xref: /openbmc/linux/kernel/bpf/verifier.c (revision c45231a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 };
266 
267 struct btf *btf_vmlinux;
268 
269 static DEFINE_MUTEX(bpf_verifier_lock);
270 
271 static const struct bpf_line_info *
272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
273 {
274 	const struct bpf_line_info *linfo;
275 	const struct bpf_prog *prog;
276 	u32 i, nr_linfo;
277 
278 	prog = env->prog;
279 	nr_linfo = prog->aux->nr_linfo;
280 
281 	if (!nr_linfo || insn_off >= prog->len)
282 		return NULL;
283 
284 	linfo = prog->aux->linfo;
285 	for (i = 1; i < nr_linfo; i++)
286 		if (insn_off < linfo[i].insn_off)
287 			break;
288 
289 	return &linfo[i - 1];
290 }
291 
292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
293 		       va_list args)
294 {
295 	unsigned int n;
296 
297 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
298 
299 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
300 		  "verifier log line truncated - local buffer too short\n");
301 
302 	n = min(log->len_total - log->len_used - 1, n);
303 	log->kbuf[n] = '\0';
304 
305 	if (log->level == BPF_LOG_KERNEL) {
306 		pr_err("BPF:%s\n", log->kbuf);
307 		return;
308 	}
309 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
310 		log->len_used += n;
311 	else
312 		log->ubuf = NULL;
313 }
314 
315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
316 {
317 	char zero = 0;
318 
319 	if (!bpf_verifier_log_needed(log))
320 		return;
321 
322 	log->len_used = new_pos;
323 	if (put_user(zero, log->ubuf + new_pos))
324 		log->ubuf = NULL;
325 }
326 
327 /* log_level controls verbosity level of eBPF verifier.
328  * bpf_verifier_log_write() is used to dump the verification trace to the log,
329  * so the user can figure out what's wrong with the program
330  */
331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
332 					   const char *fmt, ...)
333 {
334 	va_list args;
335 
336 	if (!bpf_verifier_log_needed(&env->log))
337 		return;
338 
339 	va_start(args, fmt);
340 	bpf_verifier_vlog(&env->log, fmt, args);
341 	va_end(args);
342 }
343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
344 
345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
346 {
347 	struct bpf_verifier_env *env = private_data;
348 	va_list args;
349 
350 	if (!bpf_verifier_log_needed(&env->log))
351 		return;
352 
353 	va_start(args, fmt);
354 	bpf_verifier_vlog(&env->log, fmt, args);
355 	va_end(args);
356 }
357 
358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
359 			    const char *fmt, ...)
360 {
361 	va_list args;
362 
363 	if (!bpf_verifier_log_needed(log))
364 		return;
365 
366 	va_start(args, fmt);
367 	bpf_verifier_vlog(log, fmt, args);
368 	va_end(args);
369 }
370 
371 static const char *ltrim(const char *s)
372 {
373 	while (isspace(*s))
374 		s++;
375 
376 	return s;
377 }
378 
379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
380 					 u32 insn_off,
381 					 const char *prefix_fmt, ...)
382 {
383 	const struct bpf_line_info *linfo;
384 
385 	if (!bpf_verifier_log_needed(&env->log))
386 		return;
387 
388 	linfo = find_linfo(env, insn_off);
389 	if (!linfo || linfo == env->prev_linfo)
390 		return;
391 
392 	if (prefix_fmt) {
393 		va_list args;
394 
395 		va_start(args, prefix_fmt);
396 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
397 		va_end(args);
398 	}
399 
400 	verbose(env, "%s\n",
401 		ltrim(btf_name_by_offset(env->prog->aux->btf,
402 					 linfo->line_off)));
403 
404 	env->prev_linfo = linfo;
405 }
406 
407 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
408 				   struct bpf_reg_state *reg,
409 				   struct tnum *range, const char *ctx,
410 				   const char *reg_name)
411 {
412 	char tn_buf[48];
413 
414 	verbose(env, "At %s the register %s ", ctx, reg_name);
415 	if (!tnum_is_unknown(reg->var_off)) {
416 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
417 		verbose(env, "has value %s", tn_buf);
418 	} else {
419 		verbose(env, "has unknown scalar value");
420 	}
421 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
422 	verbose(env, " should have been in %s\n", tn_buf);
423 }
424 
425 static bool type_is_pkt_pointer(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_PACKET ||
428 	       type == PTR_TO_PACKET_META;
429 }
430 
431 static bool type_is_sk_pointer(enum bpf_reg_type type)
432 {
433 	return type == PTR_TO_SOCKET ||
434 		type == PTR_TO_SOCK_COMMON ||
435 		type == PTR_TO_TCP_SOCK ||
436 		type == PTR_TO_XDP_SOCK;
437 }
438 
439 static bool reg_type_not_null(enum bpf_reg_type type)
440 {
441 	return type == PTR_TO_SOCKET ||
442 		type == PTR_TO_TCP_SOCK ||
443 		type == PTR_TO_MAP_VALUE ||
444 		type == PTR_TO_MAP_KEY ||
445 		type == PTR_TO_SOCK_COMMON;
446 }
447 
448 static bool reg_type_may_be_null(enum bpf_reg_type type)
449 {
450 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
451 	       type == PTR_TO_SOCKET_OR_NULL ||
452 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
453 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
454 	       type == PTR_TO_BTF_ID_OR_NULL ||
455 	       type == PTR_TO_MEM_OR_NULL ||
456 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
457 	       type == PTR_TO_RDWR_BUF_OR_NULL;
458 }
459 
460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
461 {
462 	return reg->type == PTR_TO_MAP_VALUE &&
463 		map_value_has_spin_lock(reg->map_ptr);
464 }
465 
466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
467 {
468 	return type == PTR_TO_SOCKET ||
469 		type == PTR_TO_SOCKET_OR_NULL ||
470 		type == PTR_TO_TCP_SOCK ||
471 		type == PTR_TO_TCP_SOCK_OR_NULL ||
472 		type == PTR_TO_MEM ||
473 		type == PTR_TO_MEM_OR_NULL;
474 }
475 
476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
477 {
478 	return type == ARG_PTR_TO_SOCK_COMMON;
479 }
480 
481 static bool arg_type_may_be_null(enum bpf_arg_type type)
482 {
483 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
484 	       type == ARG_PTR_TO_MEM_OR_NULL ||
485 	       type == ARG_PTR_TO_CTX_OR_NULL ||
486 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
487 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
488 	       type == ARG_PTR_TO_STACK_OR_NULL;
489 }
490 
491 /* Determine whether the function releases some resources allocated by another
492  * function call. The first reference type argument will be assumed to be
493  * released by release_reference().
494  */
495 static bool is_release_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_sk_release ||
498 	       func_id == BPF_FUNC_ringbuf_submit ||
499 	       func_id == BPF_FUNC_ringbuf_discard;
500 }
501 
502 static bool may_be_acquire_function(enum bpf_func_id func_id)
503 {
504 	return func_id == BPF_FUNC_sk_lookup_tcp ||
505 		func_id == BPF_FUNC_sk_lookup_udp ||
506 		func_id == BPF_FUNC_skc_lookup_tcp ||
507 		func_id == BPF_FUNC_map_lookup_elem ||
508 	        func_id == BPF_FUNC_ringbuf_reserve;
509 }
510 
511 static bool is_acquire_function(enum bpf_func_id func_id,
512 				const struct bpf_map *map)
513 {
514 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
515 
516 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
517 	    func_id == BPF_FUNC_sk_lookup_udp ||
518 	    func_id == BPF_FUNC_skc_lookup_tcp ||
519 	    func_id == BPF_FUNC_ringbuf_reserve)
520 		return true;
521 
522 	if (func_id == BPF_FUNC_map_lookup_elem &&
523 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
524 	     map_type == BPF_MAP_TYPE_SOCKHASH))
525 		return true;
526 
527 	return false;
528 }
529 
530 static bool is_ptr_cast_function(enum bpf_func_id func_id)
531 {
532 	return func_id == BPF_FUNC_tcp_sock ||
533 		func_id == BPF_FUNC_sk_fullsock ||
534 		func_id == BPF_FUNC_skc_to_tcp_sock ||
535 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
536 		func_id == BPF_FUNC_skc_to_udp6_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
538 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
539 }
540 
541 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
542 {
543 	return BPF_CLASS(insn->code) == BPF_STX &&
544 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
545 	       insn->imm == BPF_CMPXCHG;
546 }
547 
548 /* string representation of 'enum bpf_reg_type' */
549 static const char * const reg_type_str[] = {
550 	[NOT_INIT]		= "?",
551 	[SCALAR_VALUE]		= "inv",
552 	[PTR_TO_CTX]		= "ctx",
553 	[CONST_PTR_TO_MAP]	= "map_ptr",
554 	[PTR_TO_MAP_VALUE]	= "map_value",
555 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
556 	[PTR_TO_STACK]		= "fp",
557 	[PTR_TO_PACKET]		= "pkt",
558 	[PTR_TO_PACKET_META]	= "pkt_meta",
559 	[PTR_TO_PACKET_END]	= "pkt_end",
560 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
561 	[PTR_TO_SOCKET]		= "sock",
562 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
563 	[PTR_TO_SOCK_COMMON]	= "sock_common",
564 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
565 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
566 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
567 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
568 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
569 	[PTR_TO_BTF_ID]		= "ptr_",
570 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
571 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
572 	[PTR_TO_MEM]		= "mem",
573 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
574 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
575 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
576 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
577 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
578 	[PTR_TO_FUNC]		= "func",
579 	[PTR_TO_MAP_KEY]	= "map_key",
580 };
581 
582 static char slot_type_char[] = {
583 	[STACK_INVALID]	= '?',
584 	[STACK_SPILL]	= 'r',
585 	[STACK_MISC]	= 'm',
586 	[STACK_ZERO]	= '0',
587 };
588 
589 static void print_liveness(struct bpf_verifier_env *env,
590 			   enum bpf_reg_liveness live)
591 {
592 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
593 	    verbose(env, "_");
594 	if (live & REG_LIVE_READ)
595 		verbose(env, "r");
596 	if (live & REG_LIVE_WRITTEN)
597 		verbose(env, "w");
598 	if (live & REG_LIVE_DONE)
599 		verbose(env, "D");
600 }
601 
602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 				   const struct bpf_reg_state *reg)
604 {
605 	struct bpf_verifier_state *cur = env->cur_state;
606 
607 	return cur->frame[reg->frameno];
608 }
609 
610 static const char *kernel_type_name(const struct btf* btf, u32 id)
611 {
612 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
613 }
614 
615 /* The reg state of a pointer or a bounded scalar was saved when
616  * it was spilled to the stack.
617  */
618 static bool is_spilled_reg(const struct bpf_stack_state *stack)
619 {
620 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
621 }
622 
623 static void scrub_spilled_slot(u8 *stype)
624 {
625 	if (*stype != STACK_INVALID)
626 		*stype = STACK_MISC;
627 }
628 
629 static void print_verifier_state(struct bpf_verifier_env *env,
630 				 const struct bpf_func_state *state)
631 {
632 	const struct bpf_reg_state *reg;
633 	enum bpf_reg_type t;
634 	int i;
635 
636 	if (state->frameno)
637 		verbose(env, " frame%d:", state->frameno);
638 	for (i = 0; i < MAX_BPF_REG; i++) {
639 		reg = &state->regs[i];
640 		t = reg->type;
641 		if (t == NOT_INIT)
642 			continue;
643 		verbose(env, " R%d", i);
644 		print_liveness(env, reg->live);
645 		verbose(env, "=%s", reg_type_str[t]);
646 		if (t == SCALAR_VALUE && reg->precise)
647 			verbose(env, "P");
648 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
649 		    tnum_is_const(reg->var_off)) {
650 			/* reg->off should be 0 for SCALAR_VALUE */
651 			verbose(env, "%lld", reg->var_off.value + reg->off);
652 		} else {
653 			if (t == PTR_TO_BTF_ID ||
654 			    t == PTR_TO_BTF_ID_OR_NULL ||
655 			    t == PTR_TO_PERCPU_BTF_ID)
656 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
657 			verbose(env, "(id=%d", reg->id);
658 			if (reg_type_may_be_refcounted_or_null(t))
659 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
660 			if (t != SCALAR_VALUE)
661 				verbose(env, ",off=%d", reg->off);
662 			if (type_is_pkt_pointer(t))
663 				verbose(env, ",r=%d", reg->range);
664 			else if (t == CONST_PTR_TO_MAP ||
665 				 t == PTR_TO_MAP_KEY ||
666 				 t == PTR_TO_MAP_VALUE ||
667 				 t == PTR_TO_MAP_VALUE_OR_NULL)
668 				verbose(env, ",ks=%d,vs=%d",
669 					reg->map_ptr->key_size,
670 					reg->map_ptr->value_size);
671 			if (tnum_is_const(reg->var_off)) {
672 				/* Typically an immediate SCALAR_VALUE, but
673 				 * could be a pointer whose offset is too big
674 				 * for reg->off
675 				 */
676 				verbose(env, ",imm=%llx", reg->var_off.value);
677 			} else {
678 				if (reg->smin_value != reg->umin_value &&
679 				    reg->smin_value != S64_MIN)
680 					verbose(env, ",smin_value=%lld",
681 						(long long)reg->smin_value);
682 				if (reg->smax_value != reg->umax_value &&
683 				    reg->smax_value != S64_MAX)
684 					verbose(env, ",smax_value=%lld",
685 						(long long)reg->smax_value);
686 				if (reg->umin_value != 0)
687 					verbose(env, ",umin_value=%llu",
688 						(unsigned long long)reg->umin_value);
689 				if (reg->umax_value != U64_MAX)
690 					verbose(env, ",umax_value=%llu",
691 						(unsigned long long)reg->umax_value);
692 				if (!tnum_is_unknown(reg->var_off)) {
693 					char tn_buf[48];
694 
695 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
696 					verbose(env, ",var_off=%s", tn_buf);
697 				}
698 				if (reg->s32_min_value != reg->smin_value &&
699 				    reg->s32_min_value != S32_MIN)
700 					verbose(env, ",s32_min_value=%d",
701 						(int)(reg->s32_min_value));
702 				if (reg->s32_max_value != reg->smax_value &&
703 				    reg->s32_max_value != S32_MAX)
704 					verbose(env, ",s32_max_value=%d",
705 						(int)(reg->s32_max_value));
706 				if (reg->u32_min_value != reg->umin_value &&
707 				    reg->u32_min_value != U32_MIN)
708 					verbose(env, ",u32_min_value=%d",
709 						(int)(reg->u32_min_value));
710 				if (reg->u32_max_value != reg->umax_value &&
711 				    reg->u32_max_value != U32_MAX)
712 					verbose(env, ",u32_max_value=%d",
713 						(int)(reg->u32_max_value));
714 			}
715 			verbose(env, ")");
716 		}
717 	}
718 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
719 		char types_buf[BPF_REG_SIZE + 1];
720 		bool valid = false;
721 		int j;
722 
723 		for (j = 0; j < BPF_REG_SIZE; j++) {
724 			if (state->stack[i].slot_type[j] != STACK_INVALID)
725 				valid = true;
726 			types_buf[j] = slot_type_char[
727 					state->stack[i].slot_type[j]];
728 		}
729 		types_buf[BPF_REG_SIZE] = 0;
730 		if (!valid)
731 			continue;
732 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
733 		print_liveness(env, state->stack[i].spilled_ptr.live);
734 		if (is_spilled_reg(&state->stack[i])) {
735 			reg = &state->stack[i].spilled_ptr;
736 			t = reg->type;
737 			verbose(env, "=%s", reg_type_str[t]);
738 			if (t == SCALAR_VALUE && reg->precise)
739 				verbose(env, "P");
740 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
741 				verbose(env, "%lld", reg->var_off.value + reg->off);
742 		} else {
743 			verbose(env, "=%s", types_buf);
744 		}
745 	}
746 	if (state->acquired_refs && state->refs[0].id) {
747 		verbose(env, " refs=%d", state->refs[0].id);
748 		for (i = 1; i < state->acquired_refs; i++)
749 			if (state->refs[i].id)
750 				verbose(env, ",%d", state->refs[i].id);
751 	}
752 	if (state->in_callback_fn)
753 		verbose(env, " cb");
754 	if (state->in_async_callback_fn)
755 		verbose(env, " async_cb");
756 	verbose(env, "\n");
757 }
758 
759 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
760  * small to hold src. This is different from krealloc since we don't want to preserve
761  * the contents of dst.
762  *
763  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
764  * not be allocated.
765  */
766 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
767 {
768 	size_t bytes;
769 
770 	if (ZERO_OR_NULL_PTR(src))
771 		goto out;
772 
773 	if (unlikely(check_mul_overflow(n, size, &bytes)))
774 		return NULL;
775 
776 	if (ksize(dst) < bytes) {
777 		kfree(dst);
778 		dst = kmalloc_track_caller(bytes, flags);
779 		if (!dst)
780 			return NULL;
781 	}
782 
783 	memcpy(dst, src, bytes);
784 out:
785 	return dst ? dst : ZERO_SIZE_PTR;
786 }
787 
788 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
789  * small to hold new_n items. new items are zeroed out if the array grows.
790  *
791  * Contrary to krealloc_array, does not free arr if new_n is zero.
792  */
793 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
794 {
795 	if (!new_n || old_n == new_n)
796 		goto out;
797 
798 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
799 	if (!arr)
800 		return NULL;
801 
802 	if (new_n > old_n)
803 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
804 
805 out:
806 	return arr ? arr : ZERO_SIZE_PTR;
807 }
808 
809 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
810 {
811 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
812 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
813 	if (!dst->refs)
814 		return -ENOMEM;
815 
816 	dst->acquired_refs = src->acquired_refs;
817 	return 0;
818 }
819 
820 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
821 {
822 	size_t n = src->allocated_stack / BPF_REG_SIZE;
823 
824 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
825 				GFP_KERNEL);
826 	if (!dst->stack)
827 		return -ENOMEM;
828 
829 	dst->allocated_stack = src->allocated_stack;
830 	return 0;
831 }
832 
833 static int resize_reference_state(struct bpf_func_state *state, size_t n)
834 {
835 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
836 				    sizeof(struct bpf_reference_state));
837 	if (!state->refs)
838 		return -ENOMEM;
839 
840 	state->acquired_refs = n;
841 	return 0;
842 }
843 
844 static int grow_stack_state(struct bpf_func_state *state, int size)
845 {
846 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
847 
848 	if (old_n >= n)
849 		return 0;
850 
851 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
852 	if (!state->stack)
853 		return -ENOMEM;
854 
855 	state->allocated_stack = size;
856 	return 0;
857 }
858 
859 /* Acquire a pointer id from the env and update the state->refs to include
860  * this new pointer reference.
861  * On success, returns a valid pointer id to associate with the register
862  * On failure, returns a negative errno.
863  */
864 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
865 {
866 	struct bpf_func_state *state = cur_func(env);
867 	int new_ofs = state->acquired_refs;
868 	int id, err;
869 
870 	err = resize_reference_state(state, state->acquired_refs + 1);
871 	if (err)
872 		return err;
873 	id = ++env->id_gen;
874 	state->refs[new_ofs].id = id;
875 	state->refs[new_ofs].insn_idx = insn_idx;
876 
877 	return id;
878 }
879 
880 /* release function corresponding to acquire_reference_state(). Idempotent. */
881 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
882 {
883 	int i, last_idx;
884 
885 	last_idx = state->acquired_refs - 1;
886 	for (i = 0; i < state->acquired_refs; i++) {
887 		if (state->refs[i].id == ptr_id) {
888 			if (last_idx && i != last_idx)
889 				memcpy(&state->refs[i], &state->refs[last_idx],
890 				       sizeof(*state->refs));
891 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
892 			state->acquired_refs--;
893 			return 0;
894 		}
895 	}
896 	return -EINVAL;
897 }
898 
899 static void free_func_state(struct bpf_func_state *state)
900 {
901 	if (!state)
902 		return;
903 	kfree(state->refs);
904 	kfree(state->stack);
905 	kfree(state);
906 }
907 
908 static void clear_jmp_history(struct bpf_verifier_state *state)
909 {
910 	kfree(state->jmp_history);
911 	state->jmp_history = NULL;
912 	state->jmp_history_cnt = 0;
913 }
914 
915 static void free_verifier_state(struct bpf_verifier_state *state,
916 				bool free_self)
917 {
918 	int i;
919 
920 	for (i = 0; i <= state->curframe; i++) {
921 		free_func_state(state->frame[i]);
922 		state->frame[i] = NULL;
923 	}
924 	clear_jmp_history(state);
925 	if (free_self)
926 		kfree(state);
927 }
928 
929 /* copy verifier state from src to dst growing dst stack space
930  * when necessary to accommodate larger src stack
931  */
932 static int copy_func_state(struct bpf_func_state *dst,
933 			   const struct bpf_func_state *src)
934 {
935 	int err;
936 
937 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
938 	err = copy_reference_state(dst, src);
939 	if (err)
940 		return err;
941 	return copy_stack_state(dst, src);
942 }
943 
944 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
945 			       const struct bpf_verifier_state *src)
946 {
947 	struct bpf_func_state *dst;
948 	int i, err;
949 
950 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
951 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
952 					    GFP_USER);
953 	if (!dst_state->jmp_history)
954 		return -ENOMEM;
955 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
956 
957 	/* if dst has more stack frames then src frame, free them */
958 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
959 		free_func_state(dst_state->frame[i]);
960 		dst_state->frame[i] = NULL;
961 	}
962 	dst_state->speculative = src->speculative;
963 	dst_state->curframe = src->curframe;
964 	dst_state->active_spin_lock = src->active_spin_lock;
965 	dst_state->branches = src->branches;
966 	dst_state->parent = src->parent;
967 	dst_state->first_insn_idx = src->first_insn_idx;
968 	dst_state->last_insn_idx = src->last_insn_idx;
969 	for (i = 0; i <= src->curframe; i++) {
970 		dst = dst_state->frame[i];
971 		if (!dst) {
972 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
973 			if (!dst)
974 				return -ENOMEM;
975 			dst_state->frame[i] = dst;
976 		}
977 		err = copy_func_state(dst, src->frame[i]);
978 		if (err)
979 			return err;
980 	}
981 	return 0;
982 }
983 
984 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
985 {
986 	while (st) {
987 		u32 br = --st->branches;
988 
989 		/* WARN_ON(br > 1) technically makes sense here,
990 		 * but see comment in push_stack(), hence:
991 		 */
992 		WARN_ONCE((int)br < 0,
993 			  "BUG update_branch_counts:branches_to_explore=%d\n",
994 			  br);
995 		if (br)
996 			break;
997 		st = st->parent;
998 	}
999 }
1000 
1001 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1002 		     int *insn_idx, bool pop_log)
1003 {
1004 	struct bpf_verifier_state *cur = env->cur_state;
1005 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1006 	int err;
1007 
1008 	if (env->head == NULL)
1009 		return -ENOENT;
1010 
1011 	if (cur) {
1012 		err = copy_verifier_state(cur, &head->st);
1013 		if (err)
1014 			return err;
1015 	}
1016 	if (pop_log)
1017 		bpf_vlog_reset(&env->log, head->log_pos);
1018 	if (insn_idx)
1019 		*insn_idx = head->insn_idx;
1020 	if (prev_insn_idx)
1021 		*prev_insn_idx = head->prev_insn_idx;
1022 	elem = head->next;
1023 	free_verifier_state(&head->st, false);
1024 	kfree(head);
1025 	env->head = elem;
1026 	env->stack_size--;
1027 	return 0;
1028 }
1029 
1030 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1031 					     int insn_idx, int prev_insn_idx,
1032 					     bool speculative)
1033 {
1034 	struct bpf_verifier_state *cur = env->cur_state;
1035 	struct bpf_verifier_stack_elem *elem;
1036 	int err;
1037 
1038 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1039 	if (!elem)
1040 		goto err;
1041 
1042 	elem->insn_idx = insn_idx;
1043 	elem->prev_insn_idx = prev_insn_idx;
1044 	elem->next = env->head;
1045 	elem->log_pos = env->log.len_used;
1046 	env->head = elem;
1047 	env->stack_size++;
1048 	err = copy_verifier_state(&elem->st, cur);
1049 	if (err)
1050 		goto err;
1051 	elem->st.speculative |= speculative;
1052 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1053 		verbose(env, "The sequence of %d jumps is too complex.\n",
1054 			env->stack_size);
1055 		goto err;
1056 	}
1057 	if (elem->st.parent) {
1058 		++elem->st.parent->branches;
1059 		/* WARN_ON(branches > 2) technically makes sense here,
1060 		 * but
1061 		 * 1. speculative states will bump 'branches' for non-branch
1062 		 * instructions
1063 		 * 2. is_state_visited() heuristics may decide not to create
1064 		 * a new state for a sequence of branches and all such current
1065 		 * and cloned states will be pointing to a single parent state
1066 		 * which might have large 'branches' count.
1067 		 */
1068 	}
1069 	return &elem->st;
1070 err:
1071 	free_verifier_state(env->cur_state, true);
1072 	env->cur_state = NULL;
1073 	/* pop all elements and return */
1074 	while (!pop_stack(env, NULL, NULL, false));
1075 	return NULL;
1076 }
1077 
1078 #define CALLER_SAVED_REGS 6
1079 static const int caller_saved[CALLER_SAVED_REGS] = {
1080 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1081 };
1082 
1083 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1084 				struct bpf_reg_state *reg);
1085 
1086 /* This helper doesn't clear reg->id */
1087 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1088 {
1089 	reg->var_off = tnum_const(imm);
1090 	reg->smin_value = (s64)imm;
1091 	reg->smax_value = (s64)imm;
1092 	reg->umin_value = imm;
1093 	reg->umax_value = imm;
1094 
1095 	reg->s32_min_value = (s32)imm;
1096 	reg->s32_max_value = (s32)imm;
1097 	reg->u32_min_value = (u32)imm;
1098 	reg->u32_max_value = (u32)imm;
1099 }
1100 
1101 /* Mark the unknown part of a register (variable offset or scalar value) as
1102  * known to have the value @imm.
1103  */
1104 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1105 {
1106 	/* Clear id, off, and union(map_ptr, range) */
1107 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1108 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1109 	___mark_reg_known(reg, imm);
1110 }
1111 
1112 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1113 {
1114 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1115 	reg->s32_min_value = (s32)imm;
1116 	reg->s32_max_value = (s32)imm;
1117 	reg->u32_min_value = (u32)imm;
1118 	reg->u32_max_value = (u32)imm;
1119 }
1120 
1121 /* Mark the 'variable offset' part of a register as zero.  This should be
1122  * used only on registers holding a pointer type.
1123  */
1124 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1125 {
1126 	__mark_reg_known(reg, 0);
1127 }
1128 
1129 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1130 {
1131 	__mark_reg_known(reg, 0);
1132 	reg->type = SCALAR_VALUE;
1133 }
1134 
1135 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1136 				struct bpf_reg_state *regs, u32 regno)
1137 {
1138 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1139 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1140 		/* Something bad happened, let's kill all regs */
1141 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1142 			__mark_reg_not_init(env, regs + regno);
1143 		return;
1144 	}
1145 	__mark_reg_known_zero(regs + regno);
1146 }
1147 
1148 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1149 {
1150 	switch (reg->type) {
1151 	case PTR_TO_MAP_VALUE_OR_NULL: {
1152 		const struct bpf_map *map = reg->map_ptr;
1153 
1154 		if (map->inner_map_meta) {
1155 			reg->type = CONST_PTR_TO_MAP;
1156 			reg->map_ptr = map->inner_map_meta;
1157 			/* transfer reg's id which is unique for every map_lookup_elem
1158 			 * as UID of the inner map.
1159 			 */
1160 			reg->map_uid = reg->id;
1161 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1162 			reg->type = PTR_TO_XDP_SOCK;
1163 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1164 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1165 			reg->type = PTR_TO_SOCKET;
1166 		} else {
1167 			reg->type = PTR_TO_MAP_VALUE;
1168 		}
1169 		break;
1170 	}
1171 	case PTR_TO_SOCKET_OR_NULL:
1172 		reg->type = PTR_TO_SOCKET;
1173 		break;
1174 	case PTR_TO_SOCK_COMMON_OR_NULL:
1175 		reg->type = PTR_TO_SOCK_COMMON;
1176 		break;
1177 	case PTR_TO_TCP_SOCK_OR_NULL:
1178 		reg->type = PTR_TO_TCP_SOCK;
1179 		break;
1180 	case PTR_TO_BTF_ID_OR_NULL:
1181 		reg->type = PTR_TO_BTF_ID;
1182 		break;
1183 	case PTR_TO_MEM_OR_NULL:
1184 		reg->type = PTR_TO_MEM;
1185 		break;
1186 	case PTR_TO_RDONLY_BUF_OR_NULL:
1187 		reg->type = PTR_TO_RDONLY_BUF;
1188 		break;
1189 	case PTR_TO_RDWR_BUF_OR_NULL:
1190 		reg->type = PTR_TO_RDWR_BUF;
1191 		break;
1192 	default:
1193 		WARN_ONCE(1, "unknown nullable register type");
1194 	}
1195 }
1196 
1197 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1198 {
1199 	return type_is_pkt_pointer(reg->type);
1200 }
1201 
1202 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1203 {
1204 	return reg_is_pkt_pointer(reg) ||
1205 	       reg->type == PTR_TO_PACKET_END;
1206 }
1207 
1208 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1209 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1210 				    enum bpf_reg_type which)
1211 {
1212 	/* The register can already have a range from prior markings.
1213 	 * This is fine as long as it hasn't been advanced from its
1214 	 * origin.
1215 	 */
1216 	return reg->type == which &&
1217 	       reg->id == 0 &&
1218 	       reg->off == 0 &&
1219 	       tnum_equals_const(reg->var_off, 0);
1220 }
1221 
1222 /* Reset the min/max bounds of a register */
1223 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1224 {
1225 	reg->smin_value = S64_MIN;
1226 	reg->smax_value = S64_MAX;
1227 	reg->umin_value = 0;
1228 	reg->umax_value = U64_MAX;
1229 
1230 	reg->s32_min_value = S32_MIN;
1231 	reg->s32_max_value = S32_MAX;
1232 	reg->u32_min_value = 0;
1233 	reg->u32_max_value = U32_MAX;
1234 }
1235 
1236 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1237 {
1238 	reg->smin_value = S64_MIN;
1239 	reg->smax_value = S64_MAX;
1240 	reg->umin_value = 0;
1241 	reg->umax_value = U64_MAX;
1242 }
1243 
1244 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1245 {
1246 	reg->s32_min_value = S32_MIN;
1247 	reg->s32_max_value = S32_MAX;
1248 	reg->u32_min_value = 0;
1249 	reg->u32_max_value = U32_MAX;
1250 }
1251 
1252 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1253 {
1254 	struct tnum var32_off = tnum_subreg(reg->var_off);
1255 
1256 	/* min signed is max(sign bit) | min(other bits) */
1257 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1258 			var32_off.value | (var32_off.mask & S32_MIN));
1259 	/* max signed is min(sign bit) | max(other bits) */
1260 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1261 			var32_off.value | (var32_off.mask & S32_MAX));
1262 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1263 	reg->u32_max_value = min(reg->u32_max_value,
1264 				 (u32)(var32_off.value | var32_off.mask));
1265 }
1266 
1267 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1268 {
1269 	/* min signed is max(sign bit) | min(other bits) */
1270 	reg->smin_value = max_t(s64, reg->smin_value,
1271 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1272 	/* max signed is min(sign bit) | max(other bits) */
1273 	reg->smax_value = min_t(s64, reg->smax_value,
1274 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1275 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1276 	reg->umax_value = min(reg->umax_value,
1277 			      reg->var_off.value | reg->var_off.mask);
1278 }
1279 
1280 static void __update_reg_bounds(struct bpf_reg_state *reg)
1281 {
1282 	__update_reg32_bounds(reg);
1283 	__update_reg64_bounds(reg);
1284 }
1285 
1286 /* Uses signed min/max values to inform unsigned, and vice-versa */
1287 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1288 {
1289 	/* Learn sign from signed bounds.
1290 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1291 	 * are the same, so combine.  This works even in the negative case, e.g.
1292 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1293 	 */
1294 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1295 		reg->s32_min_value = reg->u32_min_value =
1296 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1297 		reg->s32_max_value = reg->u32_max_value =
1298 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1299 		return;
1300 	}
1301 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1302 	 * boundary, so we must be careful.
1303 	 */
1304 	if ((s32)reg->u32_max_value >= 0) {
1305 		/* Positive.  We can't learn anything from the smin, but smax
1306 		 * is positive, hence safe.
1307 		 */
1308 		reg->s32_min_value = reg->u32_min_value;
1309 		reg->s32_max_value = reg->u32_max_value =
1310 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1311 	} else if ((s32)reg->u32_min_value < 0) {
1312 		/* Negative.  We can't learn anything from the smax, but smin
1313 		 * is negative, hence safe.
1314 		 */
1315 		reg->s32_min_value = reg->u32_min_value =
1316 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1317 		reg->s32_max_value = reg->u32_max_value;
1318 	}
1319 }
1320 
1321 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1322 {
1323 	/* Learn sign from signed bounds.
1324 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1325 	 * are the same, so combine.  This works even in the negative case, e.g.
1326 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1327 	 */
1328 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1329 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1330 							  reg->umin_value);
1331 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1332 							  reg->umax_value);
1333 		return;
1334 	}
1335 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1336 	 * boundary, so we must be careful.
1337 	 */
1338 	if ((s64)reg->umax_value >= 0) {
1339 		/* Positive.  We can't learn anything from the smin, but smax
1340 		 * is positive, hence safe.
1341 		 */
1342 		reg->smin_value = reg->umin_value;
1343 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1344 							  reg->umax_value);
1345 	} else if ((s64)reg->umin_value < 0) {
1346 		/* Negative.  We can't learn anything from the smax, but smin
1347 		 * is negative, hence safe.
1348 		 */
1349 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1350 							  reg->umin_value);
1351 		reg->smax_value = reg->umax_value;
1352 	}
1353 }
1354 
1355 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1356 {
1357 	__reg32_deduce_bounds(reg);
1358 	__reg64_deduce_bounds(reg);
1359 }
1360 
1361 /* Attempts to improve var_off based on unsigned min/max information */
1362 static void __reg_bound_offset(struct bpf_reg_state *reg)
1363 {
1364 	struct tnum var64_off = tnum_intersect(reg->var_off,
1365 					       tnum_range(reg->umin_value,
1366 							  reg->umax_value));
1367 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1368 						tnum_range(reg->u32_min_value,
1369 							   reg->u32_max_value));
1370 
1371 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1372 }
1373 
1374 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1375 {
1376 	reg->umin_value = reg->u32_min_value;
1377 	reg->umax_value = reg->u32_max_value;
1378 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1379 	 * but must be positive otherwise set to worse case bounds
1380 	 * and refine later from tnum.
1381 	 */
1382 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1383 		reg->smax_value = reg->s32_max_value;
1384 	else
1385 		reg->smax_value = U32_MAX;
1386 	if (reg->s32_min_value >= 0)
1387 		reg->smin_value = reg->s32_min_value;
1388 	else
1389 		reg->smin_value = 0;
1390 }
1391 
1392 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1393 {
1394 	/* special case when 64-bit register has upper 32-bit register
1395 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1396 	 * allowing us to use 32-bit bounds directly,
1397 	 */
1398 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1399 		__reg_assign_32_into_64(reg);
1400 	} else {
1401 		/* Otherwise the best we can do is push lower 32bit known and
1402 		 * unknown bits into register (var_off set from jmp logic)
1403 		 * then learn as much as possible from the 64-bit tnum
1404 		 * known and unknown bits. The previous smin/smax bounds are
1405 		 * invalid here because of jmp32 compare so mark them unknown
1406 		 * so they do not impact tnum bounds calculation.
1407 		 */
1408 		__mark_reg64_unbounded(reg);
1409 		__update_reg_bounds(reg);
1410 	}
1411 
1412 	/* Intersecting with the old var_off might have improved our bounds
1413 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1414 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1415 	 */
1416 	__reg_deduce_bounds(reg);
1417 	__reg_bound_offset(reg);
1418 	__update_reg_bounds(reg);
1419 }
1420 
1421 static bool __reg64_bound_s32(s64 a)
1422 {
1423 	return a >= S32_MIN && a <= S32_MAX;
1424 }
1425 
1426 static bool __reg64_bound_u32(u64 a)
1427 {
1428 	return a >= U32_MIN && a <= U32_MAX;
1429 }
1430 
1431 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1432 {
1433 	__mark_reg32_unbounded(reg);
1434 
1435 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1436 		reg->s32_min_value = (s32)reg->smin_value;
1437 		reg->s32_max_value = (s32)reg->smax_value;
1438 	}
1439 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1440 		reg->u32_min_value = (u32)reg->umin_value;
1441 		reg->u32_max_value = (u32)reg->umax_value;
1442 	}
1443 
1444 	/* Intersecting with the old var_off might have improved our bounds
1445 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1446 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1447 	 */
1448 	__reg_deduce_bounds(reg);
1449 	__reg_bound_offset(reg);
1450 	__update_reg_bounds(reg);
1451 }
1452 
1453 /* Mark a register as having a completely unknown (scalar) value. */
1454 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1455 			       struct bpf_reg_state *reg)
1456 {
1457 	/*
1458 	 * Clear type, id, off, and union(map_ptr, range) and
1459 	 * padding between 'type' and union
1460 	 */
1461 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1462 	reg->type = SCALAR_VALUE;
1463 	reg->var_off = tnum_unknown;
1464 	reg->frameno = 0;
1465 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1466 	__mark_reg_unbounded(reg);
1467 }
1468 
1469 static void mark_reg_unknown(struct bpf_verifier_env *env,
1470 			     struct bpf_reg_state *regs, u32 regno)
1471 {
1472 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1473 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1474 		/* Something bad happened, let's kill all regs except FP */
1475 		for (regno = 0; regno < BPF_REG_FP; regno++)
1476 			__mark_reg_not_init(env, regs + regno);
1477 		return;
1478 	}
1479 	__mark_reg_unknown(env, regs + regno);
1480 }
1481 
1482 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1483 				struct bpf_reg_state *reg)
1484 {
1485 	__mark_reg_unknown(env, reg);
1486 	reg->type = NOT_INIT;
1487 }
1488 
1489 static void mark_reg_not_init(struct bpf_verifier_env *env,
1490 			      struct bpf_reg_state *regs, u32 regno)
1491 {
1492 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1493 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1494 		/* Something bad happened, let's kill all regs except FP */
1495 		for (regno = 0; regno < BPF_REG_FP; regno++)
1496 			__mark_reg_not_init(env, regs + regno);
1497 		return;
1498 	}
1499 	__mark_reg_not_init(env, regs + regno);
1500 }
1501 
1502 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1503 			    struct bpf_reg_state *regs, u32 regno,
1504 			    enum bpf_reg_type reg_type,
1505 			    struct btf *btf, u32 btf_id)
1506 {
1507 	if (reg_type == SCALAR_VALUE) {
1508 		mark_reg_unknown(env, regs, regno);
1509 		return;
1510 	}
1511 	mark_reg_known_zero(env, regs, regno);
1512 	regs[regno].type = PTR_TO_BTF_ID;
1513 	regs[regno].btf = btf;
1514 	regs[regno].btf_id = btf_id;
1515 }
1516 
1517 #define DEF_NOT_SUBREG	(0)
1518 static void init_reg_state(struct bpf_verifier_env *env,
1519 			   struct bpf_func_state *state)
1520 {
1521 	struct bpf_reg_state *regs = state->regs;
1522 	int i;
1523 
1524 	for (i = 0; i < MAX_BPF_REG; i++) {
1525 		mark_reg_not_init(env, regs, i);
1526 		regs[i].live = REG_LIVE_NONE;
1527 		regs[i].parent = NULL;
1528 		regs[i].subreg_def = DEF_NOT_SUBREG;
1529 	}
1530 
1531 	/* frame pointer */
1532 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1533 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1534 	regs[BPF_REG_FP].frameno = state->frameno;
1535 }
1536 
1537 #define BPF_MAIN_FUNC (-1)
1538 static void init_func_state(struct bpf_verifier_env *env,
1539 			    struct bpf_func_state *state,
1540 			    int callsite, int frameno, int subprogno)
1541 {
1542 	state->callsite = callsite;
1543 	state->frameno = frameno;
1544 	state->subprogno = subprogno;
1545 	init_reg_state(env, state);
1546 }
1547 
1548 /* Similar to push_stack(), but for async callbacks */
1549 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1550 						int insn_idx, int prev_insn_idx,
1551 						int subprog)
1552 {
1553 	struct bpf_verifier_stack_elem *elem;
1554 	struct bpf_func_state *frame;
1555 
1556 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1557 	if (!elem)
1558 		goto err;
1559 
1560 	elem->insn_idx = insn_idx;
1561 	elem->prev_insn_idx = prev_insn_idx;
1562 	elem->next = env->head;
1563 	elem->log_pos = env->log.len_used;
1564 	env->head = elem;
1565 	env->stack_size++;
1566 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1567 		verbose(env,
1568 			"The sequence of %d jumps is too complex for async cb.\n",
1569 			env->stack_size);
1570 		goto err;
1571 	}
1572 	/* Unlike push_stack() do not copy_verifier_state().
1573 	 * The caller state doesn't matter.
1574 	 * This is async callback. It starts in a fresh stack.
1575 	 * Initialize it similar to do_check_common().
1576 	 */
1577 	elem->st.branches = 1;
1578 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1579 	if (!frame)
1580 		goto err;
1581 	init_func_state(env, frame,
1582 			BPF_MAIN_FUNC /* callsite */,
1583 			0 /* frameno within this callchain */,
1584 			subprog /* subprog number within this prog */);
1585 	elem->st.frame[0] = frame;
1586 	return &elem->st;
1587 err:
1588 	free_verifier_state(env->cur_state, true);
1589 	env->cur_state = NULL;
1590 	/* pop all elements and return */
1591 	while (!pop_stack(env, NULL, NULL, false));
1592 	return NULL;
1593 }
1594 
1595 
1596 enum reg_arg_type {
1597 	SRC_OP,		/* register is used as source operand */
1598 	DST_OP,		/* register is used as destination operand */
1599 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1600 };
1601 
1602 static int cmp_subprogs(const void *a, const void *b)
1603 {
1604 	return ((struct bpf_subprog_info *)a)->start -
1605 	       ((struct bpf_subprog_info *)b)->start;
1606 }
1607 
1608 static int find_subprog(struct bpf_verifier_env *env, int off)
1609 {
1610 	struct bpf_subprog_info *p;
1611 
1612 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1613 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1614 	if (!p)
1615 		return -ENOENT;
1616 	return p - env->subprog_info;
1617 
1618 }
1619 
1620 static int add_subprog(struct bpf_verifier_env *env, int off)
1621 {
1622 	int insn_cnt = env->prog->len;
1623 	int ret;
1624 
1625 	if (off >= insn_cnt || off < 0) {
1626 		verbose(env, "call to invalid destination\n");
1627 		return -EINVAL;
1628 	}
1629 	ret = find_subprog(env, off);
1630 	if (ret >= 0)
1631 		return ret;
1632 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1633 		verbose(env, "too many subprograms\n");
1634 		return -E2BIG;
1635 	}
1636 	/* determine subprog starts. The end is one before the next starts */
1637 	env->subprog_info[env->subprog_cnt++].start = off;
1638 	sort(env->subprog_info, env->subprog_cnt,
1639 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1640 	return env->subprog_cnt - 1;
1641 }
1642 
1643 #define MAX_KFUNC_DESCS 256
1644 #define MAX_KFUNC_BTFS	256
1645 
1646 struct bpf_kfunc_desc {
1647 	struct btf_func_model func_model;
1648 	u32 func_id;
1649 	s32 imm;
1650 	u16 offset;
1651 };
1652 
1653 struct bpf_kfunc_btf {
1654 	struct btf *btf;
1655 	struct module *module;
1656 	u16 offset;
1657 };
1658 
1659 struct bpf_kfunc_desc_tab {
1660 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1661 	u32 nr_descs;
1662 };
1663 
1664 struct bpf_kfunc_btf_tab {
1665 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1666 	u32 nr_descs;
1667 };
1668 
1669 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1670 {
1671 	const struct bpf_kfunc_desc *d0 = a;
1672 	const struct bpf_kfunc_desc *d1 = b;
1673 
1674 	/* func_id is not greater than BTF_MAX_TYPE */
1675 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1676 }
1677 
1678 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1679 {
1680 	const struct bpf_kfunc_btf *d0 = a;
1681 	const struct bpf_kfunc_btf *d1 = b;
1682 
1683 	return d0->offset - d1->offset;
1684 }
1685 
1686 static const struct bpf_kfunc_desc *
1687 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1688 {
1689 	struct bpf_kfunc_desc desc = {
1690 		.func_id = func_id,
1691 		.offset = offset,
1692 	};
1693 	struct bpf_kfunc_desc_tab *tab;
1694 
1695 	tab = prog->aux->kfunc_tab;
1696 	return bsearch(&desc, tab->descs, tab->nr_descs,
1697 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1698 }
1699 
1700 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1701 					 s16 offset, struct module **btf_modp)
1702 {
1703 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1704 	struct bpf_kfunc_btf_tab *tab;
1705 	struct bpf_kfunc_btf *b;
1706 	struct module *mod;
1707 	struct btf *btf;
1708 	int btf_fd;
1709 
1710 	tab = env->prog->aux->kfunc_btf_tab;
1711 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1712 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1713 	if (!b) {
1714 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1715 			verbose(env, "too many different module BTFs\n");
1716 			return ERR_PTR(-E2BIG);
1717 		}
1718 
1719 		if (bpfptr_is_null(env->fd_array)) {
1720 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1721 			return ERR_PTR(-EPROTO);
1722 		}
1723 
1724 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1725 					    offset * sizeof(btf_fd),
1726 					    sizeof(btf_fd)))
1727 			return ERR_PTR(-EFAULT);
1728 
1729 		btf = btf_get_by_fd(btf_fd);
1730 		if (IS_ERR(btf)) {
1731 			verbose(env, "invalid module BTF fd specified\n");
1732 			return btf;
1733 		}
1734 
1735 		if (!btf_is_module(btf)) {
1736 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1737 			btf_put(btf);
1738 			return ERR_PTR(-EINVAL);
1739 		}
1740 
1741 		mod = btf_try_get_module(btf);
1742 		if (!mod) {
1743 			btf_put(btf);
1744 			return ERR_PTR(-ENXIO);
1745 		}
1746 
1747 		b = &tab->descs[tab->nr_descs++];
1748 		b->btf = btf;
1749 		b->module = mod;
1750 		b->offset = offset;
1751 
1752 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1753 		     kfunc_btf_cmp_by_off, NULL);
1754 	}
1755 	if (btf_modp)
1756 		*btf_modp = b->module;
1757 	return b->btf;
1758 }
1759 
1760 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1761 {
1762 	if (!tab)
1763 		return;
1764 
1765 	while (tab->nr_descs--) {
1766 		module_put(tab->descs[tab->nr_descs].module);
1767 		btf_put(tab->descs[tab->nr_descs].btf);
1768 	}
1769 	kfree(tab);
1770 }
1771 
1772 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1773 				       u32 func_id, s16 offset,
1774 				       struct module **btf_modp)
1775 {
1776 	if (offset) {
1777 		if (offset < 0) {
1778 			/* In the future, this can be allowed to increase limit
1779 			 * of fd index into fd_array, interpreted as u16.
1780 			 */
1781 			verbose(env, "negative offset disallowed for kernel module function call\n");
1782 			return ERR_PTR(-EINVAL);
1783 		}
1784 
1785 		return __find_kfunc_desc_btf(env, offset, btf_modp);
1786 	}
1787 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1788 }
1789 
1790 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1791 {
1792 	const struct btf_type *func, *func_proto;
1793 	struct bpf_kfunc_btf_tab *btf_tab;
1794 	struct bpf_kfunc_desc_tab *tab;
1795 	struct bpf_prog_aux *prog_aux;
1796 	struct bpf_kfunc_desc *desc;
1797 	const char *func_name;
1798 	struct btf *desc_btf;
1799 	unsigned long addr;
1800 	int err;
1801 
1802 	prog_aux = env->prog->aux;
1803 	tab = prog_aux->kfunc_tab;
1804 	btf_tab = prog_aux->kfunc_btf_tab;
1805 	if (!tab) {
1806 		if (!btf_vmlinux) {
1807 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1808 			return -ENOTSUPP;
1809 		}
1810 
1811 		if (!env->prog->jit_requested) {
1812 			verbose(env, "JIT is required for calling kernel function\n");
1813 			return -ENOTSUPP;
1814 		}
1815 
1816 		if (!bpf_jit_supports_kfunc_call()) {
1817 			verbose(env, "JIT does not support calling kernel function\n");
1818 			return -ENOTSUPP;
1819 		}
1820 
1821 		if (!env->prog->gpl_compatible) {
1822 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1823 			return -EINVAL;
1824 		}
1825 
1826 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1827 		if (!tab)
1828 			return -ENOMEM;
1829 		prog_aux->kfunc_tab = tab;
1830 	}
1831 
1832 	/* func_id == 0 is always invalid, but instead of returning an error, be
1833 	 * conservative and wait until the code elimination pass before returning
1834 	 * error, so that invalid calls that get pruned out can be in BPF programs
1835 	 * loaded from userspace.  It is also required that offset be untouched
1836 	 * for such calls.
1837 	 */
1838 	if (!func_id && !offset)
1839 		return 0;
1840 
1841 	if (!btf_tab && offset) {
1842 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1843 		if (!btf_tab)
1844 			return -ENOMEM;
1845 		prog_aux->kfunc_btf_tab = btf_tab;
1846 	}
1847 
1848 	desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1849 	if (IS_ERR(desc_btf)) {
1850 		verbose(env, "failed to find BTF for kernel function\n");
1851 		return PTR_ERR(desc_btf);
1852 	}
1853 
1854 	if (find_kfunc_desc(env->prog, func_id, offset))
1855 		return 0;
1856 
1857 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1858 		verbose(env, "too many different kernel function calls\n");
1859 		return -E2BIG;
1860 	}
1861 
1862 	func = btf_type_by_id(desc_btf, func_id);
1863 	if (!func || !btf_type_is_func(func)) {
1864 		verbose(env, "kernel btf_id %u is not a function\n",
1865 			func_id);
1866 		return -EINVAL;
1867 	}
1868 	func_proto = btf_type_by_id(desc_btf, func->type);
1869 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1870 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1871 			func_id);
1872 		return -EINVAL;
1873 	}
1874 
1875 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1876 	addr = kallsyms_lookup_name(func_name);
1877 	if (!addr) {
1878 		verbose(env, "cannot find address for kernel function %s\n",
1879 			func_name);
1880 		return -EINVAL;
1881 	}
1882 
1883 	desc = &tab->descs[tab->nr_descs++];
1884 	desc->func_id = func_id;
1885 	desc->imm = BPF_CALL_IMM(addr);
1886 	desc->offset = offset;
1887 	err = btf_distill_func_proto(&env->log, desc_btf,
1888 				     func_proto, func_name,
1889 				     &desc->func_model);
1890 	if (!err)
1891 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1892 		     kfunc_desc_cmp_by_id_off, NULL);
1893 	return err;
1894 }
1895 
1896 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1897 {
1898 	const struct bpf_kfunc_desc *d0 = a;
1899 	const struct bpf_kfunc_desc *d1 = b;
1900 
1901 	if (d0->imm > d1->imm)
1902 		return 1;
1903 	else if (d0->imm < d1->imm)
1904 		return -1;
1905 	return 0;
1906 }
1907 
1908 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1909 {
1910 	struct bpf_kfunc_desc_tab *tab;
1911 
1912 	tab = prog->aux->kfunc_tab;
1913 	if (!tab)
1914 		return;
1915 
1916 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1917 	     kfunc_desc_cmp_by_imm, NULL);
1918 }
1919 
1920 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1921 {
1922 	return !!prog->aux->kfunc_tab;
1923 }
1924 
1925 const struct btf_func_model *
1926 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1927 			 const struct bpf_insn *insn)
1928 {
1929 	const struct bpf_kfunc_desc desc = {
1930 		.imm = insn->imm,
1931 	};
1932 	const struct bpf_kfunc_desc *res;
1933 	struct bpf_kfunc_desc_tab *tab;
1934 
1935 	tab = prog->aux->kfunc_tab;
1936 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1937 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1938 
1939 	return res ? &res->func_model : NULL;
1940 }
1941 
1942 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1943 {
1944 	struct bpf_subprog_info *subprog = env->subprog_info;
1945 	struct bpf_insn *insn = env->prog->insnsi;
1946 	int i, ret, insn_cnt = env->prog->len;
1947 
1948 	/* Add entry function. */
1949 	ret = add_subprog(env, 0);
1950 	if (ret)
1951 		return ret;
1952 
1953 	for (i = 0; i < insn_cnt; i++, insn++) {
1954 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1955 		    !bpf_pseudo_kfunc_call(insn))
1956 			continue;
1957 
1958 		if (!env->bpf_capable) {
1959 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1960 			return -EPERM;
1961 		}
1962 
1963 		if (bpf_pseudo_func(insn)) {
1964 			ret = add_subprog(env, i + insn->imm + 1);
1965 			if (ret >= 0)
1966 				/* remember subprog */
1967 				insn[1].imm = ret;
1968 		} else if (bpf_pseudo_call(insn)) {
1969 			ret = add_subprog(env, i + insn->imm + 1);
1970 		} else {
1971 			ret = add_kfunc_call(env, insn->imm, insn->off);
1972 		}
1973 
1974 		if (ret < 0)
1975 			return ret;
1976 	}
1977 
1978 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1979 	 * logic. 'subprog_cnt' should not be increased.
1980 	 */
1981 	subprog[env->subprog_cnt].start = insn_cnt;
1982 
1983 	if (env->log.level & BPF_LOG_LEVEL2)
1984 		for (i = 0; i < env->subprog_cnt; i++)
1985 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1986 
1987 	return 0;
1988 }
1989 
1990 static int check_subprogs(struct bpf_verifier_env *env)
1991 {
1992 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1993 	struct bpf_subprog_info *subprog = env->subprog_info;
1994 	struct bpf_insn *insn = env->prog->insnsi;
1995 	int insn_cnt = env->prog->len;
1996 
1997 	/* now check that all jumps are within the same subprog */
1998 	subprog_start = subprog[cur_subprog].start;
1999 	subprog_end = subprog[cur_subprog + 1].start;
2000 	for (i = 0; i < insn_cnt; i++) {
2001 		u8 code = insn[i].code;
2002 
2003 		if (code == (BPF_JMP | BPF_CALL) &&
2004 		    insn[i].imm == BPF_FUNC_tail_call &&
2005 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2006 			subprog[cur_subprog].has_tail_call = true;
2007 		if (BPF_CLASS(code) == BPF_LD &&
2008 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2009 			subprog[cur_subprog].has_ld_abs = true;
2010 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2011 			goto next;
2012 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2013 			goto next;
2014 		off = i + insn[i].off + 1;
2015 		if (off < subprog_start || off >= subprog_end) {
2016 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2017 			return -EINVAL;
2018 		}
2019 next:
2020 		if (i == subprog_end - 1) {
2021 			/* to avoid fall-through from one subprog into another
2022 			 * the last insn of the subprog should be either exit
2023 			 * or unconditional jump back
2024 			 */
2025 			if (code != (BPF_JMP | BPF_EXIT) &&
2026 			    code != (BPF_JMP | BPF_JA)) {
2027 				verbose(env, "last insn is not an exit or jmp\n");
2028 				return -EINVAL;
2029 			}
2030 			subprog_start = subprog_end;
2031 			cur_subprog++;
2032 			if (cur_subprog < env->subprog_cnt)
2033 				subprog_end = subprog[cur_subprog + 1].start;
2034 		}
2035 	}
2036 	return 0;
2037 }
2038 
2039 /* Parentage chain of this register (or stack slot) should take care of all
2040  * issues like callee-saved registers, stack slot allocation time, etc.
2041  */
2042 static int mark_reg_read(struct bpf_verifier_env *env,
2043 			 const struct bpf_reg_state *state,
2044 			 struct bpf_reg_state *parent, u8 flag)
2045 {
2046 	bool writes = parent == state->parent; /* Observe write marks */
2047 	int cnt = 0;
2048 
2049 	while (parent) {
2050 		/* if read wasn't screened by an earlier write ... */
2051 		if (writes && state->live & REG_LIVE_WRITTEN)
2052 			break;
2053 		if (parent->live & REG_LIVE_DONE) {
2054 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2055 				reg_type_str[parent->type],
2056 				parent->var_off.value, parent->off);
2057 			return -EFAULT;
2058 		}
2059 		/* The first condition is more likely to be true than the
2060 		 * second, checked it first.
2061 		 */
2062 		if ((parent->live & REG_LIVE_READ) == flag ||
2063 		    parent->live & REG_LIVE_READ64)
2064 			/* The parentage chain never changes and
2065 			 * this parent was already marked as LIVE_READ.
2066 			 * There is no need to keep walking the chain again and
2067 			 * keep re-marking all parents as LIVE_READ.
2068 			 * This case happens when the same register is read
2069 			 * multiple times without writes into it in-between.
2070 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2071 			 * then no need to set the weak REG_LIVE_READ32.
2072 			 */
2073 			break;
2074 		/* ... then we depend on parent's value */
2075 		parent->live |= flag;
2076 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2077 		if (flag == REG_LIVE_READ64)
2078 			parent->live &= ~REG_LIVE_READ32;
2079 		state = parent;
2080 		parent = state->parent;
2081 		writes = true;
2082 		cnt++;
2083 	}
2084 
2085 	if (env->longest_mark_read_walk < cnt)
2086 		env->longest_mark_read_walk = cnt;
2087 	return 0;
2088 }
2089 
2090 /* This function is supposed to be used by the following 32-bit optimization
2091  * code only. It returns TRUE if the source or destination register operates
2092  * on 64-bit, otherwise return FALSE.
2093  */
2094 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2095 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2096 {
2097 	u8 code, class, op;
2098 
2099 	code = insn->code;
2100 	class = BPF_CLASS(code);
2101 	op = BPF_OP(code);
2102 	if (class == BPF_JMP) {
2103 		/* BPF_EXIT for "main" will reach here. Return TRUE
2104 		 * conservatively.
2105 		 */
2106 		if (op == BPF_EXIT)
2107 			return true;
2108 		if (op == BPF_CALL) {
2109 			/* BPF to BPF call will reach here because of marking
2110 			 * caller saved clobber with DST_OP_NO_MARK for which we
2111 			 * don't care the register def because they are anyway
2112 			 * marked as NOT_INIT already.
2113 			 */
2114 			if (insn->src_reg == BPF_PSEUDO_CALL)
2115 				return false;
2116 			/* Helper call will reach here because of arg type
2117 			 * check, conservatively return TRUE.
2118 			 */
2119 			if (t == SRC_OP)
2120 				return true;
2121 
2122 			return false;
2123 		}
2124 	}
2125 
2126 	if (class == BPF_ALU64 || class == BPF_JMP ||
2127 	    /* BPF_END always use BPF_ALU class. */
2128 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2129 		return true;
2130 
2131 	if (class == BPF_ALU || class == BPF_JMP32)
2132 		return false;
2133 
2134 	if (class == BPF_LDX) {
2135 		if (t != SRC_OP)
2136 			return BPF_SIZE(code) == BPF_DW;
2137 		/* LDX source must be ptr. */
2138 		return true;
2139 	}
2140 
2141 	if (class == BPF_STX) {
2142 		/* BPF_STX (including atomic variants) has multiple source
2143 		 * operands, one of which is a ptr. Check whether the caller is
2144 		 * asking about it.
2145 		 */
2146 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2147 			return true;
2148 		return BPF_SIZE(code) == BPF_DW;
2149 	}
2150 
2151 	if (class == BPF_LD) {
2152 		u8 mode = BPF_MODE(code);
2153 
2154 		/* LD_IMM64 */
2155 		if (mode == BPF_IMM)
2156 			return true;
2157 
2158 		/* Both LD_IND and LD_ABS return 32-bit data. */
2159 		if (t != SRC_OP)
2160 			return  false;
2161 
2162 		/* Implicit ctx ptr. */
2163 		if (regno == BPF_REG_6)
2164 			return true;
2165 
2166 		/* Explicit source could be any width. */
2167 		return true;
2168 	}
2169 
2170 	if (class == BPF_ST)
2171 		/* The only source register for BPF_ST is a ptr. */
2172 		return true;
2173 
2174 	/* Conservatively return true at default. */
2175 	return true;
2176 }
2177 
2178 /* Return the regno defined by the insn, or -1. */
2179 static int insn_def_regno(const struct bpf_insn *insn)
2180 {
2181 	switch (BPF_CLASS(insn->code)) {
2182 	case BPF_JMP:
2183 	case BPF_JMP32:
2184 	case BPF_ST:
2185 		return -1;
2186 	case BPF_STX:
2187 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2188 		    (insn->imm & BPF_FETCH)) {
2189 			if (insn->imm == BPF_CMPXCHG)
2190 				return BPF_REG_0;
2191 			else
2192 				return insn->src_reg;
2193 		} else {
2194 			return -1;
2195 		}
2196 	default:
2197 		return insn->dst_reg;
2198 	}
2199 }
2200 
2201 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2202 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2203 {
2204 	int dst_reg = insn_def_regno(insn);
2205 
2206 	if (dst_reg == -1)
2207 		return false;
2208 
2209 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2210 }
2211 
2212 static void mark_insn_zext(struct bpf_verifier_env *env,
2213 			   struct bpf_reg_state *reg)
2214 {
2215 	s32 def_idx = reg->subreg_def;
2216 
2217 	if (def_idx == DEF_NOT_SUBREG)
2218 		return;
2219 
2220 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2221 	/* The dst will be zero extended, so won't be sub-register anymore. */
2222 	reg->subreg_def = DEF_NOT_SUBREG;
2223 }
2224 
2225 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2226 			 enum reg_arg_type t)
2227 {
2228 	struct bpf_verifier_state *vstate = env->cur_state;
2229 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2230 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2231 	struct bpf_reg_state *reg, *regs = state->regs;
2232 	bool rw64;
2233 
2234 	if (regno >= MAX_BPF_REG) {
2235 		verbose(env, "R%d is invalid\n", regno);
2236 		return -EINVAL;
2237 	}
2238 
2239 	reg = &regs[regno];
2240 	rw64 = is_reg64(env, insn, regno, reg, t);
2241 	if (t == SRC_OP) {
2242 		/* check whether register used as source operand can be read */
2243 		if (reg->type == NOT_INIT) {
2244 			verbose(env, "R%d !read_ok\n", regno);
2245 			return -EACCES;
2246 		}
2247 		/* We don't need to worry about FP liveness because it's read-only */
2248 		if (regno == BPF_REG_FP)
2249 			return 0;
2250 
2251 		if (rw64)
2252 			mark_insn_zext(env, reg);
2253 
2254 		return mark_reg_read(env, reg, reg->parent,
2255 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2256 	} else {
2257 		/* check whether register used as dest operand can be written to */
2258 		if (regno == BPF_REG_FP) {
2259 			verbose(env, "frame pointer is read only\n");
2260 			return -EACCES;
2261 		}
2262 		reg->live |= REG_LIVE_WRITTEN;
2263 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2264 		if (t == DST_OP)
2265 			mark_reg_unknown(env, regs, regno);
2266 	}
2267 	return 0;
2268 }
2269 
2270 /* for any branch, call, exit record the history of jmps in the given state */
2271 static int push_jmp_history(struct bpf_verifier_env *env,
2272 			    struct bpf_verifier_state *cur)
2273 {
2274 	u32 cnt = cur->jmp_history_cnt;
2275 	struct bpf_idx_pair *p;
2276 
2277 	cnt++;
2278 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2279 	if (!p)
2280 		return -ENOMEM;
2281 	p[cnt - 1].idx = env->insn_idx;
2282 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2283 	cur->jmp_history = p;
2284 	cur->jmp_history_cnt = cnt;
2285 	return 0;
2286 }
2287 
2288 /* Backtrack one insn at a time. If idx is not at the top of recorded
2289  * history then previous instruction came from straight line execution.
2290  */
2291 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2292 			     u32 *history)
2293 {
2294 	u32 cnt = *history;
2295 
2296 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2297 		i = st->jmp_history[cnt - 1].prev_idx;
2298 		(*history)--;
2299 	} else {
2300 		i--;
2301 	}
2302 	return i;
2303 }
2304 
2305 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2306 {
2307 	const struct btf_type *func;
2308 	struct btf *desc_btf;
2309 
2310 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2311 		return NULL;
2312 
2313 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2314 	if (IS_ERR(desc_btf))
2315 		return "<error>";
2316 
2317 	func = btf_type_by_id(desc_btf, insn->imm);
2318 	return btf_name_by_offset(desc_btf, func->name_off);
2319 }
2320 
2321 /* For given verifier state backtrack_insn() is called from the last insn to
2322  * the first insn. Its purpose is to compute a bitmask of registers and
2323  * stack slots that needs precision in the parent verifier state.
2324  */
2325 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2326 			  u32 *reg_mask, u64 *stack_mask)
2327 {
2328 	const struct bpf_insn_cbs cbs = {
2329 		.cb_call	= disasm_kfunc_name,
2330 		.cb_print	= verbose,
2331 		.private_data	= env,
2332 	};
2333 	struct bpf_insn *insn = env->prog->insnsi + idx;
2334 	u8 class = BPF_CLASS(insn->code);
2335 	u8 opcode = BPF_OP(insn->code);
2336 	u8 mode = BPF_MODE(insn->code);
2337 	u32 dreg = 1u << insn->dst_reg;
2338 	u32 sreg = 1u << insn->src_reg;
2339 	u32 spi;
2340 
2341 	if (insn->code == 0)
2342 		return 0;
2343 	if (env->log.level & BPF_LOG_LEVEL) {
2344 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2345 		verbose(env, "%d: ", idx);
2346 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2347 	}
2348 
2349 	if (class == BPF_ALU || class == BPF_ALU64) {
2350 		if (!(*reg_mask & dreg))
2351 			return 0;
2352 		if (opcode == BPF_MOV) {
2353 			if (BPF_SRC(insn->code) == BPF_X) {
2354 				/* dreg = sreg
2355 				 * dreg needs precision after this insn
2356 				 * sreg needs precision before this insn
2357 				 */
2358 				*reg_mask &= ~dreg;
2359 				*reg_mask |= sreg;
2360 			} else {
2361 				/* dreg = K
2362 				 * dreg needs precision after this insn.
2363 				 * Corresponding register is already marked
2364 				 * as precise=true in this verifier state.
2365 				 * No further markings in parent are necessary
2366 				 */
2367 				*reg_mask &= ~dreg;
2368 			}
2369 		} else {
2370 			if (BPF_SRC(insn->code) == BPF_X) {
2371 				/* dreg += sreg
2372 				 * both dreg and sreg need precision
2373 				 * before this insn
2374 				 */
2375 				*reg_mask |= sreg;
2376 			} /* else dreg += K
2377 			   * dreg still needs precision before this insn
2378 			   */
2379 		}
2380 	} else if (class == BPF_LDX) {
2381 		if (!(*reg_mask & dreg))
2382 			return 0;
2383 		*reg_mask &= ~dreg;
2384 
2385 		/* scalars can only be spilled into stack w/o losing precision.
2386 		 * Load from any other memory can be zero extended.
2387 		 * The desire to keep that precision is already indicated
2388 		 * by 'precise' mark in corresponding register of this state.
2389 		 * No further tracking necessary.
2390 		 */
2391 		if (insn->src_reg != BPF_REG_FP)
2392 			return 0;
2393 		if (BPF_SIZE(insn->code) != BPF_DW)
2394 			return 0;
2395 
2396 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2397 		 * that [fp - off] slot contains scalar that needs to be
2398 		 * tracked with precision
2399 		 */
2400 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2401 		if (spi >= 64) {
2402 			verbose(env, "BUG spi %d\n", spi);
2403 			WARN_ONCE(1, "verifier backtracking bug");
2404 			return -EFAULT;
2405 		}
2406 		*stack_mask |= 1ull << spi;
2407 	} else if (class == BPF_STX || class == BPF_ST) {
2408 		if (*reg_mask & dreg)
2409 			/* stx & st shouldn't be using _scalar_ dst_reg
2410 			 * to access memory. It means backtracking
2411 			 * encountered a case of pointer subtraction.
2412 			 */
2413 			return -ENOTSUPP;
2414 		/* scalars can only be spilled into stack */
2415 		if (insn->dst_reg != BPF_REG_FP)
2416 			return 0;
2417 		if (BPF_SIZE(insn->code) != BPF_DW)
2418 			return 0;
2419 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2420 		if (spi >= 64) {
2421 			verbose(env, "BUG spi %d\n", spi);
2422 			WARN_ONCE(1, "verifier backtracking bug");
2423 			return -EFAULT;
2424 		}
2425 		if (!(*stack_mask & (1ull << spi)))
2426 			return 0;
2427 		*stack_mask &= ~(1ull << spi);
2428 		if (class == BPF_STX)
2429 			*reg_mask |= sreg;
2430 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2431 		if (opcode == BPF_CALL) {
2432 			if (insn->src_reg == BPF_PSEUDO_CALL)
2433 				return -ENOTSUPP;
2434 			/* regular helper call sets R0 */
2435 			*reg_mask &= ~1;
2436 			if (*reg_mask & 0x3f) {
2437 				/* if backtracing was looking for registers R1-R5
2438 				 * they should have been found already.
2439 				 */
2440 				verbose(env, "BUG regs %x\n", *reg_mask);
2441 				WARN_ONCE(1, "verifier backtracking bug");
2442 				return -EFAULT;
2443 			}
2444 		} else if (opcode == BPF_EXIT) {
2445 			return -ENOTSUPP;
2446 		}
2447 	} else if (class == BPF_LD) {
2448 		if (!(*reg_mask & dreg))
2449 			return 0;
2450 		*reg_mask &= ~dreg;
2451 		/* It's ld_imm64 or ld_abs or ld_ind.
2452 		 * For ld_imm64 no further tracking of precision
2453 		 * into parent is necessary
2454 		 */
2455 		if (mode == BPF_IND || mode == BPF_ABS)
2456 			/* to be analyzed */
2457 			return -ENOTSUPP;
2458 	}
2459 	return 0;
2460 }
2461 
2462 /* the scalar precision tracking algorithm:
2463  * . at the start all registers have precise=false.
2464  * . scalar ranges are tracked as normal through alu and jmp insns.
2465  * . once precise value of the scalar register is used in:
2466  *   .  ptr + scalar alu
2467  *   . if (scalar cond K|scalar)
2468  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2469  *   backtrack through the verifier states and mark all registers and
2470  *   stack slots with spilled constants that these scalar regisers
2471  *   should be precise.
2472  * . during state pruning two registers (or spilled stack slots)
2473  *   are equivalent if both are not precise.
2474  *
2475  * Note the verifier cannot simply walk register parentage chain,
2476  * since many different registers and stack slots could have been
2477  * used to compute single precise scalar.
2478  *
2479  * The approach of starting with precise=true for all registers and then
2480  * backtrack to mark a register as not precise when the verifier detects
2481  * that program doesn't care about specific value (e.g., when helper
2482  * takes register as ARG_ANYTHING parameter) is not safe.
2483  *
2484  * It's ok to walk single parentage chain of the verifier states.
2485  * It's possible that this backtracking will go all the way till 1st insn.
2486  * All other branches will be explored for needing precision later.
2487  *
2488  * The backtracking needs to deal with cases like:
2489  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2490  * r9 -= r8
2491  * r5 = r9
2492  * if r5 > 0x79f goto pc+7
2493  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2494  * r5 += 1
2495  * ...
2496  * call bpf_perf_event_output#25
2497  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2498  *
2499  * and this case:
2500  * r6 = 1
2501  * call foo // uses callee's r6 inside to compute r0
2502  * r0 += r6
2503  * if r0 == 0 goto
2504  *
2505  * to track above reg_mask/stack_mask needs to be independent for each frame.
2506  *
2507  * Also if parent's curframe > frame where backtracking started,
2508  * the verifier need to mark registers in both frames, otherwise callees
2509  * may incorrectly prune callers. This is similar to
2510  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2511  *
2512  * For now backtracking falls back into conservative marking.
2513  */
2514 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2515 				     struct bpf_verifier_state *st)
2516 {
2517 	struct bpf_func_state *func;
2518 	struct bpf_reg_state *reg;
2519 	int i, j;
2520 
2521 	/* big hammer: mark all scalars precise in this path.
2522 	 * pop_stack may still get !precise scalars.
2523 	 */
2524 	for (; st; st = st->parent)
2525 		for (i = 0; i <= st->curframe; i++) {
2526 			func = st->frame[i];
2527 			for (j = 0; j < BPF_REG_FP; j++) {
2528 				reg = &func->regs[j];
2529 				if (reg->type != SCALAR_VALUE)
2530 					continue;
2531 				reg->precise = true;
2532 			}
2533 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2534 				if (!is_spilled_reg(&func->stack[j]))
2535 					continue;
2536 				reg = &func->stack[j].spilled_ptr;
2537 				if (reg->type != SCALAR_VALUE)
2538 					continue;
2539 				reg->precise = true;
2540 			}
2541 		}
2542 }
2543 
2544 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2545 				  int spi)
2546 {
2547 	struct bpf_verifier_state *st = env->cur_state;
2548 	int first_idx = st->first_insn_idx;
2549 	int last_idx = env->insn_idx;
2550 	struct bpf_func_state *func;
2551 	struct bpf_reg_state *reg;
2552 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2553 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2554 	bool skip_first = true;
2555 	bool new_marks = false;
2556 	int i, err;
2557 
2558 	if (!env->bpf_capable)
2559 		return 0;
2560 
2561 	func = st->frame[st->curframe];
2562 	if (regno >= 0) {
2563 		reg = &func->regs[regno];
2564 		if (reg->type != SCALAR_VALUE) {
2565 			WARN_ONCE(1, "backtracing misuse");
2566 			return -EFAULT;
2567 		}
2568 		if (!reg->precise)
2569 			new_marks = true;
2570 		else
2571 			reg_mask = 0;
2572 		reg->precise = true;
2573 	}
2574 
2575 	while (spi >= 0) {
2576 		if (!is_spilled_reg(&func->stack[spi])) {
2577 			stack_mask = 0;
2578 			break;
2579 		}
2580 		reg = &func->stack[spi].spilled_ptr;
2581 		if (reg->type != SCALAR_VALUE) {
2582 			stack_mask = 0;
2583 			break;
2584 		}
2585 		if (!reg->precise)
2586 			new_marks = true;
2587 		else
2588 			stack_mask = 0;
2589 		reg->precise = true;
2590 		break;
2591 	}
2592 
2593 	if (!new_marks)
2594 		return 0;
2595 	if (!reg_mask && !stack_mask)
2596 		return 0;
2597 	for (;;) {
2598 		DECLARE_BITMAP(mask, 64);
2599 		u32 history = st->jmp_history_cnt;
2600 
2601 		if (env->log.level & BPF_LOG_LEVEL)
2602 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2603 		for (i = last_idx;;) {
2604 			if (skip_first) {
2605 				err = 0;
2606 				skip_first = false;
2607 			} else {
2608 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2609 			}
2610 			if (err == -ENOTSUPP) {
2611 				mark_all_scalars_precise(env, st);
2612 				return 0;
2613 			} else if (err) {
2614 				return err;
2615 			}
2616 			if (!reg_mask && !stack_mask)
2617 				/* Found assignment(s) into tracked register in this state.
2618 				 * Since this state is already marked, just return.
2619 				 * Nothing to be tracked further in the parent state.
2620 				 */
2621 				return 0;
2622 			if (i == first_idx)
2623 				break;
2624 			i = get_prev_insn_idx(st, i, &history);
2625 			if (i >= env->prog->len) {
2626 				/* This can happen if backtracking reached insn 0
2627 				 * and there are still reg_mask or stack_mask
2628 				 * to backtrack.
2629 				 * It means the backtracking missed the spot where
2630 				 * particular register was initialized with a constant.
2631 				 */
2632 				verbose(env, "BUG backtracking idx %d\n", i);
2633 				WARN_ONCE(1, "verifier backtracking bug");
2634 				return -EFAULT;
2635 			}
2636 		}
2637 		st = st->parent;
2638 		if (!st)
2639 			break;
2640 
2641 		new_marks = false;
2642 		func = st->frame[st->curframe];
2643 		bitmap_from_u64(mask, reg_mask);
2644 		for_each_set_bit(i, mask, 32) {
2645 			reg = &func->regs[i];
2646 			if (reg->type != SCALAR_VALUE) {
2647 				reg_mask &= ~(1u << i);
2648 				continue;
2649 			}
2650 			if (!reg->precise)
2651 				new_marks = true;
2652 			reg->precise = true;
2653 		}
2654 
2655 		bitmap_from_u64(mask, stack_mask);
2656 		for_each_set_bit(i, mask, 64) {
2657 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2658 				/* the sequence of instructions:
2659 				 * 2: (bf) r3 = r10
2660 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2661 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2662 				 * doesn't contain jmps. It's backtracked
2663 				 * as a single block.
2664 				 * During backtracking insn 3 is not recognized as
2665 				 * stack access, so at the end of backtracking
2666 				 * stack slot fp-8 is still marked in stack_mask.
2667 				 * However the parent state may not have accessed
2668 				 * fp-8 and it's "unallocated" stack space.
2669 				 * In such case fallback to conservative.
2670 				 */
2671 				mark_all_scalars_precise(env, st);
2672 				return 0;
2673 			}
2674 
2675 			if (!is_spilled_reg(&func->stack[i])) {
2676 				stack_mask &= ~(1ull << i);
2677 				continue;
2678 			}
2679 			reg = &func->stack[i].spilled_ptr;
2680 			if (reg->type != SCALAR_VALUE) {
2681 				stack_mask &= ~(1ull << i);
2682 				continue;
2683 			}
2684 			if (!reg->precise)
2685 				new_marks = true;
2686 			reg->precise = true;
2687 		}
2688 		if (env->log.level & BPF_LOG_LEVEL) {
2689 			print_verifier_state(env, func);
2690 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2691 				new_marks ? "didn't have" : "already had",
2692 				reg_mask, stack_mask);
2693 		}
2694 
2695 		if (!reg_mask && !stack_mask)
2696 			break;
2697 		if (!new_marks)
2698 			break;
2699 
2700 		last_idx = st->last_insn_idx;
2701 		first_idx = st->first_insn_idx;
2702 	}
2703 	return 0;
2704 }
2705 
2706 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2707 {
2708 	return __mark_chain_precision(env, regno, -1);
2709 }
2710 
2711 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2712 {
2713 	return __mark_chain_precision(env, -1, spi);
2714 }
2715 
2716 static bool is_spillable_regtype(enum bpf_reg_type type)
2717 {
2718 	switch (type) {
2719 	case PTR_TO_MAP_VALUE:
2720 	case PTR_TO_MAP_VALUE_OR_NULL:
2721 	case PTR_TO_STACK:
2722 	case PTR_TO_CTX:
2723 	case PTR_TO_PACKET:
2724 	case PTR_TO_PACKET_META:
2725 	case PTR_TO_PACKET_END:
2726 	case PTR_TO_FLOW_KEYS:
2727 	case CONST_PTR_TO_MAP:
2728 	case PTR_TO_SOCKET:
2729 	case PTR_TO_SOCKET_OR_NULL:
2730 	case PTR_TO_SOCK_COMMON:
2731 	case PTR_TO_SOCK_COMMON_OR_NULL:
2732 	case PTR_TO_TCP_SOCK:
2733 	case PTR_TO_TCP_SOCK_OR_NULL:
2734 	case PTR_TO_XDP_SOCK:
2735 	case PTR_TO_BTF_ID:
2736 	case PTR_TO_BTF_ID_OR_NULL:
2737 	case PTR_TO_RDONLY_BUF:
2738 	case PTR_TO_RDONLY_BUF_OR_NULL:
2739 	case PTR_TO_RDWR_BUF:
2740 	case PTR_TO_RDWR_BUF_OR_NULL:
2741 	case PTR_TO_PERCPU_BTF_ID:
2742 	case PTR_TO_MEM:
2743 	case PTR_TO_MEM_OR_NULL:
2744 	case PTR_TO_FUNC:
2745 	case PTR_TO_MAP_KEY:
2746 		return true;
2747 	default:
2748 		return false;
2749 	}
2750 }
2751 
2752 /* Does this register contain a constant zero? */
2753 static bool register_is_null(struct bpf_reg_state *reg)
2754 {
2755 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2756 }
2757 
2758 static bool register_is_const(struct bpf_reg_state *reg)
2759 {
2760 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2761 }
2762 
2763 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2764 {
2765 	return tnum_is_unknown(reg->var_off) &&
2766 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2767 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2768 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2769 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2770 }
2771 
2772 static bool register_is_bounded(struct bpf_reg_state *reg)
2773 {
2774 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2775 }
2776 
2777 static bool __is_pointer_value(bool allow_ptr_leaks,
2778 			       const struct bpf_reg_state *reg)
2779 {
2780 	if (allow_ptr_leaks)
2781 		return false;
2782 
2783 	return reg->type != SCALAR_VALUE;
2784 }
2785 
2786 static void save_register_state(struct bpf_func_state *state,
2787 				int spi, struct bpf_reg_state *reg,
2788 				int size)
2789 {
2790 	int i;
2791 
2792 	state->stack[spi].spilled_ptr = *reg;
2793 	if (size == BPF_REG_SIZE)
2794 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2795 
2796 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2797 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2798 
2799 	/* size < 8 bytes spill */
2800 	for (; i; i--)
2801 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2802 }
2803 
2804 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2805  * stack boundary and alignment are checked in check_mem_access()
2806  */
2807 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2808 				       /* stack frame we're writing to */
2809 				       struct bpf_func_state *state,
2810 				       int off, int size, int value_regno,
2811 				       int insn_idx)
2812 {
2813 	struct bpf_func_state *cur; /* state of the current function */
2814 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2815 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2816 	struct bpf_reg_state *reg = NULL;
2817 
2818 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2819 	if (err)
2820 		return err;
2821 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2822 	 * so it's aligned access and [off, off + size) are within stack limits
2823 	 */
2824 	if (!env->allow_ptr_leaks &&
2825 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2826 	    size != BPF_REG_SIZE) {
2827 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2828 		return -EACCES;
2829 	}
2830 
2831 	cur = env->cur_state->frame[env->cur_state->curframe];
2832 	if (value_regno >= 0)
2833 		reg = &cur->regs[value_regno];
2834 	if (!env->bypass_spec_v4) {
2835 		bool sanitize = reg && is_spillable_regtype(reg->type);
2836 
2837 		for (i = 0; i < size; i++) {
2838 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2839 				sanitize = true;
2840 				break;
2841 			}
2842 		}
2843 
2844 		if (sanitize)
2845 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2846 	}
2847 
2848 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2849 	    !register_is_null(reg) && env->bpf_capable) {
2850 		if (dst_reg != BPF_REG_FP) {
2851 			/* The backtracking logic can only recognize explicit
2852 			 * stack slot address like [fp - 8]. Other spill of
2853 			 * scalar via different register has to be conservative.
2854 			 * Backtrack from here and mark all registers as precise
2855 			 * that contributed into 'reg' being a constant.
2856 			 */
2857 			err = mark_chain_precision(env, value_regno);
2858 			if (err)
2859 				return err;
2860 		}
2861 		save_register_state(state, spi, reg, size);
2862 	} else if (reg && is_spillable_regtype(reg->type)) {
2863 		/* register containing pointer is being spilled into stack */
2864 		if (size != BPF_REG_SIZE) {
2865 			verbose_linfo(env, insn_idx, "; ");
2866 			verbose(env, "invalid size of register spill\n");
2867 			return -EACCES;
2868 		}
2869 		if (state != cur && reg->type == PTR_TO_STACK) {
2870 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2871 			return -EINVAL;
2872 		}
2873 		save_register_state(state, spi, reg, size);
2874 	} else {
2875 		u8 type = STACK_MISC;
2876 
2877 		/* regular write of data into stack destroys any spilled ptr */
2878 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2879 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2880 		if (is_spilled_reg(&state->stack[spi]))
2881 			for (i = 0; i < BPF_REG_SIZE; i++)
2882 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2883 
2884 		/* only mark the slot as written if all 8 bytes were written
2885 		 * otherwise read propagation may incorrectly stop too soon
2886 		 * when stack slots are partially written.
2887 		 * This heuristic means that read propagation will be
2888 		 * conservative, since it will add reg_live_read marks
2889 		 * to stack slots all the way to first state when programs
2890 		 * writes+reads less than 8 bytes
2891 		 */
2892 		if (size == BPF_REG_SIZE)
2893 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2894 
2895 		/* when we zero initialize stack slots mark them as such */
2896 		if (reg && register_is_null(reg)) {
2897 			/* backtracking doesn't work for STACK_ZERO yet. */
2898 			err = mark_chain_precision(env, value_regno);
2899 			if (err)
2900 				return err;
2901 			type = STACK_ZERO;
2902 		}
2903 
2904 		/* Mark slots affected by this stack write. */
2905 		for (i = 0; i < size; i++)
2906 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2907 				type;
2908 	}
2909 	return 0;
2910 }
2911 
2912 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2913  * known to contain a variable offset.
2914  * This function checks whether the write is permitted and conservatively
2915  * tracks the effects of the write, considering that each stack slot in the
2916  * dynamic range is potentially written to.
2917  *
2918  * 'off' includes 'regno->off'.
2919  * 'value_regno' can be -1, meaning that an unknown value is being written to
2920  * the stack.
2921  *
2922  * Spilled pointers in range are not marked as written because we don't know
2923  * what's going to be actually written. This means that read propagation for
2924  * future reads cannot be terminated by this write.
2925  *
2926  * For privileged programs, uninitialized stack slots are considered
2927  * initialized by this write (even though we don't know exactly what offsets
2928  * are going to be written to). The idea is that we don't want the verifier to
2929  * reject future reads that access slots written to through variable offsets.
2930  */
2931 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2932 				     /* func where register points to */
2933 				     struct bpf_func_state *state,
2934 				     int ptr_regno, int off, int size,
2935 				     int value_regno, int insn_idx)
2936 {
2937 	struct bpf_func_state *cur; /* state of the current function */
2938 	int min_off, max_off;
2939 	int i, err;
2940 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2941 	bool writing_zero = false;
2942 	/* set if the fact that we're writing a zero is used to let any
2943 	 * stack slots remain STACK_ZERO
2944 	 */
2945 	bool zero_used = false;
2946 
2947 	cur = env->cur_state->frame[env->cur_state->curframe];
2948 	ptr_reg = &cur->regs[ptr_regno];
2949 	min_off = ptr_reg->smin_value + off;
2950 	max_off = ptr_reg->smax_value + off + size;
2951 	if (value_regno >= 0)
2952 		value_reg = &cur->regs[value_regno];
2953 	if (value_reg && register_is_null(value_reg))
2954 		writing_zero = true;
2955 
2956 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2957 	if (err)
2958 		return err;
2959 
2960 
2961 	/* Variable offset writes destroy any spilled pointers in range. */
2962 	for (i = min_off; i < max_off; i++) {
2963 		u8 new_type, *stype;
2964 		int slot, spi;
2965 
2966 		slot = -i - 1;
2967 		spi = slot / BPF_REG_SIZE;
2968 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2969 
2970 		if (!env->allow_ptr_leaks
2971 				&& *stype != NOT_INIT
2972 				&& *stype != SCALAR_VALUE) {
2973 			/* Reject the write if there's are spilled pointers in
2974 			 * range. If we didn't reject here, the ptr status
2975 			 * would be erased below (even though not all slots are
2976 			 * actually overwritten), possibly opening the door to
2977 			 * leaks.
2978 			 */
2979 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2980 				insn_idx, i);
2981 			return -EINVAL;
2982 		}
2983 
2984 		/* Erase all spilled pointers. */
2985 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2986 
2987 		/* Update the slot type. */
2988 		new_type = STACK_MISC;
2989 		if (writing_zero && *stype == STACK_ZERO) {
2990 			new_type = STACK_ZERO;
2991 			zero_used = true;
2992 		}
2993 		/* If the slot is STACK_INVALID, we check whether it's OK to
2994 		 * pretend that it will be initialized by this write. The slot
2995 		 * might not actually be written to, and so if we mark it as
2996 		 * initialized future reads might leak uninitialized memory.
2997 		 * For privileged programs, we will accept such reads to slots
2998 		 * that may or may not be written because, if we're reject
2999 		 * them, the error would be too confusing.
3000 		 */
3001 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3002 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3003 					insn_idx, i);
3004 			return -EINVAL;
3005 		}
3006 		*stype = new_type;
3007 	}
3008 	if (zero_used) {
3009 		/* backtracking doesn't work for STACK_ZERO yet. */
3010 		err = mark_chain_precision(env, value_regno);
3011 		if (err)
3012 			return err;
3013 	}
3014 	return 0;
3015 }
3016 
3017 /* When register 'dst_regno' is assigned some values from stack[min_off,
3018  * max_off), we set the register's type according to the types of the
3019  * respective stack slots. If all the stack values are known to be zeros, then
3020  * so is the destination reg. Otherwise, the register is considered to be
3021  * SCALAR. This function does not deal with register filling; the caller must
3022  * ensure that all spilled registers in the stack range have been marked as
3023  * read.
3024  */
3025 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3026 				/* func where src register points to */
3027 				struct bpf_func_state *ptr_state,
3028 				int min_off, int max_off, int dst_regno)
3029 {
3030 	struct bpf_verifier_state *vstate = env->cur_state;
3031 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3032 	int i, slot, spi;
3033 	u8 *stype;
3034 	int zeros = 0;
3035 
3036 	for (i = min_off; i < max_off; i++) {
3037 		slot = -i - 1;
3038 		spi = slot / BPF_REG_SIZE;
3039 		stype = ptr_state->stack[spi].slot_type;
3040 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3041 			break;
3042 		zeros++;
3043 	}
3044 	if (zeros == max_off - min_off) {
3045 		/* any access_size read into register is zero extended,
3046 		 * so the whole register == const_zero
3047 		 */
3048 		__mark_reg_const_zero(&state->regs[dst_regno]);
3049 		/* backtracking doesn't support STACK_ZERO yet,
3050 		 * so mark it precise here, so that later
3051 		 * backtracking can stop here.
3052 		 * Backtracking may not need this if this register
3053 		 * doesn't participate in pointer adjustment.
3054 		 * Forward propagation of precise flag is not
3055 		 * necessary either. This mark is only to stop
3056 		 * backtracking. Any register that contributed
3057 		 * to const 0 was marked precise before spill.
3058 		 */
3059 		state->regs[dst_regno].precise = true;
3060 	} else {
3061 		/* have read misc data from the stack */
3062 		mark_reg_unknown(env, state->regs, dst_regno);
3063 	}
3064 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3065 }
3066 
3067 /* Read the stack at 'off' and put the results into the register indicated by
3068  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3069  * spilled reg.
3070  *
3071  * 'dst_regno' can be -1, meaning that the read value is not going to a
3072  * register.
3073  *
3074  * The access is assumed to be within the current stack bounds.
3075  */
3076 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3077 				      /* func where src register points to */
3078 				      struct bpf_func_state *reg_state,
3079 				      int off, int size, int dst_regno)
3080 {
3081 	struct bpf_verifier_state *vstate = env->cur_state;
3082 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3083 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3084 	struct bpf_reg_state *reg;
3085 	u8 *stype, type;
3086 
3087 	stype = reg_state->stack[spi].slot_type;
3088 	reg = &reg_state->stack[spi].spilled_ptr;
3089 
3090 	if (is_spilled_reg(&reg_state->stack[spi])) {
3091 		u8 spill_size = 1;
3092 
3093 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3094 			spill_size++;
3095 
3096 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3097 			if (reg->type != SCALAR_VALUE) {
3098 				verbose_linfo(env, env->insn_idx, "; ");
3099 				verbose(env, "invalid size of register fill\n");
3100 				return -EACCES;
3101 			}
3102 
3103 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3104 			if (dst_regno < 0)
3105 				return 0;
3106 
3107 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3108 				/* The earlier check_reg_arg() has decided the
3109 				 * subreg_def for this insn.  Save it first.
3110 				 */
3111 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3112 
3113 				state->regs[dst_regno] = *reg;
3114 				state->regs[dst_regno].subreg_def = subreg_def;
3115 			} else {
3116 				for (i = 0; i < size; i++) {
3117 					type = stype[(slot - i) % BPF_REG_SIZE];
3118 					if (type == STACK_SPILL)
3119 						continue;
3120 					if (type == STACK_MISC)
3121 						continue;
3122 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3123 						off, i, size);
3124 					return -EACCES;
3125 				}
3126 				mark_reg_unknown(env, state->regs, dst_regno);
3127 			}
3128 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3129 			return 0;
3130 		}
3131 
3132 		if (dst_regno >= 0) {
3133 			/* restore register state from stack */
3134 			state->regs[dst_regno] = *reg;
3135 			/* mark reg as written since spilled pointer state likely
3136 			 * has its liveness marks cleared by is_state_visited()
3137 			 * which resets stack/reg liveness for state transitions
3138 			 */
3139 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3140 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3141 			/* If dst_regno==-1, the caller is asking us whether
3142 			 * it is acceptable to use this value as a SCALAR_VALUE
3143 			 * (e.g. for XADD).
3144 			 * We must not allow unprivileged callers to do that
3145 			 * with spilled pointers.
3146 			 */
3147 			verbose(env, "leaking pointer from stack off %d\n",
3148 				off);
3149 			return -EACCES;
3150 		}
3151 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3152 	} else {
3153 		for (i = 0; i < size; i++) {
3154 			type = stype[(slot - i) % BPF_REG_SIZE];
3155 			if (type == STACK_MISC)
3156 				continue;
3157 			if (type == STACK_ZERO)
3158 				continue;
3159 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3160 				off, i, size);
3161 			return -EACCES;
3162 		}
3163 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3164 		if (dst_regno >= 0)
3165 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3166 	}
3167 	return 0;
3168 }
3169 
3170 enum stack_access_src {
3171 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3172 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3173 };
3174 
3175 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3176 					 int regno, int off, int access_size,
3177 					 bool zero_size_allowed,
3178 					 enum stack_access_src type,
3179 					 struct bpf_call_arg_meta *meta);
3180 
3181 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3182 {
3183 	return cur_regs(env) + regno;
3184 }
3185 
3186 /* Read the stack at 'ptr_regno + off' and put the result into the register
3187  * 'dst_regno'.
3188  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3189  * but not its variable offset.
3190  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3191  *
3192  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3193  * filling registers (i.e. reads of spilled register cannot be detected when
3194  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3195  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3196  * offset; for a fixed offset check_stack_read_fixed_off should be used
3197  * instead.
3198  */
3199 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3200 				    int ptr_regno, int off, int size, int dst_regno)
3201 {
3202 	/* The state of the source register. */
3203 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3204 	struct bpf_func_state *ptr_state = func(env, reg);
3205 	int err;
3206 	int min_off, max_off;
3207 
3208 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3209 	 */
3210 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3211 					    false, ACCESS_DIRECT, NULL);
3212 	if (err)
3213 		return err;
3214 
3215 	min_off = reg->smin_value + off;
3216 	max_off = reg->smax_value + off;
3217 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3218 	return 0;
3219 }
3220 
3221 /* check_stack_read dispatches to check_stack_read_fixed_off or
3222  * check_stack_read_var_off.
3223  *
3224  * The caller must ensure that the offset falls within the allocated stack
3225  * bounds.
3226  *
3227  * 'dst_regno' is a register which will receive the value from the stack. It
3228  * can be -1, meaning that the read value is not going to a register.
3229  */
3230 static int check_stack_read(struct bpf_verifier_env *env,
3231 			    int ptr_regno, int off, int size,
3232 			    int dst_regno)
3233 {
3234 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3235 	struct bpf_func_state *state = func(env, reg);
3236 	int err;
3237 	/* Some accesses are only permitted with a static offset. */
3238 	bool var_off = !tnum_is_const(reg->var_off);
3239 
3240 	/* The offset is required to be static when reads don't go to a
3241 	 * register, in order to not leak pointers (see
3242 	 * check_stack_read_fixed_off).
3243 	 */
3244 	if (dst_regno < 0 && var_off) {
3245 		char tn_buf[48];
3246 
3247 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3248 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3249 			tn_buf, off, size);
3250 		return -EACCES;
3251 	}
3252 	/* Variable offset is prohibited for unprivileged mode for simplicity
3253 	 * since it requires corresponding support in Spectre masking for stack
3254 	 * ALU. See also retrieve_ptr_limit().
3255 	 */
3256 	if (!env->bypass_spec_v1 && var_off) {
3257 		char tn_buf[48];
3258 
3259 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3260 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3261 				ptr_regno, tn_buf);
3262 		return -EACCES;
3263 	}
3264 
3265 	if (!var_off) {
3266 		off += reg->var_off.value;
3267 		err = check_stack_read_fixed_off(env, state, off, size,
3268 						 dst_regno);
3269 	} else {
3270 		/* Variable offset stack reads need more conservative handling
3271 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3272 		 * branch.
3273 		 */
3274 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3275 					       dst_regno);
3276 	}
3277 	return err;
3278 }
3279 
3280 
3281 /* check_stack_write dispatches to check_stack_write_fixed_off or
3282  * check_stack_write_var_off.
3283  *
3284  * 'ptr_regno' is the register used as a pointer into the stack.
3285  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3286  * 'value_regno' is the register whose value we're writing to the stack. It can
3287  * be -1, meaning that we're not writing from a register.
3288  *
3289  * The caller must ensure that the offset falls within the maximum stack size.
3290  */
3291 static int check_stack_write(struct bpf_verifier_env *env,
3292 			     int ptr_regno, int off, int size,
3293 			     int value_regno, int insn_idx)
3294 {
3295 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3296 	struct bpf_func_state *state = func(env, reg);
3297 	int err;
3298 
3299 	if (tnum_is_const(reg->var_off)) {
3300 		off += reg->var_off.value;
3301 		err = check_stack_write_fixed_off(env, state, off, size,
3302 						  value_regno, insn_idx);
3303 	} else {
3304 		/* Variable offset stack reads need more conservative handling
3305 		 * than fixed offset ones.
3306 		 */
3307 		err = check_stack_write_var_off(env, state,
3308 						ptr_regno, off, size,
3309 						value_regno, insn_idx);
3310 	}
3311 	return err;
3312 }
3313 
3314 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3315 				 int off, int size, enum bpf_access_type type)
3316 {
3317 	struct bpf_reg_state *regs = cur_regs(env);
3318 	struct bpf_map *map = regs[regno].map_ptr;
3319 	u32 cap = bpf_map_flags_to_cap(map);
3320 
3321 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3322 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3323 			map->value_size, off, size);
3324 		return -EACCES;
3325 	}
3326 
3327 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3328 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3329 			map->value_size, off, size);
3330 		return -EACCES;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3337 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3338 			      int off, int size, u32 mem_size,
3339 			      bool zero_size_allowed)
3340 {
3341 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3342 	struct bpf_reg_state *reg;
3343 
3344 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3345 		return 0;
3346 
3347 	reg = &cur_regs(env)[regno];
3348 	switch (reg->type) {
3349 	case PTR_TO_MAP_KEY:
3350 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3351 			mem_size, off, size);
3352 		break;
3353 	case PTR_TO_MAP_VALUE:
3354 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3355 			mem_size, off, size);
3356 		break;
3357 	case PTR_TO_PACKET:
3358 	case PTR_TO_PACKET_META:
3359 	case PTR_TO_PACKET_END:
3360 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3361 			off, size, regno, reg->id, off, mem_size);
3362 		break;
3363 	case PTR_TO_MEM:
3364 	default:
3365 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3366 			mem_size, off, size);
3367 	}
3368 
3369 	return -EACCES;
3370 }
3371 
3372 /* check read/write into a memory region with possible variable offset */
3373 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3374 				   int off, int size, u32 mem_size,
3375 				   bool zero_size_allowed)
3376 {
3377 	struct bpf_verifier_state *vstate = env->cur_state;
3378 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3379 	struct bpf_reg_state *reg = &state->regs[regno];
3380 	int err;
3381 
3382 	/* We may have adjusted the register pointing to memory region, so we
3383 	 * need to try adding each of min_value and max_value to off
3384 	 * to make sure our theoretical access will be safe.
3385 	 */
3386 	if (env->log.level & BPF_LOG_LEVEL)
3387 		print_verifier_state(env, state);
3388 
3389 	/* The minimum value is only important with signed
3390 	 * comparisons where we can't assume the floor of a
3391 	 * value is 0.  If we are using signed variables for our
3392 	 * index'es we need to make sure that whatever we use
3393 	 * will have a set floor within our range.
3394 	 */
3395 	if (reg->smin_value < 0 &&
3396 	    (reg->smin_value == S64_MIN ||
3397 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3398 	      reg->smin_value + off < 0)) {
3399 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3400 			regno);
3401 		return -EACCES;
3402 	}
3403 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3404 				 mem_size, zero_size_allowed);
3405 	if (err) {
3406 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3407 			regno);
3408 		return err;
3409 	}
3410 
3411 	/* If we haven't set a max value then we need to bail since we can't be
3412 	 * sure we won't do bad things.
3413 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3414 	 */
3415 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3416 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3417 			regno);
3418 		return -EACCES;
3419 	}
3420 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3421 				 mem_size, zero_size_allowed);
3422 	if (err) {
3423 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3424 			regno);
3425 		return err;
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 /* check read/write into a map element with possible variable offset */
3432 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3433 			    int off, int size, bool zero_size_allowed)
3434 {
3435 	struct bpf_verifier_state *vstate = env->cur_state;
3436 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3437 	struct bpf_reg_state *reg = &state->regs[regno];
3438 	struct bpf_map *map = reg->map_ptr;
3439 	int err;
3440 
3441 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3442 				      zero_size_allowed);
3443 	if (err)
3444 		return err;
3445 
3446 	if (map_value_has_spin_lock(map)) {
3447 		u32 lock = map->spin_lock_off;
3448 
3449 		/* if any part of struct bpf_spin_lock can be touched by
3450 		 * load/store reject this program.
3451 		 * To check that [x1, x2) overlaps with [y1, y2)
3452 		 * it is sufficient to check x1 < y2 && y1 < x2.
3453 		 */
3454 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3455 		     lock < reg->umax_value + off + size) {
3456 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3457 			return -EACCES;
3458 		}
3459 	}
3460 	if (map_value_has_timer(map)) {
3461 		u32 t = map->timer_off;
3462 
3463 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3464 		     t < reg->umax_value + off + size) {
3465 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3466 			return -EACCES;
3467 		}
3468 	}
3469 	return err;
3470 }
3471 
3472 #define MAX_PACKET_OFF 0xffff
3473 
3474 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3475 {
3476 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3477 }
3478 
3479 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3480 				       const struct bpf_call_arg_meta *meta,
3481 				       enum bpf_access_type t)
3482 {
3483 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3484 
3485 	switch (prog_type) {
3486 	/* Program types only with direct read access go here! */
3487 	case BPF_PROG_TYPE_LWT_IN:
3488 	case BPF_PROG_TYPE_LWT_OUT:
3489 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3490 	case BPF_PROG_TYPE_SK_REUSEPORT:
3491 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3492 	case BPF_PROG_TYPE_CGROUP_SKB:
3493 		if (t == BPF_WRITE)
3494 			return false;
3495 		fallthrough;
3496 
3497 	/* Program types with direct read + write access go here! */
3498 	case BPF_PROG_TYPE_SCHED_CLS:
3499 	case BPF_PROG_TYPE_SCHED_ACT:
3500 	case BPF_PROG_TYPE_XDP:
3501 	case BPF_PROG_TYPE_LWT_XMIT:
3502 	case BPF_PROG_TYPE_SK_SKB:
3503 	case BPF_PROG_TYPE_SK_MSG:
3504 		if (meta)
3505 			return meta->pkt_access;
3506 
3507 		env->seen_direct_write = true;
3508 		return true;
3509 
3510 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3511 		if (t == BPF_WRITE)
3512 			env->seen_direct_write = true;
3513 
3514 		return true;
3515 
3516 	default:
3517 		return false;
3518 	}
3519 }
3520 
3521 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3522 			       int size, bool zero_size_allowed)
3523 {
3524 	struct bpf_reg_state *regs = cur_regs(env);
3525 	struct bpf_reg_state *reg = &regs[regno];
3526 	int err;
3527 
3528 	/* We may have added a variable offset to the packet pointer; but any
3529 	 * reg->range we have comes after that.  We are only checking the fixed
3530 	 * offset.
3531 	 */
3532 
3533 	/* We don't allow negative numbers, because we aren't tracking enough
3534 	 * detail to prove they're safe.
3535 	 */
3536 	if (reg->smin_value < 0) {
3537 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3538 			regno);
3539 		return -EACCES;
3540 	}
3541 
3542 	err = reg->range < 0 ? -EINVAL :
3543 	      __check_mem_access(env, regno, off, size, reg->range,
3544 				 zero_size_allowed);
3545 	if (err) {
3546 		verbose(env, "R%d offset is outside of the packet\n", regno);
3547 		return err;
3548 	}
3549 
3550 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3551 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3552 	 * otherwise find_good_pkt_pointers would have refused to set range info
3553 	 * that __check_mem_access would have rejected this pkt access.
3554 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3555 	 */
3556 	env->prog->aux->max_pkt_offset =
3557 		max_t(u32, env->prog->aux->max_pkt_offset,
3558 		      off + reg->umax_value + size - 1);
3559 
3560 	return err;
3561 }
3562 
3563 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3564 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3565 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3566 			    struct btf **btf, u32 *btf_id)
3567 {
3568 	struct bpf_insn_access_aux info = {
3569 		.reg_type = *reg_type,
3570 		.log = &env->log,
3571 	};
3572 
3573 	if (env->ops->is_valid_access &&
3574 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3575 		/* A non zero info.ctx_field_size indicates that this field is a
3576 		 * candidate for later verifier transformation to load the whole
3577 		 * field and then apply a mask when accessed with a narrower
3578 		 * access than actual ctx access size. A zero info.ctx_field_size
3579 		 * will only allow for whole field access and rejects any other
3580 		 * type of narrower access.
3581 		 */
3582 		*reg_type = info.reg_type;
3583 
3584 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3585 			*btf = info.btf;
3586 			*btf_id = info.btf_id;
3587 		} else {
3588 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3589 		}
3590 		/* remember the offset of last byte accessed in ctx */
3591 		if (env->prog->aux->max_ctx_offset < off + size)
3592 			env->prog->aux->max_ctx_offset = off + size;
3593 		return 0;
3594 	}
3595 
3596 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3597 	return -EACCES;
3598 }
3599 
3600 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3601 				  int size)
3602 {
3603 	if (size < 0 || off < 0 ||
3604 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3605 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3606 			off, size);
3607 		return -EACCES;
3608 	}
3609 	return 0;
3610 }
3611 
3612 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3613 			     u32 regno, int off, int size,
3614 			     enum bpf_access_type t)
3615 {
3616 	struct bpf_reg_state *regs = cur_regs(env);
3617 	struct bpf_reg_state *reg = &regs[regno];
3618 	struct bpf_insn_access_aux info = {};
3619 	bool valid;
3620 
3621 	if (reg->smin_value < 0) {
3622 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3623 			regno);
3624 		return -EACCES;
3625 	}
3626 
3627 	switch (reg->type) {
3628 	case PTR_TO_SOCK_COMMON:
3629 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3630 		break;
3631 	case PTR_TO_SOCKET:
3632 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3633 		break;
3634 	case PTR_TO_TCP_SOCK:
3635 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3636 		break;
3637 	case PTR_TO_XDP_SOCK:
3638 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3639 		break;
3640 	default:
3641 		valid = false;
3642 	}
3643 
3644 
3645 	if (valid) {
3646 		env->insn_aux_data[insn_idx].ctx_field_size =
3647 			info.ctx_field_size;
3648 		return 0;
3649 	}
3650 
3651 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3652 		regno, reg_type_str[reg->type], off, size);
3653 
3654 	return -EACCES;
3655 }
3656 
3657 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3658 {
3659 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3660 }
3661 
3662 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3663 {
3664 	const struct bpf_reg_state *reg = reg_state(env, regno);
3665 
3666 	return reg->type == PTR_TO_CTX;
3667 }
3668 
3669 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3670 {
3671 	const struct bpf_reg_state *reg = reg_state(env, regno);
3672 
3673 	return type_is_sk_pointer(reg->type);
3674 }
3675 
3676 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3677 {
3678 	const struct bpf_reg_state *reg = reg_state(env, regno);
3679 
3680 	return type_is_pkt_pointer(reg->type);
3681 }
3682 
3683 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3684 {
3685 	const struct bpf_reg_state *reg = reg_state(env, regno);
3686 
3687 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3688 	return reg->type == PTR_TO_FLOW_KEYS;
3689 }
3690 
3691 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3692 				   const struct bpf_reg_state *reg,
3693 				   int off, int size, bool strict)
3694 {
3695 	struct tnum reg_off;
3696 	int ip_align;
3697 
3698 	/* Byte size accesses are always allowed. */
3699 	if (!strict || size == 1)
3700 		return 0;
3701 
3702 	/* For platforms that do not have a Kconfig enabling
3703 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3704 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3705 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3706 	 * to this code only in strict mode where we want to emulate
3707 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3708 	 * unconditional IP align value of '2'.
3709 	 */
3710 	ip_align = 2;
3711 
3712 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3713 	if (!tnum_is_aligned(reg_off, size)) {
3714 		char tn_buf[48];
3715 
3716 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3717 		verbose(env,
3718 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3719 			ip_align, tn_buf, reg->off, off, size);
3720 		return -EACCES;
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3727 				       const struct bpf_reg_state *reg,
3728 				       const char *pointer_desc,
3729 				       int off, int size, bool strict)
3730 {
3731 	struct tnum reg_off;
3732 
3733 	/* Byte size accesses are always allowed. */
3734 	if (!strict || size == 1)
3735 		return 0;
3736 
3737 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3738 	if (!tnum_is_aligned(reg_off, size)) {
3739 		char tn_buf[48];
3740 
3741 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3742 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3743 			pointer_desc, tn_buf, reg->off, off, size);
3744 		return -EACCES;
3745 	}
3746 
3747 	return 0;
3748 }
3749 
3750 static int check_ptr_alignment(struct bpf_verifier_env *env,
3751 			       const struct bpf_reg_state *reg, int off,
3752 			       int size, bool strict_alignment_once)
3753 {
3754 	bool strict = env->strict_alignment || strict_alignment_once;
3755 	const char *pointer_desc = "";
3756 
3757 	switch (reg->type) {
3758 	case PTR_TO_PACKET:
3759 	case PTR_TO_PACKET_META:
3760 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3761 		 * right in front, treat it the very same way.
3762 		 */
3763 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3764 	case PTR_TO_FLOW_KEYS:
3765 		pointer_desc = "flow keys ";
3766 		break;
3767 	case PTR_TO_MAP_KEY:
3768 		pointer_desc = "key ";
3769 		break;
3770 	case PTR_TO_MAP_VALUE:
3771 		pointer_desc = "value ";
3772 		break;
3773 	case PTR_TO_CTX:
3774 		pointer_desc = "context ";
3775 		break;
3776 	case PTR_TO_STACK:
3777 		pointer_desc = "stack ";
3778 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3779 		 * and check_stack_read_fixed_off() relies on stack accesses being
3780 		 * aligned.
3781 		 */
3782 		strict = true;
3783 		break;
3784 	case PTR_TO_SOCKET:
3785 		pointer_desc = "sock ";
3786 		break;
3787 	case PTR_TO_SOCK_COMMON:
3788 		pointer_desc = "sock_common ";
3789 		break;
3790 	case PTR_TO_TCP_SOCK:
3791 		pointer_desc = "tcp_sock ";
3792 		break;
3793 	case PTR_TO_XDP_SOCK:
3794 		pointer_desc = "xdp_sock ";
3795 		break;
3796 	default:
3797 		break;
3798 	}
3799 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3800 					   strict);
3801 }
3802 
3803 static int update_stack_depth(struct bpf_verifier_env *env,
3804 			      const struct bpf_func_state *func,
3805 			      int off)
3806 {
3807 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3808 
3809 	if (stack >= -off)
3810 		return 0;
3811 
3812 	/* update known max for given subprogram */
3813 	env->subprog_info[func->subprogno].stack_depth = -off;
3814 	return 0;
3815 }
3816 
3817 /* starting from main bpf function walk all instructions of the function
3818  * and recursively walk all callees that given function can call.
3819  * Ignore jump and exit insns.
3820  * Since recursion is prevented by check_cfg() this algorithm
3821  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3822  */
3823 static int check_max_stack_depth(struct bpf_verifier_env *env)
3824 {
3825 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3826 	struct bpf_subprog_info *subprog = env->subprog_info;
3827 	struct bpf_insn *insn = env->prog->insnsi;
3828 	bool tail_call_reachable = false;
3829 	int ret_insn[MAX_CALL_FRAMES];
3830 	int ret_prog[MAX_CALL_FRAMES];
3831 	int j;
3832 
3833 process_func:
3834 	/* protect against potential stack overflow that might happen when
3835 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3836 	 * depth for such case down to 256 so that the worst case scenario
3837 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3838 	 * 8k).
3839 	 *
3840 	 * To get the idea what might happen, see an example:
3841 	 * func1 -> sub rsp, 128
3842 	 *  subfunc1 -> sub rsp, 256
3843 	 *  tailcall1 -> add rsp, 256
3844 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3845 	 *   subfunc2 -> sub rsp, 64
3846 	 *   subfunc22 -> sub rsp, 128
3847 	 *   tailcall2 -> add rsp, 128
3848 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3849 	 *
3850 	 * tailcall will unwind the current stack frame but it will not get rid
3851 	 * of caller's stack as shown on the example above.
3852 	 */
3853 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3854 		verbose(env,
3855 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3856 			depth);
3857 		return -EACCES;
3858 	}
3859 	/* round up to 32-bytes, since this is granularity
3860 	 * of interpreter stack size
3861 	 */
3862 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3863 	if (depth > MAX_BPF_STACK) {
3864 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3865 			frame + 1, depth);
3866 		return -EACCES;
3867 	}
3868 continue_func:
3869 	subprog_end = subprog[idx + 1].start;
3870 	for (; i < subprog_end; i++) {
3871 		int next_insn;
3872 
3873 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3874 			continue;
3875 		/* remember insn and function to return to */
3876 		ret_insn[frame] = i + 1;
3877 		ret_prog[frame] = idx;
3878 
3879 		/* find the callee */
3880 		next_insn = i + insn[i].imm + 1;
3881 		idx = find_subprog(env, next_insn);
3882 		if (idx < 0) {
3883 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3884 				  next_insn);
3885 			return -EFAULT;
3886 		}
3887 		if (subprog[idx].is_async_cb) {
3888 			if (subprog[idx].has_tail_call) {
3889 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3890 				return -EFAULT;
3891 			}
3892 			 /* async callbacks don't increase bpf prog stack size */
3893 			continue;
3894 		}
3895 		i = next_insn;
3896 
3897 		if (subprog[idx].has_tail_call)
3898 			tail_call_reachable = true;
3899 
3900 		frame++;
3901 		if (frame >= MAX_CALL_FRAMES) {
3902 			verbose(env, "the call stack of %d frames is too deep !\n",
3903 				frame);
3904 			return -E2BIG;
3905 		}
3906 		goto process_func;
3907 	}
3908 	/* if tail call got detected across bpf2bpf calls then mark each of the
3909 	 * currently present subprog frames as tail call reachable subprogs;
3910 	 * this info will be utilized by JIT so that we will be preserving the
3911 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3912 	 */
3913 	if (tail_call_reachable)
3914 		for (j = 0; j < frame; j++)
3915 			subprog[ret_prog[j]].tail_call_reachable = true;
3916 	if (subprog[0].tail_call_reachable)
3917 		env->prog->aux->tail_call_reachable = true;
3918 
3919 	/* end of for() loop means the last insn of the 'subprog'
3920 	 * was reached. Doesn't matter whether it was JA or EXIT
3921 	 */
3922 	if (frame == 0)
3923 		return 0;
3924 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3925 	frame--;
3926 	i = ret_insn[frame];
3927 	idx = ret_prog[frame];
3928 	goto continue_func;
3929 }
3930 
3931 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3932 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3933 				  const struct bpf_insn *insn, int idx)
3934 {
3935 	int start = idx + insn->imm + 1, subprog;
3936 
3937 	subprog = find_subprog(env, start);
3938 	if (subprog < 0) {
3939 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3940 			  start);
3941 		return -EFAULT;
3942 	}
3943 	return env->subprog_info[subprog].stack_depth;
3944 }
3945 #endif
3946 
3947 int check_ctx_reg(struct bpf_verifier_env *env,
3948 		  const struct bpf_reg_state *reg, int regno)
3949 {
3950 	/* Access to ctx or passing it to a helper is only allowed in
3951 	 * its original, unmodified form.
3952 	 */
3953 
3954 	if (reg->off) {
3955 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3956 			regno, reg->off);
3957 		return -EACCES;
3958 	}
3959 
3960 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3961 		char tn_buf[48];
3962 
3963 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3964 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3965 		return -EACCES;
3966 	}
3967 
3968 	return 0;
3969 }
3970 
3971 static int __check_buffer_access(struct bpf_verifier_env *env,
3972 				 const char *buf_info,
3973 				 const struct bpf_reg_state *reg,
3974 				 int regno, int off, int size)
3975 {
3976 	if (off < 0) {
3977 		verbose(env,
3978 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3979 			regno, buf_info, off, size);
3980 		return -EACCES;
3981 	}
3982 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3983 		char tn_buf[48];
3984 
3985 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3986 		verbose(env,
3987 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3988 			regno, off, tn_buf);
3989 		return -EACCES;
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3996 				  const struct bpf_reg_state *reg,
3997 				  int regno, int off, int size)
3998 {
3999 	int err;
4000 
4001 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4002 	if (err)
4003 		return err;
4004 
4005 	if (off + size > env->prog->aux->max_tp_access)
4006 		env->prog->aux->max_tp_access = off + size;
4007 
4008 	return 0;
4009 }
4010 
4011 static int check_buffer_access(struct bpf_verifier_env *env,
4012 			       const struct bpf_reg_state *reg,
4013 			       int regno, int off, int size,
4014 			       bool zero_size_allowed,
4015 			       const char *buf_info,
4016 			       u32 *max_access)
4017 {
4018 	int err;
4019 
4020 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4021 	if (err)
4022 		return err;
4023 
4024 	if (off + size > *max_access)
4025 		*max_access = off + size;
4026 
4027 	return 0;
4028 }
4029 
4030 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4031 static void zext_32_to_64(struct bpf_reg_state *reg)
4032 {
4033 	reg->var_off = tnum_subreg(reg->var_off);
4034 	__reg_assign_32_into_64(reg);
4035 }
4036 
4037 /* truncate register to smaller size (in bytes)
4038  * must be called with size < BPF_REG_SIZE
4039  */
4040 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4041 {
4042 	u64 mask;
4043 
4044 	/* clear high bits in bit representation */
4045 	reg->var_off = tnum_cast(reg->var_off, size);
4046 
4047 	/* fix arithmetic bounds */
4048 	mask = ((u64)1 << (size * 8)) - 1;
4049 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4050 		reg->umin_value &= mask;
4051 		reg->umax_value &= mask;
4052 	} else {
4053 		reg->umin_value = 0;
4054 		reg->umax_value = mask;
4055 	}
4056 	reg->smin_value = reg->umin_value;
4057 	reg->smax_value = reg->umax_value;
4058 
4059 	/* If size is smaller than 32bit register the 32bit register
4060 	 * values are also truncated so we push 64-bit bounds into
4061 	 * 32-bit bounds. Above were truncated < 32-bits already.
4062 	 */
4063 	if (size >= 4)
4064 		return;
4065 	__reg_combine_64_into_32(reg);
4066 }
4067 
4068 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4069 {
4070 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
4071 }
4072 
4073 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4074 {
4075 	void *ptr;
4076 	u64 addr;
4077 	int err;
4078 
4079 	err = map->ops->map_direct_value_addr(map, &addr, off);
4080 	if (err)
4081 		return err;
4082 	ptr = (void *)(long)addr + off;
4083 
4084 	switch (size) {
4085 	case sizeof(u8):
4086 		*val = (u64)*(u8 *)ptr;
4087 		break;
4088 	case sizeof(u16):
4089 		*val = (u64)*(u16 *)ptr;
4090 		break;
4091 	case sizeof(u32):
4092 		*val = (u64)*(u32 *)ptr;
4093 		break;
4094 	case sizeof(u64):
4095 		*val = *(u64 *)ptr;
4096 		break;
4097 	default:
4098 		return -EINVAL;
4099 	}
4100 	return 0;
4101 }
4102 
4103 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4104 				   struct bpf_reg_state *regs,
4105 				   int regno, int off, int size,
4106 				   enum bpf_access_type atype,
4107 				   int value_regno)
4108 {
4109 	struct bpf_reg_state *reg = regs + regno;
4110 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4111 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4112 	u32 btf_id;
4113 	int ret;
4114 
4115 	if (off < 0) {
4116 		verbose(env,
4117 			"R%d is ptr_%s invalid negative access: off=%d\n",
4118 			regno, tname, off);
4119 		return -EACCES;
4120 	}
4121 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4122 		char tn_buf[48];
4123 
4124 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4125 		verbose(env,
4126 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4127 			regno, tname, off, tn_buf);
4128 		return -EACCES;
4129 	}
4130 
4131 	if (env->ops->btf_struct_access) {
4132 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4133 						  off, size, atype, &btf_id);
4134 	} else {
4135 		if (atype != BPF_READ) {
4136 			verbose(env, "only read is supported\n");
4137 			return -EACCES;
4138 		}
4139 
4140 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4141 					atype, &btf_id);
4142 	}
4143 
4144 	if (ret < 0)
4145 		return ret;
4146 
4147 	if (atype == BPF_READ && value_regno >= 0)
4148 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4149 
4150 	return 0;
4151 }
4152 
4153 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4154 				   struct bpf_reg_state *regs,
4155 				   int regno, int off, int size,
4156 				   enum bpf_access_type atype,
4157 				   int value_regno)
4158 {
4159 	struct bpf_reg_state *reg = regs + regno;
4160 	struct bpf_map *map = reg->map_ptr;
4161 	const struct btf_type *t;
4162 	const char *tname;
4163 	u32 btf_id;
4164 	int ret;
4165 
4166 	if (!btf_vmlinux) {
4167 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4168 		return -ENOTSUPP;
4169 	}
4170 
4171 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4172 		verbose(env, "map_ptr access not supported for map type %d\n",
4173 			map->map_type);
4174 		return -ENOTSUPP;
4175 	}
4176 
4177 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4178 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4179 
4180 	if (!env->allow_ptr_to_map_access) {
4181 		verbose(env,
4182 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4183 			tname);
4184 		return -EPERM;
4185 	}
4186 
4187 	if (off < 0) {
4188 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4189 			regno, tname, off);
4190 		return -EACCES;
4191 	}
4192 
4193 	if (atype != BPF_READ) {
4194 		verbose(env, "only read from %s is supported\n", tname);
4195 		return -EACCES;
4196 	}
4197 
4198 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4199 	if (ret < 0)
4200 		return ret;
4201 
4202 	if (value_regno >= 0)
4203 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4204 
4205 	return 0;
4206 }
4207 
4208 /* Check that the stack access at the given offset is within bounds. The
4209  * maximum valid offset is -1.
4210  *
4211  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4212  * -state->allocated_stack for reads.
4213  */
4214 static int check_stack_slot_within_bounds(int off,
4215 					  struct bpf_func_state *state,
4216 					  enum bpf_access_type t)
4217 {
4218 	int min_valid_off;
4219 
4220 	if (t == BPF_WRITE)
4221 		min_valid_off = -MAX_BPF_STACK;
4222 	else
4223 		min_valid_off = -state->allocated_stack;
4224 
4225 	if (off < min_valid_off || off > -1)
4226 		return -EACCES;
4227 	return 0;
4228 }
4229 
4230 /* Check that the stack access at 'regno + off' falls within the maximum stack
4231  * bounds.
4232  *
4233  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4234  */
4235 static int check_stack_access_within_bounds(
4236 		struct bpf_verifier_env *env,
4237 		int regno, int off, int access_size,
4238 		enum stack_access_src src, enum bpf_access_type type)
4239 {
4240 	struct bpf_reg_state *regs = cur_regs(env);
4241 	struct bpf_reg_state *reg = regs + regno;
4242 	struct bpf_func_state *state = func(env, reg);
4243 	int min_off, max_off;
4244 	int err;
4245 	char *err_extra;
4246 
4247 	if (src == ACCESS_HELPER)
4248 		/* We don't know if helpers are reading or writing (or both). */
4249 		err_extra = " indirect access to";
4250 	else if (type == BPF_READ)
4251 		err_extra = " read from";
4252 	else
4253 		err_extra = " write to";
4254 
4255 	if (tnum_is_const(reg->var_off)) {
4256 		min_off = reg->var_off.value + off;
4257 		if (access_size > 0)
4258 			max_off = min_off + access_size - 1;
4259 		else
4260 			max_off = min_off;
4261 	} else {
4262 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4263 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4264 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4265 				err_extra, regno);
4266 			return -EACCES;
4267 		}
4268 		min_off = reg->smin_value + off;
4269 		if (access_size > 0)
4270 			max_off = reg->smax_value + off + access_size - 1;
4271 		else
4272 			max_off = min_off;
4273 	}
4274 
4275 	err = check_stack_slot_within_bounds(min_off, state, type);
4276 	if (!err)
4277 		err = check_stack_slot_within_bounds(max_off, state, type);
4278 
4279 	if (err) {
4280 		if (tnum_is_const(reg->var_off)) {
4281 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4282 				err_extra, regno, off, access_size);
4283 		} else {
4284 			char tn_buf[48];
4285 
4286 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4287 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4288 				err_extra, regno, tn_buf, access_size);
4289 		}
4290 	}
4291 	return err;
4292 }
4293 
4294 /* check whether memory at (regno + off) is accessible for t = (read | write)
4295  * if t==write, value_regno is a register which value is stored into memory
4296  * if t==read, value_regno is a register which will receive the value from memory
4297  * if t==write && value_regno==-1, some unknown value is stored into memory
4298  * if t==read && value_regno==-1, don't care what we read from memory
4299  */
4300 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4301 			    int off, int bpf_size, enum bpf_access_type t,
4302 			    int value_regno, bool strict_alignment_once)
4303 {
4304 	struct bpf_reg_state *regs = cur_regs(env);
4305 	struct bpf_reg_state *reg = regs + regno;
4306 	struct bpf_func_state *state;
4307 	int size, err = 0;
4308 
4309 	size = bpf_size_to_bytes(bpf_size);
4310 	if (size < 0)
4311 		return size;
4312 
4313 	/* alignment checks will add in reg->off themselves */
4314 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4315 	if (err)
4316 		return err;
4317 
4318 	/* for access checks, reg->off is just part of off */
4319 	off += reg->off;
4320 
4321 	if (reg->type == PTR_TO_MAP_KEY) {
4322 		if (t == BPF_WRITE) {
4323 			verbose(env, "write to change key R%d not allowed\n", regno);
4324 			return -EACCES;
4325 		}
4326 
4327 		err = check_mem_region_access(env, regno, off, size,
4328 					      reg->map_ptr->key_size, false);
4329 		if (err)
4330 			return err;
4331 		if (value_regno >= 0)
4332 			mark_reg_unknown(env, regs, value_regno);
4333 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4334 		if (t == BPF_WRITE && value_regno >= 0 &&
4335 		    is_pointer_value(env, value_regno)) {
4336 			verbose(env, "R%d leaks addr into map\n", value_regno);
4337 			return -EACCES;
4338 		}
4339 		err = check_map_access_type(env, regno, off, size, t);
4340 		if (err)
4341 			return err;
4342 		err = check_map_access(env, regno, off, size, false);
4343 		if (!err && t == BPF_READ && value_regno >= 0) {
4344 			struct bpf_map *map = reg->map_ptr;
4345 
4346 			/* if map is read-only, track its contents as scalars */
4347 			if (tnum_is_const(reg->var_off) &&
4348 			    bpf_map_is_rdonly(map) &&
4349 			    map->ops->map_direct_value_addr) {
4350 				int map_off = off + reg->var_off.value;
4351 				u64 val = 0;
4352 
4353 				err = bpf_map_direct_read(map, map_off, size,
4354 							  &val);
4355 				if (err)
4356 					return err;
4357 
4358 				regs[value_regno].type = SCALAR_VALUE;
4359 				__mark_reg_known(&regs[value_regno], val);
4360 			} else {
4361 				mark_reg_unknown(env, regs, value_regno);
4362 			}
4363 		}
4364 	} else if (reg->type == PTR_TO_MEM) {
4365 		if (t == BPF_WRITE && value_regno >= 0 &&
4366 		    is_pointer_value(env, value_regno)) {
4367 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4368 			return -EACCES;
4369 		}
4370 		err = check_mem_region_access(env, regno, off, size,
4371 					      reg->mem_size, false);
4372 		if (!err && t == BPF_READ && value_regno >= 0)
4373 			mark_reg_unknown(env, regs, value_regno);
4374 	} else if (reg->type == PTR_TO_CTX) {
4375 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4376 		struct btf *btf = NULL;
4377 		u32 btf_id = 0;
4378 
4379 		if (t == BPF_WRITE && value_regno >= 0 &&
4380 		    is_pointer_value(env, value_regno)) {
4381 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4382 			return -EACCES;
4383 		}
4384 
4385 		err = check_ctx_reg(env, reg, regno);
4386 		if (err < 0)
4387 			return err;
4388 
4389 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4390 		if (err)
4391 			verbose_linfo(env, insn_idx, "; ");
4392 		if (!err && t == BPF_READ && value_regno >= 0) {
4393 			/* ctx access returns either a scalar, or a
4394 			 * PTR_TO_PACKET[_META,_END]. In the latter
4395 			 * case, we know the offset is zero.
4396 			 */
4397 			if (reg_type == SCALAR_VALUE) {
4398 				mark_reg_unknown(env, regs, value_regno);
4399 			} else {
4400 				mark_reg_known_zero(env, regs,
4401 						    value_regno);
4402 				if (reg_type_may_be_null(reg_type))
4403 					regs[value_regno].id = ++env->id_gen;
4404 				/* A load of ctx field could have different
4405 				 * actual load size with the one encoded in the
4406 				 * insn. When the dst is PTR, it is for sure not
4407 				 * a sub-register.
4408 				 */
4409 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4410 				if (reg_type == PTR_TO_BTF_ID ||
4411 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4412 					regs[value_regno].btf = btf;
4413 					regs[value_regno].btf_id = btf_id;
4414 				}
4415 			}
4416 			regs[value_regno].type = reg_type;
4417 		}
4418 
4419 	} else if (reg->type == PTR_TO_STACK) {
4420 		/* Basic bounds checks. */
4421 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4422 		if (err)
4423 			return err;
4424 
4425 		state = func(env, reg);
4426 		err = update_stack_depth(env, state, off);
4427 		if (err)
4428 			return err;
4429 
4430 		if (t == BPF_READ)
4431 			err = check_stack_read(env, regno, off, size,
4432 					       value_regno);
4433 		else
4434 			err = check_stack_write(env, regno, off, size,
4435 						value_regno, insn_idx);
4436 	} else if (reg_is_pkt_pointer(reg)) {
4437 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4438 			verbose(env, "cannot write into packet\n");
4439 			return -EACCES;
4440 		}
4441 		if (t == BPF_WRITE && value_regno >= 0 &&
4442 		    is_pointer_value(env, value_regno)) {
4443 			verbose(env, "R%d leaks addr into packet\n",
4444 				value_regno);
4445 			return -EACCES;
4446 		}
4447 		err = check_packet_access(env, regno, off, size, false);
4448 		if (!err && t == BPF_READ && value_regno >= 0)
4449 			mark_reg_unknown(env, regs, value_regno);
4450 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4451 		if (t == BPF_WRITE && value_regno >= 0 &&
4452 		    is_pointer_value(env, value_regno)) {
4453 			verbose(env, "R%d leaks addr into flow keys\n",
4454 				value_regno);
4455 			return -EACCES;
4456 		}
4457 
4458 		err = check_flow_keys_access(env, off, size);
4459 		if (!err && t == BPF_READ && value_regno >= 0)
4460 			mark_reg_unknown(env, regs, value_regno);
4461 	} else if (type_is_sk_pointer(reg->type)) {
4462 		if (t == BPF_WRITE) {
4463 			verbose(env, "R%d cannot write into %s\n",
4464 				regno, reg_type_str[reg->type]);
4465 			return -EACCES;
4466 		}
4467 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4468 		if (!err && value_regno >= 0)
4469 			mark_reg_unknown(env, regs, value_regno);
4470 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4471 		err = check_tp_buffer_access(env, reg, regno, off, size);
4472 		if (!err && t == BPF_READ && value_regno >= 0)
4473 			mark_reg_unknown(env, regs, value_regno);
4474 	} else if (reg->type == PTR_TO_BTF_ID) {
4475 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4476 					      value_regno);
4477 	} else if (reg->type == CONST_PTR_TO_MAP) {
4478 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4479 					      value_regno);
4480 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4481 		if (t == BPF_WRITE) {
4482 			verbose(env, "R%d cannot write into %s\n",
4483 				regno, reg_type_str[reg->type]);
4484 			return -EACCES;
4485 		}
4486 		err = check_buffer_access(env, reg, regno, off, size, false,
4487 					  "rdonly",
4488 					  &env->prog->aux->max_rdonly_access);
4489 		if (!err && value_regno >= 0)
4490 			mark_reg_unknown(env, regs, value_regno);
4491 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4492 		err = check_buffer_access(env, reg, regno, off, size, false,
4493 					  "rdwr",
4494 					  &env->prog->aux->max_rdwr_access);
4495 		if (!err && t == BPF_READ && value_regno >= 0)
4496 			mark_reg_unknown(env, regs, value_regno);
4497 	} else {
4498 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4499 			reg_type_str[reg->type]);
4500 		return -EACCES;
4501 	}
4502 
4503 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4504 	    regs[value_regno].type == SCALAR_VALUE) {
4505 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4506 		coerce_reg_to_size(&regs[value_regno], size);
4507 	}
4508 	return err;
4509 }
4510 
4511 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4512 {
4513 	int load_reg;
4514 	int err;
4515 
4516 	switch (insn->imm) {
4517 	case BPF_ADD:
4518 	case BPF_ADD | BPF_FETCH:
4519 	case BPF_AND:
4520 	case BPF_AND | BPF_FETCH:
4521 	case BPF_OR:
4522 	case BPF_OR | BPF_FETCH:
4523 	case BPF_XOR:
4524 	case BPF_XOR | BPF_FETCH:
4525 	case BPF_XCHG:
4526 	case BPF_CMPXCHG:
4527 		break;
4528 	default:
4529 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4530 		return -EINVAL;
4531 	}
4532 
4533 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4534 		verbose(env, "invalid atomic operand size\n");
4535 		return -EINVAL;
4536 	}
4537 
4538 	/* check src1 operand */
4539 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4540 	if (err)
4541 		return err;
4542 
4543 	/* check src2 operand */
4544 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4545 	if (err)
4546 		return err;
4547 
4548 	if (insn->imm == BPF_CMPXCHG) {
4549 		/* Check comparison of R0 with memory location */
4550 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4551 		if (err)
4552 			return err;
4553 	}
4554 
4555 	if (is_pointer_value(env, insn->src_reg)) {
4556 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4557 		return -EACCES;
4558 	}
4559 
4560 	if (is_ctx_reg(env, insn->dst_reg) ||
4561 	    is_pkt_reg(env, insn->dst_reg) ||
4562 	    is_flow_key_reg(env, insn->dst_reg) ||
4563 	    is_sk_reg(env, insn->dst_reg)) {
4564 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4565 			insn->dst_reg,
4566 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4567 		return -EACCES;
4568 	}
4569 
4570 	if (insn->imm & BPF_FETCH) {
4571 		if (insn->imm == BPF_CMPXCHG)
4572 			load_reg = BPF_REG_0;
4573 		else
4574 			load_reg = insn->src_reg;
4575 
4576 		/* check and record load of old value */
4577 		err = check_reg_arg(env, load_reg, DST_OP);
4578 		if (err)
4579 			return err;
4580 	} else {
4581 		/* This instruction accesses a memory location but doesn't
4582 		 * actually load it into a register.
4583 		 */
4584 		load_reg = -1;
4585 	}
4586 
4587 	/* check whether we can read the memory */
4588 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4589 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4590 	if (err)
4591 		return err;
4592 
4593 	/* check whether we can write into the same memory */
4594 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4595 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4596 	if (err)
4597 		return err;
4598 
4599 	return 0;
4600 }
4601 
4602 /* When register 'regno' is used to read the stack (either directly or through
4603  * a helper function) make sure that it's within stack boundary and, depending
4604  * on the access type, that all elements of the stack are initialized.
4605  *
4606  * 'off' includes 'regno->off', but not its dynamic part (if any).
4607  *
4608  * All registers that have been spilled on the stack in the slots within the
4609  * read offsets are marked as read.
4610  */
4611 static int check_stack_range_initialized(
4612 		struct bpf_verifier_env *env, int regno, int off,
4613 		int access_size, bool zero_size_allowed,
4614 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4615 {
4616 	struct bpf_reg_state *reg = reg_state(env, regno);
4617 	struct bpf_func_state *state = func(env, reg);
4618 	int err, min_off, max_off, i, j, slot, spi;
4619 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4620 	enum bpf_access_type bounds_check_type;
4621 	/* Some accesses can write anything into the stack, others are
4622 	 * read-only.
4623 	 */
4624 	bool clobber = false;
4625 
4626 	if (access_size == 0 && !zero_size_allowed) {
4627 		verbose(env, "invalid zero-sized read\n");
4628 		return -EACCES;
4629 	}
4630 
4631 	if (type == ACCESS_HELPER) {
4632 		/* The bounds checks for writes are more permissive than for
4633 		 * reads. However, if raw_mode is not set, we'll do extra
4634 		 * checks below.
4635 		 */
4636 		bounds_check_type = BPF_WRITE;
4637 		clobber = true;
4638 	} else {
4639 		bounds_check_type = BPF_READ;
4640 	}
4641 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4642 					       type, bounds_check_type);
4643 	if (err)
4644 		return err;
4645 
4646 
4647 	if (tnum_is_const(reg->var_off)) {
4648 		min_off = max_off = reg->var_off.value + off;
4649 	} else {
4650 		/* Variable offset is prohibited for unprivileged mode for
4651 		 * simplicity since it requires corresponding support in
4652 		 * Spectre masking for stack ALU.
4653 		 * See also retrieve_ptr_limit().
4654 		 */
4655 		if (!env->bypass_spec_v1) {
4656 			char tn_buf[48];
4657 
4658 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4659 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4660 				regno, err_extra, tn_buf);
4661 			return -EACCES;
4662 		}
4663 		/* Only initialized buffer on stack is allowed to be accessed
4664 		 * with variable offset. With uninitialized buffer it's hard to
4665 		 * guarantee that whole memory is marked as initialized on
4666 		 * helper return since specific bounds are unknown what may
4667 		 * cause uninitialized stack leaking.
4668 		 */
4669 		if (meta && meta->raw_mode)
4670 			meta = NULL;
4671 
4672 		min_off = reg->smin_value + off;
4673 		max_off = reg->smax_value + off;
4674 	}
4675 
4676 	if (meta && meta->raw_mode) {
4677 		meta->access_size = access_size;
4678 		meta->regno = regno;
4679 		return 0;
4680 	}
4681 
4682 	for (i = min_off; i < max_off + access_size; i++) {
4683 		u8 *stype;
4684 
4685 		slot = -i - 1;
4686 		spi = slot / BPF_REG_SIZE;
4687 		if (state->allocated_stack <= slot)
4688 			goto err;
4689 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4690 		if (*stype == STACK_MISC)
4691 			goto mark;
4692 		if (*stype == STACK_ZERO) {
4693 			if (clobber) {
4694 				/* helper can write anything into the stack */
4695 				*stype = STACK_MISC;
4696 			}
4697 			goto mark;
4698 		}
4699 
4700 		if (is_spilled_reg(&state->stack[spi]) &&
4701 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4702 			goto mark;
4703 
4704 		if (is_spilled_reg(&state->stack[spi]) &&
4705 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4706 		     env->allow_ptr_leaks)) {
4707 			if (clobber) {
4708 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4709 				for (j = 0; j < BPF_REG_SIZE; j++)
4710 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4711 			}
4712 			goto mark;
4713 		}
4714 
4715 err:
4716 		if (tnum_is_const(reg->var_off)) {
4717 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4718 				err_extra, regno, min_off, i - min_off, access_size);
4719 		} else {
4720 			char tn_buf[48];
4721 
4722 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4723 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4724 				err_extra, regno, tn_buf, i - min_off, access_size);
4725 		}
4726 		return -EACCES;
4727 mark:
4728 		/* reading any byte out of 8-byte 'spill_slot' will cause
4729 		 * the whole slot to be marked as 'read'
4730 		 */
4731 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4732 			      state->stack[spi].spilled_ptr.parent,
4733 			      REG_LIVE_READ64);
4734 	}
4735 	return update_stack_depth(env, state, min_off);
4736 }
4737 
4738 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4739 				   int access_size, bool zero_size_allowed,
4740 				   struct bpf_call_arg_meta *meta)
4741 {
4742 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4743 
4744 	switch (reg->type) {
4745 	case PTR_TO_PACKET:
4746 	case PTR_TO_PACKET_META:
4747 		return check_packet_access(env, regno, reg->off, access_size,
4748 					   zero_size_allowed);
4749 	case PTR_TO_MAP_KEY:
4750 		return check_mem_region_access(env, regno, reg->off, access_size,
4751 					       reg->map_ptr->key_size, false);
4752 	case PTR_TO_MAP_VALUE:
4753 		if (check_map_access_type(env, regno, reg->off, access_size,
4754 					  meta && meta->raw_mode ? BPF_WRITE :
4755 					  BPF_READ))
4756 			return -EACCES;
4757 		return check_map_access(env, regno, reg->off, access_size,
4758 					zero_size_allowed);
4759 	case PTR_TO_MEM:
4760 		return check_mem_region_access(env, regno, reg->off,
4761 					       access_size, reg->mem_size,
4762 					       zero_size_allowed);
4763 	case PTR_TO_RDONLY_BUF:
4764 		if (meta && meta->raw_mode)
4765 			return -EACCES;
4766 		return check_buffer_access(env, reg, regno, reg->off,
4767 					   access_size, zero_size_allowed,
4768 					   "rdonly",
4769 					   &env->prog->aux->max_rdonly_access);
4770 	case PTR_TO_RDWR_BUF:
4771 		return check_buffer_access(env, reg, regno, reg->off,
4772 					   access_size, zero_size_allowed,
4773 					   "rdwr",
4774 					   &env->prog->aux->max_rdwr_access);
4775 	case PTR_TO_STACK:
4776 		return check_stack_range_initialized(
4777 				env,
4778 				regno, reg->off, access_size,
4779 				zero_size_allowed, ACCESS_HELPER, meta);
4780 	default: /* scalar_value or invalid ptr */
4781 		/* Allow zero-byte read from NULL, regardless of pointer type */
4782 		if (zero_size_allowed && access_size == 0 &&
4783 		    register_is_null(reg))
4784 			return 0;
4785 
4786 		verbose(env, "R%d type=%s expected=%s\n", regno,
4787 			reg_type_str[reg->type],
4788 			reg_type_str[PTR_TO_STACK]);
4789 		return -EACCES;
4790 	}
4791 }
4792 
4793 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4794 		   u32 regno, u32 mem_size)
4795 {
4796 	if (register_is_null(reg))
4797 		return 0;
4798 
4799 	if (reg_type_may_be_null(reg->type)) {
4800 		/* Assuming that the register contains a value check if the memory
4801 		 * access is safe. Temporarily save and restore the register's state as
4802 		 * the conversion shouldn't be visible to a caller.
4803 		 */
4804 		const struct bpf_reg_state saved_reg = *reg;
4805 		int rv;
4806 
4807 		mark_ptr_not_null_reg(reg);
4808 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4809 		*reg = saved_reg;
4810 		return rv;
4811 	}
4812 
4813 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4814 }
4815 
4816 /* Implementation details:
4817  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4818  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4819  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4820  * value_or_null->value transition, since the verifier only cares about
4821  * the range of access to valid map value pointer and doesn't care about actual
4822  * address of the map element.
4823  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4824  * reg->id > 0 after value_or_null->value transition. By doing so
4825  * two bpf_map_lookups will be considered two different pointers that
4826  * point to different bpf_spin_locks.
4827  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4828  * dead-locks.
4829  * Since only one bpf_spin_lock is allowed the checks are simpler than
4830  * reg_is_refcounted() logic. The verifier needs to remember only
4831  * one spin_lock instead of array of acquired_refs.
4832  * cur_state->active_spin_lock remembers which map value element got locked
4833  * and clears it after bpf_spin_unlock.
4834  */
4835 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4836 			     bool is_lock)
4837 {
4838 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4839 	struct bpf_verifier_state *cur = env->cur_state;
4840 	bool is_const = tnum_is_const(reg->var_off);
4841 	struct bpf_map *map = reg->map_ptr;
4842 	u64 val = reg->var_off.value;
4843 
4844 	if (!is_const) {
4845 		verbose(env,
4846 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4847 			regno);
4848 		return -EINVAL;
4849 	}
4850 	if (!map->btf) {
4851 		verbose(env,
4852 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4853 			map->name);
4854 		return -EINVAL;
4855 	}
4856 	if (!map_value_has_spin_lock(map)) {
4857 		if (map->spin_lock_off == -E2BIG)
4858 			verbose(env,
4859 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4860 				map->name);
4861 		else if (map->spin_lock_off == -ENOENT)
4862 			verbose(env,
4863 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4864 				map->name);
4865 		else
4866 			verbose(env,
4867 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4868 				map->name);
4869 		return -EINVAL;
4870 	}
4871 	if (map->spin_lock_off != val + reg->off) {
4872 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4873 			val + reg->off);
4874 		return -EINVAL;
4875 	}
4876 	if (is_lock) {
4877 		if (cur->active_spin_lock) {
4878 			verbose(env,
4879 				"Locking two bpf_spin_locks are not allowed\n");
4880 			return -EINVAL;
4881 		}
4882 		cur->active_spin_lock = reg->id;
4883 	} else {
4884 		if (!cur->active_spin_lock) {
4885 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4886 			return -EINVAL;
4887 		}
4888 		if (cur->active_spin_lock != reg->id) {
4889 			verbose(env, "bpf_spin_unlock of different lock\n");
4890 			return -EINVAL;
4891 		}
4892 		cur->active_spin_lock = 0;
4893 	}
4894 	return 0;
4895 }
4896 
4897 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4898 			      struct bpf_call_arg_meta *meta)
4899 {
4900 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4901 	bool is_const = tnum_is_const(reg->var_off);
4902 	struct bpf_map *map = reg->map_ptr;
4903 	u64 val = reg->var_off.value;
4904 
4905 	if (!is_const) {
4906 		verbose(env,
4907 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4908 			regno);
4909 		return -EINVAL;
4910 	}
4911 	if (!map->btf) {
4912 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4913 			map->name);
4914 		return -EINVAL;
4915 	}
4916 	if (!map_value_has_timer(map)) {
4917 		if (map->timer_off == -E2BIG)
4918 			verbose(env,
4919 				"map '%s' has more than one 'struct bpf_timer'\n",
4920 				map->name);
4921 		else if (map->timer_off == -ENOENT)
4922 			verbose(env,
4923 				"map '%s' doesn't have 'struct bpf_timer'\n",
4924 				map->name);
4925 		else
4926 			verbose(env,
4927 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4928 				map->name);
4929 		return -EINVAL;
4930 	}
4931 	if (map->timer_off != val + reg->off) {
4932 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4933 			val + reg->off, map->timer_off);
4934 		return -EINVAL;
4935 	}
4936 	if (meta->map_ptr) {
4937 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4938 		return -EFAULT;
4939 	}
4940 	meta->map_uid = reg->map_uid;
4941 	meta->map_ptr = map;
4942 	return 0;
4943 }
4944 
4945 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4946 {
4947 	return type == ARG_PTR_TO_MEM ||
4948 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4949 	       type == ARG_PTR_TO_UNINIT_MEM;
4950 }
4951 
4952 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4953 {
4954 	return type == ARG_CONST_SIZE ||
4955 	       type == ARG_CONST_SIZE_OR_ZERO;
4956 }
4957 
4958 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4959 {
4960 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4961 }
4962 
4963 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4964 {
4965 	return type == ARG_PTR_TO_INT ||
4966 	       type == ARG_PTR_TO_LONG;
4967 }
4968 
4969 static int int_ptr_type_to_size(enum bpf_arg_type type)
4970 {
4971 	if (type == ARG_PTR_TO_INT)
4972 		return sizeof(u32);
4973 	else if (type == ARG_PTR_TO_LONG)
4974 		return sizeof(u64);
4975 
4976 	return -EINVAL;
4977 }
4978 
4979 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4980 				 const struct bpf_call_arg_meta *meta,
4981 				 enum bpf_arg_type *arg_type)
4982 {
4983 	if (!meta->map_ptr) {
4984 		/* kernel subsystem misconfigured verifier */
4985 		verbose(env, "invalid map_ptr to access map->type\n");
4986 		return -EACCES;
4987 	}
4988 
4989 	switch (meta->map_ptr->map_type) {
4990 	case BPF_MAP_TYPE_SOCKMAP:
4991 	case BPF_MAP_TYPE_SOCKHASH:
4992 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4993 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4994 		} else {
4995 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4996 			return -EINVAL;
4997 		}
4998 		break;
4999 	case BPF_MAP_TYPE_BLOOM_FILTER:
5000 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5001 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5002 		break;
5003 	default:
5004 		break;
5005 	}
5006 	return 0;
5007 }
5008 
5009 struct bpf_reg_types {
5010 	const enum bpf_reg_type types[10];
5011 	u32 *btf_id;
5012 };
5013 
5014 static const struct bpf_reg_types map_key_value_types = {
5015 	.types = {
5016 		PTR_TO_STACK,
5017 		PTR_TO_PACKET,
5018 		PTR_TO_PACKET_META,
5019 		PTR_TO_MAP_KEY,
5020 		PTR_TO_MAP_VALUE,
5021 	},
5022 };
5023 
5024 static const struct bpf_reg_types sock_types = {
5025 	.types = {
5026 		PTR_TO_SOCK_COMMON,
5027 		PTR_TO_SOCKET,
5028 		PTR_TO_TCP_SOCK,
5029 		PTR_TO_XDP_SOCK,
5030 	},
5031 };
5032 
5033 #ifdef CONFIG_NET
5034 static const struct bpf_reg_types btf_id_sock_common_types = {
5035 	.types = {
5036 		PTR_TO_SOCK_COMMON,
5037 		PTR_TO_SOCKET,
5038 		PTR_TO_TCP_SOCK,
5039 		PTR_TO_XDP_SOCK,
5040 		PTR_TO_BTF_ID,
5041 	},
5042 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5043 };
5044 #endif
5045 
5046 static const struct bpf_reg_types mem_types = {
5047 	.types = {
5048 		PTR_TO_STACK,
5049 		PTR_TO_PACKET,
5050 		PTR_TO_PACKET_META,
5051 		PTR_TO_MAP_KEY,
5052 		PTR_TO_MAP_VALUE,
5053 		PTR_TO_MEM,
5054 		PTR_TO_RDONLY_BUF,
5055 		PTR_TO_RDWR_BUF,
5056 	},
5057 };
5058 
5059 static const struct bpf_reg_types int_ptr_types = {
5060 	.types = {
5061 		PTR_TO_STACK,
5062 		PTR_TO_PACKET,
5063 		PTR_TO_PACKET_META,
5064 		PTR_TO_MAP_KEY,
5065 		PTR_TO_MAP_VALUE,
5066 	},
5067 };
5068 
5069 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5070 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5071 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5072 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5073 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5074 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5075 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5076 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5077 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5078 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5079 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5080 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5081 
5082 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5083 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5084 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5085 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5086 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
5087 	[ARG_CONST_SIZE]		= &scalar_types,
5088 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5089 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5090 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5091 	[ARG_PTR_TO_CTX]		= &context_types,
5092 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
5093 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5094 #ifdef CONFIG_NET
5095 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5096 #endif
5097 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5098 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
5099 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5100 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5101 	[ARG_PTR_TO_MEM]		= &mem_types,
5102 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
5103 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5104 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5105 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
5106 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5107 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5108 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5109 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5110 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
5111 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5112 	[ARG_PTR_TO_TIMER]		= &timer_types,
5113 };
5114 
5115 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5116 			  enum bpf_arg_type arg_type,
5117 			  const u32 *arg_btf_id)
5118 {
5119 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5120 	enum bpf_reg_type expected, type = reg->type;
5121 	const struct bpf_reg_types *compatible;
5122 	int i, j;
5123 
5124 	compatible = compatible_reg_types[arg_type];
5125 	if (!compatible) {
5126 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5127 		return -EFAULT;
5128 	}
5129 
5130 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5131 		expected = compatible->types[i];
5132 		if (expected == NOT_INIT)
5133 			break;
5134 
5135 		if (type == expected)
5136 			goto found;
5137 	}
5138 
5139 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5140 	for (j = 0; j + 1 < i; j++)
5141 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5142 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5143 	return -EACCES;
5144 
5145 found:
5146 	if (type == PTR_TO_BTF_ID) {
5147 		if (!arg_btf_id) {
5148 			if (!compatible->btf_id) {
5149 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5150 				return -EFAULT;
5151 			}
5152 			arg_btf_id = compatible->btf_id;
5153 		}
5154 
5155 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5156 					  btf_vmlinux, *arg_btf_id)) {
5157 			verbose(env, "R%d is of type %s but %s is expected\n",
5158 				regno, kernel_type_name(reg->btf, reg->btf_id),
5159 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5160 			return -EACCES;
5161 		}
5162 
5163 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5164 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5165 				regno);
5166 			return -EACCES;
5167 		}
5168 	}
5169 
5170 	return 0;
5171 }
5172 
5173 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5174 			  struct bpf_call_arg_meta *meta,
5175 			  const struct bpf_func_proto *fn)
5176 {
5177 	u32 regno = BPF_REG_1 + arg;
5178 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5179 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5180 	enum bpf_reg_type type = reg->type;
5181 	int err = 0;
5182 
5183 	if (arg_type == ARG_DONTCARE)
5184 		return 0;
5185 
5186 	err = check_reg_arg(env, regno, SRC_OP);
5187 	if (err)
5188 		return err;
5189 
5190 	if (arg_type == ARG_ANYTHING) {
5191 		if (is_pointer_value(env, regno)) {
5192 			verbose(env, "R%d leaks addr into helper function\n",
5193 				regno);
5194 			return -EACCES;
5195 		}
5196 		return 0;
5197 	}
5198 
5199 	if (type_is_pkt_pointer(type) &&
5200 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5201 		verbose(env, "helper access to the packet is not allowed\n");
5202 		return -EACCES;
5203 	}
5204 
5205 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5206 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5207 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5208 		err = resolve_map_arg_type(env, meta, &arg_type);
5209 		if (err)
5210 			return err;
5211 	}
5212 
5213 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5214 		/* A NULL register has a SCALAR_VALUE type, so skip
5215 		 * type checking.
5216 		 */
5217 		goto skip_type_check;
5218 
5219 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5220 	if (err)
5221 		return err;
5222 
5223 	if (type == PTR_TO_CTX) {
5224 		err = check_ctx_reg(env, reg, regno);
5225 		if (err < 0)
5226 			return err;
5227 	}
5228 
5229 skip_type_check:
5230 	if (reg->ref_obj_id) {
5231 		if (meta->ref_obj_id) {
5232 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5233 				regno, reg->ref_obj_id,
5234 				meta->ref_obj_id);
5235 			return -EFAULT;
5236 		}
5237 		meta->ref_obj_id = reg->ref_obj_id;
5238 	}
5239 
5240 	if (arg_type == ARG_CONST_MAP_PTR) {
5241 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5242 		if (meta->map_ptr) {
5243 			/* Use map_uid (which is unique id of inner map) to reject:
5244 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5245 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5246 			 * if (inner_map1 && inner_map2) {
5247 			 *     timer = bpf_map_lookup_elem(inner_map1);
5248 			 *     if (timer)
5249 			 *         // mismatch would have been allowed
5250 			 *         bpf_timer_init(timer, inner_map2);
5251 			 * }
5252 			 *
5253 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5254 			 */
5255 			if (meta->map_ptr != reg->map_ptr ||
5256 			    meta->map_uid != reg->map_uid) {
5257 				verbose(env,
5258 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5259 					meta->map_uid, reg->map_uid);
5260 				return -EINVAL;
5261 			}
5262 		}
5263 		meta->map_ptr = reg->map_ptr;
5264 		meta->map_uid = reg->map_uid;
5265 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5266 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5267 		 * check that [key, key + map->key_size) are within
5268 		 * stack limits and initialized
5269 		 */
5270 		if (!meta->map_ptr) {
5271 			/* in function declaration map_ptr must come before
5272 			 * map_key, so that it's verified and known before
5273 			 * we have to check map_key here. Otherwise it means
5274 			 * that kernel subsystem misconfigured verifier
5275 			 */
5276 			verbose(env, "invalid map_ptr to access map->key\n");
5277 			return -EACCES;
5278 		}
5279 		err = check_helper_mem_access(env, regno,
5280 					      meta->map_ptr->key_size, false,
5281 					      NULL);
5282 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5283 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5284 		    !register_is_null(reg)) ||
5285 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5286 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5287 		 * check [value, value + map->value_size) validity
5288 		 */
5289 		if (!meta->map_ptr) {
5290 			/* kernel subsystem misconfigured verifier */
5291 			verbose(env, "invalid map_ptr to access map->value\n");
5292 			return -EACCES;
5293 		}
5294 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5295 		err = check_helper_mem_access(env, regno,
5296 					      meta->map_ptr->value_size, false,
5297 					      meta);
5298 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5299 		if (!reg->btf_id) {
5300 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5301 			return -EACCES;
5302 		}
5303 		meta->ret_btf = reg->btf;
5304 		meta->ret_btf_id = reg->btf_id;
5305 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5306 		if (meta->func_id == BPF_FUNC_spin_lock) {
5307 			if (process_spin_lock(env, regno, true))
5308 				return -EACCES;
5309 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5310 			if (process_spin_lock(env, regno, false))
5311 				return -EACCES;
5312 		} else {
5313 			verbose(env, "verifier internal error\n");
5314 			return -EFAULT;
5315 		}
5316 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5317 		if (process_timer_func(env, regno, meta))
5318 			return -EACCES;
5319 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5320 		meta->subprogno = reg->subprogno;
5321 	} else if (arg_type_is_mem_ptr(arg_type)) {
5322 		/* The access to this pointer is only checked when we hit the
5323 		 * next is_mem_size argument below.
5324 		 */
5325 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5326 	} else if (arg_type_is_mem_size(arg_type)) {
5327 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5328 
5329 		/* This is used to refine r0 return value bounds for helpers
5330 		 * that enforce this value as an upper bound on return values.
5331 		 * See do_refine_retval_range() for helpers that can refine
5332 		 * the return value. C type of helper is u32 so we pull register
5333 		 * bound from umax_value however, if negative verifier errors
5334 		 * out. Only upper bounds can be learned because retval is an
5335 		 * int type and negative retvals are allowed.
5336 		 */
5337 		meta->msize_max_value = reg->umax_value;
5338 
5339 		/* The register is SCALAR_VALUE; the access check
5340 		 * happens using its boundaries.
5341 		 */
5342 		if (!tnum_is_const(reg->var_off))
5343 			/* For unprivileged variable accesses, disable raw
5344 			 * mode so that the program is required to
5345 			 * initialize all the memory that the helper could
5346 			 * just partially fill up.
5347 			 */
5348 			meta = NULL;
5349 
5350 		if (reg->smin_value < 0) {
5351 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5352 				regno);
5353 			return -EACCES;
5354 		}
5355 
5356 		if (reg->umin_value == 0) {
5357 			err = check_helper_mem_access(env, regno - 1, 0,
5358 						      zero_size_allowed,
5359 						      meta);
5360 			if (err)
5361 				return err;
5362 		}
5363 
5364 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5365 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5366 				regno);
5367 			return -EACCES;
5368 		}
5369 		err = check_helper_mem_access(env, regno - 1,
5370 					      reg->umax_value,
5371 					      zero_size_allowed, meta);
5372 		if (!err)
5373 			err = mark_chain_precision(env, regno);
5374 	} else if (arg_type_is_alloc_size(arg_type)) {
5375 		if (!tnum_is_const(reg->var_off)) {
5376 			verbose(env, "R%d is not a known constant'\n",
5377 				regno);
5378 			return -EACCES;
5379 		}
5380 		meta->mem_size = reg->var_off.value;
5381 	} else if (arg_type_is_int_ptr(arg_type)) {
5382 		int size = int_ptr_type_to_size(arg_type);
5383 
5384 		err = check_helper_mem_access(env, regno, size, false, meta);
5385 		if (err)
5386 			return err;
5387 		err = check_ptr_alignment(env, reg, 0, size, true);
5388 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5389 		struct bpf_map *map = reg->map_ptr;
5390 		int map_off;
5391 		u64 map_addr;
5392 		char *str_ptr;
5393 
5394 		if (!bpf_map_is_rdonly(map)) {
5395 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5396 			return -EACCES;
5397 		}
5398 
5399 		if (!tnum_is_const(reg->var_off)) {
5400 			verbose(env, "R%d is not a constant address'\n", regno);
5401 			return -EACCES;
5402 		}
5403 
5404 		if (!map->ops->map_direct_value_addr) {
5405 			verbose(env, "no direct value access support for this map type\n");
5406 			return -EACCES;
5407 		}
5408 
5409 		err = check_map_access(env, regno, reg->off,
5410 				       map->value_size - reg->off, false);
5411 		if (err)
5412 			return err;
5413 
5414 		map_off = reg->off + reg->var_off.value;
5415 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5416 		if (err) {
5417 			verbose(env, "direct value access on string failed\n");
5418 			return err;
5419 		}
5420 
5421 		str_ptr = (char *)(long)(map_addr);
5422 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5423 			verbose(env, "string is not zero-terminated\n");
5424 			return -EINVAL;
5425 		}
5426 	}
5427 
5428 	return err;
5429 }
5430 
5431 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5432 {
5433 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5434 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5435 
5436 	if (func_id != BPF_FUNC_map_update_elem)
5437 		return false;
5438 
5439 	/* It's not possible to get access to a locked struct sock in these
5440 	 * contexts, so updating is safe.
5441 	 */
5442 	switch (type) {
5443 	case BPF_PROG_TYPE_TRACING:
5444 		if (eatype == BPF_TRACE_ITER)
5445 			return true;
5446 		break;
5447 	case BPF_PROG_TYPE_SOCKET_FILTER:
5448 	case BPF_PROG_TYPE_SCHED_CLS:
5449 	case BPF_PROG_TYPE_SCHED_ACT:
5450 	case BPF_PROG_TYPE_XDP:
5451 	case BPF_PROG_TYPE_SK_REUSEPORT:
5452 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5453 	case BPF_PROG_TYPE_SK_LOOKUP:
5454 		return true;
5455 	default:
5456 		break;
5457 	}
5458 
5459 	verbose(env, "cannot update sockmap in this context\n");
5460 	return false;
5461 }
5462 
5463 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5464 {
5465 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5466 }
5467 
5468 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5469 					struct bpf_map *map, int func_id)
5470 {
5471 	if (!map)
5472 		return 0;
5473 
5474 	/* We need a two way check, first is from map perspective ... */
5475 	switch (map->map_type) {
5476 	case BPF_MAP_TYPE_PROG_ARRAY:
5477 		if (func_id != BPF_FUNC_tail_call)
5478 			goto error;
5479 		break;
5480 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5481 		if (func_id != BPF_FUNC_perf_event_read &&
5482 		    func_id != BPF_FUNC_perf_event_output &&
5483 		    func_id != BPF_FUNC_skb_output &&
5484 		    func_id != BPF_FUNC_perf_event_read_value &&
5485 		    func_id != BPF_FUNC_xdp_output)
5486 			goto error;
5487 		break;
5488 	case BPF_MAP_TYPE_RINGBUF:
5489 		if (func_id != BPF_FUNC_ringbuf_output &&
5490 		    func_id != BPF_FUNC_ringbuf_reserve &&
5491 		    func_id != BPF_FUNC_ringbuf_query)
5492 			goto error;
5493 		break;
5494 	case BPF_MAP_TYPE_STACK_TRACE:
5495 		if (func_id != BPF_FUNC_get_stackid)
5496 			goto error;
5497 		break;
5498 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5499 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5500 		    func_id != BPF_FUNC_current_task_under_cgroup)
5501 			goto error;
5502 		break;
5503 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5504 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5505 		if (func_id != BPF_FUNC_get_local_storage)
5506 			goto error;
5507 		break;
5508 	case BPF_MAP_TYPE_DEVMAP:
5509 	case BPF_MAP_TYPE_DEVMAP_HASH:
5510 		if (func_id != BPF_FUNC_redirect_map &&
5511 		    func_id != BPF_FUNC_map_lookup_elem)
5512 			goto error;
5513 		break;
5514 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5515 	 * appear.
5516 	 */
5517 	case BPF_MAP_TYPE_CPUMAP:
5518 		if (func_id != BPF_FUNC_redirect_map)
5519 			goto error;
5520 		break;
5521 	case BPF_MAP_TYPE_XSKMAP:
5522 		if (func_id != BPF_FUNC_redirect_map &&
5523 		    func_id != BPF_FUNC_map_lookup_elem)
5524 			goto error;
5525 		break;
5526 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5527 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5528 		if (func_id != BPF_FUNC_map_lookup_elem)
5529 			goto error;
5530 		break;
5531 	case BPF_MAP_TYPE_SOCKMAP:
5532 		if (func_id != BPF_FUNC_sk_redirect_map &&
5533 		    func_id != BPF_FUNC_sock_map_update &&
5534 		    func_id != BPF_FUNC_map_delete_elem &&
5535 		    func_id != BPF_FUNC_msg_redirect_map &&
5536 		    func_id != BPF_FUNC_sk_select_reuseport &&
5537 		    func_id != BPF_FUNC_map_lookup_elem &&
5538 		    !may_update_sockmap(env, func_id))
5539 			goto error;
5540 		break;
5541 	case BPF_MAP_TYPE_SOCKHASH:
5542 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5543 		    func_id != BPF_FUNC_sock_hash_update &&
5544 		    func_id != BPF_FUNC_map_delete_elem &&
5545 		    func_id != BPF_FUNC_msg_redirect_hash &&
5546 		    func_id != BPF_FUNC_sk_select_reuseport &&
5547 		    func_id != BPF_FUNC_map_lookup_elem &&
5548 		    !may_update_sockmap(env, func_id))
5549 			goto error;
5550 		break;
5551 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5552 		if (func_id != BPF_FUNC_sk_select_reuseport)
5553 			goto error;
5554 		break;
5555 	case BPF_MAP_TYPE_QUEUE:
5556 	case BPF_MAP_TYPE_STACK:
5557 		if (func_id != BPF_FUNC_map_peek_elem &&
5558 		    func_id != BPF_FUNC_map_pop_elem &&
5559 		    func_id != BPF_FUNC_map_push_elem)
5560 			goto error;
5561 		break;
5562 	case BPF_MAP_TYPE_SK_STORAGE:
5563 		if (func_id != BPF_FUNC_sk_storage_get &&
5564 		    func_id != BPF_FUNC_sk_storage_delete)
5565 			goto error;
5566 		break;
5567 	case BPF_MAP_TYPE_INODE_STORAGE:
5568 		if (func_id != BPF_FUNC_inode_storage_get &&
5569 		    func_id != BPF_FUNC_inode_storage_delete)
5570 			goto error;
5571 		break;
5572 	case BPF_MAP_TYPE_TASK_STORAGE:
5573 		if (func_id != BPF_FUNC_task_storage_get &&
5574 		    func_id != BPF_FUNC_task_storage_delete)
5575 			goto error;
5576 		break;
5577 	case BPF_MAP_TYPE_BLOOM_FILTER:
5578 		if (func_id != BPF_FUNC_map_peek_elem &&
5579 		    func_id != BPF_FUNC_map_push_elem)
5580 			goto error;
5581 		break;
5582 	default:
5583 		break;
5584 	}
5585 
5586 	/* ... and second from the function itself. */
5587 	switch (func_id) {
5588 	case BPF_FUNC_tail_call:
5589 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5590 			goto error;
5591 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5592 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5593 			return -EINVAL;
5594 		}
5595 		break;
5596 	case BPF_FUNC_perf_event_read:
5597 	case BPF_FUNC_perf_event_output:
5598 	case BPF_FUNC_perf_event_read_value:
5599 	case BPF_FUNC_skb_output:
5600 	case BPF_FUNC_xdp_output:
5601 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5602 			goto error;
5603 		break;
5604 	case BPF_FUNC_ringbuf_output:
5605 	case BPF_FUNC_ringbuf_reserve:
5606 	case BPF_FUNC_ringbuf_query:
5607 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5608 			goto error;
5609 		break;
5610 	case BPF_FUNC_get_stackid:
5611 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5612 			goto error;
5613 		break;
5614 	case BPF_FUNC_current_task_under_cgroup:
5615 	case BPF_FUNC_skb_under_cgroup:
5616 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5617 			goto error;
5618 		break;
5619 	case BPF_FUNC_redirect_map:
5620 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5621 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5622 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5623 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5624 			goto error;
5625 		break;
5626 	case BPF_FUNC_sk_redirect_map:
5627 	case BPF_FUNC_msg_redirect_map:
5628 	case BPF_FUNC_sock_map_update:
5629 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5630 			goto error;
5631 		break;
5632 	case BPF_FUNC_sk_redirect_hash:
5633 	case BPF_FUNC_msg_redirect_hash:
5634 	case BPF_FUNC_sock_hash_update:
5635 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5636 			goto error;
5637 		break;
5638 	case BPF_FUNC_get_local_storage:
5639 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5640 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5641 			goto error;
5642 		break;
5643 	case BPF_FUNC_sk_select_reuseport:
5644 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5645 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5646 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5647 			goto error;
5648 		break;
5649 	case BPF_FUNC_map_pop_elem:
5650 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5651 		    map->map_type != BPF_MAP_TYPE_STACK)
5652 			goto error;
5653 		break;
5654 	case BPF_FUNC_map_peek_elem:
5655 	case BPF_FUNC_map_push_elem:
5656 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5657 		    map->map_type != BPF_MAP_TYPE_STACK &&
5658 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5659 			goto error;
5660 		break;
5661 	case BPF_FUNC_sk_storage_get:
5662 	case BPF_FUNC_sk_storage_delete:
5663 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5664 			goto error;
5665 		break;
5666 	case BPF_FUNC_inode_storage_get:
5667 	case BPF_FUNC_inode_storage_delete:
5668 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5669 			goto error;
5670 		break;
5671 	case BPF_FUNC_task_storage_get:
5672 	case BPF_FUNC_task_storage_delete:
5673 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5674 			goto error;
5675 		break;
5676 	default:
5677 		break;
5678 	}
5679 
5680 	return 0;
5681 error:
5682 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5683 		map->map_type, func_id_name(func_id), func_id);
5684 	return -EINVAL;
5685 }
5686 
5687 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5688 {
5689 	int count = 0;
5690 
5691 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5692 		count++;
5693 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5694 		count++;
5695 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5696 		count++;
5697 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5698 		count++;
5699 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5700 		count++;
5701 
5702 	/* We only support one arg being in raw mode at the moment,
5703 	 * which is sufficient for the helper functions we have
5704 	 * right now.
5705 	 */
5706 	return count <= 1;
5707 }
5708 
5709 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5710 				    enum bpf_arg_type arg_next)
5711 {
5712 	return (arg_type_is_mem_ptr(arg_curr) &&
5713 	        !arg_type_is_mem_size(arg_next)) ||
5714 	       (!arg_type_is_mem_ptr(arg_curr) &&
5715 		arg_type_is_mem_size(arg_next));
5716 }
5717 
5718 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5719 {
5720 	/* bpf_xxx(..., buf, len) call will access 'len'
5721 	 * bytes from memory 'buf'. Both arg types need
5722 	 * to be paired, so make sure there's no buggy
5723 	 * helper function specification.
5724 	 */
5725 	if (arg_type_is_mem_size(fn->arg1_type) ||
5726 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5727 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5728 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5729 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5730 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5731 		return false;
5732 
5733 	return true;
5734 }
5735 
5736 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5737 {
5738 	int count = 0;
5739 
5740 	if (arg_type_may_be_refcounted(fn->arg1_type))
5741 		count++;
5742 	if (arg_type_may_be_refcounted(fn->arg2_type))
5743 		count++;
5744 	if (arg_type_may_be_refcounted(fn->arg3_type))
5745 		count++;
5746 	if (arg_type_may_be_refcounted(fn->arg4_type))
5747 		count++;
5748 	if (arg_type_may_be_refcounted(fn->arg5_type))
5749 		count++;
5750 
5751 	/* A reference acquiring function cannot acquire
5752 	 * another refcounted ptr.
5753 	 */
5754 	if (may_be_acquire_function(func_id) && count)
5755 		return false;
5756 
5757 	/* We only support one arg being unreferenced at the moment,
5758 	 * which is sufficient for the helper functions we have right now.
5759 	 */
5760 	return count <= 1;
5761 }
5762 
5763 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5764 {
5765 	int i;
5766 
5767 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5768 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5769 			return false;
5770 
5771 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5772 			return false;
5773 	}
5774 
5775 	return true;
5776 }
5777 
5778 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5779 {
5780 	return check_raw_mode_ok(fn) &&
5781 	       check_arg_pair_ok(fn) &&
5782 	       check_btf_id_ok(fn) &&
5783 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5784 }
5785 
5786 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5787  * are now invalid, so turn them into unknown SCALAR_VALUE.
5788  */
5789 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5790 				     struct bpf_func_state *state)
5791 {
5792 	struct bpf_reg_state *regs = state->regs, *reg;
5793 	int i;
5794 
5795 	for (i = 0; i < MAX_BPF_REG; i++)
5796 		if (reg_is_pkt_pointer_any(&regs[i]))
5797 			mark_reg_unknown(env, regs, i);
5798 
5799 	bpf_for_each_spilled_reg(i, state, reg) {
5800 		if (!reg)
5801 			continue;
5802 		if (reg_is_pkt_pointer_any(reg))
5803 			__mark_reg_unknown(env, reg);
5804 	}
5805 }
5806 
5807 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5808 {
5809 	struct bpf_verifier_state *vstate = env->cur_state;
5810 	int i;
5811 
5812 	for (i = 0; i <= vstate->curframe; i++)
5813 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5814 }
5815 
5816 enum {
5817 	AT_PKT_END = -1,
5818 	BEYOND_PKT_END = -2,
5819 };
5820 
5821 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5822 {
5823 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5824 	struct bpf_reg_state *reg = &state->regs[regn];
5825 
5826 	if (reg->type != PTR_TO_PACKET)
5827 		/* PTR_TO_PACKET_META is not supported yet */
5828 		return;
5829 
5830 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5831 	 * How far beyond pkt_end it goes is unknown.
5832 	 * if (!range_open) it's the case of pkt >= pkt_end
5833 	 * if (range_open) it's the case of pkt > pkt_end
5834 	 * hence this pointer is at least 1 byte bigger than pkt_end
5835 	 */
5836 	if (range_open)
5837 		reg->range = BEYOND_PKT_END;
5838 	else
5839 		reg->range = AT_PKT_END;
5840 }
5841 
5842 static void release_reg_references(struct bpf_verifier_env *env,
5843 				   struct bpf_func_state *state,
5844 				   int ref_obj_id)
5845 {
5846 	struct bpf_reg_state *regs = state->regs, *reg;
5847 	int i;
5848 
5849 	for (i = 0; i < MAX_BPF_REG; i++)
5850 		if (regs[i].ref_obj_id == ref_obj_id)
5851 			mark_reg_unknown(env, regs, i);
5852 
5853 	bpf_for_each_spilled_reg(i, state, reg) {
5854 		if (!reg)
5855 			continue;
5856 		if (reg->ref_obj_id == ref_obj_id)
5857 			__mark_reg_unknown(env, reg);
5858 	}
5859 }
5860 
5861 /* The pointer with the specified id has released its reference to kernel
5862  * resources. Identify all copies of the same pointer and clear the reference.
5863  */
5864 static int release_reference(struct bpf_verifier_env *env,
5865 			     int ref_obj_id)
5866 {
5867 	struct bpf_verifier_state *vstate = env->cur_state;
5868 	int err;
5869 	int i;
5870 
5871 	err = release_reference_state(cur_func(env), ref_obj_id);
5872 	if (err)
5873 		return err;
5874 
5875 	for (i = 0; i <= vstate->curframe; i++)
5876 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5877 
5878 	return 0;
5879 }
5880 
5881 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5882 				    struct bpf_reg_state *regs)
5883 {
5884 	int i;
5885 
5886 	/* after the call registers r0 - r5 were scratched */
5887 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5888 		mark_reg_not_init(env, regs, caller_saved[i]);
5889 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5890 	}
5891 }
5892 
5893 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5894 				   struct bpf_func_state *caller,
5895 				   struct bpf_func_state *callee,
5896 				   int insn_idx);
5897 
5898 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5899 			     int *insn_idx, int subprog,
5900 			     set_callee_state_fn set_callee_state_cb)
5901 {
5902 	struct bpf_verifier_state *state = env->cur_state;
5903 	struct bpf_func_info_aux *func_info_aux;
5904 	struct bpf_func_state *caller, *callee;
5905 	int err;
5906 	bool is_global = false;
5907 
5908 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5909 		verbose(env, "the call stack of %d frames is too deep\n",
5910 			state->curframe + 2);
5911 		return -E2BIG;
5912 	}
5913 
5914 	caller = state->frame[state->curframe];
5915 	if (state->frame[state->curframe + 1]) {
5916 		verbose(env, "verifier bug. Frame %d already allocated\n",
5917 			state->curframe + 1);
5918 		return -EFAULT;
5919 	}
5920 
5921 	func_info_aux = env->prog->aux->func_info_aux;
5922 	if (func_info_aux)
5923 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5924 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5925 	if (err == -EFAULT)
5926 		return err;
5927 	if (is_global) {
5928 		if (err) {
5929 			verbose(env, "Caller passes invalid args into func#%d\n",
5930 				subprog);
5931 			return err;
5932 		} else {
5933 			if (env->log.level & BPF_LOG_LEVEL)
5934 				verbose(env,
5935 					"Func#%d is global and valid. Skipping.\n",
5936 					subprog);
5937 			clear_caller_saved_regs(env, caller->regs);
5938 
5939 			/* All global functions return a 64-bit SCALAR_VALUE */
5940 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5941 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5942 
5943 			/* continue with next insn after call */
5944 			return 0;
5945 		}
5946 	}
5947 
5948 	if (insn->code == (BPF_JMP | BPF_CALL) &&
5949 	    insn->imm == BPF_FUNC_timer_set_callback) {
5950 		struct bpf_verifier_state *async_cb;
5951 
5952 		/* there is no real recursion here. timer callbacks are async */
5953 		env->subprog_info[subprog].is_async_cb = true;
5954 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5955 					 *insn_idx, subprog);
5956 		if (!async_cb)
5957 			return -EFAULT;
5958 		callee = async_cb->frame[0];
5959 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
5960 
5961 		/* Convert bpf_timer_set_callback() args into timer callback args */
5962 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
5963 		if (err)
5964 			return err;
5965 
5966 		clear_caller_saved_regs(env, caller->regs);
5967 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
5968 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5969 		/* continue with next insn after call */
5970 		return 0;
5971 	}
5972 
5973 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5974 	if (!callee)
5975 		return -ENOMEM;
5976 	state->frame[state->curframe + 1] = callee;
5977 
5978 	/* callee cannot access r0, r6 - r9 for reading and has to write
5979 	 * into its own stack before reading from it.
5980 	 * callee can read/write into caller's stack
5981 	 */
5982 	init_func_state(env, callee,
5983 			/* remember the callsite, it will be used by bpf_exit */
5984 			*insn_idx /* callsite */,
5985 			state->curframe + 1 /* frameno within this callchain */,
5986 			subprog /* subprog number within this prog */);
5987 
5988 	/* Transfer references to the callee */
5989 	err = copy_reference_state(callee, caller);
5990 	if (err)
5991 		return err;
5992 
5993 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5994 	if (err)
5995 		return err;
5996 
5997 	clear_caller_saved_regs(env, caller->regs);
5998 
5999 	/* only increment it after check_reg_arg() finished */
6000 	state->curframe++;
6001 
6002 	/* and go analyze first insn of the callee */
6003 	*insn_idx = env->subprog_info[subprog].start - 1;
6004 
6005 	if (env->log.level & BPF_LOG_LEVEL) {
6006 		verbose(env, "caller:\n");
6007 		print_verifier_state(env, caller);
6008 		verbose(env, "callee:\n");
6009 		print_verifier_state(env, callee);
6010 	}
6011 	return 0;
6012 }
6013 
6014 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6015 				   struct bpf_func_state *caller,
6016 				   struct bpf_func_state *callee)
6017 {
6018 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6019 	 *      void *callback_ctx, u64 flags);
6020 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6021 	 *      void *callback_ctx);
6022 	 */
6023 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6024 
6025 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6026 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6027 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6028 
6029 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6030 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6031 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6032 
6033 	/* pointer to stack or null */
6034 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6035 
6036 	/* unused */
6037 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6038 	return 0;
6039 }
6040 
6041 static int set_callee_state(struct bpf_verifier_env *env,
6042 			    struct bpf_func_state *caller,
6043 			    struct bpf_func_state *callee, int insn_idx)
6044 {
6045 	int i;
6046 
6047 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6048 	 * pointers, which connects us up to the liveness chain
6049 	 */
6050 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6051 		callee->regs[i] = caller->regs[i];
6052 	return 0;
6053 }
6054 
6055 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6056 			   int *insn_idx)
6057 {
6058 	int subprog, target_insn;
6059 
6060 	target_insn = *insn_idx + insn->imm + 1;
6061 	subprog = find_subprog(env, target_insn);
6062 	if (subprog < 0) {
6063 		verbose(env, "verifier bug. No program starts at insn %d\n",
6064 			target_insn);
6065 		return -EFAULT;
6066 	}
6067 
6068 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6069 }
6070 
6071 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6072 				       struct bpf_func_state *caller,
6073 				       struct bpf_func_state *callee,
6074 				       int insn_idx)
6075 {
6076 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6077 	struct bpf_map *map;
6078 	int err;
6079 
6080 	if (bpf_map_ptr_poisoned(insn_aux)) {
6081 		verbose(env, "tail_call abusing map_ptr\n");
6082 		return -EINVAL;
6083 	}
6084 
6085 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6086 	if (!map->ops->map_set_for_each_callback_args ||
6087 	    !map->ops->map_for_each_callback) {
6088 		verbose(env, "callback function not allowed for map\n");
6089 		return -ENOTSUPP;
6090 	}
6091 
6092 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6093 	if (err)
6094 		return err;
6095 
6096 	callee->in_callback_fn = true;
6097 	return 0;
6098 }
6099 
6100 static int set_timer_callback_state(struct bpf_verifier_env *env,
6101 				    struct bpf_func_state *caller,
6102 				    struct bpf_func_state *callee,
6103 				    int insn_idx)
6104 {
6105 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6106 
6107 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6108 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6109 	 */
6110 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6111 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6112 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6113 
6114 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6115 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6116 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6117 
6118 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6119 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6120 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6121 
6122 	/* unused */
6123 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6124 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6125 	callee->in_async_callback_fn = true;
6126 	return 0;
6127 }
6128 
6129 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6130 {
6131 	struct bpf_verifier_state *state = env->cur_state;
6132 	struct bpf_func_state *caller, *callee;
6133 	struct bpf_reg_state *r0;
6134 	int err;
6135 
6136 	callee = state->frame[state->curframe];
6137 	r0 = &callee->regs[BPF_REG_0];
6138 	if (r0->type == PTR_TO_STACK) {
6139 		/* technically it's ok to return caller's stack pointer
6140 		 * (or caller's caller's pointer) back to the caller,
6141 		 * since these pointers are valid. Only current stack
6142 		 * pointer will be invalid as soon as function exits,
6143 		 * but let's be conservative
6144 		 */
6145 		verbose(env, "cannot return stack pointer to the caller\n");
6146 		return -EINVAL;
6147 	}
6148 
6149 	state->curframe--;
6150 	caller = state->frame[state->curframe];
6151 	if (callee->in_callback_fn) {
6152 		/* enforce R0 return value range [0, 1]. */
6153 		struct tnum range = tnum_range(0, 1);
6154 
6155 		if (r0->type != SCALAR_VALUE) {
6156 			verbose(env, "R0 not a scalar value\n");
6157 			return -EACCES;
6158 		}
6159 		if (!tnum_in(range, r0->var_off)) {
6160 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6161 			return -EINVAL;
6162 		}
6163 	} else {
6164 		/* return to the caller whatever r0 had in the callee */
6165 		caller->regs[BPF_REG_0] = *r0;
6166 	}
6167 
6168 	/* Transfer references to the caller */
6169 	err = copy_reference_state(caller, callee);
6170 	if (err)
6171 		return err;
6172 
6173 	*insn_idx = callee->callsite + 1;
6174 	if (env->log.level & BPF_LOG_LEVEL) {
6175 		verbose(env, "returning from callee:\n");
6176 		print_verifier_state(env, callee);
6177 		verbose(env, "to caller at %d:\n", *insn_idx);
6178 		print_verifier_state(env, caller);
6179 	}
6180 	/* clear everything in the callee */
6181 	free_func_state(callee);
6182 	state->frame[state->curframe + 1] = NULL;
6183 	return 0;
6184 }
6185 
6186 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6187 				   int func_id,
6188 				   struct bpf_call_arg_meta *meta)
6189 {
6190 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6191 
6192 	if (ret_type != RET_INTEGER ||
6193 	    (func_id != BPF_FUNC_get_stack &&
6194 	     func_id != BPF_FUNC_get_task_stack &&
6195 	     func_id != BPF_FUNC_probe_read_str &&
6196 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6197 	     func_id != BPF_FUNC_probe_read_user_str))
6198 		return;
6199 
6200 	ret_reg->smax_value = meta->msize_max_value;
6201 	ret_reg->s32_max_value = meta->msize_max_value;
6202 	ret_reg->smin_value = -MAX_ERRNO;
6203 	ret_reg->s32_min_value = -MAX_ERRNO;
6204 	__reg_deduce_bounds(ret_reg);
6205 	__reg_bound_offset(ret_reg);
6206 	__update_reg_bounds(ret_reg);
6207 }
6208 
6209 static int
6210 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6211 		int func_id, int insn_idx)
6212 {
6213 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6214 	struct bpf_map *map = meta->map_ptr;
6215 
6216 	if (func_id != BPF_FUNC_tail_call &&
6217 	    func_id != BPF_FUNC_map_lookup_elem &&
6218 	    func_id != BPF_FUNC_map_update_elem &&
6219 	    func_id != BPF_FUNC_map_delete_elem &&
6220 	    func_id != BPF_FUNC_map_push_elem &&
6221 	    func_id != BPF_FUNC_map_pop_elem &&
6222 	    func_id != BPF_FUNC_map_peek_elem &&
6223 	    func_id != BPF_FUNC_for_each_map_elem &&
6224 	    func_id != BPF_FUNC_redirect_map)
6225 		return 0;
6226 
6227 	if (map == NULL) {
6228 		verbose(env, "kernel subsystem misconfigured verifier\n");
6229 		return -EINVAL;
6230 	}
6231 
6232 	/* In case of read-only, some additional restrictions
6233 	 * need to be applied in order to prevent altering the
6234 	 * state of the map from program side.
6235 	 */
6236 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6237 	    (func_id == BPF_FUNC_map_delete_elem ||
6238 	     func_id == BPF_FUNC_map_update_elem ||
6239 	     func_id == BPF_FUNC_map_push_elem ||
6240 	     func_id == BPF_FUNC_map_pop_elem)) {
6241 		verbose(env, "write into map forbidden\n");
6242 		return -EACCES;
6243 	}
6244 
6245 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6246 		bpf_map_ptr_store(aux, meta->map_ptr,
6247 				  !meta->map_ptr->bypass_spec_v1);
6248 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6249 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6250 				  !meta->map_ptr->bypass_spec_v1);
6251 	return 0;
6252 }
6253 
6254 static int
6255 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6256 		int func_id, int insn_idx)
6257 {
6258 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6259 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6260 	struct bpf_map *map = meta->map_ptr;
6261 	struct tnum range;
6262 	u64 val;
6263 	int err;
6264 
6265 	if (func_id != BPF_FUNC_tail_call)
6266 		return 0;
6267 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6268 		verbose(env, "kernel subsystem misconfigured verifier\n");
6269 		return -EINVAL;
6270 	}
6271 
6272 	range = tnum_range(0, map->max_entries - 1);
6273 	reg = &regs[BPF_REG_3];
6274 
6275 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6276 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6277 		return 0;
6278 	}
6279 
6280 	err = mark_chain_precision(env, BPF_REG_3);
6281 	if (err)
6282 		return err;
6283 
6284 	val = reg->var_off.value;
6285 	if (bpf_map_key_unseen(aux))
6286 		bpf_map_key_store(aux, val);
6287 	else if (!bpf_map_key_poisoned(aux) &&
6288 		  bpf_map_key_immediate(aux) != val)
6289 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6290 	return 0;
6291 }
6292 
6293 static int check_reference_leak(struct bpf_verifier_env *env)
6294 {
6295 	struct bpf_func_state *state = cur_func(env);
6296 	int i;
6297 
6298 	for (i = 0; i < state->acquired_refs; i++) {
6299 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6300 			state->refs[i].id, state->refs[i].insn_idx);
6301 	}
6302 	return state->acquired_refs ? -EINVAL : 0;
6303 }
6304 
6305 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6306 				   struct bpf_reg_state *regs)
6307 {
6308 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6309 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6310 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6311 	int err, fmt_map_off, num_args;
6312 	u64 fmt_addr;
6313 	char *fmt;
6314 
6315 	/* data must be an array of u64 */
6316 	if (data_len_reg->var_off.value % 8)
6317 		return -EINVAL;
6318 	num_args = data_len_reg->var_off.value / 8;
6319 
6320 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6321 	 * and map_direct_value_addr is set.
6322 	 */
6323 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6324 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6325 						  fmt_map_off);
6326 	if (err) {
6327 		verbose(env, "verifier bug\n");
6328 		return -EFAULT;
6329 	}
6330 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6331 
6332 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6333 	 * can focus on validating the format specifiers.
6334 	 */
6335 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6336 	if (err < 0)
6337 		verbose(env, "Invalid format string\n");
6338 
6339 	return err;
6340 }
6341 
6342 static int check_get_func_ip(struct bpf_verifier_env *env)
6343 {
6344 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6345 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6346 	int func_id = BPF_FUNC_get_func_ip;
6347 
6348 	if (type == BPF_PROG_TYPE_TRACING) {
6349 		if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6350 		    eatype != BPF_MODIFY_RETURN) {
6351 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6352 				func_id_name(func_id), func_id);
6353 			return -ENOTSUPP;
6354 		}
6355 		return 0;
6356 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6357 		return 0;
6358 	}
6359 
6360 	verbose(env, "func %s#%d not supported for program type %d\n",
6361 		func_id_name(func_id), func_id, type);
6362 	return -ENOTSUPP;
6363 }
6364 
6365 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6366 			     int *insn_idx_p)
6367 {
6368 	const struct bpf_func_proto *fn = NULL;
6369 	struct bpf_reg_state *regs;
6370 	struct bpf_call_arg_meta meta;
6371 	int insn_idx = *insn_idx_p;
6372 	bool changes_data;
6373 	int i, err, func_id;
6374 
6375 	/* find function prototype */
6376 	func_id = insn->imm;
6377 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6378 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6379 			func_id);
6380 		return -EINVAL;
6381 	}
6382 
6383 	if (env->ops->get_func_proto)
6384 		fn = env->ops->get_func_proto(func_id, env->prog);
6385 	if (!fn) {
6386 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6387 			func_id);
6388 		return -EINVAL;
6389 	}
6390 
6391 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6392 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6393 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6394 		return -EINVAL;
6395 	}
6396 
6397 	if (fn->allowed && !fn->allowed(env->prog)) {
6398 		verbose(env, "helper call is not allowed in probe\n");
6399 		return -EINVAL;
6400 	}
6401 
6402 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6403 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6404 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6405 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6406 			func_id_name(func_id), func_id);
6407 		return -EINVAL;
6408 	}
6409 
6410 	memset(&meta, 0, sizeof(meta));
6411 	meta.pkt_access = fn->pkt_access;
6412 
6413 	err = check_func_proto(fn, func_id);
6414 	if (err) {
6415 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6416 			func_id_name(func_id), func_id);
6417 		return err;
6418 	}
6419 
6420 	meta.func_id = func_id;
6421 	/* check args */
6422 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6423 		err = check_func_arg(env, i, &meta, fn);
6424 		if (err)
6425 			return err;
6426 	}
6427 
6428 	err = record_func_map(env, &meta, func_id, insn_idx);
6429 	if (err)
6430 		return err;
6431 
6432 	err = record_func_key(env, &meta, func_id, insn_idx);
6433 	if (err)
6434 		return err;
6435 
6436 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6437 	 * is inferred from register state.
6438 	 */
6439 	for (i = 0; i < meta.access_size; i++) {
6440 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6441 				       BPF_WRITE, -1, false);
6442 		if (err)
6443 			return err;
6444 	}
6445 
6446 	if (func_id == BPF_FUNC_tail_call) {
6447 		err = check_reference_leak(env);
6448 		if (err) {
6449 			verbose(env, "tail_call would lead to reference leak\n");
6450 			return err;
6451 		}
6452 	} else if (is_release_function(func_id)) {
6453 		err = release_reference(env, meta.ref_obj_id);
6454 		if (err) {
6455 			verbose(env, "func %s#%d reference has not been acquired before\n",
6456 				func_id_name(func_id), func_id);
6457 			return err;
6458 		}
6459 	}
6460 
6461 	regs = cur_regs(env);
6462 
6463 	/* check that flags argument in get_local_storage(map, flags) is 0,
6464 	 * this is required because get_local_storage() can't return an error.
6465 	 */
6466 	if (func_id == BPF_FUNC_get_local_storage &&
6467 	    !register_is_null(&regs[BPF_REG_2])) {
6468 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6469 		return -EINVAL;
6470 	}
6471 
6472 	if (func_id == BPF_FUNC_for_each_map_elem) {
6473 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6474 					set_map_elem_callback_state);
6475 		if (err < 0)
6476 			return -EINVAL;
6477 	}
6478 
6479 	if (func_id == BPF_FUNC_timer_set_callback) {
6480 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6481 					set_timer_callback_state);
6482 		if (err < 0)
6483 			return -EINVAL;
6484 	}
6485 
6486 	if (func_id == BPF_FUNC_snprintf) {
6487 		err = check_bpf_snprintf_call(env, regs);
6488 		if (err < 0)
6489 			return err;
6490 	}
6491 
6492 	/* reset caller saved regs */
6493 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6494 		mark_reg_not_init(env, regs, caller_saved[i]);
6495 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6496 	}
6497 
6498 	/* helper call returns 64-bit value. */
6499 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6500 
6501 	/* update return register (already marked as written above) */
6502 	if (fn->ret_type == RET_INTEGER) {
6503 		/* sets type to SCALAR_VALUE */
6504 		mark_reg_unknown(env, regs, BPF_REG_0);
6505 	} else if (fn->ret_type == RET_VOID) {
6506 		regs[BPF_REG_0].type = NOT_INIT;
6507 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6508 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6509 		/* There is no offset yet applied, variable or fixed */
6510 		mark_reg_known_zero(env, regs, BPF_REG_0);
6511 		/* remember map_ptr, so that check_map_access()
6512 		 * can check 'value_size' boundary of memory access
6513 		 * to map element returned from bpf_map_lookup_elem()
6514 		 */
6515 		if (meta.map_ptr == NULL) {
6516 			verbose(env,
6517 				"kernel subsystem misconfigured verifier\n");
6518 			return -EINVAL;
6519 		}
6520 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6521 		regs[BPF_REG_0].map_uid = meta.map_uid;
6522 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6523 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6524 			if (map_value_has_spin_lock(meta.map_ptr))
6525 				regs[BPF_REG_0].id = ++env->id_gen;
6526 		} else {
6527 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6528 		}
6529 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6530 		mark_reg_known_zero(env, regs, BPF_REG_0);
6531 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6532 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6533 		mark_reg_known_zero(env, regs, BPF_REG_0);
6534 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6535 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6536 		mark_reg_known_zero(env, regs, BPF_REG_0);
6537 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6538 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6539 		mark_reg_known_zero(env, regs, BPF_REG_0);
6540 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6541 		regs[BPF_REG_0].mem_size = meta.mem_size;
6542 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6543 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6544 		const struct btf_type *t;
6545 
6546 		mark_reg_known_zero(env, regs, BPF_REG_0);
6547 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6548 		if (!btf_type_is_struct(t)) {
6549 			u32 tsize;
6550 			const struct btf_type *ret;
6551 			const char *tname;
6552 
6553 			/* resolve the type size of ksym. */
6554 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6555 			if (IS_ERR(ret)) {
6556 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6557 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6558 					tname, PTR_ERR(ret));
6559 				return -EINVAL;
6560 			}
6561 			regs[BPF_REG_0].type =
6562 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6563 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6564 			regs[BPF_REG_0].mem_size = tsize;
6565 		} else {
6566 			regs[BPF_REG_0].type =
6567 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6568 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6569 			regs[BPF_REG_0].btf = meta.ret_btf;
6570 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6571 		}
6572 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6573 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6574 		int ret_btf_id;
6575 
6576 		mark_reg_known_zero(env, regs, BPF_REG_0);
6577 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6578 						     PTR_TO_BTF_ID :
6579 						     PTR_TO_BTF_ID_OR_NULL;
6580 		ret_btf_id = *fn->ret_btf_id;
6581 		if (ret_btf_id == 0) {
6582 			verbose(env, "invalid return type %d of func %s#%d\n",
6583 				fn->ret_type, func_id_name(func_id), func_id);
6584 			return -EINVAL;
6585 		}
6586 		/* current BPF helper definitions are only coming from
6587 		 * built-in code with type IDs from  vmlinux BTF
6588 		 */
6589 		regs[BPF_REG_0].btf = btf_vmlinux;
6590 		regs[BPF_REG_0].btf_id = ret_btf_id;
6591 	} else {
6592 		verbose(env, "unknown return type %d of func %s#%d\n",
6593 			fn->ret_type, func_id_name(func_id), func_id);
6594 		return -EINVAL;
6595 	}
6596 
6597 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6598 		regs[BPF_REG_0].id = ++env->id_gen;
6599 
6600 	if (is_ptr_cast_function(func_id)) {
6601 		/* For release_reference() */
6602 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6603 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6604 		int id = acquire_reference_state(env, insn_idx);
6605 
6606 		if (id < 0)
6607 			return id;
6608 		/* For mark_ptr_or_null_reg() */
6609 		regs[BPF_REG_0].id = id;
6610 		/* For release_reference() */
6611 		regs[BPF_REG_0].ref_obj_id = id;
6612 	}
6613 
6614 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6615 
6616 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6617 	if (err)
6618 		return err;
6619 
6620 	if ((func_id == BPF_FUNC_get_stack ||
6621 	     func_id == BPF_FUNC_get_task_stack) &&
6622 	    !env->prog->has_callchain_buf) {
6623 		const char *err_str;
6624 
6625 #ifdef CONFIG_PERF_EVENTS
6626 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6627 		err_str = "cannot get callchain buffer for func %s#%d\n";
6628 #else
6629 		err = -ENOTSUPP;
6630 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6631 #endif
6632 		if (err) {
6633 			verbose(env, err_str, func_id_name(func_id), func_id);
6634 			return err;
6635 		}
6636 
6637 		env->prog->has_callchain_buf = true;
6638 	}
6639 
6640 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6641 		env->prog->call_get_stack = true;
6642 
6643 	if (func_id == BPF_FUNC_get_func_ip) {
6644 		if (check_get_func_ip(env))
6645 			return -ENOTSUPP;
6646 		env->prog->call_get_func_ip = true;
6647 	}
6648 
6649 	if (changes_data)
6650 		clear_all_pkt_pointers(env);
6651 	return 0;
6652 }
6653 
6654 /* mark_btf_func_reg_size() is used when the reg size is determined by
6655  * the BTF func_proto's return value size and argument.
6656  */
6657 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6658 				   size_t reg_size)
6659 {
6660 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6661 
6662 	if (regno == BPF_REG_0) {
6663 		/* Function return value */
6664 		reg->live |= REG_LIVE_WRITTEN;
6665 		reg->subreg_def = reg_size == sizeof(u64) ?
6666 			DEF_NOT_SUBREG : env->insn_idx + 1;
6667 	} else {
6668 		/* Function argument */
6669 		if (reg_size == sizeof(u64)) {
6670 			mark_insn_zext(env, reg);
6671 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6672 		} else {
6673 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6674 		}
6675 	}
6676 }
6677 
6678 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6679 {
6680 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6681 	struct bpf_reg_state *regs = cur_regs(env);
6682 	const char *func_name, *ptr_type_name;
6683 	u32 i, nargs, func_id, ptr_type_id;
6684 	struct module *btf_mod = NULL;
6685 	const struct btf_param *args;
6686 	struct btf *desc_btf;
6687 	int err;
6688 
6689 	/* skip for now, but return error when we find this in fixup_kfunc_call */
6690 	if (!insn->imm)
6691 		return 0;
6692 
6693 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6694 	if (IS_ERR(desc_btf))
6695 		return PTR_ERR(desc_btf);
6696 
6697 	func_id = insn->imm;
6698 	func = btf_type_by_id(desc_btf, func_id);
6699 	func_name = btf_name_by_offset(desc_btf, func->name_off);
6700 	func_proto = btf_type_by_id(desc_btf, func->type);
6701 
6702 	if (!env->ops->check_kfunc_call ||
6703 	    !env->ops->check_kfunc_call(func_id, btf_mod)) {
6704 		verbose(env, "calling kernel function %s is not allowed\n",
6705 			func_name);
6706 		return -EACCES;
6707 	}
6708 
6709 	/* Check the arguments */
6710 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
6711 	if (err)
6712 		return err;
6713 
6714 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6715 		mark_reg_not_init(env, regs, caller_saved[i]);
6716 
6717 	/* Check return type */
6718 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
6719 	if (btf_type_is_scalar(t)) {
6720 		mark_reg_unknown(env, regs, BPF_REG_0);
6721 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6722 	} else if (btf_type_is_ptr(t)) {
6723 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
6724 						   &ptr_type_id);
6725 		if (!btf_type_is_struct(ptr_type)) {
6726 			ptr_type_name = btf_name_by_offset(desc_btf,
6727 							   ptr_type->name_off);
6728 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6729 				func_name, btf_type_str(ptr_type),
6730 				ptr_type_name);
6731 			return -EINVAL;
6732 		}
6733 		mark_reg_known_zero(env, regs, BPF_REG_0);
6734 		regs[BPF_REG_0].btf = desc_btf;
6735 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6736 		regs[BPF_REG_0].btf_id = ptr_type_id;
6737 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6738 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6739 
6740 	nargs = btf_type_vlen(func_proto);
6741 	args = (const struct btf_param *)(func_proto + 1);
6742 	for (i = 0; i < nargs; i++) {
6743 		u32 regno = i + 1;
6744 
6745 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
6746 		if (btf_type_is_ptr(t))
6747 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6748 		else
6749 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6750 			mark_btf_func_reg_size(env, regno, t->size);
6751 	}
6752 
6753 	return 0;
6754 }
6755 
6756 static bool signed_add_overflows(s64 a, s64 b)
6757 {
6758 	/* Do the add in u64, where overflow is well-defined */
6759 	s64 res = (s64)((u64)a + (u64)b);
6760 
6761 	if (b < 0)
6762 		return res > a;
6763 	return res < a;
6764 }
6765 
6766 static bool signed_add32_overflows(s32 a, s32 b)
6767 {
6768 	/* Do the add in u32, where overflow is well-defined */
6769 	s32 res = (s32)((u32)a + (u32)b);
6770 
6771 	if (b < 0)
6772 		return res > a;
6773 	return res < a;
6774 }
6775 
6776 static bool signed_sub_overflows(s64 a, s64 b)
6777 {
6778 	/* Do the sub in u64, where overflow is well-defined */
6779 	s64 res = (s64)((u64)a - (u64)b);
6780 
6781 	if (b < 0)
6782 		return res < a;
6783 	return res > a;
6784 }
6785 
6786 static bool signed_sub32_overflows(s32 a, s32 b)
6787 {
6788 	/* Do the sub in u32, where overflow is well-defined */
6789 	s32 res = (s32)((u32)a - (u32)b);
6790 
6791 	if (b < 0)
6792 		return res < a;
6793 	return res > a;
6794 }
6795 
6796 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6797 				  const struct bpf_reg_state *reg,
6798 				  enum bpf_reg_type type)
6799 {
6800 	bool known = tnum_is_const(reg->var_off);
6801 	s64 val = reg->var_off.value;
6802 	s64 smin = reg->smin_value;
6803 
6804 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6805 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6806 			reg_type_str[type], val);
6807 		return false;
6808 	}
6809 
6810 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6811 		verbose(env, "%s pointer offset %d is not allowed\n",
6812 			reg_type_str[type], reg->off);
6813 		return false;
6814 	}
6815 
6816 	if (smin == S64_MIN) {
6817 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6818 			reg_type_str[type]);
6819 		return false;
6820 	}
6821 
6822 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6823 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6824 			smin, reg_type_str[type]);
6825 		return false;
6826 	}
6827 
6828 	return true;
6829 }
6830 
6831 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6832 {
6833 	return &env->insn_aux_data[env->insn_idx];
6834 }
6835 
6836 enum {
6837 	REASON_BOUNDS	= -1,
6838 	REASON_TYPE	= -2,
6839 	REASON_PATHS	= -3,
6840 	REASON_LIMIT	= -4,
6841 	REASON_STACK	= -5,
6842 };
6843 
6844 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6845 			      u32 *alu_limit, bool mask_to_left)
6846 {
6847 	u32 max = 0, ptr_limit = 0;
6848 
6849 	switch (ptr_reg->type) {
6850 	case PTR_TO_STACK:
6851 		/* Offset 0 is out-of-bounds, but acceptable start for the
6852 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6853 		 * offset where we would need to deal with min/max bounds is
6854 		 * currently prohibited for unprivileged.
6855 		 */
6856 		max = MAX_BPF_STACK + mask_to_left;
6857 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6858 		break;
6859 	case PTR_TO_MAP_VALUE:
6860 		max = ptr_reg->map_ptr->value_size;
6861 		ptr_limit = (mask_to_left ?
6862 			     ptr_reg->smin_value :
6863 			     ptr_reg->umax_value) + ptr_reg->off;
6864 		break;
6865 	default:
6866 		return REASON_TYPE;
6867 	}
6868 
6869 	if (ptr_limit >= max)
6870 		return REASON_LIMIT;
6871 	*alu_limit = ptr_limit;
6872 	return 0;
6873 }
6874 
6875 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6876 				    const struct bpf_insn *insn)
6877 {
6878 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6879 }
6880 
6881 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6882 				       u32 alu_state, u32 alu_limit)
6883 {
6884 	/* If we arrived here from different branches with different
6885 	 * state or limits to sanitize, then this won't work.
6886 	 */
6887 	if (aux->alu_state &&
6888 	    (aux->alu_state != alu_state ||
6889 	     aux->alu_limit != alu_limit))
6890 		return REASON_PATHS;
6891 
6892 	/* Corresponding fixup done in do_misc_fixups(). */
6893 	aux->alu_state = alu_state;
6894 	aux->alu_limit = alu_limit;
6895 	return 0;
6896 }
6897 
6898 static int sanitize_val_alu(struct bpf_verifier_env *env,
6899 			    struct bpf_insn *insn)
6900 {
6901 	struct bpf_insn_aux_data *aux = cur_aux(env);
6902 
6903 	if (can_skip_alu_sanitation(env, insn))
6904 		return 0;
6905 
6906 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6907 }
6908 
6909 static bool sanitize_needed(u8 opcode)
6910 {
6911 	return opcode == BPF_ADD || opcode == BPF_SUB;
6912 }
6913 
6914 struct bpf_sanitize_info {
6915 	struct bpf_insn_aux_data aux;
6916 	bool mask_to_left;
6917 };
6918 
6919 static struct bpf_verifier_state *
6920 sanitize_speculative_path(struct bpf_verifier_env *env,
6921 			  const struct bpf_insn *insn,
6922 			  u32 next_idx, u32 curr_idx)
6923 {
6924 	struct bpf_verifier_state *branch;
6925 	struct bpf_reg_state *regs;
6926 
6927 	branch = push_stack(env, next_idx, curr_idx, true);
6928 	if (branch && insn) {
6929 		regs = branch->frame[branch->curframe]->regs;
6930 		if (BPF_SRC(insn->code) == BPF_K) {
6931 			mark_reg_unknown(env, regs, insn->dst_reg);
6932 		} else if (BPF_SRC(insn->code) == BPF_X) {
6933 			mark_reg_unknown(env, regs, insn->dst_reg);
6934 			mark_reg_unknown(env, regs, insn->src_reg);
6935 		}
6936 	}
6937 	return branch;
6938 }
6939 
6940 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6941 			    struct bpf_insn *insn,
6942 			    const struct bpf_reg_state *ptr_reg,
6943 			    const struct bpf_reg_state *off_reg,
6944 			    struct bpf_reg_state *dst_reg,
6945 			    struct bpf_sanitize_info *info,
6946 			    const bool commit_window)
6947 {
6948 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6949 	struct bpf_verifier_state *vstate = env->cur_state;
6950 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6951 	bool off_is_neg = off_reg->smin_value < 0;
6952 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6953 	u8 opcode = BPF_OP(insn->code);
6954 	u32 alu_state, alu_limit;
6955 	struct bpf_reg_state tmp;
6956 	bool ret;
6957 	int err;
6958 
6959 	if (can_skip_alu_sanitation(env, insn))
6960 		return 0;
6961 
6962 	/* We already marked aux for masking from non-speculative
6963 	 * paths, thus we got here in the first place. We only care
6964 	 * to explore bad access from here.
6965 	 */
6966 	if (vstate->speculative)
6967 		goto do_sim;
6968 
6969 	if (!commit_window) {
6970 		if (!tnum_is_const(off_reg->var_off) &&
6971 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6972 			return REASON_BOUNDS;
6973 
6974 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6975 				     (opcode == BPF_SUB && !off_is_neg);
6976 	}
6977 
6978 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6979 	if (err < 0)
6980 		return err;
6981 
6982 	if (commit_window) {
6983 		/* In commit phase we narrow the masking window based on
6984 		 * the observed pointer move after the simulated operation.
6985 		 */
6986 		alu_state = info->aux.alu_state;
6987 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6988 	} else {
6989 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6990 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6991 		alu_state |= ptr_is_dst_reg ?
6992 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6993 
6994 		/* Limit pruning on unknown scalars to enable deep search for
6995 		 * potential masking differences from other program paths.
6996 		 */
6997 		if (!off_is_imm)
6998 			env->explore_alu_limits = true;
6999 	}
7000 
7001 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7002 	if (err < 0)
7003 		return err;
7004 do_sim:
7005 	/* If we're in commit phase, we're done here given we already
7006 	 * pushed the truncated dst_reg into the speculative verification
7007 	 * stack.
7008 	 *
7009 	 * Also, when register is a known constant, we rewrite register-based
7010 	 * operation to immediate-based, and thus do not need masking (and as
7011 	 * a consequence, do not need to simulate the zero-truncation either).
7012 	 */
7013 	if (commit_window || off_is_imm)
7014 		return 0;
7015 
7016 	/* Simulate and find potential out-of-bounds access under
7017 	 * speculative execution from truncation as a result of
7018 	 * masking when off was not within expected range. If off
7019 	 * sits in dst, then we temporarily need to move ptr there
7020 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7021 	 * for cases where we use K-based arithmetic in one direction
7022 	 * and truncated reg-based in the other in order to explore
7023 	 * bad access.
7024 	 */
7025 	if (!ptr_is_dst_reg) {
7026 		tmp = *dst_reg;
7027 		*dst_reg = *ptr_reg;
7028 	}
7029 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7030 					env->insn_idx);
7031 	if (!ptr_is_dst_reg && ret)
7032 		*dst_reg = tmp;
7033 	return !ret ? REASON_STACK : 0;
7034 }
7035 
7036 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7037 {
7038 	struct bpf_verifier_state *vstate = env->cur_state;
7039 
7040 	/* If we simulate paths under speculation, we don't update the
7041 	 * insn as 'seen' such that when we verify unreachable paths in
7042 	 * the non-speculative domain, sanitize_dead_code() can still
7043 	 * rewrite/sanitize them.
7044 	 */
7045 	if (!vstate->speculative)
7046 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7047 }
7048 
7049 static int sanitize_err(struct bpf_verifier_env *env,
7050 			const struct bpf_insn *insn, int reason,
7051 			const struct bpf_reg_state *off_reg,
7052 			const struct bpf_reg_state *dst_reg)
7053 {
7054 	static const char *err = "pointer arithmetic with it prohibited for !root";
7055 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7056 	u32 dst = insn->dst_reg, src = insn->src_reg;
7057 
7058 	switch (reason) {
7059 	case REASON_BOUNDS:
7060 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7061 			off_reg == dst_reg ? dst : src, err);
7062 		break;
7063 	case REASON_TYPE:
7064 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7065 			off_reg == dst_reg ? src : dst, err);
7066 		break;
7067 	case REASON_PATHS:
7068 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7069 			dst, op, err);
7070 		break;
7071 	case REASON_LIMIT:
7072 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7073 			dst, op, err);
7074 		break;
7075 	case REASON_STACK:
7076 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7077 			dst, err);
7078 		break;
7079 	default:
7080 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7081 			reason);
7082 		break;
7083 	}
7084 
7085 	return -EACCES;
7086 }
7087 
7088 /* check that stack access falls within stack limits and that 'reg' doesn't
7089  * have a variable offset.
7090  *
7091  * Variable offset is prohibited for unprivileged mode for simplicity since it
7092  * requires corresponding support in Spectre masking for stack ALU.  See also
7093  * retrieve_ptr_limit().
7094  *
7095  *
7096  * 'off' includes 'reg->off'.
7097  */
7098 static int check_stack_access_for_ptr_arithmetic(
7099 				struct bpf_verifier_env *env,
7100 				int regno,
7101 				const struct bpf_reg_state *reg,
7102 				int off)
7103 {
7104 	if (!tnum_is_const(reg->var_off)) {
7105 		char tn_buf[48];
7106 
7107 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7108 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7109 			regno, tn_buf, off);
7110 		return -EACCES;
7111 	}
7112 
7113 	if (off >= 0 || off < -MAX_BPF_STACK) {
7114 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7115 			"prohibited for !root; off=%d\n", regno, off);
7116 		return -EACCES;
7117 	}
7118 
7119 	return 0;
7120 }
7121 
7122 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7123 				 const struct bpf_insn *insn,
7124 				 const struct bpf_reg_state *dst_reg)
7125 {
7126 	u32 dst = insn->dst_reg;
7127 
7128 	/* For unprivileged we require that resulting offset must be in bounds
7129 	 * in order to be able to sanitize access later on.
7130 	 */
7131 	if (env->bypass_spec_v1)
7132 		return 0;
7133 
7134 	switch (dst_reg->type) {
7135 	case PTR_TO_STACK:
7136 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7137 					dst_reg->off + dst_reg->var_off.value))
7138 			return -EACCES;
7139 		break;
7140 	case PTR_TO_MAP_VALUE:
7141 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7142 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7143 				"prohibited for !root\n", dst);
7144 			return -EACCES;
7145 		}
7146 		break;
7147 	default:
7148 		break;
7149 	}
7150 
7151 	return 0;
7152 }
7153 
7154 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7155  * Caller should also handle BPF_MOV case separately.
7156  * If we return -EACCES, caller may want to try again treating pointer as a
7157  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7158  */
7159 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7160 				   struct bpf_insn *insn,
7161 				   const struct bpf_reg_state *ptr_reg,
7162 				   const struct bpf_reg_state *off_reg)
7163 {
7164 	struct bpf_verifier_state *vstate = env->cur_state;
7165 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7166 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7167 	bool known = tnum_is_const(off_reg->var_off);
7168 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7169 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7170 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7171 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7172 	struct bpf_sanitize_info info = {};
7173 	u8 opcode = BPF_OP(insn->code);
7174 	u32 dst = insn->dst_reg;
7175 	int ret;
7176 
7177 	dst_reg = &regs[dst];
7178 
7179 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7180 	    smin_val > smax_val || umin_val > umax_val) {
7181 		/* Taint dst register if offset had invalid bounds derived from
7182 		 * e.g. dead branches.
7183 		 */
7184 		__mark_reg_unknown(env, dst_reg);
7185 		return 0;
7186 	}
7187 
7188 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7189 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7190 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7191 			__mark_reg_unknown(env, dst_reg);
7192 			return 0;
7193 		}
7194 
7195 		verbose(env,
7196 			"R%d 32-bit pointer arithmetic prohibited\n",
7197 			dst);
7198 		return -EACCES;
7199 	}
7200 
7201 	switch (ptr_reg->type) {
7202 	case PTR_TO_MAP_VALUE_OR_NULL:
7203 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7204 			dst, reg_type_str[ptr_reg->type]);
7205 		return -EACCES;
7206 	case CONST_PTR_TO_MAP:
7207 		/* smin_val represents the known value */
7208 		if (known && smin_val == 0 && opcode == BPF_ADD)
7209 			break;
7210 		fallthrough;
7211 	case PTR_TO_PACKET_END:
7212 	case PTR_TO_SOCKET:
7213 	case PTR_TO_SOCKET_OR_NULL:
7214 	case PTR_TO_SOCK_COMMON:
7215 	case PTR_TO_SOCK_COMMON_OR_NULL:
7216 	case PTR_TO_TCP_SOCK:
7217 	case PTR_TO_TCP_SOCK_OR_NULL:
7218 	case PTR_TO_XDP_SOCK:
7219 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7220 			dst, reg_type_str[ptr_reg->type]);
7221 		return -EACCES;
7222 	default:
7223 		break;
7224 	}
7225 
7226 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7227 	 * The id may be overwritten later if we create a new variable offset.
7228 	 */
7229 	dst_reg->type = ptr_reg->type;
7230 	dst_reg->id = ptr_reg->id;
7231 
7232 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7233 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7234 		return -EINVAL;
7235 
7236 	/* pointer types do not carry 32-bit bounds at the moment. */
7237 	__mark_reg32_unbounded(dst_reg);
7238 
7239 	if (sanitize_needed(opcode)) {
7240 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7241 				       &info, false);
7242 		if (ret < 0)
7243 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7244 	}
7245 
7246 	switch (opcode) {
7247 	case BPF_ADD:
7248 		/* We can take a fixed offset as long as it doesn't overflow
7249 		 * the s32 'off' field
7250 		 */
7251 		if (known && (ptr_reg->off + smin_val ==
7252 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7253 			/* pointer += K.  Accumulate it into fixed offset */
7254 			dst_reg->smin_value = smin_ptr;
7255 			dst_reg->smax_value = smax_ptr;
7256 			dst_reg->umin_value = umin_ptr;
7257 			dst_reg->umax_value = umax_ptr;
7258 			dst_reg->var_off = ptr_reg->var_off;
7259 			dst_reg->off = ptr_reg->off + smin_val;
7260 			dst_reg->raw = ptr_reg->raw;
7261 			break;
7262 		}
7263 		/* A new variable offset is created.  Note that off_reg->off
7264 		 * == 0, since it's a scalar.
7265 		 * dst_reg gets the pointer type and since some positive
7266 		 * integer value was added to the pointer, give it a new 'id'
7267 		 * if it's a PTR_TO_PACKET.
7268 		 * this creates a new 'base' pointer, off_reg (variable) gets
7269 		 * added into the variable offset, and we copy the fixed offset
7270 		 * from ptr_reg.
7271 		 */
7272 		if (signed_add_overflows(smin_ptr, smin_val) ||
7273 		    signed_add_overflows(smax_ptr, smax_val)) {
7274 			dst_reg->smin_value = S64_MIN;
7275 			dst_reg->smax_value = S64_MAX;
7276 		} else {
7277 			dst_reg->smin_value = smin_ptr + smin_val;
7278 			dst_reg->smax_value = smax_ptr + smax_val;
7279 		}
7280 		if (umin_ptr + umin_val < umin_ptr ||
7281 		    umax_ptr + umax_val < umax_ptr) {
7282 			dst_reg->umin_value = 0;
7283 			dst_reg->umax_value = U64_MAX;
7284 		} else {
7285 			dst_reg->umin_value = umin_ptr + umin_val;
7286 			dst_reg->umax_value = umax_ptr + umax_val;
7287 		}
7288 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7289 		dst_reg->off = ptr_reg->off;
7290 		dst_reg->raw = ptr_reg->raw;
7291 		if (reg_is_pkt_pointer(ptr_reg)) {
7292 			dst_reg->id = ++env->id_gen;
7293 			/* something was added to pkt_ptr, set range to zero */
7294 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7295 		}
7296 		break;
7297 	case BPF_SUB:
7298 		if (dst_reg == off_reg) {
7299 			/* scalar -= pointer.  Creates an unknown scalar */
7300 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7301 				dst);
7302 			return -EACCES;
7303 		}
7304 		/* We don't allow subtraction from FP, because (according to
7305 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7306 		 * be able to deal with it.
7307 		 */
7308 		if (ptr_reg->type == PTR_TO_STACK) {
7309 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7310 				dst);
7311 			return -EACCES;
7312 		}
7313 		if (known && (ptr_reg->off - smin_val ==
7314 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7315 			/* pointer -= K.  Subtract it from fixed offset */
7316 			dst_reg->smin_value = smin_ptr;
7317 			dst_reg->smax_value = smax_ptr;
7318 			dst_reg->umin_value = umin_ptr;
7319 			dst_reg->umax_value = umax_ptr;
7320 			dst_reg->var_off = ptr_reg->var_off;
7321 			dst_reg->id = ptr_reg->id;
7322 			dst_reg->off = ptr_reg->off - smin_val;
7323 			dst_reg->raw = ptr_reg->raw;
7324 			break;
7325 		}
7326 		/* A new variable offset is created.  If the subtrahend is known
7327 		 * nonnegative, then any reg->range we had before is still good.
7328 		 */
7329 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7330 		    signed_sub_overflows(smax_ptr, smin_val)) {
7331 			/* Overflow possible, we know nothing */
7332 			dst_reg->smin_value = S64_MIN;
7333 			dst_reg->smax_value = S64_MAX;
7334 		} else {
7335 			dst_reg->smin_value = smin_ptr - smax_val;
7336 			dst_reg->smax_value = smax_ptr - smin_val;
7337 		}
7338 		if (umin_ptr < umax_val) {
7339 			/* Overflow possible, we know nothing */
7340 			dst_reg->umin_value = 0;
7341 			dst_reg->umax_value = U64_MAX;
7342 		} else {
7343 			/* Cannot overflow (as long as bounds are consistent) */
7344 			dst_reg->umin_value = umin_ptr - umax_val;
7345 			dst_reg->umax_value = umax_ptr - umin_val;
7346 		}
7347 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7348 		dst_reg->off = ptr_reg->off;
7349 		dst_reg->raw = ptr_reg->raw;
7350 		if (reg_is_pkt_pointer(ptr_reg)) {
7351 			dst_reg->id = ++env->id_gen;
7352 			/* something was added to pkt_ptr, set range to zero */
7353 			if (smin_val < 0)
7354 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7355 		}
7356 		break;
7357 	case BPF_AND:
7358 	case BPF_OR:
7359 	case BPF_XOR:
7360 		/* bitwise ops on pointers are troublesome, prohibit. */
7361 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7362 			dst, bpf_alu_string[opcode >> 4]);
7363 		return -EACCES;
7364 	default:
7365 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7366 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7367 			dst, bpf_alu_string[opcode >> 4]);
7368 		return -EACCES;
7369 	}
7370 
7371 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7372 		return -EINVAL;
7373 
7374 	__update_reg_bounds(dst_reg);
7375 	__reg_deduce_bounds(dst_reg);
7376 	__reg_bound_offset(dst_reg);
7377 
7378 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7379 		return -EACCES;
7380 	if (sanitize_needed(opcode)) {
7381 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7382 				       &info, true);
7383 		if (ret < 0)
7384 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7385 	}
7386 
7387 	return 0;
7388 }
7389 
7390 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7391 				 struct bpf_reg_state *src_reg)
7392 {
7393 	s32 smin_val = src_reg->s32_min_value;
7394 	s32 smax_val = src_reg->s32_max_value;
7395 	u32 umin_val = src_reg->u32_min_value;
7396 	u32 umax_val = src_reg->u32_max_value;
7397 
7398 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7399 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7400 		dst_reg->s32_min_value = S32_MIN;
7401 		dst_reg->s32_max_value = S32_MAX;
7402 	} else {
7403 		dst_reg->s32_min_value += smin_val;
7404 		dst_reg->s32_max_value += smax_val;
7405 	}
7406 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7407 	    dst_reg->u32_max_value + umax_val < umax_val) {
7408 		dst_reg->u32_min_value = 0;
7409 		dst_reg->u32_max_value = U32_MAX;
7410 	} else {
7411 		dst_reg->u32_min_value += umin_val;
7412 		dst_reg->u32_max_value += umax_val;
7413 	}
7414 }
7415 
7416 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7417 			       struct bpf_reg_state *src_reg)
7418 {
7419 	s64 smin_val = src_reg->smin_value;
7420 	s64 smax_val = src_reg->smax_value;
7421 	u64 umin_val = src_reg->umin_value;
7422 	u64 umax_val = src_reg->umax_value;
7423 
7424 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7425 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7426 		dst_reg->smin_value = S64_MIN;
7427 		dst_reg->smax_value = S64_MAX;
7428 	} else {
7429 		dst_reg->smin_value += smin_val;
7430 		dst_reg->smax_value += smax_val;
7431 	}
7432 	if (dst_reg->umin_value + umin_val < umin_val ||
7433 	    dst_reg->umax_value + umax_val < umax_val) {
7434 		dst_reg->umin_value = 0;
7435 		dst_reg->umax_value = U64_MAX;
7436 	} else {
7437 		dst_reg->umin_value += umin_val;
7438 		dst_reg->umax_value += umax_val;
7439 	}
7440 }
7441 
7442 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7443 				 struct bpf_reg_state *src_reg)
7444 {
7445 	s32 smin_val = src_reg->s32_min_value;
7446 	s32 smax_val = src_reg->s32_max_value;
7447 	u32 umin_val = src_reg->u32_min_value;
7448 	u32 umax_val = src_reg->u32_max_value;
7449 
7450 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7451 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7452 		/* Overflow possible, we know nothing */
7453 		dst_reg->s32_min_value = S32_MIN;
7454 		dst_reg->s32_max_value = S32_MAX;
7455 	} else {
7456 		dst_reg->s32_min_value -= smax_val;
7457 		dst_reg->s32_max_value -= smin_val;
7458 	}
7459 	if (dst_reg->u32_min_value < umax_val) {
7460 		/* Overflow possible, we know nothing */
7461 		dst_reg->u32_min_value = 0;
7462 		dst_reg->u32_max_value = U32_MAX;
7463 	} else {
7464 		/* Cannot overflow (as long as bounds are consistent) */
7465 		dst_reg->u32_min_value -= umax_val;
7466 		dst_reg->u32_max_value -= umin_val;
7467 	}
7468 }
7469 
7470 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7471 			       struct bpf_reg_state *src_reg)
7472 {
7473 	s64 smin_val = src_reg->smin_value;
7474 	s64 smax_val = src_reg->smax_value;
7475 	u64 umin_val = src_reg->umin_value;
7476 	u64 umax_val = src_reg->umax_value;
7477 
7478 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7479 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7480 		/* Overflow possible, we know nothing */
7481 		dst_reg->smin_value = S64_MIN;
7482 		dst_reg->smax_value = S64_MAX;
7483 	} else {
7484 		dst_reg->smin_value -= smax_val;
7485 		dst_reg->smax_value -= smin_val;
7486 	}
7487 	if (dst_reg->umin_value < umax_val) {
7488 		/* Overflow possible, we know nothing */
7489 		dst_reg->umin_value = 0;
7490 		dst_reg->umax_value = U64_MAX;
7491 	} else {
7492 		/* Cannot overflow (as long as bounds are consistent) */
7493 		dst_reg->umin_value -= umax_val;
7494 		dst_reg->umax_value -= umin_val;
7495 	}
7496 }
7497 
7498 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7499 				 struct bpf_reg_state *src_reg)
7500 {
7501 	s32 smin_val = src_reg->s32_min_value;
7502 	u32 umin_val = src_reg->u32_min_value;
7503 	u32 umax_val = src_reg->u32_max_value;
7504 
7505 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7506 		/* Ain't nobody got time to multiply that sign */
7507 		__mark_reg32_unbounded(dst_reg);
7508 		return;
7509 	}
7510 	/* Both values are positive, so we can work with unsigned and
7511 	 * copy the result to signed (unless it exceeds S32_MAX).
7512 	 */
7513 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7514 		/* Potential overflow, we know nothing */
7515 		__mark_reg32_unbounded(dst_reg);
7516 		return;
7517 	}
7518 	dst_reg->u32_min_value *= umin_val;
7519 	dst_reg->u32_max_value *= umax_val;
7520 	if (dst_reg->u32_max_value > S32_MAX) {
7521 		/* Overflow possible, we know nothing */
7522 		dst_reg->s32_min_value = S32_MIN;
7523 		dst_reg->s32_max_value = S32_MAX;
7524 	} else {
7525 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7526 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7527 	}
7528 }
7529 
7530 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7531 			       struct bpf_reg_state *src_reg)
7532 {
7533 	s64 smin_val = src_reg->smin_value;
7534 	u64 umin_val = src_reg->umin_value;
7535 	u64 umax_val = src_reg->umax_value;
7536 
7537 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7538 		/* Ain't nobody got time to multiply that sign */
7539 		__mark_reg64_unbounded(dst_reg);
7540 		return;
7541 	}
7542 	/* Both values are positive, so we can work with unsigned and
7543 	 * copy the result to signed (unless it exceeds S64_MAX).
7544 	 */
7545 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7546 		/* Potential overflow, we know nothing */
7547 		__mark_reg64_unbounded(dst_reg);
7548 		return;
7549 	}
7550 	dst_reg->umin_value *= umin_val;
7551 	dst_reg->umax_value *= umax_val;
7552 	if (dst_reg->umax_value > S64_MAX) {
7553 		/* Overflow possible, we know nothing */
7554 		dst_reg->smin_value = S64_MIN;
7555 		dst_reg->smax_value = S64_MAX;
7556 	} else {
7557 		dst_reg->smin_value = dst_reg->umin_value;
7558 		dst_reg->smax_value = dst_reg->umax_value;
7559 	}
7560 }
7561 
7562 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7563 				 struct bpf_reg_state *src_reg)
7564 {
7565 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7566 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7567 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7568 	s32 smin_val = src_reg->s32_min_value;
7569 	u32 umax_val = src_reg->u32_max_value;
7570 
7571 	if (src_known && dst_known) {
7572 		__mark_reg32_known(dst_reg, var32_off.value);
7573 		return;
7574 	}
7575 
7576 	/* We get our minimum from the var_off, since that's inherently
7577 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7578 	 */
7579 	dst_reg->u32_min_value = var32_off.value;
7580 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7581 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7582 		/* Lose signed bounds when ANDing negative numbers,
7583 		 * ain't nobody got time for that.
7584 		 */
7585 		dst_reg->s32_min_value = S32_MIN;
7586 		dst_reg->s32_max_value = S32_MAX;
7587 	} else {
7588 		/* ANDing two positives gives a positive, so safe to
7589 		 * cast result into s64.
7590 		 */
7591 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7592 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7593 	}
7594 }
7595 
7596 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7597 			       struct bpf_reg_state *src_reg)
7598 {
7599 	bool src_known = tnum_is_const(src_reg->var_off);
7600 	bool dst_known = tnum_is_const(dst_reg->var_off);
7601 	s64 smin_val = src_reg->smin_value;
7602 	u64 umax_val = src_reg->umax_value;
7603 
7604 	if (src_known && dst_known) {
7605 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7606 		return;
7607 	}
7608 
7609 	/* We get our minimum from the var_off, since that's inherently
7610 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7611 	 */
7612 	dst_reg->umin_value = dst_reg->var_off.value;
7613 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7614 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7615 		/* Lose signed bounds when ANDing negative numbers,
7616 		 * ain't nobody got time for that.
7617 		 */
7618 		dst_reg->smin_value = S64_MIN;
7619 		dst_reg->smax_value = S64_MAX;
7620 	} else {
7621 		/* ANDing two positives gives a positive, so safe to
7622 		 * cast result into s64.
7623 		 */
7624 		dst_reg->smin_value = dst_reg->umin_value;
7625 		dst_reg->smax_value = dst_reg->umax_value;
7626 	}
7627 	/* We may learn something more from the var_off */
7628 	__update_reg_bounds(dst_reg);
7629 }
7630 
7631 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7632 				struct bpf_reg_state *src_reg)
7633 {
7634 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7635 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7636 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7637 	s32 smin_val = src_reg->s32_min_value;
7638 	u32 umin_val = src_reg->u32_min_value;
7639 
7640 	if (src_known && dst_known) {
7641 		__mark_reg32_known(dst_reg, var32_off.value);
7642 		return;
7643 	}
7644 
7645 	/* We get our maximum from the var_off, and our minimum is the
7646 	 * maximum of the operands' minima
7647 	 */
7648 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7649 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7650 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7651 		/* Lose signed bounds when ORing negative numbers,
7652 		 * ain't nobody got time for that.
7653 		 */
7654 		dst_reg->s32_min_value = S32_MIN;
7655 		dst_reg->s32_max_value = S32_MAX;
7656 	} else {
7657 		/* ORing two positives gives a positive, so safe to
7658 		 * cast result into s64.
7659 		 */
7660 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7661 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7662 	}
7663 }
7664 
7665 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7666 			      struct bpf_reg_state *src_reg)
7667 {
7668 	bool src_known = tnum_is_const(src_reg->var_off);
7669 	bool dst_known = tnum_is_const(dst_reg->var_off);
7670 	s64 smin_val = src_reg->smin_value;
7671 	u64 umin_val = src_reg->umin_value;
7672 
7673 	if (src_known && dst_known) {
7674 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7675 		return;
7676 	}
7677 
7678 	/* We get our maximum from the var_off, and our minimum is the
7679 	 * maximum of the operands' minima
7680 	 */
7681 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7682 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7683 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7684 		/* Lose signed bounds when ORing negative numbers,
7685 		 * ain't nobody got time for that.
7686 		 */
7687 		dst_reg->smin_value = S64_MIN;
7688 		dst_reg->smax_value = S64_MAX;
7689 	} else {
7690 		/* ORing two positives gives a positive, so safe to
7691 		 * cast result into s64.
7692 		 */
7693 		dst_reg->smin_value = dst_reg->umin_value;
7694 		dst_reg->smax_value = dst_reg->umax_value;
7695 	}
7696 	/* We may learn something more from the var_off */
7697 	__update_reg_bounds(dst_reg);
7698 }
7699 
7700 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7701 				 struct bpf_reg_state *src_reg)
7702 {
7703 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7704 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7705 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7706 	s32 smin_val = src_reg->s32_min_value;
7707 
7708 	if (src_known && dst_known) {
7709 		__mark_reg32_known(dst_reg, var32_off.value);
7710 		return;
7711 	}
7712 
7713 	/* We get both minimum and maximum from the var32_off. */
7714 	dst_reg->u32_min_value = var32_off.value;
7715 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7716 
7717 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7718 		/* XORing two positive sign numbers gives a positive,
7719 		 * so safe to cast u32 result into s32.
7720 		 */
7721 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7722 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7723 	} else {
7724 		dst_reg->s32_min_value = S32_MIN;
7725 		dst_reg->s32_max_value = S32_MAX;
7726 	}
7727 }
7728 
7729 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7730 			       struct bpf_reg_state *src_reg)
7731 {
7732 	bool src_known = tnum_is_const(src_reg->var_off);
7733 	bool dst_known = tnum_is_const(dst_reg->var_off);
7734 	s64 smin_val = src_reg->smin_value;
7735 
7736 	if (src_known && dst_known) {
7737 		/* dst_reg->var_off.value has been updated earlier */
7738 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7739 		return;
7740 	}
7741 
7742 	/* We get both minimum and maximum from the var_off. */
7743 	dst_reg->umin_value = dst_reg->var_off.value;
7744 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7745 
7746 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7747 		/* XORing two positive sign numbers gives a positive,
7748 		 * so safe to cast u64 result into s64.
7749 		 */
7750 		dst_reg->smin_value = dst_reg->umin_value;
7751 		dst_reg->smax_value = dst_reg->umax_value;
7752 	} else {
7753 		dst_reg->smin_value = S64_MIN;
7754 		dst_reg->smax_value = S64_MAX;
7755 	}
7756 
7757 	__update_reg_bounds(dst_reg);
7758 }
7759 
7760 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7761 				   u64 umin_val, u64 umax_val)
7762 {
7763 	/* We lose all sign bit information (except what we can pick
7764 	 * up from var_off)
7765 	 */
7766 	dst_reg->s32_min_value = S32_MIN;
7767 	dst_reg->s32_max_value = S32_MAX;
7768 	/* If we might shift our top bit out, then we know nothing */
7769 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7770 		dst_reg->u32_min_value = 0;
7771 		dst_reg->u32_max_value = U32_MAX;
7772 	} else {
7773 		dst_reg->u32_min_value <<= umin_val;
7774 		dst_reg->u32_max_value <<= umax_val;
7775 	}
7776 }
7777 
7778 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7779 				 struct bpf_reg_state *src_reg)
7780 {
7781 	u32 umax_val = src_reg->u32_max_value;
7782 	u32 umin_val = src_reg->u32_min_value;
7783 	/* u32 alu operation will zext upper bits */
7784 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7785 
7786 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7787 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7788 	/* Not required but being careful mark reg64 bounds as unknown so
7789 	 * that we are forced to pick them up from tnum and zext later and
7790 	 * if some path skips this step we are still safe.
7791 	 */
7792 	__mark_reg64_unbounded(dst_reg);
7793 	__update_reg32_bounds(dst_reg);
7794 }
7795 
7796 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7797 				   u64 umin_val, u64 umax_val)
7798 {
7799 	/* Special case <<32 because it is a common compiler pattern to sign
7800 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7801 	 * positive we know this shift will also be positive so we can track
7802 	 * bounds correctly. Otherwise we lose all sign bit information except
7803 	 * what we can pick up from var_off. Perhaps we can generalize this
7804 	 * later to shifts of any length.
7805 	 */
7806 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7807 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7808 	else
7809 		dst_reg->smax_value = S64_MAX;
7810 
7811 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7812 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7813 	else
7814 		dst_reg->smin_value = S64_MIN;
7815 
7816 	/* If we might shift our top bit out, then we know nothing */
7817 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7818 		dst_reg->umin_value = 0;
7819 		dst_reg->umax_value = U64_MAX;
7820 	} else {
7821 		dst_reg->umin_value <<= umin_val;
7822 		dst_reg->umax_value <<= umax_val;
7823 	}
7824 }
7825 
7826 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7827 			       struct bpf_reg_state *src_reg)
7828 {
7829 	u64 umax_val = src_reg->umax_value;
7830 	u64 umin_val = src_reg->umin_value;
7831 
7832 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7833 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7834 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7835 
7836 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7837 	/* We may learn something more from the var_off */
7838 	__update_reg_bounds(dst_reg);
7839 }
7840 
7841 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7842 				 struct bpf_reg_state *src_reg)
7843 {
7844 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7845 	u32 umax_val = src_reg->u32_max_value;
7846 	u32 umin_val = src_reg->u32_min_value;
7847 
7848 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7849 	 * be negative, then either:
7850 	 * 1) src_reg might be zero, so the sign bit of the result is
7851 	 *    unknown, so we lose our signed bounds
7852 	 * 2) it's known negative, thus the unsigned bounds capture the
7853 	 *    signed bounds
7854 	 * 3) the signed bounds cross zero, so they tell us nothing
7855 	 *    about the result
7856 	 * If the value in dst_reg is known nonnegative, then again the
7857 	 * unsigned bounds capture the signed bounds.
7858 	 * Thus, in all cases it suffices to blow away our signed bounds
7859 	 * and rely on inferring new ones from the unsigned bounds and
7860 	 * var_off of the result.
7861 	 */
7862 	dst_reg->s32_min_value = S32_MIN;
7863 	dst_reg->s32_max_value = S32_MAX;
7864 
7865 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7866 	dst_reg->u32_min_value >>= umax_val;
7867 	dst_reg->u32_max_value >>= umin_val;
7868 
7869 	__mark_reg64_unbounded(dst_reg);
7870 	__update_reg32_bounds(dst_reg);
7871 }
7872 
7873 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7874 			       struct bpf_reg_state *src_reg)
7875 {
7876 	u64 umax_val = src_reg->umax_value;
7877 	u64 umin_val = src_reg->umin_value;
7878 
7879 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7880 	 * be negative, then either:
7881 	 * 1) src_reg might be zero, so the sign bit of the result is
7882 	 *    unknown, so we lose our signed bounds
7883 	 * 2) it's known negative, thus the unsigned bounds capture the
7884 	 *    signed bounds
7885 	 * 3) the signed bounds cross zero, so they tell us nothing
7886 	 *    about the result
7887 	 * If the value in dst_reg is known nonnegative, then again the
7888 	 * unsigned bounds capture the signed bounds.
7889 	 * Thus, in all cases it suffices to blow away our signed bounds
7890 	 * and rely on inferring new ones from the unsigned bounds and
7891 	 * var_off of the result.
7892 	 */
7893 	dst_reg->smin_value = S64_MIN;
7894 	dst_reg->smax_value = S64_MAX;
7895 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7896 	dst_reg->umin_value >>= umax_val;
7897 	dst_reg->umax_value >>= umin_val;
7898 
7899 	/* Its not easy to operate on alu32 bounds here because it depends
7900 	 * on bits being shifted in. Take easy way out and mark unbounded
7901 	 * so we can recalculate later from tnum.
7902 	 */
7903 	__mark_reg32_unbounded(dst_reg);
7904 	__update_reg_bounds(dst_reg);
7905 }
7906 
7907 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7908 				  struct bpf_reg_state *src_reg)
7909 {
7910 	u64 umin_val = src_reg->u32_min_value;
7911 
7912 	/* Upon reaching here, src_known is true and
7913 	 * umax_val is equal to umin_val.
7914 	 */
7915 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7916 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7917 
7918 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7919 
7920 	/* blow away the dst_reg umin_value/umax_value and rely on
7921 	 * dst_reg var_off to refine the result.
7922 	 */
7923 	dst_reg->u32_min_value = 0;
7924 	dst_reg->u32_max_value = U32_MAX;
7925 
7926 	__mark_reg64_unbounded(dst_reg);
7927 	__update_reg32_bounds(dst_reg);
7928 }
7929 
7930 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7931 				struct bpf_reg_state *src_reg)
7932 {
7933 	u64 umin_val = src_reg->umin_value;
7934 
7935 	/* Upon reaching here, src_known is true and umax_val is equal
7936 	 * to umin_val.
7937 	 */
7938 	dst_reg->smin_value >>= umin_val;
7939 	dst_reg->smax_value >>= umin_val;
7940 
7941 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7942 
7943 	/* blow away the dst_reg umin_value/umax_value and rely on
7944 	 * dst_reg var_off to refine the result.
7945 	 */
7946 	dst_reg->umin_value = 0;
7947 	dst_reg->umax_value = U64_MAX;
7948 
7949 	/* Its not easy to operate on alu32 bounds here because it depends
7950 	 * on bits being shifted in from upper 32-bits. Take easy way out
7951 	 * and mark unbounded so we can recalculate later from tnum.
7952 	 */
7953 	__mark_reg32_unbounded(dst_reg);
7954 	__update_reg_bounds(dst_reg);
7955 }
7956 
7957 /* WARNING: This function does calculations on 64-bit values, but the actual
7958  * execution may occur on 32-bit values. Therefore, things like bitshifts
7959  * need extra checks in the 32-bit case.
7960  */
7961 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7962 				      struct bpf_insn *insn,
7963 				      struct bpf_reg_state *dst_reg,
7964 				      struct bpf_reg_state src_reg)
7965 {
7966 	struct bpf_reg_state *regs = cur_regs(env);
7967 	u8 opcode = BPF_OP(insn->code);
7968 	bool src_known;
7969 	s64 smin_val, smax_val;
7970 	u64 umin_val, umax_val;
7971 	s32 s32_min_val, s32_max_val;
7972 	u32 u32_min_val, u32_max_val;
7973 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7974 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7975 	int ret;
7976 
7977 	smin_val = src_reg.smin_value;
7978 	smax_val = src_reg.smax_value;
7979 	umin_val = src_reg.umin_value;
7980 	umax_val = src_reg.umax_value;
7981 
7982 	s32_min_val = src_reg.s32_min_value;
7983 	s32_max_val = src_reg.s32_max_value;
7984 	u32_min_val = src_reg.u32_min_value;
7985 	u32_max_val = src_reg.u32_max_value;
7986 
7987 	if (alu32) {
7988 		src_known = tnum_subreg_is_const(src_reg.var_off);
7989 		if ((src_known &&
7990 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7991 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7992 			/* Taint dst register if offset had invalid bounds
7993 			 * derived from e.g. dead branches.
7994 			 */
7995 			__mark_reg_unknown(env, dst_reg);
7996 			return 0;
7997 		}
7998 	} else {
7999 		src_known = tnum_is_const(src_reg.var_off);
8000 		if ((src_known &&
8001 		     (smin_val != smax_val || umin_val != umax_val)) ||
8002 		    smin_val > smax_val || umin_val > umax_val) {
8003 			/* Taint dst register if offset had invalid bounds
8004 			 * derived from e.g. dead branches.
8005 			 */
8006 			__mark_reg_unknown(env, dst_reg);
8007 			return 0;
8008 		}
8009 	}
8010 
8011 	if (!src_known &&
8012 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8013 		__mark_reg_unknown(env, dst_reg);
8014 		return 0;
8015 	}
8016 
8017 	if (sanitize_needed(opcode)) {
8018 		ret = sanitize_val_alu(env, insn);
8019 		if (ret < 0)
8020 			return sanitize_err(env, insn, ret, NULL, NULL);
8021 	}
8022 
8023 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8024 	 * There are two classes of instructions: The first class we track both
8025 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8026 	 * greatest amount of precision when alu operations are mixed with jmp32
8027 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8028 	 * and BPF_OR. This is possible because these ops have fairly easy to
8029 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8030 	 * See alu32 verifier tests for examples. The second class of
8031 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8032 	 * with regards to tracking sign/unsigned bounds because the bits may
8033 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8034 	 * the reg unbounded in the subreg bound space and use the resulting
8035 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8036 	 */
8037 	switch (opcode) {
8038 	case BPF_ADD:
8039 		scalar32_min_max_add(dst_reg, &src_reg);
8040 		scalar_min_max_add(dst_reg, &src_reg);
8041 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8042 		break;
8043 	case BPF_SUB:
8044 		scalar32_min_max_sub(dst_reg, &src_reg);
8045 		scalar_min_max_sub(dst_reg, &src_reg);
8046 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8047 		break;
8048 	case BPF_MUL:
8049 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8050 		scalar32_min_max_mul(dst_reg, &src_reg);
8051 		scalar_min_max_mul(dst_reg, &src_reg);
8052 		break;
8053 	case BPF_AND:
8054 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8055 		scalar32_min_max_and(dst_reg, &src_reg);
8056 		scalar_min_max_and(dst_reg, &src_reg);
8057 		break;
8058 	case BPF_OR:
8059 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8060 		scalar32_min_max_or(dst_reg, &src_reg);
8061 		scalar_min_max_or(dst_reg, &src_reg);
8062 		break;
8063 	case BPF_XOR:
8064 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8065 		scalar32_min_max_xor(dst_reg, &src_reg);
8066 		scalar_min_max_xor(dst_reg, &src_reg);
8067 		break;
8068 	case BPF_LSH:
8069 		if (umax_val >= insn_bitness) {
8070 			/* Shifts greater than 31 or 63 are undefined.
8071 			 * This includes shifts by a negative number.
8072 			 */
8073 			mark_reg_unknown(env, regs, insn->dst_reg);
8074 			break;
8075 		}
8076 		if (alu32)
8077 			scalar32_min_max_lsh(dst_reg, &src_reg);
8078 		else
8079 			scalar_min_max_lsh(dst_reg, &src_reg);
8080 		break;
8081 	case BPF_RSH:
8082 		if (umax_val >= insn_bitness) {
8083 			/* Shifts greater than 31 or 63 are undefined.
8084 			 * This includes shifts by a negative number.
8085 			 */
8086 			mark_reg_unknown(env, regs, insn->dst_reg);
8087 			break;
8088 		}
8089 		if (alu32)
8090 			scalar32_min_max_rsh(dst_reg, &src_reg);
8091 		else
8092 			scalar_min_max_rsh(dst_reg, &src_reg);
8093 		break;
8094 	case BPF_ARSH:
8095 		if (umax_val >= insn_bitness) {
8096 			/* Shifts greater than 31 or 63 are undefined.
8097 			 * This includes shifts by a negative number.
8098 			 */
8099 			mark_reg_unknown(env, regs, insn->dst_reg);
8100 			break;
8101 		}
8102 		if (alu32)
8103 			scalar32_min_max_arsh(dst_reg, &src_reg);
8104 		else
8105 			scalar_min_max_arsh(dst_reg, &src_reg);
8106 		break;
8107 	default:
8108 		mark_reg_unknown(env, regs, insn->dst_reg);
8109 		break;
8110 	}
8111 
8112 	/* ALU32 ops are zero extended into 64bit register */
8113 	if (alu32)
8114 		zext_32_to_64(dst_reg);
8115 
8116 	__update_reg_bounds(dst_reg);
8117 	__reg_deduce_bounds(dst_reg);
8118 	__reg_bound_offset(dst_reg);
8119 	return 0;
8120 }
8121 
8122 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8123  * and var_off.
8124  */
8125 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8126 				   struct bpf_insn *insn)
8127 {
8128 	struct bpf_verifier_state *vstate = env->cur_state;
8129 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8130 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8131 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8132 	u8 opcode = BPF_OP(insn->code);
8133 	int err;
8134 
8135 	dst_reg = &regs[insn->dst_reg];
8136 	src_reg = NULL;
8137 	if (dst_reg->type != SCALAR_VALUE)
8138 		ptr_reg = dst_reg;
8139 	else
8140 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8141 		 * incorrectly propagated into other registers by find_equal_scalars()
8142 		 */
8143 		dst_reg->id = 0;
8144 	if (BPF_SRC(insn->code) == BPF_X) {
8145 		src_reg = &regs[insn->src_reg];
8146 		if (src_reg->type != SCALAR_VALUE) {
8147 			if (dst_reg->type != SCALAR_VALUE) {
8148 				/* Combining two pointers by any ALU op yields
8149 				 * an arbitrary scalar. Disallow all math except
8150 				 * pointer subtraction
8151 				 */
8152 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8153 					mark_reg_unknown(env, regs, insn->dst_reg);
8154 					return 0;
8155 				}
8156 				verbose(env, "R%d pointer %s pointer prohibited\n",
8157 					insn->dst_reg,
8158 					bpf_alu_string[opcode >> 4]);
8159 				return -EACCES;
8160 			} else {
8161 				/* scalar += pointer
8162 				 * This is legal, but we have to reverse our
8163 				 * src/dest handling in computing the range
8164 				 */
8165 				err = mark_chain_precision(env, insn->dst_reg);
8166 				if (err)
8167 					return err;
8168 				return adjust_ptr_min_max_vals(env, insn,
8169 							       src_reg, dst_reg);
8170 			}
8171 		} else if (ptr_reg) {
8172 			/* pointer += scalar */
8173 			err = mark_chain_precision(env, insn->src_reg);
8174 			if (err)
8175 				return err;
8176 			return adjust_ptr_min_max_vals(env, insn,
8177 						       dst_reg, src_reg);
8178 		}
8179 	} else {
8180 		/* Pretend the src is a reg with a known value, since we only
8181 		 * need to be able to read from this state.
8182 		 */
8183 		off_reg.type = SCALAR_VALUE;
8184 		__mark_reg_known(&off_reg, insn->imm);
8185 		src_reg = &off_reg;
8186 		if (ptr_reg) /* pointer += K */
8187 			return adjust_ptr_min_max_vals(env, insn,
8188 						       ptr_reg, src_reg);
8189 	}
8190 
8191 	/* Got here implies adding two SCALAR_VALUEs */
8192 	if (WARN_ON_ONCE(ptr_reg)) {
8193 		print_verifier_state(env, state);
8194 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8195 		return -EINVAL;
8196 	}
8197 	if (WARN_ON(!src_reg)) {
8198 		print_verifier_state(env, state);
8199 		verbose(env, "verifier internal error: no src_reg\n");
8200 		return -EINVAL;
8201 	}
8202 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8203 }
8204 
8205 /* check validity of 32-bit and 64-bit arithmetic operations */
8206 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8207 {
8208 	struct bpf_reg_state *regs = cur_regs(env);
8209 	u8 opcode = BPF_OP(insn->code);
8210 	int err;
8211 
8212 	if (opcode == BPF_END || opcode == BPF_NEG) {
8213 		if (opcode == BPF_NEG) {
8214 			if (BPF_SRC(insn->code) != 0 ||
8215 			    insn->src_reg != BPF_REG_0 ||
8216 			    insn->off != 0 || insn->imm != 0) {
8217 				verbose(env, "BPF_NEG uses reserved fields\n");
8218 				return -EINVAL;
8219 			}
8220 		} else {
8221 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8222 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8223 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8224 				verbose(env, "BPF_END uses reserved fields\n");
8225 				return -EINVAL;
8226 			}
8227 		}
8228 
8229 		/* check src operand */
8230 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8231 		if (err)
8232 			return err;
8233 
8234 		if (is_pointer_value(env, insn->dst_reg)) {
8235 			verbose(env, "R%d pointer arithmetic prohibited\n",
8236 				insn->dst_reg);
8237 			return -EACCES;
8238 		}
8239 
8240 		/* check dest operand */
8241 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8242 		if (err)
8243 			return err;
8244 
8245 	} else if (opcode == BPF_MOV) {
8246 
8247 		if (BPF_SRC(insn->code) == BPF_X) {
8248 			if (insn->imm != 0 || insn->off != 0) {
8249 				verbose(env, "BPF_MOV uses reserved fields\n");
8250 				return -EINVAL;
8251 			}
8252 
8253 			/* check src operand */
8254 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8255 			if (err)
8256 				return err;
8257 		} else {
8258 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8259 				verbose(env, "BPF_MOV uses reserved fields\n");
8260 				return -EINVAL;
8261 			}
8262 		}
8263 
8264 		/* check dest operand, mark as required later */
8265 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8266 		if (err)
8267 			return err;
8268 
8269 		if (BPF_SRC(insn->code) == BPF_X) {
8270 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8271 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8272 
8273 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8274 				/* case: R1 = R2
8275 				 * copy register state to dest reg
8276 				 */
8277 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8278 					/* Assign src and dst registers the same ID
8279 					 * that will be used by find_equal_scalars()
8280 					 * to propagate min/max range.
8281 					 */
8282 					src_reg->id = ++env->id_gen;
8283 				*dst_reg = *src_reg;
8284 				dst_reg->live |= REG_LIVE_WRITTEN;
8285 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8286 			} else {
8287 				/* R1 = (u32) R2 */
8288 				if (is_pointer_value(env, insn->src_reg)) {
8289 					verbose(env,
8290 						"R%d partial copy of pointer\n",
8291 						insn->src_reg);
8292 					return -EACCES;
8293 				} else if (src_reg->type == SCALAR_VALUE) {
8294 					*dst_reg = *src_reg;
8295 					/* Make sure ID is cleared otherwise
8296 					 * dst_reg min/max could be incorrectly
8297 					 * propagated into src_reg by find_equal_scalars()
8298 					 */
8299 					dst_reg->id = 0;
8300 					dst_reg->live |= REG_LIVE_WRITTEN;
8301 					dst_reg->subreg_def = env->insn_idx + 1;
8302 				} else {
8303 					mark_reg_unknown(env, regs,
8304 							 insn->dst_reg);
8305 				}
8306 				zext_32_to_64(dst_reg);
8307 			}
8308 		} else {
8309 			/* case: R = imm
8310 			 * remember the value we stored into this reg
8311 			 */
8312 			/* clear any state __mark_reg_known doesn't set */
8313 			mark_reg_unknown(env, regs, insn->dst_reg);
8314 			regs[insn->dst_reg].type = SCALAR_VALUE;
8315 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8316 				__mark_reg_known(regs + insn->dst_reg,
8317 						 insn->imm);
8318 			} else {
8319 				__mark_reg_known(regs + insn->dst_reg,
8320 						 (u32)insn->imm);
8321 			}
8322 		}
8323 
8324 	} else if (opcode > BPF_END) {
8325 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8326 		return -EINVAL;
8327 
8328 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8329 
8330 		if (BPF_SRC(insn->code) == BPF_X) {
8331 			if (insn->imm != 0 || insn->off != 0) {
8332 				verbose(env, "BPF_ALU uses reserved fields\n");
8333 				return -EINVAL;
8334 			}
8335 			/* check src1 operand */
8336 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8337 			if (err)
8338 				return err;
8339 		} else {
8340 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8341 				verbose(env, "BPF_ALU uses reserved fields\n");
8342 				return -EINVAL;
8343 			}
8344 		}
8345 
8346 		/* check src2 operand */
8347 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8348 		if (err)
8349 			return err;
8350 
8351 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8352 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8353 			verbose(env, "div by zero\n");
8354 			return -EINVAL;
8355 		}
8356 
8357 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8358 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8359 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8360 
8361 			if (insn->imm < 0 || insn->imm >= size) {
8362 				verbose(env, "invalid shift %d\n", insn->imm);
8363 				return -EINVAL;
8364 			}
8365 		}
8366 
8367 		/* check dest operand */
8368 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8369 		if (err)
8370 			return err;
8371 
8372 		return adjust_reg_min_max_vals(env, insn);
8373 	}
8374 
8375 	return 0;
8376 }
8377 
8378 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8379 				     struct bpf_reg_state *dst_reg,
8380 				     enum bpf_reg_type type, int new_range)
8381 {
8382 	struct bpf_reg_state *reg;
8383 	int i;
8384 
8385 	for (i = 0; i < MAX_BPF_REG; i++) {
8386 		reg = &state->regs[i];
8387 		if (reg->type == type && reg->id == dst_reg->id)
8388 			/* keep the maximum range already checked */
8389 			reg->range = max(reg->range, new_range);
8390 	}
8391 
8392 	bpf_for_each_spilled_reg(i, state, reg) {
8393 		if (!reg)
8394 			continue;
8395 		if (reg->type == type && reg->id == dst_reg->id)
8396 			reg->range = max(reg->range, new_range);
8397 	}
8398 }
8399 
8400 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8401 				   struct bpf_reg_state *dst_reg,
8402 				   enum bpf_reg_type type,
8403 				   bool range_right_open)
8404 {
8405 	int new_range, i;
8406 
8407 	if (dst_reg->off < 0 ||
8408 	    (dst_reg->off == 0 && range_right_open))
8409 		/* This doesn't give us any range */
8410 		return;
8411 
8412 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8413 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8414 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8415 		 * than pkt_end, but that's because it's also less than pkt.
8416 		 */
8417 		return;
8418 
8419 	new_range = dst_reg->off;
8420 	if (range_right_open)
8421 		new_range--;
8422 
8423 	/* Examples for register markings:
8424 	 *
8425 	 * pkt_data in dst register:
8426 	 *
8427 	 *   r2 = r3;
8428 	 *   r2 += 8;
8429 	 *   if (r2 > pkt_end) goto <handle exception>
8430 	 *   <access okay>
8431 	 *
8432 	 *   r2 = r3;
8433 	 *   r2 += 8;
8434 	 *   if (r2 < pkt_end) goto <access okay>
8435 	 *   <handle exception>
8436 	 *
8437 	 *   Where:
8438 	 *     r2 == dst_reg, pkt_end == src_reg
8439 	 *     r2=pkt(id=n,off=8,r=0)
8440 	 *     r3=pkt(id=n,off=0,r=0)
8441 	 *
8442 	 * pkt_data in src register:
8443 	 *
8444 	 *   r2 = r3;
8445 	 *   r2 += 8;
8446 	 *   if (pkt_end >= r2) goto <access okay>
8447 	 *   <handle exception>
8448 	 *
8449 	 *   r2 = r3;
8450 	 *   r2 += 8;
8451 	 *   if (pkt_end <= r2) goto <handle exception>
8452 	 *   <access okay>
8453 	 *
8454 	 *   Where:
8455 	 *     pkt_end == dst_reg, r2 == src_reg
8456 	 *     r2=pkt(id=n,off=8,r=0)
8457 	 *     r3=pkt(id=n,off=0,r=0)
8458 	 *
8459 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8460 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8461 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8462 	 * the check.
8463 	 */
8464 
8465 	/* If our ids match, then we must have the same max_value.  And we
8466 	 * don't care about the other reg's fixed offset, since if it's too big
8467 	 * the range won't allow anything.
8468 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8469 	 */
8470 	for (i = 0; i <= vstate->curframe; i++)
8471 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8472 					 new_range);
8473 }
8474 
8475 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8476 {
8477 	struct tnum subreg = tnum_subreg(reg->var_off);
8478 	s32 sval = (s32)val;
8479 
8480 	switch (opcode) {
8481 	case BPF_JEQ:
8482 		if (tnum_is_const(subreg))
8483 			return !!tnum_equals_const(subreg, val);
8484 		break;
8485 	case BPF_JNE:
8486 		if (tnum_is_const(subreg))
8487 			return !tnum_equals_const(subreg, val);
8488 		break;
8489 	case BPF_JSET:
8490 		if ((~subreg.mask & subreg.value) & val)
8491 			return 1;
8492 		if (!((subreg.mask | subreg.value) & val))
8493 			return 0;
8494 		break;
8495 	case BPF_JGT:
8496 		if (reg->u32_min_value > val)
8497 			return 1;
8498 		else if (reg->u32_max_value <= val)
8499 			return 0;
8500 		break;
8501 	case BPF_JSGT:
8502 		if (reg->s32_min_value > sval)
8503 			return 1;
8504 		else if (reg->s32_max_value <= sval)
8505 			return 0;
8506 		break;
8507 	case BPF_JLT:
8508 		if (reg->u32_max_value < val)
8509 			return 1;
8510 		else if (reg->u32_min_value >= val)
8511 			return 0;
8512 		break;
8513 	case BPF_JSLT:
8514 		if (reg->s32_max_value < sval)
8515 			return 1;
8516 		else if (reg->s32_min_value >= sval)
8517 			return 0;
8518 		break;
8519 	case BPF_JGE:
8520 		if (reg->u32_min_value >= val)
8521 			return 1;
8522 		else if (reg->u32_max_value < val)
8523 			return 0;
8524 		break;
8525 	case BPF_JSGE:
8526 		if (reg->s32_min_value >= sval)
8527 			return 1;
8528 		else if (reg->s32_max_value < sval)
8529 			return 0;
8530 		break;
8531 	case BPF_JLE:
8532 		if (reg->u32_max_value <= val)
8533 			return 1;
8534 		else if (reg->u32_min_value > val)
8535 			return 0;
8536 		break;
8537 	case BPF_JSLE:
8538 		if (reg->s32_max_value <= sval)
8539 			return 1;
8540 		else if (reg->s32_min_value > sval)
8541 			return 0;
8542 		break;
8543 	}
8544 
8545 	return -1;
8546 }
8547 
8548 
8549 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8550 {
8551 	s64 sval = (s64)val;
8552 
8553 	switch (opcode) {
8554 	case BPF_JEQ:
8555 		if (tnum_is_const(reg->var_off))
8556 			return !!tnum_equals_const(reg->var_off, val);
8557 		break;
8558 	case BPF_JNE:
8559 		if (tnum_is_const(reg->var_off))
8560 			return !tnum_equals_const(reg->var_off, val);
8561 		break;
8562 	case BPF_JSET:
8563 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8564 			return 1;
8565 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8566 			return 0;
8567 		break;
8568 	case BPF_JGT:
8569 		if (reg->umin_value > val)
8570 			return 1;
8571 		else if (reg->umax_value <= val)
8572 			return 0;
8573 		break;
8574 	case BPF_JSGT:
8575 		if (reg->smin_value > sval)
8576 			return 1;
8577 		else if (reg->smax_value <= sval)
8578 			return 0;
8579 		break;
8580 	case BPF_JLT:
8581 		if (reg->umax_value < val)
8582 			return 1;
8583 		else if (reg->umin_value >= val)
8584 			return 0;
8585 		break;
8586 	case BPF_JSLT:
8587 		if (reg->smax_value < sval)
8588 			return 1;
8589 		else if (reg->smin_value >= sval)
8590 			return 0;
8591 		break;
8592 	case BPF_JGE:
8593 		if (reg->umin_value >= val)
8594 			return 1;
8595 		else if (reg->umax_value < val)
8596 			return 0;
8597 		break;
8598 	case BPF_JSGE:
8599 		if (reg->smin_value >= sval)
8600 			return 1;
8601 		else if (reg->smax_value < sval)
8602 			return 0;
8603 		break;
8604 	case BPF_JLE:
8605 		if (reg->umax_value <= val)
8606 			return 1;
8607 		else if (reg->umin_value > val)
8608 			return 0;
8609 		break;
8610 	case BPF_JSLE:
8611 		if (reg->smax_value <= sval)
8612 			return 1;
8613 		else if (reg->smin_value > sval)
8614 			return 0;
8615 		break;
8616 	}
8617 
8618 	return -1;
8619 }
8620 
8621 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8622  * and return:
8623  *  1 - branch will be taken and "goto target" will be executed
8624  *  0 - branch will not be taken and fall-through to next insn
8625  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8626  *      range [0,10]
8627  */
8628 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8629 			   bool is_jmp32)
8630 {
8631 	if (__is_pointer_value(false, reg)) {
8632 		if (!reg_type_not_null(reg->type))
8633 			return -1;
8634 
8635 		/* If pointer is valid tests against zero will fail so we can
8636 		 * use this to direct branch taken.
8637 		 */
8638 		if (val != 0)
8639 			return -1;
8640 
8641 		switch (opcode) {
8642 		case BPF_JEQ:
8643 			return 0;
8644 		case BPF_JNE:
8645 			return 1;
8646 		default:
8647 			return -1;
8648 		}
8649 	}
8650 
8651 	if (is_jmp32)
8652 		return is_branch32_taken(reg, val, opcode);
8653 	return is_branch64_taken(reg, val, opcode);
8654 }
8655 
8656 static int flip_opcode(u32 opcode)
8657 {
8658 	/* How can we transform "a <op> b" into "b <op> a"? */
8659 	static const u8 opcode_flip[16] = {
8660 		/* these stay the same */
8661 		[BPF_JEQ  >> 4] = BPF_JEQ,
8662 		[BPF_JNE  >> 4] = BPF_JNE,
8663 		[BPF_JSET >> 4] = BPF_JSET,
8664 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8665 		[BPF_JGE  >> 4] = BPF_JLE,
8666 		[BPF_JGT  >> 4] = BPF_JLT,
8667 		[BPF_JLE  >> 4] = BPF_JGE,
8668 		[BPF_JLT  >> 4] = BPF_JGT,
8669 		[BPF_JSGE >> 4] = BPF_JSLE,
8670 		[BPF_JSGT >> 4] = BPF_JSLT,
8671 		[BPF_JSLE >> 4] = BPF_JSGE,
8672 		[BPF_JSLT >> 4] = BPF_JSGT
8673 	};
8674 	return opcode_flip[opcode >> 4];
8675 }
8676 
8677 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8678 				   struct bpf_reg_state *src_reg,
8679 				   u8 opcode)
8680 {
8681 	struct bpf_reg_state *pkt;
8682 
8683 	if (src_reg->type == PTR_TO_PACKET_END) {
8684 		pkt = dst_reg;
8685 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8686 		pkt = src_reg;
8687 		opcode = flip_opcode(opcode);
8688 	} else {
8689 		return -1;
8690 	}
8691 
8692 	if (pkt->range >= 0)
8693 		return -1;
8694 
8695 	switch (opcode) {
8696 	case BPF_JLE:
8697 		/* pkt <= pkt_end */
8698 		fallthrough;
8699 	case BPF_JGT:
8700 		/* pkt > pkt_end */
8701 		if (pkt->range == BEYOND_PKT_END)
8702 			/* pkt has at last one extra byte beyond pkt_end */
8703 			return opcode == BPF_JGT;
8704 		break;
8705 	case BPF_JLT:
8706 		/* pkt < pkt_end */
8707 		fallthrough;
8708 	case BPF_JGE:
8709 		/* pkt >= pkt_end */
8710 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8711 			return opcode == BPF_JGE;
8712 		break;
8713 	}
8714 	return -1;
8715 }
8716 
8717 /* Adjusts the register min/max values in the case that the dst_reg is the
8718  * variable register that we are working on, and src_reg is a constant or we're
8719  * simply doing a BPF_K check.
8720  * In JEQ/JNE cases we also adjust the var_off values.
8721  */
8722 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8723 			    struct bpf_reg_state *false_reg,
8724 			    u64 val, u32 val32,
8725 			    u8 opcode, bool is_jmp32)
8726 {
8727 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8728 	struct tnum false_64off = false_reg->var_off;
8729 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8730 	struct tnum true_64off = true_reg->var_off;
8731 	s64 sval = (s64)val;
8732 	s32 sval32 = (s32)val32;
8733 
8734 	/* If the dst_reg is a pointer, we can't learn anything about its
8735 	 * variable offset from the compare (unless src_reg were a pointer into
8736 	 * the same object, but we don't bother with that.
8737 	 * Since false_reg and true_reg have the same type by construction, we
8738 	 * only need to check one of them for pointerness.
8739 	 */
8740 	if (__is_pointer_value(false, false_reg))
8741 		return;
8742 
8743 	switch (opcode) {
8744 	case BPF_JEQ:
8745 	case BPF_JNE:
8746 	{
8747 		struct bpf_reg_state *reg =
8748 			opcode == BPF_JEQ ? true_reg : false_reg;
8749 
8750 		/* JEQ/JNE comparison doesn't change the register equivalence.
8751 		 * r1 = r2;
8752 		 * if (r1 == 42) goto label;
8753 		 * ...
8754 		 * label: // here both r1 and r2 are known to be 42.
8755 		 *
8756 		 * Hence when marking register as known preserve it's ID.
8757 		 */
8758 		if (is_jmp32)
8759 			__mark_reg32_known(reg, val32);
8760 		else
8761 			___mark_reg_known(reg, val);
8762 		break;
8763 	}
8764 	case BPF_JSET:
8765 		if (is_jmp32) {
8766 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8767 			if (is_power_of_2(val32))
8768 				true_32off = tnum_or(true_32off,
8769 						     tnum_const(val32));
8770 		} else {
8771 			false_64off = tnum_and(false_64off, tnum_const(~val));
8772 			if (is_power_of_2(val))
8773 				true_64off = tnum_or(true_64off,
8774 						     tnum_const(val));
8775 		}
8776 		break;
8777 	case BPF_JGE:
8778 	case BPF_JGT:
8779 	{
8780 		if (is_jmp32) {
8781 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8782 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8783 
8784 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8785 						       false_umax);
8786 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8787 						      true_umin);
8788 		} else {
8789 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8790 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8791 
8792 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8793 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8794 		}
8795 		break;
8796 	}
8797 	case BPF_JSGE:
8798 	case BPF_JSGT:
8799 	{
8800 		if (is_jmp32) {
8801 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8802 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8803 
8804 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8805 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8806 		} else {
8807 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8808 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8809 
8810 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8811 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8812 		}
8813 		break;
8814 	}
8815 	case BPF_JLE:
8816 	case BPF_JLT:
8817 	{
8818 		if (is_jmp32) {
8819 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8820 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8821 
8822 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8823 						       false_umin);
8824 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8825 						      true_umax);
8826 		} else {
8827 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8828 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8829 
8830 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8831 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8832 		}
8833 		break;
8834 	}
8835 	case BPF_JSLE:
8836 	case BPF_JSLT:
8837 	{
8838 		if (is_jmp32) {
8839 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8840 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8841 
8842 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8843 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8844 		} else {
8845 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8846 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8847 
8848 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8849 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8850 		}
8851 		break;
8852 	}
8853 	default:
8854 		return;
8855 	}
8856 
8857 	if (is_jmp32) {
8858 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8859 					     tnum_subreg(false_32off));
8860 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8861 					    tnum_subreg(true_32off));
8862 		__reg_combine_32_into_64(false_reg);
8863 		__reg_combine_32_into_64(true_reg);
8864 	} else {
8865 		false_reg->var_off = false_64off;
8866 		true_reg->var_off = true_64off;
8867 		__reg_combine_64_into_32(false_reg);
8868 		__reg_combine_64_into_32(true_reg);
8869 	}
8870 }
8871 
8872 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8873  * the variable reg.
8874  */
8875 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8876 				struct bpf_reg_state *false_reg,
8877 				u64 val, u32 val32,
8878 				u8 opcode, bool is_jmp32)
8879 {
8880 	opcode = flip_opcode(opcode);
8881 	/* This uses zero as "not present in table"; luckily the zero opcode,
8882 	 * BPF_JA, can't get here.
8883 	 */
8884 	if (opcode)
8885 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8886 }
8887 
8888 /* Regs are known to be equal, so intersect their min/max/var_off */
8889 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8890 				  struct bpf_reg_state *dst_reg)
8891 {
8892 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8893 							dst_reg->umin_value);
8894 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8895 							dst_reg->umax_value);
8896 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8897 							dst_reg->smin_value);
8898 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8899 							dst_reg->smax_value);
8900 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8901 							     dst_reg->var_off);
8902 	/* We might have learned new bounds from the var_off. */
8903 	__update_reg_bounds(src_reg);
8904 	__update_reg_bounds(dst_reg);
8905 	/* We might have learned something about the sign bit. */
8906 	__reg_deduce_bounds(src_reg);
8907 	__reg_deduce_bounds(dst_reg);
8908 	/* We might have learned some bits from the bounds. */
8909 	__reg_bound_offset(src_reg);
8910 	__reg_bound_offset(dst_reg);
8911 	/* Intersecting with the old var_off might have improved our bounds
8912 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8913 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8914 	 */
8915 	__update_reg_bounds(src_reg);
8916 	__update_reg_bounds(dst_reg);
8917 }
8918 
8919 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8920 				struct bpf_reg_state *true_dst,
8921 				struct bpf_reg_state *false_src,
8922 				struct bpf_reg_state *false_dst,
8923 				u8 opcode)
8924 {
8925 	switch (opcode) {
8926 	case BPF_JEQ:
8927 		__reg_combine_min_max(true_src, true_dst);
8928 		break;
8929 	case BPF_JNE:
8930 		__reg_combine_min_max(false_src, false_dst);
8931 		break;
8932 	}
8933 }
8934 
8935 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8936 				 struct bpf_reg_state *reg, u32 id,
8937 				 bool is_null)
8938 {
8939 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8940 	    !WARN_ON_ONCE(!reg->id)) {
8941 		/* Old offset (both fixed and variable parts) should
8942 		 * have been known-zero, because we don't allow pointer
8943 		 * arithmetic on pointers that might be NULL.
8944 		 */
8945 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8946 				 !tnum_equals_const(reg->var_off, 0) ||
8947 				 reg->off)) {
8948 			__mark_reg_known_zero(reg);
8949 			reg->off = 0;
8950 		}
8951 		if (is_null) {
8952 			reg->type = SCALAR_VALUE;
8953 			/* We don't need id and ref_obj_id from this point
8954 			 * onwards anymore, thus we should better reset it,
8955 			 * so that state pruning has chances to take effect.
8956 			 */
8957 			reg->id = 0;
8958 			reg->ref_obj_id = 0;
8959 
8960 			return;
8961 		}
8962 
8963 		mark_ptr_not_null_reg(reg);
8964 
8965 		if (!reg_may_point_to_spin_lock(reg)) {
8966 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8967 			 * in release_reg_references().
8968 			 *
8969 			 * reg->id is still used by spin_lock ptr. Other
8970 			 * than spin_lock ptr type, reg->id can be reset.
8971 			 */
8972 			reg->id = 0;
8973 		}
8974 	}
8975 }
8976 
8977 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8978 				    bool is_null)
8979 {
8980 	struct bpf_reg_state *reg;
8981 	int i;
8982 
8983 	for (i = 0; i < MAX_BPF_REG; i++)
8984 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8985 
8986 	bpf_for_each_spilled_reg(i, state, reg) {
8987 		if (!reg)
8988 			continue;
8989 		mark_ptr_or_null_reg(state, reg, id, is_null);
8990 	}
8991 }
8992 
8993 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8994  * be folded together at some point.
8995  */
8996 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8997 				  bool is_null)
8998 {
8999 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9000 	struct bpf_reg_state *regs = state->regs;
9001 	u32 ref_obj_id = regs[regno].ref_obj_id;
9002 	u32 id = regs[regno].id;
9003 	int i;
9004 
9005 	if (ref_obj_id && ref_obj_id == id && is_null)
9006 		/* regs[regno] is in the " == NULL" branch.
9007 		 * No one could have freed the reference state before
9008 		 * doing the NULL check.
9009 		 */
9010 		WARN_ON_ONCE(release_reference_state(state, id));
9011 
9012 	for (i = 0; i <= vstate->curframe; i++)
9013 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9014 }
9015 
9016 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9017 				   struct bpf_reg_state *dst_reg,
9018 				   struct bpf_reg_state *src_reg,
9019 				   struct bpf_verifier_state *this_branch,
9020 				   struct bpf_verifier_state *other_branch)
9021 {
9022 	if (BPF_SRC(insn->code) != BPF_X)
9023 		return false;
9024 
9025 	/* Pointers are always 64-bit. */
9026 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9027 		return false;
9028 
9029 	switch (BPF_OP(insn->code)) {
9030 	case BPF_JGT:
9031 		if ((dst_reg->type == PTR_TO_PACKET &&
9032 		     src_reg->type == PTR_TO_PACKET_END) ||
9033 		    (dst_reg->type == PTR_TO_PACKET_META &&
9034 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9035 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9036 			find_good_pkt_pointers(this_branch, dst_reg,
9037 					       dst_reg->type, false);
9038 			mark_pkt_end(other_branch, insn->dst_reg, true);
9039 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9040 			    src_reg->type == PTR_TO_PACKET) ||
9041 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9042 			    src_reg->type == PTR_TO_PACKET_META)) {
9043 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9044 			find_good_pkt_pointers(other_branch, src_reg,
9045 					       src_reg->type, true);
9046 			mark_pkt_end(this_branch, insn->src_reg, false);
9047 		} else {
9048 			return false;
9049 		}
9050 		break;
9051 	case BPF_JLT:
9052 		if ((dst_reg->type == PTR_TO_PACKET &&
9053 		     src_reg->type == PTR_TO_PACKET_END) ||
9054 		    (dst_reg->type == PTR_TO_PACKET_META &&
9055 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9056 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9057 			find_good_pkt_pointers(other_branch, dst_reg,
9058 					       dst_reg->type, true);
9059 			mark_pkt_end(this_branch, insn->dst_reg, false);
9060 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9061 			    src_reg->type == PTR_TO_PACKET) ||
9062 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9063 			    src_reg->type == PTR_TO_PACKET_META)) {
9064 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9065 			find_good_pkt_pointers(this_branch, src_reg,
9066 					       src_reg->type, false);
9067 			mark_pkt_end(other_branch, insn->src_reg, true);
9068 		} else {
9069 			return false;
9070 		}
9071 		break;
9072 	case BPF_JGE:
9073 		if ((dst_reg->type == PTR_TO_PACKET &&
9074 		     src_reg->type == PTR_TO_PACKET_END) ||
9075 		    (dst_reg->type == PTR_TO_PACKET_META &&
9076 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9077 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9078 			find_good_pkt_pointers(this_branch, dst_reg,
9079 					       dst_reg->type, true);
9080 			mark_pkt_end(other_branch, insn->dst_reg, false);
9081 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9082 			    src_reg->type == PTR_TO_PACKET) ||
9083 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9084 			    src_reg->type == PTR_TO_PACKET_META)) {
9085 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9086 			find_good_pkt_pointers(other_branch, src_reg,
9087 					       src_reg->type, false);
9088 			mark_pkt_end(this_branch, insn->src_reg, true);
9089 		} else {
9090 			return false;
9091 		}
9092 		break;
9093 	case BPF_JLE:
9094 		if ((dst_reg->type == PTR_TO_PACKET &&
9095 		     src_reg->type == PTR_TO_PACKET_END) ||
9096 		    (dst_reg->type == PTR_TO_PACKET_META &&
9097 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9098 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9099 			find_good_pkt_pointers(other_branch, dst_reg,
9100 					       dst_reg->type, false);
9101 			mark_pkt_end(this_branch, insn->dst_reg, true);
9102 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9103 			    src_reg->type == PTR_TO_PACKET) ||
9104 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9105 			    src_reg->type == PTR_TO_PACKET_META)) {
9106 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9107 			find_good_pkt_pointers(this_branch, src_reg,
9108 					       src_reg->type, true);
9109 			mark_pkt_end(other_branch, insn->src_reg, false);
9110 		} else {
9111 			return false;
9112 		}
9113 		break;
9114 	default:
9115 		return false;
9116 	}
9117 
9118 	return true;
9119 }
9120 
9121 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9122 			       struct bpf_reg_state *known_reg)
9123 {
9124 	struct bpf_func_state *state;
9125 	struct bpf_reg_state *reg;
9126 	int i, j;
9127 
9128 	for (i = 0; i <= vstate->curframe; i++) {
9129 		state = vstate->frame[i];
9130 		for (j = 0; j < MAX_BPF_REG; j++) {
9131 			reg = &state->regs[j];
9132 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9133 				*reg = *known_reg;
9134 		}
9135 
9136 		bpf_for_each_spilled_reg(j, state, reg) {
9137 			if (!reg)
9138 				continue;
9139 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9140 				*reg = *known_reg;
9141 		}
9142 	}
9143 }
9144 
9145 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9146 			     struct bpf_insn *insn, int *insn_idx)
9147 {
9148 	struct bpf_verifier_state *this_branch = env->cur_state;
9149 	struct bpf_verifier_state *other_branch;
9150 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9151 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9152 	u8 opcode = BPF_OP(insn->code);
9153 	bool is_jmp32;
9154 	int pred = -1;
9155 	int err;
9156 
9157 	/* Only conditional jumps are expected to reach here. */
9158 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9159 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9160 		return -EINVAL;
9161 	}
9162 
9163 	if (BPF_SRC(insn->code) == BPF_X) {
9164 		if (insn->imm != 0) {
9165 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9166 			return -EINVAL;
9167 		}
9168 
9169 		/* check src1 operand */
9170 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9171 		if (err)
9172 			return err;
9173 
9174 		if (is_pointer_value(env, insn->src_reg)) {
9175 			verbose(env, "R%d pointer comparison prohibited\n",
9176 				insn->src_reg);
9177 			return -EACCES;
9178 		}
9179 		src_reg = &regs[insn->src_reg];
9180 	} else {
9181 		if (insn->src_reg != BPF_REG_0) {
9182 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9183 			return -EINVAL;
9184 		}
9185 	}
9186 
9187 	/* check src2 operand */
9188 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9189 	if (err)
9190 		return err;
9191 
9192 	dst_reg = &regs[insn->dst_reg];
9193 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9194 
9195 	if (BPF_SRC(insn->code) == BPF_K) {
9196 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9197 	} else if (src_reg->type == SCALAR_VALUE &&
9198 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9199 		pred = is_branch_taken(dst_reg,
9200 				       tnum_subreg(src_reg->var_off).value,
9201 				       opcode,
9202 				       is_jmp32);
9203 	} else if (src_reg->type == SCALAR_VALUE &&
9204 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9205 		pred = is_branch_taken(dst_reg,
9206 				       src_reg->var_off.value,
9207 				       opcode,
9208 				       is_jmp32);
9209 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9210 		   reg_is_pkt_pointer_any(src_reg) &&
9211 		   !is_jmp32) {
9212 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9213 	}
9214 
9215 	if (pred >= 0) {
9216 		/* If we get here with a dst_reg pointer type it is because
9217 		 * above is_branch_taken() special cased the 0 comparison.
9218 		 */
9219 		if (!__is_pointer_value(false, dst_reg))
9220 			err = mark_chain_precision(env, insn->dst_reg);
9221 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9222 		    !__is_pointer_value(false, src_reg))
9223 			err = mark_chain_precision(env, insn->src_reg);
9224 		if (err)
9225 			return err;
9226 	}
9227 
9228 	if (pred == 1) {
9229 		/* Only follow the goto, ignore fall-through. If needed, push
9230 		 * the fall-through branch for simulation under speculative
9231 		 * execution.
9232 		 */
9233 		if (!env->bypass_spec_v1 &&
9234 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9235 					       *insn_idx))
9236 			return -EFAULT;
9237 		*insn_idx += insn->off;
9238 		return 0;
9239 	} else if (pred == 0) {
9240 		/* Only follow the fall-through branch, since that's where the
9241 		 * program will go. If needed, push the goto branch for
9242 		 * simulation under speculative execution.
9243 		 */
9244 		if (!env->bypass_spec_v1 &&
9245 		    !sanitize_speculative_path(env, insn,
9246 					       *insn_idx + insn->off + 1,
9247 					       *insn_idx))
9248 			return -EFAULT;
9249 		return 0;
9250 	}
9251 
9252 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9253 				  false);
9254 	if (!other_branch)
9255 		return -EFAULT;
9256 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9257 
9258 	/* detect if we are comparing against a constant value so we can adjust
9259 	 * our min/max values for our dst register.
9260 	 * this is only legit if both are scalars (or pointers to the same
9261 	 * object, I suppose, but we don't support that right now), because
9262 	 * otherwise the different base pointers mean the offsets aren't
9263 	 * comparable.
9264 	 */
9265 	if (BPF_SRC(insn->code) == BPF_X) {
9266 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9267 
9268 		if (dst_reg->type == SCALAR_VALUE &&
9269 		    src_reg->type == SCALAR_VALUE) {
9270 			if (tnum_is_const(src_reg->var_off) ||
9271 			    (is_jmp32 &&
9272 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9273 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9274 						dst_reg,
9275 						src_reg->var_off.value,
9276 						tnum_subreg(src_reg->var_off).value,
9277 						opcode, is_jmp32);
9278 			else if (tnum_is_const(dst_reg->var_off) ||
9279 				 (is_jmp32 &&
9280 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9281 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9282 						    src_reg,
9283 						    dst_reg->var_off.value,
9284 						    tnum_subreg(dst_reg->var_off).value,
9285 						    opcode, is_jmp32);
9286 			else if (!is_jmp32 &&
9287 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9288 				/* Comparing for equality, we can combine knowledge */
9289 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9290 						    &other_branch_regs[insn->dst_reg],
9291 						    src_reg, dst_reg, opcode);
9292 			if (src_reg->id &&
9293 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9294 				find_equal_scalars(this_branch, src_reg);
9295 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9296 			}
9297 
9298 		}
9299 	} else if (dst_reg->type == SCALAR_VALUE) {
9300 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9301 					dst_reg, insn->imm, (u32)insn->imm,
9302 					opcode, is_jmp32);
9303 	}
9304 
9305 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9306 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9307 		find_equal_scalars(this_branch, dst_reg);
9308 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9309 	}
9310 
9311 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9312 	 * NOTE: these optimizations below are related with pointer comparison
9313 	 *       which will never be JMP32.
9314 	 */
9315 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9316 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9317 	    reg_type_may_be_null(dst_reg->type)) {
9318 		/* Mark all identical registers in each branch as either
9319 		 * safe or unknown depending R == 0 or R != 0 conditional.
9320 		 */
9321 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9322 				      opcode == BPF_JNE);
9323 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9324 				      opcode == BPF_JEQ);
9325 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9326 					   this_branch, other_branch) &&
9327 		   is_pointer_value(env, insn->dst_reg)) {
9328 		verbose(env, "R%d pointer comparison prohibited\n",
9329 			insn->dst_reg);
9330 		return -EACCES;
9331 	}
9332 	if (env->log.level & BPF_LOG_LEVEL)
9333 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9334 	return 0;
9335 }
9336 
9337 /* verify BPF_LD_IMM64 instruction */
9338 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9339 {
9340 	struct bpf_insn_aux_data *aux = cur_aux(env);
9341 	struct bpf_reg_state *regs = cur_regs(env);
9342 	struct bpf_reg_state *dst_reg;
9343 	struct bpf_map *map;
9344 	int err;
9345 
9346 	if (BPF_SIZE(insn->code) != BPF_DW) {
9347 		verbose(env, "invalid BPF_LD_IMM insn\n");
9348 		return -EINVAL;
9349 	}
9350 	if (insn->off != 0) {
9351 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9352 		return -EINVAL;
9353 	}
9354 
9355 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9356 	if (err)
9357 		return err;
9358 
9359 	dst_reg = &regs[insn->dst_reg];
9360 	if (insn->src_reg == 0) {
9361 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9362 
9363 		dst_reg->type = SCALAR_VALUE;
9364 		__mark_reg_known(&regs[insn->dst_reg], imm);
9365 		return 0;
9366 	}
9367 
9368 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9369 		mark_reg_known_zero(env, regs, insn->dst_reg);
9370 
9371 		dst_reg->type = aux->btf_var.reg_type;
9372 		switch (dst_reg->type) {
9373 		case PTR_TO_MEM:
9374 			dst_reg->mem_size = aux->btf_var.mem_size;
9375 			break;
9376 		case PTR_TO_BTF_ID:
9377 		case PTR_TO_PERCPU_BTF_ID:
9378 			dst_reg->btf = aux->btf_var.btf;
9379 			dst_reg->btf_id = aux->btf_var.btf_id;
9380 			break;
9381 		default:
9382 			verbose(env, "bpf verifier is misconfigured\n");
9383 			return -EFAULT;
9384 		}
9385 		return 0;
9386 	}
9387 
9388 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9389 		struct bpf_prog_aux *aux = env->prog->aux;
9390 		u32 subprogno = insn[1].imm;
9391 
9392 		if (!aux->func_info) {
9393 			verbose(env, "missing btf func_info\n");
9394 			return -EINVAL;
9395 		}
9396 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9397 			verbose(env, "callback function not static\n");
9398 			return -EINVAL;
9399 		}
9400 
9401 		dst_reg->type = PTR_TO_FUNC;
9402 		dst_reg->subprogno = subprogno;
9403 		return 0;
9404 	}
9405 
9406 	map = env->used_maps[aux->map_index];
9407 	mark_reg_known_zero(env, regs, insn->dst_reg);
9408 	dst_reg->map_ptr = map;
9409 
9410 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9411 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9412 		dst_reg->type = PTR_TO_MAP_VALUE;
9413 		dst_reg->off = aux->map_off;
9414 		if (map_value_has_spin_lock(map))
9415 			dst_reg->id = ++env->id_gen;
9416 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9417 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9418 		dst_reg->type = CONST_PTR_TO_MAP;
9419 	} else {
9420 		verbose(env, "bpf verifier is misconfigured\n");
9421 		return -EINVAL;
9422 	}
9423 
9424 	return 0;
9425 }
9426 
9427 static bool may_access_skb(enum bpf_prog_type type)
9428 {
9429 	switch (type) {
9430 	case BPF_PROG_TYPE_SOCKET_FILTER:
9431 	case BPF_PROG_TYPE_SCHED_CLS:
9432 	case BPF_PROG_TYPE_SCHED_ACT:
9433 		return true;
9434 	default:
9435 		return false;
9436 	}
9437 }
9438 
9439 /* verify safety of LD_ABS|LD_IND instructions:
9440  * - they can only appear in the programs where ctx == skb
9441  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9442  *   preserve R6-R9, and store return value into R0
9443  *
9444  * Implicit input:
9445  *   ctx == skb == R6 == CTX
9446  *
9447  * Explicit input:
9448  *   SRC == any register
9449  *   IMM == 32-bit immediate
9450  *
9451  * Output:
9452  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9453  */
9454 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9455 {
9456 	struct bpf_reg_state *regs = cur_regs(env);
9457 	static const int ctx_reg = BPF_REG_6;
9458 	u8 mode = BPF_MODE(insn->code);
9459 	int i, err;
9460 
9461 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9462 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9463 		return -EINVAL;
9464 	}
9465 
9466 	if (!env->ops->gen_ld_abs) {
9467 		verbose(env, "bpf verifier is misconfigured\n");
9468 		return -EINVAL;
9469 	}
9470 
9471 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9472 	    BPF_SIZE(insn->code) == BPF_DW ||
9473 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9474 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9475 		return -EINVAL;
9476 	}
9477 
9478 	/* check whether implicit source operand (register R6) is readable */
9479 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9480 	if (err)
9481 		return err;
9482 
9483 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9484 	 * gen_ld_abs() may terminate the program at runtime, leading to
9485 	 * reference leak.
9486 	 */
9487 	err = check_reference_leak(env);
9488 	if (err) {
9489 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9490 		return err;
9491 	}
9492 
9493 	if (env->cur_state->active_spin_lock) {
9494 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9495 		return -EINVAL;
9496 	}
9497 
9498 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9499 		verbose(env,
9500 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9501 		return -EINVAL;
9502 	}
9503 
9504 	if (mode == BPF_IND) {
9505 		/* check explicit source operand */
9506 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9507 		if (err)
9508 			return err;
9509 	}
9510 
9511 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9512 	if (err < 0)
9513 		return err;
9514 
9515 	/* reset caller saved regs to unreadable */
9516 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9517 		mark_reg_not_init(env, regs, caller_saved[i]);
9518 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9519 	}
9520 
9521 	/* mark destination R0 register as readable, since it contains
9522 	 * the value fetched from the packet.
9523 	 * Already marked as written above.
9524 	 */
9525 	mark_reg_unknown(env, regs, BPF_REG_0);
9526 	/* ld_abs load up to 32-bit skb data. */
9527 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9528 	return 0;
9529 }
9530 
9531 static int check_return_code(struct bpf_verifier_env *env)
9532 {
9533 	struct tnum enforce_attach_type_range = tnum_unknown;
9534 	const struct bpf_prog *prog = env->prog;
9535 	struct bpf_reg_state *reg;
9536 	struct tnum range = tnum_range(0, 1);
9537 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9538 	int err;
9539 	struct bpf_func_state *frame = env->cur_state->frame[0];
9540 	const bool is_subprog = frame->subprogno;
9541 
9542 	/* LSM and struct_ops func-ptr's return type could be "void" */
9543 	if (!is_subprog &&
9544 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9545 	     prog_type == BPF_PROG_TYPE_LSM) &&
9546 	    !prog->aux->attach_func_proto->type)
9547 		return 0;
9548 
9549 	/* eBPF calling convention is such that R0 is used
9550 	 * to return the value from eBPF program.
9551 	 * Make sure that it's readable at this time
9552 	 * of bpf_exit, which means that program wrote
9553 	 * something into it earlier
9554 	 */
9555 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9556 	if (err)
9557 		return err;
9558 
9559 	if (is_pointer_value(env, BPF_REG_0)) {
9560 		verbose(env, "R0 leaks addr as return value\n");
9561 		return -EACCES;
9562 	}
9563 
9564 	reg = cur_regs(env) + BPF_REG_0;
9565 
9566 	if (frame->in_async_callback_fn) {
9567 		/* enforce return zero from async callbacks like timer */
9568 		if (reg->type != SCALAR_VALUE) {
9569 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9570 				reg_type_str[reg->type]);
9571 			return -EINVAL;
9572 		}
9573 
9574 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9575 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9576 			return -EINVAL;
9577 		}
9578 		return 0;
9579 	}
9580 
9581 	if (is_subprog) {
9582 		if (reg->type != SCALAR_VALUE) {
9583 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9584 				reg_type_str[reg->type]);
9585 			return -EINVAL;
9586 		}
9587 		return 0;
9588 	}
9589 
9590 	switch (prog_type) {
9591 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9592 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9593 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9594 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9595 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9596 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9597 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9598 			range = tnum_range(1, 1);
9599 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9600 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9601 			range = tnum_range(0, 3);
9602 		break;
9603 	case BPF_PROG_TYPE_CGROUP_SKB:
9604 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9605 			range = tnum_range(0, 3);
9606 			enforce_attach_type_range = tnum_range(2, 3);
9607 		}
9608 		break;
9609 	case BPF_PROG_TYPE_CGROUP_SOCK:
9610 	case BPF_PROG_TYPE_SOCK_OPS:
9611 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9612 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9613 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9614 		break;
9615 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9616 		if (!env->prog->aux->attach_btf_id)
9617 			return 0;
9618 		range = tnum_const(0);
9619 		break;
9620 	case BPF_PROG_TYPE_TRACING:
9621 		switch (env->prog->expected_attach_type) {
9622 		case BPF_TRACE_FENTRY:
9623 		case BPF_TRACE_FEXIT:
9624 			range = tnum_const(0);
9625 			break;
9626 		case BPF_TRACE_RAW_TP:
9627 		case BPF_MODIFY_RETURN:
9628 			return 0;
9629 		case BPF_TRACE_ITER:
9630 			break;
9631 		default:
9632 			return -ENOTSUPP;
9633 		}
9634 		break;
9635 	case BPF_PROG_TYPE_SK_LOOKUP:
9636 		range = tnum_range(SK_DROP, SK_PASS);
9637 		break;
9638 	case BPF_PROG_TYPE_EXT:
9639 		/* freplace program can return anything as its return value
9640 		 * depends on the to-be-replaced kernel func or bpf program.
9641 		 */
9642 	default:
9643 		return 0;
9644 	}
9645 
9646 	if (reg->type != SCALAR_VALUE) {
9647 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9648 			reg_type_str[reg->type]);
9649 		return -EINVAL;
9650 	}
9651 
9652 	if (!tnum_in(range, reg->var_off)) {
9653 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9654 		return -EINVAL;
9655 	}
9656 
9657 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9658 	    tnum_in(enforce_attach_type_range, reg->var_off))
9659 		env->prog->enforce_expected_attach_type = 1;
9660 	return 0;
9661 }
9662 
9663 /* non-recursive DFS pseudo code
9664  * 1  procedure DFS-iterative(G,v):
9665  * 2      label v as discovered
9666  * 3      let S be a stack
9667  * 4      S.push(v)
9668  * 5      while S is not empty
9669  * 6            t <- S.pop()
9670  * 7            if t is what we're looking for:
9671  * 8                return t
9672  * 9            for all edges e in G.adjacentEdges(t) do
9673  * 10               if edge e is already labelled
9674  * 11                   continue with the next edge
9675  * 12               w <- G.adjacentVertex(t,e)
9676  * 13               if vertex w is not discovered and not explored
9677  * 14                   label e as tree-edge
9678  * 15                   label w as discovered
9679  * 16                   S.push(w)
9680  * 17                   continue at 5
9681  * 18               else if vertex w is discovered
9682  * 19                   label e as back-edge
9683  * 20               else
9684  * 21                   // vertex w is explored
9685  * 22                   label e as forward- or cross-edge
9686  * 23           label t as explored
9687  * 24           S.pop()
9688  *
9689  * convention:
9690  * 0x10 - discovered
9691  * 0x11 - discovered and fall-through edge labelled
9692  * 0x12 - discovered and fall-through and branch edges labelled
9693  * 0x20 - explored
9694  */
9695 
9696 enum {
9697 	DISCOVERED = 0x10,
9698 	EXPLORED = 0x20,
9699 	FALLTHROUGH = 1,
9700 	BRANCH = 2,
9701 };
9702 
9703 static u32 state_htab_size(struct bpf_verifier_env *env)
9704 {
9705 	return env->prog->len;
9706 }
9707 
9708 static struct bpf_verifier_state_list **explored_state(
9709 					struct bpf_verifier_env *env,
9710 					int idx)
9711 {
9712 	struct bpf_verifier_state *cur = env->cur_state;
9713 	struct bpf_func_state *state = cur->frame[cur->curframe];
9714 
9715 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9716 }
9717 
9718 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9719 {
9720 	env->insn_aux_data[idx].prune_point = true;
9721 }
9722 
9723 enum {
9724 	DONE_EXPLORING = 0,
9725 	KEEP_EXPLORING = 1,
9726 };
9727 
9728 /* t, w, e - match pseudo-code above:
9729  * t - index of current instruction
9730  * w - next instruction
9731  * e - edge
9732  */
9733 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9734 		     bool loop_ok)
9735 {
9736 	int *insn_stack = env->cfg.insn_stack;
9737 	int *insn_state = env->cfg.insn_state;
9738 
9739 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9740 		return DONE_EXPLORING;
9741 
9742 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9743 		return DONE_EXPLORING;
9744 
9745 	if (w < 0 || w >= env->prog->len) {
9746 		verbose_linfo(env, t, "%d: ", t);
9747 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9748 		return -EINVAL;
9749 	}
9750 
9751 	if (e == BRANCH)
9752 		/* mark branch target for state pruning */
9753 		init_explored_state(env, w);
9754 
9755 	if (insn_state[w] == 0) {
9756 		/* tree-edge */
9757 		insn_state[t] = DISCOVERED | e;
9758 		insn_state[w] = DISCOVERED;
9759 		if (env->cfg.cur_stack >= env->prog->len)
9760 			return -E2BIG;
9761 		insn_stack[env->cfg.cur_stack++] = w;
9762 		return KEEP_EXPLORING;
9763 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9764 		if (loop_ok && env->bpf_capable)
9765 			return DONE_EXPLORING;
9766 		verbose_linfo(env, t, "%d: ", t);
9767 		verbose_linfo(env, w, "%d: ", w);
9768 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9769 		return -EINVAL;
9770 	} else if (insn_state[w] == EXPLORED) {
9771 		/* forward- or cross-edge */
9772 		insn_state[t] = DISCOVERED | e;
9773 	} else {
9774 		verbose(env, "insn state internal bug\n");
9775 		return -EFAULT;
9776 	}
9777 	return DONE_EXPLORING;
9778 }
9779 
9780 static int visit_func_call_insn(int t, int insn_cnt,
9781 				struct bpf_insn *insns,
9782 				struct bpf_verifier_env *env,
9783 				bool visit_callee)
9784 {
9785 	int ret;
9786 
9787 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9788 	if (ret)
9789 		return ret;
9790 
9791 	if (t + 1 < insn_cnt)
9792 		init_explored_state(env, t + 1);
9793 	if (visit_callee) {
9794 		init_explored_state(env, t);
9795 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9796 				/* It's ok to allow recursion from CFG point of
9797 				 * view. __check_func_call() will do the actual
9798 				 * check.
9799 				 */
9800 				bpf_pseudo_func(insns + t));
9801 	}
9802 	return ret;
9803 }
9804 
9805 /* Visits the instruction at index t and returns one of the following:
9806  *  < 0 - an error occurred
9807  *  DONE_EXPLORING - the instruction was fully explored
9808  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9809  */
9810 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9811 {
9812 	struct bpf_insn *insns = env->prog->insnsi;
9813 	int ret;
9814 
9815 	if (bpf_pseudo_func(insns + t))
9816 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9817 
9818 	/* All non-branch instructions have a single fall-through edge. */
9819 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9820 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9821 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9822 
9823 	switch (BPF_OP(insns[t].code)) {
9824 	case BPF_EXIT:
9825 		return DONE_EXPLORING;
9826 
9827 	case BPF_CALL:
9828 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9829 			/* Mark this call insn to trigger is_state_visited() check
9830 			 * before call itself is processed by __check_func_call().
9831 			 * Otherwise new async state will be pushed for further
9832 			 * exploration.
9833 			 */
9834 			init_explored_state(env, t);
9835 		return visit_func_call_insn(t, insn_cnt, insns, env,
9836 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9837 
9838 	case BPF_JA:
9839 		if (BPF_SRC(insns[t].code) != BPF_K)
9840 			return -EINVAL;
9841 
9842 		/* unconditional jump with single edge */
9843 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9844 				true);
9845 		if (ret)
9846 			return ret;
9847 
9848 		/* unconditional jmp is not a good pruning point,
9849 		 * but it's marked, since backtracking needs
9850 		 * to record jmp history in is_state_visited().
9851 		 */
9852 		init_explored_state(env, t + insns[t].off + 1);
9853 		/* tell verifier to check for equivalent states
9854 		 * after every call and jump
9855 		 */
9856 		if (t + 1 < insn_cnt)
9857 			init_explored_state(env, t + 1);
9858 
9859 		return ret;
9860 
9861 	default:
9862 		/* conditional jump with two edges */
9863 		init_explored_state(env, t);
9864 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9865 		if (ret)
9866 			return ret;
9867 
9868 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9869 	}
9870 }
9871 
9872 /* non-recursive depth-first-search to detect loops in BPF program
9873  * loop == back-edge in directed graph
9874  */
9875 static int check_cfg(struct bpf_verifier_env *env)
9876 {
9877 	int insn_cnt = env->prog->len;
9878 	int *insn_stack, *insn_state;
9879 	int ret = 0;
9880 	int i;
9881 
9882 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9883 	if (!insn_state)
9884 		return -ENOMEM;
9885 
9886 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9887 	if (!insn_stack) {
9888 		kvfree(insn_state);
9889 		return -ENOMEM;
9890 	}
9891 
9892 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9893 	insn_stack[0] = 0; /* 0 is the first instruction */
9894 	env->cfg.cur_stack = 1;
9895 
9896 	while (env->cfg.cur_stack > 0) {
9897 		int t = insn_stack[env->cfg.cur_stack - 1];
9898 
9899 		ret = visit_insn(t, insn_cnt, env);
9900 		switch (ret) {
9901 		case DONE_EXPLORING:
9902 			insn_state[t] = EXPLORED;
9903 			env->cfg.cur_stack--;
9904 			break;
9905 		case KEEP_EXPLORING:
9906 			break;
9907 		default:
9908 			if (ret > 0) {
9909 				verbose(env, "visit_insn internal bug\n");
9910 				ret = -EFAULT;
9911 			}
9912 			goto err_free;
9913 		}
9914 	}
9915 
9916 	if (env->cfg.cur_stack < 0) {
9917 		verbose(env, "pop stack internal bug\n");
9918 		ret = -EFAULT;
9919 		goto err_free;
9920 	}
9921 
9922 	for (i = 0; i < insn_cnt; i++) {
9923 		if (insn_state[i] != EXPLORED) {
9924 			verbose(env, "unreachable insn %d\n", i);
9925 			ret = -EINVAL;
9926 			goto err_free;
9927 		}
9928 	}
9929 	ret = 0; /* cfg looks good */
9930 
9931 err_free:
9932 	kvfree(insn_state);
9933 	kvfree(insn_stack);
9934 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9935 	return ret;
9936 }
9937 
9938 static int check_abnormal_return(struct bpf_verifier_env *env)
9939 {
9940 	int i;
9941 
9942 	for (i = 1; i < env->subprog_cnt; i++) {
9943 		if (env->subprog_info[i].has_ld_abs) {
9944 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9945 			return -EINVAL;
9946 		}
9947 		if (env->subprog_info[i].has_tail_call) {
9948 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9949 			return -EINVAL;
9950 		}
9951 	}
9952 	return 0;
9953 }
9954 
9955 /* The minimum supported BTF func info size */
9956 #define MIN_BPF_FUNCINFO_SIZE	8
9957 #define MAX_FUNCINFO_REC_SIZE	252
9958 
9959 static int check_btf_func(struct bpf_verifier_env *env,
9960 			  const union bpf_attr *attr,
9961 			  bpfptr_t uattr)
9962 {
9963 	const struct btf_type *type, *func_proto, *ret_type;
9964 	u32 i, nfuncs, urec_size, min_size;
9965 	u32 krec_size = sizeof(struct bpf_func_info);
9966 	struct bpf_func_info *krecord;
9967 	struct bpf_func_info_aux *info_aux = NULL;
9968 	struct bpf_prog *prog;
9969 	const struct btf *btf;
9970 	bpfptr_t urecord;
9971 	u32 prev_offset = 0;
9972 	bool scalar_return;
9973 	int ret = -ENOMEM;
9974 
9975 	nfuncs = attr->func_info_cnt;
9976 	if (!nfuncs) {
9977 		if (check_abnormal_return(env))
9978 			return -EINVAL;
9979 		return 0;
9980 	}
9981 
9982 	if (nfuncs != env->subprog_cnt) {
9983 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9984 		return -EINVAL;
9985 	}
9986 
9987 	urec_size = attr->func_info_rec_size;
9988 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9989 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9990 	    urec_size % sizeof(u32)) {
9991 		verbose(env, "invalid func info rec size %u\n", urec_size);
9992 		return -EINVAL;
9993 	}
9994 
9995 	prog = env->prog;
9996 	btf = prog->aux->btf;
9997 
9998 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9999 	min_size = min_t(u32, krec_size, urec_size);
10000 
10001 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10002 	if (!krecord)
10003 		return -ENOMEM;
10004 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10005 	if (!info_aux)
10006 		goto err_free;
10007 
10008 	for (i = 0; i < nfuncs; i++) {
10009 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10010 		if (ret) {
10011 			if (ret == -E2BIG) {
10012 				verbose(env, "nonzero tailing record in func info");
10013 				/* set the size kernel expects so loader can zero
10014 				 * out the rest of the record.
10015 				 */
10016 				if (copy_to_bpfptr_offset(uattr,
10017 							  offsetof(union bpf_attr, func_info_rec_size),
10018 							  &min_size, sizeof(min_size)))
10019 					ret = -EFAULT;
10020 			}
10021 			goto err_free;
10022 		}
10023 
10024 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10025 			ret = -EFAULT;
10026 			goto err_free;
10027 		}
10028 
10029 		/* check insn_off */
10030 		ret = -EINVAL;
10031 		if (i == 0) {
10032 			if (krecord[i].insn_off) {
10033 				verbose(env,
10034 					"nonzero insn_off %u for the first func info record",
10035 					krecord[i].insn_off);
10036 				goto err_free;
10037 			}
10038 		} else if (krecord[i].insn_off <= prev_offset) {
10039 			verbose(env,
10040 				"same or smaller insn offset (%u) than previous func info record (%u)",
10041 				krecord[i].insn_off, prev_offset);
10042 			goto err_free;
10043 		}
10044 
10045 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10046 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10047 			goto err_free;
10048 		}
10049 
10050 		/* check type_id */
10051 		type = btf_type_by_id(btf, krecord[i].type_id);
10052 		if (!type || !btf_type_is_func(type)) {
10053 			verbose(env, "invalid type id %d in func info",
10054 				krecord[i].type_id);
10055 			goto err_free;
10056 		}
10057 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10058 
10059 		func_proto = btf_type_by_id(btf, type->type);
10060 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10061 			/* btf_func_check() already verified it during BTF load */
10062 			goto err_free;
10063 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10064 		scalar_return =
10065 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10066 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10067 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10068 			goto err_free;
10069 		}
10070 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10071 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10072 			goto err_free;
10073 		}
10074 
10075 		prev_offset = krecord[i].insn_off;
10076 		bpfptr_add(&urecord, urec_size);
10077 	}
10078 
10079 	prog->aux->func_info = krecord;
10080 	prog->aux->func_info_cnt = nfuncs;
10081 	prog->aux->func_info_aux = info_aux;
10082 	return 0;
10083 
10084 err_free:
10085 	kvfree(krecord);
10086 	kfree(info_aux);
10087 	return ret;
10088 }
10089 
10090 static void adjust_btf_func(struct bpf_verifier_env *env)
10091 {
10092 	struct bpf_prog_aux *aux = env->prog->aux;
10093 	int i;
10094 
10095 	if (!aux->func_info)
10096 		return;
10097 
10098 	for (i = 0; i < env->subprog_cnt; i++)
10099 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10100 }
10101 
10102 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
10103 		sizeof(((struct bpf_line_info *)(0))->line_col))
10104 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10105 
10106 static int check_btf_line(struct bpf_verifier_env *env,
10107 			  const union bpf_attr *attr,
10108 			  bpfptr_t uattr)
10109 {
10110 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10111 	struct bpf_subprog_info *sub;
10112 	struct bpf_line_info *linfo;
10113 	struct bpf_prog *prog;
10114 	const struct btf *btf;
10115 	bpfptr_t ulinfo;
10116 	int err;
10117 
10118 	nr_linfo = attr->line_info_cnt;
10119 	if (!nr_linfo)
10120 		return 0;
10121 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10122 		return -EINVAL;
10123 
10124 	rec_size = attr->line_info_rec_size;
10125 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10126 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10127 	    rec_size & (sizeof(u32) - 1))
10128 		return -EINVAL;
10129 
10130 	/* Need to zero it in case the userspace may
10131 	 * pass in a smaller bpf_line_info object.
10132 	 */
10133 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10134 			 GFP_KERNEL | __GFP_NOWARN);
10135 	if (!linfo)
10136 		return -ENOMEM;
10137 
10138 	prog = env->prog;
10139 	btf = prog->aux->btf;
10140 
10141 	s = 0;
10142 	sub = env->subprog_info;
10143 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10144 	expected_size = sizeof(struct bpf_line_info);
10145 	ncopy = min_t(u32, expected_size, rec_size);
10146 	for (i = 0; i < nr_linfo; i++) {
10147 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10148 		if (err) {
10149 			if (err == -E2BIG) {
10150 				verbose(env, "nonzero tailing record in line_info");
10151 				if (copy_to_bpfptr_offset(uattr,
10152 							  offsetof(union bpf_attr, line_info_rec_size),
10153 							  &expected_size, sizeof(expected_size)))
10154 					err = -EFAULT;
10155 			}
10156 			goto err_free;
10157 		}
10158 
10159 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10160 			err = -EFAULT;
10161 			goto err_free;
10162 		}
10163 
10164 		/*
10165 		 * Check insn_off to ensure
10166 		 * 1) strictly increasing AND
10167 		 * 2) bounded by prog->len
10168 		 *
10169 		 * The linfo[0].insn_off == 0 check logically falls into
10170 		 * the later "missing bpf_line_info for func..." case
10171 		 * because the first linfo[0].insn_off must be the
10172 		 * first sub also and the first sub must have
10173 		 * subprog_info[0].start == 0.
10174 		 */
10175 		if ((i && linfo[i].insn_off <= prev_offset) ||
10176 		    linfo[i].insn_off >= prog->len) {
10177 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10178 				i, linfo[i].insn_off, prev_offset,
10179 				prog->len);
10180 			err = -EINVAL;
10181 			goto err_free;
10182 		}
10183 
10184 		if (!prog->insnsi[linfo[i].insn_off].code) {
10185 			verbose(env,
10186 				"Invalid insn code at line_info[%u].insn_off\n",
10187 				i);
10188 			err = -EINVAL;
10189 			goto err_free;
10190 		}
10191 
10192 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10193 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10194 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10195 			err = -EINVAL;
10196 			goto err_free;
10197 		}
10198 
10199 		if (s != env->subprog_cnt) {
10200 			if (linfo[i].insn_off == sub[s].start) {
10201 				sub[s].linfo_idx = i;
10202 				s++;
10203 			} else if (sub[s].start < linfo[i].insn_off) {
10204 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10205 				err = -EINVAL;
10206 				goto err_free;
10207 			}
10208 		}
10209 
10210 		prev_offset = linfo[i].insn_off;
10211 		bpfptr_add(&ulinfo, rec_size);
10212 	}
10213 
10214 	if (s != env->subprog_cnt) {
10215 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10216 			env->subprog_cnt - s, s);
10217 		err = -EINVAL;
10218 		goto err_free;
10219 	}
10220 
10221 	prog->aux->linfo = linfo;
10222 	prog->aux->nr_linfo = nr_linfo;
10223 
10224 	return 0;
10225 
10226 err_free:
10227 	kvfree(linfo);
10228 	return err;
10229 }
10230 
10231 static int check_btf_info(struct bpf_verifier_env *env,
10232 			  const union bpf_attr *attr,
10233 			  bpfptr_t uattr)
10234 {
10235 	struct btf *btf;
10236 	int err;
10237 
10238 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10239 		if (check_abnormal_return(env))
10240 			return -EINVAL;
10241 		return 0;
10242 	}
10243 
10244 	btf = btf_get_by_fd(attr->prog_btf_fd);
10245 	if (IS_ERR(btf))
10246 		return PTR_ERR(btf);
10247 	if (btf_is_kernel(btf)) {
10248 		btf_put(btf);
10249 		return -EACCES;
10250 	}
10251 	env->prog->aux->btf = btf;
10252 
10253 	err = check_btf_func(env, attr, uattr);
10254 	if (err)
10255 		return err;
10256 
10257 	err = check_btf_line(env, attr, uattr);
10258 	if (err)
10259 		return err;
10260 
10261 	return 0;
10262 }
10263 
10264 /* check %cur's range satisfies %old's */
10265 static bool range_within(struct bpf_reg_state *old,
10266 			 struct bpf_reg_state *cur)
10267 {
10268 	return old->umin_value <= cur->umin_value &&
10269 	       old->umax_value >= cur->umax_value &&
10270 	       old->smin_value <= cur->smin_value &&
10271 	       old->smax_value >= cur->smax_value &&
10272 	       old->u32_min_value <= cur->u32_min_value &&
10273 	       old->u32_max_value >= cur->u32_max_value &&
10274 	       old->s32_min_value <= cur->s32_min_value &&
10275 	       old->s32_max_value >= cur->s32_max_value;
10276 }
10277 
10278 /* If in the old state two registers had the same id, then they need to have
10279  * the same id in the new state as well.  But that id could be different from
10280  * the old state, so we need to track the mapping from old to new ids.
10281  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10282  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10283  * regs with a different old id could still have new id 9, we don't care about
10284  * that.
10285  * So we look through our idmap to see if this old id has been seen before.  If
10286  * so, we require the new id to match; otherwise, we add the id pair to the map.
10287  */
10288 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10289 {
10290 	unsigned int i;
10291 
10292 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10293 		if (!idmap[i].old) {
10294 			/* Reached an empty slot; haven't seen this id before */
10295 			idmap[i].old = old_id;
10296 			idmap[i].cur = cur_id;
10297 			return true;
10298 		}
10299 		if (idmap[i].old == old_id)
10300 			return idmap[i].cur == cur_id;
10301 	}
10302 	/* We ran out of idmap slots, which should be impossible */
10303 	WARN_ON_ONCE(1);
10304 	return false;
10305 }
10306 
10307 static void clean_func_state(struct bpf_verifier_env *env,
10308 			     struct bpf_func_state *st)
10309 {
10310 	enum bpf_reg_liveness live;
10311 	int i, j;
10312 
10313 	for (i = 0; i < BPF_REG_FP; i++) {
10314 		live = st->regs[i].live;
10315 		/* liveness must not touch this register anymore */
10316 		st->regs[i].live |= REG_LIVE_DONE;
10317 		if (!(live & REG_LIVE_READ))
10318 			/* since the register is unused, clear its state
10319 			 * to make further comparison simpler
10320 			 */
10321 			__mark_reg_not_init(env, &st->regs[i]);
10322 	}
10323 
10324 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10325 		live = st->stack[i].spilled_ptr.live;
10326 		/* liveness must not touch this stack slot anymore */
10327 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10328 		if (!(live & REG_LIVE_READ)) {
10329 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10330 			for (j = 0; j < BPF_REG_SIZE; j++)
10331 				st->stack[i].slot_type[j] = STACK_INVALID;
10332 		}
10333 	}
10334 }
10335 
10336 static void clean_verifier_state(struct bpf_verifier_env *env,
10337 				 struct bpf_verifier_state *st)
10338 {
10339 	int i;
10340 
10341 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10342 		/* all regs in this state in all frames were already marked */
10343 		return;
10344 
10345 	for (i = 0; i <= st->curframe; i++)
10346 		clean_func_state(env, st->frame[i]);
10347 }
10348 
10349 /* the parentage chains form a tree.
10350  * the verifier states are added to state lists at given insn and
10351  * pushed into state stack for future exploration.
10352  * when the verifier reaches bpf_exit insn some of the verifer states
10353  * stored in the state lists have their final liveness state already,
10354  * but a lot of states will get revised from liveness point of view when
10355  * the verifier explores other branches.
10356  * Example:
10357  * 1: r0 = 1
10358  * 2: if r1 == 100 goto pc+1
10359  * 3: r0 = 2
10360  * 4: exit
10361  * when the verifier reaches exit insn the register r0 in the state list of
10362  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10363  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10364  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10365  *
10366  * Since the verifier pushes the branch states as it sees them while exploring
10367  * the program the condition of walking the branch instruction for the second
10368  * time means that all states below this branch were already explored and
10369  * their final liveness marks are already propagated.
10370  * Hence when the verifier completes the search of state list in is_state_visited()
10371  * we can call this clean_live_states() function to mark all liveness states
10372  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10373  * will not be used.
10374  * This function also clears the registers and stack for states that !READ
10375  * to simplify state merging.
10376  *
10377  * Important note here that walking the same branch instruction in the callee
10378  * doesn't meant that the states are DONE. The verifier has to compare
10379  * the callsites
10380  */
10381 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10382 			      struct bpf_verifier_state *cur)
10383 {
10384 	struct bpf_verifier_state_list *sl;
10385 	int i;
10386 
10387 	sl = *explored_state(env, insn);
10388 	while (sl) {
10389 		if (sl->state.branches)
10390 			goto next;
10391 		if (sl->state.insn_idx != insn ||
10392 		    sl->state.curframe != cur->curframe)
10393 			goto next;
10394 		for (i = 0; i <= cur->curframe; i++)
10395 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10396 				goto next;
10397 		clean_verifier_state(env, &sl->state);
10398 next:
10399 		sl = sl->next;
10400 	}
10401 }
10402 
10403 /* Returns true if (rold safe implies rcur safe) */
10404 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10405 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10406 {
10407 	bool equal;
10408 
10409 	if (!(rold->live & REG_LIVE_READ))
10410 		/* explored state didn't use this */
10411 		return true;
10412 
10413 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10414 
10415 	if (rold->type == PTR_TO_STACK)
10416 		/* two stack pointers are equal only if they're pointing to
10417 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10418 		 */
10419 		return equal && rold->frameno == rcur->frameno;
10420 
10421 	if (equal)
10422 		return true;
10423 
10424 	if (rold->type == NOT_INIT)
10425 		/* explored state can't have used this */
10426 		return true;
10427 	if (rcur->type == NOT_INIT)
10428 		return false;
10429 	switch (rold->type) {
10430 	case SCALAR_VALUE:
10431 		if (env->explore_alu_limits)
10432 			return false;
10433 		if (rcur->type == SCALAR_VALUE) {
10434 			if (!rold->precise && !rcur->precise)
10435 				return true;
10436 			/* new val must satisfy old val knowledge */
10437 			return range_within(rold, rcur) &&
10438 			       tnum_in(rold->var_off, rcur->var_off);
10439 		} else {
10440 			/* We're trying to use a pointer in place of a scalar.
10441 			 * Even if the scalar was unbounded, this could lead to
10442 			 * pointer leaks because scalars are allowed to leak
10443 			 * while pointers are not. We could make this safe in
10444 			 * special cases if root is calling us, but it's
10445 			 * probably not worth the hassle.
10446 			 */
10447 			return false;
10448 		}
10449 	case PTR_TO_MAP_KEY:
10450 	case PTR_TO_MAP_VALUE:
10451 		/* If the new min/max/var_off satisfy the old ones and
10452 		 * everything else matches, we are OK.
10453 		 * 'id' is not compared, since it's only used for maps with
10454 		 * bpf_spin_lock inside map element and in such cases if
10455 		 * the rest of the prog is valid for one map element then
10456 		 * it's valid for all map elements regardless of the key
10457 		 * used in bpf_map_lookup()
10458 		 */
10459 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10460 		       range_within(rold, rcur) &&
10461 		       tnum_in(rold->var_off, rcur->var_off);
10462 	case PTR_TO_MAP_VALUE_OR_NULL:
10463 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10464 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10465 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10466 		 * checked, doing so could have affected others with the same
10467 		 * id, and we can't check for that because we lost the id when
10468 		 * we converted to a PTR_TO_MAP_VALUE.
10469 		 */
10470 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10471 			return false;
10472 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10473 			return false;
10474 		/* Check our ids match any regs they're supposed to */
10475 		return check_ids(rold->id, rcur->id, idmap);
10476 	case PTR_TO_PACKET_META:
10477 	case PTR_TO_PACKET:
10478 		if (rcur->type != rold->type)
10479 			return false;
10480 		/* We must have at least as much range as the old ptr
10481 		 * did, so that any accesses which were safe before are
10482 		 * still safe.  This is true even if old range < old off,
10483 		 * since someone could have accessed through (ptr - k), or
10484 		 * even done ptr -= k in a register, to get a safe access.
10485 		 */
10486 		if (rold->range > rcur->range)
10487 			return false;
10488 		/* If the offsets don't match, we can't trust our alignment;
10489 		 * nor can we be sure that we won't fall out of range.
10490 		 */
10491 		if (rold->off != rcur->off)
10492 			return false;
10493 		/* id relations must be preserved */
10494 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10495 			return false;
10496 		/* new val must satisfy old val knowledge */
10497 		return range_within(rold, rcur) &&
10498 		       tnum_in(rold->var_off, rcur->var_off);
10499 	case PTR_TO_CTX:
10500 	case CONST_PTR_TO_MAP:
10501 	case PTR_TO_PACKET_END:
10502 	case PTR_TO_FLOW_KEYS:
10503 	case PTR_TO_SOCKET:
10504 	case PTR_TO_SOCKET_OR_NULL:
10505 	case PTR_TO_SOCK_COMMON:
10506 	case PTR_TO_SOCK_COMMON_OR_NULL:
10507 	case PTR_TO_TCP_SOCK:
10508 	case PTR_TO_TCP_SOCK_OR_NULL:
10509 	case PTR_TO_XDP_SOCK:
10510 		/* Only valid matches are exact, which memcmp() above
10511 		 * would have accepted
10512 		 */
10513 	default:
10514 		/* Don't know what's going on, just say it's not safe */
10515 		return false;
10516 	}
10517 
10518 	/* Shouldn't get here; if we do, say it's not safe */
10519 	WARN_ON_ONCE(1);
10520 	return false;
10521 }
10522 
10523 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10524 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10525 {
10526 	int i, spi;
10527 
10528 	/* walk slots of the explored stack and ignore any additional
10529 	 * slots in the current stack, since explored(safe) state
10530 	 * didn't use them
10531 	 */
10532 	for (i = 0; i < old->allocated_stack; i++) {
10533 		spi = i / BPF_REG_SIZE;
10534 
10535 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10536 			i += BPF_REG_SIZE - 1;
10537 			/* explored state didn't use this */
10538 			continue;
10539 		}
10540 
10541 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10542 			continue;
10543 
10544 		/* explored stack has more populated slots than current stack
10545 		 * and these slots were used
10546 		 */
10547 		if (i >= cur->allocated_stack)
10548 			return false;
10549 
10550 		/* if old state was safe with misc data in the stack
10551 		 * it will be safe with zero-initialized stack.
10552 		 * The opposite is not true
10553 		 */
10554 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10555 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10556 			continue;
10557 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10558 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10559 			/* Ex: old explored (safe) state has STACK_SPILL in
10560 			 * this stack slot, but current has STACK_MISC ->
10561 			 * this verifier states are not equivalent,
10562 			 * return false to continue verification of this path
10563 			 */
10564 			return false;
10565 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10566 			continue;
10567 		if (!is_spilled_reg(&old->stack[spi]))
10568 			continue;
10569 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10570 			     &cur->stack[spi].spilled_ptr, idmap))
10571 			/* when explored and current stack slot are both storing
10572 			 * spilled registers, check that stored pointers types
10573 			 * are the same as well.
10574 			 * Ex: explored safe path could have stored
10575 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10576 			 * but current path has stored:
10577 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10578 			 * such verifier states are not equivalent.
10579 			 * return false to continue verification of this path
10580 			 */
10581 			return false;
10582 	}
10583 	return true;
10584 }
10585 
10586 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10587 {
10588 	if (old->acquired_refs != cur->acquired_refs)
10589 		return false;
10590 	return !memcmp(old->refs, cur->refs,
10591 		       sizeof(*old->refs) * old->acquired_refs);
10592 }
10593 
10594 /* compare two verifier states
10595  *
10596  * all states stored in state_list are known to be valid, since
10597  * verifier reached 'bpf_exit' instruction through them
10598  *
10599  * this function is called when verifier exploring different branches of
10600  * execution popped from the state stack. If it sees an old state that has
10601  * more strict register state and more strict stack state then this execution
10602  * branch doesn't need to be explored further, since verifier already
10603  * concluded that more strict state leads to valid finish.
10604  *
10605  * Therefore two states are equivalent if register state is more conservative
10606  * and explored stack state is more conservative than the current one.
10607  * Example:
10608  *       explored                   current
10609  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10610  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10611  *
10612  * In other words if current stack state (one being explored) has more
10613  * valid slots than old one that already passed validation, it means
10614  * the verifier can stop exploring and conclude that current state is valid too
10615  *
10616  * Similarly with registers. If explored state has register type as invalid
10617  * whereas register type in current state is meaningful, it means that
10618  * the current state will reach 'bpf_exit' instruction safely
10619  */
10620 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10621 			      struct bpf_func_state *cur)
10622 {
10623 	int i;
10624 
10625 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10626 	for (i = 0; i < MAX_BPF_REG; i++)
10627 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10628 			     env->idmap_scratch))
10629 			return false;
10630 
10631 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10632 		return false;
10633 
10634 	if (!refsafe(old, cur))
10635 		return false;
10636 
10637 	return true;
10638 }
10639 
10640 static bool states_equal(struct bpf_verifier_env *env,
10641 			 struct bpf_verifier_state *old,
10642 			 struct bpf_verifier_state *cur)
10643 {
10644 	int i;
10645 
10646 	if (old->curframe != cur->curframe)
10647 		return false;
10648 
10649 	/* Verification state from speculative execution simulation
10650 	 * must never prune a non-speculative execution one.
10651 	 */
10652 	if (old->speculative && !cur->speculative)
10653 		return false;
10654 
10655 	if (old->active_spin_lock != cur->active_spin_lock)
10656 		return false;
10657 
10658 	/* for states to be equal callsites have to be the same
10659 	 * and all frame states need to be equivalent
10660 	 */
10661 	for (i = 0; i <= old->curframe; i++) {
10662 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10663 			return false;
10664 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10665 			return false;
10666 	}
10667 	return true;
10668 }
10669 
10670 /* Return 0 if no propagation happened. Return negative error code if error
10671  * happened. Otherwise, return the propagated bit.
10672  */
10673 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10674 				  struct bpf_reg_state *reg,
10675 				  struct bpf_reg_state *parent_reg)
10676 {
10677 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10678 	u8 flag = reg->live & REG_LIVE_READ;
10679 	int err;
10680 
10681 	/* When comes here, read flags of PARENT_REG or REG could be any of
10682 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10683 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10684 	 */
10685 	if (parent_flag == REG_LIVE_READ64 ||
10686 	    /* Or if there is no read flag from REG. */
10687 	    !flag ||
10688 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10689 	    parent_flag == flag)
10690 		return 0;
10691 
10692 	err = mark_reg_read(env, reg, parent_reg, flag);
10693 	if (err)
10694 		return err;
10695 
10696 	return flag;
10697 }
10698 
10699 /* A write screens off any subsequent reads; but write marks come from the
10700  * straight-line code between a state and its parent.  When we arrive at an
10701  * equivalent state (jump target or such) we didn't arrive by the straight-line
10702  * code, so read marks in the state must propagate to the parent regardless
10703  * of the state's write marks. That's what 'parent == state->parent' comparison
10704  * in mark_reg_read() is for.
10705  */
10706 static int propagate_liveness(struct bpf_verifier_env *env,
10707 			      const struct bpf_verifier_state *vstate,
10708 			      struct bpf_verifier_state *vparent)
10709 {
10710 	struct bpf_reg_state *state_reg, *parent_reg;
10711 	struct bpf_func_state *state, *parent;
10712 	int i, frame, err = 0;
10713 
10714 	if (vparent->curframe != vstate->curframe) {
10715 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10716 		     vparent->curframe, vstate->curframe);
10717 		return -EFAULT;
10718 	}
10719 	/* Propagate read liveness of registers... */
10720 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10721 	for (frame = 0; frame <= vstate->curframe; frame++) {
10722 		parent = vparent->frame[frame];
10723 		state = vstate->frame[frame];
10724 		parent_reg = parent->regs;
10725 		state_reg = state->regs;
10726 		/* We don't need to worry about FP liveness, it's read-only */
10727 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10728 			err = propagate_liveness_reg(env, &state_reg[i],
10729 						     &parent_reg[i]);
10730 			if (err < 0)
10731 				return err;
10732 			if (err == REG_LIVE_READ64)
10733 				mark_insn_zext(env, &parent_reg[i]);
10734 		}
10735 
10736 		/* Propagate stack slots. */
10737 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10738 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10739 			parent_reg = &parent->stack[i].spilled_ptr;
10740 			state_reg = &state->stack[i].spilled_ptr;
10741 			err = propagate_liveness_reg(env, state_reg,
10742 						     parent_reg);
10743 			if (err < 0)
10744 				return err;
10745 		}
10746 	}
10747 	return 0;
10748 }
10749 
10750 /* find precise scalars in the previous equivalent state and
10751  * propagate them into the current state
10752  */
10753 static int propagate_precision(struct bpf_verifier_env *env,
10754 			       const struct bpf_verifier_state *old)
10755 {
10756 	struct bpf_reg_state *state_reg;
10757 	struct bpf_func_state *state;
10758 	int i, err = 0;
10759 
10760 	state = old->frame[old->curframe];
10761 	state_reg = state->regs;
10762 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10763 		if (state_reg->type != SCALAR_VALUE ||
10764 		    !state_reg->precise)
10765 			continue;
10766 		if (env->log.level & BPF_LOG_LEVEL2)
10767 			verbose(env, "propagating r%d\n", i);
10768 		err = mark_chain_precision(env, i);
10769 		if (err < 0)
10770 			return err;
10771 	}
10772 
10773 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10774 		if (!is_spilled_reg(&state->stack[i]))
10775 			continue;
10776 		state_reg = &state->stack[i].spilled_ptr;
10777 		if (state_reg->type != SCALAR_VALUE ||
10778 		    !state_reg->precise)
10779 			continue;
10780 		if (env->log.level & BPF_LOG_LEVEL2)
10781 			verbose(env, "propagating fp%d\n",
10782 				(-i - 1) * BPF_REG_SIZE);
10783 		err = mark_chain_precision_stack(env, i);
10784 		if (err < 0)
10785 			return err;
10786 	}
10787 	return 0;
10788 }
10789 
10790 static bool states_maybe_looping(struct bpf_verifier_state *old,
10791 				 struct bpf_verifier_state *cur)
10792 {
10793 	struct bpf_func_state *fold, *fcur;
10794 	int i, fr = cur->curframe;
10795 
10796 	if (old->curframe != fr)
10797 		return false;
10798 
10799 	fold = old->frame[fr];
10800 	fcur = cur->frame[fr];
10801 	for (i = 0; i < MAX_BPF_REG; i++)
10802 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10803 			   offsetof(struct bpf_reg_state, parent)))
10804 			return false;
10805 	return true;
10806 }
10807 
10808 
10809 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10810 {
10811 	struct bpf_verifier_state_list *new_sl;
10812 	struct bpf_verifier_state_list *sl, **pprev;
10813 	struct bpf_verifier_state *cur = env->cur_state, *new;
10814 	int i, j, err, states_cnt = 0;
10815 	bool add_new_state = env->test_state_freq ? true : false;
10816 
10817 	cur->last_insn_idx = env->prev_insn_idx;
10818 	if (!env->insn_aux_data[insn_idx].prune_point)
10819 		/* this 'insn_idx' instruction wasn't marked, so we will not
10820 		 * be doing state search here
10821 		 */
10822 		return 0;
10823 
10824 	/* bpf progs typically have pruning point every 4 instructions
10825 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10826 	 * Do not add new state for future pruning if the verifier hasn't seen
10827 	 * at least 2 jumps and at least 8 instructions.
10828 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10829 	 * In tests that amounts to up to 50% reduction into total verifier
10830 	 * memory consumption and 20% verifier time speedup.
10831 	 */
10832 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10833 	    env->insn_processed - env->prev_insn_processed >= 8)
10834 		add_new_state = true;
10835 
10836 	pprev = explored_state(env, insn_idx);
10837 	sl = *pprev;
10838 
10839 	clean_live_states(env, insn_idx, cur);
10840 
10841 	while (sl) {
10842 		states_cnt++;
10843 		if (sl->state.insn_idx != insn_idx)
10844 			goto next;
10845 
10846 		if (sl->state.branches) {
10847 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10848 
10849 			if (frame->in_async_callback_fn &&
10850 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10851 				/* Different async_entry_cnt means that the verifier is
10852 				 * processing another entry into async callback.
10853 				 * Seeing the same state is not an indication of infinite
10854 				 * loop or infinite recursion.
10855 				 * But finding the same state doesn't mean that it's safe
10856 				 * to stop processing the current state. The previous state
10857 				 * hasn't yet reached bpf_exit, since state.branches > 0.
10858 				 * Checking in_async_callback_fn alone is not enough either.
10859 				 * Since the verifier still needs to catch infinite loops
10860 				 * inside async callbacks.
10861 				 */
10862 			} else if (states_maybe_looping(&sl->state, cur) &&
10863 				   states_equal(env, &sl->state, cur)) {
10864 				verbose_linfo(env, insn_idx, "; ");
10865 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10866 				return -EINVAL;
10867 			}
10868 			/* if the verifier is processing a loop, avoid adding new state
10869 			 * too often, since different loop iterations have distinct
10870 			 * states and may not help future pruning.
10871 			 * This threshold shouldn't be too low to make sure that
10872 			 * a loop with large bound will be rejected quickly.
10873 			 * The most abusive loop will be:
10874 			 * r1 += 1
10875 			 * if r1 < 1000000 goto pc-2
10876 			 * 1M insn_procssed limit / 100 == 10k peak states.
10877 			 * This threshold shouldn't be too high either, since states
10878 			 * at the end of the loop are likely to be useful in pruning.
10879 			 */
10880 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10881 			    env->insn_processed - env->prev_insn_processed < 100)
10882 				add_new_state = false;
10883 			goto miss;
10884 		}
10885 		if (states_equal(env, &sl->state, cur)) {
10886 			sl->hit_cnt++;
10887 			/* reached equivalent register/stack state,
10888 			 * prune the search.
10889 			 * Registers read by the continuation are read by us.
10890 			 * If we have any write marks in env->cur_state, they
10891 			 * will prevent corresponding reads in the continuation
10892 			 * from reaching our parent (an explored_state).  Our
10893 			 * own state will get the read marks recorded, but
10894 			 * they'll be immediately forgotten as we're pruning
10895 			 * this state and will pop a new one.
10896 			 */
10897 			err = propagate_liveness(env, &sl->state, cur);
10898 
10899 			/* if previous state reached the exit with precision and
10900 			 * current state is equivalent to it (except precsion marks)
10901 			 * the precision needs to be propagated back in
10902 			 * the current state.
10903 			 */
10904 			err = err ? : push_jmp_history(env, cur);
10905 			err = err ? : propagate_precision(env, &sl->state);
10906 			if (err)
10907 				return err;
10908 			return 1;
10909 		}
10910 miss:
10911 		/* when new state is not going to be added do not increase miss count.
10912 		 * Otherwise several loop iterations will remove the state
10913 		 * recorded earlier. The goal of these heuristics is to have
10914 		 * states from some iterations of the loop (some in the beginning
10915 		 * and some at the end) to help pruning.
10916 		 */
10917 		if (add_new_state)
10918 			sl->miss_cnt++;
10919 		/* heuristic to determine whether this state is beneficial
10920 		 * to keep checking from state equivalence point of view.
10921 		 * Higher numbers increase max_states_per_insn and verification time,
10922 		 * but do not meaningfully decrease insn_processed.
10923 		 */
10924 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10925 			/* the state is unlikely to be useful. Remove it to
10926 			 * speed up verification
10927 			 */
10928 			*pprev = sl->next;
10929 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10930 				u32 br = sl->state.branches;
10931 
10932 				WARN_ONCE(br,
10933 					  "BUG live_done but branches_to_explore %d\n",
10934 					  br);
10935 				free_verifier_state(&sl->state, false);
10936 				kfree(sl);
10937 				env->peak_states--;
10938 			} else {
10939 				/* cannot free this state, since parentage chain may
10940 				 * walk it later. Add it for free_list instead to
10941 				 * be freed at the end of verification
10942 				 */
10943 				sl->next = env->free_list;
10944 				env->free_list = sl;
10945 			}
10946 			sl = *pprev;
10947 			continue;
10948 		}
10949 next:
10950 		pprev = &sl->next;
10951 		sl = *pprev;
10952 	}
10953 
10954 	if (env->max_states_per_insn < states_cnt)
10955 		env->max_states_per_insn = states_cnt;
10956 
10957 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10958 		return push_jmp_history(env, cur);
10959 
10960 	if (!add_new_state)
10961 		return push_jmp_history(env, cur);
10962 
10963 	/* There were no equivalent states, remember the current one.
10964 	 * Technically the current state is not proven to be safe yet,
10965 	 * but it will either reach outer most bpf_exit (which means it's safe)
10966 	 * or it will be rejected. When there are no loops the verifier won't be
10967 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10968 	 * again on the way to bpf_exit.
10969 	 * When looping the sl->state.branches will be > 0 and this state
10970 	 * will not be considered for equivalence until branches == 0.
10971 	 */
10972 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10973 	if (!new_sl)
10974 		return -ENOMEM;
10975 	env->total_states++;
10976 	env->peak_states++;
10977 	env->prev_jmps_processed = env->jmps_processed;
10978 	env->prev_insn_processed = env->insn_processed;
10979 
10980 	/* add new state to the head of linked list */
10981 	new = &new_sl->state;
10982 	err = copy_verifier_state(new, cur);
10983 	if (err) {
10984 		free_verifier_state(new, false);
10985 		kfree(new_sl);
10986 		return err;
10987 	}
10988 	new->insn_idx = insn_idx;
10989 	WARN_ONCE(new->branches != 1,
10990 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10991 
10992 	cur->parent = new;
10993 	cur->first_insn_idx = insn_idx;
10994 	clear_jmp_history(cur);
10995 	new_sl->next = *explored_state(env, insn_idx);
10996 	*explored_state(env, insn_idx) = new_sl;
10997 	/* connect new state to parentage chain. Current frame needs all
10998 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10999 	 * to the stack implicitly by JITs) so in callers' frames connect just
11000 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11001 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11002 	 * from callee with its full parentage chain, anyway.
11003 	 */
11004 	/* clear write marks in current state: the writes we did are not writes
11005 	 * our child did, so they don't screen off its reads from us.
11006 	 * (There are no read marks in current state, because reads always mark
11007 	 * their parent and current state never has children yet.  Only
11008 	 * explored_states can get read marks.)
11009 	 */
11010 	for (j = 0; j <= cur->curframe; j++) {
11011 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11012 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11013 		for (i = 0; i < BPF_REG_FP; i++)
11014 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11015 	}
11016 
11017 	/* all stack frames are accessible from callee, clear them all */
11018 	for (j = 0; j <= cur->curframe; j++) {
11019 		struct bpf_func_state *frame = cur->frame[j];
11020 		struct bpf_func_state *newframe = new->frame[j];
11021 
11022 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11023 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11024 			frame->stack[i].spilled_ptr.parent =
11025 						&newframe->stack[i].spilled_ptr;
11026 		}
11027 	}
11028 	return 0;
11029 }
11030 
11031 /* Return true if it's OK to have the same insn return a different type. */
11032 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11033 {
11034 	switch (type) {
11035 	case PTR_TO_CTX:
11036 	case PTR_TO_SOCKET:
11037 	case PTR_TO_SOCKET_OR_NULL:
11038 	case PTR_TO_SOCK_COMMON:
11039 	case PTR_TO_SOCK_COMMON_OR_NULL:
11040 	case PTR_TO_TCP_SOCK:
11041 	case PTR_TO_TCP_SOCK_OR_NULL:
11042 	case PTR_TO_XDP_SOCK:
11043 	case PTR_TO_BTF_ID:
11044 	case PTR_TO_BTF_ID_OR_NULL:
11045 		return false;
11046 	default:
11047 		return true;
11048 	}
11049 }
11050 
11051 /* If an instruction was previously used with particular pointer types, then we
11052  * need to be careful to avoid cases such as the below, where it may be ok
11053  * for one branch accessing the pointer, but not ok for the other branch:
11054  *
11055  * R1 = sock_ptr
11056  * goto X;
11057  * ...
11058  * R1 = some_other_valid_ptr;
11059  * goto X;
11060  * ...
11061  * R2 = *(u32 *)(R1 + 0);
11062  */
11063 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11064 {
11065 	return src != prev && (!reg_type_mismatch_ok(src) ||
11066 			       !reg_type_mismatch_ok(prev));
11067 }
11068 
11069 static int do_check(struct bpf_verifier_env *env)
11070 {
11071 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11072 	struct bpf_verifier_state *state = env->cur_state;
11073 	struct bpf_insn *insns = env->prog->insnsi;
11074 	struct bpf_reg_state *regs;
11075 	int insn_cnt = env->prog->len;
11076 	bool do_print_state = false;
11077 	int prev_insn_idx = -1;
11078 
11079 	for (;;) {
11080 		struct bpf_insn *insn;
11081 		u8 class;
11082 		int err;
11083 
11084 		env->prev_insn_idx = prev_insn_idx;
11085 		if (env->insn_idx >= insn_cnt) {
11086 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11087 				env->insn_idx, insn_cnt);
11088 			return -EFAULT;
11089 		}
11090 
11091 		insn = &insns[env->insn_idx];
11092 		class = BPF_CLASS(insn->code);
11093 
11094 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11095 			verbose(env,
11096 				"BPF program is too large. Processed %d insn\n",
11097 				env->insn_processed);
11098 			return -E2BIG;
11099 		}
11100 
11101 		err = is_state_visited(env, env->insn_idx);
11102 		if (err < 0)
11103 			return err;
11104 		if (err == 1) {
11105 			/* found equivalent state, can prune the search */
11106 			if (env->log.level & BPF_LOG_LEVEL) {
11107 				if (do_print_state)
11108 					verbose(env, "\nfrom %d to %d%s: safe\n",
11109 						env->prev_insn_idx, env->insn_idx,
11110 						env->cur_state->speculative ?
11111 						" (speculative execution)" : "");
11112 				else
11113 					verbose(env, "%d: safe\n", env->insn_idx);
11114 			}
11115 			goto process_bpf_exit;
11116 		}
11117 
11118 		if (signal_pending(current))
11119 			return -EAGAIN;
11120 
11121 		if (need_resched())
11122 			cond_resched();
11123 
11124 		if (env->log.level & BPF_LOG_LEVEL2 ||
11125 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11126 			if (env->log.level & BPF_LOG_LEVEL2)
11127 				verbose(env, "%d:", env->insn_idx);
11128 			else
11129 				verbose(env, "\nfrom %d to %d%s:",
11130 					env->prev_insn_idx, env->insn_idx,
11131 					env->cur_state->speculative ?
11132 					" (speculative execution)" : "");
11133 			print_verifier_state(env, state->frame[state->curframe]);
11134 			do_print_state = false;
11135 		}
11136 
11137 		if (env->log.level & BPF_LOG_LEVEL) {
11138 			const struct bpf_insn_cbs cbs = {
11139 				.cb_call	= disasm_kfunc_name,
11140 				.cb_print	= verbose,
11141 				.private_data	= env,
11142 			};
11143 
11144 			verbose_linfo(env, env->insn_idx, "; ");
11145 			verbose(env, "%d: ", env->insn_idx);
11146 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11147 		}
11148 
11149 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11150 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11151 							   env->prev_insn_idx);
11152 			if (err)
11153 				return err;
11154 		}
11155 
11156 		regs = cur_regs(env);
11157 		sanitize_mark_insn_seen(env);
11158 		prev_insn_idx = env->insn_idx;
11159 
11160 		if (class == BPF_ALU || class == BPF_ALU64) {
11161 			err = check_alu_op(env, insn);
11162 			if (err)
11163 				return err;
11164 
11165 		} else if (class == BPF_LDX) {
11166 			enum bpf_reg_type *prev_src_type, src_reg_type;
11167 
11168 			/* check for reserved fields is already done */
11169 
11170 			/* check src operand */
11171 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11172 			if (err)
11173 				return err;
11174 
11175 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11176 			if (err)
11177 				return err;
11178 
11179 			src_reg_type = regs[insn->src_reg].type;
11180 
11181 			/* check that memory (src_reg + off) is readable,
11182 			 * the state of dst_reg will be updated by this func
11183 			 */
11184 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11185 					       insn->off, BPF_SIZE(insn->code),
11186 					       BPF_READ, insn->dst_reg, false);
11187 			if (err)
11188 				return err;
11189 
11190 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11191 
11192 			if (*prev_src_type == NOT_INIT) {
11193 				/* saw a valid insn
11194 				 * dst_reg = *(u32 *)(src_reg + off)
11195 				 * save type to validate intersecting paths
11196 				 */
11197 				*prev_src_type = src_reg_type;
11198 
11199 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11200 				/* ABuser program is trying to use the same insn
11201 				 * dst_reg = *(u32*) (src_reg + off)
11202 				 * with different pointer types:
11203 				 * src_reg == ctx in one branch and
11204 				 * src_reg == stack|map in some other branch.
11205 				 * Reject it.
11206 				 */
11207 				verbose(env, "same insn cannot be used with different pointers\n");
11208 				return -EINVAL;
11209 			}
11210 
11211 		} else if (class == BPF_STX) {
11212 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11213 
11214 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11215 				err = check_atomic(env, env->insn_idx, insn);
11216 				if (err)
11217 					return err;
11218 				env->insn_idx++;
11219 				continue;
11220 			}
11221 
11222 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11223 				verbose(env, "BPF_STX uses reserved fields\n");
11224 				return -EINVAL;
11225 			}
11226 
11227 			/* check src1 operand */
11228 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11229 			if (err)
11230 				return err;
11231 			/* check src2 operand */
11232 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11233 			if (err)
11234 				return err;
11235 
11236 			dst_reg_type = regs[insn->dst_reg].type;
11237 
11238 			/* check that memory (dst_reg + off) is writeable */
11239 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11240 					       insn->off, BPF_SIZE(insn->code),
11241 					       BPF_WRITE, insn->src_reg, false);
11242 			if (err)
11243 				return err;
11244 
11245 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11246 
11247 			if (*prev_dst_type == NOT_INIT) {
11248 				*prev_dst_type = dst_reg_type;
11249 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11250 				verbose(env, "same insn cannot be used with different pointers\n");
11251 				return -EINVAL;
11252 			}
11253 
11254 		} else if (class == BPF_ST) {
11255 			if (BPF_MODE(insn->code) != BPF_MEM ||
11256 			    insn->src_reg != BPF_REG_0) {
11257 				verbose(env, "BPF_ST uses reserved fields\n");
11258 				return -EINVAL;
11259 			}
11260 			/* check src operand */
11261 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11262 			if (err)
11263 				return err;
11264 
11265 			if (is_ctx_reg(env, insn->dst_reg)) {
11266 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11267 					insn->dst_reg,
11268 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
11269 				return -EACCES;
11270 			}
11271 
11272 			/* check that memory (dst_reg + off) is writeable */
11273 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11274 					       insn->off, BPF_SIZE(insn->code),
11275 					       BPF_WRITE, -1, false);
11276 			if (err)
11277 				return err;
11278 
11279 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11280 			u8 opcode = BPF_OP(insn->code);
11281 
11282 			env->jmps_processed++;
11283 			if (opcode == BPF_CALL) {
11284 				if (BPF_SRC(insn->code) != BPF_K ||
11285 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11286 				     && insn->off != 0) ||
11287 				    (insn->src_reg != BPF_REG_0 &&
11288 				     insn->src_reg != BPF_PSEUDO_CALL &&
11289 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11290 				    insn->dst_reg != BPF_REG_0 ||
11291 				    class == BPF_JMP32) {
11292 					verbose(env, "BPF_CALL uses reserved fields\n");
11293 					return -EINVAL;
11294 				}
11295 
11296 				if (env->cur_state->active_spin_lock &&
11297 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11298 				     insn->imm != BPF_FUNC_spin_unlock)) {
11299 					verbose(env, "function calls are not allowed while holding a lock\n");
11300 					return -EINVAL;
11301 				}
11302 				if (insn->src_reg == BPF_PSEUDO_CALL)
11303 					err = check_func_call(env, insn, &env->insn_idx);
11304 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11305 					err = check_kfunc_call(env, insn);
11306 				else
11307 					err = check_helper_call(env, insn, &env->insn_idx);
11308 				if (err)
11309 					return err;
11310 			} else if (opcode == BPF_JA) {
11311 				if (BPF_SRC(insn->code) != BPF_K ||
11312 				    insn->imm != 0 ||
11313 				    insn->src_reg != BPF_REG_0 ||
11314 				    insn->dst_reg != BPF_REG_0 ||
11315 				    class == BPF_JMP32) {
11316 					verbose(env, "BPF_JA uses reserved fields\n");
11317 					return -EINVAL;
11318 				}
11319 
11320 				env->insn_idx += insn->off + 1;
11321 				continue;
11322 
11323 			} else if (opcode == BPF_EXIT) {
11324 				if (BPF_SRC(insn->code) != BPF_K ||
11325 				    insn->imm != 0 ||
11326 				    insn->src_reg != BPF_REG_0 ||
11327 				    insn->dst_reg != BPF_REG_0 ||
11328 				    class == BPF_JMP32) {
11329 					verbose(env, "BPF_EXIT uses reserved fields\n");
11330 					return -EINVAL;
11331 				}
11332 
11333 				if (env->cur_state->active_spin_lock) {
11334 					verbose(env, "bpf_spin_unlock is missing\n");
11335 					return -EINVAL;
11336 				}
11337 
11338 				if (state->curframe) {
11339 					/* exit from nested function */
11340 					err = prepare_func_exit(env, &env->insn_idx);
11341 					if (err)
11342 						return err;
11343 					do_print_state = true;
11344 					continue;
11345 				}
11346 
11347 				err = check_reference_leak(env);
11348 				if (err)
11349 					return err;
11350 
11351 				err = check_return_code(env);
11352 				if (err)
11353 					return err;
11354 process_bpf_exit:
11355 				update_branch_counts(env, env->cur_state);
11356 				err = pop_stack(env, &prev_insn_idx,
11357 						&env->insn_idx, pop_log);
11358 				if (err < 0) {
11359 					if (err != -ENOENT)
11360 						return err;
11361 					break;
11362 				} else {
11363 					do_print_state = true;
11364 					continue;
11365 				}
11366 			} else {
11367 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11368 				if (err)
11369 					return err;
11370 			}
11371 		} else if (class == BPF_LD) {
11372 			u8 mode = BPF_MODE(insn->code);
11373 
11374 			if (mode == BPF_ABS || mode == BPF_IND) {
11375 				err = check_ld_abs(env, insn);
11376 				if (err)
11377 					return err;
11378 
11379 			} else if (mode == BPF_IMM) {
11380 				err = check_ld_imm(env, insn);
11381 				if (err)
11382 					return err;
11383 
11384 				env->insn_idx++;
11385 				sanitize_mark_insn_seen(env);
11386 			} else {
11387 				verbose(env, "invalid BPF_LD mode\n");
11388 				return -EINVAL;
11389 			}
11390 		} else {
11391 			verbose(env, "unknown insn class %d\n", class);
11392 			return -EINVAL;
11393 		}
11394 
11395 		env->insn_idx++;
11396 	}
11397 
11398 	return 0;
11399 }
11400 
11401 static int find_btf_percpu_datasec(struct btf *btf)
11402 {
11403 	const struct btf_type *t;
11404 	const char *tname;
11405 	int i, n;
11406 
11407 	/*
11408 	 * Both vmlinux and module each have their own ".data..percpu"
11409 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11410 	 * types to look at only module's own BTF types.
11411 	 */
11412 	n = btf_nr_types(btf);
11413 	if (btf_is_module(btf))
11414 		i = btf_nr_types(btf_vmlinux);
11415 	else
11416 		i = 1;
11417 
11418 	for(; i < n; i++) {
11419 		t = btf_type_by_id(btf, i);
11420 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11421 			continue;
11422 
11423 		tname = btf_name_by_offset(btf, t->name_off);
11424 		if (!strcmp(tname, ".data..percpu"))
11425 			return i;
11426 	}
11427 
11428 	return -ENOENT;
11429 }
11430 
11431 /* replace pseudo btf_id with kernel symbol address */
11432 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11433 			       struct bpf_insn *insn,
11434 			       struct bpf_insn_aux_data *aux)
11435 {
11436 	const struct btf_var_secinfo *vsi;
11437 	const struct btf_type *datasec;
11438 	struct btf_mod_pair *btf_mod;
11439 	const struct btf_type *t;
11440 	const char *sym_name;
11441 	bool percpu = false;
11442 	u32 type, id = insn->imm;
11443 	struct btf *btf;
11444 	s32 datasec_id;
11445 	u64 addr;
11446 	int i, btf_fd, err;
11447 
11448 	btf_fd = insn[1].imm;
11449 	if (btf_fd) {
11450 		btf = btf_get_by_fd(btf_fd);
11451 		if (IS_ERR(btf)) {
11452 			verbose(env, "invalid module BTF object FD specified.\n");
11453 			return -EINVAL;
11454 		}
11455 	} else {
11456 		if (!btf_vmlinux) {
11457 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11458 			return -EINVAL;
11459 		}
11460 		btf = btf_vmlinux;
11461 		btf_get(btf);
11462 	}
11463 
11464 	t = btf_type_by_id(btf, id);
11465 	if (!t) {
11466 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11467 		err = -ENOENT;
11468 		goto err_put;
11469 	}
11470 
11471 	if (!btf_type_is_var(t)) {
11472 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11473 		err = -EINVAL;
11474 		goto err_put;
11475 	}
11476 
11477 	sym_name = btf_name_by_offset(btf, t->name_off);
11478 	addr = kallsyms_lookup_name(sym_name);
11479 	if (!addr) {
11480 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11481 			sym_name);
11482 		err = -ENOENT;
11483 		goto err_put;
11484 	}
11485 
11486 	datasec_id = find_btf_percpu_datasec(btf);
11487 	if (datasec_id > 0) {
11488 		datasec = btf_type_by_id(btf, datasec_id);
11489 		for_each_vsi(i, datasec, vsi) {
11490 			if (vsi->type == id) {
11491 				percpu = true;
11492 				break;
11493 			}
11494 		}
11495 	}
11496 
11497 	insn[0].imm = (u32)addr;
11498 	insn[1].imm = addr >> 32;
11499 
11500 	type = t->type;
11501 	t = btf_type_skip_modifiers(btf, type, NULL);
11502 	if (percpu) {
11503 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11504 		aux->btf_var.btf = btf;
11505 		aux->btf_var.btf_id = type;
11506 	} else if (!btf_type_is_struct(t)) {
11507 		const struct btf_type *ret;
11508 		const char *tname;
11509 		u32 tsize;
11510 
11511 		/* resolve the type size of ksym. */
11512 		ret = btf_resolve_size(btf, t, &tsize);
11513 		if (IS_ERR(ret)) {
11514 			tname = btf_name_by_offset(btf, t->name_off);
11515 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11516 				tname, PTR_ERR(ret));
11517 			err = -EINVAL;
11518 			goto err_put;
11519 		}
11520 		aux->btf_var.reg_type = PTR_TO_MEM;
11521 		aux->btf_var.mem_size = tsize;
11522 	} else {
11523 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11524 		aux->btf_var.btf = btf;
11525 		aux->btf_var.btf_id = type;
11526 	}
11527 
11528 	/* check whether we recorded this BTF (and maybe module) already */
11529 	for (i = 0; i < env->used_btf_cnt; i++) {
11530 		if (env->used_btfs[i].btf == btf) {
11531 			btf_put(btf);
11532 			return 0;
11533 		}
11534 	}
11535 
11536 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11537 		err = -E2BIG;
11538 		goto err_put;
11539 	}
11540 
11541 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11542 	btf_mod->btf = btf;
11543 	btf_mod->module = NULL;
11544 
11545 	/* if we reference variables from kernel module, bump its refcount */
11546 	if (btf_is_module(btf)) {
11547 		btf_mod->module = btf_try_get_module(btf);
11548 		if (!btf_mod->module) {
11549 			err = -ENXIO;
11550 			goto err_put;
11551 		}
11552 	}
11553 
11554 	env->used_btf_cnt++;
11555 
11556 	return 0;
11557 err_put:
11558 	btf_put(btf);
11559 	return err;
11560 }
11561 
11562 static int check_map_prealloc(struct bpf_map *map)
11563 {
11564 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11565 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11566 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11567 		!(map->map_flags & BPF_F_NO_PREALLOC);
11568 }
11569 
11570 static bool is_tracing_prog_type(enum bpf_prog_type type)
11571 {
11572 	switch (type) {
11573 	case BPF_PROG_TYPE_KPROBE:
11574 	case BPF_PROG_TYPE_TRACEPOINT:
11575 	case BPF_PROG_TYPE_PERF_EVENT:
11576 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11577 		return true;
11578 	default:
11579 		return false;
11580 	}
11581 }
11582 
11583 static bool is_preallocated_map(struct bpf_map *map)
11584 {
11585 	if (!check_map_prealloc(map))
11586 		return false;
11587 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11588 		return false;
11589 	return true;
11590 }
11591 
11592 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11593 					struct bpf_map *map,
11594 					struct bpf_prog *prog)
11595 
11596 {
11597 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11598 	/*
11599 	 * Validate that trace type programs use preallocated hash maps.
11600 	 *
11601 	 * For programs attached to PERF events this is mandatory as the
11602 	 * perf NMI can hit any arbitrary code sequence.
11603 	 *
11604 	 * All other trace types using preallocated hash maps are unsafe as
11605 	 * well because tracepoint or kprobes can be inside locked regions
11606 	 * of the memory allocator or at a place where a recursion into the
11607 	 * memory allocator would see inconsistent state.
11608 	 *
11609 	 * On RT enabled kernels run-time allocation of all trace type
11610 	 * programs is strictly prohibited due to lock type constraints. On
11611 	 * !RT kernels it is allowed for backwards compatibility reasons for
11612 	 * now, but warnings are emitted so developers are made aware of
11613 	 * the unsafety and can fix their programs before this is enforced.
11614 	 */
11615 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11616 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11617 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11618 			return -EINVAL;
11619 		}
11620 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11621 			verbose(env, "trace type programs can only use preallocated hash map\n");
11622 			return -EINVAL;
11623 		}
11624 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11625 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11626 	}
11627 
11628 	if (map_value_has_spin_lock(map)) {
11629 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11630 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11631 			return -EINVAL;
11632 		}
11633 
11634 		if (is_tracing_prog_type(prog_type)) {
11635 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11636 			return -EINVAL;
11637 		}
11638 
11639 		if (prog->aux->sleepable) {
11640 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11641 			return -EINVAL;
11642 		}
11643 	}
11644 
11645 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11646 	    !bpf_offload_prog_map_match(prog, map)) {
11647 		verbose(env, "offload device mismatch between prog and map\n");
11648 		return -EINVAL;
11649 	}
11650 
11651 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11652 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11653 		return -EINVAL;
11654 	}
11655 
11656 	if (prog->aux->sleepable)
11657 		switch (map->map_type) {
11658 		case BPF_MAP_TYPE_HASH:
11659 		case BPF_MAP_TYPE_LRU_HASH:
11660 		case BPF_MAP_TYPE_ARRAY:
11661 		case BPF_MAP_TYPE_PERCPU_HASH:
11662 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11663 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11664 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11665 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11666 			if (!is_preallocated_map(map)) {
11667 				verbose(env,
11668 					"Sleepable programs can only use preallocated maps\n");
11669 				return -EINVAL;
11670 			}
11671 			break;
11672 		case BPF_MAP_TYPE_RINGBUF:
11673 			break;
11674 		default:
11675 			verbose(env,
11676 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11677 			return -EINVAL;
11678 		}
11679 
11680 	return 0;
11681 }
11682 
11683 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11684 {
11685 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11686 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11687 }
11688 
11689 /* find and rewrite pseudo imm in ld_imm64 instructions:
11690  *
11691  * 1. if it accesses map FD, replace it with actual map pointer.
11692  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11693  *
11694  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11695  */
11696 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11697 {
11698 	struct bpf_insn *insn = env->prog->insnsi;
11699 	int insn_cnt = env->prog->len;
11700 	int i, j, err;
11701 
11702 	err = bpf_prog_calc_tag(env->prog);
11703 	if (err)
11704 		return err;
11705 
11706 	for (i = 0; i < insn_cnt; i++, insn++) {
11707 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11708 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11709 			verbose(env, "BPF_LDX uses reserved fields\n");
11710 			return -EINVAL;
11711 		}
11712 
11713 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11714 			struct bpf_insn_aux_data *aux;
11715 			struct bpf_map *map;
11716 			struct fd f;
11717 			u64 addr;
11718 			u32 fd;
11719 
11720 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11721 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11722 			    insn[1].off != 0) {
11723 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11724 				return -EINVAL;
11725 			}
11726 
11727 			if (insn[0].src_reg == 0)
11728 				/* valid generic load 64-bit imm */
11729 				goto next_insn;
11730 
11731 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11732 				aux = &env->insn_aux_data[i];
11733 				err = check_pseudo_btf_id(env, insn, aux);
11734 				if (err)
11735 					return err;
11736 				goto next_insn;
11737 			}
11738 
11739 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11740 				aux = &env->insn_aux_data[i];
11741 				aux->ptr_type = PTR_TO_FUNC;
11742 				goto next_insn;
11743 			}
11744 
11745 			/* In final convert_pseudo_ld_imm64() step, this is
11746 			 * converted into regular 64-bit imm load insn.
11747 			 */
11748 			switch (insn[0].src_reg) {
11749 			case BPF_PSEUDO_MAP_VALUE:
11750 			case BPF_PSEUDO_MAP_IDX_VALUE:
11751 				break;
11752 			case BPF_PSEUDO_MAP_FD:
11753 			case BPF_PSEUDO_MAP_IDX:
11754 				if (insn[1].imm == 0)
11755 					break;
11756 				fallthrough;
11757 			default:
11758 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11759 				return -EINVAL;
11760 			}
11761 
11762 			switch (insn[0].src_reg) {
11763 			case BPF_PSEUDO_MAP_IDX_VALUE:
11764 			case BPF_PSEUDO_MAP_IDX:
11765 				if (bpfptr_is_null(env->fd_array)) {
11766 					verbose(env, "fd_idx without fd_array is invalid\n");
11767 					return -EPROTO;
11768 				}
11769 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11770 							    insn[0].imm * sizeof(fd),
11771 							    sizeof(fd)))
11772 					return -EFAULT;
11773 				break;
11774 			default:
11775 				fd = insn[0].imm;
11776 				break;
11777 			}
11778 
11779 			f = fdget(fd);
11780 			map = __bpf_map_get(f);
11781 			if (IS_ERR(map)) {
11782 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11783 					insn[0].imm);
11784 				return PTR_ERR(map);
11785 			}
11786 
11787 			err = check_map_prog_compatibility(env, map, env->prog);
11788 			if (err) {
11789 				fdput(f);
11790 				return err;
11791 			}
11792 
11793 			aux = &env->insn_aux_data[i];
11794 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11795 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11796 				addr = (unsigned long)map;
11797 			} else {
11798 				u32 off = insn[1].imm;
11799 
11800 				if (off >= BPF_MAX_VAR_OFF) {
11801 					verbose(env, "direct value offset of %u is not allowed\n", off);
11802 					fdput(f);
11803 					return -EINVAL;
11804 				}
11805 
11806 				if (!map->ops->map_direct_value_addr) {
11807 					verbose(env, "no direct value access support for this map type\n");
11808 					fdput(f);
11809 					return -EINVAL;
11810 				}
11811 
11812 				err = map->ops->map_direct_value_addr(map, &addr, off);
11813 				if (err) {
11814 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11815 						map->value_size, off);
11816 					fdput(f);
11817 					return err;
11818 				}
11819 
11820 				aux->map_off = off;
11821 				addr += off;
11822 			}
11823 
11824 			insn[0].imm = (u32)addr;
11825 			insn[1].imm = addr >> 32;
11826 
11827 			/* check whether we recorded this map already */
11828 			for (j = 0; j < env->used_map_cnt; j++) {
11829 				if (env->used_maps[j] == map) {
11830 					aux->map_index = j;
11831 					fdput(f);
11832 					goto next_insn;
11833 				}
11834 			}
11835 
11836 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11837 				fdput(f);
11838 				return -E2BIG;
11839 			}
11840 
11841 			/* hold the map. If the program is rejected by verifier,
11842 			 * the map will be released by release_maps() or it
11843 			 * will be used by the valid program until it's unloaded
11844 			 * and all maps are released in free_used_maps()
11845 			 */
11846 			bpf_map_inc(map);
11847 
11848 			aux->map_index = env->used_map_cnt;
11849 			env->used_maps[env->used_map_cnt++] = map;
11850 
11851 			if (bpf_map_is_cgroup_storage(map) &&
11852 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11853 				verbose(env, "only one cgroup storage of each type is allowed\n");
11854 				fdput(f);
11855 				return -EBUSY;
11856 			}
11857 
11858 			fdput(f);
11859 next_insn:
11860 			insn++;
11861 			i++;
11862 			continue;
11863 		}
11864 
11865 		/* Basic sanity check before we invest more work here. */
11866 		if (!bpf_opcode_in_insntable(insn->code)) {
11867 			verbose(env, "unknown opcode %02x\n", insn->code);
11868 			return -EINVAL;
11869 		}
11870 	}
11871 
11872 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11873 	 * 'struct bpf_map *' into a register instead of user map_fd.
11874 	 * These pointers will be used later by verifier to validate map access.
11875 	 */
11876 	return 0;
11877 }
11878 
11879 /* drop refcnt of maps used by the rejected program */
11880 static void release_maps(struct bpf_verifier_env *env)
11881 {
11882 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11883 			     env->used_map_cnt);
11884 }
11885 
11886 /* drop refcnt of maps used by the rejected program */
11887 static void release_btfs(struct bpf_verifier_env *env)
11888 {
11889 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11890 			     env->used_btf_cnt);
11891 }
11892 
11893 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11894 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11895 {
11896 	struct bpf_insn *insn = env->prog->insnsi;
11897 	int insn_cnt = env->prog->len;
11898 	int i;
11899 
11900 	for (i = 0; i < insn_cnt; i++, insn++) {
11901 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11902 			continue;
11903 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11904 			continue;
11905 		insn->src_reg = 0;
11906 	}
11907 }
11908 
11909 /* single env->prog->insni[off] instruction was replaced with the range
11910  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11911  * [0, off) and [off, end) to new locations, so the patched range stays zero
11912  */
11913 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11914 				 struct bpf_insn_aux_data *new_data,
11915 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
11916 {
11917 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11918 	struct bpf_insn *insn = new_prog->insnsi;
11919 	u32 old_seen = old_data[off].seen;
11920 	u32 prog_len;
11921 	int i;
11922 
11923 	/* aux info at OFF always needs adjustment, no matter fast path
11924 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11925 	 * original insn at old prog.
11926 	 */
11927 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11928 
11929 	if (cnt == 1)
11930 		return;
11931 	prog_len = new_prog->len;
11932 
11933 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11934 	memcpy(new_data + off + cnt - 1, old_data + off,
11935 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11936 	for (i = off; i < off + cnt - 1; i++) {
11937 		/* Expand insni[off]'s seen count to the patched range. */
11938 		new_data[i].seen = old_seen;
11939 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11940 	}
11941 	env->insn_aux_data = new_data;
11942 	vfree(old_data);
11943 }
11944 
11945 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11946 {
11947 	int i;
11948 
11949 	if (len == 1)
11950 		return;
11951 	/* NOTE: fake 'exit' subprog should be updated as well. */
11952 	for (i = 0; i <= env->subprog_cnt; i++) {
11953 		if (env->subprog_info[i].start <= off)
11954 			continue;
11955 		env->subprog_info[i].start += len - 1;
11956 	}
11957 }
11958 
11959 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11960 {
11961 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11962 	int i, sz = prog->aux->size_poke_tab;
11963 	struct bpf_jit_poke_descriptor *desc;
11964 
11965 	for (i = 0; i < sz; i++) {
11966 		desc = &tab[i];
11967 		if (desc->insn_idx <= off)
11968 			continue;
11969 		desc->insn_idx += len - 1;
11970 	}
11971 }
11972 
11973 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11974 					    const struct bpf_insn *patch, u32 len)
11975 {
11976 	struct bpf_prog *new_prog;
11977 	struct bpf_insn_aux_data *new_data = NULL;
11978 
11979 	if (len > 1) {
11980 		new_data = vzalloc(array_size(env->prog->len + len - 1,
11981 					      sizeof(struct bpf_insn_aux_data)));
11982 		if (!new_data)
11983 			return NULL;
11984 	}
11985 
11986 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11987 	if (IS_ERR(new_prog)) {
11988 		if (PTR_ERR(new_prog) == -ERANGE)
11989 			verbose(env,
11990 				"insn %d cannot be patched due to 16-bit range\n",
11991 				env->insn_aux_data[off].orig_idx);
11992 		vfree(new_data);
11993 		return NULL;
11994 	}
11995 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
11996 	adjust_subprog_starts(env, off, len);
11997 	adjust_poke_descs(new_prog, off, len);
11998 	return new_prog;
11999 }
12000 
12001 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12002 					      u32 off, u32 cnt)
12003 {
12004 	int i, j;
12005 
12006 	/* find first prog starting at or after off (first to remove) */
12007 	for (i = 0; i < env->subprog_cnt; i++)
12008 		if (env->subprog_info[i].start >= off)
12009 			break;
12010 	/* find first prog starting at or after off + cnt (first to stay) */
12011 	for (j = i; j < env->subprog_cnt; j++)
12012 		if (env->subprog_info[j].start >= off + cnt)
12013 			break;
12014 	/* if j doesn't start exactly at off + cnt, we are just removing
12015 	 * the front of previous prog
12016 	 */
12017 	if (env->subprog_info[j].start != off + cnt)
12018 		j--;
12019 
12020 	if (j > i) {
12021 		struct bpf_prog_aux *aux = env->prog->aux;
12022 		int move;
12023 
12024 		/* move fake 'exit' subprog as well */
12025 		move = env->subprog_cnt + 1 - j;
12026 
12027 		memmove(env->subprog_info + i,
12028 			env->subprog_info + j,
12029 			sizeof(*env->subprog_info) * move);
12030 		env->subprog_cnt -= j - i;
12031 
12032 		/* remove func_info */
12033 		if (aux->func_info) {
12034 			move = aux->func_info_cnt - j;
12035 
12036 			memmove(aux->func_info + i,
12037 				aux->func_info + j,
12038 				sizeof(*aux->func_info) * move);
12039 			aux->func_info_cnt -= j - i;
12040 			/* func_info->insn_off is set after all code rewrites,
12041 			 * in adjust_btf_func() - no need to adjust
12042 			 */
12043 		}
12044 	} else {
12045 		/* convert i from "first prog to remove" to "first to adjust" */
12046 		if (env->subprog_info[i].start == off)
12047 			i++;
12048 	}
12049 
12050 	/* update fake 'exit' subprog as well */
12051 	for (; i <= env->subprog_cnt; i++)
12052 		env->subprog_info[i].start -= cnt;
12053 
12054 	return 0;
12055 }
12056 
12057 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12058 				      u32 cnt)
12059 {
12060 	struct bpf_prog *prog = env->prog;
12061 	u32 i, l_off, l_cnt, nr_linfo;
12062 	struct bpf_line_info *linfo;
12063 
12064 	nr_linfo = prog->aux->nr_linfo;
12065 	if (!nr_linfo)
12066 		return 0;
12067 
12068 	linfo = prog->aux->linfo;
12069 
12070 	/* find first line info to remove, count lines to be removed */
12071 	for (i = 0; i < nr_linfo; i++)
12072 		if (linfo[i].insn_off >= off)
12073 			break;
12074 
12075 	l_off = i;
12076 	l_cnt = 0;
12077 	for (; i < nr_linfo; i++)
12078 		if (linfo[i].insn_off < off + cnt)
12079 			l_cnt++;
12080 		else
12081 			break;
12082 
12083 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12084 	 * last removed linfo.  prog is already modified, so prog->len == off
12085 	 * means no live instructions after (tail of the program was removed).
12086 	 */
12087 	if (prog->len != off && l_cnt &&
12088 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12089 		l_cnt--;
12090 		linfo[--i].insn_off = off + cnt;
12091 	}
12092 
12093 	/* remove the line info which refer to the removed instructions */
12094 	if (l_cnt) {
12095 		memmove(linfo + l_off, linfo + i,
12096 			sizeof(*linfo) * (nr_linfo - i));
12097 
12098 		prog->aux->nr_linfo -= l_cnt;
12099 		nr_linfo = prog->aux->nr_linfo;
12100 	}
12101 
12102 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12103 	for (i = l_off; i < nr_linfo; i++)
12104 		linfo[i].insn_off -= cnt;
12105 
12106 	/* fix up all subprogs (incl. 'exit') which start >= off */
12107 	for (i = 0; i <= env->subprog_cnt; i++)
12108 		if (env->subprog_info[i].linfo_idx > l_off) {
12109 			/* program may have started in the removed region but
12110 			 * may not be fully removed
12111 			 */
12112 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12113 				env->subprog_info[i].linfo_idx -= l_cnt;
12114 			else
12115 				env->subprog_info[i].linfo_idx = l_off;
12116 		}
12117 
12118 	return 0;
12119 }
12120 
12121 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12122 {
12123 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12124 	unsigned int orig_prog_len = env->prog->len;
12125 	int err;
12126 
12127 	if (bpf_prog_is_dev_bound(env->prog->aux))
12128 		bpf_prog_offload_remove_insns(env, off, cnt);
12129 
12130 	err = bpf_remove_insns(env->prog, off, cnt);
12131 	if (err)
12132 		return err;
12133 
12134 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12135 	if (err)
12136 		return err;
12137 
12138 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12139 	if (err)
12140 		return err;
12141 
12142 	memmove(aux_data + off,	aux_data + off + cnt,
12143 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12144 
12145 	return 0;
12146 }
12147 
12148 /* The verifier does more data flow analysis than llvm and will not
12149  * explore branches that are dead at run time. Malicious programs can
12150  * have dead code too. Therefore replace all dead at-run-time code
12151  * with 'ja -1'.
12152  *
12153  * Just nops are not optimal, e.g. if they would sit at the end of the
12154  * program and through another bug we would manage to jump there, then
12155  * we'd execute beyond program memory otherwise. Returning exception
12156  * code also wouldn't work since we can have subprogs where the dead
12157  * code could be located.
12158  */
12159 static void sanitize_dead_code(struct bpf_verifier_env *env)
12160 {
12161 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12162 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12163 	struct bpf_insn *insn = env->prog->insnsi;
12164 	const int insn_cnt = env->prog->len;
12165 	int i;
12166 
12167 	for (i = 0; i < insn_cnt; i++) {
12168 		if (aux_data[i].seen)
12169 			continue;
12170 		memcpy(insn + i, &trap, sizeof(trap));
12171 		aux_data[i].zext_dst = false;
12172 	}
12173 }
12174 
12175 static bool insn_is_cond_jump(u8 code)
12176 {
12177 	u8 op;
12178 
12179 	if (BPF_CLASS(code) == BPF_JMP32)
12180 		return true;
12181 
12182 	if (BPF_CLASS(code) != BPF_JMP)
12183 		return false;
12184 
12185 	op = BPF_OP(code);
12186 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12187 }
12188 
12189 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12190 {
12191 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12192 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12193 	struct bpf_insn *insn = env->prog->insnsi;
12194 	const int insn_cnt = env->prog->len;
12195 	int i;
12196 
12197 	for (i = 0; i < insn_cnt; i++, insn++) {
12198 		if (!insn_is_cond_jump(insn->code))
12199 			continue;
12200 
12201 		if (!aux_data[i + 1].seen)
12202 			ja.off = insn->off;
12203 		else if (!aux_data[i + 1 + insn->off].seen)
12204 			ja.off = 0;
12205 		else
12206 			continue;
12207 
12208 		if (bpf_prog_is_dev_bound(env->prog->aux))
12209 			bpf_prog_offload_replace_insn(env, i, &ja);
12210 
12211 		memcpy(insn, &ja, sizeof(ja));
12212 	}
12213 }
12214 
12215 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12216 {
12217 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12218 	int insn_cnt = env->prog->len;
12219 	int i, err;
12220 
12221 	for (i = 0; i < insn_cnt; i++) {
12222 		int j;
12223 
12224 		j = 0;
12225 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12226 			j++;
12227 		if (!j)
12228 			continue;
12229 
12230 		err = verifier_remove_insns(env, i, j);
12231 		if (err)
12232 			return err;
12233 		insn_cnt = env->prog->len;
12234 	}
12235 
12236 	return 0;
12237 }
12238 
12239 static int opt_remove_nops(struct bpf_verifier_env *env)
12240 {
12241 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12242 	struct bpf_insn *insn = env->prog->insnsi;
12243 	int insn_cnt = env->prog->len;
12244 	int i, err;
12245 
12246 	for (i = 0; i < insn_cnt; i++) {
12247 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12248 			continue;
12249 
12250 		err = verifier_remove_insns(env, i, 1);
12251 		if (err)
12252 			return err;
12253 		insn_cnt--;
12254 		i--;
12255 	}
12256 
12257 	return 0;
12258 }
12259 
12260 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12261 					 const union bpf_attr *attr)
12262 {
12263 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12264 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12265 	int i, patch_len, delta = 0, len = env->prog->len;
12266 	struct bpf_insn *insns = env->prog->insnsi;
12267 	struct bpf_prog *new_prog;
12268 	bool rnd_hi32;
12269 
12270 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12271 	zext_patch[1] = BPF_ZEXT_REG(0);
12272 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12273 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12274 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12275 	for (i = 0; i < len; i++) {
12276 		int adj_idx = i + delta;
12277 		struct bpf_insn insn;
12278 		int load_reg;
12279 
12280 		insn = insns[adj_idx];
12281 		load_reg = insn_def_regno(&insn);
12282 		if (!aux[adj_idx].zext_dst) {
12283 			u8 code, class;
12284 			u32 imm_rnd;
12285 
12286 			if (!rnd_hi32)
12287 				continue;
12288 
12289 			code = insn.code;
12290 			class = BPF_CLASS(code);
12291 			if (load_reg == -1)
12292 				continue;
12293 
12294 			/* NOTE: arg "reg" (the fourth one) is only used for
12295 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12296 			 *       here.
12297 			 */
12298 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12299 				if (class == BPF_LD &&
12300 				    BPF_MODE(code) == BPF_IMM)
12301 					i++;
12302 				continue;
12303 			}
12304 
12305 			/* ctx load could be transformed into wider load. */
12306 			if (class == BPF_LDX &&
12307 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12308 				continue;
12309 
12310 			imm_rnd = get_random_int();
12311 			rnd_hi32_patch[0] = insn;
12312 			rnd_hi32_patch[1].imm = imm_rnd;
12313 			rnd_hi32_patch[3].dst_reg = load_reg;
12314 			patch = rnd_hi32_patch;
12315 			patch_len = 4;
12316 			goto apply_patch_buffer;
12317 		}
12318 
12319 		/* Add in an zero-extend instruction if a) the JIT has requested
12320 		 * it or b) it's a CMPXCHG.
12321 		 *
12322 		 * The latter is because: BPF_CMPXCHG always loads a value into
12323 		 * R0, therefore always zero-extends. However some archs'
12324 		 * equivalent instruction only does this load when the
12325 		 * comparison is successful. This detail of CMPXCHG is
12326 		 * orthogonal to the general zero-extension behaviour of the
12327 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12328 		 */
12329 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12330 			continue;
12331 
12332 		if (WARN_ON(load_reg == -1)) {
12333 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12334 			return -EFAULT;
12335 		}
12336 
12337 		zext_patch[0] = insn;
12338 		zext_patch[1].dst_reg = load_reg;
12339 		zext_patch[1].src_reg = load_reg;
12340 		patch = zext_patch;
12341 		patch_len = 2;
12342 apply_patch_buffer:
12343 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12344 		if (!new_prog)
12345 			return -ENOMEM;
12346 		env->prog = new_prog;
12347 		insns = new_prog->insnsi;
12348 		aux = env->insn_aux_data;
12349 		delta += patch_len - 1;
12350 	}
12351 
12352 	return 0;
12353 }
12354 
12355 /* convert load instructions that access fields of a context type into a
12356  * sequence of instructions that access fields of the underlying structure:
12357  *     struct __sk_buff    -> struct sk_buff
12358  *     struct bpf_sock_ops -> struct sock
12359  */
12360 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12361 {
12362 	const struct bpf_verifier_ops *ops = env->ops;
12363 	int i, cnt, size, ctx_field_size, delta = 0;
12364 	const int insn_cnt = env->prog->len;
12365 	struct bpf_insn insn_buf[16], *insn;
12366 	u32 target_size, size_default, off;
12367 	struct bpf_prog *new_prog;
12368 	enum bpf_access_type type;
12369 	bool is_narrower_load;
12370 
12371 	if (ops->gen_prologue || env->seen_direct_write) {
12372 		if (!ops->gen_prologue) {
12373 			verbose(env, "bpf verifier is misconfigured\n");
12374 			return -EINVAL;
12375 		}
12376 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12377 					env->prog);
12378 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12379 			verbose(env, "bpf verifier is misconfigured\n");
12380 			return -EINVAL;
12381 		} else if (cnt) {
12382 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12383 			if (!new_prog)
12384 				return -ENOMEM;
12385 
12386 			env->prog = new_prog;
12387 			delta += cnt - 1;
12388 		}
12389 	}
12390 
12391 	if (bpf_prog_is_dev_bound(env->prog->aux))
12392 		return 0;
12393 
12394 	insn = env->prog->insnsi + delta;
12395 
12396 	for (i = 0; i < insn_cnt; i++, insn++) {
12397 		bpf_convert_ctx_access_t convert_ctx_access;
12398 		bool ctx_access;
12399 
12400 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12401 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12402 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12403 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12404 			type = BPF_READ;
12405 			ctx_access = true;
12406 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12407 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12408 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12409 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12410 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12411 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12412 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12413 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12414 			type = BPF_WRITE;
12415 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12416 		} else {
12417 			continue;
12418 		}
12419 
12420 		if (type == BPF_WRITE &&
12421 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12422 			struct bpf_insn patch[] = {
12423 				*insn,
12424 				BPF_ST_NOSPEC(),
12425 			};
12426 
12427 			cnt = ARRAY_SIZE(patch);
12428 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12429 			if (!new_prog)
12430 				return -ENOMEM;
12431 
12432 			delta    += cnt - 1;
12433 			env->prog = new_prog;
12434 			insn      = new_prog->insnsi + i + delta;
12435 			continue;
12436 		}
12437 
12438 		if (!ctx_access)
12439 			continue;
12440 
12441 		switch (env->insn_aux_data[i + delta].ptr_type) {
12442 		case PTR_TO_CTX:
12443 			if (!ops->convert_ctx_access)
12444 				continue;
12445 			convert_ctx_access = ops->convert_ctx_access;
12446 			break;
12447 		case PTR_TO_SOCKET:
12448 		case PTR_TO_SOCK_COMMON:
12449 			convert_ctx_access = bpf_sock_convert_ctx_access;
12450 			break;
12451 		case PTR_TO_TCP_SOCK:
12452 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12453 			break;
12454 		case PTR_TO_XDP_SOCK:
12455 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12456 			break;
12457 		case PTR_TO_BTF_ID:
12458 			if (type == BPF_READ) {
12459 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12460 					BPF_SIZE((insn)->code);
12461 				env->prog->aux->num_exentries++;
12462 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12463 				verbose(env, "Writes through BTF pointers are not allowed\n");
12464 				return -EINVAL;
12465 			}
12466 			continue;
12467 		default:
12468 			continue;
12469 		}
12470 
12471 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12472 		size = BPF_LDST_BYTES(insn);
12473 
12474 		/* If the read access is a narrower load of the field,
12475 		 * convert to a 4/8-byte load, to minimum program type specific
12476 		 * convert_ctx_access changes. If conversion is successful,
12477 		 * we will apply proper mask to the result.
12478 		 */
12479 		is_narrower_load = size < ctx_field_size;
12480 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12481 		off = insn->off;
12482 		if (is_narrower_load) {
12483 			u8 size_code;
12484 
12485 			if (type == BPF_WRITE) {
12486 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12487 				return -EINVAL;
12488 			}
12489 
12490 			size_code = BPF_H;
12491 			if (ctx_field_size == 4)
12492 				size_code = BPF_W;
12493 			else if (ctx_field_size == 8)
12494 				size_code = BPF_DW;
12495 
12496 			insn->off = off & ~(size_default - 1);
12497 			insn->code = BPF_LDX | BPF_MEM | size_code;
12498 		}
12499 
12500 		target_size = 0;
12501 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12502 					 &target_size);
12503 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12504 		    (ctx_field_size && !target_size)) {
12505 			verbose(env, "bpf verifier is misconfigured\n");
12506 			return -EINVAL;
12507 		}
12508 
12509 		if (is_narrower_load && size < target_size) {
12510 			u8 shift = bpf_ctx_narrow_access_offset(
12511 				off, size, size_default) * 8;
12512 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12513 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12514 				return -EINVAL;
12515 			}
12516 			if (ctx_field_size <= 4) {
12517 				if (shift)
12518 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12519 									insn->dst_reg,
12520 									shift);
12521 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12522 								(1 << size * 8) - 1);
12523 			} else {
12524 				if (shift)
12525 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12526 									insn->dst_reg,
12527 									shift);
12528 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12529 								(1ULL << size * 8) - 1);
12530 			}
12531 		}
12532 
12533 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12534 		if (!new_prog)
12535 			return -ENOMEM;
12536 
12537 		delta += cnt - 1;
12538 
12539 		/* keep walking new program and skip insns we just inserted */
12540 		env->prog = new_prog;
12541 		insn      = new_prog->insnsi + i + delta;
12542 	}
12543 
12544 	return 0;
12545 }
12546 
12547 static int jit_subprogs(struct bpf_verifier_env *env)
12548 {
12549 	struct bpf_prog *prog = env->prog, **func, *tmp;
12550 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12551 	struct bpf_map *map_ptr;
12552 	struct bpf_insn *insn;
12553 	void *old_bpf_func;
12554 	int err, num_exentries;
12555 
12556 	if (env->subprog_cnt <= 1)
12557 		return 0;
12558 
12559 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12560 		if (bpf_pseudo_func(insn)) {
12561 			env->insn_aux_data[i].call_imm = insn->imm;
12562 			/* subprog is encoded in insn[1].imm */
12563 			continue;
12564 		}
12565 
12566 		if (!bpf_pseudo_call(insn))
12567 			continue;
12568 		/* Upon error here we cannot fall back to interpreter but
12569 		 * need a hard reject of the program. Thus -EFAULT is
12570 		 * propagated in any case.
12571 		 */
12572 		subprog = find_subprog(env, i + insn->imm + 1);
12573 		if (subprog < 0) {
12574 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12575 				  i + insn->imm + 1);
12576 			return -EFAULT;
12577 		}
12578 		/* temporarily remember subprog id inside insn instead of
12579 		 * aux_data, since next loop will split up all insns into funcs
12580 		 */
12581 		insn->off = subprog;
12582 		/* remember original imm in case JIT fails and fallback
12583 		 * to interpreter will be needed
12584 		 */
12585 		env->insn_aux_data[i].call_imm = insn->imm;
12586 		/* point imm to __bpf_call_base+1 from JITs point of view */
12587 		insn->imm = 1;
12588 	}
12589 
12590 	err = bpf_prog_alloc_jited_linfo(prog);
12591 	if (err)
12592 		goto out_undo_insn;
12593 
12594 	err = -ENOMEM;
12595 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12596 	if (!func)
12597 		goto out_undo_insn;
12598 
12599 	for (i = 0; i < env->subprog_cnt; i++) {
12600 		subprog_start = subprog_end;
12601 		subprog_end = env->subprog_info[i + 1].start;
12602 
12603 		len = subprog_end - subprog_start;
12604 		/* bpf_prog_run() doesn't call subprogs directly,
12605 		 * hence main prog stats include the runtime of subprogs.
12606 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12607 		 * func[i]->stats will never be accessed and stays NULL
12608 		 */
12609 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12610 		if (!func[i])
12611 			goto out_free;
12612 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12613 		       len * sizeof(struct bpf_insn));
12614 		func[i]->type = prog->type;
12615 		func[i]->len = len;
12616 		if (bpf_prog_calc_tag(func[i]))
12617 			goto out_free;
12618 		func[i]->is_func = 1;
12619 		func[i]->aux->func_idx = i;
12620 		/* Below members will be freed only at prog->aux */
12621 		func[i]->aux->btf = prog->aux->btf;
12622 		func[i]->aux->func_info = prog->aux->func_info;
12623 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12624 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12625 
12626 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12627 			struct bpf_jit_poke_descriptor *poke;
12628 
12629 			poke = &prog->aux->poke_tab[j];
12630 			if (poke->insn_idx < subprog_end &&
12631 			    poke->insn_idx >= subprog_start)
12632 				poke->aux = func[i]->aux;
12633 		}
12634 
12635 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12636 		 * Long term would need debug info to populate names
12637 		 */
12638 		func[i]->aux->name[0] = 'F';
12639 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12640 		func[i]->jit_requested = 1;
12641 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12642 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
12643 		func[i]->aux->linfo = prog->aux->linfo;
12644 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12645 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12646 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12647 		num_exentries = 0;
12648 		insn = func[i]->insnsi;
12649 		for (j = 0; j < func[i]->len; j++, insn++) {
12650 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12651 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12652 				num_exentries++;
12653 		}
12654 		func[i]->aux->num_exentries = num_exentries;
12655 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12656 		func[i] = bpf_int_jit_compile(func[i]);
12657 		if (!func[i]->jited) {
12658 			err = -ENOTSUPP;
12659 			goto out_free;
12660 		}
12661 		cond_resched();
12662 	}
12663 
12664 	/* at this point all bpf functions were successfully JITed
12665 	 * now populate all bpf_calls with correct addresses and
12666 	 * run last pass of JIT
12667 	 */
12668 	for (i = 0; i < env->subprog_cnt; i++) {
12669 		insn = func[i]->insnsi;
12670 		for (j = 0; j < func[i]->len; j++, insn++) {
12671 			if (bpf_pseudo_func(insn)) {
12672 				subprog = insn[1].imm;
12673 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12674 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12675 				continue;
12676 			}
12677 			if (!bpf_pseudo_call(insn))
12678 				continue;
12679 			subprog = insn->off;
12680 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
12681 		}
12682 
12683 		/* we use the aux data to keep a list of the start addresses
12684 		 * of the JITed images for each function in the program
12685 		 *
12686 		 * for some architectures, such as powerpc64, the imm field
12687 		 * might not be large enough to hold the offset of the start
12688 		 * address of the callee's JITed image from __bpf_call_base
12689 		 *
12690 		 * in such cases, we can lookup the start address of a callee
12691 		 * by using its subprog id, available from the off field of
12692 		 * the call instruction, as an index for this list
12693 		 */
12694 		func[i]->aux->func = func;
12695 		func[i]->aux->func_cnt = env->subprog_cnt;
12696 	}
12697 	for (i = 0; i < env->subprog_cnt; i++) {
12698 		old_bpf_func = func[i]->bpf_func;
12699 		tmp = bpf_int_jit_compile(func[i]);
12700 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12701 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12702 			err = -ENOTSUPP;
12703 			goto out_free;
12704 		}
12705 		cond_resched();
12706 	}
12707 
12708 	/* finally lock prog and jit images for all functions and
12709 	 * populate kallsysm
12710 	 */
12711 	for (i = 0; i < env->subprog_cnt; i++) {
12712 		bpf_prog_lock_ro(func[i]);
12713 		bpf_prog_kallsyms_add(func[i]);
12714 	}
12715 
12716 	/* Last step: make now unused interpreter insns from main
12717 	 * prog consistent for later dump requests, so they can
12718 	 * later look the same as if they were interpreted only.
12719 	 */
12720 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12721 		if (bpf_pseudo_func(insn)) {
12722 			insn[0].imm = env->insn_aux_data[i].call_imm;
12723 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12724 			continue;
12725 		}
12726 		if (!bpf_pseudo_call(insn))
12727 			continue;
12728 		insn->off = env->insn_aux_data[i].call_imm;
12729 		subprog = find_subprog(env, i + insn->off + 1);
12730 		insn->imm = subprog;
12731 	}
12732 
12733 	prog->jited = 1;
12734 	prog->bpf_func = func[0]->bpf_func;
12735 	prog->aux->func = func;
12736 	prog->aux->func_cnt = env->subprog_cnt;
12737 	bpf_prog_jit_attempt_done(prog);
12738 	return 0;
12739 out_free:
12740 	/* We failed JIT'ing, so at this point we need to unregister poke
12741 	 * descriptors from subprogs, so that kernel is not attempting to
12742 	 * patch it anymore as we're freeing the subprog JIT memory.
12743 	 */
12744 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12745 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12746 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12747 	}
12748 	/* At this point we're guaranteed that poke descriptors are not
12749 	 * live anymore. We can just unlink its descriptor table as it's
12750 	 * released with the main prog.
12751 	 */
12752 	for (i = 0; i < env->subprog_cnt; i++) {
12753 		if (!func[i])
12754 			continue;
12755 		func[i]->aux->poke_tab = NULL;
12756 		bpf_jit_free(func[i]);
12757 	}
12758 	kfree(func);
12759 out_undo_insn:
12760 	/* cleanup main prog to be interpreted */
12761 	prog->jit_requested = 0;
12762 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12763 		if (!bpf_pseudo_call(insn))
12764 			continue;
12765 		insn->off = 0;
12766 		insn->imm = env->insn_aux_data[i].call_imm;
12767 	}
12768 	bpf_prog_jit_attempt_done(prog);
12769 	return err;
12770 }
12771 
12772 static int fixup_call_args(struct bpf_verifier_env *env)
12773 {
12774 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12775 	struct bpf_prog *prog = env->prog;
12776 	struct bpf_insn *insn = prog->insnsi;
12777 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12778 	int i, depth;
12779 #endif
12780 	int err = 0;
12781 
12782 	if (env->prog->jit_requested &&
12783 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12784 		err = jit_subprogs(env);
12785 		if (err == 0)
12786 			return 0;
12787 		if (err == -EFAULT)
12788 			return err;
12789 	}
12790 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12791 	if (has_kfunc_call) {
12792 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12793 		return -EINVAL;
12794 	}
12795 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12796 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12797 		 * have to be rejected, since interpreter doesn't support them yet.
12798 		 */
12799 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12800 		return -EINVAL;
12801 	}
12802 	for (i = 0; i < prog->len; i++, insn++) {
12803 		if (bpf_pseudo_func(insn)) {
12804 			/* When JIT fails the progs with callback calls
12805 			 * have to be rejected, since interpreter doesn't support them yet.
12806 			 */
12807 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12808 			return -EINVAL;
12809 		}
12810 
12811 		if (!bpf_pseudo_call(insn))
12812 			continue;
12813 		depth = get_callee_stack_depth(env, insn, i);
12814 		if (depth < 0)
12815 			return depth;
12816 		bpf_patch_call_args(insn, depth);
12817 	}
12818 	err = 0;
12819 #endif
12820 	return err;
12821 }
12822 
12823 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12824 			    struct bpf_insn *insn)
12825 {
12826 	const struct bpf_kfunc_desc *desc;
12827 
12828 	if (!insn->imm) {
12829 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12830 		return -EINVAL;
12831 	}
12832 
12833 	/* insn->imm has the btf func_id. Replace it with
12834 	 * an address (relative to __bpf_base_call).
12835 	 */
12836 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
12837 	if (!desc) {
12838 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12839 			insn->imm);
12840 		return -EFAULT;
12841 	}
12842 
12843 	insn->imm = desc->imm;
12844 
12845 	return 0;
12846 }
12847 
12848 /* Do various post-verification rewrites in a single program pass.
12849  * These rewrites simplify JIT and interpreter implementations.
12850  */
12851 static int do_misc_fixups(struct bpf_verifier_env *env)
12852 {
12853 	struct bpf_prog *prog = env->prog;
12854 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12855 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12856 	struct bpf_insn *insn = prog->insnsi;
12857 	const struct bpf_func_proto *fn;
12858 	const int insn_cnt = prog->len;
12859 	const struct bpf_map_ops *ops;
12860 	struct bpf_insn_aux_data *aux;
12861 	struct bpf_insn insn_buf[16];
12862 	struct bpf_prog *new_prog;
12863 	struct bpf_map *map_ptr;
12864 	int i, ret, cnt, delta = 0;
12865 
12866 	for (i = 0; i < insn_cnt; i++, insn++) {
12867 		/* Make divide-by-zero exceptions impossible. */
12868 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12869 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12870 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12871 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12872 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12873 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12874 			struct bpf_insn *patchlet;
12875 			struct bpf_insn chk_and_div[] = {
12876 				/* [R,W]x div 0 -> 0 */
12877 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12878 					     BPF_JNE | BPF_K, insn->src_reg,
12879 					     0, 2, 0),
12880 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12881 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12882 				*insn,
12883 			};
12884 			struct bpf_insn chk_and_mod[] = {
12885 				/* [R,W]x mod 0 -> [R,W]x */
12886 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12887 					     BPF_JEQ | BPF_K, insn->src_reg,
12888 					     0, 1 + (is64 ? 0 : 1), 0),
12889 				*insn,
12890 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12891 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12892 			};
12893 
12894 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12895 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12896 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12897 
12898 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12899 			if (!new_prog)
12900 				return -ENOMEM;
12901 
12902 			delta    += cnt - 1;
12903 			env->prog = prog = new_prog;
12904 			insn      = new_prog->insnsi + i + delta;
12905 			continue;
12906 		}
12907 
12908 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12909 		if (BPF_CLASS(insn->code) == BPF_LD &&
12910 		    (BPF_MODE(insn->code) == BPF_ABS ||
12911 		     BPF_MODE(insn->code) == BPF_IND)) {
12912 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12913 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12914 				verbose(env, "bpf verifier is misconfigured\n");
12915 				return -EINVAL;
12916 			}
12917 
12918 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12919 			if (!new_prog)
12920 				return -ENOMEM;
12921 
12922 			delta    += cnt - 1;
12923 			env->prog = prog = new_prog;
12924 			insn      = new_prog->insnsi + i + delta;
12925 			continue;
12926 		}
12927 
12928 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12929 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12930 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12931 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12932 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12933 			struct bpf_insn *patch = &insn_buf[0];
12934 			bool issrc, isneg, isimm;
12935 			u32 off_reg;
12936 
12937 			aux = &env->insn_aux_data[i + delta];
12938 			if (!aux->alu_state ||
12939 			    aux->alu_state == BPF_ALU_NON_POINTER)
12940 				continue;
12941 
12942 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12943 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12944 				BPF_ALU_SANITIZE_SRC;
12945 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12946 
12947 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12948 			if (isimm) {
12949 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12950 			} else {
12951 				if (isneg)
12952 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12953 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12954 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12955 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12956 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12957 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12958 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12959 			}
12960 			if (!issrc)
12961 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12962 			insn->src_reg = BPF_REG_AX;
12963 			if (isneg)
12964 				insn->code = insn->code == code_add ?
12965 					     code_sub : code_add;
12966 			*patch++ = *insn;
12967 			if (issrc && isneg && !isimm)
12968 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12969 			cnt = patch - insn_buf;
12970 
12971 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12972 			if (!new_prog)
12973 				return -ENOMEM;
12974 
12975 			delta    += cnt - 1;
12976 			env->prog = prog = new_prog;
12977 			insn      = new_prog->insnsi + i + delta;
12978 			continue;
12979 		}
12980 
12981 		if (insn->code != (BPF_JMP | BPF_CALL))
12982 			continue;
12983 		if (insn->src_reg == BPF_PSEUDO_CALL)
12984 			continue;
12985 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12986 			ret = fixup_kfunc_call(env, insn);
12987 			if (ret)
12988 				return ret;
12989 			continue;
12990 		}
12991 
12992 		if (insn->imm == BPF_FUNC_get_route_realm)
12993 			prog->dst_needed = 1;
12994 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12995 			bpf_user_rnd_init_once();
12996 		if (insn->imm == BPF_FUNC_override_return)
12997 			prog->kprobe_override = 1;
12998 		if (insn->imm == BPF_FUNC_tail_call) {
12999 			/* If we tail call into other programs, we
13000 			 * cannot make any assumptions since they can
13001 			 * be replaced dynamically during runtime in
13002 			 * the program array.
13003 			 */
13004 			prog->cb_access = 1;
13005 			if (!allow_tail_call_in_subprogs(env))
13006 				prog->aux->stack_depth = MAX_BPF_STACK;
13007 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13008 
13009 			/* mark bpf_tail_call as different opcode to avoid
13010 			 * conditional branch in the interpreter for every normal
13011 			 * call and to prevent accidental JITing by JIT compiler
13012 			 * that doesn't support bpf_tail_call yet
13013 			 */
13014 			insn->imm = 0;
13015 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13016 
13017 			aux = &env->insn_aux_data[i + delta];
13018 			if (env->bpf_capable && !expect_blinding &&
13019 			    prog->jit_requested &&
13020 			    !bpf_map_key_poisoned(aux) &&
13021 			    !bpf_map_ptr_poisoned(aux) &&
13022 			    !bpf_map_ptr_unpriv(aux)) {
13023 				struct bpf_jit_poke_descriptor desc = {
13024 					.reason = BPF_POKE_REASON_TAIL_CALL,
13025 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13026 					.tail_call.key = bpf_map_key_immediate(aux),
13027 					.insn_idx = i + delta,
13028 				};
13029 
13030 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13031 				if (ret < 0) {
13032 					verbose(env, "adding tail call poke descriptor failed\n");
13033 					return ret;
13034 				}
13035 
13036 				insn->imm = ret + 1;
13037 				continue;
13038 			}
13039 
13040 			if (!bpf_map_ptr_unpriv(aux))
13041 				continue;
13042 
13043 			/* instead of changing every JIT dealing with tail_call
13044 			 * emit two extra insns:
13045 			 * if (index >= max_entries) goto out;
13046 			 * index &= array->index_mask;
13047 			 * to avoid out-of-bounds cpu speculation
13048 			 */
13049 			if (bpf_map_ptr_poisoned(aux)) {
13050 				verbose(env, "tail_call abusing map_ptr\n");
13051 				return -EINVAL;
13052 			}
13053 
13054 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13055 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13056 						  map_ptr->max_entries, 2);
13057 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13058 						    container_of(map_ptr,
13059 								 struct bpf_array,
13060 								 map)->index_mask);
13061 			insn_buf[2] = *insn;
13062 			cnt = 3;
13063 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13064 			if (!new_prog)
13065 				return -ENOMEM;
13066 
13067 			delta    += cnt - 1;
13068 			env->prog = prog = new_prog;
13069 			insn      = new_prog->insnsi + i + delta;
13070 			continue;
13071 		}
13072 
13073 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13074 			/* The verifier will process callback_fn as many times as necessary
13075 			 * with different maps and the register states prepared by
13076 			 * set_timer_callback_state will be accurate.
13077 			 *
13078 			 * The following use case is valid:
13079 			 *   map1 is shared by prog1, prog2, prog3.
13080 			 *   prog1 calls bpf_timer_init for some map1 elements
13081 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13082 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13083 			 *   prog3 calls bpf_timer_start for some map1 elements.
13084 			 *     Those that were not both bpf_timer_init-ed and
13085 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13086 			 */
13087 			struct bpf_insn ld_addrs[2] = {
13088 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13089 			};
13090 
13091 			insn_buf[0] = ld_addrs[0];
13092 			insn_buf[1] = ld_addrs[1];
13093 			insn_buf[2] = *insn;
13094 			cnt = 3;
13095 
13096 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13097 			if (!new_prog)
13098 				return -ENOMEM;
13099 
13100 			delta    += cnt - 1;
13101 			env->prog = prog = new_prog;
13102 			insn      = new_prog->insnsi + i + delta;
13103 			goto patch_call_imm;
13104 		}
13105 
13106 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13107 		 * and other inlining handlers are currently limited to 64 bit
13108 		 * only.
13109 		 */
13110 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13111 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13112 		     insn->imm == BPF_FUNC_map_update_elem ||
13113 		     insn->imm == BPF_FUNC_map_delete_elem ||
13114 		     insn->imm == BPF_FUNC_map_push_elem   ||
13115 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13116 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13117 		     insn->imm == BPF_FUNC_redirect_map    ||
13118 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13119 			aux = &env->insn_aux_data[i + delta];
13120 			if (bpf_map_ptr_poisoned(aux))
13121 				goto patch_call_imm;
13122 
13123 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13124 			ops = map_ptr->ops;
13125 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13126 			    ops->map_gen_lookup) {
13127 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13128 				if (cnt == -EOPNOTSUPP)
13129 					goto patch_map_ops_generic;
13130 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13131 					verbose(env, "bpf verifier is misconfigured\n");
13132 					return -EINVAL;
13133 				}
13134 
13135 				new_prog = bpf_patch_insn_data(env, i + delta,
13136 							       insn_buf, cnt);
13137 				if (!new_prog)
13138 					return -ENOMEM;
13139 
13140 				delta    += cnt - 1;
13141 				env->prog = prog = new_prog;
13142 				insn      = new_prog->insnsi + i + delta;
13143 				continue;
13144 			}
13145 
13146 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13147 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13148 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13149 				     (int (*)(struct bpf_map *map, void *key))NULL));
13150 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13151 				     (int (*)(struct bpf_map *map, void *key, void *value,
13152 					      u64 flags))NULL));
13153 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13154 				     (int (*)(struct bpf_map *map, void *value,
13155 					      u64 flags))NULL));
13156 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13157 				     (int (*)(struct bpf_map *map, void *value))NULL));
13158 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13159 				     (int (*)(struct bpf_map *map, void *value))NULL));
13160 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13161 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13162 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13163 				     (int (*)(struct bpf_map *map,
13164 					      bpf_callback_t callback_fn,
13165 					      void *callback_ctx,
13166 					      u64 flags))NULL));
13167 
13168 patch_map_ops_generic:
13169 			switch (insn->imm) {
13170 			case BPF_FUNC_map_lookup_elem:
13171 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13172 				continue;
13173 			case BPF_FUNC_map_update_elem:
13174 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13175 				continue;
13176 			case BPF_FUNC_map_delete_elem:
13177 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13178 				continue;
13179 			case BPF_FUNC_map_push_elem:
13180 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13181 				continue;
13182 			case BPF_FUNC_map_pop_elem:
13183 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13184 				continue;
13185 			case BPF_FUNC_map_peek_elem:
13186 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13187 				continue;
13188 			case BPF_FUNC_redirect_map:
13189 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13190 				continue;
13191 			case BPF_FUNC_for_each_map_elem:
13192 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13193 				continue;
13194 			}
13195 
13196 			goto patch_call_imm;
13197 		}
13198 
13199 		/* Implement bpf_jiffies64 inline. */
13200 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13201 		    insn->imm == BPF_FUNC_jiffies64) {
13202 			struct bpf_insn ld_jiffies_addr[2] = {
13203 				BPF_LD_IMM64(BPF_REG_0,
13204 					     (unsigned long)&jiffies),
13205 			};
13206 
13207 			insn_buf[0] = ld_jiffies_addr[0];
13208 			insn_buf[1] = ld_jiffies_addr[1];
13209 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13210 						  BPF_REG_0, 0);
13211 			cnt = 3;
13212 
13213 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13214 						       cnt);
13215 			if (!new_prog)
13216 				return -ENOMEM;
13217 
13218 			delta    += cnt - 1;
13219 			env->prog = prog = new_prog;
13220 			insn      = new_prog->insnsi + i + delta;
13221 			continue;
13222 		}
13223 
13224 		/* Implement bpf_get_func_ip inline. */
13225 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13226 		    insn->imm == BPF_FUNC_get_func_ip) {
13227 			/* Load IP address from ctx - 8 */
13228 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13229 
13230 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13231 			if (!new_prog)
13232 				return -ENOMEM;
13233 
13234 			env->prog = prog = new_prog;
13235 			insn      = new_prog->insnsi + i + delta;
13236 			continue;
13237 		}
13238 
13239 patch_call_imm:
13240 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13241 		/* all functions that have prototype and verifier allowed
13242 		 * programs to call them, must be real in-kernel functions
13243 		 */
13244 		if (!fn->func) {
13245 			verbose(env,
13246 				"kernel subsystem misconfigured func %s#%d\n",
13247 				func_id_name(insn->imm), insn->imm);
13248 			return -EFAULT;
13249 		}
13250 		insn->imm = fn->func - __bpf_call_base;
13251 	}
13252 
13253 	/* Since poke tab is now finalized, publish aux to tracker. */
13254 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13255 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13256 		if (!map_ptr->ops->map_poke_track ||
13257 		    !map_ptr->ops->map_poke_untrack ||
13258 		    !map_ptr->ops->map_poke_run) {
13259 			verbose(env, "bpf verifier is misconfigured\n");
13260 			return -EINVAL;
13261 		}
13262 
13263 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13264 		if (ret < 0) {
13265 			verbose(env, "tracking tail call prog failed\n");
13266 			return ret;
13267 		}
13268 	}
13269 
13270 	sort_kfunc_descs_by_imm(env->prog);
13271 
13272 	return 0;
13273 }
13274 
13275 static void free_states(struct bpf_verifier_env *env)
13276 {
13277 	struct bpf_verifier_state_list *sl, *sln;
13278 	int i;
13279 
13280 	sl = env->free_list;
13281 	while (sl) {
13282 		sln = sl->next;
13283 		free_verifier_state(&sl->state, false);
13284 		kfree(sl);
13285 		sl = sln;
13286 	}
13287 	env->free_list = NULL;
13288 
13289 	if (!env->explored_states)
13290 		return;
13291 
13292 	for (i = 0; i < state_htab_size(env); i++) {
13293 		sl = env->explored_states[i];
13294 
13295 		while (sl) {
13296 			sln = sl->next;
13297 			free_verifier_state(&sl->state, false);
13298 			kfree(sl);
13299 			sl = sln;
13300 		}
13301 		env->explored_states[i] = NULL;
13302 	}
13303 }
13304 
13305 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13306 {
13307 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13308 	struct bpf_verifier_state *state;
13309 	struct bpf_reg_state *regs;
13310 	int ret, i;
13311 
13312 	env->prev_linfo = NULL;
13313 	env->pass_cnt++;
13314 
13315 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13316 	if (!state)
13317 		return -ENOMEM;
13318 	state->curframe = 0;
13319 	state->speculative = false;
13320 	state->branches = 1;
13321 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13322 	if (!state->frame[0]) {
13323 		kfree(state);
13324 		return -ENOMEM;
13325 	}
13326 	env->cur_state = state;
13327 	init_func_state(env, state->frame[0],
13328 			BPF_MAIN_FUNC /* callsite */,
13329 			0 /* frameno */,
13330 			subprog);
13331 
13332 	regs = state->frame[state->curframe]->regs;
13333 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13334 		ret = btf_prepare_func_args(env, subprog, regs);
13335 		if (ret)
13336 			goto out;
13337 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13338 			if (regs[i].type == PTR_TO_CTX)
13339 				mark_reg_known_zero(env, regs, i);
13340 			else if (regs[i].type == SCALAR_VALUE)
13341 				mark_reg_unknown(env, regs, i);
13342 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13343 				const u32 mem_size = regs[i].mem_size;
13344 
13345 				mark_reg_known_zero(env, regs, i);
13346 				regs[i].mem_size = mem_size;
13347 				regs[i].id = ++env->id_gen;
13348 			}
13349 		}
13350 	} else {
13351 		/* 1st arg to a function */
13352 		regs[BPF_REG_1].type = PTR_TO_CTX;
13353 		mark_reg_known_zero(env, regs, BPF_REG_1);
13354 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13355 		if (ret == -EFAULT)
13356 			/* unlikely verifier bug. abort.
13357 			 * ret == 0 and ret < 0 are sadly acceptable for
13358 			 * main() function due to backward compatibility.
13359 			 * Like socket filter program may be written as:
13360 			 * int bpf_prog(struct pt_regs *ctx)
13361 			 * and never dereference that ctx in the program.
13362 			 * 'struct pt_regs' is a type mismatch for socket
13363 			 * filter that should be using 'struct __sk_buff'.
13364 			 */
13365 			goto out;
13366 	}
13367 
13368 	ret = do_check(env);
13369 out:
13370 	/* check for NULL is necessary, since cur_state can be freed inside
13371 	 * do_check() under memory pressure.
13372 	 */
13373 	if (env->cur_state) {
13374 		free_verifier_state(env->cur_state, true);
13375 		env->cur_state = NULL;
13376 	}
13377 	while (!pop_stack(env, NULL, NULL, false));
13378 	if (!ret && pop_log)
13379 		bpf_vlog_reset(&env->log, 0);
13380 	free_states(env);
13381 	return ret;
13382 }
13383 
13384 /* Verify all global functions in a BPF program one by one based on their BTF.
13385  * All global functions must pass verification. Otherwise the whole program is rejected.
13386  * Consider:
13387  * int bar(int);
13388  * int foo(int f)
13389  * {
13390  *    return bar(f);
13391  * }
13392  * int bar(int b)
13393  * {
13394  *    ...
13395  * }
13396  * foo() will be verified first for R1=any_scalar_value. During verification it
13397  * will be assumed that bar() already verified successfully and call to bar()
13398  * from foo() will be checked for type match only. Later bar() will be verified
13399  * independently to check that it's safe for R1=any_scalar_value.
13400  */
13401 static int do_check_subprogs(struct bpf_verifier_env *env)
13402 {
13403 	struct bpf_prog_aux *aux = env->prog->aux;
13404 	int i, ret;
13405 
13406 	if (!aux->func_info)
13407 		return 0;
13408 
13409 	for (i = 1; i < env->subprog_cnt; i++) {
13410 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13411 			continue;
13412 		env->insn_idx = env->subprog_info[i].start;
13413 		WARN_ON_ONCE(env->insn_idx == 0);
13414 		ret = do_check_common(env, i);
13415 		if (ret) {
13416 			return ret;
13417 		} else if (env->log.level & BPF_LOG_LEVEL) {
13418 			verbose(env,
13419 				"Func#%d is safe for any args that match its prototype\n",
13420 				i);
13421 		}
13422 	}
13423 	return 0;
13424 }
13425 
13426 static int do_check_main(struct bpf_verifier_env *env)
13427 {
13428 	int ret;
13429 
13430 	env->insn_idx = 0;
13431 	ret = do_check_common(env, 0);
13432 	if (!ret)
13433 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13434 	return ret;
13435 }
13436 
13437 
13438 static void print_verification_stats(struct bpf_verifier_env *env)
13439 {
13440 	int i;
13441 
13442 	if (env->log.level & BPF_LOG_STATS) {
13443 		verbose(env, "verification time %lld usec\n",
13444 			div_u64(env->verification_time, 1000));
13445 		verbose(env, "stack depth ");
13446 		for (i = 0; i < env->subprog_cnt; i++) {
13447 			u32 depth = env->subprog_info[i].stack_depth;
13448 
13449 			verbose(env, "%d", depth);
13450 			if (i + 1 < env->subprog_cnt)
13451 				verbose(env, "+");
13452 		}
13453 		verbose(env, "\n");
13454 	}
13455 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13456 		"total_states %d peak_states %d mark_read %d\n",
13457 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13458 		env->max_states_per_insn, env->total_states,
13459 		env->peak_states, env->longest_mark_read_walk);
13460 }
13461 
13462 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13463 {
13464 	const struct btf_type *t, *func_proto;
13465 	const struct bpf_struct_ops *st_ops;
13466 	const struct btf_member *member;
13467 	struct bpf_prog *prog = env->prog;
13468 	u32 btf_id, member_idx;
13469 	const char *mname;
13470 
13471 	if (!prog->gpl_compatible) {
13472 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13473 		return -EINVAL;
13474 	}
13475 
13476 	btf_id = prog->aux->attach_btf_id;
13477 	st_ops = bpf_struct_ops_find(btf_id);
13478 	if (!st_ops) {
13479 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13480 			btf_id);
13481 		return -ENOTSUPP;
13482 	}
13483 
13484 	t = st_ops->type;
13485 	member_idx = prog->expected_attach_type;
13486 	if (member_idx >= btf_type_vlen(t)) {
13487 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13488 			member_idx, st_ops->name);
13489 		return -EINVAL;
13490 	}
13491 
13492 	member = &btf_type_member(t)[member_idx];
13493 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13494 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13495 					       NULL);
13496 	if (!func_proto) {
13497 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13498 			mname, member_idx, st_ops->name);
13499 		return -EINVAL;
13500 	}
13501 
13502 	if (st_ops->check_member) {
13503 		int err = st_ops->check_member(t, member);
13504 
13505 		if (err) {
13506 			verbose(env, "attach to unsupported member %s of struct %s\n",
13507 				mname, st_ops->name);
13508 			return err;
13509 		}
13510 	}
13511 
13512 	prog->aux->attach_func_proto = func_proto;
13513 	prog->aux->attach_func_name = mname;
13514 	env->ops = st_ops->verifier_ops;
13515 
13516 	return 0;
13517 }
13518 #define SECURITY_PREFIX "security_"
13519 
13520 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13521 {
13522 	if (within_error_injection_list(addr) ||
13523 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13524 		return 0;
13525 
13526 	return -EINVAL;
13527 }
13528 
13529 /* list of non-sleepable functions that are otherwise on
13530  * ALLOW_ERROR_INJECTION list
13531  */
13532 BTF_SET_START(btf_non_sleepable_error_inject)
13533 /* Three functions below can be called from sleepable and non-sleepable context.
13534  * Assume non-sleepable from bpf safety point of view.
13535  */
13536 BTF_ID(func, __filemap_add_folio)
13537 BTF_ID(func, should_fail_alloc_page)
13538 BTF_ID(func, should_failslab)
13539 BTF_SET_END(btf_non_sleepable_error_inject)
13540 
13541 static int check_non_sleepable_error_inject(u32 btf_id)
13542 {
13543 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13544 }
13545 
13546 int bpf_check_attach_target(struct bpf_verifier_log *log,
13547 			    const struct bpf_prog *prog,
13548 			    const struct bpf_prog *tgt_prog,
13549 			    u32 btf_id,
13550 			    struct bpf_attach_target_info *tgt_info)
13551 {
13552 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13553 	const char prefix[] = "btf_trace_";
13554 	int ret = 0, subprog = -1, i;
13555 	const struct btf_type *t;
13556 	bool conservative = true;
13557 	const char *tname;
13558 	struct btf *btf;
13559 	long addr = 0;
13560 
13561 	if (!btf_id) {
13562 		bpf_log(log, "Tracing programs must provide btf_id\n");
13563 		return -EINVAL;
13564 	}
13565 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13566 	if (!btf) {
13567 		bpf_log(log,
13568 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13569 		return -EINVAL;
13570 	}
13571 	t = btf_type_by_id(btf, btf_id);
13572 	if (!t) {
13573 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13574 		return -EINVAL;
13575 	}
13576 	tname = btf_name_by_offset(btf, t->name_off);
13577 	if (!tname) {
13578 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13579 		return -EINVAL;
13580 	}
13581 	if (tgt_prog) {
13582 		struct bpf_prog_aux *aux = tgt_prog->aux;
13583 
13584 		for (i = 0; i < aux->func_info_cnt; i++)
13585 			if (aux->func_info[i].type_id == btf_id) {
13586 				subprog = i;
13587 				break;
13588 			}
13589 		if (subprog == -1) {
13590 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13591 			return -EINVAL;
13592 		}
13593 		conservative = aux->func_info_aux[subprog].unreliable;
13594 		if (prog_extension) {
13595 			if (conservative) {
13596 				bpf_log(log,
13597 					"Cannot replace static functions\n");
13598 				return -EINVAL;
13599 			}
13600 			if (!prog->jit_requested) {
13601 				bpf_log(log,
13602 					"Extension programs should be JITed\n");
13603 				return -EINVAL;
13604 			}
13605 		}
13606 		if (!tgt_prog->jited) {
13607 			bpf_log(log, "Can attach to only JITed progs\n");
13608 			return -EINVAL;
13609 		}
13610 		if (tgt_prog->type == prog->type) {
13611 			/* Cannot fentry/fexit another fentry/fexit program.
13612 			 * Cannot attach program extension to another extension.
13613 			 * It's ok to attach fentry/fexit to extension program.
13614 			 */
13615 			bpf_log(log, "Cannot recursively attach\n");
13616 			return -EINVAL;
13617 		}
13618 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13619 		    prog_extension &&
13620 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13621 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13622 			/* Program extensions can extend all program types
13623 			 * except fentry/fexit. The reason is the following.
13624 			 * The fentry/fexit programs are used for performance
13625 			 * analysis, stats and can be attached to any program
13626 			 * type except themselves. When extension program is
13627 			 * replacing XDP function it is necessary to allow
13628 			 * performance analysis of all functions. Both original
13629 			 * XDP program and its program extension. Hence
13630 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13631 			 * allowed. If extending of fentry/fexit was allowed it
13632 			 * would be possible to create long call chain
13633 			 * fentry->extension->fentry->extension beyond
13634 			 * reasonable stack size. Hence extending fentry is not
13635 			 * allowed.
13636 			 */
13637 			bpf_log(log, "Cannot extend fentry/fexit\n");
13638 			return -EINVAL;
13639 		}
13640 	} else {
13641 		if (prog_extension) {
13642 			bpf_log(log, "Cannot replace kernel functions\n");
13643 			return -EINVAL;
13644 		}
13645 	}
13646 
13647 	switch (prog->expected_attach_type) {
13648 	case BPF_TRACE_RAW_TP:
13649 		if (tgt_prog) {
13650 			bpf_log(log,
13651 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13652 			return -EINVAL;
13653 		}
13654 		if (!btf_type_is_typedef(t)) {
13655 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13656 				btf_id);
13657 			return -EINVAL;
13658 		}
13659 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13660 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13661 				btf_id, tname);
13662 			return -EINVAL;
13663 		}
13664 		tname += sizeof(prefix) - 1;
13665 		t = btf_type_by_id(btf, t->type);
13666 		if (!btf_type_is_ptr(t))
13667 			/* should never happen in valid vmlinux build */
13668 			return -EINVAL;
13669 		t = btf_type_by_id(btf, t->type);
13670 		if (!btf_type_is_func_proto(t))
13671 			/* should never happen in valid vmlinux build */
13672 			return -EINVAL;
13673 
13674 		break;
13675 	case BPF_TRACE_ITER:
13676 		if (!btf_type_is_func(t)) {
13677 			bpf_log(log, "attach_btf_id %u is not a function\n",
13678 				btf_id);
13679 			return -EINVAL;
13680 		}
13681 		t = btf_type_by_id(btf, t->type);
13682 		if (!btf_type_is_func_proto(t))
13683 			return -EINVAL;
13684 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13685 		if (ret)
13686 			return ret;
13687 		break;
13688 	default:
13689 		if (!prog_extension)
13690 			return -EINVAL;
13691 		fallthrough;
13692 	case BPF_MODIFY_RETURN:
13693 	case BPF_LSM_MAC:
13694 	case BPF_TRACE_FENTRY:
13695 	case BPF_TRACE_FEXIT:
13696 		if (!btf_type_is_func(t)) {
13697 			bpf_log(log, "attach_btf_id %u is not a function\n",
13698 				btf_id);
13699 			return -EINVAL;
13700 		}
13701 		if (prog_extension &&
13702 		    btf_check_type_match(log, prog, btf, t))
13703 			return -EINVAL;
13704 		t = btf_type_by_id(btf, t->type);
13705 		if (!btf_type_is_func_proto(t))
13706 			return -EINVAL;
13707 
13708 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13709 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13710 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13711 			return -EINVAL;
13712 
13713 		if (tgt_prog && conservative)
13714 			t = NULL;
13715 
13716 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13717 		if (ret < 0)
13718 			return ret;
13719 
13720 		if (tgt_prog) {
13721 			if (subprog == 0)
13722 				addr = (long) tgt_prog->bpf_func;
13723 			else
13724 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13725 		} else {
13726 			addr = kallsyms_lookup_name(tname);
13727 			if (!addr) {
13728 				bpf_log(log,
13729 					"The address of function %s cannot be found\n",
13730 					tname);
13731 				return -ENOENT;
13732 			}
13733 		}
13734 
13735 		if (prog->aux->sleepable) {
13736 			ret = -EINVAL;
13737 			switch (prog->type) {
13738 			case BPF_PROG_TYPE_TRACING:
13739 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13740 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13741 				 */
13742 				if (!check_non_sleepable_error_inject(btf_id) &&
13743 				    within_error_injection_list(addr))
13744 					ret = 0;
13745 				break;
13746 			case BPF_PROG_TYPE_LSM:
13747 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13748 				 * Only some of them are sleepable.
13749 				 */
13750 				if (bpf_lsm_is_sleepable_hook(btf_id))
13751 					ret = 0;
13752 				break;
13753 			default:
13754 				break;
13755 			}
13756 			if (ret) {
13757 				bpf_log(log, "%s is not sleepable\n", tname);
13758 				return ret;
13759 			}
13760 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13761 			if (tgt_prog) {
13762 				bpf_log(log, "can't modify return codes of BPF programs\n");
13763 				return -EINVAL;
13764 			}
13765 			ret = check_attach_modify_return(addr, tname);
13766 			if (ret) {
13767 				bpf_log(log, "%s() is not modifiable\n", tname);
13768 				return ret;
13769 			}
13770 		}
13771 
13772 		break;
13773 	}
13774 	tgt_info->tgt_addr = addr;
13775 	tgt_info->tgt_name = tname;
13776 	tgt_info->tgt_type = t;
13777 	return 0;
13778 }
13779 
13780 BTF_SET_START(btf_id_deny)
13781 BTF_ID_UNUSED
13782 #ifdef CONFIG_SMP
13783 BTF_ID(func, migrate_disable)
13784 BTF_ID(func, migrate_enable)
13785 #endif
13786 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13787 BTF_ID(func, rcu_read_unlock_strict)
13788 #endif
13789 BTF_SET_END(btf_id_deny)
13790 
13791 static int check_attach_btf_id(struct bpf_verifier_env *env)
13792 {
13793 	struct bpf_prog *prog = env->prog;
13794 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13795 	struct bpf_attach_target_info tgt_info = {};
13796 	u32 btf_id = prog->aux->attach_btf_id;
13797 	struct bpf_trampoline *tr;
13798 	int ret;
13799 	u64 key;
13800 
13801 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13802 		if (prog->aux->sleepable)
13803 			/* attach_btf_id checked to be zero already */
13804 			return 0;
13805 		verbose(env, "Syscall programs can only be sleepable\n");
13806 		return -EINVAL;
13807 	}
13808 
13809 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13810 	    prog->type != BPF_PROG_TYPE_LSM) {
13811 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13812 		return -EINVAL;
13813 	}
13814 
13815 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13816 		return check_struct_ops_btf_id(env);
13817 
13818 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13819 	    prog->type != BPF_PROG_TYPE_LSM &&
13820 	    prog->type != BPF_PROG_TYPE_EXT)
13821 		return 0;
13822 
13823 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13824 	if (ret)
13825 		return ret;
13826 
13827 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13828 		/* to make freplace equivalent to their targets, they need to
13829 		 * inherit env->ops and expected_attach_type for the rest of the
13830 		 * verification
13831 		 */
13832 		env->ops = bpf_verifier_ops[tgt_prog->type];
13833 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13834 	}
13835 
13836 	/* store info about the attachment target that will be used later */
13837 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13838 	prog->aux->attach_func_name = tgt_info.tgt_name;
13839 
13840 	if (tgt_prog) {
13841 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13842 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13843 	}
13844 
13845 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13846 		prog->aux->attach_btf_trace = true;
13847 		return 0;
13848 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13849 		if (!bpf_iter_prog_supported(prog))
13850 			return -EINVAL;
13851 		return 0;
13852 	}
13853 
13854 	if (prog->type == BPF_PROG_TYPE_LSM) {
13855 		ret = bpf_lsm_verify_prog(&env->log, prog);
13856 		if (ret < 0)
13857 			return ret;
13858 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13859 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13860 		return -EINVAL;
13861 	}
13862 
13863 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13864 	tr = bpf_trampoline_get(key, &tgt_info);
13865 	if (!tr)
13866 		return -ENOMEM;
13867 
13868 	prog->aux->dst_trampoline = tr;
13869 	return 0;
13870 }
13871 
13872 struct btf *bpf_get_btf_vmlinux(void)
13873 {
13874 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13875 		mutex_lock(&bpf_verifier_lock);
13876 		if (!btf_vmlinux)
13877 			btf_vmlinux = btf_parse_vmlinux();
13878 		mutex_unlock(&bpf_verifier_lock);
13879 	}
13880 	return btf_vmlinux;
13881 }
13882 
13883 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13884 {
13885 	u64 start_time = ktime_get_ns();
13886 	struct bpf_verifier_env *env;
13887 	struct bpf_verifier_log *log;
13888 	int i, len, ret = -EINVAL;
13889 	bool is_priv;
13890 
13891 	/* no program is valid */
13892 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13893 		return -EINVAL;
13894 
13895 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13896 	 * allocate/free it every time bpf_check() is called
13897 	 */
13898 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13899 	if (!env)
13900 		return -ENOMEM;
13901 	log = &env->log;
13902 
13903 	len = (*prog)->len;
13904 	env->insn_aux_data =
13905 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13906 	ret = -ENOMEM;
13907 	if (!env->insn_aux_data)
13908 		goto err_free_env;
13909 	for (i = 0; i < len; i++)
13910 		env->insn_aux_data[i].orig_idx = i;
13911 	env->prog = *prog;
13912 	env->ops = bpf_verifier_ops[env->prog->type];
13913 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13914 	is_priv = bpf_capable();
13915 
13916 	bpf_get_btf_vmlinux();
13917 
13918 	/* grab the mutex to protect few globals used by verifier */
13919 	if (!is_priv)
13920 		mutex_lock(&bpf_verifier_lock);
13921 
13922 	if (attr->log_level || attr->log_buf || attr->log_size) {
13923 		/* user requested verbose verifier output
13924 		 * and supplied buffer to store the verification trace
13925 		 */
13926 		log->level = attr->log_level;
13927 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13928 		log->len_total = attr->log_size;
13929 
13930 		ret = -EINVAL;
13931 		/* log attributes have to be sane */
13932 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13933 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13934 			goto err_unlock;
13935 	}
13936 
13937 	if (IS_ERR(btf_vmlinux)) {
13938 		/* Either gcc or pahole or kernel are broken. */
13939 		verbose(env, "in-kernel BTF is malformed\n");
13940 		ret = PTR_ERR(btf_vmlinux);
13941 		goto skip_full_check;
13942 	}
13943 
13944 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13945 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13946 		env->strict_alignment = true;
13947 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13948 		env->strict_alignment = false;
13949 
13950 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13951 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13952 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13953 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13954 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13955 	env->bpf_capable = bpf_capable();
13956 
13957 	if (is_priv)
13958 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13959 
13960 	env->explored_states = kvcalloc(state_htab_size(env),
13961 				       sizeof(struct bpf_verifier_state_list *),
13962 				       GFP_USER);
13963 	ret = -ENOMEM;
13964 	if (!env->explored_states)
13965 		goto skip_full_check;
13966 
13967 	ret = add_subprog_and_kfunc(env);
13968 	if (ret < 0)
13969 		goto skip_full_check;
13970 
13971 	ret = check_subprogs(env);
13972 	if (ret < 0)
13973 		goto skip_full_check;
13974 
13975 	ret = check_btf_info(env, attr, uattr);
13976 	if (ret < 0)
13977 		goto skip_full_check;
13978 
13979 	ret = check_attach_btf_id(env);
13980 	if (ret)
13981 		goto skip_full_check;
13982 
13983 	ret = resolve_pseudo_ldimm64(env);
13984 	if (ret < 0)
13985 		goto skip_full_check;
13986 
13987 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13988 		ret = bpf_prog_offload_verifier_prep(env->prog);
13989 		if (ret)
13990 			goto skip_full_check;
13991 	}
13992 
13993 	ret = check_cfg(env);
13994 	if (ret < 0)
13995 		goto skip_full_check;
13996 
13997 	ret = do_check_subprogs(env);
13998 	ret = ret ?: do_check_main(env);
13999 
14000 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14001 		ret = bpf_prog_offload_finalize(env);
14002 
14003 skip_full_check:
14004 	kvfree(env->explored_states);
14005 
14006 	if (ret == 0)
14007 		ret = check_max_stack_depth(env);
14008 
14009 	/* instruction rewrites happen after this point */
14010 	if (is_priv) {
14011 		if (ret == 0)
14012 			opt_hard_wire_dead_code_branches(env);
14013 		if (ret == 0)
14014 			ret = opt_remove_dead_code(env);
14015 		if (ret == 0)
14016 			ret = opt_remove_nops(env);
14017 	} else {
14018 		if (ret == 0)
14019 			sanitize_dead_code(env);
14020 	}
14021 
14022 	if (ret == 0)
14023 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14024 		ret = convert_ctx_accesses(env);
14025 
14026 	if (ret == 0)
14027 		ret = do_misc_fixups(env);
14028 
14029 	/* do 32-bit optimization after insn patching has done so those patched
14030 	 * insns could be handled correctly.
14031 	 */
14032 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14033 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14034 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14035 								     : false;
14036 	}
14037 
14038 	if (ret == 0)
14039 		ret = fixup_call_args(env);
14040 
14041 	env->verification_time = ktime_get_ns() - start_time;
14042 	print_verification_stats(env);
14043 	env->prog->aux->verified_insns = env->insn_processed;
14044 
14045 	if (log->level && bpf_verifier_log_full(log))
14046 		ret = -ENOSPC;
14047 	if (log->level && !log->ubuf) {
14048 		ret = -EFAULT;
14049 		goto err_release_maps;
14050 	}
14051 
14052 	if (ret)
14053 		goto err_release_maps;
14054 
14055 	if (env->used_map_cnt) {
14056 		/* if program passed verifier, update used_maps in bpf_prog_info */
14057 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14058 							  sizeof(env->used_maps[0]),
14059 							  GFP_KERNEL);
14060 
14061 		if (!env->prog->aux->used_maps) {
14062 			ret = -ENOMEM;
14063 			goto err_release_maps;
14064 		}
14065 
14066 		memcpy(env->prog->aux->used_maps, env->used_maps,
14067 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14068 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14069 	}
14070 	if (env->used_btf_cnt) {
14071 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14072 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14073 							  sizeof(env->used_btfs[0]),
14074 							  GFP_KERNEL);
14075 		if (!env->prog->aux->used_btfs) {
14076 			ret = -ENOMEM;
14077 			goto err_release_maps;
14078 		}
14079 
14080 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14081 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14082 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14083 	}
14084 	if (env->used_map_cnt || env->used_btf_cnt) {
14085 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14086 		 * bpf_ld_imm64 instructions
14087 		 */
14088 		convert_pseudo_ld_imm64(env);
14089 	}
14090 
14091 	adjust_btf_func(env);
14092 
14093 err_release_maps:
14094 	if (!env->prog->aux->used_maps)
14095 		/* if we didn't copy map pointers into bpf_prog_info, release
14096 		 * them now. Otherwise free_used_maps() will release them.
14097 		 */
14098 		release_maps(env);
14099 	if (!env->prog->aux->used_btfs)
14100 		release_btfs(env);
14101 
14102 	/* extension progs temporarily inherit the attach_type of their targets
14103 	   for verification purposes, so set it back to zero before returning
14104 	 */
14105 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14106 		env->prog->expected_attach_type = 0;
14107 
14108 	*prog = env->prog;
14109 err_unlock:
14110 	if (!is_priv)
14111 		mutex_unlock(&bpf_verifier_lock);
14112 	vfree(env->insn_aux_data);
14113 err_free_env:
14114 	kfree(env);
14115 	return ret;
14116 }
14117