1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 #include "disasm.h" 25 26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 27 #define BPF_PROG_TYPE(_id, _name) \ 28 [_id] = & _name ## _verifier_ops, 29 #define BPF_MAP_TYPE(_id, _ops) 30 #include <linux/bpf_types.h> 31 #undef BPF_PROG_TYPE 32 #undef BPF_MAP_TYPE 33 }; 34 35 /* bpf_check() is a static code analyzer that walks eBPF program 36 * instruction by instruction and updates register/stack state. 37 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 38 * 39 * The first pass is depth-first-search to check that the program is a DAG. 40 * It rejects the following programs: 41 * - larger than BPF_MAXINSNS insns 42 * - if loop is present (detected via back-edge) 43 * - unreachable insns exist (shouldn't be a forest. program = one function) 44 * - out of bounds or malformed jumps 45 * The second pass is all possible path descent from the 1st insn. 46 * Since it's analyzing all pathes through the program, the length of the 47 * analysis is limited to 64k insn, which may be hit even if total number of 48 * insn is less then 4K, but there are too many branches that change stack/regs. 49 * Number of 'branches to be analyzed' is limited to 1k 50 * 51 * On entry to each instruction, each register has a type, and the instruction 52 * changes the types of the registers depending on instruction semantics. 53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 54 * copied to R1. 55 * 56 * All registers are 64-bit. 57 * R0 - return register 58 * R1-R5 argument passing registers 59 * R6-R9 callee saved registers 60 * R10 - frame pointer read-only 61 * 62 * At the start of BPF program the register R1 contains a pointer to bpf_context 63 * and has type PTR_TO_CTX. 64 * 65 * Verifier tracks arithmetic operations on pointers in case: 66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 68 * 1st insn copies R10 (which has FRAME_PTR) type into R1 69 * and 2nd arithmetic instruction is pattern matched to recognize 70 * that it wants to construct a pointer to some element within stack. 71 * So after 2nd insn, the register R1 has type PTR_TO_STACK 72 * (and -20 constant is saved for further stack bounds checking). 73 * Meaning that this reg is a pointer to stack plus known immediate constant. 74 * 75 * Most of the time the registers have SCALAR_VALUE type, which 76 * means the register has some value, but it's not a valid pointer. 77 * (like pointer plus pointer becomes SCALAR_VALUE type) 78 * 79 * When verifier sees load or store instructions the type of base register 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 81 * types recognized by check_mem_access() function. 82 * 83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 84 * and the range of [ptr, ptr + map's value_size) is accessible. 85 * 86 * registers used to pass values to function calls are checked against 87 * function argument constraints. 88 * 89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 90 * It means that the register type passed to this function must be 91 * PTR_TO_STACK and it will be used inside the function as 92 * 'pointer to map element key' 93 * 94 * For example the argument constraints for bpf_map_lookup_elem(): 95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 96 * .arg1_type = ARG_CONST_MAP_PTR, 97 * .arg2_type = ARG_PTR_TO_MAP_KEY, 98 * 99 * ret_type says that this function returns 'pointer to map elem value or null' 100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 101 * 2nd argument should be a pointer to stack, which will be used inside 102 * the helper function as a pointer to map element key. 103 * 104 * On the kernel side the helper function looks like: 105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 106 * { 107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 108 * void *key = (void *) (unsigned long) r2; 109 * void *value; 110 * 111 * here kernel can access 'key' and 'map' pointers safely, knowing that 112 * [key, key + map->key_size) bytes are valid and were initialized on 113 * the stack of eBPF program. 114 * } 115 * 116 * Corresponding eBPF program may look like: 117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 121 * here verifier looks at prototype of map_lookup_elem() and sees: 122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 124 * 125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 127 * and were initialized prior to this call. 128 * If it's ok, then verifier allows this BPF_CALL insn and looks at 129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 131 * returns ether pointer to map value or NULL. 132 * 133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 134 * insn, the register holding that pointer in the true branch changes state to 135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 136 * branch. See check_cond_jmp_op(). 137 * 138 * After the call R0 is set to return type of the function and registers R1-R5 139 * are set to NOT_INIT to indicate that they are no longer readable. 140 */ 141 142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 143 struct bpf_verifier_stack_elem { 144 /* verifer state is 'st' 145 * before processing instruction 'insn_idx' 146 * and after processing instruction 'prev_insn_idx' 147 */ 148 struct bpf_verifier_state st; 149 int insn_idx; 150 int prev_insn_idx; 151 struct bpf_verifier_stack_elem *next; 152 }; 153 154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 155 #define BPF_COMPLEXITY_LIMIT_STACK 1024 156 157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 158 159 struct bpf_call_arg_meta { 160 struct bpf_map *map_ptr; 161 bool raw_mode; 162 bool pkt_access; 163 int regno; 164 int access_size; 165 }; 166 167 static DEFINE_MUTEX(bpf_verifier_lock); 168 169 /* log_level controls verbosity level of eBPF verifier. 170 * verbose() is used to dump the verification trace to the log, so the user 171 * can figure out what's wrong with the program 172 */ 173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 174 const char *fmt, ...) 175 { 176 struct bpf_verifer_log *log = &env->log; 177 unsigned int n; 178 va_list args; 179 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) 181 return; 182 183 va_start(args, fmt); 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 185 va_end(args); 186 187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 188 "verifier log line truncated - local buffer too short\n"); 189 190 n = min(log->len_total - log->len_used - 1, n); 191 log->kbuf[n] = '\0'; 192 193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 194 log->len_used += n; 195 else 196 log->ubuf = NULL; 197 } 198 199 static bool type_is_pkt_pointer(enum bpf_reg_type type) 200 { 201 return type == PTR_TO_PACKET || 202 type == PTR_TO_PACKET_META; 203 } 204 205 /* string representation of 'enum bpf_reg_type' */ 206 static const char * const reg_type_str[] = { 207 [NOT_INIT] = "?", 208 [SCALAR_VALUE] = "inv", 209 [PTR_TO_CTX] = "ctx", 210 [CONST_PTR_TO_MAP] = "map_ptr", 211 [PTR_TO_MAP_VALUE] = "map_value", 212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 213 [PTR_TO_STACK] = "fp", 214 [PTR_TO_PACKET] = "pkt", 215 [PTR_TO_PACKET_META] = "pkt_meta", 216 [PTR_TO_PACKET_END] = "pkt_end", 217 }; 218 219 static void print_verifier_state(struct bpf_verifier_env *env, 220 struct bpf_verifier_state *state) 221 { 222 struct bpf_reg_state *reg; 223 enum bpf_reg_type t; 224 int i; 225 226 for (i = 0; i < MAX_BPF_REG; i++) { 227 reg = &state->regs[i]; 228 t = reg->type; 229 if (t == NOT_INIT) 230 continue; 231 verbose(env, " R%d=%s", i, reg_type_str[t]); 232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 233 tnum_is_const(reg->var_off)) { 234 /* reg->off should be 0 for SCALAR_VALUE */ 235 verbose(env, "%lld", reg->var_off.value + reg->off); 236 } else { 237 verbose(env, "(id=%d", reg->id); 238 if (t != SCALAR_VALUE) 239 verbose(env, ",off=%d", reg->off); 240 if (type_is_pkt_pointer(t)) 241 verbose(env, ",r=%d", reg->range); 242 else if (t == CONST_PTR_TO_MAP || 243 t == PTR_TO_MAP_VALUE || 244 t == PTR_TO_MAP_VALUE_OR_NULL) 245 verbose(env, ",ks=%d,vs=%d", 246 reg->map_ptr->key_size, 247 reg->map_ptr->value_size); 248 if (tnum_is_const(reg->var_off)) { 249 /* Typically an immediate SCALAR_VALUE, but 250 * could be a pointer whose offset is too big 251 * for reg->off 252 */ 253 verbose(env, ",imm=%llx", reg->var_off.value); 254 } else { 255 if (reg->smin_value != reg->umin_value && 256 reg->smin_value != S64_MIN) 257 verbose(env, ",smin_value=%lld", 258 (long long)reg->smin_value); 259 if (reg->smax_value != reg->umax_value && 260 reg->smax_value != S64_MAX) 261 verbose(env, ",smax_value=%lld", 262 (long long)reg->smax_value); 263 if (reg->umin_value != 0) 264 verbose(env, ",umin_value=%llu", 265 (unsigned long long)reg->umin_value); 266 if (reg->umax_value != U64_MAX) 267 verbose(env, ",umax_value=%llu", 268 (unsigned long long)reg->umax_value); 269 if (!tnum_is_unknown(reg->var_off)) { 270 char tn_buf[48]; 271 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 273 verbose(env, ",var_off=%s", tn_buf); 274 } 275 } 276 verbose(env, ")"); 277 } 278 } 279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 280 if (state->stack[i].slot_type[0] == STACK_SPILL) 281 verbose(env, " fp%d=%s", 282 -MAX_BPF_STACK + i * BPF_REG_SIZE, 283 reg_type_str[state->stack[i].spilled_ptr.type]); 284 } 285 verbose(env, "\n"); 286 } 287 288 static int copy_stack_state(struct bpf_verifier_state *dst, 289 const struct bpf_verifier_state *src) 290 { 291 if (!src->stack) 292 return 0; 293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 294 /* internal bug, make state invalid to reject the program */ 295 memset(dst, 0, sizeof(*dst)); 296 return -EFAULT; 297 } 298 memcpy(dst->stack, src->stack, 299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 300 return 0; 301 } 302 303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 304 * make it consume minimal amount of memory. check_stack_write() access from 305 * the program calls into realloc_verifier_state() to grow the stack size. 306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 307 * which this function copies over. It points to previous bpf_verifier_state 308 * which is never reallocated 309 */ 310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size, 311 bool copy_old) 312 { 313 u32 old_size = state->allocated_stack; 314 struct bpf_stack_state *new_stack; 315 int slot = size / BPF_REG_SIZE; 316 317 if (size <= old_size || !size) { 318 if (copy_old) 319 return 0; 320 state->allocated_stack = slot * BPF_REG_SIZE; 321 if (!size && old_size) { 322 kfree(state->stack); 323 state->stack = NULL; 324 } 325 return 0; 326 } 327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 328 GFP_KERNEL); 329 if (!new_stack) 330 return -ENOMEM; 331 if (copy_old) { 332 if (state->stack) 333 memcpy(new_stack, state->stack, 334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 335 memset(new_stack + old_size / BPF_REG_SIZE, 0, 336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 337 } 338 state->allocated_stack = slot * BPF_REG_SIZE; 339 kfree(state->stack); 340 state->stack = new_stack; 341 return 0; 342 } 343 344 static void free_verifier_state(struct bpf_verifier_state *state, 345 bool free_self) 346 { 347 kfree(state->stack); 348 if (free_self) 349 kfree(state); 350 } 351 352 /* copy verifier state from src to dst growing dst stack space 353 * when necessary to accommodate larger src stack 354 */ 355 static int copy_verifier_state(struct bpf_verifier_state *dst, 356 const struct bpf_verifier_state *src) 357 { 358 int err; 359 360 err = realloc_verifier_state(dst, src->allocated_stack, false); 361 if (err) 362 return err; 363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack)); 364 return copy_stack_state(dst, src); 365 } 366 367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 368 int *insn_idx) 369 { 370 struct bpf_verifier_state *cur = env->cur_state; 371 struct bpf_verifier_stack_elem *elem, *head = env->head; 372 int err; 373 374 if (env->head == NULL) 375 return -ENOENT; 376 377 if (cur) { 378 err = copy_verifier_state(cur, &head->st); 379 if (err) 380 return err; 381 } 382 if (insn_idx) 383 *insn_idx = head->insn_idx; 384 if (prev_insn_idx) 385 *prev_insn_idx = head->prev_insn_idx; 386 elem = head->next; 387 free_verifier_state(&head->st, false); 388 kfree(head); 389 env->head = elem; 390 env->stack_size--; 391 return 0; 392 } 393 394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 395 int insn_idx, int prev_insn_idx) 396 { 397 struct bpf_verifier_state *cur = env->cur_state; 398 struct bpf_verifier_stack_elem *elem; 399 int err; 400 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 402 if (!elem) 403 goto err; 404 405 elem->insn_idx = insn_idx; 406 elem->prev_insn_idx = prev_insn_idx; 407 elem->next = env->head; 408 env->head = elem; 409 env->stack_size++; 410 err = copy_verifier_state(&elem->st, cur); 411 if (err) 412 goto err; 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 414 verbose(env, "BPF program is too complex\n"); 415 goto err; 416 } 417 return &elem->st; 418 err: 419 /* pop all elements and return */ 420 while (!pop_stack(env, NULL, NULL)); 421 return NULL; 422 } 423 424 #define CALLER_SAVED_REGS 6 425 static const int caller_saved[CALLER_SAVED_REGS] = { 426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 427 }; 428 429 static void __mark_reg_not_init(struct bpf_reg_state *reg); 430 431 /* Mark the unknown part of a register (variable offset or scalar value) as 432 * known to have the value @imm. 433 */ 434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 435 { 436 reg->id = 0; 437 reg->var_off = tnum_const(imm); 438 reg->smin_value = (s64)imm; 439 reg->smax_value = (s64)imm; 440 reg->umin_value = imm; 441 reg->umax_value = imm; 442 } 443 444 /* Mark the 'variable offset' part of a register as zero. This should be 445 * used only on registers holding a pointer type. 446 */ 447 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 448 { 449 __mark_reg_known(reg, 0); 450 } 451 452 static void mark_reg_known_zero(struct bpf_verifier_env *env, 453 struct bpf_reg_state *regs, u32 regno) 454 { 455 if (WARN_ON(regno >= MAX_BPF_REG)) { 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 457 /* Something bad happened, let's kill all regs */ 458 for (regno = 0; regno < MAX_BPF_REG; regno++) 459 __mark_reg_not_init(regs + regno); 460 return; 461 } 462 __mark_reg_known_zero(regs + regno); 463 } 464 465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 466 { 467 return type_is_pkt_pointer(reg->type); 468 } 469 470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 471 { 472 return reg_is_pkt_pointer(reg) || 473 reg->type == PTR_TO_PACKET_END; 474 } 475 476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 478 enum bpf_reg_type which) 479 { 480 /* The register can already have a range from prior markings. 481 * This is fine as long as it hasn't been advanced from its 482 * origin. 483 */ 484 return reg->type == which && 485 reg->id == 0 && 486 reg->off == 0 && 487 tnum_equals_const(reg->var_off, 0); 488 } 489 490 /* Attempts to improve min/max values based on var_off information */ 491 static void __update_reg_bounds(struct bpf_reg_state *reg) 492 { 493 /* min signed is max(sign bit) | min(other bits) */ 494 reg->smin_value = max_t(s64, reg->smin_value, 495 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 496 /* max signed is min(sign bit) | max(other bits) */ 497 reg->smax_value = min_t(s64, reg->smax_value, 498 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 499 reg->umin_value = max(reg->umin_value, reg->var_off.value); 500 reg->umax_value = min(reg->umax_value, 501 reg->var_off.value | reg->var_off.mask); 502 } 503 504 /* Uses signed min/max values to inform unsigned, and vice-versa */ 505 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 506 { 507 /* Learn sign from signed bounds. 508 * If we cannot cross the sign boundary, then signed and unsigned bounds 509 * are the same, so combine. This works even in the negative case, e.g. 510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 511 */ 512 if (reg->smin_value >= 0 || reg->smax_value < 0) { 513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 514 reg->umin_value); 515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 516 reg->umax_value); 517 return; 518 } 519 /* Learn sign from unsigned bounds. Signed bounds cross the sign 520 * boundary, so we must be careful. 521 */ 522 if ((s64)reg->umax_value >= 0) { 523 /* Positive. We can't learn anything from the smin, but smax 524 * is positive, hence safe. 525 */ 526 reg->smin_value = reg->umin_value; 527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 528 reg->umax_value); 529 } else if ((s64)reg->umin_value < 0) { 530 /* Negative. We can't learn anything from the smax, but smin 531 * is negative, hence safe. 532 */ 533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 534 reg->umin_value); 535 reg->smax_value = reg->umax_value; 536 } 537 } 538 539 /* Attempts to improve var_off based on unsigned min/max information */ 540 static void __reg_bound_offset(struct bpf_reg_state *reg) 541 { 542 reg->var_off = tnum_intersect(reg->var_off, 543 tnum_range(reg->umin_value, 544 reg->umax_value)); 545 } 546 547 /* Reset the min/max bounds of a register */ 548 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 549 { 550 reg->smin_value = S64_MIN; 551 reg->smax_value = S64_MAX; 552 reg->umin_value = 0; 553 reg->umax_value = U64_MAX; 554 } 555 556 /* Mark a register as having a completely unknown (scalar) value. */ 557 static void __mark_reg_unknown(struct bpf_reg_state *reg) 558 { 559 reg->type = SCALAR_VALUE; 560 reg->id = 0; 561 reg->off = 0; 562 reg->var_off = tnum_unknown; 563 __mark_reg_unbounded(reg); 564 } 565 566 static void mark_reg_unknown(struct bpf_verifier_env *env, 567 struct bpf_reg_state *regs, u32 regno) 568 { 569 if (WARN_ON(regno >= MAX_BPF_REG)) { 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 571 /* Something bad happened, let's kill all regs */ 572 for (regno = 0; regno < MAX_BPF_REG; regno++) 573 __mark_reg_not_init(regs + regno); 574 return; 575 } 576 __mark_reg_unknown(regs + regno); 577 } 578 579 static void __mark_reg_not_init(struct bpf_reg_state *reg) 580 { 581 __mark_reg_unknown(reg); 582 reg->type = NOT_INIT; 583 } 584 585 static void mark_reg_not_init(struct bpf_verifier_env *env, 586 struct bpf_reg_state *regs, u32 regno) 587 { 588 if (WARN_ON(regno >= MAX_BPF_REG)) { 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 590 /* Something bad happened, let's kill all regs */ 591 for (regno = 0; regno < MAX_BPF_REG; regno++) 592 __mark_reg_not_init(regs + regno); 593 return; 594 } 595 __mark_reg_not_init(regs + regno); 596 } 597 598 static void init_reg_state(struct bpf_verifier_env *env, 599 struct bpf_reg_state *regs) 600 { 601 int i; 602 603 for (i = 0; i < MAX_BPF_REG; i++) { 604 mark_reg_not_init(env, regs, i); 605 regs[i].live = REG_LIVE_NONE; 606 } 607 608 /* frame pointer */ 609 regs[BPF_REG_FP].type = PTR_TO_STACK; 610 mark_reg_known_zero(env, regs, BPF_REG_FP); 611 612 /* 1st arg to a function */ 613 regs[BPF_REG_1].type = PTR_TO_CTX; 614 mark_reg_known_zero(env, regs, BPF_REG_1); 615 } 616 617 enum reg_arg_type { 618 SRC_OP, /* register is used as source operand */ 619 DST_OP, /* register is used as destination operand */ 620 DST_OP_NO_MARK /* same as above, check only, don't mark */ 621 }; 622 623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 624 { 625 struct bpf_verifier_state *parent = state->parent; 626 627 if (regno == BPF_REG_FP) 628 /* We don't need to worry about FP liveness because it's read-only */ 629 return; 630 631 while (parent) { 632 /* if read wasn't screened by an earlier write ... */ 633 if (state->regs[regno].live & REG_LIVE_WRITTEN) 634 break; 635 /* ... then we depend on parent's value */ 636 parent->regs[regno].live |= REG_LIVE_READ; 637 state = parent; 638 parent = state->parent; 639 } 640 } 641 642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 643 enum reg_arg_type t) 644 { 645 struct bpf_reg_state *regs = env->cur_state->regs; 646 647 if (regno >= MAX_BPF_REG) { 648 verbose(env, "R%d is invalid\n", regno); 649 return -EINVAL; 650 } 651 652 if (t == SRC_OP) { 653 /* check whether register used as source operand can be read */ 654 if (regs[regno].type == NOT_INIT) { 655 verbose(env, "R%d !read_ok\n", regno); 656 return -EACCES; 657 } 658 mark_reg_read(env->cur_state, regno); 659 } else { 660 /* check whether register used as dest operand can be written to */ 661 if (regno == BPF_REG_FP) { 662 verbose(env, "frame pointer is read only\n"); 663 return -EACCES; 664 } 665 regs[regno].live |= REG_LIVE_WRITTEN; 666 if (t == DST_OP) 667 mark_reg_unknown(env, regs, regno); 668 } 669 return 0; 670 } 671 672 static bool is_spillable_regtype(enum bpf_reg_type type) 673 { 674 switch (type) { 675 case PTR_TO_MAP_VALUE: 676 case PTR_TO_MAP_VALUE_OR_NULL: 677 case PTR_TO_STACK: 678 case PTR_TO_CTX: 679 case PTR_TO_PACKET: 680 case PTR_TO_PACKET_META: 681 case PTR_TO_PACKET_END: 682 case CONST_PTR_TO_MAP: 683 return true; 684 default: 685 return false; 686 } 687 } 688 689 /* check_stack_read/write functions track spill/fill of registers, 690 * stack boundary and alignment are checked in check_mem_access() 691 */ 692 static int check_stack_write(struct bpf_verifier_env *env, 693 struct bpf_verifier_state *state, int off, 694 int size, int value_regno) 695 { 696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 697 698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE), 699 true); 700 if (err) 701 return err; 702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 703 * so it's aligned access and [off, off + size) are within stack limits 704 */ 705 if (!env->allow_ptr_leaks && 706 state->stack[spi].slot_type[0] == STACK_SPILL && 707 size != BPF_REG_SIZE) { 708 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 709 return -EACCES; 710 } 711 712 if (value_regno >= 0 && 713 is_spillable_regtype(state->regs[value_regno].type)) { 714 715 /* register containing pointer is being spilled into stack */ 716 if (size != BPF_REG_SIZE) { 717 verbose(env, "invalid size of register spill\n"); 718 return -EACCES; 719 } 720 721 /* save register state */ 722 state->stack[spi].spilled_ptr = state->regs[value_regno]; 723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 724 725 for (i = 0; i < BPF_REG_SIZE; i++) 726 state->stack[spi].slot_type[i] = STACK_SPILL; 727 } else { 728 /* regular write of data into stack */ 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 730 731 for (i = 0; i < size; i++) 732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 733 STACK_MISC; 734 } 735 return 0; 736 } 737 738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 739 { 740 struct bpf_verifier_state *parent = state->parent; 741 742 while (parent) { 743 /* if read wasn't screened by an earlier write ... */ 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 745 break; 746 /* ... then we depend on parent's value */ 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 748 state = parent; 749 parent = state->parent; 750 } 751 } 752 753 static int check_stack_read(struct bpf_verifier_env *env, 754 struct bpf_verifier_state *state, int off, int size, 755 int value_regno) 756 { 757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 758 u8 *stype; 759 760 if (state->allocated_stack <= slot) { 761 verbose(env, "invalid read from stack off %d+0 size %d\n", 762 off, size); 763 return -EACCES; 764 } 765 stype = state->stack[spi].slot_type; 766 767 if (stype[0] == STACK_SPILL) { 768 if (size != BPF_REG_SIZE) { 769 verbose(env, "invalid size of register spill\n"); 770 return -EACCES; 771 } 772 for (i = 1; i < BPF_REG_SIZE; i++) { 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 774 verbose(env, "corrupted spill memory\n"); 775 return -EACCES; 776 } 777 } 778 779 if (value_regno >= 0) { 780 /* restore register state from stack */ 781 state->regs[value_regno] = state->stack[spi].spilled_ptr; 782 mark_stack_slot_read(state, spi); 783 } 784 return 0; 785 } else { 786 for (i = 0; i < size; i++) { 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) { 788 verbose(env, "invalid read from stack off %d+%d size %d\n", 789 off, i, size); 790 return -EACCES; 791 } 792 } 793 if (value_regno >= 0) 794 /* have read misc data from the stack */ 795 mark_reg_unknown(env, state->regs, value_regno); 796 return 0; 797 } 798 } 799 800 /* check read/write into map element returned by bpf_map_lookup_elem() */ 801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 802 int size, bool zero_size_allowed) 803 { 804 struct bpf_reg_state *regs = cur_regs(env); 805 struct bpf_map *map = regs[regno].map_ptr; 806 807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 808 off + size > map->value_size) { 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 810 map->value_size, off, size); 811 return -EACCES; 812 } 813 return 0; 814 } 815 816 /* check read/write into a map element with possible variable offset */ 817 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 818 int off, int size, bool zero_size_allowed) 819 { 820 struct bpf_verifier_state *state = env->cur_state; 821 struct bpf_reg_state *reg = &state->regs[regno]; 822 int err; 823 824 /* We may have adjusted the register to this map value, so we 825 * need to try adding each of min_value and max_value to off 826 * to make sure our theoretical access will be safe. 827 */ 828 if (env->log.level) 829 print_verifier_state(env, state); 830 /* The minimum value is only important with signed 831 * comparisons where we can't assume the floor of a 832 * value is 0. If we are using signed variables for our 833 * index'es we need to make sure that whatever we use 834 * will have a set floor within our range. 835 */ 836 if (reg->smin_value < 0) { 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 838 regno); 839 return -EACCES; 840 } 841 err = __check_map_access(env, regno, reg->smin_value + off, size, 842 zero_size_allowed); 843 if (err) { 844 verbose(env, "R%d min value is outside of the array range\n", 845 regno); 846 return err; 847 } 848 849 /* If we haven't set a max value then we need to bail since we can't be 850 * sure we won't do bad things. 851 * If reg->umax_value + off could overflow, treat that as unbounded too. 852 */ 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 855 regno); 856 return -EACCES; 857 } 858 err = __check_map_access(env, regno, reg->umax_value + off, size, 859 zero_size_allowed); 860 if (err) 861 verbose(env, "R%d max value is outside of the array range\n", 862 regno); 863 return err; 864 } 865 866 #define MAX_PACKET_OFF 0xffff 867 868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 869 const struct bpf_call_arg_meta *meta, 870 enum bpf_access_type t) 871 { 872 switch (env->prog->type) { 873 case BPF_PROG_TYPE_LWT_IN: 874 case BPF_PROG_TYPE_LWT_OUT: 875 /* dst_input() and dst_output() can't write for now */ 876 if (t == BPF_WRITE) 877 return false; 878 /* fallthrough */ 879 case BPF_PROG_TYPE_SCHED_CLS: 880 case BPF_PROG_TYPE_SCHED_ACT: 881 case BPF_PROG_TYPE_XDP: 882 case BPF_PROG_TYPE_LWT_XMIT: 883 case BPF_PROG_TYPE_SK_SKB: 884 if (meta) 885 return meta->pkt_access; 886 887 env->seen_direct_write = true; 888 return true; 889 default: 890 return false; 891 } 892 } 893 894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 895 int off, int size, bool zero_size_allowed) 896 { 897 struct bpf_reg_state *regs = cur_regs(env); 898 struct bpf_reg_state *reg = ®s[regno]; 899 900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 901 (u64)off + size > reg->range) { 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 903 off, size, regno, reg->id, reg->off, reg->range); 904 return -EACCES; 905 } 906 return 0; 907 } 908 909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 910 int size, bool zero_size_allowed) 911 { 912 struct bpf_reg_state *regs = cur_regs(env); 913 struct bpf_reg_state *reg = ®s[regno]; 914 int err; 915 916 /* We may have added a variable offset to the packet pointer; but any 917 * reg->range we have comes after that. We are only checking the fixed 918 * offset. 919 */ 920 921 /* We don't allow negative numbers, because we aren't tracking enough 922 * detail to prove they're safe. 923 */ 924 if (reg->smin_value < 0) { 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 926 regno); 927 return -EACCES; 928 } 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 930 if (err) { 931 verbose(env, "R%d offset is outside of the packet\n", regno); 932 return err; 933 } 934 return err; 935 } 936 937 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 939 enum bpf_access_type t, enum bpf_reg_type *reg_type) 940 { 941 struct bpf_insn_access_aux info = { 942 .reg_type = *reg_type, 943 }; 944 945 if (env->ops->is_valid_access && 946 env->ops->is_valid_access(off, size, t, &info)) { 947 /* A non zero info.ctx_field_size indicates that this field is a 948 * candidate for later verifier transformation to load the whole 949 * field and then apply a mask when accessed with a narrower 950 * access than actual ctx access size. A zero info.ctx_field_size 951 * will only allow for whole field access and rejects any other 952 * type of narrower access. 953 */ 954 *reg_type = info.reg_type; 955 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 957 /* remember the offset of last byte accessed in ctx */ 958 if (env->prog->aux->max_ctx_offset < off + size) 959 env->prog->aux->max_ctx_offset = off + size; 960 return 0; 961 } 962 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 964 return -EACCES; 965 } 966 967 static bool __is_pointer_value(bool allow_ptr_leaks, 968 const struct bpf_reg_state *reg) 969 { 970 if (allow_ptr_leaks) 971 return false; 972 973 return reg->type != SCALAR_VALUE; 974 } 975 976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 977 { 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 979 } 980 981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 982 const struct bpf_reg_state *reg, 983 int off, int size, bool strict) 984 { 985 struct tnum reg_off; 986 int ip_align; 987 988 /* Byte size accesses are always allowed. */ 989 if (!strict || size == 1) 990 return 0; 991 992 /* For platforms that do not have a Kconfig enabling 993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 994 * NET_IP_ALIGN is universally set to '2'. And on platforms 995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 996 * to this code only in strict mode where we want to emulate 997 * the NET_IP_ALIGN==2 checking. Therefore use an 998 * unconditional IP align value of '2'. 999 */ 1000 ip_align = 2; 1001 1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1003 if (!tnum_is_aligned(reg_off, size)) { 1004 char tn_buf[48]; 1005 1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1007 verbose(env, 1008 "misaligned packet access off %d+%s+%d+%d size %d\n", 1009 ip_align, tn_buf, reg->off, off, size); 1010 return -EACCES; 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1017 const struct bpf_reg_state *reg, 1018 const char *pointer_desc, 1019 int off, int size, bool strict) 1020 { 1021 struct tnum reg_off; 1022 1023 /* Byte size accesses are always allowed. */ 1024 if (!strict || size == 1) 1025 return 0; 1026 1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1028 if (!tnum_is_aligned(reg_off, size)) { 1029 char tn_buf[48]; 1030 1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1033 pointer_desc, tn_buf, reg->off, off, size); 1034 return -EACCES; 1035 } 1036 1037 return 0; 1038 } 1039 1040 static int check_ptr_alignment(struct bpf_verifier_env *env, 1041 const struct bpf_reg_state *reg, 1042 int off, int size) 1043 { 1044 bool strict = env->strict_alignment; 1045 const char *pointer_desc = ""; 1046 1047 switch (reg->type) { 1048 case PTR_TO_PACKET: 1049 case PTR_TO_PACKET_META: 1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1051 * right in front, treat it the very same way. 1052 */ 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1054 case PTR_TO_MAP_VALUE: 1055 pointer_desc = "value "; 1056 break; 1057 case PTR_TO_CTX: 1058 pointer_desc = "context "; 1059 break; 1060 case PTR_TO_STACK: 1061 pointer_desc = "stack "; 1062 /* The stack spill tracking logic in check_stack_write() 1063 * and check_stack_read() relies on stack accesses being 1064 * aligned. 1065 */ 1066 strict = true; 1067 break; 1068 default: 1069 break; 1070 } 1071 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1072 strict); 1073 } 1074 1075 /* truncate register to smaller size (in bytes) 1076 * must be called with size < BPF_REG_SIZE 1077 */ 1078 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1079 { 1080 u64 mask; 1081 1082 /* clear high bits in bit representation */ 1083 reg->var_off = tnum_cast(reg->var_off, size); 1084 1085 /* fix arithmetic bounds */ 1086 mask = ((u64)1 << (size * 8)) - 1; 1087 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1088 reg->umin_value &= mask; 1089 reg->umax_value &= mask; 1090 } else { 1091 reg->umin_value = 0; 1092 reg->umax_value = mask; 1093 } 1094 reg->smin_value = reg->umin_value; 1095 reg->smax_value = reg->umax_value; 1096 } 1097 1098 /* check whether memory at (regno + off) is accessible for t = (read | write) 1099 * if t==write, value_regno is a register which value is stored into memory 1100 * if t==read, value_regno is a register which will receive the value from memory 1101 * if t==write && value_regno==-1, some unknown value is stored into memory 1102 * if t==read && value_regno==-1, don't care what we read from memory 1103 */ 1104 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1105 int bpf_size, enum bpf_access_type t, 1106 int value_regno) 1107 { 1108 struct bpf_verifier_state *state = env->cur_state; 1109 struct bpf_reg_state *regs = cur_regs(env); 1110 struct bpf_reg_state *reg = regs + regno; 1111 int size, err = 0; 1112 1113 size = bpf_size_to_bytes(bpf_size); 1114 if (size < 0) 1115 return size; 1116 1117 /* alignment checks will add in reg->off themselves */ 1118 err = check_ptr_alignment(env, reg, off, size); 1119 if (err) 1120 return err; 1121 1122 /* for access checks, reg->off is just part of off */ 1123 off += reg->off; 1124 1125 if (reg->type == PTR_TO_MAP_VALUE) { 1126 if (t == BPF_WRITE && value_regno >= 0 && 1127 is_pointer_value(env, value_regno)) { 1128 verbose(env, "R%d leaks addr into map\n", value_regno); 1129 return -EACCES; 1130 } 1131 1132 err = check_map_access(env, regno, off, size, false); 1133 if (!err && t == BPF_READ && value_regno >= 0) 1134 mark_reg_unknown(env, regs, value_regno); 1135 1136 } else if (reg->type == PTR_TO_CTX) { 1137 enum bpf_reg_type reg_type = SCALAR_VALUE; 1138 1139 if (t == BPF_WRITE && value_regno >= 0 && 1140 is_pointer_value(env, value_regno)) { 1141 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1142 return -EACCES; 1143 } 1144 /* ctx accesses must be at a fixed offset, so that we can 1145 * determine what type of data were returned. 1146 */ 1147 if (reg->off) { 1148 verbose(env, 1149 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1150 regno, reg->off, off - reg->off); 1151 return -EACCES; 1152 } 1153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1154 char tn_buf[48]; 1155 1156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1157 verbose(env, 1158 "variable ctx access var_off=%s off=%d size=%d", 1159 tn_buf, off, size); 1160 return -EACCES; 1161 } 1162 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1163 if (!err && t == BPF_READ && value_regno >= 0) { 1164 /* ctx access returns either a scalar, or a 1165 * PTR_TO_PACKET[_META,_END]. In the latter 1166 * case, we know the offset is zero. 1167 */ 1168 if (reg_type == SCALAR_VALUE) 1169 mark_reg_unknown(env, regs, value_regno); 1170 else 1171 mark_reg_known_zero(env, regs, 1172 value_regno); 1173 regs[value_regno].id = 0; 1174 regs[value_regno].off = 0; 1175 regs[value_regno].range = 0; 1176 regs[value_regno].type = reg_type; 1177 } 1178 1179 } else if (reg->type == PTR_TO_STACK) { 1180 /* stack accesses must be at a fixed offset, so that we can 1181 * determine what type of data were returned. 1182 * See check_stack_read(). 1183 */ 1184 if (!tnum_is_const(reg->var_off)) { 1185 char tn_buf[48]; 1186 1187 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1188 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1189 tn_buf, off, size); 1190 return -EACCES; 1191 } 1192 off += reg->var_off.value; 1193 if (off >= 0 || off < -MAX_BPF_STACK) { 1194 verbose(env, "invalid stack off=%d size=%d\n", off, 1195 size); 1196 return -EACCES; 1197 } 1198 1199 if (env->prog->aux->stack_depth < -off) 1200 env->prog->aux->stack_depth = -off; 1201 1202 if (t == BPF_WRITE) 1203 err = check_stack_write(env, state, off, size, 1204 value_regno); 1205 else 1206 err = check_stack_read(env, state, off, size, 1207 value_regno); 1208 } else if (reg_is_pkt_pointer(reg)) { 1209 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1210 verbose(env, "cannot write into packet\n"); 1211 return -EACCES; 1212 } 1213 if (t == BPF_WRITE && value_regno >= 0 && 1214 is_pointer_value(env, value_regno)) { 1215 verbose(env, "R%d leaks addr into packet\n", 1216 value_regno); 1217 return -EACCES; 1218 } 1219 err = check_packet_access(env, regno, off, size, false); 1220 if (!err && t == BPF_READ && value_regno >= 0) 1221 mark_reg_unknown(env, regs, value_regno); 1222 } else { 1223 verbose(env, "R%d invalid mem access '%s'\n", regno, 1224 reg_type_str[reg->type]); 1225 return -EACCES; 1226 } 1227 1228 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1229 regs[value_regno].type == SCALAR_VALUE) { 1230 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1231 coerce_reg_to_size(®s[value_regno], size); 1232 } 1233 return err; 1234 } 1235 1236 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1237 { 1238 int err; 1239 1240 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1241 insn->imm != 0) { 1242 verbose(env, "BPF_XADD uses reserved fields\n"); 1243 return -EINVAL; 1244 } 1245 1246 /* check src1 operand */ 1247 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1248 if (err) 1249 return err; 1250 1251 /* check src2 operand */ 1252 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1253 if (err) 1254 return err; 1255 1256 if (is_pointer_value(env, insn->src_reg)) { 1257 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1258 return -EACCES; 1259 } 1260 1261 /* check whether atomic_add can read the memory */ 1262 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1263 BPF_SIZE(insn->code), BPF_READ, -1); 1264 if (err) 1265 return err; 1266 1267 /* check whether atomic_add can write into the same memory */ 1268 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1269 BPF_SIZE(insn->code), BPF_WRITE, -1); 1270 } 1271 1272 /* Does this register contain a constant zero? */ 1273 static bool register_is_null(struct bpf_reg_state reg) 1274 { 1275 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); 1276 } 1277 1278 /* when register 'regno' is passed into function that will read 'access_size' 1279 * bytes from that pointer, make sure that it's within stack boundary 1280 * and all elements of stack are initialized. 1281 * Unlike most pointer bounds-checking functions, this one doesn't take an 1282 * 'off' argument, so it has to add in reg->off itself. 1283 */ 1284 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1285 int access_size, bool zero_size_allowed, 1286 struct bpf_call_arg_meta *meta) 1287 { 1288 struct bpf_verifier_state *state = env->cur_state; 1289 struct bpf_reg_state *regs = state->regs; 1290 int off, i, slot, spi; 1291 1292 if (regs[regno].type != PTR_TO_STACK) { 1293 /* Allow zero-byte read from NULL, regardless of pointer type */ 1294 if (zero_size_allowed && access_size == 0 && 1295 register_is_null(regs[regno])) 1296 return 0; 1297 1298 verbose(env, "R%d type=%s expected=%s\n", regno, 1299 reg_type_str[regs[regno].type], 1300 reg_type_str[PTR_TO_STACK]); 1301 return -EACCES; 1302 } 1303 1304 /* Only allow fixed-offset stack reads */ 1305 if (!tnum_is_const(regs[regno].var_off)) { 1306 char tn_buf[48]; 1307 1308 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); 1309 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1310 regno, tn_buf); 1311 return -EACCES; 1312 } 1313 off = regs[regno].off + regs[regno].var_off.value; 1314 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1315 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1316 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1317 regno, off, access_size); 1318 return -EACCES; 1319 } 1320 1321 if (env->prog->aux->stack_depth < -off) 1322 env->prog->aux->stack_depth = -off; 1323 1324 if (meta && meta->raw_mode) { 1325 meta->access_size = access_size; 1326 meta->regno = regno; 1327 return 0; 1328 } 1329 1330 for (i = 0; i < access_size; i++) { 1331 slot = -(off + i) - 1; 1332 spi = slot / BPF_REG_SIZE; 1333 if (state->allocated_stack <= slot || 1334 state->stack[spi].slot_type[slot % BPF_REG_SIZE] != 1335 STACK_MISC) { 1336 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1337 off, i, access_size); 1338 return -EACCES; 1339 } 1340 } 1341 return 0; 1342 } 1343 1344 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1345 int access_size, bool zero_size_allowed, 1346 struct bpf_call_arg_meta *meta) 1347 { 1348 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1349 1350 switch (reg->type) { 1351 case PTR_TO_PACKET: 1352 case PTR_TO_PACKET_META: 1353 return check_packet_access(env, regno, reg->off, access_size, 1354 zero_size_allowed); 1355 case PTR_TO_MAP_VALUE: 1356 return check_map_access(env, regno, reg->off, access_size, 1357 zero_size_allowed); 1358 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1359 return check_stack_boundary(env, regno, access_size, 1360 zero_size_allowed, meta); 1361 } 1362 } 1363 1364 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1365 enum bpf_arg_type arg_type, 1366 struct bpf_call_arg_meta *meta) 1367 { 1368 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1369 enum bpf_reg_type expected_type, type = reg->type; 1370 int err = 0; 1371 1372 if (arg_type == ARG_DONTCARE) 1373 return 0; 1374 1375 err = check_reg_arg(env, regno, SRC_OP); 1376 if (err) 1377 return err; 1378 1379 if (arg_type == ARG_ANYTHING) { 1380 if (is_pointer_value(env, regno)) { 1381 verbose(env, "R%d leaks addr into helper function\n", 1382 regno); 1383 return -EACCES; 1384 } 1385 return 0; 1386 } 1387 1388 if (type_is_pkt_pointer(type) && 1389 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1390 verbose(env, "helper access to the packet is not allowed\n"); 1391 return -EACCES; 1392 } 1393 1394 if (arg_type == ARG_PTR_TO_MAP_KEY || 1395 arg_type == ARG_PTR_TO_MAP_VALUE) { 1396 expected_type = PTR_TO_STACK; 1397 if (!type_is_pkt_pointer(type) && 1398 type != expected_type) 1399 goto err_type; 1400 } else if (arg_type == ARG_CONST_SIZE || 1401 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1402 expected_type = SCALAR_VALUE; 1403 if (type != expected_type) 1404 goto err_type; 1405 } else if (arg_type == ARG_CONST_MAP_PTR) { 1406 expected_type = CONST_PTR_TO_MAP; 1407 if (type != expected_type) 1408 goto err_type; 1409 } else if (arg_type == ARG_PTR_TO_CTX) { 1410 expected_type = PTR_TO_CTX; 1411 if (type != expected_type) 1412 goto err_type; 1413 } else if (arg_type == ARG_PTR_TO_MEM || 1414 arg_type == ARG_PTR_TO_MEM_OR_NULL || 1415 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1416 expected_type = PTR_TO_STACK; 1417 /* One exception here. In case function allows for NULL to be 1418 * passed in as argument, it's a SCALAR_VALUE type. Final test 1419 * happens during stack boundary checking. 1420 */ 1421 if (register_is_null(*reg) && 1422 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1423 /* final test in check_stack_boundary() */; 1424 else if (!type_is_pkt_pointer(type) && 1425 type != PTR_TO_MAP_VALUE && 1426 type != expected_type) 1427 goto err_type; 1428 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1429 } else { 1430 verbose(env, "unsupported arg_type %d\n", arg_type); 1431 return -EFAULT; 1432 } 1433 1434 if (arg_type == ARG_CONST_MAP_PTR) { 1435 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1436 meta->map_ptr = reg->map_ptr; 1437 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1438 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1439 * check that [key, key + map->key_size) are within 1440 * stack limits and initialized 1441 */ 1442 if (!meta->map_ptr) { 1443 /* in function declaration map_ptr must come before 1444 * map_key, so that it's verified and known before 1445 * we have to check map_key here. Otherwise it means 1446 * that kernel subsystem misconfigured verifier 1447 */ 1448 verbose(env, "invalid map_ptr to access map->key\n"); 1449 return -EACCES; 1450 } 1451 if (type_is_pkt_pointer(type)) 1452 err = check_packet_access(env, regno, reg->off, 1453 meta->map_ptr->key_size, 1454 false); 1455 else 1456 err = check_stack_boundary(env, regno, 1457 meta->map_ptr->key_size, 1458 false, NULL); 1459 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1460 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1461 * check [value, value + map->value_size) validity 1462 */ 1463 if (!meta->map_ptr) { 1464 /* kernel subsystem misconfigured verifier */ 1465 verbose(env, "invalid map_ptr to access map->value\n"); 1466 return -EACCES; 1467 } 1468 if (type_is_pkt_pointer(type)) 1469 err = check_packet_access(env, regno, reg->off, 1470 meta->map_ptr->value_size, 1471 false); 1472 else 1473 err = check_stack_boundary(env, regno, 1474 meta->map_ptr->value_size, 1475 false, NULL); 1476 } else if (arg_type == ARG_CONST_SIZE || 1477 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1478 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1479 1480 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1481 * from stack pointer 'buf'. Check it 1482 * note: regno == len, regno - 1 == buf 1483 */ 1484 if (regno == 0) { 1485 /* kernel subsystem misconfigured verifier */ 1486 verbose(env, 1487 "ARG_CONST_SIZE cannot be first argument\n"); 1488 return -EACCES; 1489 } 1490 1491 /* The register is SCALAR_VALUE; the access check 1492 * happens using its boundaries. 1493 */ 1494 1495 if (!tnum_is_const(reg->var_off)) 1496 /* For unprivileged variable accesses, disable raw 1497 * mode so that the program is required to 1498 * initialize all the memory that the helper could 1499 * just partially fill up. 1500 */ 1501 meta = NULL; 1502 1503 if (reg->smin_value < 0) { 1504 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 1505 regno); 1506 return -EACCES; 1507 } 1508 1509 if (reg->umin_value == 0) { 1510 err = check_helper_mem_access(env, regno - 1, 0, 1511 zero_size_allowed, 1512 meta); 1513 if (err) 1514 return err; 1515 } 1516 1517 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 1518 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1519 regno); 1520 return -EACCES; 1521 } 1522 err = check_helper_mem_access(env, regno - 1, 1523 reg->umax_value, 1524 zero_size_allowed, meta); 1525 } 1526 1527 return err; 1528 err_type: 1529 verbose(env, "R%d type=%s expected=%s\n", regno, 1530 reg_type_str[type], reg_type_str[expected_type]); 1531 return -EACCES; 1532 } 1533 1534 static int check_map_func_compatibility(struct bpf_verifier_env *env, 1535 struct bpf_map *map, int func_id) 1536 { 1537 if (!map) 1538 return 0; 1539 1540 /* We need a two way check, first is from map perspective ... */ 1541 switch (map->map_type) { 1542 case BPF_MAP_TYPE_PROG_ARRAY: 1543 if (func_id != BPF_FUNC_tail_call) 1544 goto error; 1545 break; 1546 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1547 if (func_id != BPF_FUNC_perf_event_read && 1548 func_id != BPF_FUNC_perf_event_output && 1549 func_id != BPF_FUNC_perf_event_read_value) 1550 goto error; 1551 break; 1552 case BPF_MAP_TYPE_STACK_TRACE: 1553 if (func_id != BPF_FUNC_get_stackid) 1554 goto error; 1555 break; 1556 case BPF_MAP_TYPE_CGROUP_ARRAY: 1557 if (func_id != BPF_FUNC_skb_under_cgroup && 1558 func_id != BPF_FUNC_current_task_under_cgroup) 1559 goto error; 1560 break; 1561 /* devmap returns a pointer to a live net_device ifindex that we cannot 1562 * allow to be modified from bpf side. So do not allow lookup elements 1563 * for now. 1564 */ 1565 case BPF_MAP_TYPE_DEVMAP: 1566 if (func_id != BPF_FUNC_redirect_map) 1567 goto error; 1568 break; 1569 /* Restrict bpf side of cpumap, open when use-cases appear */ 1570 case BPF_MAP_TYPE_CPUMAP: 1571 if (func_id != BPF_FUNC_redirect_map) 1572 goto error; 1573 break; 1574 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1575 case BPF_MAP_TYPE_HASH_OF_MAPS: 1576 if (func_id != BPF_FUNC_map_lookup_elem) 1577 goto error; 1578 break; 1579 case BPF_MAP_TYPE_SOCKMAP: 1580 if (func_id != BPF_FUNC_sk_redirect_map && 1581 func_id != BPF_FUNC_sock_map_update && 1582 func_id != BPF_FUNC_map_delete_elem) 1583 goto error; 1584 break; 1585 default: 1586 break; 1587 } 1588 1589 /* ... and second from the function itself. */ 1590 switch (func_id) { 1591 case BPF_FUNC_tail_call: 1592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1593 goto error; 1594 break; 1595 case BPF_FUNC_perf_event_read: 1596 case BPF_FUNC_perf_event_output: 1597 case BPF_FUNC_perf_event_read_value: 1598 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1599 goto error; 1600 break; 1601 case BPF_FUNC_get_stackid: 1602 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1603 goto error; 1604 break; 1605 case BPF_FUNC_current_task_under_cgroup: 1606 case BPF_FUNC_skb_under_cgroup: 1607 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1608 goto error; 1609 break; 1610 case BPF_FUNC_redirect_map: 1611 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 1612 map->map_type != BPF_MAP_TYPE_CPUMAP) 1613 goto error; 1614 break; 1615 case BPF_FUNC_sk_redirect_map: 1616 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1617 goto error; 1618 break; 1619 case BPF_FUNC_sock_map_update: 1620 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1621 goto error; 1622 break; 1623 default: 1624 break; 1625 } 1626 1627 return 0; 1628 error: 1629 verbose(env, "cannot pass map_type %d into func %s#%d\n", 1630 map->map_type, func_id_name(func_id), func_id); 1631 return -EINVAL; 1632 } 1633 1634 static int check_raw_mode(const struct bpf_func_proto *fn) 1635 { 1636 int count = 0; 1637 1638 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1639 count++; 1640 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1641 count++; 1642 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1643 count++; 1644 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1645 count++; 1646 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1647 count++; 1648 1649 return count > 1 ? -EINVAL : 0; 1650 } 1651 1652 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 1653 * are now invalid, so turn them into unknown SCALAR_VALUE. 1654 */ 1655 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1656 { 1657 struct bpf_verifier_state *state = env->cur_state; 1658 struct bpf_reg_state *regs = state->regs, *reg; 1659 int i; 1660 1661 for (i = 0; i < MAX_BPF_REG; i++) 1662 if (reg_is_pkt_pointer_any(®s[i])) 1663 mark_reg_unknown(env, regs, i); 1664 1665 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1666 if (state->stack[i].slot_type[0] != STACK_SPILL) 1667 continue; 1668 reg = &state->stack[i].spilled_ptr; 1669 if (reg_is_pkt_pointer_any(reg)) 1670 __mark_reg_unknown(reg); 1671 } 1672 } 1673 1674 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1675 { 1676 const struct bpf_func_proto *fn = NULL; 1677 struct bpf_reg_state *regs; 1678 struct bpf_call_arg_meta meta; 1679 bool changes_data; 1680 int i, err; 1681 1682 /* find function prototype */ 1683 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1684 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 1685 func_id); 1686 return -EINVAL; 1687 } 1688 1689 if (env->ops->get_func_proto) 1690 fn = env->ops->get_func_proto(func_id); 1691 1692 if (!fn) { 1693 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 1694 func_id); 1695 return -EINVAL; 1696 } 1697 1698 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1699 if (!env->prog->gpl_compatible && fn->gpl_only) { 1700 verbose(env, "cannot call GPL only function from proprietary program\n"); 1701 return -EINVAL; 1702 } 1703 1704 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 1705 changes_data = bpf_helper_changes_pkt_data(fn->func); 1706 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 1707 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 1708 func_id_name(func_id), func_id); 1709 return -EINVAL; 1710 } 1711 1712 memset(&meta, 0, sizeof(meta)); 1713 meta.pkt_access = fn->pkt_access; 1714 1715 /* We only support one arg being in raw mode at the moment, which 1716 * is sufficient for the helper functions we have right now. 1717 */ 1718 err = check_raw_mode(fn); 1719 if (err) { 1720 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 1721 func_id_name(func_id), func_id); 1722 return err; 1723 } 1724 1725 /* check args */ 1726 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1727 if (err) 1728 return err; 1729 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1730 if (err) 1731 return err; 1732 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1733 if (err) 1734 return err; 1735 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1736 if (err) 1737 return err; 1738 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1739 if (err) 1740 return err; 1741 1742 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1743 * is inferred from register state. 1744 */ 1745 for (i = 0; i < meta.access_size; i++) { 1746 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1747 if (err) 1748 return err; 1749 } 1750 1751 regs = cur_regs(env); 1752 /* reset caller saved regs */ 1753 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1754 mark_reg_not_init(env, regs, caller_saved[i]); 1755 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1756 } 1757 1758 /* update return register (already marked as written above) */ 1759 if (fn->ret_type == RET_INTEGER) { 1760 /* sets type to SCALAR_VALUE */ 1761 mark_reg_unknown(env, regs, BPF_REG_0); 1762 } else if (fn->ret_type == RET_VOID) { 1763 regs[BPF_REG_0].type = NOT_INIT; 1764 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1765 struct bpf_insn_aux_data *insn_aux; 1766 1767 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1768 /* There is no offset yet applied, variable or fixed */ 1769 mark_reg_known_zero(env, regs, BPF_REG_0); 1770 regs[BPF_REG_0].off = 0; 1771 /* remember map_ptr, so that check_map_access() 1772 * can check 'value_size' boundary of memory access 1773 * to map element returned from bpf_map_lookup_elem() 1774 */ 1775 if (meta.map_ptr == NULL) { 1776 verbose(env, 1777 "kernel subsystem misconfigured verifier\n"); 1778 return -EINVAL; 1779 } 1780 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1781 regs[BPF_REG_0].id = ++env->id_gen; 1782 insn_aux = &env->insn_aux_data[insn_idx]; 1783 if (!insn_aux->map_ptr) 1784 insn_aux->map_ptr = meta.map_ptr; 1785 else if (insn_aux->map_ptr != meta.map_ptr) 1786 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1787 } else { 1788 verbose(env, "unknown return type %d of func %s#%d\n", 1789 fn->ret_type, func_id_name(func_id), func_id); 1790 return -EINVAL; 1791 } 1792 1793 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 1794 if (err) 1795 return err; 1796 1797 if (changes_data) 1798 clear_all_pkt_pointers(env); 1799 return 0; 1800 } 1801 1802 static bool signed_add_overflows(s64 a, s64 b) 1803 { 1804 /* Do the add in u64, where overflow is well-defined */ 1805 s64 res = (s64)((u64)a + (u64)b); 1806 1807 if (b < 0) 1808 return res > a; 1809 return res < a; 1810 } 1811 1812 static bool signed_sub_overflows(s64 a, s64 b) 1813 { 1814 /* Do the sub in u64, where overflow is well-defined */ 1815 s64 res = (s64)((u64)a - (u64)b); 1816 1817 if (b < 0) 1818 return res < a; 1819 return res > a; 1820 } 1821 1822 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 1823 const struct bpf_reg_state *reg, 1824 enum bpf_reg_type type) 1825 { 1826 bool known = tnum_is_const(reg->var_off); 1827 s64 val = reg->var_off.value; 1828 s64 smin = reg->smin_value; 1829 1830 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 1831 verbose(env, "math between %s pointer and %lld is not allowed\n", 1832 reg_type_str[type], val); 1833 return false; 1834 } 1835 1836 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 1837 verbose(env, "%s pointer offset %d is not allowed\n", 1838 reg_type_str[type], reg->off); 1839 return false; 1840 } 1841 1842 if (smin == S64_MIN) { 1843 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 1844 reg_type_str[type]); 1845 return false; 1846 } 1847 1848 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 1849 verbose(env, "value %lld makes %s pointer be out of bounds\n", 1850 smin, reg_type_str[type]); 1851 return false; 1852 } 1853 1854 return true; 1855 } 1856 1857 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 1858 * Caller should also handle BPF_MOV case separately. 1859 * If we return -EACCES, caller may want to try again treating pointer as a 1860 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1861 */ 1862 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1863 struct bpf_insn *insn, 1864 const struct bpf_reg_state *ptr_reg, 1865 const struct bpf_reg_state *off_reg) 1866 { 1867 struct bpf_reg_state *regs = cur_regs(env), *dst_reg; 1868 bool known = tnum_is_const(off_reg->var_off); 1869 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1870 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1871 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1872 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1873 u8 opcode = BPF_OP(insn->code); 1874 u32 dst = insn->dst_reg; 1875 1876 dst_reg = ®s[dst]; 1877 1878 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { 1879 print_verifier_state(env, env->cur_state); 1880 verbose(env, 1881 "verifier internal error: known but bad sbounds\n"); 1882 return -EINVAL; 1883 } 1884 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { 1885 print_verifier_state(env, env->cur_state); 1886 verbose(env, 1887 "verifier internal error: known but bad ubounds\n"); 1888 return -EINVAL; 1889 } 1890 1891 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1892 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1893 verbose(env, 1894 "R%d 32-bit pointer arithmetic prohibited\n", 1895 dst); 1896 return -EACCES; 1897 } 1898 1899 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1900 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 1901 dst); 1902 return -EACCES; 1903 } 1904 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1905 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 1906 dst); 1907 return -EACCES; 1908 } 1909 if (ptr_reg->type == PTR_TO_PACKET_END) { 1910 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 1911 dst); 1912 return -EACCES; 1913 } 1914 1915 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1916 * The id may be overwritten later if we create a new variable offset. 1917 */ 1918 dst_reg->type = ptr_reg->type; 1919 dst_reg->id = ptr_reg->id; 1920 1921 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 1922 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 1923 return -EINVAL; 1924 1925 switch (opcode) { 1926 case BPF_ADD: 1927 /* We can take a fixed offset as long as it doesn't overflow 1928 * the s32 'off' field 1929 */ 1930 if (known && (ptr_reg->off + smin_val == 1931 (s64)(s32)(ptr_reg->off + smin_val))) { 1932 /* pointer += K. Accumulate it into fixed offset */ 1933 dst_reg->smin_value = smin_ptr; 1934 dst_reg->smax_value = smax_ptr; 1935 dst_reg->umin_value = umin_ptr; 1936 dst_reg->umax_value = umax_ptr; 1937 dst_reg->var_off = ptr_reg->var_off; 1938 dst_reg->off = ptr_reg->off + smin_val; 1939 dst_reg->range = ptr_reg->range; 1940 break; 1941 } 1942 /* A new variable offset is created. Note that off_reg->off 1943 * == 0, since it's a scalar. 1944 * dst_reg gets the pointer type and since some positive 1945 * integer value was added to the pointer, give it a new 'id' 1946 * if it's a PTR_TO_PACKET. 1947 * this creates a new 'base' pointer, off_reg (variable) gets 1948 * added into the variable offset, and we copy the fixed offset 1949 * from ptr_reg. 1950 */ 1951 if (signed_add_overflows(smin_ptr, smin_val) || 1952 signed_add_overflows(smax_ptr, smax_val)) { 1953 dst_reg->smin_value = S64_MIN; 1954 dst_reg->smax_value = S64_MAX; 1955 } else { 1956 dst_reg->smin_value = smin_ptr + smin_val; 1957 dst_reg->smax_value = smax_ptr + smax_val; 1958 } 1959 if (umin_ptr + umin_val < umin_ptr || 1960 umax_ptr + umax_val < umax_ptr) { 1961 dst_reg->umin_value = 0; 1962 dst_reg->umax_value = U64_MAX; 1963 } else { 1964 dst_reg->umin_value = umin_ptr + umin_val; 1965 dst_reg->umax_value = umax_ptr + umax_val; 1966 } 1967 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1968 dst_reg->off = ptr_reg->off; 1969 if (reg_is_pkt_pointer(ptr_reg)) { 1970 dst_reg->id = ++env->id_gen; 1971 /* something was added to pkt_ptr, set range to zero */ 1972 dst_reg->range = 0; 1973 } 1974 break; 1975 case BPF_SUB: 1976 if (dst_reg == off_reg) { 1977 /* scalar -= pointer. Creates an unknown scalar */ 1978 verbose(env, "R%d tried to subtract pointer from scalar\n", 1979 dst); 1980 return -EACCES; 1981 } 1982 /* We don't allow subtraction from FP, because (according to 1983 * test_verifier.c test "invalid fp arithmetic", JITs might not 1984 * be able to deal with it. 1985 */ 1986 if (ptr_reg->type == PTR_TO_STACK) { 1987 verbose(env, "R%d subtraction from stack pointer prohibited\n", 1988 dst); 1989 return -EACCES; 1990 } 1991 if (known && (ptr_reg->off - smin_val == 1992 (s64)(s32)(ptr_reg->off - smin_val))) { 1993 /* pointer -= K. Subtract it from fixed offset */ 1994 dst_reg->smin_value = smin_ptr; 1995 dst_reg->smax_value = smax_ptr; 1996 dst_reg->umin_value = umin_ptr; 1997 dst_reg->umax_value = umax_ptr; 1998 dst_reg->var_off = ptr_reg->var_off; 1999 dst_reg->id = ptr_reg->id; 2000 dst_reg->off = ptr_reg->off - smin_val; 2001 dst_reg->range = ptr_reg->range; 2002 break; 2003 } 2004 /* A new variable offset is created. If the subtrahend is known 2005 * nonnegative, then any reg->range we had before is still good. 2006 */ 2007 if (signed_sub_overflows(smin_ptr, smax_val) || 2008 signed_sub_overflows(smax_ptr, smin_val)) { 2009 /* Overflow possible, we know nothing */ 2010 dst_reg->smin_value = S64_MIN; 2011 dst_reg->smax_value = S64_MAX; 2012 } else { 2013 dst_reg->smin_value = smin_ptr - smax_val; 2014 dst_reg->smax_value = smax_ptr - smin_val; 2015 } 2016 if (umin_ptr < umax_val) { 2017 /* Overflow possible, we know nothing */ 2018 dst_reg->umin_value = 0; 2019 dst_reg->umax_value = U64_MAX; 2020 } else { 2021 /* Cannot overflow (as long as bounds are consistent) */ 2022 dst_reg->umin_value = umin_ptr - umax_val; 2023 dst_reg->umax_value = umax_ptr - umin_val; 2024 } 2025 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2026 dst_reg->off = ptr_reg->off; 2027 if (reg_is_pkt_pointer(ptr_reg)) { 2028 dst_reg->id = ++env->id_gen; 2029 /* something was added to pkt_ptr, set range to zero */ 2030 if (smin_val < 0) 2031 dst_reg->range = 0; 2032 } 2033 break; 2034 case BPF_AND: 2035 case BPF_OR: 2036 case BPF_XOR: 2037 /* bitwise ops on pointers are troublesome, prohibit. */ 2038 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2039 dst, bpf_alu_string[opcode >> 4]); 2040 return -EACCES; 2041 default: 2042 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2043 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2044 dst, bpf_alu_string[opcode >> 4]); 2045 return -EACCES; 2046 } 2047 2048 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2049 return -EINVAL; 2050 2051 __update_reg_bounds(dst_reg); 2052 __reg_deduce_bounds(dst_reg); 2053 __reg_bound_offset(dst_reg); 2054 return 0; 2055 } 2056 2057 /* WARNING: This function does calculations on 64-bit values, but the actual 2058 * execution may occur on 32-bit values. Therefore, things like bitshifts 2059 * need extra checks in the 32-bit case. 2060 */ 2061 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2062 struct bpf_insn *insn, 2063 struct bpf_reg_state *dst_reg, 2064 struct bpf_reg_state src_reg) 2065 { 2066 struct bpf_reg_state *regs = cur_regs(env); 2067 u8 opcode = BPF_OP(insn->code); 2068 bool src_known, dst_known; 2069 s64 smin_val, smax_val; 2070 u64 umin_val, umax_val; 2071 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2072 2073 smin_val = src_reg.smin_value; 2074 smax_val = src_reg.smax_value; 2075 umin_val = src_reg.umin_value; 2076 umax_val = src_reg.umax_value; 2077 src_known = tnum_is_const(src_reg.var_off); 2078 dst_known = tnum_is_const(dst_reg->var_off); 2079 2080 if (!src_known && 2081 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2082 __mark_reg_unknown(dst_reg); 2083 return 0; 2084 } 2085 2086 switch (opcode) { 2087 case BPF_ADD: 2088 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2089 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2090 dst_reg->smin_value = S64_MIN; 2091 dst_reg->smax_value = S64_MAX; 2092 } else { 2093 dst_reg->smin_value += smin_val; 2094 dst_reg->smax_value += smax_val; 2095 } 2096 if (dst_reg->umin_value + umin_val < umin_val || 2097 dst_reg->umax_value + umax_val < umax_val) { 2098 dst_reg->umin_value = 0; 2099 dst_reg->umax_value = U64_MAX; 2100 } else { 2101 dst_reg->umin_value += umin_val; 2102 dst_reg->umax_value += umax_val; 2103 } 2104 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2105 break; 2106 case BPF_SUB: 2107 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2108 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2109 /* Overflow possible, we know nothing */ 2110 dst_reg->smin_value = S64_MIN; 2111 dst_reg->smax_value = S64_MAX; 2112 } else { 2113 dst_reg->smin_value -= smax_val; 2114 dst_reg->smax_value -= smin_val; 2115 } 2116 if (dst_reg->umin_value < umax_val) { 2117 /* Overflow possible, we know nothing */ 2118 dst_reg->umin_value = 0; 2119 dst_reg->umax_value = U64_MAX; 2120 } else { 2121 /* Cannot overflow (as long as bounds are consistent) */ 2122 dst_reg->umin_value -= umax_val; 2123 dst_reg->umax_value -= umin_val; 2124 } 2125 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2126 break; 2127 case BPF_MUL: 2128 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2129 if (smin_val < 0 || dst_reg->smin_value < 0) { 2130 /* Ain't nobody got time to multiply that sign */ 2131 __mark_reg_unbounded(dst_reg); 2132 __update_reg_bounds(dst_reg); 2133 break; 2134 } 2135 /* Both values are positive, so we can work with unsigned and 2136 * copy the result to signed (unless it exceeds S64_MAX). 2137 */ 2138 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2139 /* Potential overflow, we know nothing */ 2140 __mark_reg_unbounded(dst_reg); 2141 /* (except what we can learn from the var_off) */ 2142 __update_reg_bounds(dst_reg); 2143 break; 2144 } 2145 dst_reg->umin_value *= umin_val; 2146 dst_reg->umax_value *= umax_val; 2147 if (dst_reg->umax_value > S64_MAX) { 2148 /* Overflow possible, we know nothing */ 2149 dst_reg->smin_value = S64_MIN; 2150 dst_reg->smax_value = S64_MAX; 2151 } else { 2152 dst_reg->smin_value = dst_reg->umin_value; 2153 dst_reg->smax_value = dst_reg->umax_value; 2154 } 2155 break; 2156 case BPF_AND: 2157 if (src_known && dst_known) { 2158 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2159 src_reg.var_off.value); 2160 break; 2161 } 2162 /* We get our minimum from the var_off, since that's inherently 2163 * bitwise. Our maximum is the minimum of the operands' maxima. 2164 */ 2165 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2166 dst_reg->umin_value = dst_reg->var_off.value; 2167 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2168 if (dst_reg->smin_value < 0 || smin_val < 0) { 2169 /* Lose signed bounds when ANDing negative numbers, 2170 * ain't nobody got time for that. 2171 */ 2172 dst_reg->smin_value = S64_MIN; 2173 dst_reg->smax_value = S64_MAX; 2174 } else { 2175 /* ANDing two positives gives a positive, so safe to 2176 * cast result into s64. 2177 */ 2178 dst_reg->smin_value = dst_reg->umin_value; 2179 dst_reg->smax_value = dst_reg->umax_value; 2180 } 2181 /* We may learn something more from the var_off */ 2182 __update_reg_bounds(dst_reg); 2183 break; 2184 case BPF_OR: 2185 if (src_known && dst_known) { 2186 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2187 src_reg.var_off.value); 2188 break; 2189 } 2190 /* We get our maximum from the var_off, and our minimum is the 2191 * maximum of the operands' minima 2192 */ 2193 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2194 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2195 dst_reg->umax_value = dst_reg->var_off.value | 2196 dst_reg->var_off.mask; 2197 if (dst_reg->smin_value < 0 || smin_val < 0) { 2198 /* Lose signed bounds when ORing negative numbers, 2199 * ain't nobody got time for that. 2200 */ 2201 dst_reg->smin_value = S64_MIN; 2202 dst_reg->smax_value = S64_MAX; 2203 } else { 2204 /* ORing two positives gives a positive, so safe to 2205 * cast result into s64. 2206 */ 2207 dst_reg->smin_value = dst_reg->umin_value; 2208 dst_reg->smax_value = dst_reg->umax_value; 2209 } 2210 /* We may learn something more from the var_off */ 2211 __update_reg_bounds(dst_reg); 2212 break; 2213 case BPF_LSH: 2214 if (umax_val >= insn_bitness) { 2215 /* Shifts greater than 31 or 63 are undefined. 2216 * This includes shifts by a negative number. 2217 */ 2218 mark_reg_unknown(env, regs, insn->dst_reg); 2219 break; 2220 } 2221 /* We lose all sign bit information (except what we can pick 2222 * up from var_off) 2223 */ 2224 dst_reg->smin_value = S64_MIN; 2225 dst_reg->smax_value = S64_MAX; 2226 /* If we might shift our top bit out, then we know nothing */ 2227 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2228 dst_reg->umin_value = 0; 2229 dst_reg->umax_value = U64_MAX; 2230 } else { 2231 dst_reg->umin_value <<= umin_val; 2232 dst_reg->umax_value <<= umax_val; 2233 } 2234 if (src_known) 2235 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2236 else 2237 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2238 /* We may learn something more from the var_off */ 2239 __update_reg_bounds(dst_reg); 2240 break; 2241 case BPF_RSH: 2242 if (umax_val >= insn_bitness) { 2243 /* Shifts greater than 31 or 63 are undefined. 2244 * This includes shifts by a negative number. 2245 */ 2246 mark_reg_unknown(env, regs, insn->dst_reg); 2247 break; 2248 } 2249 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2250 * be negative, then either: 2251 * 1) src_reg might be zero, so the sign bit of the result is 2252 * unknown, so we lose our signed bounds 2253 * 2) it's known negative, thus the unsigned bounds capture the 2254 * signed bounds 2255 * 3) the signed bounds cross zero, so they tell us nothing 2256 * about the result 2257 * If the value in dst_reg is known nonnegative, then again the 2258 * unsigned bounts capture the signed bounds. 2259 * Thus, in all cases it suffices to blow away our signed bounds 2260 * and rely on inferring new ones from the unsigned bounds and 2261 * var_off of the result. 2262 */ 2263 dst_reg->smin_value = S64_MIN; 2264 dst_reg->smax_value = S64_MAX; 2265 if (src_known) 2266 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2267 umin_val); 2268 else 2269 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2270 dst_reg->umin_value >>= umax_val; 2271 dst_reg->umax_value >>= umin_val; 2272 /* We may learn something more from the var_off */ 2273 __update_reg_bounds(dst_reg); 2274 break; 2275 default: 2276 mark_reg_unknown(env, regs, insn->dst_reg); 2277 break; 2278 } 2279 2280 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2281 /* 32-bit ALU ops are (32,32)->32 */ 2282 coerce_reg_to_size(dst_reg, 4); 2283 coerce_reg_to_size(&src_reg, 4); 2284 } 2285 2286 __reg_deduce_bounds(dst_reg); 2287 __reg_bound_offset(dst_reg); 2288 return 0; 2289 } 2290 2291 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2292 * and var_off. 2293 */ 2294 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2295 struct bpf_insn *insn) 2296 { 2297 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg; 2298 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2299 u8 opcode = BPF_OP(insn->code); 2300 2301 dst_reg = ®s[insn->dst_reg]; 2302 src_reg = NULL; 2303 if (dst_reg->type != SCALAR_VALUE) 2304 ptr_reg = dst_reg; 2305 if (BPF_SRC(insn->code) == BPF_X) { 2306 src_reg = ®s[insn->src_reg]; 2307 if (src_reg->type != SCALAR_VALUE) { 2308 if (dst_reg->type != SCALAR_VALUE) { 2309 /* Combining two pointers by any ALU op yields 2310 * an arbitrary scalar. Disallow all math except 2311 * pointer subtraction 2312 */ 2313 if (opcode == BPF_SUB){ 2314 mark_reg_unknown(env, regs, insn->dst_reg); 2315 return 0; 2316 } 2317 verbose(env, "R%d pointer %s pointer prohibited\n", 2318 insn->dst_reg, 2319 bpf_alu_string[opcode >> 4]); 2320 return -EACCES; 2321 } else { 2322 /* scalar += pointer 2323 * This is legal, but we have to reverse our 2324 * src/dest handling in computing the range 2325 */ 2326 return adjust_ptr_min_max_vals(env, insn, 2327 src_reg, dst_reg); 2328 } 2329 } else if (ptr_reg) { 2330 /* pointer += scalar */ 2331 return adjust_ptr_min_max_vals(env, insn, 2332 dst_reg, src_reg); 2333 } 2334 } else { 2335 /* Pretend the src is a reg with a known value, since we only 2336 * need to be able to read from this state. 2337 */ 2338 off_reg.type = SCALAR_VALUE; 2339 __mark_reg_known(&off_reg, insn->imm); 2340 src_reg = &off_reg; 2341 if (ptr_reg) /* pointer += K */ 2342 return adjust_ptr_min_max_vals(env, insn, 2343 ptr_reg, src_reg); 2344 } 2345 2346 /* Got here implies adding two SCALAR_VALUEs */ 2347 if (WARN_ON_ONCE(ptr_reg)) { 2348 print_verifier_state(env, env->cur_state); 2349 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 2350 return -EINVAL; 2351 } 2352 if (WARN_ON(!src_reg)) { 2353 print_verifier_state(env, env->cur_state); 2354 verbose(env, "verifier internal error: no src_reg\n"); 2355 return -EINVAL; 2356 } 2357 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2358 } 2359 2360 /* check validity of 32-bit and 64-bit arithmetic operations */ 2361 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2362 { 2363 struct bpf_reg_state *regs = cur_regs(env); 2364 u8 opcode = BPF_OP(insn->code); 2365 int err; 2366 2367 if (opcode == BPF_END || opcode == BPF_NEG) { 2368 if (opcode == BPF_NEG) { 2369 if (BPF_SRC(insn->code) != 0 || 2370 insn->src_reg != BPF_REG_0 || 2371 insn->off != 0 || insn->imm != 0) { 2372 verbose(env, "BPF_NEG uses reserved fields\n"); 2373 return -EINVAL; 2374 } 2375 } else { 2376 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2377 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2378 BPF_CLASS(insn->code) == BPF_ALU64) { 2379 verbose(env, "BPF_END uses reserved fields\n"); 2380 return -EINVAL; 2381 } 2382 } 2383 2384 /* check src operand */ 2385 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2386 if (err) 2387 return err; 2388 2389 if (is_pointer_value(env, insn->dst_reg)) { 2390 verbose(env, "R%d pointer arithmetic prohibited\n", 2391 insn->dst_reg); 2392 return -EACCES; 2393 } 2394 2395 /* check dest operand */ 2396 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2397 if (err) 2398 return err; 2399 2400 } else if (opcode == BPF_MOV) { 2401 2402 if (BPF_SRC(insn->code) == BPF_X) { 2403 if (insn->imm != 0 || insn->off != 0) { 2404 verbose(env, "BPF_MOV uses reserved fields\n"); 2405 return -EINVAL; 2406 } 2407 2408 /* check src operand */ 2409 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2410 if (err) 2411 return err; 2412 } else { 2413 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2414 verbose(env, "BPF_MOV uses reserved fields\n"); 2415 return -EINVAL; 2416 } 2417 } 2418 2419 /* check dest operand */ 2420 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2421 if (err) 2422 return err; 2423 2424 if (BPF_SRC(insn->code) == BPF_X) { 2425 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2426 /* case: R1 = R2 2427 * copy register state to dest reg 2428 */ 2429 regs[insn->dst_reg] = regs[insn->src_reg]; 2430 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 2431 } else { 2432 /* R1 = (u32) R2 */ 2433 if (is_pointer_value(env, insn->src_reg)) { 2434 verbose(env, 2435 "R%d partial copy of pointer\n", 2436 insn->src_reg); 2437 return -EACCES; 2438 } 2439 mark_reg_unknown(env, regs, insn->dst_reg); 2440 coerce_reg_to_size(®s[insn->dst_reg], 4); 2441 } 2442 } else { 2443 /* case: R = imm 2444 * remember the value we stored into this reg 2445 */ 2446 regs[insn->dst_reg].type = SCALAR_VALUE; 2447 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2448 __mark_reg_known(regs + insn->dst_reg, 2449 insn->imm); 2450 } else { 2451 __mark_reg_known(regs + insn->dst_reg, 2452 (u32)insn->imm); 2453 } 2454 } 2455 2456 } else if (opcode > BPF_END) { 2457 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 2458 return -EINVAL; 2459 2460 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2461 2462 if (BPF_SRC(insn->code) == BPF_X) { 2463 if (insn->imm != 0 || insn->off != 0) { 2464 verbose(env, "BPF_ALU uses reserved fields\n"); 2465 return -EINVAL; 2466 } 2467 /* check src1 operand */ 2468 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2469 if (err) 2470 return err; 2471 } else { 2472 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2473 verbose(env, "BPF_ALU uses reserved fields\n"); 2474 return -EINVAL; 2475 } 2476 } 2477 2478 /* check src2 operand */ 2479 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2480 if (err) 2481 return err; 2482 2483 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2484 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2485 verbose(env, "div by zero\n"); 2486 return -EINVAL; 2487 } 2488 2489 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2490 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2491 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2492 2493 if (insn->imm < 0 || insn->imm >= size) { 2494 verbose(env, "invalid shift %d\n", insn->imm); 2495 return -EINVAL; 2496 } 2497 } 2498 2499 /* check dest operand */ 2500 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2501 if (err) 2502 return err; 2503 2504 return adjust_reg_min_max_vals(env, insn); 2505 } 2506 2507 return 0; 2508 } 2509 2510 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2511 struct bpf_reg_state *dst_reg, 2512 enum bpf_reg_type type, 2513 bool range_right_open) 2514 { 2515 struct bpf_reg_state *regs = state->regs, *reg; 2516 u16 new_range; 2517 int i; 2518 2519 if (dst_reg->off < 0 || 2520 (dst_reg->off == 0 && range_right_open)) 2521 /* This doesn't give us any range */ 2522 return; 2523 2524 if (dst_reg->umax_value > MAX_PACKET_OFF || 2525 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2526 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2527 * than pkt_end, but that's because it's also less than pkt. 2528 */ 2529 return; 2530 2531 new_range = dst_reg->off; 2532 if (range_right_open) 2533 new_range--; 2534 2535 /* Examples for register markings: 2536 * 2537 * pkt_data in dst register: 2538 * 2539 * r2 = r3; 2540 * r2 += 8; 2541 * if (r2 > pkt_end) goto <handle exception> 2542 * <access okay> 2543 * 2544 * r2 = r3; 2545 * r2 += 8; 2546 * if (r2 < pkt_end) goto <access okay> 2547 * <handle exception> 2548 * 2549 * Where: 2550 * r2 == dst_reg, pkt_end == src_reg 2551 * r2=pkt(id=n,off=8,r=0) 2552 * r3=pkt(id=n,off=0,r=0) 2553 * 2554 * pkt_data in src register: 2555 * 2556 * r2 = r3; 2557 * r2 += 8; 2558 * if (pkt_end >= r2) goto <access okay> 2559 * <handle exception> 2560 * 2561 * r2 = r3; 2562 * r2 += 8; 2563 * if (pkt_end <= r2) goto <handle exception> 2564 * <access okay> 2565 * 2566 * Where: 2567 * pkt_end == dst_reg, r2 == src_reg 2568 * r2=pkt(id=n,off=8,r=0) 2569 * r3=pkt(id=n,off=0,r=0) 2570 * 2571 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2572 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 2573 * and [r3, r3 + 8-1) respectively is safe to access depending on 2574 * the check. 2575 */ 2576 2577 /* If our ids match, then we must have the same max_value. And we 2578 * don't care about the other reg's fixed offset, since if it's too big 2579 * the range won't allow anything. 2580 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2581 */ 2582 for (i = 0; i < MAX_BPF_REG; i++) 2583 if (regs[i].type == type && regs[i].id == dst_reg->id) 2584 /* keep the maximum range already checked */ 2585 regs[i].range = max(regs[i].range, new_range); 2586 2587 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2588 if (state->stack[i].slot_type[0] != STACK_SPILL) 2589 continue; 2590 reg = &state->stack[i].spilled_ptr; 2591 if (reg->type == type && reg->id == dst_reg->id) 2592 reg->range = max(reg->range, new_range); 2593 } 2594 } 2595 2596 /* Adjusts the register min/max values in the case that the dst_reg is the 2597 * variable register that we are working on, and src_reg is a constant or we're 2598 * simply doing a BPF_K check. 2599 * In JEQ/JNE cases we also adjust the var_off values. 2600 */ 2601 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2602 struct bpf_reg_state *false_reg, u64 val, 2603 u8 opcode) 2604 { 2605 /* If the dst_reg is a pointer, we can't learn anything about its 2606 * variable offset from the compare (unless src_reg were a pointer into 2607 * the same object, but we don't bother with that. 2608 * Since false_reg and true_reg have the same type by construction, we 2609 * only need to check one of them for pointerness. 2610 */ 2611 if (__is_pointer_value(false, false_reg)) 2612 return; 2613 2614 switch (opcode) { 2615 case BPF_JEQ: 2616 /* If this is false then we know nothing Jon Snow, but if it is 2617 * true then we know for sure. 2618 */ 2619 __mark_reg_known(true_reg, val); 2620 break; 2621 case BPF_JNE: 2622 /* If this is true we know nothing Jon Snow, but if it is false 2623 * we know the value for sure; 2624 */ 2625 __mark_reg_known(false_reg, val); 2626 break; 2627 case BPF_JGT: 2628 false_reg->umax_value = min(false_reg->umax_value, val); 2629 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2630 break; 2631 case BPF_JSGT: 2632 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2633 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2634 break; 2635 case BPF_JLT: 2636 false_reg->umin_value = max(false_reg->umin_value, val); 2637 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2638 break; 2639 case BPF_JSLT: 2640 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2641 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2642 break; 2643 case BPF_JGE: 2644 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2645 true_reg->umin_value = max(true_reg->umin_value, val); 2646 break; 2647 case BPF_JSGE: 2648 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2649 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2650 break; 2651 case BPF_JLE: 2652 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2653 true_reg->umax_value = min(true_reg->umax_value, val); 2654 break; 2655 case BPF_JSLE: 2656 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2657 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2658 break; 2659 default: 2660 break; 2661 } 2662 2663 __reg_deduce_bounds(false_reg); 2664 __reg_deduce_bounds(true_reg); 2665 /* We might have learned some bits from the bounds. */ 2666 __reg_bound_offset(false_reg); 2667 __reg_bound_offset(true_reg); 2668 /* Intersecting with the old var_off might have improved our bounds 2669 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2670 * then new var_off is (0; 0x7f...fc) which improves our umax. 2671 */ 2672 __update_reg_bounds(false_reg); 2673 __update_reg_bounds(true_reg); 2674 } 2675 2676 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 2677 * the variable reg. 2678 */ 2679 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2680 struct bpf_reg_state *false_reg, u64 val, 2681 u8 opcode) 2682 { 2683 if (__is_pointer_value(false, false_reg)) 2684 return; 2685 2686 switch (opcode) { 2687 case BPF_JEQ: 2688 /* If this is false then we know nothing Jon Snow, but if it is 2689 * true then we know for sure. 2690 */ 2691 __mark_reg_known(true_reg, val); 2692 break; 2693 case BPF_JNE: 2694 /* If this is true we know nothing Jon Snow, but if it is false 2695 * we know the value for sure; 2696 */ 2697 __mark_reg_known(false_reg, val); 2698 break; 2699 case BPF_JGT: 2700 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2701 false_reg->umin_value = max(false_reg->umin_value, val); 2702 break; 2703 case BPF_JSGT: 2704 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2705 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2706 break; 2707 case BPF_JLT: 2708 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2709 false_reg->umax_value = min(false_reg->umax_value, val); 2710 break; 2711 case BPF_JSLT: 2712 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2713 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2714 break; 2715 case BPF_JGE: 2716 true_reg->umax_value = min(true_reg->umax_value, val); 2717 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2718 break; 2719 case BPF_JSGE: 2720 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2721 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2722 break; 2723 case BPF_JLE: 2724 true_reg->umin_value = max(true_reg->umin_value, val); 2725 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2726 break; 2727 case BPF_JSLE: 2728 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2729 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2730 break; 2731 default: 2732 break; 2733 } 2734 2735 __reg_deduce_bounds(false_reg); 2736 __reg_deduce_bounds(true_reg); 2737 /* We might have learned some bits from the bounds. */ 2738 __reg_bound_offset(false_reg); 2739 __reg_bound_offset(true_reg); 2740 /* Intersecting with the old var_off might have improved our bounds 2741 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2742 * then new var_off is (0; 0x7f...fc) which improves our umax. 2743 */ 2744 __update_reg_bounds(false_reg); 2745 __update_reg_bounds(true_reg); 2746 } 2747 2748 /* Regs are known to be equal, so intersect their min/max/var_off */ 2749 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 2750 struct bpf_reg_state *dst_reg) 2751 { 2752 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 2753 dst_reg->umin_value); 2754 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 2755 dst_reg->umax_value); 2756 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 2757 dst_reg->smin_value); 2758 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 2759 dst_reg->smax_value); 2760 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 2761 dst_reg->var_off); 2762 /* We might have learned new bounds from the var_off. */ 2763 __update_reg_bounds(src_reg); 2764 __update_reg_bounds(dst_reg); 2765 /* We might have learned something about the sign bit. */ 2766 __reg_deduce_bounds(src_reg); 2767 __reg_deduce_bounds(dst_reg); 2768 /* We might have learned some bits from the bounds. */ 2769 __reg_bound_offset(src_reg); 2770 __reg_bound_offset(dst_reg); 2771 /* Intersecting with the old var_off might have improved our bounds 2772 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2773 * then new var_off is (0; 0x7f...fc) which improves our umax. 2774 */ 2775 __update_reg_bounds(src_reg); 2776 __update_reg_bounds(dst_reg); 2777 } 2778 2779 static void reg_combine_min_max(struct bpf_reg_state *true_src, 2780 struct bpf_reg_state *true_dst, 2781 struct bpf_reg_state *false_src, 2782 struct bpf_reg_state *false_dst, 2783 u8 opcode) 2784 { 2785 switch (opcode) { 2786 case BPF_JEQ: 2787 __reg_combine_min_max(true_src, true_dst); 2788 break; 2789 case BPF_JNE: 2790 __reg_combine_min_max(false_src, false_dst); 2791 break; 2792 } 2793 } 2794 2795 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2796 bool is_null) 2797 { 2798 struct bpf_reg_state *reg = ®s[regno]; 2799 2800 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2801 /* Old offset (both fixed and variable parts) should 2802 * have been known-zero, because we don't allow pointer 2803 * arithmetic on pointers that might be NULL. 2804 */ 2805 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 2806 !tnum_equals_const(reg->var_off, 0) || 2807 reg->off)) { 2808 __mark_reg_known_zero(reg); 2809 reg->off = 0; 2810 } 2811 if (is_null) { 2812 reg->type = SCALAR_VALUE; 2813 } else if (reg->map_ptr->inner_map_meta) { 2814 reg->type = CONST_PTR_TO_MAP; 2815 reg->map_ptr = reg->map_ptr->inner_map_meta; 2816 } else { 2817 reg->type = PTR_TO_MAP_VALUE; 2818 } 2819 /* We don't need id from this point onwards anymore, thus we 2820 * should better reset it, so that state pruning has chances 2821 * to take effect. 2822 */ 2823 reg->id = 0; 2824 } 2825 } 2826 2827 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2828 * be folded together at some point. 2829 */ 2830 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2831 bool is_null) 2832 { 2833 struct bpf_reg_state *regs = state->regs; 2834 u32 id = regs[regno].id; 2835 int i; 2836 2837 for (i = 0; i < MAX_BPF_REG; i++) 2838 mark_map_reg(regs, i, id, is_null); 2839 2840 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2841 if (state->stack[i].slot_type[0] != STACK_SPILL) 2842 continue; 2843 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 2844 } 2845 } 2846 2847 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 2848 struct bpf_reg_state *dst_reg, 2849 struct bpf_reg_state *src_reg, 2850 struct bpf_verifier_state *this_branch, 2851 struct bpf_verifier_state *other_branch) 2852 { 2853 if (BPF_SRC(insn->code) != BPF_X) 2854 return false; 2855 2856 switch (BPF_OP(insn->code)) { 2857 case BPF_JGT: 2858 if ((dst_reg->type == PTR_TO_PACKET && 2859 src_reg->type == PTR_TO_PACKET_END) || 2860 (dst_reg->type == PTR_TO_PACKET_META && 2861 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2862 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 2863 find_good_pkt_pointers(this_branch, dst_reg, 2864 dst_reg->type, false); 2865 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2866 src_reg->type == PTR_TO_PACKET) || 2867 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2868 src_reg->type == PTR_TO_PACKET_META)) { 2869 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 2870 find_good_pkt_pointers(other_branch, src_reg, 2871 src_reg->type, true); 2872 } else { 2873 return false; 2874 } 2875 break; 2876 case BPF_JLT: 2877 if ((dst_reg->type == PTR_TO_PACKET && 2878 src_reg->type == PTR_TO_PACKET_END) || 2879 (dst_reg->type == PTR_TO_PACKET_META && 2880 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2881 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 2882 find_good_pkt_pointers(other_branch, dst_reg, 2883 dst_reg->type, true); 2884 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2885 src_reg->type == PTR_TO_PACKET) || 2886 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2887 src_reg->type == PTR_TO_PACKET_META)) { 2888 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 2889 find_good_pkt_pointers(this_branch, src_reg, 2890 src_reg->type, false); 2891 } else { 2892 return false; 2893 } 2894 break; 2895 case BPF_JGE: 2896 if ((dst_reg->type == PTR_TO_PACKET && 2897 src_reg->type == PTR_TO_PACKET_END) || 2898 (dst_reg->type == PTR_TO_PACKET_META && 2899 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2900 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 2901 find_good_pkt_pointers(this_branch, dst_reg, 2902 dst_reg->type, true); 2903 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2904 src_reg->type == PTR_TO_PACKET) || 2905 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2906 src_reg->type == PTR_TO_PACKET_META)) { 2907 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 2908 find_good_pkt_pointers(other_branch, src_reg, 2909 src_reg->type, false); 2910 } else { 2911 return false; 2912 } 2913 break; 2914 case BPF_JLE: 2915 if ((dst_reg->type == PTR_TO_PACKET && 2916 src_reg->type == PTR_TO_PACKET_END) || 2917 (dst_reg->type == PTR_TO_PACKET_META && 2918 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2919 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 2920 find_good_pkt_pointers(other_branch, dst_reg, 2921 dst_reg->type, false); 2922 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2923 src_reg->type == PTR_TO_PACKET) || 2924 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2925 src_reg->type == PTR_TO_PACKET_META)) { 2926 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 2927 find_good_pkt_pointers(this_branch, src_reg, 2928 src_reg->type, true); 2929 } else { 2930 return false; 2931 } 2932 break; 2933 default: 2934 return false; 2935 } 2936 2937 return true; 2938 } 2939 2940 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2941 struct bpf_insn *insn, int *insn_idx) 2942 { 2943 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state; 2944 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2945 u8 opcode = BPF_OP(insn->code); 2946 int err; 2947 2948 if (opcode > BPF_JSLE) { 2949 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 2950 return -EINVAL; 2951 } 2952 2953 if (BPF_SRC(insn->code) == BPF_X) { 2954 if (insn->imm != 0) { 2955 verbose(env, "BPF_JMP uses reserved fields\n"); 2956 return -EINVAL; 2957 } 2958 2959 /* check src1 operand */ 2960 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2961 if (err) 2962 return err; 2963 2964 if (is_pointer_value(env, insn->src_reg)) { 2965 verbose(env, "R%d pointer comparison prohibited\n", 2966 insn->src_reg); 2967 return -EACCES; 2968 } 2969 } else { 2970 if (insn->src_reg != BPF_REG_0) { 2971 verbose(env, "BPF_JMP uses reserved fields\n"); 2972 return -EINVAL; 2973 } 2974 } 2975 2976 /* check src2 operand */ 2977 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2978 if (err) 2979 return err; 2980 2981 dst_reg = ®s[insn->dst_reg]; 2982 2983 /* detect if R == 0 where R was initialized to zero earlier */ 2984 if (BPF_SRC(insn->code) == BPF_K && 2985 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2986 dst_reg->type == SCALAR_VALUE && 2987 tnum_equals_const(dst_reg->var_off, insn->imm)) { 2988 if (opcode == BPF_JEQ) { 2989 /* if (imm == imm) goto pc+off; 2990 * only follow the goto, ignore fall-through 2991 */ 2992 *insn_idx += insn->off; 2993 return 0; 2994 } else { 2995 /* if (imm != imm) goto pc+off; 2996 * only follow fall-through branch, since 2997 * that's where the program will go 2998 */ 2999 return 0; 3000 } 3001 } 3002 3003 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3004 if (!other_branch) 3005 return -EFAULT; 3006 3007 /* detect if we are comparing against a constant value so we can adjust 3008 * our min/max values for our dst register. 3009 * this is only legit if both are scalars (or pointers to the same 3010 * object, I suppose, but we don't support that right now), because 3011 * otherwise the different base pointers mean the offsets aren't 3012 * comparable. 3013 */ 3014 if (BPF_SRC(insn->code) == BPF_X) { 3015 if (dst_reg->type == SCALAR_VALUE && 3016 regs[insn->src_reg].type == SCALAR_VALUE) { 3017 if (tnum_is_const(regs[insn->src_reg].var_off)) 3018 reg_set_min_max(&other_branch->regs[insn->dst_reg], 3019 dst_reg, regs[insn->src_reg].var_off.value, 3020 opcode); 3021 else if (tnum_is_const(dst_reg->var_off)) 3022 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 3023 ®s[insn->src_reg], 3024 dst_reg->var_off.value, opcode); 3025 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3026 /* Comparing for equality, we can combine knowledge */ 3027 reg_combine_min_max(&other_branch->regs[insn->src_reg], 3028 &other_branch->regs[insn->dst_reg], 3029 ®s[insn->src_reg], 3030 ®s[insn->dst_reg], opcode); 3031 } 3032 } else if (dst_reg->type == SCALAR_VALUE) { 3033 reg_set_min_max(&other_branch->regs[insn->dst_reg], 3034 dst_reg, insn->imm, opcode); 3035 } 3036 3037 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3038 if (BPF_SRC(insn->code) == BPF_K && 3039 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3040 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3041 /* Mark all identical map registers in each branch as either 3042 * safe or unknown depending R == 0 or R != 0 conditional. 3043 */ 3044 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3045 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3046 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3047 this_branch, other_branch) && 3048 is_pointer_value(env, insn->dst_reg)) { 3049 verbose(env, "R%d pointer comparison prohibited\n", 3050 insn->dst_reg); 3051 return -EACCES; 3052 } 3053 if (env->log.level) 3054 print_verifier_state(env, this_branch); 3055 return 0; 3056 } 3057 3058 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3059 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3060 { 3061 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3062 3063 return (struct bpf_map *) (unsigned long) imm64; 3064 } 3065 3066 /* verify BPF_LD_IMM64 instruction */ 3067 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3068 { 3069 struct bpf_reg_state *regs = cur_regs(env); 3070 int err; 3071 3072 if (BPF_SIZE(insn->code) != BPF_DW) { 3073 verbose(env, "invalid BPF_LD_IMM insn\n"); 3074 return -EINVAL; 3075 } 3076 if (insn->off != 0) { 3077 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3078 return -EINVAL; 3079 } 3080 3081 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3082 if (err) 3083 return err; 3084 3085 if (insn->src_reg == 0) { 3086 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3087 3088 regs[insn->dst_reg].type = SCALAR_VALUE; 3089 __mark_reg_known(®s[insn->dst_reg], imm); 3090 return 0; 3091 } 3092 3093 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3094 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3095 3096 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3097 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3098 return 0; 3099 } 3100 3101 static bool may_access_skb(enum bpf_prog_type type) 3102 { 3103 switch (type) { 3104 case BPF_PROG_TYPE_SOCKET_FILTER: 3105 case BPF_PROG_TYPE_SCHED_CLS: 3106 case BPF_PROG_TYPE_SCHED_ACT: 3107 return true; 3108 default: 3109 return false; 3110 } 3111 } 3112 3113 /* verify safety of LD_ABS|LD_IND instructions: 3114 * - they can only appear in the programs where ctx == skb 3115 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3116 * preserve R6-R9, and store return value into R0 3117 * 3118 * Implicit input: 3119 * ctx == skb == R6 == CTX 3120 * 3121 * Explicit input: 3122 * SRC == any register 3123 * IMM == 32-bit immediate 3124 * 3125 * Output: 3126 * R0 - 8/16/32-bit skb data converted to cpu endianness 3127 */ 3128 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3129 { 3130 struct bpf_reg_state *regs = cur_regs(env); 3131 u8 mode = BPF_MODE(insn->code); 3132 int i, err; 3133 3134 if (!may_access_skb(env->prog->type)) { 3135 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3136 return -EINVAL; 3137 } 3138 3139 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3140 BPF_SIZE(insn->code) == BPF_DW || 3141 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3142 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3143 return -EINVAL; 3144 } 3145 3146 /* check whether implicit source operand (register R6) is readable */ 3147 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3148 if (err) 3149 return err; 3150 3151 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3152 verbose(env, 3153 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3154 return -EINVAL; 3155 } 3156 3157 if (mode == BPF_IND) { 3158 /* check explicit source operand */ 3159 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3160 if (err) 3161 return err; 3162 } 3163 3164 /* reset caller saved regs to unreadable */ 3165 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3166 mark_reg_not_init(env, regs, caller_saved[i]); 3167 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3168 } 3169 3170 /* mark destination R0 register as readable, since it contains 3171 * the value fetched from the packet. 3172 * Already marked as written above. 3173 */ 3174 mark_reg_unknown(env, regs, BPF_REG_0); 3175 return 0; 3176 } 3177 3178 static int check_return_code(struct bpf_verifier_env *env) 3179 { 3180 struct bpf_reg_state *reg; 3181 struct tnum range = tnum_range(0, 1); 3182 3183 switch (env->prog->type) { 3184 case BPF_PROG_TYPE_CGROUP_SKB: 3185 case BPF_PROG_TYPE_CGROUP_SOCK: 3186 case BPF_PROG_TYPE_SOCK_OPS: 3187 case BPF_PROG_TYPE_CGROUP_DEVICE: 3188 break; 3189 default: 3190 return 0; 3191 } 3192 3193 reg = cur_regs(env) + BPF_REG_0; 3194 if (reg->type != SCALAR_VALUE) { 3195 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3196 reg_type_str[reg->type]); 3197 return -EINVAL; 3198 } 3199 3200 if (!tnum_in(range, reg->var_off)) { 3201 verbose(env, "At program exit the register R0 "); 3202 if (!tnum_is_unknown(reg->var_off)) { 3203 char tn_buf[48]; 3204 3205 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3206 verbose(env, "has value %s", tn_buf); 3207 } else { 3208 verbose(env, "has unknown scalar value"); 3209 } 3210 verbose(env, " should have been 0 or 1\n"); 3211 return -EINVAL; 3212 } 3213 return 0; 3214 } 3215 3216 /* non-recursive DFS pseudo code 3217 * 1 procedure DFS-iterative(G,v): 3218 * 2 label v as discovered 3219 * 3 let S be a stack 3220 * 4 S.push(v) 3221 * 5 while S is not empty 3222 * 6 t <- S.pop() 3223 * 7 if t is what we're looking for: 3224 * 8 return t 3225 * 9 for all edges e in G.adjacentEdges(t) do 3226 * 10 if edge e is already labelled 3227 * 11 continue with the next edge 3228 * 12 w <- G.adjacentVertex(t,e) 3229 * 13 if vertex w is not discovered and not explored 3230 * 14 label e as tree-edge 3231 * 15 label w as discovered 3232 * 16 S.push(w) 3233 * 17 continue at 5 3234 * 18 else if vertex w is discovered 3235 * 19 label e as back-edge 3236 * 20 else 3237 * 21 // vertex w is explored 3238 * 22 label e as forward- or cross-edge 3239 * 23 label t as explored 3240 * 24 S.pop() 3241 * 3242 * convention: 3243 * 0x10 - discovered 3244 * 0x11 - discovered and fall-through edge labelled 3245 * 0x12 - discovered and fall-through and branch edges labelled 3246 * 0x20 - explored 3247 */ 3248 3249 enum { 3250 DISCOVERED = 0x10, 3251 EXPLORED = 0x20, 3252 FALLTHROUGH = 1, 3253 BRANCH = 2, 3254 }; 3255 3256 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3257 3258 static int *insn_stack; /* stack of insns to process */ 3259 static int cur_stack; /* current stack index */ 3260 static int *insn_state; 3261 3262 /* t, w, e - match pseudo-code above: 3263 * t - index of current instruction 3264 * w - next instruction 3265 * e - edge 3266 */ 3267 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3268 { 3269 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3270 return 0; 3271 3272 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3273 return 0; 3274 3275 if (w < 0 || w >= env->prog->len) { 3276 verbose(env, "jump out of range from insn %d to %d\n", t, w); 3277 return -EINVAL; 3278 } 3279 3280 if (e == BRANCH) 3281 /* mark branch target for state pruning */ 3282 env->explored_states[w] = STATE_LIST_MARK; 3283 3284 if (insn_state[w] == 0) { 3285 /* tree-edge */ 3286 insn_state[t] = DISCOVERED | e; 3287 insn_state[w] = DISCOVERED; 3288 if (cur_stack >= env->prog->len) 3289 return -E2BIG; 3290 insn_stack[cur_stack++] = w; 3291 return 1; 3292 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3293 verbose(env, "back-edge from insn %d to %d\n", t, w); 3294 return -EINVAL; 3295 } else if (insn_state[w] == EXPLORED) { 3296 /* forward- or cross-edge */ 3297 insn_state[t] = DISCOVERED | e; 3298 } else { 3299 verbose(env, "insn state internal bug\n"); 3300 return -EFAULT; 3301 } 3302 return 0; 3303 } 3304 3305 /* non-recursive depth-first-search to detect loops in BPF program 3306 * loop == back-edge in directed graph 3307 */ 3308 static int check_cfg(struct bpf_verifier_env *env) 3309 { 3310 struct bpf_insn *insns = env->prog->insnsi; 3311 int insn_cnt = env->prog->len; 3312 int ret = 0; 3313 int i, t; 3314 3315 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3316 if (!insn_state) 3317 return -ENOMEM; 3318 3319 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3320 if (!insn_stack) { 3321 kfree(insn_state); 3322 return -ENOMEM; 3323 } 3324 3325 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 3326 insn_stack[0] = 0; /* 0 is the first instruction */ 3327 cur_stack = 1; 3328 3329 peek_stack: 3330 if (cur_stack == 0) 3331 goto check_state; 3332 t = insn_stack[cur_stack - 1]; 3333 3334 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 3335 u8 opcode = BPF_OP(insns[t].code); 3336 3337 if (opcode == BPF_EXIT) { 3338 goto mark_explored; 3339 } else if (opcode == BPF_CALL) { 3340 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3341 if (ret == 1) 3342 goto peek_stack; 3343 else if (ret < 0) 3344 goto err_free; 3345 if (t + 1 < insn_cnt) 3346 env->explored_states[t + 1] = STATE_LIST_MARK; 3347 } else if (opcode == BPF_JA) { 3348 if (BPF_SRC(insns[t].code) != BPF_K) { 3349 ret = -EINVAL; 3350 goto err_free; 3351 } 3352 /* unconditional jump with single edge */ 3353 ret = push_insn(t, t + insns[t].off + 1, 3354 FALLTHROUGH, env); 3355 if (ret == 1) 3356 goto peek_stack; 3357 else if (ret < 0) 3358 goto err_free; 3359 /* tell verifier to check for equivalent states 3360 * after every call and jump 3361 */ 3362 if (t + 1 < insn_cnt) 3363 env->explored_states[t + 1] = STATE_LIST_MARK; 3364 } else { 3365 /* conditional jump with two edges */ 3366 env->explored_states[t] = STATE_LIST_MARK; 3367 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3368 if (ret == 1) 3369 goto peek_stack; 3370 else if (ret < 0) 3371 goto err_free; 3372 3373 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 3374 if (ret == 1) 3375 goto peek_stack; 3376 else if (ret < 0) 3377 goto err_free; 3378 } 3379 } else { 3380 /* all other non-branch instructions with single 3381 * fall-through edge 3382 */ 3383 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3384 if (ret == 1) 3385 goto peek_stack; 3386 else if (ret < 0) 3387 goto err_free; 3388 } 3389 3390 mark_explored: 3391 insn_state[t] = EXPLORED; 3392 if (cur_stack-- <= 0) { 3393 verbose(env, "pop stack internal bug\n"); 3394 ret = -EFAULT; 3395 goto err_free; 3396 } 3397 goto peek_stack; 3398 3399 check_state: 3400 for (i = 0; i < insn_cnt; i++) { 3401 if (insn_state[i] != EXPLORED) { 3402 verbose(env, "unreachable insn %d\n", i); 3403 ret = -EINVAL; 3404 goto err_free; 3405 } 3406 } 3407 ret = 0; /* cfg looks good */ 3408 3409 err_free: 3410 kfree(insn_state); 3411 kfree(insn_stack); 3412 return ret; 3413 } 3414 3415 /* check %cur's range satisfies %old's */ 3416 static bool range_within(struct bpf_reg_state *old, 3417 struct bpf_reg_state *cur) 3418 { 3419 return old->umin_value <= cur->umin_value && 3420 old->umax_value >= cur->umax_value && 3421 old->smin_value <= cur->smin_value && 3422 old->smax_value >= cur->smax_value; 3423 } 3424 3425 /* Maximum number of register states that can exist at once */ 3426 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 3427 struct idpair { 3428 u32 old; 3429 u32 cur; 3430 }; 3431 3432 /* If in the old state two registers had the same id, then they need to have 3433 * the same id in the new state as well. But that id could be different from 3434 * the old state, so we need to track the mapping from old to new ids. 3435 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 3436 * regs with old id 5 must also have new id 9 for the new state to be safe. But 3437 * regs with a different old id could still have new id 9, we don't care about 3438 * that. 3439 * So we look through our idmap to see if this old id has been seen before. If 3440 * so, we require the new id to match; otherwise, we add the id pair to the map. 3441 */ 3442 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 3443 { 3444 unsigned int i; 3445 3446 for (i = 0; i < ID_MAP_SIZE; i++) { 3447 if (!idmap[i].old) { 3448 /* Reached an empty slot; haven't seen this id before */ 3449 idmap[i].old = old_id; 3450 idmap[i].cur = cur_id; 3451 return true; 3452 } 3453 if (idmap[i].old == old_id) 3454 return idmap[i].cur == cur_id; 3455 } 3456 /* We ran out of idmap slots, which should be impossible */ 3457 WARN_ON_ONCE(1); 3458 return false; 3459 } 3460 3461 /* Returns true if (rold safe implies rcur safe) */ 3462 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 3463 struct idpair *idmap) 3464 { 3465 if (!(rold->live & REG_LIVE_READ)) 3466 /* explored state didn't use this */ 3467 return true; 3468 3469 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) 3470 return true; 3471 3472 if (rold->type == NOT_INIT) 3473 /* explored state can't have used this */ 3474 return true; 3475 if (rcur->type == NOT_INIT) 3476 return false; 3477 switch (rold->type) { 3478 case SCALAR_VALUE: 3479 if (rcur->type == SCALAR_VALUE) { 3480 /* new val must satisfy old val knowledge */ 3481 return range_within(rold, rcur) && 3482 tnum_in(rold->var_off, rcur->var_off); 3483 } else { 3484 /* We're trying to use a pointer in place of a scalar. 3485 * Even if the scalar was unbounded, this could lead to 3486 * pointer leaks because scalars are allowed to leak 3487 * while pointers are not. We could make this safe in 3488 * special cases if root is calling us, but it's 3489 * probably not worth the hassle. 3490 */ 3491 return false; 3492 } 3493 case PTR_TO_MAP_VALUE: 3494 /* If the new min/max/var_off satisfy the old ones and 3495 * everything else matches, we are OK. 3496 * We don't care about the 'id' value, because nothing 3497 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 3498 */ 3499 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 3500 range_within(rold, rcur) && 3501 tnum_in(rold->var_off, rcur->var_off); 3502 case PTR_TO_MAP_VALUE_OR_NULL: 3503 /* a PTR_TO_MAP_VALUE could be safe to use as a 3504 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 3505 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 3506 * checked, doing so could have affected others with the same 3507 * id, and we can't check for that because we lost the id when 3508 * we converted to a PTR_TO_MAP_VALUE. 3509 */ 3510 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3511 return false; 3512 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3513 return false; 3514 /* Check our ids match any regs they're supposed to */ 3515 return check_ids(rold->id, rcur->id, idmap); 3516 case PTR_TO_PACKET_META: 3517 case PTR_TO_PACKET: 3518 if (rcur->type != rold->type) 3519 return false; 3520 /* We must have at least as much range as the old ptr 3521 * did, so that any accesses which were safe before are 3522 * still safe. This is true even if old range < old off, 3523 * since someone could have accessed through (ptr - k), or 3524 * even done ptr -= k in a register, to get a safe access. 3525 */ 3526 if (rold->range > rcur->range) 3527 return false; 3528 /* If the offsets don't match, we can't trust our alignment; 3529 * nor can we be sure that we won't fall out of range. 3530 */ 3531 if (rold->off != rcur->off) 3532 return false; 3533 /* id relations must be preserved */ 3534 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 3535 return false; 3536 /* new val must satisfy old val knowledge */ 3537 return range_within(rold, rcur) && 3538 tnum_in(rold->var_off, rcur->var_off); 3539 case PTR_TO_CTX: 3540 case CONST_PTR_TO_MAP: 3541 case PTR_TO_STACK: 3542 case PTR_TO_PACKET_END: 3543 /* Only valid matches are exact, which memcmp() above 3544 * would have accepted 3545 */ 3546 default: 3547 /* Don't know what's going on, just say it's not safe */ 3548 return false; 3549 } 3550 3551 /* Shouldn't get here; if we do, say it's not safe */ 3552 WARN_ON_ONCE(1); 3553 return false; 3554 } 3555 3556 static bool stacksafe(struct bpf_verifier_state *old, 3557 struct bpf_verifier_state *cur, 3558 struct idpair *idmap) 3559 { 3560 int i, spi; 3561 3562 /* if explored stack has more populated slots than current stack 3563 * such stacks are not equivalent 3564 */ 3565 if (old->allocated_stack > cur->allocated_stack) 3566 return false; 3567 3568 /* walk slots of the explored stack and ignore any additional 3569 * slots in the current stack, since explored(safe) state 3570 * didn't use them 3571 */ 3572 for (i = 0; i < old->allocated_stack; i++) { 3573 spi = i / BPF_REG_SIZE; 3574 3575 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 3576 continue; 3577 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 3578 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 3579 /* Ex: old explored (safe) state has STACK_SPILL in 3580 * this stack slot, but current has has STACK_MISC -> 3581 * this verifier states are not equivalent, 3582 * return false to continue verification of this path 3583 */ 3584 return false; 3585 if (i % BPF_REG_SIZE) 3586 continue; 3587 if (old->stack[spi].slot_type[0] != STACK_SPILL) 3588 continue; 3589 if (!regsafe(&old->stack[spi].spilled_ptr, 3590 &cur->stack[spi].spilled_ptr, 3591 idmap)) 3592 /* when explored and current stack slot are both storing 3593 * spilled registers, check that stored pointers types 3594 * are the same as well. 3595 * Ex: explored safe path could have stored 3596 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3597 * but current path has stored: 3598 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3599 * such verifier states are not equivalent. 3600 * return false to continue verification of this path 3601 */ 3602 return false; 3603 } 3604 return true; 3605 } 3606 3607 /* compare two verifier states 3608 * 3609 * all states stored in state_list are known to be valid, since 3610 * verifier reached 'bpf_exit' instruction through them 3611 * 3612 * this function is called when verifier exploring different branches of 3613 * execution popped from the state stack. If it sees an old state that has 3614 * more strict register state and more strict stack state then this execution 3615 * branch doesn't need to be explored further, since verifier already 3616 * concluded that more strict state leads to valid finish. 3617 * 3618 * Therefore two states are equivalent if register state is more conservative 3619 * and explored stack state is more conservative than the current one. 3620 * Example: 3621 * explored current 3622 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 3623 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 3624 * 3625 * In other words if current stack state (one being explored) has more 3626 * valid slots than old one that already passed validation, it means 3627 * the verifier can stop exploring and conclude that current state is valid too 3628 * 3629 * Similarly with registers. If explored state has register type as invalid 3630 * whereas register type in current state is meaningful, it means that 3631 * the current state will reach 'bpf_exit' instruction safely 3632 */ 3633 static bool states_equal(struct bpf_verifier_env *env, 3634 struct bpf_verifier_state *old, 3635 struct bpf_verifier_state *cur) 3636 { 3637 struct idpair *idmap; 3638 bool ret = false; 3639 int i; 3640 3641 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 3642 /* If we failed to allocate the idmap, just say it's not safe */ 3643 if (!idmap) 3644 return false; 3645 3646 for (i = 0; i < MAX_BPF_REG; i++) { 3647 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3648 goto out_free; 3649 } 3650 3651 if (!stacksafe(old, cur, idmap)) 3652 goto out_free; 3653 ret = true; 3654 out_free: 3655 kfree(idmap); 3656 return ret; 3657 } 3658 3659 /* A write screens off any subsequent reads; but write marks come from the 3660 * straight-line code between a state and its parent. When we arrive at a 3661 * jump target (in the first iteration of the propagate_liveness() loop), 3662 * we didn't arrive by the straight-line code, so read marks in state must 3663 * propagate to parent regardless of state's write marks. 3664 */ 3665 static bool do_propagate_liveness(const struct bpf_verifier_state *state, 3666 struct bpf_verifier_state *parent) 3667 { 3668 bool writes = parent == state->parent; /* Observe write marks */ 3669 bool touched = false; /* any changes made? */ 3670 int i; 3671 3672 if (!parent) 3673 return touched; 3674 /* Propagate read liveness of registers... */ 3675 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 3676 /* We don't need to worry about FP liveness because it's read-only */ 3677 for (i = 0; i < BPF_REG_FP; i++) { 3678 if (parent->regs[i].live & REG_LIVE_READ) 3679 continue; 3680 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3681 continue; 3682 if (state->regs[i].live & REG_LIVE_READ) { 3683 parent->regs[i].live |= REG_LIVE_READ; 3684 touched = true; 3685 } 3686 } 3687 /* ... and stack slots */ 3688 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 3689 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 3690 if (parent->stack[i].slot_type[0] != STACK_SPILL) 3691 continue; 3692 if (state->stack[i].slot_type[0] != STACK_SPILL) 3693 continue; 3694 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 3695 continue; 3696 if (writes && 3697 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN)) 3698 continue; 3699 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) { 3700 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ; 3701 touched = true; 3702 } 3703 } 3704 return touched; 3705 } 3706 3707 /* "parent" is "a state from which we reach the current state", but initially 3708 * it is not the state->parent (i.e. "the state whose straight-line code leads 3709 * to the current state"), instead it is the state that happened to arrive at 3710 * a (prunable) equivalent of the current state. See comment above 3711 * do_propagate_liveness() for consequences of this. 3712 * This function is just a more efficient way of calling mark_reg_read() or 3713 * mark_stack_slot_read() on each reg in "parent" that is read in "state", 3714 * though it requires that parent != state->parent in the call arguments. 3715 */ 3716 static void propagate_liveness(const struct bpf_verifier_state *state, 3717 struct bpf_verifier_state *parent) 3718 { 3719 while (do_propagate_liveness(state, parent)) { 3720 /* Something changed, so we need to feed those changes onward */ 3721 state = parent; 3722 parent = state->parent; 3723 } 3724 } 3725 3726 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3727 { 3728 struct bpf_verifier_state_list *new_sl; 3729 struct bpf_verifier_state_list *sl; 3730 struct bpf_verifier_state *cur = env->cur_state; 3731 int i, err; 3732 3733 sl = env->explored_states[insn_idx]; 3734 if (!sl) 3735 /* this 'insn_idx' instruction wasn't marked, so we will not 3736 * be doing state search here 3737 */ 3738 return 0; 3739 3740 while (sl != STATE_LIST_MARK) { 3741 if (states_equal(env, &sl->state, cur)) { 3742 /* reached equivalent register/stack state, 3743 * prune the search. 3744 * Registers read by the continuation are read by us. 3745 * If we have any write marks in env->cur_state, they 3746 * will prevent corresponding reads in the continuation 3747 * from reaching our parent (an explored_state). Our 3748 * own state will get the read marks recorded, but 3749 * they'll be immediately forgotten as we're pruning 3750 * this state and will pop a new one. 3751 */ 3752 propagate_liveness(&sl->state, cur); 3753 return 1; 3754 } 3755 sl = sl->next; 3756 } 3757 3758 /* there were no equivalent states, remember current one. 3759 * technically the current state is not proven to be safe yet, 3760 * but it will either reach bpf_exit (which means it's safe) or 3761 * it will be rejected. Since there are no loops, we won't be 3762 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3763 */ 3764 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 3765 if (!new_sl) 3766 return -ENOMEM; 3767 3768 /* add new state to the head of linked list */ 3769 err = copy_verifier_state(&new_sl->state, cur); 3770 if (err) { 3771 free_verifier_state(&new_sl->state, false); 3772 kfree(new_sl); 3773 return err; 3774 } 3775 new_sl->next = env->explored_states[insn_idx]; 3776 env->explored_states[insn_idx] = new_sl; 3777 /* connect new state to parentage chain */ 3778 cur->parent = &new_sl->state; 3779 /* clear write marks in current state: the writes we did are not writes 3780 * our child did, so they don't screen off its reads from us. 3781 * (There are no read marks in current state, because reads always mark 3782 * their parent and current state never has children yet. Only 3783 * explored_states can get read marks.) 3784 */ 3785 for (i = 0; i < BPF_REG_FP; i++) 3786 cur->regs[i].live = REG_LIVE_NONE; 3787 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++) 3788 if (cur->stack[i].slot_type[0] == STACK_SPILL) 3789 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE; 3790 return 0; 3791 } 3792 3793 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3794 int insn_idx, int prev_insn_idx) 3795 { 3796 if (env->dev_ops && env->dev_ops->insn_hook) 3797 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx); 3798 3799 return 0; 3800 } 3801 3802 static int do_check(struct bpf_verifier_env *env) 3803 { 3804 struct bpf_verifier_state *state; 3805 struct bpf_insn *insns = env->prog->insnsi; 3806 struct bpf_reg_state *regs; 3807 int insn_cnt = env->prog->len; 3808 int insn_idx, prev_insn_idx = 0; 3809 int insn_processed = 0; 3810 bool do_print_state = false; 3811 3812 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 3813 if (!state) 3814 return -ENOMEM; 3815 env->cur_state = state; 3816 init_reg_state(env, state->regs); 3817 state->parent = NULL; 3818 insn_idx = 0; 3819 for (;;) { 3820 struct bpf_insn *insn; 3821 u8 class; 3822 int err; 3823 3824 if (insn_idx >= insn_cnt) { 3825 verbose(env, "invalid insn idx %d insn_cnt %d\n", 3826 insn_idx, insn_cnt); 3827 return -EFAULT; 3828 } 3829 3830 insn = &insns[insn_idx]; 3831 class = BPF_CLASS(insn->code); 3832 3833 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 3834 verbose(env, 3835 "BPF program is too large. Processed %d insn\n", 3836 insn_processed); 3837 return -E2BIG; 3838 } 3839 3840 err = is_state_visited(env, insn_idx); 3841 if (err < 0) 3842 return err; 3843 if (err == 1) { 3844 /* found equivalent state, can prune the search */ 3845 if (env->log.level) { 3846 if (do_print_state) 3847 verbose(env, "\nfrom %d to %d: safe\n", 3848 prev_insn_idx, insn_idx); 3849 else 3850 verbose(env, "%d: safe\n", insn_idx); 3851 } 3852 goto process_bpf_exit; 3853 } 3854 3855 if (need_resched()) 3856 cond_resched(); 3857 3858 if (env->log.level > 1 || (env->log.level && do_print_state)) { 3859 if (env->log.level > 1) 3860 verbose(env, "%d:", insn_idx); 3861 else 3862 verbose(env, "\nfrom %d to %d:", 3863 prev_insn_idx, insn_idx); 3864 print_verifier_state(env, state); 3865 do_print_state = false; 3866 } 3867 3868 if (env->log.level) { 3869 verbose(env, "%d: ", insn_idx); 3870 print_bpf_insn(verbose, env, insn, 3871 env->allow_ptr_leaks); 3872 } 3873 3874 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3875 if (err) 3876 return err; 3877 3878 regs = cur_regs(env); 3879 env->insn_aux_data[insn_idx].seen = true; 3880 if (class == BPF_ALU || class == BPF_ALU64) { 3881 err = check_alu_op(env, insn); 3882 if (err) 3883 return err; 3884 3885 } else if (class == BPF_LDX) { 3886 enum bpf_reg_type *prev_src_type, src_reg_type; 3887 3888 /* check for reserved fields is already done */ 3889 3890 /* check src operand */ 3891 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3892 if (err) 3893 return err; 3894 3895 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3896 if (err) 3897 return err; 3898 3899 src_reg_type = regs[insn->src_reg].type; 3900 3901 /* check that memory (src_reg + off) is readable, 3902 * the state of dst_reg will be updated by this func 3903 */ 3904 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3905 BPF_SIZE(insn->code), BPF_READ, 3906 insn->dst_reg); 3907 if (err) 3908 return err; 3909 3910 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3911 3912 if (*prev_src_type == NOT_INIT) { 3913 /* saw a valid insn 3914 * dst_reg = *(u32 *)(src_reg + off) 3915 * save type to validate intersecting paths 3916 */ 3917 *prev_src_type = src_reg_type; 3918 3919 } else if (src_reg_type != *prev_src_type && 3920 (src_reg_type == PTR_TO_CTX || 3921 *prev_src_type == PTR_TO_CTX)) { 3922 /* ABuser program is trying to use the same insn 3923 * dst_reg = *(u32*) (src_reg + off) 3924 * with different pointer types: 3925 * src_reg == ctx in one branch and 3926 * src_reg == stack|map in some other branch. 3927 * Reject it. 3928 */ 3929 verbose(env, "same insn cannot be used with different pointers\n"); 3930 return -EINVAL; 3931 } 3932 3933 } else if (class == BPF_STX) { 3934 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3935 3936 if (BPF_MODE(insn->code) == BPF_XADD) { 3937 err = check_xadd(env, insn_idx, insn); 3938 if (err) 3939 return err; 3940 insn_idx++; 3941 continue; 3942 } 3943 3944 /* check src1 operand */ 3945 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3946 if (err) 3947 return err; 3948 /* check src2 operand */ 3949 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3950 if (err) 3951 return err; 3952 3953 dst_reg_type = regs[insn->dst_reg].type; 3954 3955 /* check that memory (dst_reg + off) is writeable */ 3956 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3957 BPF_SIZE(insn->code), BPF_WRITE, 3958 insn->src_reg); 3959 if (err) 3960 return err; 3961 3962 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3963 3964 if (*prev_dst_type == NOT_INIT) { 3965 *prev_dst_type = dst_reg_type; 3966 } else if (dst_reg_type != *prev_dst_type && 3967 (dst_reg_type == PTR_TO_CTX || 3968 *prev_dst_type == PTR_TO_CTX)) { 3969 verbose(env, "same insn cannot be used with different pointers\n"); 3970 return -EINVAL; 3971 } 3972 3973 } else if (class == BPF_ST) { 3974 if (BPF_MODE(insn->code) != BPF_MEM || 3975 insn->src_reg != BPF_REG_0) { 3976 verbose(env, "BPF_ST uses reserved fields\n"); 3977 return -EINVAL; 3978 } 3979 /* check src operand */ 3980 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3981 if (err) 3982 return err; 3983 3984 /* check that memory (dst_reg + off) is writeable */ 3985 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3986 BPF_SIZE(insn->code), BPF_WRITE, 3987 -1); 3988 if (err) 3989 return err; 3990 3991 } else if (class == BPF_JMP) { 3992 u8 opcode = BPF_OP(insn->code); 3993 3994 if (opcode == BPF_CALL) { 3995 if (BPF_SRC(insn->code) != BPF_K || 3996 insn->off != 0 || 3997 insn->src_reg != BPF_REG_0 || 3998 insn->dst_reg != BPF_REG_0) { 3999 verbose(env, "BPF_CALL uses reserved fields\n"); 4000 return -EINVAL; 4001 } 4002 4003 err = check_call(env, insn->imm, insn_idx); 4004 if (err) 4005 return err; 4006 4007 } else if (opcode == BPF_JA) { 4008 if (BPF_SRC(insn->code) != BPF_K || 4009 insn->imm != 0 || 4010 insn->src_reg != BPF_REG_0 || 4011 insn->dst_reg != BPF_REG_0) { 4012 verbose(env, "BPF_JA uses reserved fields\n"); 4013 return -EINVAL; 4014 } 4015 4016 insn_idx += insn->off + 1; 4017 continue; 4018 4019 } else if (opcode == BPF_EXIT) { 4020 if (BPF_SRC(insn->code) != BPF_K || 4021 insn->imm != 0 || 4022 insn->src_reg != BPF_REG_0 || 4023 insn->dst_reg != BPF_REG_0) { 4024 verbose(env, "BPF_EXIT uses reserved fields\n"); 4025 return -EINVAL; 4026 } 4027 4028 /* eBPF calling convetion is such that R0 is used 4029 * to return the value from eBPF program. 4030 * Make sure that it's readable at this time 4031 * of bpf_exit, which means that program wrote 4032 * something into it earlier 4033 */ 4034 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4035 if (err) 4036 return err; 4037 4038 if (is_pointer_value(env, BPF_REG_0)) { 4039 verbose(env, "R0 leaks addr as return value\n"); 4040 return -EACCES; 4041 } 4042 4043 err = check_return_code(env); 4044 if (err) 4045 return err; 4046 process_bpf_exit: 4047 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4048 if (err < 0) { 4049 if (err != -ENOENT) 4050 return err; 4051 break; 4052 } else { 4053 do_print_state = true; 4054 continue; 4055 } 4056 } else { 4057 err = check_cond_jmp_op(env, insn, &insn_idx); 4058 if (err) 4059 return err; 4060 } 4061 } else if (class == BPF_LD) { 4062 u8 mode = BPF_MODE(insn->code); 4063 4064 if (mode == BPF_ABS || mode == BPF_IND) { 4065 err = check_ld_abs(env, insn); 4066 if (err) 4067 return err; 4068 4069 } else if (mode == BPF_IMM) { 4070 err = check_ld_imm(env, insn); 4071 if (err) 4072 return err; 4073 4074 insn_idx++; 4075 env->insn_aux_data[insn_idx].seen = true; 4076 } else { 4077 verbose(env, "invalid BPF_LD mode\n"); 4078 return -EINVAL; 4079 } 4080 } else { 4081 verbose(env, "unknown insn class %d\n", class); 4082 return -EINVAL; 4083 } 4084 4085 insn_idx++; 4086 } 4087 4088 verbose(env, "processed %d insns, stack depth %d\n", insn_processed, 4089 env->prog->aux->stack_depth); 4090 return 0; 4091 } 4092 4093 static int check_map_prealloc(struct bpf_map *map) 4094 { 4095 return (map->map_type != BPF_MAP_TYPE_HASH && 4096 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4097 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4098 !(map->map_flags & BPF_F_NO_PREALLOC); 4099 } 4100 4101 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4102 struct bpf_map *map, 4103 struct bpf_prog *prog) 4104 4105 { 4106 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4107 * preallocated hash maps, since doing memory allocation 4108 * in overflow_handler can crash depending on where nmi got 4109 * triggered. 4110 */ 4111 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4112 if (!check_map_prealloc(map)) { 4113 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4114 return -EINVAL; 4115 } 4116 if (map->inner_map_meta && 4117 !check_map_prealloc(map->inner_map_meta)) { 4118 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4119 return -EINVAL; 4120 } 4121 } 4122 return 0; 4123 } 4124 4125 /* look for pseudo eBPF instructions that access map FDs and 4126 * replace them with actual map pointers 4127 */ 4128 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4129 { 4130 struct bpf_insn *insn = env->prog->insnsi; 4131 int insn_cnt = env->prog->len; 4132 int i, j, err; 4133 4134 err = bpf_prog_calc_tag(env->prog); 4135 if (err) 4136 return err; 4137 4138 for (i = 0; i < insn_cnt; i++, insn++) { 4139 if (BPF_CLASS(insn->code) == BPF_LDX && 4140 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 4141 verbose(env, "BPF_LDX uses reserved fields\n"); 4142 return -EINVAL; 4143 } 4144 4145 if (BPF_CLASS(insn->code) == BPF_STX && 4146 ((BPF_MODE(insn->code) != BPF_MEM && 4147 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 4148 verbose(env, "BPF_STX uses reserved fields\n"); 4149 return -EINVAL; 4150 } 4151 4152 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 4153 struct bpf_map *map; 4154 struct fd f; 4155 4156 if (i == insn_cnt - 1 || insn[1].code != 0 || 4157 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 4158 insn[1].off != 0) { 4159 verbose(env, "invalid bpf_ld_imm64 insn\n"); 4160 return -EINVAL; 4161 } 4162 4163 if (insn->src_reg == 0) 4164 /* valid generic load 64-bit imm */ 4165 goto next_insn; 4166 4167 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 4168 verbose(env, 4169 "unrecognized bpf_ld_imm64 insn\n"); 4170 return -EINVAL; 4171 } 4172 4173 f = fdget(insn->imm); 4174 map = __bpf_map_get(f); 4175 if (IS_ERR(map)) { 4176 verbose(env, "fd %d is not pointing to valid bpf_map\n", 4177 insn->imm); 4178 return PTR_ERR(map); 4179 } 4180 4181 err = check_map_prog_compatibility(env, map, env->prog); 4182 if (err) { 4183 fdput(f); 4184 return err; 4185 } 4186 4187 /* store map pointer inside BPF_LD_IMM64 instruction */ 4188 insn[0].imm = (u32) (unsigned long) map; 4189 insn[1].imm = ((u64) (unsigned long) map) >> 32; 4190 4191 /* check whether we recorded this map already */ 4192 for (j = 0; j < env->used_map_cnt; j++) 4193 if (env->used_maps[j] == map) { 4194 fdput(f); 4195 goto next_insn; 4196 } 4197 4198 if (env->used_map_cnt >= MAX_USED_MAPS) { 4199 fdput(f); 4200 return -E2BIG; 4201 } 4202 4203 /* hold the map. If the program is rejected by verifier, 4204 * the map will be released by release_maps() or it 4205 * will be used by the valid program until it's unloaded 4206 * and all maps are released in free_bpf_prog_info() 4207 */ 4208 map = bpf_map_inc(map, false); 4209 if (IS_ERR(map)) { 4210 fdput(f); 4211 return PTR_ERR(map); 4212 } 4213 env->used_maps[env->used_map_cnt++] = map; 4214 4215 fdput(f); 4216 next_insn: 4217 insn++; 4218 i++; 4219 } 4220 } 4221 4222 /* now all pseudo BPF_LD_IMM64 instructions load valid 4223 * 'struct bpf_map *' into a register instead of user map_fd. 4224 * These pointers will be used later by verifier to validate map access. 4225 */ 4226 return 0; 4227 } 4228 4229 /* drop refcnt of maps used by the rejected program */ 4230 static void release_maps(struct bpf_verifier_env *env) 4231 { 4232 int i; 4233 4234 for (i = 0; i < env->used_map_cnt; i++) 4235 bpf_map_put(env->used_maps[i]); 4236 } 4237 4238 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 4239 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 4240 { 4241 struct bpf_insn *insn = env->prog->insnsi; 4242 int insn_cnt = env->prog->len; 4243 int i; 4244 4245 for (i = 0; i < insn_cnt; i++, insn++) 4246 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 4247 insn->src_reg = 0; 4248 } 4249 4250 /* single env->prog->insni[off] instruction was replaced with the range 4251 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 4252 * [0, off) and [off, end) to new locations, so the patched range stays zero 4253 */ 4254 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 4255 u32 off, u32 cnt) 4256 { 4257 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 4258 int i; 4259 4260 if (cnt == 1) 4261 return 0; 4262 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 4263 if (!new_data) 4264 return -ENOMEM; 4265 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 4266 memcpy(new_data + off + cnt - 1, old_data + off, 4267 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 4268 for (i = off; i < off + cnt - 1; i++) 4269 new_data[i].seen = true; 4270 env->insn_aux_data = new_data; 4271 vfree(old_data); 4272 return 0; 4273 } 4274 4275 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 4276 const struct bpf_insn *patch, u32 len) 4277 { 4278 struct bpf_prog *new_prog; 4279 4280 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 4281 if (!new_prog) 4282 return NULL; 4283 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 4284 return NULL; 4285 return new_prog; 4286 } 4287 4288 /* The verifier does more data flow analysis than llvm and will not explore 4289 * branches that are dead at run time. Malicious programs can have dead code 4290 * too. Therefore replace all dead at-run-time code with nops. 4291 */ 4292 static void sanitize_dead_code(struct bpf_verifier_env *env) 4293 { 4294 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 4295 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0); 4296 struct bpf_insn *insn = env->prog->insnsi; 4297 const int insn_cnt = env->prog->len; 4298 int i; 4299 4300 for (i = 0; i < insn_cnt; i++) { 4301 if (aux_data[i].seen) 4302 continue; 4303 memcpy(insn + i, &nop, sizeof(nop)); 4304 } 4305 } 4306 4307 /* convert load instructions that access fields of 'struct __sk_buff' 4308 * into sequence of instructions that access fields of 'struct sk_buff' 4309 */ 4310 static int convert_ctx_accesses(struct bpf_verifier_env *env) 4311 { 4312 const struct bpf_verifier_ops *ops = env->ops; 4313 int i, cnt, size, ctx_field_size, delta = 0; 4314 const int insn_cnt = env->prog->len; 4315 struct bpf_insn insn_buf[16], *insn; 4316 struct bpf_prog *new_prog; 4317 enum bpf_access_type type; 4318 bool is_narrower_load; 4319 u32 target_size; 4320 4321 if (ops->gen_prologue) { 4322 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4323 env->prog); 4324 if (cnt >= ARRAY_SIZE(insn_buf)) { 4325 verbose(env, "bpf verifier is misconfigured\n"); 4326 return -EINVAL; 4327 } else if (cnt) { 4328 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4329 if (!new_prog) 4330 return -ENOMEM; 4331 4332 env->prog = new_prog; 4333 delta += cnt - 1; 4334 } 4335 } 4336 4337 if (!ops->convert_ctx_access) 4338 return 0; 4339 4340 insn = env->prog->insnsi + delta; 4341 4342 for (i = 0; i < insn_cnt; i++, insn++) { 4343 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 4344 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 4345 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 4346 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 4347 type = BPF_READ; 4348 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 4349 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 4350 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 4351 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 4352 type = BPF_WRITE; 4353 else 4354 continue; 4355 4356 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 4357 continue; 4358 4359 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 4360 size = BPF_LDST_BYTES(insn); 4361 4362 /* If the read access is a narrower load of the field, 4363 * convert to a 4/8-byte load, to minimum program type specific 4364 * convert_ctx_access changes. If conversion is successful, 4365 * we will apply proper mask to the result. 4366 */ 4367 is_narrower_load = size < ctx_field_size; 4368 if (is_narrower_load) { 4369 u32 off = insn->off; 4370 u8 size_code; 4371 4372 if (type == BPF_WRITE) { 4373 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 4374 return -EINVAL; 4375 } 4376 4377 size_code = BPF_H; 4378 if (ctx_field_size == 4) 4379 size_code = BPF_W; 4380 else if (ctx_field_size == 8) 4381 size_code = BPF_DW; 4382 4383 insn->off = off & ~(ctx_field_size - 1); 4384 insn->code = BPF_LDX | BPF_MEM | size_code; 4385 } 4386 4387 target_size = 0; 4388 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4389 &target_size); 4390 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4391 (ctx_field_size && !target_size)) { 4392 verbose(env, "bpf verifier is misconfigured\n"); 4393 return -EINVAL; 4394 } 4395 4396 if (is_narrower_load && size < target_size) { 4397 if (ctx_field_size <= 4) 4398 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4399 (1 << size * 8) - 1); 4400 else 4401 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 4402 (1 << size * 8) - 1); 4403 } 4404 4405 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 4406 if (!new_prog) 4407 return -ENOMEM; 4408 4409 delta += cnt - 1; 4410 4411 /* keep walking new program and skip insns we just inserted */ 4412 env->prog = new_prog; 4413 insn = new_prog->insnsi + i + delta; 4414 } 4415 4416 return 0; 4417 } 4418 4419 /* fixup insn->imm field of bpf_call instructions 4420 * and inline eligible helpers as explicit sequence of BPF instructions 4421 * 4422 * this function is called after eBPF program passed verification 4423 */ 4424 static int fixup_bpf_calls(struct bpf_verifier_env *env) 4425 { 4426 struct bpf_prog *prog = env->prog; 4427 struct bpf_insn *insn = prog->insnsi; 4428 const struct bpf_func_proto *fn; 4429 const int insn_cnt = prog->len; 4430 struct bpf_insn insn_buf[16]; 4431 struct bpf_prog *new_prog; 4432 struct bpf_map *map_ptr; 4433 int i, cnt, delta = 0; 4434 4435 for (i = 0; i < insn_cnt; i++, insn++) { 4436 if (insn->code != (BPF_JMP | BPF_CALL)) 4437 continue; 4438 4439 if (insn->imm == BPF_FUNC_get_route_realm) 4440 prog->dst_needed = 1; 4441 if (insn->imm == BPF_FUNC_get_prandom_u32) 4442 bpf_user_rnd_init_once(); 4443 if (insn->imm == BPF_FUNC_tail_call) { 4444 /* If we tail call into other programs, we 4445 * cannot make any assumptions since they can 4446 * be replaced dynamically during runtime in 4447 * the program array. 4448 */ 4449 prog->cb_access = 1; 4450 env->prog->aux->stack_depth = MAX_BPF_STACK; 4451 4452 /* mark bpf_tail_call as different opcode to avoid 4453 * conditional branch in the interpeter for every normal 4454 * call and to prevent accidental JITing by JIT compiler 4455 * that doesn't support bpf_tail_call yet 4456 */ 4457 insn->imm = 0; 4458 insn->code = BPF_JMP | BPF_TAIL_CALL; 4459 continue; 4460 } 4461 4462 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 4463 * handlers are currently limited to 64 bit only. 4464 */ 4465 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && 4466 insn->imm == BPF_FUNC_map_lookup_elem) { 4467 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4468 if (map_ptr == BPF_MAP_PTR_POISON || 4469 !map_ptr->ops->map_gen_lookup) 4470 goto patch_call_imm; 4471 4472 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4473 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 4474 verbose(env, "bpf verifier is misconfigured\n"); 4475 return -EINVAL; 4476 } 4477 4478 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4479 cnt); 4480 if (!new_prog) 4481 return -ENOMEM; 4482 4483 delta += cnt - 1; 4484 4485 /* keep walking new program and skip insns we just inserted */ 4486 env->prog = prog = new_prog; 4487 insn = new_prog->insnsi + i + delta; 4488 continue; 4489 } 4490 4491 if (insn->imm == BPF_FUNC_redirect_map) { 4492 /* Note, we cannot use prog directly as imm as subsequent 4493 * rewrites would still change the prog pointer. The only 4494 * stable address we can use is aux, which also works with 4495 * prog clones during blinding. 4496 */ 4497 u64 addr = (unsigned long)prog->aux; 4498 struct bpf_insn r4_ld[] = { 4499 BPF_LD_IMM64(BPF_REG_4, addr), 4500 *insn, 4501 }; 4502 cnt = ARRAY_SIZE(r4_ld); 4503 4504 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 4505 if (!new_prog) 4506 return -ENOMEM; 4507 4508 delta += cnt - 1; 4509 env->prog = prog = new_prog; 4510 insn = new_prog->insnsi + i + delta; 4511 } 4512 patch_call_imm: 4513 fn = env->ops->get_func_proto(insn->imm); 4514 /* all functions that have prototype and verifier allowed 4515 * programs to call them, must be real in-kernel functions 4516 */ 4517 if (!fn->func) { 4518 verbose(env, 4519 "kernel subsystem misconfigured func %s#%d\n", 4520 func_id_name(insn->imm), insn->imm); 4521 return -EFAULT; 4522 } 4523 insn->imm = fn->func - __bpf_call_base; 4524 } 4525 4526 return 0; 4527 } 4528 4529 static void free_states(struct bpf_verifier_env *env) 4530 { 4531 struct bpf_verifier_state_list *sl, *sln; 4532 int i; 4533 4534 if (!env->explored_states) 4535 return; 4536 4537 for (i = 0; i < env->prog->len; i++) { 4538 sl = env->explored_states[i]; 4539 4540 if (sl) 4541 while (sl != STATE_LIST_MARK) { 4542 sln = sl->next; 4543 free_verifier_state(&sl->state, false); 4544 kfree(sl); 4545 sl = sln; 4546 } 4547 } 4548 4549 kfree(env->explored_states); 4550 } 4551 4552 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4553 { 4554 struct bpf_verifier_env *env; 4555 struct bpf_verifer_log *log; 4556 int ret = -EINVAL; 4557 4558 /* no program is valid */ 4559 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 4560 return -EINVAL; 4561 4562 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4563 * allocate/free it every time bpf_check() is called 4564 */ 4565 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4566 if (!env) 4567 return -ENOMEM; 4568 log = &env->log; 4569 4570 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4571 (*prog)->len); 4572 ret = -ENOMEM; 4573 if (!env->insn_aux_data) 4574 goto err_free_env; 4575 env->prog = *prog; 4576 env->ops = bpf_verifier_ops[env->prog->type]; 4577 4578 /* grab the mutex to protect few globals used by verifier */ 4579 mutex_lock(&bpf_verifier_lock); 4580 4581 if (attr->log_level || attr->log_buf || attr->log_size) { 4582 /* user requested verbose verifier output 4583 * and supplied buffer to store the verification trace 4584 */ 4585 log->level = attr->log_level; 4586 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 4587 log->len_total = attr->log_size; 4588 4589 ret = -EINVAL; 4590 /* log attributes have to be sane */ 4591 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4592 !log->level || !log->ubuf) 4593 goto err_unlock; 4594 } 4595 4596 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4597 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4598 env->strict_alignment = true; 4599 4600 if (env->prog->aux->offload) { 4601 ret = bpf_prog_offload_verifier_prep(env); 4602 if (ret) 4603 goto err_unlock; 4604 } 4605 4606 ret = replace_map_fd_with_map_ptr(env); 4607 if (ret < 0) 4608 goto skip_full_check; 4609 4610 env->explored_states = kcalloc(env->prog->len, 4611 sizeof(struct bpf_verifier_state_list *), 4612 GFP_USER); 4613 ret = -ENOMEM; 4614 if (!env->explored_states) 4615 goto skip_full_check; 4616 4617 ret = check_cfg(env); 4618 if (ret < 0) 4619 goto skip_full_check; 4620 4621 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4622 4623 ret = do_check(env); 4624 if (env->cur_state) { 4625 free_verifier_state(env->cur_state, true); 4626 env->cur_state = NULL; 4627 } 4628 4629 skip_full_check: 4630 while (!pop_stack(env, NULL, NULL)); 4631 free_states(env); 4632 4633 if (ret == 0) 4634 sanitize_dead_code(env); 4635 4636 if (ret == 0) 4637 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4638 ret = convert_ctx_accesses(env); 4639 4640 if (ret == 0) 4641 ret = fixup_bpf_calls(env); 4642 4643 if (log->level && bpf_verifier_log_full(log)) 4644 ret = -ENOSPC; 4645 if (log->level && !log->ubuf) { 4646 ret = -EFAULT; 4647 goto err_release_maps; 4648 } 4649 4650 if (ret == 0 && env->used_map_cnt) { 4651 /* if program passed verifier, update used_maps in bpf_prog_info */ 4652 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4653 sizeof(env->used_maps[0]), 4654 GFP_KERNEL); 4655 4656 if (!env->prog->aux->used_maps) { 4657 ret = -ENOMEM; 4658 goto err_release_maps; 4659 } 4660 4661 memcpy(env->prog->aux->used_maps, env->used_maps, 4662 sizeof(env->used_maps[0]) * env->used_map_cnt); 4663 env->prog->aux->used_map_cnt = env->used_map_cnt; 4664 4665 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4666 * bpf_ld_imm64 instructions 4667 */ 4668 convert_pseudo_ld_imm64(env); 4669 } 4670 4671 err_release_maps: 4672 if (!env->prog->aux->used_maps) 4673 /* if we didn't copy map pointers into bpf_prog_info, release 4674 * them now. Otherwise free_bpf_prog_info() will release them. 4675 */ 4676 release_maps(env); 4677 *prog = env->prog; 4678 err_unlock: 4679 mutex_unlock(&bpf_verifier_lock); 4680 vfree(env->insn_aux_data); 4681 err_free_env: 4682 kfree(env); 4683 return ret; 4684 } 4685