg->s32_min_value; 6293 s32 smax_val = src_reg->s32_max_value; 6294 u32 umin_val = src_reg->u32_min_value; 6295 u32 umax_val = src_reg->u32_max_value; 6296 6297 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 6298 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 6299 /* Overflow possible, we know nothing */ 6300 dst_reg->s32_min_value = S32_MIN; 6301 dst_reg->s32_max_value = S32_MAX; 6302 } else { 6303 dst_reg->s32_min_value -= smax_val; 6304 dst_reg->s32_max_value -= smin_val; 6305 } 6306 if (dst_reg->u32_min_value < umax_val) { 6307 /* Overflow possible, we know nothing */ 6308 dst_reg->u32_min_value = 0; 6309 dst_reg->u32_max_value = U32_MAX; 6310 } else { 6311 /* Cannot overflow (as long as bounds are consistent) */ 6312 dst_reg->u32_min_value -= umax_val; 6313 dst_reg->u32_max_value -= umin_val; 6314 } 6315 } 6316 6317 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 6318 struct bpf_reg_state *src_reg) 6319 { 6320 s64 smin_val = src_reg->smin_value; 6321 s64 smax_val = src_reg->smax_value; 6322 u64 umin_val = src_reg->umin_value; 6323 u64 umax_val = src_reg->umax_value; 6324 6325 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 6326 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 6327 /* Overflow possible, we know nothing */ 6328 dst_reg->smin_value = S64_MIN; 6329 dst_reg->smax_value = S64_MAX; 6330 } else { 6331 dst_reg->smin_value -= smax_val; 6332 dst_reg->smax_value -= smin_val; 6333 } 6334 if (dst_reg->umin_value < umax_val) { 6335 /* Overflow possible, we know nothing */ 6336 dst_reg->umin_value = 0; 6337 dst_reg->umax_value = U64_MAX; 6338 } else { 6339 /* Cannot overflow (as long as bounds are consistent) */ 6340 dst_reg->umin_value -= umax_val; 6341 dst_reg->umax_value -= umin_val; 6342 } 6343 } 6344 6345 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 6346 struct bpf_reg_state *src_reg) 6347 { 6348 s32 smin_val = src_reg->s32_min_value; 6349 u32 umin_val = src_reg->u32_min_value; 6350 u32 umax_val = src_reg->u32_max_value; 6351 6352 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 6353 /* Ain't nobody got time to multiply that sign */ 6354 __mark_reg32_unbounded(dst_reg); 6355 return; 6356 } 6357 /* Both values are positive, so we can work with unsigned and 6358 * copy the result to signed (unless it exceeds S32_MAX). 6359 */ 6360 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 6361 /* Potential overflow, we know nothing */ 6362 __mark_reg32_unbounded(dst_reg); 6363 return; 6364 } 6365 dst_reg->u32_min_value *= umin_val; 6366 dst_reg->u32_max_value *= umax_val; 6367 if (dst_reg->u32_max_value > S32_MAX) { 6368 /* Overflow possible, we know nothing */ 6369 dst_reg->s32_min_value = S32_MIN; 6370 dst_reg->s32_max_value = S32_MAX; 6371 } else { 6372 dst_reg->s32_min_value = dst_reg->u32_min_value; 6373 dst_reg->s32_max_value = dst_reg->u32_max_value; 6374 } 6375 } 6376 6377 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 6378 struct bpf_reg_state *src_reg) 6379 { 6380 s64 smin_val = src_reg->smin_value; 6381 u64 umin_val = src_reg->umin_value; 6382 u64 umax_val = src_reg->umax_value; 6383 6384 if (smin_val < 0 || dst_reg->smin_value < 0) { 6385 /* Ain't nobody got time to multiply that sign */ 6386 __mark_reg64_unbounded(dst_reg); 6387 return; 6388 } 6389 /* Both values are positive, so we can work with unsigned and 6390 * copy the result to signed (unless it exceeds S64_MAX). 6391 */ 6392 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 6393 /* Potential overflow, we know nothing */ 6394 __mark_reg64_unbounded(dst_reg); 6395 return; 6396 } 6397 dst_reg->umin_value *= umin_val; 6398 dst_reg->umax_value *= umax_val; 6399 if (dst_reg->umax_value > S64_MAX) { 6400 /* Overflow possible, we know nothing */ 6401 dst_reg->smin_value = S64_MIN; 6402 dst_reg->smax_value = S64_MAX; 6403 } else { 6404 dst_reg->smin_value = dst_reg->umin_value; 6405 dst_reg->smax_value = dst_reg->umax_value; 6406 } 6407 } 6408 6409 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 6410 struct bpf_reg_state *src_reg) 6411 { 6412 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6413 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6414 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6415 s32 smin_val = src_reg->s32_min_value; 6416 u32 umax_val = src_reg->u32_max_value; 6417 6418 /* Assuming scalar64_min_max_and will be called so its safe 6419 * to skip updating register for known 32-bit case. 6420 */ 6421 if (src_known && dst_known) 6422 return; 6423 6424 /* We get our minimum from the var_off, since that's inherently 6425 * bitwise. Our maximum is the minimum of the operands' maxima. 6426 */ 6427 dst_reg->u32_min_value = var32_off.value; 6428 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 6429 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6430 /* Lose signed bounds when ANDing negative numbers, 6431 * ain't nobody got time for that. 6432 */ 6433 dst_reg->s32_min_value = S32_MIN; 6434 dst_reg->s32_max_value = S32_MAX; 6435 } else { 6436 /* ANDing two positives gives a positive, so safe to 6437 * cast result into s64. 6438 */ 6439 dst_reg->s32_min_value = dst_reg->u32_min_value; 6440 dst_reg->s32_max_value = dst_reg->u32_max_value; 6441 } 6442 6443 } 6444 6445 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 6446 struct bpf_reg_state *src_reg) 6447 { 6448 bool src_known = tnum_is_const(src_reg->var_off); 6449 bool dst_known = tnum_is_const(dst_reg->var_off); 6450 s64 smin_val = src_reg->smin_value; 6451 u64 umax_val = src_reg->umax_value; 6452 6453 if (src_known && dst_known) { 6454 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6455 return; 6456 } 6457 6458 /* We get our minimum from the var_off, since that's inherently 6459 * bitwise. Our maximum is the minimum of the operands' maxima. 6460 */ 6461 dst_reg->umin_value = dst_reg->var_off.value; 6462 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 6463 if (dst_reg->smin_value < 0 || smin_val < 0) { 6464 /* Lose signed bounds when ANDing negative numbers, 6465 * ain't nobody got time for that. 6466 */ 6467 dst_reg->smin_value = S64_MIN; 6468 dst_reg->smax_value = S64_MAX; 6469 } else { 6470 /* ANDing two positives gives a positive, so safe to 6471 * cast result into s64. 6472 */ 6473 dst_reg->smin_value = dst_reg->umin_value; 6474 dst_reg->smax_value = dst_reg->umax_value; 6475 } 6476 /* We may learn something more from the var_off */ 6477 __update_reg_bounds(dst_reg); 6478 } 6479 6480 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 6481 struct bpf_reg_state *src_reg) 6482 { 6483 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6484 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6485 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6486 s32 smin_val = src_reg->s32_min_value; 6487 u32 umin_val = src_reg->u32_min_value; 6488 6489 /* Assuming scalar64_min_max_or will be called so it is safe 6490 * to skip updating register for known case. 6491 */ 6492 if (src_known && dst_known) 6493 return; 6494 6495 /* We get our maximum from the var_off, and our minimum is the 6496 * maximum of the operands' minima 6497 */ 6498 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 6499 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6500 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6501 /* Lose signed bounds when ORing negative numbers, 6502 * ain't nobody got time for that. 6503 */ 6504 dst_reg->s32_min_value = S32_MIN; 6505 dst_reg->s32_max_value = S32_MAX; 6506 } else { 6507 /* ORing two positives gives a positive, so safe to 6508 * cast result into s64. 6509 */ 6510 dst_reg->s32_min_value = dst_reg->u32_min_value; 6511 dst_reg->s32_max_value = dst_reg->u32_max_value; 6512 } 6513 } 6514 6515 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 6516 struct bpf_reg_state *src_reg) 6517 { 6518 bool src_known = tnum_is_const(src_reg->var_off); 6519 bool dst_known = tnum_is_const(dst_reg->var_off); 6520 s64 smin_val = src_reg->smin_value; 6521 u64 umin_val = src_reg->umin_value; 6522 6523 if (src_known && dst_known) { 6524 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6525 return; 6526 } 6527 6528 /* We get our maximum from the var_off, and our minimum is the 6529 * maximum of the operands' minima 6530 */ 6531 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 6532 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6533 if (dst_reg->smin_value < 0 || smin_val < 0) { 6534 /* Lose signed bounds when ORing negative numbers, 6535 * ain't nobody got time for that. 6536 */ 6537 dst_reg->smin_value = S64_MIN; 6538 dst_reg->smax_value = S64_MAX; 6539 } else { 6540 /* ORing two positives gives a positive, so safe to 6541 * cast result into s64. 6542 */ 6543 dst_reg->smin_value = dst_reg->umin_value; 6544 dst_reg->smax_value = dst_reg->umax_value; 6545 } 6546 /* We may learn something more from the var_off */ 6547 __update_reg_bounds(dst_reg); 6548 } 6549 6550 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6551 struct bpf_reg_state *src_reg) 6552 { 6553 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6554 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6555 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6556 s32 smin_val = src_reg->s32_min_value; 6557 6558 /* Assuming scalar64_min_max_xor will be called so it is safe 6559 * to skip updating register for known case. 6560 */ 6561 if (src_known && dst_known) 6562 return; 6563 6564 /* We get both minimum and maximum from the var32_off. */ 6565 dst_reg->u32_min_value = var32_off.value; 6566 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6567 6568 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6569 /* XORing two positive sign numbers gives a positive, 6570 * so safe to cast u32 result into s32. 6571 */ 6572 dst_reg->s32_min_value = dst_reg->u32_min_value; 6573 dst_reg->s32_max_value = dst_reg->u32_max_value; 6574 } else { 6575 dst_reg->s32_min_value = S32_MIN; 6576 dst_reg->s32_max_value = S32_MAX; 6577 } 6578 } 6579 6580 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6581 struct bpf_reg_state *src_reg) 6582 { 6583 bool src_known = tnum_is_const(src_reg->var_off); 6584 bool dst_known = tnum_is_const(dst_reg->var_off); 6585 s64 smin_val = src_reg->smin_value; 6586 6587 if (src_known && dst_known) { 6588 /* dst_reg->var_off.value has been updated earlier */ 6589 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6590 return; 6591 } 6592 6593 /* We get both minimum and maximum from the var_off. */ 6594 dst_reg->umin_value = dst_reg->var_off.value; 6595 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6596 6597 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6598 /* XORing two positive sign numbers gives a positive, 6599 * so safe to cast u64 result into s64. 6600 */ 6601 dst_reg->smin_value = dst_reg->umin_value; 6602 dst_reg->smax_value = dst_reg->umax_value; 6603 } else { 6604 dst_reg->smin_value = S64_MIN; 6605 dst_reg->smax_value = S64_MAX; 6606 } 6607 6608 __update_reg_bounds(dst_reg); 6609 } 6610 6611 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6612 u64 umin_val, u64 umax_val) 6613 { 6614 /* We lose all sign bit information (except what we can pick 6615 * up from var_off) 6616 */ 6617 dst_reg->s32_min_value = S32_MIN; 6618 dst_reg->s32_max_value = S32_MAX; 6619 /* If we might shift our top bit out, then we know nothing */ 6620 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6621 dst_reg->u32_min_value = 0; 6622 dst_reg->u32_max_value = U32_MAX; 6623 } else { 6624 dst_reg->u32_min_value <<= umin_val; 6625 dst_reg->u32_max_value <<= umax_val; 6626 } 6627 } 6628 6629 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6630 struct bpf_reg_state *src_reg) 6631 { 6632 u32 umax_val = src_reg->u32_max_value; 6633 u32 umin_val = src_reg->u32_min_value; 6634 /* u32 alu operation will zext upper bits */ 6635 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6636 6637 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6638 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6639 /* Not required but being careful mark reg64 bounds as unknown so 6640 * that we are forced to pick them up from tnum and zext later and 6641 * if some path skips this step we are still safe. 6642 */ 6643 __mark_reg64_unbounded(dst_reg); 6644 __update_reg32_bounds(dst_reg); 6645 } 6646 6647 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6648 u64 umin_val, u64 umax_val) 6649 { 6650 /* Special case <<32 because it is a common compiler pattern to sign 6651 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6652 * positive we know this shift will also be positive so we can track 6653 * bounds correctly. Otherwise we lose all sign bit information except 6654 * what we can pick up from var_off. Perhaps we can generalize this 6655 * later to shifts of any length. 6656 */ 6657 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6658 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6659 else 6660 dst_reg->smax_value = S64_MAX; 6661 6662 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6663 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6664 else 6665 dst_reg->smin_value = S64_MIN; 6666 6667 /* If we might shift our top bit out, then we know nothing */ 6668 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6669 dst_reg->umin_value = 0; 6670 dst_reg->umax_value = U64_MAX; 6671 } else { 6672 dst_reg->umin_value <<= umin_val; 6673 dst_reg->umax_value <<= umax_val; 6674 } 6675 } 6676 6677 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6678 struct bpf_reg_state *src_reg) 6679 { 6680 u64 umax_val = src_reg->umax_value; 6681 u64 umin_val = src_reg->umin_value; 6682 6683 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6684 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6685 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6686 6687 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6688 /* We may learn something more from the var_off */ 6689 __update_reg_bounds(dst_reg); 6690 } 6691 6692 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6693 struct bpf_reg_state *src_reg) 6694 { 6695 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6696 u32 umax_val = src_reg->u32_max_value; 6697 u32 umin_val = src_reg->u32_min_value; 6698 6699 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6700 * be negative, then either: 6701 * 1) src_reg might be zero, so the sign bit of the result is 6702 * unknown, so we lose our signed bounds 6703 * 2) it's known negative, thus the unsigned bounds capture the 6704 * signed bounds 6705 * 3) the signed bounds cross zero, so they tell us nothing 6706 * about the result 6707 * If the value in dst_reg is known nonnegative, then again the 6708 * unsigned bounds capture the signed bounds. 6709 * Thus, in all cases it suffices to blow away our signed bounds 6710 * and rely on inferring new ones from the unsigned bounds and 6711 * var_off of the result. 6712 */ 6713 dst_reg->s32_min_value = S32_MIN; 6714 dst_reg->s32_max_value = S32_MAX; 6715 6716 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6717 dst_reg->u32_min_value >>= umax_val; 6718 dst_reg->u32_max_value >>= umin_val; 6719 6720 __mark_reg64_unbounded(dst_reg); 6721 __update_reg32_bounds(dst_reg); 6722 } 6723 6724 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6725 struct bpf_reg_state *src_reg) 6726 { 6727 u64 umax_val = src_reg->umax_value; 6728 u64 umin_val = src_reg->umin_value; 6729 6730 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6731 * be negative, then either: 6732 * 1) src_reg might be zero, so the sign bit of the result is 6733 * unknown, so we lose our signed bounds 6734 * 2) it's known negative, thus the unsigned bounds capture the 6735 * signed bounds 6736 * 3) the signed bounds cross zero, so they tell us nothing 6737 * about the result 6738 * If the value in dst_reg is known nonnegative, then again the 6739 * unsigned bounds capture the signed bounds. 6740 * Thus, in all cases it suffices to blow away our signed bounds 6741 * and rely on inferring new ones from the unsigned bounds and 6742 * var_off of the result. 6743 */ 6744 dst_reg->smin_value = S64_MIN; 6745 dst_reg->smax_value = S64_MAX; 6746 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6747 dst_reg->umin_value >>= umax_val; 6748 dst_reg->umax_value >>= umin_val; 6749 6750 /* Its not easy to operate on alu32 bounds here because it depends 6751 * on bits being shifted in. Take easy way out and mark unbounded 6752 * so we can recalculate later from tnum. 6753 */ 6754 __mark_reg32_unbounded(dst_reg); 6755 __update_reg_bounds(dst_reg); 6756 } 6757 6758 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6759 struct bpf_reg_state *src_reg) 6760 { 6761 u64 umin_val = src_reg->u32_min_value; 6762 6763 /* Upon reaching here, src_known is true and 6764 * umax_val is equal to umin_val. 6765 */ 6766 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6767 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6768 6769 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6770 6771 /* blow away the dst_reg umin_value/umax_value and rely on 6772 * dst_reg var_off to refine the result. 6773 */ 6774 dst_reg->u32_min_value = 0; 6775 dst_reg->u32_max_value = U32_MAX; 6776 6777 __mark_reg64_unbounded(dst_reg); 6778 __update_reg32_bounds(dst_reg); 6779 } 6780 6781 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6782 struct bpf_reg_state *src_reg) 6783 { 6784 u64 umin_val = src_reg->umin_value; 6785 6786 /* Upon reaching here, src_known is true and umax_val is equal 6787 * to umin_val. 6788 */ 6789 dst_reg->smin_value >>= umin_val; 6790 dst_reg->smax_value >>= umin_val; 6791 6792 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6793 6794 /* blow away the dst_reg umin_value/umax_value and rely on 6795 * dst_reg var_off to refine the result. 6796 */ 6797 dst_reg->umin_value = 0; 6798 dst_reg->umax_value = U64_MAX; 6799 6800 /* Its not easy to operate on alu32 bounds here because it depends 6801 * on bits being shifted in from upper 32-bits. Take easy way out 6802 * and mark unbounded so we can recalculate later from tnum. 6803 */ 6804 __mark_reg32_unbounded(dst_reg); 6805 __update_reg_bounds(dst_reg); 6806 } 6807 6808 /* WARNING: This function does calculations on 64-bit values, but the actual 6809 * execution may occur on 32-bit values. Therefore, things like bitshifts 6810 * need extra checks in the 32-bit case. 6811 */ 6812 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6813 struct bpf_insn *insn, 6814 struct bpf_reg_state *dst_reg, 6815 struct bpf_reg_state src_reg) 6816 { 6817 struct bpf_reg_state *regs = cur_regs(env); 6818 u8 opcode = BPF_OP(insn->code); 6819 bool src_known; 6820 s64 smin_val, smax_val; 6821 u64 umin_val, umax_val; 6822 s32 s32_min_val, s32_max_val; 6823 u32 u32_min_val, u32_max_val; 6824 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6825 u32 dst = insn->dst_reg; 6826 int ret; 6827 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6828 6829 smin_val = src_reg.smin_value; 6830 smax_val = src_reg.smax_value; 6831 umin_val = src_reg.umin_value; 6832 umax_val = src_reg.umax_value; 6833 6834 s32_min_val = src_reg.s32_min_value; 6835 s32_max_val = src_reg.s32_max_value; 6836 u32_min_val = src_reg.u32_min_value; 6837 u32_max_val = src_reg.u32_max_value; 6838 6839 if (alu32) { 6840 src_known = tnum_subreg_is_const(src_reg.var_off); 6841 if ((src_known && 6842 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6843 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6844 /* Taint dst register if offset had invalid bounds 6845 * derived from e.g. dead branches. 6846 */ 6847 __mark_reg_unknown(env, dst_reg); 6848 return 0; 6849 } 6850 } else { 6851 src_known = tnum_is_const(src_reg.var_off); 6852 if ((src_known && 6853 (smin_val != smax_val || umin_val != umax_val)) || 6854 smin_val > smax_val || umin_val > umax_val) { 6855 /* Taint dst register if offset had invalid bounds 6856 * derived from e.g. dead branches. 6857 */ 6858 __mark_reg_unknown(env, dst_reg); 6859 return 0; 6860 } 6861 } 6862 6863 if (!src_known && 6864 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6865 __mark_reg_unknown(env, dst_reg); 6866 return 0; 6867 } 6868 6869 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6870 * There are two classes of instructions: The first class we track both 6871 * alu32 and alu64 sign/unsigned bounds independently this provides the 6872 * greatest amount of precision when alu operations are mixed with jmp32 6873 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6874 * and BPF_OR. This is possible because these ops have fairly easy to 6875 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6876 * See alu32 verifier tests for examples. The second class of 6877 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6878 * with regards to tracking sign/unsigned bounds because the bits may 6879 * cross subreg boundaries in the alu64 case. When this happens we mark 6880 * the reg unbounded in the subreg bound space and use the resulting 6881 * tnum to calculate an approximation of the sign/unsigned bounds. 6882 */ 6883 switch (opcode) { 6884 case BPF_ADD: 6885 ret = sanitize_val_alu(env, insn); 6886 if (ret < 0) { 6887 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6888 return ret; 6889 } 6890 scalar32_min_max_add(dst_reg, &src_reg); 6891 scalar_min_max_add(dst_reg, &src_reg); 6892 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6893 break; 6894 case BPF_SUB: 6895 ret = sanitize_val_alu(env, insn); 6896 if (ret < 0) { 6897 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6898 return ret; 6899 } 6900 scalar32_min_max_sub(dst_reg, &src_reg); 6901 scalar_min_max_sub(dst_reg, &src_reg); 6902 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6903 break; 6904 case BPF_MUL: 6905 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6906 scalar32_min_max_mul(dst_reg, &src_reg); 6907 scalar_min_max_mul(dst_reg, &src_reg); 6908 break; 6909 case BPF_AND: 6910 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6911 scalar32_min_max_and(dst_reg, &src_reg); 6912 scalar_min_max_and(dst_reg, &src_reg); 6913 break; 6914 case BPF_OR: 6915 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6916 scalar32_min_max_or(dst_reg, &src_reg); 6917 scalar_min_max_or(dst_reg, &src_reg); 6918 break; 6919 case BPF_XOR: 6920 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6921 scalar32_min_max_xor(dst_reg, &src_reg); 6922 scalar_min_max_xor(dst_reg, &src_reg); 6923 break; 6924 case BPF_LSH: 6925 if (umax_val >= insn_bitness) { 6926 /* Shifts greater than 31 or 63 are undefined. 6927 * This includes shifts by a negative number. 6928 */ 6929 mark_reg_unknown(env, regs, insn->dst_reg); 6930 break; 6931 } 6932 if (alu32) 6933 scalar32_min_max_lsh(dst_reg, &src_reg); 6934 else 6935 scalar_min_max_lsh(dst_reg, &src_reg); 6936 break; 6937 case BPF_RSH: 6938 if (umax_val >= insn_bitness) { 6939 /* Shifts greater than 31 or 63 are undefined. 6940 * This includes shifts by a negative number. 6941 */ 6942 mark_reg_unknown(env, regs, insn->dst_reg); 6943 break; 6944 } 6945 if (alu32) 6946 scalar32_min_max_rsh(dst_reg, &src_reg); 6947 else 6948 scalar_min_max_rsh(dst_reg, &src_reg); 6949 break; 6950 case BPF_ARSH: 6951 if (umax_val >= insn_bitness) { 6952 /* Shifts greater than 31 or 63 are undefined. 6953 * This includes shifts by a negative number. 6954 */ 6955 mark_reg_unknown(env, regs, insn->dst_reg); 6956 break; 6957 } 6958 if (alu32) 6959 scalar32_min_max_arsh(dst_reg, &src_reg); 6960 else 6961 scalar_min_max_arsh(dst_reg, &src_reg); 6962 break; 6963 default: 6964 mark_reg_unknown(env, regs, insn->dst_reg); 6965 break; 6966 } 6967 6968 /* ALU32 ops are zero extended into 64bit register */ 6969 if (alu32) 6970 zext_32_to_64(dst_reg); 6971 6972 __update_reg_bounds(dst_reg); 6973 __reg_deduce_bounds(dst_reg); 6974 __reg_bound_offset(dst_reg); 6975 return 0; 6976 } 6977 6978 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6979 * and var_off. 6980 */ 6981 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6982 struct bpf_insn *insn) 6983 { 6984 struct bpf_verifier_state *vstate = env->cur_state; 6985 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6986 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6987 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6988 u8 opcode = BPF_OP(insn->code); 6989 int err; 6990 6991 dst_reg = ®s[insn->dst_reg]; 6992 src_reg = NULL; 6993 if (dst_reg->type != SCALAR_VALUE) 6994 ptr_reg = dst_reg; 6995 else 6996 /* Make sure ID is cleared otherwise dst_reg min/max could be 6997 * incorrectly propagated into other registers by find_equal_scalars() 6998 */ 6999 dst_reg->id = 0; 7000 if (BPF_SRC(insn->code) == BPF_X) { 7001 src_reg = ®s[insn->src_reg]; 7002 if (src_reg->type != SCALAR_VALUE) { 7003 if (dst_reg->type != SCALAR_VALUE) { 7004 /* Combining two pointers by any ALU op yields 7005 * an arbitrary scalar. Disallow all math except 7006 * pointer subtraction 7007 */ 7008 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7009 mark_reg_unknown(env, regs, insn->dst_reg); 7010 return 0; 7011 } 7012 verbose(env, "R%d pointer %s pointer prohibited\n", 7013 insn->dst_reg, 7014 bpf_alu_string[opcode >> 4]); 7015 return -EACCES; 7016 } else { 7017 /* scalar += pointer 7018 * This is legal, but we have to reverse our 7019 * src/dest handling in computing the range 7020 */ 7021 err = mark_chain_precision(env, insn->dst_reg); 7022 if (err) 7023 return err; 7024 return adjust_ptr_min_max_vals(env, insn, 7025 src_reg, dst_reg); 7026 } 7027 } else if (ptr_reg) { 7028 /* pointer += scalar */ 7029 err = mark_chain_precision(env, insn->src_reg); 7030 if (err) 7031 return err; 7032 return adjust_ptr_min_max_vals(env, insn, 7033 dst_reg, src_reg); 7034 } 7035 } else { 7036 /* Pretend the src is a reg with a known value, since we only 7037 * need to be able to read from this state. 7038 */ 7039 off_reg.type = SCALAR_VALUE; 7040 __mark_reg_known(&off_reg, insn->imm); 7041 src_reg = &off_reg; 7042 if (ptr_reg) /* pointer += K */ 7043 return adjust_ptr_min_max_vals(env, insn, 7044 ptr_reg, src_reg); 7045 } 7046 7047 /* Got here implies adding two SCALAR_VALUEs */ 7048 if (WARN_ON_ONCE(ptr_reg)) { 7049 print_verifier_state(env, state); 7050 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 7051 return -EINVAL; 7052 } 7053 if (WARN_ON(!src_reg)) { 7054 print_verifier_state(env, state); 7055 verbose(env, "verifier internal error: no src_reg\n"); 7056 return -EINVAL; 7057 } 7058 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 7059 } 7060 7061 /* check validity of 32-bit and 64-bit arithmetic operations */ 7062 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 7063 { 7064 struct bpf_reg_state *regs = cur_regs(env); 7065 u8 opcode = BPF_OP(insn->code); 7066 int err; 7067 7068 if (opcode == BPF_END || opcode == BPF_NEG) { 7069 if (opcode == BPF_NEG) { 7070 if (BPF_SRC(insn->code) != 0 || 7071 insn->src_reg != BPF_REG_0 || 7072 insn->off != 0 || insn->imm != 0) { 7073 verbose(env, "BPF_NEG uses reserved fields\n"); 7074 return -EINVAL; 7075 } 7076 } else { 7077 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 7078 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 7079 BPF_CLASS(insn->code) == BPF_ALU64) { 7080 verbose(env, "BPF_END uses reserved fields\n"); 7081 return -EINVAL; 7082 } 7083 } 7084 7085 /* check src operand */ 7086 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7087 if (err) 7088 return err; 7089 7090 if (is_pointer_value(env, insn->dst_reg)) { 7091 verbose(env, "R%d pointer arithmetic prohibited\n", 7092 insn->dst_reg); 7093 return -EACCES; 7094 } 7095 7096 /* check dest operand */ 7097 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7098 if (err) 7099 return err; 7100 7101 } else if (opcode == BPF_MOV) { 7102 7103 if (BPF_SRC(insn->code) == BPF_X) { 7104 if (insn->imm != 0 || insn->off != 0) { 7105 verbose(env, "BPF_MOV uses reserved fields\n"); 7106 return -EINVAL; 7107 } 7108 7109 /* check src operand */ 7110 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7111 if (err) 7112 return err; 7113 } else { 7114 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7115 verbose(env, "BPF_MOV uses reserved fields\n"); 7116 return -EINVAL; 7117 } 7118 } 7119 7120 /* check dest operand, mark as required later */ 7121 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7122 if (err) 7123 return err; 7124 7125 if (BPF_SRC(insn->code) == BPF_X) { 7126 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7127 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7128 7129 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7130 /* case: R1 = R2 7131 * copy register state to dest reg 7132 */ 7133 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 7134 /* Assign src and dst registers the same ID 7135 * that will be used by find_equal_scalars() 7136 * to propagate min/max range. 7137 */ 7138 src_reg->id = ++env->id_gen; 7139 *dst_reg = *src_reg; 7140 dst_reg->live |= REG_LIVE_WRITTEN; 7141 dst_reg->subreg_def = DEF_NOT_SUBREG; 7142 } else { 7143 /* R1 = (u32) R2 */ 7144 if (is_pointer_value(env, insn->src_reg)) { 7145 verbose(env, 7146 "R%d partial copy of pointer\n", 7147 insn->src_reg); 7148 return -EACCES; 7149 } else if (src_reg->type == SCALAR_VALUE) { 7150 *dst_reg = *src_reg; 7151 /* Make sure ID is cleared otherwise 7152 * dst_reg min/max could be incorrectly 7153 * propagated into src_reg by find_equal_scalars() 7154 */ 7155 dst_reg->id = 0; 7156 dst_reg->live |= REG_LIVE_WRITTEN; 7157 dst_reg->subreg_def = env->insn_idx + 1; 7158 } else { 7159 mark_reg_unknown(env, regs, 7160 insn->dst_reg); 7161 } 7162 zext_32_to_64(dst_reg); 7163 } 7164 } else { 7165 /* case: R = imm 7166 * remember the value we stored into this reg 7167 */ 7168 /* clear any state __mark_reg_known doesn't set */ 7169 mark_reg_unknown(env, regs, insn->dst_reg); 7170 regs[insn->dst_reg].type = SCALAR_VALUE; 7171 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7172 __mark_reg_known(regs + insn->dst_reg, 7173 insn->imm); 7174 } else { 7175 __mark_reg_known(regs + insn->dst_reg, 7176 (u32)insn->imm); 7177 } 7178 } 7179 7180 } else if (opcode > BPF_END) { 7181 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7182 return -EINVAL; 7183 7184 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7185 7186 if (BPF_SRC(insn->code) == BPF_X) { 7187 if (insn->imm != 0 || insn->off != 0) { 7188 verbose(env, "BPF_ALU uses reserved fields\n"); 7189 return -EINVAL; 7190 } 7191 /* check src1 operand */ 7192 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7193 if (err) 7194 return err; 7195 } else { 7196 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7197 verbose(env, "BPF_ALU uses reserved fields\n"); 7198 return -EINVAL; 7199 } 7200 } 7201 7202 /* check src2 operand */ 7203 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7204 if (err) 7205 return err; 7206 7207 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 7208 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7209 verbose(env, "div by zero\n"); 7210 return -EINVAL; 7211 } 7212 7213 if ((opcode == BPF_LSH || opcode == BPF_RSH || 7214 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7215 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 7216 7217 if (insn->imm < 0 || insn->imm >= size) { 7218 verbose(env, "invalid shift %d\n", insn->imm); 7219 return -EINVAL; 7220 } 7221 } 7222 7223 /* check dest operand */ 7224 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7225 if (err) 7226 return err; 7227 7228 return adjust_reg_min_max_vals(env, insn); 7229 } 7230 7231 return 0; 7232 } 7233 7234 static void __find_good_pkt_pointers(struct bpf_func_state *state, 7235 struct bpf_reg_state *dst_reg, 7236 enum bpf_reg_type type, int new_range) 7237 { 7238 struct bpf_reg_state *reg; 7239 int i; 7240 7241 for (i = 0; i < MAX_BPF_REG; i++) { 7242 reg = &state->regs[i]; 7243 if (reg->type == type && reg->id == dst_reg->id) 7244 /* keep the maximum range already checked */ 7245 reg->range = max(reg->range, new_range); 7246 } 7247 7248 bpf_for_each_spilled_reg(i, state, reg) { 7249 if (!reg) 7250 continue; 7251 if (reg->type == type && reg->id == dst_reg->id) 7252 reg->range = max(reg->range, new_range); 7253 } 7254 } 7255 7256 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 7257 struct bpf_reg_state *dst_reg, 7258 enum bpf_reg_type type, 7259 bool range_right_open) 7260 { 7261 int new_range, i; 7262 7263 if (dst_reg->off < 0 || 7264 (dst_reg->off == 0 && range_right_open)) 7265 /* This doesn't give us any range */ 7266 return; 7267 7268 if (dst_reg->umax_value > MAX_PACKET_OFF || 7269 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 7270 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7271 * than pkt_end, but that's because it's also less than pkt. 7272 */ 7273 return; 7274 7275 new_range = dst_reg->off; 7276 if (range_right_open) 7277 new_range--; 7278 7279 /* Examples for register markings: 7280 * 7281 * pkt_data in dst register: 7282 * 7283 * r2 = r3; 7284 * r2 += 8; 7285 * if (r2 > pkt_end) goto <handle exception> 7286 * <access okay> 7287 * 7288 * r2 = r3; 7289 * r2 += 8; 7290 * if (r2 < pkt_end) goto <access okay> 7291 * <handle exception> 7292 * 7293 * Where: 7294 * r2 == dst_reg, pkt_end == src_reg 7295 * r2=pkt(id=n,off=8,r=0) 7296 * r3=pkt(id=n,off=0,r=0) 7297 * 7298 * pkt_data in src register: 7299 * 7300 * r2 = r3; 7301 * r2 += 8; 7302 * if (pkt_end >= r2) goto <access okay> 7303 * <handle exception> 7304 * 7305 * r2 = r3; 7306 * r2 += 8; 7307 * if (pkt_end <= r2) goto <handle exception> 7308 * <access okay> 7309 * 7310 * Where: 7311 * pkt_end == dst_reg, r2 == src_reg 7312 * r2=pkt(id=n,off=8,r=0) 7313 * r3=pkt(id=n,off=0,r=0) 7314 * 7315 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 7316 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 7317 * and [r3, r3 + 8-1) respectively is safe to access depending on 7318 * the check. 7319 */ 7320 7321 /* If our ids match, then we must have the same max_value. And we 7322 * don't care about the other reg's fixed offset, since if it's too big 7323 * the range won't allow anything. 7324 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 7325 */ 7326 for (i = 0; i <= vstate->curframe; i++) 7327 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 7328 new_range); 7329 } 7330 7331 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 7332 { 7333 struct tnum subreg = tnum_subreg(reg->var_off); 7334 s32 sval = (s32)val; 7335 7336 switch (opcode) { 7337 case BPF_JEQ: 7338 if (tnum_is_const(subreg)) 7339 return !!tnum_equals_const(subreg, val); 7340 break; 7341 case BPF_JNE: 7342 if (tnum_is_const(subreg)) 7343 return !tnum_equals_const(subreg, val); 7344 break; 7345 case BPF_JSET: 7346 if ((~subreg.mask & subreg.value) & val) 7347 return 1; 7348 if (!((subreg.mask | subreg.value) & val)) 7349 return 0; 7350 break; 7351 case BPF_JGT: 7352 if (reg->u32_min_value > val) 7353 return 1; 7354 else if (reg->u32_max_value <= val) 7355 return 0; 7356 break; 7357 case BPF_JSGT: 7358 if (reg->s32_min_value > sval) 7359 return 1; 7360 else if (reg->s32_max_value <= sval) 7361 return 0; 7362 break; 7363 case BPF_JLT: 7364 if (reg->u32_max_value < val) 7365 return 1; 7366 else if (reg->u32_min_value >= val) 7367 return 0; 7368 break; 7369 case BPF_JSLT: 7370 if (reg->s32_max_value < sval) 7371 return 1; 7372 else if (reg->s32_min_value >= sval) 7373 return 0; 7374 break; 7375 case BPF_JGE: 7376 if (reg->u32_min_value >= val) 7377 return 1; 7378 else if (reg->u32_max_value < val) 7379 return 0; 7380 break; 7381 case BPF_JSGE: 7382 if (reg->s32_min_value >= sval) 7383 return 1; 7384 else if (reg->s32_max_value < sval) 7385 return 0; 7386 break; 7387 case BPF_JLE: 7388 if (reg->u32_max_value <= val) 7389 return 1; 7390 else if (reg->u32_min_value > val) 7391 return 0; 7392 break; 7393 case BPF_JSLE: 7394 if (reg->s32_max_value <= sval) 7395 return 1; 7396 else if (reg->s32_min_value > sval) 7397 return 0; 7398 break; 7399 } 7400 7401 return -1; 7402 } 7403 7404 7405 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 7406 { 7407 s64 sval = (s64)val; 7408 7409 switch (opcode) { 7410 case BPF_JEQ: 7411 if (tnum_is_const(reg->var_off)) 7412 return !!tnum_equals_const(reg->var_off, val); 7413 break; 7414 case BPF_JNE: 7415 if (tnum_is_const(reg->var_off)) 7416 return !tnum_equals_const(reg->var_off, val); 7417 break; 7418 case BPF_JSET: 7419 if ((~reg->var_off.mask & reg->var_off.value) & val) 7420 return 1; 7421 if (!((reg->var_off.mask | reg->var_off.value) & val)) 7422 return 0; 7423 break; 7424 case BPF_JGT: 7425 if (reg->umin_value > val) 7426 return 1; 7427 else if (reg->umax_value <= val) 7428 return 0; 7429 break; 7430 case BPF_JSGT: 7431 if (reg->smin_value > sval) 7432 return 1; 7433 else if (reg->smax_value <= sval) 7434 return 0; 7435 break; 7436 case BPF_JLT: 7437 if (reg->umax_value < val) 7438 return 1; 7439 else if (reg->umin_value >= val) 7440 return 0; 7441 break; 7442 case BPF_JSLT: 7443 if (reg->smax_value < sval) 7444 return 1; 7445 else if (reg->smin_value >= sval) 7446 return 0; 7447 break; 7448 case BPF_JGE: 7449 if (reg->umin_value >= val) 7450 return 1; 7451 else if (reg->umax_value < val) 7452 return 0; 7453 break; 7454 case BPF_JSGE: 7455 if (reg->smin_value >= sval) 7456 return 1; 7457 else if (reg->smax_value < sval) 7458 return 0; 7459 break; 7460 case BPF_JLE: 7461 if (reg->umax_value <= val) 7462 return 1; 7463 else if (reg->umin_value > val) 7464 return 0; 7465 break; 7466 case BPF_JSLE: 7467 if (reg->smax_value <= sval) 7468 return 1; 7469 else if (reg->smin_value > sval) 7470 return 0; 7471 break; 7472 } 7473 7474 return -1; 7475 } 7476 7477 /* compute branch direction of the expression "if (reg opcode val) goto target;" 7478 * and return: 7479 * 1 - branch will be taken and "goto target" will be executed 7480 * 0 - branch will not be taken and fall-through to next insn 7481 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 7482 * range [0,10] 7483 */ 7484 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 7485 bool is_jmp32) 7486 { 7487 if (__is_pointer_value(false, reg)) { 7488 if (!reg_type_not_null(reg->type)) 7489 return -1; 7490 7491 /* If pointer is valid tests against zero will fail so we can 7492 * use this to direct branch taken. 7493 */ 7494 if (val != 0) 7495 return -1; 7496 7497 switch (opcode) { 7498 case BPF_JEQ: 7499 return 0; 7500 case BPF_JNE: 7501 return 1; 7502 default: 7503 return -1; 7504 } 7505 } 7506 7507 if (is_jmp32) 7508 return is_branch32_taken(reg, val, opcode); 7509 return is_branch64_taken(reg, val, opcode); 7510 } 7511 7512 static int flip_opcode(u32 opcode) 7513 { 7514 /* How can we transform "a <op> b" into "b <op> a"? */ 7515 static const u8 opcode_flip[16] = { 7516 /* these stay the same */ 7517 [BPF_JEQ >> 4] = BPF_JEQ, 7518 [BPF_JNE >> 4] = BPF_JNE, 7519 [BPF_JSET >> 4] = BPF_JSET, 7520 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7521 [BPF_JGE >> 4] = BPF_JLE, 7522 [BPF_JGT >> 4] = BPF_JLT, 7523 [BPF_JLE >> 4] = BPF_JGE, 7524 [BPF_JLT >> 4] = BPF_JGT, 7525 [BPF_JSGE >> 4] = BPF_JSLE, 7526 [BPF_JSGT >> 4] = BPF_JSLT, 7527 [BPF_JSLE >> 4] = BPF_JSGE, 7528 [BPF_JSLT >> 4] = BPF_JSGT 7529 }; 7530 return opcode_flip[opcode >> 4]; 7531 } 7532 7533 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 7534 struct bpf_reg_state *src_reg, 7535 u8 opcode) 7536 { 7537 struct bpf_reg_state *pkt; 7538 7539 if (src_reg->type == PTR_TO_PACKET_END) { 7540 pkt = dst_reg; 7541 } else if (dst_reg->type == PTR_TO_PACKET_END) { 7542 pkt = src_reg; 7543 opcode = flip_opcode(opcode); 7544 } else { 7545 return -1; 7546 } 7547 7548 if (pkt->range >= 0) 7549 return -1; 7550 7551 switch (opcode) { 7552 case BPF_JLE: 7553 /* pkt <= pkt_end */ 7554 fallthrough; 7555 case BPF_JGT: 7556 /* pkt > pkt_end */ 7557 if (pkt->range == BEYOND_PKT_END) 7558 /* pkt has at last one extra byte beyond pkt_end */ 7559 return opcode == BPF_JGT; 7560 break; 7561 case BPF_JLT: 7562 /* pkt < pkt_end */ 7563 fallthrough; 7564 case BPF_JGE: 7565 /* pkt >= pkt_end */ 7566 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 7567 return opcode == BPF_JGE; 7568 break; 7569 } 7570 return -1; 7571 } 7572 7573 /* Adjusts the register min/max values in the case that the dst_reg is the 7574 * variable register that we are working on, and src_reg is a constant or we're 7575 * simply doing a BPF_K check. 7576 * In JEQ/JNE cases we also adjust the var_off values. 7577 */ 7578 static void reg_set_min_max(struct bpf_reg_state *true_reg, 7579 struct bpf_reg_state *false_reg, 7580 u64 val, u32 val32, 7581 u8 opcode, bool is_jmp32) 7582 { 7583 struct tnum false_32off = tnum_subreg(false_reg->var_off); 7584 struct tnum false_64off = false_reg->var_off; 7585 struct tnum true_32off = tnum_subreg(true_reg->var_off); 7586 struct tnum true_64off = true_reg->var_off; 7587 s64 sval = (s64)val; 7588 s32 sval32 = (s32)val32; 7589 7590 /* If the dst_reg is a pointer, we can't learn anything about its 7591 * variable offset from the compare (unless src_reg were a pointer into 7592 * the same object, but we don't bother with that. 7593 * Since false_reg and true_reg have the same type by construction, we 7594 * only need to check one of them for pointerness. 7595 */ 7596 if (__is_pointer_value(false, false_reg)) 7597 return; 7598 7599 switch (opcode) { 7600 case BPF_JEQ: 7601 case BPF_JNE: 7602 { 7603 struct bpf_reg_state *reg = 7604 opcode == BPF_JEQ ? true_reg : false_reg; 7605 7606 /* JEQ/JNE comparison doesn't change the register equivalence. 7607 * r1 = r2; 7608 * if (r1 == 42) goto label; 7609 * ... 7610 * label: // here both r1 and r2 are known to be 42. 7611 * 7612 * Hence when marking register as known preserve it's ID. 7613 */ 7614 if (is_jmp32) 7615 __mark_reg32_known(reg, val32); 7616 else 7617 ___mark_reg_known(reg, val); 7618 break; 7619 } 7620 case BPF_JSET: 7621 if (is_jmp32) { 7622 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7623 if (is_power_of_2(val32)) 7624 true_32off = tnum_or(true_32off, 7625 tnum_const(val32)); 7626 } else { 7627 false_64off = tnum_and(false_64off, tnum_const(~val)); 7628 if (is_power_of_2(val)) 7629 true_64off = tnum_or(true_64off, 7630 tnum_const(val)); 7631 } 7632 break; 7633 case BPF_JGE: 7634 case BPF_JGT: 7635 { 7636 if (is_jmp32) { 7637 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7638 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7639 7640 false_reg->u32_max_value = min(false_reg->u32_max_value, 7641 false_umax); 7642 true_reg->u32_min_value = max(true_reg->u32_min_value, 7643 true_umin); 7644 } else { 7645 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7646 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7647 7648 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7649 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7650 } 7651 break; 7652 } 7653 case BPF_JSGE: 7654 case BPF_JSGT: 7655 { 7656 if (is_jmp32) { 7657 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7658 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7659 7660 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7661 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7662 } else { 7663 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7664 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7665 7666 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7667 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7668 } 7669 break; 7670 } 7671 case BPF_JLE: 7672 case BPF_JLT: 7673 { 7674 if (is_jmp32) { 7675 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7676 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7677 7678 false_reg->u32_min_value = max(false_reg->u32_min_value, 7679 false_umin); 7680 true_reg->u32_max_value = min(true_reg->u32_max_value, 7681 true_umax); 7682 } else { 7683 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7684 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7685 7686 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7687 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7688 } 7689 break; 7690 } 7691 case BPF_JSLE: 7692 case BPF_JSLT: 7693 { 7694 if (is_jmp32) { 7695 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7696 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7697 7698 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7699 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7700 } else { 7701 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7702 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7703 7704 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7705 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7706 } 7707 break; 7708 } 7709 default: 7710 return; 7711 } 7712 7713 if (is_jmp32) { 7714 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7715 tnum_subreg(false_32off)); 7716 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7717 tnum_subreg(true_32off)); 7718 __reg_combine_32_into_64(false_reg); 7719 __reg_combine_32_into_64(true_reg); 7720 } else { 7721 false_reg->var_off = false_64off; 7722 true_reg->var_off = true_64off; 7723 __reg_combine_64_into_32(false_reg); 7724 __reg_combine_64_into_32(true_reg); 7725 } 7726 } 7727 7728 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7729 * the variable reg. 7730 */ 7731 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7732 struct bpf_reg_state *false_reg, 7733 u64 val, u32 val32, 7734 u8 opcode, bool is_jmp32) 7735 { 7736 opcode = flip_opcode(opcode); 7737 /* This uses zero as "not present in table"; luckily the zero opcode, 7738 * BPF_JA, can't get here. 7739 */ 7740 if (opcode) 7741 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7742 } 7743 7744 /* Regs are known to be equal, so intersect their min/max/var_off */ 7745 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7746 struct bpf_reg_state *dst_reg) 7747 { 7748 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7749 dst_reg->umin_value); 7750 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7751 dst_reg->umax_value); 7752 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7753 dst_reg->smin_value); 7754 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7755 dst_reg->smax_value); 7756 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7757 dst_reg->var_off); 7758 /* We might have learned new bounds from the var_off. */ 7759 __update_reg_bounds(src_reg); 7760 __update_reg_bounds(dst_reg); 7761 /* We might have learned something about the sign bit. */ 7762 __reg_deduce_bounds(src_reg); 7763 __reg_deduce_bounds(dst_reg); 7764 /* We might have learned some bits from the bounds. */ 7765 __reg_bound_offset(src_reg); 7766 __reg_bound_offset(dst_reg); 7767 /* Intersecting with the old var_off might have improved our bounds 7768 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7769 * then new var_off is (0; 0x7f...fc) which improves our umax. 7770 */ 7771 __update_reg_bounds(src_reg); 7772 __update_reg_bounds(dst_reg); 7773 } 7774 7775 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7776 struct bpf_reg_state *true_dst, 7777 struct bpf_reg_state *false_src, 7778 struct bpf_reg_state *false_dst, 7779 u8 opcode) 7780 { 7781 switch (opcode) { 7782 case BPF_JEQ: 7783 __reg_combine_min_max(true_src, true_dst); 7784 break; 7785 case BPF_JNE: 7786 __reg_combine_min_max(false_src, false_dst); 7787 break; 7788 } 7789 } 7790 7791 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7792 struct bpf_reg_state *reg, u32 id, 7793 bool is_null) 7794 { 7795 if (reg_type_may_be_null(reg->type) && reg->id == id && 7796 !WARN_ON_ONCE(!reg->id)) { 7797 /* Old offset (both fixed and variable parts) should 7798 * have been known-zero, because we don't allow pointer 7799 * arithmetic on pointers that might be NULL. 7800 */ 7801 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7802 !tnum_equals_const(reg->var_off, 0) || 7803 reg->off)) { 7804 __mark_reg_known_zero(reg); 7805 reg->off = 0; 7806 } 7807 if (is_null) { 7808 reg->type = SCALAR_VALUE; 7809 /* We don't need id and ref_obj_id from this point 7810 * onwards anymore, thus we should better reset it, 7811 * so that state pruning has chances to take effect. 7812 */ 7813 reg->id = 0; 7814 reg->ref_obj_id = 0; 7815 7816 return; 7817 } 7818 7819 mark_ptr_not_null_reg(reg); 7820 7821 if (!reg_may_point_to_spin_lock(reg)) { 7822 /* For not-NULL ptr, reg->ref_obj_id will be reset 7823 * in release_reg_references(). 7824 * 7825 * reg->id is still used by spin_lock ptr. Other 7826 * than spin_lock ptr type, reg->id can be reset. 7827 */ 7828 reg->id = 0; 7829 } 7830 } 7831 } 7832 7833 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7834 bool is_null) 7835 { 7836 struct bpf_reg_state *reg; 7837 int i; 7838 7839 for (i = 0; i < MAX_BPF_REG; i++) 7840 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7841 7842 bpf_for_each_spilled_reg(i, state, reg) { 7843 if (!reg) 7844 continue; 7845 mark_ptr_or_null_reg(state, reg, id, is_null); 7846 } 7847 } 7848 7849 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7850 * be folded together at some point. 7851 */ 7852 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7853 bool is_null) 7854 { 7855 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7856 struct bpf_reg_state *regs = state->regs; 7857 u32 ref_obj_id = regs[regno].ref_obj_id; 7858 u32 id = regs[regno].id; 7859 int i; 7860 7861 if (ref_obj_id && ref_obj_id == id && is_null) 7862 /* regs[regno] is in the " == NULL" branch. 7863 * No one could have freed the reference state before 7864 * doing the NULL check. 7865 */ 7866 WARN_ON_ONCE(release_reference_state(state, id)); 7867 7868 for (i = 0; i <= vstate->curframe; i++) 7869 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7870 } 7871 7872 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7873 struct bpf_reg_state *dst_reg, 7874 struct bpf_reg_state *src_reg, 7875 struct bpf_verifier_state *this_branch, 7876 struct bpf_verifier_state *other_branch) 7877 { 7878 if (BPF_SRC(insn->code) != BPF_X) 7879 return false; 7880 7881 /* Pointers are always 64-bit. */ 7882 if (BPF_CLASS(insn->code) == BPF_JMP32) 7883 return false; 7884 7885 switch (BPF_OP(insn->code)) { 7886 case BPF_JGT: 7887 if ((dst_reg->type == PTR_TO_PACKET && 7888 src_reg->type == PTR_TO_PACKET_END) || 7889 (dst_reg->type == PTR_TO_PACKET_META && 7890 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7891 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7892 find_good_pkt_pointers(this_branch, dst_reg, 7893 dst_reg->type, false); 7894 mark_pkt_end(other_branch, insn->dst_reg, true); 7895 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7896 src_reg->type == PTR_TO_PACKET) || 7897 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7898 src_reg->type == PTR_TO_PACKET_META)) { 7899 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7900 find_good_pkt_pointers(other_branch, src_reg, 7901 src_reg->type, true); 7902 mark_pkt_end(this_branch, insn->src_reg, false); 7903 } else { 7904 return false; 7905 } 7906 break; 7907 case BPF_JLT: 7908 if ((dst_reg->type == PTR_TO_PACKET && 7909 src_reg->type == PTR_TO_PACKET_END) || 7910 (dst_reg->type == PTR_TO_PACKET_META && 7911 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7912 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7913 find_good_pkt_pointers(other_branch, dst_reg, 7914 dst_reg->type, true); 7915 mark_pkt_end(this_branch, insn->dst_reg, false); 7916 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7917 src_reg->type == PTR_TO_PACKET) || 7918 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7919 src_reg->type == PTR_TO_PACKET_META)) { 7920 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7921 find_good_pkt_pointers(this_branch, src_reg, 7922 src_reg->type, false); 7923 mark_pkt_end(other_branch, insn->src_reg, true); 7924 } else { 7925 return false; 7926 } 7927 break; 7928 case BPF_JGE: 7929 if ((dst_reg->type == PTR_TO_PACKET && 7930 src_reg->type == PTR_TO_PACKET_END) || 7931 (dst_reg->type == PTR_TO_PACKET_META && 7932 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7933 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7934 find_good_pkt_pointers(this_branch, dst_reg, 7935 dst_reg->type, true); 7936 mark_pkt_end(other_branch, insn->dst_reg, false); 7937 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7938 src_reg->type == PTR_TO_PACKET) || 7939 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7940 src_reg->type == PTR_TO_PACKET_META)) { 7941 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7942 find_good_pkt_pointers(other_branch, src_reg, 7943 src_reg->type, false); 7944 mark_pkt_end(this_branch, insn->src_reg, true); 7945 } else { 7946 return false; 7947 } 7948 break; 7949 case BPF_JLE: 7950 if ((dst_reg->type == PTR_TO_PACKET && 7951 src_reg->type == PTR_TO_PACKET_END) || 7952 (dst_reg->type == PTR_TO_PACKET_META && 7953 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7954 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7955 find_good_pkt_pointers(other_branch, dst_reg, 7956 dst_reg->type, false); 7957 mark_pkt_end(this_branch, insn->dst_reg, true); 7958 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7959 src_reg->type == PTR_TO_PACKET) || 7960 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7961 src_reg->type == PTR_TO_PACKET_META)) { 7962 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7963 find_good_pkt_pointers(this_branch, src_reg, 7964 src_reg->type, true); 7965 mark_pkt_end(other_branch, insn->src_reg, false); 7966 } else { 7967 return false; 7968 } 7969 break; 7970 default: 7971 return false; 7972 } 7973 7974 return true; 7975 } 7976 7977 static void find_equal_scalars(struct bpf_verifier_state *vstate, 7978 struct bpf_reg_state *known_reg) 7979 { 7980 struct bpf_func_state *state; 7981 struct bpf_reg_state *reg; 7982 int i, j; 7983 7984 for (i = 0; i <= vstate->curframe; i++) { 7985 state = vstate->frame[i]; 7986 for (j = 0; j < MAX_BPF_REG; j++) { 7987 reg = &state->regs[j]; 7988 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7989 *reg = *known_reg; 7990 } 7991 7992 bpf_for_each_spilled_reg(j, state, reg) { 7993 if (!reg) 7994 continue; 7995 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7996 *reg = *known_reg; 7997 } 7998 } 7999 } 8000 8001 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8002 struct bpf_insn *insn, int *insn_idx) 8003 { 8004 struct bpf_verifier_state *this_branch = env->cur_state; 8005 struct bpf_verifier_state *other_branch; 8006 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8007 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8008 u8 opcode = BPF_OP(insn->code); 8009 bool is_jmp32; 8010 int pred = -1; 8011 int err; 8012 8013 /* Only conditional jumps are expected to reach here. */ 8014 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8015 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8016 return -EINVAL; 8017 } 8018 8019 if (BPF_SRC(insn->code) == BPF_X) { 8020 if (insn->imm != 0) { 8021 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8022 return -EINVAL; 8023 } 8024 8025 /* check src1 operand */ 8026 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8027 if (err) 8028 return err; 8029 8030 if (is_pointer_value(env, insn->src_reg)) { 8031 verbose(env, "R%d pointer comparison prohibited\n", 8032 insn->src_reg); 8033 return -EACCES; 8034 } 8035 src_reg = ®s[insn->src_reg]; 8036 } else { 8037 if (insn->src_reg != BPF_REG_0) { 8038 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8039 return -EINVAL; 8040 } 8041 } 8042 8043 /* check src2 operand */ 8044 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8045 if (err) 8046 return err; 8047 8048 dst_reg = ®s[insn->dst_reg]; 8049 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 8050 8051 if (BPF_SRC(insn->code) == BPF_K) { 8052 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 8053 } else if (src_reg->type == SCALAR_VALUE && 8054 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 8055 pred = is_branch_taken(dst_reg, 8056 tnum_subreg(src_reg->var_off).value, 8057 opcode, 8058 is_jmp32); 8059 } else if (src_reg->type == SCALAR_VALUE && 8060 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 8061 pred = is_branch_taken(dst_reg, 8062 src_reg->var_off.value, 8063 opcode, 8064 is_jmp32); 8065 } else if (reg_is_pkt_pointer_any(dst_reg) && 8066 reg_is_pkt_pointer_any(src_reg) && 8067 !is_jmp32) { 8068 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 8069 } 8070 8071 if (pred >= 0) { 8072 /* If we get here with a dst_reg pointer type it is because 8073 * above is_branch_taken() special cased the 0 comparison. 8074 */ 8075 if (!__is_pointer_value(false, dst_reg)) 8076 err = mark_chain_precision(env, insn->dst_reg); 8077 if (BPF_SRC(insn->code) == BPF_X && !err && 8078 !__is_pointer_value(false, src_reg)) 8079 err = mark_chain_precision(env, insn->src_reg); 8080 if (err) 8081 return err; 8082 } 8083 if (pred == 1) { 8084 /* only follow the goto, ignore fall-through */ 8085 *insn_idx += insn->off; 8086 return 0; 8087 } else if (pred == 0) { 8088 /* only follow fall-through branch, since 8089 * that's where the program will go 8090 */ 8091 return 0; 8092 } 8093 8094 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 8095 false); 8096 if (!other_branch) 8097 return -EFAULT; 8098 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 8099 8100 /* detect if we are comparing against a constant value so we can adjust 8101 * our min/max values for our dst register. 8102 * this is only legit if both are scalars (or pointers to the same 8103 * object, I suppose, but we don't support that right now), because 8104 * otherwise the different base pointers mean the offsets aren't 8105 * comparable. 8106 */ 8107 if (BPF_SRC(insn->code) == BPF_X) { 8108 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 8109 8110 if (dst_reg->type == SCALAR_VALUE && 8111 src_reg->type == SCALAR_VALUE) { 8112 if (tnum_is_const(src_reg->var_off) || 8113 (is_jmp32 && 8114 tnum_is_const(tnum_subreg(src_reg->var_off)))) 8115 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8116 dst_reg, 8117 src_reg->var_off.value, 8118 tnum_subreg(src_reg->var_off).value, 8119 opcode, is_jmp32); 8120 else if (tnum_is_const(dst_reg->var_off) || 8121 (is_jmp32 && 8122 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 8123 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 8124 src_reg, 8125 dst_reg->var_off.value, 8126 tnum_subreg(dst_reg->var_off).value, 8127 opcode, is_jmp32); 8128 else if (!is_jmp32 && 8129 (opcode == BPF_JEQ || opcode == BPF_JNE)) 8130 /* Comparing for equality, we can combine knowledge */ 8131 reg_combine_min_max(&other_branch_regs[insn->src_reg], 8132 &other_branch_regs[insn->dst_reg], 8133 src_reg, dst_reg, opcode); 8134 if (src_reg->id && 8135 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 8136 find_equal_scalars(this_branch, src_reg); 8137 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 8138 } 8139 8140 } 8141 } else if (dst_reg->type == SCALAR_VALUE) { 8142 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8143 dst_reg, insn->imm, (u32)insn->imm, 8144 opcode, is_jmp32); 8145 } 8146 8147 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 8148 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 8149 find_equal_scalars(this_branch, dst_reg); 8150 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 8151 } 8152 8153 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 8154 * NOTE: these optimizations below are related with pointer comparison 8155 * which will never be JMP32. 8156 */ 8157 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 8158 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 8159 reg_type_may_be_null(dst_reg->type)) { 8160 /* Mark all identical registers in each branch as either 8161 * safe or unknown depending R == 0 or R != 0 conditional. 8162 */ 8163 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 8164 opcode == BPF_JNE); 8165 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 8166 opcode == BPF_JEQ); 8167 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 8168 this_branch, other_branch) && 8169 is_pointer_value(env, insn->dst_reg)) { 8170 verbose(env, "R%d pointer comparison prohibited\n", 8171 insn->dst_reg); 8172 return -EACCES; 8173 } 8174 if (env->log.level & BPF_LOG_LEVEL) 8175 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 8176 return 0; 8177 } 8178 8179 /* verify BPF_LD_IMM64 instruction */ 8180 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 8181 { 8182 struct bpf_insn_aux_data *aux = cur_aux(env); 8183 struct bpf_reg_state *regs = cur_regs(env); 8184 struct bpf_reg_state *dst_reg; 8185 struct bpf_map *map; 8186 int err; 8187 8188 if (BPF_SIZE(insn->code) != BPF_DW) { 8189 verbose(env, "invalid BPF_LD_IMM insn\n"); 8190 return -EINVAL; 8191 } 8192 if (insn->off != 0) { 8193 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 8194 return -EINVAL; 8195 } 8196 8197 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8198 if (err) 8199 return err; 8200 8201 dst_reg = ®s[insn->dst_reg]; 8202 if (insn->src_reg == 0) { 8203 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 8204 8205 dst_reg->type = SCALAR_VALUE; 8206 __mark_reg_known(®s[insn->dst_reg], imm); 8207 return 0; 8208 } 8209 8210 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8211 mark_reg_known_zero(env, regs, insn->dst_reg); 8212 8213 dst_reg->type = aux->btf_var.reg_type; 8214 switch (dst_reg->type) { 8215 case PTR_TO_MEM: 8216 dst_reg->mem_size = aux->btf_var.mem_size; 8217 break; 8218 case PTR_TO_BTF_ID: 8219 case PTR_TO_PERCPU_BTF_ID: 8220 dst_reg->btf = aux->btf_var.btf; 8221 dst_reg->btf_id = aux->btf_var.btf_id; 8222 break; 8223 default: 8224 verbose(env, "bpf verifier is misconfigured\n"); 8225 return -EFAULT; 8226 } 8227 return 0; 8228 } 8229 8230 map = env->used_maps[aux->map_index]; 8231 mark_reg_known_zero(env, regs, insn->dst_reg); 8232 dst_reg->map_ptr = map; 8233 8234 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 8235 dst_reg->type = PTR_TO_MAP_VALUE; 8236 dst_reg->off = aux->map_off; 8237 if (map_value_has_spin_lock(map)) 8238 dst_reg->id = ++env->id_gen; 8239 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8240 dst_reg->type = CONST_PTR_TO_MAP; 8241 } else { 8242 verbose(env, "bpf verifier is misconfigured\n"); 8243 return -EINVAL; 8244 } 8245 8246 return 0; 8247 } 8248 8249 static bool may_access_skb(enum bpf_prog_type type) 8250 { 8251 switch (type) { 8252 case BPF_PROG_TYPE_SOCKET_FILTER: 8253 case BPF_PROG_TYPE_SCHED_CLS: 8254 case BPF_PROG_TYPE_SCHED_ACT: 8255 return true; 8256 default: 8257 return false; 8258 } 8259 } 8260 8261 /* verify safety of LD_ABS|LD_IND instructions: 8262 * - they can only appear in the programs where ctx == skb 8263 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8264 * preserve R6-R9, and store return value into R0 8265 * 8266 * Implicit input: 8267 * ctx == skb == R6 == CTX 8268 * 8269 * Explicit input: 8270 * SRC == any register 8271 * IMM == 32-bit immediate 8272 * 8273 * Output: 8274 * R0 - 8/16/32-bit skb data converted to cpu endianness 8275 */ 8276 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 8277 { 8278 struct bpf_reg_state *regs = cur_regs(env); 8279 static const int ctx_reg = BPF_REG_6; 8280 u8 mode = BPF_MODE(insn->code); 8281 int i, err; 8282 8283 if (!may_access_skb(resolve_prog_type(env->prog))) { 8284 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 8285 return -EINVAL; 8286 } 8287 8288 if (!env->ops->gen_ld_abs) { 8289 verbose(env, "bpf verifier is misconfigured\n"); 8290 return -EINVAL; 8291 } 8292 8293 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 8294 BPF_SIZE(insn->code) == BPF_DW || 8295 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 8296 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 8297 return -EINVAL; 8298 } 8299 8300 /* check whether implicit source operand (register R6) is readable */ 8301 err = check_reg_arg(env, ctx_reg, SRC_OP); 8302 if (err) 8303 return err; 8304 8305 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 8306 * gen_ld_abs() may terminate the program at runtime, leading to 8307 * reference leak. 8308 */ 8309 err = check_reference_leak(env); 8310 if (err) { 8311 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 8312 return err; 8313 } 8314 8315 if (env->cur_state->active_spin_lock) { 8316 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 8317 return -EINVAL; 8318 } 8319 8320 if (regs[ctx_reg].type != PTR_TO_CTX) { 8321 verbose(env, 8322 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 8323 return -EINVAL; 8324 } 8325 8326 if (mode == BPF_IND) { 8327 /* check explicit source operand */ 8328 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8329 if (err) 8330 return err; 8331 } 8332 8333 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 8334 if (err < 0) 8335 return err; 8336 8337 /* reset caller saved regs to unreadable */ 8338 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8339 mark_reg_not_init(env, regs, caller_saved[i]); 8340 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8341 } 8342 8343 /* mark destination R0 register as readable, since it contains 8344 * the value fetched from the packet. 8345 * Already marked as written above. 8346 */ 8347 mark_reg_unknown(env, regs, BPF_REG_0); 8348 /* ld_abs load up to 32-bit skb data. */ 8349 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 8350 return 0; 8351 } 8352 8353 static int check_return_code(struct bpf_verifier_env *env) 8354 { 8355 struct tnum enforce_attach_type_range = tnum_unknown; 8356 const struct bpf_prog *prog = env->prog; 8357 struct bpf_reg_state *reg; 8358 struct tnum range = tnum_range(0, 1); 8359 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8360 int err; 8361 const bool is_subprog = env->cur_state->frame[0]->subprogno; 8362 8363 /* LSM and struct_ops func-ptr's return type could be "void" */ 8364 if (!is_subprog && 8365 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 8366 prog_type == BPF_PROG_TYPE_LSM) && 8367 !prog->aux->attach_func_proto->type) 8368 return 0; 8369 8370 /* eBPF calling convetion is such that R0 is used 8371 * to return the value from eBPF program. 8372 * Make sure that it's readable at this time 8373 * of bpf_exit, which means that program wrote 8374 * something into it earlier 8375 */ 8376 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 8377 if (err) 8378 return err; 8379 8380 if (is_pointer_value(env, BPF_REG_0)) { 8381 verbose(env, "R0 leaks addr as return value\n"); 8382 return -EACCES; 8383 } 8384 8385 reg = cur_regs(env) + BPF_REG_0; 8386 if (is_subprog) { 8387 if (reg->type != SCALAR_VALUE) { 8388 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 8389 reg_type_str[reg->type]); 8390 return -EINVAL; 8391 } 8392 return 0; 8393 } 8394 8395 switch (prog_type) { 8396 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8397 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 8398 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 8399 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 8400 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 8401 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 8402 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 8403 range = tnum_range(1, 1); 8404 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 8405 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 8406 range = tnum_range(0, 3); 8407 break; 8408 case BPF_PROG_TYPE_CGROUP_SKB: 8409 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 8410 range = tnum_range(0, 3); 8411 enforce_attach_type_range = tnum_range(2, 3); 8412 } 8413 break; 8414 case BPF_PROG_TYPE_CGROUP_SOCK: 8415 case BPF_PROG_TYPE_SOCK_OPS: 8416 case BPF_PROG_TYPE_CGROUP_DEVICE: 8417 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8418 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8419 break; 8420 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8421 if (!env->prog->aux->attach_btf_id) 8422 return 0; 8423 range = tnum_const(0); 8424 break; 8425 case BPF_PROG_TYPE_TRACING: 8426 switch (env->prog->expected_attach_type) { 8427 case BPF_TRACE_FENTRY: 8428 case BPF_TRACE_FEXIT: 8429 range = tnum_const(0); 8430 break; 8431 case BPF_TRACE_RAW_TP: 8432 case BPF_MODIFY_RETURN: 8433 return 0; 8434 case BPF_TRACE_ITER: 8435 break; 8436 default: 8437 return -ENOTSUPP; 8438 } 8439 break; 8440 case BPF_PROG_TYPE_SK_LOOKUP: 8441 range = tnum_range(SK_DROP, SK_PASS); 8442 break; 8443 case BPF_PROG_TYPE_EXT: 8444 /* freplace program can return anything as its return value 8445 * depends on the to-be-replaced kernel func or bpf program. 8446 */ 8447 default: 8448 return 0; 8449 } 8450 8451 if (reg->type != SCALAR_VALUE) { 8452 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 8453 reg_type_str[reg->type]); 8454 return -EINVAL; 8455 } 8456 8457 if (!tnum_in(range, reg->var_off)) { 8458 char tn_buf[48]; 8459 8460 verbose(env, "At program exit the register R0 "); 8461 if (!tnum_is_unknown(reg->var_off)) { 8462 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8463 verbose(env, "has value %s", tn_buf); 8464 } else { 8465 verbose(env, "has unknown scalar value"); 8466 } 8467 tnum_strn(tn_buf, sizeof(tn_buf), range); 8468 verbose(env, " should have been in %s\n", tn_buf); 8469 return -EINVAL; 8470 } 8471 8472 if (!tnum_is_unknown(enforce_attach_type_range) && 8473 tnum_in(enforce_attach_type_range, reg->var_off)) 8474 env->prog->enforce_expected_attach_type = 1; 8475 return 0; 8476 } 8477 8478 /* non-recursive DFS pseudo code 8479 * 1 procedure DFS-iterative(G,v): 8480 * 2 label v as discovered 8481 * 3 let S be a stack 8482 * 4 S.push(v) 8483 * 5 while S is not empty 8484 * 6 t <- S.pop() 8485 * 7 if t is what we're looking for: 8486 * 8 return t 8487 * 9 for all edges e in G.adjacentEdges(t) do 8488 * 10 if edge e is already labelled 8489 * 11 continue with the next edge 8490 * 12 w <- G.adjacentVertex(t,e) 8491 * 13 if vertex w is not discovered and not explored 8492 * 14 label e as tree-edge 8493 * 15 label w as discovered 8494 * 16 S.push(w) 8495 * 17 continue at 5 8496 * 18 else if vertex w is discovered 8497 * 19 label e as back-edge 8498 * 20 else 8499 * 21 // vertex w is explored 8500 * 22 label e as forward- or cross-edge 8501 * 23 label t as explored 8502 * 24 S.pop() 8503 * 8504 * convention: 8505 * 0x10 - discovered 8506 * 0x11 - discovered and fall-through edge labelled 8507 * 0x12 - discovered and fall-through and branch edges labelled 8508 * 0x20 - explored 8509 */ 8510 8511 enum { 8512 DISCOVERED = 0x10, 8513 EXPLORED = 0x20, 8514 FALLTHROUGH = 1, 8515 BRANCH = 2, 8516 }; 8517 8518 static u32 state_htab_size(struct bpf_verifier_env *env) 8519 { 8520 return env->prog->len; 8521 } 8522 8523 static struct bpf_verifier_state_list **explored_state( 8524 struct bpf_verifier_env *env, 8525 int idx) 8526 { 8527 struct bpf_verifier_state *cur = env->cur_state; 8528 struct bpf_func_state *state = cur->frame[cur->curframe]; 8529 8530 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 8531 } 8532 8533 static void init_explored_state(struct bpf_verifier_env *env, int idx) 8534 { 8535 env->insn_aux_data[idx].prune_point = true; 8536 } 8537 8538 enum { 8539 DONE_EXPLORING = 0, 8540 KEEP_EXPLORING = 1, 8541 }; 8542 8543 /* t, w, e - match pseudo-code above: 8544 * t - index of current instruction 8545 * w - next instruction 8546 * e - edge 8547 */ 8548 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 8549 bool loop_ok) 8550 { 8551 int *insn_stack = env->cfg.insn_stack; 8552 int *insn_state = env->cfg.insn_state; 8553 8554 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 8555 return DONE_EXPLORING; 8556 8557 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 8558 return DONE_EXPLORING; 8559 8560 if (w < 0 || w >= env->prog->len) { 8561 verbose_linfo(env, t, "%d: ", t); 8562 verbose(env, "jump out of range from insn %d to %d\n", t, w); 8563 return -EINVAL; 8564 } 8565 8566 if (e == BRANCH) 8567 /* mark branch target for state pruning */ 8568 init_explored_state(env, w); 8569 8570 if (insn_state[w] == 0) { 8571 /* tree-edge */ 8572 insn_state[t] = DISCOVERED | e; 8573 insn_state[w] = DISCOVERED; 8574 if (env->cfg.cur_stack >= env->prog->len) 8575 return -E2BIG; 8576 insn_stack[env->cfg.cur_stack++] = w; 8577 return KEEP_EXPLORING; 8578 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 8579 if (loop_ok && env->bpf_capable) 8580 return DONE_EXPLORING; 8581 verbose_linfo(env, t, "%d: ", t); 8582 verbose_linfo(env, w, "%d: ", w); 8583 verbose(env, "back-edge from insn %d to %d\n", t, w); 8584 return -EINVAL; 8585 } else if (insn_state[w] == EXPLORED) { 8586 /* forward- or cross-edge */ 8587 insn_state[t] = DISCOVERED | e; 8588 } else { 8589 verbose(env, "insn state internal bug\n"); 8590 return -EFAULT; 8591 } 8592 return DONE_EXPLORING; 8593 } 8594 8595 /* Visits the instruction at index t and returns one of the following: 8596 * < 0 - an error occurred 8597 * DONE_EXPLORING - the instruction was fully explored 8598 * KEEP_EXPLORING - there is still work to be done before it is fully explored 8599 */ 8600 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 8601 { 8602 struct bpf_insn *insns = env->prog->insnsi; 8603 int ret; 8604 8605 /* All non-branch instructions have a single fall-through edge. */ 8606 if (BPF_CLASS(insns[t].code) != BPF_JMP && 8607 BPF_CLASS(insns[t].code) != BPF_JMP32) 8608 return push_insn(t, t + 1, FALLTHROUGH, env, false); 8609 8610 switch (BPF_OP(insns[t].code)) { 8611 case BPF_EXIT: 8612 return DONE_EXPLORING; 8613 8614 case BPF_CALL: 8615 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8616 if (ret) 8617 return ret; 8618 8619 if (t + 1 < insn_cnt) 8620 init_explored_state(env, t + 1); 8621 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8622 init_explored_state(env, t); 8623 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8624 env, false); 8625 } 8626 return ret; 8627 8628 case BPF_JA: 8629 if (BPF_SRC(insns[t].code) != BPF_K) 8630 return -EINVAL; 8631 8632 /* unconditional jump with single edge */ 8633 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 8634 true); 8635 if (ret) 8636 return ret; 8637 8638 /* unconditional jmp is not a good pruning point, 8639 * but it's marked, since backtracking needs 8640 * to record jmp history in is_state_visited(). 8641 */ 8642 init_explored_state(env, t + insns[t].off + 1); 8643 /* tell verifier to check for equivalent states 8644 * after every call and jump 8645 */ 8646 if (t + 1 < insn_cnt) 8647 init_explored_state(env, t + 1); 8648 8649 return ret; 8650 8651 default: 8652 /* conditional jump with two edges */ 8653 init_explored_state(env, t); 8654 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8655 if (ret) 8656 return ret; 8657 8658 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8659 } 8660 } 8661 8662 /* non-recursive depth-first-search to detect loops in BPF program 8663 * loop == back-edge in directed graph 8664 */ 8665 static int check_cfg(struct bpf_verifier_env *env) 8666 { 8667 int insn_cnt = env->prog->len; 8668 int *insn_stack, *insn_state; 8669 int ret = 0; 8670 int i; 8671 8672 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8673 if (!insn_state) 8674 return -ENOMEM; 8675 8676 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8677 if (!insn_stack) { 8678 kvfree(insn_state); 8679 return -ENOMEM; 8680 } 8681 8682 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8683 insn_stack[0] = 0; /* 0 is the first instruction */ 8684 env->cfg.cur_stack = 1; 8685 8686 while (env->cfg.cur_stack > 0) { 8687 int t = insn_stack[env->cfg.cur_stack - 1]; 8688 8689 ret = visit_insn(t, insn_cnt, env); 8690 switch (ret) { 8691 case DONE_EXPLORING: 8692 insn_state[t] = EXPLORED; 8693 env->cfg.cur_stack--; 8694 break; 8695 case KEEP_EXPLORING: 8696 break; 8697 default: 8698 if (ret > 0) { 8699 verbose(env, "visit_insn internal bug\n"); 8700 ret = -EFAULT; 8701 } 8702 goto err_free; 8703 } 8704 } 8705 8706 if (env->cfg.cur_stack < 0) { 8707 verbose(env, "pop stack internal bug\n"); 8708 ret = -EFAULT; 8709 goto err_free; 8710 } 8711 8712 for (i = 0; i < insn_cnt; i++) { 8713 if (insn_state[i] != EXPLORED) { 8714 verbose(env, "unreachable insn %d\n", i); 8715 ret = -EINVAL; 8716 goto err_free; 8717 } 8718 } 8719 ret = 0; /* cfg looks good */ 8720 8721 err_free: 8722 kvfree(insn_state); 8723 kvfree(insn_stack); 8724 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8725 return ret; 8726 } 8727 8728 static int check_abnormal_return(struct bpf_verifier_env *env) 8729 { 8730 int i; 8731 8732 for (i = 1; i < env->subprog_cnt; i++) { 8733 if (env->subprog_info[i].has_ld_abs) { 8734 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8735 return -EINVAL; 8736 } 8737 if (env->subprog_info[i].has_tail_call) { 8738 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8739 return -EINVAL; 8740 } 8741 } 8742 return 0; 8743 } 8744 8745 /* The minimum supported BTF func info size */ 8746 #define MIN_BPF_FUNCINFO_SIZE 8 8747 #define MAX_FUNCINFO_REC_SIZE 252 8748 8749 static int check_btf_func(struct bpf_verifier_env *env, 8750 const union bpf_attr *attr, 8751 union bpf_attr __user *uattr) 8752 { 8753 const struct btf_type *type, *func_proto, *ret_type; 8754 u32 i, nfuncs, urec_size, min_size; 8755 u32 krec_size = sizeof(struct bpf_func_info); 8756 struct bpf_func_info *krecord; 8757 struct bpf_func_info_aux *info_aux = NULL; 8758 struct bpf_prog *prog; 8759 const struct btf *btf; 8760 void __user *urecord; 8761 u32 prev_offset = 0; 8762 bool scalar_return; 8763 int ret = -ENOMEM; 8764 8765 nfuncs = attr->func_info_cnt; 8766 if (!nfuncs) { 8767 if (check_abnormal_return(env)) 8768 return -EINVAL; 8769 return 0; 8770 } 8771 8772 if (nfuncs != env->subprog_cnt) { 8773 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8774 return -EINVAL; 8775 } 8776 8777 urec_size = attr->func_info_rec_size; 8778 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8779 urec_size > MAX_FUNCINFO_REC_SIZE || 8780 urec_size % sizeof(u32)) { 8781 verbose(env, "invalid func info rec size %u\n", urec_size); 8782 return -EINVAL; 8783 } 8784 8785 prog = env->prog; 8786 btf = prog->aux->btf; 8787 8788 urecord = u64_to_user_ptr(attr->func_info); 8789 min_size = min_t(u32, krec_size, urec_size); 8790 8791 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8792 if (!krecord) 8793 return -ENOMEM; 8794 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8795 if (!info_aux) 8796 goto err_free; 8797 8798 for (i = 0; i < nfuncs; i++) { 8799 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8800 if (ret) { 8801 if (ret == -E2BIG) { 8802 verbose(env, "nonzero tailing record in func info"); 8803 /* set the size kernel expects so loader can zero 8804 * out the rest of the record. 8805 */ 8806 if (put_user(min_size, &uattr->func_info_rec_size)) 8807 ret = -EFAULT; 8808 } 8809 goto err_free; 8810 } 8811 8812 if (copy_from_user(&krecord[i], urecord, min_size)) { 8813 ret = -EFAULT; 8814 goto err_free; 8815 } 8816 8817 /* check insn_off */ 8818 ret = -EINVAL; 8819 if (i == 0) { 8820 if (krecord[i].insn_off) { 8821 verbose(env, 8822 "nonzero insn_off %u for the first func info record", 8823 krecord[i].insn_off); 8824 goto err_free; 8825 } 8826 } else if (krecord[i].insn_off <= prev_offset) { 8827 verbose(env, 8828 "same or smaller insn offset (%u) than previous func info record (%u)", 8829 krecord[i].insn_off, prev_offset); 8830 goto err_free; 8831 } 8832 8833 if (env->subprog_info[i].start != krecord[i].insn_off) { 8834 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8835 goto err_free; 8836 } 8837 8838 /* check type_id */ 8839 type = btf_type_by_id(btf, krecord[i].type_id); 8840 if (!type || !btf_type_is_func(type)) { 8841 verbose(env, "invalid type id %d in func info", 8842 krecord[i].type_id); 8843 goto err_free; 8844 } 8845 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8846 8847 func_proto = btf_type_by_id(btf, type->type); 8848 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8849 /* btf_func_check() already verified it during BTF load */ 8850 goto err_free; 8851 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8852 scalar_return = 8853 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8854 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8855 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8856 goto err_free; 8857 } 8858 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8859 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8860 goto err_free; 8861 } 8862 8863 prev_offset = krecord[i].insn_off; 8864 urecord += urec_size; 8865 } 8866 8867 prog->aux->func_info = krecord; 8868 prog->aux->func_info_cnt = nfuncs; 8869 prog->aux->func_info_aux = info_aux; 8870 return 0; 8871 8872 err_free: 8873 kvfree(krecord); 8874 kfree(info_aux); 8875 return ret; 8876 } 8877 8878 static void adjust_btf_func(struct bpf_verifier_env *env) 8879 { 8880 struct bpf_prog_aux *aux = env->prog->aux; 8881 int i; 8882 8883 if (!aux->func_info) 8884 return; 8885 8886 for (i = 0; i < env->subprog_cnt; i++) 8887 aux->func_info[i].insn_off = env->subprog_info[i].start; 8888 } 8889 8890 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8891 sizeof(((struct bpf_line_info *)(0))->line_col)) 8892 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8893 8894 static int check_btf_line(struct bpf_verifier_env *env, 8895 const union bpf_attr *attr, 8896 union bpf_attr __user *uattr) 8897 { 8898 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8899 struct bpf_subprog_info *sub; 8900 struct bpf_line_info *linfo; 8901 struct bpf_prog *prog; 8902 const struct btf *btf; 8903 void __user *ulinfo; 8904 int err; 8905 8906 nr_linfo = attr->line_info_cnt; 8907 if (!nr_linfo) 8908 return 0; 8909 8910 rec_size = attr->line_info_rec_size; 8911 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8912 rec_size > MAX_LINEINFO_REC_SIZE || 8913 rec_size & (sizeof(u32) - 1)) 8914 return -EINVAL; 8915 8916 /* Need to zero it in case the userspace may 8917 * pass in a smaller bpf_line_info object. 8918 */ 8919 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8920 GFP_KERNEL | __GFP_NOWARN); 8921 if (!linfo) 8922 return -ENOMEM; 8923 8924 prog = env->prog; 8925 btf = prog->aux->btf; 8926 8927 s = 0; 8928 sub = env->subprog_info; 8929 ulinfo = u64_to_user_ptr(attr->line_info); 8930 expected_size = sizeof(struct bpf_line_info); 8931 ncopy = min_t(u32, expected_size, rec_size); 8932 for (i = 0; i < nr_linfo; i++) { 8933 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8934 if (err) { 8935 if (err == -E2BIG) { 8936 verbose(env, "nonzero tailing record in line_info"); 8937 if (put_user(expected_size, 8938 &uattr->line_info_rec_size)) 8939 err = -EFAULT; 8940 } 8941 goto err_free; 8942 } 8943 8944 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8945 err = -EFAULT; 8946 goto err_free; 8947 } 8948 8949 /* 8950 * Check insn_off to ensure 8951 * 1) strictly increasing AND 8952 * 2) bounded by prog->len 8953 * 8954 * The linfo[0].insn_off == 0 check logically falls into 8955 * the later "missing bpf_line_info for func..." case 8956 * because the first linfo[0].insn_off must be the 8957 * first sub also and the first sub must have 8958 * subprog_info[0].start == 0. 8959 */ 8960 if ((i && linfo[i].insn_off <= prev_offset) || 8961 linfo[i].insn_off >= prog->len) { 8962 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8963 i, linfo[i].insn_off, prev_offset, 8964 prog->len); 8965 err = -EINVAL; 8966 goto err_free; 8967 } 8968 8969 if (!prog->insnsi[linfo[i].insn_off].code) { 8970 verbose(env, 8971 "Invalid insn code at line_info[%u].insn_off\n", 8972 i); 8973 err = -EINVAL; 8974 goto err_free; 8975 } 8976 8977 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8978 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8979 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8980 err = -EINVAL; 8981 goto err_free; 8982 } 8983 8984 if (s != env->subprog_cnt) { 8985 if (linfo[i].insn_off == sub[s].start) { 8986 sub[s].linfo_idx = i; 8987 s++; 8988 } else if (sub[s].start < linfo[i].insn_off) { 8989 verbose(env, "missing bpf_line_info for func#%u\n", s); 8990 err = -EINVAL; 8991 goto err_free; 8992 } 8993 } 8994 8995 prev_offset = linfo[i].insn_off; 8996 ulinfo += rec_size; 8997 } 8998 8999 if (s != env->subprog_cnt) { 9000 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 9001 env->subprog_cnt - s, s); 9002 err = -EINVAL; 9003 goto err_free; 9004 } 9005 9006 prog->aux->linfo = linfo; 9007 prog->aux->nr_linfo = nr_linfo; 9008 9009 return 0; 9010 9011 err_free: 9012 kvfree(linfo); 9013 return err; 9014 } 9015 9016 static int check_btf_info(struct bpf_verifier_env *env, 9017 const union bpf_attr *attr, 9018 union bpf_attr __user *uattr) 9019 { 9020 struct btf *btf; 9021 int err; 9022 9023 if (!attr->func_info_cnt && !attr->line_info_cnt) { 9024 if (check_abnormal_return(env)) 9025 return -EINVAL; 9026 return 0; 9027 } 9028 9029 btf = btf_get_by_fd(attr->prog_btf_fd); 9030 if (IS_ERR(btf)) 9031 return PTR_ERR(btf); 9032 env->prog->aux->btf = btf; 9033 9034 err = check_btf_func(env, attr, uattr); 9035 if (err) 9036 return err; 9037 9038 err = check_btf_line(env, attr, uattr); 9039 if (err) 9040 return err; 9041 9042 return 0; 9043 } 9044 9045 /* check %cur's range satisfies %old's */ 9046 static bool range_within(struct bpf_reg_state *old, 9047 struct bpf_reg_state *cur) 9048 { 9049 return old->umin_value <= cur->umin_value && 9050 old->umax_value >= cur->umax_value && 9051 old->smin_value <= cur->smin_value && 9052 old->smax_value >= cur->smax_value && 9053 old->u32_min_value <= cur->u32_min_value && 9054 old->u32_max_value >= cur->u32_max_value && 9055 old->s32_min_value <= cur->s32_min_value && 9056 old->s32_max_value >= cur->s32_max_value; 9057 } 9058 9059 /* Maximum number of register states that can exist at once */ 9060 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 9061 struct idpair { 9062 u32 old; 9063 u32 cur; 9064 }; 9065 9066 /* If in the old state two registers had the same id, then they need to have 9067 * the same id in the new state as well. But that id could be different from 9068 * the old state, so we need to track the mapping from old to new ids. 9069 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 9070 * regs with old id 5 must also have new id 9 for the new state to be safe. But 9071 * regs with a different old id could still have new id 9, we don't care about 9072 * that. 9073 * So we look through our idmap to see if this old id has been seen before. If 9074 * so, we require the new id to match; otherwise, we add the id pair to the map. 9075 */ 9076 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 9077 { 9078 unsigned int i; 9079 9080 for (i = 0; i < ID_MAP_SIZE; i++) { 9081 if (!idmap[i].old) { 9082 /* Reached an empty slot; haven't seen this id before */ 9083 idmap[i].old = old_id; 9084 idmap[i].cur = cur_id; 9085 return true; 9086 } 9087 if (idmap[i].old == old_id) 9088 return idmap[i].cur == cur_id; 9089 } 9090 /* We ran out of idmap slots, which should be impossible */ 9091 WARN_ON_ONCE(1); 9092 return false; 9093 } 9094 9095 static void clean_func_state(struct bpf_verifier_env *env, 9096 struct bpf_func_state *st) 9097 { 9098 enum bpf_reg_liveness live; 9099 int i, j; 9100 9101 for (i = 0; i < BPF_REG_FP; i++) { 9102 live = st->regs[i].live; 9103 /* liveness must not touch this register anymore */ 9104 st->regs[i].live |= REG_LIVE_DONE; 9105 if (!(live & REG_LIVE_READ)) 9106 /* since the register is unused, clear its state 9107 * to make further comparison simpler 9108 */ 9109 __mark_reg_not_init(env, &st->regs[i]); 9110 } 9111 9112 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 9113 live = st->stack[i].spilled_ptr.live; 9114 /* liveness must not touch this stack slot anymore */ 9115 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 9116 if (!(live & REG_LIVE_READ)) { 9117 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 9118 for (j = 0; j < BPF_REG_SIZE; j++) 9119 st->stack[i].slot_type[j] = STACK_INVALID; 9120 } 9121 } 9122 } 9123 9124 static void clean_verifier_state(struct bpf_verifier_env *env, 9125 struct bpf_verifier_state *st) 9126 { 9127 int i; 9128 9129 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 9130 /* all regs in this state in all frames were already marked */ 9131 return; 9132 9133 for (i = 0; i <= st->curframe; i++) 9134 clean_func_state(env, st->frame[i]); 9135 } 9136 9137 /* the parentage chains form a tree. 9138 * the verifier states are added to state lists at given insn and 9139 * pushed into state stack for future exploration. 9140 * when the verifier reaches bpf_exit insn some of the verifer states 9141 * stored in the state lists have their final liveness state already, 9142 * but a lot of states will get revised from liveness point of view when 9143 * the verifier explores other branches. 9144 * Example: 9145 * 1: r0 = 1 9146 * 2: if r1 == 100 goto pc+1 9147 * 3: r0 = 2 9148 * 4: exit 9149 * when the verifier reaches exit insn the register r0 in the state list of 9150 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 9151 * of insn 2 and goes exploring further. At the insn 4 it will walk the 9152 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 9153 * 9154 * Since the verifier pushes the branch states as it sees them while exploring 9155 * the program the condition of walking the branch instruction for the second 9156 * time means that all states below this branch were already explored and 9157 * their final liveness markes are already propagated. 9158 * Hence when the verifier completes the search of state list in is_state_visited() 9159 * we can call this clean_live_states() function to mark all liveness states 9160 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 9161 * will not be used. 9162 * This function also clears the registers and stack for states that !READ 9163 * to simplify state merging. 9164 * 9165 * Important note here that walking the same branch instruction in the callee 9166 * doesn't meant that the states are DONE. The verifier has to compare 9167 * the callsites 9168 */ 9169 static void clean_live_states(struct bpf_verifier_env *env, int insn, 9170 struct bpf_verifier_state *cur) 9171 { 9172 struct bpf_verifier_state_list *sl; 9173 int i; 9174 9175 sl = *explored_state(env, insn); 9176 while (sl) { 9177 if (sl->state.branches) 9178 goto next; 9179 if (sl->state.insn_idx != insn || 9180 sl->state.curframe != cur->curframe) 9181 goto next; 9182 for (i = 0; i <= cur->curframe; i++) 9183 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 9184 goto next; 9185 clean_verifier_state(env, &sl->state); 9186 next: 9187 sl = sl->next; 9188 } 9189 } 9190 9191 /* Returns true if (rold safe implies rcur safe) */ 9192 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 9193 struct idpair *idmap) 9194 { 9195 bool equal; 9196 9197 if (!(rold->live & REG_LIVE_READ)) 9198 /* explored state didn't use this */ 9199 return true; 9200 9201 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 9202 9203 if (rold->type == PTR_TO_STACK) 9204 /* two stack pointers are equal only if they're pointing to 9205 * the same stack frame, since fp-8 in foo != fp-8 in bar 9206 */ 9207 return equal && rold->frameno == rcur->frameno; 9208 9209 if (equal) 9210 return true; 9211 9212 if (rold->type == NOT_INIT) 9213 /* explored state can't have used this */ 9214 return true; 9215 if (rcur->type == NOT_INIT) 9216 return false; 9217 switch (rold->type) { 9218 case SCALAR_VALUE: 9219 if (rcur->type == SCALAR_VALUE) { 9220 if (!rold->precise && !rcur->precise) 9221 return true; 9222 /* new val must satisfy old val knowledge */ 9223 return range_within(rold, rcur) && 9224 tnum_in(rold->var_off, rcur->var_off); 9225 } else { 9226 /* We're trying to use a pointer in place of a scalar. 9227 * Even if the scalar was unbounded, this could lead to 9228 * pointer leaks because scalars are allowed to leak 9229 * while pointers are not. We could make this safe in 9230 * special cases if root is calling us, but it's 9231 * probably not worth the hassle. 9232 */ 9233 return false; 9234 } 9235 case PTR_TO_MAP_VALUE: 9236 /* If the new min/max/var_off satisfy the old ones and 9237 * everything else matches, we are OK. 9238 * 'id' is not compared, since it's only used for maps with 9239 * bpf_spin_lock inside map element and in such cases if 9240 * the rest of the prog is valid for one map element then 9241 * it's valid for all map elements regardless of the key 9242 * used in bpf_map_lookup() 9243 */ 9244 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 9245 range_within(rold, rcur) && 9246 tnum_in(rold->var_off, rcur->var_off); 9247 case PTR_TO_MAP_VALUE_OR_NULL: 9248 /* a PTR_TO_MAP_VALUE could be safe to use as a 9249 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9250 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9251 * checked, doing so could have affected others with the same 9252 * id, and we can't check for that because we lost the id when 9253 * we converted to a PTR_TO_MAP_VALUE. 9254 */ 9255 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 9256 return false; 9257 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 9258 return false; 9259 /* Check our ids match any regs they're supposed to */ 9260 return check_ids(rold->id, rcur->id, idmap); 9261 case PTR_TO_PACKET_META: 9262 case PTR_TO_PACKET: 9263 if (rcur->type != rold->type) 9264 return false; 9265 /* We must have at least as much range as the old ptr 9266 * did, so that any accesses which were safe before are 9267 * still safe. This is true even if old range < old off, 9268 * since someone could have accessed through (ptr - k), or 9269 * even done ptr -= k in a register, to get a safe access. 9270 */ 9271 if (rold->range > rcur->range) 9272 return false; 9273 /* If the offsets don't match, we can't trust our alignment; 9274 * nor can we be sure that we won't fall out of range. 9275 */ 9276 if (rold->off != rcur->off) 9277 return false; 9278 /* id relations must be preserved */ 9279 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 9280 return false; 9281 /* new val must satisfy old val knowledge */ 9282 return range_within(rold, rcur) && 9283 tnum_in(rold->var_off, rcur->var_off); 9284 case PTR_TO_CTX: 9285 case CONST_PTR_TO_MAP: 9286 case PTR_TO_PACKET_END: 9287 case PTR_TO_FLOW_KEYS: 9288 case PTR_TO_SOCKET: 9289 case PTR_TO_SOCKET_OR_NULL: 9290 case PTR_TO_SOCK_COMMON: 9291 case PTR_TO_SOCK_COMMON_OR_NULL: 9292 case PTR_TO_TCP_SOCK: 9293 case PTR_TO_TCP_SOCK_OR_NULL: 9294 case PTR_TO_XDP_SOCK: 9295 /* Only valid matches are exact, which memcmp() above 9296 * would have accepted 9297 */ 9298 default: 9299 /* Don't know what's going on, just say it's not safe */ 9300 return false; 9301 } 9302 9303 /* Shouldn't get here; if we do, say it's not safe */ 9304 WARN_ON_ONCE(1); 9305 return false; 9306 } 9307 9308 static bool stacksafe(struct bpf_func_state *old, 9309 struct bpf_func_state *cur, 9310 struct idpair *idmap) 9311 { 9312 int i, spi; 9313 9314 /* walk slots of the explored stack and ignore any additional 9315 * slots in the current stack, since explored(safe) state 9316 * didn't use them 9317 */ 9318 for (i = 0; i < old->allocated_stack; i++) { 9319 spi = i / BPF_REG_SIZE; 9320 9321 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 9322 i += BPF_REG_SIZE - 1; 9323 /* explored state didn't use this */ 9324 continue; 9325 } 9326 9327 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 9328 continue; 9329 9330 /* explored stack has more populated slots than current stack 9331 * and these slots were used 9332 */ 9333 if (i >= cur->allocated_stack) 9334 return false; 9335 9336 /* if old state was safe with misc data in the stack 9337 * it will be safe with zero-initialized stack. 9338 * The opposite is not true 9339 */ 9340 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 9341 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 9342 continue; 9343 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 9344 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 9345 /* Ex: old explored (safe) state has STACK_SPILL in 9346 * this stack slot, but current has STACK_MISC -> 9347 * this verifier states are not equivalent, 9348 * return false to continue verification of this path 9349 */ 9350 return false; 9351 if (i % BPF_REG_SIZE) 9352 continue; 9353 if (old->stack[spi].slot_type[0] != STACK_SPILL) 9354 continue; 9355 if (!regsafe(&old->stack[spi].spilled_ptr, 9356 &cur->stack[spi].spilled_ptr, 9357 idmap)) 9358 /* when explored and current stack slot are both storing 9359 * spilled registers, check that stored pointers types 9360 * are the same as well. 9361 * Ex: explored safe path could have stored 9362 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 9363 * but current path has stored: 9364 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 9365 * such verifier states are not equivalent. 9366 * return false to continue verification of this path 9367 */ 9368 return false; 9369 } 9370 return true; 9371 } 9372 9373 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 9374 { 9375 if (old->acquired_refs != cur->acquired_refs) 9376 return false; 9377 return !memcmp(old->refs, cur->refs, 9378 sizeof(*old->refs) * old->acquired_refs); 9379 } 9380 9381 /* compare two verifier states 9382 * 9383 * all states stored in state_list are known to be valid, since 9384 * verifier reached 'bpf_exit' instruction through them 9385 * 9386 * this function is called when verifier exploring different branches of 9387 * execution popped from the state stack. If it sees an old state that has 9388 * more strict register state and more strict stack state then this execution 9389 * branch doesn't need to be explored further, since verifier already 9390 * concluded that more strict state leads to valid finish. 9391 * 9392 * Therefore two states are equivalent if register state is more conservative 9393 * and explored stack state is more conservative than the current one. 9394 * Example: 9395 * explored current 9396 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 9397 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 9398 * 9399 * In other words if current stack state (one being explored) has more 9400 * valid slots than old one that already passed validation, it means 9401 * the verifier can stop exploring and conclude that current state is valid too 9402 * 9403 * Similarly with registers. If explored state has register type as invalid 9404 * whereas register type in current state is meaningful, it means that 9405 * the current state will reach 'bpf_exit' instruction safely 9406 */ 9407 static bool func_states_equal(struct bpf_func_state *old, 9408 struct bpf_func_state *cur) 9409 { 9410 struct idpair *idmap; 9411 bool ret = false; 9412 int i; 9413 9414 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 9415 /* If we failed to allocate the idmap, just say it's not safe */ 9416 if (!idmap) 9417 return false; 9418 9419 for (i = 0; i < MAX_BPF_REG; i++) { 9420 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 9421 goto out_free; 9422 } 9423 9424 if (!stacksafe(old, cur, idmap)) 9425 goto out_free; 9426 9427 if (!refsafe(old, cur)) 9428 goto out_free; 9429 ret = true; 9430 out_free: 9431 kfree(idmap); 9432 return ret; 9433 } 9434 9435 static bool states_equal(struct bpf_verifier_env *env, 9436 struct bpf_verifier_state *old, 9437 struct bpf_verifier_state *cur) 9438 { 9439 int i; 9440 9441 if (old->curframe != cur->curframe) 9442 return false; 9443 9444 /* Verification state from speculative execution simulation 9445 * must never prune a non-speculative execution one. 9446 */ 9447 if (old->speculative && !cur->speculative) 9448 return false; 9449 9450 if (old->active_spin_lock != cur->active_spin_lock) 9451 return false; 9452 9453 /* for states to be equal callsites have to be the same 9454 * and all frame states need to be equivalent 9455 */ 9456 for (i = 0; i <= old->curframe; i++) { 9457 if (old->frame[i]->callsite != cur->frame[i]->callsite) 9458 return false; 9459 if (!func_states_equal(old->frame[i], cur->frame[i])) 9460 return false; 9461 } 9462 return true; 9463 } 9464 9465 /* Return 0 if no propagation happened. Return negative error code if error 9466 * happened. Otherwise, return the propagated bit. 9467 */ 9468 static int propagate_liveness_reg(struct bpf_verifier_env *env, 9469 struct bpf_reg_state *reg, 9470 struct bpf_reg_state *parent_reg) 9471 { 9472 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 9473 u8 flag = reg->live & REG_LIVE_READ; 9474 int err; 9475 9476 /* When comes here, read flags of PARENT_REG or REG could be any of 9477 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 9478 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 9479 */ 9480 if (parent_flag == REG_LIVE_READ64 || 9481 /* Or if there is no read flag from REG. */ 9482 !flag || 9483 /* Or if the read flag from REG is the same as PARENT_REG. */ 9484 parent_flag == flag) 9485 return 0; 9486 9487 err = mark_reg_read(env, reg, parent_reg, flag); 9488 if (err) 9489 return err; 9490 9491 return flag; 9492 } 9493 9494 /* A write screens off any subsequent reads; but write marks come from the 9495 * straight-line code between a state and its parent. When we arrive at an 9496 * equivalent state (jump target or such) we didn't arrive by the straight-line 9497 * code, so read marks in the state must propagate to the parent regardless 9498 * of the state's write marks. That's what 'parent == state->parent' comparison 9499 * in mark_reg_read() is for. 9500 */ 9501 static int propagate_liveness(struct bpf_verifier_env *env, 9502 const struct bpf_verifier_state *vstate, 9503 struct bpf_verifier_state *vparent) 9504 { 9505 struct bpf_reg_state *state_reg, *parent_reg; 9506 struct bpf_func_state *state, *parent; 9507 int i, frame, err = 0; 9508 9509 if (vparent->curframe != vstate->curframe) { 9510 WARN(1, "propagate_live: parent frame %d current frame %d\n", 9511 vparent->curframe, vstate->curframe); 9512 return -EFAULT; 9513 } 9514 /* Propagate read liveness of registers... */ 9515 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 9516 for (frame = 0; frame <= vstate->curframe; frame++) { 9517 parent = vparent->frame[frame]; 9518 state = vstate->frame[frame]; 9519 parent_reg = parent->regs; 9520 state_reg = state->regs; 9521 /* We don't need to worry about FP liveness, it's read-only */ 9522 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 9523 err = propagate_liveness_reg(env, &state_reg[i], 9524 &parent_reg[i]); 9525 if (err < 0) 9526 return err; 9527 if (err == REG_LIVE_READ64) 9528 mark_insn_zext(env, &parent_reg[i]); 9529 } 9530 9531 /* Propagate stack slots. */ 9532 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 9533 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 9534 parent_reg = &parent->stack[i].spilled_ptr; 9535 state_reg = &state->stack[i].spilled_ptr; 9536 err = propagate_liveness_reg(env, state_reg, 9537 parent_reg); 9538 if (err < 0) 9539 return err; 9540 } 9541 } 9542 return 0; 9543 } 9544 9545 /* find precise scalars in the previous equivalent state and 9546 * propagate them into the current state 9547 */ 9548 static int propagate_precision(struct bpf_verifier_env *env, 9549 const struct bpf_verifier_state *old) 9550 { 9551 struct bpf_reg_state *state_reg; 9552 struct bpf_func_state *state; 9553 int i, err = 0; 9554 9555 state = old->frame[old->curframe]; 9556 state_reg = state->regs; 9557 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 9558 if (state_reg->type != SCALAR_VALUE || 9559 !state_reg->precise) 9560 continue; 9561 if (env->log.level & BPF_LOG_LEVEL2) 9562 verbose(env, "propagating r%d\n", i); 9563 err = mark_chain_precision(env, i); 9564 if (err < 0) 9565 return err; 9566 } 9567 9568 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 9569 if (state->stack[i].slot_type[0] != STACK_SPILL) 9570 continue; 9571 state_reg = &state->stack[i].spilled_ptr; 9572 if (state_reg->type != SCALAR_VALUE || 9573 !state_reg->precise) 9574 continue; 9575 if (env->log.level & BPF_LOG_LEVEL2) 9576 verbose(env, "propagating fp%d\n", 9577 (-i - 1) * BPF_REG_SIZE); 9578 err = mark_chain_precision_stack(env, i); 9579 if (err < 0) 9580 return err; 9581 } 9582 return 0; 9583 } 9584 9585 static bool states_maybe_looping(struct bpf_verifier_state *old, 9586 struct bpf_verifier_state *cur) 9587 { 9588 struct bpf_func_state *fold, *fcur; 9589 int i, fr = cur->curframe; 9590 9591 if (old->curframe != fr) 9592 return false; 9593 9594 fold = old->frame[fr]; 9595 fcur = cur->frame[fr]; 9596 for (i = 0; i < MAX_BPF_REG; i++) 9597 if (memcmp(&fold->regs[i], &fcur->regs[i], 9598 offsetof(struct bpf_reg_state, parent))) 9599 return false; 9600 return true; 9601 } 9602 9603 9604 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9605 { 9606 struct bpf_verifier_state_list *new_sl; 9607 struct bpf_verifier_state_list *sl, **pprev; 9608 struct bpf_verifier_state *cur = env->cur_state, *new; 9609 int i, j, err, states_cnt = 0; 9610 bool add_new_state = env->test_state_freq ? true : false; 9611 9612 cur->last_insn_idx = env->prev_insn_idx; 9613 if (!env->insn_aux_data[insn_idx].prune_point) 9614 /* this 'insn_idx' instruction wasn't marked, so we will not 9615 * be doing state search here 9616 */ 9617 return 0; 9618 9619 /* bpf progs typically have pruning point every 4 instructions 9620 * http://vger.kernel.org/bpfconf2019.html#session-1 9621 * Do not add new state for future pruning if the verifier hasn't seen 9622 * at least 2 jumps and at least 8 instructions. 9623 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9624 * In tests that amounts to up to 50% reduction into total verifier 9625 * memory consumption and 20% verifier time speedup. 9626 */ 9627 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9628 env->insn_processed - env->prev_insn_processed >= 8) 9629 add_new_state = true; 9630 9631 pprev = explored_state(env, insn_idx); 9632 sl = *pprev; 9633 9634 clean_live_states(env, insn_idx, cur); 9635 9636 while (sl) { 9637 states_cnt++; 9638 if (sl->state.insn_idx != insn_idx) 9639 goto next; 9640 if (sl->state.branches) { 9641 if (states_maybe_looping(&sl->state, cur) && 9642 states_equal(env, &sl->state, cur)) { 9643 verbose_linfo(env, insn_idx, "; "); 9644 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9645 return -EINVAL; 9646 } 9647 /* if the verifier is processing a loop, avoid adding new state 9648 * too often, since different loop iterations have distinct 9649 * states and may not help future pruning. 9650 * This threshold shouldn't be too low to make sure that 9651 * a loop with large bound will be rejected quickly. 9652 * The most abusive loop will be: 9653 * r1 += 1 9654 * if r1 < 1000000 goto pc-2 9655 * 1M insn_procssed limit / 100 == 10k peak states. 9656 * This threshold shouldn't be too high either, since states 9657 * at the end of the loop are likely to be useful in pruning. 9658 */ 9659 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9660 env->insn_processed - env->prev_insn_processed < 100) 9661 add_new_state = false; 9662 goto miss; 9663 } 9664 if (states_equal(env, &sl->state, cur)) { 9665 sl->hit_cnt++; 9666 /* reached equivalent register/stack state, 9667 * prune the search. 9668 * Registers read by the continuation are read by us. 9669 * If we have any write marks in env->cur_state, they 9670 * will prevent corresponding reads in the continuation 9671 * from reaching our parent (an explored_state). Our 9672 * own state will get the read marks recorded, but 9673 * they'll be immediately forgotten as we're pruning 9674 * this state and will pop a new one. 9675 */ 9676 err = propagate_liveness(env, &sl->state, cur); 9677 9678 /* if previous state reached the exit with precision and 9679 * current state is equivalent to it (except precsion marks) 9680 * the precision needs to be propagated back in 9681 * the current state. 9682 */ 9683 err = err ? : push_jmp_history(env, cur); 9684 err = err ? : propagate_precision(env, &sl->state); 9685 if (err) 9686 return err; 9687 return 1; 9688 } 9689 miss: 9690 /* when new state is not going to be added do not increase miss count. 9691 * Otherwise several loop iterations will remove the state 9692 * recorded earlier. The goal of these heuristics is to have 9693 * states from some iterations of the loop (some in the beginning 9694 * and some at the end) to help pruning. 9695 */ 9696 if (add_new_state) 9697 sl->miss_cnt++; 9698 /* heuristic to determine whether this state is beneficial 9699 * to keep checking from state equivalence point of view. 9700 * Higher numbers increase max_states_per_insn and verification time, 9701 * but do not meaningfully decrease insn_processed. 9702 */ 9703 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9704 /* the state is unlikely to be useful. Remove it to 9705 * speed up verification 9706 */ 9707 *pprev = sl->next; 9708 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9709 u32 br = sl->state.branches; 9710 9711 WARN_ONCE(br, 9712 "BUG live_done but branches_to_explore %d\n", 9713 br); 9714 free_verifier_state(&sl->state, false); 9715 kfree(sl); 9716 env->peak_states--; 9717 } else { 9718 /* cannot free this state, since parentage chain may 9719 * walk it later. Add it for free_list instead to 9720 * be freed at the end of verification 9721 */ 9722 sl->next = env->free_list; 9723 env->free_list = sl; 9724 } 9725 sl = *pprev; 9726 continue; 9727 } 9728 next: 9729 pprev = &sl->next; 9730 sl = *pprev; 9731 } 9732 9733 if (env->max_states_per_insn < states_cnt) 9734 env->max_states_per_insn = states_cnt; 9735 9736 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9737 return push_jmp_history(env, cur); 9738 9739 if (!add_new_state) 9740 return push_jmp_history(env, cur); 9741 9742 /* There were no equivalent states, remember the current one. 9743 * Technically the current state is not proven to be safe yet, 9744 * but it will either reach outer most bpf_exit (which means it's safe) 9745 * or it will be rejected. When there are no loops the verifier won't be 9746 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9747 * again on the way to bpf_exit. 9748 * When looping the sl->state.branches will be > 0 and this state 9749 * will not be considered for equivalence until branches == 0. 9750 */ 9751 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9752 if (!new_sl) 9753 return -ENOMEM; 9754 env->total_states++; 9755 env->peak_states++; 9756 env->prev_jmps_processed = env->jmps_processed; 9757 env->prev_insn_processed = env->insn_processed; 9758 9759 /* add new state to the head of linked list */ 9760 new = &new_sl->state; 9761 err = copy_verifier_state(new, cur); 9762 if (err) { 9763 free_verifier_state(new, false); 9764 kfree(new_sl); 9765 return err; 9766 } 9767 new->insn_idx = insn_idx; 9768 WARN_ONCE(new->branches != 1, 9769 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9770 9771 cur->parent = new; 9772 cur->first_insn_idx = insn_idx; 9773 clear_jmp_history(cur); 9774 new_sl->next = *explored_state(env, insn_idx); 9775 *explored_state(env, insn_idx) = new_sl; 9776 /* connect new state to parentage chain. Current frame needs all 9777 * registers connected. Only r6 - r9 of the callers are alive (pushed 9778 * to the stack implicitly by JITs) so in callers' frames connect just 9779 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9780 * the state of the call instruction (with WRITTEN set), and r0 comes 9781 * from callee with its full parentage chain, anyway. 9782 */ 9783 /* clear write marks in current state: the writes we did are not writes 9784 * our child did, so they don't screen off its reads from us. 9785 * (There are no read marks in current state, because reads always mark 9786 * their parent and current state never has children yet. Only 9787 * explored_states can get read marks.) 9788 */ 9789 for (j = 0; j <= cur->curframe; j++) { 9790 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9791 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9792 for (i = 0; i < BPF_REG_FP; i++) 9793 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9794 } 9795 9796 /* all stack frames are accessible from callee, clear them all */ 9797 for (j = 0; j <= cur->curframe; j++) { 9798 struct bpf_func_state *frame = cur->frame[j]; 9799 struct bpf_func_state *newframe = new->frame[j]; 9800 9801 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9802 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9803 frame->stack[i].spilled_ptr.parent = 9804 &newframe->stack[i].spilled_ptr; 9805 } 9806 } 9807 return 0; 9808 } 9809 9810 /* Return true if it's OK to have the same insn return a different type. */ 9811 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9812 { 9813 switch (type) { 9814 case PTR_TO_CTX: 9815 case PTR_TO_SOCKET: 9816 case PTR_TO_SOCKET_OR_NULL: 9817 case PTR_TO_SOCK_COMMON: 9818 case PTR_TO_SOCK_COMMON_OR_NULL: 9819 case PTR_TO_TCP_SOCK: 9820 case PTR_TO_TCP_SOCK_OR_NULL: 9821 case PTR_TO_XDP_SOCK: 9822 case PTR_TO_BTF_ID: 9823 case PTR_TO_BTF_ID_OR_NULL: 9824 return false; 9825 default: 9826 return true; 9827 } 9828 } 9829 9830 /* If an instruction was previously used with particular pointer types, then we 9831 * need to be careful to avoid cases such as the below, where it may be ok 9832 * for one branch accessing the pointer, but not ok for the other branch: 9833 * 9834 * R1 = sock_ptr 9835 * goto X; 9836 * ... 9837 * R1 = some_other_valid_ptr; 9838 * goto X; 9839 * ... 9840 * R2 = *(u32 *)(R1 + 0); 9841 */ 9842 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9843 { 9844 return src != prev && (!reg_type_mismatch_ok(src) || 9845 !reg_type_mismatch_ok(prev)); 9846 } 9847 9848 static int do_check(struct bpf_verifier_env *env) 9849 { 9850 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9851 struct bpf_verifier_state *state = env->cur_state; 9852 struct bpf_insn *insns = env->prog->insnsi; 9853 struct bpf_reg_state *regs; 9854 int insn_cnt = env->prog->len; 9855 bool do_print_state = false; 9856 int prev_insn_idx = -1; 9857 9858 for (;;) { 9859 struct bpf_insn *insn; 9860 u8 class; 9861 int err; 9862 9863 env->prev_insn_idx = prev_insn_idx; 9864 if (env->insn_idx >= insn_cnt) { 9865 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9866 env->insn_idx, insn_cnt); 9867 return -EFAULT; 9868 } 9869 9870 insn = &insns[env->insn_idx]; 9871 class = BPF_CLASS(insn->code); 9872 9873 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9874 verbose(env, 9875 "BPF program is too large. Processed %d insn\n", 9876 env->insn_processed); 9877 return -E2BIG; 9878 } 9879 9880 err = is_state_visited(env, env->insn_idx); 9881 if (err < 0) 9882 return err; 9883 if (err == 1) { 9884 /* found equivalent state, can prune the search */ 9885 if (env->log.level & BPF_LOG_LEVEL) { 9886 if (do_print_state) 9887 verbose(env, "\nfrom %d to %d%s: safe\n", 9888 env->prev_insn_idx, env->insn_idx, 9889 env->cur_state->speculative ? 9890 " (speculative execution)" : ""); 9891 else 9892 verbose(env, "%d: safe\n", env->insn_idx); 9893 } 9894 goto process_bpf_exit; 9895 } 9896 9897 if (signal_pending(current)) 9898 return -EAGAIN; 9899 9900 if (need_resched()) 9901 cond_resched(); 9902 9903 if (env->log.level & BPF_LOG_LEVEL2 || 9904 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9905 if (env->log.level & BPF_LOG_LEVEL2) 9906 verbose(env, "%d:", env->insn_idx); 9907 else 9908 verbose(env, "\nfrom %d to %d%s:", 9909 env->prev_insn_idx, env->insn_idx, 9910 env->cur_state->speculative ? 9911 " (speculative execution)" : ""); 9912 print_verifier_state(env, state->frame[state->curframe]); 9913 do_print_state = false; 9914 } 9915 9916 if (env->log.level & BPF_LOG_LEVEL) { 9917 const struct bpf_insn_cbs cbs = { 9918 .cb_print = verbose, 9919 .private_data = env, 9920 }; 9921 9922 verbose_linfo(env, env->insn_idx, "; "); 9923 verbose(env, "%d: ", env->insn_idx); 9924 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9925 } 9926 9927 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9928 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9929 env->prev_insn_idx); 9930 if (err) 9931 return err; 9932 } 9933 9934 regs = cur_regs(env); 9935 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9936 prev_insn_idx = env->insn_idx; 9937 9938 if (class == BPF_ALU || class == BPF_ALU64) { 9939 err = check_alu_op(env, insn); 9940 if (err) 9941 return err; 9942 9943 } else if (class == BPF_LDX) { 9944 enum bpf_reg_type *prev_src_type, src_reg_type; 9945 9946 /* check for reserved fields is already done */ 9947 9948 /* check src operand */ 9949 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9950 if (err) 9951 return err; 9952 9953 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9954 if (err) 9955 return err; 9956 9957 src_reg_type = regs[insn->src_reg].type; 9958 9959 /* check that memory (src_reg + off) is readable, 9960 * the state of dst_reg will be updated by this func 9961 */ 9962 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9963 insn->off, BPF_SIZE(insn->code), 9964 BPF_READ, insn->dst_reg, false); 9965 if (err) 9966 return err; 9967 9968 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9969 9970 if (*prev_src_type == NOT_INIT) { 9971 /* saw a valid insn 9972 * dst_reg = *(u32 *)(src_reg + off) 9973 * save type to validate intersecting paths 9974 */ 9975 *prev_src_type = src_reg_type; 9976 9977 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9978 /* ABuser program is trying to use the same insn 9979 * dst_reg = *(u32*) (src_reg + off) 9980 * with different pointer types: 9981 * src_reg == ctx in one branch and 9982 * src_reg == stack|map in some other branch. 9983 * Reject it. 9984 */ 9985 verbose(env, "same insn cannot be used with different pointers\n"); 9986 return -EINVAL; 9987 } 9988 9989 } else if (class == BPF_STX) { 9990 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9991 9992 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 9993 err = check_atomic(env, env->insn_idx, insn); 9994 if (err) 9995 return err; 9996 env->insn_idx++; 9997 continue; 9998 } 9999 10000 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 10001 verbose(env, "BPF_STX uses reserved fields\n"); 10002 return -EINVAL; 10003 } 10004 10005 /* check src1 operand */ 10006 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10007 if (err) 10008 return err; 10009 /* check src2 operand */ 10010 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10011 if (err) 10012 return err; 10013 10014 dst_reg_type = regs[insn->dst_reg].type; 10015 10016 /* check that memory (dst_reg + off) is writeable */ 10017 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10018 insn->off, BPF_SIZE(insn->code), 10019 BPF_WRITE, insn->src_reg, false); 10020 if (err) 10021 return err; 10022 10023 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10024 10025 if (*prev_dst_type == NOT_INIT) { 10026 *prev_dst_type = dst_reg_type; 10027 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 10028 verbose(env, "same insn cannot be used with different pointers\n"); 10029 return -EINVAL; 10030 } 10031 10032 } else if (class == BPF_ST) { 10033 if (BPF_MODE(insn->code) != BPF_MEM || 10034 insn->src_reg != BPF_REG_0) { 10035 verbose(env, "BPF_ST uses reserved fields\n"); 10036 return -EINVAL; 10037 } 10038 /* check src operand */ 10039 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10040 if (err) 10041 return err; 10042 10043 if (is_ctx_reg(env, insn->dst_reg)) { 10044 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 10045 insn->dst_reg, 10046 reg_type_str[reg_state(env, insn->dst_reg)->type]); 10047 return -EACCES; 10048 } 10049 10050 /* check that memory (dst_reg + off) is writeable */ 10051 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10052 insn->off, BPF_SIZE(insn->code), 10053 BPF_WRITE, -1, false); 10054 if (err) 10055 return err; 10056 10057 } else if (class == BPF_JMP || class == BPF_JMP32) { 10058 u8 opcode = BPF_OP(insn->code); 10059 10060 env->jmps_processed++; 10061 if (opcode == BPF_CALL) { 10062 if (BPF_SRC(insn->code) != BPF_K || 10063 insn->off != 0 || 10064 (insn->src_reg != BPF_REG_0 && 10065 insn->src_reg != BPF_PSEUDO_CALL) || 10066 insn->dst_reg != BPF_REG_0 || 10067 class == BPF_JMP32) { 10068 verbose(env, "BPF_CALL uses reserved fields\n"); 10069 return -EINVAL; 10070 } 10071 10072 if (env->cur_state->active_spin_lock && 10073 (insn->src_reg == BPF_PSEUDO_CALL || 10074 insn->imm != BPF_FUNC_spin_unlock)) { 10075 verbose(env, "function calls are not allowed while holding a lock\n"); 10076 return -EINVAL; 10077 } 10078 if (insn->src_reg == BPF_PSEUDO_CALL) 10079 err = check_func_call(env, insn, &env->insn_idx); 10080 else 10081 err = check_helper_call(env, insn->imm, env->insn_idx); 10082 if (err) 10083 return err; 10084 10085 } else if (opcode == BPF_JA) { 10086 if (BPF_SRC(insn->code) != BPF_K || 10087 insn->imm != 0 || 10088 insn->src_reg != BPF_REG_0 || 10089 insn->dst_reg != BPF_REG_0 || 10090 class == BPF_JMP32) { 10091 verbose(env, "BPF_JA uses reserved fields\n"); 10092 return -EINVAL; 10093 } 10094 10095 env->insn_idx += insn->off + 1; 10096 continue; 10097 10098 } else if (opcode == BPF_EXIT) { 10099 if (BPF_SRC(insn->code) != BPF_K || 10100 insn->imm != 0 || 10101 insn->src_reg != BPF_REG_0 || 10102 insn->dst_reg != BPF_REG_0 || 10103 class == BPF_JMP32) { 10104 verbose(env, "BPF_EXIT uses reserved fields\n"); 10105 return -EINVAL; 10106 } 10107 10108 if (env->cur_state->active_spin_lock) { 10109 verbose(env, "bpf_spin_unlock is missing\n"); 10110 return -EINVAL; 10111 } 10112 10113 if (state->curframe) { 10114 /* exit from nested function */ 10115 err = prepare_func_exit(env, &env->insn_idx); 10116 if (err) 10117 return err; 10118 do_print_state = true; 10119 continue; 10120 } 10121 10122 err = check_reference_leak(env); 10123 if (err) 10124 return err; 10125 10126 err = check_return_code(env); 10127 if (err) 10128 return err; 10129 process_bpf_exit: 10130 update_branch_counts(env, env->cur_state); 10131 err = pop_stack(env, &prev_insn_idx, 10132 &env->insn_idx, pop_log); 10133 if (err < 0) { 10134 if (err != -ENOENT) 10135 return err; 10136 break; 10137 } else { 10138 do_print_state = true; 10139 continue; 10140 } 10141 } else { 10142 err = check_cond_jmp_op(env, insn, &env->insn_idx); 10143 if (err) 10144 return err; 10145 } 10146 } else if (class == BPF_LD) { 10147 u8 mode = BPF_MODE(insn->code); 10148 10149 if (mode == BPF_ABS || mode == BPF_IND) { 10150 err = check_ld_abs(env, insn); 10151 if (err) 10152 return err; 10153 10154 } else if (mode == BPF_IMM) { 10155 err = check_ld_imm(env, insn); 10156 if (err) 10157 return err; 10158 10159 env->insn_idx++; 10160 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10161 } else { 10162 verbose(env, "invalid BPF_LD mode\n"); 10163 return -EINVAL; 10164 } 10165 } else { 10166 verbose(env, "unknown insn class %d\n", class); 10167 return -EINVAL; 10168 } 10169 10170 env->insn_idx++; 10171 } 10172 10173 return 0; 10174 } 10175 10176 static int find_btf_percpu_datasec(struct btf *btf) 10177 { 10178 const struct btf_type *t; 10179 const char *tname; 10180 int i, n; 10181 10182 /* 10183 * Both vmlinux and module each have their own ".data..percpu" 10184 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 10185 * types to look at only module's own BTF types. 10186 */ 10187 n = btf_nr_types(btf); 10188 if (btf_is_module(btf)) 10189 i = btf_nr_types(btf_vmlinux); 10190 else 10191 i = 1; 10192 10193 for(; i < n; i++) { 10194 t = btf_type_by_id(btf, i); 10195 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 10196 continue; 10197 10198 tname = btf_name_by_offset(btf, t->name_off); 10199 if (!strcmp(tname, ".data..percpu")) 10200 return i; 10201 } 10202 10203 return -ENOENT; 10204 } 10205 10206 /* replace pseudo btf_id with kernel symbol address */ 10207 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 10208 struct bpf_insn *insn, 10209 struct bpf_insn_aux_data *aux) 10210 { 10211 const struct btf_var_secinfo *vsi; 10212 const struct btf_type *datasec; 10213 struct btf_mod_pair *btf_mod; 10214 const struct btf_type *t; 10215 const char *sym_name; 10216 bool percpu = false; 10217 u32 type, id = insn->imm; 10218 struct btf *btf; 10219 s32 datasec_id; 10220 u64 addr; 10221 int i, btf_fd, err; 10222 10223 btf_fd = insn[1].imm; 10224 if (btf_fd) { 10225 btf = btf_get_by_fd(btf_fd); 10226 if (IS_ERR(btf)) { 10227 verbose(env, "invalid module BTF object FD specified.\n"); 10228 return -EINVAL; 10229 } 10230 } else { 10231 if (!btf_vmlinux) { 10232 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 10233 return -EINVAL; 10234 } 10235 btf = btf_vmlinux; 10236 btf_get(btf); 10237 } 10238 10239 t = btf_type_by_id(btf, id); 10240 if (!t) { 10241 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 10242 err = -ENOENT; 10243 goto err_put; 10244 } 10245 10246 if (!btf_type_is_var(t)) { 10247 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 10248 err = -EINVAL; 10249 goto err_put; 10250 } 10251 10252 sym_name = btf_name_by_offset(btf, t->name_off); 10253 addr = kallsyms_lookup_name(sym_name); 10254 if (!addr) { 10255 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 10256 sym_name); 10257 err = -ENOENT; 10258 goto err_put; 10259 } 10260 10261 datasec_id = find_btf_percpu_datasec(btf); 10262 if (datasec_id > 0) { 10263 datasec = btf_type_by_id(btf, datasec_id); 10264 for_each_vsi(i, datasec, vsi) { 10265 if (vsi->type == id) { 10266 percpu = true; 10267 break; 10268 } 10269 } 10270 } 10271 10272 insn[0].imm = (u32)addr; 10273 insn[1].imm = addr >> 32; 10274 10275 type = t->type; 10276 t = btf_type_skip_modifiers(btf, type, NULL); 10277 if (percpu) { 10278 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 10279 aux->btf_var.btf = btf; 10280 aux->btf_var.btf_id = type; 10281 } else if (!btf_type_is_struct(t)) { 10282 const struct btf_type *ret; 10283 const char *tname; 10284 u32 tsize; 10285 10286 /* resolve the type size of ksym. */ 10287 ret = btf_resolve_size(btf, t, &tsize); 10288 if (IS_ERR(ret)) { 10289 tname = btf_name_by_offset(btf, t->name_off); 10290 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 10291 tname, PTR_ERR(ret)); 10292 err = -EINVAL; 10293 goto err_put; 10294 } 10295 aux->btf_var.reg_type = PTR_TO_MEM; 10296 aux->btf_var.mem_size = tsize; 10297 } else { 10298 aux->btf_var.reg_type = PTR_TO_BTF_ID; 10299 aux->btf_var.btf = btf; 10300 aux->btf_var.btf_id = type; 10301 } 10302 10303 /* check whether we recorded this BTF (and maybe module) already */ 10304 for (i = 0; i < env->used_btf_cnt; i++) { 10305 if (env->used_btfs[i].btf == btf) { 10306 btf_put(btf); 10307 return 0; 10308 } 10309 } 10310 10311 if (env->used_btf_cnt >= MAX_USED_BTFS) { 10312 err = -E2BIG; 10313 goto err_put; 10314 } 10315 10316 btf_mod = &env->used_btfs[env->used_btf_cnt]; 10317 btf_mod->btf = btf; 10318 btf_mod->module = NULL; 10319 10320 /* if we reference variables from kernel module, bump its refcount */ 10321 if (btf_is_module(btf)) { 10322 btf_mod->module = btf_try_get_module(btf); 10323 if (!btf_mod->module) { 10324 err = -ENXIO; 10325 goto err_put; 10326 } 10327 } 10328 10329 env->used_btf_cnt++; 10330 10331 return 0; 10332 err_put: 10333 btf_put(btf); 10334 return err; 10335 } 10336 10337 static int check_map_prealloc(struct bpf_map *map) 10338 { 10339 return (map->map_type != BPF_MAP_TYPE_HASH && 10340 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10341 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 10342 !(map->map_flags & BPF_F_NO_PREALLOC); 10343 } 10344 10345 static bool is_tracing_prog_type(enum bpf_prog_type type) 10346 { 10347 switch (type) { 10348 case BPF_PROG_TYPE_KPROBE: 10349 case BPF_PROG_TYPE_TRACEPOINT: 10350 case BPF_PROG_TYPE_PERF_EVENT: 10351 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10352 return true; 10353 default: 10354 return false; 10355 } 10356 } 10357 10358 static bool is_preallocated_map(struct bpf_map *map) 10359 { 10360 if (!check_map_prealloc(map)) 10361 return false; 10362 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 10363 return false; 10364 return true; 10365 } 10366 10367 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 10368 struct bpf_map *map, 10369 struct bpf_prog *prog) 10370 10371 { 10372 enum bpf_prog_type prog_type = resolve_prog_type(prog); 10373 /* 10374 * Validate that trace type programs use preallocated hash maps. 10375 * 10376 * For programs attached to PERF events this is mandatory as the 10377 * perf NMI can hit any arbitrary code sequence. 10378 * 10379 * All other trace types using preallocated hash maps are unsafe as 10380 * well because tracepoint or kprobes can be inside locked regions 10381 * of the memory allocator or at a place where a recursion into the 10382 * memory allocator would see inconsistent state. 10383 * 10384 * On RT enabled kernels run-time allocation of all trace type 10385 * programs is strictly prohibited due to lock type constraints. On 10386 * !RT kernels it is allowed for backwards compatibility reasons for 10387 * now, but warnings are emitted so developers are made aware of 10388 * the unsafety and can fix their programs before this is enforced. 10389 */ 10390 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 10391 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 10392 verbose(env, "perf_event programs can only use preallocated hash map\n"); 10393 return -EINVAL; 10394 } 10395 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 10396 verbose(env, "trace type programs can only use preallocated hash map\n"); 10397 return -EINVAL; 10398 } 10399 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 10400 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 10401 } 10402 10403 if (map_value_has_spin_lock(map)) { 10404 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 10405 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 10406 return -EINVAL; 10407 } 10408 10409 if (is_tracing_prog_type(prog_type)) { 10410 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 10411 return -EINVAL; 10412 } 10413 10414 if (prog->aux->sleepable) { 10415 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 10416 return -EINVAL; 10417 } 10418 } 10419 10420 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 10421 !bpf_offload_prog_map_match(prog, map)) { 10422 verbose(env, "offload device mismatch between prog and map\n"); 10423 return -EINVAL; 10424 } 10425 10426 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 10427 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 10428 return -EINVAL; 10429 } 10430 10431 if (prog->aux->sleepable) 10432 switch (map->map_type) { 10433 case BPF_MAP_TYPE_HASH: 10434 case BPF_MAP_TYPE_LRU_HASH: 10435 case BPF_MAP_TYPE_ARRAY: 10436 case BPF_MAP_TYPE_PERCPU_HASH: 10437 case BPF_MAP_TYPE_PERCPU_ARRAY: 10438 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10439 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 10440 case BPF_MAP_TYPE_HASH_OF_MAPS: 10441 if (!is_preallocated_map(map)) { 10442 verbose(env, 10443 "Sleepable programs can only use preallocated maps\n"); 10444 return -EINVAL; 10445 } 10446 break; 10447 case BPF_MAP_TYPE_RINGBUF: 10448 break; 10449 default: 10450 verbose(env, 10451 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 10452 return -EINVAL; 10453 } 10454 10455 return 0; 10456 } 10457 10458 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 10459 { 10460 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 10461 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 10462 } 10463 10464 /* find and rewrite pseudo imm in ld_imm64 instructions: 10465 * 10466 * 1. if it accesses map FD, replace it with actual map pointer. 10467 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 10468 * 10469 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 10470 */ 10471 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 10472 { 10473 struct bpf_insn *insn = env->prog->insnsi; 10474 int insn_cnt = env->prog->len; 10475 int i, j, err; 10476 10477 err = bpf_prog_calc_tag(env->prog); 10478 if (err) 10479 return err; 10480 10481 for (i = 0; i < insn_cnt; i++, insn++) { 10482 if (BPF_CLASS(insn->code) == BPF_LDX && 10483 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 10484 verbose(env, "BPF_LDX uses reserved fields\n"); 10485 return -EINVAL; 10486 } 10487 10488 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 10489 struct bpf_insn_aux_data *aux; 10490 struct bpf_map *map; 10491 struct fd f; 10492 u64 addr; 10493 10494 if (i == insn_cnt - 1 || insn[1].code != 0 || 10495 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 10496 insn[1].off != 0) { 10497 verbose(env, "invalid bpf_ld_imm64 insn\n"); 10498 return -EINVAL; 10499 } 10500 10501 if (insn[0].src_reg == 0) 10502 /* valid generic load 64-bit imm */ 10503 goto next_insn; 10504 10505 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 10506 aux = &env->insn_aux_data[i]; 10507 err = check_pseudo_btf_id(env, insn, aux); 10508 if (err) 10509 return err; 10510 goto next_insn; 10511 } 10512 10513 /* In final convert_pseudo_ld_imm64() step, this is 10514 * converted into regular 64-bit imm load insn. 10515 */ 10516 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 10517 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 10518 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 10519 insn[1].imm != 0)) { 10520 verbose(env, 10521 "unrecognized bpf_ld_imm64 insn\n"); 10522 return -EINVAL; 10523 } 10524 10525 f = fdget(insn[0].imm); 10526 map = __bpf_map_get(f); 10527 if (IS_ERR(map)) { 10528 verbose(env, "fd %d is not pointing to valid bpf_map\n", 10529 insn[0].imm); 10530 return PTR_ERR(map); 10531 } 10532 10533 err = check_map_prog_compatibility(env, map, env->prog); 10534 if (err) { 10535 fdput(f); 10536 return err; 10537 } 10538 10539 aux = &env->insn_aux_data[i]; 10540 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 10541 addr = (unsigned long)map; 10542 } else { 10543 u32 off = insn[1].imm; 10544 10545 if (off >= BPF_MAX_VAR_OFF) { 10546 verbose(env, "direct value offset of %u is not allowed\n", off); 10547 fdput(f); 10548 return -EINVAL; 10549 } 10550 10551 if (!map->ops->map_direct_value_addr) { 10552 verbose(env, "no direct value access support for this map type\n"); 10553 fdput(f); 10554 return -EINVAL; 10555 } 10556 10557 err = map->ops->map_direct_value_addr(map, &addr, off); 10558 if (err) { 10559 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 10560 map->value_size, off); 10561 fdput(f); 10562 return err; 10563 } 10564 10565 aux->map_off = off; 10566 addr += off; 10567 } 10568 10569 insn[0].imm = (u32)addr; 10570 insn[1].imm = addr >> 32; 10571 10572 /* check whether we recorded this map already */ 10573 for (j = 0; j < env->used_map_cnt; j++) { 10574 if (env->used_maps[j] == map) { 10575 aux->map_index = j; 10576 fdput(f); 10577 goto next_insn; 10578 } 10579 } 10580 10581 if (env->used_map_cnt >= MAX_USED_MAPS) { 10582 fdput(f); 10583 return -E2BIG; 10584 } 10585 10586 /* hold the map. If the program is rejected by verifier, 10587 * the map will be released by release_maps() or it 10588 * will be used by the valid program until it's unloaded 10589 * and all maps are released in free_used_maps() 10590 */ 10591 bpf_map_inc(map); 10592 10593 aux->map_index = env->used_map_cnt; 10594 env->used_maps[env->used_map_cnt++] = map; 10595 10596 if (bpf_map_is_cgroup_storage(map) && 10597 bpf_cgroup_storage_assign(env->prog->aux, map)) { 10598 verbose(env, "only one cgroup storage of each type is allowed\n"); 10599 fdput(f); 10600 return -EBUSY; 10601 } 10602 10603 fdput(f); 10604 next_insn: 10605 insn++; 10606 i++; 10607 continue; 10608 } 10609 10610 /* Basic sanity check before we invest more work here. */ 10611 if (!bpf_opcode_in_insntable(insn->code)) { 10612 verbose(env, "unknown opcode %02x\n", insn->code); 10613 return -EINVAL; 10614 } 10615 } 10616 10617 /* now all pseudo BPF_LD_IMM64 instructions load valid 10618 * 'struct bpf_map *' into a register instead of user map_fd. 10619 * These pointers will be used later by verifier to validate map access. 10620 */ 10621 return 0; 10622 } 10623 10624 /* drop refcnt of maps used by the rejected program */ 10625 static void release_maps(struct bpf_verifier_env *env) 10626 { 10627 __bpf_free_used_maps(env->prog->aux, env->used_maps, 10628 env->used_map_cnt); 10629 } 10630 10631 /* drop refcnt of maps used by the rejected program */ 10632 static void release_btfs(struct bpf_verifier_env *env) 10633 { 10634 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 10635 env->used_btf_cnt); 10636 } 10637 10638 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 10639 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 10640 { 10641 struct bpf_insn *insn = env->prog->insnsi; 10642 int insn_cnt = env->prog->len; 10643 int i; 10644 10645 for (i = 0; i < insn_cnt; i++, insn++) 10646 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 10647 insn->src_reg = 0; 10648 } 10649 10650 /* single env->prog->insni[off] instruction was replaced with the range 10651 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 10652 * [0, off) and [off, end) to new locations, so the patched range stays zero 10653 */ 10654 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 10655 struct bpf_prog *new_prog, u32 off, u32 cnt) 10656 { 10657 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 10658 struct bpf_insn *insn = new_prog->insnsi; 10659 u32 prog_len; 10660 int i; 10661 10662 /* aux info at OFF always needs adjustment, no matter fast path 10663 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 10664 * original insn at old prog. 10665 */ 10666 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 10667 10668 if (cnt == 1) 10669 return 0; 10670 prog_len = new_prog->len; 10671 new_data = vzalloc(array_size(prog_len, 10672 sizeof(struct bpf_insn_aux_data))); 10673 if (!new_data) 10674 return -ENOMEM; 10675 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 10676 memcpy(new_data + off + cnt - 1, old_data + off, 10677 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 10678 for (i = off; i < off + cnt - 1; i++) { 10679 new_data[i].seen = env->pass_cnt; 10680 new_data[i].zext_dst = insn_has_def32(env, insn + i); 10681 } 10682 env->insn_aux_data = new_data; 10683 vfree(old_data); 10684 return 0; 10685 } 10686 10687 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10688 { 10689 int i; 10690 10691 if (len == 1) 10692 return; 10693 /* NOTE: fake 'exit' subprog should be updated as well. */ 10694 for (i = 0; i <= env->subprog_cnt; i++) { 10695 if (env->subprog_info[i].start <= off) 10696 continue; 10697 env->subprog_info[i].start += len - 1; 10698 } 10699 } 10700 10701 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10702 { 10703 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10704 int i, sz = prog->aux->size_poke_tab; 10705 struct bpf_jit_poke_descriptor *desc; 10706 10707 for (i = 0; i < sz; i++) { 10708 desc = &tab[i]; 10709 desc->insn_idx += len - 1; 10710 } 10711 } 10712 10713 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10714 const struct bpf_insn *patch, u32 len) 10715 { 10716 struct bpf_prog *new_prog; 10717 10718 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10719 if (IS_ERR(new_prog)) { 10720 if (PTR_ERR(new_prog) == -ERANGE) 10721 verbose(env, 10722 "insn %d cannot be patched due to 16-bit range\n", 10723 env->insn_aux_data[off].orig_idx); 10724 return NULL; 10725 } 10726 if (adjust_insn_aux_data(env, new_prog, off, len)) 10727 return NULL; 10728 adjust_subprog_starts(env, off, len); 10729 adjust_poke_descs(new_prog, len); 10730 return new_prog; 10731 } 10732 10733 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10734 u32 off, u32 cnt) 10735 { 10736 int i, j; 10737 10738 /* find first prog starting at or after off (first to remove) */ 10739 for (i = 0; i < env->subprog_cnt; i++) 10740 if (env->subprog_info[i].start >= off) 10741 break; 10742 /* find first prog starting at or after off + cnt (first to stay) */ 10743 for (j = i; j < env->subprog_cnt; j++) 10744 if (env->subprog_info[j].start >= off + cnt) 10745 break; 10746 /* if j doesn't start exactly at off + cnt, we are just removing 10747 * the front of previous prog 10748 */ 10749 if (env->subprog_info[j].start != off + cnt) 10750 j--; 10751 10752 if (j > i) { 10753 struct bpf_prog_aux *aux = env->prog->aux; 10754 int move; 10755 10756 /* move fake 'exit' subprog as well */ 10757 move = env->subprog_cnt + 1 - j; 10758 10759 memmove(env->subprog_info + i, 10760 env->subprog_info + j, 10761 sizeof(*env->subprog_info) * move); 10762 env->subprog_cnt -= j - i; 10763 10764 /* remove func_info */ 10765 if (aux->func_info) { 10766 move = aux->func_info_cnt - j; 10767 10768 memmove(aux->func_info + i, 10769 aux->func_info + j, 10770 sizeof(*aux->func_info) * move); 10771 aux->func_info_cnt -= j - i; 10772 /* func_info->insn_off is set after all code rewrites, 10773 * in adjust_btf_func() - no need to adjust 10774 */ 10775 } 10776 } else { 10777 /* convert i from "first prog to remove" to "first to adjust" */ 10778 if (env->subprog_info[i].start == off) 10779 i++; 10780 } 10781 10782 /* update fake 'exit' subprog as well */ 10783 for (; i <= env->subprog_cnt; i++) 10784 env->subprog_info[i].start -= cnt; 10785 10786 return 0; 10787 } 10788 10789 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10790 u32 cnt) 10791 { 10792 struct bpf_prog *prog = env->prog; 10793 u32 i, l_off, l_cnt, nr_linfo; 10794 struct bpf_line_info *linfo; 10795 10796 nr_linfo = prog->aux->nr_linfo; 10797 if (!nr_linfo) 10798 return 0; 10799 10800 linfo = prog->aux->linfo; 10801 10802 /* find first line info to remove, count lines to be removed */ 10803 for (i = 0; i < nr_linfo; i++) 10804 if (linfo[i].insn_off >= off) 10805 break; 10806 10807 l_off = i; 10808 l_cnt = 0; 10809 for (; i < nr_linfo; i++) 10810 if (linfo[i].insn_off < off + cnt) 10811 l_cnt++; 10812 else 10813 break; 10814 10815 /* First live insn doesn't match first live linfo, it needs to "inherit" 10816 * last removed linfo. prog is already modified, so prog->len == off 10817 * means no live instructions after (tail of the program was removed). 10818 */ 10819 if (prog->len != off && l_cnt && 10820 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10821 l_cnt--; 10822 linfo[--i].insn_off = off + cnt; 10823 } 10824 10825 /* remove the line info which refer to the removed instructions */ 10826 if (l_cnt) { 10827 memmove(linfo + l_off, linfo + i, 10828 sizeof(*linfo) * (nr_linfo - i)); 10829 10830 prog->aux->nr_linfo -= l_cnt; 10831 nr_linfo = prog->aux->nr_linfo; 10832 } 10833 10834 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10835 for (i = l_off; i < nr_linfo; i++) 10836 linfo[i].insn_off -= cnt; 10837 10838 /* fix up all subprogs (incl. 'exit') which start >= off */ 10839 for (i = 0; i <= env->subprog_cnt; i++) 10840 if (env->subprog_info[i].linfo_idx > l_off) { 10841 /* program may have started in the removed region but 10842 * may not be fully removed 10843 */ 10844 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10845 env->subprog_info[i].linfo_idx -= l_cnt; 10846 else 10847 env->subprog_info[i].linfo_idx = l_off; 10848 } 10849 10850 return 0; 10851 } 10852 10853 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10854 { 10855 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10856 unsigned int orig_prog_len = env->prog->len; 10857 int err; 10858 10859 if (bpf_prog_is_dev_bound(env->prog->aux)) 10860 bpf_prog_offload_remove_insns(env, off, cnt); 10861 10862 err = bpf_remove_insns(env->prog, off, cnt); 10863 if (err) 10864 return err; 10865 10866 err = adjust_subprog_starts_after_remove(env, off, cnt); 10867 if (err) 10868 return err; 10869 10870 err = bpf_adj_linfo_after_remove(env, off, cnt); 10871 if (err) 10872 return err; 10873 10874 memmove(aux_data + off, aux_data + off + cnt, 10875 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10876 10877 return 0; 10878 } 10879 10880 /* The verifier does more data flow analysis than llvm and will not 10881 * explore branches that are dead at run time. Malicious programs can 10882 * have dead code too. Therefore replace all dead at-run-time code 10883 * with 'ja -1'. 10884 * 10885 * Just nops are not optimal, e.g. if they would sit at the end of the 10886 * program and through another bug we would manage to jump there, then 10887 * we'd execute beyond program memory otherwise. Returning exception 10888 * code also wouldn't work since we can have subprogs where the dead 10889 * code could be located. 10890 */ 10891 static void sanitize_dead_code(struct bpf_verifier_env *env) 10892 { 10893 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10894 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10895 struct bpf_insn *insn = env->prog->insnsi; 10896 const int insn_cnt = env->prog->len; 10897 int i; 10898 10899 for (i = 0; i < insn_cnt; i++) { 10900 if (aux_data[i].seen) 10901 continue; 10902 memcpy(insn + i, &trap, sizeof(trap)); 10903 } 10904 } 10905 10906 static bool insn_is_cond_jump(u8 code) 10907 { 10908 u8 op; 10909 10910 if (BPF_CLASS(code) == BPF_JMP32) 10911 return true; 10912 10913 if (BPF_CLASS(code) != BPF_JMP) 10914 return false; 10915 10916 op = BPF_OP(code); 10917 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10918 } 10919 10920 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10921 { 10922 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10923 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10924 struct bpf_insn *insn = env->prog->insnsi; 10925 const int insn_cnt = env->prog->len; 10926 int i; 10927 10928 for (i = 0; i < insn_cnt; i++, insn++) { 10929 if (!insn_is_cond_jump(insn->code)) 10930 continue; 10931 10932 if (!aux_data[i + 1].seen) 10933 ja.off = insn->off; 10934 else if (!aux_data[i + 1 + insn->off].seen) 10935 ja.off = 0; 10936 else 10937 continue; 10938 10939 if (bpf_prog_is_dev_bound(env->prog->aux)) 10940 bpf_prog_offload_replace_insn(env, i, &ja); 10941 10942 memcpy(insn, &ja, sizeof(ja)); 10943 } 10944 } 10945 10946 static int opt_remove_dead_code(struct bpf_verifier_env *env) 10947 { 10948 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10949 int insn_cnt = env->prog->len; 10950 int i, err; 10951 10952 for (i = 0; i < insn_cnt; i++) { 10953 int j; 10954 10955 j = 0; 10956 while (i + j < insn_cnt && !aux_data[i + j].seen) 10957 j++; 10958 if (!j) 10959 continue; 10960 10961 err = verifier_remove_insns(env, i, j); 10962 if (err) 10963 return err; 10964 insn_cnt = env->prog->len; 10965 } 10966 10967 return 0; 10968 } 10969 10970 static int opt_remove_nops(struct bpf_verifier_env *env) 10971 { 10972 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10973 struct bpf_insn *insn = env->prog->insnsi; 10974 int insn_cnt = env->prog->len; 10975 int i, err; 10976 10977 for (i = 0; i < insn_cnt; i++) { 10978 if (memcmp(&insn[i], &ja, sizeof(ja))) 10979 continue; 10980 10981 err = verifier_remove_insns(env, i, 1); 10982 if (err) 10983 return err; 10984 insn_cnt--; 10985 i--; 10986 } 10987 10988 return 0; 10989 } 10990 10991 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10992 const union bpf_attr *attr) 10993 { 10994 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10995 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10996 int i, patch_len, delta = 0, len = env->prog->len; 10997 struct bpf_insn *insns = env->prog->insnsi; 10998 struct bpf_prog *new_prog; 10999 bool rnd_hi32; 11000 11001 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 11002 zext_patch[1] = BPF_ZEXT_REG(0); 11003 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 11004 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 11005 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 11006 for (i = 0; i < len; i++) { 11007 int adj_idx = i + delta; 11008 struct bpf_insn insn; 11009 u8 load_reg; 11010 11011 insn = insns[adj_idx]; 11012 if (!aux[adj_idx].zext_dst) { 11013 u8 code, class; 11014 u32 imm_rnd; 11015 11016 if (!rnd_hi32) 11017 continue; 11018 11019 code = insn.code; 11020 class = BPF_CLASS(code); 11021 if (insn_no_def(&insn)) 11022 continue; 11023 11024 /* NOTE: arg "reg" (the fourth one) is only used for 11025 * BPF_STX which has been ruled out in above 11026 * check, it is safe to pass NULL here. 11027 */ 11028 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 11029 if (class == BPF_LD && 11030 BPF_MODE(code) == BPF_IMM) 11031 i++; 11032 continue; 11033 } 11034 11035 /* ctx load could be transformed into wider load. */ 11036 if (class == BPF_LDX && 11037 aux[adj_idx].ptr_type == PTR_TO_CTX) 11038 continue; 11039 11040 imm_rnd = get_random_int(); 11041 rnd_hi32_patch[0] = insn; 11042 rnd_hi32_patch[1].imm = imm_rnd; 11043 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 11044 patch = rnd_hi32_patch; 11045 patch_len = 4; 11046 goto apply_patch_buffer; 11047 } 11048 11049 if (!bpf_jit_needs_zext()) 11050 continue; 11051 11052 /* zext_dst means that we want to zero-extend whatever register 11053 * the insn defines, which is dst_reg most of the time, with 11054 * the notable exception of BPF_STX + BPF_ATOMIC + BPF_FETCH. 11055 */ 11056 if (BPF_CLASS(insn.code) == BPF_STX && 11057 BPF_MODE(insn.code) == BPF_ATOMIC) { 11058 /* BPF_STX + BPF_ATOMIC insns without BPF_FETCH do not 11059 * define any registers, therefore zext_dst cannot be 11060 * set. 11061 */ 11062 if (WARN_ON(!(insn.imm & BPF_FETCH))) 11063 return -EINVAL; 11064 load_reg = insn.imm == BPF_CMPXCHG ? BPF_REG_0 11065 : insn.src_reg; 11066 } else { 11067 load_reg = insn.dst_reg; 11068 } 11069 11070 zext_patch[0] = insn; 11071 zext_patch[1].dst_reg = load_reg; 11072 zext_patch[1].src_reg = load_reg; 11073 patch = zext_patch; 11074 patch_len = 2; 11075 apply_patch_buffer: 11076 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 11077 if (!new_prog) 11078 return -ENOMEM; 11079 env->prog = new_prog; 11080 insns = new_prog->insnsi; 11081 aux = env->insn_aux_data; 11082 delta += patch_len - 1; 11083 } 11084 11085 return 0; 11086 } 11087 11088 /* convert load instructions that access fields of a context type into a 11089 * sequence of instructions that access fields of the underlying structure: 11090 * struct __sk_buff -> struct sk_buff 11091 * struct bpf_sock_ops -> struct sock 11092 */ 11093 static int convert_ctx_accesses(struct bpf_verifier_env *env) 11094 { 11095 const struct bpf_verifier_ops *ops = env->ops; 11096 int i, cnt, size, ctx_field_size, delta = 0; 11097 const int insn_cnt = env->prog->len; 11098 struct bpf_insn insn_buf[16], *insn; 11099 u32 target_size, size_default, off; 11100 struct bpf_prog *new_prog; 11101 enum bpf_access_type type; 11102 bool is_narrower_load; 11103 11104 if (ops->gen_prologue || env->seen_direct_write) { 11105 if (!ops->gen_prologue) { 11106 verbose(env, "bpf verifier is misconfigured\n"); 11107 return -EINVAL; 11108 } 11109 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 11110 env->prog); 11111 if (cnt >= ARRAY_SIZE(insn_buf)) { 11112 verbose(env, "bpf verifier is misconfigured\n"); 11113 return -EINVAL; 11114 } else if (cnt) { 11115 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 11116 if (!new_prog) 11117 return -ENOMEM; 11118 11119 env->prog = new_prog; 11120 delta += cnt - 1; 11121 } 11122 } 11123 11124 if (bpf_prog_is_dev_bound(env->prog->aux)) 11125 return 0; 11126 11127 insn = env->prog->insnsi + delta; 11128 11129 for (i = 0; i < insn_cnt; i++, insn++) { 11130 bpf_convert_ctx_access_t convert_ctx_access; 11131 11132 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 11133 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 11134 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 11135 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 11136 type = BPF_READ; 11137 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 11138 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 11139 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 11140 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 11141 type = BPF_WRITE; 11142 else 11143 continue; 11144 11145 if (type == BPF_WRITE && 11146 env->insn_aux_data[i + delta].sanitize_stack_off) { 11147 struct bpf_insn patch[] = { 11148 /* Sanitize suspicious stack slot with zero. 11149 * There are no memory dependencies for this store, 11150 * since it's only using frame pointer and immediate 11151 * constant of zero 11152 */ 11153 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 11154 env->insn_aux_data[i + delta].sanitize_stack_off, 11155 0), 11156 /* the original STX instruction will immediately 11157 * overwrite the same stack slot with appropriate value 11158 */ 11159 *insn, 11160 }; 11161 11162 cnt = ARRAY_SIZE(patch); 11163 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 11164 if (!new_prog) 11165 return -ENOMEM; 11166 11167 delta += cnt - 1; 11168 env->prog = new_prog; 11169 insn = new_prog->insnsi + i + delta; 11170 continue; 11171 } 11172 11173 switch (env->insn_aux_data[i + delta].ptr_type) { 11174 case PTR_TO_CTX: 11175 if (!ops->convert_ctx_access) 11176 continue; 11177 convert_ctx_access = ops->convert_ctx_access; 11178 break; 11179 case PTR_TO_SOCKET: 11180 case PTR_TO_SOCK_COMMON: 11181 convert_ctx_access = bpf_sock_convert_ctx_access; 11182 break; 11183 case PTR_TO_TCP_SOCK: 11184 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 11185 break; 11186 case PTR_TO_XDP_SOCK: 11187 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 11188 break; 11189 case PTR_TO_BTF_ID: 11190 if (type == BPF_READ) { 11191 insn->code = BPF_LDX | BPF_PROBE_MEM | 11192 BPF_SIZE((insn)->code); 11193 env->prog->aux->num_exentries++; 11194 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 11195 verbose(env, "Writes through BTF pointers are not allowed\n"); 11196 return -EINVAL; 11197 } 11198 continue; 11199 default: 11200 continue; 11201 } 11202 11203 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 11204 size = BPF_LDST_BYTES(insn); 11205 11206 /* If the read access is a narrower load of the field, 11207 * convert to a 4/8-byte load, to minimum program type specific 11208 * convert_ctx_access changes. If conversion is successful, 11209 * we will apply proper mask to the result. 11210 */ 11211 is_narrower_load = size < ctx_field_size; 11212 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 11213 off = insn->off; 11214 if (is_narrower_load) { 11215 u8 size_code; 11216 11217 if (type == BPF_WRITE) { 11218 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 11219 return -EINVAL; 11220 } 11221 11222 size_code = BPF_H; 11223 if (ctx_field_size == 4) 11224 size_code = BPF_W; 11225 else if (ctx_field_size == 8) 11226 size_code = BPF_DW; 11227 11228 insn->off = off & ~(size_default - 1); 11229 insn->code = BPF_LDX | BPF_MEM | size_code; 11230 } 11231 11232 target_size = 0; 11233 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 11234 &target_size); 11235 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 11236 (ctx_field_size && !target_size)) { 11237 verbose(env, "bpf verifier is misconfigured\n"); 11238 return -EINVAL; 11239 } 11240 11241 if (is_narrower_load && size < target_size) { 11242 u8 shift = bpf_ctx_narrow_access_offset( 11243 off, size, size_default) * 8; 11244 if (ctx_field_size <= 4) { 11245 if (shift) 11246 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 11247 insn->dst_reg, 11248 shift); 11249 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 11250 (1 << size * 8) - 1); 11251 } else { 11252 if (shift) 11253 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 11254 insn->dst_reg, 11255 shift); 11256 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 11257 (1ULL << size * 8) - 1); 11258 } 11259 } 11260 11261 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11262 if (!new_prog) 11263 return -ENOMEM; 11264 11265 delta += cnt - 1; 11266 11267 /* keep walking new program and skip insns we just inserted */ 11268 env->prog = new_prog; 11269 insn = new_prog->insnsi + i + delta; 11270 } 11271 11272 return 0; 11273 } 11274 11275 static int jit_subprogs(struct bpf_verifier_env *env) 11276 { 11277 struct bpf_prog *prog = env->prog, **func, *tmp; 11278 int i, j, subprog_start, subprog_end = 0, len, subprog; 11279 struct bpf_map *map_ptr; 11280 struct bpf_insn *insn; 11281 void *old_bpf_func; 11282 int err, num_exentries; 11283 11284 if (env->subprog_cnt <= 1) 11285 return 0; 11286 11287 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11288 if (!bpf_pseudo_call(insn)) 11289 continue; 11290 /* Upon error here we cannot fall back to interpreter but 11291 * need a hard reject of the program. Thus -EFAULT is 11292 * propagated in any case. 11293 */ 11294 subprog = find_subprog(env, i + insn->imm + 1); 11295 if (subprog < 0) { 11296 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 11297 i + insn->imm + 1); 11298 return -EFAULT; 11299 } 11300 /* temporarily remember subprog id inside insn instead of 11301 * aux_data, since next loop will split up all insns into funcs 11302 */ 11303 insn->off = subprog; 11304 /* remember original imm in case JIT fails and fallback 11305 * to interpreter will be needed 11306 */ 11307 env->insn_aux_data[i].call_imm = insn->imm; 11308 /* point imm to __bpf_call_base+1 from JITs point of view */ 11309 insn->imm = 1; 11310 } 11311 11312 err = bpf_prog_alloc_jited_linfo(prog); 11313 if (err) 11314 goto out_undo_insn; 11315 11316 err = -ENOMEM; 11317 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 11318 if (!func) 11319 goto out_undo_insn; 11320 11321 for (i = 0; i < env->subprog_cnt; i++) { 11322 subprog_start = subprog_end; 11323 subprog_end = env->subprog_info[i + 1].start; 11324 11325 len = subprog_end - subprog_start; 11326 /* BPF_PROG_RUN doesn't call subprogs directly, 11327 * hence main prog stats include the runtime of subprogs. 11328 * subprogs don't have IDs and not reachable via prog_get_next_id 11329 * func[i]->stats will never be accessed and stays NULL 11330 */ 11331 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 11332 if (!func[i]) 11333 goto out_free; 11334 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 11335 len * sizeof(struct bpf_insn)); 11336 func[i]->type = prog->type; 11337 func[i]->len = len; 11338 if (bpf_prog_calc_tag(func[i])) 11339 goto out_free; 11340 func[i]->is_func = 1; 11341 func[i]->aux->func_idx = i; 11342 /* the btf and func_info will be freed only at prog->aux */ 11343 func[i]->aux->btf = prog->aux->btf; 11344 func[i]->aux->func_info = prog->aux->func_info; 11345 11346 for (j = 0; j < prog->aux->size_poke_tab; j++) { 11347 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 11348 int ret; 11349 11350 if (!(insn_idx >= subprog_start && 11351 insn_idx <= subprog_end)) 11352 continue; 11353 11354 ret = bpf_jit_add_poke_descriptor(func[i], 11355 &prog->aux->poke_tab[j]); 11356 if (ret < 0) { 11357 verbose(env, "adding tail call poke descriptor failed\n"); 11358 goto out_free; 11359 } 11360 11361 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 11362 11363 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 11364 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 11365 if (ret < 0) { 11366 verbose(env, "tracking tail call prog failed\n"); 11367 goto out_free; 11368 } 11369 } 11370 11371 /* Use bpf_prog_F_tag to indicate functions in stack traces. 11372 * Long term would need debug info to populate names 11373 */ 11374 func[i]->aux->name[0] = 'F'; 11375 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 11376 func[i]->jit_requested = 1; 11377 func[i]->aux->linfo = prog->aux->linfo; 11378 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 11379 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 11380 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 11381 num_exentries = 0; 11382 insn = func[i]->insnsi; 11383 for (j = 0; j < func[i]->len; j++, insn++) { 11384 if (BPF_CLASS(insn->code) == BPF_LDX && 11385 BPF_MODE(insn->code) == BPF_PROBE_MEM) 11386 num_exentries++; 11387 } 11388 func[i]->aux->num_exentries = num_exentries; 11389 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 11390 func[i] = bpf_int_jit_compile(func[i]); 11391 if (!func[i]->jited) { 11392 err = -ENOTSUPP; 11393 goto out_free; 11394 } 11395 cond_resched(); 11396 } 11397 11398 /* Untrack main program's aux structs so that during map_poke_run() 11399 * we will not stumble upon the unfilled poke descriptors; each 11400 * of the main program's poke descs got distributed across subprogs 11401 * and got tracked onto map, so we are sure that none of them will 11402 * be missed after the operation below 11403 */ 11404 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11405 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11406 11407 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 11408 } 11409 11410 /* at this point all bpf functions were successfully JITed 11411 * now populate all bpf_calls with correct addresses and 11412 * run last pass of JIT 11413 */ 11414 for (i = 0; i < env->subprog_cnt; i++) { 11415 insn = func[i]->insnsi; 11416 for (j = 0; j < func[i]->len; j++, insn++) { 11417 if (!bpf_pseudo_call(insn)) 11418 continue; 11419 subprog = insn->off; 11420 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 11421 __bpf_call_base; 11422 } 11423 11424 /* we use the aux data to keep a list of the start addresses 11425 * of the JITed images for each function in the program 11426 * 11427 * for some architectures, such as powerpc64, the imm field 11428 * might not be large enough to hold the offset of the start 11429 * address of the callee's JITed image from __bpf_call_base 11430 * 11431 * in such cases, we can lookup the start address of a callee 11432 * by using its subprog id, available from the off field of 11433 * the call instruction, as an index for this list 11434 */ 11435 func[i]->aux->func = func; 11436 func[i]->aux->func_cnt = env->subprog_cnt; 11437 } 11438 for (i = 0; i < env->subprog_cnt; i++) { 11439 old_bpf_func = func[i]->bpf_func; 11440 tmp = bpf_int_jit_compile(func[i]); 11441 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 11442 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 11443 err = -ENOTSUPP; 11444 goto out_free; 11445 } 11446 cond_resched(); 11447 } 11448 11449 /* finally lock prog and jit images for all functions and 11450 * populate kallsysm 11451 */ 11452 for (i = 0; i < env->subprog_cnt; i++) { 11453 bpf_prog_lock_ro(func[i]); 11454 bpf_prog_kallsyms_add(func[i]); 11455 } 11456 11457 /* Last step: make now unused interpreter insns from main 11458 * prog consistent for later dump requests, so they can 11459 * later look the same as if they were interpreted only. 11460 */ 11461 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11462 if (!bpf_pseudo_call(insn)) 11463 continue; 11464 insn->off = env->insn_aux_data[i].call_imm; 11465 subprog = find_subprog(env, i + insn->off + 1); 11466 insn->imm = subprog; 11467 } 11468 11469 prog->jited = 1; 11470 prog->bpf_func = func[0]->bpf_func; 11471 prog->aux->func = func; 11472 prog->aux->func_cnt = env->subprog_cnt; 11473 bpf_prog_free_unused_jited_linfo(prog); 11474 return 0; 11475 out_free: 11476 for (i = 0; i < env->subprog_cnt; i++) { 11477 if (!func[i]) 11478 continue; 11479 11480 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 11481 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 11482 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 11483 } 11484 bpf_jit_free(func[i]); 11485 } 11486 kfree(func); 11487 out_undo_insn: 11488 /* cleanup main prog to be interpreted */ 11489 prog->jit_requested = 0; 11490 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11491 if (!bpf_pseudo_call(insn)) 11492 continue; 11493 insn->off = 0; 11494 insn->imm = env->insn_aux_data[i].call_imm; 11495 } 11496 bpf_prog_free_jited_linfo(prog); 11497 return err; 11498 } 11499 11500 static int fixup_call_args(struct bpf_verifier_env *env) 11501 { 11502 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 11503 struct bpf_prog *prog = env->prog; 11504 struct bpf_insn *insn = prog->insnsi; 11505 int i, depth; 11506 #endif 11507 int err = 0; 11508 11509 if (env->prog->jit_requested && 11510 !bpf_prog_is_dev_bound(env->prog->aux)) { 11511 err = jit_subprogs(env); 11512 if (err == 0) 11513 return 0; 11514 if (err == -EFAULT) 11515 return err; 11516 } 11517 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 11518 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 11519 /* When JIT fails the progs with bpf2bpf calls and tail_calls 11520 * have to be rejected, since interpreter doesn't support them yet. 11521 */ 11522 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 11523 return -EINVAL; 11524 } 11525 for (i = 0; i < prog->len; i++, insn++) { 11526 if (!bpf_pseudo_call(insn)) 11527 continue; 11528 depth = get_callee_stack_depth(env, insn, i); 11529 if (depth < 0) 11530 return depth; 11531 bpf_patch_call_args(insn, depth); 11532 } 11533 err = 0; 11534 #endif 11535 return err; 11536 } 11537 11538 /* fixup insn->imm field of bpf_call instructions 11539 * and inline eligible helpers as explicit sequence of BPF instructions 11540 * 11541 * this function is called after eBPF program passed verification 11542 */ 11543 static int fixup_bpf_calls(struct bpf_verifier_env *env) 11544 { 11545 struct bpf_prog *prog = env->prog; 11546 bool expect_blinding = bpf_jit_blinding_enabled(prog); 11547 struct bpf_insn *insn = prog->insnsi; 11548 const struct bpf_func_proto *fn; 11549 const int insn_cnt = prog->len; 11550 const struct bpf_map_ops *ops; 11551 struct bpf_insn_aux_data *aux; 11552 struct bpf_insn insn_buf[16]; 11553 struct bpf_prog *new_prog; 11554 struct bpf_map *map_ptr; 11555 int i, ret, cnt, delta = 0; 11556 11557 for (i = 0; i < insn_cnt; i++, insn++) { 11558 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 11559 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 11560 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 11561 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 11562 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 11563 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 11564 struct bpf_insn *patchlet; 11565 struct bpf_insn chk_and_div[] = { 11566 /* [R,W]x div 0 -> 0 */ 11567 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 11568 BPF_JNE | BPF_K, insn->src_reg, 11569 0, 2, 0), 11570 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 11571 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11572 *insn, 11573 }; 11574 struct bpf_insn chk_and_mod[] = { 11575 /* [R,W]x mod 0 -> [R,W]x */ 11576 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 11577 BPF_JEQ | BPF_K, insn->src_reg, 11578 0, 1 + (is64 ? 0 : 1), 0), 11579 *insn, 11580 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11581 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 11582 }; 11583 11584 patchlet = isdiv ? chk_and_div : chk_and_mod; 11585 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 11586 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 11587 11588 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 11589 if (!new_prog) 11590 return -ENOMEM; 11591 11592 delta += cnt - 1; 11593 env->prog = prog = new_prog; 11594 insn = new_prog->insnsi + i + delta; 11595 continue; 11596 } 11597 11598 if (BPF_CLASS(insn->code) == BPF_LD && 11599 (BPF_MODE(insn->code) == BPF_ABS || 11600 BPF_MODE(insn->code) == BPF_IND)) { 11601 cnt = env->ops->gen_ld_abs(insn, insn_buf); 11602 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11603 verbose(env, "bpf verifier is misconfigured\n"); 11604 return -EINVAL; 11605 } 11606 11607 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11608 if (!new_prog) 11609 return -ENOMEM; 11610 11611 delta += cnt - 1; 11612 env->prog = prog = new_prog; 11613 insn = new_prog->insnsi + i + delta; 11614 continue; 11615 } 11616 11617 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 11618 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 11619 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 11620 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 11621 struct bpf_insn insn_buf[16]; 11622 struct bpf_insn *patch = &insn_buf[0]; 11623 bool issrc, isneg; 11624 u32 off_reg; 11625 11626 aux = &env->insn_aux_data[i + delta]; 11627 if (!aux->alu_state || 11628 aux->alu_state == BPF_ALU_NON_POINTER) 11629 continue; 11630 11631 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 11632 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 11633 BPF_ALU_SANITIZE_SRC; 11634 11635 off_reg = issrc ? insn->src_reg : insn->dst_reg; 11636 if (isneg) 11637 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11638 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 11639 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 11640 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 11641 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 11642 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 11643 if (issrc) { 11644 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 11645 off_reg); 11646 insn->src_reg = BPF_REG_AX; 11647 } else { 11648 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 11649 BPF_REG_AX); 11650 } 11651 if (isneg) 11652 insn->code = insn->code == code_add ? 11653 code_sub : code_add; 11654 *patch++ = *insn; 11655 if (issrc && isneg) 11656 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11657 cnt = patch - insn_buf; 11658 11659 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11660 if (!new_prog) 11661 return -ENOMEM; 11662 11663 delta += cnt - 1; 11664 env->prog = prog = new_prog; 11665 insn = new_prog->insnsi + i + delta; 11666 continue; 11667 } 11668 11669 if (insn->code != (BPF_JMP | BPF_CALL)) 11670 continue; 11671 if (insn->src_reg == BPF_PSEUDO_CALL) 11672 continue; 11673 11674 if (insn->imm == BPF_FUNC_get_route_realm) 11675 prog->dst_needed = 1; 11676 if (insn->imm == BPF_FUNC_get_prandom_u32) 11677 bpf_user_rnd_init_once(); 11678 if (insn->imm == BPF_FUNC_override_return) 11679 prog->kprobe_override = 1; 11680 if (insn->imm == BPF_FUNC_tail_call) { 11681 /* If we tail call into other programs, we 11682 * cannot make any assumptions since they can 11683 * be replaced dynamically during runtime in 11684 * the program array. 11685 */ 11686 prog->cb_access = 1; 11687 if (!allow_tail_call_in_subprogs(env)) 11688 prog->aux->stack_depth = MAX_BPF_STACK; 11689 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 11690 11691 /* mark bpf_tail_call as different opcode to avoid 11692 * conditional branch in the interpeter for every normal 11693 * call and to prevent accidental JITing by JIT compiler 11694 * that doesn't support bpf_tail_call yet 11695 */ 11696 insn->imm = 0; 11697 insn->code = BPF_JMP | BPF_TAIL_CALL; 11698 11699 aux = &env->insn_aux_data[i + delta]; 11700 if (env->bpf_capable && !expect_blinding && 11701 prog->jit_requested && 11702 !bpf_map_key_poisoned(aux) && 11703 !bpf_map_ptr_poisoned(aux) && 11704 !bpf_map_ptr_unpriv(aux)) { 11705 struct bpf_jit_poke_descriptor desc = { 11706 .reason = BPF_POKE_REASON_TAIL_CALL, 11707 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11708 .tail_call.key = bpf_map_key_immediate(aux), 11709 .insn_idx = i + delta, 11710 }; 11711 11712 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11713 if (ret < 0) { 11714 verbose(env, "adding tail call poke descriptor failed\n"); 11715 return ret; 11716 } 11717 11718 insn->imm = ret + 1; 11719 continue; 11720 } 11721 11722 if (!bpf_map_ptr_unpriv(aux)) 11723 continue; 11724 11725 /* instead of changing every JIT dealing with tail_call 11726 * emit two extra insns: 11727 * if (index >= max_entries) goto out; 11728 * index &= array->index_mask; 11729 * to avoid out-of-bounds cpu speculation 11730 */ 11731 if (bpf_map_ptr_poisoned(aux)) { 11732 verbose(env, "tail_call abusing map_ptr\n"); 11733 return -EINVAL; 11734 } 11735 11736 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11737 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11738 map_ptr->max_entries, 2); 11739 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11740 container_of(map_ptr, 11741 struct bpf_array, 11742 map)->index_mask); 11743 insn_buf[2] = *insn; 11744 cnt = 3; 11745 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11746 if (!new_prog) 11747 return -ENOMEM; 11748 11749 delta += cnt - 1; 11750 env->prog = prog = new_prog; 11751 insn = new_prog->insnsi + i + delta; 11752 continue; 11753 } 11754 11755 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11756 * and other inlining handlers are currently limited to 64 bit 11757 * only. 11758 */ 11759 if (prog->jit_requested && BITS_PER_LONG == 64 && 11760 (insn->imm == BPF_FUNC_map_lookup_elem || 11761 insn->imm == BPF_FUNC_map_update_elem || 11762 insn->imm == BPF_FUNC_map_delete_elem || 11763 insn->imm == BPF_FUNC_map_push_elem || 11764 insn->imm == BPF_FUNC_map_pop_elem || 11765 insn->imm == BPF_FUNC_map_peek_elem)) { 11766 aux = &env->insn_aux_data[i + delta]; 11767 if (bpf_map_ptr_poisoned(aux)) 11768 goto patch_call_imm; 11769 11770 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11771 ops = map_ptr->ops; 11772 if (insn->imm == BPF_FUNC_map_lookup_elem && 11773 ops->map_gen_lookup) { 11774 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11775 if (cnt == -EOPNOTSUPP) 11776 goto patch_map_ops_generic; 11777 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11778 verbose(env, "bpf verifier is misconfigured\n"); 11779 return -EINVAL; 11780 } 11781 11782 new_prog = bpf_patch_insn_data(env, i + delta, 11783 insn_buf, cnt); 11784 if (!new_prog) 11785 return -ENOMEM; 11786 11787 delta += cnt - 1; 11788 env->prog = prog = new_prog; 11789 insn = new_prog->insnsi + i + delta; 11790 continue; 11791 } 11792 11793 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11794 (void *(*)(struct bpf_map *map, void *key))NULL)); 11795 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11796 (int (*)(struct bpf_map *map, void *key))NULL)); 11797 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11798 (int (*)(struct bpf_map *map, void *key, void *value, 11799 u64 flags))NULL)); 11800 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11801 (int (*)(struct bpf_map *map, void *value, 11802 u64 flags))NULL)); 11803 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11804 (int (*)(struct bpf_map *map, void *value))NULL)); 11805 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11806 (int (*)(struct bpf_map *map, void *value))NULL)); 11807 patch_map_ops_generic: 11808 switch (insn->imm) { 11809 case BPF_FUNC_map_lookup_elem: 11810 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11811 __bpf_call_base; 11812 continue; 11813 case BPF_FUNC_map_update_elem: 11814 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11815 __bpf_call_base; 11816 continue; 11817 case BPF_FUNC_map_delete_elem: 11818 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11819 __bpf_call_base; 11820 continue; 11821 case BPF_FUNC_map_push_elem: 11822 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11823 __bpf_call_base; 11824 continue; 11825 case BPF_FUNC_map_pop_elem: 11826 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11827 __bpf_call_base; 11828 continue; 11829 case BPF_FUNC_map_peek_elem: 11830 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11831 __bpf_call_base; 11832 continue; 11833 } 11834 11835 goto patch_call_imm; 11836 } 11837 11838 if (prog->jit_requested && BITS_PER_LONG == 64 && 11839 insn->imm == BPF_FUNC_jiffies64) { 11840 struct bpf_insn ld_jiffies_addr[2] = { 11841 BPF_LD_IMM64(BPF_REG_0, 11842 (unsigned long)&jiffies), 11843 }; 11844 11845 insn_buf[0] = ld_jiffies_addr[0]; 11846 insn_buf[1] = ld_jiffies_addr[1]; 11847 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11848 BPF_REG_0, 0); 11849 cnt = 3; 11850 11851 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11852 cnt); 11853 if (!new_prog) 11854 return -ENOMEM; 11855 11856 delta += cnt - 1; 11857 env->prog = prog = new_prog; 11858 insn = new_prog->insnsi + i + delta; 11859 continue; 11860 } 11861 11862 patch_call_imm: 11863 fn = env->ops->get_func_proto(insn->imm, env->prog); 11864 /* all functions that have prototype and verifier allowed 11865 * programs to call them, must be real in-kernel functions 11866 */ 11867 if (!fn->func) { 11868 verbose(env, 11869 "kernel subsystem misconfigured func %s#%d\n", 11870 func_id_name(insn->imm), insn->imm); 11871 return -EFAULT; 11872 } 11873 insn->imm = fn->func - __bpf_call_base; 11874 } 11875 11876 /* Since poke tab is now finalized, publish aux to tracker. */ 11877 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11878 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11879 if (!map_ptr->ops->map_poke_track || 11880 !map_ptr->ops->map_poke_untrack || 11881 !map_ptr->ops->map_poke_run) { 11882 verbose(env, "bpf verifier is misconfigured\n"); 11883 return -EINVAL; 11884 } 11885 11886 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11887 if (ret < 0) { 11888 verbose(env, "tracking tail call prog failed\n"); 11889 return ret; 11890 } 11891 } 11892 11893 return 0; 11894 } 11895 11896 static void free_states(struct bpf_verifier_env *env) 11897 { 11898 struct bpf_verifier_state_list *sl, *sln; 11899 int i; 11900 11901 sl = env->free_list; 11902 while (sl) { 11903 sln = sl->next; 11904 free_verifier_state(&sl->state, false); 11905 kfree(sl); 11906 sl = sln; 11907 } 11908 env->free_list = NULL; 11909 11910 if (!env->explored_states) 11911 return; 11912 11913 for (i = 0; i < state_htab_size(env); i++) { 11914 sl = env->explored_states[i]; 11915 11916 while (sl) { 11917 sln = sl->next; 11918 free_verifier_state(&sl->state, false); 11919 kfree(sl); 11920 sl = sln; 11921 } 11922 env->explored_states[i] = NULL; 11923 } 11924 } 11925 11926 /* The verifier is using insn_aux_data[] to store temporary data during 11927 * verification and to store information for passes that run after the 11928 * verification like dead code sanitization. do_check_common() for subprogram N 11929 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 11930 * temporary data after do_check_common() finds that subprogram N cannot be 11931 * verified independently. pass_cnt counts the number of times 11932 * do_check_common() was run and insn->aux->seen tells the pass number 11933 * insn_aux_data was touched. These variables are compared to clear temporary 11934 * data from failed pass. For testing and experiments do_check_common() can be 11935 * run multiple times even when prior attempt to verify is unsuccessful. 11936 */ 11937 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 11938 { 11939 struct bpf_insn *insn = env->prog->insnsi; 11940 struct bpf_insn_aux_data *aux; 11941 int i, class; 11942 11943 for (i = 0; i < env->prog->len; i++) { 11944 class = BPF_CLASS(insn[i].code); 11945 if (class != BPF_LDX && class != BPF_STX) 11946 continue; 11947 aux = &env->insn_aux_data[i]; 11948 if (aux->seen != env->pass_cnt) 11949 continue; 11950 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 11951 } 11952 } 11953 11954 static int do_check_common(struct bpf_verifier_env *env, int subprog) 11955 { 11956 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11957 struct bpf_verifier_state *state; 11958 struct bpf_reg_state *regs; 11959 int ret, i; 11960 11961 env->prev_linfo = NULL; 11962 env->pass_cnt++; 11963 11964 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11965 if (!state) 11966 return -ENOMEM; 11967 state->curframe = 0; 11968 state->speculative = false; 11969 state->branches = 1; 11970 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11971 if (!state->frame[0]) { 11972 kfree(state); 11973 return -ENOMEM; 11974 } 11975 env->cur_state = state; 11976 init_func_state(env, state->frame[0], 11977 BPF_MAIN_FUNC /* callsite */, 11978 0 /* frameno */, 11979 subprog); 11980 11981 regs = state->frame[state->curframe]->regs; 11982 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11983 ret = btf_prepare_func_args(env, subprog, regs); 11984 if (ret) 11985 goto out; 11986 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11987 if (regs[i].type == PTR_TO_CTX) 11988 mark_reg_known_zero(env, regs, i); 11989 else if (regs[i].type == SCALAR_VALUE) 11990 mark_reg_unknown(env, regs, i); 11991 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 11992 const u32 mem_size = regs[i].mem_size; 11993 11994 mark_reg_known_zero(env, regs, i); 11995 regs[i].mem_size = mem_size; 11996 regs[i].id = ++env->id_gen; 11997 } 11998 } 11999 } else { 12000 /* 1st arg to a function */ 12001 regs[BPF_REG_1].type = PTR_TO_CTX; 12002 mark_reg_known_zero(env, regs, BPF_REG_1); 12003 ret = btf_check_func_arg_match(env, subprog, regs); 12004 if (ret == -EFAULT) 12005 /* unlikely verifier bug. abort. 12006 * ret == 0 and ret < 0 are sadly acceptable for 12007 * main() function due to backward compatibility. 12008 * Like socket filter program may be written as: 12009 * int bpf_prog(struct pt_regs *ctx) 12010 * and never dereference that ctx in the program. 12011 * 'struct pt_regs' is a type mismatch for socket 12012 * filter that should be using 'struct __sk_buff'. 12013 */ 12014 goto out; 12015 } 12016 12017 ret = do_check(env); 12018 out: 12019 /* check for NULL is necessary, since cur_state can be freed inside 12020 * do_check() under memory pressure. 12021 */ 12022 if (env->cur_state) { 12023 free_verifier_state(env->cur_state, true); 12024 env->cur_state = NULL; 12025 } 12026 while (!pop_stack(env, NULL, NULL, false)); 12027 if (!ret && pop_log) 12028 bpf_vlog_reset(&env->log, 0); 12029 free_states(env); 12030 if (ret) 12031 /* clean aux data in case subprog was rejected */ 12032 sanitize_insn_aux_data(env); 12033 return ret; 12034 } 12035 12036 /* Verify all global functions in a BPF program one by one based on their BTF. 12037 * All global functions must pass verification. Otherwise the whole program is rejected. 12038 * Consider: 12039 * int bar(int); 12040 * int foo(int f) 12041 * { 12042 * return bar(f); 12043 * } 12044 * int bar(int b) 12045 * { 12046 * ... 12047 * } 12048 * foo() will be verified first for R1=any_scalar_value. During verification it 12049 * will be assumed that bar() already verified successfully and call to bar() 12050 * from foo() will be checked for type match only. Later bar() will be verified 12051 * independently to check that it's safe for R1=any_scalar_value. 12052 */ 12053 static int do_check_subprogs(struct bpf_verifier_env *env) 12054 { 12055 struct bpf_prog_aux *aux = env->prog->aux; 12056 int i, ret; 12057 12058 if (!aux->func_info) 12059 return 0; 12060 12061 for (i = 1; i < env->subprog_cnt; i++) { 12062 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 12063 continue; 12064 env->insn_idx = env->subprog_info[i].start; 12065 WARN_ON_ONCE(env->insn_idx == 0); 12066 ret = do_check_common(env, i); 12067 if (ret) { 12068 return ret; 12069 } else if (env->log.level & BPF_LOG_LEVEL) { 12070 verbose(env, 12071 "Func#%d is safe for any args that match its prototype\n", 12072 i); 12073 } 12074 } 12075 return 0; 12076 } 12077 12078 static int do_check_main(struct bpf_verifier_env *env) 12079 { 12080 int ret; 12081 12082 env->insn_idx = 0; 12083 ret = do_check_common(env, 0); 12084 if (!ret) 12085 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 12086 return ret; 12087 } 12088 12089 12090 static void print_verification_stats(struct bpf_verifier_env *env) 12091 { 12092 int i; 12093 12094 if (env->log.level & BPF_LOG_STATS) { 12095 verbose(env, "verification time %lld usec\n", 12096 div_u64(env->verification_time, 1000)); 12097 verbose(env, "stack depth "); 12098 for (i = 0; i < env->subprog_cnt; i++) { 12099 u32 depth = env->subprog_info[i].stack_depth; 12100 12101 verbose(env, "%d", depth); 12102 if (i + 1 < env->subprog_cnt) 12103 verbose(env, "+"); 12104 } 12105 verbose(env, "\n"); 12106 } 12107 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 12108 "total_states %d peak_states %d mark_read %d\n", 12109 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 12110 env->max_states_per_insn, env->total_states, 12111 env->peak_states, env->longest_mark_read_walk); 12112 } 12113 12114 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 12115 { 12116 const struct btf_type *t, *func_proto; 12117 const struct bpf_struct_ops *st_ops; 12118 const struct btf_member *member; 12119 struct bpf_prog *prog = env->prog; 12120 u32 btf_id, member_idx; 12121 const char *mname; 12122 12123 btf_id = prog->aux->attach_btf_id; 12124 st_ops = bpf_struct_ops_find(btf_id); 12125 if (!st_ops) { 12126 verbose(env, "attach_btf_id %u is not a supported struct\n", 12127 btf_id); 12128 return -ENOTSUPP; 12129 } 12130 12131 t = st_ops->type; 12132 member_idx = prog->expected_attach_type; 12133 if (member_idx >= btf_type_vlen(t)) { 12134 verbose(env, "attach to invalid member idx %u of struct %s\n", 12135 member_idx, st_ops->name); 12136 return -EINVAL; 12137 } 12138 12139 member = &btf_type_member(t)[member_idx]; 12140 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 12141 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 12142 NULL); 12143 if (!func_proto) { 12144 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 12145 mname, member_idx, st_ops->name); 12146 return -EINVAL; 12147 } 12148 12149 if (st_ops->check_member) { 12150 int err = st_ops->check_member(t, member); 12151 12152 if (err) { 12153 verbose(env, "attach to unsupported member %s of struct %s\n", 12154 mname, st_ops->name); 12155 return err; 12156 } 12157 } 12158 12159 prog->aux->attach_func_proto = func_proto; 12160 prog->aux->attach_func_name = mname; 12161 env->ops = st_ops->verifier_ops; 12162 12163 return 0; 12164 } 12165 #define SECURITY_PREFIX "security_" 12166 12167 static int check_attach_modify_return(unsigned long addr, const char *func_name) 12168 { 12169 if (within_error_injection_list(addr) || 12170 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 12171 return 0; 12172 12173 return -EINVAL; 12174 } 12175 12176 /* list of non-sleepable functions that are otherwise on 12177 * ALLOW_ERROR_INJECTION list 12178 */ 12179 BTF_SET_START(btf_non_sleepable_error_inject) 12180 /* Three functions below can be called from sleepable and non-sleepable context. 12181 * Assume non-sleepable from bpf safety point of view. 12182 */ 12183 BTF_ID(func, __add_to_page_cache_locked) 12184 BTF_ID(func, should_fail_alloc_page) 12185 BTF_ID(func, should_failslab) 12186 BTF_SET_END(btf_non_sleepable_error_inject) 12187 12188 static int check_non_sleepable_error_inject(u32 btf_id) 12189 { 12190 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 12191 } 12192 12193 int bpf_check_attach_target(struct bpf_verifier_log *log, 12194 const struct bpf_prog *prog, 12195 const struct bpf_prog *tgt_prog, 12196 u32 btf_id, 12197 struct bpf_attach_target_info *tgt_info) 12198 { 12199 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 12200 const char prefix[] = "btf_trace_"; 12201 int ret = 0, subprog = -1, i; 12202 const struct btf_type *t; 12203 bool conservative = true; 12204 const char *tname; 12205 struct btf *btf; 12206 long addr = 0; 12207 12208 if (!btf_id) { 12209 bpf_log(log, "Tracing programs must provide btf_id\n"); 12210 return -EINVAL; 12211 } 12212 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 12213 if (!btf) { 12214 bpf_log(log, 12215 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 12216 return -EINVAL; 12217 } 12218 t = btf_type_by_id(btf, btf_id); 12219 if (!t) { 12220 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 12221 return -EINVAL; 12222 } 12223 tname = btf_name_by_offset(btf, t->name_off); 12224 if (!tname) { 12225 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 12226 return -EINVAL; 12227 } 12228 if (tgt_prog) { 12229 struct bpf_prog_aux *aux = tgt_prog->aux; 12230 12231 for (i = 0; i < aux->func_info_cnt; i++) 12232 if (aux->func_info[i].type_id == btf_id) { 12233 subprog = i; 12234 break; 12235 } 12236 if (subprog == -1) { 12237 bpf_log(log, "Subprog %s doesn't exist\n", tname); 12238 return -EINVAL; 12239 } 12240 conservative = aux->func_info_aux[subprog].unreliable; 12241 if (prog_extension) { 12242 if (conservative) { 12243 bpf_log(log, 12244 "Cannot replace static functions\n"); 12245 return -EINVAL; 12246 } 12247 if (!prog->jit_requested) { 12248 bpf_log(log, 12249 "Extension programs should be JITed\n"); 12250 return -EINVAL; 12251 } 12252 } 12253 if (!tgt_prog->jited) { 12254 bpf_log(log, "Can attach to only JITed progs\n"); 12255 return -EINVAL; 12256 } 12257 if (tgt_prog->type == prog->type) { 12258 /* Cannot fentry/fexit another fentry/fexit program. 12259 * Cannot attach program extension to another extension. 12260 * It's ok to attach fentry/fexit to extension program. 12261 */ 12262 bpf_log(log, "Cannot recursively attach\n"); 12263 return -EINVAL; 12264 } 12265 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 12266 prog_extension && 12267 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 12268 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 12269 /* Program extensions can extend all program types 12270 * except fentry/fexit. The reason is the following. 12271 * The fentry/fexit programs are used for performance 12272 * analysis, stats and can be attached to any program 12273 * type except themselves. When extension program is 12274 * replacing XDP function it is necessary to allow 12275 * performance analysis of all functions. Both original 12276 * XDP program and its program extension. Hence 12277 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 12278 * allowed. If extending of fentry/fexit was allowed it 12279 * would be possible to create long call chain 12280 * fentry->extension->fentry->extension beyond 12281 * reasonable stack size. Hence extending fentry is not 12282 * allowed. 12283 */ 12284 bpf_log(log, "Cannot extend fentry/fexit\n"); 12285 return -EINVAL; 12286 } 12287 } else { 12288 if (prog_extension) { 12289 bpf_log(log, "Cannot replace kernel functions\n"); 12290 return -EINVAL; 12291 } 12292 } 12293 12294 switch (prog->expected_attach_type) { 12295 case BPF_TRACE_RAW_TP: 12296 if (tgt_prog) { 12297 bpf_log(log, 12298 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 12299 return -EINVAL; 12300 } 12301 if (!btf_type_is_typedef(t)) { 12302 bpf_log(log, "attach_btf_id %u is not a typedef\n", 12303 btf_id); 12304 return -EINVAL; 12305 } 12306 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 12307 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 12308 btf_id, tname); 12309 return -EINVAL; 12310 } 12311 tname += sizeof(prefix) - 1; 12312 t = btf_type_by_id(btf, t->type); 12313 if (!btf_type_is_ptr(t)) 12314 /* should never happen in valid vmlinux build */ 12315 return -EINVAL; 12316 t = btf_type_by_id(btf, t->type); 12317 if (!btf_type_is_func_proto(t)) 12318 /* should never happen in valid vmlinux build */ 12319 return -EINVAL; 12320 12321 break; 12322 case BPF_TRACE_ITER: 12323 if (!btf_type_is_func(t)) { 12324 bpf_log(log, "attach_btf_id %u is not a function\n", 12325 btf_id); 12326 return -EINVAL; 12327 } 12328 t = btf_type_by_id(btf, t->type); 12329 if (!btf_type_is_func_proto(t)) 12330 return -EINVAL; 12331 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 12332 if (ret) 12333 return ret; 12334 break; 12335 default: 12336 if (!prog_extension) 12337 return -EINVAL; 12338 fallthrough; 12339 case BPF_MODIFY_RETURN: 12340 case BPF_LSM_MAC: 12341 case BPF_TRACE_FENTRY: 12342 case BPF_TRACE_FEXIT: 12343 if (!btf_type_is_func(t)) { 12344 bpf_log(log, "attach_btf_id %u is not a function\n", 12345 btf_id); 12346 return -EINVAL; 12347 } 12348 if (prog_extension && 12349 btf_check_type_match(log, prog, btf, t)) 12350 return -EINVAL; 12351 t = btf_type_by_id(btf, t->type); 12352 if (!btf_type_is_func_proto(t)) 12353 return -EINVAL; 12354 12355 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 12356 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 12357 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 12358 return -EINVAL; 12359 12360 if (tgt_prog && conservative) 12361 t = NULL; 12362 12363 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 12364 if (ret < 0) 12365 return ret; 12366 12367 if (tgt_prog) { 12368 if (subprog == 0) 12369 addr = (long) tgt_prog->bpf_func; 12370 else 12371 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 12372 } else { 12373 addr = kallsyms_lookup_name(tname); 12374 if (!addr) { 12375 bpf_log(log, 12376 "The address of function %s cannot be found\n", 12377 tname); 12378 return -ENOENT; 12379 } 12380 } 12381 12382 if (prog->aux->sleepable) { 12383 ret = -EINVAL; 12384 switch (prog->type) { 12385 case BPF_PROG_TYPE_TRACING: 12386 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 12387 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 12388 */ 12389 if (!check_non_sleepable_error_inject(btf_id) && 12390 within_error_injection_list(addr)) 12391 ret = 0; 12392 break; 12393 case BPF_PROG_TYPE_LSM: 12394 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 12395 * Only some of them are sleepable. 12396 */ 12397 if (bpf_lsm_is_sleepable_hook(btf_id)) 12398 ret = 0; 12399 break; 12400 default: 12401 break; 12402 } 12403 if (ret) { 12404 bpf_log(log, "%s is not sleepable\n", tname); 12405 return ret; 12406 } 12407 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 12408 if (tgt_prog) { 12409 bpf_log(log, "can't modify return codes of BPF programs\n"); 12410 return -EINVAL; 12411 } 12412 ret = check_attach_modify_return(addr, tname); 12413 if (ret) { 12414 bpf_log(log, "%s() is not modifiable\n", tname); 12415 return ret; 12416 } 12417 } 12418 12419 break; 12420 } 12421 tgt_info->tgt_addr = addr; 12422 tgt_info->tgt_name = tname; 12423 tgt_info->tgt_type = t; 12424 return 0; 12425 } 12426 12427 static int check_attach_btf_id(struct bpf_verifier_env *env) 12428 { 12429 struct bpf_prog *prog = env->prog; 12430 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 12431 struct bpf_attach_target_info tgt_info = {}; 12432 u32 btf_id = prog->aux->attach_btf_id; 12433 struct bpf_trampoline *tr; 12434 int ret; 12435 u64 key; 12436 12437 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 12438 prog->type != BPF_PROG_TYPE_LSM) { 12439 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 12440 return -EINVAL; 12441 } 12442 12443 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 12444 return check_struct_ops_btf_id(env); 12445 12446 if (prog->type != BPF_PROG_TYPE_TRACING && 12447 prog->type != BPF_PROG_TYPE_LSM && 12448 prog->type != BPF_PROG_TYPE_EXT) 12449 return 0; 12450 12451 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 12452 if (ret) 12453 return ret; 12454 12455 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 12456 /* to make freplace equivalent to their targets, they need to 12457 * inherit env->ops and expected_attach_type for the rest of the 12458 * verification 12459 */ 12460 env->ops = bpf_verifier_ops[tgt_prog->type]; 12461 prog->expected_attach_type = tgt_prog->expected_attach_type; 12462 } 12463 12464 /* store info about the attachment target that will be used later */ 12465 prog->aux->attach_func_proto = tgt_info.tgt_type; 12466 prog->aux->attach_func_name = tgt_info.tgt_name; 12467 12468 if (tgt_prog) { 12469 prog->aux->saved_dst_prog_type = tgt_prog->type; 12470 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 12471 } 12472 12473 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 12474 prog->aux->attach_btf_trace = true; 12475 return 0; 12476 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 12477 if (!bpf_iter_prog_supported(prog)) 12478 return -EINVAL; 12479 return 0; 12480 } 12481 12482 if (prog->type == BPF_PROG_TYPE_LSM) { 12483 ret = bpf_lsm_verify_prog(&env->log, prog); 12484 if (ret < 0) 12485 return ret; 12486 } 12487 12488 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 12489 tr = bpf_trampoline_get(key, &tgt_info); 12490 if (!tr) 12491 return -ENOMEM; 12492 12493 prog->aux->dst_trampoline = tr; 12494 return 0; 12495 } 12496 12497 struct btf *bpf_get_btf_vmlinux(void) 12498 { 12499 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 12500 mutex_lock(&bpf_verifier_lock); 12501 if (!btf_vmlinux) 12502 btf_vmlinux = btf_parse_vmlinux(); 12503 mutex_unlock(&bpf_verifier_lock); 12504 } 12505 return btf_vmlinux; 12506 } 12507 12508 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 12509 union bpf_attr __user *uattr) 12510 { 12511 u64 start_time = ktime_get_ns(); 12512 struct bpf_verifier_env *env; 12513 struct bpf_verifier_log *log; 12514 int i, len, ret = -EINVAL; 12515 bool is_priv; 12516 12517 /* no program is valid */ 12518 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 12519 return -EINVAL; 12520 12521 /* 'struct bpf_verifier_env' can be global, but since it's not small, 12522 * allocate/free it every time bpf_check() is called 12523 */ 12524 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 12525 if (!env) 12526 return -ENOMEM; 12527 log = &env->log; 12528 12529 len = (*prog)->len; 12530 env->insn_aux_data = 12531 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 12532 ret = -ENOMEM; 12533 if (!env->insn_aux_data) 12534 goto err_free_env; 12535 for (i = 0; i < len; i++) 12536 env->insn_aux_data[i].orig_idx = i; 12537 env->prog = *prog; 12538 env->ops = bpf_verifier_ops[env->prog->type]; 12539 is_priv = bpf_capable(); 12540 12541 bpf_get_btf_vmlinux(); 12542 12543 /* grab the mutex to protect few globals used by verifier */ 12544 if (!is_priv) 12545 mutex_lock(&bpf_verifier_lock); 12546 12547 if (attr->log_level || attr->log_buf || attr->log_size) { 12548 /* user requested verbose verifier output 12549 * and supplied buffer to store the verification trace 12550 */ 12551 log->level = attr->log_level; 12552 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 12553 log->len_total = attr->log_size; 12554 12555 ret = -EINVAL; 12556 /* log attributes have to be sane */ 12557 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 12558 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 12559 goto err_unlock; 12560 } 12561 12562 if (IS_ERR(btf_vmlinux)) { 12563 /* Either gcc or pahole or kernel are broken. */ 12564 verbose(env, "in-kernel BTF is malformed\n"); 12565 ret = PTR_ERR(btf_vmlinux); 12566 goto skip_full_check; 12567 } 12568 12569 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 12570 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 12571 env->strict_alignment = true; 12572 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 12573 env->strict_alignment = false; 12574 12575 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 12576 env->allow_uninit_stack = bpf_allow_uninit_stack(); 12577 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 12578 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 12579 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 12580 env->bpf_capable = bpf_capable(); 12581 12582 if (is_priv) 12583 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 12584 12585 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12586 ret = bpf_prog_offload_verifier_prep(env->prog); 12587 if (ret) 12588 goto skip_full_check; 12589 } 12590 12591 env->explored_states = kvcalloc(state_htab_size(env), 12592 sizeof(struct bpf_verifier_state_list *), 12593 GFP_USER); 12594 ret = -ENOMEM; 12595 if (!env->explored_states) 12596 goto skip_full_check; 12597 12598 ret = check_subprogs(env); 12599 if (ret < 0) 12600 goto skip_full_check; 12601 12602 ret = check_btf_info(env, attr, uattr); 12603 if (ret < 0) 12604 goto skip_full_check; 12605 12606 ret = check_attach_btf_id(env); 12607 if (ret) 12608 goto skip_full_check; 12609 12610 ret = resolve_pseudo_ldimm64(env); 12611 if (ret < 0) 12612 goto skip_full_check; 12613 12614 ret = check_cfg(env); 12615 if (ret < 0) 12616 goto skip_full_check; 12617 12618 ret = do_check_subprogs(env); 12619 ret = ret ?: do_check_main(env); 12620 12621 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 12622 ret = bpf_prog_offload_finalize(env); 12623 12624 skip_full_check: 12625 kvfree(env->explored_states); 12626 12627 if (ret == 0) 12628 ret = check_max_stack_depth(env); 12629 12630 /* instruction rewrites happen after this point */ 12631 if (is_priv) { 12632 if (ret == 0) 12633 opt_hard_wire_dead_code_branches(env); 12634 if (ret == 0) 12635 ret = opt_remove_dead_code(env); 12636 if (ret == 0) 12637 ret = opt_remove_nops(env); 12638 } else { 12639 if (ret == 0) 12640 sanitize_dead_code(env); 12641 } 12642 12643 if (ret == 0) 12644 /* program is valid, convert *(u32*)(ctx + off) accesses */ 12645 ret = convert_ctx_accesses(env); 12646 12647 if (ret == 0) 12648 ret = fixup_bpf_calls(env); 12649 12650 /* do 32-bit optimization after insn patching has done so those patched 12651 * insns could be handled correctly. 12652 */ 12653 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 12654 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 12655 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 12656 : false; 12657 } 12658 12659 if (ret == 0) 12660 ret = fixup_call_args(env); 12661 12662 env->verification_time = ktime_get_ns() - start_time; 12663 print_verification_stats(env); 12664 12665 if (log->level && bpf_verifier_log_full(log)) 12666 ret = -ENOSPC; 12667 if (log->level && !log->ubuf) { 12668 ret = -EFAULT; 12669 goto err_release_maps; 12670 } 12671 12672 if (ret) 12673 goto err_release_maps; 12674 12675 if (env->used_map_cnt) { 12676 /* if program passed verifier, update used_maps in bpf_prog_info */ 12677 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 12678 sizeof(env->used_maps[0]), 12679 GFP_KERNEL); 12680 12681 if (!env->prog->aux->used_maps) { 12682 ret = -ENOMEM; 12683 goto err_release_maps; 12684 } 12685 12686 memcpy(env->prog->aux->used_maps, env->used_maps, 12687 sizeof(env->used_maps[0]) * env->used_map_cnt); 12688 env->prog->aux->used_map_cnt = env->used_map_cnt; 12689 } 12690 if (env->used_btf_cnt) { 12691 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 12692 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 12693 sizeof(env->used_btfs[0]), 12694 GFP_KERNEL); 12695 if (!env->prog->aux->used_btfs) { 12696 ret = -ENOMEM; 12697 goto err_release_maps; 12698 } 12699 12700 memcpy(env->prog->aux->used_btfs, env->used_btfs, 12701 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 12702 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 12703 } 12704 if (env->used_map_cnt || env->used_btf_cnt) { 12705 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 12706 * bpf_ld_imm64 instructions 12707 */ 12708 convert_pseudo_ld_imm64(env); 12709 } 12710 12711 adjust_btf_func(env); 12712 12713 err_release_maps: 12714 if (!env->prog->aux->used_maps) 12715 /* if we didn't copy map pointers into bpf_prog_info, release 12716 * them now. Otherwise free_used_maps() will release them. 12717 */ 12718 release_maps(env); 12719 if (!env->prog->aux->used_btfs) 12720 release_btfs(env); 12721 12722 /* extension progs temporarily inherit the attach_type of their targets 12723 for verification purposes, so set it back to zero before returning 12724 */ 12725 if (env->prog->type == BPF_PROG_TYPE_EXT) 12726 env->prog->expected_attach_type = 0; 12727 12728 *prog = env->prog; 12729 err_unlock: 12730 if (!is_priv) 12731 mutex_unlock(&bpf_verifier_lock); 12732 vfree(env->insn_aux_data); 12733 err_free_env: 12734 kfree(env); 12735 return ret; 12736 } 12737