1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 191 { 192 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 193 } 194 195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 196 { 197 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 198 } 199 200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 201 const struct bpf_map *map, bool unpriv) 202 { 203 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 204 unpriv |= bpf_map_ptr_unpriv(aux); 205 aux->map_ptr_state = (unsigned long)map | 206 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 207 } 208 209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_key_state & BPF_MAP_KEY_POISON; 212 } 213 214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 215 { 216 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 217 } 218 219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 220 { 221 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 222 } 223 224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 225 { 226 bool poisoned = bpf_map_key_poisoned(aux); 227 228 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 229 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 230 } 231 232 static bool bpf_pseudo_call(const struct bpf_insn *insn) 233 { 234 return insn->code == (BPF_JMP | BPF_CALL) && 235 insn->src_reg == BPF_PSEUDO_CALL; 236 } 237 238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 239 { 240 return insn->code == (BPF_JMP | BPF_CALL) && 241 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 242 } 243 244 struct bpf_call_arg_meta { 245 struct bpf_map *map_ptr; 246 bool raw_mode; 247 bool pkt_access; 248 int regno; 249 int access_size; 250 int mem_size; 251 u64 msize_max_value; 252 int ref_obj_id; 253 int map_uid; 254 int func_id; 255 struct btf *btf; 256 u32 btf_id; 257 struct btf *ret_btf; 258 u32 ret_btf_id; 259 u32 subprogno; 260 }; 261 262 struct btf *btf_vmlinux; 263 264 static DEFINE_MUTEX(bpf_verifier_lock); 265 266 static const struct bpf_line_info * 267 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 268 { 269 const struct bpf_line_info *linfo; 270 const struct bpf_prog *prog; 271 u32 i, nr_linfo; 272 273 prog = env->prog; 274 nr_linfo = prog->aux->nr_linfo; 275 276 if (!nr_linfo || insn_off >= prog->len) 277 return NULL; 278 279 linfo = prog->aux->linfo; 280 for (i = 1; i < nr_linfo; i++) 281 if (insn_off < linfo[i].insn_off) 282 break; 283 284 return &linfo[i - 1]; 285 } 286 287 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 288 va_list args) 289 { 290 unsigned int n; 291 292 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 293 294 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 295 "verifier log line truncated - local buffer too short\n"); 296 297 if (log->level == BPF_LOG_KERNEL) { 298 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 299 300 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 301 return; 302 } 303 304 n = min(log->len_total - log->len_used - 1, n); 305 log->kbuf[n] = '\0'; 306 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 307 log->len_used += n; 308 else 309 log->ubuf = NULL; 310 } 311 312 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 313 { 314 char zero = 0; 315 316 if (!bpf_verifier_log_needed(log)) 317 return; 318 319 log->len_used = new_pos; 320 if (put_user(zero, log->ubuf + new_pos)) 321 log->ubuf = NULL; 322 } 323 324 /* log_level controls verbosity level of eBPF verifier. 325 * bpf_verifier_log_write() is used to dump the verification trace to the log, 326 * so the user can figure out what's wrong with the program 327 */ 328 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 329 const char *fmt, ...) 330 { 331 va_list args; 332 333 if (!bpf_verifier_log_needed(&env->log)) 334 return; 335 336 va_start(args, fmt); 337 bpf_verifier_vlog(&env->log, fmt, args); 338 va_end(args); 339 } 340 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 341 342 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 343 { 344 struct bpf_verifier_env *env = private_data; 345 va_list args; 346 347 if (!bpf_verifier_log_needed(&env->log)) 348 return; 349 350 va_start(args, fmt); 351 bpf_verifier_vlog(&env->log, fmt, args); 352 va_end(args); 353 } 354 355 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 356 const char *fmt, ...) 357 { 358 va_list args; 359 360 if (!bpf_verifier_log_needed(log)) 361 return; 362 363 va_start(args, fmt); 364 bpf_verifier_vlog(log, fmt, args); 365 va_end(args); 366 } 367 368 static const char *ltrim(const char *s) 369 { 370 while (isspace(*s)) 371 s++; 372 373 return s; 374 } 375 376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 377 u32 insn_off, 378 const char *prefix_fmt, ...) 379 { 380 const struct bpf_line_info *linfo; 381 382 if (!bpf_verifier_log_needed(&env->log)) 383 return; 384 385 linfo = find_linfo(env, insn_off); 386 if (!linfo || linfo == env->prev_linfo) 387 return; 388 389 if (prefix_fmt) { 390 va_list args; 391 392 va_start(args, prefix_fmt); 393 bpf_verifier_vlog(&env->log, prefix_fmt, args); 394 va_end(args); 395 } 396 397 verbose(env, "%s\n", 398 ltrim(btf_name_by_offset(env->prog->aux->btf, 399 linfo->line_off))); 400 401 env->prev_linfo = linfo; 402 } 403 404 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 405 struct bpf_reg_state *reg, 406 struct tnum *range, const char *ctx, 407 const char *reg_name) 408 { 409 char tn_buf[48]; 410 411 verbose(env, "At %s the register %s ", ctx, reg_name); 412 if (!tnum_is_unknown(reg->var_off)) { 413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 414 verbose(env, "has value %s", tn_buf); 415 } else { 416 verbose(env, "has unknown scalar value"); 417 } 418 tnum_strn(tn_buf, sizeof(tn_buf), *range); 419 verbose(env, " should have been in %s\n", tn_buf); 420 } 421 422 static bool type_is_pkt_pointer(enum bpf_reg_type type) 423 { 424 return type == PTR_TO_PACKET || 425 type == PTR_TO_PACKET_META; 426 } 427 428 static bool type_is_sk_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_SOCKET || 431 type == PTR_TO_SOCK_COMMON || 432 type == PTR_TO_TCP_SOCK || 433 type == PTR_TO_XDP_SOCK; 434 } 435 436 static bool reg_type_not_null(enum bpf_reg_type type) 437 { 438 return type == PTR_TO_SOCKET || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_MAP_VALUE || 441 type == PTR_TO_MAP_KEY || 442 type == PTR_TO_SOCK_COMMON; 443 } 444 445 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 446 { 447 return reg->type == PTR_TO_MAP_VALUE && 448 map_value_has_spin_lock(reg->map_ptr); 449 } 450 451 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 452 { 453 return base_type(type) == PTR_TO_SOCKET || 454 base_type(type) == PTR_TO_TCP_SOCK || 455 base_type(type) == PTR_TO_MEM || 456 base_type(type) == PTR_TO_BTF_ID; 457 } 458 459 static bool type_is_rdonly_mem(u32 type) 460 { 461 return type & MEM_RDONLY; 462 } 463 464 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 465 { 466 return type == ARG_PTR_TO_SOCK_COMMON; 467 } 468 469 static bool type_may_be_null(u32 type) 470 { 471 return type & PTR_MAYBE_NULL; 472 } 473 474 /* Determine whether the function releases some resources allocated by another 475 * function call. The first reference type argument will be assumed to be 476 * released by release_reference(). 477 */ 478 static bool is_release_function(enum bpf_func_id func_id) 479 { 480 return func_id == BPF_FUNC_sk_release || 481 func_id == BPF_FUNC_ringbuf_submit || 482 func_id == BPF_FUNC_ringbuf_discard; 483 } 484 485 static bool may_be_acquire_function(enum bpf_func_id func_id) 486 { 487 return func_id == BPF_FUNC_sk_lookup_tcp || 488 func_id == BPF_FUNC_sk_lookup_udp || 489 func_id == BPF_FUNC_skc_lookup_tcp || 490 func_id == BPF_FUNC_map_lookup_elem || 491 func_id == BPF_FUNC_ringbuf_reserve; 492 } 493 494 static bool is_acquire_function(enum bpf_func_id func_id, 495 const struct bpf_map *map) 496 { 497 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 498 499 if (func_id == BPF_FUNC_sk_lookup_tcp || 500 func_id == BPF_FUNC_sk_lookup_udp || 501 func_id == BPF_FUNC_skc_lookup_tcp || 502 func_id == BPF_FUNC_ringbuf_reserve) 503 return true; 504 505 if (func_id == BPF_FUNC_map_lookup_elem && 506 (map_type == BPF_MAP_TYPE_SOCKMAP || 507 map_type == BPF_MAP_TYPE_SOCKHASH)) 508 return true; 509 510 return false; 511 } 512 513 static bool is_ptr_cast_function(enum bpf_func_id func_id) 514 { 515 return func_id == BPF_FUNC_tcp_sock || 516 func_id == BPF_FUNC_sk_fullsock || 517 func_id == BPF_FUNC_skc_to_tcp_sock || 518 func_id == BPF_FUNC_skc_to_tcp6_sock || 519 func_id == BPF_FUNC_skc_to_udp6_sock || 520 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 521 func_id == BPF_FUNC_skc_to_tcp_request_sock; 522 } 523 524 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 525 { 526 return BPF_CLASS(insn->code) == BPF_STX && 527 BPF_MODE(insn->code) == BPF_ATOMIC && 528 insn->imm == BPF_CMPXCHG; 529 } 530 531 /* string representation of 'enum bpf_reg_type' 532 * 533 * Note that reg_type_str() can not appear more than once in a single verbose() 534 * statement. 535 */ 536 static const char *reg_type_str(struct bpf_verifier_env *env, 537 enum bpf_reg_type type) 538 { 539 char postfix[16] = {0}, prefix[32] = {0}; 540 static const char * const str[] = { 541 [NOT_INIT] = "?", 542 [SCALAR_VALUE] = "scalar", 543 [PTR_TO_CTX] = "ctx", 544 [CONST_PTR_TO_MAP] = "map_ptr", 545 [PTR_TO_MAP_VALUE] = "map_value", 546 [PTR_TO_STACK] = "fp", 547 [PTR_TO_PACKET] = "pkt", 548 [PTR_TO_PACKET_META] = "pkt_meta", 549 [PTR_TO_PACKET_END] = "pkt_end", 550 [PTR_TO_FLOW_KEYS] = "flow_keys", 551 [PTR_TO_SOCKET] = "sock", 552 [PTR_TO_SOCK_COMMON] = "sock_common", 553 [PTR_TO_TCP_SOCK] = "tcp_sock", 554 [PTR_TO_TP_BUFFER] = "tp_buffer", 555 [PTR_TO_XDP_SOCK] = "xdp_sock", 556 [PTR_TO_BTF_ID] = "ptr_", 557 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 558 [PTR_TO_MEM] = "mem", 559 [PTR_TO_BUF] = "buf", 560 [PTR_TO_FUNC] = "func", 561 [PTR_TO_MAP_KEY] = "map_key", 562 }; 563 564 if (type & PTR_MAYBE_NULL) { 565 if (base_type(type) == PTR_TO_BTF_ID || 566 base_type(type) == PTR_TO_PERCPU_BTF_ID) 567 strncpy(postfix, "or_null_", 16); 568 else 569 strncpy(postfix, "_or_null", 16); 570 } 571 572 if (type & MEM_RDONLY) 573 strncpy(prefix, "rdonly_", 32); 574 if (type & MEM_ALLOC) 575 strncpy(prefix, "alloc_", 32); 576 if (type & MEM_USER) 577 strncpy(prefix, "user_", 32); 578 579 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 580 prefix, str[base_type(type)], postfix); 581 return env->type_str_buf; 582 } 583 584 static char slot_type_char[] = { 585 [STACK_INVALID] = '?', 586 [STACK_SPILL] = 'r', 587 [STACK_MISC] = 'm', 588 [STACK_ZERO] = '0', 589 }; 590 591 static void print_liveness(struct bpf_verifier_env *env, 592 enum bpf_reg_liveness live) 593 { 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 595 verbose(env, "_"); 596 if (live & REG_LIVE_READ) 597 verbose(env, "r"); 598 if (live & REG_LIVE_WRITTEN) 599 verbose(env, "w"); 600 if (live & REG_LIVE_DONE) 601 verbose(env, "D"); 602 } 603 604 static struct bpf_func_state *func(struct bpf_verifier_env *env, 605 const struct bpf_reg_state *reg) 606 { 607 struct bpf_verifier_state *cur = env->cur_state; 608 609 return cur->frame[reg->frameno]; 610 } 611 612 static const char *kernel_type_name(const struct btf* btf, u32 id) 613 { 614 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 615 } 616 617 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 618 { 619 env->scratched_regs |= 1U << regno; 620 } 621 622 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 623 { 624 env->scratched_stack_slots |= 1ULL << spi; 625 } 626 627 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 628 { 629 return (env->scratched_regs >> regno) & 1; 630 } 631 632 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 633 { 634 return (env->scratched_stack_slots >> regno) & 1; 635 } 636 637 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 638 { 639 return env->scratched_regs || env->scratched_stack_slots; 640 } 641 642 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 643 { 644 env->scratched_regs = 0U; 645 env->scratched_stack_slots = 0ULL; 646 } 647 648 /* Used for printing the entire verifier state. */ 649 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 650 { 651 env->scratched_regs = ~0U; 652 env->scratched_stack_slots = ~0ULL; 653 } 654 655 /* The reg state of a pointer or a bounded scalar was saved when 656 * it was spilled to the stack. 657 */ 658 static bool is_spilled_reg(const struct bpf_stack_state *stack) 659 { 660 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 661 } 662 663 static void scrub_spilled_slot(u8 *stype) 664 { 665 if (*stype != STACK_INVALID) 666 *stype = STACK_MISC; 667 } 668 669 static void print_verifier_state(struct bpf_verifier_env *env, 670 const struct bpf_func_state *state, 671 bool print_all) 672 { 673 const struct bpf_reg_state *reg; 674 enum bpf_reg_type t; 675 int i; 676 677 if (state->frameno) 678 verbose(env, " frame%d:", state->frameno); 679 for (i = 0; i < MAX_BPF_REG; i++) { 680 reg = &state->regs[i]; 681 t = reg->type; 682 if (t == NOT_INIT) 683 continue; 684 if (!print_all && !reg_scratched(env, i)) 685 continue; 686 verbose(env, " R%d", i); 687 print_liveness(env, reg->live); 688 verbose(env, "="); 689 if (t == SCALAR_VALUE && reg->precise) 690 verbose(env, "P"); 691 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 692 tnum_is_const(reg->var_off)) { 693 /* reg->off should be 0 for SCALAR_VALUE */ 694 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 695 verbose(env, "%lld", reg->var_off.value + reg->off); 696 } else { 697 const char *sep = ""; 698 699 verbose(env, "%s", reg_type_str(env, t)); 700 if (base_type(t) == PTR_TO_BTF_ID || 701 base_type(t) == PTR_TO_PERCPU_BTF_ID) 702 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 703 verbose(env, "("); 704 /* 705 * _a stands for append, was shortened to avoid multiline statements below. 706 * This macro is used to output a comma separated list of attributes. 707 */ 708 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 709 710 if (reg->id) 711 verbose_a("id=%d", reg->id); 712 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 713 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 714 if (t != SCALAR_VALUE) 715 verbose_a("off=%d", reg->off); 716 if (type_is_pkt_pointer(t)) 717 verbose_a("r=%d", reg->range); 718 else if (base_type(t) == CONST_PTR_TO_MAP || 719 base_type(t) == PTR_TO_MAP_KEY || 720 base_type(t) == PTR_TO_MAP_VALUE) 721 verbose_a("ks=%d,vs=%d", 722 reg->map_ptr->key_size, 723 reg->map_ptr->value_size); 724 if (tnum_is_const(reg->var_off)) { 725 /* Typically an immediate SCALAR_VALUE, but 726 * could be a pointer whose offset is too big 727 * for reg->off 728 */ 729 verbose_a("imm=%llx", reg->var_off.value); 730 } else { 731 if (reg->smin_value != reg->umin_value && 732 reg->smin_value != S64_MIN) 733 verbose_a("smin=%lld", (long long)reg->smin_value); 734 if (reg->smax_value != reg->umax_value && 735 reg->smax_value != S64_MAX) 736 verbose_a("smax=%lld", (long long)reg->smax_value); 737 if (reg->umin_value != 0) 738 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 739 if (reg->umax_value != U64_MAX) 740 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 741 if (!tnum_is_unknown(reg->var_off)) { 742 char tn_buf[48]; 743 744 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 745 verbose_a("var_off=%s", tn_buf); 746 } 747 if (reg->s32_min_value != reg->smin_value && 748 reg->s32_min_value != S32_MIN) 749 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 750 if (reg->s32_max_value != reg->smax_value && 751 reg->s32_max_value != S32_MAX) 752 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 753 if (reg->u32_min_value != reg->umin_value && 754 reg->u32_min_value != U32_MIN) 755 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 756 if (reg->u32_max_value != reg->umax_value && 757 reg->u32_max_value != U32_MAX) 758 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 759 } 760 #undef verbose_a 761 762 verbose(env, ")"); 763 } 764 } 765 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 766 char types_buf[BPF_REG_SIZE + 1]; 767 bool valid = false; 768 int j; 769 770 for (j = 0; j < BPF_REG_SIZE; j++) { 771 if (state->stack[i].slot_type[j] != STACK_INVALID) 772 valid = true; 773 types_buf[j] = slot_type_char[ 774 state->stack[i].slot_type[j]]; 775 } 776 types_buf[BPF_REG_SIZE] = 0; 777 if (!valid) 778 continue; 779 if (!print_all && !stack_slot_scratched(env, i)) 780 continue; 781 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 782 print_liveness(env, state->stack[i].spilled_ptr.live); 783 if (is_spilled_reg(&state->stack[i])) { 784 reg = &state->stack[i].spilled_ptr; 785 t = reg->type; 786 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 787 if (t == SCALAR_VALUE && reg->precise) 788 verbose(env, "P"); 789 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 790 verbose(env, "%lld", reg->var_off.value + reg->off); 791 } else { 792 verbose(env, "=%s", types_buf); 793 } 794 } 795 if (state->acquired_refs && state->refs[0].id) { 796 verbose(env, " refs=%d", state->refs[0].id); 797 for (i = 1; i < state->acquired_refs; i++) 798 if (state->refs[i].id) 799 verbose(env, ",%d", state->refs[i].id); 800 } 801 if (state->in_callback_fn) 802 verbose(env, " cb"); 803 if (state->in_async_callback_fn) 804 verbose(env, " async_cb"); 805 verbose(env, "\n"); 806 mark_verifier_state_clean(env); 807 } 808 809 static inline u32 vlog_alignment(u32 pos) 810 { 811 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 812 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 813 } 814 815 static void print_insn_state(struct bpf_verifier_env *env, 816 const struct bpf_func_state *state) 817 { 818 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 819 /* remove new line character */ 820 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 821 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 822 } else { 823 verbose(env, "%d:", env->insn_idx); 824 } 825 print_verifier_state(env, state, false); 826 } 827 828 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 829 * small to hold src. This is different from krealloc since we don't want to preserve 830 * the contents of dst. 831 * 832 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 833 * not be allocated. 834 */ 835 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 836 { 837 size_t bytes; 838 839 if (ZERO_OR_NULL_PTR(src)) 840 goto out; 841 842 if (unlikely(check_mul_overflow(n, size, &bytes))) 843 return NULL; 844 845 if (ksize(dst) < bytes) { 846 kfree(dst); 847 dst = kmalloc_track_caller(bytes, flags); 848 if (!dst) 849 return NULL; 850 } 851 852 memcpy(dst, src, bytes); 853 out: 854 return dst ? dst : ZERO_SIZE_PTR; 855 } 856 857 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 858 * small to hold new_n items. new items are zeroed out if the array grows. 859 * 860 * Contrary to krealloc_array, does not free arr if new_n is zero. 861 */ 862 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 863 { 864 if (!new_n || old_n == new_n) 865 goto out; 866 867 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 868 if (!arr) 869 return NULL; 870 871 if (new_n > old_n) 872 memset(arr + old_n * size, 0, (new_n - old_n) * size); 873 874 out: 875 return arr ? arr : ZERO_SIZE_PTR; 876 } 877 878 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 879 { 880 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 881 sizeof(struct bpf_reference_state), GFP_KERNEL); 882 if (!dst->refs) 883 return -ENOMEM; 884 885 dst->acquired_refs = src->acquired_refs; 886 return 0; 887 } 888 889 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 890 { 891 size_t n = src->allocated_stack / BPF_REG_SIZE; 892 893 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 894 GFP_KERNEL); 895 if (!dst->stack) 896 return -ENOMEM; 897 898 dst->allocated_stack = src->allocated_stack; 899 return 0; 900 } 901 902 static int resize_reference_state(struct bpf_func_state *state, size_t n) 903 { 904 state->refs = realloc_array(state->refs, state->acquired_refs, n, 905 sizeof(struct bpf_reference_state)); 906 if (!state->refs) 907 return -ENOMEM; 908 909 state->acquired_refs = n; 910 return 0; 911 } 912 913 static int grow_stack_state(struct bpf_func_state *state, int size) 914 { 915 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 916 917 if (old_n >= n) 918 return 0; 919 920 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 921 if (!state->stack) 922 return -ENOMEM; 923 924 state->allocated_stack = size; 925 return 0; 926 } 927 928 /* Acquire a pointer id from the env and update the state->refs to include 929 * this new pointer reference. 930 * On success, returns a valid pointer id to associate with the register 931 * On failure, returns a negative errno. 932 */ 933 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 934 { 935 struct bpf_func_state *state = cur_func(env); 936 int new_ofs = state->acquired_refs; 937 int id, err; 938 939 err = resize_reference_state(state, state->acquired_refs + 1); 940 if (err) 941 return err; 942 id = ++env->id_gen; 943 state->refs[new_ofs].id = id; 944 state->refs[new_ofs].insn_idx = insn_idx; 945 946 return id; 947 } 948 949 /* release function corresponding to acquire_reference_state(). Idempotent. */ 950 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 951 { 952 int i, last_idx; 953 954 last_idx = state->acquired_refs - 1; 955 for (i = 0; i < state->acquired_refs; i++) { 956 if (state->refs[i].id == ptr_id) { 957 if (last_idx && i != last_idx) 958 memcpy(&state->refs[i], &state->refs[last_idx], 959 sizeof(*state->refs)); 960 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 961 state->acquired_refs--; 962 return 0; 963 } 964 } 965 return -EINVAL; 966 } 967 968 static void free_func_state(struct bpf_func_state *state) 969 { 970 if (!state) 971 return; 972 kfree(state->refs); 973 kfree(state->stack); 974 kfree(state); 975 } 976 977 static void clear_jmp_history(struct bpf_verifier_state *state) 978 { 979 kfree(state->jmp_history); 980 state->jmp_history = NULL; 981 state->jmp_history_cnt = 0; 982 } 983 984 static void free_verifier_state(struct bpf_verifier_state *state, 985 bool free_self) 986 { 987 int i; 988 989 for (i = 0; i <= state->curframe; i++) { 990 free_func_state(state->frame[i]); 991 state->frame[i] = NULL; 992 } 993 clear_jmp_history(state); 994 if (free_self) 995 kfree(state); 996 } 997 998 /* copy verifier state from src to dst growing dst stack space 999 * when necessary to accommodate larger src stack 1000 */ 1001 static int copy_func_state(struct bpf_func_state *dst, 1002 const struct bpf_func_state *src) 1003 { 1004 int err; 1005 1006 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1007 err = copy_reference_state(dst, src); 1008 if (err) 1009 return err; 1010 return copy_stack_state(dst, src); 1011 } 1012 1013 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1014 const struct bpf_verifier_state *src) 1015 { 1016 struct bpf_func_state *dst; 1017 int i, err; 1018 1019 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1020 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1021 GFP_USER); 1022 if (!dst_state->jmp_history) 1023 return -ENOMEM; 1024 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1025 1026 /* if dst has more stack frames then src frame, free them */ 1027 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1028 free_func_state(dst_state->frame[i]); 1029 dst_state->frame[i] = NULL; 1030 } 1031 dst_state->speculative = src->speculative; 1032 dst_state->curframe = src->curframe; 1033 dst_state->active_spin_lock = src->active_spin_lock; 1034 dst_state->branches = src->branches; 1035 dst_state->parent = src->parent; 1036 dst_state->first_insn_idx = src->first_insn_idx; 1037 dst_state->last_insn_idx = src->last_insn_idx; 1038 for (i = 0; i <= src->curframe; i++) { 1039 dst = dst_state->frame[i]; 1040 if (!dst) { 1041 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1042 if (!dst) 1043 return -ENOMEM; 1044 dst_state->frame[i] = dst; 1045 } 1046 err = copy_func_state(dst, src->frame[i]); 1047 if (err) 1048 return err; 1049 } 1050 return 0; 1051 } 1052 1053 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1054 { 1055 while (st) { 1056 u32 br = --st->branches; 1057 1058 /* WARN_ON(br > 1) technically makes sense here, 1059 * but see comment in push_stack(), hence: 1060 */ 1061 WARN_ONCE((int)br < 0, 1062 "BUG update_branch_counts:branches_to_explore=%d\n", 1063 br); 1064 if (br) 1065 break; 1066 st = st->parent; 1067 } 1068 } 1069 1070 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1071 int *insn_idx, bool pop_log) 1072 { 1073 struct bpf_verifier_state *cur = env->cur_state; 1074 struct bpf_verifier_stack_elem *elem, *head = env->head; 1075 int err; 1076 1077 if (env->head == NULL) 1078 return -ENOENT; 1079 1080 if (cur) { 1081 err = copy_verifier_state(cur, &head->st); 1082 if (err) 1083 return err; 1084 } 1085 if (pop_log) 1086 bpf_vlog_reset(&env->log, head->log_pos); 1087 if (insn_idx) 1088 *insn_idx = head->insn_idx; 1089 if (prev_insn_idx) 1090 *prev_insn_idx = head->prev_insn_idx; 1091 elem = head->next; 1092 free_verifier_state(&head->st, false); 1093 kfree(head); 1094 env->head = elem; 1095 env->stack_size--; 1096 return 0; 1097 } 1098 1099 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1100 int insn_idx, int prev_insn_idx, 1101 bool speculative) 1102 { 1103 struct bpf_verifier_state *cur = env->cur_state; 1104 struct bpf_verifier_stack_elem *elem; 1105 int err; 1106 1107 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1108 if (!elem) 1109 goto err; 1110 1111 elem->insn_idx = insn_idx; 1112 elem->prev_insn_idx = prev_insn_idx; 1113 elem->next = env->head; 1114 elem->log_pos = env->log.len_used; 1115 env->head = elem; 1116 env->stack_size++; 1117 err = copy_verifier_state(&elem->st, cur); 1118 if (err) 1119 goto err; 1120 elem->st.speculative |= speculative; 1121 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1122 verbose(env, "The sequence of %d jumps is too complex.\n", 1123 env->stack_size); 1124 goto err; 1125 } 1126 if (elem->st.parent) { 1127 ++elem->st.parent->branches; 1128 /* WARN_ON(branches > 2) technically makes sense here, 1129 * but 1130 * 1. speculative states will bump 'branches' for non-branch 1131 * instructions 1132 * 2. is_state_visited() heuristics may decide not to create 1133 * a new state for a sequence of branches and all such current 1134 * and cloned states will be pointing to a single parent state 1135 * which might have large 'branches' count. 1136 */ 1137 } 1138 return &elem->st; 1139 err: 1140 free_verifier_state(env->cur_state, true); 1141 env->cur_state = NULL; 1142 /* pop all elements and return */ 1143 while (!pop_stack(env, NULL, NULL, false)); 1144 return NULL; 1145 } 1146 1147 #define CALLER_SAVED_REGS 6 1148 static const int caller_saved[CALLER_SAVED_REGS] = { 1149 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1150 }; 1151 1152 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1153 struct bpf_reg_state *reg); 1154 1155 /* This helper doesn't clear reg->id */ 1156 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1157 { 1158 reg->var_off = tnum_const(imm); 1159 reg->smin_value = (s64)imm; 1160 reg->smax_value = (s64)imm; 1161 reg->umin_value = imm; 1162 reg->umax_value = imm; 1163 1164 reg->s32_min_value = (s32)imm; 1165 reg->s32_max_value = (s32)imm; 1166 reg->u32_min_value = (u32)imm; 1167 reg->u32_max_value = (u32)imm; 1168 } 1169 1170 /* Mark the unknown part of a register (variable offset or scalar value) as 1171 * known to have the value @imm. 1172 */ 1173 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1174 { 1175 /* Clear id, off, and union(map_ptr, range) */ 1176 memset(((u8 *)reg) + sizeof(reg->type), 0, 1177 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1178 ___mark_reg_known(reg, imm); 1179 } 1180 1181 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1182 { 1183 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1184 reg->s32_min_value = (s32)imm; 1185 reg->s32_max_value = (s32)imm; 1186 reg->u32_min_value = (u32)imm; 1187 reg->u32_max_value = (u32)imm; 1188 } 1189 1190 /* Mark the 'variable offset' part of a register as zero. This should be 1191 * used only on registers holding a pointer type. 1192 */ 1193 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1194 { 1195 __mark_reg_known(reg, 0); 1196 } 1197 1198 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1199 { 1200 __mark_reg_known(reg, 0); 1201 reg->type = SCALAR_VALUE; 1202 } 1203 1204 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1205 struct bpf_reg_state *regs, u32 regno) 1206 { 1207 if (WARN_ON(regno >= MAX_BPF_REG)) { 1208 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1209 /* Something bad happened, let's kill all regs */ 1210 for (regno = 0; regno < MAX_BPF_REG; regno++) 1211 __mark_reg_not_init(env, regs + regno); 1212 return; 1213 } 1214 __mark_reg_known_zero(regs + regno); 1215 } 1216 1217 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1218 { 1219 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1220 const struct bpf_map *map = reg->map_ptr; 1221 1222 if (map->inner_map_meta) { 1223 reg->type = CONST_PTR_TO_MAP; 1224 reg->map_ptr = map->inner_map_meta; 1225 /* transfer reg's id which is unique for every map_lookup_elem 1226 * as UID of the inner map. 1227 */ 1228 if (map_value_has_timer(map->inner_map_meta)) 1229 reg->map_uid = reg->id; 1230 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1231 reg->type = PTR_TO_XDP_SOCK; 1232 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1233 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1234 reg->type = PTR_TO_SOCKET; 1235 } else { 1236 reg->type = PTR_TO_MAP_VALUE; 1237 } 1238 return; 1239 } 1240 1241 reg->type &= ~PTR_MAYBE_NULL; 1242 } 1243 1244 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1245 { 1246 return type_is_pkt_pointer(reg->type); 1247 } 1248 1249 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1250 { 1251 return reg_is_pkt_pointer(reg) || 1252 reg->type == PTR_TO_PACKET_END; 1253 } 1254 1255 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1256 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1257 enum bpf_reg_type which) 1258 { 1259 /* The register can already have a range from prior markings. 1260 * This is fine as long as it hasn't been advanced from its 1261 * origin. 1262 */ 1263 return reg->type == which && 1264 reg->id == 0 && 1265 reg->off == 0 && 1266 tnum_equals_const(reg->var_off, 0); 1267 } 1268 1269 /* Reset the min/max bounds of a register */ 1270 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1271 { 1272 reg->smin_value = S64_MIN; 1273 reg->smax_value = S64_MAX; 1274 reg->umin_value = 0; 1275 reg->umax_value = U64_MAX; 1276 1277 reg->s32_min_value = S32_MIN; 1278 reg->s32_max_value = S32_MAX; 1279 reg->u32_min_value = 0; 1280 reg->u32_max_value = U32_MAX; 1281 } 1282 1283 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1284 { 1285 reg->smin_value = S64_MIN; 1286 reg->smax_value = S64_MAX; 1287 reg->umin_value = 0; 1288 reg->umax_value = U64_MAX; 1289 } 1290 1291 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1292 { 1293 reg->s32_min_value = S32_MIN; 1294 reg->s32_max_value = S32_MAX; 1295 reg->u32_min_value = 0; 1296 reg->u32_max_value = U32_MAX; 1297 } 1298 1299 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1300 { 1301 struct tnum var32_off = tnum_subreg(reg->var_off); 1302 1303 /* min signed is max(sign bit) | min(other bits) */ 1304 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1305 var32_off.value | (var32_off.mask & S32_MIN)); 1306 /* max signed is min(sign bit) | max(other bits) */ 1307 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1308 var32_off.value | (var32_off.mask & S32_MAX)); 1309 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1310 reg->u32_max_value = min(reg->u32_max_value, 1311 (u32)(var32_off.value | var32_off.mask)); 1312 } 1313 1314 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1315 { 1316 /* min signed is max(sign bit) | min(other bits) */ 1317 reg->smin_value = max_t(s64, reg->smin_value, 1318 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1319 /* max signed is min(sign bit) | max(other bits) */ 1320 reg->smax_value = min_t(s64, reg->smax_value, 1321 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1322 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1323 reg->umax_value = min(reg->umax_value, 1324 reg->var_off.value | reg->var_off.mask); 1325 } 1326 1327 static void __update_reg_bounds(struct bpf_reg_state *reg) 1328 { 1329 __update_reg32_bounds(reg); 1330 __update_reg64_bounds(reg); 1331 } 1332 1333 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1334 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1335 { 1336 /* Learn sign from signed bounds. 1337 * If we cannot cross the sign boundary, then signed and unsigned bounds 1338 * are the same, so combine. This works even in the negative case, e.g. 1339 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1340 */ 1341 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1342 reg->s32_min_value = reg->u32_min_value = 1343 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1344 reg->s32_max_value = reg->u32_max_value = 1345 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1346 return; 1347 } 1348 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1349 * boundary, so we must be careful. 1350 */ 1351 if ((s32)reg->u32_max_value >= 0) { 1352 /* Positive. We can't learn anything from the smin, but smax 1353 * is positive, hence safe. 1354 */ 1355 reg->s32_min_value = reg->u32_min_value; 1356 reg->s32_max_value = reg->u32_max_value = 1357 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1358 } else if ((s32)reg->u32_min_value < 0) { 1359 /* Negative. We can't learn anything from the smax, but smin 1360 * is negative, hence safe. 1361 */ 1362 reg->s32_min_value = reg->u32_min_value = 1363 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1364 reg->s32_max_value = reg->u32_max_value; 1365 } 1366 } 1367 1368 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1369 { 1370 /* Learn sign from signed bounds. 1371 * If we cannot cross the sign boundary, then signed and unsigned bounds 1372 * are the same, so combine. This works even in the negative case, e.g. 1373 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1374 */ 1375 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1376 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1377 reg->umin_value); 1378 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1379 reg->umax_value); 1380 return; 1381 } 1382 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1383 * boundary, so we must be careful. 1384 */ 1385 if ((s64)reg->umax_value >= 0) { 1386 /* Positive. We can't learn anything from the smin, but smax 1387 * is positive, hence safe. 1388 */ 1389 reg->smin_value = reg->umin_value; 1390 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1391 reg->umax_value); 1392 } else if ((s64)reg->umin_value < 0) { 1393 /* Negative. We can't learn anything from the smax, but smin 1394 * is negative, hence safe. 1395 */ 1396 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1397 reg->umin_value); 1398 reg->smax_value = reg->umax_value; 1399 } 1400 } 1401 1402 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1403 { 1404 __reg32_deduce_bounds(reg); 1405 __reg64_deduce_bounds(reg); 1406 } 1407 1408 /* Attempts to improve var_off based on unsigned min/max information */ 1409 static void __reg_bound_offset(struct bpf_reg_state *reg) 1410 { 1411 struct tnum var64_off = tnum_intersect(reg->var_off, 1412 tnum_range(reg->umin_value, 1413 reg->umax_value)); 1414 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1415 tnum_range(reg->u32_min_value, 1416 reg->u32_max_value)); 1417 1418 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1419 } 1420 1421 static bool __reg32_bound_s64(s32 a) 1422 { 1423 return a >= 0 && a <= S32_MAX; 1424 } 1425 1426 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1427 { 1428 reg->umin_value = reg->u32_min_value; 1429 reg->umax_value = reg->u32_max_value; 1430 1431 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1432 * be positive otherwise set to worse case bounds and refine later 1433 * from tnum. 1434 */ 1435 if (__reg32_bound_s64(reg->s32_min_value) && 1436 __reg32_bound_s64(reg->s32_max_value)) { 1437 reg->smin_value = reg->s32_min_value; 1438 reg->smax_value = reg->s32_max_value; 1439 } else { 1440 reg->smin_value = 0; 1441 reg->smax_value = U32_MAX; 1442 } 1443 } 1444 1445 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1446 { 1447 /* special case when 64-bit register has upper 32-bit register 1448 * zeroed. Typically happens after zext or <<32, >>32 sequence 1449 * allowing us to use 32-bit bounds directly, 1450 */ 1451 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1452 __reg_assign_32_into_64(reg); 1453 } else { 1454 /* Otherwise the best we can do is push lower 32bit known and 1455 * unknown bits into register (var_off set from jmp logic) 1456 * then learn as much as possible from the 64-bit tnum 1457 * known and unknown bits. The previous smin/smax bounds are 1458 * invalid here because of jmp32 compare so mark them unknown 1459 * so they do not impact tnum bounds calculation. 1460 */ 1461 __mark_reg64_unbounded(reg); 1462 __update_reg_bounds(reg); 1463 } 1464 1465 /* Intersecting with the old var_off might have improved our bounds 1466 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1467 * then new var_off is (0; 0x7f...fc) which improves our umax. 1468 */ 1469 __reg_deduce_bounds(reg); 1470 __reg_bound_offset(reg); 1471 __update_reg_bounds(reg); 1472 } 1473 1474 static bool __reg64_bound_s32(s64 a) 1475 { 1476 return a >= S32_MIN && a <= S32_MAX; 1477 } 1478 1479 static bool __reg64_bound_u32(u64 a) 1480 { 1481 return a >= U32_MIN && a <= U32_MAX; 1482 } 1483 1484 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1485 { 1486 __mark_reg32_unbounded(reg); 1487 1488 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1489 reg->s32_min_value = (s32)reg->smin_value; 1490 reg->s32_max_value = (s32)reg->smax_value; 1491 } 1492 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1493 reg->u32_min_value = (u32)reg->umin_value; 1494 reg->u32_max_value = (u32)reg->umax_value; 1495 } 1496 1497 /* Intersecting with the old var_off might have improved our bounds 1498 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1499 * then new var_off is (0; 0x7f...fc) which improves our umax. 1500 */ 1501 __reg_deduce_bounds(reg); 1502 __reg_bound_offset(reg); 1503 __update_reg_bounds(reg); 1504 } 1505 1506 /* Mark a register as having a completely unknown (scalar) value. */ 1507 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1508 struct bpf_reg_state *reg) 1509 { 1510 /* 1511 * Clear type, id, off, and union(map_ptr, range) and 1512 * padding between 'type' and union 1513 */ 1514 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1515 reg->type = SCALAR_VALUE; 1516 reg->var_off = tnum_unknown; 1517 reg->frameno = 0; 1518 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1519 __mark_reg_unbounded(reg); 1520 } 1521 1522 static void mark_reg_unknown(struct bpf_verifier_env *env, 1523 struct bpf_reg_state *regs, u32 regno) 1524 { 1525 if (WARN_ON(regno >= MAX_BPF_REG)) { 1526 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1527 /* Something bad happened, let's kill all regs except FP */ 1528 for (regno = 0; regno < BPF_REG_FP; regno++) 1529 __mark_reg_not_init(env, regs + regno); 1530 return; 1531 } 1532 __mark_reg_unknown(env, regs + regno); 1533 } 1534 1535 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1536 struct bpf_reg_state *reg) 1537 { 1538 __mark_reg_unknown(env, reg); 1539 reg->type = NOT_INIT; 1540 } 1541 1542 static void mark_reg_not_init(struct bpf_verifier_env *env, 1543 struct bpf_reg_state *regs, u32 regno) 1544 { 1545 if (WARN_ON(regno >= MAX_BPF_REG)) { 1546 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1547 /* Something bad happened, let's kill all regs except FP */ 1548 for (regno = 0; regno < BPF_REG_FP; regno++) 1549 __mark_reg_not_init(env, regs + regno); 1550 return; 1551 } 1552 __mark_reg_not_init(env, regs + regno); 1553 } 1554 1555 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1556 struct bpf_reg_state *regs, u32 regno, 1557 enum bpf_reg_type reg_type, 1558 struct btf *btf, u32 btf_id, 1559 enum bpf_type_flag flag) 1560 { 1561 if (reg_type == SCALAR_VALUE) { 1562 mark_reg_unknown(env, regs, regno); 1563 return; 1564 } 1565 mark_reg_known_zero(env, regs, regno); 1566 regs[regno].type = PTR_TO_BTF_ID | flag; 1567 regs[regno].btf = btf; 1568 regs[regno].btf_id = btf_id; 1569 } 1570 1571 #define DEF_NOT_SUBREG (0) 1572 static void init_reg_state(struct bpf_verifier_env *env, 1573 struct bpf_func_state *state) 1574 { 1575 struct bpf_reg_state *regs = state->regs; 1576 int i; 1577 1578 for (i = 0; i < MAX_BPF_REG; i++) { 1579 mark_reg_not_init(env, regs, i); 1580 regs[i].live = REG_LIVE_NONE; 1581 regs[i].parent = NULL; 1582 regs[i].subreg_def = DEF_NOT_SUBREG; 1583 } 1584 1585 /* frame pointer */ 1586 regs[BPF_REG_FP].type = PTR_TO_STACK; 1587 mark_reg_known_zero(env, regs, BPF_REG_FP); 1588 regs[BPF_REG_FP].frameno = state->frameno; 1589 } 1590 1591 #define BPF_MAIN_FUNC (-1) 1592 static void init_func_state(struct bpf_verifier_env *env, 1593 struct bpf_func_state *state, 1594 int callsite, int frameno, int subprogno) 1595 { 1596 state->callsite = callsite; 1597 state->frameno = frameno; 1598 state->subprogno = subprogno; 1599 init_reg_state(env, state); 1600 mark_verifier_state_scratched(env); 1601 } 1602 1603 /* Similar to push_stack(), but for async callbacks */ 1604 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1605 int insn_idx, int prev_insn_idx, 1606 int subprog) 1607 { 1608 struct bpf_verifier_stack_elem *elem; 1609 struct bpf_func_state *frame; 1610 1611 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1612 if (!elem) 1613 goto err; 1614 1615 elem->insn_idx = insn_idx; 1616 elem->prev_insn_idx = prev_insn_idx; 1617 elem->next = env->head; 1618 elem->log_pos = env->log.len_used; 1619 env->head = elem; 1620 env->stack_size++; 1621 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1622 verbose(env, 1623 "The sequence of %d jumps is too complex for async cb.\n", 1624 env->stack_size); 1625 goto err; 1626 } 1627 /* Unlike push_stack() do not copy_verifier_state(). 1628 * The caller state doesn't matter. 1629 * This is async callback. It starts in a fresh stack. 1630 * Initialize it similar to do_check_common(). 1631 */ 1632 elem->st.branches = 1; 1633 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1634 if (!frame) 1635 goto err; 1636 init_func_state(env, frame, 1637 BPF_MAIN_FUNC /* callsite */, 1638 0 /* frameno within this callchain */, 1639 subprog /* subprog number within this prog */); 1640 elem->st.frame[0] = frame; 1641 return &elem->st; 1642 err: 1643 free_verifier_state(env->cur_state, true); 1644 env->cur_state = NULL; 1645 /* pop all elements and return */ 1646 while (!pop_stack(env, NULL, NULL, false)); 1647 return NULL; 1648 } 1649 1650 1651 enum reg_arg_type { 1652 SRC_OP, /* register is used as source operand */ 1653 DST_OP, /* register is used as destination operand */ 1654 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1655 }; 1656 1657 static int cmp_subprogs(const void *a, const void *b) 1658 { 1659 return ((struct bpf_subprog_info *)a)->start - 1660 ((struct bpf_subprog_info *)b)->start; 1661 } 1662 1663 static int find_subprog(struct bpf_verifier_env *env, int off) 1664 { 1665 struct bpf_subprog_info *p; 1666 1667 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1668 sizeof(env->subprog_info[0]), cmp_subprogs); 1669 if (!p) 1670 return -ENOENT; 1671 return p - env->subprog_info; 1672 1673 } 1674 1675 static int add_subprog(struct bpf_verifier_env *env, int off) 1676 { 1677 int insn_cnt = env->prog->len; 1678 int ret; 1679 1680 if (off >= insn_cnt || off < 0) { 1681 verbose(env, "call to invalid destination\n"); 1682 return -EINVAL; 1683 } 1684 ret = find_subprog(env, off); 1685 if (ret >= 0) 1686 return ret; 1687 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1688 verbose(env, "too many subprograms\n"); 1689 return -E2BIG; 1690 } 1691 /* determine subprog starts. The end is one before the next starts */ 1692 env->subprog_info[env->subprog_cnt++].start = off; 1693 sort(env->subprog_info, env->subprog_cnt, 1694 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1695 return env->subprog_cnt - 1; 1696 } 1697 1698 #define MAX_KFUNC_DESCS 256 1699 #define MAX_KFUNC_BTFS 256 1700 1701 struct bpf_kfunc_desc { 1702 struct btf_func_model func_model; 1703 u32 func_id; 1704 s32 imm; 1705 u16 offset; 1706 }; 1707 1708 struct bpf_kfunc_btf { 1709 struct btf *btf; 1710 struct module *module; 1711 u16 offset; 1712 }; 1713 1714 struct bpf_kfunc_desc_tab { 1715 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1716 u32 nr_descs; 1717 }; 1718 1719 struct bpf_kfunc_btf_tab { 1720 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1721 u32 nr_descs; 1722 }; 1723 1724 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1725 { 1726 const struct bpf_kfunc_desc *d0 = a; 1727 const struct bpf_kfunc_desc *d1 = b; 1728 1729 /* func_id is not greater than BTF_MAX_TYPE */ 1730 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1731 } 1732 1733 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1734 { 1735 const struct bpf_kfunc_btf *d0 = a; 1736 const struct bpf_kfunc_btf *d1 = b; 1737 1738 return d0->offset - d1->offset; 1739 } 1740 1741 static const struct bpf_kfunc_desc * 1742 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1743 { 1744 struct bpf_kfunc_desc desc = { 1745 .func_id = func_id, 1746 .offset = offset, 1747 }; 1748 struct bpf_kfunc_desc_tab *tab; 1749 1750 tab = prog->aux->kfunc_tab; 1751 return bsearch(&desc, tab->descs, tab->nr_descs, 1752 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1753 } 1754 1755 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1756 s16 offset) 1757 { 1758 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1759 struct bpf_kfunc_btf_tab *tab; 1760 struct bpf_kfunc_btf *b; 1761 struct module *mod; 1762 struct btf *btf; 1763 int btf_fd; 1764 1765 tab = env->prog->aux->kfunc_btf_tab; 1766 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1767 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1768 if (!b) { 1769 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1770 verbose(env, "too many different module BTFs\n"); 1771 return ERR_PTR(-E2BIG); 1772 } 1773 1774 if (bpfptr_is_null(env->fd_array)) { 1775 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1776 return ERR_PTR(-EPROTO); 1777 } 1778 1779 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1780 offset * sizeof(btf_fd), 1781 sizeof(btf_fd))) 1782 return ERR_PTR(-EFAULT); 1783 1784 btf = btf_get_by_fd(btf_fd); 1785 if (IS_ERR(btf)) { 1786 verbose(env, "invalid module BTF fd specified\n"); 1787 return btf; 1788 } 1789 1790 if (!btf_is_module(btf)) { 1791 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1792 btf_put(btf); 1793 return ERR_PTR(-EINVAL); 1794 } 1795 1796 mod = btf_try_get_module(btf); 1797 if (!mod) { 1798 btf_put(btf); 1799 return ERR_PTR(-ENXIO); 1800 } 1801 1802 b = &tab->descs[tab->nr_descs++]; 1803 b->btf = btf; 1804 b->module = mod; 1805 b->offset = offset; 1806 1807 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1808 kfunc_btf_cmp_by_off, NULL); 1809 } 1810 return b->btf; 1811 } 1812 1813 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1814 { 1815 if (!tab) 1816 return; 1817 1818 while (tab->nr_descs--) { 1819 module_put(tab->descs[tab->nr_descs].module); 1820 btf_put(tab->descs[tab->nr_descs].btf); 1821 } 1822 kfree(tab); 1823 } 1824 1825 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1826 u32 func_id, s16 offset) 1827 { 1828 if (offset) { 1829 if (offset < 0) { 1830 /* In the future, this can be allowed to increase limit 1831 * of fd index into fd_array, interpreted as u16. 1832 */ 1833 verbose(env, "negative offset disallowed for kernel module function call\n"); 1834 return ERR_PTR(-EINVAL); 1835 } 1836 1837 return __find_kfunc_desc_btf(env, offset); 1838 } 1839 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1840 } 1841 1842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1843 { 1844 const struct btf_type *func, *func_proto; 1845 struct bpf_kfunc_btf_tab *btf_tab; 1846 struct bpf_kfunc_desc_tab *tab; 1847 struct bpf_prog_aux *prog_aux; 1848 struct bpf_kfunc_desc *desc; 1849 const char *func_name; 1850 struct btf *desc_btf; 1851 unsigned long call_imm; 1852 unsigned long addr; 1853 int err; 1854 1855 prog_aux = env->prog->aux; 1856 tab = prog_aux->kfunc_tab; 1857 btf_tab = prog_aux->kfunc_btf_tab; 1858 if (!tab) { 1859 if (!btf_vmlinux) { 1860 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1861 return -ENOTSUPP; 1862 } 1863 1864 if (!env->prog->jit_requested) { 1865 verbose(env, "JIT is required for calling kernel function\n"); 1866 return -ENOTSUPP; 1867 } 1868 1869 if (!bpf_jit_supports_kfunc_call()) { 1870 verbose(env, "JIT does not support calling kernel function\n"); 1871 return -ENOTSUPP; 1872 } 1873 1874 if (!env->prog->gpl_compatible) { 1875 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1876 return -EINVAL; 1877 } 1878 1879 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1880 if (!tab) 1881 return -ENOMEM; 1882 prog_aux->kfunc_tab = tab; 1883 } 1884 1885 /* func_id == 0 is always invalid, but instead of returning an error, be 1886 * conservative and wait until the code elimination pass before returning 1887 * error, so that invalid calls that get pruned out can be in BPF programs 1888 * loaded from userspace. It is also required that offset be untouched 1889 * for such calls. 1890 */ 1891 if (!func_id && !offset) 1892 return 0; 1893 1894 if (!btf_tab && offset) { 1895 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1896 if (!btf_tab) 1897 return -ENOMEM; 1898 prog_aux->kfunc_btf_tab = btf_tab; 1899 } 1900 1901 desc_btf = find_kfunc_desc_btf(env, func_id, offset); 1902 if (IS_ERR(desc_btf)) { 1903 verbose(env, "failed to find BTF for kernel function\n"); 1904 return PTR_ERR(desc_btf); 1905 } 1906 1907 if (find_kfunc_desc(env->prog, func_id, offset)) 1908 return 0; 1909 1910 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1911 verbose(env, "too many different kernel function calls\n"); 1912 return -E2BIG; 1913 } 1914 1915 func = btf_type_by_id(desc_btf, func_id); 1916 if (!func || !btf_type_is_func(func)) { 1917 verbose(env, "kernel btf_id %u is not a function\n", 1918 func_id); 1919 return -EINVAL; 1920 } 1921 func_proto = btf_type_by_id(desc_btf, func->type); 1922 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1923 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1924 func_id); 1925 return -EINVAL; 1926 } 1927 1928 func_name = btf_name_by_offset(desc_btf, func->name_off); 1929 addr = kallsyms_lookup_name(func_name); 1930 if (!addr) { 1931 verbose(env, "cannot find address for kernel function %s\n", 1932 func_name); 1933 return -EINVAL; 1934 } 1935 1936 call_imm = BPF_CALL_IMM(addr); 1937 /* Check whether or not the relative offset overflows desc->imm */ 1938 if ((unsigned long)(s32)call_imm != call_imm) { 1939 verbose(env, "address of kernel function %s is out of range\n", 1940 func_name); 1941 return -EINVAL; 1942 } 1943 1944 desc = &tab->descs[tab->nr_descs++]; 1945 desc->func_id = func_id; 1946 desc->imm = call_imm; 1947 desc->offset = offset; 1948 err = btf_distill_func_proto(&env->log, desc_btf, 1949 func_proto, func_name, 1950 &desc->func_model); 1951 if (!err) 1952 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1953 kfunc_desc_cmp_by_id_off, NULL); 1954 return err; 1955 } 1956 1957 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1958 { 1959 const struct bpf_kfunc_desc *d0 = a; 1960 const struct bpf_kfunc_desc *d1 = b; 1961 1962 if (d0->imm > d1->imm) 1963 return 1; 1964 else if (d0->imm < d1->imm) 1965 return -1; 1966 return 0; 1967 } 1968 1969 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1970 { 1971 struct bpf_kfunc_desc_tab *tab; 1972 1973 tab = prog->aux->kfunc_tab; 1974 if (!tab) 1975 return; 1976 1977 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1978 kfunc_desc_cmp_by_imm, NULL); 1979 } 1980 1981 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1982 { 1983 return !!prog->aux->kfunc_tab; 1984 } 1985 1986 const struct btf_func_model * 1987 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1988 const struct bpf_insn *insn) 1989 { 1990 const struct bpf_kfunc_desc desc = { 1991 .imm = insn->imm, 1992 }; 1993 const struct bpf_kfunc_desc *res; 1994 struct bpf_kfunc_desc_tab *tab; 1995 1996 tab = prog->aux->kfunc_tab; 1997 res = bsearch(&desc, tab->descs, tab->nr_descs, 1998 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1999 2000 return res ? &res->func_model : NULL; 2001 } 2002 2003 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2004 { 2005 struct bpf_subprog_info *subprog = env->subprog_info; 2006 struct bpf_insn *insn = env->prog->insnsi; 2007 int i, ret, insn_cnt = env->prog->len; 2008 2009 /* Add entry function. */ 2010 ret = add_subprog(env, 0); 2011 if (ret) 2012 return ret; 2013 2014 for (i = 0; i < insn_cnt; i++, insn++) { 2015 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2016 !bpf_pseudo_kfunc_call(insn)) 2017 continue; 2018 2019 if (!env->bpf_capable) { 2020 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2021 return -EPERM; 2022 } 2023 2024 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2025 ret = add_subprog(env, i + insn->imm + 1); 2026 else 2027 ret = add_kfunc_call(env, insn->imm, insn->off); 2028 2029 if (ret < 0) 2030 return ret; 2031 } 2032 2033 /* Add a fake 'exit' subprog which could simplify subprog iteration 2034 * logic. 'subprog_cnt' should not be increased. 2035 */ 2036 subprog[env->subprog_cnt].start = insn_cnt; 2037 2038 if (env->log.level & BPF_LOG_LEVEL2) 2039 for (i = 0; i < env->subprog_cnt; i++) 2040 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2041 2042 return 0; 2043 } 2044 2045 static int check_subprogs(struct bpf_verifier_env *env) 2046 { 2047 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2048 struct bpf_subprog_info *subprog = env->subprog_info; 2049 struct bpf_insn *insn = env->prog->insnsi; 2050 int insn_cnt = env->prog->len; 2051 2052 /* now check that all jumps are within the same subprog */ 2053 subprog_start = subprog[cur_subprog].start; 2054 subprog_end = subprog[cur_subprog + 1].start; 2055 for (i = 0; i < insn_cnt; i++) { 2056 u8 code = insn[i].code; 2057 2058 if (code == (BPF_JMP | BPF_CALL) && 2059 insn[i].imm == BPF_FUNC_tail_call && 2060 insn[i].src_reg != BPF_PSEUDO_CALL) 2061 subprog[cur_subprog].has_tail_call = true; 2062 if (BPF_CLASS(code) == BPF_LD && 2063 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2064 subprog[cur_subprog].has_ld_abs = true; 2065 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2066 goto next; 2067 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2068 goto next; 2069 off = i + insn[i].off + 1; 2070 if (off < subprog_start || off >= subprog_end) { 2071 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2072 return -EINVAL; 2073 } 2074 next: 2075 if (i == subprog_end - 1) { 2076 /* to avoid fall-through from one subprog into another 2077 * the last insn of the subprog should be either exit 2078 * or unconditional jump back 2079 */ 2080 if (code != (BPF_JMP | BPF_EXIT) && 2081 code != (BPF_JMP | BPF_JA)) { 2082 verbose(env, "last insn is not an exit or jmp\n"); 2083 return -EINVAL; 2084 } 2085 subprog_start = subprog_end; 2086 cur_subprog++; 2087 if (cur_subprog < env->subprog_cnt) 2088 subprog_end = subprog[cur_subprog + 1].start; 2089 } 2090 } 2091 return 0; 2092 } 2093 2094 /* Parentage chain of this register (or stack slot) should take care of all 2095 * issues like callee-saved registers, stack slot allocation time, etc. 2096 */ 2097 static int mark_reg_read(struct bpf_verifier_env *env, 2098 const struct bpf_reg_state *state, 2099 struct bpf_reg_state *parent, u8 flag) 2100 { 2101 bool writes = parent == state->parent; /* Observe write marks */ 2102 int cnt = 0; 2103 2104 while (parent) { 2105 /* if read wasn't screened by an earlier write ... */ 2106 if (writes && state->live & REG_LIVE_WRITTEN) 2107 break; 2108 if (parent->live & REG_LIVE_DONE) { 2109 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2110 reg_type_str(env, parent->type), 2111 parent->var_off.value, parent->off); 2112 return -EFAULT; 2113 } 2114 /* The first condition is more likely to be true than the 2115 * second, checked it first. 2116 */ 2117 if ((parent->live & REG_LIVE_READ) == flag || 2118 parent->live & REG_LIVE_READ64) 2119 /* The parentage chain never changes and 2120 * this parent was already marked as LIVE_READ. 2121 * There is no need to keep walking the chain again and 2122 * keep re-marking all parents as LIVE_READ. 2123 * This case happens when the same register is read 2124 * multiple times without writes into it in-between. 2125 * Also, if parent has the stronger REG_LIVE_READ64 set, 2126 * then no need to set the weak REG_LIVE_READ32. 2127 */ 2128 break; 2129 /* ... then we depend on parent's value */ 2130 parent->live |= flag; 2131 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2132 if (flag == REG_LIVE_READ64) 2133 parent->live &= ~REG_LIVE_READ32; 2134 state = parent; 2135 parent = state->parent; 2136 writes = true; 2137 cnt++; 2138 } 2139 2140 if (env->longest_mark_read_walk < cnt) 2141 env->longest_mark_read_walk = cnt; 2142 return 0; 2143 } 2144 2145 /* This function is supposed to be used by the following 32-bit optimization 2146 * code only. It returns TRUE if the source or destination register operates 2147 * on 64-bit, otherwise return FALSE. 2148 */ 2149 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2150 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2151 { 2152 u8 code, class, op; 2153 2154 code = insn->code; 2155 class = BPF_CLASS(code); 2156 op = BPF_OP(code); 2157 if (class == BPF_JMP) { 2158 /* BPF_EXIT for "main" will reach here. Return TRUE 2159 * conservatively. 2160 */ 2161 if (op == BPF_EXIT) 2162 return true; 2163 if (op == BPF_CALL) { 2164 /* BPF to BPF call will reach here because of marking 2165 * caller saved clobber with DST_OP_NO_MARK for which we 2166 * don't care the register def because they are anyway 2167 * marked as NOT_INIT already. 2168 */ 2169 if (insn->src_reg == BPF_PSEUDO_CALL) 2170 return false; 2171 /* Helper call will reach here because of arg type 2172 * check, conservatively return TRUE. 2173 */ 2174 if (t == SRC_OP) 2175 return true; 2176 2177 return false; 2178 } 2179 } 2180 2181 if (class == BPF_ALU64 || class == BPF_JMP || 2182 /* BPF_END always use BPF_ALU class. */ 2183 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2184 return true; 2185 2186 if (class == BPF_ALU || class == BPF_JMP32) 2187 return false; 2188 2189 if (class == BPF_LDX) { 2190 if (t != SRC_OP) 2191 return BPF_SIZE(code) == BPF_DW; 2192 /* LDX source must be ptr. */ 2193 return true; 2194 } 2195 2196 if (class == BPF_STX) { 2197 /* BPF_STX (including atomic variants) has multiple source 2198 * operands, one of which is a ptr. Check whether the caller is 2199 * asking about it. 2200 */ 2201 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2202 return true; 2203 return BPF_SIZE(code) == BPF_DW; 2204 } 2205 2206 if (class == BPF_LD) { 2207 u8 mode = BPF_MODE(code); 2208 2209 /* LD_IMM64 */ 2210 if (mode == BPF_IMM) 2211 return true; 2212 2213 /* Both LD_IND and LD_ABS return 32-bit data. */ 2214 if (t != SRC_OP) 2215 return false; 2216 2217 /* Implicit ctx ptr. */ 2218 if (regno == BPF_REG_6) 2219 return true; 2220 2221 /* Explicit source could be any width. */ 2222 return true; 2223 } 2224 2225 if (class == BPF_ST) 2226 /* The only source register for BPF_ST is a ptr. */ 2227 return true; 2228 2229 /* Conservatively return true at default. */ 2230 return true; 2231 } 2232 2233 /* Return the regno defined by the insn, or -1. */ 2234 static int insn_def_regno(const struct bpf_insn *insn) 2235 { 2236 switch (BPF_CLASS(insn->code)) { 2237 case BPF_JMP: 2238 case BPF_JMP32: 2239 case BPF_ST: 2240 return -1; 2241 case BPF_STX: 2242 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2243 (insn->imm & BPF_FETCH)) { 2244 if (insn->imm == BPF_CMPXCHG) 2245 return BPF_REG_0; 2246 else 2247 return insn->src_reg; 2248 } else { 2249 return -1; 2250 } 2251 default: 2252 return insn->dst_reg; 2253 } 2254 } 2255 2256 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2257 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2258 { 2259 int dst_reg = insn_def_regno(insn); 2260 2261 if (dst_reg == -1) 2262 return false; 2263 2264 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2265 } 2266 2267 static void mark_insn_zext(struct bpf_verifier_env *env, 2268 struct bpf_reg_state *reg) 2269 { 2270 s32 def_idx = reg->subreg_def; 2271 2272 if (def_idx == DEF_NOT_SUBREG) 2273 return; 2274 2275 env->insn_aux_data[def_idx - 1].zext_dst = true; 2276 /* The dst will be zero extended, so won't be sub-register anymore. */ 2277 reg->subreg_def = DEF_NOT_SUBREG; 2278 } 2279 2280 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2281 enum reg_arg_type t) 2282 { 2283 struct bpf_verifier_state *vstate = env->cur_state; 2284 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2285 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2286 struct bpf_reg_state *reg, *regs = state->regs; 2287 bool rw64; 2288 2289 if (regno >= MAX_BPF_REG) { 2290 verbose(env, "R%d is invalid\n", regno); 2291 return -EINVAL; 2292 } 2293 2294 mark_reg_scratched(env, regno); 2295 2296 reg = ®s[regno]; 2297 rw64 = is_reg64(env, insn, regno, reg, t); 2298 if (t == SRC_OP) { 2299 /* check whether register used as source operand can be read */ 2300 if (reg->type == NOT_INIT) { 2301 verbose(env, "R%d !read_ok\n", regno); 2302 return -EACCES; 2303 } 2304 /* We don't need to worry about FP liveness because it's read-only */ 2305 if (regno == BPF_REG_FP) 2306 return 0; 2307 2308 if (rw64) 2309 mark_insn_zext(env, reg); 2310 2311 return mark_reg_read(env, reg, reg->parent, 2312 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2313 } else { 2314 /* check whether register used as dest operand can be written to */ 2315 if (regno == BPF_REG_FP) { 2316 verbose(env, "frame pointer is read only\n"); 2317 return -EACCES; 2318 } 2319 reg->live |= REG_LIVE_WRITTEN; 2320 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2321 if (t == DST_OP) 2322 mark_reg_unknown(env, regs, regno); 2323 } 2324 return 0; 2325 } 2326 2327 /* for any branch, call, exit record the history of jmps in the given state */ 2328 static int push_jmp_history(struct bpf_verifier_env *env, 2329 struct bpf_verifier_state *cur) 2330 { 2331 u32 cnt = cur->jmp_history_cnt; 2332 struct bpf_idx_pair *p; 2333 2334 cnt++; 2335 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2336 if (!p) 2337 return -ENOMEM; 2338 p[cnt - 1].idx = env->insn_idx; 2339 p[cnt - 1].prev_idx = env->prev_insn_idx; 2340 cur->jmp_history = p; 2341 cur->jmp_history_cnt = cnt; 2342 return 0; 2343 } 2344 2345 /* Backtrack one insn at a time. If idx is not at the top of recorded 2346 * history then previous instruction came from straight line execution. 2347 */ 2348 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2349 u32 *history) 2350 { 2351 u32 cnt = *history; 2352 2353 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2354 i = st->jmp_history[cnt - 1].prev_idx; 2355 (*history)--; 2356 } else { 2357 i--; 2358 } 2359 return i; 2360 } 2361 2362 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2363 { 2364 const struct btf_type *func; 2365 struct btf *desc_btf; 2366 2367 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2368 return NULL; 2369 2370 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off); 2371 if (IS_ERR(desc_btf)) 2372 return "<error>"; 2373 2374 func = btf_type_by_id(desc_btf, insn->imm); 2375 return btf_name_by_offset(desc_btf, func->name_off); 2376 } 2377 2378 /* For given verifier state backtrack_insn() is called from the last insn to 2379 * the first insn. Its purpose is to compute a bitmask of registers and 2380 * stack slots that needs precision in the parent verifier state. 2381 */ 2382 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2383 u32 *reg_mask, u64 *stack_mask) 2384 { 2385 const struct bpf_insn_cbs cbs = { 2386 .cb_call = disasm_kfunc_name, 2387 .cb_print = verbose, 2388 .private_data = env, 2389 }; 2390 struct bpf_insn *insn = env->prog->insnsi + idx; 2391 u8 class = BPF_CLASS(insn->code); 2392 u8 opcode = BPF_OP(insn->code); 2393 u8 mode = BPF_MODE(insn->code); 2394 u32 dreg = 1u << insn->dst_reg; 2395 u32 sreg = 1u << insn->src_reg; 2396 u32 spi; 2397 2398 if (insn->code == 0) 2399 return 0; 2400 if (env->log.level & BPF_LOG_LEVEL2) { 2401 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2402 verbose(env, "%d: ", idx); 2403 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2404 } 2405 2406 if (class == BPF_ALU || class == BPF_ALU64) { 2407 if (!(*reg_mask & dreg)) 2408 return 0; 2409 if (opcode == BPF_MOV) { 2410 if (BPF_SRC(insn->code) == BPF_X) { 2411 /* dreg = sreg 2412 * dreg needs precision after this insn 2413 * sreg needs precision before this insn 2414 */ 2415 *reg_mask &= ~dreg; 2416 *reg_mask |= sreg; 2417 } else { 2418 /* dreg = K 2419 * dreg needs precision after this insn. 2420 * Corresponding register is already marked 2421 * as precise=true in this verifier state. 2422 * No further markings in parent are necessary 2423 */ 2424 *reg_mask &= ~dreg; 2425 } 2426 } else { 2427 if (BPF_SRC(insn->code) == BPF_X) { 2428 /* dreg += sreg 2429 * both dreg and sreg need precision 2430 * before this insn 2431 */ 2432 *reg_mask |= sreg; 2433 } /* else dreg += K 2434 * dreg still needs precision before this insn 2435 */ 2436 } 2437 } else if (class == BPF_LDX) { 2438 if (!(*reg_mask & dreg)) 2439 return 0; 2440 *reg_mask &= ~dreg; 2441 2442 /* scalars can only be spilled into stack w/o losing precision. 2443 * Load from any other memory can be zero extended. 2444 * The desire to keep that precision is already indicated 2445 * by 'precise' mark in corresponding register of this state. 2446 * No further tracking necessary. 2447 */ 2448 if (insn->src_reg != BPF_REG_FP) 2449 return 0; 2450 2451 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2452 * that [fp - off] slot contains scalar that needs to be 2453 * tracked with precision 2454 */ 2455 spi = (-insn->off - 1) / BPF_REG_SIZE; 2456 if (spi >= 64) { 2457 verbose(env, "BUG spi %d\n", spi); 2458 WARN_ONCE(1, "verifier backtracking bug"); 2459 return -EFAULT; 2460 } 2461 *stack_mask |= 1ull << spi; 2462 } else if (class == BPF_STX || class == BPF_ST) { 2463 if (*reg_mask & dreg) 2464 /* stx & st shouldn't be using _scalar_ dst_reg 2465 * to access memory. It means backtracking 2466 * encountered a case of pointer subtraction. 2467 */ 2468 return -ENOTSUPP; 2469 /* scalars can only be spilled into stack */ 2470 if (insn->dst_reg != BPF_REG_FP) 2471 return 0; 2472 spi = (-insn->off - 1) / BPF_REG_SIZE; 2473 if (spi >= 64) { 2474 verbose(env, "BUG spi %d\n", spi); 2475 WARN_ONCE(1, "verifier backtracking bug"); 2476 return -EFAULT; 2477 } 2478 if (!(*stack_mask & (1ull << spi))) 2479 return 0; 2480 *stack_mask &= ~(1ull << spi); 2481 if (class == BPF_STX) 2482 *reg_mask |= sreg; 2483 } else if (class == BPF_JMP || class == BPF_JMP32) { 2484 if (opcode == BPF_CALL) { 2485 if (insn->src_reg == BPF_PSEUDO_CALL) 2486 return -ENOTSUPP; 2487 /* regular helper call sets R0 */ 2488 *reg_mask &= ~1; 2489 if (*reg_mask & 0x3f) { 2490 /* if backtracing was looking for registers R1-R5 2491 * they should have been found already. 2492 */ 2493 verbose(env, "BUG regs %x\n", *reg_mask); 2494 WARN_ONCE(1, "verifier backtracking bug"); 2495 return -EFAULT; 2496 } 2497 } else if (opcode == BPF_EXIT) { 2498 return -ENOTSUPP; 2499 } 2500 } else if (class == BPF_LD) { 2501 if (!(*reg_mask & dreg)) 2502 return 0; 2503 *reg_mask &= ~dreg; 2504 /* It's ld_imm64 or ld_abs or ld_ind. 2505 * For ld_imm64 no further tracking of precision 2506 * into parent is necessary 2507 */ 2508 if (mode == BPF_IND || mode == BPF_ABS) 2509 /* to be analyzed */ 2510 return -ENOTSUPP; 2511 } 2512 return 0; 2513 } 2514 2515 /* the scalar precision tracking algorithm: 2516 * . at the start all registers have precise=false. 2517 * . scalar ranges are tracked as normal through alu and jmp insns. 2518 * . once precise value of the scalar register is used in: 2519 * . ptr + scalar alu 2520 * . if (scalar cond K|scalar) 2521 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2522 * backtrack through the verifier states and mark all registers and 2523 * stack slots with spilled constants that these scalar regisers 2524 * should be precise. 2525 * . during state pruning two registers (or spilled stack slots) 2526 * are equivalent if both are not precise. 2527 * 2528 * Note the verifier cannot simply walk register parentage chain, 2529 * since many different registers and stack slots could have been 2530 * used to compute single precise scalar. 2531 * 2532 * The approach of starting with precise=true for all registers and then 2533 * backtrack to mark a register as not precise when the verifier detects 2534 * that program doesn't care about specific value (e.g., when helper 2535 * takes register as ARG_ANYTHING parameter) is not safe. 2536 * 2537 * It's ok to walk single parentage chain of the verifier states. 2538 * It's possible that this backtracking will go all the way till 1st insn. 2539 * All other branches will be explored for needing precision later. 2540 * 2541 * The backtracking needs to deal with cases like: 2542 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2543 * r9 -= r8 2544 * r5 = r9 2545 * if r5 > 0x79f goto pc+7 2546 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2547 * r5 += 1 2548 * ... 2549 * call bpf_perf_event_output#25 2550 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2551 * 2552 * and this case: 2553 * r6 = 1 2554 * call foo // uses callee's r6 inside to compute r0 2555 * r0 += r6 2556 * if r0 == 0 goto 2557 * 2558 * to track above reg_mask/stack_mask needs to be independent for each frame. 2559 * 2560 * Also if parent's curframe > frame where backtracking started, 2561 * the verifier need to mark registers in both frames, otherwise callees 2562 * may incorrectly prune callers. This is similar to 2563 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2564 * 2565 * For now backtracking falls back into conservative marking. 2566 */ 2567 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2568 struct bpf_verifier_state *st) 2569 { 2570 struct bpf_func_state *func; 2571 struct bpf_reg_state *reg; 2572 int i, j; 2573 2574 /* big hammer: mark all scalars precise in this path. 2575 * pop_stack may still get !precise scalars. 2576 */ 2577 for (; st; st = st->parent) 2578 for (i = 0; i <= st->curframe; i++) { 2579 func = st->frame[i]; 2580 for (j = 0; j < BPF_REG_FP; j++) { 2581 reg = &func->regs[j]; 2582 if (reg->type != SCALAR_VALUE) 2583 continue; 2584 reg->precise = true; 2585 } 2586 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2587 if (!is_spilled_reg(&func->stack[j])) 2588 continue; 2589 reg = &func->stack[j].spilled_ptr; 2590 if (reg->type != SCALAR_VALUE) 2591 continue; 2592 reg->precise = true; 2593 } 2594 } 2595 } 2596 2597 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2598 int spi) 2599 { 2600 struct bpf_verifier_state *st = env->cur_state; 2601 int first_idx = st->first_insn_idx; 2602 int last_idx = env->insn_idx; 2603 struct bpf_func_state *func; 2604 struct bpf_reg_state *reg; 2605 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2606 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2607 bool skip_first = true; 2608 bool new_marks = false; 2609 int i, err; 2610 2611 if (!env->bpf_capable) 2612 return 0; 2613 2614 func = st->frame[st->curframe]; 2615 if (regno >= 0) { 2616 reg = &func->regs[regno]; 2617 if (reg->type != SCALAR_VALUE) { 2618 WARN_ONCE(1, "backtracing misuse"); 2619 return -EFAULT; 2620 } 2621 if (!reg->precise) 2622 new_marks = true; 2623 else 2624 reg_mask = 0; 2625 reg->precise = true; 2626 } 2627 2628 while (spi >= 0) { 2629 if (!is_spilled_reg(&func->stack[spi])) { 2630 stack_mask = 0; 2631 break; 2632 } 2633 reg = &func->stack[spi].spilled_ptr; 2634 if (reg->type != SCALAR_VALUE) { 2635 stack_mask = 0; 2636 break; 2637 } 2638 if (!reg->precise) 2639 new_marks = true; 2640 else 2641 stack_mask = 0; 2642 reg->precise = true; 2643 break; 2644 } 2645 2646 if (!new_marks) 2647 return 0; 2648 if (!reg_mask && !stack_mask) 2649 return 0; 2650 for (;;) { 2651 DECLARE_BITMAP(mask, 64); 2652 u32 history = st->jmp_history_cnt; 2653 2654 if (env->log.level & BPF_LOG_LEVEL2) 2655 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2656 for (i = last_idx;;) { 2657 if (skip_first) { 2658 err = 0; 2659 skip_first = false; 2660 } else { 2661 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2662 } 2663 if (err == -ENOTSUPP) { 2664 mark_all_scalars_precise(env, st); 2665 return 0; 2666 } else if (err) { 2667 return err; 2668 } 2669 if (!reg_mask && !stack_mask) 2670 /* Found assignment(s) into tracked register in this state. 2671 * Since this state is already marked, just return. 2672 * Nothing to be tracked further in the parent state. 2673 */ 2674 return 0; 2675 if (i == first_idx) 2676 break; 2677 i = get_prev_insn_idx(st, i, &history); 2678 if (i >= env->prog->len) { 2679 /* This can happen if backtracking reached insn 0 2680 * and there are still reg_mask or stack_mask 2681 * to backtrack. 2682 * It means the backtracking missed the spot where 2683 * particular register was initialized with a constant. 2684 */ 2685 verbose(env, "BUG backtracking idx %d\n", i); 2686 WARN_ONCE(1, "verifier backtracking bug"); 2687 return -EFAULT; 2688 } 2689 } 2690 st = st->parent; 2691 if (!st) 2692 break; 2693 2694 new_marks = false; 2695 func = st->frame[st->curframe]; 2696 bitmap_from_u64(mask, reg_mask); 2697 for_each_set_bit(i, mask, 32) { 2698 reg = &func->regs[i]; 2699 if (reg->type != SCALAR_VALUE) { 2700 reg_mask &= ~(1u << i); 2701 continue; 2702 } 2703 if (!reg->precise) 2704 new_marks = true; 2705 reg->precise = true; 2706 } 2707 2708 bitmap_from_u64(mask, stack_mask); 2709 for_each_set_bit(i, mask, 64) { 2710 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2711 /* the sequence of instructions: 2712 * 2: (bf) r3 = r10 2713 * 3: (7b) *(u64 *)(r3 -8) = r0 2714 * 4: (79) r4 = *(u64 *)(r10 -8) 2715 * doesn't contain jmps. It's backtracked 2716 * as a single block. 2717 * During backtracking insn 3 is not recognized as 2718 * stack access, so at the end of backtracking 2719 * stack slot fp-8 is still marked in stack_mask. 2720 * However the parent state may not have accessed 2721 * fp-8 and it's "unallocated" stack space. 2722 * In such case fallback to conservative. 2723 */ 2724 mark_all_scalars_precise(env, st); 2725 return 0; 2726 } 2727 2728 if (!is_spilled_reg(&func->stack[i])) { 2729 stack_mask &= ~(1ull << i); 2730 continue; 2731 } 2732 reg = &func->stack[i].spilled_ptr; 2733 if (reg->type != SCALAR_VALUE) { 2734 stack_mask &= ~(1ull << i); 2735 continue; 2736 } 2737 if (!reg->precise) 2738 new_marks = true; 2739 reg->precise = true; 2740 } 2741 if (env->log.level & BPF_LOG_LEVEL2) { 2742 verbose(env, "parent %s regs=%x stack=%llx marks:", 2743 new_marks ? "didn't have" : "already had", 2744 reg_mask, stack_mask); 2745 print_verifier_state(env, func, true); 2746 } 2747 2748 if (!reg_mask && !stack_mask) 2749 break; 2750 if (!new_marks) 2751 break; 2752 2753 last_idx = st->last_insn_idx; 2754 first_idx = st->first_insn_idx; 2755 } 2756 return 0; 2757 } 2758 2759 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2760 { 2761 return __mark_chain_precision(env, regno, -1); 2762 } 2763 2764 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2765 { 2766 return __mark_chain_precision(env, -1, spi); 2767 } 2768 2769 static bool is_spillable_regtype(enum bpf_reg_type type) 2770 { 2771 switch (base_type(type)) { 2772 case PTR_TO_MAP_VALUE: 2773 case PTR_TO_STACK: 2774 case PTR_TO_CTX: 2775 case PTR_TO_PACKET: 2776 case PTR_TO_PACKET_META: 2777 case PTR_TO_PACKET_END: 2778 case PTR_TO_FLOW_KEYS: 2779 case CONST_PTR_TO_MAP: 2780 case PTR_TO_SOCKET: 2781 case PTR_TO_SOCK_COMMON: 2782 case PTR_TO_TCP_SOCK: 2783 case PTR_TO_XDP_SOCK: 2784 case PTR_TO_BTF_ID: 2785 case PTR_TO_BUF: 2786 case PTR_TO_PERCPU_BTF_ID: 2787 case PTR_TO_MEM: 2788 case PTR_TO_FUNC: 2789 case PTR_TO_MAP_KEY: 2790 return true; 2791 default: 2792 return false; 2793 } 2794 } 2795 2796 /* Does this register contain a constant zero? */ 2797 static bool register_is_null(struct bpf_reg_state *reg) 2798 { 2799 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2800 } 2801 2802 static bool register_is_const(struct bpf_reg_state *reg) 2803 { 2804 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2805 } 2806 2807 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2808 { 2809 return tnum_is_unknown(reg->var_off) && 2810 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2811 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2812 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2813 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2814 } 2815 2816 static bool register_is_bounded(struct bpf_reg_state *reg) 2817 { 2818 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2819 } 2820 2821 static bool __is_pointer_value(bool allow_ptr_leaks, 2822 const struct bpf_reg_state *reg) 2823 { 2824 if (allow_ptr_leaks) 2825 return false; 2826 2827 return reg->type != SCALAR_VALUE; 2828 } 2829 2830 static void save_register_state(struct bpf_func_state *state, 2831 int spi, struct bpf_reg_state *reg, 2832 int size) 2833 { 2834 int i; 2835 2836 state->stack[spi].spilled_ptr = *reg; 2837 if (size == BPF_REG_SIZE) 2838 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2839 2840 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2841 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2842 2843 /* size < 8 bytes spill */ 2844 for (; i; i--) 2845 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2846 } 2847 2848 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2849 * stack boundary and alignment are checked in check_mem_access() 2850 */ 2851 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2852 /* stack frame we're writing to */ 2853 struct bpf_func_state *state, 2854 int off, int size, int value_regno, 2855 int insn_idx) 2856 { 2857 struct bpf_func_state *cur; /* state of the current function */ 2858 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2859 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2860 struct bpf_reg_state *reg = NULL; 2861 2862 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2863 if (err) 2864 return err; 2865 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2866 * so it's aligned access and [off, off + size) are within stack limits 2867 */ 2868 if (!env->allow_ptr_leaks && 2869 state->stack[spi].slot_type[0] == STACK_SPILL && 2870 size != BPF_REG_SIZE) { 2871 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2872 return -EACCES; 2873 } 2874 2875 cur = env->cur_state->frame[env->cur_state->curframe]; 2876 if (value_regno >= 0) 2877 reg = &cur->regs[value_regno]; 2878 if (!env->bypass_spec_v4) { 2879 bool sanitize = reg && is_spillable_regtype(reg->type); 2880 2881 for (i = 0; i < size; i++) { 2882 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2883 sanitize = true; 2884 break; 2885 } 2886 } 2887 2888 if (sanitize) 2889 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2890 } 2891 2892 mark_stack_slot_scratched(env, spi); 2893 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2894 !register_is_null(reg) && env->bpf_capable) { 2895 if (dst_reg != BPF_REG_FP) { 2896 /* The backtracking logic can only recognize explicit 2897 * stack slot address like [fp - 8]. Other spill of 2898 * scalar via different register has to be conservative. 2899 * Backtrack from here and mark all registers as precise 2900 * that contributed into 'reg' being a constant. 2901 */ 2902 err = mark_chain_precision(env, value_regno); 2903 if (err) 2904 return err; 2905 } 2906 save_register_state(state, spi, reg, size); 2907 } else if (reg && is_spillable_regtype(reg->type)) { 2908 /* register containing pointer is being spilled into stack */ 2909 if (size != BPF_REG_SIZE) { 2910 verbose_linfo(env, insn_idx, "; "); 2911 verbose(env, "invalid size of register spill\n"); 2912 return -EACCES; 2913 } 2914 if (state != cur && reg->type == PTR_TO_STACK) { 2915 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2916 return -EINVAL; 2917 } 2918 save_register_state(state, spi, reg, size); 2919 } else { 2920 u8 type = STACK_MISC; 2921 2922 /* regular write of data into stack destroys any spilled ptr */ 2923 state->stack[spi].spilled_ptr.type = NOT_INIT; 2924 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2925 if (is_spilled_reg(&state->stack[spi])) 2926 for (i = 0; i < BPF_REG_SIZE; i++) 2927 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2928 2929 /* only mark the slot as written if all 8 bytes were written 2930 * otherwise read propagation may incorrectly stop too soon 2931 * when stack slots are partially written. 2932 * This heuristic means that read propagation will be 2933 * conservative, since it will add reg_live_read marks 2934 * to stack slots all the way to first state when programs 2935 * writes+reads less than 8 bytes 2936 */ 2937 if (size == BPF_REG_SIZE) 2938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2939 2940 /* when we zero initialize stack slots mark them as such */ 2941 if (reg && register_is_null(reg)) { 2942 /* backtracking doesn't work for STACK_ZERO yet. */ 2943 err = mark_chain_precision(env, value_regno); 2944 if (err) 2945 return err; 2946 type = STACK_ZERO; 2947 } 2948 2949 /* Mark slots affected by this stack write. */ 2950 for (i = 0; i < size; i++) 2951 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2952 type; 2953 } 2954 return 0; 2955 } 2956 2957 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2958 * known to contain a variable offset. 2959 * This function checks whether the write is permitted and conservatively 2960 * tracks the effects of the write, considering that each stack slot in the 2961 * dynamic range is potentially written to. 2962 * 2963 * 'off' includes 'regno->off'. 2964 * 'value_regno' can be -1, meaning that an unknown value is being written to 2965 * the stack. 2966 * 2967 * Spilled pointers in range are not marked as written because we don't know 2968 * what's going to be actually written. This means that read propagation for 2969 * future reads cannot be terminated by this write. 2970 * 2971 * For privileged programs, uninitialized stack slots are considered 2972 * initialized by this write (even though we don't know exactly what offsets 2973 * are going to be written to). The idea is that we don't want the verifier to 2974 * reject future reads that access slots written to through variable offsets. 2975 */ 2976 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2977 /* func where register points to */ 2978 struct bpf_func_state *state, 2979 int ptr_regno, int off, int size, 2980 int value_regno, int insn_idx) 2981 { 2982 struct bpf_func_state *cur; /* state of the current function */ 2983 int min_off, max_off; 2984 int i, err; 2985 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2986 bool writing_zero = false; 2987 /* set if the fact that we're writing a zero is used to let any 2988 * stack slots remain STACK_ZERO 2989 */ 2990 bool zero_used = false; 2991 2992 cur = env->cur_state->frame[env->cur_state->curframe]; 2993 ptr_reg = &cur->regs[ptr_regno]; 2994 min_off = ptr_reg->smin_value + off; 2995 max_off = ptr_reg->smax_value + off + size; 2996 if (value_regno >= 0) 2997 value_reg = &cur->regs[value_regno]; 2998 if (value_reg && register_is_null(value_reg)) 2999 writing_zero = true; 3000 3001 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3002 if (err) 3003 return err; 3004 3005 3006 /* Variable offset writes destroy any spilled pointers in range. */ 3007 for (i = min_off; i < max_off; i++) { 3008 u8 new_type, *stype; 3009 int slot, spi; 3010 3011 slot = -i - 1; 3012 spi = slot / BPF_REG_SIZE; 3013 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3014 mark_stack_slot_scratched(env, spi); 3015 3016 if (!env->allow_ptr_leaks 3017 && *stype != NOT_INIT 3018 && *stype != SCALAR_VALUE) { 3019 /* Reject the write if there's are spilled pointers in 3020 * range. If we didn't reject here, the ptr status 3021 * would be erased below (even though not all slots are 3022 * actually overwritten), possibly opening the door to 3023 * leaks. 3024 */ 3025 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3026 insn_idx, i); 3027 return -EINVAL; 3028 } 3029 3030 /* Erase all spilled pointers. */ 3031 state->stack[spi].spilled_ptr.type = NOT_INIT; 3032 3033 /* Update the slot type. */ 3034 new_type = STACK_MISC; 3035 if (writing_zero && *stype == STACK_ZERO) { 3036 new_type = STACK_ZERO; 3037 zero_used = true; 3038 } 3039 /* If the slot is STACK_INVALID, we check whether it's OK to 3040 * pretend that it will be initialized by this write. The slot 3041 * might not actually be written to, and so if we mark it as 3042 * initialized future reads might leak uninitialized memory. 3043 * For privileged programs, we will accept such reads to slots 3044 * that may or may not be written because, if we're reject 3045 * them, the error would be too confusing. 3046 */ 3047 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3048 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3049 insn_idx, i); 3050 return -EINVAL; 3051 } 3052 *stype = new_type; 3053 } 3054 if (zero_used) { 3055 /* backtracking doesn't work for STACK_ZERO yet. */ 3056 err = mark_chain_precision(env, value_regno); 3057 if (err) 3058 return err; 3059 } 3060 return 0; 3061 } 3062 3063 /* When register 'dst_regno' is assigned some values from stack[min_off, 3064 * max_off), we set the register's type according to the types of the 3065 * respective stack slots. If all the stack values are known to be zeros, then 3066 * so is the destination reg. Otherwise, the register is considered to be 3067 * SCALAR. This function does not deal with register filling; the caller must 3068 * ensure that all spilled registers in the stack range have been marked as 3069 * read. 3070 */ 3071 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3072 /* func where src register points to */ 3073 struct bpf_func_state *ptr_state, 3074 int min_off, int max_off, int dst_regno) 3075 { 3076 struct bpf_verifier_state *vstate = env->cur_state; 3077 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3078 int i, slot, spi; 3079 u8 *stype; 3080 int zeros = 0; 3081 3082 for (i = min_off; i < max_off; i++) { 3083 slot = -i - 1; 3084 spi = slot / BPF_REG_SIZE; 3085 stype = ptr_state->stack[spi].slot_type; 3086 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3087 break; 3088 zeros++; 3089 } 3090 if (zeros == max_off - min_off) { 3091 /* any access_size read into register is zero extended, 3092 * so the whole register == const_zero 3093 */ 3094 __mark_reg_const_zero(&state->regs[dst_regno]); 3095 /* backtracking doesn't support STACK_ZERO yet, 3096 * so mark it precise here, so that later 3097 * backtracking can stop here. 3098 * Backtracking may not need this if this register 3099 * doesn't participate in pointer adjustment. 3100 * Forward propagation of precise flag is not 3101 * necessary either. This mark is only to stop 3102 * backtracking. Any register that contributed 3103 * to const 0 was marked precise before spill. 3104 */ 3105 state->regs[dst_regno].precise = true; 3106 } else { 3107 /* have read misc data from the stack */ 3108 mark_reg_unknown(env, state->regs, dst_regno); 3109 } 3110 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3111 } 3112 3113 /* Read the stack at 'off' and put the results into the register indicated by 3114 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3115 * spilled reg. 3116 * 3117 * 'dst_regno' can be -1, meaning that the read value is not going to a 3118 * register. 3119 * 3120 * The access is assumed to be within the current stack bounds. 3121 */ 3122 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3123 /* func where src register points to */ 3124 struct bpf_func_state *reg_state, 3125 int off, int size, int dst_regno) 3126 { 3127 struct bpf_verifier_state *vstate = env->cur_state; 3128 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3129 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3130 struct bpf_reg_state *reg; 3131 u8 *stype, type; 3132 3133 stype = reg_state->stack[spi].slot_type; 3134 reg = ®_state->stack[spi].spilled_ptr; 3135 3136 if (is_spilled_reg(®_state->stack[spi])) { 3137 u8 spill_size = 1; 3138 3139 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3140 spill_size++; 3141 3142 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3143 if (reg->type != SCALAR_VALUE) { 3144 verbose_linfo(env, env->insn_idx, "; "); 3145 verbose(env, "invalid size of register fill\n"); 3146 return -EACCES; 3147 } 3148 3149 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3150 if (dst_regno < 0) 3151 return 0; 3152 3153 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3154 /* The earlier check_reg_arg() has decided the 3155 * subreg_def for this insn. Save it first. 3156 */ 3157 s32 subreg_def = state->regs[dst_regno].subreg_def; 3158 3159 state->regs[dst_regno] = *reg; 3160 state->regs[dst_regno].subreg_def = subreg_def; 3161 } else { 3162 for (i = 0; i < size; i++) { 3163 type = stype[(slot - i) % BPF_REG_SIZE]; 3164 if (type == STACK_SPILL) 3165 continue; 3166 if (type == STACK_MISC) 3167 continue; 3168 verbose(env, "invalid read from stack off %d+%d size %d\n", 3169 off, i, size); 3170 return -EACCES; 3171 } 3172 mark_reg_unknown(env, state->regs, dst_regno); 3173 } 3174 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3175 return 0; 3176 } 3177 3178 if (dst_regno >= 0) { 3179 /* restore register state from stack */ 3180 state->regs[dst_regno] = *reg; 3181 /* mark reg as written since spilled pointer state likely 3182 * has its liveness marks cleared by is_state_visited() 3183 * which resets stack/reg liveness for state transitions 3184 */ 3185 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3186 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3187 /* If dst_regno==-1, the caller is asking us whether 3188 * it is acceptable to use this value as a SCALAR_VALUE 3189 * (e.g. for XADD). 3190 * We must not allow unprivileged callers to do that 3191 * with spilled pointers. 3192 */ 3193 verbose(env, "leaking pointer from stack off %d\n", 3194 off); 3195 return -EACCES; 3196 } 3197 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3198 } else { 3199 for (i = 0; i < size; i++) { 3200 type = stype[(slot - i) % BPF_REG_SIZE]; 3201 if (type == STACK_MISC) 3202 continue; 3203 if (type == STACK_ZERO) 3204 continue; 3205 verbose(env, "invalid read from stack off %d+%d size %d\n", 3206 off, i, size); 3207 return -EACCES; 3208 } 3209 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3210 if (dst_regno >= 0) 3211 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3212 } 3213 return 0; 3214 } 3215 3216 enum stack_access_src { 3217 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3218 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3219 }; 3220 3221 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3222 int regno, int off, int access_size, 3223 bool zero_size_allowed, 3224 enum stack_access_src type, 3225 struct bpf_call_arg_meta *meta); 3226 3227 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3228 { 3229 return cur_regs(env) + regno; 3230 } 3231 3232 /* Read the stack at 'ptr_regno + off' and put the result into the register 3233 * 'dst_regno'. 3234 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3235 * but not its variable offset. 3236 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3237 * 3238 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3239 * filling registers (i.e. reads of spilled register cannot be detected when 3240 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3241 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3242 * offset; for a fixed offset check_stack_read_fixed_off should be used 3243 * instead. 3244 */ 3245 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3246 int ptr_regno, int off, int size, int dst_regno) 3247 { 3248 /* The state of the source register. */ 3249 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3250 struct bpf_func_state *ptr_state = func(env, reg); 3251 int err; 3252 int min_off, max_off; 3253 3254 /* Note that we pass a NULL meta, so raw access will not be permitted. 3255 */ 3256 err = check_stack_range_initialized(env, ptr_regno, off, size, 3257 false, ACCESS_DIRECT, NULL); 3258 if (err) 3259 return err; 3260 3261 min_off = reg->smin_value + off; 3262 max_off = reg->smax_value + off; 3263 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3264 return 0; 3265 } 3266 3267 /* check_stack_read dispatches to check_stack_read_fixed_off or 3268 * check_stack_read_var_off. 3269 * 3270 * The caller must ensure that the offset falls within the allocated stack 3271 * bounds. 3272 * 3273 * 'dst_regno' is a register which will receive the value from the stack. It 3274 * can be -1, meaning that the read value is not going to a register. 3275 */ 3276 static int check_stack_read(struct bpf_verifier_env *env, 3277 int ptr_regno, int off, int size, 3278 int dst_regno) 3279 { 3280 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3281 struct bpf_func_state *state = func(env, reg); 3282 int err; 3283 /* Some accesses are only permitted with a static offset. */ 3284 bool var_off = !tnum_is_const(reg->var_off); 3285 3286 /* The offset is required to be static when reads don't go to a 3287 * register, in order to not leak pointers (see 3288 * check_stack_read_fixed_off). 3289 */ 3290 if (dst_regno < 0 && var_off) { 3291 char tn_buf[48]; 3292 3293 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3294 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3295 tn_buf, off, size); 3296 return -EACCES; 3297 } 3298 /* Variable offset is prohibited for unprivileged mode for simplicity 3299 * since it requires corresponding support in Spectre masking for stack 3300 * ALU. See also retrieve_ptr_limit(). 3301 */ 3302 if (!env->bypass_spec_v1 && var_off) { 3303 char tn_buf[48]; 3304 3305 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3306 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3307 ptr_regno, tn_buf); 3308 return -EACCES; 3309 } 3310 3311 if (!var_off) { 3312 off += reg->var_off.value; 3313 err = check_stack_read_fixed_off(env, state, off, size, 3314 dst_regno); 3315 } else { 3316 /* Variable offset stack reads need more conservative handling 3317 * than fixed offset ones. Note that dst_regno >= 0 on this 3318 * branch. 3319 */ 3320 err = check_stack_read_var_off(env, ptr_regno, off, size, 3321 dst_regno); 3322 } 3323 return err; 3324 } 3325 3326 3327 /* check_stack_write dispatches to check_stack_write_fixed_off or 3328 * check_stack_write_var_off. 3329 * 3330 * 'ptr_regno' is the register used as a pointer into the stack. 3331 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3332 * 'value_regno' is the register whose value we're writing to the stack. It can 3333 * be -1, meaning that we're not writing from a register. 3334 * 3335 * The caller must ensure that the offset falls within the maximum stack size. 3336 */ 3337 static int check_stack_write(struct bpf_verifier_env *env, 3338 int ptr_regno, int off, int size, 3339 int value_regno, int insn_idx) 3340 { 3341 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3342 struct bpf_func_state *state = func(env, reg); 3343 int err; 3344 3345 if (tnum_is_const(reg->var_off)) { 3346 off += reg->var_off.value; 3347 err = check_stack_write_fixed_off(env, state, off, size, 3348 value_regno, insn_idx); 3349 } else { 3350 /* Variable offset stack reads need more conservative handling 3351 * than fixed offset ones. 3352 */ 3353 err = check_stack_write_var_off(env, state, 3354 ptr_regno, off, size, 3355 value_regno, insn_idx); 3356 } 3357 return err; 3358 } 3359 3360 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3361 int off, int size, enum bpf_access_type type) 3362 { 3363 struct bpf_reg_state *regs = cur_regs(env); 3364 struct bpf_map *map = regs[regno].map_ptr; 3365 u32 cap = bpf_map_flags_to_cap(map); 3366 3367 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3368 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3369 map->value_size, off, size); 3370 return -EACCES; 3371 } 3372 3373 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3374 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3375 map->value_size, off, size); 3376 return -EACCES; 3377 } 3378 3379 return 0; 3380 } 3381 3382 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3383 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3384 int off, int size, u32 mem_size, 3385 bool zero_size_allowed) 3386 { 3387 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3388 struct bpf_reg_state *reg; 3389 3390 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3391 return 0; 3392 3393 reg = &cur_regs(env)[regno]; 3394 switch (reg->type) { 3395 case PTR_TO_MAP_KEY: 3396 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3397 mem_size, off, size); 3398 break; 3399 case PTR_TO_MAP_VALUE: 3400 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3401 mem_size, off, size); 3402 break; 3403 case PTR_TO_PACKET: 3404 case PTR_TO_PACKET_META: 3405 case PTR_TO_PACKET_END: 3406 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3407 off, size, regno, reg->id, off, mem_size); 3408 break; 3409 case PTR_TO_MEM: 3410 default: 3411 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3412 mem_size, off, size); 3413 } 3414 3415 return -EACCES; 3416 } 3417 3418 /* check read/write into a memory region with possible variable offset */ 3419 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3420 int off, int size, u32 mem_size, 3421 bool zero_size_allowed) 3422 { 3423 struct bpf_verifier_state *vstate = env->cur_state; 3424 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3425 struct bpf_reg_state *reg = &state->regs[regno]; 3426 int err; 3427 3428 /* We may have adjusted the register pointing to memory region, so we 3429 * need to try adding each of min_value and max_value to off 3430 * to make sure our theoretical access will be safe. 3431 * 3432 * The minimum value is only important with signed 3433 * comparisons where we can't assume the floor of a 3434 * value is 0. If we are using signed variables for our 3435 * index'es we need to make sure that whatever we use 3436 * will have a set floor within our range. 3437 */ 3438 if (reg->smin_value < 0 && 3439 (reg->smin_value == S64_MIN || 3440 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3441 reg->smin_value + off < 0)) { 3442 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3443 regno); 3444 return -EACCES; 3445 } 3446 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3447 mem_size, zero_size_allowed); 3448 if (err) { 3449 verbose(env, "R%d min value is outside of the allowed memory range\n", 3450 regno); 3451 return err; 3452 } 3453 3454 /* If we haven't set a max value then we need to bail since we can't be 3455 * sure we won't do bad things. 3456 * If reg->umax_value + off could overflow, treat that as unbounded too. 3457 */ 3458 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3459 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3460 regno); 3461 return -EACCES; 3462 } 3463 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3464 mem_size, zero_size_allowed); 3465 if (err) { 3466 verbose(env, "R%d max value is outside of the allowed memory range\n", 3467 regno); 3468 return err; 3469 } 3470 3471 return 0; 3472 } 3473 3474 /* check read/write into a map element with possible variable offset */ 3475 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3476 int off, int size, bool zero_size_allowed) 3477 { 3478 struct bpf_verifier_state *vstate = env->cur_state; 3479 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3480 struct bpf_reg_state *reg = &state->regs[regno]; 3481 struct bpf_map *map = reg->map_ptr; 3482 int err; 3483 3484 err = check_mem_region_access(env, regno, off, size, map->value_size, 3485 zero_size_allowed); 3486 if (err) 3487 return err; 3488 3489 if (map_value_has_spin_lock(map)) { 3490 u32 lock = map->spin_lock_off; 3491 3492 /* if any part of struct bpf_spin_lock can be touched by 3493 * load/store reject this program. 3494 * To check that [x1, x2) overlaps with [y1, y2) 3495 * it is sufficient to check x1 < y2 && y1 < x2. 3496 */ 3497 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3498 lock < reg->umax_value + off + size) { 3499 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3500 return -EACCES; 3501 } 3502 } 3503 if (map_value_has_timer(map)) { 3504 u32 t = map->timer_off; 3505 3506 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3507 t < reg->umax_value + off + size) { 3508 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3509 return -EACCES; 3510 } 3511 } 3512 return err; 3513 } 3514 3515 #define MAX_PACKET_OFF 0xffff 3516 3517 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3518 const struct bpf_call_arg_meta *meta, 3519 enum bpf_access_type t) 3520 { 3521 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3522 3523 switch (prog_type) { 3524 /* Program types only with direct read access go here! */ 3525 case BPF_PROG_TYPE_LWT_IN: 3526 case BPF_PROG_TYPE_LWT_OUT: 3527 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3528 case BPF_PROG_TYPE_SK_REUSEPORT: 3529 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3530 case BPF_PROG_TYPE_CGROUP_SKB: 3531 if (t == BPF_WRITE) 3532 return false; 3533 fallthrough; 3534 3535 /* Program types with direct read + write access go here! */ 3536 case BPF_PROG_TYPE_SCHED_CLS: 3537 case BPF_PROG_TYPE_SCHED_ACT: 3538 case BPF_PROG_TYPE_XDP: 3539 case BPF_PROG_TYPE_LWT_XMIT: 3540 case BPF_PROG_TYPE_SK_SKB: 3541 case BPF_PROG_TYPE_SK_MSG: 3542 if (meta) 3543 return meta->pkt_access; 3544 3545 env->seen_direct_write = true; 3546 return true; 3547 3548 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3549 if (t == BPF_WRITE) 3550 env->seen_direct_write = true; 3551 3552 return true; 3553 3554 default: 3555 return false; 3556 } 3557 } 3558 3559 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3560 int size, bool zero_size_allowed) 3561 { 3562 struct bpf_reg_state *regs = cur_regs(env); 3563 struct bpf_reg_state *reg = ®s[regno]; 3564 int err; 3565 3566 /* We may have added a variable offset to the packet pointer; but any 3567 * reg->range we have comes after that. We are only checking the fixed 3568 * offset. 3569 */ 3570 3571 /* We don't allow negative numbers, because we aren't tracking enough 3572 * detail to prove they're safe. 3573 */ 3574 if (reg->smin_value < 0) { 3575 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3576 regno); 3577 return -EACCES; 3578 } 3579 3580 err = reg->range < 0 ? -EINVAL : 3581 __check_mem_access(env, regno, off, size, reg->range, 3582 zero_size_allowed); 3583 if (err) { 3584 verbose(env, "R%d offset is outside of the packet\n", regno); 3585 return err; 3586 } 3587 3588 /* __check_mem_access has made sure "off + size - 1" is within u16. 3589 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3590 * otherwise find_good_pkt_pointers would have refused to set range info 3591 * that __check_mem_access would have rejected this pkt access. 3592 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3593 */ 3594 env->prog->aux->max_pkt_offset = 3595 max_t(u32, env->prog->aux->max_pkt_offset, 3596 off + reg->umax_value + size - 1); 3597 3598 return err; 3599 } 3600 3601 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3602 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3603 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3604 struct btf **btf, u32 *btf_id) 3605 { 3606 struct bpf_insn_access_aux info = { 3607 .reg_type = *reg_type, 3608 .log = &env->log, 3609 }; 3610 3611 if (env->ops->is_valid_access && 3612 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3613 /* A non zero info.ctx_field_size indicates that this field is a 3614 * candidate for later verifier transformation to load the whole 3615 * field and then apply a mask when accessed with a narrower 3616 * access than actual ctx access size. A zero info.ctx_field_size 3617 * will only allow for whole field access and rejects any other 3618 * type of narrower access. 3619 */ 3620 *reg_type = info.reg_type; 3621 3622 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3623 *btf = info.btf; 3624 *btf_id = info.btf_id; 3625 } else { 3626 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3627 } 3628 /* remember the offset of last byte accessed in ctx */ 3629 if (env->prog->aux->max_ctx_offset < off + size) 3630 env->prog->aux->max_ctx_offset = off + size; 3631 return 0; 3632 } 3633 3634 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3635 return -EACCES; 3636 } 3637 3638 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3639 int size) 3640 { 3641 if (size < 0 || off < 0 || 3642 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3643 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3644 off, size); 3645 return -EACCES; 3646 } 3647 return 0; 3648 } 3649 3650 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3651 u32 regno, int off, int size, 3652 enum bpf_access_type t) 3653 { 3654 struct bpf_reg_state *regs = cur_regs(env); 3655 struct bpf_reg_state *reg = ®s[regno]; 3656 struct bpf_insn_access_aux info = {}; 3657 bool valid; 3658 3659 if (reg->smin_value < 0) { 3660 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3661 regno); 3662 return -EACCES; 3663 } 3664 3665 switch (reg->type) { 3666 case PTR_TO_SOCK_COMMON: 3667 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3668 break; 3669 case PTR_TO_SOCKET: 3670 valid = bpf_sock_is_valid_access(off, size, t, &info); 3671 break; 3672 case PTR_TO_TCP_SOCK: 3673 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3674 break; 3675 case PTR_TO_XDP_SOCK: 3676 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3677 break; 3678 default: 3679 valid = false; 3680 } 3681 3682 3683 if (valid) { 3684 env->insn_aux_data[insn_idx].ctx_field_size = 3685 info.ctx_field_size; 3686 return 0; 3687 } 3688 3689 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3690 regno, reg_type_str(env, reg->type), off, size); 3691 3692 return -EACCES; 3693 } 3694 3695 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3696 { 3697 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3698 } 3699 3700 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3701 { 3702 const struct bpf_reg_state *reg = reg_state(env, regno); 3703 3704 return reg->type == PTR_TO_CTX; 3705 } 3706 3707 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3708 { 3709 const struct bpf_reg_state *reg = reg_state(env, regno); 3710 3711 return type_is_sk_pointer(reg->type); 3712 } 3713 3714 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3715 { 3716 const struct bpf_reg_state *reg = reg_state(env, regno); 3717 3718 return type_is_pkt_pointer(reg->type); 3719 } 3720 3721 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3722 { 3723 const struct bpf_reg_state *reg = reg_state(env, regno); 3724 3725 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3726 return reg->type == PTR_TO_FLOW_KEYS; 3727 } 3728 3729 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3730 const struct bpf_reg_state *reg, 3731 int off, int size, bool strict) 3732 { 3733 struct tnum reg_off; 3734 int ip_align; 3735 3736 /* Byte size accesses are always allowed. */ 3737 if (!strict || size == 1) 3738 return 0; 3739 3740 /* For platforms that do not have a Kconfig enabling 3741 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3742 * NET_IP_ALIGN is universally set to '2'. And on platforms 3743 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3744 * to this code only in strict mode where we want to emulate 3745 * the NET_IP_ALIGN==2 checking. Therefore use an 3746 * unconditional IP align value of '2'. 3747 */ 3748 ip_align = 2; 3749 3750 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3751 if (!tnum_is_aligned(reg_off, size)) { 3752 char tn_buf[48]; 3753 3754 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3755 verbose(env, 3756 "misaligned packet access off %d+%s+%d+%d size %d\n", 3757 ip_align, tn_buf, reg->off, off, size); 3758 return -EACCES; 3759 } 3760 3761 return 0; 3762 } 3763 3764 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3765 const struct bpf_reg_state *reg, 3766 const char *pointer_desc, 3767 int off, int size, bool strict) 3768 { 3769 struct tnum reg_off; 3770 3771 /* Byte size accesses are always allowed. */ 3772 if (!strict || size == 1) 3773 return 0; 3774 3775 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3776 if (!tnum_is_aligned(reg_off, size)) { 3777 char tn_buf[48]; 3778 3779 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3780 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3781 pointer_desc, tn_buf, reg->off, off, size); 3782 return -EACCES; 3783 } 3784 3785 return 0; 3786 } 3787 3788 static int check_ptr_alignment(struct bpf_verifier_env *env, 3789 const struct bpf_reg_state *reg, int off, 3790 int size, bool strict_alignment_once) 3791 { 3792 bool strict = env->strict_alignment || strict_alignment_once; 3793 const char *pointer_desc = ""; 3794 3795 switch (reg->type) { 3796 case PTR_TO_PACKET: 3797 case PTR_TO_PACKET_META: 3798 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3799 * right in front, treat it the very same way. 3800 */ 3801 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3802 case PTR_TO_FLOW_KEYS: 3803 pointer_desc = "flow keys "; 3804 break; 3805 case PTR_TO_MAP_KEY: 3806 pointer_desc = "key "; 3807 break; 3808 case PTR_TO_MAP_VALUE: 3809 pointer_desc = "value "; 3810 break; 3811 case PTR_TO_CTX: 3812 pointer_desc = "context "; 3813 break; 3814 case PTR_TO_STACK: 3815 pointer_desc = "stack "; 3816 /* The stack spill tracking logic in check_stack_write_fixed_off() 3817 * and check_stack_read_fixed_off() relies on stack accesses being 3818 * aligned. 3819 */ 3820 strict = true; 3821 break; 3822 case PTR_TO_SOCKET: 3823 pointer_desc = "sock "; 3824 break; 3825 case PTR_TO_SOCK_COMMON: 3826 pointer_desc = "sock_common "; 3827 break; 3828 case PTR_TO_TCP_SOCK: 3829 pointer_desc = "tcp_sock "; 3830 break; 3831 case PTR_TO_XDP_SOCK: 3832 pointer_desc = "xdp_sock "; 3833 break; 3834 default: 3835 break; 3836 } 3837 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3838 strict); 3839 } 3840 3841 static int update_stack_depth(struct bpf_verifier_env *env, 3842 const struct bpf_func_state *func, 3843 int off) 3844 { 3845 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3846 3847 if (stack >= -off) 3848 return 0; 3849 3850 /* update known max for given subprogram */ 3851 env->subprog_info[func->subprogno].stack_depth = -off; 3852 return 0; 3853 } 3854 3855 /* starting from main bpf function walk all instructions of the function 3856 * and recursively walk all callees that given function can call. 3857 * Ignore jump and exit insns. 3858 * Since recursion is prevented by check_cfg() this algorithm 3859 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3860 */ 3861 static int check_max_stack_depth(struct bpf_verifier_env *env) 3862 { 3863 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3864 struct bpf_subprog_info *subprog = env->subprog_info; 3865 struct bpf_insn *insn = env->prog->insnsi; 3866 bool tail_call_reachable = false; 3867 int ret_insn[MAX_CALL_FRAMES]; 3868 int ret_prog[MAX_CALL_FRAMES]; 3869 int j; 3870 3871 process_func: 3872 /* protect against potential stack overflow that might happen when 3873 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3874 * depth for such case down to 256 so that the worst case scenario 3875 * would result in 8k stack size (32 which is tailcall limit * 256 = 3876 * 8k). 3877 * 3878 * To get the idea what might happen, see an example: 3879 * func1 -> sub rsp, 128 3880 * subfunc1 -> sub rsp, 256 3881 * tailcall1 -> add rsp, 256 3882 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3883 * subfunc2 -> sub rsp, 64 3884 * subfunc22 -> sub rsp, 128 3885 * tailcall2 -> add rsp, 128 3886 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3887 * 3888 * tailcall will unwind the current stack frame but it will not get rid 3889 * of caller's stack as shown on the example above. 3890 */ 3891 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3892 verbose(env, 3893 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3894 depth); 3895 return -EACCES; 3896 } 3897 /* round up to 32-bytes, since this is granularity 3898 * of interpreter stack size 3899 */ 3900 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3901 if (depth > MAX_BPF_STACK) { 3902 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3903 frame + 1, depth); 3904 return -EACCES; 3905 } 3906 continue_func: 3907 subprog_end = subprog[idx + 1].start; 3908 for (; i < subprog_end; i++) { 3909 int next_insn; 3910 3911 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3912 continue; 3913 /* remember insn and function to return to */ 3914 ret_insn[frame] = i + 1; 3915 ret_prog[frame] = idx; 3916 3917 /* find the callee */ 3918 next_insn = i + insn[i].imm + 1; 3919 idx = find_subprog(env, next_insn); 3920 if (idx < 0) { 3921 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3922 next_insn); 3923 return -EFAULT; 3924 } 3925 if (subprog[idx].is_async_cb) { 3926 if (subprog[idx].has_tail_call) { 3927 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3928 return -EFAULT; 3929 } 3930 /* async callbacks don't increase bpf prog stack size */ 3931 continue; 3932 } 3933 i = next_insn; 3934 3935 if (subprog[idx].has_tail_call) 3936 tail_call_reachable = true; 3937 3938 frame++; 3939 if (frame >= MAX_CALL_FRAMES) { 3940 verbose(env, "the call stack of %d frames is too deep !\n", 3941 frame); 3942 return -E2BIG; 3943 } 3944 goto process_func; 3945 } 3946 /* if tail call got detected across bpf2bpf calls then mark each of the 3947 * currently present subprog frames as tail call reachable subprogs; 3948 * this info will be utilized by JIT so that we will be preserving the 3949 * tail call counter throughout bpf2bpf calls combined with tailcalls 3950 */ 3951 if (tail_call_reachable) 3952 for (j = 0; j < frame; j++) 3953 subprog[ret_prog[j]].tail_call_reachable = true; 3954 if (subprog[0].tail_call_reachable) 3955 env->prog->aux->tail_call_reachable = true; 3956 3957 /* end of for() loop means the last insn of the 'subprog' 3958 * was reached. Doesn't matter whether it was JA or EXIT 3959 */ 3960 if (frame == 0) 3961 return 0; 3962 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3963 frame--; 3964 i = ret_insn[frame]; 3965 idx = ret_prog[frame]; 3966 goto continue_func; 3967 } 3968 3969 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3970 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3971 const struct bpf_insn *insn, int idx) 3972 { 3973 int start = idx + insn->imm + 1, subprog; 3974 3975 subprog = find_subprog(env, start); 3976 if (subprog < 0) { 3977 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3978 start); 3979 return -EFAULT; 3980 } 3981 return env->subprog_info[subprog].stack_depth; 3982 } 3983 #endif 3984 3985 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3986 const struct bpf_reg_state *reg, int regno, 3987 bool fixed_off_ok) 3988 { 3989 /* Access to this pointer-typed register or passing it to a helper 3990 * is only allowed in its original, unmodified form. 3991 */ 3992 3993 if (!fixed_off_ok && reg->off) { 3994 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3995 reg_type_str(env, reg->type), regno, reg->off); 3996 return -EACCES; 3997 } 3998 3999 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4000 char tn_buf[48]; 4001 4002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4003 verbose(env, "variable %s access var_off=%s disallowed\n", 4004 reg_type_str(env, reg->type), tn_buf); 4005 return -EACCES; 4006 } 4007 4008 return 0; 4009 } 4010 4011 int check_ptr_off_reg(struct bpf_verifier_env *env, 4012 const struct bpf_reg_state *reg, int regno) 4013 { 4014 return __check_ptr_off_reg(env, reg, regno, false); 4015 } 4016 4017 static int __check_buffer_access(struct bpf_verifier_env *env, 4018 const char *buf_info, 4019 const struct bpf_reg_state *reg, 4020 int regno, int off, int size) 4021 { 4022 if (off < 0) { 4023 verbose(env, 4024 "R%d invalid %s buffer access: off=%d, size=%d\n", 4025 regno, buf_info, off, size); 4026 return -EACCES; 4027 } 4028 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4029 char tn_buf[48]; 4030 4031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4032 verbose(env, 4033 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4034 regno, off, tn_buf); 4035 return -EACCES; 4036 } 4037 4038 return 0; 4039 } 4040 4041 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4042 const struct bpf_reg_state *reg, 4043 int regno, int off, int size) 4044 { 4045 int err; 4046 4047 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4048 if (err) 4049 return err; 4050 4051 if (off + size > env->prog->aux->max_tp_access) 4052 env->prog->aux->max_tp_access = off + size; 4053 4054 return 0; 4055 } 4056 4057 static int check_buffer_access(struct bpf_verifier_env *env, 4058 const struct bpf_reg_state *reg, 4059 int regno, int off, int size, 4060 bool zero_size_allowed, 4061 const char *buf_info, 4062 u32 *max_access) 4063 { 4064 int err; 4065 4066 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4067 if (err) 4068 return err; 4069 4070 if (off + size > *max_access) 4071 *max_access = off + size; 4072 4073 return 0; 4074 } 4075 4076 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4077 static void zext_32_to_64(struct bpf_reg_state *reg) 4078 { 4079 reg->var_off = tnum_subreg(reg->var_off); 4080 __reg_assign_32_into_64(reg); 4081 } 4082 4083 /* truncate register to smaller size (in bytes) 4084 * must be called with size < BPF_REG_SIZE 4085 */ 4086 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4087 { 4088 u64 mask; 4089 4090 /* clear high bits in bit representation */ 4091 reg->var_off = tnum_cast(reg->var_off, size); 4092 4093 /* fix arithmetic bounds */ 4094 mask = ((u64)1 << (size * 8)) - 1; 4095 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4096 reg->umin_value &= mask; 4097 reg->umax_value &= mask; 4098 } else { 4099 reg->umin_value = 0; 4100 reg->umax_value = mask; 4101 } 4102 reg->smin_value = reg->umin_value; 4103 reg->smax_value = reg->umax_value; 4104 4105 /* If size is smaller than 32bit register the 32bit register 4106 * values are also truncated so we push 64-bit bounds into 4107 * 32-bit bounds. Above were truncated < 32-bits already. 4108 */ 4109 if (size >= 4) 4110 return; 4111 __reg_combine_64_into_32(reg); 4112 } 4113 4114 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4115 { 4116 /* A map is considered read-only if the following condition are true: 4117 * 4118 * 1) BPF program side cannot change any of the map content. The 4119 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4120 * and was set at map creation time. 4121 * 2) The map value(s) have been initialized from user space by a 4122 * loader and then "frozen", such that no new map update/delete 4123 * operations from syscall side are possible for the rest of 4124 * the map's lifetime from that point onwards. 4125 * 3) Any parallel/pending map update/delete operations from syscall 4126 * side have been completed. Only after that point, it's safe to 4127 * assume that map value(s) are immutable. 4128 */ 4129 return (map->map_flags & BPF_F_RDONLY_PROG) && 4130 READ_ONCE(map->frozen) && 4131 !bpf_map_write_active(map); 4132 } 4133 4134 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4135 { 4136 void *ptr; 4137 u64 addr; 4138 int err; 4139 4140 err = map->ops->map_direct_value_addr(map, &addr, off); 4141 if (err) 4142 return err; 4143 ptr = (void *)(long)addr + off; 4144 4145 switch (size) { 4146 case sizeof(u8): 4147 *val = (u64)*(u8 *)ptr; 4148 break; 4149 case sizeof(u16): 4150 *val = (u64)*(u16 *)ptr; 4151 break; 4152 case sizeof(u32): 4153 *val = (u64)*(u32 *)ptr; 4154 break; 4155 case sizeof(u64): 4156 *val = *(u64 *)ptr; 4157 break; 4158 default: 4159 return -EINVAL; 4160 } 4161 return 0; 4162 } 4163 4164 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4165 struct bpf_reg_state *regs, 4166 int regno, int off, int size, 4167 enum bpf_access_type atype, 4168 int value_regno) 4169 { 4170 struct bpf_reg_state *reg = regs + regno; 4171 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4172 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4173 enum bpf_type_flag flag = 0; 4174 u32 btf_id; 4175 int ret; 4176 4177 if (off < 0) { 4178 verbose(env, 4179 "R%d is ptr_%s invalid negative access: off=%d\n", 4180 regno, tname, off); 4181 return -EACCES; 4182 } 4183 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4184 char tn_buf[48]; 4185 4186 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4187 verbose(env, 4188 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4189 regno, tname, off, tn_buf); 4190 return -EACCES; 4191 } 4192 4193 if (reg->type & MEM_USER) { 4194 verbose(env, 4195 "R%d is ptr_%s access user memory: off=%d\n", 4196 regno, tname, off); 4197 return -EACCES; 4198 } 4199 4200 if (env->ops->btf_struct_access) { 4201 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4202 off, size, atype, &btf_id, &flag); 4203 } else { 4204 if (atype != BPF_READ) { 4205 verbose(env, "only read is supported\n"); 4206 return -EACCES; 4207 } 4208 4209 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4210 atype, &btf_id, &flag); 4211 } 4212 4213 if (ret < 0) 4214 return ret; 4215 4216 if (atype == BPF_READ && value_regno >= 0) 4217 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4218 4219 return 0; 4220 } 4221 4222 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4223 struct bpf_reg_state *regs, 4224 int regno, int off, int size, 4225 enum bpf_access_type atype, 4226 int value_regno) 4227 { 4228 struct bpf_reg_state *reg = regs + regno; 4229 struct bpf_map *map = reg->map_ptr; 4230 enum bpf_type_flag flag = 0; 4231 const struct btf_type *t; 4232 const char *tname; 4233 u32 btf_id; 4234 int ret; 4235 4236 if (!btf_vmlinux) { 4237 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4238 return -ENOTSUPP; 4239 } 4240 4241 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4242 verbose(env, "map_ptr access not supported for map type %d\n", 4243 map->map_type); 4244 return -ENOTSUPP; 4245 } 4246 4247 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4248 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4249 4250 if (!env->allow_ptr_to_map_access) { 4251 verbose(env, 4252 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4253 tname); 4254 return -EPERM; 4255 } 4256 4257 if (off < 0) { 4258 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4259 regno, tname, off); 4260 return -EACCES; 4261 } 4262 4263 if (atype != BPF_READ) { 4264 verbose(env, "only read from %s is supported\n", tname); 4265 return -EACCES; 4266 } 4267 4268 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4269 if (ret < 0) 4270 return ret; 4271 4272 if (value_regno >= 0) 4273 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4274 4275 return 0; 4276 } 4277 4278 /* Check that the stack access at the given offset is within bounds. The 4279 * maximum valid offset is -1. 4280 * 4281 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4282 * -state->allocated_stack for reads. 4283 */ 4284 static int check_stack_slot_within_bounds(int off, 4285 struct bpf_func_state *state, 4286 enum bpf_access_type t) 4287 { 4288 int min_valid_off; 4289 4290 if (t == BPF_WRITE) 4291 min_valid_off = -MAX_BPF_STACK; 4292 else 4293 min_valid_off = -state->allocated_stack; 4294 4295 if (off < min_valid_off || off > -1) 4296 return -EACCES; 4297 return 0; 4298 } 4299 4300 /* Check that the stack access at 'regno + off' falls within the maximum stack 4301 * bounds. 4302 * 4303 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4304 */ 4305 static int check_stack_access_within_bounds( 4306 struct bpf_verifier_env *env, 4307 int regno, int off, int access_size, 4308 enum stack_access_src src, enum bpf_access_type type) 4309 { 4310 struct bpf_reg_state *regs = cur_regs(env); 4311 struct bpf_reg_state *reg = regs + regno; 4312 struct bpf_func_state *state = func(env, reg); 4313 int min_off, max_off; 4314 int err; 4315 char *err_extra; 4316 4317 if (src == ACCESS_HELPER) 4318 /* We don't know if helpers are reading or writing (or both). */ 4319 err_extra = " indirect access to"; 4320 else if (type == BPF_READ) 4321 err_extra = " read from"; 4322 else 4323 err_extra = " write to"; 4324 4325 if (tnum_is_const(reg->var_off)) { 4326 min_off = reg->var_off.value + off; 4327 if (access_size > 0) 4328 max_off = min_off + access_size - 1; 4329 else 4330 max_off = min_off; 4331 } else { 4332 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4333 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4334 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4335 err_extra, regno); 4336 return -EACCES; 4337 } 4338 min_off = reg->smin_value + off; 4339 if (access_size > 0) 4340 max_off = reg->smax_value + off + access_size - 1; 4341 else 4342 max_off = min_off; 4343 } 4344 4345 err = check_stack_slot_within_bounds(min_off, state, type); 4346 if (!err) 4347 err = check_stack_slot_within_bounds(max_off, state, type); 4348 4349 if (err) { 4350 if (tnum_is_const(reg->var_off)) { 4351 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4352 err_extra, regno, off, access_size); 4353 } else { 4354 char tn_buf[48]; 4355 4356 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4357 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4358 err_extra, regno, tn_buf, access_size); 4359 } 4360 } 4361 return err; 4362 } 4363 4364 /* check whether memory at (regno + off) is accessible for t = (read | write) 4365 * if t==write, value_regno is a register which value is stored into memory 4366 * if t==read, value_regno is a register which will receive the value from memory 4367 * if t==write && value_regno==-1, some unknown value is stored into memory 4368 * if t==read && value_regno==-1, don't care what we read from memory 4369 */ 4370 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4371 int off, int bpf_size, enum bpf_access_type t, 4372 int value_regno, bool strict_alignment_once) 4373 { 4374 struct bpf_reg_state *regs = cur_regs(env); 4375 struct bpf_reg_state *reg = regs + regno; 4376 struct bpf_func_state *state; 4377 int size, err = 0; 4378 4379 size = bpf_size_to_bytes(bpf_size); 4380 if (size < 0) 4381 return size; 4382 4383 /* alignment checks will add in reg->off themselves */ 4384 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4385 if (err) 4386 return err; 4387 4388 /* for access checks, reg->off is just part of off */ 4389 off += reg->off; 4390 4391 if (reg->type == PTR_TO_MAP_KEY) { 4392 if (t == BPF_WRITE) { 4393 verbose(env, "write to change key R%d not allowed\n", regno); 4394 return -EACCES; 4395 } 4396 4397 err = check_mem_region_access(env, regno, off, size, 4398 reg->map_ptr->key_size, false); 4399 if (err) 4400 return err; 4401 if (value_regno >= 0) 4402 mark_reg_unknown(env, regs, value_regno); 4403 } else if (reg->type == PTR_TO_MAP_VALUE) { 4404 if (t == BPF_WRITE && value_regno >= 0 && 4405 is_pointer_value(env, value_regno)) { 4406 verbose(env, "R%d leaks addr into map\n", value_regno); 4407 return -EACCES; 4408 } 4409 err = check_map_access_type(env, regno, off, size, t); 4410 if (err) 4411 return err; 4412 err = check_map_access(env, regno, off, size, false); 4413 if (!err && t == BPF_READ && value_regno >= 0) { 4414 struct bpf_map *map = reg->map_ptr; 4415 4416 /* if map is read-only, track its contents as scalars */ 4417 if (tnum_is_const(reg->var_off) && 4418 bpf_map_is_rdonly(map) && 4419 map->ops->map_direct_value_addr) { 4420 int map_off = off + reg->var_off.value; 4421 u64 val = 0; 4422 4423 err = bpf_map_direct_read(map, map_off, size, 4424 &val); 4425 if (err) 4426 return err; 4427 4428 regs[value_regno].type = SCALAR_VALUE; 4429 __mark_reg_known(®s[value_regno], val); 4430 } else { 4431 mark_reg_unknown(env, regs, value_regno); 4432 } 4433 } 4434 } else if (base_type(reg->type) == PTR_TO_MEM) { 4435 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4436 4437 if (type_may_be_null(reg->type)) { 4438 verbose(env, "R%d invalid mem access '%s'\n", regno, 4439 reg_type_str(env, reg->type)); 4440 return -EACCES; 4441 } 4442 4443 if (t == BPF_WRITE && rdonly_mem) { 4444 verbose(env, "R%d cannot write into %s\n", 4445 regno, reg_type_str(env, reg->type)); 4446 return -EACCES; 4447 } 4448 4449 if (t == BPF_WRITE && value_regno >= 0 && 4450 is_pointer_value(env, value_regno)) { 4451 verbose(env, "R%d leaks addr into mem\n", value_regno); 4452 return -EACCES; 4453 } 4454 4455 err = check_mem_region_access(env, regno, off, size, 4456 reg->mem_size, false); 4457 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4458 mark_reg_unknown(env, regs, value_regno); 4459 } else if (reg->type == PTR_TO_CTX) { 4460 enum bpf_reg_type reg_type = SCALAR_VALUE; 4461 struct btf *btf = NULL; 4462 u32 btf_id = 0; 4463 4464 if (t == BPF_WRITE && value_regno >= 0 && 4465 is_pointer_value(env, value_regno)) { 4466 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4467 return -EACCES; 4468 } 4469 4470 err = check_ptr_off_reg(env, reg, regno); 4471 if (err < 0) 4472 return err; 4473 4474 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4475 &btf_id); 4476 if (err) 4477 verbose_linfo(env, insn_idx, "; "); 4478 if (!err && t == BPF_READ && value_regno >= 0) { 4479 /* ctx access returns either a scalar, or a 4480 * PTR_TO_PACKET[_META,_END]. In the latter 4481 * case, we know the offset is zero. 4482 */ 4483 if (reg_type == SCALAR_VALUE) { 4484 mark_reg_unknown(env, regs, value_regno); 4485 } else { 4486 mark_reg_known_zero(env, regs, 4487 value_regno); 4488 if (type_may_be_null(reg_type)) 4489 regs[value_regno].id = ++env->id_gen; 4490 /* A load of ctx field could have different 4491 * actual load size with the one encoded in the 4492 * insn. When the dst is PTR, it is for sure not 4493 * a sub-register. 4494 */ 4495 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4496 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4497 regs[value_regno].btf = btf; 4498 regs[value_regno].btf_id = btf_id; 4499 } 4500 } 4501 regs[value_regno].type = reg_type; 4502 } 4503 4504 } else if (reg->type == PTR_TO_STACK) { 4505 /* Basic bounds checks. */ 4506 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4507 if (err) 4508 return err; 4509 4510 state = func(env, reg); 4511 err = update_stack_depth(env, state, off); 4512 if (err) 4513 return err; 4514 4515 if (t == BPF_READ) 4516 err = check_stack_read(env, regno, off, size, 4517 value_regno); 4518 else 4519 err = check_stack_write(env, regno, off, size, 4520 value_regno, insn_idx); 4521 } else if (reg_is_pkt_pointer(reg)) { 4522 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4523 verbose(env, "cannot write into packet\n"); 4524 return -EACCES; 4525 } 4526 if (t == BPF_WRITE && value_regno >= 0 && 4527 is_pointer_value(env, value_regno)) { 4528 verbose(env, "R%d leaks addr into packet\n", 4529 value_regno); 4530 return -EACCES; 4531 } 4532 err = check_packet_access(env, regno, off, size, false); 4533 if (!err && t == BPF_READ && value_regno >= 0) 4534 mark_reg_unknown(env, regs, value_regno); 4535 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4536 if (t == BPF_WRITE && value_regno >= 0 && 4537 is_pointer_value(env, value_regno)) { 4538 verbose(env, "R%d leaks addr into flow keys\n", 4539 value_regno); 4540 return -EACCES; 4541 } 4542 4543 err = check_flow_keys_access(env, off, size); 4544 if (!err && t == BPF_READ && value_regno >= 0) 4545 mark_reg_unknown(env, regs, value_regno); 4546 } else if (type_is_sk_pointer(reg->type)) { 4547 if (t == BPF_WRITE) { 4548 verbose(env, "R%d cannot write into %s\n", 4549 regno, reg_type_str(env, reg->type)); 4550 return -EACCES; 4551 } 4552 err = check_sock_access(env, insn_idx, regno, off, size, t); 4553 if (!err && value_regno >= 0) 4554 mark_reg_unknown(env, regs, value_regno); 4555 } else if (reg->type == PTR_TO_TP_BUFFER) { 4556 err = check_tp_buffer_access(env, reg, regno, off, size); 4557 if (!err && t == BPF_READ && value_regno >= 0) 4558 mark_reg_unknown(env, regs, value_regno); 4559 } else if (reg->type == PTR_TO_BTF_ID) { 4560 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4561 value_regno); 4562 } else if (reg->type == CONST_PTR_TO_MAP) { 4563 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4564 value_regno); 4565 } else if (base_type(reg->type) == PTR_TO_BUF) { 4566 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4567 const char *buf_info; 4568 u32 *max_access; 4569 4570 if (rdonly_mem) { 4571 if (t == BPF_WRITE) { 4572 verbose(env, "R%d cannot write into %s\n", 4573 regno, reg_type_str(env, reg->type)); 4574 return -EACCES; 4575 } 4576 buf_info = "rdonly"; 4577 max_access = &env->prog->aux->max_rdonly_access; 4578 } else { 4579 buf_info = "rdwr"; 4580 max_access = &env->prog->aux->max_rdwr_access; 4581 } 4582 4583 err = check_buffer_access(env, reg, regno, off, size, false, 4584 buf_info, max_access); 4585 4586 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4587 mark_reg_unknown(env, regs, value_regno); 4588 } else { 4589 verbose(env, "R%d invalid mem access '%s'\n", regno, 4590 reg_type_str(env, reg->type)); 4591 return -EACCES; 4592 } 4593 4594 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4595 regs[value_regno].type == SCALAR_VALUE) { 4596 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4597 coerce_reg_to_size(®s[value_regno], size); 4598 } 4599 return err; 4600 } 4601 4602 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4603 { 4604 int load_reg; 4605 int err; 4606 4607 switch (insn->imm) { 4608 case BPF_ADD: 4609 case BPF_ADD | BPF_FETCH: 4610 case BPF_AND: 4611 case BPF_AND | BPF_FETCH: 4612 case BPF_OR: 4613 case BPF_OR | BPF_FETCH: 4614 case BPF_XOR: 4615 case BPF_XOR | BPF_FETCH: 4616 case BPF_XCHG: 4617 case BPF_CMPXCHG: 4618 break; 4619 default: 4620 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4621 return -EINVAL; 4622 } 4623 4624 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4625 verbose(env, "invalid atomic operand size\n"); 4626 return -EINVAL; 4627 } 4628 4629 /* check src1 operand */ 4630 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4631 if (err) 4632 return err; 4633 4634 /* check src2 operand */ 4635 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4636 if (err) 4637 return err; 4638 4639 if (insn->imm == BPF_CMPXCHG) { 4640 /* Check comparison of R0 with memory location */ 4641 const u32 aux_reg = BPF_REG_0; 4642 4643 err = check_reg_arg(env, aux_reg, SRC_OP); 4644 if (err) 4645 return err; 4646 4647 if (is_pointer_value(env, aux_reg)) { 4648 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4649 return -EACCES; 4650 } 4651 } 4652 4653 if (is_pointer_value(env, insn->src_reg)) { 4654 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4655 return -EACCES; 4656 } 4657 4658 if (is_ctx_reg(env, insn->dst_reg) || 4659 is_pkt_reg(env, insn->dst_reg) || 4660 is_flow_key_reg(env, insn->dst_reg) || 4661 is_sk_reg(env, insn->dst_reg)) { 4662 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4663 insn->dst_reg, 4664 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4665 return -EACCES; 4666 } 4667 4668 if (insn->imm & BPF_FETCH) { 4669 if (insn->imm == BPF_CMPXCHG) 4670 load_reg = BPF_REG_0; 4671 else 4672 load_reg = insn->src_reg; 4673 4674 /* check and record load of old value */ 4675 err = check_reg_arg(env, load_reg, DST_OP); 4676 if (err) 4677 return err; 4678 } else { 4679 /* This instruction accesses a memory location but doesn't 4680 * actually load it into a register. 4681 */ 4682 load_reg = -1; 4683 } 4684 4685 /* Check whether we can read the memory, with second call for fetch 4686 * case to simulate the register fill. 4687 */ 4688 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4689 BPF_SIZE(insn->code), BPF_READ, -1, true); 4690 if (!err && load_reg >= 0) 4691 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4692 BPF_SIZE(insn->code), BPF_READ, load_reg, 4693 true); 4694 if (err) 4695 return err; 4696 4697 /* Check whether we can write into the same memory. */ 4698 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4699 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4700 if (err) 4701 return err; 4702 4703 return 0; 4704 } 4705 4706 /* When register 'regno' is used to read the stack (either directly or through 4707 * a helper function) make sure that it's within stack boundary and, depending 4708 * on the access type, that all elements of the stack are initialized. 4709 * 4710 * 'off' includes 'regno->off', but not its dynamic part (if any). 4711 * 4712 * All registers that have been spilled on the stack in the slots within the 4713 * read offsets are marked as read. 4714 */ 4715 static int check_stack_range_initialized( 4716 struct bpf_verifier_env *env, int regno, int off, 4717 int access_size, bool zero_size_allowed, 4718 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4719 { 4720 struct bpf_reg_state *reg = reg_state(env, regno); 4721 struct bpf_func_state *state = func(env, reg); 4722 int err, min_off, max_off, i, j, slot, spi; 4723 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4724 enum bpf_access_type bounds_check_type; 4725 /* Some accesses can write anything into the stack, others are 4726 * read-only. 4727 */ 4728 bool clobber = false; 4729 4730 if (access_size == 0 && !zero_size_allowed) { 4731 verbose(env, "invalid zero-sized read\n"); 4732 return -EACCES; 4733 } 4734 4735 if (type == ACCESS_HELPER) { 4736 /* The bounds checks for writes are more permissive than for 4737 * reads. However, if raw_mode is not set, we'll do extra 4738 * checks below. 4739 */ 4740 bounds_check_type = BPF_WRITE; 4741 clobber = true; 4742 } else { 4743 bounds_check_type = BPF_READ; 4744 } 4745 err = check_stack_access_within_bounds(env, regno, off, access_size, 4746 type, bounds_check_type); 4747 if (err) 4748 return err; 4749 4750 4751 if (tnum_is_const(reg->var_off)) { 4752 min_off = max_off = reg->var_off.value + off; 4753 } else { 4754 /* Variable offset is prohibited for unprivileged mode for 4755 * simplicity since it requires corresponding support in 4756 * Spectre masking for stack ALU. 4757 * See also retrieve_ptr_limit(). 4758 */ 4759 if (!env->bypass_spec_v1) { 4760 char tn_buf[48]; 4761 4762 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4763 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4764 regno, err_extra, tn_buf); 4765 return -EACCES; 4766 } 4767 /* Only initialized buffer on stack is allowed to be accessed 4768 * with variable offset. With uninitialized buffer it's hard to 4769 * guarantee that whole memory is marked as initialized on 4770 * helper return since specific bounds are unknown what may 4771 * cause uninitialized stack leaking. 4772 */ 4773 if (meta && meta->raw_mode) 4774 meta = NULL; 4775 4776 min_off = reg->smin_value + off; 4777 max_off = reg->smax_value + off; 4778 } 4779 4780 if (meta && meta->raw_mode) { 4781 meta->access_size = access_size; 4782 meta->regno = regno; 4783 return 0; 4784 } 4785 4786 for (i = min_off; i < max_off + access_size; i++) { 4787 u8 *stype; 4788 4789 slot = -i - 1; 4790 spi = slot / BPF_REG_SIZE; 4791 if (state->allocated_stack <= slot) 4792 goto err; 4793 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4794 if (*stype == STACK_MISC) 4795 goto mark; 4796 if (*stype == STACK_ZERO) { 4797 if (clobber) { 4798 /* helper can write anything into the stack */ 4799 *stype = STACK_MISC; 4800 } 4801 goto mark; 4802 } 4803 4804 if (is_spilled_reg(&state->stack[spi]) && 4805 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4806 goto mark; 4807 4808 if (is_spilled_reg(&state->stack[spi]) && 4809 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4810 env->allow_ptr_leaks)) { 4811 if (clobber) { 4812 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4813 for (j = 0; j < BPF_REG_SIZE; j++) 4814 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4815 } 4816 goto mark; 4817 } 4818 4819 err: 4820 if (tnum_is_const(reg->var_off)) { 4821 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4822 err_extra, regno, min_off, i - min_off, access_size); 4823 } else { 4824 char tn_buf[48]; 4825 4826 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4827 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4828 err_extra, regno, tn_buf, i - min_off, access_size); 4829 } 4830 return -EACCES; 4831 mark: 4832 /* reading any byte out of 8-byte 'spill_slot' will cause 4833 * the whole slot to be marked as 'read' 4834 */ 4835 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4836 state->stack[spi].spilled_ptr.parent, 4837 REG_LIVE_READ64); 4838 } 4839 return update_stack_depth(env, state, min_off); 4840 } 4841 4842 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4843 int access_size, bool zero_size_allowed, 4844 struct bpf_call_arg_meta *meta) 4845 { 4846 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4847 const char *buf_info; 4848 u32 *max_access; 4849 4850 switch (base_type(reg->type)) { 4851 case PTR_TO_PACKET: 4852 case PTR_TO_PACKET_META: 4853 return check_packet_access(env, regno, reg->off, access_size, 4854 zero_size_allowed); 4855 case PTR_TO_MAP_KEY: 4856 return check_mem_region_access(env, regno, reg->off, access_size, 4857 reg->map_ptr->key_size, false); 4858 case PTR_TO_MAP_VALUE: 4859 if (check_map_access_type(env, regno, reg->off, access_size, 4860 meta && meta->raw_mode ? BPF_WRITE : 4861 BPF_READ)) 4862 return -EACCES; 4863 return check_map_access(env, regno, reg->off, access_size, 4864 zero_size_allowed); 4865 case PTR_TO_MEM: 4866 return check_mem_region_access(env, regno, reg->off, 4867 access_size, reg->mem_size, 4868 zero_size_allowed); 4869 case PTR_TO_BUF: 4870 if (type_is_rdonly_mem(reg->type)) { 4871 if (meta && meta->raw_mode) 4872 return -EACCES; 4873 4874 buf_info = "rdonly"; 4875 max_access = &env->prog->aux->max_rdonly_access; 4876 } else { 4877 buf_info = "rdwr"; 4878 max_access = &env->prog->aux->max_rdwr_access; 4879 } 4880 return check_buffer_access(env, reg, regno, reg->off, 4881 access_size, zero_size_allowed, 4882 buf_info, max_access); 4883 case PTR_TO_STACK: 4884 return check_stack_range_initialized( 4885 env, 4886 regno, reg->off, access_size, 4887 zero_size_allowed, ACCESS_HELPER, meta); 4888 default: /* scalar_value or invalid ptr */ 4889 /* Allow zero-byte read from NULL, regardless of pointer type */ 4890 if (zero_size_allowed && access_size == 0 && 4891 register_is_null(reg)) 4892 return 0; 4893 4894 verbose(env, "R%d type=%s ", regno, 4895 reg_type_str(env, reg->type)); 4896 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 4897 return -EACCES; 4898 } 4899 } 4900 4901 static int check_mem_size_reg(struct bpf_verifier_env *env, 4902 struct bpf_reg_state *reg, u32 regno, 4903 bool zero_size_allowed, 4904 struct bpf_call_arg_meta *meta) 4905 { 4906 int err; 4907 4908 /* This is used to refine r0 return value bounds for helpers 4909 * that enforce this value as an upper bound on return values. 4910 * See do_refine_retval_range() for helpers that can refine 4911 * the return value. C type of helper is u32 so we pull register 4912 * bound from umax_value however, if negative verifier errors 4913 * out. Only upper bounds can be learned because retval is an 4914 * int type and negative retvals are allowed. 4915 */ 4916 if (meta) 4917 meta->msize_max_value = reg->umax_value; 4918 4919 /* The register is SCALAR_VALUE; the access check 4920 * happens using its boundaries. 4921 */ 4922 if (!tnum_is_const(reg->var_off)) 4923 /* For unprivileged variable accesses, disable raw 4924 * mode so that the program is required to 4925 * initialize all the memory that the helper could 4926 * just partially fill up. 4927 */ 4928 meta = NULL; 4929 4930 if (reg->smin_value < 0) { 4931 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4932 regno); 4933 return -EACCES; 4934 } 4935 4936 if (reg->umin_value == 0) { 4937 err = check_helper_mem_access(env, regno - 1, 0, 4938 zero_size_allowed, 4939 meta); 4940 if (err) 4941 return err; 4942 } 4943 4944 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4945 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4946 regno); 4947 return -EACCES; 4948 } 4949 err = check_helper_mem_access(env, regno - 1, 4950 reg->umax_value, 4951 zero_size_allowed, meta); 4952 if (!err) 4953 err = mark_chain_precision(env, regno); 4954 return err; 4955 } 4956 4957 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4958 u32 regno, u32 mem_size) 4959 { 4960 if (register_is_null(reg)) 4961 return 0; 4962 4963 if (type_may_be_null(reg->type)) { 4964 /* Assuming that the register contains a value check if the memory 4965 * access is safe. Temporarily save and restore the register's state as 4966 * the conversion shouldn't be visible to a caller. 4967 */ 4968 const struct bpf_reg_state saved_reg = *reg; 4969 int rv; 4970 4971 mark_ptr_not_null_reg(reg); 4972 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4973 *reg = saved_reg; 4974 return rv; 4975 } 4976 4977 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4978 } 4979 4980 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4981 u32 regno) 4982 { 4983 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 4984 bool may_be_null = type_may_be_null(mem_reg->type); 4985 struct bpf_reg_state saved_reg; 4986 int err; 4987 4988 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 4989 4990 if (may_be_null) { 4991 saved_reg = *mem_reg; 4992 mark_ptr_not_null_reg(mem_reg); 4993 } 4994 4995 err = check_mem_size_reg(env, reg, regno, true, NULL); 4996 4997 if (may_be_null) 4998 *mem_reg = saved_reg; 4999 return err; 5000 } 5001 5002 /* Implementation details: 5003 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5004 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5005 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5006 * value_or_null->value transition, since the verifier only cares about 5007 * the range of access to valid map value pointer and doesn't care about actual 5008 * address of the map element. 5009 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5010 * reg->id > 0 after value_or_null->value transition. By doing so 5011 * two bpf_map_lookups will be considered two different pointers that 5012 * point to different bpf_spin_locks. 5013 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5014 * dead-locks. 5015 * Since only one bpf_spin_lock is allowed the checks are simpler than 5016 * reg_is_refcounted() logic. The verifier needs to remember only 5017 * one spin_lock instead of array of acquired_refs. 5018 * cur_state->active_spin_lock remembers which map value element got locked 5019 * and clears it after bpf_spin_unlock. 5020 */ 5021 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5022 bool is_lock) 5023 { 5024 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5025 struct bpf_verifier_state *cur = env->cur_state; 5026 bool is_const = tnum_is_const(reg->var_off); 5027 struct bpf_map *map = reg->map_ptr; 5028 u64 val = reg->var_off.value; 5029 5030 if (!is_const) { 5031 verbose(env, 5032 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5033 regno); 5034 return -EINVAL; 5035 } 5036 if (!map->btf) { 5037 verbose(env, 5038 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5039 map->name); 5040 return -EINVAL; 5041 } 5042 if (!map_value_has_spin_lock(map)) { 5043 if (map->spin_lock_off == -E2BIG) 5044 verbose(env, 5045 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5046 map->name); 5047 else if (map->spin_lock_off == -ENOENT) 5048 verbose(env, 5049 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5050 map->name); 5051 else 5052 verbose(env, 5053 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5054 map->name); 5055 return -EINVAL; 5056 } 5057 if (map->spin_lock_off != val + reg->off) { 5058 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5059 val + reg->off); 5060 return -EINVAL; 5061 } 5062 if (is_lock) { 5063 if (cur->active_spin_lock) { 5064 verbose(env, 5065 "Locking two bpf_spin_locks are not allowed\n"); 5066 return -EINVAL; 5067 } 5068 cur->active_spin_lock = reg->id; 5069 } else { 5070 if (!cur->active_spin_lock) { 5071 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5072 return -EINVAL; 5073 } 5074 if (cur->active_spin_lock != reg->id) { 5075 verbose(env, "bpf_spin_unlock of different lock\n"); 5076 return -EINVAL; 5077 } 5078 cur->active_spin_lock = 0; 5079 } 5080 return 0; 5081 } 5082 5083 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5084 struct bpf_call_arg_meta *meta) 5085 { 5086 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5087 bool is_const = tnum_is_const(reg->var_off); 5088 struct bpf_map *map = reg->map_ptr; 5089 u64 val = reg->var_off.value; 5090 5091 if (!is_const) { 5092 verbose(env, 5093 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5094 regno); 5095 return -EINVAL; 5096 } 5097 if (!map->btf) { 5098 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5099 map->name); 5100 return -EINVAL; 5101 } 5102 if (!map_value_has_timer(map)) { 5103 if (map->timer_off == -E2BIG) 5104 verbose(env, 5105 "map '%s' has more than one 'struct bpf_timer'\n", 5106 map->name); 5107 else if (map->timer_off == -ENOENT) 5108 verbose(env, 5109 "map '%s' doesn't have 'struct bpf_timer'\n", 5110 map->name); 5111 else 5112 verbose(env, 5113 "map '%s' is not a struct type or bpf_timer is mangled\n", 5114 map->name); 5115 return -EINVAL; 5116 } 5117 if (map->timer_off != val + reg->off) { 5118 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5119 val + reg->off, map->timer_off); 5120 return -EINVAL; 5121 } 5122 if (meta->map_ptr) { 5123 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5124 return -EFAULT; 5125 } 5126 meta->map_uid = reg->map_uid; 5127 meta->map_ptr = map; 5128 return 0; 5129 } 5130 5131 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 5132 { 5133 return base_type(type) == ARG_PTR_TO_MEM || 5134 base_type(type) == ARG_PTR_TO_UNINIT_MEM; 5135 } 5136 5137 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5138 { 5139 return type == ARG_CONST_SIZE || 5140 type == ARG_CONST_SIZE_OR_ZERO; 5141 } 5142 5143 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5144 { 5145 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5146 } 5147 5148 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5149 { 5150 return type == ARG_PTR_TO_INT || 5151 type == ARG_PTR_TO_LONG; 5152 } 5153 5154 static int int_ptr_type_to_size(enum bpf_arg_type type) 5155 { 5156 if (type == ARG_PTR_TO_INT) 5157 return sizeof(u32); 5158 else if (type == ARG_PTR_TO_LONG) 5159 return sizeof(u64); 5160 5161 return -EINVAL; 5162 } 5163 5164 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5165 const struct bpf_call_arg_meta *meta, 5166 enum bpf_arg_type *arg_type) 5167 { 5168 if (!meta->map_ptr) { 5169 /* kernel subsystem misconfigured verifier */ 5170 verbose(env, "invalid map_ptr to access map->type\n"); 5171 return -EACCES; 5172 } 5173 5174 switch (meta->map_ptr->map_type) { 5175 case BPF_MAP_TYPE_SOCKMAP: 5176 case BPF_MAP_TYPE_SOCKHASH: 5177 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5178 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5179 } else { 5180 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5181 return -EINVAL; 5182 } 5183 break; 5184 case BPF_MAP_TYPE_BLOOM_FILTER: 5185 if (meta->func_id == BPF_FUNC_map_peek_elem) 5186 *arg_type = ARG_PTR_TO_MAP_VALUE; 5187 break; 5188 default: 5189 break; 5190 } 5191 return 0; 5192 } 5193 5194 struct bpf_reg_types { 5195 const enum bpf_reg_type types[10]; 5196 u32 *btf_id; 5197 }; 5198 5199 static const struct bpf_reg_types map_key_value_types = { 5200 .types = { 5201 PTR_TO_STACK, 5202 PTR_TO_PACKET, 5203 PTR_TO_PACKET_META, 5204 PTR_TO_MAP_KEY, 5205 PTR_TO_MAP_VALUE, 5206 }, 5207 }; 5208 5209 static const struct bpf_reg_types sock_types = { 5210 .types = { 5211 PTR_TO_SOCK_COMMON, 5212 PTR_TO_SOCKET, 5213 PTR_TO_TCP_SOCK, 5214 PTR_TO_XDP_SOCK, 5215 }, 5216 }; 5217 5218 #ifdef CONFIG_NET 5219 static const struct bpf_reg_types btf_id_sock_common_types = { 5220 .types = { 5221 PTR_TO_SOCK_COMMON, 5222 PTR_TO_SOCKET, 5223 PTR_TO_TCP_SOCK, 5224 PTR_TO_XDP_SOCK, 5225 PTR_TO_BTF_ID, 5226 }, 5227 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5228 }; 5229 #endif 5230 5231 static const struct bpf_reg_types mem_types = { 5232 .types = { 5233 PTR_TO_STACK, 5234 PTR_TO_PACKET, 5235 PTR_TO_PACKET_META, 5236 PTR_TO_MAP_KEY, 5237 PTR_TO_MAP_VALUE, 5238 PTR_TO_MEM, 5239 PTR_TO_MEM | MEM_ALLOC, 5240 PTR_TO_BUF, 5241 }, 5242 }; 5243 5244 static const struct bpf_reg_types int_ptr_types = { 5245 .types = { 5246 PTR_TO_STACK, 5247 PTR_TO_PACKET, 5248 PTR_TO_PACKET_META, 5249 PTR_TO_MAP_KEY, 5250 PTR_TO_MAP_VALUE, 5251 }, 5252 }; 5253 5254 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5255 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5256 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5257 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5258 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5259 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5260 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5261 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5262 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5263 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5264 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5265 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5266 5267 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5268 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5269 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5270 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5271 [ARG_CONST_SIZE] = &scalar_types, 5272 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5273 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5274 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5275 [ARG_PTR_TO_CTX] = &context_types, 5276 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5277 #ifdef CONFIG_NET 5278 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5279 #endif 5280 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5281 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5282 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5283 [ARG_PTR_TO_MEM] = &mem_types, 5284 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5285 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5286 [ARG_PTR_TO_INT] = &int_ptr_types, 5287 [ARG_PTR_TO_LONG] = &int_ptr_types, 5288 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5289 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5290 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5291 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5292 [ARG_PTR_TO_TIMER] = &timer_types, 5293 }; 5294 5295 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5296 enum bpf_arg_type arg_type, 5297 const u32 *arg_btf_id) 5298 { 5299 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5300 enum bpf_reg_type expected, type = reg->type; 5301 const struct bpf_reg_types *compatible; 5302 int i, j; 5303 5304 compatible = compatible_reg_types[base_type(arg_type)]; 5305 if (!compatible) { 5306 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5307 return -EFAULT; 5308 } 5309 5310 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5311 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5312 * 5313 * Same for MAYBE_NULL: 5314 * 5315 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5316 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5317 * 5318 * Therefore we fold these flags depending on the arg_type before comparison. 5319 */ 5320 if (arg_type & MEM_RDONLY) 5321 type &= ~MEM_RDONLY; 5322 if (arg_type & PTR_MAYBE_NULL) 5323 type &= ~PTR_MAYBE_NULL; 5324 5325 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5326 expected = compatible->types[i]; 5327 if (expected == NOT_INIT) 5328 break; 5329 5330 if (type == expected) 5331 goto found; 5332 } 5333 5334 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5335 for (j = 0; j + 1 < i; j++) 5336 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5337 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5338 return -EACCES; 5339 5340 found: 5341 if (reg->type == PTR_TO_BTF_ID) { 5342 if (!arg_btf_id) { 5343 if (!compatible->btf_id) { 5344 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5345 return -EFAULT; 5346 } 5347 arg_btf_id = compatible->btf_id; 5348 } 5349 5350 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5351 btf_vmlinux, *arg_btf_id)) { 5352 verbose(env, "R%d is of type %s but %s is expected\n", 5353 regno, kernel_type_name(reg->btf, reg->btf_id), 5354 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5355 return -EACCES; 5356 } 5357 } 5358 5359 return 0; 5360 } 5361 5362 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5363 struct bpf_call_arg_meta *meta, 5364 const struct bpf_func_proto *fn) 5365 { 5366 u32 regno = BPF_REG_1 + arg; 5367 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5368 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5369 enum bpf_reg_type type = reg->type; 5370 int err = 0; 5371 5372 if (arg_type == ARG_DONTCARE) 5373 return 0; 5374 5375 err = check_reg_arg(env, regno, SRC_OP); 5376 if (err) 5377 return err; 5378 5379 if (arg_type == ARG_ANYTHING) { 5380 if (is_pointer_value(env, regno)) { 5381 verbose(env, "R%d leaks addr into helper function\n", 5382 regno); 5383 return -EACCES; 5384 } 5385 return 0; 5386 } 5387 5388 if (type_is_pkt_pointer(type) && 5389 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5390 verbose(env, "helper access to the packet is not allowed\n"); 5391 return -EACCES; 5392 } 5393 5394 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5395 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5396 err = resolve_map_arg_type(env, meta, &arg_type); 5397 if (err) 5398 return err; 5399 } 5400 5401 if (register_is_null(reg) && type_may_be_null(arg_type)) 5402 /* A NULL register has a SCALAR_VALUE type, so skip 5403 * type checking. 5404 */ 5405 goto skip_type_check; 5406 5407 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5408 if (err) 5409 return err; 5410 5411 switch ((u32)type) { 5412 case SCALAR_VALUE: 5413 /* Pointer types where reg offset is explicitly allowed: */ 5414 case PTR_TO_PACKET: 5415 case PTR_TO_PACKET_META: 5416 case PTR_TO_MAP_KEY: 5417 case PTR_TO_MAP_VALUE: 5418 case PTR_TO_MEM: 5419 case PTR_TO_MEM | MEM_RDONLY: 5420 case PTR_TO_MEM | MEM_ALLOC: 5421 case PTR_TO_BUF: 5422 case PTR_TO_BUF | MEM_RDONLY: 5423 case PTR_TO_STACK: 5424 /* Some of the argument types nevertheless require a 5425 * zero register offset. 5426 */ 5427 if (arg_type == ARG_PTR_TO_ALLOC_MEM) 5428 goto force_off_check; 5429 break; 5430 /* All the rest must be rejected: */ 5431 default: 5432 force_off_check: 5433 err = __check_ptr_off_reg(env, reg, regno, 5434 type == PTR_TO_BTF_ID); 5435 if (err < 0) 5436 return err; 5437 break; 5438 } 5439 5440 skip_type_check: 5441 if (reg->ref_obj_id) { 5442 if (meta->ref_obj_id) { 5443 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5444 regno, reg->ref_obj_id, 5445 meta->ref_obj_id); 5446 return -EFAULT; 5447 } 5448 meta->ref_obj_id = reg->ref_obj_id; 5449 } 5450 5451 if (arg_type == ARG_CONST_MAP_PTR) { 5452 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5453 if (meta->map_ptr) { 5454 /* Use map_uid (which is unique id of inner map) to reject: 5455 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5456 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5457 * if (inner_map1 && inner_map2) { 5458 * timer = bpf_map_lookup_elem(inner_map1); 5459 * if (timer) 5460 * // mismatch would have been allowed 5461 * bpf_timer_init(timer, inner_map2); 5462 * } 5463 * 5464 * Comparing map_ptr is enough to distinguish normal and outer maps. 5465 */ 5466 if (meta->map_ptr != reg->map_ptr || 5467 meta->map_uid != reg->map_uid) { 5468 verbose(env, 5469 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5470 meta->map_uid, reg->map_uid); 5471 return -EINVAL; 5472 } 5473 } 5474 meta->map_ptr = reg->map_ptr; 5475 meta->map_uid = reg->map_uid; 5476 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5477 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5478 * check that [key, key + map->key_size) are within 5479 * stack limits and initialized 5480 */ 5481 if (!meta->map_ptr) { 5482 /* in function declaration map_ptr must come before 5483 * map_key, so that it's verified and known before 5484 * we have to check map_key here. Otherwise it means 5485 * that kernel subsystem misconfigured verifier 5486 */ 5487 verbose(env, "invalid map_ptr to access map->key\n"); 5488 return -EACCES; 5489 } 5490 err = check_helper_mem_access(env, regno, 5491 meta->map_ptr->key_size, false, 5492 NULL); 5493 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5494 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5495 if (type_may_be_null(arg_type) && register_is_null(reg)) 5496 return 0; 5497 5498 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5499 * check [value, value + map->value_size) validity 5500 */ 5501 if (!meta->map_ptr) { 5502 /* kernel subsystem misconfigured verifier */ 5503 verbose(env, "invalid map_ptr to access map->value\n"); 5504 return -EACCES; 5505 } 5506 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5507 err = check_helper_mem_access(env, regno, 5508 meta->map_ptr->value_size, false, 5509 meta); 5510 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5511 if (!reg->btf_id) { 5512 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5513 return -EACCES; 5514 } 5515 meta->ret_btf = reg->btf; 5516 meta->ret_btf_id = reg->btf_id; 5517 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5518 if (meta->func_id == BPF_FUNC_spin_lock) { 5519 if (process_spin_lock(env, regno, true)) 5520 return -EACCES; 5521 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5522 if (process_spin_lock(env, regno, false)) 5523 return -EACCES; 5524 } else { 5525 verbose(env, "verifier internal error\n"); 5526 return -EFAULT; 5527 } 5528 } else if (arg_type == ARG_PTR_TO_TIMER) { 5529 if (process_timer_func(env, regno, meta)) 5530 return -EACCES; 5531 } else if (arg_type == ARG_PTR_TO_FUNC) { 5532 meta->subprogno = reg->subprogno; 5533 } else if (arg_type_is_mem_ptr(arg_type)) { 5534 /* The access to this pointer is only checked when we hit the 5535 * next is_mem_size argument below. 5536 */ 5537 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5538 } else if (arg_type_is_mem_size(arg_type)) { 5539 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5540 5541 err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta); 5542 } else if (arg_type_is_alloc_size(arg_type)) { 5543 if (!tnum_is_const(reg->var_off)) { 5544 verbose(env, "R%d is not a known constant'\n", 5545 regno); 5546 return -EACCES; 5547 } 5548 meta->mem_size = reg->var_off.value; 5549 } else if (arg_type_is_int_ptr(arg_type)) { 5550 int size = int_ptr_type_to_size(arg_type); 5551 5552 err = check_helper_mem_access(env, regno, size, false, meta); 5553 if (err) 5554 return err; 5555 err = check_ptr_alignment(env, reg, 0, size, true); 5556 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5557 struct bpf_map *map = reg->map_ptr; 5558 int map_off; 5559 u64 map_addr; 5560 char *str_ptr; 5561 5562 if (!bpf_map_is_rdonly(map)) { 5563 verbose(env, "R%d does not point to a readonly map'\n", regno); 5564 return -EACCES; 5565 } 5566 5567 if (!tnum_is_const(reg->var_off)) { 5568 verbose(env, "R%d is not a constant address'\n", regno); 5569 return -EACCES; 5570 } 5571 5572 if (!map->ops->map_direct_value_addr) { 5573 verbose(env, "no direct value access support for this map type\n"); 5574 return -EACCES; 5575 } 5576 5577 err = check_map_access(env, regno, reg->off, 5578 map->value_size - reg->off, false); 5579 if (err) 5580 return err; 5581 5582 map_off = reg->off + reg->var_off.value; 5583 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5584 if (err) { 5585 verbose(env, "direct value access on string failed\n"); 5586 return err; 5587 } 5588 5589 str_ptr = (char *)(long)(map_addr); 5590 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5591 verbose(env, "string is not zero-terminated\n"); 5592 return -EINVAL; 5593 } 5594 } 5595 5596 return err; 5597 } 5598 5599 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5600 { 5601 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5602 enum bpf_prog_type type = resolve_prog_type(env->prog); 5603 5604 if (func_id != BPF_FUNC_map_update_elem) 5605 return false; 5606 5607 /* It's not possible to get access to a locked struct sock in these 5608 * contexts, so updating is safe. 5609 */ 5610 switch (type) { 5611 case BPF_PROG_TYPE_TRACING: 5612 if (eatype == BPF_TRACE_ITER) 5613 return true; 5614 break; 5615 case BPF_PROG_TYPE_SOCKET_FILTER: 5616 case BPF_PROG_TYPE_SCHED_CLS: 5617 case BPF_PROG_TYPE_SCHED_ACT: 5618 case BPF_PROG_TYPE_XDP: 5619 case BPF_PROG_TYPE_SK_REUSEPORT: 5620 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5621 case BPF_PROG_TYPE_SK_LOOKUP: 5622 return true; 5623 default: 5624 break; 5625 } 5626 5627 verbose(env, "cannot update sockmap in this context\n"); 5628 return false; 5629 } 5630 5631 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5632 { 5633 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5634 } 5635 5636 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5637 struct bpf_map *map, int func_id) 5638 { 5639 if (!map) 5640 return 0; 5641 5642 /* We need a two way check, first is from map perspective ... */ 5643 switch (map->map_type) { 5644 case BPF_MAP_TYPE_PROG_ARRAY: 5645 if (func_id != BPF_FUNC_tail_call) 5646 goto error; 5647 break; 5648 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5649 if (func_id != BPF_FUNC_perf_event_read && 5650 func_id != BPF_FUNC_perf_event_output && 5651 func_id != BPF_FUNC_skb_output && 5652 func_id != BPF_FUNC_perf_event_read_value && 5653 func_id != BPF_FUNC_xdp_output) 5654 goto error; 5655 break; 5656 case BPF_MAP_TYPE_RINGBUF: 5657 if (func_id != BPF_FUNC_ringbuf_output && 5658 func_id != BPF_FUNC_ringbuf_reserve && 5659 func_id != BPF_FUNC_ringbuf_query) 5660 goto error; 5661 break; 5662 case BPF_MAP_TYPE_STACK_TRACE: 5663 if (func_id != BPF_FUNC_get_stackid) 5664 goto error; 5665 break; 5666 case BPF_MAP_TYPE_CGROUP_ARRAY: 5667 if (func_id != BPF_FUNC_skb_under_cgroup && 5668 func_id != BPF_FUNC_current_task_under_cgroup) 5669 goto error; 5670 break; 5671 case BPF_MAP_TYPE_CGROUP_STORAGE: 5672 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5673 if (func_id != BPF_FUNC_get_local_storage) 5674 goto error; 5675 break; 5676 case BPF_MAP_TYPE_DEVMAP: 5677 case BPF_MAP_TYPE_DEVMAP_HASH: 5678 if (func_id != BPF_FUNC_redirect_map && 5679 func_id != BPF_FUNC_map_lookup_elem) 5680 goto error; 5681 break; 5682 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5683 * appear. 5684 */ 5685 case BPF_MAP_TYPE_CPUMAP: 5686 if (func_id != BPF_FUNC_redirect_map) 5687 goto error; 5688 break; 5689 case BPF_MAP_TYPE_XSKMAP: 5690 if (func_id != BPF_FUNC_redirect_map && 5691 func_id != BPF_FUNC_map_lookup_elem) 5692 goto error; 5693 break; 5694 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5695 case BPF_MAP_TYPE_HASH_OF_MAPS: 5696 if (func_id != BPF_FUNC_map_lookup_elem) 5697 goto error; 5698 break; 5699 case BPF_MAP_TYPE_SOCKMAP: 5700 if (func_id != BPF_FUNC_sk_redirect_map && 5701 func_id != BPF_FUNC_sock_map_update && 5702 func_id != BPF_FUNC_map_delete_elem && 5703 func_id != BPF_FUNC_msg_redirect_map && 5704 func_id != BPF_FUNC_sk_select_reuseport && 5705 func_id != BPF_FUNC_map_lookup_elem && 5706 !may_update_sockmap(env, func_id)) 5707 goto error; 5708 break; 5709 case BPF_MAP_TYPE_SOCKHASH: 5710 if (func_id != BPF_FUNC_sk_redirect_hash && 5711 func_id != BPF_FUNC_sock_hash_update && 5712 func_id != BPF_FUNC_map_delete_elem && 5713 func_id != BPF_FUNC_msg_redirect_hash && 5714 func_id != BPF_FUNC_sk_select_reuseport && 5715 func_id != BPF_FUNC_map_lookup_elem && 5716 !may_update_sockmap(env, func_id)) 5717 goto error; 5718 break; 5719 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5720 if (func_id != BPF_FUNC_sk_select_reuseport) 5721 goto error; 5722 break; 5723 case BPF_MAP_TYPE_QUEUE: 5724 case BPF_MAP_TYPE_STACK: 5725 if (func_id != BPF_FUNC_map_peek_elem && 5726 func_id != BPF_FUNC_map_pop_elem && 5727 func_id != BPF_FUNC_map_push_elem) 5728 goto error; 5729 break; 5730 case BPF_MAP_TYPE_SK_STORAGE: 5731 if (func_id != BPF_FUNC_sk_storage_get && 5732 func_id != BPF_FUNC_sk_storage_delete) 5733 goto error; 5734 break; 5735 case BPF_MAP_TYPE_INODE_STORAGE: 5736 if (func_id != BPF_FUNC_inode_storage_get && 5737 func_id != BPF_FUNC_inode_storage_delete) 5738 goto error; 5739 break; 5740 case BPF_MAP_TYPE_TASK_STORAGE: 5741 if (func_id != BPF_FUNC_task_storage_get && 5742 func_id != BPF_FUNC_task_storage_delete) 5743 goto error; 5744 break; 5745 case BPF_MAP_TYPE_BLOOM_FILTER: 5746 if (func_id != BPF_FUNC_map_peek_elem && 5747 func_id != BPF_FUNC_map_push_elem) 5748 goto error; 5749 break; 5750 default: 5751 break; 5752 } 5753 5754 /* ... and second from the function itself. */ 5755 switch (func_id) { 5756 case BPF_FUNC_tail_call: 5757 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5758 goto error; 5759 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5760 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5761 return -EINVAL; 5762 } 5763 break; 5764 case BPF_FUNC_perf_event_read: 5765 case BPF_FUNC_perf_event_output: 5766 case BPF_FUNC_perf_event_read_value: 5767 case BPF_FUNC_skb_output: 5768 case BPF_FUNC_xdp_output: 5769 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5770 goto error; 5771 break; 5772 case BPF_FUNC_ringbuf_output: 5773 case BPF_FUNC_ringbuf_reserve: 5774 case BPF_FUNC_ringbuf_query: 5775 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5776 goto error; 5777 break; 5778 case BPF_FUNC_get_stackid: 5779 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5780 goto error; 5781 break; 5782 case BPF_FUNC_current_task_under_cgroup: 5783 case BPF_FUNC_skb_under_cgroup: 5784 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5785 goto error; 5786 break; 5787 case BPF_FUNC_redirect_map: 5788 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5789 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5790 map->map_type != BPF_MAP_TYPE_CPUMAP && 5791 map->map_type != BPF_MAP_TYPE_XSKMAP) 5792 goto error; 5793 break; 5794 case BPF_FUNC_sk_redirect_map: 5795 case BPF_FUNC_msg_redirect_map: 5796 case BPF_FUNC_sock_map_update: 5797 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5798 goto error; 5799 break; 5800 case BPF_FUNC_sk_redirect_hash: 5801 case BPF_FUNC_msg_redirect_hash: 5802 case BPF_FUNC_sock_hash_update: 5803 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5804 goto error; 5805 break; 5806 case BPF_FUNC_get_local_storage: 5807 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5808 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5809 goto error; 5810 break; 5811 case BPF_FUNC_sk_select_reuseport: 5812 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5813 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5814 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5815 goto error; 5816 break; 5817 case BPF_FUNC_map_pop_elem: 5818 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5819 map->map_type != BPF_MAP_TYPE_STACK) 5820 goto error; 5821 break; 5822 case BPF_FUNC_map_peek_elem: 5823 case BPF_FUNC_map_push_elem: 5824 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5825 map->map_type != BPF_MAP_TYPE_STACK && 5826 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5827 goto error; 5828 break; 5829 case BPF_FUNC_sk_storage_get: 5830 case BPF_FUNC_sk_storage_delete: 5831 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5832 goto error; 5833 break; 5834 case BPF_FUNC_inode_storage_get: 5835 case BPF_FUNC_inode_storage_delete: 5836 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5837 goto error; 5838 break; 5839 case BPF_FUNC_task_storage_get: 5840 case BPF_FUNC_task_storage_delete: 5841 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5842 goto error; 5843 break; 5844 default: 5845 break; 5846 } 5847 5848 return 0; 5849 error: 5850 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5851 map->map_type, func_id_name(func_id), func_id); 5852 return -EINVAL; 5853 } 5854 5855 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5856 { 5857 int count = 0; 5858 5859 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5860 count++; 5861 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5862 count++; 5863 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5864 count++; 5865 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5866 count++; 5867 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5868 count++; 5869 5870 /* We only support one arg being in raw mode at the moment, 5871 * which is sufficient for the helper functions we have 5872 * right now. 5873 */ 5874 return count <= 1; 5875 } 5876 5877 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5878 enum bpf_arg_type arg_next) 5879 { 5880 return (arg_type_is_mem_ptr(arg_curr) && 5881 !arg_type_is_mem_size(arg_next)) || 5882 (!arg_type_is_mem_ptr(arg_curr) && 5883 arg_type_is_mem_size(arg_next)); 5884 } 5885 5886 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5887 { 5888 /* bpf_xxx(..., buf, len) call will access 'len' 5889 * bytes from memory 'buf'. Both arg types need 5890 * to be paired, so make sure there's no buggy 5891 * helper function specification. 5892 */ 5893 if (arg_type_is_mem_size(fn->arg1_type) || 5894 arg_type_is_mem_ptr(fn->arg5_type) || 5895 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5896 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5897 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5898 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5899 return false; 5900 5901 return true; 5902 } 5903 5904 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5905 { 5906 int count = 0; 5907 5908 if (arg_type_may_be_refcounted(fn->arg1_type)) 5909 count++; 5910 if (arg_type_may_be_refcounted(fn->arg2_type)) 5911 count++; 5912 if (arg_type_may_be_refcounted(fn->arg3_type)) 5913 count++; 5914 if (arg_type_may_be_refcounted(fn->arg4_type)) 5915 count++; 5916 if (arg_type_may_be_refcounted(fn->arg5_type)) 5917 count++; 5918 5919 /* A reference acquiring function cannot acquire 5920 * another refcounted ptr. 5921 */ 5922 if (may_be_acquire_function(func_id) && count) 5923 return false; 5924 5925 /* We only support one arg being unreferenced at the moment, 5926 * which is sufficient for the helper functions we have right now. 5927 */ 5928 return count <= 1; 5929 } 5930 5931 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5932 { 5933 int i; 5934 5935 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5936 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5937 return false; 5938 5939 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5940 return false; 5941 } 5942 5943 return true; 5944 } 5945 5946 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5947 { 5948 return check_raw_mode_ok(fn) && 5949 check_arg_pair_ok(fn) && 5950 check_btf_id_ok(fn) && 5951 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5952 } 5953 5954 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5955 * are now invalid, so turn them into unknown SCALAR_VALUE. 5956 */ 5957 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5958 struct bpf_func_state *state) 5959 { 5960 struct bpf_reg_state *regs = state->regs, *reg; 5961 int i; 5962 5963 for (i = 0; i < MAX_BPF_REG; i++) 5964 if (reg_is_pkt_pointer_any(®s[i])) 5965 mark_reg_unknown(env, regs, i); 5966 5967 bpf_for_each_spilled_reg(i, state, reg) { 5968 if (!reg) 5969 continue; 5970 if (reg_is_pkt_pointer_any(reg)) 5971 __mark_reg_unknown(env, reg); 5972 } 5973 } 5974 5975 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5976 { 5977 struct bpf_verifier_state *vstate = env->cur_state; 5978 int i; 5979 5980 for (i = 0; i <= vstate->curframe; i++) 5981 __clear_all_pkt_pointers(env, vstate->frame[i]); 5982 } 5983 5984 enum { 5985 AT_PKT_END = -1, 5986 BEYOND_PKT_END = -2, 5987 }; 5988 5989 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5990 { 5991 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5992 struct bpf_reg_state *reg = &state->regs[regn]; 5993 5994 if (reg->type != PTR_TO_PACKET) 5995 /* PTR_TO_PACKET_META is not supported yet */ 5996 return; 5997 5998 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5999 * How far beyond pkt_end it goes is unknown. 6000 * if (!range_open) it's the case of pkt >= pkt_end 6001 * if (range_open) it's the case of pkt > pkt_end 6002 * hence this pointer is at least 1 byte bigger than pkt_end 6003 */ 6004 if (range_open) 6005 reg->range = BEYOND_PKT_END; 6006 else 6007 reg->range = AT_PKT_END; 6008 } 6009 6010 static void release_reg_references(struct bpf_verifier_env *env, 6011 struct bpf_func_state *state, 6012 int ref_obj_id) 6013 { 6014 struct bpf_reg_state *regs = state->regs, *reg; 6015 int i; 6016 6017 for (i = 0; i < MAX_BPF_REG; i++) 6018 if (regs[i].ref_obj_id == ref_obj_id) 6019 mark_reg_unknown(env, regs, i); 6020 6021 bpf_for_each_spilled_reg(i, state, reg) { 6022 if (!reg) 6023 continue; 6024 if (reg->ref_obj_id == ref_obj_id) 6025 __mark_reg_unknown(env, reg); 6026 } 6027 } 6028 6029 /* The pointer with the specified id has released its reference to kernel 6030 * resources. Identify all copies of the same pointer and clear the reference. 6031 */ 6032 static int release_reference(struct bpf_verifier_env *env, 6033 int ref_obj_id) 6034 { 6035 struct bpf_verifier_state *vstate = env->cur_state; 6036 int err; 6037 int i; 6038 6039 err = release_reference_state(cur_func(env), ref_obj_id); 6040 if (err) 6041 return err; 6042 6043 for (i = 0; i <= vstate->curframe; i++) 6044 release_reg_references(env, vstate->frame[i], ref_obj_id); 6045 6046 return 0; 6047 } 6048 6049 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6050 struct bpf_reg_state *regs) 6051 { 6052 int i; 6053 6054 /* after the call registers r0 - r5 were scratched */ 6055 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6056 mark_reg_not_init(env, regs, caller_saved[i]); 6057 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6058 } 6059 } 6060 6061 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6062 struct bpf_func_state *caller, 6063 struct bpf_func_state *callee, 6064 int insn_idx); 6065 6066 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6067 int *insn_idx, int subprog, 6068 set_callee_state_fn set_callee_state_cb) 6069 { 6070 struct bpf_verifier_state *state = env->cur_state; 6071 struct bpf_func_info_aux *func_info_aux; 6072 struct bpf_func_state *caller, *callee; 6073 int err; 6074 bool is_global = false; 6075 6076 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6077 verbose(env, "the call stack of %d frames is too deep\n", 6078 state->curframe + 2); 6079 return -E2BIG; 6080 } 6081 6082 caller = state->frame[state->curframe]; 6083 if (state->frame[state->curframe + 1]) { 6084 verbose(env, "verifier bug. Frame %d already allocated\n", 6085 state->curframe + 1); 6086 return -EFAULT; 6087 } 6088 6089 func_info_aux = env->prog->aux->func_info_aux; 6090 if (func_info_aux) 6091 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6092 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6093 if (err == -EFAULT) 6094 return err; 6095 if (is_global) { 6096 if (err) { 6097 verbose(env, "Caller passes invalid args into func#%d\n", 6098 subprog); 6099 return err; 6100 } else { 6101 if (env->log.level & BPF_LOG_LEVEL) 6102 verbose(env, 6103 "Func#%d is global and valid. Skipping.\n", 6104 subprog); 6105 clear_caller_saved_regs(env, caller->regs); 6106 6107 /* All global functions return a 64-bit SCALAR_VALUE */ 6108 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6109 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6110 6111 /* continue with next insn after call */ 6112 return 0; 6113 } 6114 } 6115 6116 if (insn->code == (BPF_JMP | BPF_CALL) && 6117 insn->src_reg == 0 && 6118 insn->imm == BPF_FUNC_timer_set_callback) { 6119 struct bpf_verifier_state *async_cb; 6120 6121 /* there is no real recursion here. timer callbacks are async */ 6122 env->subprog_info[subprog].is_async_cb = true; 6123 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6124 *insn_idx, subprog); 6125 if (!async_cb) 6126 return -EFAULT; 6127 callee = async_cb->frame[0]; 6128 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6129 6130 /* Convert bpf_timer_set_callback() args into timer callback args */ 6131 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6132 if (err) 6133 return err; 6134 6135 clear_caller_saved_regs(env, caller->regs); 6136 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6137 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6138 /* continue with next insn after call */ 6139 return 0; 6140 } 6141 6142 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6143 if (!callee) 6144 return -ENOMEM; 6145 state->frame[state->curframe + 1] = callee; 6146 6147 /* callee cannot access r0, r6 - r9 for reading and has to write 6148 * into its own stack before reading from it. 6149 * callee can read/write into caller's stack 6150 */ 6151 init_func_state(env, callee, 6152 /* remember the callsite, it will be used by bpf_exit */ 6153 *insn_idx /* callsite */, 6154 state->curframe + 1 /* frameno within this callchain */, 6155 subprog /* subprog number within this prog */); 6156 6157 /* Transfer references to the callee */ 6158 err = copy_reference_state(callee, caller); 6159 if (err) 6160 return err; 6161 6162 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6163 if (err) 6164 return err; 6165 6166 clear_caller_saved_regs(env, caller->regs); 6167 6168 /* only increment it after check_reg_arg() finished */ 6169 state->curframe++; 6170 6171 /* and go analyze first insn of the callee */ 6172 *insn_idx = env->subprog_info[subprog].start - 1; 6173 6174 if (env->log.level & BPF_LOG_LEVEL) { 6175 verbose(env, "caller:\n"); 6176 print_verifier_state(env, caller, true); 6177 verbose(env, "callee:\n"); 6178 print_verifier_state(env, callee, true); 6179 } 6180 return 0; 6181 } 6182 6183 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6184 struct bpf_func_state *caller, 6185 struct bpf_func_state *callee) 6186 { 6187 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6188 * void *callback_ctx, u64 flags); 6189 * callback_fn(struct bpf_map *map, void *key, void *value, 6190 * void *callback_ctx); 6191 */ 6192 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6193 6194 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6195 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6196 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6197 6198 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6199 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6200 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6201 6202 /* pointer to stack or null */ 6203 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6204 6205 /* unused */ 6206 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6207 return 0; 6208 } 6209 6210 static int set_callee_state(struct bpf_verifier_env *env, 6211 struct bpf_func_state *caller, 6212 struct bpf_func_state *callee, int insn_idx) 6213 { 6214 int i; 6215 6216 /* copy r1 - r5 args that callee can access. The copy includes parent 6217 * pointers, which connects us up to the liveness chain 6218 */ 6219 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6220 callee->regs[i] = caller->regs[i]; 6221 return 0; 6222 } 6223 6224 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6225 int *insn_idx) 6226 { 6227 int subprog, target_insn; 6228 6229 target_insn = *insn_idx + insn->imm + 1; 6230 subprog = find_subprog(env, target_insn); 6231 if (subprog < 0) { 6232 verbose(env, "verifier bug. No program starts at insn %d\n", 6233 target_insn); 6234 return -EFAULT; 6235 } 6236 6237 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6238 } 6239 6240 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6241 struct bpf_func_state *caller, 6242 struct bpf_func_state *callee, 6243 int insn_idx) 6244 { 6245 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6246 struct bpf_map *map; 6247 int err; 6248 6249 if (bpf_map_ptr_poisoned(insn_aux)) { 6250 verbose(env, "tail_call abusing map_ptr\n"); 6251 return -EINVAL; 6252 } 6253 6254 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6255 if (!map->ops->map_set_for_each_callback_args || 6256 !map->ops->map_for_each_callback) { 6257 verbose(env, "callback function not allowed for map\n"); 6258 return -ENOTSUPP; 6259 } 6260 6261 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6262 if (err) 6263 return err; 6264 6265 callee->in_callback_fn = true; 6266 return 0; 6267 } 6268 6269 static int set_loop_callback_state(struct bpf_verifier_env *env, 6270 struct bpf_func_state *caller, 6271 struct bpf_func_state *callee, 6272 int insn_idx) 6273 { 6274 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6275 * u64 flags); 6276 * callback_fn(u32 index, void *callback_ctx); 6277 */ 6278 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6279 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6280 6281 /* unused */ 6282 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6283 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6284 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6285 6286 callee->in_callback_fn = true; 6287 return 0; 6288 } 6289 6290 static int set_timer_callback_state(struct bpf_verifier_env *env, 6291 struct bpf_func_state *caller, 6292 struct bpf_func_state *callee, 6293 int insn_idx) 6294 { 6295 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6296 6297 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6298 * callback_fn(struct bpf_map *map, void *key, void *value); 6299 */ 6300 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6301 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6302 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6303 6304 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6305 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6306 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6307 6308 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6309 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6310 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6311 6312 /* unused */ 6313 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6314 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6315 callee->in_async_callback_fn = true; 6316 return 0; 6317 } 6318 6319 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6320 struct bpf_func_state *caller, 6321 struct bpf_func_state *callee, 6322 int insn_idx) 6323 { 6324 /* bpf_find_vma(struct task_struct *task, u64 addr, 6325 * void *callback_fn, void *callback_ctx, u64 flags) 6326 * (callback_fn)(struct task_struct *task, 6327 * struct vm_area_struct *vma, void *callback_ctx); 6328 */ 6329 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6330 6331 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6332 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6333 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6334 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6335 6336 /* pointer to stack or null */ 6337 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6338 6339 /* unused */ 6340 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6341 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6342 callee->in_callback_fn = true; 6343 return 0; 6344 } 6345 6346 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6347 { 6348 struct bpf_verifier_state *state = env->cur_state; 6349 struct bpf_func_state *caller, *callee; 6350 struct bpf_reg_state *r0; 6351 int err; 6352 6353 callee = state->frame[state->curframe]; 6354 r0 = &callee->regs[BPF_REG_0]; 6355 if (r0->type == PTR_TO_STACK) { 6356 /* technically it's ok to return caller's stack pointer 6357 * (or caller's caller's pointer) back to the caller, 6358 * since these pointers are valid. Only current stack 6359 * pointer will be invalid as soon as function exits, 6360 * but let's be conservative 6361 */ 6362 verbose(env, "cannot return stack pointer to the caller\n"); 6363 return -EINVAL; 6364 } 6365 6366 state->curframe--; 6367 caller = state->frame[state->curframe]; 6368 if (callee->in_callback_fn) { 6369 /* enforce R0 return value range [0, 1]. */ 6370 struct tnum range = tnum_range(0, 1); 6371 6372 if (r0->type != SCALAR_VALUE) { 6373 verbose(env, "R0 not a scalar value\n"); 6374 return -EACCES; 6375 } 6376 if (!tnum_in(range, r0->var_off)) { 6377 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6378 return -EINVAL; 6379 } 6380 } else { 6381 /* return to the caller whatever r0 had in the callee */ 6382 caller->regs[BPF_REG_0] = *r0; 6383 } 6384 6385 /* Transfer references to the caller */ 6386 err = copy_reference_state(caller, callee); 6387 if (err) 6388 return err; 6389 6390 *insn_idx = callee->callsite + 1; 6391 if (env->log.level & BPF_LOG_LEVEL) { 6392 verbose(env, "returning from callee:\n"); 6393 print_verifier_state(env, callee, true); 6394 verbose(env, "to caller at %d:\n", *insn_idx); 6395 print_verifier_state(env, caller, true); 6396 } 6397 /* clear everything in the callee */ 6398 free_func_state(callee); 6399 state->frame[state->curframe + 1] = NULL; 6400 return 0; 6401 } 6402 6403 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6404 int func_id, 6405 struct bpf_call_arg_meta *meta) 6406 { 6407 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6408 6409 if (ret_type != RET_INTEGER || 6410 (func_id != BPF_FUNC_get_stack && 6411 func_id != BPF_FUNC_get_task_stack && 6412 func_id != BPF_FUNC_probe_read_str && 6413 func_id != BPF_FUNC_probe_read_kernel_str && 6414 func_id != BPF_FUNC_probe_read_user_str)) 6415 return; 6416 6417 ret_reg->smax_value = meta->msize_max_value; 6418 ret_reg->s32_max_value = meta->msize_max_value; 6419 ret_reg->smin_value = -MAX_ERRNO; 6420 ret_reg->s32_min_value = -MAX_ERRNO; 6421 __reg_deduce_bounds(ret_reg); 6422 __reg_bound_offset(ret_reg); 6423 __update_reg_bounds(ret_reg); 6424 } 6425 6426 static int 6427 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6428 int func_id, int insn_idx) 6429 { 6430 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6431 struct bpf_map *map = meta->map_ptr; 6432 6433 if (func_id != BPF_FUNC_tail_call && 6434 func_id != BPF_FUNC_map_lookup_elem && 6435 func_id != BPF_FUNC_map_update_elem && 6436 func_id != BPF_FUNC_map_delete_elem && 6437 func_id != BPF_FUNC_map_push_elem && 6438 func_id != BPF_FUNC_map_pop_elem && 6439 func_id != BPF_FUNC_map_peek_elem && 6440 func_id != BPF_FUNC_for_each_map_elem && 6441 func_id != BPF_FUNC_redirect_map) 6442 return 0; 6443 6444 if (map == NULL) { 6445 verbose(env, "kernel subsystem misconfigured verifier\n"); 6446 return -EINVAL; 6447 } 6448 6449 /* In case of read-only, some additional restrictions 6450 * need to be applied in order to prevent altering the 6451 * state of the map from program side. 6452 */ 6453 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6454 (func_id == BPF_FUNC_map_delete_elem || 6455 func_id == BPF_FUNC_map_update_elem || 6456 func_id == BPF_FUNC_map_push_elem || 6457 func_id == BPF_FUNC_map_pop_elem)) { 6458 verbose(env, "write into map forbidden\n"); 6459 return -EACCES; 6460 } 6461 6462 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6463 bpf_map_ptr_store(aux, meta->map_ptr, 6464 !meta->map_ptr->bypass_spec_v1); 6465 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6466 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6467 !meta->map_ptr->bypass_spec_v1); 6468 return 0; 6469 } 6470 6471 static int 6472 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6473 int func_id, int insn_idx) 6474 { 6475 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6476 struct bpf_reg_state *regs = cur_regs(env), *reg; 6477 struct bpf_map *map = meta->map_ptr; 6478 struct tnum range; 6479 u64 val; 6480 int err; 6481 6482 if (func_id != BPF_FUNC_tail_call) 6483 return 0; 6484 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6485 verbose(env, "kernel subsystem misconfigured verifier\n"); 6486 return -EINVAL; 6487 } 6488 6489 range = tnum_range(0, map->max_entries - 1); 6490 reg = ®s[BPF_REG_3]; 6491 6492 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6493 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6494 return 0; 6495 } 6496 6497 err = mark_chain_precision(env, BPF_REG_3); 6498 if (err) 6499 return err; 6500 6501 val = reg->var_off.value; 6502 if (bpf_map_key_unseen(aux)) 6503 bpf_map_key_store(aux, val); 6504 else if (!bpf_map_key_poisoned(aux) && 6505 bpf_map_key_immediate(aux) != val) 6506 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6507 return 0; 6508 } 6509 6510 static int check_reference_leak(struct bpf_verifier_env *env) 6511 { 6512 struct bpf_func_state *state = cur_func(env); 6513 int i; 6514 6515 for (i = 0; i < state->acquired_refs; i++) { 6516 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6517 state->refs[i].id, state->refs[i].insn_idx); 6518 } 6519 return state->acquired_refs ? -EINVAL : 0; 6520 } 6521 6522 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6523 struct bpf_reg_state *regs) 6524 { 6525 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6526 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6527 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6528 int err, fmt_map_off, num_args; 6529 u64 fmt_addr; 6530 char *fmt; 6531 6532 /* data must be an array of u64 */ 6533 if (data_len_reg->var_off.value % 8) 6534 return -EINVAL; 6535 num_args = data_len_reg->var_off.value / 8; 6536 6537 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6538 * and map_direct_value_addr is set. 6539 */ 6540 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6541 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6542 fmt_map_off); 6543 if (err) { 6544 verbose(env, "verifier bug\n"); 6545 return -EFAULT; 6546 } 6547 fmt = (char *)(long)fmt_addr + fmt_map_off; 6548 6549 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6550 * can focus on validating the format specifiers. 6551 */ 6552 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6553 if (err < 0) 6554 verbose(env, "Invalid format string\n"); 6555 6556 return err; 6557 } 6558 6559 static int check_get_func_ip(struct bpf_verifier_env *env) 6560 { 6561 enum bpf_prog_type type = resolve_prog_type(env->prog); 6562 int func_id = BPF_FUNC_get_func_ip; 6563 6564 if (type == BPF_PROG_TYPE_TRACING) { 6565 if (!bpf_prog_has_trampoline(env->prog)) { 6566 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6567 func_id_name(func_id), func_id); 6568 return -ENOTSUPP; 6569 } 6570 return 0; 6571 } else if (type == BPF_PROG_TYPE_KPROBE) { 6572 return 0; 6573 } 6574 6575 verbose(env, "func %s#%d not supported for program type %d\n", 6576 func_id_name(func_id), func_id, type); 6577 return -ENOTSUPP; 6578 } 6579 6580 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6581 int *insn_idx_p) 6582 { 6583 const struct bpf_func_proto *fn = NULL; 6584 enum bpf_return_type ret_type; 6585 enum bpf_type_flag ret_flag; 6586 struct bpf_reg_state *regs; 6587 struct bpf_call_arg_meta meta; 6588 int insn_idx = *insn_idx_p; 6589 bool changes_data; 6590 int i, err, func_id; 6591 6592 /* find function prototype */ 6593 func_id = insn->imm; 6594 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6595 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6596 func_id); 6597 return -EINVAL; 6598 } 6599 6600 if (env->ops->get_func_proto) 6601 fn = env->ops->get_func_proto(func_id, env->prog); 6602 if (!fn) { 6603 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6604 func_id); 6605 return -EINVAL; 6606 } 6607 6608 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6609 if (!env->prog->gpl_compatible && fn->gpl_only) { 6610 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6611 return -EINVAL; 6612 } 6613 6614 if (fn->allowed && !fn->allowed(env->prog)) { 6615 verbose(env, "helper call is not allowed in probe\n"); 6616 return -EINVAL; 6617 } 6618 6619 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6620 changes_data = bpf_helper_changes_pkt_data(fn->func); 6621 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6622 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6623 func_id_name(func_id), func_id); 6624 return -EINVAL; 6625 } 6626 6627 memset(&meta, 0, sizeof(meta)); 6628 meta.pkt_access = fn->pkt_access; 6629 6630 err = check_func_proto(fn, func_id); 6631 if (err) { 6632 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6633 func_id_name(func_id), func_id); 6634 return err; 6635 } 6636 6637 meta.func_id = func_id; 6638 /* check args */ 6639 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6640 err = check_func_arg(env, i, &meta, fn); 6641 if (err) 6642 return err; 6643 } 6644 6645 err = record_func_map(env, &meta, func_id, insn_idx); 6646 if (err) 6647 return err; 6648 6649 err = record_func_key(env, &meta, func_id, insn_idx); 6650 if (err) 6651 return err; 6652 6653 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6654 * is inferred from register state. 6655 */ 6656 for (i = 0; i < meta.access_size; i++) { 6657 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6658 BPF_WRITE, -1, false); 6659 if (err) 6660 return err; 6661 } 6662 6663 if (is_release_function(func_id)) { 6664 err = release_reference(env, meta.ref_obj_id); 6665 if (err) { 6666 verbose(env, "func %s#%d reference has not been acquired before\n", 6667 func_id_name(func_id), func_id); 6668 return err; 6669 } 6670 } 6671 6672 regs = cur_regs(env); 6673 6674 switch (func_id) { 6675 case BPF_FUNC_tail_call: 6676 err = check_reference_leak(env); 6677 if (err) { 6678 verbose(env, "tail_call would lead to reference leak\n"); 6679 return err; 6680 } 6681 break; 6682 case BPF_FUNC_get_local_storage: 6683 /* check that flags argument in get_local_storage(map, flags) is 0, 6684 * this is required because get_local_storage() can't return an error. 6685 */ 6686 if (!register_is_null(®s[BPF_REG_2])) { 6687 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6688 return -EINVAL; 6689 } 6690 break; 6691 case BPF_FUNC_for_each_map_elem: 6692 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6693 set_map_elem_callback_state); 6694 break; 6695 case BPF_FUNC_timer_set_callback: 6696 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6697 set_timer_callback_state); 6698 break; 6699 case BPF_FUNC_find_vma: 6700 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6701 set_find_vma_callback_state); 6702 break; 6703 case BPF_FUNC_snprintf: 6704 err = check_bpf_snprintf_call(env, regs); 6705 break; 6706 case BPF_FUNC_loop: 6707 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6708 set_loop_callback_state); 6709 break; 6710 } 6711 6712 if (err) 6713 return err; 6714 6715 /* reset caller saved regs */ 6716 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6717 mark_reg_not_init(env, regs, caller_saved[i]); 6718 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6719 } 6720 6721 /* helper call returns 64-bit value. */ 6722 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6723 6724 /* update return register (already marked as written above) */ 6725 ret_type = fn->ret_type; 6726 ret_flag = type_flag(fn->ret_type); 6727 if (ret_type == RET_INTEGER) { 6728 /* sets type to SCALAR_VALUE */ 6729 mark_reg_unknown(env, regs, BPF_REG_0); 6730 } else if (ret_type == RET_VOID) { 6731 regs[BPF_REG_0].type = NOT_INIT; 6732 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 6733 /* There is no offset yet applied, variable or fixed */ 6734 mark_reg_known_zero(env, regs, BPF_REG_0); 6735 /* remember map_ptr, so that check_map_access() 6736 * can check 'value_size' boundary of memory access 6737 * to map element returned from bpf_map_lookup_elem() 6738 */ 6739 if (meta.map_ptr == NULL) { 6740 verbose(env, 6741 "kernel subsystem misconfigured verifier\n"); 6742 return -EINVAL; 6743 } 6744 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6745 regs[BPF_REG_0].map_uid = meta.map_uid; 6746 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 6747 if (!type_may_be_null(ret_type) && 6748 map_value_has_spin_lock(meta.map_ptr)) { 6749 regs[BPF_REG_0].id = ++env->id_gen; 6750 } 6751 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 6752 mark_reg_known_zero(env, regs, BPF_REG_0); 6753 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 6754 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 6755 mark_reg_known_zero(env, regs, BPF_REG_0); 6756 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 6757 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 6758 mark_reg_known_zero(env, regs, BPF_REG_0); 6759 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 6760 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 6761 mark_reg_known_zero(env, regs, BPF_REG_0); 6762 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6763 regs[BPF_REG_0].mem_size = meta.mem_size; 6764 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 6765 const struct btf_type *t; 6766 6767 mark_reg_known_zero(env, regs, BPF_REG_0); 6768 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6769 if (!btf_type_is_struct(t)) { 6770 u32 tsize; 6771 const struct btf_type *ret; 6772 const char *tname; 6773 6774 /* resolve the type size of ksym. */ 6775 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6776 if (IS_ERR(ret)) { 6777 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6778 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6779 tname, PTR_ERR(ret)); 6780 return -EINVAL; 6781 } 6782 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6783 regs[BPF_REG_0].mem_size = tsize; 6784 } else { 6785 /* MEM_RDONLY may be carried from ret_flag, but it 6786 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 6787 * it will confuse the check of PTR_TO_BTF_ID in 6788 * check_mem_access(). 6789 */ 6790 ret_flag &= ~MEM_RDONLY; 6791 6792 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6793 regs[BPF_REG_0].btf = meta.ret_btf; 6794 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6795 } 6796 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 6797 int ret_btf_id; 6798 6799 mark_reg_known_zero(env, regs, BPF_REG_0); 6800 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6801 ret_btf_id = *fn->ret_btf_id; 6802 if (ret_btf_id == 0) { 6803 verbose(env, "invalid return type %u of func %s#%d\n", 6804 base_type(ret_type), func_id_name(func_id), 6805 func_id); 6806 return -EINVAL; 6807 } 6808 /* current BPF helper definitions are only coming from 6809 * built-in code with type IDs from vmlinux BTF 6810 */ 6811 regs[BPF_REG_0].btf = btf_vmlinux; 6812 regs[BPF_REG_0].btf_id = ret_btf_id; 6813 } else { 6814 verbose(env, "unknown return type %u of func %s#%d\n", 6815 base_type(ret_type), func_id_name(func_id), func_id); 6816 return -EINVAL; 6817 } 6818 6819 if (type_may_be_null(regs[BPF_REG_0].type)) 6820 regs[BPF_REG_0].id = ++env->id_gen; 6821 6822 if (is_ptr_cast_function(func_id)) { 6823 /* For release_reference() */ 6824 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6825 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6826 int id = acquire_reference_state(env, insn_idx); 6827 6828 if (id < 0) 6829 return id; 6830 /* For mark_ptr_or_null_reg() */ 6831 regs[BPF_REG_0].id = id; 6832 /* For release_reference() */ 6833 regs[BPF_REG_0].ref_obj_id = id; 6834 } 6835 6836 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6837 6838 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6839 if (err) 6840 return err; 6841 6842 if ((func_id == BPF_FUNC_get_stack || 6843 func_id == BPF_FUNC_get_task_stack) && 6844 !env->prog->has_callchain_buf) { 6845 const char *err_str; 6846 6847 #ifdef CONFIG_PERF_EVENTS 6848 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6849 err_str = "cannot get callchain buffer for func %s#%d\n"; 6850 #else 6851 err = -ENOTSUPP; 6852 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6853 #endif 6854 if (err) { 6855 verbose(env, err_str, func_id_name(func_id), func_id); 6856 return err; 6857 } 6858 6859 env->prog->has_callchain_buf = true; 6860 } 6861 6862 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6863 env->prog->call_get_stack = true; 6864 6865 if (func_id == BPF_FUNC_get_func_ip) { 6866 if (check_get_func_ip(env)) 6867 return -ENOTSUPP; 6868 env->prog->call_get_func_ip = true; 6869 } 6870 6871 if (changes_data) 6872 clear_all_pkt_pointers(env); 6873 return 0; 6874 } 6875 6876 /* mark_btf_func_reg_size() is used when the reg size is determined by 6877 * the BTF func_proto's return value size and argument. 6878 */ 6879 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6880 size_t reg_size) 6881 { 6882 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6883 6884 if (regno == BPF_REG_0) { 6885 /* Function return value */ 6886 reg->live |= REG_LIVE_WRITTEN; 6887 reg->subreg_def = reg_size == sizeof(u64) ? 6888 DEF_NOT_SUBREG : env->insn_idx + 1; 6889 } else { 6890 /* Function argument */ 6891 if (reg_size == sizeof(u64)) { 6892 mark_insn_zext(env, reg); 6893 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6894 } else { 6895 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6896 } 6897 } 6898 } 6899 6900 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6901 int *insn_idx_p) 6902 { 6903 const struct btf_type *t, *func, *func_proto, *ptr_type; 6904 struct bpf_reg_state *regs = cur_regs(env); 6905 const char *func_name, *ptr_type_name; 6906 u32 i, nargs, func_id, ptr_type_id; 6907 int err, insn_idx = *insn_idx_p; 6908 const struct btf_param *args; 6909 struct btf *desc_btf; 6910 bool acq; 6911 6912 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6913 if (!insn->imm) 6914 return 0; 6915 6916 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off); 6917 if (IS_ERR(desc_btf)) 6918 return PTR_ERR(desc_btf); 6919 6920 func_id = insn->imm; 6921 func = btf_type_by_id(desc_btf, func_id); 6922 func_name = btf_name_by_offset(desc_btf, func->name_off); 6923 func_proto = btf_type_by_id(desc_btf, func->type); 6924 6925 if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 6926 BTF_KFUNC_TYPE_CHECK, func_id)) { 6927 verbose(env, "calling kernel function %s is not allowed\n", 6928 func_name); 6929 return -EACCES; 6930 } 6931 6932 acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 6933 BTF_KFUNC_TYPE_ACQUIRE, func_id); 6934 6935 /* Check the arguments */ 6936 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6937 if (err < 0) 6938 return err; 6939 /* In case of release function, we get register number of refcounted 6940 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 6941 */ 6942 if (err) { 6943 err = release_reference(env, regs[err].ref_obj_id); 6944 if (err) { 6945 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 6946 func_name, func_id); 6947 return err; 6948 } 6949 } 6950 6951 for (i = 0; i < CALLER_SAVED_REGS; i++) 6952 mark_reg_not_init(env, regs, caller_saved[i]); 6953 6954 /* Check return type */ 6955 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6956 6957 if (acq && !btf_type_is_ptr(t)) { 6958 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 6959 return -EINVAL; 6960 } 6961 6962 if (btf_type_is_scalar(t)) { 6963 mark_reg_unknown(env, regs, BPF_REG_0); 6964 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6965 } else if (btf_type_is_ptr(t)) { 6966 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6967 &ptr_type_id); 6968 if (!btf_type_is_struct(ptr_type)) { 6969 ptr_type_name = btf_name_by_offset(desc_btf, 6970 ptr_type->name_off); 6971 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6972 func_name, btf_type_str(ptr_type), 6973 ptr_type_name); 6974 return -EINVAL; 6975 } 6976 mark_reg_known_zero(env, regs, BPF_REG_0); 6977 regs[BPF_REG_0].btf = desc_btf; 6978 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6979 regs[BPF_REG_0].btf_id = ptr_type_id; 6980 if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 6981 BTF_KFUNC_TYPE_RET_NULL, func_id)) { 6982 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 6983 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 6984 regs[BPF_REG_0].id = ++env->id_gen; 6985 } 6986 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6987 if (acq) { 6988 int id = acquire_reference_state(env, insn_idx); 6989 6990 if (id < 0) 6991 return id; 6992 regs[BPF_REG_0].id = id; 6993 regs[BPF_REG_0].ref_obj_id = id; 6994 } 6995 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6996 6997 nargs = btf_type_vlen(func_proto); 6998 args = (const struct btf_param *)(func_proto + 1); 6999 for (i = 0; i < nargs; i++) { 7000 u32 regno = i + 1; 7001 7002 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7003 if (btf_type_is_ptr(t)) 7004 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7005 else 7006 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7007 mark_btf_func_reg_size(env, regno, t->size); 7008 } 7009 7010 return 0; 7011 } 7012 7013 static bool signed_add_overflows(s64 a, s64 b) 7014 { 7015 /* Do the add in u64, where overflow is well-defined */ 7016 s64 res = (s64)((u64)a + (u64)b); 7017 7018 if (b < 0) 7019 return res > a; 7020 return res < a; 7021 } 7022 7023 static bool signed_add32_overflows(s32 a, s32 b) 7024 { 7025 /* Do the add in u32, where overflow is well-defined */ 7026 s32 res = (s32)((u32)a + (u32)b); 7027 7028 if (b < 0) 7029 return res > a; 7030 return res < a; 7031 } 7032 7033 static bool signed_sub_overflows(s64 a, s64 b) 7034 { 7035 /* Do the sub in u64, where overflow is well-defined */ 7036 s64 res = (s64)((u64)a - (u64)b); 7037 7038 if (b < 0) 7039 return res < a; 7040 return res > a; 7041 } 7042 7043 static bool signed_sub32_overflows(s32 a, s32 b) 7044 { 7045 /* Do the sub in u32, where overflow is well-defined */ 7046 s32 res = (s32)((u32)a - (u32)b); 7047 7048 if (b < 0) 7049 return res < a; 7050 return res > a; 7051 } 7052 7053 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7054 const struct bpf_reg_state *reg, 7055 enum bpf_reg_type type) 7056 { 7057 bool known = tnum_is_const(reg->var_off); 7058 s64 val = reg->var_off.value; 7059 s64 smin = reg->smin_value; 7060 7061 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7062 verbose(env, "math between %s pointer and %lld is not allowed\n", 7063 reg_type_str(env, type), val); 7064 return false; 7065 } 7066 7067 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7068 verbose(env, "%s pointer offset %d is not allowed\n", 7069 reg_type_str(env, type), reg->off); 7070 return false; 7071 } 7072 7073 if (smin == S64_MIN) { 7074 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7075 reg_type_str(env, type)); 7076 return false; 7077 } 7078 7079 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7080 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7081 smin, reg_type_str(env, type)); 7082 return false; 7083 } 7084 7085 return true; 7086 } 7087 7088 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7089 { 7090 return &env->insn_aux_data[env->insn_idx]; 7091 } 7092 7093 enum { 7094 REASON_BOUNDS = -1, 7095 REASON_TYPE = -2, 7096 REASON_PATHS = -3, 7097 REASON_LIMIT = -4, 7098 REASON_STACK = -5, 7099 }; 7100 7101 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7102 u32 *alu_limit, bool mask_to_left) 7103 { 7104 u32 max = 0, ptr_limit = 0; 7105 7106 switch (ptr_reg->type) { 7107 case PTR_TO_STACK: 7108 /* Offset 0 is out-of-bounds, but acceptable start for the 7109 * left direction, see BPF_REG_FP. Also, unknown scalar 7110 * offset where we would need to deal with min/max bounds is 7111 * currently prohibited for unprivileged. 7112 */ 7113 max = MAX_BPF_STACK + mask_to_left; 7114 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7115 break; 7116 case PTR_TO_MAP_VALUE: 7117 max = ptr_reg->map_ptr->value_size; 7118 ptr_limit = (mask_to_left ? 7119 ptr_reg->smin_value : 7120 ptr_reg->umax_value) + ptr_reg->off; 7121 break; 7122 default: 7123 return REASON_TYPE; 7124 } 7125 7126 if (ptr_limit >= max) 7127 return REASON_LIMIT; 7128 *alu_limit = ptr_limit; 7129 return 0; 7130 } 7131 7132 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7133 const struct bpf_insn *insn) 7134 { 7135 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7136 } 7137 7138 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7139 u32 alu_state, u32 alu_limit) 7140 { 7141 /* If we arrived here from different branches with different 7142 * state or limits to sanitize, then this won't work. 7143 */ 7144 if (aux->alu_state && 7145 (aux->alu_state != alu_state || 7146 aux->alu_limit != alu_limit)) 7147 return REASON_PATHS; 7148 7149 /* Corresponding fixup done in do_misc_fixups(). */ 7150 aux->alu_state = alu_state; 7151 aux->alu_limit = alu_limit; 7152 return 0; 7153 } 7154 7155 static int sanitize_val_alu(struct bpf_verifier_env *env, 7156 struct bpf_insn *insn) 7157 { 7158 struct bpf_insn_aux_data *aux = cur_aux(env); 7159 7160 if (can_skip_alu_sanitation(env, insn)) 7161 return 0; 7162 7163 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7164 } 7165 7166 static bool sanitize_needed(u8 opcode) 7167 { 7168 return opcode == BPF_ADD || opcode == BPF_SUB; 7169 } 7170 7171 struct bpf_sanitize_info { 7172 struct bpf_insn_aux_data aux; 7173 bool mask_to_left; 7174 }; 7175 7176 static struct bpf_verifier_state * 7177 sanitize_speculative_path(struct bpf_verifier_env *env, 7178 const struct bpf_insn *insn, 7179 u32 next_idx, u32 curr_idx) 7180 { 7181 struct bpf_verifier_state *branch; 7182 struct bpf_reg_state *regs; 7183 7184 branch = push_stack(env, next_idx, curr_idx, true); 7185 if (branch && insn) { 7186 regs = branch->frame[branch->curframe]->regs; 7187 if (BPF_SRC(insn->code) == BPF_K) { 7188 mark_reg_unknown(env, regs, insn->dst_reg); 7189 } else if (BPF_SRC(insn->code) == BPF_X) { 7190 mark_reg_unknown(env, regs, insn->dst_reg); 7191 mark_reg_unknown(env, regs, insn->src_reg); 7192 } 7193 } 7194 return branch; 7195 } 7196 7197 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7198 struct bpf_insn *insn, 7199 const struct bpf_reg_state *ptr_reg, 7200 const struct bpf_reg_state *off_reg, 7201 struct bpf_reg_state *dst_reg, 7202 struct bpf_sanitize_info *info, 7203 const bool commit_window) 7204 { 7205 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7206 struct bpf_verifier_state *vstate = env->cur_state; 7207 bool off_is_imm = tnum_is_const(off_reg->var_off); 7208 bool off_is_neg = off_reg->smin_value < 0; 7209 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7210 u8 opcode = BPF_OP(insn->code); 7211 u32 alu_state, alu_limit; 7212 struct bpf_reg_state tmp; 7213 bool ret; 7214 int err; 7215 7216 if (can_skip_alu_sanitation(env, insn)) 7217 return 0; 7218 7219 /* We already marked aux for masking from non-speculative 7220 * paths, thus we got here in the first place. We only care 7221 * to explore bad access from here. 7222 */ 7223 if (vstate->speculative) 7224 goto do_sim; 7225 7226 if (!commit_window) { 7227 if (!tnum_is_const(off_reg->var_off) && 7228 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7229 return REASON_BOUNDS; 7230 7231 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7232 (opcode == BPF_SUB && !off_is_neg); 7233 } 7234 7235 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7236 if (err < 0) 7237 return err; 7238 7239 if (commit_window) { 7240 /* In commit phase we narrow the masking window based on 7241 * the observed pointer move after the simulated operation. 7242 */ 7243 alu_state = info->aux.alu_state; 7244 alu_limit = abs(info->aux.alu_limit - alu_limit); 7245 } else { 7246 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7247 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7248 alu_state |= ptr_is_dst_reg ? 7249 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7250 7251 /* Limit pruning on unknown scalars to enable deep search for 7252 * potential masking differences from other program paths. 7253 */ 7254 if (!off_is_imm) 7255 env->explore_alu_limits = true; 7256 } 7257 7258 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7259 if (err < 0) 7260 return err; 7261 do_sim: 7262 /* If we're in commit phase, we're done here given we already 7263 * pushed the truncated dst_reg into the speculative verification 7264 * stack. 7265 * 7266 * Also, when register is a known constant, we rewrite register-based 7267 * operation to immediate-based, and thus do not need masking (and as 7268 * a consequence, do not need to simulate the zero-truncation either). 7269 */ 7270 if (commit_window || off_is_imm) 7271 return 0; 7272 7273 /* Simulate and find potential out-of-bounds access under 7274 * speculative execution from truncation as a result of 7275 * masking when off was not within expected range. If off 7276 * sits in dst, then we temporarily need to move ptr there 7277 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7278 * for cases where we use K-based arithmetic in one direction 7279 * and truncated reg-based in the other in order to explore 7280 * bad access. 7281 */ 7282 if (!ptr_is_dst_reg) { 7283 tmp = *dst_reg; 7284 *dst_reg = *ptr_reg; 7285 } 7286 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7287 env->insn_idx); 7288 if (!ptr_is_dst_reg && ret) 7289 *dst_reg = tmp; 7290 return !ret ? REASON_STACK : 0; 7291 } 7292 7293 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7294 { 7295 struct bpf_verifier_state *vstate = env->cur_state; 7296 7297 /* If we simulate paths under speculation, we don't update the 7298 * insn as 'seen' such that when we verify unreachable paths in 7299 * the non-speculative domain, sanitize_dead_code() can still 7300 * rewrite/sanitize them. 7301 */ 7302 if (!vstate->speculative) 7303 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7304 } 7305 7306 static int sanitize_err(struct bpf_verifier_env *env, 7307 const struct bpf_insn *insn, int reason, 7308 const struct bpf_reg_state *off_reg, 7309 const struct bpf_reg_state *dst_reg) 7310 { 7311 static const char *err = "pointer arithmetic with it prohibited for !root"; 7312 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7313 u32 dst = insn->dst_reg, src = insn->src_reg; 7314 7315 switch (reason) { 7316 case REASON_BOUNDS: 7317 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7318 off_reg == dst_reg ? dst : src, err); 7319 break; 7320 case REASON_TYPE: 7321 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7322 off_reg == dst_reg ? src : dst, err); 7323 break; 7324 case REASON_PATHS: 7325 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7326 dst, op, err); 7327 break; 7328 case REASON_LIMIT: 7329 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7330 dst, op, err); 7331 break; 7332 case REASON_STACK: 7333 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7334 dst, err); 7335 break; 7336 default: 7337 verbose(env, "verifier internal error: unknown reason (%d)\n", 7338 reason); 7339 break; 7340 } 7341 7342 return -EACCES; 7343 } 7344 7345 /* check that stack access falls within stack limits and that 'reg' doesn't 7346 * have a variable offset. 7347 * 7348 * Variable offset is prohibited for unprivileged mode for simplicity since it 7349 * requires corresponding support in Spectre masking for stack ALU. See also 7350 * retrieve_ptr_limit(). 7351 * 7352 * 7353 * 'off' includes 'reg->off'. 7354 */ 7355 static int check_stack_access_for_ptr_arithmetic( 7356 struct bpf_verifier_env *env, 7357 int regno, 7358 const struct bpf_reg_state *reg, 7359 int off) 7360 { 7361 if (!tnum_is_const(reg->var_off)) { 7362 char tn_buf[48]; 7363 7364 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7365 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7366 regno, tn_buf, off); 7367 return -EACCES; 7368 } 7369 7370 if (off >= 0 || off < -MAX_BPF_STACK) { 7371 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7372 "prohibited for !root; off=%d\n", regno, off); 7373 return -EACCES; 7374 } 7375 7376 return 0; 7377 } 7378 7379 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7380 const struct bpf_insn *insn, 7381 const struct bpf_reg_state *dst_reg) 7382 { 7383 u32 dst = insn->dst_reg; 7384 7385 /* For unprivileged we require that resulting offset must be in bounds 7386 * in order to be able to sanitize access later on. 7387 */ 7388 if (env->bypass_spec_v1) 7389 return 0; 7390 7391 switch (dst_reg->type) { 7392 case PTR_TO_STACK: 7393 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7394 dst_reg->off + dst_reg->var_off.value)) 7395 return -EACCES; 7396 break; 7397 case PTR_TO_MAP_VALUE: 7398 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7399 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7400 "prohibited for !root\n", dst); 7401 return -EACCES; 7402 } 7403 break; 7404 default: 7405 break; 7406 } 7407 7408 return 0; 7409 } 7410 7411 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7412 * Caller should also handle BPF_MOV case separately. 7413 * If we return -EACCES, caller may want to try again treating pointer as a 7414 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7415 */ 7416 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7417 struct bpf_insn *insn, 7418 const struct bpf_reg_state *ptr_reg, 7419 const struct bpf_reg_state *off_reg) 7420 { 7421 struct bpf_verifier_state *vstate = env->cur_state; 7422 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7423 struct bpf_reg_state *regs = state->regs, *dst_reg; 7424 bool known = tnum_is_const(off_reg->var_off); 7425 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7426 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7427 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7428 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7429 struct bpf_sanitize_info info = {}; 7430 u8 opcode = BPF_OP(insn->code); 7431 u32 dst = insn->dst_reg; 7432 int ret; 7433 7434 dst_reg = ®s[dst]; 7435 7436 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7437 smin_val > smax_val || umin_val > umax_val) { 7438 /* Taint dst register if offset had invalid bounds derived from 7439 * e.g. dead branches. 7440 */ 7441 __mark_reg_unknown(env, dst_reg); 7442 return 0; 7443 } 7444 7445 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7446 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7447 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7448 __mark_reg_unknown(env, dst_reg); 7449 return 0; 7450 } 7451 7452 verbose(env, 7453 "R%d 32-bit pointer arithmetic prohibited\n", 7454 dst); 7455 return -EACCES; 7456 } 7457 7458 if (ptr_reg->type & PTR_MAYBE_NULL) { 7459 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7460 dst, reg_type_str(env, ptr_reg->type)); 7461 return -EACCES; 7462 } 7463 7464 switch (base_type(ptr_reg->type)) { 7465 case CONST_PTR_TO_MAP: 7466 /* smin_val represents the known value */ 7467 if (known && smin_val == 0 && opcode == BPF_ADD) 7468 break; 7469 fallthrough; 7470 case PTR_TO_PACKET_END: 7471 case PTR_TO_SOCKET: 7472 case PTR_TO_SOCK_COMMON: 7473 case PTR_TO_TCP_SOCK: 7474 case PTR_TO_XDP_SOCK: 7475 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7476 dst, reg_type_str(env, ptr_reg->type)); 7477 return -EACCES; 7478 default: 7479 break; 7480 } 7481 7482 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7483 * The id may be overwritten later if we create a new variable offset. 7484 */ 7485 dst_reg->type = ptr_reg->type; 7486 dst_reg->id = ptr_reg->id; 7487 7488 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7489 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7490 return -EINVAL; 7491 7492 /* pointer types do not carry 32-bit bounds at the moment. */ 7493 __mark_reg32_unbounded(dst_reg); 7494 7495 if (sanitize_needed(opcode)) { 7496 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7497 &info, false); 7498 if (ret < 0) 7499 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7500 } 7501 7502 switch (opcode) { 7503 case BPF_ADD: 7504 /* We can take a fixed offset as long as it doesn't overflow 7505 * the s32 'off' field 7506 */ 7507 if (known && (ptr_reg->off + smin_val == 7508 (s64)(s32)(ptr_reg->off + smin_val))) { 7509 /* pointer += K. Accumulate it into fixed offset */ 7510 dst_reg->smin_value = smin_ptr; 7511 dst_reg->smax_value = smax_ptr; 7512 dst_reg->umin_value = umin_ptr; 7513 dst_reg->umax_value = umax_ptr; 7514 dst_reg->var_off = ptr_reg->var_off; 7515 dst_reg->off = ptr_reg->off + smin_val; 7516 dst_reg->raw = ptr_reg->raw; 7517 break; 7518 } 7519 /* A new variable offset is created. Note that off_reg->off 7520 * == 0, since it's a scalar. 7521 * dst_reg gets the pointer type and since some positive 7522 * integer value was added to the pointer, give it a new 'id' 7523 * if it's a PTR_TO_PACKET. 7524 * this creates a new 'base' pointer, off_reg (variable) gets 7525 * added into the variable offset, and we copy the fixed offset 7526 * from ptr_reg. 7527 */ 7528 if (signed_add_overflows(smin_ptr, smin_val) || 7529 signed_add_overflows(smax_ptr, smax_val)) { 7530 dst_reg->smin_value = S64_MIN; 7531 dst_reg->smax_value = S64_MAX; 7532 } else { 7533 dst_reg->smin_value = smin_ptr + smin_val; 7534 dst_reg->smax_value = smax_ptr + smax_val; 7535 } 7536 if (umin_ptr + umin_val < umin_ptr || 7537 umax_ptr + umax_val < umax_ptr) { 7538 dst_reg->umin_value = 0; 7539 dst_reg->umax_value = U64_MAX; 7540 } else { 7541 dst_reg->umin_value = umin_ptr + umin_val; 7542 dst_reg->umax_value = umax_ptr + umax_val; 7543 } 7544 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7545 dst_reg->off = ptr_reg->off; 7546 dst_reg->raw = ptr_reg->raw; 7547 if (reg_is_pkt_pointer(ptr_reg)) { 7548 dst_reg->id = ++env->id_gen; 7549 /* something was added to pkt_ptr, set range to zero */ 7550 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7551 } 7552 break; 7553 case BPF_SUB: 7554 if (dst_reg == off_reg) { 7555 /* scalar -= pointer. Creates an unknown scalar */ 7556 verbose(env, "R%d tried to subtract pointer from scalar\n", 7557 dst); 7558 return -EACCES; 7559 } 7560 /* We don't allow subtraction from FP, because (according to 7561 * test_verifier.c test "invalid fp arithmetic", JITs might not 7562 * be able to deal with it. 7563 */ 7564 if (ptr_reg->type == PTR_TO_STACK) { 7565 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7566 dst); 7567 return -EACCES; 7568 } 7569 if (known && (ptr_reg->off - smin_val == 7570 (s64)(s32)(ptr_reg->off - smin_val))) { 7571 /* pointer -= K. Subtract it from fixed offset */ 7572 dst_reg->smin_value = smin_ptr; 7573 dst_reg->smax_value = smax_ptr; 7574 dst_reg->umin_value = umin_ptr; 7575 dst_reg->umax_value = umax_ptr; 7576 dst_reg->var_off = ptr_reg->var_off; 7577 dst_reg->id = ptr_reg->id; 7578 dst_reg->off = ptr_reg->off - smin_val; 7579 dst_reg->raw = ptr_reg->raw; 7580 break; 7581 } 7582 /* A new variable offset is created. If the subtrahend is known 7583 * nonnegative, then any reg->range we had before is still good. 7584 */ 7585 if (signed_sub_overflows(smin_ptr, smax_val) || 7586 signed_sub_overflows(smax_ptr, smin_val)) { 7587 /* Overflow possible, we know nothing */ 7588 dst_reg->smin_value = S64_MIN; 7589 dst_reg->smax_value = S64_MAX; 7590 } else { 7591 dst_reg->smin_value = smin_ptr - smax_val; 7592 dst_reg->smax_value = smax_ptr - smin_val; 7593 } 7594 if (umin_ptr < umax_val) { 7595 /* Overflow possible, we know nothing */ 7596 dst_reg->umin_value = 0; 7597 dst_reg->umax_value = U64_MAX; 7598 } else { 7599 /* Cannot overflow (as long as bounds are consistent) */ 7600 dst_reg->umin_value = umin_ptr - umax_val; 7601 dst_reg->umax_value = umax_ptr - umin_val; 7602 } 7603 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7604 dst_reg->off = ptr_reg->off; 7605 dst_reg->raw = ptr_reg->raw; 7606 if (reg_is_pkt_pointer(ptr_reg)) { 7607 dst_reg->id = ++env->id_gen; 7608 /* something was added to pkt_ptr, set range to zero */ 7609 if (smin_val < 0) 7610 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7611 } 7612 break; 7613 case BPF_AND: 7614 case BPF_OR: 7615 case BPF_XOR: 7616 /* bitwise ops on pointers are troublesome, prohibit. */ 7617 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7618 dst, bpf_alu_string[opcode >> 4]); 7619 return -EACCES; 7620 default: 7621 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7622 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7623 dst, bpf_alu_string[opcode >> 4]); 7624 return -EACCES; 7625 } 7626 7627 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7628 return -EINVAL; 7629 7630 __update_reg_bounds(dst_reg); 7631 __reg_deduce_bounds(dst_reg); 7632 __reg_bound_offset(dst_reg); 7633 7634 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7635 return -EACCES; 7636 if (sanitize_needed(opcode)) { 7637 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7638 &info, true); 7639 if (ret < 0) 7640 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7641 } 7642 7643 return 0; 7644 } 7645 7646 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7647 struct bpf_reg_state *src_reg) 7648 { 7649 s32 smin_val = src_reg->s32_min_value; 7650 s32 smax_val = src_reg->s32_max_value; 7651 u32 umin_val = src_reg->u32_min_value; 7652 u32 umax_val = src_reg->u32_max_value; 7653 7654 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7655 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7656 dst_reg->s32_min_value = S32_MIN; 7657 dst_reg->s32_max_value = S32_MAX; 7658 } else { 7659 dst_reg->s32_min_value += smin_val; 7660 dst_reg->s32_max_value += smax_val; 7661 } 7662 if (dst_reg->u32_min_value + umin_val < umin_val || 7663 dst_reg->u32_max_value + umax_val < umax_val) { 7664 dst_reg->u32_min_value = 0; 7665 dst_reg->u32_max_value = U32_MAX; 7666 } else { 7667 dst_reg->u32_min_value += umin_val; 7668 dst_reg->u32_max_value += umax_val; 7669 } 7670 } 7671 7672 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7673 struct bpf_reg_state *src_reg) 7674 { 7675 s64 smin_val = src_reg->smin_value; 7676 s64 smax_val = src_reg->smax_value; 7677 u64 umin_val = src_reg->umin_value; 7678 u64 umax_val = src_reg->umax_value; 7679 7680 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7681 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7682 dst_reg->smin_value = S64_MIN; 7683 dst_reg->smax_value = S64_MAX; 7684 } else { 7685 dst_reg->smin_value += smin_val; 7686 dst_reg->smax_value += smax_val; 7687 } 7688 if (dst_reg->umin_value + umin_val < umin_val || 7689 dst_reg->umax_value + umax_val < umax_val) { 7690 dst_reg->umin_value = 0; 7691 dst_reg->umax_value = U64_MAX; 7692 } else { 7693 dst_reg->umin_value += umin_val; 7694 dst_reg->umax_value += umax_val; 7695 } 7696 } 7697 7698 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7699 struct bpf_reg_state *src_reg) 7700 { 7701 s32 smin_val = src_reg->s32_min_value; 7702 s32 smax_val = src_reg->s32_max_value; 7703 u32 umin_val = src_reg->u32_min_value; 7704 u32 umax_val = src_reg->u32_max_value; 7705 7706 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7707 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7708 /* Overflow possible, we know nothing */ 7709 dst_reg->s32_min_value = S32_MIN; 7710 dst_reg->s32_max_value = S32_MAX; 7711 } else { 7712 dst_reg->s32_min_value -= smax_val; 7713 dst_reg->s32_max_value -= smin_val; 7714 } 7715 if (dst_reg->u32_min_value < umax_val) { 7716 /* Overflow possible, we know nothing */ 7717 dst_reg->u32_min_value = 0; 7718 dst_reg->u32_max_value = U32_MAX; 7719 } else { 7720 /* Cannot overflow (as long as bounds are consistent) */ 7721 dst_reg->u32_min_value -= umax_val; 7722 dst_reg->u32_max_value -= umin_val; 7723 } 7724 } 7725 7726 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7727 struct bpf_reg_state *src_reg) 7728 { 7729 s64 smin_val = src_reg->smin_value; 7730 s64 smax_val = src_reg->smax_value; 7731 u64 umin_val = src_reg->umin_value; 7732 u64 umax_val = src_reg->umax_value; 7733 7734 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7735 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7736 /* Overflow possible, we know nothing */ 7737 dst_reg->smin_value = S64_MIN; 7738 dst_reg->smax_value = S64_MAX; 7739 } else { 7740 dst_reg->smin_value -= smax_val; 7741 dst_reg->smax_value -= smin_val; 7742 } 7743 if (dst_reg->umin_value < umax_val) { 7744 /* Overflow possible, we know nothing */ 7745 dst_reg->umin_value = 0; 7746 dst_reg->umax_value = U64_MAX; 7747 } else { 7748 /* Cannot overflow (as long as bounds are consistent) */ 7749 dst_reg->umin_value -= umax_val; 7750 dst_reg->umax_value -= umin_val; 7751 } 7752 } 7753 7754 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7755 struct bpf_reg_state *src_reg) 7756 { 7757 s32 smin_val = src_reg->s32_min_value; 7758 u32 umin_val = src_reg->u32_min_value; 7759 u32 umax_val = src_reg->u32_max_value; 7760 7761 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7762 /* Ain't nobody got time to multiply that sign */ 7763 __mark_reg32_unbounded(dst_reg); 7764 return; 7765 } 7766 /* Both values are positive, so we can work with unsigned and 7767 * copy the result to signed (unless it exceeds S32_MAX). 7768 */ 7769 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7770 /* Potential overflow, we know nothing */ 7771 __mark_reg32_unbounded(dst_reg); 7772 return; 7773 } 7774 dst_reg->u32_min_value *= umin_val; 7775 dst_reg->u32_max_value *= umax_val; 7776 if (dst_reg->u32_max_value > S32_MAX) { 7777 /* Overflow possible, we know nothing */ 7778 dst_reg->s32_min_value = S32_MIN; 7779 dst_reg->s32_max_value = S32_MAX; 7780 } else { 7781 dst_reg->s32_min_value = dst_reg->u32_min_value; 7782 dst_reg->s32_max_value = dst_reg->u32_max_value; 7783 } 7784 } 7785 7786 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7787 struct bpf_reg_state *src_reg) 7788 { 7789 s64 smin_val = src_reg->smin_value; 7790 u64 umin_val = src_reg->umin_value; 7791 u64 umax_val = src_reg->umax_value; 7792 7793 if (smin_val < 0 || dst_reg->smin_value < 0) { 7794 /* Ain't nobody got time to multiply that sign */ 7795 __mark_reg64_unbounded(dst_reg); 7796 return; 7797 } 7798 /* Both values are positive, so we can work with unsigned and 7799 * copy the result to signed (unless it exceeds S64_MAX). 7800 */ 7801 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7802 /* Potential overflow, we know nothing */ 7803 __mark_reg64_unbounded(dst_reg); 7804 return; 7805 } 7806 dst_reg->umin_value *= umin_val; 7807 dst_reg->umax_value *= umax_val; 7808 if (dst_reg->umax_value > S64_MAX) { 7809 /* Overflow possible, we know nothing */ 7810 dst_reg->smin_value = S64_MIN; 7811 dst_reg->smax_value = S64_MAX; 7812 } else { 7813 dst_reg->smin_value = dst_reg->umin_value; 7814 dst_reg->smax_value = dst_reg->umax_value; 7815 } 7816 } 7817 7818 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7819 struct bpf_reg_state *src_reg) 7820 { 7821 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7822 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7823 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7824 s32 smin_val = src_reg->s32_min_value; 7825 u32 umax_val = src_reg->u32_max_value; 7826 7827 if (src_known && dst_known) { 7828 __mark_reg32_known(dst_reg, var32_off.value); 7829 return; 7830 } 7831 7832 /* We get our minimum from the var_off, since that's inherently 7833 * bitwise. Our maximum is the minimum of the operands' maxima. 7834 */ 7835 dst_reg->u32_min_value = var32_off.value; 7836 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7837 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7838 /* Lose signed bounds when ANDing negative numbers, 7839 * ain't nobody got time for that. 7840 */ 7841 dst_reg->s32_min_value = S32_MIN; 7842 dst_reg->s32_max_value = S32_MAX; 7843 } else { 7844 /* ANDing two positives gives a positive, so safe to 7845 * cast result into s64. 7846 */ 7847 dst_reg->s32_min_value = dst_reg->u32_min_value; 7848 dst_reg->s32_max_value = dst_reg->u32_max_value; 7849 } 7850 } 7851 7852 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7853 struct bpf_reg_state *src_reg) 7854 { 7855 bool src_known = tnum_is_const(src_reg->var_off); 7856 bool dst_known = tnum_is_const(dst_reg->var_off); 7857 s64 smin_val = src_reg->smin_value; 7858 u64 umax_val = src_reg->umax_value; 7859 7860 if (src_known && dst_known) { 7861 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7862 return; 7863 } 7864 7865 /* We get our minimum from the var_off, since that's inherently 7866 * bitwise. Our maximum is the minimum of the operands' maxima. 7867 */ 7868 dst_reg->umin_value = dst_reg->var_off.value; 7869 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7870 if (dst_reg->smin_value < 0 || smin_val < 0) { 7871 /* Lose signed bounds when ANDing negative numbers, 7872 * ain't nobody got time for that. 7873 */ 7874 dst_reg->smin_value = S64_MIN; 7875 dst_reg->smax_value = S64_MAX; 7876 } else { 7877 /* ANDing two positives gives a positive, so safe to 7878 * cast result into s64. 7879 */ 7880 dst_reg->smin_value = dst_reg->umin_value; 7881 dst_reg->smax_value = dst_reg->umax_value; 7882 } 7883 /* We may learn something more from the var_off */ 7884 __update_reg_bounds(dst_reg); 7885 } 7886 7887 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7888 struct bpf_reg_state *src_reg) 7889 { 7890 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7891 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7892 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7893 s32 smin_val = src_reg->s32_min_value; 7894 u32 umin_val = src_reg->u32_min_value; 7895 7896 if (src_known && dst_known) { 7897 __mark_reg32_known(dst_reg, var32_off.value); 7898 return; 7899 } 7900 7901 /* We get our maximum from the var_off, and our minimum is the 7902 * maximum of the operands' minima 7903 */ 7904 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7905 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7906 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7907 /* Lose signed bounds when ORing negative numbers, 7908 * ain't nobody got time for that. 7909 */ 7910 dst_reg->s32_min_value = S32_MIN; 7911 dst_reg->s32_max_value = S32_MAX; 7912 } else { 7913 /* ORing two positives gives a positive, so safe to 7914 * cast result into s64. 7915 */ 7916 dst_reg->s32_min_value = dst_reg->u32_min_value; 7917 dst_reg->s32_max_value = dst_reg->u32_max_value; 7918 } 7919 } 7920 7921 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7922 struct bpf_reg_state *src_reg) 7923 { 7924 bool src_known = tnum_is_const(src_reg->var_off); 7925 bool dst_known = tnum_is_const(dst_reg->var_off); 7926 s64 smin_val = src_reg->smin_value; 7927 u64 umin_val = src_reg->umin_value; 7928 7929 if (src_known && dst_known) { 7930 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7931 return; 7932 } 7933 7934 /* We get our maximum from the var_off, and our minimum is the 7935 * maximum of the operands' minima 7936 */ 7937 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7938 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7939 if (dst_reg->smin_value < 0 || smin_val < 0) { 7940 /* Lose signed bounds when ORing negative numbers, 7941 * ain't nobody got time for that. 7942 */ 7943 dst_reg->smin_value = S64_MIN; 7944 dst_reg->smax_value = S64_MAX; 7945 } else { 7946 /* ORing two positives gives a positive, so safe to 7947 * cast result into s64. 7948 */ 7949 dst_reg->smin_value = dst_reg->umin_value; 7950 dst_reg->smax_value = dst_reg->umax_value; 7951 } 7952 /* We may learn something more from the var_off */ 7953 __update_reg_bounds(dst_reg); 7954 } 7955 7956 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7957 struct bpf_reg_state *src_reg) 7958 { 7959 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7960 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7961 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7962 s32 smin_val = src_reg->s32_min_value; 7963 7964 if (src_known && dst_known) { 7965 __mark_reg32_known(dst_reg, var32_off.value); 7966 return; 7967 } 7968 7969 /* We get both minimum and maximum from the var32_off. */ 7970 dst_reg->u32_min_value = var32_off.value; 7971 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7972 7973 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7974 /* XORing two positive sign numbers gives a positive, 7975 * so safe to cast u32 result into s32. 7976 */ 7977 dst_reg->s32_min_value = dst_reg->u32_min_value; 7978 dst_reg->s32_max_value = dst_reg->u32_max_value; 7979 } else { 7980 dst_reg->s32_min_value = S32_MIN; 7981 dst_reg->s32_max_value = S32_MAX; 7982 } 7983 } 7984 7985 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7986 struct bpf_reg_state *src_reg) 7987 { 7988 bool src_known = tnum_is_const(src_reg->var_off); 7989 bool dst_known = tnum_is_const(dst_reg->var_off); 7990 s64 smin_val = src_reg->smin_value; 7991 7992 if (src_known && dst_known) { 7993 /* dst_reg->var_off.value has been updated earlier */ 7994 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7995 return; 7996 } 7997 7998 /* We get both minimum and maximum from the var_off. */ 7999 dst_reg->umin_value = dst_reg->var_off.value; 8000 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8001 8002 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8003 /* XORing two positive sign numbers gives a positive, 8004 * so safe to cast u64 result into s64. 8005 */ 8006 dst_reg->smin_value = dst_reg->umin_value; 8007 dst_reg->smax_value = dst_reg->umax_value; 8008 } else { 8009 dst_reg->smin_value = S64_MIN; 8010 dst_reg->smax_value = S64_MAX; 8011 } 8012 8013 __update_reg_bounds(dst_reg); 8014 } 8015 8016 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8017 u64 umin_val, u64 umax_val) 8018 { 8019 /* We lose all sign bit information (except what we can pick 8020 * up from var_off) 8021 */ 8022 dst_reg->s32_min_value = S32_MIN; 8023 dst_reg->s32_max_value = S32_MAX; 8024 /* If we might shift our top bit out, then we know nothing */ 8025 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8026 dst_reg->u32_min_value = 0; 8027 dst_reg->u32_max_value = U32_MAX; 8028 } else { 8029 dst_reg->u32_min_value <<= umin_val; 8030 dst_reg->u32_max_value <<= umax_val; 8031 } 8032 } 8033 8034 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8035 struct bpf_reg_state *src_reg) 8036 { 8037 u32 umax_val = src_reg->u32_max_value; 8038 u32 umin_val = src_reg->u32_min_value; 8039 /* u32 alu operation will zext upper bits */ 8040 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8041 8042 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8043 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8044 /* Not required but being careful mark reg64 bounds as unknown so 8045 * that we are forced to pick them up from tnum and zext later and 8046 * if some path skips this step we are still safe. 8047 */ 8048 __mark_reg64_unbounded(dst_reg); 8049 __update_reg32_bounds(dst_reg); 8050 } 8051 8052 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8053 u64 umin_val, u64 umax_val) 8054 { 8055 /* Special case <<32 because it is a common compiler pattern to sign 8056 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8057 * positive we know this shift will also be positive so we can track 8058 * bounds correctly. Otherwise we lose all sign bit information except 8059 * what we can pick up from var_off. Perhaps we can generalize this 8060 * later to shifts of any length. 8061 */ 8062 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8063 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8064 else 8065 dst_reg->smax_value = S64_MAX; 8066 8067 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8068 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8069 else 8070 dst_reg->smin_value = S64_MIN; 8071 8072 /* If we might shift our top bit out, then we know nothing */ 8073 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8074 dst_reg->umin_value = 0; 8075 dst_reg->umax_value = U64_MAX; 8076 } else { 8077 dst_reg->umin_value <<= umin_val; 8078 dst_reg->umax_value <<= umax_val; 8079 } 8080 } 8081 8082 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8083 struct bpf_reg_state *src_reg) 8084 { 8085 u64 umax_val = src_reg->umax_value; 8086 u64 umin_val = src_reg->umin_value; 8087 8088 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8089 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8090 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8091 8092 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8093 /* We may learn something more from the var_off */ 8094 __update_reg_bounds(dst_reg); 8095 } 8096 8097 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8098 struct bpf_reg_state *src_reg) 8099 { 8100 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8101 u32 umax_val = src_reg->u32_max_value; 8102 u32 umin_val = src_reg->u32_min_value; 8103 8104 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8105 * be negative, then either: 8106 * 1) src_reg might be zero, so the sign bit of the result is 8107 * unknown, so we lose our signed bounds 8108 * 2) it's known negative, thus the unsigned bounds capture the 8109 * signed bounds 8110 * 3) the signed bounds cross zero, so they tell us nothing 8111 * about the result 8112 * If the value in dst_reg is known nonnegative, then again the 8113 * unsigned bounds capture the signed bounds. 8114 * Thus, in all cases it suffices to blow away our signed bounds 8115 * and rely on inferring new ones from the unsigned bounds and 8116 * var_off of the result. 8117 */ 8118 dst_reg->s32_min_value = S32_MIN; 8119 dst_reg->s32_max_value = S32_MAX; 8120 8121 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8122 dst_reg->u32_min_value >>= umax_val; 8123 dst_reg->u32_max_value >>= umin_val; 8124 8125 __mark_reg64_unbounded(dst_reg); 8126 __update_reg32_bounds(dst_reg); 8127 } 8128 8129 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8130 struct bpf_reg_state *src_reg) 8131 { 8132 u64 umax_val = src_reg->umax_value; 8133 u64 umin_val = src_reg->umin_value; 8134 8135 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8136 * be negative, then either: 8137 * 1) src_reg might be zero, so the sign bit of the result is 8138 * unknown, so we lose our signed bounds 8139 * 2) it's known negative, thus the unsigned bounds capture the 8140 * signed bounds 8141 * 3) the signed bounds cross zero, so they tell us nothing 8142 * about the result 8143 * If the value in dst_reg is known nonnegative, then again the 8144 * unsigned bounds capture the signed bounds. 8145 * Thus, in all cases it suffices to blow away our signed bounds 8146 * and rely on inferring new ones from the unsigned bounds and 8147 * var_off of the result. 8148 */ 8149 dst_reg->smin_value = S64_MIN; 8150 dst_reg->smax_value = S64_MAX; 8151 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8152 dst_reg->umin_value >>= umax_val; 8153 dst_reg->umax_value >>= umin_val; 8154 8155 /* Its not easy to operate on alu32 bounds here because it depends 8156 * on bits being shifted in. Take easy way out and mark unbounded 8157 * so we can recalculate later from tnum. 8158 */ 8159 __mark_reg32_unbounded(dst_reg); 8160 __update_reg_bounds(dst_reg); 8161 } 8162 8163 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8164 struct bpf_reg_state *src_reg) 8165 { 8166 u64 umin_val = src_reg->u32_min_value; 8167 8168 /* Upon reaching here, src_known is true and 8169 * umax_val is equal to umin_val. 8170 */ 8171 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8172 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8173 8174 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8175 8176 /* blow away the dst_reg umin_value/umax_value and rely on 8177 * dst_reg var_off to refine the result. 8178 */ 8179 dst_reg->u32_min_value = 0; 8180 dst_reg->u32_max_value = U32_MAX; 8181 8182 __mark_reg64_unbounded(dst_reg); 8183 __update_reg32_bounds(dst_reg); 8184 } 8185 8186 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8187 struct bpf_reg_state *src_reg) 8188 { 8189 u64 umin_val = src_reg->umin_value; 8190 8191 /* Upon reaching here, src_known is true and umax_val is equal 8192 * to umin_val. 8193 */ 8194 dst_reg->smin_value >>= umin_val; 8195 dst_reg->smax_value >>= umin_val; 8196 8197 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8198 8199 /* blow away the dst_reg umin_value/umax_value and rely on 8200 * dst_reg var_off to refine the result. 8201 */ 8202 dst_reg->umin_value = 0; 8203 dst_reg->umax_value = U64_MAX; 8204 8205 /* Its not easy to operate on alu32 bounds here because it depends 8206 * on bits being shifted in from upper 32-bits. Take easy way out 8207 * and mark unbounded so we can recalculate later from tnum. 8208 */ 8209 __mark_reg32_unbounded(dst_reg); 8210 __update_reg_bounds(dst_reg); 8211 } 8212 8213 /* WARNING: This function does calculations on 64-bit values, but the actual 8214 * execution may occur on 32-bit values. Therefore, things like bitshifts 8215 * need extra checks in the 32-bit case. 8216 */ 8217 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8218 struct bpf_insn *insn, 8219 struct bpf_reg_state *dst_reg, 8220 struct bpf_reg_state src_reg) 8221 { 8222 struct bpf_reg_state *regs = cur_regs(env); 8223 u8 opcode = BPF_OP(insn->code); 8224 bool src_known; 8225 s64 smin_val, smax_val; 8226 u64 umin_val, umax_val; 8227 s32 s32_min_val, s32_max_val; 8228 u32 u32_min_val, u32_max_val; 8229 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8230 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8231 int ret; 8232 8233 smin_val = src_reg.smin_value; 8234 smax_val = src_reg.smax_value; 8235 umin_val = src_reg.umin_value; 8236 umax_val = src_reg.umax_value; 8237 8238 s32_min_val = src_reg.s32_min_value; 8239 s32_max_val = src_reg.s32_max_value; 8240 u32_min_val = src_reg.u32_min_value; 8241 u32_max_val = src_reg.u32_max_value; 8242 8243 if (alu32) { 8244 src_known = tnum_subreg_is_const(src_reg.var_off); 8245 if ((src_known && 8246 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8247 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8248 /* Taint dst register if offset had invalid bounds 8249 * derived from e.g. dead branches. 8250 */ 8251 __mark_reg_unknown(env, dst_reg); 8252 return 0; 8253 } 8254 } else { 8255 src_known = tnum_is_const(src_reg.var_off); 8256 if ((src_known && 8257 (smin_val != smax_val || umin_val != umax_val)) || 8258 smin_val > smax_val || umin_val > umax_val) { 8259 /* Taint dst register if offset had invalid bounds 8260 * derived from e.g. dead branches. 8261 */ 8262 __mark_reg_unknown(env, dst_reg); 8263 return 0; 8264 } 8265 } 8266 8267 if (!src_known && 8268 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8269 __mark_reg_unknown(env, dst_reg); 8270 return 0; 8271 } 8272 8273 if (sanitize_needed(opcode)) { 8274 ret = sanitize_val_alu(env, insn); 8275 if (ret < 0) 8276 return sanitize_err(env, insn, ret, NULL, NULL); 8277 } 8278 8279 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8280 * There are two classes of instructions: The first class we track both 8281 * alu32 and alu64 sign/unsigned bounds independently this provides the 8282 * greatest amount of precision when alu operations are mixed with jmp32 8283 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8284 * and BPF_OR. This is possible because these ops have fairly easy to 8285 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8286 * See alu32 verifier tests for examples. The second class of 8287 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8288 * with regards to tracking sign/unsigned bounds because the bits may 8289 * cross subreg boundaries in the alu64 case. When this happens we mark 8290 * the reg unbounded in the subreg bound space and use the resulting 8291 * tnum to calculate an approximation of the sign/unsigned bounds. 8292 */ 8293 switch (opcode) { 8294 case BPF_ADD: 8295 scalar32_min_max_add(dst_reg, &src_reg); 8296 scalar_min_max_add(dst_reg, &src_reg); 8297 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8298 break; 8299 case BPF_SUB: 8300 scalar32_min_max_sub(dst_reg, &src_reg); 8301 scalar_min_max_sub(dst_reg, &src_reg); 8302 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8303 break; 8304 case BPF_MUL: 8305 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8306 scalar32_min_max_mul(dst_reg, &src_reg); 8307 scalar_min_max_mul(dst_reg, &src_reg); 8308 break; 8309 case BPF_AND: 8310 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8311 scalar32_min_max_and(dst_reg, &src_reg); 8312 scalar_min_max_and(dst_reg, &src_reg); 8313 break; 8314 case BPF_OR: 8315 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8316 scalar32_min_max_or(dst_reg, &src_reg); 8317 scalar_min_max_or(dst_reg, &src_reg); 8318 break; 8319 case BPF_XOR: 8320 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8321 scalar32_min_max_xor(dst_reg, &src_reg); 8322 scalar_min_max_xor(dst_reg, &src_reg); 8323 break; 8324 case BPF_LSH: 8325 if (umax_val >= insn_bitness) { 8326 /* Shifts greater than 31 or 63 are undefined. 8327 * This includes shifts by a negative number. 8328 */ 8329 mark_reg_unknown(env, regs, insn->dst_reg); 8330 break; 8331 } 8332 if (alu32) 8333 scalar32_min_max_lsh(dst_reg, &src_reg); 8334 else 8335 scalar_min_max_lsh(dst_reg, &src_reg); 8336 break; 8337 case BPF_RSH: 8338 if (umax_val >= insn_bitness) { 8339 /* Shifts greater than 31 or 63 are undefined. 8340 * This includes shifts by a negative number. 8341 */ 8342 mark_reg_unknown(env, regs, insn->dst_reg); 8343 break; 8344 } 8345 if (alu32) 8346 scalar32_min_max_rsh(dst_reg, &src_reg); 8347 else 8348 scalar_min_max_rsh(dst_reg, &src_reg); 8349 break; 8350 case BPF_ARSH: 8351 if (umax_val >= insn_bitness) { 8352 /* Shifts greater than 31 or 63 are undefined. 8353 * This includes shifts by a negative number. 8354 */ 8355 mark_reg_unknown(env, regs, insn->dst_reg); 8356 break; 8357 } 8358 if (alu32) 8359 scalar32_min_max_arsh(dst_reg, &src_reg); 8360 else 8361 scalar_min_max_arsh(dst_reg, &src_reg); 8362 break; 8363 default: 8364 mark_reg_unknown(env, regs, insn->dst_reg); 8365 break; 8366 } 8367 8368 /* ALU32 ops are zero extended into 64bit register */ 8369 if (alu32) 8370 zext_32_to_64(dst_reg); 8371 8372 __update_reg_bounds(dst_reg); 8373 __reg_deduce_bounds(dst_reg); 8374 __reg_bound_offset(dst_reg); 8375 return 0; 8376 } 8377 8378 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8379 * and var_off. 8380 */ 8381 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8382 struct bpf_insn *insn) 8383 { 8384 struct bpf_verifier_state *vstate = env->cur_state; 8385 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8386 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8387 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8388 u8 opcode = BPF_OP(insn->code); 8389 int err; 8390 8391 dst_reg = ®s[insn->dst_reg]; 8392 src_reg = NULL; 8393 if (dst_reg->type != SCALAR_VALUE) 8394 ptr_reg = dst_reg; 8395 else 8396 /* Make sure ID is cleared otherwise dst_reg min/max could be 8397 * incorrectly propagated into other registers by find_equal_scalars() 8398 */ 8399 dst_reg->id = 0; 8400 if (BPF_SRC(insn->code) == BPF_X) { 8401 src_reg = ®s[insn->src_reg]; 8402 if (src_reg->type != SCALAR_VALUE) { 8403 if (dst_reg->type != SCALAR_VALUE) { 8404 /* Combining two pointers by any ALU op yields 8405 * an arbitrary scalar. Disallow all math except 8406 * pointer subtraction 8407 */ 8408 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8409 mark_reg_unknown(env, regs, insn->dst_reg); 8410 return 0; 8411 } 8412 verbose(env, "R%d pointer %s pointer prohibited\n", 8413 insn->dst_reg, 8414 bpf_alu_string[opcode >> 4]); 8415 return -EACCES; 8416 } else { 8417 /* scalar += pointer 8418 * This is legal, but we have to reverse our 8419 * src/dest handling in computing the range 8420 */ 8421 err = mark_chain_precision(env, insn->dst_reg); 8422 if (err) 8423 return err; 8424 return adjust_ptr_min_max_vals(env, insn, 8425 src_reg, dst_reg); 8426 } 8427 } else if (ptr_reg) { 8428 /* pointer += scalar */ 8429 err = mark_chain_precision(env, insn->src_reg); 8430 if (err) 8431 return err; 8432 return adjust_ptr_min_max_vals(env, insn, 8433 dst_reg, src_reg); 8434 } 8435 } else { 8436 /* Pretend the src is a reg with a known value, since we only 8437 * need to be able to read from this state. 8438 */ 8439 off_reg.type = SCALAR_VALUE; 8440 __mark_reg_known(&off_reg, insn->imm); 8441 src_reg = &off_reg; 8442 if (ptr_reg) /* pointer += K */ 8443 return adjust_ptr_min_max_vals(env, insn, 8444 ptr_reg, src_reg); 8445 } 8446 8447 /* Got here implies adding two SCALAR_VALUEs */ 8448 if (WARN_ON_ONCE(ptr_reg)) { 8449 print_verifier_state(env, state, true); 8450 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8451 return -EINVAL; 8452 } 8453 if (WARN_ON(!src_reg)) { 8454 print_verifier_state(env, state, true); 8455 verbose(env, "verifier internal error: no src_reg\n"); 8456 return -EINVAL; 8457 } 8458 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8459 } 8460 8461 /* check validity of 32-bit and 64-bit arithmetic operations */ 8462 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8463 { 8464 struct bpf_reg_state *regs = cur_regs(env); 8465 u8 opcode = BPF_OP(insn->code); 8466 int err; 8467 8468 if (opcode == BPF_END || opcode == BPF_NEG) { 8469 if (opcode == BPF_NEG) { 8470 if (BPF_SRC(insn->code) != 0 || 8471 insn->src_reg != BPF_REG_0 || 8472 insn->off != 0 || insn->imm != 0) { 8473 verbose(env, "BPF_NEG uses reserved fields\n"); 8474 return -EINVAL; 8475 } 8476 } else { 8477 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8478 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8479 BPF_CLASS(insn->code) == BPF_ALU64) { 8480 verbose(env, "BPF_END uses reserved fields\n"); 8481 return -EINVAL; 8482 } 8483 } 8484 8485 /* check src operand */ 8486 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8487 if (err) 8488 return err; 8489 8490 if (is_pointer_value(env, insn->dst_reg)) { 8491 verbose(env, "R%d pointer arithmetic prohibited\n", 8492 insn->dst_reg); 8493 return -EACCES; 8494 } 8495 8496 /* check dest operand */ 8497 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8498 if (err) 8499 return err; 8500 8501 } else if (opcode == BPF_MOV) { 8502 8503 if (BPF_SRC(insn->code) == BPF_X) { 8504 if (insn->imm != 0 || insn->off != 0) { 8505 verbose(env, "BPF_MOV uses reserved fields\n"); 8506 return -EINVAL; 8507 } 8508 8509 /* check src operand */ 8510 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8511 if (err) 8512 return err; 8513 } else { 8514 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8515 verbose(env, "BPF_MOV uses reserved fields\n"); 8516 return -EINVAL; 8517 } 8518 } 8519 8520 /* check dest operand, mark as required later */ 8521 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8522 if (err) 8523 return err; 8524 8525 if (BPF_SRC(insn->code) == BPF_X) { 8526 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8527 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8528 8529 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8530 /* case: R1 = R2 8531 * copy register state to dest reg 8532 */ 8533 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8534 /* Assign src and dst registers the same ID 8535 * that will be used by find_equal_scalars() 8536 * to propagate min/max range. 8537 */ 8538 src_reg->id = ++env->id_gen; 8539 *dst_reg = *src_reg; 8540 dst_reg->live |= REG_LIVE_WRITTEN; 8541 dst_reg->subreg_def = DEF_NOT_SUBREG; 8542 } else { 8543 /* R1 = (u32) R2 */ 8544 if (is_pointer_value(env, insn->src_reg)) { 8545 verbose(env, 8546 "R%d partial copy of pointer\n", 8547 insn->src_reg); 8548 return -EACCES; 8549 } else if (src_reg->type == SCALAR_VALUE) { 8550 *dst_reg = *src_reg; 8551 /* Make sure ID is cleared otherwise 8552 * dst_reg min/max could be incorrectly 8553 * propagated into src_reg by find_equal_scalars() 8554 */ 8555 dst_reg->id = 0; 8556 dst_reg->live |= REG_LIVE_WRITTEN; 8557 dst_reg->subreg_def = env->insn_idx + 1; 8558 } else { 8559 mark_reg_unknown(env, regs, 8560 insn->dst_reg); 8561 } 8562 zext_32_to_64(dst_reg); 8563 8564 __update_reg_bounds(dst_reg); 8565 __reg_deduce_bounds(dst_reg); 8566 __reg_bound_offset(dst_reg); 8567 } 8568 } else { 8569 /* case: R = imm 8570 * remember the value we stored into this reg 8571 */ 8572 /* clear any state __mark_reg_known doesn't set */ 8573 mark_reg_unknown(env, regs, insn->dst_reg); 8574 regs[insn->dst_reg].type = SCALAR_VALUE; 8575 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8576 __mark_reg_known(regs + insn->dst_reg, 8577 insn->imm); 8578 } else { 8579 __mark_reg_known(regs + insn->dst_reg, 8580 (u32)insn->imm); 8581 } 8582 } 8583 8584 } else if (opcode > BPF_END) { 8585 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8586 return -EINVAL; 8587 8588 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8589 8590 if (BPF_SRC(insn->code) == BPF_X) { 8591 if (insn->imm != 0 || insn->off != 0) { 8592 verbose(env, "BPF_ALU uses reserved fields\n"); 8593 return -EINVAL; 8594 } 8595 /* check src1 operand */ 8596 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8597 if (err) 8598 return err; 8599 } else { 8600 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8601 verbose(env, "BPF_ALU uses reserved fields\n"); 8602 return -EINVAL; 8603 } 8604 } 8605 8606 /* check src2 operand */ 8607 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8608 if (err) 8609 return err; 8610 8611 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8612 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8613 verbose(env, "div by zero\n"); 8614 return -EINVAL; 8615 } 8616 8617 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8618 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8619 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8620 8621 if (insn->imm < 0 || insn->imm >= size) { 8622 verbose(env, "invalid shift %d\n", insn->imm); 8623 return -EINVAL; 8624 } 8625 } 8626 8627 /* check dest operand */ 8628 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8629 if (err) 8630 return err; 8631 8632 return adjust_reg_min_max_vals(env, insn); 8633 } 8634 8635 return 0; 8636 } 8637 8638 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8639 struct bpf_reg_state *dst_reg, 8640 enum bpf_reg_type type, int new_range) 8641 { 8642 struct bpf_reg_state *reg; 8643 int i; 8644 8645 for (i = 0; i < MAX_BPF_REG; i++) { 8646 reg = &state->regs[i]; 8647 if (reg->type == type && reg->id == dst_reg->id) 8648 /* keep the maximum range already checked */ 8649 reg->range = max(reg->range, new_range); 8650 } 8651 8652 bpf_for_each_spilled_reg(i, state, reg) { 8653 if (!reg) 8654 continue; 8655 if (reg->type == type && reg->id == dst_reg->id) 8656 reg->range = max(reg->range, new_range); 8657 } 8658 } 8659 8660 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8661 struct bpf_reg_state *dst_reg, 8662 enum bpf_reg_type type, 8663 bool range_right_open) 8664 { 8665 int new_range, i; 8666 8667 if (dst_reg->off < 0 || 8668 (dst_reg->off == 0 && range_right_open)) 8669 /* This doesn't give us any range */ 8670 return; 8671 8672 if (dst_reg->umax_value > MAX_PACKET_OFF || 8673 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8674 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8675 * than pkt_end, but that's because it's also less than pkt. 8676 */ 8677 return; 8678 8679 new_range = dst_reg->off; 8680 if (range_right_open) 8681 new_range++; 8682 8683 /* Examples for register markings: 8684 * 8685 * pkt_data in dst register: 8686 * 8687 * r2 = r3; 8688 * r2 += 8; 8689 * if (r2 > pkt_end) goto <handle exception> 8690 * <access okay> 8691 * 8692 * r2 = r3; 8693 * r2 += 8; 8694 * if (r2 < pkt_end) goto <access okay> 8695 * <handle exception> 8696 * 8697 * Where: 8698 * r2 == dst_reg, pkt_end == src_reg 8699 * r2=pkt(id=n,off=8,r=0) 8700 * r3=pkt(id=n,off=0,r=0) 8701 * 8702 * pkt_data in src register: 8703 * 8704 * r2 = r3; 8705 * r2 += 8; 8706 * if (pkt_end >= r2) goto <access okay> 8707 * <handle exception> 8708 * 8709 * r2 = r3; 8710 * r2 += 8; 8711 * if (pkt_end <= r2) goto <handle exception> 8712 * <access okay> 8713 * 8714 * Where: 8715 * pkt_end == dst_reg, r2 == src_reg 8716 * r2=pkt(id=n,off=8,r=0) 8717 * r3=pkt(id=n,off=0,r=0) 8718 * 8719 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8720 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8721 * and [r3, r3 + 8-1) respectively is safe to access depending on 8722 * the check. 8723 */ 8724 8725 /* If our ids match, then we must have the same max_value. And we 8726 * don't care about the other reg's fixed offset, since if it's too big 8727 * the range won't allow anything. 8728 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8729 */ 8730 for (i = 0; i <= vstate->curframe; i++) 8731 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8732 new_range); 8733 } 8734 8735 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8736 { 8737 struct tnum subreg = tnum_subreg(reg->var_off); 8738 s32 sval = (s32)val; 8739 8740 switch (opcode) { 8741 case BPF_JEQ: 8742 if (tnum_is_const(subreg)) 8743 return !!tnum_equals_const(subreg, val); 8744 break; 8745 case BPF_JNE: 8746 if (tnum_is_const(subreg)) 8747 return !tnum_equals_const(subreg, val); 8748 break; 8749 case BPF_JSET: 8750 if ((~subreg.mask & subreg.value) & val) 8751 return 1; 8752 if (!((subreg.mask | subreg.value) & val)) 8753 return 0; 8754 break; 8755 case BPF_JGT: 8756 if (reg->u32_min_value > val) 8757 return 1; 8758 else if (reg->u32_max_value <= val) 8759 return 0; 8760 break; 8761 case BPF_JSGT: 8762 if (reg->s32_min_value > sval) 8763 return 1; 8764 else if (reg->s32_max_value <= sval) 8765 return 0; 8766 break; 8767 case BPF_JLT: 8768 if (reg->u32_max_value < val) 8769 return 1; 8770 else if (reg->u32_min_value >= val) 8771 return 0; 8772 break; 8773 case BPF_JSLT: 8774 if (reg->s32_max_value < sval) 8775 return 1; 8776 else if (reg->s32_min_value >= sval) 8777 return 0; 8778 break; 8779 case BPF_JGE: 8780 if (reg->u32_min_value >= val) 8781 return 1; 8782 else if (reg->u32_max_value < val) 8783 return 0; 8784 break; 8785 case BPF_JSGE: 8786 if (reg->s32_min_value >= sval) 8787 return 1; 8788 else if (reg->s32_max_value < sval) 8789 return 0; 8790 break; 8791 case BPF_JLE: 8792 if (reg->u32_max_value <= val) 8793 return 1; 8794 else if (reg->u32_min_value > val) 8795 return 0; 8796 break; 8797 case BPF_JSLE: 8798 if (reg->s32_max_value <= sval) 8799 return 1; 8800 else if (reg->s32_min_value > sval) 8801 return 0; 8802 break; 8803 } 8804 8805 return -1; 8806 } 8807 8808 8809 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8810 { 8811 s64 sval = (s64)val; 8812 8813 switch (opcode) { 8814 case BPF_JEQ: 8815 if (tnum_is_const(reg->var_off)) 8816 return !!tnum_equals_const(reg->var_off, val); 8817 break; 8818 case BPF_JNE: 8819 if (tnum_is_const(reg->var_off)) 8820 return !tnum_equals_const(reg->var_off, val); 8821 break; 8822 case BPF_JSET: 8823 if ((~reg->var_off.mask & reg->var_off.value) & val) 8824 return 1; 8825 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8826 return 0; 8827 break; 8828 case BPF_JGT: 8829 if (reg->umin_value > val) 8830 return 1; 8831 else if (reg->umax_value <= val) 8832 return 0; 8833 break; 8834 case BPF_JSGT: 8835 if (reg->smin_value > sval) 8836 return 1; 8837 else if (reg->smax_value <= sval) 8838 return 0; 8839 break; 8840 case BPF_JLT: 8841 if (reg->umax_value < val) 8842 return 1; 8843 else if (reg->umin_value >= val) 8844 return 0; 8845 break; 8846 case BPF_JSLT: 8847 if (reg->smax_value < sval) 8848 return 1; 8849 else if (reg->smin_value >= sval) 8850 return 0; 8851 break; 8852 case BPF_JGE: 8853 if (reg->umin_value >= val) 8854 return 1; 8855 else if (reg->umax_value < val) 8856 return 0; 8857 break; 8858 case BPF_JSGE: 8859 if (reg->smin_value >= sval) 8860 return 1; 8861 else if (reg->smax_value < sval) 8862 return 0; 8863 break; 8864 case BPF_JLE: 8865 if (reg->umax_value <= val) 8866 return 1; 8867 else if (reg->umin_value > val) 8868 return 0; 8869 break; 8870 case BPF_JSLE: 8871 if (reg->smax_value <= sval) 8872 return 1; 8873 else if (reg->smin_value > sval) 8874 return 0; 8875 break; 8876 } 8877 8878 return -1; 8879 } 8880 8881 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8882 * and return: 8883 * 1 - branch will be taken and "goto target" will be executed 8884 * 0 - branch will not be taken and fall-through to next insn 8885 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8886 * range [0,10] 8887 */ 8888 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8889 bool is_jmp32) 8890 { 8891 if (__is_pointer_value(false, reg)) { 8892 if (!reg_type_not_null(reg->type)) 8893 return -1; 8894 8895 /* If pointer is valid tests against zero will fail so we can 8896 * use this to direct branch taken. 8897 */ 8898 if (val != 0) 8899 return -1; 8900 8901 switch (opcode) { 8902 case BPF_JEQ: 8903 return 0; 8904 case BPF_JNE: 8905 return 1; 8906 default: 8907 return -1; 8908 } 8909 } 8910 8911 if (is_jmp32) 8912 return is_branch32_taken(reg, val, opcode); 8913 return is_branch64_taken(reg, val, opcode); 8914 } 8915 8916 static int flip_opcode(u32 opcode) 8917 { 8918 /* How can we transform "a <op> b" into "b <op> a"? */ 8919 static const u8 opcode_flip[16] = { 8920 /* these stay the same */ 8921 [BPF_JEQ >> 4] = BPF_JEQ, 8922 [BPF_JNE >> 4] = BPF_JNE, 8923 [BPF_JSET >> 4] = BPF_JSET, 8924 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8925 [BPF_JGE >> 4] = BPF_JLE, 8926 [BPF_JGT >> 4] = BPF_JLT, 8927 [BPF_JLE >> 4] = BPF_JGE, 8928 [BPF_JLT >> 4] = BPF_JGT, 8929 [BPF_JSGE >> 4] = BPF_JSLE, 8930 [BPF_JSGT >> 4] = BPF_JSLT, 8931 [BPF_JSLE >> 4] = BPF_JSGE, 8932 [BPF_JSLT >> 4] = BPF_JSGT 8933 }; 8934 return opcode_flip[opcode >> 4]; 8935 } 8936 8937 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8938 struct bpf_reg_state *src_reg, 8939 u8 opcode) 8940 { 8941 struct bpf_reg_state *pkt; 8942 8943 if (src_reg->type == PTR_TO_PACKET_END) { 8944 pkt = dst_reg; 8945 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8946 pkt = src_reg; 8947 opcode = flip_opcode(opcode); 8948 } else { 8949 return -1; 8950 } 8951 8952 if (pkt->range >= 0) 8953 return -1; 8954 8955 switch (opcode) { 8956 case BPF_JLE: 8957 /* pkt <= pkt_end */ 8958 fallthrough; 8959 case BPF_JGT: 8960 /* pkt > pkt_end */ 8961 if (pkt->range == BEYOND_PKT_END) 8962 /* pkt has at last one extra byte beyond pkt_end */ 8963 return opcode == BPF_JGT; 8964 break; 8965 case BPF_JLT: 8966 /* pkt < pkt_end */ 8967 fallthrough; 8968 case BPF_JGE: 8969 /* pkt >= pkt_end */ 8970 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8971 return opcode == BPF_JGE; 8972 break; 8973 } 8974 return -1; 8975 } 8976 8977 /* Adjusts the register min/max values in the case that the dst_reg is the 8978 * variable register that we are working on, and src_reg is a constant or we're 8979 * simply doing a BPF_K check. 8980 * In JEQ/JNE cases we also adjust the var_off values. 8981 */ 8982 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8983 struct bpf_reg_state *false_reg, 8984 u64 val, u32 val32, 8985 u8 opcode, bool is_jmp32) 8986 { 8987 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8988 struct tnum false_64off = false_reg->var_off; 8989 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8990 struct tnum true_64off = true_reg->var_off; 8991 s64 sval = (s64)val; 8992 s32 sval32 = (s32)val32; 8993 8994 /* If the dst_reg is a pointer, we can't learn anything about its 8995 * variable offset from the compare (unless src_reg were a pointer into 8996 * the same object, but we don't bother with that. 8997 * Since false_reg and true_reg have the same type by construction, we 8998 * only need to check one of them for pointerness. 8999 */ 9000 if (__is_pointer_value(false, false_reg)) 9001 return; 9002 9003 switch (opcode) { 9004 case BPF_JEQ: 9005 case BPF_JNE: 9006 { 9007 struct bpf_reg_state *reg = 9008 opcode == BPF_JEQ ? true_reg : false_reg; 9009 9010 /* JEQ/JNE comparison doesn't change the register equivalence. 9011 * r1 = r2; 9012 * if (r1 == 42) goto label; 9013 * ... 9014 * label: // here both r1 and r2 are known to be 42. 9015 * 9016 * Hence when marking register as known preserve it's ID. 9017 */ 9018 if (is_jmp32) 9019 __mark_reg32_known(reg, val32); 9020 else 9021 ___mark_reg_known(reg, val); 9022 break; 9023 } 9024 case BPF_JSET: 9025 if (is_jmp32) { 9026 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9027 if (is_power_of_2(val32)) 9028 true_32off = tnum_or(true_32off, 9029 tnum_const(val32)); 9030 } else { 9031 false_64off = tnum_and(false_64off, tnum_const(~val)); 9032 if (is_power_of_2(val)) 9033 true_64off = tnum_or(true_64off, 9034 tnum_const(val)); 9035 } 9036 break; 9037 case BPF_JGE: 9038 case BPF_JGT: 9039 { 9040 if (is_jmp32) { 9041 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9042 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9043 9044 false_reg->u32_max_value = min(false_reg->u32_max_value, 9045 false_umax); 9046 true_reg->u32_min_value = max(true_reg->u32_min_value, 9047 true_umin); 9048 } else { 9049 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9050 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9051 9052 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9053 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9054 } 9055 break; 9056 } 9057 case BPF_JSGE: 9058 case BPF_JSGT: 9059 { 9060 if (is_jmp32) { 9061 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9062 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9063 9064 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9065 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9066 } else { 9067 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9068 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9069 9070 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9071 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9072 } 9073 break; 9074 } 9075 case BPF_JLE: 9076 case BPF_JLT: 9077 { 9078 if (is_jmp32) { 9079 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9080 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9081 9082 false_reg->u32_min_value = max(false_reg->u32_min_value, 9083 false_umin); 9084 true_reg->u32_max_value = min(true_reg->u32_max_value, 9085 true_umax); 9086 } else { 9087 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9088 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9089 9090 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9091 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9092 } 9093 break; 9094 } 9095 case BPF_JSLE: 9096 case BPF_JSLT: 9097 { 9098 if (is_jmp32) { 9099 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9100 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9101 9102 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9103 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9104 } else { 9105 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9106 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9107 9108 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9109 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9110 } 9111 break; 9112 } 9113 default: 9114 return; 9115 } 9116 9117 if (is_jmp32) { 9118 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9119 tnum_subreg(false_32off)); 9120 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9121 tnum_subreg(true_32off)); 9122 __reg_combine_32_into_64(false_reg); 9123 __reg_combine_32_into_64(true_reg); 9124 } else { 9125 false_reg->var_off = false_64off; 9126 true_reg->var_off = true_64off; 9127 __reg_combine_64_into_32(false_reg); 9128 __reg_combine_64_into_32(true_reg); 9129 } 9130 } 9131 9132 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9133 * the variable reg. 9134 */ 9135 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9136 struct bpf_reg_state *false_reg, 9137 u64 val, u32 val32, 9138 u8 opcode, bool is_jmp32) 9139 { 9140 opcode = flip_opcode(opcode); 9141 /* This uses zero as "not present in table"; luckily the zero opcode, 9142 * BPF_JA, can't get here. 9143 */ 9144 if (opcode) 9145 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9146 } 9147 9148 /* Regs are known to be equal, so intersect their min/max/var_off */ 9149 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9150 struct bpf_reg_state *dst_reg) 9151 { 9152 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9153 dst_reg->umin_value); 9154 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9155 dst_reg->umax_value); 9156 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9157 dst_reg->smin_value); 9158 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9159 dst_reg->smax_value); 9160 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9161 dst_reg->var_off); 9162 /* We might have learned new bounds from the var_off. */ 9163 __update_reg_bounds(src_reg); 9164 __update_reg_bounds(dst_reg); 9165 /* We might have learned something about the sign bit. */ 9166 __reg_deduce_bounds(src_reg); 9167 __reg_deduce_bounds(dst_reg); 9168 /* We might have learned some bits from the bounds. */ 9169 __reg_bound_offset(src_reg); 9170 __reg_bound_offset(dst_reg); 9171 /* Intersecting with the old var_off might have improved our bounds 9172 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 9173 * then new var_off is (0; 0x7f...fc) which improves our umax. 9174 */ 9175 __update_reg_bounds(src_reg); 9176 __update_reg_bounds(dst_reg); 9177 } 9178 9179 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9180 struct bpf_reg_state *true_dst, 9181 struct bpf_reg_state *false_src, 9182 struct bpf_reg_state *false_dst, 9183 u8 opcode) 9184 { 9185 switch (opcode) { 9186 case BPF_JEQ: 9187 __reg_combine_min_max(true_src, true_dst); 9188 break; 9189 case BPF_JNE: 9190 __reg_combine_min_max(false_src, false_dst); 9191 break; 9192 } 9193 } 9194 9195 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9196 struct bpf_reg_state *reg, u32 id, 9197 bool is_null) 9198 { 9199 if (type_may_be_null(reg->type) && reg->id == id && 9200 !WARN_ON_ONCE(!reg->id)) { 9201 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9202 !tnum_equals_const(reg->var_off, 0) || 9203 reg->off)) { 9204 /* Old offset (both fixed and variable parts) should 9205 * have been known-zero, because we don't allow pointer 9206 * arithmetic on pointers that might be NULL. If we 9207 * see this happening, don't convert the register. 9208 */ 9209 return; 9210 } 9211 if (is_null) { 9212 reg->type = SCALAR_VALUE; 9213 /* We don't need id and ref_obj_id from this point 9214 * onwards anymore, thus we should better reset it, 9215 * so that state pruning has chances to take effect. 9216 */ 9217 reg->id = 0; 9218 reg->ref_obj_id = 0; 9219 9220 return; 9221 } 9222 9223 mark_ptr_not_null_reg(reg); 9224 9225 if (!reg_may_point_to_spin_lock(reg)) { 9226 /* For not-NULL ptr, reg->ref_obj_id will be reset 9227 * in release_reg_references(). 9228 * 9229 * reg->id is still used by spin_lock ptr. Other 9230 * than spin_lock ptr type, reg->id can be reset. 9231 */ 9232 reg->id = 0; 9233 } 9234 } 9235 } 9236 9237 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9238 bool is_null) 9239 { 9240 struct bpf_reg_state *reg; 9241 int i; 9242 9243 for (i = 0; i < MAX_BPF_REG; i++) 9244 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9245 9246 bpf_for_each_spilled_reg(i, state, reg) { 9247 if (!reg) 9248 continue; 9249 mark_ptr_or_null_reg(state, reg, id, is_null); 9250 } 9251 } 9252 9253 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9254 * be folded together at some point. 9255 */ 9256 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9257 bool is_null) 9258 { 9259 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9260 struct bpf_reg_state *regs = state->regs; 9261 u32 ref_obj_id = regs[regno].ref_obj_id; 9262 u32 id = regs[regno].id; 9263 int i; 9264 9265 if (ref_obj_id && ref_obj_id == id && is_null) 9266 /* regs[regno] is in the " == NULL" branch. 9267 * No one could have freed the reference state before 9268 * doing the NULL check. 9269 */ 9270 WARN_ON_ONCE(release_reference_state(state, id)); 9271 9272 for (i = 0; i <= vstate->curframe; i++) 9273 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9274 } 9275 9276 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9277 struct bpf_reg_state *dst_reg, 9278 struct bpf_reg_state *src_reg, 9279 struct bpf_verifier_state *this_branch, 9280 struct bpf_verifier_state *other_branch) 9281 { 9282 if (BPF_SRC(insn->code) != BPF_X) 9283 return false; 9284 9285 /* Pointers are always 64-bit. */ 9286 if (BPF_CLASS(insn->code) == BPF_JMP32) 9287 return false; 9288 9289 switch (BPF_OP(insn->code)) { 9290 case BPF_JGT: 9291 if ((dst_reg->type == PTR_TO_PACKET && 9292 src_reg->type == PTR_TO_PACKET_END) || 9293 (dst_reg->type == PTR_TO_PACKET_META && 9294 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9295 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9296 find_good_pkt_pointers(this_branch, dst_reg, 9297 dst_reg->type, false); 9298 mark_pkt_end(other_branch, insn->dst_reg, true); 9299 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9300 src_reg->type == PTR_TO_PACKET) || 9301 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9302 src_reg->type == PTR_TO_PACKET_META)) { 9303 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9304 find_good_pkt_pointers(other_branch, src_reg, 9305 src_reg->type, true); 9306 mark_pkt_end(this_branch, insn->src_reg, false); 9307 } else { 9308 return false; 9309 } 9310 break; 9311 case BPF_JLT: 9312 if ((dst_reg->type == PTR_TO_PACKET && 9313 src_reg->type == PTR_TO_PACKET_END) || 9314 (dst_reg->type == PTR_TO_PACKET_META && 9315 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9316 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9317 find_good_pkt_pointers(other_branch, dst_reg, 9318 dst_reg->type, true); 9319 mark_pkt_end(this_branch, insn->dst_reg, false); 9320 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9321 src_reg->type == PTR_TO_PACKET) || 9322 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9323 src_reg->type == PTR_TO_PACKET_META)) { 9324 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9325 find_good_pkt_pointers(this_branch, src_reg, 9326 src_reg->type, false); 9327 mark_pkt_end(other_branch, insn->src_reg, true); 9328 } else { 9329 return false; 9330 } 9331 break; 9332 case BPF_JGE: 9333 if ((dst_reg->type == PTR_TO_PACKET && 9334 src_reg->type == PTR_TO_PACKET_END) || 9335 (dst_reg->type == PTR_TO_PACKET_META && 9336 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9337 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9338 find_good_pkt_pointers(this_branch, dst_reg, 9339 dst_reg->type, true); 9340 mark_pkt_end(other_branch, insn->dst_reg, false); 9341 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9342 src_reg->type == PTR_TO_PACKET) || 9343 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9344 src_reg->type == PTR_TO_PACKET_META)) { 9345 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9346 find_good_pkt_pointers(other_branch, src_reg, 9347 src_reg->type, false); 9348 mark_pkt_end(this_branch, insn->src_reg, true); 9349 } else { 9350 return false; 9351 } 9352 break; 9353 case BPF_JLE: 9354 if ((dst_reg->type == PTR_TO_PACKET && 9355 src_reg->type == PTR_TO_PACKET_END) || 9356 (dst_reg->type == PTR_TO_PACKET_META && 9357 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9358 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9359 find_good_pkt_pointers(other_branch, dst_reg, 9360 dst_reg->type, false); 9361 mark_pkt_end(this_branch, insn->dst_reg, true); 9362 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9363 src_reg->type == PTR_TO_PACKET) || 9364 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9365 src_reg->type == PTR_TO_PACKET_META)) { 9366 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9367 find_good_pkt_pointers(this_branch, src_reg, 9368 src_reg->type, true); 9369 mark_pkt_end(other_branch, insn->src_reg, false); 9370 } else { 9371 return false; 9372 } 9373 break; 9374 default: 9375 return false; 9376 } 9377 9378 return true; 9379 } 9380 9381 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9382 struct bpf_reg_state *known_reg) 9383 { 9384 struct bpf_func_state *state; 9385 struct bpf_reg_state *reg; 9386 int i, j; 9387 9388 for (i = 0; i <= vstate->curframe; i++) { 9389 state = vstate->frame[i]; 9390 for (j = 0; j < MAX_BPF_REG; j++) { 9391 reg = &state->regs[j]; 9392 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9393 *reg = *known_reg; 9394 } 9395 9396 bpf_for_each_spilled_reg(j, state, reg) { 9397 if (!reg) 9398 continue; 9399 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9400 *reg = *known_reg; 9401 } 9402 } 9403 } 9404 9405 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9406 struct bpf_insn *insn, int *insn_idx) 9407 { 9408 struct bpf_verifier_state *this_branch = env->cur_state; 9409 struct bpf_verifier_state *other_branch; 9410 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9411 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9412 u8 opcode = BPF_OP(insn->code); 9413 bool is_jmp32; 9414 int pred = -1; 9415 int err; 9416 9417 /* Only conditional jumps are expected to reach here. */ 9418 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9419 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9420 return -EINVAL; 9421 } 9422 9423 if (BPF_SRC(insn->code) == BPF_X) { 9424 if (insn->imm != 0) { 9425 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9426 return -EINVAL; 9427 } 9428 9429 /* check src1 operand */ 9430 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9431 if (err) 9432 return err; 9433 9434 if (is_pointer_value(env, insn->src_reg)) { 9435 verbose(env, "R%d pointer comparison prohibited\n", 9436 insn->src_reg); 9437 return -EACCES; 9438 } 9439 src_reg = ®s[insn->src_reg]; 9440 } else { 9441 if (insn->src_reg != BPF_REG_0) { 9442 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9443 return -EINVAL; 9444 } 9445 } 9446 9447 /* check src2 operand */ 9448 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9449 if (err) 9450 return err; 9451 9452 dst_reg = ®s[insn->dst_reg]; 9453 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9454 9455 if (BPF_SRC(insn->code) == BPF_K) { 9456 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9457 } else if (src_reg->type == SCALAR_VALUE && 9458 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9459 pred = is_branch_taken(dst_reg, 9460 tnum_subreg(src_reg->var_off).value, 9461 opcode, 9462 is_jmp32); 9463 } else if (src_reg->type == SCALAR_VALUE && 9464 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9465 pred = is_branch_taken(dst_reg, 9466 src_reg->var_off.value, 9467 opcode, 9468 is_jmp32); 9469 } else if (reg_is_pkt_pointer_any(dst_reg) && 9470 reg_is_pkt_pointer_any(src_reg) && 9471 !is_jmp32) { 9472 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9473 } 9474 9475 if (pred >= 0) { 9476 /* If we get here with a dst_reg pointer type it is because 9477 * above is_branch_taken() special cased the 0 comparison. 9478 */ 9479 if (!__is_pointer_value(false, dst_reg)) 9480 err = mark_chain_precision(env, insn->dst_reg); 9481 if (BPF_SRC(insn->code) == BPF_X && !err && 9482 !__is_pointer_value(false, src_reg)) 9483 err = mark_chain_precision(env, insn->src_reg); 9484 if (err) 9485 return err; 9486 } 9487 9488 if (pred == 1) { 9489 /* Only follow the goto, ignore fall-through. If needed, push 9490 * the fall-through branch for simulation under speculative 9491 * execution. 9492 */ 9493 if (!env->bypass_spec_v1 && 9494 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9495 *insn_idx)) 9496 return -EFAULT; 9497 *insn_idx += insn->off; 9498 return 0; 9499 } else if (pred == 0) { 9500 /* Only follow the fall-through branch, since that's where the 9501 * program will go. If needed, push the goto branch for 9502 * simulation under speculative execution. 9503 */ 9504 if (!env->bypass_spec_v1 && 9505 !sanitize_speculative_path(env, insn, 9506 *insn_idx + insn->off + 1, 9507 *insn_idx)) 9508 return -EFAULT; 9509 return 0; 9510 } 9511 9512 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9513 false); 9514 if (!other_branch) 9515 return -EFAULT; 9516 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9517 9518 /* detect if we are comparing against a constant value so we can adjust 9519 * our min/max values for our dst register. 9520 * this is only legit if both are scalars (or pointers to the same 9521 * object, I suppose, but we don't support that right now), because 9522 * otherwise the different base pointers mean the offsets aren't 9523 * comparable. 9524 */ 9525 if (BPF_SRC(insn->code) == BPF_X) { 9526 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9527 9528 if (dst_reg->type == SCALAR_VALUE && 9529 src_reg->type == SCALAR_VALUE) { 9530 if (tnum_is_const(src_reg->var_off) || 9531 (is_jmp32 && 9532 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9533 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9534 dst_reg, 9535 src_reg->var_off.value, 9536 tnum_subreg(src_reg->var_off).value, 9537 opcode, is_jmp32); 9538 else if (tnum_is_const(dst_reg->var_off) || 9539 (is_jmp32 && 9540 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9541 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9542 src_reg, 9543 dst_reg->var_off.value, 9544 tnum_subreg(dst_reg->var_off).value, 9545 opcode, is_jmp32); 9546 else if (!is_jmp32 && 9547 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9548 /* Comparing for equality, we can combine knowledge */ 9549 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9550 &other_branch_regs[insn->dst_reg], 9551 src_reg, dst_reg, opcode); 9552 if (src_reg->id && 9553 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9554 find_equal_scalars(this_branch, src_reg); 9555 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9556 } 9557 9558 } 9559 } else if (dst_reg->type == SCALAR_VALUE) { 9560 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9561 dst_reg, insn->imm, (u32)insn->imm, 9562 opcode, is_jmp32); 9563 } 9564 9565 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9566 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9567 find_equal_scalars(this_branch, dst_reg); 9568 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9569 } 9570 9571 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9572 * NOTE: these optimizations below are related with pointer comparison 9573 * which will never be JMP32. 9574 */ 9575 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9576 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9577 type_may_be_null(dst_reg->type)) { 9578 /* Mark all identical registers in each branch as either 9579 * safe or unknown depending R == 0 or R != 0 conditional. 9580 */ 9581 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9582 opcode == BPF_JNE); 9583 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9584 opcode == BPF_JEQ); 9585 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9586 this_branch, other_branch) && 9587 is_pointer_value(env, insn->dst_reg)) { 9588 verbose(env, "R%d pointer comparison prohibited\n", 9589 insn->dst_reg); 9590 return -EACCES; 9591 } 9592 if (env->log.level & BPF_LOG_LEVEL) 9593 print_insn_state(env, this_branch->frame[this_branch->curframe]); 9594 return 0; 9595 } 9596 9597 /* verify BPF_LD_IMM64 instruction */ 9598 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9599 { 9600 struct bpf_insn_aux_data *aux = cur_aux(env); 9601 struct bpf_reg_state *regs = cur_regs(env); 9602 struct bpf_reg_state *dst_reg; 9603 struct bpf_map *map; 9604 int err; 9605 9606 if (BPF_SIZE(insn->code) != BPF_DW) { 9607 verbose(env, "invalid BPF_LD_IMM insn\n"); 9608 return -EINVAL; 9609 } 9610 if (insn->off != 0) { 9611 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9612 return -EINVAL; 9613 } 9614 9615 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9616 if (err) 9617 return err; 9618 9619 dst_reg = ®s[insn->dst_reg]; 9620 if (insn->src_reg == 0) { 9621 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9622 9623 dst_reg->type = SCALAR_VALUE; 9624 __mark_reg_known(®s[insn->dst_reg], imm); 9625 return 0; 9626 } 9627 9628 /* All special src_reg cases are listed below. From this point onwards 9629 * we either succeed and assign a corresponding dst_reg->type after 9630 * zeroing the offset, or fail and reject the program. 9631 */ 9632 mark_reg_known_zero(env, regs, insn->dst_reg); 9633 9634 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9635 dst_reg->type = aux->btf_var.reg_type; 9636 switch (base_type(dst_reg->type)) { 9637 case PTR_TO_MEM: 9638 dst_reg->mem_size = aux->btf_var.mem_size; 9639 break; 9640 case PTR_TO_BTF_ID: 9641 case PTR_TO_PERCPU_BTF_ID: 9642 dst_reg->btf = aux->btf_var.btf; 9643 dst_reg->btf_id = aux->btf_var.btf_id; 9644 break; 9645 default: 9646 verbose(env, "bpf verifier is misconfigured\n"); 9647 return -EFAULT; 9648 } 9649 return 0; 9650 } 9651 9652 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9653 struct bpf_prog_aux *aux = env->prog->aux; 9654 u32 subprogno = find_subprog(env, 9655 env->insn_idx + insn->imm + 1); 9656 9657 if (!aux->func_info) { 9658 verbose(env, "missing btf func_info\n"); 9659 return -EINVAL; 9660 } 9661 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9662 verbose(env, "callback function not static\n"); 9663 return -EINVAL; 9664 } 9665 9666 dst_reg->type = PTR_TO_FUNC; 9667 dst_reg->subprogno = subprogno; 9668 return 0; 9669 } 9670 9671 map = env->used_maps[aux->map_index]; 9672 dst_reg->map_ptr = map; 9673 9674 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9675 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9676 dst_reg->type = PTR_TO_MAP_VALUE; 9677 dst_reg->off = aux->map_off; 9678 if (map_value_has_spin_lock(map)) 9679 dst_reg->id = ++env->id_gen; 9680 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9681 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9682 dst_reg->type = CONST_PTR_TO_MAP; 9683 } else { 9684 verbose(env, "bpf verifier is misconfigured\n"); 9685 return -EINVAL; 9686 } 9687 9688 return 0; 9689 } 9690 9691 static bool may_access_skb(enum bpf_prog_type type) 9692 { 9693 switch (type) { 9694 case BPF_PROG_TYPE_SOCKET_FILTER: 9695 case BPF_PROG_TYPE_SCHED_CLS: 9696 case BPF_PROG_TYPE_SCHED_ACT: 9697 return true; 9698 default: 9699 return false; 9700 } 9701 } 9702 9703 /* verify safety of LD_ABS|LD_IND instructions: 9704 * - they can only appear in the programs where ctx == skb 9705 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9706 * preserve R6-R9, and store return value into R0 9707 * 9708 * Implicit input: 9709 * ctx == skb == R6 == CTX 9710 * 9711 * Explicit input: 9712 * SRC == any register 9713 * IMM == 32-bit immediate 9714 * 9715 * Output: 9716 * R0 - 8/16/32-bit skb data converted to cpu endianness 9717 */ 9718 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9719 { 9720 struct bpf_reg_state *regs = cur_regs(env); 9721 static const int ctx_reg = BPF_REG_6; 9722 u8 mode = BPF_MODE(insn->code); 9723 int i, err; 9724 9725 if (!may_access_skb(resolve_prog_type(env->prog))) { 9726 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9727 return -EINVAL; 9728 } 9729 9730 if (!env->ops->gen_ld_abs) { 9731 verbose(env, "bpf verifier is misconfigured\n"); 9732 return -EINVAL; 9733 } 9734 9735 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9736 BPF_SIZE(insn->code) == BPF_DW || 9737 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9738 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9739 return -EINVAL; 9740 } 9741 9742 /* check whether implicit source operand (register R6) is readable */ 9743 err = check_reg_arg(env, ctx_reg, SRC_OP); 9744 if (err) 9745 return err; 9746 9747 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9748 * gen_ld_abs() may terminate the program at runtime, leading to 9749 * reference leak. 9750 */ 9751 err = check_reference_leak(env); 9752 if (err) { 9753 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9754 return err; 9755 } 9756 9757 if (env->cur_state->active_spin_lock) { 9758 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9759 return -EINVAL; 9760 } 9761 9762 if (regs[ctx_reg].type != PTR_TO_CTX) { 9763 verbose(env, 9764 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9765 return -EINVAL; 9766 } 9767 9768 if (mode == BPF_IND) { 9769 /* check explicit source operand */ 9770 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9771 if (err) 9772 return err; 9773 } 9774 9775 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 9776 if (err < 0) 9777 return err; 9778 9779 /* reset caller saved regs to unreadable */ 9780 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9781 mark_reg_not_init(env, regs, caller_saved[i]); 9782 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9783 } 9784 9785 /* mark destination R0 register as readable, since it contains 9786 * the value fetched from the packet. 9787 * Already marked as written above. 9788 */ 9789 mark_reg_unknown(env, regs, BPF_REG_0); 9790 /* ld_abs load up to 32-bit skb data. */ 9791 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9792 return 0; 9793 } 9794 9795 static int check_return_code(struct bpf_verifier_env *env) 9796 { 9797 struct tnum enforce_attach_type_range = tnum_unknown; 9798 const struct bpf_prog *prog = env->prog; 9799 struct bpf_reg_state *reg; 9800 struct tnum range = tnum_range(0, 1); 9801 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9802 int err; 9803 struct bpf_func_state *frame = env->cur_state->frame[0]; 9804 const bool is_subprog = frame->subprogno; 9805 9806 /* LSM and struct_ops func-ptr's return type could be "void" */ 9807 if (!is_subprog && 9808 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9809 prog_type == BPF_PROG_TYPE_LSM) && 9810 !prog->aux->attach_func_proto->type) 9811 return 0; 9812 9813 /* eBPF calling convention is such that R0 is used 9814 * to return the value from eBPF program. 9815 * Make sure that it's readable at this time 9816 * of bpf_exit, which means that program wrote 9817 * something into it earlier 9818 */ 9819 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9820 if (err) 9821 return err; 9822 9823 if (is_pointer_value(env, BPF_REG_0)) { 9824 verbose(env, "R0 leaks addr as return value\n"); 9825 return -EACCES; 9826 } 9827 9828 reg = cur_regs(env) + BPF_REG_0; 9829 9830 if (frame->in_async_callback_fn) { 9831 /* enforce return zero from async callbacks like timer */ 9832 if (reg->type != SCALAR_VALUE) { 9833 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9834 reg_type_str(env, reg->type)); 9835 return -EINVAL; 9836 } 9837 9838 if (!tnum_in(tnum_const(0), reg->var_off)) { 9839 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9840 return -EINVAL; 9841 } 9842 return 0; 9843 } 9844 9845 if (is_subprog) { 9846 if (reg->type != SCALAR_VALUE) { 9847 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9848 reg_type_str(env, reg->type)); 9849 return -EINVAL; 9850 } 9851 return 0; 9852 } 9853 9854 switch (prog_type) { 9855 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9856 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9857 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9858 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9859 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9860 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9861 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9862 range = tnum_range(1, 1); 9863 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9864 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9865 range = tnum_range(0, 3); 9866 break; 9867 case BPF_PROG_TYPE_CGROUP_SKB: 9868 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9869 range = tnum_range(0, 3); 9870 enforce_attach_type_range = tnum_range(2, 3); 9871 } 9872 break; 9873 case BPF_PROG_TYPE_CGROUP_SOCK: 9874 case BPF_PROG_TYPE_SOCK_OPS: 9875 case BPF_PROG_TYPE_CGROUP_DEVICE: 9876 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9877 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9878 break; 9879 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9880 if (!env->prog->aux->attach_btf_id) 9881 return 0; 9882 range = tnum_const(0); 9883 break; 9884 case BPF_PROG_TYPE_TRACING: 9885 switch (env->prog->expected_attach_type) { 9886 case BPF_TRACE_FENTRY: 9887 case BPF_TRACE_FEXIT: 9888 range = tnum_const(0); 9889 break; 9890 case BPF_TRACE_RAW_TP: 9891 case BPF_MODIFY_RETURN: 9892 return 0; 9893 case BPF_TRACE_ITER: 9894 break; 9895 default: 9896 return -ENOTSUPP; 9897 } 9898 break; 9899 case BPF_PROG_TYPE_SK_LOOKUP: 9900 range = tnum_range(SK_DROP, SK_PASS); 9901 break; 9902 case BPF_PROG_TYPE_EXT: 9903 /* freplace program can return anything as its return value 9904 * depends on the to-be-replaced kernel func or bpf program. 9905 */ 9906 default: 9907 return 0; 9908 } 9909 9910 if (reg->type != SCALAR_VALUE) { 9911 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9912 reg_type_str(env, reg->type)); 9913 return -EINVAL; 9914 } 9915 9916 if (!tnum_in(range, reg->var_off)) { 9917 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9918 return -EINVAL; 9919 } 9920 9921 if (!tnum_is_unknown(enforce_attach_type_range) && 9922 tnum_in(enforce_attach_type_range, reg->var_off)) 9923 env->prog->enforce_expected_attach_type = 1; 9924 return 0; 9925 } 9926 9927 /* non-recursive DFS pseudo code 9928 * 1 procedure DFS-iterative(G,v): 9929 * 2 label v as discovered 9930 * 3 let S be a stack 9931 * 4 S.push(v) 9932 * 5 while S is not empty 9933 * 6 t <- S.pop() 9934 * 7 if t is what we're looking for: 9935 * 8 return t 9936 * 9 for all edges e in G.adjacentEdges(t) do 9937 * 10 if edge e is already labelled 9938 * 11 continue with the next edge 9939 * 12 w <- G.adjacentVertex(t,e) 9940 * 13 if vertex w is not discovered and not explored 9941 * 14 label e as tree-edge 9942 * 15 label w as discovered 9943 * 16 S.push(w) 9944 * 17 continue at 5 9945 * 18 else if vertex w is discovered 9946 * 19 label e as back-edge 9947 * 20 else 9948 * 21 // vertex w is explored 9949 * 22 label e as forward- or cross-edge 9950 * 23 label t as explored 9951 * 24 S.pop() 9952 * 9953 * convention: 9954 * 0x10 - discovered 9955 * 0x11 - discovered and fall-through edge labelled 9956 * 0x12 - discovered and fall-through and branch edges labelled 9957 * 0x20 - explored 9958 */ 9959 9960 enum { 9961 DISCOVERED = 0x10, 9962 EXPLORED = 0x20, 9963 FALLTHROUGH = 1, 9964 BRANCH = 2, 9965 }; 9966 9967 static u32 state_htab_size(struct bpf_verifier_env *env) 9968 { 9969 return env->prog->len; 9970 } 9971 9972 static struct bpf_verifier_state_list **explored_state( 9973 struct bpf_verifier_env *env, 9974 int idx) 9975 { 9976 struct bpf_verifier_state *cur = env->cur_state; 9977 struct bpf_func_state *state = cur->frame[cur->curframe]; 9978 9979 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9980 } 9981 9982 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9983 { 9984 env->insn_aux_data[idx].prune_point = true; 9985 } 9986 9987 enum { 9988 DONE_EXPLORING = 0, 9989 KEEP_EXPLORING = 1, 9990 }; 9991 9992 /* t, w, e - match pseudo-code above: 9993 * t - index of current instruction 9994 * w - next instruction 9995 * e - edge 9996 */ 9997 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9998 bool loop_ok) 9999 { 10000 int *insn_stack = env->cfg.insn_stack; 10001 int *insn_state = env->cfg.insn_state; 10002 10003 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10004 return DONE_EXPLORING; 10005 10006 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10007 return DONE_EXPLORING; 10008 10009 if (w < 0 || w >= env->prog->len) { 10010 verbose_linfo(env, t, "%d: ", t); 10011 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10012 return -EINVAL; 10013 } 10014 10015 if (e == BRANCH) 10016 /* mark branch target for state pruning */ 10017 init_explored_state(env, w); 10018 10019 if (insn_state[w] == 0) { 10020 /* tree-edge */ 10021 insn_state[t] = DISCOVERED | e; 10022 insn_state[w] = DISCOVERED; 10023 if (env->cfg.cur_stack >= env->prog->len) 10024 return -E2BIG; 10025 insn_stack[env->cfg.cur_stack++] = w; 10026 return KEEP_EXPLORING; 10027 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10028 if (loop_ok && env->bpf_capable) 10029 return DONE_EXPLORING; 10030 verbose_linfo(env, t, "%d: ", t); 10031 verbose_linfo(env, w, "%d: ", w); 10032 verbose(env, "back-edge from insn %d to %d\n", t, w); 10033 return -EINVAL; 10034 } else if (insn_state[w] == EXPLORED) { 10035 /* forward- or cross-edge */ 10036 insn_state[t] = DISCOVERED | e; 10037 } else { 10038 verbose(env, "insn state internal bug\n"); 10039 return -EFAULT; 10040 } 10041 return DONE_EXPLORING; 10042 } 10043 10044 static int visit_func_call_insn(int t, int insn_cnt, 10045 struct bpf_insn *insns, 10046 struct bpf_verifier_env *env, 10047 bool visit_callee) 10048 { 10049 int ret; 10050 10051 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10052 if (ret) 10053 return ret; 10054 10055 if (t + 1 < insn_cnt) 10056 init_explored_state(env, t + 1); 10057 if (visit_callee) { 10058 init_explored_state(env, t); 10059 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10060 /* It's ok to allow recursion from CFG point of 10061 * view. __check_func_call() will do the actual 10062 * check. 10063 */ 10064 bpf_pseudo_func(insns + t)); 10065 } 10066 return ret; 10067 } 10068 10069 /* Visits the instruction at index t and returns one of the following: 10070 * < 0 - an error occurred 10071 * DONE_EXPLORING - the instruction was fully explored 10072 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10073 */ 10074 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10075 { 10076 struct bpf_insn *insns = env->prog->insnsi; 10077 int ret; 10078 10079 if (bpf_pseudo_func(insns + t)) 10080 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10081 10082 /* All non-branch instructions have a single fall-through edge. */ 10083 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10084 BPF_CLASS(insns[t].code) != BPF_JMP32) 10085 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10086 10087 switch (BPF_OP(insns[t].code)) { 10088 case BPF_EXIT: 10089 return DONE_EXPLORING; 10090 10091 case BPF_CALL: 10092 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10093 /* Mark this call insn to trigger is_state_visited() check 10094 * before call itself is processed by __check_func_call(). 10095 * Otherwise new async state will be pushed for further 10096 * exploration. 10097 */ 10098 init_explored_state(env, t); 10099 return visit_func_call_insn(t, insn_cnt, insns, env, 10100 insns[t].src_reg == BPF_PSEUDO_CALL); 10101 10102 case BPF_JA: 10103 if (BPF_SRC(insns[t].code) != BPF_K) 10104 return -EINVAL; 10105 10106 /* unconditional jump with single edge */ 10107 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10108 true); 10109 if (ret) 10110 return ret; 10111 10112 /* unconditional jmp is not a good pruning point, 10113 * but it's marked, since backtracking needs 10114 * to record jmp history in is_state_visited(). 10115 */ 10116 init_explored_state(env, t + insns[t].off + 1); 10117 /* tell verifier to check for equivalent states 10118 * after every call and jump 10119 */ 10120 if (t + 1 < insn_cnt) 10121 init_explored_state(env, t + 1); 10122 10123 return ret; 10124 10125 default: 10126 /* conditional jump with two edges */ 10127 init_explored_state(env, t); 10128 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10129 if (ret) 10130 return ret; 10131 10132 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10133 } 10134 } 10135 10136 /* non-recursive depth-first-search to detect loops in BPF program 10137 * loop == back-edge in directed graph 10138 */ 10139 static int check_cfg(struct bpf_verifier_env *env) 10140 { 10141 int insn_cnt = env->prog->len; 10142 int *insn_stack, *insn_state; 10143 int ret = 0; 10144 int i; 10145 10146 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10147 if (!insn_state) 10148 return -ENOMEM; 10149 10150 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10151 if (!insn_stack) { 10152 kvfree(insn_state); 10153 return -ENOMEM; 10154 } 10155 10156 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10157 insn_stack[0] = 0; /* 0 is the first instruction */ 10158 env->cfg.cur_stack = 1; 10159 10160 while (env->cfg.cur_stack > 0) { 10161 int t = insn_stack[env->cfg.cur_stack - 1]; 10162 10163 ret = visit_insn(t, insn_cnt, env); 10164 switch (ret) { 10165 case DONE_EXPLORING: 10166 insn_state[t] = EXPLORED; 10167 env->cfg.cur_stack--; 10168 break; 10169 case KEEP_EXPLORING: 10170 break; 10171 default: 10172 if (ret > 0) { 10173 verbose(env, "visit_insn internal bug\n"); 10174 ret = -EFAULT; 10175 } 10176 goto err_free; 10177 } 10178 } 10179 10180 if (env->cfg.cur_stack < 0) { 10181 verbose(env, "pop stack internal bug\n"); 10182 ret = -EFAULT; 10183 goto err_free; 10184 } 10185 10186 for (i = 0; i < insn_cnt; i++) { 10187 if (insn_state[i] != EXPLORED) { 10188 verbose(env, "unreachable insn %d\n", i); 10189 ret = -EINVAL; 10190 goto err_free; 10191 } 10192 } 10193 ret = 0; /* cfg looks good */ 10194 10195 err_free: 10196 kvfree(insn_state); 10197 kvfree(insn_stack); 10198 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10199 return ret; 10200 } 10201 10202 static int check_abnormal_return(struct bpf_verifier_env *env) 10203 { 10204 int i; 10205 10206 for (i = 1; i < env->subprog_cnt; i++) { 10207 if (env->subprog_info[i].has_ld_abs) { 10208 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10209 return -EINVAL; 10210 } 10211 if (env->subprog_info[i].has_tail_call) { 10212 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10213 return -EINVAL; 10214 } 10215 } 10216 return 0; 10217 } 10218 10219 /* The minimum supported BTF func info size */ 10220 #define MIN_BPF_FUNCINFO_SIZE 8 10221 #define MAX_FUNCINFO_REC_SIZE 252 10222 10223 static int check_btf_func(struct bpf_verifier_env *env, 10224 const union bpf_attr *attr, 10225 bpfptr_t uattr) 10226 { 10227 const struct btf_type *type, *func_proto, *ret_type; 10228 u32 i, nfuncs, urec_size, min_size; 10229 u32 krec_size = sizeof(struct bpf_func_info); 10230 struct bpf_func_info *krecord; 10231 struct bpf_func_info_aux *info_aux = NULL; 10232 struct bpf_prog *prog; 10233 const struct btf *btf; 10234 bpfptr_t urecord; 10235 u32 prev_offset = 0; 10236 bool scalar_return; 10237 int ret = -ENOMEM; 10238 10239 nfuncs = attr->func_info_cnt; 10240 if (!nfuncs) { 10241 if (check_abnormal_return(env)) 10242 return -EINVAL; 10243 return 0; 10244 } 10245 10246 if (nfuncs != env->subprog_cnt) { 10247 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10248 return -EINVAL; 10249 } 10250 10251 urec_size = attr->func_info_rec_size; 10252 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10253 urec_size > MAX_FUNCINFO_REC_SIZE || 10254 urec_size % sizeof(u32)) { 10255 verbose(env, "invalid func info rec size %u\n", urec_size); 10256 return -EINVAL; 10257 } 10258 10259 prog = env->prog; 10260 btf = prog->aux->btf; 10261 10262 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10263 min_size = min_t(u32, krec_size, urec_size); 10264 10265 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10266 if (!krecord) 10267 return -ENOMEM; 10268 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10269 if (!info_aux) 10270 goto err_free; 10271 10272 for (i = 0; i < nfuncs; i++) { 10273 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10274 if (ret) { 10275 if (ret == -E2BIG) { 10276 verbose(env, "nonzero tailing record in func info"); 10277 /* set the size kernel expects so loader can zero 10278 * out the rest of the record. 10279 */ 10280 if (copy_to_bpfptr_offset(uattr, 10281 offsetof(union bpf_attr, func_info_rec_size), 10282 &min_size, sizeof(min_size))) 10283 ret = -EFAULT; 10284 } 10285 goto err_free; 10286 } 10287 10288 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10289 ret = -EFAULT; 10290 goto err_free; 10291 } 10292 10293 /* check insn_off */ 10294 ret = -EINVAL; 10295 if (i == 0) { 10296 if (krecord[i].insn_off) { 10297 verbose(env, 10298 "nonzero insn_off %u for the first func info record", 10299 krecord[i].insn_off); 10300 goto err_free; 10301 } 10302 } else if (krecord[i].insn_off <= prev_offset) { 10303 verbose(env, 10304 "same or smaller insn offset (%u) than previous func info record (%u)", 10305 krecord[i].insn_off, prev_offset); 10306 goto err_free; 10307 } 10308 10309 if (env->subprog_info[i].start != krecord[i].insn_off) { 10310 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10311 goto err_free; 10312 } 10313 10314 /* check type_id */ 10315 type = btf_type_by_id(btf, krecord[i].type_id); 10316 if (!type || !btf_type_is_func(type)) { 10317 verbose(env, "invalid type id %d in func info", 10318 krecord[i].type_id); 10319 goto err_free; 10320 } 10321 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10322 10323 func_proto = btf_type_by_id(btf, type->type); 10324 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10325 /* btf_func_check() already verified it during BTF load */ 10326 goto err_free; 10327 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10328 scalar_return = 10329 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10330 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10331 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10332 goto err_free; 10333 } 10334 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10335 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10336 goto err_free; 10337 } 10338 10339 prev_offset = krecord[i].insn_off; 10340 bpfptr_add(&urecord, urec_size); 10341 } 10342 10343 prog->aux->func_info = krecord; 10344 prog->aux->func_info_cnt = nfuncs; 10345 prog->aux->func_info_aux = info_aux; 10346 return 0; 10347 10348 err_free: 10349 kvfree(krecord); 10350 kfree(info_aux); 10351 return ret; 10352 } 10353 10354 static void adjust_btf_func(struct bpf_verifier_env *env) 10355 { 10356 struct bpf_prog_aux *aux = env->prog->aux; 10357 int i; 10358 10359 if (!aux->func_info) 10360 return; 10361 10362 for (i = 0; i < env->subprog_cnt; i++) 10363 aux->func_info[i].insn_off = env->subprog_info[i].start; 10364 } 10365 10366 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10367 sizeof(((struct bpf_line_info *)(0))->line_col)) 10368 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10369 10370 static int check_btf_line(struct bpf_verifier_env *env, 10371 const union bpf_attr *attr, 10372 bpfptr_t uattr) 10373 { 10374 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10375 struct bpf_subprog_info *sub; 10376 struct bpf_line_info *linfo; 10377 struct bpf_prog *prog; 10378 const struct btf *btf; 10379 bpfptr_t ulinfo; 10380 int err; 10381 10382 nr_linfo = attr->line_info_cnt; 10383 if (!nr_linfo) 10384 return 0; 10385 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10386 return -EINVAL; 10387 10388 rec_size = attr->line_info_rec_size; 10389 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10390 rec_size > MAX_LINEINFO_REC_SIZE || 10391 rec_size & (sizeof(u32) - 1)) 10392 return -EINVAL; 10393 10394 /* Need to zero it in case the userspace may 10395 * pass in a smaller bpf_line_info object. 10396 */ 10397 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10398 GFP_KERNEL | __GFP_NOWARN); 10399 if (!linfo) 10400 return -ENOMEM; 10401 10402 prog = env->prog; 10403 btf = prog->aux->btf; 10404 10405 s = 0; 10406 sub = env->subprog_info; 10407 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10408 expected_size = sizeof(struct bpf_line_info); 10409 ncopy = min_t(u32, expected_size, rec_size); 10410 for (i = 0; i < nr_linfo; i++) { 10411 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10412 if (err) { 10413 if (err == -E2BIG) { 10414 verbose(env, "nonzero tailing record in line_info"); 10415 if (copy_to_bpfptr_offset(uattr, 10416 offsetof(union bpf_attr, line_info_rec_size), 10417 &expected_size, sizeof(expected_size))) 10418 err = -EFAULT; 10419 } 10420 goto err_free; 10421 } 10422 10423 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10424 err = -EFAULT; 10425 goto err_free; 10426 } 10427 10428 /* 10429 * Check insn_off to ensure 10430 * 1) strictly increasing AND 10431 * 2) bounded by prog->len 10432 * 10433 * The linfo[0].insn_off == 0 check logically falls into 10434 * the later "missing bpf_line_info for func..." case 10435 * because the first linfo[0].insn_off must be the 10436 * first sub also and the first sub must have 10437 * subprog_info[0].start == 0. 10438 */ 10439 if ((i && linfo[i].insn_off <= prev_offset) || 10440 linfo[i].insn_off >= prog->len) { 10441 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10442 i, linfo[i].insn_off, prev_offset, 10443 prog->len); 10444 err = -EINVAL; 10445 goto err_free; 10446 } 10447 10448 if (!prog->insnsi[linfo[i].insn_off].code) { 10449 verbose(env, 10450 "Invalid insn code at line_info[%u].insn_off\n", 10451 i); 10452 err = -EINVAL; 10453 goto err_free; 10454 } 10455 10456 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10457 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10458 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10459 err = -EINVAL; 10460 goto err_free; 10461 } 10462 10463 if (s != env->subprog_cnt) { 10464 if (linfo[i].insn_off == sub[s].start) { 10465 sub[s].linfo_idx = i; 10466 s++; 10467 } else if (sub[s].start < linfo[i].insn_off) { 10468 verbose(env, "missing bpf_line_info for func#%u\n", s); 10469 err = -EINVAL; 10470 goto err_free; 10471 } 10472 } 10473 10474 prev_offset = linfo[i].insn_off; 10475 bpfptr_add(&ulinfo, rec_size); 10476 } 10477 10478 if (s != env->subprog_cnt) { 10479 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10480 env->subprog_cnt - s, s); 10481 err = -EINVAL; 10482 goto err_free; 10483 } 10484 10485 prog->aux->linfo = linfo; 10486 prog->aux->nr_linfo = nr_linfo; 10487 10488 return 0; 10489 10490 err_free: 10491 kvfree(linfo); 10492 return err; 10493 } 10494 10495 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 10496 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 10497 10498 static int check_core_relo(struct bpf_verifier_env *env, 10499 const union bpf_attr *attr, 10500 bpfptr_t uattr) 10501 { 10502 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 10503 struct bpf_core_relo core_relo = {}; 10504 struct bpf_prog *prog = env->prog; 10505 const struct btf *btf = prog->aux->btf; 10506 struct bpf_core_ctx ctx = { 10507 .log = &env->log, 10508 .btf = btf, 10509 }; 10510 bpfptr_t u_core_relo; 10511 int err; 10512 10513 nr_core_relo = attr->core_relo_cnt; 10514 if (!nr_core_relo) 10515 return 0; 10516 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 10517 return -EINVAL; 10518 10519 rec_size = attr->core_relo_rec_size; 10520 if (rec_size < MIN_CORE_RELO_SIZE || 10521 rec_size > MAX_CORE_RELO_SIZE || 10522 rec_size % sizeof(u32)) 10523 return -EINVAL; 10524 10525 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 10526 expected_size = sizeof(struct bpf_core_relo); 10527 ncopy = min_t(u32, expected_size, rec_size); 10528 10529 /* Unlike func_info and line_info, copy and apply each CO-RE 10530 * relocation record one at a time. 10531 */ 10532 for (i = 0; i < nr_core_relo; i++) { 10533 /* future proofing when sizeof(bpf_core_relo) changes */ 10534 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 10535 if (err) { 10536 if (err == -E2BIG) { 10537 verbose(env, "nonzero tailing record in core_relo"); 10538 if (copy_to_bpfptr_offset(uattr, 10539 offsetof(union bpf_attr, core_relo_rec_size), 10540 &expected_size, sizeof(expected_size))) 10541 err = -EFAULT; 10542 } 10543 break; 10544 } 10545 10546 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 10547 err = -EFAULT; 10548 break; 10549 } 10550 10551 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 10552 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 10553 i, core_relo.insn_off, prog->len); 10554 err = -EINVAL; 10555 break; 10556 } 10557 10558 err = bpf_core_apply(&ctx, &core_relo, i, 10559 &prog->insnsi[core_relo.insn_off / 8]); 10560 if (err) 10561 break; 10562 bpfptr_add(&u_core_relo, rec_size); 10563 } 10564 return err; 10565 } 10566 10567 static int check_btf_info(struct bpf_verifier_env *env, 10568 const union bpf_attr *attr, 10569 bpfptr_t uattr) 10570 { 10571 struct btf *btf; 10572 int err; 10573 10574 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10575 if (check_abnormal_return(env)) 10576 return -EINVAL; 10577 return 0; 10578 } 10579 10580 btf = btf_get_by_fd(attr->prog_btf_fd); 10581 if (IS_ERR(btf)) 10582 return PTR_ERR(btf); 10583 if (btf_is_kernel(btf)) { 10584 btf_put(btf); 10585 return -EACCES; 10586 } 10587 env->prog->aux->btf = btf; 10588 10589 err = check_btf_func(env, attr, uattr); 10590 if (err) 10591 return err; 10592 10593 err = check_btf_line(env, attr, uattr); 10594 if (err) 10595 return err; 10596 10597 err = check_core_relo(env, attr, uattr); 10598 if (err) 10599 return err; 10600 10601 return 0; 10602 } 10603 10604 /* check %cur's range satisfies %old's */ 10605 static bool range_within(struct bpf_reg_state *old, 10606 struct bpf_reg_state *cur) 10607 { 10608 return old->umin_value <= cur->umin_value && 10609 old->umax_value >= cur->umax_value && 10610 old->smin_value <= cur->smin_value && 10611 old->smax_value >= cur->smax_value && 10612 old->u32_min_value <= cur->u32_min_value && 10613 old->u32_max_value >= cur->u32_max_value && 10614 old->s32_min_value <= cur->s32_min_value && 10615 old->s32_max_value >= cur->s32_max_value; 10616 } 10617 10618 /* If in the old state two registers had the same id, then they need to have 10619 * the same id in the new state as well. But that id could be different from 10620 * the old state, so we need to track the mapping from old to new ids. 10621 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10622 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10623 * regs with a different old id could still have new id 9, we don't care about 10624 * that. 10625 * So we look through our idmap to see if this old id has been seen before. If 10626 * so, we require the new id to match; otherwise, we add the id pair to the map. 10627 */ 10628 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10629 { 10630 unsigned int i; 10631 10632 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10633 if (!idmap[i].old) { 10634 /* Reached an empty slot; haven't seen this id before */ 10635 idmap[i].old = old_id; 10636 idmap[i].cur = cur_id; 10637 return true; 10638 } 10639 if (idmap[i].old == old_id) 10640 return idmap[i].cur == cur_id; 10641 } 10642 /* We ran out of idmap slots, which should be impossible */ 10643 WARN_ON_ONCE(1); 10644 return false; 10645 } 10646 10647 static void clean_func_state(struct bpf_verifier_env *env, 10648 struct bpf_func_state *st) 10649 { 10650 enum bpf_reg_liveness live; 10651 int i, j; 10652 10653 for (i = 0; i < BPF_REG_FP; i++) { 10654 live = st->regs[i].live; 10655 /* liveness must not touch this register anymore */ 10656 st->regs[i].live |= REG_LIVE_DONE; 10657 if (!(live & REG_LIVE_READ)) 10658 /* since the register is unused, clear its state 10659 * to make further comparison simpler 10660 */ 10661 __mark_reg_not_init(env, &st->regs[i]); 10662 } 10663 10664 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10665 live = st->stack[i].spilled_ptr.live; 10666 /* liveness must not touch this stack slot anymore */ 10667 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10668 if (!(live & REG_LIVE_READ)) { 10669 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10670 for (j = 0; j < BPF_REG_SIZE; j++) 10671 st->stack[i].slot_type[j] = STACK_INVALID; 10672 } 10673 } 10674 } 10675 10676 static void clean_verifier_state(struct bpf_verifier_env *env, 10677 struct bpf_verifier_state *st) 10678 { 10679 int i; 10680 10681 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10682 /* all regs in this state in all frames were already marked */ 10683 return; 10684 10685 for (i = 0; i <= st->curframe; i++) 10686 clean_func_state(env, st->frame[i]); 10687 } 10688 10689 /* the parentage chains form a tree. 10690 * the verifier states are added to state lists at given insn and 10691 * pushed into state stack for future exploration. 10692 * when the verifier reaches bpf_exit insn some of the verifer states 10693 * stored in the state lists have their final liveness state already, 10694 * but a lot of states will get revised from liveness point of view when 10695 * the verifier explores other branches. 10696 * Example: 10697 * 1: r0 = 1 10698 * 2: if r1 == 100 goto pc+1 10699 * 3: r0 = 2 10700 * 4: exit 10701 * when the verifier reaches exit insn the register r0 in the state list of 10702 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10703 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10704 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10705 * 10706 * Since the verifier pushes the branch states as it sees them while exploring 10707 * the program the condition of walking the branch instruction for the second 10708 * time means that all states below this branch were already explored and 10709 * their final liveness marks are already propagated. 10710 * Hence when the verifier completes the search of state list in is_state_visited() 10711 * we can call this clean_live_states() function to mark all liveness states 10712 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10713 * will not be used. 10714 * This function also clears the registers and stack for states that !READ 10715 * to simplify state merging. 10716 * 10717 * Important note here that walking the same branch instruction in the callee 10718 * doesn't meant that the states are DONE. The verifier has to compare 10719 * the callsites 10720 */ 10721 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10722 struct bpf_verifier_state *cur) 10723 { 10724 struct bpf_verifier_state_list *sl; 10725 int i; 10726 10727 sl = *explored_state(env, insn); 10728 while (sl) { 10729 if (sl->state.branches) 10730 goto next; 10731 if (sl->state.insn_idx != insn || 10732 sl->state.curframe != cur->curframe) 10733 goto next; 10734 for (i = 0; i <= cur->curframe; i++) 10735 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10736 goto next; 10737 clean_verifier_state(env, &sl->state); 10738 next: 10739 sl = sl->next; 10740 } 10741 } 10742 10743 /* Returns true if (rold safe implies rcur safe) */ 10744 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10745 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10746 { 10747 bool equal; 10748 10749 if (!(rold->live & REG_LIVE_READ)) 10750 /* explored state didn't use this */ 10751 return true; 10752 10753 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10754 10755 if (rold->type == PTR_TO_STACK) 10756 /* two stack pointers are equal only if they're pointing to 10757 * the same stack frame, since fp-8 in foo != fp-8 in bar 10758 */ 10759 return equal && rold->frameno == rcur->frameno; 10760 10761 if (equal) 10762 return true; 10763 10764 if (rold->type == NOT_INIT) 10765 /* explored state can't have used this */ 10766 return true; 10767 if (rcur->type == NOT_INIT) 10768 return false; 10769 switch (base_type(rold->type)) { 10770 case SCALAR_VALUE: 10771 if (env->explore_alu_limits) 10772 return false; 10773 if (rcur->type == SCALAR_VALUE) { 10774 if (!rold->precise && !rcur->precise) 10775 return true; 10776 /* new val must satisfy old val knowledge */ 10777 return range_within(rold, rcur) && 10778 tnum_in(rold->var_off, rcur->var_off); 10779 } else { 10780 /* We're trying to use a pointer in place of a scalar. 10781 * Even if the scalar was unbounded, this could lead to 10782 * pointer leaks because scalars are allowed to leak 10783 * while pointers are not. We could make this safe in 10784 * special cases if root is calling us, but it's 10785 * probably not worth the hassle. 10786 */ 10787 return false; 10788 } 10789 case PTR_TO_MAP_KEY: 10790 case PTR_TO_MAP_VALUE: 10791 /* a PTR_TO_MAP_VALUE could be safe to use as a 10792 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10793 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10794 * checked, doing so could have affected others with the same 10795 * id, and we can't check for that because we lost the id when 10796 * we converted to a PTR_TO_MAP_VALUE. 10797 */ 10798 if (type_may_be_null(rold->type)) { 10799 if (!type_may_be_null(rcur->type)) 10800 return false; 10801 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10802 return false; 10803 /* Check our ids match any regs they're supposed to */ 10804 return check_ids(rold->id, rcur->id, idmap); 10805 } 10806 10807 /* If the new min/max/var_off satisfy the old ones and 10808 * everything else matches, we are OK. 10809 * 'id' is not compared, since it's only used for maps with 10810 * bpf_spin_lock inside map element and in such cases if 10811 * the rest of the prog is valid for one map element then 10812 * it's valid for all map elements regardless of the key 10813 * used in bpf_map_lookup() 10814 */ 10815 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10816 range_within(rold, rcur) && 10817 tnum_in(rold->var_off, rcur->var_off); 10818 case PTR_TO_PACKET_META: 10819 case PTR_TO_PACKET: 10820 if (rcur->type != rold->type) 10821 return false; 10822 /* We must have at least as much range as the old ptr 10823 * did, so that any accesses which were safe before are 10824 * still safe. This is true even if old range < old off, 10825 * since someone could have accessed through (ptr - k), or 10826 * even done ptr -= k in a register, to get a safe access. 10827 */ 10828 if (rold->range > rcur->range) 10829 return false; 10830 /* If the offsets don't match, we can't trust our alignment; 10831 * nor can we be sure that we won't fall out of range. 10832 */ 10833 if (rold->off != rcur->off) 10834 return false; 10835 /* id relations must be preserved */ 10836 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10837 return false; 10838 /* new val must satisfy old val knowledge */ 10839 return range_within(rold, rcur) && 10840 tnum_in(rold->var_off, rcur->var_off); 10841 case PTR_TO_CTX: 10842 case CONST_PTR_TO_MAP: 10843 case PTR_TO_PACKET_END: 10844 case PTR_TO_FLOW_KEYS: 10845 case PTR_TO_SOCKET: 10846 case PTR_TO_SOCK_COMMON: 10847 case PTR_TO_TCP_SOCK: 10848 case PTR_TO_XDP_SOCK: 10849 /* Only valid matches are exact, which memcmp() above 10850 * would have accepted 10851 */ 10852 default: 10853 /* Don't know what's going on, just say it's not safe */ 10854 return false; 10855 } 10856 10857 /* Shouldn't get here; if we do, say it's not safe */ 10858 WARN_ON_ONCE(1); 10859 return false; 10860 } 10861 10862 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10863 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10864 { 10865 int i, spi; 10866 10867 /* walk slots of the explored stack and ignore any additional 10868 * slots in the current stack, since explored(safe) state 10869 * didn't use them 10870 */ 10871 for (i = 0; i < old->allocated_stack; i++) { 10872 spi = i / BPF_REG_SIZE; 10873 10874 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10875 i += BPF_REG_SIZE - 1; 10876 /* explored state didn't use this */ 10877 continue; 10878 } 10879 10880 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10881 continue; 10882 10883 /* explored stack has more populated slots than current stack 10884 * and these slots were used 10885 */ 10886 if (i >= cur->allocated_stack) 10887 return false; 10888 10889 /* if old state was safe with misc data in the stack 10890 * it will be safe with zero-initialized stack. 10891 * The opposite is not true 10892 */ 10893 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10894 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10895 continue; 10896 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10897 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10898 /* Ex: old explored (safe) state has STACK_SPILL in 10899 * this stack slot, but current has STACK_MISC -> 10900 * this verifier states are not equivalent, 10901 * return false to continue verification of this path 10902 */ 10903 return false; 10904 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10905 continue; 10906 if (!is_spilled_reg(&old->stack[spi])) 10907 continue; 10908 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10909 &cur->stack[spi].spilled_ptr, idmap)) 10910 /* when explored and current stack slot are both storing 10911 * spilled registers, check that stored pointers types 10912 * are the same as well. 10913 * Ex: explored safe path could have stored 10914 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10915 * but current path has stored: 10916 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10917 * such verifier states are not equivalent. 10918 * return false to continue verification of this path 10919 */ 10920 return false; 10921 } 10922 return true; 10923 } 10924 10925 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10926 { 10927 if (old->acquired_refs != cur->acquired_refs) 10928 return false; 10929 return !memcmp(old->refs, cur->refs, 10930 sizeof(*old->refs) * old->acquired_refs); 10931 } 10932 10933 /* compare two verifier states 10934 * 10935 * all states stored in state_list are known to be valid, since 10936 * verifier reached 'bpf_exit' instruction through them 10937 * 10938 * this function is called when verifier exploring different branches of 10939 * execution popped from the state stack. If it sees an old state that has 10940 * more strict register state and more strict stack state then this execution 10941 * branch doesn't need to be explored further, since verifier already 10942 * concluded that more strict state leads to valid finish. 10943 * 10944 * Therefore two states are equivalent if register state is more conservative 10945 * and explored stack state is more conservative than the current one. 10946 * Example: 10947 * explored current 10948 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10949 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10950 * 10951 * In other words if current stack state (one being explored) has more 10952 * valid slots than old one that already passed validation, it means 10953 * the verifier can stop exploring and conclude that current state is valid too 10954 * 10955 * Similarly with registers. If explored state has register type as invalid 10956 * whereas register type in current state is meaningful, it means that 10957 * the current state will reach 'bpf_exit' instruction safely 10958 */ 10959 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10960 struct bpf_func_state *cur) 10961 { 10962 int i; 10963 10964 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10965 for (i = 0; i < MAX_BPF_REG; i++) 10966 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10967 env->idmap_scratch)) 10968 return false; 10969 10970 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10971 return false; 10972 10973 if (!refsafe(old, cur)) 10974 return false; 10975 10976 return true; 10977 } 10978 10979 static bool states_equal(struct bpf_verifier_env *env, 10980 struct bpf_verifier_state *old, 10981 struct bpf_verifier_state *cur) 10982 { 10983 int i; 10984 10985 if (old->curframe != cur->curframe) 10986 return false; 10987 10988 /* Verification state from speculative execution simulation 10989 * must never prune a non-speculative execution one. 10990 */ 10991 if (old->speculative && !cur->speculative) 10992 return false; 10993 10994 if (old->active_spin_lock != cur->active_spin_lock) 10995 return false; 10996 10997 /* for states to be equal callsites have to be the same 10998 * and all frame states need to be equivalent 10999 */ 11000 for (i = 0; i <= old->curframe; i++) { 11001 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11002 return false; 11003 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11004 return false; 11005 } 11006 return true; 11007 } 11008 11009 /* Return 0 if no propagation happened. Return negative error code if error 11010 * happened. Otherwise, return the propagated bit. 11011 */ 11012 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11013 struct bpf_reg_state *reg, 11014 struct bpf_reg_state *parent_reg) 11015 { 11016 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11017 u8 flag = reg->live & REG_LIVE_READ; 11018 int err; 11019 11020 /* When comes here, read flags of PARENT_REG or REG could be any of 11021 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11022 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11023 */ 11024 if (parent_flag == REG_LIVE_READ64 || 11025 /* Or if there is no read flag from REG. */ 11026 !flag || 11027 /* Or if the read flag from REG is the same as PARENT_REG. */ 11028 parent_flag == flag) 11029 return 0; 11030 11031 err = mark_reg_read(env, reg, parent_reg, flag); 11032 if (err) 11033 return err; 11034 11035 return flag; 11036 } 11037 11038 /* A write screens off any subsequent reads; but write marks come from the 11039 * straight-line code between a state and its parent. When we arrive at an 11040 * equivalent state (jump target or such) we didn't arrive by the straight-line 11041 * code, so read marks in the state must propagate to the parent regardless 11042 * of the state's write marks. That's what 'parent == state->parent' comparison 11043 * in mark_reg_read() is for. 11044 */ 11045 static int propagate_liveness(struct bpf_verifier_env *env, 11046 const struct bpf_verifier_state *vstate, 11047 struct bpf_verifier_state *vparent) 11048 { 11049 struct bpf_reg_state *state_reg, *parent_reg; 11050 struct bpf_func_state *state, *parent; 11051 int i, frame, err = 0; 11052 11053 if (vparent->curframe != vstate->curframe) { 11054 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11055 vparent->curframe, vstate->curframe); 11056 return -EFAULT; 11057 } 11058 /* Propagate read liveness of registers... */ 11059 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11060 for (frame = 0; frame <= vstate->curframe; frame++) { 11061 parent = vparent->frame[frame]; 11062 state = vstate->frame[frame]; 11063 parent_reg = parent->regs; 11064 state_reg = state->regs; 11065 /* We don't need to worry about FP liveness, it's read-only */ 11066 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11067 err = propagate_liveness_reg(env, &state_reg[i], 11068 &parent_reg[i]); 11069 if (err < 0) 11070 return err; 11071 if (err == REG_LIVE_READ64) 11072 mark_insn_zext(env, &parent_reg[i]); 11073 } 11074 11075 /* Propagate stack slots. */ 11076 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11077 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11078 parent_reg = &parent->stack[i].spilled_ptr; 11079 state_reg = &state->stack[i].spilled_ptr; 11080 err = propagate_liveness_reg(env, state_reg, 11081 parent_reg); 11082 if (err < 0) 11083 return err; 11084 } 11085 } 11086 return 0; 11087 } 11088 11089 /* find precise scalars in the previous equivalent state and 11090 * propagate them into the current state 11091 */ 11092 static int propagate_precision(struct bpf_verifier_env *env, 11093 const struct bpf_verifier_state *old) 11094 { 11095 struct bpf_reg_state *state_reg; 11096 struct bpf_func_state *state; 11097 int i, err = 0; 11098 11099 state = old->frame[old->curframe]; 11100 state_reg = state->regs; 11101 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11102 if (state_reg->type != SCALAR_VALUE || 11103 !state_reg->precise) 11104 continue; 11105 if (env->log.level & BPF_LOG_LEVEL2) 11106 verbose(env, "propagating r%d\n", i); 11107 err = mark_chain_precision(env, i); 11108 if (err < 0) 11109 return err; 11110 } 11111 11112 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11113 if (!is_spilled_reg(&state->stack[i])) 11114 continue; 11115 state_reg = &state->stack[i].spilled_ptr; 11116 if (state_reg->type != SCALAR_VALUE || 11117 !state_reg->precise) 11118 continue; 11119 if (env->log.level & BPF_LOG_LEVEL2) 11120 verbose(env, "propagating fp%d\n", 11121 (-i - 1) * BPF_REG_SIZE); 11122 err = mark_chain_precision_stack(env, i); 11123 if (err < 0) 11124 return err; 11125 } 11126 return 0; 11127 } 11128 11129 static bool states_maybe_looping(struct bpf_verifier_state *old, 11130 struct bpf_verifier_state *cur) 11131 { 11132 struct bpf_func_state *fold, *fcur; 11133 int i, fr = cur->curframe; 11134 11135 if (old->curframe != fr) 11136 return false; 11137 11138 fold = old->frame[fr]; 11139 fcur = cur->frame[fr]; 11140 for (i = 0; i < MAX_BPF_REG; i++) 11141 if (memcmp(&fold->regs[i], &fcur->regs[i], 11142 offsetof(struct bpf_reg_state, parent))) 11143 return false; 11144 return true; 11145 } 11146 11147 11148 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11149 { 11150 struct bpf_verifier_state_list *new_sl; 11151 struct bpf_verifier_state_list *sl, **pprev; 11152 struct bpf_verifier_state *cur = env->cur_state, *new; 11153 int i, j, err, states_cnt = 0; 11154 bool add_new_state = env->test_state_freq ? true : false; 11155 11156 cur->last_insn_idx = env->prev_insn_idx; 11157 if (!env->insn_aux_data[insn_idx].prune_point) 11158 /* this 'insn_idx' instruction wasn't marked, so we will not 11159 * be doing state search here 11160 */ 11161 return 0; 11162 11163 /* bpf progs typically have pruning point every 4 instructions 11164 * http://vger.kernel.org/bpfconf2019.html#session-1 11165 * Do not add new state for future pruning if the verifier hasn't seen 11166 * at least 2 jumps and at least 8 instructions. 11167 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11168 * In tests that amounts to up to 50% reduction into total verifier 11169 * memory consumption and 20% verifier time speedup. 11170 */ 11171 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11172 env->insn_processed - env->prev_insn_processed >= 8) 11173 add_new_state = true; 11174 11175 pprev = explored_state(env, insn_idx); 11176 sl = *pprev; 11177 11178 clean_live_states(env, insn_idx, cur); 11179 11180 while (sl) { 11181 states_cnt++; 11182 if (sl->state.insn_idx != insn_idx) 11183 goto next; 11184 11185 if (sl->state.branches) { 11186 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11187 11188 if (frame->in_async_callback_fn && 11189 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11190 /* Different async_entry_cnt means that the verifier is 11191 * processing another entry into async callback. 11192 * Seeing the same state is not an indication of infinite 11193 * loop or infinite recursion. 11194 * But finding the same state doesn't mean that it's safe 11195 * to stop processing the current state. The previous state 11196 * hasn't yet reached bpf_exit, since state.branches > 0. 11197 * Checking in_async_callback_fn alone is not enough either. 11198 * Since the verifier still needs to catch infinite loops 11199 * inside async callbacks. 11200 */ 11201 } else if (states_maybe_looping(&sl->state, cur) && 11202 states_equal(env, &sl->state, cur)) { 11203 verbose_linfo(env, insn_idx, "; "); 11204 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11205 return -EINVAL; 11206 } 11207 /* if the verifier is processing a loop, avoid adding new state 11208 * too often, since different loop iterations have distinct 11209 * states and may not help future pruning. 11210 * This threshold shouldn't be too low to make sure that 11211 * a loop with large bound will be rejected quickly. 11212 * The most abusive loop will be: 11213 * r1 += 1 11214 * if r1 < 1000000 goto pc-2 11215 * 1M insn_procssed limit / 100 == 10k peak states. 11216 * This threshold shouldn't be too high either, since states 11217 * at the end of the loop are likely to be useful in pruning. 11218 */ 11219 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11220 env->insn_processed - env->prev_insn_processed < 100) 11221 add_new_state = false; 11222 goto miss; 11223 } 11224 if (states_equal(env, &sl->state, cur)) { 11225 sl->hit_cnt++; 11226 /* reached equivalent register/stack state, 11227 * prune the search. 11228 * Registers read by the continuation are read by us. 11229 * If we have any write marks in env->cur_state, they 11230 * will prevent corresponding reads in the continuation 11231 * from reaching our parent (an explored_state). Our 11232 * own state will get the read marks recorded, but 11233 * they'll be immediately forgotten as we're pruning 11234 * this state and will pop a new one. 11235 */ 11236 err = propagate_liveness(env, &sl->state, cur); 11237 11238 /* if previous state reached the exit with precision and 11239 * current state is equivalent to it (except precsion marks) 11240 * the precision needs to be propagated back in 11241 * the current state. 11242 */ 11243 err = err ? : push_jmp_history(env, cur); 11244 err = err ? : propagate_precision(env, &sl->state); 11245 if (err) 11246 return err; 11247 return 1; 11248 } 11249 miss: 11250 /* when new state is not going to be added do not increase miss count. 11251 * Otherwise several loop iterations will remove the state 11252 * recorded earlier. The goal of these heuristics is to have 11253 * states from some iterations of the loop (some in the beginning 11254 * and some at the end) to help pruning. 11255 */ 11256 if (add_new_state) 11257 sl->miss_cnt++; 11258 /* heuristic to determine whether this state is beneficial 11259 * to keep checking from state equivalence point of view. 11260 * Higher numbers increase max_states_per_insn and verification time, 11261 * but do not meaningfully decrease insn_processed. 11262 */ 11263 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11264 /* the state is unlikely to be useful. Remove it to 11265 * speed up verification 11266 */ 11267 *pprev = sl->next; 11268 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11269 u32 br = sl->state.branches; 11270 11271 WARN_ONCE(br, 11272 "BUG live_done but branches_to_explore %d\n", 11273 br); 11274 free_verifier_state(&sl->state, false); 11275 kfree(sl); 11276 env->peak_states--; 11277 } else { 11278 /* cannot free this state, since parentage chain may 11279 * walk it later. Add it for free_list instead to 11280 * be freed at the end of verification 11281 */ 11282 sl->next = env->free_list; 11283 env->free_list = sl; 11284 } 11285 sl = *pprev; 11286 continue; 11287 } 11288 next: 11289 pprev = &sl->next; 11290 sl = *pprev; 11291 } 11292 11293 if (env->max_states_per_insn < states_cnt) 11294 env->max_states_per_insn = states_cnt; 11295 11296 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11297 return push_jmp_history(env, cur); 11298 11299 if (!add_new_state) 11300 return push_jmp_history(env, cur); 11301 11302 /* There were no equivalent states, remember the current one. 11303 * Technically the current state is not proven to be safe yet, 11304 * but it will either reach outer most bpf_exit (which means it's safe) 11305 * or it will be rejected. When there are no loops the verifier won't be 11306 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11307 * again on the way to bpf_exit. 11308 * When looping the sl->state.branches will be > 0 and this state 11309 * will not be considered for equivalence until branches == 0. 11310 */ 11311 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11312 if (!new_sl) 11313 return -ENOMEM; 11314 env->total_states++; 11315 env->peak_states++; 11316 env->prev_jmps_processed = env->jmps_processed; 11317 env->prev_insn_processed = env->insn_processed; 11318 11319 /* add new state to the head of linked list */ 11320 new = &new_sl->state; 11321 err = copy_verifier_state(new, cur); 11322 if (err) { 11323 free_verifier_state(new, false); 11324 kfree(new_sl); 11325 return err; 11326 } 11327 new->insn_idx = insn_idx; 11328 WARN_ONCE(new->branches != 1, 11329 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11330 11331 cur->parent = new; 11332 cur->first_insn_idx = insn_idx; 11333 clear_jmp_history(cur); 11334 new_sl->next = *explored_state(env, insn_idx); 11335 *explored_state(env, insn_idx) = new_sl; 11336 /* connect new state to parentage chain. Current frame needs all 11337 * registers connected. Only r6 - r9 of the callers are alive (pushed 11338 * to the stack implicitly by JITs) so in callers' frames connect just 11339 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11340 * the state of the call instruction (with WRITTEN set), and r0 comes 11341 * from callee with its full parentage chain, anyway. 11342 */ 11343 /* clear write marks in current state: the writes we did are not writes 11344 * our child did, so they don't screen off its reads from us. 11345 * (There are no read marks in current state, because reads always mark 11346 * their parent and current state never has children yet. Only 11347 * explored_states can get read marks.) 11348 */ 11349 for (j = 0; j <= cur->curframe; j++) { 11350 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11351 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11352 for (i = 0; i < BPF_REG_FP; i++) 11353 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11354 } 11355 11356 /* all stack frames are accessible from callee, clear them all */ 11357 for (j = 0; j <= cur->curframe; j++) { 11358 struct bpf_func_state *frame = cur->frame[j]; 11359 struct bpf_func_state *newframe = new->frame[j]; 11360 11361 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11362 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11363 frame->stack[i].spilled_ptr.parent = 11364 &newframe->stack[i].spilled_ptr; 11365 } 11366 } 11367 return 0; 11368 } 11369 11370 /* Return true if it's OK to have the same insn return a different type. */ 11371 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11372 { 11373 switch (base_type(type)) { 11374 case PTR_TO_CTX: 11375 case PTR_TO_SOCKET: 11376 case PTR_TO_SOCK_COMMON: 11377 case PTR_TO_TCP_SOCK: 11378 case PTR_TO_XDP_SOCK: 11379 case PTR_TO_BTF_ID: 11380 return false; 11381 default: 11382 return true; 11383 } 11384 } 11385 11386 /* If an instruction was previously used with particular pointer types, then we 11387 * need to be careful to avoid cases such as the below, where it may be ok 11388 * for one branch accessing the pointer, but not ok for the other branch: 11389 * 11390 * R1 = sock_ptr 11391 * goto X; 11392 * ... 11393 * R1 = some_other_valid_ptr; 11394 * goto X; 11395 * ... 11396 * R2 = *(u32 *)(R1 + 0); 11397 */ 11398 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11399 { 11400 return src != prev && (!reg_type_mismatch_ok(src) || 11401 !reg_type_mismatch_ok(prev)); 11402 } 11403 11404 static int do_check(struct bpf_verifier_env *env) 11405 { 11406 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11407 struct bpf_verifier_state *state = env->cur_state; 11408 struct bpf_insn *insns = env->prog->insnsi; 11409 struct bpf_reg_state *regs; 11410 int insn_cnt = env->prog->len; 11411 bool do_print_state = false; 11412 int prev_insn_idx = -1; 11413 11414 for (;;) { 11415 struct bpf_insn *insn; 11416 u8 class; 11417 int err; 11418 11419 env->prev_insn_idx = prev_insn_idx; 11420 if (env->insn_idx >= insn_cnt) { 11421 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11422 env->insn_idx, insn_cnt); 11423 return -EFAULT; 11424 } 11425 11426 insn = &insns[env->insn_idx]; 11427 class = BPF_CLASS(insn->code); 11428 11429 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11430 verbose(env, 11431 "BPF program is too large. Processed %d insn\n", 11432 env->insn_processed); 11433 return -E2BIG; 11434 } 11435 11436 err = is_state_visited(env, env->insn_idx); 11437 if (err < 0) 11438 return err; 11439 if (err == 1) { 11440 /* found equivalent state, can prune the search */ 11441 if (env->log.level & BPF_LOG_LEVEL) { 11442 if (do_print_state) 11443 verbose(env, "\nfrom %d to %d%s: safe\n", 11444 env->prev_insn_idx, env->insn_idx, 11445 env->cur_state->speculative ? 11446 " (speculative execution)" : ""); 11447 else 11448 verbose(env, "%d: safe\n", env->insn_idx); 11449 } 11450 goto process_bpf_exit; 11451 } 11452 11453 if (signal_pending(current)) 11454 return -EAGAIN; 11455 11456 if (need_resched()) 11457 cond_resched(); 11458 11459 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 11460 verbose(env, "\nfrom %d to %d%s:", 11461 env->prev_insn_idx, env->insn_idx, 11462 env->cur_state->speculative ? 11463 " (speculative execution)" : ""); 11464 print_verifier_state(env, state->frame[state->curframe], true); 11465 do_print_state = false; 11466 } 11467 11468 if (env->log.level & BPF_LOG_LEVEL) { 11469 const struct bpf_insn_cbs cbs = { 11470 .cb_call = disasm_kfunc_name, 11471 .cb_print = verbose, 11472 .private_data = env, 11473 }; 11474 11475 if (verifier_state_scratched(env)) 11476 print_insn_state(env, state->frame[state->curframe]); 11477 11478 verbose_linfo(env, env->insn_idx, "; "); 11479 env->prev_log_len = env->log.len_used; 11480 verbose(env, "%d: ", env->insn_idx); 11481 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11482 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 11483 env->prev_log_len = env->log.len_used; 11484 } 11485 11486 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11487 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11488 env->prev_insn_idx); 11489 if (err) 11490 return err; 11491 } 11492 11493 regs = cur_regs(env); 11494 sanitize_mark_insn_seen(env); 11495 prev_insn_idx = env->insn_idx; 11496 11497 if (class == BPF_ALU || class == BPF_ALU64) { 11498 err = check_alu_op(env, insn); 11499 if (err) 11500 return err; 11501 11502 } else if (class == BPF_LDX) { 11503 enum bpf_reg_type *prev_src_type, src_reg_type; 11504 11505 /* check for reserved fields is already done */ 11506 11507 /* check src operand */ 11508 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11509 if (err) 11510 return err; 11511 11512 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11513 if (err) 11514 return err; 11515 11516 src_reg_type = regs[insn->src_reg].type; 11517 11518 /* check that memory (src_reg + off) is readable, 11519 * the state of dst_reg will be updated by this func 11520 */ 11521 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11522 insn->off, BPF_SIZE(insn->code), 11523 BPF_READ, insn->dst_reg, false); 11524 if (err) 11525 return err; 11526 11527 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11528 11529 if (*prev_src_type == NOT_INIT) { 11530 /* saw a valid insn 11531 * dst_reg = *(u32 *)(src_reg + off) 11532 * save type to validate intersecting paths 11533 */ 11534 *prev_src_type = src_reg_type; 11535 11536 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11537 /* ABuser program is trying to use the same insn 11538 * dst_reg = *(u32*) (src_reg + off) 11539 * with different pointer types: 11540 * src_reg == ctx in one branch and 11541 * src_reg == stack|map in some other branch. 11542 * Reject it. 11543 */ 11544 verbose(env, "same insn cannot be used with different pointers\n"); 11545 return -EINVAL; 11546 } 11547 11548 } else if (class == BPF_STX) { 11549 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11550 11551 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11552 err = check_atomic(env, env->insn_idx, insn); 11553 if (err) 11554 return err; 11555 env->insn_idx++; 11556 continue; 11557 } 11558 11559 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11560 verbose(env, "BPF_STX uses reserved fields\n"); 11561 return -EINVAL; 11562 } 11563 11564 /* check src1 operand */ 11565 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11566 if (err) 11567 return err; 11568 /* check src2 operand */ 11569 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11570 if (err) 11571 return err; 11572 11573 dst_reg_type = regs[insn->dst_reg].type; 11574 11575 /* check that memory (dst_reg + off) is writeable */ 11576 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11577 insn->off, BPF_SIZE(insn->code), 11578 BPF_WRITE, insn->src_reg, false); 11579 if (err) 11580 return err; 11581 11582 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11583 11584 if (*prev_dst_type == NOT_INIT) { 11585 *prev_dst_type = dst_reg_type; 11586 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11587 verbose(env, "same insn cannot be used with different pointers\n"); 11588 return -EINVAL; 11589 } 11590 11591 } else if (class == BPF_ST) { 11592 if (BPF_MODE(insn->code) != BPF_MEM || 11593 insn->src_reg != BPF_REG_0) { 11594 verbose(env, "BPF_ST uses reserved fields\n"); 11595 return -EINVAL; 11596 } 11597 /* check src operand */ 11598 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11599 if (err) 11600 return err; 11601 11602 if (is_ctx_reg(env, insn->dst_reg)) { 11603 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11604 insn->dst_reg, 11605 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 11606 return -EACCES; 11607 } 11608 11609 /* check that memory (dst_reg + off) is writeable */ 11610 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11611 insn->off, BPF_SIZE(insn->code), 11612 BPF_WRITE, -1, false); 11613 if (err) 11614 return err; 11615 11616 } else if (class == BPF_JMP || class == BPF_JMP32) { 11617 u8 opcode = BPF_OP(insn->code); 11618 11619 env->jmps_processed++; 11620 if (opcode == BPF_CALL) { 11621 if (BPF_SRC(insn->code) != BPF_K || 11622 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11623 && insn->off != 0) || 11624 (insn->src_reg != BPF_REG_0 && 11625 insn->src_reg != BPF_PSEUDO_CALL && 11626 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11627 insn->dst_reg != BPF_REG_0 || 11628 class == BPF_JMP32) { 11629 verbose(env, "BPF_CALL uses reserved fields\n"); 11630 return -EINVAL; 11631 } 11632 11633 if (env->cur_state->active_spin_lock && 11634 (insn->src_reg == BPF_PSEUDO_CALL || 11635 insn->imm != BPF_FUNC_spin_unlock)) { 11636 verbose(env, "function calls are not allowed while holding a lock\n"); 11637 return -EINVAL; 11638 } 11639 if (insn->src_reg == BPF_PSEUDO_CALL) 11640 err = check_func_call(env, insn, &env->insn_idx); 11641 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11642 err = check_kfunc_call(env, insn, &env->insn_idx); 11643 else 11644 err = check_helper_call(env, insn, &env->insn_idx); 11645 if (err) 11646 return err; 11647 } else if (opcode == BPF_JA) { 11648 if (BPF_SRC(insn->code) != BPF_K || 11649 insn->imm != 0 || 11650 insn->src_reg != BPF_REG_0 || 11651 insn->dst_reg != BPF_REG_0 || 11652 class == BPF_JMP32) { 11653 verbose(env, "BPF_JA uses reserved fields\n"); 11654 return -EINVAL; 11655 } 11656 11657 env->insn_idx += insn->off + 1; 11658 continue; 11659 11660 } else if (opcode == BPF_EXIT) { 11661 if (BPF_SRC(insn->code) != BPF_K || 11662 insn->imm != 0 || 11663 insn->src_reg != BPF_REG_0 || 11664 insn->dst_reg != BPF_REG_0 || 11665 class == BPF_JMP32) { 11666 verbose(env, "BPF_EXIT uses reserved fields\n"); 11667 return -EINVAL; 11668 } 11669 11670 if (env->cur_state->active_spin_lock) { 11671 verbose(env, "bpf_spin_unlock is missing\n"); 11672 return -EINVAL; 11673 } 11674 11675 if (state->curframe) { 11676 /* exit from nested function */ 11677 err = prepare_func_exit(env, &env->insn_idx); 11678 if (err) 11679 return err; 11680 do_print_state = true; 11681 continue; 11682 } 11683 11684 err = check_reference_leak(env); 11685 if (err) 11686 return err; 11687 11688 err = check_return_code(env); 11689 if (err) 11690 return err; 11691 process_bpf_exit: 11692 mark_verifier_state_scratched(env); 11693 update_branch_counts(env, env->cur_state); 11694 err = pop_stack(env, &prev_insn_idx, 11695 &env->insn_idx, pop_log); 11696 if (err < 0) { 11697 if (err != -ENOENT) 11698 return err; 11699 break; 11700 } else { 11701 do_print_state = true; 11702 continue; 11703 } 11704 } else { 11705 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11706 if (err) 11707 return err; 11708 } 11709 } else if (class == BPF_LD) { 11710 u8 mode = BPF_MODE(insn->code); 11711 11712 if (mode == BPF_ABS || mode == BPF_IND) { 11713 err = check_ld_abs(env, insn); 11714 if (err) 11715 return err; 11716 11717 } else if (mode == BPF_IMM) { 11718 err = check_ld_imm(env, insn); 11719 if (err) 11720 return err; 11721 11722 env->insn_idx++; 11723 sanitize_mark_insn_seen(env); 11724 } else { 11725 verbose(env, "invalid BPF_LD mode\n"); 11726 return -EINVAL; 11727 } 11728 } else { 11729 verbose(env, "unknown insn class %d\n", class); 11730 return -EINVAL; 11731 } 11732 11733 env->insn_idx++; 11734 } 11735 11736 return 0; 11737 } 11738 11739 static int find_btf_percpu_datasec(struct btf *btf) 11740 { 11741 const struct btf_type *t; 11742 const char *tname; 11743 int i, n; 11744 11745 /* 11746 * Both vmlinux and module each have their own ".data..percpu" 11747 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11748 * types to look at only module's own BTF types. 11749 */ 11750 n = btf_nr_types(btf); 11751 if (btf_is_module(btf)) 11752 i = btf_nr_types(btf_vmlinux); 11753 else 11754 i = 1; 11755 11756 for(; i < n; i++) { 11757 t = btf_type_by_id(btf, i); 11758 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11759 continue; 11760 11761 tname = btf_name_by_offset(btf, t->name_off); 11762 if (!strcmp(tname, ".data..percpu")) 11763 return i; 11764 } 11765 11766 return -ENOENT; 11767 } 11768 11769 /* replace pseudo btf_id with kernel symbol address */ 11770 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11771 struct bpf_insn *insn, 11772 struct bpf_insn_aux_data *aux) 11773 { 11774 const struct btf_var_secinfo *vsi; 11775 const struct btf_type *datasec; 11776 struct btf_mod_pair *btf_mod; 11777 const struct btf_type *t; 11778 const char *sym_name; 11779 bool percpu = false; 11780 u32 type, id = insn->imm; 11781 struct btf *btf; 11782 s32 datasec_id; 11783 u64 addr; 11784 int i, btf_fd, err; 11785 11786 btf_fd = insn[1].imm; 11787 if (btf_fd) { 11788 btf = btf_get_by_fd(btf_fd); 11789 if (IS_ERR(btf)) { 11790 verbose(env, "invalid module BTF object FD specified.\n"); 11791 return -EINVAL; 11792 } 11793 } else { 11794 if (!btf_vmlinux) { 11795 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11796 return -EINVAL; 11797 } 11798 btf = btf_vmlinux; 11799 btf_get(btf); 11800 } 11801 11802 t = btf_type_by_id(btf, id); 11803 if (!t) { 11804 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11805 err = -ENOENT; 11806 goto err_put; 11807 } 11808 11809 if (!btf_type_is_var(t)) { 11810 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11811 err = -EINVAL; 11812 goto err_put; 11813 } 11814 11815 sym_name = btf_name_by_offset(btf, t->name_off); 11816 addr = kallsyms_lookup_name(sym_name); 11817 if (!addr) { 11818 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11819 sym_name); 11820 err = -ENOENT; 11821 goto err_put; 11822 } 11823 11824 datasec_id = find_btf_percpu_datasec(btf); 11825 if (datasec_id > 0) { 11826 datasec = btf_type_by_id(btf, datasec_id); 11827 for_each_vsi(i, datasec, vsi) { 11828 if (vsi->type == id) { 11829 percpu = true; 11830 break; 11831 } 11832 } 11833 } 11834 11835 insn[0].imm = (u32)addr; 11836 insn[1].imm = addr >> 32; 11837 11838 type = t->type; 11839 t = btf_type_skip_modifiers(btf, type, NULL); 11840 if (percpu) { 11841 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11842 aux->btf_var.btf = btf; 11843 aux->btf_var.btf_id = type; 11844 } else if (!btf_type_is_struct(t)) { 11845 const struct btf_type *ret; 11846 const char *tname; 11847 u32 tsize; 11848 11849 /* resolve the type size of ksym. */ 11850 ret = btf_resolve_size(btf, t, &tsize); 11851 if (IS_ERR(ret)) { 11852 tname = btf_name_by_offset(btf, t->name_off); 11853 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11854 tname, PTR_ERR(ret)); 11855 err = -EINVAL; 11856 goto err_put; 11857 } 11858 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 11859 aux->btf_var.mem_size = tsize; 11860 } else { 11861 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11862 aux->btf_var.btf = btf; 11863 aux->btf_var.btf_id = type; 11864 } 11865 11866 /* check whether we recorded this BTF (and maybe module) already */ 11867 for (i = 0; i < env->used_btf_cnt; i++) { 11868 if (env->used_btfs[i].btf == btf) { 11869 btf_put(btf); 11870 return 0; 11871 } 11872 } 11873 11874 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11875 err = -E2BIG; 11876 goto err_put; 11877 } 11878 11879 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11880 btf_mod->btf = btf; 11881 btf_mod->module = NULL; 11882 11883 /* if we reference variables from kernel module, bump its refcount */ 11884 if (btf_is_module(btf)) { 11885 btf_mod->module = btf_try_get_module(btf); 11886 if (!btf_mod->module) { 11887 err = -ENXIO; 11888 goto err_put; 11889 } 11890 } 11891 11892 env->used_btf_cnt++; 11893 11894 return 0; 11895 err_put: 11896 btf_put(btf); 11897 return err; 11898 } 11899 11900 static int check_map_prealloc(struct bpf_map *map) 11901 { 11902 return (map->map_type != BPF_MAP_TYPE_HASH && 11903 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11904 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11905 !(map->map_flags & BPF_F_NO_PREALLOC); 11906 } 11907 11908 static bool is_tracing_prog_type(enum bpf_prog_type type) 11909 { 11910 switch (type) { 11911 case BPF_PROG_TYPE_KPROBE: 11912 case BPF_PROG_TYPE_TRACEPOINT: 11913 case BPF_PROG_TYPE_PERF_EVENT: 11914 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11915 return true; 11916 default: 11917 return false; 11918 } 11919 } 11920 11921 static bool is_preallocated_map(struct bpf_map *map) 11922 { 11923 if (!check_map_prealloc(map)) 11924 return false; 11925 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11926 return false; 11927 return true; 11928 } 11929 11930 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11931 struct bpf_map *map, 11932 struct bpf_prog *prog) 11933 11934 { 11935 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11936 /* 11937 * Validate that trace type programs use preallocated hash maps. 11938 * 11939 * For programs attached to PERF events this is mandatory as the 11940 * perf NMI can hit any arbitrary code sequence. 11941 * 11942 * All other trace types using preallocated hash maps are unsafe as 11943 * well because tracepoint or kprobes can be inside locked regions 11944 * of the memory allocator or at a place where a recursion into the 11945 * memory allocator would see inconsistent state. 11946 * 11947 * On RT enabled kernels run-time allocation of all trace type 11948 * programs is strictly prohibited due to lock type constraints. On 11949 * !RT kernels it is allowed for backwards compatibility reasons for 11950 * now, but warnings are emitted so developers are made aware of 11951 * the unsafety and can fix their programs before this is enforced. 11952 */ 11953 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11954 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11955 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11956 return -EINVAL; 11957 } 11958 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11959 verbose(env, "trace type programs can only use preallocated hash map\n"); 11960 return -EINVAL; 11961 } 11962 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11963 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11964 } 11965 11966 if (map_value_has_spin_lock(map)) { 11967 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11968 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11969 return -EINVAL; 11970 } 11971 11972 if (is_tracing_prog_type(prog_type)) { 11973 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11974 return -EINVAL; 11975 } 11976 11977 if (prog->aux->sleepable) { 11978 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11979 return -EINVAL; 11980 } 11981 } 11982 11983 if (map_value_has_timer(map)) { 11984 if (is_tracing_prog_type(prog_type)) { 11985 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 11986 return -EINVAL; 11987 } 11988 } 11989 11990 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11991 !bpf_offload_prog_map_match(prog, map)) { 11992 verbose(env, "offload device mismatch between prog and map\n"); 11993 return -EINVAL; 11994 } 11995 11996 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11997 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11998 return -EINVAL; 11999 } 12000 12001 if (prog->aux->sleepable) 12002 switch (map->map_type) { 12003 case BPF_MAP_TYPE_HASH: 12004 case BPF_MAP_TYPE_LRU_HASH: 12005 case BPF_MAP_TYPE_ARRAY: 12006 case BPF_MAP_TYPE_PERCPU_HASH: 12007 case BPF_MAP_TYPE_PERCPU_ARRAY: 12008 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12009 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12010 case BPF_MAP_TYPE_HASH_OF_MAPS: 12011 if (!is_preallocated_map(map)) { 12012 verbose(env, 12013 "Sleepable programs can only use preallocated maps\n"); 12014 return -EINVAL; 12015 } 12016 break; 12017 case BPF_MAP_TYPE_RINGBUF: 12018 case BPF_MAP_TYPE_INODE_STORAGE: 12019 case BPF_MAP_TYPE_SK_STORAGE: 12020 case BPF_MAP_TYPE_TASK_STORAGE: 12021 break; 12022 default: 12023 verbose(env, 12024 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12025 return -EINVAL; 12026 } 12027 12028 return 0; 12029 } 12030 12031 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12032 { 12033 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12034 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12035 } 12036 12037 /* find and rewrite pseudo imm in ld_imm64 instructions: 12038 * 12039 * 1. if it accesses map FD, replace it with actual map pointer. 12040 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12041 * 12042 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12043 */ 12044 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12045 { 12046 struct bpf_insn *insn = env->prog->insnsi; 12047 int insn_cnt = env->prog->len; 12048 int i, j, err; 12049 12050 err = bpf_prog_calc_tag(env->prog); 12051 if (err) 12052 return err; 12053 12054 for (i = 0; i < insn_cnt; i++, insn++) { 12055 if (BPF_CLASS(insn->code) == BPF_LDX && 12056 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12057 verbose(env, "BPF_LDX uses reserved fields\n"); 12058 return -EINVAL; 12059 } 12060 12061 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12062 struct bpf_insn_aux_data *aux; 12063 struct bpf_map *map; 12064 struct fd f; 12065 u64 addr; 12066 u32 fd; 12067 12068 if (i == insn_cnt - 1 || insn[1].code != 0 || 12069 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12070 insn[1].off != 0) { 12071 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12072 return -EINVAL; 12073 } 12074 12075 if (insn[0].src_reg == 0) 12076 /* valid generic load 64-bit imm */ 12077 goto next_insn; 12078 12079 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12080 aux = &env->insn_aux_data[i]; 12081 err = check_pseudo_btf_id(env, insn, aux); 12082 if (err) 12083 return err; 12084 goto next_insn; 12085 } 12086 12087 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12088 aux = &env->insn_aux_data[i]; 12089 aux->ptr_type = PTR_TO_FUNC; 12090 goto next_insn; 12091 } 12092 12093 /* In final convert_pseudo_ld_imm64() step, this is 12094 * converted into regular 64-bit imm load insn. 12095 */ 12096 switch (insn[0].src_reg) { 12097 case BPF_PSEUDO_MAP_VALUE: 12098 case BPF_PSEUDO_MAP_IDX_VALUE: 12099 break; 12100 case BPF_PSEUDO_MAP_FD: 12101 case BPF_PSEUDO_MAP_IDX: 12102 if (insn[1].imm == 0) 12103 break; 12104 fallthrough; 12105 default: 12106 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12107 return -EINVAL; 12108 } 12109 12110 switch (insn[0].src_reg) { 12111 case BPF_PSEUDO_MAP_IDX_VALUE: 12112 case BPF_PSEUDO_MAP_IDX: 12113 if (bpfptr_is_null(env->fd_array)) { 12114 verbose(env, "fd_idx without fd_array is invalid\n"); 12115 return -EPROTO; 12116 } 12117 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12118 insn[0].imm * sizeof(fd), 12119 sizeof(fd))) 12120 return -EFAULT; 12121 break; 12122 default: 12123 fd = insn[0].imm; 12124 break; 12125 } 12126 12127 f = fdget(fd); 12128 map = __bpf_map_get(f); 12129 if (IS_ERR(map)) { 12130 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12131 insn[0].imm); 12132 return PTR_ERR(map); 12133 } 12134 12135 err = check_map_prog_compatibility(env, map, env->prog); 12136 if (err) { 12137 fdput(f); 12138 return err; 12139 } 12140 12141 aux = &env->insn_aux_data[i]; 12142 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12143 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12144 addr = (unsigned long)map; 12145 } else { 12146 u32 off = insn[1].imm; 12147 12148 if (off >= BPF_MAX_VAR_OFF) { 12149 verbose(env, "direct value offset of %u is not allowed\n", off); 12150 fdput(f); 12151 return -EINVAL; 12152 } 12153 12154 if (!map->ops->map_direct_value_addr) { 12155 verbose(env, "no direct value access support for this map type\n"); 12156 fdput(f); 12157 return -EINVAL; 12158 } 12159 12160 err = map->ops->map_direct_value_addr(map, &addr, off); 12161 if (err) { 12162 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12163 map->value_size, off); 12164 fdput(f); 12165 return err; 12166 } 12167 12168 aux->map_off = off; 12169 addr += off; 12170 } 12171 12172 insn[0].imm = (u32)addr; 12173 insn[1].imm = addr >> 32; 12174 12175 /* check whether we recorded this map already */ 12176 for (j = 0; j < env->used_map_cnt; j++) { 12177 if (env->used_maps[j] == map) { 12178 aux->map_index = j; 12179 fdput(f); 12180 goto next_insn; 12181 } 12182 } 12183 12184 if (env->used_map_cnt >= MAX_USED_MAPS) { 12185 fdput(f); 12186 return -E2BIG; 12187 } 12188 12189 /* hold the map. If the program is rejected by verifier, 12190 * the map will be released by release_maps() or it 12191 * will be used by the valid program until it's unloaded 12192 * and all maps are released in free_used_maps() 12193 */ 12194 bpf_map_inc(map); 12195 12196 aux->map_index = env->used_map_cnt; 12197 env->used_maps[env->used_map_cnt++] = map; 12198 12199 if (bpf_map_is_cgroup_storage(map) && 12200 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12201 verbose(env, "only one cgroup storage of each type is allowed\n"); 12202 fdput(f); 12203 return -EBUSY; 12204 } 12205 12206 fdput(f); 12207 next_insn: 12208 insn++; 12209 i++; 12210 continue; 12211 } 12212 12213 /* Basic sanity check before we invest more work here. */ 12214 if (!bpf_opcode_in_insntable(insn->code)) { 12215 verbose(env, "unknown opcode %02x\n", insn->code); 12216 return -EINVAL; 12217 } 12218 } 12219 12220 /* now all pseudo BPF_LD_IMM64 instructions load valid 12221 * 'struct bpf_map *' into a register instead of user map_fd. 12222 * These pointers will be used later by verifier to validate map access. 12223 */ 12224 return 0; 12225 } 12226 12227 /* drop refcnt of maps used by the rejected program */ 12228 static void release_maps(struct bpf_verifier_env *env) 12229 { 12230 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12231 env->used_map_cnt); 12232 } 12233 12234 /* drop refcnt of maps used by the rejected program */ 12235 static void release_btfs(struct bpf_verifier_env *env) 12236 { 12237 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12238 env->used_btf_cnt); 12239 } 12240 12241 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12242 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12243 { 12244 struct bpf_insn *insn = env->prog->insnsi; 12245 int insn_cnt = env->prog->len; 12246 int i; 12247 12248 for (i = 0; i < insn_cnt; i++, insn++) { 12249 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12250 continue; 12251 if (insn->src_reg == BPF_PSEUDO_FUNC) 12252 continue; 12253 insn->src_reg = 0; 12254 } 12255 } 12256 12257 /* single env->prog->insni[off] instruction was replaced with the range 12258 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12259 * [0, off) and [off, end) to new locations, so the patched range stays zero 12260 */ 12261 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12262 struct bpf_insn_aux_data *new_data, 12263 struct bpf_prog *new_prog, u32 off, u32 cnt) 12264 { 12265 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12266 struct bpf_insn *insn = new_prog->insnsi; 12267 u32 old_seen = old_data[off].seen; 12268 u32 prog_len; 12269 int i; 12270 12271 /* aux info at OFF always needs adjustment, no matter fast path 12272 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12273 * original insn at old prog. 12274 */ 12275 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12276 12277 if (cnt == 1) 12278 return; 12279 prog_len = new_prog->len; 12280 12281 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12282 memcpy(new_data + off + cnt - 1, old_data + off, 12283 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12284 for (i = off; i < off + cnt - 1; i++) { 12285 /* Expand insni[off]'s seen count to the patched range. */ 12286 new_data[i].seen = old_seen; 12287 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12288 } 12289 env->insn_aux_data = new_data; 12290 vfree(old_data); 12291 } 12292 12293 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12294 { 12295 int i; 12296 12297 if (len == 1) 12298 return; 12299 /* NOTE: fake 'exit' subprog should be updated as well. */ 12300 for (i = 0; i <= env->subprog_cnt; i++) { 12301 if (env->subprog_info[i].start <= off) 12302 continue; 12303 env->subprog_info[i].start += len - 1; 12304 } 12305 } 12306 12307 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12308 { 12309 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12310 int i, sz = prog->aux->size_poke_tab; 12311 struct bpf_jit_poke_descriptor *desc; 12312 12313 for (i = 0; i < sz; i++) { 12314 desc = &tab[i]; 12315 if (desc->insn_idx <= off) 12316 continue; 12317 desc->insn_idx += len - 1; 12318 } 12319 } 12320 12321 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12322 const struct bpf_insn *patch, u32 len) 12323 { 12324 struct bpf_prog *new_prog; 12325 struct bpf_insn_aux_data *new_data = NULL; 12326 12327 if (len > 1) { 12328 new_data = vzalloc(array_size(env->prog->len + len - 1, 12329 sizeof(struct bpf_insn_aux_data))); 12330 if (!new_data) 12331 return NULL; 12332 } 12333 12334 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12335 if (IS_ERR(new_prog)) { 12336 if (PTR_ERR(new_prog) == -ERANGE) 12337 verbose(env, 12338 "insn %d cannot be patched due to 16-bit range\n", 12339 env->insn_aux_data[off].orig_idx); 12340 vfree(new_data); 12341 return NULL; 12342 } 12343 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12344 adjust_subprog_starts(env, off, len); 12345 adjust_poke_descs(new_prog, off, len); 12346 return new_prog; 12347 } 12348 12349 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12350 u32 off, u32 cnt) 12351 { 12352 int i, j; 12353 12354 /* find first prog starting at or after off (first to remove) */ 12355 for (i = 0; i < env->subprog_cnt; i++) 12356 if (env->subprog_info[i].start >= off) 12357 break; 12358 /* find first prog starting at or after off + cnt (first to stay) */ 12359 for (j = i; j < env->subprog_cnt; j++) 12360 if (env->subprog_info[j].start >= off + cnt) 12361 break; 12362 /* if j doesn't start exactly at off + cnt, we are just removing 12363 * the front of previous prog 12364 */ 12365 if (env->subprog_info[j].start != off + cnt) 12366 j--; 12367 12368 if (j > i) { 12369 struct bpf_prog_aux *aux = env->prog->aux; 12370 int move; 12371 12372 /* move fake 'exit' subprog as well */ 12373 move = env->subprog_cnt + 1 - j; 12374 12375 memmove(env->subprog_info + i, 12376 env->subprog_info + j, 12377 sizeof(*env->subprog_info) * move); 12378 env->subprog_cnt -= j - i; 12379 12380 /* remove func_info */ 12381 if (aux->func_info) { 12382 move = aux->func_info_cnt - j; 12383 12384 memmove(aux->func_info + i, 12385 aux->func_info + j, 12386 sizeof(*aux->func_info) * move); 12387 aux->func_info_cnt -= j - i; 12388 /* func_info->insn_off is set after all code rewrites, 12389 * in adjust_btf_func() - no need to adjust 12390 */ 12391 } 12392 } else { 12393 /* convert i from "first prog to remove" to "first to adjust" */ 12394 if (env->subprog_info[i].start == off) 12395 i++; 12396 } 12397 12398 /* update fake 'exit' subprog as well */ 12399 for (; i <= env->subprog_cnt; i++) 12400 env->subprog_info[i].start -= cnt; 12401 12402 return 0; 12403 } 12404 12405 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12406 u32 cnt) 12407 { 12408 struct bpf_prog *prog = env->prog; 12409 u32 i, l_off, l_cnt, nr_linfo; 12410 struct bpf_line_info *linfo; 12411 12412 nr_linfo = prog->aux->nr_linfo; 12413 if (!nr_linfo) 12414 return 0; 12415 12416 linfo = prog->aux->linfo; 12417 12418 /* find first line info to remove, count lines to be removed */ 12419 for (i = 0; i < nr_linfo; i++) 12420 if (linfo[i].insn_off >= off) 12421 break; 12422 12423 l_off = i; 12424 l_cnt = 0; 12425 for (; i < nr_linfo; i++) 12426 if (linfo[i].insn_off < off + cnt) 12427 l_cnt++; 12428 else 12429 break; 12430 12431 /* First live insn doesn't match first live linfo, it needs to "inherit" 12432 * last removed linfo. prog is already modified, so prog->len == off 12433 * means no live instructions after (tail of the program was removed). 12434 */ 12435 if (prog->len != off && l_cnt && 12436 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12437 l_cnt--; 12438 linfo[--i].insn_off = off + cnt; 12439 } 12440 12441 /* remove the line info which refer to the removed instructions */ 12442 if (l_cnt) { 12443 memmove(linfo + l_off, linfo + i, 12444 sizeof(*linfo) * (nr_linfo - i)); 12445 12446 prog->aux->nr_linfo -= l_cnt; 12447 nr_linfo = prog->aux->nr_linfo; 12448 } 12449 12450 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12451 for (i = l_off; i < nr_linfo; i++) 12452 linfo[i].insn_off -= cnt; 12453 12454 /* fix up all subprogs (incl. 'exit') which start >= off */ 12455 for (i = 0; i <= env->subprog_cnt; i++) 12456 if (env->subprog_info[i].linfo_idx > l_off) { 12457 /* program may have started in the removed region but 12458 * may not be fully removed 12459 */ 12460 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12461 env->subprog_info[i].linfo_idx -= l_cnt; 12462 else 12463 env->subprog_info[i].linfo_idx = l_off; 12464 } 12465 12466 return 0; 12467 } 12468 12469 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12470 { 12471 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12472 unsigned int orig_prog_len = env->prog->len; 12473 int err; 12474 12475 if (bpf_prog_is_dev_bound(env->prog->aux)) 12476 bpf_prog_offload_remove_insns(env, off, cnt); 12477 12478 err = bpf_remove_insns(env->prog, off, cnt); 12479 if (err) 12480 return err; 12481 12482 err = adjust_subprog_starts_after_remove(env, off, cnt); 12483 if (err) 12484 return err; 12485 12486 err = bpf_adj_linfo_after_remove(env, off, cnt); 12487 if (err) 12488 return err; 12489 12490 memmove(aux_data + off, aux_data + off + cnt, 12491 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12492 12493 return 0; 12494 } 12495 12496 /* The verifier does more data flow analysis than llvm and will not 12497 * explore branches that are dead at run time. Malicious programs can 12498 * have dead code too. Therefore replace all dead at-run-time code 12499 * with 'ja -1'. 12500 * 12501 * Just nops are not optimal, e.g. if they would sit at the end of the 12502 * program and through another bug we would manage to jump there, then 12503 * we'd execute beyond program memory otherwise. Returning exception 12504 * code also wouldn't work since we can have subprogs where the dead 12505 * code could be located. 12506 */ 12507 static void sanitize_dead_code(struct bpf_verifier_env *env) 12508 { 12509 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12510 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12511 struct bpf_insn *insn = env->prog->insnsi; 12512 const int insn_cnt = env->prog->len; 12513 int i; 12514 12515 for (i = 0; i < insn_cnt; i++) { 12516 if (aux_data[i].seen) 12517 continue; 12518 memcpy(insn + i, &trap, sizeof(trap)); 12519 aux_data[i].zext_dst = false; 12520 } 12521 } 12522 12523 static bool insn_is_cond_jump(u8 code) 12524 { 12525 u8 op; 12526 12527 if (BPF_CLASS(code) == BPF_JMP32) 12528 return true; 12529 12530 if (BPF_CLASS(code) != BPF_JMP) 12531 return false; 12532 12533 op = BPF_OP(code); 12534 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12535 } 12536 12537 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12538 { 12539 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12540 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12541 struct bpf_insn *insn = env->prog->insnsi; 12542 const int insn_cnt = env->prog->len; 12543 int i; 12544 12545 for (i = 0; i < insn_cnt; i++, insn++) { 12546 if (!insn_is_cond_jump(insn->code)) 12547 continue; 12548 12549 if (!aux_data[i + 1].seen) 12550 ja.off = insn->off; 12551 else if (!aux_data[i + 1 + insn->off].seen) 12552 ja.off = 0; 12553 else 12554 continue; 12555 12556 if (bpf_prog_is_dev_bound(env->prog->aux)) 12557 bpf_prog_offload_replace_insn(env, i, &ja); 12558 12559 memcpy(insn, &ja, sizeof(ja)); 12560 } 12561 } 12562 12563 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12564 { 12565 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12566 int insn_cnt = env->prog->len; 12567 int i, err; 12568 12569 for (i = 0; i < insn_cnt; i++) { 12570 int j; 12571 12572 j = 0; 12573 while (i + j < insn_cnt && !aux_data[i + j].seen) 12574 j++; 12575 if (!j) 12576 continue; 12577 12578 err = verifier_remove_insns(env, i, j); 12579 if (err) 12580 return err; 12581 insn_cnt = env->prog->len; 12582 } 12583 12584 return 0; 12585 } 12586 12587 static int opt_remove_nops(struct bpf_verifier_env *env) 12588 { 12589 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12590 struct bpf_insn *insn = env->prog->insnsi; 12591 int insn_cnt = env->prog->len; 12592 int i, err; 12593 12594 for (i = 0; i < insn_cnt; i++) { 12595 if (memcmp(&insn[i], &ja, sizeof(ja))) 12596 continue; 12597 12598 err = verifier_remove_insns(env, i, 1); 12599 if (err) 12600 return err; 12601 insn_cnt--; 12602 i--; 12603 } 12604 12605 return 0; 12606 } 12607 12608 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12609 const union bpf_attr *attr) 12610 { 12611 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12612 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12613 int i, patch_len, delta = 0, len = env->prog->len; 12614 struct bpf_insn *insns = env->prog->insnsi; 12615 struct bpf_prog *new_prog; 12616 bool rnd_hi32; 12617 12618 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12619 zext_patch[1] = BPF_ZEXT_REG(0); 12620 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12621 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12622 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12623 for (i = 0; i < len; i++) { 12624 int adj_idx = i + delta; 12625 struct bpf_insn insn; 12626 int load_reg; 12627 12628 insn = insns[adj_idx]; 12629 load_reg = insn_def_regno(&insn); 12630 if (!aux[adj_idx].zext_dst) { 12631 u8 code, class; 12632 u32 imm_rnd; 12633 12634 if (!rnd_hi32) 12635 continue; 12636 12637 code = insn.code; 12638 class = BPF_CLASS(code); 12639 if (load_reg == -1) 12640 continue; 12641 12642 /* NOTE: arg "reg" (the fourth one) is only used for 12643 * BPF_STX + SRC_OP, so it is safe to pass NULL 12644 * here. 12645 */ 12646 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12647 if (class == BPF_LD && 12648 BPF_MODE(code) == BPF_IMM) 12649 i++; 12650 continue; 12651 } 12652 12653 /* ctx load could be transformed into wider load. */ 12654 if (class == BPF_LDX && 12655 aux[adj_idx].ptr_type == PTR_TO_CTX) 12656 continue; 12657 12658 imm_rnd = get_random_int(); 12659 rnd_hi32_patch[0] = insn; 12660 rnd_hi32_patch[1].imm = imm_rnd; 12661 rnd_hi32_patch[3].dst_reg = load_reg; 12662 patch = rnd_hi32_patch; 12663 patch_len = 4; 12664 goto apply_patch_buffer; 12665 } 12666 12667 /* Add in an zero-extend instruction if a) the JIT has requested 12668 * it or b) it's a CMPXCHG. 12669 * 12670 * The latter is because: BPF_CMPXCHG always loads a value into 12671 * R0, therefore always zero-extends. However some archs' 12672 * equivalent instruction only does this load when the 12673 * comparison is successful. This detail of CMPXCHG is 12674 * orthogonal to the general zero-extension behaviour of the 12675 * CPU, so it's treated independently of bpf_jit_needs_zext. 12676 */ 12677 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12678 continue; 12679 12680 if (WARN_ON(load_reg == -1)) { 12681 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12682 return -EFAULT; 12683 } 12684 12685 zext_patch[0] = insn; 12686 zext_patch[1].dst_reg = load_reg; 12687 zext_patch[1].src_reg = load_reg; 12688 patch = zext_patch; 12689 patch_len = 2; 12690 apply_patch_buffer: 12691 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12692 if (!new_prog) 12693 return -ENOMEM; 12694 env->prog = new_prog; 12695 insns = new_prog->insnsi; 12696 aux = env->insn_aux_data; 12697 delta += patch_len - 1; 12698 } 12699 12700 return 0; 12701 } 12702 12703 /* convert load instructions that access fields of a context type into a 12704 * sequence of instructions that access fields of the underlying structure: 12705 * struct __sk_buff -> struct sk_buff 12706 * struct bpf_sock_ops -> struct sock 12707 */ 12708 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12709 { 12710 const struct bpf_verifier_ops *ops = env->ops; 12711 int i, cnt, size, ctx_field_size, delta = 0; 12712 const int insn_cnt = env->prog->len; 12713 struct bpf_insn insn_buf[16], *insn; 12714 u32 target_size, size_default, off; 12715 struct bpf_prog *new_prog; 12716 enum bpf_access_type type; 12717 bool is_narrower_load; 12718 12719 if (ops->gen_prologue || env->seen_direct_write) { 12720 if (!ops->gen_prologue) { 12721 verbose(env, "bpf verifier is misconfigured\n"); 12722 return -EINVAL; 12723 } 12724 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12725 env->prog); 12726 if (cnt >= ARRAY_SIZE(insn_buf)) { 12727 verbose(env, "bpf verifier is misconfigured\n"); 12728 return -EINVAL; 12729 } else if (cnt) { 12730 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12731 if (!new_prog) 12732 return -ENOMEM; 12733 12734 env->prog = new_prog; 12735 delta += cnt - 1; 12736 } 12737 } 12738 12739 if (bpf_prog_is_dev_bound(env->prog->aux)) 12740 return 0; 12741 12742 insn = env->prog->insnsi + delta; 12743 12744 for (i = 0; i < insn_cnt; i++, insn++) { 12745 bpf_convert_ctx_access_t convert_ctx_access; 12746 bool ctx_access; 12747 12748 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12749 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12750 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12751 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12752 type = BPF_READ; 12753 ctx_access = true; 12754 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12755 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12756 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12757 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12758 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12759 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12760 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12761 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12762 type = BPF_WRITE; 12763 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12764 } else { 12765 continue; 12766 } 12767 12768 if (type == BPF_WRITE && 12769 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12770 struct bpf_insn patch[] = { 12771 *insn, 12772 BPF_ST_NOSPEC(), 12773 }; 12774 12775 cnt = ARRAY_SIZE(patch); 12776 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12777 if (!new_prog) 12778 return -ENOMEM; 12779 12780 delta += cnt - 1; 12781 env->prog = new_prog; 12782 insn = new_prog->insnsi + i + delta; 12783 continue; 12784 } 12785 12786 if (!ctx_access) 12787 continue; 12788 12789 switch (env->insn_aux_data[i + delta].ptr_type) { 12790 case PTR_TO_CTX: 12791 if (!ops->convert_ctx_access) 12792 continue; 12793 convert_ctx_access = ops->convert_ctx_access; 12794 break; 12795 case PTR_TO_SOCKET: 12796 case PTR_TO_SOCK_COMMON: 12797 convert_ctx_access = bpf_sock_convert_ctx_access; 12798 break; 12799 case PTR_TO_TCP_SOCK: 12800 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12801 break; 12802 case PTR_TO_XDP_SOCK: 12803 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12804 break; 12805 case PTR_TO_BTF_ID: 12806 if (type == BPF_READ) { 12807 insn->code = BPF_LDX | BPF_PROBE_MEM | 12808 BPF_SIZE((insn)->code); 12809 env->prog->aux->num_exentries++; 12810 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12811 verbose(env, "Writes through BTF pointers are not allowed\n"); 12812 return -EINVAL; 12813 } 12814 continue; 12815 default: 12816 continue; 12817 } 12818 12819 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12820 size = BPF_LDST_BYTES(insn); 12821 12822 /* If the read access is a narrower load of the field, 12823 * convert to a 4/8-byte load, to minimum program type specific 12824 * convert_ctx_access changes. If conversion is successful, 12825 * we will apply proper mask to the result. 12826 */ 12827 is_narrower_load = size < ctx_field_size; 12828 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12829 off = insn->off; 12830 if (is_narrower_load) { 12831 u8 size_code; 12832 12833 if (type == BPF_WRITE) { 12834 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12835 return -EINVAL; 12836 } 12837 12838 size_code = BPF_H; 12839 if (ctx_field_size == 4) 12840 size_code = BPF_W; 12841 else if (ctx_field_size == 8) 12842 size_code = BPF_DW; 12843 12844 insn->off = off & ~(size_default - 1); 12845 insn->code = BPF_LDX | BPF_MEM | size_code; 12846 } 12847 12848 target_size = 0; 12849 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12850 &target_size); 12851 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12852 (ctx_field_size && !target_size)) { 12853 verbose(env, "bpf verifier is misconfigured\n"); 12854 return -EINVAL; 12855 } 12856 12857 if (is_narrower_load && size < target_size) { 12858 u8 shift = bpf_ctx_narrow_access_offset( 12859 off, size, size_default) * 8; 12860 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12861 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12862 return -EINVAL; 12863 } 12864 if (ctx_field_size <= 4) { 12865 if (shift) 12866 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12867 insn->dst_reg, 12868 shift); 12869 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12870 (1 << size * 8) - 1); 12871 } else { 12872 if (shift) 12873 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12874 insn->dst_reg, 12875 shift); 12876 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12877 (1ULL << size * 8) - 1); 12878 } 12879 } 12880 12881 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12882 if (!new_prog) 12883 return -ENOMEM; 12884 12885 delta += cnt - 1; 12886 12887 /* keep walking new program and skip insns we just inserted */ 12888 env->prog = new_prog; 12889 insn = new_prog->insnsi + i + delta; 12890 } 12891 12892 return 0; 12893 } 12894 12895 static int jit_subprogs(struct bpf_verifier_env *env) 12896 { 12897 struct bpf_prog *prog = env->prog, **func, *tmp; 12898 int i, j, subprog_start, subprog_end = 0, len, subprog; 12899 struct bpf_map *map_ptr; 12900 struct bpf_insn *insn; 12901 void *old_bpf_func; 12902 int err, num_exentries; 12903 12904 if (env->subprog_cnt <= 1) 12905 return 0; 12906 12907 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12908 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 12909 continue; 12910 12911 /* Upon error here we cannot fall back to interpreter but 12912 * need a hard reject of the program. Thus -EFAULT is 12913 * propagated in any case. 12914 */ 12915 subprog = find_subprog(env, i + insn->imm + 1); 12916 if (subprog < 0) { 12917 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12918 i + insn->imm + 1); 12919 return -EFAULT; 12920 } 12921 /* temporarily remember subprog id inside insn instead of 12922 * aux_data, since next loop will split up all insns into funcs 12923 */ 12924 insn->off = subprog; 12925 /* remember original imm in case JIT fails and fallback 12926 * to interpreter will be needed 12927 */ 12928 env->insn_aux_data[i].call_imm = insn->imm; 12929 /* point imm to __bpf_call_base+1 from JITs point of view */ 12930 insn->imm = 1; 12931 if (bpf_pseudo_func(insn)) 12932 /* jit (e.g. x86_64) may emit fewer instructions 12933 * if it learns a u32 imm is the same as a u64 imm. 12934 * Force a non zero here. 12935 */ 12936 insn[1].imm = 1; 12937 } 12938 12939 err = bpf_prog_alloc_jited_linfo(prog); 12940 if (err) 12941 goto out_undo_insn; 12942 12943 err = -ENOMEM; 12944 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12945 if (!func) 12946 goto out_undo_insn; 12947 12948 for (i = 0; i < env->subprog_cnt; i++) { 12949 subprog_start = subprog_end; 12950 subprog_end = env->subprog_info[i + 1].start; 12951 12952 len = subprog_end - subprog_start; 12953 /* bpf_prog_run() doesn't call subprogs directly, 12954 * hence main prog stats include the runtime of subprogs. 12955 * subprogs don't have IDs and not reachable via prog_get_next_id 12956 * func[i]->stats will never be accessed and stays NULL 12957 */ 12958 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12959 if (!func[i]) 12960 goto out_free; 12961 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12962 len * sizeof(struct bpf_insn)); 12963 func[i]->type = prog->type; 12964 func[i]->len = len; 12965 if (bpf_prog_calc_tag(func[i])) 12966 goto out_free; 12967 func[i]->is_func = 1; 12968 func[i]->aux->func_idx = i; 12969 /* Below members will be freed only at prog->aux */ 12970 func[i]->aux->btf = prog->aux->btf; 12971 func[i]->aux->func_info = prog->aux->func_info; 12972 func[i]->aux->poke_tab = prog->aux->poke_tab; 12973 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12974 12975 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12976 struct bpf_jit_poke_descriptor *poke; 12977 12978 poke = &prog->aux->poke_tab[j]; 12979 if (poke->insn_idx < subprog_end && 12980 poke->insn_idx >= subprog_start) 12981 poke->aux = func[i]->aux; 12982 } 12983 12984 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12985 * Long term would need debug info to populate names 12986 */ 12987 func[i]->aux->name[0] = 'F'; 12988 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12989 func[i]->jit_requested = 1; 12990 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12991 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12992 func[i]->aux->linfo = prog->aux->linfo; 12993 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12994 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12995 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12996 num_exentries = 0; 12997 insn = func[i]->insnsi; 12998 for (j = 0; j < func[i]->len; j++, insn++) { 12999 if (BPF_CLASS(insn->code) == BPF_LDX && 13000 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13001 num_exentries++; 13002 } 13003 func[i]->aux->num_exentries = num_exentries; 13004 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13005 func[i] = bpf_int_jit_compile(func[i]); 13006 if (!func[i]->jited) { 13007 err = -ENOTSUPP; 13008 goto out_free; 13009 } 13010 cond_resched(); 13011 } 13012 13013 /* at this point all bpf functions were successfully JITed 13014 * now populate all bpf_calls with correct addresses and 13015 * run last pass of JIT 13016 */ 13017 for (i = 0; i < env->subprog_cnt; i++) { 13018 insn = func[i]->insnsi; 13019 for (j = 0; j < func[i]->len; j++, insn++) { 13020 if (bpf_pseudo_func(insn)) { 13021 subprog = insn->off; 13022 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13023 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13024 continue; 13025 } 13026 if (!bpf_pseudo_call(insn)) 13027 continue; 13028 subprog = insn->off; 13029 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13030 } 13031 13032 /* we use the aux data to keep a list of the start addresses 13033 * of the JITed images for each function in the program 13034 * 13035 * for some architectures, such as powerpc64, the imm field 13036 * might not be large enough to hold the offset of the start 13037 * address of the callee's JITed image from __bpf_call_base 13038 * 13039 * in such cases, we can lookup the start address of a callee 13040 * by using its subprog id, available from the off field of 13041 * the call instruction, as an index for this list 13042 */ 13043 func[i]->aux->func = func; 13044 func[i]->aux->func_cnt = env->subprog_cnt; 13045 } 13046 for (i = 0; i < env->subprog_cnt; i++) { 13047 old_bpf_func = func[i]->bpf_func; 13048 tmp = bpf_int_jit_compile(func[i]); 13049 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13050 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13051 err = -ENOTSUPP; 13052 goto out_free; 13053 } 13054 cond_resched(); 13055 } 13056 13057 /* finally lock prog and jit images for all functions and 13058 * populate kallsysm 13059 */ 13060 for (i = 0; i < env->subprog_cnt; i++) { 13061 bpf_prog_lock_ro(func[i]); 13062 bpf_prog_kallsyms_add(func[i]); 13063 } 13064 13065 /* Last step: make now unused interpreter insns from main 13066 * prog consistent for later dump requests, so they can 13067 * later look the same as if they were interpreted only. 13068 */ 13069 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13070 if (bpf_pseudo_func(insn)) { 13071 insn[0].imm = env->insn_aux_data[i].call_imm; 13072 insn[1].imm = insn->off; 13073 insn->off = 0; 13074 continue; 13075 } 13076 if (!bpf_pseudo_call(insn)) 13077 continue; 13078 insn->off = env->insn_aux_data[i].call_imm; 13079 subprog = find_subprog(env, i + insn->off + 1); 13080 insn->imm = subprog; 13081 } 13082 13083 prog->jited = 1; 13084 prog->bpf_func = func[0]->bpf_func; 13085 prog->jited_len = func[0]->jited_len; 13086 prog->aux->func = func; 13087 prog->aux->func_cnt = env->subprog_cnt; 13088 bpf_prog_jit_attempt_done(prog); 13089 return 0; 13090 out_free: 13091 /* We failed JIT'ing, so at this point we need to unregister poke 13092 * descriptors from subprogs, so that kernel is not attempting to 13093 * patch it anymore as we're freeing the subprog JIT memory. 13094 */ 13095 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13096 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13097 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13098 } 13099 /* At this point we're guaranteed that poke descriptors are not 13100 * live anymore. We can just unlink its descriptor table as it's 13101 * released with the main prog. 13102 */ 13103 for (i = 0; i < env->subprog_cnt; i++) { 13104 if (!func[i]) 13105 continue; 13106 func[i]->aux->poke_tab = NULL; 13107 bpf_jit_free(func[i]); 13108 } 13109 kfree(func); 13110 out_undo_insn: 13111 /* cleanup main prog to be interpreted */ 13112 prog->jit_requested = 0; 13113 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13114 if (!bpf_pseudo_call(insn)) 13115 continue; 13116 insn->off = 0; 13117 insn->imm = env->insn_aux_data[i].call_imm; 13118 } 13119 bpf_prog_jit_attempt_done(prog); 13120 return err; 13121 } 13122 13123 static int fixup_call_args(struct bpf_verifier_env *env) 13124 { 13125 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13126 struct bpf_prog *prog = env->prog; 13127 struct bpf_insn *insn = prog->insnsi; 13128 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13129 int i, depth; 13130 #endif 13131 int err = 0; 13132 13133 if (env->prog->jit_requested && 13134 !bpf_prog_is_dev_bound(env->prog->aux)) { 13135 err = jit_subprogs(env); 13136 if (err == 0) 13137 return 0; 13138 if (err == -EFAULT) 13139 return err; 13140 } 13141 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13142 if (has_kfunc_call) { 13143 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13144 return -EINVAL; 13145 } 13146 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13147 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13148 * have to be rejected, since interpreter doesn't support them yet. 13149 */ 13150 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13151 return -EINVAL; 13152 } 13153 for (i = 0; i < prog->len; i++, insn++) { 13154 if (bpf_pseudo_func(insn)) { 13155 /* When JIT fails the progs with callback calls 13156 * have to be rejected, since interpreter doesn't support them yet. 13157 */ 13158 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13159 return -EINVAL; 13160 } 13161 13162 if (!bpf_pseudo_call(insn)) 13163 continue; 13164 depth = get_callee_stack_depth(env, insn, i); 13165 if (depth < 0) 13166 return depth; 13167 bpf_patch_call_args(insn, depth); 13168 } 13169 err = 0; 13170 #endif 13171 return err; 13172 } 13173 13174 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13175 struct bpf_insn *insn) 13176 { 13177 const struct bpf_kfunc_desc *desc; 13178 13179 if (!insn->imm) { 13180 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13181 return -EINVAL; 13182 } 13183 13184 /* insn->imm has the btf func_id. Replace it with 13185 * an address (relative to __bpf_base_call). 13186 */ 13187 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13188 if (!desc) { 13189 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13190 insn->imm); 13191 return -EFAULT; 13192 } 13193 13194 insn->imm = desc->imm; 13195 13196 return 0; 13197 } 13198 13199 /* Do various post-verification rewrites in a single program pass. 13200 * These rewrites simplify JIT and interpreter implementations. 13201 */ 13202 static int do_misc_fixups(struct bpf_verifier_env *env) 13203 { 13204 struct bpf_prog *prog = env->prog; 13205 enum bpf_attach_type eatype = prog->expected_attach_type; 13206 bool expect_blinding = bpf_jit_blinding_enabled(prog); 13207 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13208 struct bpf_insn *insn = prog->insnsi; 13209 const struct bpf_func_proto *fn; 13210 const int insn_cnt = prog->len; 13211 const struct bpf_map_ops *ops; 13212 struct bpf_insn_aux_data *aux; 13213 struct bpf_insn insn_buf[16]; 13214 struct bpf_prog *new_prog; 13215 struct bpf_map *map_ptr; 13216 int i, ret, cnt, delta = 0; 13217 13218 for (i = 0; i < insn_cnt; i++, insn++) { 13219 /* Make divide-by-zero exceptions impossible. */ 13220 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13221 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13222 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13223 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13224 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13225 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13226 struct bpf_insn *patchlet; 13227 struct bpf_insn chk_and_div[] = { 13228 /* [R,W]x div 0 -> 0 */ 13229 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13230 BPF_JNE | BPF_K, insn->src_reg, 13231 0, 2, 0), 13232 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13233 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13234 *insn, 13235 }; 13236 struct bpf_insn chk_and_mod[] = { 13237 /* [R,W]x mod 0 -> [R,W]x */ 13238 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13239 BPF_JEQ | BPF_K, insn->src_reg, 13240 0, 1 + (is64 ? 0 : 1), 0), 13241 *insn, 13242 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13243 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13244 }; 13245 13246 patchlet = isdiv ? chk_and_div : chk_and_mod; 13247 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13248 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13249 13250 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13251 if (!new_prog) 13252 return -ENOMEM; 13253 13254 delta += cnt - 1; 13255 env->prog = prog = new_prog; 13256 insn = new_prog->insnsi + i + delta; 13257 continue; 13258 } 13259 13260 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13261 if (BPF_CLASS(insn->code) == BPF_LD && 13262 (BPF_MODE(insn->code) == BPF_ABS || 13263 BPF_MODE(insn->code) == BPF_IND)) { 13264 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13265 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13266 verbose(env, "bpf verifier is misconfigured\n"); 13267 return -EINVAL; 13268 } 13269 13270 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13271 if (!new_prog) 13272 return -ENOMEM; 13273 13274 delta += cnt - 1; 13275 env->prog = prog = new_prog; 13276 insn = new_prog->insnsi + i + delta; 13277 continue; 13278 } 13279 13280 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13281 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13282 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13283 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13284 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13285 struct bpf_insn *patch = &insn_buf[0]; 13286 bool issrc, isneg, isimm; 13287 u32 off_reg; 13288 13289 aux = &env->insn_aux_data[i + delta]; 13290 if (!aux->alu_state || 13291 aux->alu_state == BPF_ALU_NON_POINTER) 13292 continue; 13293 13294 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13295 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13296 BPF_ALU_SANITIZE_SRC; 13297 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13298 13299 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13300 if (isimm) { 13301 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13302 } else { 13303 if (isneg) 13304 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13305 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13306 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13307 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13308 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13309 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13310 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13311 } 13312 if (!issrc) 13313 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13314 insn->src_reg = BPF_REG_AX; 13315 if (isneg) 13316 insn->code = insn->code == code_add ? 13317 code_sub : code_add; 13318 *patch++ = *insn; 13319 if (issrc && isneg && !isimm) 13320 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13321 cnt = patch - insn_buf; 13322 13323 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13324 if (!new_prog) 13325 return -ENOMEM; 13326 13327 delta += cnt - 1; 13328 env->prog = prog = new_prog; 13329 insn = new_prog->insnsi + i + delta; 13330 continue; 13331 } 13332 13333 if (insn->code != (BPF_JMP | BPF_CALL)) 13334 continue; 13335 if (insn->src_reg == BPF_PSEUDO_CALL) 13336 continue; 13337 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13338 ret = fixup_kfunc_call(env, insn); 13339 if (ret) 13340 return ret; 13341 continue; 13342 } 13343 13344 if (insn->imm == BPF_FUNC_get_route_realm) 13345 prog->dst_needed = 1; 13346 if (insn->imm == BPF_FUNC_get_prandom_u32) 13347 bpf_user_rnd_init_once(); 13348 if (insn->imm == BPF_FUNC_override_return) 13349 prog->kprobe_override = 1; 13350 if (insn->imm == BPF_FUNC_tail_call) { 13351 /* If we tail call into other programs, we 13352 * cannot make any assumptions since they can 13353 * be replaced dynamically during runtime in 13354 * the program array. 13355 */ 13356 prog->cb_access = 1; 13357 if (!allow_tail_call_in_subprogs(env)) 13358 prog->aux->stack_depth = MAX_BPF_STACK; 13359 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13360 13361 /* mark bpf_tail_call as different opcode to avoid 13362 * conditional branch in the interpreter for every normal 13363 * call and to prevent accidental JITing by JIT compiler 13364 * that doesn't support bpf_tail_call yet 13365 */ 13366 insn->imm = 0; 13367 insn->code = BPF_JMP | BPF_TAIL_CALL; 13368 13369 aux = &env->insn_aux_data[i + delta]; 13370 if (env->bpf_capable && !expect_blinding && 13371 prog->jit_requested && 13372 !bpf_map_key_poisoned(aux) && 13373 !bpf_map_ptr_poisoned(aux) && 13374 !bpf_map_ptr_unpriv(aux)) { 13375 struct bpf_jit_poke_descriptor desc = { 13376 .reason = BPF_POKE_REASON_TAIL_CALL, 13377 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13378 .tail_call.key = bpf_map_key_immediate(aux), 13379 .insn_idx = i + delta, 13380 }; 13381 13382 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13383 if (ret < 0) { 13384 verbose(env, "adding tail call poke descriptor failed\n"); 13385 return ret; 13386 } 13387 13388 insn->imm = ret + 1; 13389 continue; 13390 } 13391 13392 if (!bpf_map_ptr_unpriv(aux)) 13393 continue; 13394 13395 /* instead of changing every JIT dealing with tail_call 13396 * emit two extra insns: 13397 * if (index >= max_entries) goto out; 13398 * index &= array->index_mask; 13399 * to avoid out-of-bounds cpu speculation 13400 */ 13401 if (bpf_map_ptr_poisoned(aux)) { 13402 verbose(env, "tail_call abusing map_ptr\n"); 13403 return -EINVAL; 13404 } 13405 13406 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13407 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13408 map_ptr->max_entries, 2); 13409 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13410 container_of(map_ptr, 13411 struct bpf_array, 13412 map)->index_mask); 13413 insn_buf[2] = *insn; 13414 cnt = 3; 13415 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13416 if (!new_prog) 13417 return -ENOMEM; 13418 13419 delta += cnt - 1; 13420 env->prog = prog = new_prog; 13421 insn = new_prog->insnsi + i + delta; 13422 continue; 13423 } 13424 13425 if (insn->imm == BPF_FUNC_timer_set_callback) { 13426 /* The verifier will process callback_fn as many times as necessary 13427 * with different maps and the register states prepared by 13428 * set_timer_callback_state will be accurate. 13429 * 13430 * The following use case is valid: 13431 * map1 is shared by prog1, prog2, prog3. 13432 * prog1 calls bpf_timer_init for some map1 elements 13433 * prog2 calls bpf_timer_set_callback for some map1 elements. 13434 * Those that were not bpf_timer_init-ed will return -EINVAL. 13435 * prog3 calls bpf_timer_start for some map1 elements. 13436 * Those that were not both bpf_timer_init-ed and 13437 * bpf_timer_set_callback-ed will return -EINVAL. 13438 */ 13439 struct bpf_insn ld_addrs[2] = { 13440 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13441 }; 13442 13443 insn_buf[0] = ld_addrs[0]; 13444 insn_buf[1] = ld_addrs[1]; 13445 insn_buf[2] = *insn; 13446 cnt = 3; 13447 13448 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13449 if (!new_prog) 13450 return -ENOMEM; 13451 13452 delta += cnt - 1; 13453 env->prog = prog = new_prog; 13454 insn = new_prog->insnsi + i + delta; 13455 goto patch_call_imm; 13456 } 13457 13458 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13459 * and other inlining handlers are currently limited to 64 bit 13460 * only. 13461 */ 13462 if (prog->jit_requested && BITS_PER_LONG == 64 && 13463 (insn->imm == BPF_FUNC_map_lookup_elem || 13464 insn->imm == BPF_FUNC_map_update_elem || 13465 insn->imm == BPF_FUNC_map_delete_elem || 13466 insn->imm == BPF_FUNC_map_push_elem || 13467 insn->imm == BPF_FUNC_map_pop_elem || 13468 insn->imm == BPF_FUNC_map_peek_elem || 13469 insn->imm == BPF_FUNC_redirect_map || 13470 insn->imm == BPF_FUNC_for_each_map_elem)) { 13471 aux = &env->insn_aux_data[i + delta]; 13472 if (bpf_map_ptr_poisoned(aux)) 13473 goto patch_call_imm; 13474 13475 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13476 ops = map_ptr->ops; 13477 if (insn->imm == BPF_FUNC_map_lookup_elem && 13478 ops->map_gen_lookup) { 13479 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13480 if (cnt == -EOPNOTSUPP) 13481 goto patch_map_ops_generic; 13482 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13483 verbose(env, "bpf verifier is misconfigured\n"); 13484 return -EINVAL; 13485 } 13486 13487 new_prog = bpf_patch_insn_data(env, i + delta, 13488 insn_buf, cnt); 13489 if (!new_prog) 13490 return -ENOMEM; 13491 13492 delta += cnt - 1; 13493 env->prog = prog = new_prog; 13494 insn = new_prog->insnsi + i + delta; 13495 continue; 13496 } 13497 13498 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13499 (void *(*)(struct bpf_map *map, void *key))NULL)); 13500 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13501 (int (*)(struct bpf_map *map, void *key))NULL)); 13502 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13503 (int (*)(struct bpf_map *map, void *key, void *value, 13504 u64 flags))NULL)); 13505 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13506 (int (*)(struct bpf_map *map, void *value, 13507 u64 flags))NULL)); 13508 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13509 (int (*)(struct bpf_map *map, void *value))NULL)); 13510 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13511 (int (*)(struct bpf_map *map, void *value))NULL)); 13512 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13513 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13514 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13515 (int (*)(struct bpf_map *map, 13516 bpf_callback_t callback_fn, 13517 void *callback_ctx, 13518 u64 flags))NULL)); 13519 13520 patch_map_ops_generic: 13521 switch (insn->imm) { 13522 case BPF_FUNC_map_lookup_elem: 13523 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13524 continue; 13525 case BPF_FUNC_map_update_elem: 13526 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13527 continue; 13528 case BPF_FUNC_map_delete_elem: 13529 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13530 continue; 13531 case BPF_FUNC_map_push_elem: 13532 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13533 continue; 13534 case BPF_FUNC_map_pop_elem: 13535 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13536 continue; 13537 case BPF_FUNC_map_peek_elem: 13538 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13539 continue; 13540 case BPF_FUNC_redirect_map: 13541 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13542 continue; 13543 case BPF_FUNC_for_each_map_elem: 13544 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13545 continue; 13546 } 13547 13548 goto patch_call_imm; 13549 } 13550 13551 /* Implement bpf_jiffies64 inline. */ 13552 if (prog->jit_requested && BITS_PER_LONG == 64 && 13553 insn->imm == BPF_FUNC_jiffies64) { 13554 struct bpf_insn ld_jiffies_addr[2] = { 13555 BPF_LD_IMM64(BPF_REG_0, 13556 (unsigned long)&jiffies), 13557 }; 13558 13559 insn_buf[0] = ld_jiffies_addr[0]; 13560 insn_buf[1] = ld_jiffies_addr[1]; 13561 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13562 BPF_REG_0, 0); 13563 cnt = 3; 13564 13565 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13566 cnt); 13567 if (!new_prog) 13568 return -ENOMEM; 13569 13570 delta += cnt - 1; 13571 env->prog = prog = new_prog; 13572 insn = new_prog->insnsi + i + delta; 13573 continue; 13574 } 13575 13576 /* Implement bpf_get_func_arg inline. */ 13577 if (prog_type == BPF_PROG_TYPE_TRACING && 13578 insn->imm == BPF_FUNC_get_func_arg) { 13579 /* Load nr_args from ctx - 8 */ 13580 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13581 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 13582 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 13583 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 13584 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 13585 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13586 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 13587 insn_buf[7] = BPF_JMP_A(1); 13588 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 13589 cnt = 9; 13590 13591 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13592 if (!new_prog) 13593 return -ENOMEM; 13594 13595 delta += cnt - 1; 13596 env->prog = prog = new_prog; 13597 insn = new_prog->insnsi + i + delta; 13598 continue; 13599 } 13600 13601 /* Implement bpf_get_func_ret inline. */ 13602 if (prog_type == BPF_PROG_TYPE_TRACING && 13603 insn->imm == BPF_FUNC_get_func_ret) { 13604 if (eatype == BPF_TRACE_FEXIT || 13605 eatype == BPF_MODIFY_RETURN) { 13606 /* Load nr_args from ctx - 8 */ 13607 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13608 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 13609 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 13610 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13611 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 13612 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 13613 cnt = 6; 13614 } else { 13615 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 13616 cnt = 1; 13617 } 13618 13619 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13620 if (!new_prog) 13621 return -ENOMEM; 13622 13623 delta += cnt - 1; 13624 env->prog = prog = new_prog; 13625 insn = new_prog->insnsi + i + delta; 13626 continue; 13627 } 13628 13629 /* Implement get_func_arg_cnt inline. */ 13630 if (prog_type == BPF_PROG_TYPE_TRACING && 13631 insn->imm == BPF_FUNC_get_func_arg_cnt) { 13632 /* Load nr_args from ctx - 8 */ 13633 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13634 13635 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13636 if (!new_prog) 13637 return -ENOMEM; 13638 13639 env->prog = prog = new_prog; 13640 insn = new_prog->insnsi + i + delta; 13641 continue; 13642 } 13643 13644 /* Implement bpf_get_func_ip inline. */ 13645 if (prog_type == BPF_PROG_TYPE_TRACING && 13646 insn->imm == BPF_FUNC_get_func_ip) { 13647 /* Load IP address from ctx - 16 */ 13648 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 13649 13650 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13651 if (!new_prog) 13652 return -ENOMEM; 13653 13654 env->prog = prog = new_prog; 13655 insn = new_prog->insnsi + i + delta; 13656 continue; 13657 } 13658 13659 patch_call_imm: 13660 fn = env->ops->get_func_proto(insn->imm, env->prog); 13661 /* all functions that have prototype and verifier allowed 13662 * programs to call them, must be real in-kernel functions 13663 */ 13664 if (!fn->func) { 13665 verbose(env, 13666 "kernel subsystem misconfigured func %s#%d\n", 13667 func_id_name(insn->imm), insn->imm); 13668 return -EFAULT; 13669 } 13670 insn->imm = fn->func - __bpf_call_base; 13671 } 13672 13673 /* Since poke tab is now finalized, publish aux to tracker. */ 13674 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13675 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13676 if (!map_ptr->ops->map_poke_track || 13677 !map_ptr->ops->map_poke_untrack || 13678 !map_ptr->ops->map_poke_run) { 13679 verbose(env, "bpf verifier is misconfigured\n"); 13680 return -EINVAL; 13681 } 13682 13683 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13684 if (ret < 0) { 13685 verbose(env, "tracking tail call prog failed\n"); 13686 return ret; 13687 } 13688 } 13689 13690 sort_kfunc_descs_by_imm(env->prog); 13691 13692 return 0; 13693 } 13694 13695 static void free_states(struct bpf_verifier_env *env) 13696 { 13697 struct bpf_verifier_state_list *sl, *sln; 13698 int i; 13699 13700 sl = env->free_list; 13701 while (sl) { 13702 sln = sl->next; 13703 free_verifier_state(&sl->state, false); 13704 kfree(sl); 13705 sl = sln; 13706 } 13707 env->free_list = NULL; 13708 13709 if (!env->explored_states) 13710 return; 13711 13712 for (i = 0; i < state_htab_size(env); i++) { 13713 sl = env->explored_states[i]; 13714 13715 while (sl) { 13716 sln = sl->next; 13717 free_verifier_state(&sl->state, false); 13718 kfree(sl); 13719 sl = sln; 13720 } 13721 env->explored_states[i] = NULL; 13722 } 13723 } 13724 13725 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13726 { 13727 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13728 struct bpf_verifier_state *state; 13729 struct bpf_reg_state *regs; 13730 int ret, i; 13731 13732 env->prev_linfo = NULL; 13733 env->pass_cnt++; 13734 13735 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13736 if (!state) 13737 return -ENOMEM; 13738 state->curframe = 0; 13739 state->speculative = false; 13740 state->branches = 1; 13741 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13742 if (!state->frame[0]) { 13743 kfree(state); 13744 return -ENOMEM; 13745 } 13746 env->cur_state = state; 13747 init_func_state(env, state->frame[0], 13748 BPF_MAIN_FUNC /* callsite */, 13749 0 /* frameno */, 13750 subprog); 13751 13752 regs = state->frame[state->curframe]->regs; 13753 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13754 ret = btf_prepare_func_args(env, subprog, regs); 13755 if (ret) 13756 goto out; 13757 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13758 if (regs[i].type == PTR_TO_CTX) 13759 mark_reg_known_zero(env, regs, i); 13760 else if (regs[i].type == SCALAR_VALUE) 13761 mark_reg_unknown(env, regs, i); 13762 else if (base_type(regs[i].type) == PTR_TO_MEM) { 13763 const u32 mem_size = regs[i].mem_size; 13764 13765 mark_reg_known_zero(env, regs, i); 13766 regs[i].mem_size = mem_size; 13767 regs[i].id = ++env->id_gen; 13768 } 13769 } 13770 } else { 13771 /* 1st arg to a function */ 13772 regs[BPF_REG_1].type = PTR_TO_CTX; 13773 mark_reg_known_zero(env, regs, BPF_REG_1); 13774 ret = btf_check_subprog_arg_match(env, subprog, regs); 13775 if (ret == -EFAULT) 13776 /* unlikely verifier bug. abort. 13777 * ret == 0 and ret < 0 are sadly acceptable for 13778 * main() function due to backward compatibility. 13779 * Like socket filter program may be written as: 13780 * int bpf_prog(struct pt_regs *ctx) 13781 * and never dereference that ctx in the program. 13782 * 'struct pt_regs' is a type mismatch for socket 13783 * filter that should be using 'struct __sk_buff'. 13784 */ 13785 goto out; 13786 } 13787 13788 ret = do_check(env); 13789 out: 13790 /* check for NULL is necessary, since cur_state can be freed inside 13791 * do_check() under memory pressure. 13792 */ 13793 if (env->cur_state) { 13794 free_verifier_state(env->cur_state, true); 13795 env->cur_state = NULL; 13796 } 13797 while (!pop_stack(env, NULL, NULL, false)); 13798 if (!ret && pop_log) 13799 bpf_vlog_reset(&env->log, 0); 13800 free_states(env); 13801 return ret; 13802 } 13803 13804 /* Verify all global functions in a BPF program one by one based on their BTF. 13805 * All global functions must pass verification. Otherwise the whole program is rejected. 13806 * Consider: 13807 * int bar(int); 13808 * int foo(int f) 13809 * { 13810 * return bar(f); 13811 * } 13812 * int bar(int b) 13813 * { 13814 * ... 13815 * } 13816 * foo() will be verified first for R1=any_scalar_value. During verification it 13817 * will be assumed that bar() already verified successfully and call to bar() 13818 * from foo() will be checked for type match only. Later bar() will be verified 13819 * independently to check that it's safe for R1=any_scalar_value. 13820 */ 13821 static int do_check_subprogs(struct bpf_verifier_env *env) 13822 { 13823 struct bpf_prog_aux *aux = env->prog->aux; 13824 int i, ret; 13825 13826 if (!aux->func_info) 13827 return 0; 13828 13829 for (i = 1; i < env->subprog_cnt; i++) { 13830 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13831 continue; 13832 env->insn_idx = env->subprog_info[i].start; 13833 WARN_ON_ONCE(env->insn_idx == 0); 13834 ret = do_check_common(env, i); 13835 if (ret) { 13836 return ret; 13837 } else if (env->log.level & BPF_LOG_LEVEL) { 13838 verbose(env, 13839 "Func#%d is safe for any args that match its prototype\n", 13840 i); 13841 } 13842 } 13843 return 0; 13844 } 13845 13846 static int do_check_main(struct bpf_verifier_env *env) 13847 { 13848 int ret; 13849 13850 env->insn_idx = 0; 13851 ret = do_check_common(env, 0); 13852 if (!ret) 13853 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13854 return ret; 13855 } 13856 13857 13858 static void print_verification_stats(struct bpf_verifier_env *env) 13859 { 13860 int i; 13861 13862 if (env->log.level & BPF_LOG_STATS) { 13863 verbose(env, "verification time %lld usec\n", 13864 div_u64(env->verification_time, 1000)); 13865 verbose(env, "stack depth "); 13866 for (i = 0; i < env->subprog_cnt; i++) { 13867 u32 depth = env->subprog_info[i].stack_depth; 13868 13869 verbose(env, "%d", depth); 13870 if (i + 1 < env->subprog_cnt) 13871 verbose(env, "+"); 13872 } 13873 verbose(env, "\n"); 13874 } 13875 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13876 "total_states %d peak_states %d mark_read %d\n", 13877 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13878 env->max_states_per_insn, env->total_states, 13879 env->peak_states, env->longest_mark_read_walk); 13880 } 13881 13882 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13883 { 13884 const struct btf_type *t, *func_proto; 13885 const struct bpf_struct_ops *st_ops; 13886 const struct btf_member *member; 13887 struct bpf_prog *prog = env->prog; 13888 u32 btf_id, member_idx; 13889 const char *mname; 13890 13891 if (!prog->gpl_compatible) { 13892 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13893 return -EINVAL; 13894 } 13895 13896 btf_id = prog->aux->attach_btf_id; 13897 st_ops = bpf_struct_ops_find(btf_id); 13898 if (!st_ops) { 13899 verbose(env, "attach_btf_id %u is not a supported struct\n", 13900 btf_id); 13901 return -ENOTSUPP; 13902 } 13903 13904 t = st_ops->type; 13905 member_idx = prog->expected_attach_type; 13906 if (member_idx >= btf_type_vlen(t)) { 13907 verbose(env, "attach to invalid member idx %u of struct %s\n", 13908 member_idx, st_ops->name); 13909 return -EINVAL; 13910 } 13911 13912 member = &btf_type_member(t)[member_idx]; 13913 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13914 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13915 NULL); 13916 if (!func_proto) { 13917 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13918 mname, member_idx, st_ops->name); 13919 return -EINVAL; 13920 } 13921 13922 if (st_ops->check_member) { 13923 int err = st_ops->check_member(t, member); 13924 13925 if (err) { 13926 verbose(env, "attach to unsupported member %s of struct %s\n", 13927 mname, st_ops->name); 13928 return err; 13929 } 13930 } 13931 13932 prog->aux->attach_func_proto = func_proto; 13933 prog->aux->attach_func_name = mname; 13934 env->ops = st_ops->verifier_ops; 13935 13936 return 0; 13937 } 13938 #define SECURITY_PREFIX "security_" 13939 13940 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13941 { 13942 if (within_error_injection_list(addr) || 13943 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13944 return 0; 13945 13946 return -EINVAL; 13947 } 13948 13949 /* list of non-sleepable functions that are otherwise on 13950 * ALLOW_ERROR_INJECTION list 13951 */ 13952 BTF_SET_START(btf_non_sleepable_error_inject) 13953 /* Three functions below can be called from sleepable and non-sleepable context. 13954 * Assume non-sleepable from bpf safety point of view. 13955 */ 13956 BTF_ID(func, __filemap_add_folio) 13957 BTF_ID(func, should_fail_alloc_page) 13958 BTF_ID(func, should_failslab) 13959 BTF_SET_END(btf_non_sleepable_error_inject) 13960 13961 static int check_non_sleepable_error_inject(u32 btf_id) 13962 { 13963 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13964 } 13965 13966 int bpf_check_attach_target(struct bpf_verifier_log *log, 13967 const struct bpf_prog *prog, 13968 const struct bpf_prog *tgt_prog, 13969 u32 btf_id, 13970 struct bpf_attach_target_info *tgt_info) 13971 { 13972 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13973 const char prefix[] = "btf_trace_"; 13974 int ret = 0, subprog = -1, i; 13975 const struct btf_type *t; 13976 bool conservative = true; 13977 const char *tname; 13978 struct btf *btf; 13979 long addr = 0; 13980 13981 if (!btf_id) { 13982 bpf_log(log, "Tracing programs must provide btf_id\n"); 13983 return -EINVAL; 13984 } 13985 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13986 if (!btf) { 13987 bpf_log(log, 13988 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13989 return -EINVAL; 13990 } 13991 t = btf_type_by_id(btf, btf_id); 13992 if (!t) { 13993 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13994 return -EINVAL; 13995 } 13996 tname = btf_name_by_offset(btf, t->name_off); 13997 if (!tname) { 13998 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13999 return -EINVAL; 14000 } 14001 if (tgt_prog) { 14002 struct bpf_prog_aux *aux = tgt_prog->aux; 14003 14004 for (i = 0; i < aux->func_info_cnt; i++) 14005 if (aux->func_info[i].type_id == btf_id) { 14006 subprog = i; 14007 break; 14008 } 14009 if (subprog == -1) { 14010 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14011 return -EINVAL; 14012 } 14013 conservative = aux->func_info_aux[subprog].unreliable; 14014 if (prog_extension) { 14015 if (conservative) { 14016 bpf_log(log, 14017 "Cannot replace static functions\n"); 14018 return -EINVAL; 14019 } 14020 if (!prog->jit_requested) { 14021 bpf_log(log, 14022 "Extension programs should be JITed\n"); 14023 return -EINVAL; 14024 } 14025 } 14026 if (!tgt_prog->jited) { 14027 bpf_log(log, "Can attach to only JITed progs\n"); 14028 return -EINVAL; 14029 } 14030 if (tgt_prog->type == prog->type) { 14031 /* Cannot fentry/fexit another fentry/fexit program. 14032 * Cannot attach program extension to another extension. 14033 * It's ok to attach fentry/fexit to extension program. 14034 */ 14035 bpf_log(log, "Cannot recursively attach\n"); 14036 return -EINVAL; 14037 } 14038 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14039 prog_extension && 14040 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14041 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14042 /* Program extensions can extend all program types 14043 * except fentry/fexit. The reason is the following. 14044 * The fentry/fexit programs are used for performance 14045 * analysis, stats and can be attached to any program 14046 * type except themselves. When extension program is 14047 * replacing XDP function it is necessary to allow 14048 * performance analysis of all functions. Both original 14049 * XDP program and its program extension. Hence 14050 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14051 * allowed. If extending of fentry/fexit was allowed it 14052 * would be possible to create long call chain 14053 * fentry->extension->fentry->extension beyond 14054 * reasonable stack size. Hence extending fentry is not 14055 * allowed. 14056 */ 14057 bpf_log(log, "Cannot extend fentry/fexit\n"); 14058 return -EINVAL; 14059 } 14060 } else { 14061 if (prog_extension) { 14062 bpf_log(log, "Cannot replace kernel functions\n"); 14063 return -EINVAL; 14064 } 14065 } 14066 14067 switch (prog->expected_attach_type) { 14068 case BPF_TRACE_RAW_TP: 14069 if (tgt_prog) { 14070 bpf_log(log, 14071 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14072 return -EINVAL; 14073 } 14074 if (!btf_type_is_typedef(t)) { 14075 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14076 btf_id); 14077 return -EINVAL; 14078 } 14079 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14080 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14081 btf_id, tname); 14082 return -EINVAL; 14083 } 14084 tname += sizeof(prefix) - 1; 14085 t = btf_type_by_id(btf, t->type); 14086 if (!btf_type_is_ptr(t)) 14087 /* should never happen in valid vmlinux build */ 14088 return -EINVAL; 14089 t = btf_type_by_id(btf, t->type); 14090 if (!btf_type_is_func_proto(t)) 14091 /* should never happen in valid vmlinux build */ 14092 return -EINVAL; 14093 14094 break; 14095 case BPF_TRACE_ITER: 14096 if (!btf_type_is_func(t)) { 14097 bpf_log(log, "attach_btf_id %u is not a function\n", 14098 btf_id); 14099 return -EINVAL; 14100 } 14101 t = btf_type_by_id(btf, t->type); 14102 if (!btf_type_is_func_proto(t)) 14103 return -EINVAL; 14104 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14105 if (ret) 14106 return ret; 14107 break; 14108 default: 14109 if (!prog_extension) 14110 return -EINVAL; 14111 fallthrough; 14112 case BPF_MODIFY_RETURN: 14113 case BPF_LSM_MAC: 14114 case BPF_TRACE_FENTRY: 14115 case BPF_TRACE_FEXIT: 14116 if (!btf_type_is_func(t)) { 14117 bpf_log(log, "attach_btf_id %u is not a function\n", 14118 btf_id); 14119 return -EINVAL; 14120 } 14121 if (prog_extension && 14122 btf_check_type_match(log, prog, btf, t)) 14123 return -EINVAL; 14124 t = btf_type_by_id(btf, t->type); 14125 if (!btf_type_is_func_proto(t)) 14126 return -EINVAL; 14127 14128 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14129 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14130 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14131 return -EINVAL; 14132 14133 if (tgt_prog && conservative) 14134 t = NULL; 14135 14136 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14137 if (ret < 0) 14138 return ret; 14139 14140 if (tgt_prog) { 14141 if (subprog == 0) 14142 addr = (long) tgt_prog->bpf_func; 14143 else 14144 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14145 } else { 14146 addr = kallsyms_lookup_name(tname); 14147 if (!addr) { 14148 bpf_log(log, 14149 "The address of function %s cannot be found\n", 14150 tname); 14151 return -ENOENT; 14152 } 14153 } 14154 14155 if (prog->aux->sleepable) { 14156 ret = -EINVAL; 14157 switch (prog->type) { 14158 case BPF_PROG_TYPE_TRACING: 14159 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14160 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14161 */ 14162 if (!check_non_sleepable_error_inject(btf_id) && 14163 within_error_injection_list(addr)) 14164 ret = 0; 14165 break; 14166 case BPF_PROG_TYPE_LSM: 14167 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14168 * Only some of them are sleepable. 14169 */ 14170 if (bpf_lsm_is_sleepable_hook(btf_id)) 14171 ret = 0; 14172 break; 14173 default: 14174 break; 14175 } 14176 if (ret) { 14177 bpf_log(log, "%s is not sleepable\n", tname); 14178 return ret; 14179 } 14180 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14181 if (tgt_prog) { 14182 bpf_log(log, "can't modify return codes of BPF programs\n"); 14183 return -EINVAL; 14184 } 14185 ret = check_attach_modify_return(addr, tname); 14186 if (ret) { 14187 bpf_log(log, "%s() is not modifiable\n", tname); 14188 return ret; 14189 } 14190 } 14191 14192 break; 14193 } 14194 tgt_info->tgt_addr = addr; 14195 tgt_info->tgt_name = tname; 14196 tgt_info->tgt_type = t; 14197 return 0; 14198 } 14199 14200 BTF_SET_START(btf_id_deny) 14201 BTF_ID_UNUSED 14202 #ifdef CONFIG_SMP 14203 BTF_ID(func, migrate_disable) 14204 BTF_ID(func, migrate_enable) 14205 #endif 14206 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 14207 BTF_ID(func, rcu_read_unlock_strict) 14208 #endif 14209 BTF_SET_END(btf_id_deny) 14210 14211 static int check_attach_btf_id(struct bpf_verifier_env *env) 14212 { 14213 struct bpf_prog *prog = env->prog; 14214 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 14215 struct bpf_attach_target_info tgt_info = {}; 14216 u32 btf_id = prog->aux->attach_btf_id; 14217 struct bpf_trampoline *tr; 14218 int ret; 14219 u64 key; 14220 14221 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 14222 if (prog->aux->sleepable) 14223 /* attach_btf_id checked to be zero already */ 14224 return 0; 14225 verbose(env, "Syscall programs can only be sleepable\n"); 14226 return -EINVAL; 14227 } 14228 14229 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 14230 prog->type != BPF_PROG_TYPE_LSM) { 14231 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 14232 return -EINVAL; 14233 } 14234 14235 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 14236 return check_struct_ops_btf_id(env); 14237 14238 if (prog->type != BPF_PROG_TYPE_TRACING && 14239 prog->type != BPF_PROG_TYPE_LSM && 14240 prog->type != BPF_PROG_TYPE_EXT) 14241 return 0; 14242 14243 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 14244 if (ret) 14245 return ret; 14246 14247 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 14248 /* to make freplace equivalent to their targets, they need to 14249 * inherit env->ops and expected_attach_type for the rest of the 14250 * verification 14251 */ 14252 env->ops = bpf_verifier_ops[tgt_prog->type]; 14253 prog->expected_attach_type = tgt_prog->expected_attach_type; 14254 } 14255 14256 /* store info about the attachment target that will be used later */ 14257 prog->aux->attach_func_proto = tgt_info.tgt_type; 14258 prog->aux->attach_func_name = tgt_info.tgt_name; 14259 14260 if (tgt_prog) { 14261 prog->aux->saved_dst_prog_type = tgt_prog->type; 14262 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 14263 } 14264 14265 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 14266 prog->aux->attach_btf_trace = true; 14267 return 0; 14268 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 14269 if (!bpf_iter_prog_supported(prog)) 14270 return -EINVAL; 14271 return 0; 14272 } 14273 14274 if (prog->type == BPF_PROG_TYPE_LSM) { 14275 ret = bpf_lsm_verify_prog(&env->log, prog); 14276 if (ret < 0) 14277 return ret; 14278 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14279 btf_id_set_contains(&btf_id_deny, btf_id)) { 14280 return -EINVAL; 14281 } 14282 14283 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14284 tr = bpf_trampoline_get(key, &tgt_info); 14285 if (!tr) 14286 return -ENOMEM; 14287 14288 prog->aux->dst_trampoline = tr; 14289 return 0; 14290 } 14291 14292 struct btf *bpf_get_btf_vmlinux(void) 14293 { 14294 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14295 mutex_lock(&bpf_verifier_lock); 14296 if (!btf_vmlinux) 14297 btf_vmlinux = btf_parse_vmlinux(); 14298 mutex_unlock(&bpf_verifier_lock); 14299 } 14300 return btf_vmlinux; 14301 } 14302 14303 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14304 { 14305 u64 start_time = ktime_get_ns(); 14306 struct bpf_verifier_env *env; 14307 struct bpf_verifier_log *log; 14308 int i, len, ret = -EINVAL; 14309 bool is_priv; 14310 14311 /* no program is valid */ 14312 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14313 return -EINVAL; 14314 14315 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14316 * allocate/free it every time bpf_check() is called 14317 */ 14318 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14319 if (!env) 14320 return -ENOMEM; 14321 log = &env->log; 14322 14323 len = (*prog)->len; 14324 env->insn_aux_data = 14325 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14326 ret = -ENOMEM; 14327 if (!env->insn_aux_data) 14328 goto err_free_env; 14329 for (i = 0; i < len; i++) 14330 env->insn_aux_data[i].orig_idx = i; 14331 env->prog = *prog; 14332 env->ops = bpf_verifier_ops[env->prog->type]; 14333 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14334 is_priv = bpf_capable(); 14335 14336 bpf_get_btf_vmlinux(); 14337 14338 /* grab the mutex to protect few globals used by verifier */ 14339 if (!is_priv) 14340 mutex_lock(&bpf_verifier_lock); 14341 14342 if (attr->log_level || attr->log_buf || attr->log_size) { 14343 /* user requested verbose verifier output 14344 * and supplied buffer to store the verification trace 14345 */ 14346 log->level = attr->log_level; 14347 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14348 log->len_total = attr->log_size; 14349 14350 /* log attributes have to be sane */ 14351 if (!bpf_verifier_log_attr_valid(log)) { 14352 ret = -EINVAL; 14353 goto err_unlock; 14354 } 14355 } 14356 14357 mark_verifier_state_clean(env); 14358 14359 if (IS_ERR(btf_vmlinux)) { 14360 /* Either gcc or pahole or kernel are broken. */ 14361 verbose(env, "in-kernel BTF is malformed\n"); 14362 ret = PTR_ERR(btf_vmlinux); 14363 goto skip_full_check; 14364 } 14365 14366 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14367 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14368 env->strict_alignment = true; 14369 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14370 env->strict_alignment = false; 14371 14372 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14373 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14374 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14375 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14376 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14377 env->bpf_capable = bpf_capable(); 14378 14379 if (is_priv) 14380 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14381 14382 env->explored_states = kvcalloc(state_htab_size(env), 14383 sizeof(struct bpf_verifier_state_list *), 14384 GFP_USER); 14385 ret = -ENOMEM; 14386 if (!env->explored_states) 14387 goto skip_full_check; 14388 14389 ret = add_subprog_and_kfunc(env); 14390 if (ret < 0) 14391 goto skip_full_check; 14392 14393 ret = check_subprogs(env); 14394 if (ret < 0) 14395 goto skip_full_check; 14396 14397 ret = check_btf_info(env, attr, uattr); 14398 if (ret < 0) 14399 goto skip_full_check; 14400 14401 ret = check_attach_btf_id(env); 14402 if (ret) 14403 goto skip_full_check; 14404 14405 ret = resolve_pseudo_ldimm64(env); 14406 if (ret < 0) 14407 goto skip_full_check; 14408 14409 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14410 ret = bpf_prog_offload_verifier_prep(env->prog); 14411 if (ret) 14412 goto skip_full_check; 14413 } 14414 14415 ret = check_cfg(env); 14416 if (ret < 0) 14417 goto skip_full_check; 14418 14419 ret = do_check_subprogs(env); 14420 ret = ret ?: do_check_main(env); 14421 14422 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14423 ret = bpf_prog_offload_finalize(env); 14424 14425 skip_full_check: 14426 kvfree(env->explored_states); 14427 14428 if (ret == 0) 14429 ret = check_max_stack_depth(env); 14430 14431 /* instruction rewrites happen after this point */ 14432 if (is_priv) { 14433 if (ret == 0) 14434 opt_hard_wire_dead_code_branches(env); 14435 if (ret == 0) 14436 ret = opt_remove_dead_code(env); 14437 if (ret == 0) 14438 ret = opt_remove_nops(env); 14439 } else { 14440 if (ret == 0) 14441 sanitize_dead_code(env); 14442 } 14443 14444 if (ret == 0) 14445 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14446 ret = convert_ctx_accesses(env); 14447 14448 if (ret == 0) 14449 ret = do_misc_fixups(env); 14450 14451 /* do 32-bit optimization after insn patching has done so those patched 14452 * insns could be handled correctly. 14453 */ 14454 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14455 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14456 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14457 : false; 14458 } 14459 14460 if (ret == 0) 14461 ret = fixup_call_args(env); 14462 14463 env->verification_time = ktime_get_ns() - start_time; 14464 print_verification_stats(env); 14465 env->prog->aux->verified_insns = env->insn_processed; 14466 14467 if (log->level && bpf_verifier_log_full(log)) 14468 ret = -ENOSPC; 14469 if (log->level && !log->ubuf) { 14470 ret = -EFAULT; 14471 goto err_release_maps; 14472 } 14473 14474 if (ret) 14475 goto err_release_maps; 14476 14477 if (env->used_map_cnt) { 14478 /* if program passed verifier, update used_maps in bpf_prog_info */ 14479 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14480 sizeof(env->used_maps[0]), 14481 GFP_KERNEL); 14482 14483 if (!env->prog->aux->used_maps) { 14484 ret = -ENOMEM; 14485 goto err_release_maps; 14486 } 14487 14488 memcpy(env->prog->aux->used_maps, env->used_maps, 14489 sizeof(env->used_maps[0]) * env->used_map_cnt); 14490 env->prog->aux->used_map_cnt = env->used_map_cnt; 14491 } 14492 if (env->used_btf_cnt) { 14493 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14494 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14495 sizeof(env->used_btfs[0]), 14496 GFP_KERNEL); 14497 if (!env->prog->aux->used_btfs) { 14498 ret = -ENOMEM; 14499 goto err_release_maps; 14500 } 14501 14502 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14503 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14504 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14505 } 14506 if (env->used_map_cnt || env->used_btf_cnt) { 14507 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14508 * bpf_ld_imm64 instructions 14509 */ 14510 convert_pseudo_ld_imm64(env); 14511 } 14512 14513 adjust_btf_func(env); 14514 14515 err_release_maps: 14516 if (!env->prog->aux->used_maps) 14517 /* if we didn't copy map pointers into bpf_prog_info, release 14518 * them now. Otherwise free_used_maps() will release them. 14519 */ 14520 release_maps(env); 14521 if (!env->prog->aux->used_btfs) 14522 release_btfs(env); 14523 14524 /* extension progs temporarily inherit the attach_type of their targets 14525 for verification purposes, so set it back to zero before returning 14526 */ 14527 if (env->prog->type == BPF_PROG_TYPE_EXT) 14528 env->prog->expected_attach_type = 0; 14529 14530 *prog = env->prog; 14531 err_unlock: 14532 if (!is_priv) 14533 mutex_unlock(&bpf_verifier_lock); 14534 vfree(env->insn_aux_data); 14535 err_free_env: 14536 kfree(env); 14537 return ret; 14538 } 14539