xref: /openbmc/linux/kernel/bpf/verifier.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 #include "disasm.h"
25 
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 	[_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34 
35 /* bpf_check() is a static code analyzer that walks eBPF program
36  * instruction by instruction and updates register/stack state.
37  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38  *
39  * The first pass is depth-first-search to check that the program is a DAG.
40  * It rejects the following programs:
41  * - larger than BPF_MAXINSNS insns
42  * - if loop is present (detected via back-edge)
43  * - unreachable insns exist (shouldn't be a forest. program = one function)
44  * - out of bounds or malformed jumps
45  * The second pass is all possible path descent from the 1st insn.
46  * Since it's analyzing all pathes through the program, the length of the
47  * analysis is limited to 64k insn, which may be hit even if total number of
48  * insn is less then 4K, but there are too many branches that change stack/regs.
49  * Number of 'branches to be analyzed' is limited to 1k
50  *
51  * On entry to each instruction, each register has a type, and the instruction
52  * changes the types of the registers depending on instruction semantics.
53  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54  * copied to R1.
55  *
56  * All registers are 64-bit.
57  * R0 - return register
58  * R1-R5 argument passing registers
59  * R6-R9 callee saved registers
60  * R10 - frame pointer read-only
61  *
62  * At the start of BPF program the register R1 contains a pointer to bpf_context
63  * and has type PTR_TO_CTX.
64  *
65  * Verifier tracks arithmetic operations on pointers in case:
66  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68  * 1st insn copies R10 (which has FRAME_PTR) type into R1
69  * and 2nd arithmetic instruction is pattern matched to recognize
70  * that it wants to construct a pointer to some element within stack.
71  * So after 2nd insn, the register R1 has type PTR_TO_STACK
72  * (and -20 constant is saved for further stack bounds checking).
73  * Meaning that this reg is a pointer to stack plus known immediate constant.
74  *
75  * Most of the time the registers have SCALAR_VALUE type, which
76  * means the register has some value, but it's not a valid pointer.
77  * (like pointer plus pointer becomes SCALAR_VALUE type)
78  *
79  * When verifier sees load or store instructions the type of base register
80  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81  * types recognized by check_mem_access() function.
82  *
83  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84  * and the range of [ptr, ptr + map's value_size) is accessible.
85  *
86  * registers used to pass values to function calls are checked against
87  * function argument constraints.
88  *
89  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90  * It means that the register type passed to this function must be
91  * PTR_TO_STACK and it will be used inside the function as
92  * 'pointer to map element key'
93  *
94  * For example the argument constraints for bpf_map_lookup_elem():
95  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96  *   .arg1_type = ARG_CONST_MAP_PTR,
97  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
98  *
99  * ret_type says that this function returns 'pointer to map elem value or null'
100  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101  * 2nd argument should be a pointer to stack, which will be used inside
102  * the helper function as a pointer to map element key.
103  *
104  * On the kernel side the helper function looks like:
105  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106  * {
107  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108  *    void *key = (void *) (unsigned long) r2;
109  *    void *value;
110  *
111  *    here kernel can access 'key' and 'map' pointers safely, knowing that
112  *    [key, key + map->key_size) bytes are valid and were initialized on
113  *    the stack of eBPF program.
114  * }
115  *
116  * Corresponding eBPF program may look like:
117  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
118  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
120  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121  * here verifier looks at prototype of map_lookup_elem() and sees:
122  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124  *
125  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127  * and were initialized prior to this call.
128  * If it's ok, then verifier allows this BPF_CALL insn and looks at
129  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131  * returns ether pointer to map value or NULL.
132  *
133  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134  * insn, the register holding that pointer in the true branch changes state to
135  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136  * branch. See check_cond_jmp_op().
137  *
138  * After the call R0 is set to return type of the function and registers R1-R5
139  * are set to NOT_INIT to indicate that they are no longer readable.
140  */
141 
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 	/* verifer state is 'st'
145 	 * before processing instruction 'insn_idx'
146 	 * and after processing instruction 'prev_insn_idx'
147 	 */
148 	struct bpf_verifier_state st;
149 	int insn_idx;
150 	int prev_insn_idx;
151 	struct bpf_verifier_stack_elem *next;
152 };
153 
154 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 #define BPF_COMPLEXITY_LIMIT_STACK	1024
156 
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158 
159 struct bpf_call_arg_meta {
160 	struct bpf_map *map_ptr;
161 	bool raw_mode;
162 	bool pkt_access;
163 	int regno;
164 	int access_size;
165 };
166 
167 static DEFINE_MUTEX(bpf_verifier_lock);
168 
169 /* log_level controls verbosity level of eBPF verifier.
170  * verbose() is used to dump the verification trace to the log, so the user
171  * can figure out what's wrong with the program
172  */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 				   const char *fmt, ...)
175 {
176 	struct bpf_verifer_log *log = &env->log;
177 	unsigned int n;
178 	va_list args;
179 
180 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 		return;
182 
183 	va_start(args, fmt);
184 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 	va_end(args);
186 
187 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 		  "verifier log line truncated - local buffer too short\n");
189 
190 	n = min(log->len_total - log->len_used - 1, n);
191 	log->kbuf[n] = '\0';
192 
193 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 		log->len_used += n;
195 	else
196 		log->ubuf = NULL;
197 }
198 
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 	return type == PTR_TO_PACKET ||
202 	       type == PTR_TO_PACKET_META;
203 }
204 
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 	[NOT_INIT]		= "?",
208 	[SCALAR_VALUE]		= "inv",
209 	[PTR_TO_CTX]		= "ctx",
210 	[CONST_PTR_TO_MAP]	= "map_ptr",
211 	[PTR_TO_MAP_VALUE]	= "map_value",
212 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 	[PTR_TO_STACK]		= "fp",
214 	[PTR_TO_PACKET]		= "pkt",
215 	[PTR_TO_PACKET_META]	= "pkt_meta",
216 	[PTR_TO_PACKET_END]	= "pkt_end",
217 };
218 
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 				 struct bpf_verifier_state *state)
221 {
222 	struct bpf_reg_state *reg;
223 	enum bpf_reg_type t;
224 	int i;
225 
226 	for (i = 0; i < MAX_BPF_REG; i++) {
227 		reg = &state->regs[i];
228 		t = reg->type;
229 		if (t == NOT_INIT)
230 			continue;
231 		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 		    tnum_is_const(reg->var_off)) {
234 			/* reg->off should be 0 for SCALAR_VALUE */
235 			verbose(env, "%lld", reg->var_off.value + reg->off);
236 		} else {
237 			verbose(env, "(id=%d", reg->id);
238 			if (t != SCALAR_VALUE)
239 				verbose(env, ",off=%d", reg->off);
240 			if (type_is_pkt_pointer(t))
241 				verbose(env, ",r=%d", reg->range);
242 			else if (t == CONST_PTR_TO_MAP ||
243 				 t == PTR_TO_MAP_VALUE ||
244 				 t == PTR_TO_MAP_VALUE_OR_NULL)
245 				verbose(env, ",ks=%d,vs=%d",
246 					reg->map_ptr->key_size,
247 					reg->map_ptr->value_size);
248 			if (tnum_is_const(reg->var_off)) {
249 				/* Typically an immediate SCALAR_VALUE, but
250 				 * could be a pointer whose offset is too big
251 				 * for reg->off
252 				 */
253 				verbose(env, ",imm=%llx", reg->var_off.value);
254 			} else {
255 				if (reg->smin_value != reg->umin_value &&
256 				    reg->smin_value != S64_MIN)
257 					verbose(env, ",smin_value=%lld",
258 						(long long)reg->smin_value);
259 				if (reg->smax_value != reg->umax_value &&
260 				    reg->smax_value != S64_MAX)
261 					verbose(env, ",smax_value=%lld",
262 						(long long)reg->smax_value);
263 				if (reg->umin_value != 0)
264 					verbose(env, ",umin_value=%llu",
265 						(unsigned long long)reg->umin_value);
266 				if (reg->umax_value != U64_MAX)
267 					verbose(env, ",umax_value=%llu",
268 						(unsigned long long)reg->umax_value);
269 				if (!tnum_is_unknown(reg->var_off)) {
270 					char tn_buf[48];
271 
272 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 					verbose(env, ",var_off=%s", tn_buf);
274 				}
275 			}
276 			verbose(env, ")");
277 		}
278 	}
279 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 		if (state->stack[i].slot_type[0] == STACK_SPILL)
281 			verbose(env, " fp%d=%s",
282 				-MAX_BPF_STACK + i * BPF_REG_SIZE,
283 				reg_type_str[state->stack[i].spilled_ptr.type]);
284 	}
285 	verbose(env, "\n");
286 }
287 
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 			    const struct bpf_verifier_state *src)
290 {
291 	if (!src->stack)
292 		return 0;
293 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 		/* internal bug, make state invalid to reject the program */
295 		memset(dst, 0, sizeof(*dst));
296 		return -EFAULT;
297 	}
298 	memcpy(dst->stack, src->stack,
299 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 	return 0;
301 }
302 
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304  * make it consume minimal amount of memory. check_stack_write() access from
305  * the program calls into realloc_verifier_state() to grow the stack size.
306  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307  * which this function copies over. It points to previous bpf_verifier_state
308  * which is never reallocated
309  */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 				  bool copy_old)
312 {
313 	u32 old_size = state->allocated_stack;
314 	struct bpf_stack_state *new_stack;
315 	int slot = size / BPF_REG_SIZE;
316 
317 	if (size <= old_size || !size) {
318 		if (copy_old)
319 			return 0;
320 		state->allocated_stack = slot * BPF_REG_SIZE;
321 		if (!size && old_size) {
322 			kfree(state->stack);
323 			state->stack = NULL;
324 		}
325 		return 0;
326 	}
327 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 				  GFP_KERNEL);
329 	if (!new_stack)
330 		return -ENOMEM;
331 	if (copy_old) {
332 		if (state->stack)
333 			memcpy(new_stack, state->stack,
334 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 	}
338 	state->allocated_stack = slot * BPF_REG_SIZE;
339 	kfree(state->stack);
340 	state->stack = new_stack;
341 	return 0;
342 }
343 
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 				bool free_self)
346 {
347 	kfree(state->stack);
348 	if (free_self)
349 		kfree(state);
350 }
351 
352 /* copy verifier state from src to dst growing dst stack space
353  * when necessary to accommodate larger src stack
354  */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 			       const struct bpf_verifier_state *src)
357 {
358 	int err;
359 
360 	err = realloc_verifier_state(dst, src->allocated_stack, false);
361 	if (err)
362 		return err;
363 	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 	return copy_stack_state(dst, src);
365 }
366 
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 		     int *insn_idx)
369 {
370 	struct bpf_verifier_state *cur = env->cur_state;
371 	struct bpf_verifier_stack_elem *elem, *head = env->head;
372 	int err;
373 
374 	if (env->head == NULL)
375 		return -ENOENT;
376 
377 	if (cur) {
378 		err = copy_verifier_state(cur, &head->st);
379 		if (err)
380 			return err;
381 	}
382 	if (insn_idx)
383 		*insn_idx = head->insn_idx;
384 	if (prev_insn_idx)
385 		*prev_insn_idx = head->prev_insn_idx;
386 	elem = head->next;
387 	free_verifier_state(&head->st, false);
388 	kfree(head);
389 	env->head = elem;
390 	env->stack_size--;
391 	return 0;
392 }
393 
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 					     int insn_idx, int prev_insn_idx)
396 {
397 	struct bpf_verifier_state *cur = env->cur_state;
398 	struct bpf_verifier_stack_elem *elem;
399 	int err;
400 
401 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 	if (!elem)
403 		goto err;
404 
405 	elem->insn_idx = insn_idx;
406 	elem->prev_insn_idx = prev_insn_idx;
407 	elem->next = env->head;
408 	env->head = elem;
409 	env->stack_size++;
410 	err = copy_verifier_state(&elem->st, cur);
411 	if (err)
412 		goto err;
413 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 		verbose(env, "BPF program is too complex\n");
415 		goto err;
416 	}
417 	return &elem->st;
418 err:
419 	/* pop all elements and return */
420 	while (!pop_stack(env, NULL, NULL));
421 	return NULL;
422 }
423 
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428 
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430 
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432  * known to have the value @imm.
433  */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 	reg->id = 0;
437 	reg->var_off = tnum_const(imm);
438 	reg->smin_value = (s64)imm;
439 	reg->smax_value = (s64)imm;
440 	reg->umin_value = imm;
441 	reg->umax_value = imm;
442 }
443 
444 /* Mark the 'variable offset' part of a register as zero.  This should be
445  * used only on registers holding a pointer type.
446  */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 	__mark_reg_known(reg, 0);
450 }
451 
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 				struct bpf_reg_state *regs, u32 regno)
454 {
455 	if (WARN_ON(regno >= MAX_BPF_REG)) {
456 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 		/* Something bad happened, let's kill all regs */
458 		for (regno = 0; regno < MAX_BPF_REG; regno++)
459 			__mark_reg_not_init(regs + regno);
460 		return;
461 	}
462 	__mark_reg_known_zero(regs + regno);
463 }
464 
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 	return type_is_pkt_pointer(reg->type);
468 }
469 
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 	return reg_is_pkt_pointer(reg) ||
473 	       reg->type == PTR_TO_PACKET_END;
474 }
475 
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 				    enum bpf_reg_type which)
479 {
480 	/* The register can already have a range from prior markings.
481 	 * This is fine as long as it hasn't been advanced from its
482 	 * origin.
483 	 */
484 	return reg->type == which &&
485 	       reg->id == 0 &&
486 	       reg->off == 0 &&
487 	       tnum_equals_const(reg->var_off, 0);
488 }
489 
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 	/* min signed is max(sign bit) | min(other bits) */
494 	reg->smin_value = max_t(s64, reg->smin_value,
495 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 	/* max signed is min(sign bit) | max(other bits) */
497 	reg->smax_value = min_t(s64, reg->smax_value,
498 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 	reg->umax_value = min(reg->umax_value,
501 			      reg->var_off.value | reg->var_off.mask);
502 }
503 
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 	/* Learn sign from signed bounds.
508 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 	 * are the same, so combine.  This works even in the negative case, e.g.
510 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 	 */
512 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 							  reg->umin_value);
515 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 							  reg->umax_value);
517 		return;
518 	}
519 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
520 	 * boundary, so we must be careful.
521 	 */
522 	if ((s64)reg->umax_value >= 0) {
523 		/* Positive.  We can't learn anything from the smin, but smax
524 		 * is positive, hence safe.
525 		 */
526 		reg->smin_value = reg->umin_value;
527 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 							  reg->umax_value);
529 	} else if ((s64)reg->umin_value < 0) {
530 		/* Negative.  We can't learn anything from the smax, but smin
531 		 * is negative, hence safe.
532 		 */
533 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 							  reg->umin_value);
535 		reg->smax_value = reg->umax_value;
536 	}
537 }
538 
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 	reg->var_off = tnum_intersect(reg->var_off,
543 				      tnum_range(reg->umin_value,
544 						 reg->umax_value));
545 }
546 
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 	reg->smin_value = S64_MIN;
551 	reg->smax_value = S64_MAX;
552 	reg->umin_value = 0;
553 	reg->umax_value = U64_MAX;
554 }
555 
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 	reg->type = SCALAR_VALUE;
560 	reg->id = 0;
561 	reg->off = 0;
562 	reg->var_off = tnum_unknown;
563 	__mark_reg_unbounded(reg);
564 }
565 
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 			     struct bpf_reg_state *regs, u32 regno)
568 {
569 	if (WARN_ON(regno >= MAX_BPF_REG)) {
570 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 		/* Something bad happened, let's kill all regs */
572 		for (regno = 0; regno < MAX_BPF_REG; regno++)
573 			__mark_reg_not_init(regs + regno);
574 		return;
575 	}
576 	__mark_reg_unknown(regs + regno);
577 }
578 
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 	__mark_reg_unknown(reg);
582 	reg->type = NOT_INIT;
583 }
584 
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 			      struct bpf_reg_state *regs, u32 regno)
587 {
588 	if (WARN_ON(regno >= MAX_BPF_REG)) {
589 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 		/* Something bad happened, let's kill all regs */
591 		for (regno = 0; regno < MAX_BPF_REG; regno++)
592 			__mark_reg_not_init(regs + regno);
593 		return;
594 	}
595 	__mark_reg_not_init(regs + regno);
596 }
597 
598 static void init_reg_state(struct bpf_verifier_env *env,
599 			   struct bpf_reg_state *regs)
600 {
601 	int i;
602 
603 	for (i = 0; i < MAX_BPF_REG; i++) {
604 		mark_reg_not_init(env, regs, i);
605 		regs[i].live = REG_LIVE_NONE;
606 	}
607 
608 	/* frame pointer */
609 	regs[BPF_REG_FP].type = PTR_TO_STACK;
610 	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 
612 	/* 1st arg to a function */
613 	regs[BPF_REG_1].type = PTR_TO_CTX;
614 	mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616 
617 enum reg_arg_type {
618 	SRC_OP,		/* register is used as source operand */
619 	DST_OP,		/* register is used as destination operand */
620 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
621 };
622 
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 	struct bpf_verifier_state *parent = state->parent;
626 
627 	if (regno == BPF_REG_FP)
628 		/* We don't need to worry about FP liveness because it's read-only */
629 		return;
630 
631 	while (parent) {
632 		/* if read wasn't screened by an earlier write ... */
633 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 			break;
635 		/* ... then we depend on parent's value */
636 		parent->regs[regno].live |= REG_LIVE_READ;
637 		state = parent;
638 		parent = state->parent;
639 	}
640 }
641 
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 			 enum reg_arg_type t)
644 {
645 	struct bpf_reg_state *regs = env->cur_state->regs;
646 
647 	if (regno >= MAX_BPF_REG) {
648 		verbose(env, "R%d is invalid\n", regno);
649 		return -EINVAL;
650 	}
651 
652 	if (t == SRC_OP) {
653 		/* check whether register used as source operand can be read */
654 		if (regs[regno].type == NOT_INIT) {
655 			verbose(env, "R%d !read_ok\n", regno);
656 			return -EACCES;
657 		}
658 		mark_reg_read(env->cur_state, regno);
659 	} else {
660 		/* check whether register used as dest operand can be written to */
661 		if (regno == BPF_REG_FP) {
662 			verbose(env, "frame pointer is read only\n");
663 			return -EACCES;
664 		}
665 		regs[regno].live |= REG_LIVE_WRITTEN;
666 		if (t == DST_OP)
667 			mark_reg_unknown(env, regs, regno);
668 	}
669 	return 0;
670 }
671 
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 	switch (type) {
675 	case PTR_TO_MAP_VALUE:
676 	case PTR_TO_MAP_VALUE_OR_NULL:
677 	case PTR_TO_STACK:
678 	case PTR_TO_CTX:
679 	case PTR_TO_PACKET:
680 	case PTR_TO_PACKET_META:
681 	case PTR_TO_PACKET_END:
682 	case CONST_PTR_TO_MAP:
683 		return true;
684 	default:
685 		return false;
686 	}
687 }
688 
689 /* check_stack_read/write functions track spill/fill of registers,
690  * stack boundary and alignment are checked in check_mem_access()
691  */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 			     struct bpf_verifier_state *state, int off,
694 			     int size, int value_regno)
695 {
696 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697 
698 	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 				     true);
700 	if (err)
701 		return err;
702 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 	 * so it's aligned access and [off, off + size) are within stack limits
704 	 */
705 	if (!env->allow_ptr_leaks &&
706 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
707 	    size != BPF_REG_SIZE) {
708 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 		return -EACCES;
710 	}
711 
712 	if (value_regno >= 0 &&
713 	    is_spillable_regtype(state->regs[value_regno].type)) {
714 
715 		/* register containing pointer is being spilled into stack */
716 		if (size != BPF_REG_SIZE) {
717 			verbose(env, "invalid size of register spill\n");
718 			return -EACCES;
719 		}
720 
721 		/* save register state */
722 		state->stack[spi].spilled_ptr = state->regs[value_regno];
723 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724 
725 		for (i = 0; i < BPF_REG_SIZE; i++)
726 			state->stack[spi].slot_type[i] = STACK_SPILL;
727 	} else {
728 		/* regular write of data into stack */
729 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 
731 		for (i = 0; i < size; i++)
732 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 				STACK_MISC;
734 	}
735 	return 0;
736 }
737 
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 	struct bpf_verifier_state *parent = state->parent;
741 
742 	while (parent) {
743 		/* if read wasn't screened by an earlier write ... */
744 		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 			break;
746 		/* ... then we depend on parent's value */
747 		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 		state = parent;
749 		parent = state->parent;
750 	}
751 }
752 
753 static int check_stack_read(struct bpf_verifier_env *env,
754 			    struct bpf_verifier_state *state, int off, int size,
755 			    int value_regno)
756 {
757 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 	u8 *stype;
759 
760 	if (state->allocated_stack <= slot) {
761 		verbose(env, "invalid read from stack off %d+0 size %d\n",
762 			off, size);
763 		return -EACCES;
764 	}
765 	stype = state->stack[spi].slot_type;
766 
767 	if (stype[0] == STACK_SPILL) {
768 		if (size != BPF_REG_SIZE) {
769 			verbose(env, "invalid size of register spill\n");
770 			return -EACCES;
771 		}
772 		for (i = 1; i < BPF_REG_SIZE; i++) {
773 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 				verbose(env, "corrupted spill memory\n");
775 				return -EACCES;
776 			}
777 		}
778 
779 		if (value_regno >= 0) {
780 			/* restore register state from stack */
781 			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 			mark_stack_slot_read(state, spi);
783 		}
784 		return 0;
785 	} else {
786 		for (i = 0; i < size; i++) {
787 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 					off, i, size);
790 				return -EACCES;
791 			}
792 		}
793 		if (value_regno >= 0)
794 			/* have read misc data from the stack */
795 			mark_reg_unknown(env, state->regs, value_regno);
796 		return 0;
797 	}
798 }
799 
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 			      int size, bool zero_size_allowed)
803 {
804 	struct bpf_reg_state *regs = cur_regs(env);
805 	struct bpf_map *map = regs[regno].map_ptr;
806 
807 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 	    off + size > map->value_size) {
809 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 			map->value_size, off, size);
811 		return -EACCES;
812 	}
813 	return 0;
814 }
815 
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 			    int off, int size, bool zero_size_allowed)
819 {
820 	struct bpf_verifier_state *state = env->cur_state;
821 	struct bpf_reg_state *reg = &state->regs[regno];
822 	int err;
823 
824 	/* We may have adjusted the register to this map value, so we
825 	 * need to try adding each of min_value and max_value to off
826 	 * to make sure our theoretical access will be safe.
827 	 */
828 	if (env->log.level)
829 		print_verifier_state(env, state);
830 	/* The minimum value is only important with signed
831 	 * comparisons where we can't assume the floor of a
832 	 * value is 0.  If we are using signed variables for our
833 	 * index'es we need to make sure that whatever we use
834 	 * will have a set floor within our range.
835 	 */
836 	if (reg->smin_value < 0) {
837 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 			regno);
839 		return -EACCES;
840 	}
841 	err = __check_map_access(env, regno, reg->smin_value + off, size,
842 				 zero_size_allowed);
843 	if (err) {
844 		verbose(env, "R%d min value is outside of the array range\n",
845 			regno);
846 		return err;
847 	}
848 
849 	/* If we haven't set a max value then we need to bail since we can't be
850 	 * sure we won't do bad things.
851 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 	 */
853 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 			regno);
856 		return -EACCES;
857 	}
858 	err = __check_map_access(env, regno, reg->umax_value + off, size,
859 				 zero_size_allowed);
860 	if (err)
861 		verbose(env, "R%d max value is outside of the array range\n",
862 			regno);
863 	return err;
864 }
865 
866 #define MAX_PACKET_OFF 0xffff
867 
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 				       const struct bpf_call_arg_meta *meta,
870 				       enum bpf_access_type t)
871 {
872 	switch (env->prog->type) {
873 	case BPF_PROG_TYPE_LWT_IN:
874 	case BPF_PROG_TYPE_LWT_OUT:
875 		/* dst_input() and dst_output() can't write for now */
876 		if (t == BPF_WRITE)
877 			return false;
878 		/* fallthrough */
879 	case BPF_PROG_TYPE_SCHED_CLS:
880 	case BPF_PROG_TYPE_SCHED_ACT:
881 	case BPF_PROG_TYPE_XDP:
882 	case BPF_PROG_TYPE_LWT_XMIT:
883 	case BPF_PROG_TYPE_SK_SKB:
884 		if (meta)
885 			return meta->pkt_access;
886 
887 		env->seen_direct_write = true;
888 		return true;
889 	default:
890 		return false;
891 	}
892 }
893 
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 				 int off, int size, bool zero_size_allowed)
896 {
897 	struct bpf_reg_state *regs = cur_regs(env);
898 	struct bpf_reg_state *reg = &regs[regno];
899 
900 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 	    (u64)off + size > reg->range) {
902 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 			off, size, regno, reg->id, reg->off, reg->range);
904 		return -EACCES;
905 	}
906 	return 0;
907 }
908 
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 			       int size, bool zero_size_allowed)
911 {
912 	struct bpf_reg_state *regs = cur_regs(env);
913 	struct bpf_reg_state *reg = &regs[regno];
914 	int err;
915 
916 	/* We may have added a variable offset to the packet pointer; but any
917 	 * reg->range we have comes after that.  We are only checking the fixed
918 	 * offset.
919 	 */
920 
921 	/* We don't allow negative numbers, because we aren't tracking enough
922 	 * detail to prove they're safe.
923 	 */
924 	if (reg->smin_value < 0) {
925 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 			regno);
927 		return -EACCES;
928 	}
929 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 	if (err) {
931 		verbose(env, "R%d offset is outside of the packet\n", regno);
932 		return err;
933 	}
934 	return err;
935 }
936 
937 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 	struct bpf_insn_access_aux info = {
942 		.reg_type = *reg_type,
943 	};
944 
945 	if (env->ops->is_valid_access &&
946 	    env->ops->is_valid_access(off, size, t, &info)) {
947 		/* A non zero info.ctx_field_size indicates that this field is a
948 		 * candidate for later verifier transformation to load the whole
949 		 * field and then apply a mask when accessed with a narrower
950 		 * access than actual ctx access size. A zero info.ctx_field_size
951 		 * will only allow for whole field access and rejects any other
952 		 * type of narrower access.
953 		 */
954 		*reg_type = info.reg_type;
955 
956 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 		/* remember the offset of last byte accessed in ctx */
958 		if (env->prog->aux->max_ctx_offset < off + size)
959 			env->prog->aux->max_ctx_offset = off + size;
960 		return 0;
961 	}
962 
963 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 	return -EACCES;
965 }
966 
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 			       const struct bpf_reg_state *reg)
969 {
970 	if (allow_ptr_leaks)
971 		return false;
972 
973 	return reg->type != SCALAR_VALUE;
974 }
975 
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980 
981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 				   const struct bpf_reg_state *reg,
983 				   int off, int size, bool strict)
984 {
985 	struct tnum reg_off;
986 	int ip_align;
987 
988 	/* Byte size accesses are always allowed. */
989 	if (!strict || size == 1)
990 		return 0;
991 
992 	/* For platforms that do not have a Kconfig enabling
993 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
995 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 	 * to this code only in strict mode where we want to emulate
997 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
998 	 * unconditional IP align value of '2'.
999 	 */
1000 	ip_align = 2;
1001 
1002 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 	if (!tnum_is_aligned(reg_off, size)) {
1004 		char tn_buf[48];
1005 
1006 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 		verbose(env,
1008 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1009 			ip_align, tn_buf, reg->off, off, size);
1010 		return -EACCES;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 				       const struct bpf_reg_state *reg,
1018 				       const char *pointer_desc,
1019 				       int off, int size, bool strict)
1020 {
1021 	struct tnum reg_off;
1022 
1023 	/* Byte size accesses are always allowed. */
1024 	if (!strict || size == 1)
1025 		return 0;
1026 
1027 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 	if (!tnum_is_aligned(reg_off, size)) {
1029 		char tn_buf[48];
1030 
1031 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033 			pointer_desc, tn_buf, reg->off, off, size);
1034 		return -EACCES;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 			       const struct bpf_reg_state *reg,
1042 			       int off, int size)
1043 {
1044 	bool strict = env->strict_alignment;
1045 	const char *pointer_desc = "";
1046 
1047 	switch (reg->type) {
1048 	case PTR_TO_PACKET:
1049 	case PTR_TO_PACKET_META:
1050 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 		 * right in front, treat it the very same way.
1052 		 */
1053 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 	case PTR_TO_MAP_VALUE:
1055 		pointer_desc = "value ";
1056 		break;
1057 	case PTR_TO_CTX:
1058 		pointer_desc = "context ";
1059 		break;
1060 	case PTR_TO_STACK:
1061 		pointer_desc = "stack ";
1062 		/* The stack spill tracking logic in check_stack_write()
1063 		 * and check_stack_read() relies on stack accesses being
1064 		 * aligned.
1065 		 */
1066 		strict = true;
1067 		break;
1068 	default:
1069 		break;
1070 	}
1071 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1072 					   strict);
1073 }
1074 
1075 /* truncate register to smaller size (in bytes)
1076  * must be called with size < BPF_REG_SIZE
1077  */
1078 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1079 {
1080 	u64 mask;
1081 
1082 	/* clear high bits in bit representation */
1083 	reg->var_off = tnum_cast(reg->var_off, size);
1084 
1085 	/* fix arithmetic bounds */
1086 	mask = ((u64)1 << (size * 8)) - 1;
1087 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1088 		reg->umin_value &= mask;
1089 		reg->umax_value &= mask;
1090 	} else {
1091 		reg->umin_value = 0;
1092 		reg->umax_value = mask;
1093 	}
1094 	reg->smin_value = reg->umin_value;
1095 	reg->smax_value = reg->umax_value;
1096 }
1097 
1098 /* check whether memory at (regno + off) is accessible for t = (read | write)
1099  * if t==write, value_regno is a register which value is stored into memory
1100  * if t==read, value_regno is a register which will receive the value from memory
1101  * if t==write && value_regno==-1, some unknown value is stored into memory
1102  * if t==read && value_regno==-1, don't care what we read from memory
1103  */
1104 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1105 			    int bpf_size, enum bpf_access_type t,
1106 			    int value_regno)
1107 {
1108 	struct bpf_verifier_state *state = env->cur_state;
1109 	struct bpf_reg_state *regs = cur_regs(env);
1110 	struct bpf_reg_state *reg = regs + regno;
1111 	int size, err = 0;
1112 
1113 	size = bpf_size_to_bytes(bpf_size);
1114 	if (size < 0)
1115 		return size;
1116 
1117 	/* alignment checks will add in reg->off themselves */
1118 	err = check_ptr_alignment(env, reg, off, size);
1119 	if (err)
1120 		return err;
1121 
1122 	/* for access checks, reg->off is just part of off */
1123 	off += reg->off;
1124 
1125 	if (reg->type == PTR_TO_MAP_VALUE) {
1126 		if (t == BPF_WRITE && value_regno >= 0 &&
1127 		    is_pointer_value(env, value_regno)) {
1128 			verbose(env, "R%d leaks addr into map\n", value_regno);
1129 			return -EACCES;
1130 		}
1131 
1132 		err = check_map_access(env, regno, off, size, false);
1133 		if (!err && t == BPF_READ && value_regno >= 0)
1134 			mark_reg_unknown(env, regs, value_regno);
1135 
1136 	} else if (reg->type == PTR_TO_CTX) {
1137 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1138 
1139 		if (t == BPF_WRITE && value_regno >= 0 &&
1140 		    is_pointer_value(env, value_regno)) {
1141 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1142 			return -EACCES;
1143 		}
1144 		/* ctx accesses must be at a fixed offset, so that we can
1145 		 * determine what type of data were returned.
1146 		 */
1147 		if (reg->off) {
1148 			verbose(env,
1149 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1150 				regno, reg->off, off - reg->off);
1151 			return -EACCES;
1152 		}
1153 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1154 			char tn_buf[48];
1155 
1156 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1157 			verbose(env,
1158 				"variable ctx access var_off=%s off=%d size=%d",
1159 				tn_buf, off, size);
1160 			return -EACCES;
1161 		}
1162 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1163 		if (!err && t == BPF_READ && value_regno >= 0) {
1164 			/* ctx access returns either a scalar, or a
1165 			 * PTR_TO_PACKET[_META,_END]. In the latter
1166 			 * case, we know the offset is zero.
1167 			 */
1168 			if (reg_type == SCALAR_VALUE)
1169 				mark_reg_unknown(env, regs, value_regno);
1170 			else
1171 				mark_reg_known_zero(env, regs,
1172 						    value_regno);
1173 			regs[value_regno].id = 0;
1174 			regs[value_regno].off = 0;
1175 			regs[value_regno].range = 0;
1176 			regs[value_regno].type = reg_type;
1177 		}
1178 
1179 	} else if (reg->type == PTR_TO_STACK) {
1180 		/* stack accesses must be at a fixed offset, so that we can
1181 		 * determine what type of data were returned.
1182 		 * See check_stack_read().
1183 		 */
1184 		if (!tnum_is_const(reg->var_off)) {
1185 			char tn_buf[48];
1186 
1187 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1188 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1189 				tn_buf, off, size);
1190 			return -EACCES;
1191 		}
1192 		off += reg->var_off.value;
1193 		if (off >= 0 || off < -MAX_BPF_STACK) {
1194 			verbose(env, "invalid stack off=%d size=%d\n", off,
1195 				size);
1196 			return -EACCES;
1197 		}
1198 
1199 		if (env->prog->aux->stack_depth < -off)
1200 			env->prog->aux->stack_depth = -off;
1201 
1202 		if (t == BPF_WRITE)
1203 			err = check_stack_write(env, state, off, size,
1204 						value_regno);
1205 		else
1206 			err = check_stack_read(env, state, off, size,
1207 					       value_regno);
1208 	} else if (reg_is_pkt_pointer(reg)) {
1209 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1210 			verbose(env, "cannot write into packet\n");
1211 			return -EACCES;
1212 		}
1213 		if (t == BPF_WRITE && value_regno >= 0 &&
1214 		    is_pointer_value(env, value_regno)) {
1215 			verbose(env, "R%d leaks addr into packet\n",
1216 				value_regno);
1217 			return -EACCES;
1218 		}
1219 		err = check_packet_access(env, regno, off, size, false);
1220 		if (!err && t == BPF_READ && value_regno >= 0)
1221 			mark_reg_unknown(env, regs, value_regno);
1222 	} else {
1223 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1224 			reg_type_str[reg->type]);
1225 		return -EACCES;
1226 	}
1227 
1228 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1229 	    regs[value_regno].type == SCALAR_VALUE) {
1230 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1231 		coerce_reg_to_size(&regs[value_regno], size);
1232 	}
1233 	return err;
1234 }
1235 
1236 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1237 {
1238 	int err;
1239 
1240 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1241 	    insn->imm != 0) {
1242 		verbose(env, "BPF_XADD uses reserved fields\n");
1243 		return -EINVAL;
1244 	}
1245 
1246 	/* check src1 operand */
1247 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1248 	if (err)
1249 		return err;
1250 
1251 	/* check src2 operand */
1252 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1253 	if (err)
1254 		return err;
1255 
1256 	if (is_pointer_value(env, insn->src_reg)) {
1257 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1258 		return -EACCES;
1259 	}
1260 
1261 	/* check whether atomic_add can read the memory */
1262 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1263 			       BPF_SIZE(insn->code), BPF_READ, -1);
1264 	if (err)
1265 		return err;
1266 
1267 	/* check whether atomic_add can write into the same memory */
1268 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1269 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1270 }
1271 
1272 /* Does this register contain a constant zero? */
1273 static bool register_is_null(struct bpf_reg_state reg)
1274 {
1275 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1276 }
1277 
1278 /* when register 'regno' is passed into function that will read 'access_size'
1279  * bytes from that pointer, make sure that it's within stack boundary
1280  * and all elements of stack are initialized.
1281  * Unlike most pointer bounds-checking functions, this one doesn't take an
1282  * 'off' argument, so it has to add in reg->off itself.
1283  */
1284 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1285 				int access_size, bool zero_size_allowed,
1286 				struct bpf_call_arg_meta *meta)
1287 {
1288 	struct bpf_verifier_state *state = env->cur_state;
1289 	struct bpf_reg_state *regs = state->regs;
1290 	int off, i, slot, spi;
1291 
1292 	if (regs[regno].type != PTR_TO_STACK) {
1293 		/* Allow zero-byte read from NULL, regardless of pointer type */
1294 		if (zero_size_allowed && access_size == 0 &&
1295 		    register_is_null(regs[regno]))
1296 			return 0;
1297 
1298 		verbose(env, "R%d type=%s expected=%s\n", regno,
1299 			reg_type_str[regs[regno].type],
1300 			reg_type_str[PTR_TO_STACK]);
1301 		return -EACCES;
1302 	}
1303 
1304 	/* Only allow fixed-offset stack reads */
1305 	if (!tnum_is_const(regs[regno].var_off)) {
1306 		char tn_buf[48];
1307 
1308 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1309 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1310 			regno, tn_buf);
1311 		return -EACCES;
1312 	}
1313 	off = regs[regno].off + regs[regno].var_off.value;
1314 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1315 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1316 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1317 			regno, off, access_size);
1318 		return -EACCES;
1319 	}
1320 
1321 	if (env->prog->aux->stack_depth < -off)
1322 		env->prog->aux->stack_depth = -off;
1323 
1324 	if (meta && meta->raw_mode) {
1325 		meta->access_size = access_size;
1326 		meta->regno = regno;
1327 		return 0;
1328 	}
1329 
1330 	for (i = 0; i < access_size; i++) {
1331 		slot = -(off + i) - 1;
1332 		spi = slot / BPF_REG_SIZE;
1333 		if (state->allocated_stack <= slot ||
1334 		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1335 			STACK_MISC) {
1336 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1337 				off, i, access_size);
1338 			return -EACCES;
1339 		}
1340 	}
1341 	return 0;
1342 }
1343 
1344 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1345 				   int access_size, bool zero_size_allowed,
1346 				   struct bpf_call_arg_meta *meta)
1347 {
1348 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1349 
1350 	switch (reg->type) {
1351 	case PTR_TO_PACKET:
1352 	case PTR_TO_PACKET_META:
1353 		return check_packet_access(env, regno, reg->off, access_size,
1354 					   zero_size_allowed);
1355 	case PTR_TO_MAP_VALUE:
1356 		return check_map_access(env, regno, reg->off, access_size,
1357 					zero_size_allowed);
1358 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1359 		return check_stack_boundary(env, regno, access_size,
1360 					    zero_size_allowed, meta);
1361 	}
1362 }
1363 
1364 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1365 			  enum bpf_arg_type arg_type,
1366 			  struct bpf_call_arg_meta *meta)
1367 {
1368 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1369 	enum bpf_reg_type expected_type, type = reg->type;
1370 	int err = 0;
1371 
1372 	if (arg_type == ARG_DONTCARE)
1373 		return 0;
1374 
1375 	err = check_reg_arg(env, regno, SRC_OP);
1376 	if (err)
1377 		return err;
1378 
1379 	if (arg_type == ARG_ANYTHING) {
1380 		if (is_pointer_value(env, regno)) {
1381 			verbose(env, "R%d leaks addr into helper function\n",
1382 				regno);
1383 			return -EACCES;
1384 		}
1385 		return 0;
1386 	}
1387 
1388 	if (type_is_pkt_pointer(type) &&
1389 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1390 		verbose(env, "helper access to the packet is not allowed\n");
1391 		return -EACCES;
1392 	}
1393 
1394 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1395 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1396 		expected_type = PTR_TO_STACK;
1397 		if (!type_is_pkt_pointer(type) &&
1398 		    type != expected_type)
1399 			goto err_type;
1400 	} else if (arg_type == ARG_CONST_SIZE ||
1401 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1402 		expected_type = SCALAR_VALUE;
1403 		if (type != expected_type)
1404 			goto err_type;
1405 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1406 		expected_type = CONST_PTR_TO_MAP;
1407 		if (type != expected_type)
1408 			goto err_type;
1409 	} else if (arg_type == ARG_PTR_TO_CTX) {
1410 		expected_type = PTR_TO_CTX;
1411 		if (type != expected_type)
1412 			goto err_type;
1413 	} else if (arg_type == ARG_PTR_TO_MEM ||
1414 		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1415 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1416 		expected_type = PTR_TO_STACK;
1417 		/* One exception here. In case function allows for NULL to be
1418 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1419 		 * happens during stack boundary checking.
1420 		 */
1421 		if (register_is_null(*reg) &&
1422 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1423 			/* final test in check_stack_boundary() */;
1424 		else if (!type_is_pkt_pointer(type) &&
1425 			 type != PTR_TO_MAP_VALUE &&
1426 			 type != expected_type)
1427 			goto err_type;
1428 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1429 	} else {
1430 		verbose(env, "unsupported arg_type %d\n", arg_type);
1431 		return -EFAULT;
1432 	}
1433 
1434 	if (arg_type == ARG_CONST_MAP_PTR) {
1435 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1436 		meta->map_ptr = reg->map_ptr;
1437 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1438 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1439 		 * check that [key, key + map->key_size) are within
1440 		 * stack limits and initialized
1441 		 */
1442 		if (!meta->map_ptr) {
1443 			/* in function declaration map_ptr must come before
1444 			 * map_key, so that it's verified and known before
1445 			 * we have to check map_key here. Otherwise it means
1446 			 * that kernel subsystem misconfigured verifier
1447 			 */
1448 			verbose(env, "invalid map_ptr to access map->key\n");
1449 			return -EACCES;
1450 		}
1451 		if (type_is_pkt_pointer(type))
1452 			err = check_packet_access(env, regno, reg->off,
1453 						  meta->map_ptr->key_size,
1454 						  false);
1455 		else
1456 			err = check_stack_boundary(env, regno,
1457 						   meta->map_ptr->key_size,
1458 						   false, NULL);
1459 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1460 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1461 		 * check [value, value + map->value_size) validity
1462 		 */
1463 		if (!meta->map_ptr) {
1464 			/* kernel subsystem misconfigured verifier */
1465 			verbose(env, "invalid map_ptr to access map->value\n");
1466 			return -EACCES;
1467 		}
1468 		if (type_is_pkt_pointer(type))
1469 			err = check_packet_access(env, regno, reg->off,
1470 						  meta->map_ptr->value_size,
1471 						  false);
1472 		else
1473 			err = check_stack_boundary(env, regno,
1474 						   meta->map_ptr->value_size,
1475 						   false, NULL);
1476 	} else if (arg_type == ARG_CONST_SIZE ||
1477 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1478 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1479 
1480 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1481 		 * from stack pointer 'buf'. Check it
1482 		 * note: regno == len, regno - 1 == buf
1483 		 */
1484 		if (regno == 0) {
1485 			/* kernel subsystem misconfigured verifier */
1486 			verbose(env,
1487 				"ARG_CONST_SIZE cannot be first argument\n");
1488 			return -EACCES;
1489 		}
1490 
1491 		/* The register is SCALAR_VALUE; the access check
1492 		 * happens using its boundaries.
1493 		 */
1494 
1495 		if (!tnum_is_const(reg->var_off))
1496 			/* For unprivileged variable accesses, disable raw
1497 			 * mode so that the program is required to
1498 			 * initialize all the memory that the helper could
1499 			 * just partially fill up.
1500 			 */
1501 			meta = NULL;
1502 
1503 		if (reg->smin_value < 0) {
1504 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1505 				regno);
1506 			return -EACCES;
1507 		}
1508 
1509 		if (reg->umin_value == 0) {
1510 			err = check_helper_mem_access(env, regno - 1, 0,
1511 						      zero_size_allowed,
1512 						      meta);
1513 			if (err)
1514 				return err;
1515 		}
1516 
1517 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1518 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1519 				regno);
1520 			return -EACCES;
1521 		}
1522 		err = check_helper_mem_access(env, regno - 1,
1523 					      reg->umax_value,
1524 					      zero_size_allowed, meta);
1525 	}
1526 
1527 	return err;
1528 err_type:
1529 	verbose(env, "R%d type=%s expected=%s\n", regno,
1530 		reg_type_str[type], reg_type_str[expected_type]);
1531 	return -EACCES;
1532 }
1533 
1534 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1535 					struct bpf_map *map, int func_id)
1536 {
1537 	if (!map)
1538 		return 0;
1539 
1540 	/* We need a two way check, first is from map perspective ... */
1541 	switch (map->map_type) {
1542 	case BPF_MAP_TYPE_PROG_ARRAY:
1543 		if (func_id != BPF_FUNC_tail_call)
1544 			goto error;
1545 		break;
1546 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1547 		if (func_id != BPF_FUNC_perf_event_read &&
1548 		    func_id != BPF_FUNC_perf_event_output &&
1549 		    func_id != BPF_FUNC_perf_event_read_value)
1550 			goto error;
1551 		break;
1552 	case BPF_MAP_TYPE_STACK_TRACE:
1553 		if (func_id != BPF_FUNC_get_stackid)
1554 			goto error;
1555 		break;
1556 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1557 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1558 		    func_id != BPF_FUNC_current_task_under_cgroup)
1559 			goto error;
1560 		break;
1561 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1562 	 * allow to be modified from bpf side. So do not allow lookup elements
1563 	 * for now.
1564 	 */
1565 	case BPF_MAP_TYPE_DEVMAP:
1566 		if (func_id != BPF_FUNC_redirect_map)
1567 			goto error;
1568 		break;
1569 	/* Restrict bpf side of cpumap, open when use-cases appear */
1570 	case BPF_MAP_TYPE_CPUMAP:
1571 		if (func_id != BPF_FUNC_redirect_map)
1572 			goto error;
1573 		break;
1574 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1575 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1576 		if (func_id != BPF_FUNC_map_lookup_elem)
1577 			goto error;
1578 		break;
1579 	case BPF_MAP_TYPE_SOCKMAP:
1580 		if (func_id != BPF_FUNC_sk_redirect_map &&
1581 		    func_id != BPF_FUNC_sock_map_update &&
1582 		    func_id != BPF_FUNC_map_delete_elem)
1583 			goto error;
1584 		break;
1585 	default:
1586 		break;
1587 	}
1588 
1589 	/* ... and second from the function itself. */
1590 	switch (func_id) {
1591 	case BPF_FUNC_tail_call:
1592 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1593 			goto error;
1594 		break;
1595 	case BPF_FUNC_perf_event_read:
1596 	case BPF_FUNC_perf_event_output:
1597 	case BPF_FUNC_perf_event_read_value:
1598 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1599 			goto error;
1600 		break;
1601 	case BPF_FUNC_get_stackid:
1602 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1603 			goto error;
1604 		break;
1605 	case BPF_FUNC_current_task_under_cgroup:
1606 	case BPF_FUNC_skb_under_cgroup:
1607 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1608 			goto error;
1609 		break;
1610 	case BPF_FUNC_redirect_map:
1611 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1612 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1613 			goto error;
1614 		break;
1615 	case BPF_FUNC_sk_redirect_map:
1616 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1617 			goto error;
1618 		break;
1619 	case BPF_FUNC_sock_map_update:
1620 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1621 			goto error;
1622 		break;
1623 	default:
1624 		break;
1625 	}
1626 
1627 	return 0;
1628 error:
1629 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1630 		map->map_type, func_id_name(func_id), func_id);
1631 	return -EINVAL;
1632 }
1633 
1634 static int check_raw_mode(const struct bpf_func_proto *fn)
1635 {
1636 	int count = 0;
1637 
1638 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1639 		count++;
1640 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1641 		count++;
1642 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1643 		count++;
1644 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1645 		count++;
1646 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1647 		count++;
1648 
1649 	return count > 1 ? -EINVAL : 0;
1650 }
1651 
1652 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1653  * are now invalid, so turn them into unknown SCALAR_VALUE.
1654  */
1655 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1656 {
1657 	struct bpf_verifier_state *state = env->cur_state;
1658 	struct bpf_reg_state *regs = state->regs, *reg;
1659 	int i;
1660 
1661 	for (i = 0; i < MAX_BPF_REG; i++)
1662 		if (reg_is_pkt_pointer_any(&regs[i]))
1663 			mark_reg_unknown(env, regs, i);
1664 
1665 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1666 		if (state->stack[i].slot_type[0] != STACK_SPILL)
1667 			continue;
1668 		reg = &state->stack[i].spilled_ptr;
1669 		if (reg_is_pkt_pointer_any(reg))
1670 			__mark_reg_unknown(reg);
1671 	}
1672 }
1673 
1674 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1675 {
1676 	const struct bpf_func_proto *fn = NULL;
1677 	struct bpf_reg_state *regs;
1678 	struct bpf_call_arg_meta meta;
1679 	bool changes_data;
1680 	int i, err;
1681 
1682 	/* find function prototype */
1683 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1684 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1685 			func_id);
1686 		return -EINVAL;
1687 	}
1688 
1689 	if (env->ops->get_func_proto)
1690 		fn = env->ops->get_func_proto(func_id);
1691 
1692 	if (!fn) {
1693 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1694 			func_id);
1695 		return -EINVAL;
1696 	}
1697 
1698 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1699 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1700 		verbose(env, "cannot call GPL only function from proprietary program\n");
1701 		return -EINVAL;
1702 	}
1703 
1704 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
1705 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1706 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1707 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1708 			func_id_name(func_id), func_id);
1709 		return -EINVAL;
1710 	}
1711 
1712 	memset(&meta, 0, sizeof(meta));
1713 	meta.pkt_access = fn->pkt_access;
1714 
1715 	/* We only support one arg being in raw mode at the moment, which
1716 	 * is sufficient for the helper functions we have right now.
1717 	 */
1718 	err = check_raw_mode(fn);
1719 	if (err) {
1720 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1721 			func_id_name(func_id), func_id);
1722 		return err;
1723 	}
1724 
1725 	/* check args */
1726 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1727 	if (err)
1728 		return err;
1729 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1730 	if (err)
1731 		return err;
1732 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1733 	if (err)
1734 		return err;
1735 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1736 	if (err)
1737 		return err;
1738 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1739 	if (err)
1740 		return err;
1741 
1742 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1743 	 * is inferred from register state.
1744 	 */
1745 	for (i = 0; i < meta.access_size; i++) {
1746 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1747 		if (err)
1748 			return err;
1749 	}
1750 
1751 	regs = cur_regs(env);
1752 	/* reset caller saved regs */
1753 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1754 		mark_reg_not_init(env, regs, caller_saved[i]);
1755 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1756 	}
1757 
1758 	/* update return register (already marked as written above) */
1759 	if (fn->ret_type == RET_INTEGER) {
1760 		/* sets type to SCALAR_VALUE */
1761 		mark_reg_unknown(env, regs, BPF_REG_0);
1762 	} else if (fn->ret_type == RET_VOID) {
1763 		regs[BPF_REG_0].type = NOT_INIT;
1764 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1765 		struct bpf_insn_aux_data *insn_aux;
1766 
1767 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1768 		/* There is no offset yet applied, variable or fixed */
1769 		mark_reg_known_zero(env, regs, BPF_REG_0);
1770 		regs[BPF_REG_0].off = 0;
1771 		/* remember map_ptr, so that check_map_access()
1772 		 * can check 'value_size' boundary of memory access
1773 		 * to map element returned from bpf_map_lookup_elem()
1774 		 */
1775 		if (meta.map_ptr == NULL) {
1776 			verbose(env,
1777 				"kernel subsystem misconfigured verifier\n");
1778 			return -EINVAL;
1779 		}
1780 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1781 		regs[BPF_REG_0].id = ++env->id_gen;
1782 		insn_aux = &env->insn_aux_data[insn_idx];
1783 		if (!insn_aux->map_ptr)
1784 			insn_aux->map_ptr = meta.map_ptr;
1785 		else if (insn_aux->map_ptr != meta.map_ptr)
1786 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1787 	} else {
1788 		verbose(env, "unknown return type %d of func %s#%d\n",
1789 			fn->ret_type, func_id_name(func_id), func_id);
1790 		return -EINVAL;
1791 	}
1792 
1793 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1794 	if (err)
1795 		return err;
1796 
1797 	if (changes_data)
1798 		clear_all_pkt_pointers(env);
1799 	return 0;
1800 }
1801 
1802 static bool signed_add_overflows(s64 a, s64 b)
1803 {
1804 	/* Do the add in u64, where overflow is well-defined */
1805 	s64 res = (s64)((u64)a + (u64)b);
1806 
1807 	if (b < 0)
1808 		return res > a;
1809 	return res < a;
1810 }
1811 
1812 static bool signed_sub_overflows(s64 a, s64 b)
1813 {
1814 	/* Do the sub in u64, where overflow is well-defined */
1815 	s64 res = (s64)((u64)a - (u64)b);
1816 
1817 	if (b < 0)
1818 		return res < a;
1819 	return res > a;
1820 }
1821 
1822 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1823 				  const struct bpf_reg_state *reg,
1824 				  enum bpf_reg_type type)
1825 {
1826 	bool known = tnum_is_const(reg->var_off);
1827 	s64 val = reg->var_off.value;
1828 	s64 smin = reg->smin_value;
1829 
1830 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1831 		verbose(env, "math between %s pointer and %lld is not allowed\n",
1832 			reg_type_str[type], val);
1833 		return false;
1834 	}
1835 
1836 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1837 		verbose(env, "%s pointer offset %d is not allowed\n",
1838 			reg_type_str[type], reg->off);
1839 		return false;
1840 	}
1841 
1842 	if (smin == S64_MIN) {
1843 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1844 			reg_type_str[type]);
1845 		return false;
1846 	}
1847 
1848 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1849 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
1850 			smin, reg_type_str[type]);
1851 		return false;
1852 	}
1853 
1854 	return true;
1855 }
1856 
1857 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1858  * Caller should also handle BPF_MOV case separately.
1859  * If we return -EACCES, caller may want to try again treating pointer as a
1860  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1861  */
1862 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1863 				   struct bpf_insn *insn,
1864 				   const struct bpf_reg_state *ptr_reg,
1865 				   const struct bpf_reg_state *off_reg)
1866 {
1867 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1868 	bool known = tnum_is_const(off_reg->var_off);
1869 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1870 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1871 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1872 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1873 	u8 opcode = BPF_OP(insn->code);
1874 	u32 dst = insn->dst_reg;
1875 
1876 	dst_reg = &regs[dst];
1877 
1878 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1879 		print_verifier_state(env, env->cur_state);
1880 		verbose(env,
1881 			"verifier internal error: known but bad sbounds\n");
1882 		return -EINVAL;
1883 	}
1884 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1885 		print_verifier_state(env, env->cur_state);
1886 		verbose(env,
1887 			"verifier internal error: known but bad ubounds\n");
1888 		return -EINVAL;
1889 	}
1890 
1891 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1892 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1893 		verbose(env,
1894 			"R%d 32-bit pointer arithmetic prohibited\n",
1895 			dst);
1896 		return -EACCES;
1897 	}
1898 
1899 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1900 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1901 			dst);
1902 		return -EACCES;
1903 	}
1904 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1905 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1906 			dst);
1907 		return -EACCES;
1908 	}
1909 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1910 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1911 			dst);
1912 		return -EACCES;
1913 	}
1914 
1915 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1916 	 * The id may be overwritten later if we create a new variable offset.
1917 	 */
1918 	dst_reg->type = ptr_reg->type;
1919 	dst_reg->id = ptr_reg->id;
1920 
1921 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1922 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1923 		return -EINVAL;
1924 
1925 	switch (opcode) {
1926 	case BPF_ADD:
1927 		/* We can take a fixed offset as long as it doesn't overflow
1928 		 * the s32 'off' field
1929 		 */
1930 		if (known && (ptr_reg->off + smin_val ==
1931 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1932 			/* pointer += K.  Accumulate it into fixed offset */
1933 			dst_reg->smin_value = smin_ptr;
1934 			dst_reg->smax_value = smax_ptr;
1935 			dst_reg->umin_value = umin_ptr;
1936 			dst_reg->umax_value = umax_ptr;
1937 			dst_reg->var_off = ptr_reg->var_off;
1938 			dst_reg->off = ptr_reg->off + smin_val;
1939 			dst_reg->range = ptr_reg->range;
1940 			break;
1941 		}
1942 		/* A new variable offset is created.  Note that off_reg->off
1943 		 * == 0, since it's a scalar.
1944 		 * dst_reg gets the pointer type and since some positive
1945 		 * integer value was added to the pointer, give it a new 'id'
1946 		 * if it's a PTR_TO_PACKET.
1947 		 * this creates a new 'base' pointer, off_reg (variable) gets
1948 		 * added into the variable offset, and we copy the fixed offset
1949 		 * from ptr_reg.
1950 		 */
1951 		if (signed_add_overflows(smin_ptr, smin_val) ||
1952 		    signed_add_overflows(smax_ptr, smax_val)) {
1953 			dst_reg->smin_value = S64_MIN;
1954 			dst_reg->smax_value = S64_MAX;
1955 		} else {
1956 			dst_reg->smin_value = smin_ptr + smin_val;
1957 			dst_reg->smax_value = smax_ptr + smax_val;
1958 		}
1959 		if (umin_ptr + umin_val < umin_ptr ||
1960 		    umax_ptr + umax_val < umax_ptr) {
1961 			dst_reg->umin_value = 0;
1962 			dst_reg->umax_value = U64_MAX;
1963 		} else {
1964 			dst_reg->umin_value = umin_ptr + umin_val;
1965 			dst_reg->umax_value = umax_ptr + umax_val;
1966 		}
1967 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1968 		dst_reg->off = ptr_reg->off;
1969 		if (reg_is_pkt_pointer(ptr_reg)) {
1970 			dst_reg->id = ++env->id_gen;
1971 			/* something was added to pkt_ptr, set range to zero */
1972 			dst_reg->range = 0;
1973 		}
1974 		break;
1975 	case BPF_SUB:
1976 		if (dst_reg == off_reg) {
1977 			/* scalar -= pointer.  Creates an unknown scalar */
1978 			verbose(env, "R%d tried to subtract pointer from scalar\n",
1979 				dst);
1980 			return -EACCES;
1981 		}
1982 		/* We don't allow subtraction from FP, because (according to
1983 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1984 		 * be able to deal with it.
1985 		 */
1986 		if (ptr_reg->type == PTR_TO_STACK) {
1987 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
1988 				dst);
1989 			return -EACCES;
1990 		}
1991 		if (known && (ptr_reg->off - smin_val ==
1992 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1993 			/* pointer -= K.  Subtract it from fixed offset */
1994 			dst_reg->smin_value = smin_ptr;
1995 			dst_reg->smax_value = smax_ptr;
1996 			dst_reg->umin_value = umin_ptr;
1997 			dst_reg->umax_value = umax_ptr;
1998 			dst_reg->var_off = ptr_reg->var_off;
1999 			dst_reg->id = ptr_reg->id;
2000 			dst_reg->off = ptr_reg->off - smin_val;
2001 			dst_reg->range = ptr_reg->range;
2002 			break;
2003 		}
2004 		/* A new variable offset is created.  If the subtrahend is known
2005 		 * nonnegative, then any reg->range we had before is still good.
2006 		 */
2007 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2008 		    signed_sub_overflows(smax_ptr, smin_val)) {
2009 			/* Overflow possible, we know nothing */
2010 			dst_reg->smin_value = S64_MIN;
2011 			dst_reg->smax_value = S64_MAX;
2012 		} else {
2013 			dst_reg->smin_value = smin_ptr - smax_val;
2014 			dst_reg->smax_value = smax_ptr - smin_val;
2015 		}
2016 		if (umin_ptr < umax_val) {
2017 			/* Overflow possible, we know nothing */
2018 			dst_reg->umin_value = 0;
2019 			dst_reg->umax_value = U64_MAX;
2020 		} else {
2021 			/* Cannot overflow (as long as bounds are consistent) */
2022 			dst_reg->umin_value = umin_ptr - umax_val;
2023 			dst_reg->umax_value = umax_ptr - umin_val;
2024 		}
2025 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2026 		dst_reg->off = ptr_reg->off;
2027 		if (reg_is_pkt_pointer(ptr_reg)) {
2028 			dst_reg->id = ++env->id_gen;
2029 			/* something was added to pkt_ptr, set range to zero */
2030 			if (smin_val < 0)
2031 				dst_reg->range = 0;
2032 		}
2033 		break;
2034 	case BPF_AND:
2035 	case BPF_OR:
2036 	case BPF_XOR:
2037 		/* bitwise ops on pointers are troublesome, prohibit. */
2038 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2039 			dst, bpf_alu_string[opcode >> 4]);
2040 		return -EACCES;
2041 	default:
2042 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2043 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2044 			dst, bpf_alu_string[opcode >> 4]);
2045 		return -EACCES;
2046 	}
2047 
2048 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2049 		return -EINVAL;
2050 
2051 	__update_reg_bounds(dst_reg);
2052 	__reg_deduce_bounds(dst_reg);
2053 	__reg_bound_offset(dst_reg);
2054 	return 0;
2055 }
2056 
2057 /* WARNING: This function does calculations on 64-bit values, but the actual
2058  * execution may occur on 32-bit values. Therefore, things like bitshifts
2059  * need extra checks in the 32-bit case.
2060  */
2061 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2062 				      struct bpf_insn *insn,
2063 				      struct bpf_reg_state *dst_reg,
2064 				      struct bpf_reg_state src_reg)
2065 {
2066 	struct bpf_reg_state *regs = cur_regs(env);
2067 	u8 opcode = BPF_OP(insn->code);
2068 	bool src_known, dst_known;
2069 	s64 smin_val, smax_val;
2070 	u64 umin_val, umax_val;
2071 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2072 
2073 	smin_val = src_reg.smin_value;
2074 	smax_val = src_reg.smax_value;
2075 	umin_val = src_reg.umin_value;
2076 	umax_val = src_reg.umax_value;
2077 	src_known = tnum_is_const(src_reg.var_off);
2078 	dst_known = tnum_is_const(dst_reg->var_off);
2079 
2080 	if (!src_known &&
2081 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2082 		__mark_reg_unknown(dst_reg);
2083 		return 0;
2084 	}
2085 
2086 	switch (opcode) {
2087 	case BPF_ADD:
2088 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2089 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2090 			dst_reg->smin_value = S64_MIN;
2091 			dst_reg->smax_value = S64_MAX;
2092 		} else {
2093 			dst_reg->smin_value += smin_val;
2094 			dst_reg->smax_value += smax_val;
2095 		}
2096 		if (dst_reg->umin_value + umin_val < umin_val ||
2097 		    dst_reg->umax_value + umax_val < umax_val) {
2098 			dst_reg->umin_value = 0;
2099 			dst_reg->umax_value = U64_MAX;
2100 		} else {
2101 			dst_reg->umin_value += umin_val;
2102 			dst_reg->umax_value += umax_val;
2103 		}
2104 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2105 		break;
2106 	case BPF_SUB:
2107 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2108 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2109 			/* Overflow possible, we know nothing */
2110 			dst_reg->smin_value = S64_MIN;
2111 			dst_reg->smax_value = S64_MAX;
2112 		} else {
2113 			dst_reg->smin_value -= smax_val;
2114 			dst_reg->smax_value -= smin_val;
2115 		}
2116 		if (dst_reg->umin_value < umax_val) {
2117 			/* Overflow possible, we know nothing */
2118 			dst_reg->umin_value = 0;
2119 			dst_reg->umax_value = U64_MAX;
2120 		} else {
2121 			/* Cannot overflow (as long as bounds are consistent) */
2122 			dst_reg->umin_value -= umax_val;
2123 			dst_reg->umax_value -= umin_val;
2124 		}
2125 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2126 		break;
2127 	case BPF_MUL:
2128 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2129 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2130 			/* Ain't nobody got time to multiply that sign */
2131 			__mark_reg_unbounded(dst_reg);
2132 			__update_reg_bounds(dst_reg);
2133 			break;
2134 		}
2135 		/* Both values are positive, so we can work with unsigned and
2136 		 * copy the result to signed (unless it exceeds S64_MAX).
2137 		 */
2138 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2139 			/* Potential overflow, we know nothing */
2140 			__mark_reg_unbounded(dst_reg);
2141 			/* (except what we can learn from the var_off) */
2142 			__update_reg_bounds(dst_reg);
2143 			break;
2144 		}
2145 		dst_reg->umin_value *= umin_val;
2146 		dst_reg->umax_value *= umax_val;
2147 		if (dst_reg->umax_value > S64_MAX) {
2148 			/* Overflow possible, we know nothing */
2149 			dst_reg->smin_value = S64_MIN;
2150 			dst_reg->smax_value = S64_MAX;
2151 		} else {
2152 			dst_reg->smin_value = dst_reg->umin_value;
2153 			dst_reg->smax_value = dst_reg->umax_value;
2154 		}
2155 		break;
2156 	case BPF_AND:
2157 		if (src_known && dst_known) {
2158 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2159 						  src_reg.var_off.value);
2160 			break;
2161 		}
2162 		/* We get our minimum from the var_off, since that's inherently
2163 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2164 		 */
2165 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2166 		dst_reg->umin_value = dst_reg->var_off.value;
2167 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2168 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2169 			/* Lose signed bounds when ANDing negative numbers,
2170 			 * ain't nobody got time for that.
2171 			 */
2172 			dst_reg->smin_value = S64_MIN;
2173 			dst_reg->smax_value = S64_MAX;
2174 		} else {
2175 			/* ANDing two positives gives a positive, so safe to
2176 			 * cast result into s64.
2177 			 */
2178 			dst_reg->smin_value = dst_reg->umin_value;
2179 			dst_reg->smax_value = dst_reg->umax_value;
2180 		}
2181 		/* We may learn something more from the var_off */
2182 		__update_reg_bounds(dst_reg);
2183 		break;
2184 	case BPF_OR:
2185 		if (src_known && dst_known) {
2186 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2187 						  src_reg.var_off.value);
2188 			break;
2189 		}
2190 		/* We get our maximum from the var_off, and our minimum is the
2191 		 * maximum of the operands' minima
2192 		 */
2193 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2194 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2195 		dst_reg->umax_value = dst_reg->var_off.value |
2196 				      dst_reg->var_off.mask;
2197 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2198 			/* Lose signed bounds when ORing negative numbers,
2199 			 * ain't nobody got time for that.
2200 			 */
2201 			dst_reg->smin_value = S64_MIN;
2202 			dst_reg->smax_value = S64_MAX;
2203 		} else {
2204 			/* ORing two positives gives a positive, so safe to
2205 			 * cast result into s64.
2206 			 */
2207 			dst_reg->smin_value = dst_reg->umin_value;
2208 			dst_reg->smax_value = dst_reg->umax_value;
2209 		}
2210 		/* We may learn something more from the var_off */
2211 		__update_reg_bounds(dst_reg);
2212 		break;
2213 	case BPF_LSH:
2214 		if (umax_val >= insn_bitness) {
2215 			/* Shifts greater than 31 or 63 are undefined.
2216 			 * This includes shifts by a negative number.
2217 			 */
2218 			mark_reg_unknown(env, regs, insn->dst_reg);
2219 			break;
2220 		}
2221 		/* We lose all sign bit information (except what we can pick
2222 		 * up from var_off)
2223 		 */
2224 		dst_reg->smin_value = S64_MIN;
2225 		dst_reg->smax_value = S64_MAX;
2226 		/* If we might shift our top bit out, then we know nothing */
2227 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2228 			dst_reg->umin_value = 0;
2229 			dst_reg->umax_value = U64_MAX;
2230 		} else {
2231 			dst_reg->umin_value <<= umin_val;
2232 			dst_reg->umax_value <<= umax_val;
2233 		}
2234 		if (src_known)
2235 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2236 		else
2237 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2238 		/* We may learn something more from the var_off */
2239 		__update_reg_bounds(dst_reg);
2240 		break;
2241 	case BPF_RSH:
2242 		if (umax_val >= insn_bitness) {
2243 			/* Shifts greater than 31 or 63 are undefined.
2244 			 * This includes shifts by a negative number.
2245 			 */
2246 			mark_reg_unknown(env, regs, insn->dst_reg);
2247 			break;
2248 		}
2249 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
2250 		 * be negative, then either:
2251 		 * 1) src_reg might be zero, so the sign bit of the result is
2252 		 *    unknown, so we lose our signed bounds
2253 		 * 2) it's known negative, thus the unsigned bounds capture the
2254 		 *    signed bounds
2255 		 * 3) the signed bounds cross zero, so they tell us nothing
2256 		 *    about the result
2257 		 * If the value in dst_reg is known nonnegative, then again the
2258 		 * unsigned bounts capture the signed bounds.
2259 		 * Thus, in all cases it suffices to blow away our signed bounds
2260 		 * and rely on inferring new ones from the unsigned bounds and
2261 		 * var_off of the result.
2262 		 */
2263 		dst_reg->smin_value = S64_MIN;
2264 		dst_reg->smax_value = S64_MAX;
2265 		if (src_known)
2266 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2267 						       umin_val);
2268 		else
2269 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2270 		dst_reg->umin_value >>= umax_val;
2271 		dst_reg->umax_value >>= umin_val;
2272 		/* We may learn something more from the var_off */
2273 		__update_reg_bounds(dst_reg);
2274 		break;
2275 	default:
2276 		mark_reg_unknown(env, regs, insn->dst_reg);
2277 		break;
2278 	}
2279 
2280 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2281 		/* 32-bit ALU ops are (32,32)->32 */
2282 		coerce_reg_to_size(dst_reg, 4);
2283 		coerce_reg_to_size(&src_reg, 4);
2284 	}
2285 
2286 	__reg_deduce_bounds(dst_reg);
2287 	__reg_bound_offset(dst_reg);
2288 	return 0;
2289 }
2290 
2291 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2292  * and var_off.
2293  */
2294 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2295 				   struct bpf_insn *insn)
2296 {
2297 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2298 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2299 	u8 opcode = BPF_OP(insn->code);
2300 
2301 	dst_reg = &regs[insn->dst_reg];
2302 	src_reg = NULL;
2303 	if (dst_reg->type != SCALAR_VALUE)
2304 		ptr_reg = dst_reg;
2305 	if (BPF_SRC(insn->code) == BPF_X) {
2306 		src_reg = &regs[insn->src_reg];
2307 		if (src_reg->type != SCALAR_VALUE) {
2308 			if (dst_reg->type != SCALAR_VALUE) {
2309 				/* Combining two pointers by any ALU op yields
2310 				 * an arbitrary scalar. Disallow all math except
2311 				 * pointer subtraction
2312 				 */
2313 				if (opcode == BPF_SUB){
2314 					mark_reg_unknown(env, regs, insn->dst_reg);
2315 					return 0;
2316 				}
2317 				verbose(env, "R%d pointer %s pointer prohibited\n",
2318 					insn->dst_reg,
2319 					bpf_alu_string[opcode >> 4]);
2320 				return -EACCES;
2321 			} else {
2322 				/* scalar += pointer
2323 				 * This is legal, but we have to reverse our
2324 				 * src/dest handling in computing the range
2325 				 */
2326 				return adjust_ptr_min_max_vals(env, insn,
2327 							       src_reg, dst_reg);
2328 			}
2329 		} else if (ptr_reg) {
2330 			/* pointer += scalar */
2331 			return adjust_ptr_min_max_vals(env, insn,
2332 						       dst_reg, src_reg);
2333 		}
2334 	} else {
2335 		/* Pretend the src is a reg with a known value, since we only
2336 		 * need to be able to read from this state.
2337 		 */
2338 		off_reg.type = SCALAR_VALUE;
2339 		__mark_reg_known(&off_reg, insn->imm);
2340 		src_reg = &off_reg;
2341 		if (ptr_reg) /* pointer += K */
2342 			return adjust_ptr_min_max_vals(env, insn,
2343 						       ptr_reg, src_reg);
2344 	}
2345 
2346 	/* Got here implies adding two SCALAR_VALUEs */
2347 	if (WARN_ON_ONCE(ptr_reg)) {
2348 		print_verifier_state(env, env->cur_state);
2349 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2350 		return -EINVAL;
2351 	}
2352 	if (WARN_ON(!src_reg)) {
2353 		print_verifier_state(env, env->cur_state);
2354 		verbose(env, "verifier internal error: no src_reg\n");
2355 		return -EINVAL;
2356 	}
2357 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2358 }
2359 
2360 /* check validity of 32-bit and 64-bit arithmetic operations */
2361 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2362 {
2363 	struct bpf_reg_state *regs = cur_regs(env);
2364 	u8 opcode = BPF_OP(insn->code);
2365 	int err;
2366 
2367 	if (opcode == BPF_END || opcode == BPF_NEG) {
2368 		if (opcode == BPF_NEG) {
2369 			if (BPF_SRC(insn->code) != 0 ||
2370 			    insn->src_reg != BPF_REG_0 ||
2371 			    insn->off != 0 || insn->imm != 0) {
2372 				verbose(env, "BPF_NEG uses reserved fields\n");
2373 				return -EINVAL;
2374 			}
2375 		} else {
2376 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2377 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2378 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2379 				verbose(env, "BPF_END uses reserved fields\n");
2380 				return -EINVAL;
2381 			}
2382 		}
2383 
2384 		/* check src operand */
2385 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2386 		if (err)
2387 			return err;
2388 
2389 		if (is_pointer_value(env, insn->dst_reg)) {
2390 			verbose(env, "R%d pointer arithmetic prohibited\n",
2391 				insn->dst_reg);
2392 			return -EACCES;
2393 		}
2394 
2395 		/* check dest operand */
2396 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2397 		if (err)
2398 			return err;
2399 
2400 	} else if (opcode == BPF_MOV) {
2401 
2402 		if (BPF_SRC(insn->code) == BPF_X) {
2403 			if (insn->imm != 0 || insn->off != 0) {
2404 				verbose(env, "BPF_MOV uses reserved fields\n");
2405 				return -EINVAL;
2406 			}
2407 
2408 			/* check src operand */
2409 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2410 			if (err)
2411 				return err;
2412 		} else {
2413 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2414 				verbose(env, "BPF_MOV uses reserved fields\n");
2415 				return -EINVAL;
2416 			}
2417 		}
2418 
2419 		/* check dest operand */
2420 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2421 		if (err)
2422 			return err;
2423 
2424 		if (BPF_SRC(insn->code) == BPF_X) {
2425 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2426 				/* case: R1 = R2
2427 				 * copy register state to dest reg
2428 				 */
2429 				regs[insn->dst_reg] = regs[insn->src_reg];
2430 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2431 			} else {
2432 				/* R1 = (u32) R2 */
2433 				if (is_pointer_value(env, insn->src_reg)) {
2434 					verbose(env,
2435 						"R%d partial copy of pointer\n",
2436 						insn->src_reg);
2437 					return -EACCES;
2438 				}
2439 				mark_reg_unknown(env, regs, insn->dst_reg);
2440 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
2441 			}
2442 		} else {
2443 			/* case: R = imm
2444 			 * remember the value we stored into this reg
2445 			 */
2446 			regs[insn->dst_reg].type = SCALAR_VALUE;
2447 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2448 				__mark_reg_known(regs + insn->dst_reg,
2449 						 insn->imm);
2450 			} else {
2451 				__mark_reg_known(regs + insn->dst_reg,
2452 						 (u32)insn->imm);
2453 			}
2454 		}
2455 
2456 	} else if (opcode > BPF_END) {
2457 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2458 		return -EINVAL;
2459 
2460 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2461 
2462 		if (BPF_SRC(insn->code) == BPF_X) {
2463 			if (insn->imm != 0 || insn->off != 0) {
2464 				verbose(env, "BPF_ALU uses reserved fields\n");
2465 				return -EINVAL;
2466 			}
2467 			/* check src1 operand */
2468 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2469 			if (err)
2470 				return err;
2471 		} else {
2472 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2473 				verbose(env, "BPF_ALU uses reserved fields\n");
2474 				return -EINVAL;
2475 			}
2476 		}
2477 
2478 		/* check src2 operand */
2479 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2480 		if (err)
2481 			return err;
2482 
2483 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2484 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2485 			verbose(env, "div by zero\n");
2486 			return -EINVAL;
2487 		}
2488 
2489 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2490 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2491 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2492 
2493 			if (insn->imm < 0 || insn->imm >= size) {
2494 				verbose(env, "invalid shift %d\n", insn->imm);
2495 				return -EINVAL;
2496 			}
2497 		}
2498 
2499 		/* check dest operand */
2500 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2501 		if (err)
2502 			return err;
2503 
2504 		return adjust_reg_min_max_vals(env, insn);
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2511 				   struct bpf_reg_state *dst_reg,
2512 				   enum bpf_reg_type type,
2513 				   bool range_right_open)
2514 {
2515 	struct bpf_reg_state *regs = state->regs, *reg;
2516 	u16 new_range;
2517 	int i;
2518 
2519 	if (dst_reg->off < 0 ||
2520 	    (dst_reg->off == 0 && range_right_open))
2521 		/* This doesn't give us any range */
2522 		return;
2523 
2524 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2525 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2526 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2527 		 * than pkt_end, but that's because it's also less than pkt.
2528 		 */
2529 		return;
2530 
2531 	new_range = dst_reg->off;
2532 	if (range_right_open)
2533 		new_range--;
2534 
2535 	/* Examples for register markings:
2536 	 *
2537 	 * pkt_data in dst register:
2538 	 *
2539 	 *   r2 = r3;
2540 	 *   r2 += 8;
2541 	 *   if (r2 > pkt_end) goto <handle exception>
2542 	 *   <access okay>
2543 	 *
2544 	 *   r2 = r3;
2545 	 *   r2 += 8;
2546 	 *   if (r2 < pkt_end) goto <access okay>
2547 	 *   <handle exception>
2548 	 *
2549 	 *   Where:
2550 	 *     r2 == dst_reg, pkt_end == src_reg
2551 	 *     r2=pkt(id=n,off=8,r=0)
2552 	 *     r3=pkt(id=n,off=0,r=0)
2553 	 *
2554 	 * pkt_data in src register:
2555 	 *
2556 	 *   r2 = r3;
2557 	 *   r2 += 8;
2558 	 *   if (pkt_end >= r2) goto <access okay>
2559 	 *   <handle exception>
2560 	 *
2561 	 *   r2 = r3;
2562 	 *   r2 += 8;
2563 	 *   if (pkt_end <= r2) goto <handle exception>
2564 	 *   <access okay>
2565 	 *
2566 	 *   Where:
2567 	 *     pkt_end == dst_reg, r2 == src_reg
2568 	 *     r2=pkt(id=n,off=8,r=0)
2569 	 *     r3=pkt(id=n,off=0,r=0)
2570 	 *
2571 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2572 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2573 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
2574 	 * the check.
2575 	 */
2576 
2577 	/* If our ids match, then we must have the same max_value.  And we
2578 	 * don't care about the other reg's fixed offset, since if it's too big
2579 	 * the range won't allow anything.
2580 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2581 	 */
2582 	for (i = 0; i < MAX_BPF_REG; i++)
2583 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2584 			/* keep the maximum range already checked */
2585 			regs[i].range = max(regs[i].range, new_range);
2586 
2587 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2588 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2589 			continue;
2590 		reg = &state->stack[i].spilled_ptr;
2591 		if (reg->type == type && reg->id == dst_reg->id)
2592 			reg->range = max(reg->range, new_range);
2593 	}
2594 }
2595 
2596 /* Adjusts the register min/max values in the case that the dst_reg is the
2597  * variable register that we are working on, and src_reg is a constant or we're
2598  * simply doing a BPF_K check.
2599  * In JEQ/JNE cases we also adjust the var_off values.
2600  */
2601 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2602 			    struct bpf_reg_state *false_reg, u64 val,
2603 			    u8 opcode)
2604 {
2605 	/* If the dst_reg is a pointer, we can't learn anything about its
2606 	 * variable offset from the compare (unless src_reg were a pointer into
2607 	 * the same object, but we don't bother with that.
2608 	 * Since false_reg and true_reg have the same type by construction, we
2609 	 * only need to check one of them for pointerness.
2610 	 */
2611 	if (__is_pointer_value(false, false_reg))
2612 		return;
2613 
2614 	switch (opcode) {
2615 	case BPF_JEQ:
2616 		/* If this is false then we know nothing Jon Snow, but if it is
2617 		 * true then we know for sure.
2618 		 */
2619 		__mark_reg_known(true_reg, val);
2620 		break;
2621 	case BPF_JNE:
2622 		/* If this is true we know nothing Jon Snow, but if it is false
2623 		 * we know the value for sure;
2624 		 */
2625 		__mark_reg_known(false_reg, val);
2626 		break;
2627 	case BPF_JGT:
2628 		false_reg->umax_value = min(false_reg->umax_value, val);
2629 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2630 		break;
2631 	case BPF_JSGT:
2632 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2633 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2634 		break;
2635 	case BPF_JLT:
2636 		false_reg->umin_value = max(false_reg->umin_value, val);
2637 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2638 		break;
2639 	case BPF_JSLT:
2640 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2641 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2642 		break;
2643 	case BPF_JGE:
2644 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2645 		true_reg->umin_value = max(true_reg->umin_value, val);
2646 		break;
2647 	case BPF_JSGE:
2648 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2649 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2650 		break;
2651 	case BPF_JLE:
2652 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2653 		true_reg->umax_value = min(true_reg->umax_value, val);
2654 		break;
2655 	case BPF_JSLE:
2656 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2657 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2658 		break;
2659 	default:
2660 		break;
2661 	}
2662 
2663 	__reg_deduce_bounds(false_reg);
2664 	__reg_deduce_bounds(true_reg);
2665 	/* We might have learned some bits from the bounds. */
2666 	__reg_bound_offset(false_reg);
2667 	__reg_bound_offset(true_reg);
2668 	/* Intersecting with the old var_off might have improved our bounds
2669 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2670 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2671 	 */
2672 	__update_reg_bounds(false_reg);
2673 	__update_reg_bounds(true_reg);
2674 }
2675 
2676 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2677  * the variable reg.
2678  */
2679 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2680 				struct bpf_reg_state *false_reg, u64 val,
2681 				u8 opcode)
2682 {
2683 	if (__is_pointer_value(false, false_reg))
2684 		return;
2685 
2686 	switch (opcode) {
2687 	case BPF_JEQ:
2688 		/* If this is false then we know nothing Jon Snow, but if it is
2689 		 * true then we know for sure.
2690 		 */
2691 		__mark_reg_known(true_reg, val);
2692 		break;
2693 	case BPF_JNE:
2694 		/* If this is true we know nothing Jon Snow, but if it is false
2695 		 * we know the value for sure;
2696 		 */
2697 		__mark_reg_known(false_reg, val);
2698 		break;
2699 	case BPF_JGT:
2700 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2701 		false_reg->umin_value = max(false_reg->umin_value, val);
2702 		break;
2703 	case BPF_JSGT:
2704 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2705 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2706 		break;
2707 	case BPF_JLT:
2708 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2709 		false_reg->umax_value = min(false_reg->umax_value, val);
2710 		break;
2711 	case BPF_JSLT:
2712 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2713 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2714 		break;
2715 	case BPF_JGE:
2716 		true_reg->umax_value = min(true_reg->umax_value, val);
2717 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2718 		break;
2719 	case BPF_JSGE:
2720 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2721 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2722 		break;
2723 	case BPF_JLE:
2724 		true_reg->umin_value = max(true_reg->umin_value, val);
2725 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2726 		break;
2727 	case BPF_JSLE:
2728 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2729 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2730 		break;
2731 	default:
2732 		break;
2733 	}
2734 
2735 	__reg_deduce_bounds(false_reg);
2736 	__reg_deduce_bounds(true_reg);
2737 	/* We might have learned some bits from the bounds. */
2738 	__reg_bound_offset(false_reg);
2739 	__reg_bound_offset(true_reg);
2740 	/* Intersecting with the old var_off might have improved our bounds
2741 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2742 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2743 	 */
2744 	__update_reg_bounds(false_reg);
2745 	__update_reg_bounds(true_reg);
2746 }
2747 
2748 /* Regs are known to be equal, so intersect their min/max/var_off */
2749 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2750 				  struct bpf_reg_state *dst_reg)
2751 {
2752 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2753 							dst_reg->umin_value);
2754 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2755 							dst_reg->umax_value);
2756 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2757 							dst_reg->smin_value);
2758 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2759 							dst_reg->smax_value);
2760 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2761 							     dst_reg->var_off);
2762 	/* We might have learned new bounds from the var_off. */
2763 	__update_reg_bounds(src_reg);
2764 	__update_reg_bounds(dst_reg);
2765 	/* We might have learned something about the sign bit. */
2766 	__reg_deduce_bounds(src_reg);
2767 	__reg_deduce_bounds(dst_reg);
2768 	/* We might have learned some bits from the bounds. */
2769 	__reg_bound_offset(src_reg);
2770 	__reg_bound_offset(dst_reg);
2771 	/* Intersecting with the old var_off might have improved our bounds
2772 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2773 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2774 	 */
2775 	__update_reg_bounds(src_reg);
2776 	__update_reg_bounds(dst_reg);
2777 }
2778 
2779 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2780 				struct bpf_reg_state *true_dst,
2781 				struct bpf_reg_state *false_src,
2782 				struct bpf_reg_state *false_dst,
2783 				u8 opcode)
2784 {
2785 	switch (opcode) {
2786 	case BPF_JEQ:
2787 		__reg_combine_min_max(true_src, true_dst);
2788 		break;
2789 	case BPF_JNE:
2790 		__reg_combine_min_max(false_src, false_dst);
2791 		break;
2792 	}
2793 }
2794 
2795 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2796 			 bool is_null)
2797 {
2798 	struct bpf_reg_state *reg = &regs[regno];
2799 
2800 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2801 		/* Old offset (both fixed and variable parts) should
2802 		 * have been known-zero, because we don't allow pointer
2803 		 * arithmetic on pointers that might be NULL.
2804 		 */
2805 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2806 				 !tnum_equals_const(reg->var_off, 0) ||
2807 				 reg->off)) {
2808 			__mark_reg_known_zero(reg);
2809 			reg->off = 0;
2810 		}
2811 		if (is_null) {
2812 			reg->type = SCALAR_VALUE;
2813 		} else if (reg->map_ptr->inner_map_meta) {
2814 			reg->type = CONST_PTR_TO_MAP;
2815 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2816 		} else {
2817 			reg->type = PTR_TO_MAP_VALUE;
2818 		}
2819 		/* We don't need id from this point onwards anymore, thus we
2820 		 * should better reset it, so that state pruning has chances
2821 		 * to take effect.
2822 		 */
2823 		reg->id = 0;
2824 	}
2825 }
2826 
2827 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2828  * be folded together at some point.
2829  */
2830 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2831 			  bool is_null)
2832 {
2833 	struct bpf_reg_state *regs = state->regs;
2834 	u32 id = regs[regno].id;
2835 	int i;
2836 
2837 	for (i = 0; i < MAX_BPF_REG; i++)
2838 		mark_map_reg(regs, i, id, is_null);
2839 
2840 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2841 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2842 			continue;
2843 		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2844 	}
2845 }
2846 
2847 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2848 				   struct bpf_reg_state *dst_reg,
2849 				   struct bpf_reg_state *src_reg,
2850 				   struct bpf_verifier_state *this_branch,
2851 				   struct bpf_verifier_state *other_branch)
2852 {
2853 	if (BPF_SRC(insn->code) != BPF_X)
2854 		return false;
2855 
2856 	switch (BPF_OP(insn->code)) {
2857 	case BPF_JGT:
2858 		if ((dst_reg->type == PTR_TO_PACKET &&
2859 		     src_reg->type == PTR_TO_PACKET_END) ||
2860 		    (dst_reg->type == PTR_TO_PACKET_META &&
2861 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2862 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2863 			find_good_pkt_pointers(this_branch, dst_reg,
2864 					       dst_reg->type, false);
2865 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2866 			    src_reg->type == PTR_TO_PACKET) ||
2867 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2868 			    src_reg->type == PTR_TO_PACKET_META)) {
2869 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
2870 			find_good_pkt_pointers(other_branch, src_reg,
2871 					       src_reg->type, true);
2872 		} else {
2873 			return false;
2874 		}
2875 		break;
2876 	case BPF_JLT:
2877 		if ((dst_reg->type == PTR_TO_PACKET &&
2878 		     src_reg->type == PTR_TO_PACKET_END) ||
2879 		    (dst_reg->type == PTR_TO_PACKET_META &&
2880 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2881 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2882 			find_good_pkt_pointers(other_branch, dst_reg,
2883 					       dst_reg->type, true);
2884 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2885 			    src_reg->type == PTR_TO_PACKET) ||
2886 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2887 			    src_reg->type == PTR_TO_PACKET_META)) {
2888 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
2889 			find_good_pkt_pointers(this_branch, src_reg,
2890 					       src_reg->type, false);
2891 		} else {
2892 			return false;
2893 		}
2894 		break;
2895 	case BPF_JGE:
2896 		if ((dst_reg->type == PTR_TO_PACKET &&
2897 		     src_reg->type == PTR_TO_PACKET_END) ||
2898 		    (dst_reg->type == PTR_TO_PACKET_META &&
2899 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2900 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2901 			find_good_pkt_pointers(this_branch, dst_reg,
2902 					       dst_reg->type, true);
2903 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2904 			    src_reg->type == PTR_TO_PACKET) ||
2905 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2906 			    src_reg->type == PTR_TO_PACKET_META)) {
2907 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2908 			find_good_pkt_pointers(other_branch, src_reg,
2909 					       src_reg->type, false);
2910 		} else {
2911 			return false;
2912 		}
2913 		break;
2914 	case BPF_JLE:
2915 		if ((dst_reg->type == PTR_TO_PACKET &&
2916 		     src_reg->type == PTR_TO_PACKET_END) ||
2917 		    (dst_reg->type == PTR_TO_PACKET_META &&
2918 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2919 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2920 			find_good_pkt_pointers(other_branch, dst_reg,
2921 					       dst_reg->type, false);
2922 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2923 			    src_reg->type == PTR_TO_PACKET) ||
2924 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2925 			    src_reg->type == PTR_TO_PACKET_META)) {
2926 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2927 			find_good_pkt_pointers(this_branch, src_reg,
2928 					       src_reg->type, true);
2929 		} else {
2930 			return false;
2931 		}
2932 		break;
2933 	default:
2934 		return false;
2935 	}
2936 
2937 	return true;
2938 }
2939 
2940 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2941 			     struct bpf_insn *insn, int *insn_idx)
2942 {
2943 	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2944 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2945 	u8 opcode = BPF_OP(insn->code);
2946 	int err;
2947 
2948 	if (opcode > BPF_JSLE) {
2949 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2950 		return -EINVAL;
2951 	}
2952 
2953 	if (BPF_SRC(insn->code) == BPF_X) {
2954 		if (insn->imm != 0) {
2955 			verbose(env, "BPF_JMP uses reserved fields\n");
2956 			return -EINVAL;
2957 		}
2958 
2959 		/* check src1 operand */
2960 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2961 		if (err)
2962 			return err;
2963 
2964 		if (is_pointer_value(env, insn->src_reg)) {
2965 			verbose(env, "R%d pointer comparison prohibited\n",
2966 				insn->src_reg);
2967 			return -EACCES;
2968 		}
2969 	} else {
2970 		if (insn->src_reg != BPF_REG_0) {
2971 			verbose(env, "BPF_JMP uses reserved fields\n");
2972 			return -EINVAL;
2973 		}
2974 	}
2975 
2976 	/* check src2 operand */
2977 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2978 	if (err)
2979 		return err;
2980 
2981 	dst_reg = &regs[insn->dst_reg];
2982 
2983 	/* detect if R == 0 where R was initialized to zero earlier */
2984 	if (BPF_SRC(insn->code) == BPF_K &&
2985 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2986 	    dst_reg->type == SCALAR_VALUE &&
2987 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2988 		if (opcode == BPF_JEQ) {
2989 			/* if (imm == imm) goto pc+off;
2990 			 * only follow the goto, ignore fall-through
2991 			 */
2992 			*insn_idx += insn->off;
2993 			return 0;
2994 		} else {
2995 			/* if (imm != imm) goto pc+off;
2996 			 * only follow fall-through branch, since
2997 			 * that's where the program will go
2998 			 */
2999 			return 0;
3000 		}
3001 	}
3002 
3003 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3004 	if (!other_branch)
3005 		return -EFAULT;
3006 
3007 	/* detect if we are comparing against a constant value so we can adjust
3008 	 * our min/max values for our dst register.
3009 	 * this is only legit if both are scalars (or pointers to the same
3010 	 * object, I suppose, but we don't support that right now), because
3011 	 * otherwise the different base pointers mean the offsets aren't
3012 	 * comparable.
3013 	 */
3014 	if (BPF_SRC(insn->code) == BPF_X) {
3015 		if (dst_reg->type == SCALAR_VALUE &&
3016 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3017 			if (tnum_is_const(regs[insn->src_reg].var_off))
3018 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
3019 						dst_reg, regs[insn->src_reg].var_off.value,
3020 						opcode);
3021 			else if (tnum_is_const(dst_reg->var_off))
3022 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3023 						    &regs[insn->src_reg],
3024 						    dst_reg->var_off.value, opcode);
3025 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3026 				/* Comparing for equality, we can combine knowledge */
3027 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
3028 						    &other_branch->regs[insn->dst_reg],
3029 						    &regs[insn->src_reg],
3030 						    &regs[insn->dst_reg], opcode);
3031 		}
3032 	} else if (dst_reg->type == SCALAR_VALUE) {
3033 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
3034 					dst_reg, insn->imm, opcode);
3035 	}
3036 
3037 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3038 	if (BPF_SRC(insn->code) == BPF_K &&
3039 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3040 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3041 		/* Mark all identical map registers in each branch as either
3042 		 * safe or unknown depending R == 0 or R != 0 conditional.
3043 		 */
3044 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3045 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3046 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3047 					   this_branch, other_branch) &&
3048 		   is_pointer_value(env, insn->dst_reg)) {
3049 		verbose(env, "R%d pointer comparison prohibited\n",
3050 			insn->dst_reg);
3051 		return -EACCES;
3052 	}
3053 	if (env->log.level)
3054 		print_verifier_state(env, this_branch);
3055 	return 0;
3056 }
3057 
3058 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3059 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3060 {
3061 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3062 
3063 	return (struct bpf_map *) (unsigned long) imm64;
3064 }
3065 
3066 /* verify BPF_LD_IMM64 instruction */
3067 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3068 {
3069 	struct bpf_reg_state *regs = cur_regs(env);
3070 	int err;
3071 
3072 	if (BPF_SIZE(insn->code) != BPF_DW) {
3073 		verbose(env, "invalid BPF_LD_IMM insn\n");
3074 		return -EINVAL;
3075 	}
3076 	if (insn->off != 0) {
3077 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3078 		return -EINVAL;
3079 	}
3080 
3081 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3082 	if (err)
3083 		return err;
3084 
3085 	if (insn->src_reg == 0) {
3086 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3087 
3088 		regs[insn->dst_reg].type = SCALAR_VALUE;
3089 		__mark_reg_known(&regs[insn->dst_reg], imm);
3090 		return 0;
3091 	}
3092 
3093 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3094 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3095 
3096 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3097 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3098 	return 0;
3099 }
3100 
3101 static bool may_access_skb(enum bpf_prog_type type)
3102 {
3103 	switch (type) {
3104 	case BPF_PROG_TYPE_SOCKET_FILTER:
3105 	case BPF_PROG_TYPE_SCHED_CLS:
3106 	case BPF_PROG_TYPE_SCHED_ACT:
3107 		return true;
3108 	default:
3109 		return false;
3110 	}
3111 }
3112 
3113 /* verify safety of LD_ABS|LD_IND instructions:
3114  * - they can only appear in the programs where ctx == skb
3115  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3116  *   preserve R6-R9, and store return value into R0
3117  *
3118  * Implicit input:
3119  *   ctx == skb == R6 == CTX
3120  *
3121  * Explicit input:
3122  *   SRC == any register
3123  *   IMM == 32-bit immediate
3124  *
3125  * Output:
3126  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3127  */
3128 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3129 {
3130 	struct bpf_reg_state *regs = cur_regs(env);
3131 	u8 mode = BPF_MODE(insn->code);
3132 	int i, err;
3133 
3134 	if (!may_access_skb(env->prog->type)) {
3135 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3136 		return -EINVAL;
3137 	}
3138 
3139 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3140 	    BPF_SIZE(insn->code) == BPF_DW ||
3141 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3142 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3143 		return -EINVAL;
3144 	}
3145 
3146 	/* check whether implicit source operand (register R6) is readable */
3147 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3148 	if (err)
3149 		return err;
3150 
3151 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3152 		verbose(env,
3153 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3154 		return -EINVAL;
3155 	}
3156 
3157 	if (mode == BPF_IND) {
3158 		/* check explicit source operand */
3159 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3160 		if (err)
3161 			return err;
3162 	}
3163 
3164 	/* reset caller saved regs to unreadable */
3165 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3166 		mark_reg_not_init(env, regs, caller_saved[i]);
3167 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3168 	}
3169 
3170 	/* mark destination R0 register as readable, since it contains
3171 	 * the value fetched from the packet.
3172 	 * Already marked as written above.
3173 	 */
3174 	mark_reg_unknown(env, regs, BPF_REG_0);
3175 	return 0;
3176 }
3177 
3178 static int check_return_code(struct bpf_verifier_env *env)
3179 {
3180 	struct bpf_reg_state *reg;
3181 	struct tnum range = tnum_range(0, 1);
3182 
3183 	switch (env->prog->type) {
3184 	case BPF_PROG_TYPE_CGROUP_SKB:
3185 	case BPF_PROG_TYPE_CGROUP_SOCK:
3186 	case BPF_PROG_TYPE_SOCK_OPS:
3187 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3188 		break;
3189 	default:
3190 		return 0;
3191 	}
3192 
3193 	reg = cur_regs(env) + BPF_REG_0;
3194 	if (reg->type != SCALAR_VALUE) {
3195 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3196 			reg_type_str[reg->type]);
3197 		return -EINVAL;
3198 	}
3199 
3200 	if (!tnum_in(range, reg->var_off)) {
3201 		verbose(env, "At program exit the register R0 ");
3202 		if (!tnum_is_unknown(reg->var_off)) {
3203 			char tn_buf[48];
3204 
3205 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3206 			verbose(env, "has value %s", tn_buf);
3207 		} else {
3208 			verbose(env, "has unknown scalar value");
3209 		}
3210 		verbose(env, " should have been 0 or 1\n");
3211 		return -EINVAL;
3212 	}
3213 	return 0;
3214 }
3215 
3216 /* non-recursive DFS pseudo code
3217  * 1  procedure DFS-iterative(G,v):
3218  * 2      label v as discovered
3219  * 3      let S be a stack
3220  * 4      S.push(v)
3221  * 5      while S is not empty
3222  * 6            t <- S.pop()
3223  * 7            if t is what we're looking for:
3224  * 8                return t
3225  * 9            for all edges e in G.adjacentEdges(t) do
3226  * 10               if edge e is already labelled
3227  * 11                   continue with the next edge
3228  * 12               w <- G.adjacentVertex(t,e)
3229  * 13               if vertex w is not discovered and not explored
3230  * 14                   label e as tree-edge
3231  * 15                   label w as discovered
3232  * 16                   S.push(w)
3233  * 17                   continue at 5
3234  * 18               else if vertex w is discovered
3235  * 19                   label e as back-edge
3236  * 20               else
3237  * 21                   // vertex w is explored
3238  * 22                   label e as forward- or cross-edge
3239  * 23           label t as explored
3240  * 24           S.pop()
3241  *
3242  * convention:
3243  * 0x10 - discovered
3244  * 0x11 - discovered and fall-through edge labelled
3245  * 0x12 - discovered and fall-through and branch edges labelled
3246  * 0x20 - explored
3247  */
3248 
3249 enum {
3250 	DISCOVERED = 0x10,
3251 	EXPLORED = 0x20,
3252 	FALLTHROUGH = 1,
3253 	BRANCH = 2,
3254 };
3255 
3256 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3257 
3258 static int *insn_stack;	/* stack of insns to process */
3259 static int cur_stack;	/* current stack index */
3260 static int *insn_state;
3261 
3262 /* t, w, e - match pseudo-code above:
3263  * t - index of current instruction
3264  * w - next instruction
3265  * e - edge
3266  */
3267 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3268 {
3269 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3270 		return 0;
3271 
3272 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3273 		return 0;
3274 
3275 	if (w < 0 || w >= env->prog->len) {
3276 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3277 		return -EINVAL;
3278 	}
3279 
3280 	if (e == BRANCH)
3281 		/* mark branch target for state pruning */
3282 		env->explored_states[w] = STATE_LIST_MARK;
3283 
3284 	if (insn_state[w] == 0) {
3285 		/* tree-edge */
3286 		insn_state[t] = DISCOVERED | e;
3287 		insn_state[w] = DISCOVERED;
3288 		if (cur_stack >= env->prog->len)
3289 			return -E2BIG;
3290 		insn_stack[cur_stack++] = w;
3291 		return 1;
3292 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3293 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3294 		return -EINVAL;
3295 	} else if (insn_state[w] == EXPLORED) {
3296 		/* forward- or cross-edge */
3297 		insn_state[t] = DISCOVERED | e;
3298 	} else {
3299 		verbose(env, "insn state internal bug\n");
3300 		return -EFAULT;
3301 	}
3302 	return 0;
3303 }
3304 
3305 /* non-recursive depth-first-search to detect loops in BPF program
3306  * loop == back-edge in directed graph
3307  */
3308 static int check_cfg(struct bpf_verifier_env *env)
3309 {
3310 	struct bpf_insn *insns = env->prog->insnsi;
3311 	int insn_cnt = env->prog->len;
3312 	int ret = 0;
3313 	int i, t;
3314 
3315 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3316 	if (!insn_state)
3317 		return -ENOMEM;
3318 
3319 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3320 	if (!insn_stack) {
3321 		kfree(insn_state);
3322 		return -ENOMEM;
3323 	}
3324 
3325 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3326 	insn_stack[0] = 0; /* 0 is the first instruction */
3327 	cur_stack = 1;
3328 
3329 peek_stack:
3330 	if (cur_stack == 0)
3331 		goto check_state;
3332 	t = insn_stack[cur_stack - 1];
3333 
3334 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3335 		u8 opcode = BPF_OP(insns[t].code);
3336 
3337 		if (opcode == BPF_EXIT) {
3338 			goto mark_explored;
3339 		} else if (opcode == BPF_CALL) {
3340 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3341 			if (ret == 1)
3342 				goto peek_stack;
3343 			else if (ret < 0)
3344 				goto err_free;
3345 			if (t + 1 < insn_cnt)
3346 				env->explored_states[t + 1] = STATE_LIST_MARK;
3347 		} else if (opcode == BPF_JA) {
3348 			if (BPF_SRC(insns[t].code) != BPF_K) {
3349 				ret = -EINVAL;
3350 				goto err_free;
3351 			}
3352 			/* unconditional jump with single edge */
3353 			ret = push_insn(t, t + insns[t].off + 1,
3354 					FALLTHROUGH, env);
3355 			if (ret == 1)
3356 				goto peek_stack;
3357 			else if (ret < 0)
3358 				goto err_free;
3359 			/* tell verifier to check for equivalent states
3360 			 * after every call and jump
3361 			 */
3362 			if (t + 1 < insn_cnt)
3363 				env->explored_states[t + 1] = STATE_LIST_MARK;
3364 		} else {
3365 			/* conditional jump with two edges */
3366 			env->explored_states[t] = STATE_LIST_MARK;
3367 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3368 			if (ret == 1)
3369 				goto peek_stack;
3370 			else if (ret < 0)
3371 				goto err_free;
3372 
3373 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3374 			if (ret == 1)
3375 				goto peek_stack;
3376 			else if (ret < 0)
3377 				goto err_free;
3378 		}
3379 	} else {
3380 		/* all other non-branch instructions with single
3381 		 * fall-through edge
3382 		 */
3383 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3384 		if (ret == 1)
3385 			goto peek_stack;
3386 		else if (ret < 0)
3387 			goto err_free;
3388 	}
3389 
3390 mark_explored:
3391 	insn_state[t] = EXPLORED;
3392 	if (cur_stack-- <= 0) {
3393 		verbose(env, "pop stack internal bug\n");
3394 		ret = -EFAULT;
3395 		goto err_free;
3396 	}
3397 	goto peek_stack;
3398 
3399 check_state:
3400 	for (i = 0; i < insn_cnt; i++) {
3401 		if (insn_state[i] != EXPLORED) {
3402 			verbose(env, "unreachable insn %d\n", i);
3403 			ret = -EINVAL;
3404 			goto err_free;
3405 		}
3406 	}
3407 	ret = 0; /* cfg looks good */
3408 
3409 err_free:
3410 	kfree(insn_state);
3411 	kfree(insn_stack);
3412 	return ret;
3413 }
3414 
3415 /* check %cur's range satisfies %old's */
3416 static bool range_within(struct bpf_reg_state *old,
3417 			 struct bpf_reg_state *cur)
3418 {
3419 	return old->umin_value <= cur->umin_value &&
3420 	       old->umax_value >= cur->umax_value &&
3421 	       old->smin_value <= cur->smin_value &&
3422 	       old->smax_value >= cur->smax_value;
3423 }
3424 
3425 /* Maximum number of register states that can exist at once */
3426 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3427 struct idpair {
3428 	u32 old;
3429 	u32 cur;
3430 };
3431 
3432 /* If in the old state two registers had the same id, then they need to have
3433  * the same id in the new state as well.  But that id could be different from
3434  * the old state, so we need to track the mapping from old to new ids.
3435  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3436  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3437  * regs with a different old id could still have new id 9, we don't care about
3438  * that.
3439  * So we look through our idmap to see if this old id has been seen before.  If
3440  * so, we require the new id to match; otherwise, we add the id pair to the map.
3441  */
3442 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3443 {
3444 	unsigned int i;
3445 
3446 	for (i = 0; i < ID_MAP_SIZE; i++) {
3447 		if (!idmap[i].old) {
3448 			/* Reached an empty slot; haven't seen this id before */
3449 			idmap[i].old = old_id;
3450 			idmap[i].cur = cur_id;
3451 			return true;
3452 		}
3453 		if (idmap[i].old == old_id)
3454 			return idmap[i].cur == cur_id;
3455 	}
3456 	/* We ran out of idmap slots, which should be impossible */
3457 	WARN_ON_ONCE(1);
3458 	return false;
3459 }
3460 
3461 /* Returns true if (rold safe implies rcur safe) */
3462 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3463 		    struct idpair *idmap)
3464 {
3465 	if (!(rold->live & REG_LIVE_READ))
3466 		/* explored state didn't use this */
3467 		return true;
3468 
3469 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3470 		return true;
3471 
3472 	if (rold->type == NOT_INIT)
3473 		/* explored state can't have used this */
3474 		return true;
3475 	if (rcur->type == NOT_INIT)
3476 		return false;
3477 	switch (rold->type) {
3478 	case SCALAR_VALUE:
3479 		if (rcur->type == SCALAR_VALUE) {
3480 			/* new val must satisfy old val knowledge */
3481 			return range_within(rold, rcur) &&
3482 			       tnum_in(rold->var_off, rcur->var_off);
3483 		} else {
3484 			/* We're trying to use a pointer in place of a scalar.
3485 			 * Even if the scalar was unbounded, this could lead to
3486 			 * pointer leaks because scalars are allowed to leak
3487 			 * while pointers are not. We could make this safe in
3488 			 * special cases if root is calling us, but it's
3489 			 * probably not worth the hassle.
3490 			 */
3491 			return false;
3492 		}
3493 	case PTR_TO_MAP_VALUE:
3494 		/* If the new min/max/var_off satisfy the old ones and
3495 		 * everything else matches, we are OK.
3496 		 * We don't care about the 'id' value, because nothing
3497 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3498 		 */
3499 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3500 		       range_within(rold, rcur) &&
3501 		       tnum_in(rold->var_off, rcur->var_off);
3502 	case PTR_TO_MAP_VALUE_OR_NULL:
3503 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3504 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3505 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3506 		 * checked, doing so could have affected others with the same
3507 		 * id, and we can't check for that because we lost the id when
3508 		 * we converted to a PTR_TO_MAP_VALUE.
3509 		 */
3510 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3511 			return false;
3512 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3513 			return false;
3514 		/* Check our ids match any regs they're supposed to */
3515 		return check_ids(rold->id, rcur->id, idmap);
3516 	case PTR_TO_PACKET_META:
3517 	case PTR_TO_PACKET:
3518 		if (rcur->type != rold->type)
3519 			return false;
3520 		/* We must have at least as much range as the old ptr
3521 		 * did, so that any accesses which were safe before are
3522 		 * still safe.  This is true even if old range < old off,
3523 		 * since someone could have accessed through (ptr - k), or
3524 		 * even done ptr -= k in a register, to get a safe access.
3525 		 */
3526 		if (rold->range > rcur->range)
3527 			return false;
3528 		/* If the offsets don't match, we can't trust our alignment;
3529 		 * nor can we be sure that we won't fall out of range.
3530 		 */
3531 		if (rold->off != rcur->off)
3532 			return false;
3533 		/* id relations must be preserved */
3534 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3535 			return false;
3536 		/* new val must satisfy old val knowledge */
3537 		return range_within(rold, rcur) &&
3538 		       tnum_in(rold->var_off, rcur->var_off);
3539 	case PTR_TO_CTX:
3540 	case CONST_PTR_TO_MAP:
3541 	case PTR_TO_STACK:
3542 	case PTR_TO_PACKET_END:
3543 		/* Only valid matches are exact, which memcmp() above
3544 		 * would have accepted
3545 		 */
3546 	default:
3547 		/* Don't know what's going on, just say it's not safe */
3548 		return false;
3549 	}
3550 
3551 	/* Shouldn't get here; if we do, say it's not safe */
3552 	WARN_ON_ONCE(1);
3553 	return false;
3554 }
3555 
3556 static bool stacksafe(struct bpf_verifier_state *old,
3557 		      struct bpf_verifier_state *cur,
3558 		      struct idpair *idmap)
3559 {
3560 	int i, spi;
3561 
3562 	/* if explored stack has more populated slots than current stack
3563 	 * such stacks are not equivalent
3564 	 */
3565 	if (old->allocated_stack > cur->allocated_stack)
3566 		return false;
3567 
3568 	/* walk slots of the explored stack and ignore any additional
3569 	 * slots in the current stack, since explored(safe) state
3570 	 * didn't use them
3571 	 */
3572 	for (i = 0; i < old->allocated_stack; i++) {
3573 		spi = i / BPF_REG_SIZE;
3574 
3575 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3576 			continue;
3577 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3578 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3579 			/* Ex: old explored (safe) state has STACK_SPILL in
3580 			 * this stack slot, but current has has STACK_MISC ->
3581 			 * this verifier states are not equivalent,
3582 			 * return false to continue verification of this path
3583 			 */
3584 			return false;
3585 		if (i % BPF_REG_SIZE)
3586 			continue;
3587 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
3588 			continue;
3589 		if (!regsafe(&old->stack[spi].spilled_ptr,
3590 			     &cur->stack[spi].spilled_ptr,
3591 			     idmap))
3592 			/* when explored and current stack slot are both storing
3593 			 * spilled registers, check that stored pointers types
3594 			 * are the same as well.
3595 			 * Ex: explored safe path could have stored
3596 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3597 			 * but current path has stored:
3598 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3599 			 * such verifier states are not equivalent.
3600 			 * return false to continue verification of this path
3601 			 */
3602 			return false;
3603 	}
3604 	return true;
3605 }
3606 
3607 /* compare two verifier states
3608  *
3609  * all states stored in state_list are known to be valid, since
3610  * verifier reached 'bpf_exit' instruction through them
3611  *
3612  * this function is called when verifier exploring different branches of
3613  * execution popped from the state stack. If it sees an old state that has
3614  * more strict register state and more strict stack state then this execution
3615  * branch doesn't need to be explored further, since verifier already
3616  * concluded that more strict state leads to valid finish.
3617  *
3618  * Therefore two states are equivalent if register state is more conservative
3619  * and explored stack state is more conservative than the current one.
3620  * Example:
3621  *       explored                   current
3622  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3623  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3624  *
3625  * In other words if current stack state (one being explored) has more
3626  * valid slots than old one that already passed validation, it means
3627  * the verifier can stop exploring and conclude that current state is valid too
3628  *
3629  * Similarly with registers. If explored state has register type as invalid
3630  * whereas register type in current state is meaningful, it means that
3631  * the current state will reach 'bpf_exit' instruction safely
3632  */
3633 static bool states_equal(struct bpf_verifier_env *env,
3634 			 struct bpf_verifier_state *old,
3635 			 struct bpf_verifier_state *cur)
3636 {
3637 	struct idpair *idmap;
3638 	bool ret = false;
3639 	int i;
3640 
3641 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3642 	/* If we failed to allocate the idmap, just say it's not safe */
3643 	if (!idmap)
3644 		return false;
3645 
3646 	for (i = 0; i < MAX_BPF_REG; i++) {
3647 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3648 			goto out_free;
3649 	}
3650 
3651 	if (!stacksafe(old, cur, idmap))
3652 		goto out_free;
3653 	ret = true;
3654 out_free:
3655 	kfree(idmap);
3656 	return ret;
3657 }
3658 
3659 /* A write screens off any subsequent reads; but write marks come from the
3660  * straight-line code between a state and its parent.  When we arrive at a
3661  * jump target (in the first iteration of the propagate_liveness() loop),
3662  * we didn't arrive by the straight-line code, so read marks in state must
3663  * propagate to parent regardless of state's write marks.
3664  */
3665 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3666 				  struct bpf_verifier_state *parent)
3667 {
3668 	bool writes = parent == state->parent; /* Observe write marks */
3669 	bool touched = false; /* any changes made? */
3670 	int i;
3671 
3672 	if (!parent)
3673 		return touched;
3674 	/* Propagate read liveness of registers... */
3675 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3676 	/* We don't need to worry about FP liveness because it's read-only */
3677 	for (i = 0; i < BPF_REG_FP; i++) {
3678 		if (parent->regs[i].live & REG_LIVE_READ)
3679 			continue;
3680 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3681 			continue;
3682 		if (state->regs[i].live & REG_LIVE_READ) {
3683 			parent->regs[i].live |= REG_LIVE_READ;
3684 			touched = true;
3685 		}
3686 	}
3687 	/* ... and stack slots */
3688 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3689 		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3690 		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3691 			continue;
3692 		if (state->stack[i].slot_type[0] != STACK_SPILL)
3693 			continue;
3694 		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3695 			continue;
3696 		if (writes &&
3697 		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3698 			continue;
3699 		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3700 			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3701 			touched = true;
3702 		}
3703 	}
3704 	return touched;
3705 }
3706 
3707 /* "parent" is "a state from which we reach the current state", but initially
3708  * it is not the state->parent (i.e. "the state whose straight-line code leads
3709  * to the current state"), instead it is the state that happened to arrive at
3710  * a (prunable) equivalent of the current state.  See comment above
3711  * do_propagate_liveness() for consequences of this.
3712  * This function is just a more efficient way of calling mark_reg_read() or
3713  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3714  * though it requires that parent != state->parent in the call arguments.
3715  */
3716 static void propagate_liveness(const struct bpf_verifier_state *state,
3717 			       struct bpf_verifier_state *parent)
3718 {
3719 	while (do_propagate_liveness(state, parent)) {
3720 		/* Something changed, so we need to feed those changes onward */
3721 		state = parent;
3722 		parent = state->parent;
3723 	}
3724 }
3725 
3726 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3727 {
3728 	struct bpf_verifier_state_list *new_sl;
3729 	struct bpf_verifier_state_list *sl;
3730 	struct bpf_verifier_state *cur = env->cur_state;
3731 	int i, err;
3732 
3733 	sl = env->explored_states[insn_idx];
3734 	if (!sl)
3735 		/* this 'insn_idx' instruction wasn't marked, so we will not
3736 		 * be doing state search here
3737 		 */
3738 		return 0;
3739 
3740 	while (sl != STATE_LIST_MARK) {
3741 		if (states_equal(env, &sl->state, cur)) {
3742 			/* reached equivalent register/stack state,
3743 			 * prune the search.
3744 			 * Registers read by the continuation are read by us.
3745 			 * If we have any write marks in env->cur_state, they
3746 			 * will prevent corresponding reads in the continuation
3747 			 * from reaching our parent (an explored_state).  Our
3748 			 * own state will get the read marks recorded, but
3749 			 * they'll be immediately forgotten as we're pruning
3750 			 * this state and will pop a new one.
3751 			 */
3752 			propagate_liveness(&sl->state, cur);
3753 			return 1;
3754 		}
3755 		sl = sl->next;
3756 	}
3757 
3758 	/* there were no equivalent states, remember current one.
3759 	 * technically the current state is not proven to be safe yet,
3760 	 * but it will either reach bpf_exit (which means it's safe) or
3761 	 * it will be rejected. Since there are no loops, we won't be
3762 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3763 	 */
3764 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3765 	if (!new_sl)
3766 		return -ENOMEM;
3767 
3768 	/* add new state to the head of linked list */
3769 	err = copy_verifier_state(&new_sl->state, cur);
3770 	if (err) {
3771 		free_verifier_state(&new_sl->state, false);
3772 		kfree(new_sl);
3773 		return err;
3774 	}
3775 	new_sl->next = env->explored_states[insn_idx];
3776 	env->explored_states[insn_idx] = new_sl;
3777 	/* connect new state to parentage chain */
3778 	cur->parent = &new_sl->state;
3779 	/* clear write marks in current state: the writes we did are not writes
3780 	 * our child did, so they don't screen off its reads from us.
3781 	 * (There are no read marks in current state, because reads always mark
3782 	 * their parent and current state never has children yet.  Only
3783 	 * explored_states can get read marks.)
3784 	 */
3785 	for (i = 0; i < BPF_REG_FP; i++)
3786 		cur->regs[i].live = REG_LIVE_NONE;
3787 	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3788 		if (cur->stack[i].slot_type[0] == STACK_SPILL)
3789 			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3790 	return 0;
3791 }
3792 
3793 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3794 				  int insn_idx, int prev_insn_idx)
3795 {
3796 	if (env->dev_ops && env->dev_ops->insn_hook)
3797 		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3798 
3799 	return 0;
3800 }
3801 
3802 static int do_check(struct bpf_verifier_env *env)
3803 {
3804 	struct bpf_verifier_state *state;
3805 	struct bpf_insn *insns = env->prog->insnsi;
3806 	struct bpf_reg_state *regs;
3807 	int insn_cnt = env->prog->len;
3808 	int insn_idx, prev_insn_idx = 0;
3809 	int insn_processed = 0;
3810 	bool do_print_state = false;
3811 
3812 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3813 	if (!state)
3814 		return -ENOMEM;
3815 	env->cur_state = state;
3816 	init_reg_state(env, state->regs);
3817 	state->parent = NULL;
3818 	insn_idx = 0;
3819 	for (;;) {
3820 		struct bpf_insn *insn;
3821 		u8 class;
3822 		int err;
3823 
3824 		if (insn_idx >= insn_cnt) {
3825 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3826 				insn_idx, insn_cnt);
3827 			return -EFAULT;
3828 		}
3829 
3830 		insn = &insns[insn_idx];
3831 		class = BPF_CLASS(insn->code);
3832 
3833 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3834 			verbose(env,
3835 				"BPF program is too large. Processed %d insn\n",
3836 				insn_processed);
3837 			return -E2BIG;
3838 		}
3839 
3840 		err = is_state_visited(env, insn_idx);
3841 		if (err < 0)
3842 			return err;
3843 		if (err == 1) {
3844 			/* found equivalent state, can prune the search */
3845 			if (env->log.level) {
3846 				if (do_print_state)
3847 					verbose(env, "\nfrom %d to %d: safe\n",
3848 						prev_insn_idx, insn_idx);
3849 				else
3850 					verbose(env, "%d: safe\n", insn_idx);
3851 			}
3852 			goto process_bpf_exit;
3853 		}
3854 
3855 		if (need_resched())
3856 			cond_resched();
3857 
3858 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
3859 			if (env->log.level > 1)
3860 				verbose(env, "%d:", insn_idx);
3861 			else
3862 				verbose(env, "\nfrom %d to %d:",
3863 					prev_insn_idx, insn_idx);
3864 			print_verifier_state(env, state);
3865 			do_print_state = false;
3866 		}
3867 
3868 		if (env->log.level) {
3869 			verbose(env, "%d: ", insn_idx);
3870 			print_bpf_insn(verbose, env, insn,
3871 				       env->allow_ptr_leaks);
3872 		}
3873 
3874 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3875 		if (err)
3876 			return err;
3877 
3878 		regs = cur_regs(env);
3879 		env->insn_aux_data[insn_idx].seen = true;
3880 		if (class == BPF_ALU || class == BPF_ALU64) {
3881 			err = check_alu_op(env, insn);
3882 			if (err)
3883 				return err;
3884 
3885 		} else if (class == BPF_LDX) {
3886 			enum bpf_reg_type *prev_src_type, src_reg_type;
3887 
3888 			/* check for reserved fields is already done */
3889 
3890 			/* check src operand */
3891 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3892 			if (err)
3893 				return err;
3894 
3895 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3896 			if (err)
3897 				return err;
3898 
3899 			src_reg_type = regs[insn->src_reg].type;
3900 
3901 			/* check that memory (src_reg + off) is readable,
3902 			 * the state of dst_reg will be updated by this func
3903 			 */
3904 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3905 					       BPF_SIZE(insn->code), BPF_READ,
3906 					       insn->dst_reg);
3907 			if (err)
3908 				return err;
3909 
3910 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3911 
3912 			if (*prev_src_type == NOT_INIT) {
3913 				/* saw a valid insn
3914 				 * dst_reg = *(u32 *)(src_reg + off)
3915 				 * save type to validate intersecting paths
3916 				 */
3917 				*prev_src_type = src_reg_type;
3918 
3919 			} else if (src_reg_type != *prev_src_type &&
3920 				   (src_reg_type == PTR_TO_CTX ||
3921 				    *prev_src_type == PTR_TO_CTX)) {
3922 				/* ABuser program is trying to use the same insn
3923 				 * dst_reg = *(u32*) (src_reg + off)
3924 				 * with different pointer types:
3925 				 * src_reg == ctx in one branch and
3926 				 * src_reg == stack|map in some other branch.
3927 				 * Reject it.
3928 				 */
3929 				verbose(env, "same insn cannot be used with different pointers\n");
3930 				return -EINVAL;
3931 			}
3932 
3933 		} else if (class == BPF_STX) {
3934 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3935 
3936 			if (BPF_MODE(insn->code) == BPF_XADD) {
3937 				err = check_xadd(env, insn_idx, insn);
3938 				if (err)
3939 					return err;
3940 				insn_idx++;
3941 				continue;
3942 			}
3943 
3944 			/* check src1 operand */
3945 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3946 			if (err)
3947 				return err;
3948 			/* check src2 operand */
3949 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3950 			if (err)
3951 				return err;
3952 
3953 			dst_reg_type = regs[insn->dst_reg].type;
3954 
3955 			/* check that memory (dst_reg + off) is writeable */
3956 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3957 					       BPF_SIZE(insn->code), BPF_WRITE,
3958 					       insn->src_reg);
3959 			if (err)
3960 				return err;
3961 
3962 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3963 
3964 			if (*prev_dst_type == NOT_INIT) {
3965 				*prev_dst_type = dst_reg_type;
3966 			} else if (dst_reg_type != *prev_dst_type &&
3967 				   (dst_reg_type == PTR_TO_CTX ||
3968 				    *prev_dst_type == PTR_TO_CTX)) {
3969 				verbose(env, "same insn cannot be used with different pointers\n");
3970 				return -EINVAL;
3971 			}
3972 
3973 		} else if (class == BPF_ST) {
3974 			if (BPF_MODE(insn->code) != BPF_MEM ||
3975 			    insn->src_reg != BPF_REG_0) {
3976 				verbose(env, "BPF_ST uses reserved fields\n");
3977 				return -EINVAL;
3978 			}
3979 			/* check src operand */
3980 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3981 			if (err)
3982 				return err;
3983 
3984 			/* check that memory (dst_reg + off) is writeable */
3985 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3986 					       BPF_SIZE(insn->code), BPF_WRITE,
3987 					       -1);
3988 			if (err)
3989 				return err;
3990 
3991 		} else if (class == BPF_JMP) {
3992 			u8 opcode = BPF_OP(insn->code);
3993 
3994 			if (opcode == BPF_CALL) {
3995 				if (BPF_SRC(insn->code) != BPF_K ||
3996 				    insn->off != 0 ||
3997 				    insn->src_reg != BPF_REG_0 ||
3998 				    insn->dst_reg != BPF_REG_0) {
3999 					verbose(env, "BPF_CALL uses reserved fields\n");
4000 					return -EINVAL;
4001 				}
4002 
4003 				err = check_call(env, insn->imm, insn_idx);
4004 				if (err)
4005 					return err;
4006 
4007 			} else if (opcode == BPF_JA) {
4008 				if (BPF_SRC(insn->code) != BPF_K ||
4009 				    insn->imm != 0 ||
4010 				    insn->src_reg != BPF_REG_0 ||
4011 				    insn->dst_reg != BPF_REG_0) {
4012 					verbose(env, "BPF_JA uses reserved fields\n");
4013 					return -EINVAL;
4014 				}
4015 
4016 				insn_idx += insn->off + 1;
4017 				continue;
4018 
4019 			} else if (opcode == BPF_EXIT) {
4020 				if (BPF_SRC(insn->code) != BPF_K ||
4021 				    insn->imm != 0 ||
4022 				    insn->src_reg != BPF_REG_0 ||
4023 				    insn->dst_reg != BPF_REG_0) {
4024 					verbose(env, "BPF_EXIT uses reserved fields\n");
4025 					return -EINVAL;
4026 				}
4027 
4028 				/* eBPF calling convetion is such that R0 is used
4029 				 * to return the value from eBPF program.
4030 				 * Make sure that it's readable at this time
4031 				 * of bpf_exit, which means that program wrote
4032 				 * something into it earlier
4033 				 */
4034 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4035 				if (err)
4036 					return err;
4037 
4038 				if (is_pointer_value(env, BPF_REG_0)) {
4039 					verbose(env, "R0 leaks addr as return value\n");
4040 					return -EACCES;
4041 				}
4042 
4043 				err = check_return_code(env);
4044 				if (err)
4045 					return err;
4046 process_bpf_exit:
4047 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4048 				if (err < 0) {
4049 					if (err != -ENOENT)
4050 						return err;
4051 					break;
4052 				} else {
4053 					do_print_state = true;
4054 					continue;
4055 				}
4056 			} else {
4057 				err = check_cond_jmp_op(env, insn, &insn_idx);
4058 				if (err)
4059 					return err;
4060 			}
4061 		} else if (class == BPF_LD) {
4062 			u8 mode = BPF_MODE(insn->code);
4063 
4064 			if (mode == BPF_ABS || mode == BPF_IND) {
4065 				err = check_ld_abs(env, insn);
4066 				if (err)
4067 					return err;
4068 
4069 			} else if (mode == BPF_IMM) {
4070 				err = check_ld_imm(env, insn);
4071 				if (err)
4072 					return err;
4073 
4074 				insn_idx++;
4075 				env->insn_aux_data[insn_idx].seen = true;
4076 			} else {
4077 				verbose(env, "invalid BPF_LD mode\n");
4078 				return -EINVAL;
4079 			}
4080 		} else {
4081 			verbose(env, "unknown insn class %d\n", class);
4082 			return -EINVAL;
4083 		}
4084 
4085 		insn_idx++;
4086 	}
4087 
4088 	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4089 		env->prog->aux->stack_depth);
4090 	return 0;
4091 }
4092 
4093 static int check_map_prealloc(struct bpf_map *map)
4094 {
4095 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4096 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4097 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4098 		!(map->map_flags & BPF_F_NO_PREALLOC);
4099 }
4100 
4101 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4102 					struct bpf_map *map,
4103 					struct bpf_prog *prog)
4104 
4105 {
4106 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4107 	 * preallocated hash maps, since doing memory allocation
4108 	 * in overflow_handler can crash depending on where nmi got
4109 	 * triggered.
4110 	 */
4111 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4112 		if (!check_map_prealloc(map)) {
4113 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4114 			return -EINVAL;
4115 		}
4116 		if (map->inner_map_meta &&
4117 		    !check_map_prealloc(map->inner_map_meta)) {
4118 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4119 			return -EINVAL;
4120 		}
4121 	}
4122 	return 0;
4123 }
4124 
4125 /* look for pseudo eBPF instructions that access map FDs and
4126  * replace them with actual map pointers
4127  */
4128 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4129 {
4130 	struct bpf_insn *insn = env->prog->insnsi;
4131 	int insn_cnt = env->prog->len;
4132 	int i, j, err;
4133 
4134 	err = bpf_prog_calc_tag(env->prog);
4135 	if (err)
4136 		return err;
4137 
4138 	for (i = 0; i < insn_cnt; i++, insn++) {
4139 		if (BPF_CLASS(insn->code) == BPF_LDX &&
4140 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4141 			verbose(env, "BPF_LDX uses reserved fields\n");
4142 			return -EINVAL;
4143 		}
4144 
4145 		if (BPF_CLASS(insn->code) == BPF_STX &&
4146 		    ((BPF_MODE(insn->code) != BPF_MEM &&
4147 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4148 			verbose(env, "BPF_STX uses reserved fields\n");
4149 			return -EINVAL;
4150 		}
4151 
4152 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4153 			struct bpf_map *map;
4154 			struct fd f;
4155 
4156 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
4157 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4158 			    insn[1].off != 0) {
4159 				verbose(env, "invalid bpf_ld_imm64 insn\n");
4160 				return -EINVAL;
4161 			}
4162 
4163 			if (insn->src_reg == 0)
4164 				/* valid generic load 64-bit imm */
4165 				goto next_insn;
4166 
4167 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4168 				verbose(env,
4169 					"unrecognized bpf_ld_imm64 insn\n");
4170 				return -EINVAL;
4171 			}
4172 
4173 			f = fdget(insn->imm);
4174 			map = __bpf_map_get(f);
4175 			if (IS_ERR(map)) {
4176 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4177 					insn->imm);
4178 				return PTR_ERR(map);
4179 			}
4180 
4181 			err = check_map_prog_compatibility(env, map, env->prog);
4182 			if (err) {
4183 				fdput(f);
4184 				return err;
4185 			}
4186 
4187 			/* store map pointer inside BPF_LD_IMM64 instruction */
4188 			insn[0].imm = (u32) (unsigned long) map;
4189 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
4190 
4191 			/* check whether we recorded this map already */
4192 			for (j = 0; j < env->used_map_cnt; j++)
4193 				if (env->used_maps[j] == map) {
4194 					fdput(f);
4195 					goto next_insn;
4196 				}
4197 
4198 			if (env->used_map_cnt >= MAX_USED_MAPS) {
4199 				fdput(f);
4200 				return -E2BIG;
4201 			}
4202 
4203 			/* hold the map. If the program is rejected by verifier,
4204 			 * the map will be released by release_maps() or it
4205 			 * will be used by the valid program until it's unloaded
4206 			 * and all maps are released in free_bpf_prog_info()
4207 			 */
4208 			map = bpf_map_inc(map, false);
4209 			if (IS_ERR(map)) {
4210 				fdput(f);
4211 				return PTR_ERR(map);
4212 			}
4213 			env->used_maps[env->used_map_cnt++] = map;
4214 
4215 			fdput(f);
4216 next_insn:
4217 			insn++;
4218 			i++;
4219 		}
4220 	}
4221 
4222 	/* now all pseudo BPF_LD_IMM64 instructions load valid
4223 	 * 'struct bpf_map *' into a register instead of user map_fd.
4224 	 * These pointers will be used later by verifier to validate map access.
4225 	 */
4226 	return 0;
4227 }
4228 
4229 /* drop refcnt of maps used by the rejected program */
4230 static void release_maps(struct bpf_verifier_env *env)
4231 {
4232 	int i;
4233 
4234 	for (i = 0; i < env->used_map_cnt; i++)
4235 		bpf_map_put(env->used_maps[i]);
4236 }
4237 
4238 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4239 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4240 {
4241 	struct bpf_insn *insn = env->prog->insnsi;
4242 	int insn_cnt = env->prog->len;
4243 	int i;
4244 
4245 	for (i = 0; i < insn_cnt; i++, insn++)
4246 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4247 			insn->src_reg = 0;
4248 }
4249 
4250 /* single env->prog->insni[off] instruction was replaced with the range
4251  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4252  * [0, off) and [off, end) to new locations, so the patched range stays zero
4253  */
4254 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4255 				u32 off, u32 cnt)
4256 {
4257 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4258 	int i;
4259 
4260 	if (cnt == 1)
4261 		return 0;
4262 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4263 	if (!new_data)
4264 		return -ENOMEM;
4265 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4266 	memcpy(new_data + off + cnt - 1, old_data + off,
4267 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4268 	for (i = off; i < off + cnt - 1; i++)
4269 		new_data[i].seen = true;
4270 	env->insn_aux_data = new_data;
4271 	vfree(old_data);
4272 	return 0;
4273 }
4274 
4275 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4276 					    const struct bpf_insn *patch, u32 len)
4277 {
4278 	struct bpf_prog *new_prog;
4279 
4280 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4281 	if (!new_prog)
4282 		return NULL;
4283 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4284 		return NULL;
4285 	return new_prog;
4286 }
4287 
4288 /* The verifier does more data flow analysis than llvm and will not explore
4289  * branches that are dead at run time. Malicious programs can have dead code
4290  * too. Therefore replace all dead at-run-time code with nops.
4291  */
4292 static void sanitize_dead_code(struct bpf_verifier_env *env)
4293 {
4294 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4295 	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4296 	struct bpf_insn *insn = env->prog->insnsi;
4297 	const int insn_cnt = env->prog->len;
4298 	int i;
4299 
4300 	for (i = 0; i < insn_cnt; i++) {
4301 		if (aux_data[i].seen)
4302 			continue;
4303 		memcpy(insn + i, &nop, sizeof(nop));
4304 	}
4305 }
4306 
4307 /* convert load instructions that access fields of 'struct __sk_buff'
4308  * into sequence of instructions that access fields of 'struct sk_buff'
4309  */
4310 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4311 {
4312 	const struct bpf_verifier_ops *ops = env->ops;
4313 	int i, cnt, size, ctx_field_size, delta = 0;
4314 	const int insn_cnt = env->prog->len;
4315 	struct bpf_insn insn_buf[16], *insn;
4316 	struct bpf_prog *new_prog;
4317 	enum bpf_access_type type;
4318 	bool is_narrower_load;
4319 	u32 target_size;
4320 
4321 	if (ops->gen_prologue) {
4322 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4323 					env->prog);
4324 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4325 			verbose(env, "bpf verifier is misconfigured\n");
4326 			return -EINVAL;
4327 		} else if (cnt) {
4328 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4329 			if (!new_prog)
4330 				return -ENOMEM;
4331 
4332 			env->prog = new_prog;
4333 			delta += cnt - 1;
4334 		}
4335 	}
4336 
4337 	if (!ops->convert_ctx_access)
4338 		return 0;
4339 
4340 	insn = env->prog->insnsi + delta;
4341 
4342 	for (i = 0; i < insn_cnt; i++, insn++) {
4343 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4344 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4345 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4346 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4347 			type = BPF_READ;
4348 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4349 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4350 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4351 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4352 			type = BPF_WRITE;
4353 		else
4354 			continue;
4355 
4356 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4357 			continue;
4358 
4359 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4360 		size = BPF_LDST_BYTES(insn);
4361 
4362 		/* If the read access is a narrower load of the field,
4363 		 * convert to a 4/8-byte load, to minimum program type specific
4364 		 * convert_ctx_access changes. If conversion is successful,
4365 		 * we will apply proper mask to the result.
4366 		 */
4367 		is_narrower_load = size < ctx_field_size;
4368 		if (is_narrower_load) {
4369 			u32 off = insn->off;
4370 			u8 size_code;
4371 
4372 			if (type == BPF_WRITE) {
4373 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4374 				return -EINVAL;
4375 			}
4376 
4377 			size_code = BPF_H;
4378 			if (ctx_field_size == 4)
4379 				size_code = BPF_W;
4380 			else if (ctx_field_size == 8)
4381 				size_code = BPF_DW;
4382 
4383 			insn->off = off & ~(ctx_field_size - 1);
4384 			insn->code = BPF_LDX | BPF_MEM | size_code;
4385 		}
4386 
4387 		target_size = 0;
4388 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4389 					      &target_size);
4390 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4391 		    (ctx_field_size && !target_size)) {
4392 			verbose(env, "bpf verifier is misconfigured\n");
4393 			return -EINVAL;
4394 		}
4395 
4396 		if (is_narrower_load && size < target_size) {
4397 			if (ctx_field_size <= 4)
4398 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4399 								(1 << size * 8) - 1);
4400 			else
4401 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4402 								(1 << size * 8) - 1);
4403 		}
4404 
4405 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4406 		if (!new_prog)
4407 			return -ENOMEM;
4408 
4409 		delta += cnt - 1;
4410 
4411 		/* keep walking new program and skip insns we just inserted */
4412 		env->prog = new_prog;
4413 		insn      = new_prog->insnsi + i + delta;
4414 	}
4415 
4416 	return 0;
4417 }
4418 
4419 /* fixup insn->imm field of bpf_call instructions
4420  * and inline eligible helpers as explicit sequence of BPF instructions
4421  *
4422  * this function is called after eBPF program passed verification
4423  */
4424 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4425 {
4426 	struct bpf_prog *prog = env->prog;
4427 	struct bpf_insn *insn = prog->insnsi;
4428 	const struct bpf_func_proto *fn;
4429 	const int insn_cnt = prog->len;
4430 	struct bpf_insn insn_buf[16];
4431 	struct bpf_prog *new_prog;
4432 	struct bpf_map *map_ptr;
4433 	int i, cnt, delta = 0;
4434 
4435 	for (i = 0; i < insn_cnt; i++, insn++) {
4436 		if (insn->code != (BPF_JMP | BPF_CALL))
4437 			continue;
4438 
4439 		if (insn->imm == BPF_FUNC_get_route_realm)
4440 			prog->dst_needed = 1;
4441 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4442 			bpf_user_rnd_init_once();
4443 		if (insn->imm == BPF_FUNC_tail_call) {
4444 			/* If we tail call into other programs, we
4445 			 * cannot make any assumptions since they can
4446 			 * be replaced dynamically during runtime in
4447 			 * the program array.
4448 			 */
4449 			prog->cb_access = 1;
4450 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4451 
4452 			/* mark bpf_tail_call as different opcode to avoid
4453 			 * conditional branch in the interpeter for every normal
4454 			 * call and to prevent accidental JITing by JIT compiler
4455 			 * that doesn't support bpf_tail_call yet
4456 			 */
4457 			insn->imm = 0;
4458 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4459 			continue;
4460 		}
4461 
4462 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4463 		 * handlers are currently limited to 64 bit only.
4464 		 */
4465 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4466 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4467 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4468 			if (map_ptr == BPF_MAP_PTR_POISON ||
4469 			    !map_ptr->ops->map_gen_lookup)
4470 				goto patch_call_imm;
4471 
4472 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4473 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4474 				verbose(env, "bpf verifier is misconfigured\n");
4475 				return -EINVAL;
4476 			}
4477 
4478 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4479 						       cnt);
4480 			if (!new_prog)
4481 				return -ENOMEM;
4482 
4483 			delta += cnt - 1;
4484 
4485 			/* keep walking new program and skip insns we just inserted */
4486 			env->prog = prog = new_prog;
4487 			insn      = new_prog->insnsi + i + delta;
4488 			continue;
4489 		}
4490 
4491 		if (insn->imm == BPF_FUNC_redirect_map) {
4492 			/* Note, we cannot use prog directly as imm as subsequent
4493 			 * rewrites would still change the prog pointer. The only
4494 			 * stable address we can use is aux, which also works with
4495 			 * prog clones during blinding.
4496 			 */
4497 			u64 addr = (unsigned long)prog->aux;
4498 			struct bpf_insn r4_ld[] = {
4499 				BPF_LD_IMM64(BPF_REG_4, addr),
4500 				*insn,
4501 			};
4502 			cnt = ARRAY_SIZE(r4_ld);
4503 
4504 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4505 			if (!new_prog)
4506 				return -ENOMEM;
4507 
4508 			delta    += cnt - 1;
4509 			env->prog = prog = new_prog;
4510 			insn      = new_prog->insnsi + i + delta;
4511 		}
4512 patch_call_imm:
4513 		fn = env->ops->get_func_proto(insn->imm);
4514 		/* all functions that have prototype and verifier allowed
4515 		 * programs to call them, must be real in-kernel functions
4516 		 */
4517 		if (!fn->func) {
4518 			verbose(env,
4519 				"kernel subsystem misconfigured func %s#%d\n",
4520 				func_id_name(insn->imm), insn->imm);
4521 			return -EFAULT;
4522 		}
4523 		insn->imm = fn->func - __bpf_call_base;
4524 	}
4525 
4526 	return 0;
4527 }
4528 
4529 static void free_states(struct bpf_verifier_env *env)
4530 {
4531 	struct bpf_verifier_state_list *sl, *sln;
4532 	int i;
4533 
4534 	if (!env->explored_states)
4535 		return;
4536 
4537 	for (i = 0; i < env->prog->len; i++) {
4538 		sl = env->explored_states[i];
4539 
4540 		if (sl)
4541 			while (sl != STATE_LIST_MARK) {
4542 				sln = sl->next;
4543 				free_verifier_state(&sl->state, false);
4544 				kfree(sl);
4545 				sl = sln;
4546 			}
4547 	}
4548 
4549 	kfree(env->explored_states);
4550 }
4551 
4552 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4553 {
4554 	struct bpf_verifier_env *env;
4555 	struct bpf_verifer_log *log;
4556 	int ret = -EINVAL;
4557 
4558 	/* no program is valid */
4559 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4560 		return -EINVAL;
4561 
4562 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4563 	 * allocate/free it every time bpf_check() is called
4564 	 */
4565 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4566 	if (!env)
4567 		return -ENOMEM;
4568 	log = &env->log;
4569 
4570 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4571 				     (*prog)->len);
4572 	ret = -ENOMEM;
4573 	if (!env->insn_aux_data)
4574 		goto err_free_env;
4575 	env->prog = *prog;
4576 	env->ops = bpf_verifier_ops[env->prog->type];
4577 
4578 	/* grab the mutex to protect few globals used by verifier */
4579 	mutex_lock(&bpf_verifier_lock);
4580 
4581 	if (attr->log_level || attr->log_buf || attr->log_size) {
4582 		/* user requested verbose verifier output
4583 		 * and supplied buffer to store the verification trace
4584 		 */
4585 		log->level = attr->log_level;
4586 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4587 		log->len_total = attr->log_size;
4588 
4589 		ret = -EINVAL;
4590 		/* log attributes have to be sane */
4591 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4592 		    !log->level || !log->ubuf)
4593 			goto err_unlock;
4594 	}
4595 
4596 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4597 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4598 		env->strict_alignment = true;
4599 
4600 	if (env->prog->aux->offload) {
4601 		ret = bpf_prog_offload_verifier_prep(env);
4602 		if (ret)
4603 			goto err_unlock;
4604 	}
4605 
4606 	ret = replace_map_fd_with_map_ptr(env);
4607 	if (ret < 0)
4608 		goto skip_full_check;
4609 
4610 	env->explored_states = kcalloc(env->prog->len,
4611 				       sizeof(struct bpf_verifier_state_list *),
4612 				       GFP_USER);
4613 	ret = -ENOMEM;
4614 	if (!env->explored_states)
4615 		goto skip_full_check;
4616 
4617 	ret = check_cfg(env);
4618 	if (ret < 0)
4619 		goto skip_full_check;
4620 
4621 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4622 
4623 	ret = do_check(env);
4624 	if (env->cur_state) {
4625 		free_verifier_state(env->cur_state, true);
4626 		env->cur_state = NULL;
4627 	}
4628 
4629 skip_full_check:
4630 	while (!pop_stack(env, NULL, NULL));
4631 	free_states(env);
4632 
4633 	if (ret == 0)
4634 		sanitize_dead_code(env);
4635 
4636 	if (ret == 0)
4637 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4638 		ret = convert_ctx_accesses(env);
4639 
4640 	if (ret == 0)
4641 		ret = fixup_bpf_calls(env);
4642 
4643 	if (log->level && bpf_verifier_log_full(log))
4644 		ret = -ENOSPC;
4645 	if (log->level && !log->ubuf) {
4646 		ret = -EFAULT;
4647 		goto err_release_maps;
4648 	}
4649 
4650 	if (ret == 0 && env->used_map_cnt) {
4651 		/* if program passed verifier, update used_maps in bpf_prog_info */
4652 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4653 							  sizeof(env->used_maps[0]),
4654 							  GFP_KERNEL);
4655 
4656 		if (!env->prog->aux->used_maps) {
4657 			ret = -ENOMEM;
4658 			goto err_release_maps;
4659 		}
4660 
4661 		memcpy(env->prog->aux->used_maps, env->used_maps,
4662 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4663 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4664 
4665 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4666 		 * bpf_ld_imm64 instructions
4667 		 */
4668 		convert_pseudo_ld_imm64(env);
4669 	}
4670 
4671 err_release_maps:
4672 	if (!env->prog->aux->used_maps)
4673 		/* if we didn't copy map pointers into bpf_prog_info, release
4674 		 * them now. Otherwise free_bpf_prog_info() will release them.
4675 		 */
4676 		release_maps(env);
4677 	*prog = env->prog;
4678 err_unlock:
4679 	mutex_unlock(&bpf_verifier_lock);
4680 	vfree(env->insn_aux_data);
4681 err_free_env:
4682 	kfree(env);
4683 	return ret;
4684 }
4685