xref: /openbmc/linux/kernel/bpf/verifier.c (revision bf868be7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 };
266 
267 struct btf *btf_vmlinux;
268 
269 static DEFINE_MUTEX(bpf_verifier_lock);
270 
271 static const struct bpf_line_info *
272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
273 {
274 	const struct bpf_line_info *linfo;
275 	const struct bpf_prog *prog;
276 	u32 i, nr_linfo;
277 
278 	prog = env->prog;
279 	nr_linfo = prog->aux->nr_linfo;
280 
281 	if (!nr_linfo || insn_off >= prog->len)
282 		return NULL;
283 
284 	linfo = prog->aux->linfo;
285 	for (i = 1; i < nr_linfo; i++)
286 		if (insn_off < linfo[i].insn_off)
287 			break;
288 
289 	return &linfo[i - 1];
290 }
291 
292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
293 		       va_list args)
294 {
295 	unsigned int n;
296 
297 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
298 
299 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
300 		  "verifier log line truncated - local buffer too short\n");
301 
302 	n = min(log->len_total - log->len_used - 1, n);
303 	log->kbuf[n] = '\0';
304 
305 	if (log->level == BPF_LOG_KERNEL) {
306 		pr_err("BPF:%s\n", log->kbuf);
307 		return;
308 	}
309 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
310 		log->len_used += n;
311 	else
312 		log->ubuf = NULL;
313 }
314 
315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
316 {
317 	char zero = 0;
318 
319 	if (!bpf_verifier_log_needed(log))
320 		return;
321 
322 	log->len_used = new_pos;
323 	if (put_user(zero, log->ubuf + new_pos))
324 		log->ubuf = NULL;
325 }
326 
327 /* log_level controls verbosity level of eBPF verifier.
328  * bpf_verifier_log_write() is used to dump the verification trace to the log,
329  * so the user can figure out what's wrong with the program
330  */
331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
332 					   const char *fmt, ...)
333 {
334 	va_list args;
335 
336 	if (!bpf_verifier_log_needed(&env->log))
337 		return;
338 
339 	va_start(args, fmt);
340 	bpf_verifier_vlog(&env->log, fmt, args);
341 	va_end(args);
342 }
343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
344 
345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
346 {
347 	struct bpf_verifier_env *env = private_data;
348 	va_list args;
349 
350 	if (!bpf_verifier_log_needed(&env->log))
351 		return;
352 
353 	va_start(args, fmt);
354 	bpf_verifier_vlog(&env->log, fmt, args);
355 	va_end(args);
356 }
357 
358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
359 			    const char *fmt, ...)
360 {
361 	va_list args;
362 
363 	if (!bpf_verifier_log_needed(log))
364 		return;
365 
366 	va_start(args, fmt);
367 	bpf_verifier_vlog(log, fmt, args);
368 	va_end(args);
369 }
370 
371 static const char *ltrim(const char *s)
372 {
373 	while (isspace(*s))
374 		s++;
375 
376 	return s;
377 }
378 
379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
380 					 u32 insn_off,
381 					 const char *prefix_fmt, ...)
382 {
383 	const struct bpf_line_info *linfo;
384 
385 	if (!bpf_verifier_log_needed(&env->log))
386 		return;
387 
388 	linfo = find_linfo(env, insn_off);
389 	if (!linfo || linfo == env->prev_linfo)
390 		return;
391 
392 	if (prefix_fmt) {
393 		va_list args;
394 
395 		va_start(args, prefix_fmt);
396 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
397 		va_end(args);
398 	}
399 
400 	verbose(env, "%s\n",
401 		ltrim(btf_name_by_offset(env->prog->aux->btf,
402 					 linfo->line_off)));
403 
404 	env->prev_linfo = linfo;
405 }
406 
407 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
408 				   struct bpf_reg_state *reg,
409 				   struct tnum *range, const char *ctx,
410 				   const char *reg_name)
411 {
412 	char tn_buf[48];
413 
414 	verbose(env, "At %s the register %s ", ctx, reg_name);
415 	if (!tnum_is_unknown(reg->var_off)) {
416 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
417 		verbose(env, "has value %s", tn_buf);
418 	} else {
419 		verbose(env, "has unknown scalar value");
420 	}
421 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
422 	verbose(env, " should have been in %s\n", tn_buf);
423 }
424 
425 static bool type_is_pkt_pointer(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_PACKET ||
428 	       type == PTR_TO_PACKET_META;
429 }
430 
431 static bool type_is_sk_pointer(enum bpf_reg_type type)
432 {
433 	return type == PTR_TO_SOCKET ||
434 		type == PTR_TO_SOCK_COMMON ||
435 		type == PTR_TO_TCP_SOCK ||
436 		type == PTR_TO_XDP_SOCK;
437 }
438 
439 static bool reg_type_not_null(enum bpf_reg_type type)
440 {
441 	return type == PTR_TO_SOCKET ||
442 		type == PTR_TO_TCP_SOCK ||
443 		type == PTR_TO_MAP_VALUE ||
444 		type == PTR_TO_MAP_KEY ||
445 		type == PTR_TO_SOCK_COMMON;
446 }
447 
448 static bool reg_type_may_be_null(enum bpf_reg_type type)
449 {
450 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
451 	       type == PTR_TO_SOCKET_OR_NULL ||
452 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
453 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
454 	       type == PTR_TO_BTF_ID_OR_NULL ||
455 	       type == PTR_TO_MEM_OR_NULL ||
456 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
457 	       type == PTR_TO_RDWR_BUF_OR_NULL;
458 }
459 
460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
461 {
462 	return reg->type == PTR_TO_MAP_VALUE &&
463 		map_value_has_spin_lock(reg->map_ptr);
464 }
465 
466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
467 {
468 	return type == PTR_TO_SOCKET ||
469 		type == PTR_TO_SOCKET_OR_NULL ||
470 		type == PTR_TO_TCP_SOCK ||
471 		type == PTR_TO_TCP_SOCK_OR_NULL ||
472 		type == PTR_TO_MEM ||
473 		type == PTR_TO_MEM_OR_NULL;
474 }
475 
476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
477 {
478 	return type == ARG_PTR_TO_SOCK_COMMON;
479 }
480 
481 static bool arg_type_may_be_null(enum bpf_arg_type type)
482 {
483 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
484 	       type == ARG_PTR_TO_MEM_OR_NULL ||
485 	       type == ARG_PTR_TO_CTX_OR_NULL ||
486 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
487 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
488 	       type == ARG_PTR_TO_STACK_OR_NULL;
489 }
490 
491 /* Determine whether the function releases some resources allocated by another
492  * function call. The first reference type argument will be assumed to be
493  * released by release_reference().
494  */
495 static bool is_release_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_sk_release ||
498 	       func_id == BPF_FUNC_ringbuf_submit ||
499 	       func_id == BPF_FUNC_ringbuf_discard;
500 }
501 
502 static bool may_be_acquire_function(enum bpf_func_id func_id)
503 {
504 	return func_id == BPF_FUNC_sk_lookup_tcp ||
505 		func_id == BPF_FUNC_sk_lookup_udp ||
506 		func_id == BPF_FUNC_skc_lookup_tcp ||
507 		func_id == BPF_FUNC_map_lookup_elem ||
508 	        func_id == BPF_FUNC_ringbuf_reserve;
509 }
510 
511 static bool is_acquire_function(enum bpf_func_id func_id,
512 				const struct bpf_map *map)
513 {
514 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
515 
516 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
517 	    func_id == BPF_FUNC_sk_lookup_udp ||
518 	    func_id == BPF_FUNC_skc_lookup_tcp ||
519 	    func_id == BPF_FUNC_ringbuf_reserve)
520 		return true;
521 
522 	if (func_id == BPF_FUNC_map_lookup_elem &&
523 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
524 	     map_type == BPF_MAP_TYPE_SOCKHASH))
525 		return true;
526 
527 	return false;
528 }
529 
530 static bool is_ptr_cast_function(enum bpf_func_id func_id)
531 {
532 	return func_id == BPF_FUNC_tcp_sock ||
533 		func_id == BPF_FUNC_sk_fullsock ||
534 		func_id == BPF_FUNC_skc_to_tcp_sock ||
535 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
536 		func_id == BPF_FUNC_skc_to_udp6_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
538 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
539 }
540 
541 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
542 {
543 	return BPF_CLASS(insn->code) == BPF_STX &&
544 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
545 	       insn->imm == BPF_CMPXCHG;
546 }
547 
548 /* string representation of 'enum bpf_reg_type' */
549 static const char * const reg_type_str[] = {
550 	[NOT_INIT]		= "?",
551 	[SCALAR_VALUE]		= "inv",
552 	[PTR_TO_CTX]		= "ctx",
553 	[CONST_PTR_TO_MAP]	= "map_ptr",
554 	[PTR_TO_MAP_VALUE]	= "map_value",
555 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
556 	[PTR_TO_STACK]		= "fp",
557 	[PTR_TO_PACKET]		= "pkt",
558 	[PTR_TO_PACKET_META]	= "pkt_meta",
559 	[PTR_TO_PACKET_END]	= "pkt_end",
560 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
561 	[PTR_TO_SOCKET]		= "sock",
562 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
563 	[PTR_TO_SOCK_COMMON]	= "sock_common",
564 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
565 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
566 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
567 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
568 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
569 	[PTR_TO_BTF_ID]		= "ptr_",
570 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
571 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
572 	[PTR_TO_MEM]		= "mem",
573 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
574 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
575 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
576 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
577 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
578 	[PTR_TO_FUNC]		= "func",
579 	[PTR_TO_MAP_KEY]	= "map_key",
580 };
581 
582 static char slot_type_char[] = {
583 	[STACK_INVALID]	= '?',
584 	[STACK_SPILL]	= 'r',
585 	[STACK_MISC]	= 'm',
586 	[STACK_ZERO]	= '0',
587 };
588 
589 static void print_liveness(struct bpf_verifier_env *env,
590 			   enum bpf_reg_liveness live)
591 {
592 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
593 	    verbose(env, "_");
594 	if (live & REG_LIVE_READ)
595 		verbose(env, "r");
596 	if (live & REG_LIVE_WRITTEN)
597 		verbose(env, "w");
598 	if (live & REG_LIVE_DONE)
599 		verbose(env, "D");
600 }
601 
602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 				   const struct bpf_reg_state *reg)
604 {
605 	struct bpf_verifier_state *cur = env->cur_state;
606 
607 	return cur->frame[reg->frameno];
608 }
609 
610 static const char *kernel_type_name(const struct btf* btf, u32 id)
611 {
612 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
613 }
614 
615 static void print_verifier_state(struct bpf_verifier_env *env,
616 				 const struct bpf_func_state *state)
617 {
618 	const struct bpf_reg_state *reg;
619 	enum bpf_reg_type t;
620 	int i;
621 
622 	if (state->frameno)
623 		verbose(env, " frame%d:", state->frameno);
624 	for (i = 0; i < MAX_BPF_REG; i++) {
625 		reg = &state->regs[i];
626 		t = reg->type;
627 		if (t == NOT_INIT)
628 			continue;
629 		verbose(env, " R%d", i);
630 		print_liveness(env, reg->live);
631 		verbose(env, "=%s", reg_type_str[t]);
632 		if (t == SCALAR_VALUE && reg->precise)
633 			verbose(env, "P");
634 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
635 		    tnum_is_const(reg->var_off)) {
636 			/* reg->off should be 0 for SCALAR_VALUE */
637 			verbose(env, "%lld", reg->var_off.value + reg->off);
638 		} else {
639 			if (t == PTR_TO_BTF_ID ||
640 			    t == PTR_TO_BTF_ID_OR_NULL ||
641 			    t == PTR_TO_PERCPU_BTF_ID)
642 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
643 			verbose(env, "(id=%d", reg->id);
644 			if (reg_type_may_be_refcounted_or_null(t))
645 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
646 			if (t != SCALAR_VALUE)
647 				verbose(env, ",off=%d", reg->off);
648 			if (type_is_pkt_pointer(t))
649 				verbose(env, ",r=%d", reg->range);
650 			else if (t == CONST_PTR_TO_MAP ||
651 				 t == PTR_TO_MAP_KEY ||
652 				 t == PTR_TO_MAP_VALUE ||
653 				 t == PTR_TO_MAP_VALUE_OR_NULL)
654 				verbose(env, ",ks=%d,vs=%d",
655 					reg->map_ptr->key_size,
656 					reg->map_ptr->value_size);
657 			if (tnum_is_const(reg->var_off)) {
658 				/* Typically an immediate SCALAR_VALUE, but
659 				 * could be a pointer whose offset is too big
660 				 * for reg->off
661 				 */
662 				verbose(env, ",imm=%llx", reg->var_off.value);
663 			} else {
664 				if (reg->smin_value != reg->umin_value &&
665 				    reg->smin_value != S64_MIN)
666 					verbose(env, ",smin_value=%lld",
667 						(long long)reg->smin_value);
668 				if (reg->smax_value != reg->umax_value &&
669 				    reg->smax_value != S64_MAX)
670 					verbose(env, ",smax_value=%lld",
671 						(long long)reg->smax_value);
672 				if (reg->umin_value != 0)
673 					verbose(env, ",umin_value=%llu",
674 						(unsigned long long)reg->umin_value);
675 				if (reg->umax_value != U64_MAX)
676 					verbose(env, ",umax_value=%llu",
677 						(unsigned long long)reg->umax_value);
678 				if (!tnum_is_unknown(reg->var_off)) {
679 					char tn_buf[48];
680 
681 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
682 					verbose(env, ",var_off=%s", tn_buf);
683 				}
684 				if (reg->s32_min_value != reg->smin_value &&
685 				    reg->s32_min_value != S32_MIN)
686 					verbose(env, ",s32_min_value=%d",
687 						(int)(reg->s32_min_value));
688 				if (reg->s32_max_value != reg->smax_value &&
689 				    reg->s32_max_value != S32_MAX)
690 					verbose(env, ",s32_max_value=%d",
691 						(int)(reg->s32_max_value));
692 				if (reg->u32_min_value != reg->umin_value &&
693 				    reg->u32_min_value != U32_MIN)
694 					verbose(env, ",u32_min_value=%d",
695 						(int)(reg->u32_min_value));
696 				if (reg->u32_max_value != reg->umax_value &&
697 				    reg->u32_max_value != U32_MAX)
698 					verbose(env, ",u32_max_value=%d",
699 						(int)(reg->u32_max_value));
700 			}
701 			verbose(env, ")");
702 		}
703 	}
704 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
705 		char types_buf[BPF_REG_SIZE + 1];
706 		bool valid = false;
707 		int j;
708 
709 		for (j = 0; j < BPF_REG_SIZE; j++) {
710 			if (state->stack[i].slot_type[j] != STACK_INVALID)
711 				valid = true;
712 			types_buf[j] = slot_type_char[
713 					state->stack[i].slot_type[j]];
714 		}
715 		types_buf[BPF_REG_SIZE] = 0;
716 		if (!valid)
717 			continue;
718 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
719 		print_liveness(env, state->stack[i].spilled_ptr.live);
720 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
721 			reg = &state->stack[i].spilled_ptr;
722 			t = reg->type;
723 			verbose(env, "=%s", reg_type_str[t]);
724 			if (t == SCALAR_VALUE && reg->precise)
725 				verbose(env, "P");
726 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
727 				verbose(env, "%lld", reg->var_off.value + reg->off);
728 		} else {
729 			verbose(env, "=%s", types_buf);
730 		}
731 	}
732 	if (state->acquired_refs && state->refs[0].id) {
733 		verbose(env, " refs=%d", state->refs[0].id);
734 		for (i = 1; i < state->acquired_refs; i++)
735 			if (state->refs[i].id)
736 				verbose(env, ",%d", state->refs[i].id);
737 	}
738 	if (state->in_callback_fn)
739 		verbose(env, " cb");
740 	if (state->in_async_callback_fn)
741 		verbose(env, " async_cb");
742 	verbose(env, "\n");
743 }
744 
745 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
746  * small to hold src. This is different from krealloc since we don't want to preserve
747  * the contents of dst.
748  *
749  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
750  * not be allocated.
751  */
752 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
753 {
754 	size_t bytes;
755 
756 	if (ZERO_OR_NULL_PTR(src))
757 		goto out;
758 
759 	if (unlikely(check_mul_overflow(n, size, &bytes)))
760 		return NULL;
761 
762 	if (ksize(dst) < bytes) {
763 		kfree(dst);
764 		dst = kmalloc_track_caller(bytes, flags);
765 		if (!dst)
766 			return NULL;
767 	}
768 
769 	memcpy(dst, src, bytes);
770 out:
771 	return dst ? dst : ZERO_SIZE_PTR;
772 }
773 
774 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
775  * small to hold new_n items. new items are zeroed out if the array grows.
776  *
777  * Contrary to krealloc_array, does not free arr if new_n is zero.
778  */
779 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
780 {
781 	if (!new_n || old_n == new_n)
782 		goto out;
783 
784 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
785 	if (!arr)
786 		return NULL;
787 
788 	if (new_n > old_n)
789 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
790 
791 out:
792 	return arr ? arr : ZERO_SIZE_PTR;
793 }
794 
795 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
796 {
797 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
798 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
799 	if (!dst->refs)
800 		return -ENOMEM;
801 
802 	dst->acquired_refs = src->acquired_refs;
803 	return 0;
804 }
805 
806 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
807 {
808 	size_t n = src->allocated_stack / BPF_REG_SIZE;
809 
810 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
811 				GFP_KERNEL);
812 	if (!dst->stack)
813 		return -ENOMEM;
814 
815 	dst->allocated_stack = src->allocated_stack;
816 	return 0;
817 }
818 
819 static int resize_reference_state(struct bpf_func_state *state, size_t n)
820 {
821 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
822 				    sizeof(struct bpf_reference_state));
823 	if (!state->refs)
824 		return -ENOMEM;
825 
826 	state->acquired_refs = n;
827 	return 0;
828 }
829 
830 static int grow_stack_state(struct bpf_func_state *state, int size)
831 {
832 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
833 
834 	if (old_n >= n)
835 		return 0;
836 
837 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
838 	if (!state->stack)
839 		return -ENOMEM;
840 
841 	state->allocated_stack = size;
842 	return 0;
843 }
844 
845 /* Acquire a pointer id from the env and update the state->refs to include
846  * this new pointer reference.
847  * On success, returns a valid pointer id to associate with the register
848  * On failure, returns a negative errno.
849  */
850 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
851 {
852 	struct bpf_func_state *state = cur_func(env);
853 	int new_ofs = state->acquired_refs;
854 	int id, err;
855 
856 	err = resize_reference_state(state, state->acquired_refs + 1);
857 	if (err)
858 		return err;
859 	id = ++env->id_gen;
860 	state->refs[new_ofs].id = id;
861 	state->refs[new_ofs].insn_idx = insn_idx;
862 
863 	return id;
864 }
865 
866 /* release function corresponding to acquire_reference_state(). Idempotent. */
867 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
868 {
869 	int i, last_idx;
870 
871 	last_idx = state->acquired_refs - 1;
872 	for (i = 0; i < state->acquired_refs; i++) {
873 		if (state->refs[i].id == ptr_id) {
874 			if (last_idx && i != last_idx)
875 				memcpy(&state->refs[i], &state->refs[last_idx],
876 				       sizeof(*state->refs));
877 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
878 			state->acquired_refs--;
879 			return 0;
880 		}
881 	}
882 	return -EINVAL;
883 }
884 
885 static void free_func_state(struct bpf_func_state *state)
886 {
887 	if (!state)
888 		return;
889 	kfree(state->refs);
890 	kfree(state->stack);
891 	kfree(state);
892 }
893 
894 static void clear_jmp_history(struct bpf_verifier_state *state)
895 {
896 	kfree(state->jmp_history);
897 	state->jmp_history = NULL;
898 	state->jmp_history_cnt = 0;
899 }
900 
901 static void free_verifier_state(struct bpf_verifier_state *state,
902 				bool free_self)
903 {
904 	int i;
905 
906 	for (i = 0; i <= state->curframe; i++) {
907 		free_func_state(state->frame[i]);
908 		state->frame[i] = NULL;
909 	}
910 	clear_jmp_history(state);
911 	if (free_self)
912 		kfree(state);
913 }
914 
915 /* copy verifier state from src to dst growing dst stack space
916  * when necessary to accommodate larger src stack
917  */
918 static int copy_func_state(struct bpf_func_state *dst,
919 			   const struct bpf_func_state *src)
920 {
921 	int err;
922 
923 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
924 	err = copy_reference_state(dst, src);
925 	if (err)
926 		return err;
927 	return copy_stack_state(dst, src);
928 }
929 
930 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
931 			       const struct bpf_verifier_state *src)
932 {
933 	struct bpf_func_state *dst;
934 	int i, err;
935 
936 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
937 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
938 					    GFP_USER);
939 	if (!dst_state->jmp_history)
940 		return -ENOMEM;
941 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
942 
943 	/* if dst has more stack frames then src frame, free them */
944 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
945 		free_func_state(dst_state->frame[i]);
946 		dst_state->frame[i] = NULL;
947 	}
948 	dst_state->speculative = src->speculative;
949 	dst_state->curframe = src->curframe;
950 	dst_state->active_spin_lock = src->active_spin_lock;
951 	dst_state->branches = src->branches;
952 	dst_state->parent = src->parent;
953 	dst_state->first_insn_idx = src->first_insn_idx;
954 	dst_state->last_insn_idx = src->last_insn_idx;
955 	for (i = 0; i <= src->curframe; i++) {
956 		dst = dst_state->frame[i];
957 		if (!dst) {
958 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
959 			if (!dst)
960 				return -ENOMEM;
961 			dst_state->frame[i] = dst;
962 		}
963 		err = copy_func_state(dst, src->frame[i]);
964 		if (err)
965 			return err;
966 	}
967 	return 0;
968 }
969 
970 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
971 {
972 	while (st) {
973 		u32 br = --st->branches;
974 
975 		/* WARN_ON(br > 1) technically makes sense here,
976 		 * but see comment in push_stack(), hence:
977 		 */
978 		WARN_ONCE((int)br < 0,
979 			  "BUG update_branch_counts:branches_to_explore=%d\n",
980 			  br);
981 		if (br)
982 			break;
983 		st = st->parent;
984 	}
985 }
986 
987 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
988 		     int *insn_idx, bool pop_log)
989 {
990 	struct bpf_verifier_state *cur = env->cur_state;
991 	struct bpf_verifier_stack_elem *elem, *head = env->head;
992 	int err;
993 
994 	if (env->head == NULL)
995 		return -ENOENT;
996 
997 	if (cur) {
998 		err = copy_verifier_state(cur, &head->st);
999 		if (err)
1000 			return err;
1001 	}
1002 	if (pop_log)
1003 		bpf_vlog_reset(&env->log, head->log_pos);
1004 	if (insn_idx)
1005 		*insn_idx = head->insn_idx;
1006 	if (prev_insn_idx)
1007 		*prev_insn_idx = head->prev_insn_idx;
1008 	elem = head->next;
1009 	free_verifier_state(&head->st, false);
1010 	kfree(head);
1011 	env->head = elem;
1012 	env->stack_size--;
1013 	return 0;
1014 }
1015 
1016 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1017 					     int insn_idx, int prev_insn_idx,
1018 					     bool speculative)
1019 {
1020 	struct bpf_verifier_state *cur = env->cur_state;
1021 	struct bpf_verifier_stack_elem *elem;
1022 	int err;
1023 
1024 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1025 	if (!elem)
1026 		goto err;
1027 
1028 	elem->insn_idx = insn_idx;
1029 	elem->prev_insn_idx = prev_insn_idx;
1030 	elem->next = env->head;
1031 	elem->log_pos = env->log.len_used;
1032 	env->head = elem;
1033 	env->stack_size++;
1034 	err = copy_verifier_state(&elem->st, cur);
1035 	if (err)
1036 		goto err;
1037 	elem->st.speculative |= speculative;
1038 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1039 		verbose(env, "The sequence of %d jumps is too complex.\n",
1040 			env->stack_size);
1041 		goto err;
1042 	}
1043 	if (elem->st.parent) {
1044 		++elem->st.parent->branches;
1045 		/* WARN_ON(branches > 2) technically makes sense here,
1046 		 * but
1047 		 * 1. speculative states will bump 'branches' for non-branch
1048 		 * instructions
1049 		 * 2. is_state_visited() heuristics may decide not to create
1050 		 * a new state for a sequence of branches and all such current
1051 		 * and cloned states will be pointing to a single parent state
1052 		 * which might have large 'branches' count.
1053 		 */
1054 	}
1055 	return &elem->st;
1056 err:
1057 	free_verifier_state(env->cur_state, true);
1058 	env->cur_state = NULL;
1059 	/* pop all elements and return */
1060 	while (!pop_stack(env, NULL, NULL, false));
1061 	return NULL;
1062 }
1063 
1064 #define CALLER_SAVED_REGS 6
1065 static const int caller_saved[CALLER_SAVED_REGS] = {
1066 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1067 };
1068 
1069 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1070 				struct bpf_reg_state *reg);
1071 
1072 /* This helper doesn't clear reg->id */
1073 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1074 {
1075 	reg->var_off = tnum_const(imm);
1076 	reg->smin_value = (s64)imm;
1077 	reg->smax_value = (s64)imm;
1078 	reg->umin_value = imm;
1079 	reg->umax_value = imm;
1080 
1081 	reg->s32_min_value = (s32)imm;
1082 	reg->s32_max_value = (s32)imm;
1083 	reg->u32_min_value = (u32)imm;
1084 	reg->u32_max_value = (u32)imm;
1085 }
1086 
1087 /* Mark the unknown part of a register (variable offset or scalar value) as
1088  * known to have the value @imm.
1089  */
1090 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1091 {
1092 	/* Clear id, off, and union(map_ptr, range) */
1093 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1094 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1095 	___mark_reg_known(reg, imm);
1096 }
1097 
1098 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1099 {
1100 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1101 	reg->s32_min_value = (s32)imm;
1102 	reg->s32_max_value = (s32)imm;
1103 	reg->u32_min_value = (u32)imm;
1104 	reg->u32_max_value = (u32)imm;
1105 }
1106 
1107 /* Mark the 'variable offset' part of a register as zero.  This should be
1108  * used only on registers holding a pointer type.
1109  */
1110 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 }
1114 
1115 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1116 {
1117 	__mark_reg_known(reg, 0);
1118 	reg->type = SCALAR_VALUE;
1119 }
1120 
1121 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1122 				struct bpf_reg_state *regs, u32 regno)
1123 {
1124 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1125 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1126 		/* Something bad happened, let's kill all regs */
1127 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1128 			__mark_reg_not_init(env, regs + regno);
1129 		return;
1130 	}
1131 	__mark_reg_known_zero(regs + regno);
1132 }
1133 
1134 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1135 {
1136 	switch (reg->type) {
1137 	case PTR_TO_MAP_VALUE_OR_NULL: {
1138 		const struct bpf_map *map = reg->map_ptr;
1139 
1140 		if (map->inner_map_meta) {
1141 			reg->type = CONST_PTR_TO_MAP;
1142 			reg->map_ptr = map->inner_map_meta;
1143 			/* transfer reg's id which is unique for every map_lookup_elem
1144 			 * as UID of the inner map.
1145 			 */
1146 			reg->map_uid = reg->id;
1147 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1148 			reg->type = PTR_TO_XDP_SOCK;
1149 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1150 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1151 			reg->type = PTR_TO_SOCKET;
1152 		} else {
1153 			reg->type = PTR_TO_MAP_VALUE;
1154 		}
1155 		break;
1156 	}
1157 	case PTR_TO_SOCKET_OR_NULL:
1158 		reg->type = PTR_TO_SOCKET;
1159 		break;
1160 	case PTR_TO_SOCK_COMMON_OR_NULL:
1161 		reg->type = PTR_TO_SOCK_COMMON;
1162 		break;
1163 	case PTR_TO_TCP_SOCK_OR_NULL:
1164 		reg->type = PTR_TO_TCP_SOCK;
1165 		break;
1166 	case PTR_TO_BTF_ID_OR_NULL:
1167 		reg->type = PTR_TO_BTF_ID;
1168 		break;
1169 	case PTR_TO_MEM_OR_NULL:
1170 		reg->type = PTR_TO_MEM;
1171 		break;
1172 	case PTR_TO_RDONLY_BUF_OR_NULL:
1173 		reg->type = PTR_TO_RDONLY_BUF;
1174 		break;
1175 	case PTR_TO_RDWR_BUF_OR_NULL:
1176 		reg->type = PTR_TO_RDWR_BUF;
1177 		break;
1178 	default:
1179 		WARN_ONCE(1, "unknown nullable register type");
1180 	}
1181 }
1182 
1183 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1184 {
1185 	return type_is_pkt_pointer(reg->type);
1186 }
1187 
1188 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1189 {
1190 	return reg_is_pkt_pointer(reg) ||
1191 	       reg->type == PTR_TO_PACKET_END;
1192 }
1193 
1194 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1195 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1196 				    enum bpf_reg_type which)
1197 {
1198 	/* The register can already have a range from prior markings.
1199 	 * This is fine as long as it hasn't been advanced from its
1200 	 * origin.
1201 	 */
1202 	return reg->type == which &&
1203 	       reg->id == 0 &&
1204 	       reg->off == 0 &&
1205 	       tnum_equals_const(reg->var_off, 0);
1206 }
1207 
1208 /* Reset the min/max bounds of a register */
1209 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1210 {
1211 	reg->smin_value = S64_MIN;
1212 	reg->smax_value = S64_MAX;
1213 	reg->umin_value = 0;
1214 	reg->umax_value = U64_MAX;
1215 
1216 	reg->s32_min_value = S32_MIN;
1217 	reg->s32_max_value = S32_MAX;
1218 	reg->u32_min_value = 0;
1219 	reg->u32_max_value = U32_MAX;
1220 }
1221 
1222 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1223 {
1224 	reg->smin_value = S64_MIN;
1225 	reg->smax_value = S64_MAX;
1226 	reg->umin_value = 0;
1227 	reg->umax_value = U64_MAX;
1228 }
1229 
1230 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1231 {
1232 	reg->s32_min_value = S32_MIN;
1233 	reg->s32_max_value = S32_MAX;
1234 	reg->u32_min_value = 0;
1235 	reg->u32_max_value = U32_MAX;
1236 }
1237 
1238 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1239 {
1240 	struct tnum var32_off = tnum_subreg(reg->var_off);
1241 
1242 	/* min signed is max(sign bit) | min(other bits) */
1243 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1244 			var32_off.value | (var32_off.mask & S32_MIN));
1245 	/* max signed is min(sign bit) | max(other bits) */
1246 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1247 			var32_off.value | (var32_off.mask & S32_MAX));
1248 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1249 	reg->u32_max_value = min(reg->u32_max_value,
1250 				 (u32)(var32_off.value | var32_off.mask));
1251 }
1252 
1253 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1254 {
1255 	/* min signed is max(sign bit) | min(other bits) */
1256 	reg->smin_value = max_t(s64, reg->smin_value,
1257 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1258 	/* max signed is min(sign bit) | max(other bits) */
1259 	reg->smax_value = min_t(s64, reg->smax_value,
1260 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1261 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1262 	reg->umax_value = min(reg->umax_value,
1263 			      reg->var_off.value | reg->var_off.mask);
1264 }
1265 
1266 static void __update_reg_bounds(struct bpf_reg_state *reg)
1267 {
1268 	__update_reg32_bounds(reg);
1269 	__update_reg64_bounds(reg);
1270 }
1271 
1272 /* Uses signed min/max values to inform unsigned, and vice-versa */
1273 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1274 {
1275 	/* Learn sign from signed bounds.
1276 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1277 	 * are the same, so combine.  This works even in the negative case, e.g.
1278 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1279 	 */
1280 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1281 		reg->s32_min_value = reg->u32_min_value =
1282 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1283 		reg->s32_max_value = reg->u32_max_value =
1284 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1285 		return;
1286 	}
1287 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1288 	 * boundary, so we must be careful.
1289 	 */
1290 	if ((s32)reg->u32_max_value >= 0) {
1291 		/* Positive.  We can't learn anything from the smin, but smax
1292 		 * is positive, hence safe.
1293 		 */
1294 		reg->s32_min_value = reg->u32_min_value;
1295 		reg->s32_max_value = reg->u32_max_value =
1296 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1297 	} else if ((s32)reg->u32_min_value < 0) {
1298 		/* Negative.  We can't learn anything from the smax, but smin
1299 		 * is negative, hence safe.
1300 		 */
1301 		reg->s32_min_value = reg->u32_min_value =
1302 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1303 		reg->s32_max_value = reg->u32_max_value;
1304 	}
1305 }
1306 
1307 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1308 {
1309 	/* Learn sign from signed bounds.
1310 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1311 	 * are the same, so combine.  This works even in the negative case, e.g.
1312 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1313 	 */
1314 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1315 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1316 							  reg->umin_value);
1317 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1318 							  reg->umax_value);
1319 		return;
1320 	}
1321 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1322 	 * boundary, so we must be careful.
1323 	 */
1324 	if ((s64)reg->umax_value >= 0) {
1325 		/* Positive.  We can't learn anything from the smin, but smax
1326 		 * is positive, hence safe.
1327 		 */
1328 		reg->smin_value = reg->umin_value;
1329 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1330 							  reg->umax_value);
1331 	} else if ((s64)reg->umin_value < 0) {
1332 		/* Negative.  We can't learn anything from the smax, but smin
1333 		 * is negative, hence safe.
1334 		 */
1335 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1336 							  reg->umin_value);
1337 		reg->smax_value = reg->umax_value;
1338 	}
1339 }
1340 
1341 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1342 {
1343 	__reg32_deduce_bounds(reg);
1344 	__reg64_deduce_bounds(reg);
1345 }
1346 
1347 /* Attempts to improve var_off based on unsigned min/max information */
1348 static void __reg_bound_offset(struct bpf_reg_state *reg)
1349 {
1350 	struct tnum var64_off = tnum_intersect(reg->var_off,
1351 					       tnum_range(reg->umin_value,
1352 							  reg->umax_value));
1353 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1354 						tnum_range(reg->u32_min_value,
1355 							   reg->u32_max_value));
1356 
1357 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1358 }
1359 
1360 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1361 {
1362 	reg->umin_value = reg->u32_min_value;
1363 	reg->umax_value = reg->u32_max_value;
1364 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1365 	 * but must be positive otherwise set to worse case bounds
1366 	 * and refine later from tnum.
1367 	 */
1368 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1369 		reg->smax_value = reg->s32_max_value;
1370 	else
1371 		reg->smax_value = U32_MAX;
1372 	if (reg->s32_min_value >= 0)
1373 		reg->smin_value = reg->s32_min_value;
1374 	else
1375 		reg->smin_value = 0;
1376 }
1377 
1378 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1379 {
1380 	/* special case when 64-bit register has upper 32-bit register
1381 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1382 	 * allowing us to use 32-bit bounds directly,
1383 	 */
1384 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1385 		__reg_assign_32_into_64(reg);
1386 	} else {
1387 		/* Otherwise the best we can do is push lower 32bit known and
1388 		 * unknown bits into register (var_off set from jmp logic)
1389 		 * then learn as much as possible from the 64-bit tnum
1390 		 * known and unknown bits. The previous smin/smax bounds are
1391 		 * invalid here because of jmp32 compare so mark them unknown
1392 		 * so they do not impact tnum bounds calculation.
1393 		 */
1394 		__mark_reg64_unbounded(reg);
1395 		__update_reg_bounds(reg);
1396 	}
1397 
1398 	/* Intersecting with the old var_off might have improved our bounds
1399 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1400 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1401 	 */
1402 	__reg_deduce_bounds(reg);
1403 	__reg_bound_offset(reg);
1404 	__update_reg_bounds(reg);
1405 }
1406 
1407 static bool __reg64_bound_s32(s64 a)
1408 {
1409 	return a > S32_MIN && a < S32_MAX;
1410 }
1411 
1412 static bool __reg64_bound_u32(u64 a)
1413 {
1414 	return a > U32_MIN && a < U32_MAX;
1415 }
1416 
1417 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1418 {
1419 	__mark_reg32_unbounded(reg);
1420 
1421 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1422 		reg->s32_min_value = (s32)reg->smin_value;
1423 		reg->s32_max_value = (s32)reg->smax_value;
1424 	}
1425 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1426 		reg->u32_min_value = (u32)reg->umin_value;
1427 		reg->u32_max_value = (u32)reg->umax_value;
1428 	}
1429 
1430 	/* Intersecting with the old var_off might have improved our bounds
1431 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1432 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1433 	 */
1434 	__reg_deduce_bounds(reg);
1435 	__reg_bound_offset(reg);
1436 	__update_reg_bounds(reg);
1437 }
1438 
1439 /* Mark a register as having a completely unknown (scalar) value. */
1440 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1441 			       struct bpf_reg_state *reg)
1442 {
1443 	/*
1444 	 * Clear type, id, off, and union(map_ptr, range) and
1445 	 * padding between 'type' and union
1446 	 */
1447 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1448 	reg->type = SCALAR_VALUE;
1449 	reg->var_off = tnum_unknown;
1450 	reg->frameno = 0;
1451 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1452 	__mark_reg_unbounded(reg);
1453 }
1454 
1455 static void mark_reg_unknown(struct bpf_verifier_env *env,
1456 			     struct bpf_reg_state *regs, u32 regno)
1457 {
1458 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1459 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1460 		/* Something bad happened, let's kill all regs except FP */
1461 		for (regno = 0; regno < BPF_REG_FP; regno++)
1462 			__mark_reg_not_init(env, regs + regno);
1463 		return;
1464 	}
1465 	__mark_reg_unknown(env, regs + regno);
1466 }
1467 
1468 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1469 				struct bpf_reg_state *reg)
1470 {
1471 	__mark_reg_unknown(env, reg);
1472 	reg->type = NOT_INIT;
1473 }
1474 
1475 static void mark_reg_not_init(struct bpf_verifier_env *env,
1476 			      struct bpf_reg_state *regs, u32 regno)
1477 {
1478 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1479 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1480 		/* Something bad happened, let's kill all regs except FP */
1481 		for (regno = 0; regno < BPF_REG_FP; regno++)
1482 			__mark_reg_not_init(env, regs + regno);
1483 		return;
1484 	}
1485 	__mark_reg_not_init(env, regs + regno);
1486 }
1487 
1488 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1489 			    struct bpf_reg_state *regs, u32 regno,
1490 			    enum bpf_reg_type reg_type,
1491 			    struct btf *btf, u32 btf_id)
1492 {
1493 	if (reg_type == SCALAR_VALUE) {
1494 		mark_reg_unknown(env, regs, regno);
1495 		return;
1496 	}
1497 	mark_reg_known_zero(env, regs, regno);
1498 	regs[regno].type = PTR_TO_BTF_ID;
1499 	regs[regno].btf = btf;
1500 	regs[regno].btf_id = btf_id;
1501 }
1502 
1503 #define DEF_NOT_SUBREG	(0)
1504 static void init_reg_state(struct bpf_verifier_env *env,
1505 			   struct bpf_func_state *state)
1506 {
1507 	struct bpf_reg_state *regs = state->regs;
1508 	int i;
1509 
1510 	for (i = 0; i < MAX_BPF_REG; i++) {
1511 		mark_reg_not_init(env, regs, i);
1512 		regs[i].live = REG_LIVE_NONE;
1513 		regs[i].parent = NULL;
1514 		regs[i].subreg_def = DEF_NOT_SUBREG;
1515 	}
1516 
1517 	/* frame pointer */
1518 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1519 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1520 	regs[BPF_REG_FP].frameno = state->frameno;
1521 }
1522 
1523 #define BPF_MAIN_FUNC (-1)
1524 static void init_func_state(struct bpf_verifier_env *env,
1525 			    struct bpf_func_state *state,
1526 			    int callsite, int frameno, int subprogno)
1527 {
1528 	state->callsite = callsite;
1529 	state->frameno = frameno;
1530 	state->subprogno = subprogno;
1531 	init_reg_state(env, state);
1532 }
1533 
1534 /* Similar to push_stack(), but for async callbacks */
1535 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1536 						int insn_idx, int prev_insn_idx,
1537 						int subprog)
1538 {
1539 	struct bpf_verifier_stack_elem *elem;
1540 	struct bpf_func_state *frame;
1541 
1542 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1543 	if (!elem)
1544 		goto err;
1545 
1546 	elem->insn_idx = insn_idx;
1547 	elem->prev_insn_idx = prev_insn_idx;
1548 	elem->next = env->head;
1549 	elem->log_pos = env->log.len_used;
1550 	env->head = elem;
1551 	env->stack_size++;
1552 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1553 		verbose(env,
1554 			"The sequence of %d jumps is too complex for async cb.\n",
1555 			env->stack_size);
1556 		goto err;
1557 	}
1558 	/* Unlike push_stack() do not copy_verifier_state().
1559 	 * The caller state doesn't matter.
1560 	 * This is async callback. It starts in a fresh stack.
1561 	 * Initialize it similar to do_check_common().
1562 	 */
1563 	elem->st.branches = 1;
1564 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1565 	if (!frame)
1566 		goto err;
1567 	init_func_state(env, frame,
1568 			BPF_MAIN_FUNC /* callsite */,
1569 			0 /* frameno within this callchain */,
1570 			subprog /* subprog number within this prog */);
1571 	elem->st.frame[0] = frame;
1572 	return &elem->st;
1573 err:
1574 	free_verifier_state(env->cur_state, true);
1575 	env->cur_state = NULL;
1576 	/* pop all elements and return */
1577 	while (!pop_stack(env, NULL, NULL, false));
1578 	return NULL;
1579 }
1580 
1581 
1582 enum reg_arg_type {
1583 	SRC_OP,		/* register is used as source operand */
1584 	DST_OP,		/* register is used as destination operand */
1585 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1586 };
1587 
1588 static int cmp_subprogs(const void *a, const void *b)
1589 {
1590 	return ((struct bpf_subprog_info *)a)->start -
1591 	       ((struct bpf_subprog_info *)b)->start;
1592 }
1593 
1594 static int find_subprog(struct bpf_verifier_env *env, int off)
1595 {
1596 	struct bpf_subprog_info *p;
1597 
1598 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1599 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1600 	if (!p)
1601 		return -ENOENT;
1602 	return p - env->subprog_info;
1603 
1604 }
1605 
1606 static int add_subprog(struct bpf_verifier_env *env, int off)
1607 {
1608 	int insn_cnt = env->prog->len;
1609 	int ret;
1610 
1611 	if (off >= insn_cnt || off < 0) {
1612 		verbose(env, "call to invalid destination\n");
1613 		return -EINVAL;
1614 	}
1615 	ret = find_subprog(env, off);
1616 	if (ret >= 0)
1617 		return ret;
1618 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1619 		verbose(env, "too many subprograms\n");
1620 		return -E2BIG;
1621 	}
1622 	/* determine subprog starts. The end is one before the next starts */
1623 	env->subprog_info[env->subprog_cnt++].start = off;
1624 	sort(env->subprog_info, env->subprog_cnt,
1625 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1626 	return env->subprog_cnt - 1;
1627 }
1628 
1629 struct bpf_kfunc_desc {
1630 	struct btf_func_model func_model;
1631 	u32 func_id;
1632 	s32 imm;
1633 };
1634 
1635 #define MAX_KFUNC_DESCS 256
1636 struct bpf_kfunc_desc_tab {
1637 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1638 	u32 nr_descs;
1639 };
1640 
1641 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1642 {
1643 	const struct bpf_kfunc_desc *d0 = a;
1644 	const struct bpf_kfunc_desc *d1 = b;
1645 
1646 	/* func_id is not greater than BTF_MAX_TYPE */
1647 	return d0->func_id - d1->func_id;
1648 }
1649 
1650 static const struct bpf_kfunc_desc *
1651 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1652 {
1653 	struct bpf_kfunc_desc desc = {
1654 		.func_id = func_id,
1655 	};
1656 	struct bpf_kfunc_desc_tab *tab;
1657 
1658 	tab = prog->aux->kfunc_tab;
1659 	return bsearch(&desc, tab->descs, tab->nr_descs,
1660 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1661 }
1662 
1663 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1664 {
1665 	const struct btf_type *func, *func_proto;
1666 	struct bpf_kfunc_desc_tab *tab;
1667 	struct bpf_prog_aux *prog_aux;
1668 	struct bpf_kfunc_desc *desc;
1669 	const char *func_name;
1670 	unsigned long addr;
1671 	int err;
1672 
1673 	prog_aux = env->prog->aux;
1674 	tab = prog_aux->kfunc_tab;
1675 	if (!tab) {
1676 		if (!btf_vmlinux) {
1677 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1678 			return -ENOTSUPP;
1679 		}
1680 
1681 		if (!env->prog->jit_requested) {
1682 			verbose(env, "JIT is required for calling kernel function\n");
1683 			return -ENOTSUPP;
1684 		}
1685 
1686 		if (!bpf_jit_supports_kfunc_call()) {
1687 			verbose(env, "JIT does not support calling kernel function\n");
1688 			return -ENOTSUPP;
1689 		}
1690 
1691 		if (!env->prog->gpl_compatible) {
1692 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1693 			return -EINVAL;
1694 		}
1695 
1696 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1697 		if (!tab)
1698 			return -ENOMEM;
1699 		prog_aux->kfunc_tab = tab;
1700 	}
1701 
1702 	if (find_kfunc_desc(env->prog, func_id))
1703 		return 0;
1704 
1705 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1706 		verbose(env, "too many different kernel function calls\n");
1707 		return -E2BIG;
1708 	}
1709 
1710 	func = btf_type_by_id(btf_vmlinux, func_id);
1711 	if (!func || !btf_type_is_func(func)) {
1712 		verbose(env, "kernel btf_id %u is not a function\n",
1713 			func_id);
1714 		return -EINVAL;
1715 	}
1716 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1717 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1718 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1719 			func_id);
1720 		return -EINVAL;
1721 	}
1722 
1723 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1724 	addr = kallsyms_lookup_name(func_name);
1725 	if (!addr) {
1726 		verbose(env, "cannot find address for kernel function %s\n",
1727 			func_name);
1728 		return -EINVAL;
1729 	}
1730 
1731 	desc = &tab->descs[tab->nr_descs++];
1732 	desc->func_id = func_id;
1733 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1734 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1735 				     func_proto, func_name,
1736 				     &desc->func_model);
1737 	if (!err)
1738 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1739 		     kfunc_desc_cmp_by_id, NULL);
1740 	return err;
1741 }
1742 
1743 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1744 {
1745 	const struct bpf_kfunc_desc *d0 = a;
1746 	const struct bpf_kfunc_desc *d1 = b;
1747 
1748 	if (d0->imm > d1->imm)
1749 		return 1;
1750 	else if (d0->imm < d1->imm)
1751 		return -1;
1752 	return 0;
1753 }
1754 
1755 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1756 {
1757 	struct bpf_kfunc_desc_tab *tab;
1758 
1759 	tab = prog->aux->kfunc_tab;
1760 	if (!tab)
1761 		return;
1762 
1763 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1764 	     kfunc_desc_cmp_by_imm, NULL);
1765 }
1766 
1767 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1768 {
1769 	return !!prog->aux->kfunc_tab;
1770 }
1771 
1772 const struct btf_func_model *
1773 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1774 			 const struct bpf_insn *insn)
1775 {
1776 	const struct bpf_kfunc_desc desc = {
1777 		.imm = insn->imm,
1778 	};
1779 	const struct bpf_kfunc_desc *res;
1780 	struct bpf_kfunc_desc_tab *tab;
1781 
1782 	tab = prog->aux->kfunc_tab;
1783 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1784 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1785 
1786 	return res ? &res->func_model : NULL;
1787 }
1788 
1789 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1790 {
1791 	struct bpf_subprog_info *subprog = env->subprog_info;
1792 	struct bpf_insn *insn = env->prog->insnsi;
1793 	int i, ret, insn_cnt = env->prog->len;
1794 
1795 	/* Add entry function. */
1796 	ret = add_subprog(env, 0);
1797 	if (ret)
1798 		return ret;
1799 
1800 	for (i = 0; i < insn_cnt; i++, insn++) {
1801 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1802 		    !bpf_pseudo_kfunc_call(insn))
1803 			continue;
1804 
1805 		if (!env->bpf_capable) {
1806 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1807 			return -EPERM;
1808 		}
1809 
1810 		if (bpf_pseudo_func(insn)) {
1811 			ret = add_subprog(env, i + insn->imm + 1);
1812 			if (ret >= 0)
1813 				/* remember subprog */
1814 				insn[1].imm = ret;
1815 		} else if (bpf_pseudo_call(insn)) {
1816 			ret = add_subprog(env, i + insn->imm + 1);
1817 		} else {
1818 			ret = add_kfunc_call(env, insn->imm);
1819 		}
1820 
1821 		if (ret < 0)
1822 			return ret;
1823 	}
1824 
1825 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1826 	 * logic. 'subprog_cnt' should not be increased.
1827 	 */
1828 	subprog[env->subprog_cnt].start = insn_cnt;
1829 
1830 	if (env->log.level & BPF_LOG_LEVEL2)
1831 		for (i = 0; i < env->subprog_cnt; i++)
1832 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1833 
1834 	return 0;
1835 }
1836 
1837 static int check_subprogs(struct bpf_verifier_env *env)
1838 {
1839 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1840 	struct bpf_subprog_info *subprog = env->subprog_info;
1841 	struct bpf_insn *insn = env->prog->insnsi;
1842 	int insn_cnt = env->prog->len;
1843 
1844 	/* now check that all jumps are within the same subprog */
1845 	subprog_start = subprog[cur_subprog].start;
1846 	subprog_end = subprog[cur_subprog + 1].start;
1847 	for (i = 0; i < insn_cnt; i++) {
1848 		u8 code = insn[i].code;
1849 
1850 		if (code == (BPF_JMP | BPF_CALL) &&
1851 		    insn[i].imm == BPF_FUNC_tail_call &&
1852 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1853 			subprog[cur_subprog].has_tail_call = true;
1854 		if (BPF_CLASS(code) == BPF_LD &&
1855 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1856 			subprog[cur_subprog].has_ld_abs = true;
1857 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1858 			goto next;
1859 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1860 			goto next;
1861 		off = i + insn[i].off + 1;
1862 		if (off < subprog_start || off >= subprog_end) {
1863 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1864 			return -EINVAL;
1865 		}
1866 next:
1867 		if (i == subprog_end - 1) {
1868 			/* to avoid fall-through from one subprog into another
1869 			 * the last insn of the subprog should be either exit
1870 			 * or unconditional jump back
1871 			 */
1872 			if (code != (BPF_JMP | BPF_EXIT) &&
1873 			    code != (BPF_JMP | BPF_JA)) {
1874 				verbose(env, "last insn is not an exit or jmp\n");
1875 				return -EINVAL;
1876 			}
1877 			subprog_start = subprog_end;
1878 			cur_subprog++;
1879 			if (cur_subprog < env->subprog_cnt)
1880 				subprog_end = subprog[cur_subprog + 1].start;
1881 		}
1882 	}
1883 	return 0;
1884 }
1885 
1886 /* Parentage chain of this register (or stack slot) should take care of all
1887  * issues like callee-saved registers, stack slot allocation time, etc.
1888  */
1889 static int mark_reg_read(struct bpf_verifier_env *env,
1890 			 const struct bpf_reg_state *state,
1891 			 struct bpf_reg_state *parent, u8 flag)
1892 {
1893 	bool writes = parent == state->parent; /* Observe write marks */
1894 	int cnt = 0;
1895 
1896 	while (parent) {
1897 		/* if read wasn't screened by an earlier write ... */
1898 		if (writes && state->live & REG_LIVE_WRITTEN)
1899 			break;
1900 		if (parent->live & REG_LIVE_DONE) {
1901 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1902 				reg_type_str[parent->type],
1903 				parent->var_off.value, parent->off);
1904 			return -EFAULT;
1905 		}
1906 		/* The first condition is more likely to be true than the
1907 		 * second, checked it first.
1908 		 */
1909 		if ((parent->live & REG_LIVE_READ) == flag ||
1910 		    parent->live & REG_LIVE_READ64)
1911 			/* The parentage chain never changes and
1912 			 * this parent was already marked as LIVE_READ.
1913 			 * There is no need to keep walking the chain again and
1914 			 * keep re-marking all parents as LIVE_READ.
1915 			 * This case happens when the same register is read
1916 			 * multiple times without writes into it in-between.
1917 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1918 			 * then no need to set the weak REG_LIVE_READ32.
1919 			 */
1920 			break;
1921 		/* ... then we depend on parent's value */
1922 		parent->live |= flag;
1923 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1924 		if (flag == REG_LIVE_READ64)
1925 			parent->live &= ~REG_LIVE_READ32;
1926 		state = parent;
1927 		parent = state->parent;
1928 		writes = true;
1929 		cnt++;
1930 	}
1931 
1932 	if (env->longest_mark_read_walk < cnt)
1933 		env->longest_mark_read_walk = cnt;
1934 	return 0;
1935 }
1936 
1937 /* This function is supposed to be used by the following 32-bit optimization
1938  * code only. It returns TRUE if the source or destination register operates
1939  * on 64-bit, otherwise return FALSE.
1940  */
1941 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1942 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1943 {
1944 	u8 code, class, op;
1945 
1946 	code = insn->code;
1947 	class = BPF_CLASS(code);
1948 	op = BPF_OP(code);
1949 	if (class == BPF_JMP) {
1950 		/* BPF_EXIT for "main" will reach here. Return TRUE
1951 		 * conservatively.
1952 		 */
1953 		if (op == BPF_EXIT)
1954 			return true;
1955 		if (op == BPF_CALL) {
1956 			/* BPF to BPF call will reach here because of marking
1957 			 * caller saved clobber with DST_OP_NO_MARK for which we
1958 			 * don't care the register def because they are anyway
1959 			 * marked as NOT_INIT already.
1960 			 */
1961 			if (insn->src_reg == BPF_PSEUDO_CALL)
1962 				return false;
1963 			/* Helper call will reach here because of arg type
1964 			 * check, conservatively return TRUE.
1965 			 */
1966 			if (t == SRC_OP)
1967 				return true;
1968 
1969 			return false;
1970 		}
1971 	}
1972 
1973 	if (class == BPF_ALU64 || class == BPF_JMP ||
1974 	    /* BPF_END always use BPF_ALU class. */
1975 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1976 		return true;
1977 
1978 	if (class == BPF_ALU || class == BPF_JMP32)
1979 		return false;
1980 
1981 	if (class == BPF_LDX) {
1982 		if (t != SRC_OP)
1983 			return BPF_SIZE(code) == BPF_DW;
1984 		/* LDX source must be ptr. */
1985 		return true;
1986 	}
1987 
1988 	if (class == BPF_STX) {
1989 		/* BPF_STX (including atomic variants) has multiple source
1990 		 * operands, one of which is a ptr. Check whether the caller is
1991 		 * asking about it.
1992 		 */
1993 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1994 			return true;
1995 		return BPF_SIZE(code) == BPF_DW;
1996 	}
1997 
1998 	if (class == BPF_LD) {
1999 		u8 mode = BPF_MODE(code);
2000 
2001 		/* LD_IMM64 */
2002 		if (mode == BPF_IMM)
2003 			return true;
2004 
2005 		/* Both LD_IND and LD_ABS return 32-bit data. */
2006 		if (t != SRC_OP)
2007 			return  false;
2008 
2009 		/* Implicit ctx ptr. */
2010 		if (regno == BPF_REG_6)
2011 			return true;
2012 
2013 		/* Explicit source could be any width. */
2014 		return true;
2015 	}
2016 
2017 	if (class == BPF_ST)
2018 		/* The only source register for BPF_ST is a ptr. */
2019 		return true;
2020 
2021 	/* Conservatively return true at default. */
2022 	return true;
2023 }
2024 
2025 /* Return the regno defined by the insn, or -1. */
2026 static int insn_def_regno(const struct bpf_insn *insn)
2027 {
2028 	switch (BPF_CLASS(insn->code)) {
2029 	case BPF_JMP:
2030 	case BPF_JMP32:
2031 	case BPF_ST:
2032 		return -1;
2033 	case BPF_STX:
2034 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2035 		    (insn->imm & BPF_FETCH)) {
2036 			if (insn->imm == BPF_CMPXCHG)
2037 				return BPF_REG_0;
2038 			else
2039 				return insn->src_reg;
2040 		} else {
2041 			return -1;
2042 		}
2043 	default:
2044 		return insn->dst_reg;
2045 	}
2046 }
2047 
2048 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2049 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2050 {
2051 	int dst_reg = insn_def_regno(insn);
2052 
2053 	if (dst_reg == -1)
2054 		return false;
2055 
2056 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2057 }
2058 
2059 static void mark_insn_zext(struct bpf_verifier_env *env,
2060 			   struct bpf_reg_state *reg)
2061 {
2062 	s32 def_idx = reg->subreg_def;
2063 
2064 	if (def_idx == DEF_NOT_SUBREG)
2065 		return;
2066 
2067 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2068 	/* The dst will be zero extended, so won't be sub-register anymore. */
2069 	reg->subreg_def = DEF_NOT_SUBREG;
2070 }
2071 
2072 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2073 			 enum reg_arg_type t)
2074 {
2075 	struct bpf_verifier_state *vstate = env->cur_state;
2076 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2077 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2078 	struct bpf_reg_state *reg, *regs = state->regs;
2079 	bool rw64;
2080 
2081 	if (regno >= MAX_BPF_REG) {
2082 		verbose(env, "R%d is invalid\n", regno);
2083 		return -EINVAL;
2084 	}
2085 
2086 	reg = &regs[regno];
2087 	rw64 = is_reg64(env, insn, regno, reg, t);
2088 	if (t == SRC_OP) {
2089 		/* check whether register used as source operand can be read */
2090 		if (reg->type == NOT_INIT) {
2091 			verbose(env, "R%d !read_ok\n", regno);
2092 			return -EACCES;
2093 		}
2094 		/* We don't need to worry about FP liveness because it's read-only */
2095 		if (regno == BPF_REG_FP)
2096 			return 0;
2097 
2098 		if (rw64)
2099 			mark_insn_zext(env, reg);
2100 
2101 		return mark_reg_read(env, reg, reg->parent,
2102 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2103 	} else {
2104 		/* check whether register used as dest operand can be written to */
2105 		if (regno == BPF_REG_FP) {
2106 			verbose(env, "frame pointer is read only\n");
2107 			return -EACCES;
2108 		}
2109 		reg->live |= REG_LIVE_WRITTEN;
2110 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2111 		if (t == DST_OP)
2112 			mark_reg_unknown(env, regs, regno);
2113 	}
2114 	return 0;
2115 }
2116 
2117 /* for any branch, call, exit record the history of jmps in the given state */
2118 static int push_jmp_history(struct bpf_verifier_env *env,
2119 			    struct bpf_verifier_state *cur)
2120 {
2121 	u32 cnt = cur->jmp_history_cnt;
2122 	struct bpf_idx_pair *p;
2123 
2124 	cnt++;
2125 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2126 	if (!p)
2127 		return -ENOMEM;
2128 	p[cnt - 1].idx = env->insn_idx;
2129 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2130 	cur->jmp_history = p;
2131 	cur->jmp_history_cnt = cnt;
2132 	return 0;
2133 }
2134 
2135 /* Backtrack one insn at a time. If idx is not at the top of recorded
2136  * history then previous instruction came from straight line execution.
2137  */
2138 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2139 			     u32 *history)
2140 {
2141 	u32 cnt = *history;
2142 
2143 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2144 		i = st->jmp_history[cnt - 1].prev_idx;
2145 		(*history)--;
2146 	} else {
2147 		i--;
2148 	}
2149 	return i;
2150 }
2151 
2152 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2153 {
2154 	const struct btf_type *func;
2155 
2156 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2157 		return NULL;
2158 
2159 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2160 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2161 }
2162 
2163 /* For given verifier state backtrack_insn() is called from the last insn to
2164  * the first insn. Its purpose is to compute a bitmask of registers and
2165  * stack slots that needs precision in the parent verifier state.
2166  */
2167 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2168 			  u32 *reg_mask, u64 *stack_mask)
2169 {
2170 	const struct bpf_insn_cbs cbs = {
2171 		.cb_call	= disasm_kfunc_name,
2172 		.cb_print	= verbose,
2173 		.private_data	= env,
2174 	};
2175 	struct bpf_insn *insn = env->prog->insnsi + idx;
2176 	u8 class = BPF_CLASS(insn->code);
2177 	u8 opcode = BPF_OP(insn->code);
2178 	u8 mode = BPF_MODE(insn->code);
2179 	u32 dreg = 1u << insn->dst_reg;
2180 	u32 sreg = 1u << insn->src_reg;
2181 	u32 spi;
2182 
2183 	if (insn->code == 0)
2184 		return 0;
2185 	if (env->log.level & BPF_LOG_LEVEL) {
2186 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2187 		verbose(env, "%d: ", idx);
2188 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2189 	}
2190 
2191 	if (class == BPF_ALU || class == BPF_ALU64) {
2192 		if (!(*reg_mask & dreg))
2193 			return 0;
2194 		if (opcode == BPF_MOV) {
2195 			if (BPF_SRC(insn->code) == BPF_X) {
2196 				/* dreg = sreg
2197 				 * dreg needs precision after this insn
2198 				 * sreg needs precision before this insn
2199 				 */
2200 				*reg_mask &= ~dreg;
2201 				*reg_mask |= sreg;
2202 			} else {
2203 				/* dreg = K
2204 				 * dreg needs precision after this insn.
2205 				 * Corresponding register is already marked
2206 				 * as precise=true in this verifier state.
2207 				 * No further markings in parent are necessary
2208 				 */
2209 				*reg_mask &= ~dreg;
2210 			}
2211 		} else {
2212 			if (BPF_SRC(insn->code) == BPF_X) {
2213 				/* dreg += sreg
2214 				 * both dreg and sreg need precision
2215 				 * before this insn
2216 				 */
2217 				*reg_mask |= sreg;
2218 			} /* else dreg += K
2219 			   * dreg still needs precision before this insn
2220 			   */
2221 		}
2222 	} else if (class == BPF_LDX) {
2223 		if (!(*reg_mask & dreg))
2224 			return 0;
2225 		*reg_mask &= ~dreg;
2226 
2227 		/* scalars can only be spilled into stack w/o losing precision.
2228 		 * Load from any other memory can be zero extended.
2229 		 * The desire to keep that precision is already indicated
2230 		 * by 'precise' mark in corresponding register of this state.
2231 		 * No further tracking necessary.
2232 		 */
2233 		if (insn->src_reg != BPF_REG_FP)
2234 			return 0;
2235 		if (BPF_SIZE(insn->code) != BPF_DW)
2236 			return 0;
2237 
2238 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2239 		 * that [fp - off] slot contains scalar that needs to be
2240 		 * tracked with precision
2241 		 */
2242 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2243 		if (spi >= 64) {
2244 			verbose(env, "BUG spi %d\n", spi);
2245 			WARN_ONCE(1, "verifier backtracking bug");
2246 			return -EFAULT;
2247 		}
2248 		*stack_mask |= 1ull << spi;
2249 	} else if (class == BPF_STX || class == BPF_ST) {
2250 		if (*reg_mask & dreg)
2251 			/* stx & st shouldn't be using _scalar_ dst_reg
2252 			 * to access memory. It means backtracking
2253 			 * encountered a case of pointer subtraction.
2254 			 */
2255 			return -ENOTSUPP;
2256 		/* scalars can only be spilled into stack */
2257 		if (insn->dst_reg != BPF_REG_FP)
2258 			return 0;
2259 		if (BPF_SIZE(insn->code) != BPF_DW)
2260 			return 0;
2261 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2262 		if (spi >= 64) {
2263 			verbose(env, "BUG spi %d\n", spi);
2264 			WARN_ONCE(1, "verifier backtracking bug");
2265 			return -EFAULT;
2266 		}
2267 		if (!(*stack_mask & (1ull << spi)))
2268 			return 0;
2269 		*stack_mask &= ~(1ull << spi);
2270 		if (class == BPF_STX)
2271 			*reg_mask |= sreg;
2272 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2273 		if (opcode == BPF_CALL) {
2274 			if (insn->src_reg == BPF_PSEUDO_CALL)
2275 				return -ENOTSUPP;
2276 			/* regular helper call sets R0 */
2277 			*reg_mask &= ~1;
2278 			if (*reg_mask & 0x3f) {
2279 				/* if backtracing was looking for registers R1-R5
2280 				 * they should have been found already.
2281 				 */
2282 				verbose(env, "BUG regs %x\n", *reg_mask);
2283 				WARN_ONCE(1, "verifier backtracking bug");
2284 				return -EFAULT;
2285 			}
2286 		} else if (opcode == BPF_EXIT) {
2287 			return -ENOTSUPP;
2288 		}
2289 	} else if (class == BPF_LD) {
2290 		if (!(*reg_mask & dreg))
2291 			return 0;
2292 		*reg_mask &= ~dreg;
2293 		/* It's ld_imm64 or ld_abs or ld_ind.
2294 		 * For ld_imm64 no further tracking of precision
2295 		 * into parent is necessary
2296 		 */
2297 		if (mode == BPF_IND || mode == BPF_ABS)
2298 			/* to be analyzed */
2299 			return -ENOTSUPP;
2300 	}
2301 	return 0;
2302 }
2303 
2304 /* the scalar precision tracking algorithm:
2305  * . at the start all registers have precise=false.
2306  * . scalar ranges are tracked as normal through alu and jmp insns.
2307  * . once precise value of the scalar register is used in:
2308  *   .  ptr + scalar alu
2309  *   . if (scalar cond K|scalar)
2310  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2311  *   backtrack through the verifier states and mark all registers and
2312  *   stack slots with spilled constants that these scalar regisers
2313  *   should be precise.
2314  * . during state pruning two registers (or spilled stack slots)
2315  *   are equivalent if both are not precise.
2316  *
2317  * Note the verifier cannot simply walk register parentage chain,
2318  * since many different registers and stack slots could have been
2319  * used to compute single precise scalar.
2320  *
2321  * The approach of starting with precise=true for all registers and then
2322  * backtrack to mark a register as not precise when the verifier detects
2323  * that program doesn't care about specific value (e.g., when helper
2324  * takes register as ARG_ANYTHING parameter) is not safe.
2325  *
2326  * It's ok to walk single parentage chain of the verifier states.
2327  * It's possible that this backtracking will go all the way till 1st insn.
2328  * All other branches will be explored for needing precision later.
2329  *
2330  * The backtracking needs to deal with cases like:
2331  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2332  * r9 -= r8
2333  * r5 = r9
2334  * if r5 > 0x79f goto pc+7
2335  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2336  * r5 += 1
2337  * ...
2338  * call bpf_perf_event_output#25
2339  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2340  *
2341  * and this case:
2342  * r6 = 1
2343  * call foo // uses callee's r6 inside to compute r0
2344  * r0 += r6
2345  * if r0 == 0 goto
2346  *
2347  * to track above reg_mask/stack_mask needs to be independent for each frame.
2348  *
2349  * Also if parent's curframe > frame where backtracking started,
2350  * the verifier need to mark registers in both frames, otherwise callees
2351  * may incorrectly prune callers. This is similar to
2352  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2353  *
2354  * For now backtracking falls back into conservative marking.
2355  */
2356 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2357 				     struct bpf_verifier_state *st)
2358 {
2359 	struct bpf_func_state *func;
2360 	struct bpf_reg_state *reg;
2361 	int i, j;
2362 
2363 	/* big hammer: mark all scalars precise in this path.
2364 	 * pop_stack may still get !precise scalars.
2365 	 */
2366 	for (; st; st = st->parent)
2367 		for (i = 0; i <= st->curframe; i++) {
2368 			func = st->frame[i];
2369 			for (j = 0; j < BPF_REG_FP; j++) {
2370 				reg = &func->regs[j];
2371 				if (reg->type != SCALAR_VALUE)
2372 					continue;
2373 				reg->precise = true;
2374 			}
2375 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2376 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2377 					continue;
2378 				reg = &func->stack[j].spilled_ptr;
2379 				if (reg->type != SCALAR_VALUE)
2380 					continue;
2381 				reg->precise = true;
2382 			}
2383 		}
2384 }
2385 
2386 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2387 				  int spi)
2388 {
2389 	struct bpf_verifier_state *st = env->cur_state;
2390 	int first_idx = st->first_insn_idx;
2391 	int last_idx = env->insn_idx;
2392 	struct bpf_func_state *func;
2393 	struct bpf_reg_state *reg;
2394 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2395 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2396 	bool skip_first = true;
2397 	bool new_marks = false;
2398 	int i, err;
2399 
2400 	if (!env->bpf_capable)
2401 		return 0;
2402 
2403 	func = st->frame[st->curframe];
2404 	if (regno >= 0) {
2405 		reg = &func->regs[regno];
2406 		if (reg->type != SCALAR_VALUE) {
2407 			WARN_ONCE(1, "backtracing misuse");
2408 			return -EFAULT;
2409 		}
2410 		if (!reg->precise)
2411 			new_marks = true;
2412 		else
2413 			reg_mask = 0;
2414 		reg->precise = true;
2415 	}
2416 
2417 	while (spi >= 0) {
2418 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2419 			stack_mask = 0;
2420 			break;
2421 		}
2422 		reg = &func->stack[spi].spilled_ptr;
2423 		if (reg->type != SCALAR_VALUE) {
2424 			stack_mask = 0;
2425 			break;
2426 		}
2427 		if (!reg->precise)
2428 			new_marks = true;
2429 		else
2430 			stack_mask = 0;
2431 		reg->precise = true;
2432 		break;
2433 	}
2434 
2435 	if (!new_marks)
2436 		return 0;
2437 	if (!reg_mask && !stack_mask)
2438 		return 0;
2439 	for (;;) {
2440 		DECLARE_BITMAP(mask, 64);
2441 		u32 history = st->jmp_history_cnt;
2442 
2443 		if (env->log.level & BPF_LOG_LEVEL)
2444 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2445 		for (i = last_idx;;) {
2446 			if (skip_first) {
2447 				err = 0;
2448 				skip_first = false;
2449 			} else {
2450 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2451 			}
2452 			if (err == -ENOTSUPP) {
2453 				mark_all_scalars_precise(env, st);
2454 				return 0;
2455 			} else if (err) {
2456 				return err;
2457 			}
2458 			if (!reg_mask && !stack_mask)
2459 				/* Found assignment(s) into tracked register in this state.
2460 				 * Since this state is already marked, just return.
2461 				 * Nothing to be tracked further in the parent state.
2462 				 */
2463 				return 0;
2464 			if (i == first_idx)
2465 				break;
2466 			i = get_prev_insn_idx(st, i, &history);
2467 			if (i >= env->prog->len) {
2468 				/* This can happen if backtracking reached insn 0
2469 				 * and there are still reg_mask or stack_mask
2470 				 * to backtrack.
2471 				 * It means the backtracking missed the spot where
2472 				 * particular register was initialized with a constant.
2473 				 */
2474 				verbose(env, "BUG backtracking idx %d\n", i);
2475 				WARN_ONCE(1, "verifier backtracking bug");
2476 				return -EFAULT;
2477 			}
2478 		}
2479 		st = st->parent;
2480 		if (!st)
2481 			break;
2482 
2483 		new_marks = false;
2484 		func = st->frame[st->curframe];
2485 		bitmap_from_u64(mask, reg_mask);
2486 		for_each_set_bit(i, mask, 32) {
2487 			reg = &func->regs[i];
2488 			if (reg->type != SCALAR_VALUE) {
2489 				reg_mask &= ~(1u << i);
2490 				continue;
2491 			}
2492 			if (!reg->precise)
2493 				new_marks = true;
2494 			reg->precise = true;
2495 		}
2496 
2497 		bitmap_from_u64(mask, stack_mask);
2498 		for_each_set_bit(i, mask, 64) {
2499 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2500 				/* the sequence of instructions:
2501 				 * 2: (bf) r3 = r10
2502 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2503 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2504 				 * doesn't contain jmps. It's backtracked
2505 				 * as a single block.
2506 				 * During backtracking insn 3 is not recognized as
2507 				 * stack access, so at the end of backtracking
2508 				 * stack slot fp-8 is still marked in stack_mask.
2509 				 * However the parent state may not have accessed
2510 				 * fp-8 and it's "unallocated" stack space.
2511 				 * In such case fallback to conservative.
2512 				 */
2513 				mark_all_scalars_precise(env, st);
2514 				return 0;
2515 			}
2516 
2517 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2518 				stack_mask &= ~(1ull << i);
2519 				continue;
2520 			}
2521 			reg = &func->stack[i].spilled_ptr;
2522 			if (reg->type != SCALAR_VALUE) {
2523 				stack_mask &= ~(1ull << i);
2524 				continue;
2525 			}
2526 			if (!reg->precise)
2527 				new_marks = true;
2528 			reg->precise = true;
2529 		}
2530 		if (env->log.level & BPF_LOG_LEVEL) {
2531 			print_verifier_state(env, func);
2532 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2533 				new_marks ? "didn't have" : "already had",
2534 				reg_mask, stack_mask);
2535 		}
2536 
2537 		if (!reg_mask && !stack_mask)
2538 			break;
2539 		if (!new_marks)
2540 			break;
2541 
2542 		last_idx = st->last_insn_idx;
2543 		first_idx = st->first_insn_idx;
2544 	}
2545 	return 0;
2546 }
2547 
2548 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2549 {
2550 	return __mark_chain_precision(env, regno, -1);
2551 }
2552 
2553 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2554 {
2555 	return __mark_chain_precision(env, -1, spi);
2556 }
2557 
2558 static bool is_spillable_regtype(enum bpf_reg_type type)
2559 {
2560 	switch (type) {
2561 	case PTR_TO_MAP_VALUE:
2562 	case PTR_TO_MAP_VALUE_OR_NULL:
2563 	case PTR_TO_STACK:
2564 	case PTR_TO_CTX:
2565 	case PTR_TO_PACKET:
2566 	case PTR_TO_PACKET_META:
2567 	case PTR_TO_PACKET_END:
2568 	case PTR_TO_FLOW_KEYS:
2569 	case CONST_PTR_TO_MAP:
2570 	case PTR_TO_SOCKET:
2571 	case PTR_TO_SOCKET_OR_NULL:
2572 	case PTR_TO_SOCK_COMMON:
2573 	case PTR_TO_SOCK_COMMON_OR_NULL:
2574 	case PTR_TO_TCP_SOCK:
2575 	case PTR_TO_TCP_SOCK_OR_NULL:
2576 	case PTR_TO_XDP_SOCK:
2577 	case PTR_TO_BTF_ID:
2578 	case PTR_TO_BTF_ID_OR_NULL:
2579 	case PTR_TO_RDONLY_BUF:
2580 	case PTR_TO_RDONLY_BUF_OR_NULL:
2581 	case PTR_TO_RDWR_BUF:
2582 	case PTR_TO_RDWR_BUF_OR_NULL:
2583 	case PTR_TO_PERCPU_BTF_ID:
2584 	case PTR_TO_MEM:
2585 	case PTR_TO_MEM_OR_NULL:
2586 	case PTR_TO_FUNC:
2587 	case PTR_TO_MAP_KEY:
2588 		return true;
2589 	default:
2590 		return false;
2591 	}
2592 }
2593 
2594 /* Does this register contain a constant zero? */
2595 static bool register_is_null(struct bpf_reg_state *reg)
2596 {
2597 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2598 }
2599 
2600 static bool register_is_const(struct bpf_reg_state *reg)
2601 {
2602 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2603 }
2604 
2605 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2606 {
2607 	return tnum_is_unknown(reg->var_off) &&
2608 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2609 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2610 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2611 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2612 }
2613 
2614 static bool register_is_bounded(struct bpf_reg_state *reg)
2615 {
2616 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2617 }
2618 
2619 static bool __is_pointer_value(bool allow_ptr_leaks,
2620 			       const struct bpf_reg_state *reg)
2621 {
2622 	if (allow_ptr_leaks)
2623 		return false;
2624 
2625 	return reg->type != SCALAR_VALUE;
2626 }
2627 
2628 static void save_register_state(struct bpf_func_state *state,
2629 				int spi, struct bpf_reg_state *reg)
2630 {
2631 	int i;
2632 
2633 	state->stack[spi].spilled_ptr = *reg;
2634 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2635 
2636 	for (i = 0; i < BPF_REG_SIZE; i++)
2637 		state->stack[spi].slot_type[i] = STACK_SPILL;
2638 }
2639 
2640 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2641  * stack boundary and alignment are checked in check_mem_access()
2642  */
2643 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2644 				       /* stack frame we're writing to */
2645 				       struct bpf_func_state *state,
2646 				       int off, int size, int value_regno,
2647 				       int insn_idx)
2648 {
2649 	struct bpf_func_state *cur; /* state of the current function */
2650 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2651 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2652 	struct bpf_reg_state *reg = NULL;
2653 
2654 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2655 	if (err)
2656 		return err;
2657 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2658 	 * so it's aligned access and [off, off + size) are within stack limits
2659 	 */
2660 	if (!env->allow_ptr_leaks &&
2661 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2662 	    size != BPF_REG_SIZE) {
2663 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2664 		return -EACCES;
2665 	}
2666 
2667 	cur = env->cur_state->frame[env->cur_state->curframe];
2668 	if (value_regno >= 0)
2669 		reg = &cur->regs[value_regno];
2670 	if (!env->bypass_spec_v4) {
2671 		bool sanitize = reg && is_spillable_regtype(reg->type);
2672 
2673 		for (i = 0; i < size; i++) {
2674 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2675 				sanitize = true;
2676 				break;
2677 			}
2678 		}
2679 
2680 		if (sanitize)
2681 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2682 	}
2683 
2684 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2685 	    !register_is_null(reg) && env->bpf_capable) {
2686 		if (dst_reg != BPF_REG_FP) {
2687 			/* The backtracking logic can only recognize explicit
2688 			 * stack slot address like [fp - 8]. Other spill of
2689 			 * scalar via different register has to be conservative.
2690 			 * Backtrack from here and mark all registers as precise
2691 			 * that contributed into 'reg' being a constant.
2692 			 */
2693 			err = mark_chain_precision(env, value_regno);
2694 			if (err)
2695 				return err;
2696 		}
2697 		save_register_state(state, spi, reg);
2698 	} else if (reg && is_spillable_regtype(reg->type)) {
2699 		/* register containing pointer is being spilled into stack */
2700 		if (size != BPF_REG_SIZE) {
2701 			verbose_linfo(env, insn_idx, "; ");
2702 			verbose(env, "invalid size of register spill\n");
2703 			return -EACCES;
2704 		}
2705 		if (state != cur && reg->type == PTR_TO_STACK) {
2706 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2707 			return -EINVAL;
2708 		}
2709 		save_register_state(state, spi, reg);
2710 	} else {
2711 		u8 type = STACK_MISC;
2712 
2713 		/* regular write of data into stack destroys any spilled ptr */
2714 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2715 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2716 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2717 			for (i = 0; i < BPF_REG_SIZE; i++)
2718 				state->stack[spi].slot_type[i] = STACK_MISC;
2719 
2720 		/* only mark the slot as written if all 8 bytes were written
2721 		 * otherwise read propagation may incorrectly stop too soon
2722 		 * when stack slots are partially written.
2723 		 * This heuristic means that read propagation will be
2724 		 * conservative, since it will add reg_live_read marks
2725 		 * to stack slots all the way to first state when programs
2726 		 * writes+reads less than 8 bytes
2727 		 */
2728 		if (size == BPF_REG_SIZE)
2729 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2730 
2731 		/* when we zero initialize stack slots mark them as such */
2732 		if (reg && register_is_null(reg)) {
2733 			/* backtracking doesn't work for STACK_ZERO yet. */
2734 			err = mark_chain_precision(env, value_regno);
2735 			if (err)
2736 				return err;
2737 			type = STACK_ZERO;
2738 		}
2739 
2740 		/* Mark slots affected by this stack write. */
2741 		for (i = 0; i < size; i++)
2742 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2743 				type;
2744 	}
2745 	return 0;
2746 }
2747 
2748 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2749  * known to contain a variable offset.
2750  * This function checks whether the write is permitted and conservatively
2751  * tracks the effects of the write, considering that each stack slot in the
2752  * dynamic range is potentially written to.
2753  *
2754  * 'off' includes 'regno->off'.
2755  * 'value_regno' can be -1, meaning that an unknown value is being written to
2756  * the stack.
2757  *
2758  * Spilled pointers in range are not marked as written because we don't know
2759  * what's going to be actually written. This means that read propagation for
2760  * future reads cannot be terminated by this write.
2761  *
2762  * For privileged programs, uninitialized stack slots are considered
2763  * initialized by this write (even though we don't know exactly what offsets
2764  * are going to be written to). The idea is that we don't want the verifier to
2765  * reject future reads that access slots written to through variable offsets.
2766  */
2767 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2768 				     /* func where register points to */
2769 				     struct bpf_func_state *state,
2770 				     int ptr_regno, int off, int size,
2771 				     int value_regno, int insn_idx)
2772 {
2773 	struct bpf_func_state *cur; /* state of the current function */
2774 	int min_off, max_off;
2775 	int i, err;
2776 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2777 	bool writing_zero = false;
2778 	/* set if the fact that we're writing a zero is used to let any
2779 	 * stack slots remain STACK_ZERO
2780 	 */
2781 	bool zero_used = false;
2782 
2783 	cur = env->cur_state->frame[env->cur_state->curframe];
2784 	ptr_reg = &cur->regs[ptr_regno];
2785 	min_off = ptr_reg->smin_value + off;
2786 	max_off = ptr_reg->smax_value + off + size;
2787 	if (value_regno >= 0)
2788 		value_reg = &cur->regs[value_regno];
2789 	if (value_reg && register_is_null(value_reg))
2790 		writing_zero = true;
2791 
2792 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2793 	if (err)
2794 		return err;
2795 
2796 
2797 	/* Variable offset writes destroy any spilled pointers in range. */
2798 	for (i = min_off; i < max_off; i++) {
2799 		u8 new_type, *stype;
2800 		int slot, spi;
2801 
2802 		slot = -i - 1;
2803 		spi = slot / BPF_REG_SIZE;
2804 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2805 
2806 		if (!env->allow_ptr_leaks
2807 				&& *stype != NOT_INIT
2808 				&& *stype != SCALAR_VALUE) {
2809 			/* Reject the write if there's are spilled pointers in
2810 			 * range. If we didn't reject here, the ptr status
2811 			 * would be erased below (even though not all slots are
2812 			 * actually overwritten), possibly opening the door to
2813 			 * leaks.
2814 			 */
2815 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2816 				insn_idx, i);
2817 			return -EINVAL;
2818 		}
2819 
2820 		/* Erase all spilled pointers. */
2821 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2822 
2823 		/* Update the slot type. */
2824 		new_type = STACK_MISC;
2825 		if (writing_zero && *stype == STACK_ZERO) {
2826 			new_type = STACK_ZERO;
2827 			zero_used = true;
2828 		}
2829 		/* If the slot is STACK_INVALID, we check whether it's OK to
2830 		 * pretend that it will be initialized by this write. The slot
2831 		 * might not actually be written to, and so if we mark it as
2832 		 * initialized future reads might leak uninitialized memory.
2833 		 * For privileged programs, we will accept such reads to slots
2834 		 * that may or may not be written because, if we're reject
2835 		 * them, the error would be too confusing.
2836 		 */
2837 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2838 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2839 					insn_idx, i);
2840 			return -EINVAL;
2841 		}
2842 		*stype = new_type;
2843 	}
2844 	if (zero_used) {
2845 		/* backtracking doesn't work for STACK_ZERO yet. */
2846 		err = mark_chain_precision(env, value_regno);
2847 		if (err)
2848 			return err;
2849 	}
2850 	return 0;
2851 }
2852 
2853 /* When register 'dst_regno' is assigned some values from stack[min_off,
2854  * max_off), we set the register's type according to the types of the
2855  * respective stack slots. If all the stack values are known to be zeros, then
2856  * so is the destination reg. Otherwise, the register is considered to be
2857  * SCALAR. This function does not deal with register filling; the caller must
2858  * ensure that all spilled registers in the stack range have been marked as
2859  * read.
2860  */
2861 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2862 				/* func where src register points to */
2863 				struct bpf_func_state *ptr_state,
2864 				int min_off, int max_off, int dst_regno)
2865 {
2866 	struct bpf_verifier_state *vstate = env->cur_state;
2867 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2868 	int i, slot, spi;
2869 	u8 *stype;
2870 	int zeros = 0;
2871 
2872 	for (i = min_off; i < max_off; i++) {
2873 		slot = -i - 1;
2874 		spi = slot / BPF_REG_SIZE;
2875 		stype = ptr_state->stack[spi].slot_type;
2876 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2877 			break;
2878 		zeros++;
2879 	}
2880 	if (zeros == max_off - min_off) {
2881 		/* any access_size read into register is zero extended,
2882 		 * so the whole register == const_zero
2883 		 */
2884 		__mark_reg_const_zero(&state->regs[dst_regno]);
2885 		/* backtracking doesn't support STACK_ZERO yet,
2886 		 * so mark it precise here, so that later
2887 		 * backtracking can stop here.
2888 		 * Backtracking may not need this if this register
2889 		 * doesn't participate in pointer adjustment.
2890 		 * Forward propagation of precise flag is not
2891 		 * necessary either. This mark is only to stop
2892 		 * backtracking. Any register that contributed
2893 		 * to const 0 was marked precise before spill.
2894 		 */
2895 		state->regs[dst_regno].precise = true;
2896 	} else {
2897 		/* have read misc data from the stack */
2898 		mark_reg_unknown(env, state->regs, dst_regno);
2899 	}
2900 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2901 }
2902 
2903 /* Read the stack at 'off' and put the results into the register indicated by
2904  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2905  * spilled reg.
2906  *
2907  * 'dst_regno' can be -1, meaning that the read value is not going to a
2908  * register.
2909  *
2910  * The access is assumed to be within the current stack bounds.
2911  */
2912 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2913 				      /* func where src register points to */
2914 				      struct bpf_func_state *reg_state,
2915 				      int off, int size, int dst_regno)
2916 {
2917 	struct bpf_verifier_state *vstate = env->cur_state;
2918 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2919 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2920 	struct bpf_reg_state *reg;
2921 	u8 *stype;
2922 
2923 	stype = reg_state->stack[spi].slot_type;
2924 	reg = &reg_state->stack[spi].spilled_ptr;
2925 
2926 	if (stype[0] == STACK_SPILL) {
2927 		if (size != BPF_REG_SIZE) {
2928 			if (reg->type != SCALAR_VALUE) {
2929 				verbose_linfo(env, env->insn_idx, "; ");
2930 				verbose(env, "invalid size of register fill\n");
2931 				return -EACCES;
2932 			}
2933 			if (dst_regno >= 0) {
2934 				mark_reg_unknown(env, state->regs, dst_regno);
2935 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2936 			}
2937 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2938 			return 0;
2939 		}
2940 		for (i = 1; i < BPF_REG_SIZE; i++) {
2941 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2942 				verbose(env, "corrupted spill memory\n");
2943 				return -EACCES;
2944 			}
2945 		}
2946 
2947 		if (dst_regno >= 0) {
2948 			/* restore register state from stack */
2949 			state->regs[dst_regno] = *reg;
2950 			/* mark reg as written since spilled pointer state likely
2951 			 * has its liveness marks cleared by is_state_visited()
2952 			 * which resets stack/reg liveness for state transitions
2953 			 */
2954 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2955 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2956 			/* If dst_regno==-1, the caller is asking us whether
2957 			 * it is acceptable to use this value as a SCALAR_VALUE
2958 			 * (e.g. for XADD).
2959 			 * We must not allow unprivileged callers to do that
2960 			 * with spilled pointers.
2961 			 */
2962 			verbose(env, "leaking pointer from stack off %d\n",
2963 				off);
2964 			return -EACCES;
2965 		}
2966 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2967 	} else {
2968 		u8 type;
2969 
2970 		for (i = 0; i < size; i++) {
2971 			type = stype[(slot - i) % BPF_REG_SIZE];
2972 			if (type == STACK_MISC)
2973 				continue;
2974 			if (type == STACK_ZERO)
2975 				continue;
2976 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2977 				off, i, size);
2978 			return -EACCES;
2979 		}
2980 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2981 		if (dst_regno >= 0)
2982 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2983 	}
2984 	return 0;
2985 }
2986 
2987 enum stack_access_src {
2988 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2989 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2990 };
2991 
2992 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2993 					 int regno, int off, int access_size,
2994 					 bool zero_size_allowed,
2995 					 enum stack_access_src type,
2996 					 struct bpf_call_arg_meta *meta);
2997 
2998 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2999 {
3000 	return cur_regs(env) + regno;
3001 }
3002 
3003 /* Read the stack at 'ptr_regno + off' and put the result into the register
3004  * 'dst_regno'.
3005  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3006  * but not its variable offset.
3007  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3008  *
3009  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3010  * filling registers (i.e. reads of spilled register cannot be detected when
3011  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3012  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3013  * offset; for a fixed offset check_stack_read_fixed_off should be used
3014  * instead.
3015  */
3016 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3017 				    int ptr_regno, int off, int size, int dst_regno)
3018 {
3019 	/* The state of the source register. */
3020 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3021 	struct bpf_func_state *ptr_state = func(env, reg);
3022 	int err;
3023 	int min_off, max_off;
3024 
3025 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3026 	 */
3027 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3028 					    false, ACCESS_DIRECT, NULL);
3029 	if (err)
3030 		return err;
3031 
3032 	min_off = reg->smin_value + off;
3033 	max_off = reg->smax_value + off;
3034 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3035 	return 0;
3036 }
3037 
3038 /* check_stack_read dispatches to check_stack_read_fixed_off or
3039  * check_stack_read_var_off.
3040  *
3041  * The caller must ensure that the offset falls within the allocated stack
3042  * bounds.
3043  *
3044  * 'dst_regno' is a register which will receive the value from the stack. It
3045  * can be -1, meaning that the read value is not going to a register.
3046  */
3047 static int check_stack_read(struct bpf_verifier_env *env,
3048 			    int ptr_regno, int off, int size,
3049 			    int dst_regno)
3050 {
3051 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3052 	struct bpf_func_state *state = func(env, reg);
3053 	int err;
3054 	/* Some accesses are only permitted with a static offset. */
3055 	bool var_off = !tnum_is_const(reg->var_off);
3056 
3057 	/* The offset is required to be static when reads don't go to a
3058 	 * register, in order to not leak pointers (see
3059 	 * check_stack_read_fixed_off).
3060 	 */
3061 	if (dst_regno < 0 && var_off) {
3062 		char tn_buf[48];
3063 
3064 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3065 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3066 			tn_buf, off, size);
3067 		return -EACCES;
3068 	}
3069 	/* Variable offset is prohibited for unprivileged mode for simplicity
3070 	 * since it requires corresponding support in Spectre masking for stack
3071 	 * ALU. See also retrieve_ptr_limit().
3072 	 */
3073 	if (!env->bypass_spec_v1 && var_off) {
3074 		char tn_buf[48];
3075 
3076 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3077 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3078 				ptr_regno, tn_buf);
3079 		return -EACCES;
3080 	}
3081 
3082 	if (!var_off) {
3083 		off += reg->var_off.value;
3084 		err = check_stack_read_fixed_off(env, state, off, size,
3085 						 dst_regno);
3086 	} else {
3087 		/* Variable offset stack reads need more conservative handling
3088 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3089 		 * branch.
3090 		 */
3091 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3092 					       dst_regno);
3093 	}
3094 	return err;
3095 }
3096 
3097 
3098 /* check_stack_write dispatches to check_stack_write_fixed_off or
3099  * check_stack_write_var_off.
3100  *
3101  * 'ptr_regno' is the register used as a pointer into the stack.
3102  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3103  * 'value_regno' is the register whose value we're writing to the stack. It can
3104  * be -1, meaning that we're not writing from a register.
3105  *
3106  * The caller must ensure that the offset falls within the maximum stack size.
3107  */
3108 static int check_stack_write(struct bpf_verifier_env *env,
3109 			     int ptr_regno, int off, int size,
3110 			     int value_regno, int insn_idx)
3111 {
3112 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3113 	struct bpf_func_state *state = func(env, reg);
3114 	int err;
3115 
3116 	if (tnum_is_const(reg->var_off)) {
3117 		off += reg->var_off.value;
3118 		err = check_stack_write_fixed_off(env, state, off, size,
3119 						  value_regno, insn_idx);
3120 	} else {
3121 		/* Variable offset stack reads need more conservative handling
3122 		 * than fixed offset ones.
3123 		 */
3124 		err = check_stack_write_var_off(env, state,
3125 						ptr_regno, off, size,
3126 						value_regno, insn_idx);
3127 	}
3128 	return err;
3129 }
3130 
3131 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3132 				 int off, int size, enum bpf_access_type type)
3133 {
3134 	struct bpf_reg_state *regs = cur_regs(env);
3135 	struct bpf_map *map = regs[regno].map_ptr;
3136 	u32 cap = bpf_map_flags_to_cap(map);
3137 
3138 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3139 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3140 			map->value_size, off, size);
3141 		return -EACCES;
3142 	}
3143 
3144 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3145 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3146 			map->value_size, off, size);
3147 		return -EACCES;
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3154 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3155 			      int off, int size, u32 mem_size,
3156 			      bool zero_size_allowed)
3157 {
3158 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3159 	struct bpf_reg_state *reg;
3160 
3161 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3162 		return 0;
3163 
3164 	reg = &cur_regs(env)[regno];
3165 	switch (reg->type) {
3166 	case PTR_TO_MAP_KEY:
3167 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3168 			mem_size, off, size);
3169 		break;
3170 	case PTR_TO_MAP_VALUE:
3171 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3172 			mem_size, off, size);
3173 		break;
3174 	case PTR_TO_PACKET:
3175 	case PTR_TO_PACKET_META:
3176 	case PTR_TO_PACKET_END:
3177 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3178 			off, size, regno, reg->id, off, mem_size);
3179 		break;
3180 	case PTR_TO_MEM:
3181 	default:
3182 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3183 			mem_size, off, size);
3184 	}
3185 
3186 	return -EACCES;
3187 }
3188 
3189 /* check read/write into a memory region with possible variable offset */
3190 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3191 				   int off, int size, u32 mem_size,
3192 				   bool zero_size_allowed)
3193 {
3194 	struct bpf_verifier_state *vstate = env->cur_state;
3195 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3196 	struct bpf_reg_state *reg = &state->regs[regno];
3197 	int err;
3198 
3199 	/* We may have adjusted the register pointing to memory region, so we
3200 	 * need to try adding each of min_value and max_value to off
3201 	 * to make sure our theoretical access will be safe.
3202 	 */
3203 	if (env->log.level & BPF_LOG_LEVEL)
3204 		print_verifier_state(env, state);
3205 
3206 	/* The minimum value is only important with signed
3207 	 * comparisons where we can't assume the floor of a
3208 	 * value is 0.  If we are using signed variables for our
3209 	 * index'es we need to make sure that whatever we use
3210 	 * will have a set floor within our range.
3211 	 */
3212 	if (reg->smin_value < 0 &&
3213 	    (reg->smin_value == S64_MIN ||
3214 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3215 	      reg->smin_value + off < 0)) {
3216 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3217 			regno);
3218 		return -EACCES;
3219 	}
3220 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3221 				 mem_size, zero_size_allowed);
3222 	if (err) {
3223 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3224 			regno);
3225 		return err;
3226 	}
3227 
3228 	/* If we haven't set a max value then we need to bail since we can't be
3229 	 * sure we won't do bad things.
3230 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3231 	 */
3232 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3233 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3234 			regno);
3235 		return -EACCES;
3236 	}
3237 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3238 				 mem_size, zero_size_allowed);
3239 	if (err) {
3240 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3241 			regno);
3242 		return err;
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 /* check read/write into a map element with possible variable offset */
3249 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3250 			    int off, int size, bool zero_size_allowed)
3251 {
3252 	struct bpf_verifier_state *vstate = env->cur_state;
3253 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3254 	struct bpf_reg_state *reg = &state->regs[regno];
3255 	struct bpf_map *map = reg->map_ptr;
3256 	int err;
3257 
3258 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3259 				      zero_size_allowed);
3260 	if (err)
3261 		return err;
3262 
3263 	if (map_value_has_spin_lock(map)) {
3264 		u32 lock = map->spin_lock_off;
3265 
3266 		/* if any part of struct bpf_spin_lock can be touched by
3267 		 * load/store reject this program.
3268 		 * To check that [x1, x2) overlaps with [y1, y2)
3269 		 * it is sufficient to check x1 < y2 && y1 < x2.
3270 		 */
3271 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3272 		     lock < reg->umax_value + off + size) {
3273 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3274 			return -EACCES;
3275 		}
3276 	}
3277 	if (map_value_has_timer(map)) {
3278 		u32 t = map->timer_off;
3279 
3280 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3281 		     t < reg->umax_value + off + size) {
3282 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3283 			return -EACCES;
3284 		}
3285 	}
3286 	return err;
3287 }
3288 
3289 #define MAX_PACKET_OFF 0xffff
3290 
3291 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3292 {
3293 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3294 }
3295 
3296 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3297 				       const struct bpf_call_arg_meta *meta,
3298 				       enum bpf_access_type t)
3299 {
3300 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3301 
3302 	switch (prog_type) {
3303 	/* Program types only with direct read access go here! */
3304 	case BPF_PROG_TYPE_LWT_IN:
3305 	case BPF_PROG_TYPE_LWT_OUT:
3306 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3307 	case BPF_PROG_TYPE_SK_REUSEPORT:
3308 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3309 	case BPF_PROG_TYPE_CGROUP_SKB:
3310 		if (t == BPF_WRITE)
3311 			return false;
3312 		fallthrough;
3313 
3314 	/* Program types with direct read + write access go here! */
3315 	case BPF_PROG_TYPE_SCHED_CLS:
3316 	case BPF_PROG_TYPE_SCHED_ACT:
3317 	case BPF_PROG_TYPE_XDP:
3318 	case BPF_PROG_TYPE_LWT_XMIT:
3319 	case BPF_PROG_TYPE_SK_SKB:
3320 	case BPF_PROG_TYPE_SK_MSG:
3321 		if (meta)
3322 			return meta->pkt_access;
3323 
3324 		env->seen_direct_write = true;
3325 		return true;
3326 
3327 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3328 		if (t == BPF_WRITE)
3329 			env->seen_direct_write = true;
3330 
3331 		return true;
3332 
3333 	default:
3334 		return false;
3335 	}
3336 }
3337 
3338 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3339 			       int size, bool zero_size_allowed)
3340 {
3341 	struct bpf_reg_state *regs = cur_regs(env);
3342 	struct bpf_reg_state *reg = &regs[regno];
3343 	int err;
3344 
3345 	/* We may have added a variable offset to the packet pointer; but any
3346 	 * reg->range we have comes after that.  We are only checking the fixed
3347 	 * offset.
3348 	 */
3349 
3350 	/* We don't allow negative numbers, because we aren't tracking enough
3351 	 * detail to prove they're safe.
3352 	 */
3353 	if (reg->smin_value < 0) {
3354 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3355 			regno);
3356 		return -EACCES;
3357 	}
3358 
3359 	err = reg->range < 0 ? -EINVAL :
3360 	      __check_mem_access(env, regno, off, size, reg->range,
3361 				 zero_size_allowed);
3362 	if (err) {
3363 		verbose(env, "R%d offset is outside of the packet\n", regno);
3364 		return err;
3365 	}
3366 
3367 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3368 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3369 	 * otherwise find_good_pkt_pointers would have refused to set range info
3370 	 * that __check_mem_access would have rejected this pkt access.
3371 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3372 	 */
3373 	env->prog->aux->max_pkt_offset =
3374 		max_t(u32, env->prog->aux->max_pkt_offset,
3375 		      off + reg->umax_value + size - 1);
3376 
3377 	return err;
3378 }
3379 
3380 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3381 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3382 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3383 			    struct btf **btf, u32 *btf_id)
3384 {
3385 	struct bpf_insn_access_aux info = {
3386 		.reg_type = *reg_type,
3387 		.log = &env->log,
3388 	};
3389 
3390 	if (env->ops->is_valid_access &&
3391 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3392 		/* A non zero info.ctx_field_size indicates that this field is a
3393 		 * candidate for later verifier transformation to load the whole
3394 		 * field and then apply a mask when accessed with a narrower
3395 		 * access than actual ctx access size. A zero info.ctx_field_size
3396 		 * will only allow for whole field access and rejects any other
3397 		 * type of narrower access.
3398 		 */
3399 		*reg_type = info.reg_type;
3400 
3401 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3402 			*btf = info.btf;
3403 			*btf_id = info.btf_id;
3404 		} else {
3405 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3406 		}
3407 		/* remember the offset of last byte accessed in ctx */
3408 		if (env->prog->aux->max_ctx_offset < off + size)
3409 			env->prog->aux->max_ctx_offset = off + size;
3410 		return 0;
3411 	}
3412 
3413 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3414 	return -EACCES;
3415 }
3416 
3417 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3418 				  int size)
3419 {
3420 	if (size < 0 || off < 0 ||
3421 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3422 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3423 			off, size);
3424 		return -EACCES;
3425 	}
3426 	return 0;
3427 }
3428 
3429 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3430 			     u32 regno, int off, int size,
3431 			     enum bpf_access_type t)
3432 {
3433 	struct bpf_reg_state *regs = cur_regs(env);
3434 	struct bpf_reg_state *reg = &regs[regno];
3435 	struct bpf_insn_access_aux info = {};
3436 	bool valid;
3437 
3438 	if (reg->smin_value < 0) {
3439 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3440 			regno);
3441 		return -EACCES;
3442 	}
3443 
3444 	switch (reg->type) {
3445 	case PTR_TO_SOCK_COMMON:
3446 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3447 		break;
3448 	case PTR_TO_SOCKET:
3449 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3450 		break;
3451 	case PTR_TO_TCP_SOCK:
3452 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3453 		break;
3454 	case PTR_TO_XDP_SOCK:
3455 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3456 		break;
3457 	default:
3458 		valid = false;
3459 	}
3460 
3461 
3462 	if (valid) {
3463 		env->insn_aux_data[insn_idx].ctx_field_size =
3464 			info.ctx_field_size;
3465 		return 0;
3466 	}
3467 
3468 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3469 		regno, reg_type_str[reg->type], off, size);
3470 
3471 	return -EACCES;
3472 }
3473 
3474 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3475 {
3476 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3477 }
3478 
3479 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3480 {
3481 	const struct bpf_reg_state *reg = reg_state(env, regno);
3482 
3483 	return reg->type == PTR_TO_CTX;
3484 }
3485 
3486 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3487 {
3488 	const struct bpf_reg_state *reg = reg_state(env, regno);
3489 
3490 	return type_is_sk_pointer(reg->type);
3491 }
3492 
3493 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3494 {
3495 	const struct bpf_reg_state *reg = reg_state(env, regno);
3496 
3497 	return type_is_pkt_pointer(reg->type);
3498 }
3499 
3500 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3501 {
3502 	const struct bpf_reg_state *reg = reg_state(env, regno);
3503 
3504 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3505 	return reg->type == PTR_TO_FLOW_KEYS;
3506 }
3507 
3508 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3509 				   const struct bpf_reg_state *reg,
3510 				   int off, int size, bool strict)
3511 {
3512 	struct tnum reg_off;
3513 	int ip_align;
3514 
3515 	/* Byte size accesses are always allowed. */
3516 	if (!strict || size == 1)
3517 		return 0;
3518 
3519 	/* For platforms that do not have a Kconfig enabling
3520 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3521 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3522 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3523 	 * to this code only in strict mode where we want to emulate
3524 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3525 	 * unconditional IP align value of '2'.
3526 	 */
3527 	ip_align = 2;
3528 
3529 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3530 	if (!tnum_is_aligned(reg_off, size)) {
3531 		char tn_buf[48];
3532 
3533 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3534 		verbose(env,
3535 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3536 			ip_align, tn_buf, reg->off, off, size);
3537 		return -EACCES;
3538 	}
3539 
3540 	return 0;
3541 }
3542 
3543 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3544 				       const struct bpf_reg_state *reg,
3545 				       const char *pointer_desc,
3546 				       int off, int size, bool strict)
3547 {
3548 	struct tnum reg_off;
3549 
3550 	/* Byte size accesses are always allowed. */
3551 	if (!strict || size == 1)
3552 		return 0;
3553 
3554 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3555 	if (!tnum_is_aligned(reg_off, size)) {
3556 		char tn_buf[48];
3557 
3558 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3559 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3560 			pointer_desc, tn_buf, reg->off, off, size);
3561 		return -EACCES;
3562 	}
3563 
3564 	return 0;
3565 }
3566 
3567 static int check_ptr_alignment(struct bpf_verifier_env *env,
3568 			       const struct bpf_reg_state *reg, int off,
3569 			       int size, bool strict_alignment_once)
3570 {
3571 	bool strict = env->strict_alignment || strict_alignment_once;
3572 	const char *pointer_desc = "";
3573 
3574 	switch (reg->type) {
3575 	case PTR_TO_PACKET:
3576 	case PTR_TO_PACKET_META:
3577 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3578 		 * right in front, treat it the very same way.
3579 		 */
3580 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3581 	case PTR_TO_FLOW_KEYS:
3582 		pointer_desc = "flow keys ";
3583 		break;
3584 	case PTR_TO_MAP_KEY:
3585 		pointer_desc = "key ";
3586 		break;
3587 	case PTR_TO_MAP_VALUE:
3588 		pointer_desc = "value ";
3589 		break;
3590 	case PTR_TO_CTX:
3591 		pointer_desc = "context ";
3592 		break;
3593 	case PTR_TO_STACK:
3594 		pointer_desc = "stack ";
3595 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3596 		 * and check_stack_read_fixed_off() relies on stack accesses being
3597 		 * aligned.
3598 		 */
3599 		strict = true;
3600 		break;
3601 	case PTR_TO_SOCKET:
3602 		pointer_desc = "sock ";
3603 		break;
3604 	case PTR_TO_SOCK_COMMON:
3605 		pointer_desc = "sock_common ";
3606 		break;
3607 	case PTR_TO_TCP_SOCK:
3608 		pointer_desc = "tcp_sock ";
3609 		break;
3610 	case PTR_TO_XDP_SOCK:
3611 		pointer_desc = "xdp_sock ";
3612 		break;
3613 	default:
3614 		break;
3615 	}
3616 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3617 					   strict);
3618 }
3619 
3620 static int update_stack_depth(struct bpf_verifier_env *env,
3621 			      const struct bpf_func_state *func,
3622 			      int off)
3623 {
3624 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3625 
3626 	if (stack >= -off)
3627 		return 0;
3628 
3629 	/* update known max for given subprogram */
3630 	env->subprog_info[func->subprogno].stack_depth = -off;
3631 	return 0;
3632 }
3633 
3634 /* starting from main bpf function walk all instructions of the function
3635  * and recursively walk all callees that given function can call.
3636  * Ignore jump and exit insns.
3637  * Since recursion is prevented by check_cfg() this algorithm
3638  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3639  */
3640 static int check_max_stack_depth(struct bpf_verifier_env *env)
3641 {
3642 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3643 	struct bpf_subprog_info *subprog = env->subprog_info;
3644 	struct bpf_insn *insn = env->prog->insnsi;
3645 	bool tail_call_reachable = false;
3646 	int ret_insn[MAX_CALL_FRAMES];
3647 	int ret_prog[MAX_CALL_FRAMES];
3648 	int j;
3649 
3650 process_func:
3651 	/* protect against potential stack overflow that might happen when
3652 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3653 	 * depth for such case down to 256 so that the worst case scenario
3654 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3655 	 * 8k).
3656 	 *
3657 	 * To get the idea what might happen, see an example:
3658 	 * func1 -> sub rsp, 128
3659 	 *  subfunc1 -> sub rsp, 256
3660 	 *  tailcall1 -> add rsp, 256
3661 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3662 	 *   subfunc2 -> sub rsp, 64
3663 	 *   subfunc22 -> sub rsp, 128
3664 	 *   tailcall2 -> add rsp, 128
3665 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3666 	 *
3667 	 * tailcall will unwind the current stack frame but it will not get rid
3668 	 * of caller's stack as shown on the example above.
3669 	 */
3670 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3671 		verbose(env,
3672 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3673 			depth);
3674 		return -EACCES;
3675 	}
3676 	/* round up to 32-bytes, since this is granularity
3677 	 * of interpreter stack size
3678 	 */
3679 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3680 	if (depth > MAX_BPF_STACK) {
3681 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3682 			frame + 1, depth);
3683 		return -EACCES;
3684 	}
3685 continue_func:
3686 	subprog_end = subprog[idx + 1].start;
3687 	for (; i < subprog_end; i++) {
3688 		int next_insn;
3689 
3690 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3691 			continue;
3692 		/* remember insn and function to return to */
3693 		ret_insn[frame] = i + 1;
3694 		ret_prog[frame] = idx;
3695 
3696 		/* find the callee */
3697 		next_insn = i + insn[i].imm + 1;
3698 		idx = find_subprog(env, next_insn);
3699 		if (idx < 0) {
3700 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3701 				  next_insn);
3702 			return -EFAULT;
3703 		}
3704 		if (subprog[idx].is_async_cb) {
3705 			if (subprog[idx].has_tail_call) {
3706 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3707 				return -EFAULT;
3708 			}
3709 			 /* async callbacks don't increase bpf prog stack size */
3710 			continue;
3711 		}
3712 		i = next_insn;
3713 
3714 		if (subprog[idx].has_tail_call)
3715 			tail_call_reachable = true;
3716 
3717 		frame++;
3718 		if (frame >= MAX_CALL_FRAMES) {
3719 			verbose(env, "the call stack of %d frames is too deep !\n",
3720 				frame);
3721 			return -E2BIG;
3722 		}
3723 		goto process_func;
3724 	}
3725 	/* if tail call got detected across bpf2bpf calls then mark each of the
3726 	 * currently present subprog frames as tail call reachable subprogs;
3727 	 * this info will be utilized by JIT so that we will be preserving the
3728 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3729 	 */
3730 	if (tail_call_reachable)
3731 		for (j = 0; j < frame; j++)
3732 			subprog[ret_prog[j]].tail_call_reachable = true;
3733 	if (subprog[0].tail_call_reachable)
3734 		env->prog->aux->tail_call_reachable = true;
3735 
3736 	/* end of for() loop means the last insn of the 'subprog'
3737 	 * was reached. Doesn't matter whether it was JA or EXIT
3738 	 */
3739 	if (frame == 0)
3740 		return 0;
3741 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3742 	frame--;
3743 	i = ret_insn[frame];
3744 	idx = ret_prog[frame];
3745 	goto continue_func;
3746 }
3747 
3748 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3749 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3750 				  const struct bpf_insn *insn, int idx)
3751 {
3752 	int start = idx + insn->imm + 1, subprog;
3753 
3754 	subprog = find_subprog(env, start);
3755 	if (subprog < 0) {
3756 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3757 			  start);
3758 		return -EFAULT;
3759 	}
3760 	return env->subprog_info[subprog].stack_depth;
3761 }
3762 #endif
3763 
3764 int check_ctx_reg(struct bpf_verifier_env *env,
3765 		  const struct bpf_reg_state *reg, int regno)
3766 {
3767 	/* Access to ctx or passing it to a helper is only allowed in
3768 	 * its original, unmodified form.
3769 	 */
3770 
3771 	if (reg->off) {
3772 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3773 			regno, reg->off);
3774 		return -EACCES;
3775 	}
3776 
3777 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3778 		char tn_buf[48];
3779 
3780 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3781 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3782 		return -EACCES;
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 static int __check_buffer_access(struct bpf_verifier_env *env,
3789 				 const char *buf_info,
3790 				 const struct bpf_reg_state *reg,
3791 				 int regno, int off, int size)
3792 {
3793 	if (off < 0) {
3794 		verbose(env,
3795 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3796 			regno, buf_info, off, size);
3797 		return -EACCES;
3798 	}
3799 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3800 		char tn_buf[48];
3801 
3802 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3803 		verbose(env,
3804 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3805 			regno, off, tn_buf);
3806 		return -EACCES;
3807 	}
3808 
3809 	return 0;
3810 }
3811 
3812 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3813 				  const struct bpf_reg_state *reg,
3814 				  int regno, int off, int size)
3815 {
3816 	int err;
3817 
3818 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3819 	if (err)
3820 		return err;
3821 
3822 	if (off + size > env->prog->aux->max_tp_access)
3823 		env->prog->aux->max_tp_access = off + size;
3824 
3825 	return 0;
3826 }
3827 
3828 static int check_buffer_access(struct bpf_verifier_env *env,
3829 			       const struct bpf_reg_state *reg,
3830 			       int regno, int off, int size,
3831 			       bool zero_size_allowed,
3832 			       const char *buf_info,
3833 			       u32 *max_access)
3834 {
3835 	int err;
3836 
3837 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3838 	if (err)
3839 		return err;
3840 
3841 	if (off + size > *max_access)
3842 		*max_access = off + size;
3843 
3844 	return 0;
3845 }
3846 
3847 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3848 static void zext_32_to_64(struct bpf_reg_state *reg)
3849 {
3850 	reg->var_off = tnum_subreg(reg->var_off);
3851 	__reg_assign_32_into_64(reg);
3852 }
3853 
3854 /* truncate register to smaller size (in bytes)
3855  * must be called with size < BPF_REG_SIZE
3856  */
3857 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3858 {
3859 	u64 mask;
3860 
3861 	/* clear high bits in bit representation */
3862 	reg->var_off = tnum_cast(reg->var_off, size);
3863 
3864 	/* fix arithmetic bounds */
3865 	mask = ((u64)1 << (size * 8)) - 1;
3866 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3867 		reg->umin_value &= mask;
3868 		reg->umax_value &= mask;
3869 	} else {
3870 		reg->umin_value = 0;
3871 		reg->umax_value = mask;
3872 	}
3873 	reg->smin_value = reg->umin_value;
3874 	reg->smax_value = reg->umax_value;
3875 
3876 	/* If size is smaller than 32bit register the 32bit register
3877 	 * values are also truncated so we push 64-bit bounds into
3878 	 * 32-bit bounds. Above were truncated < 32-bits already.
3879 	 */
3880 	if (size >= 4)
3881 		return;
3882 	__reg_combine_64_into_32(reg);
3883 }
3884 
3885 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3886 {
3887 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3888 }
3889 
3890 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3891 {
3892 	void *ptr;
3893 	u64 addr;
3894 	int err;
3895 
3896 	err = map->ops->map_direct_value_addr(map, &addr, off);
3897 	if (err)
3898 		return err;
3899 	ptr = (void *)(long)addr + off;
3900 
3901 	switch (size) {
3902 	case sizeof(u8):
3903 		*val = (u64)*(u8 *)ptr;
3904 		break;
3905 	case sizeof(u16):
3906 		*val = (u64)*(u16 *)ptr;
3907 		break;
3908 	case sizeof(u32):
3909 		*val = (u64)*(u32 *)ptr;
3910 		break;
3911 	case sizeof(u64):
3912 		*val = *(u64 *)ptr;
3913 		break;
3914 	default:
3915 		return -EINVAL;
3916 	}
3917 	return 0;
3918 }
3919 
3920 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3921 				   struct bpf_reg_state *regs,
3922 				   int regno, int off, int size,
3923 				   enum bpf_access_type atype,
3924 				   int value_regno)
3925 {
3926 	struct bpf_reg_state *reg = regs + regno;
3927 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3928 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3929 	u32 btf_id;
3930 	int ret;
3931 
3932 	if (off < 0) {
3933 		verbose(env,
3934 			"R%d is ptr_%s invalid negative access: off=%d\n",
3935 			regno, tname, off);
3936 		return -EACCES;
3937 	}
3938 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3939 		char tn_buf[48];
3940 
3941 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3942 		verbose(env,
3943 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3944 			regno, tname, off, tn_buf);
3945 		return -EACCES;
3946 	}
3947 
3948 	if (env->ops->btf_struct_access) {
3949 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3950 						  off, size, atype, &btf_id);
3951 	} else {
3952 		if (atype != BPF_READ) {
3953 			verbose(env, "only read is supported\n");
3954 			return -EACCES;
3955 		}
3956 
3957 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3958 					atype, &btf_id);
3959 	}
3960 
3961 	if (ret < 0)
3962 		return ret;
3963 
3964 	if (atype == BPF_READ && value_regno >= 0)
3965 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3966 
3967 	return 0;
3968 }
3969 
3970 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3971 				   struct bpf_reg_state *regs,
3972 				   int regno, int off, int size,
3973 				   enum bpf_access_type atype,
3974 				   int value_regno)
3975 {
3976 	struct bpf_reg_state *reg = regs + regno;
3977 	struct bpf_map *map = reg->map_ptr;
3978 	const struct btf_type *t;
3979 	const char *tname;
3980 	u32 btf_id;
3981 	int ret;
3982 
3983 	if (!btf_vmlinux) {
3984 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3985 		return -ENOTSUPP;
3986 	}
3987 
3988 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3989 		verbose(env, "map_ptr access not supported for map type %d\n",
3990 			map->map_type);
3991 		return -ENOTSUPP;
3992 	}
3993 
3994 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3995 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3996 
3997 	if (!env->allow_ptr_to_map_access) {
3998 		verbose(env,
3999 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4000 			tname);
4001 		return -EPERM;
4002 	}
4003 
4004 	if (off < 0) {
4005 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4006 			regno, tname, off);
4007 		return -EACCES;
4008 	}
4009 
4010 	if (atype != BPF_READ) {
4011 		verbose(env, "only read from %s is supported\n", tname);
4012 		return -EACCES;
4013 	}
4014 
4015 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4016 	if (ret < 0)
4017 		return ret;
4018 
4019 	if (value_regno >= 0)
4020 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4021 
4022 	return 0;
4023 }
4024 
4025 /* Check that the stack access at the given offset is within bounds. The
4026  * maximum valid offset is -1.
4027  *
4028  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4029  * -state->allocated_stack for reads.
4030  */
4031 static int check_stack_slot_within_bounds(int off,
4032 					  struct bpf_func_state *state,
4033 					  enum bpf_access_type t)
4034 {
4035 	int min_valid_off;
4036 
4037 	if (t == BPF_WRITE)
4038 		min_valid_off = -MAX_BPF_STACK;
4039 	else
4040 		min_valid_off = -state->allocated_stack;
4041 
4042 	if (off < min_valid_off || off > -1)
4043 		return -EACCES;
4044 	return 0;
4045 }
4046 
4047 /* Check that the stack access at 'regno + off' falls within the maximum stack
4048  * bounds.
4049  *
4050  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4051  */
4052 static int check_stack_access_within_bounds(
4053 		struct bpf_verifier_env *env,
4054 		int regno, int off, int access_size,
4055 		enum stack_access_src src, enum bpf_access_type type)
4056 {
4057 	struct bpf_reg_state *regs = cur_regs(env);
4058 	struct bpf_reg_state *reg = regs + regno;
4059 	struct bpf_func_state *state = func(env, reg);
4060 	int min_off, max_off;
4061 	int err;
4062 	char *err_extra;
4063 
4064 	if (src == ACCESS_HELPER)
4065 		/* We don't know if helpers are reading or writing (or both). */
4066 		err_extra = " indirect access to";
4067 	else if (type == BPF_READ)
4068 		err_extra = " read from";
4069 	else
4070 		err_extra = " write to";
4071 
4072 	if (tnum_is_const(reg->var_off)) {
4073 		min_off = reg->var_off.value + off;
4074 		if (access_size > 0)
4075 			max_off = min_off + access_size - 1;
4076 		else
4077 			max_off = min_off;
4078 	} else {
4079 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4080 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4081 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4082 				err_extra, regno);
4083 			return -EACCES;
4084 		}
4085 		min_off = reg->smin_value + off;
4086 		if (access_size > 0)
4087 			max_off = reg->smax_value + off + access_size - 1;
4088 		else
4089 			max_off = min_off;
4090 	}
4091 
4092 	err = check_stack_slot_within_bounds(min_off, state, type);
4093 	if (!err)
4094 		err = check_stack_slot_within_bounds(max_off, state, type);
4095 
4096 	if (err) {
4097 		if (tnum_is_const(reg->var_off)) {
4098 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4099 				err_extra, regno, off, access_size);
4100 		} else {
4101 			char tn_buf[48];
4102 
4103 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4104 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4105 				err_extra, regno, tn_buf, access_size);
4106 		}
4107 	}
4108 	return err;
4109 }
4110 
4111 /* check whether memory at (regno + off) is accessible for t = (read | write)
4112  * if t==write, value_regno is a register which value is stored into memory
4113  * if t==read, value_regno is a register which will receive the value from memory
4114  * if t==write && value_regno==-1, some unknown value is stored into memory
4115  * if t==read && value_regno==-1, don't care what we read from memory
4116  */
4117 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4118 			    int off, int bpf_size, enum bpf_access_type t,
4119 			    int value_regno, bool strict_alignment_once)
4120 {
4121 	struct bpf_reg_state *regs = cur_regs(env);
4122 	struct bpf_reg_state *reg = regs + regno;
4123 	struct bpf_func_state *state;
4124 	int size, err = 0;
4125 
4126 	size = bpf_size_to_bytes(bpf_size);
4127 	if (size < 0)
4128 		return size;
4129 
4130 	/* alignment checks will add in reg->off themselves */
4131 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4132 	if (err)
4133 		return err;
4134 
4135 	/* for access checks, reg->off is just part of off */
4136 	off += reg->off;
4137 
4138 	if (reg->type == PTR_TO_MAP_KEY) {
4139 		if (t == BPF_WRITE) {
4140 			verbose(env, "write to change key R%d not allowed\n", regno);
4141 			return -EACCES;
4142 		}
4143 
4144 		err = check_mem_region_access(env, regno, off, size,
4145 					      reg->map_ptr->key_size, false);
4146 		if (err)
4147 			return err;
4148 		if (value_regno >= 0)
4149 			mark_reg_unknown(env, regs, value_regno);
4150 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4151 		if (t == BPF_WRITE && value_regno >= 0 &&
4152 		    is_pointer_value(env, value_regno)) {
4153 			verbose(env, "R%d leaks addr into map\n", value_regno);
4154 			return -EACCES;
4155 		}
4156 		err = check_map_access_type(env, regno, off, size, t);
4157 		if (err)
4158 			return err;
4159 		err = check_map_access(env, regno, off, size, false);
4160 		if (!err && t == BPF_READ && value_regno >= 0) {
4161 			struct bpf_map *map = reg->map_ptr;
4162 
4163 			/* if map is read-only, track its contents as scalars */
4164 			if (tnum_is_const(reg->var_off) &&
4165 			    bpf_map_is_rdonly(map) &&
4166 			    map->ops->map_direct_value_addr) {
4167 				int map_off = off + reg->var_off.value;
4168 				u64 val = 0;
4169 
4170 				err = bpf_map_direct_read(map, map_off, size,
4171 							  &val);
4172 				if (err)
4173 					return err;
4174 
4175 				regs[value_regno].type = SCALAR_VALUE;
4176 				__mark_reg_known(&regs[value_regno], val);
4177 			} else {
4178 				mark_reg_unknown(env, regs, value_regno);
4179 			}
4180 		}
4181 	} else if (reg->type == PTR_TO_MEM) {
4182 		if (t == BPF_WRITE && value_regno >= 0 &&
4183 		    is_pointer_value(env, value_regno)) {
4184 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4185 			return -EACCES;
4186 		}
4187 		err = check_mem_region_access(env, regno, off, size,
4188 					      reg->mem_size, false);
4189 		if (!err && t == BPF_READ && value_regno >= 0)
4190 			mark_reg_unknown(env, regs, value_regno);
4191 	} else if (reg->type == PTR_TO_CTX) {
4192 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4193 		struct btf *btf = NULL;
4194 		u32 btf_id = 0;
4195 
4196 		if (t == BPF_WRITE && value_regno >= 0 &&
4197 		    is_pointer_value(env, value_regno)) {
4198 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4199 			return -EACCES;
4200 		}
4201 
4202 		err = check_ctx_reg(env, reg, regno);
4203 		if (err < 0)
4204 			return err;
4205 
4206 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4207 		if (err)
4208 			verbose_linfo(env, insn_idx, "; ");
4209 		if (!err && t == BPF_READ && value_regno >= 0) {
4210 			/* ctx access returns either a scalar, or a
4211 			 * PTR_TO_PACKET[_META,_END]. In the latter
4212 			 * case, we know the offset is zero.
4213 			 */
4214 			if (reg_type == SCALAR_VALUE) {
4215 				mark_reg_unknown(env, regs, value_regno);
4216 			} else {
4217 				mark_reg_known_zero(env, regs,
4218 						    value_regno);
4219 				if (reg_type_may_be_null(reg_type))
4220 					regs[value_regno].id = ++env->id_gen;
4221 				/* A load of ctx field could have different
4222 				 * actual load size with the one encoded in the
4223 				 * insn. When the dst is PTR, it is for sure not
4224 				 * a sub-register.
4225 				 */
4226 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4227 				if (reg_type == PTR_TO_BTF_ID ||
4228 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4229 					regs[value_regno].btf = btf;
4230 					regs[value_regno].btf_id = btf_id;
4231 				}
4232 			}
4233 			regs[value_regno].type = reg_type;
4234 		}
4235 
4236 	} else if (reg->type == PTR_TO_STACK) {
4237 		/* Basic bounds checks. */
4238 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4239 		if (err)
4240 			return err;
4241 
4242 		state = func(env, reg);
4243 		err = update_stack_depth(env, state, off);
4244 		if (err)
4245 			return err;
4246 
4247 		if (t == BPF_READ)
4248 			err = check_stack_read(env, regno, off, size,
4249 					       value_regno);
4250 		else
4251 			err = check_stack_write(env, regno, off, size,
4252 						value_regno, insn_idx);
4253 	} else if (reg_is_pkt_pointer(reg)) {
4254 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4255 			verbose(env, "cannot write into packet\n");
4256 			return -EACCES;
4257 		}
4258 		if (t == BPF_WRITE && value_regno >= 0 &&
4259 		    is_pointer_value(env, value_regno)) {
4260 			verbose(env, "R%d leaks addr into packet\n",
4261 				value_regno);
4262 			return -EACCES;
4263 		}
4264 		err = check_packet_access(env, regno, off, size, false);
4265 		if (!err && t == BPF_READ && value_regno >= 0)
4266 			mark_reg_unknown(env, regs, value_regno);
4267 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4268 		if (t == BPF_WRITE && value_regno >= 0 &&
4269 		    is_pointer_value(env, value_regno)) {
4270 			verbose(env, "R%d leaks addr into flow keys\n",
4271 				value_regno);
4272 			return -EACCES;
4273 		}
4274 
4275 		err = check_flow_keys_access(env, off, size);
4276 		if (!err && t == BPF_READ && value_regno >= 0)
4277 			mark_reg_unknown(env, regs, value_regno);
4278 	} else if (type_is_sk_pointer(reg->type)) {
4279 		if (t == BPF_WRITE) {
4280 			verbose(env, "R%d cannot write into %s\n",
4281 				regno, reg_type_str[reg->type]);
4282 			return -EACCES;
4283 		}
4284 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4285 		if (!err && value_regno >= 0)
4286 			mark_reg_unknown(env, regs, value_regno);
4287 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4288 		err = check_tp_buffer_access(env, reg, regno, off, size);
4289 		if (!err && t == BPF_READ && value_regno >= 0)
4290 			mark_reg_unknown(env, regs, value_regno);
4291 	} else if (reg->type == PTR_TO_BTF_ID) {
4292 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4293 					      value_regno);
4294 	} else if (reg->type == CONST_PTR_TO_MAP) {
4295 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4296 					      value_regno);
4297 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4298 		if (t == BPF_WRITE) {
4299 			verbose(env, "R%d cannot write into %s\n",
4300 				regno, reg_type_str[reg->type]);
4301 			return -EACCES;
4302 		}
4303 		err = check_buffer_access(env, reg, regno, off, size, false,
4304 					  "rdonly",
4305 					  &env->prog->aux->max_rdonly_access);
4306 		if (!err && value_regno >= 0)
4307 			mark_reg_unknown(env, regs, value_regno);
4308 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4309 		err = check_buffer_access(env, reg, regno, off, size, false,
4310 					  "rdwr",
4311 					  &env->prog->aux->max_rdwr_access);
4312 		if (!err && t == BPF_READ && value_regno >= 0)
4313 			mark_reg_unknown(env, regs, value_regno);
4314 	} else {
4315 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4316 			reg_type_str[reg->type]);
4317 		return -EACCES;
4318 	}
4319 
4320 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4321 	    regs[value_regno].type == SCALAR_VALUE) {
4322 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4323 		coerce_reg_to_size(&regs[value_regno], size);
4324 	}
4325 	return err;
4326 }
4327 
4328 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4329 {
4330 	int load_reg;
4331 	int err;
4332 
4333 	switch (insn->imm) {
4334 	case BPF_ADD:
4335 	case BPF_ADD | BPF_FETCH:
4336 	case BPF_AND:
4337 	case BPF_AND | BPF_FETCH:
4338 	case BPF_OR:
4339 	case BPF_OR | BPF_FETCH:
4340 	case BPF_XOR:
4341 	case BPF_XOR | BPF_FETCH:
4342 	case BPF_XCHG:
4343 	case BPF_CMPXCHG:
4344 		break;
4345 	default:
4346 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4347 		return -EINVAL;
4348 	}
4349 
4350 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4351 		verbose(env, "invalid atomic operand size\n");
4352 		return -EINVAL;
4353 	}
4354 
4355 	/* check src1 operand */
4356 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4357 	if (err)
4358 		return err;
4359 
4360 	/* check src2 operand */
4361 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4362 	if (err)
4363 		return err;
4364 
4365 	if (insn->imm == BPF_CMPXCHG) {
4366 		/* Check comparison of R0 with memory location */
4367 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4368 		if (err)
4369 			return err;
4370 	}
4371 
4372 	if (is_pointer_value(env, insn->src_reg)) {
4373 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4374 		return -EACCES;
4375 	}
4376 
4377 	if (is_ctx_reg(env, insn->dst_reg) ||
4378 	    is_pkt_reg(env, insn->dst_reg) ||
4379 	    is_flow_key_reg(env, insn->dst_reg) ||
4380 	    is_sk_reg(env, insn->dst_reg)) {
4381 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4382 			insn->dst_reg,
4383 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4384 		return -EACCES;
4385 	}
4386 
4387 	if (insn->imm & BPF_FETCH) {
4388 		if (insn->imm == BPF_CMPXCHG)
4389 			load_reg = BPF_REG_0;
4390 		else
4391 			load_reg = insn->src_reg;
4392 
4393 		/* check and record load of old value */
4394 		err = check_reg_arg(env, load_reg, DST_OP);
4395 		if (err)
4396 			return err;
4397 	} else {
4398 		/* This instruction accesses a memory location but doesn't
4399 		 * actually load it into a register.
4400 		 */
4401 		load_reg = -1;
4402 	}
4403 
4404 	/* check whether we can read the memory */
4405 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4406 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4407 	if (err)
4408 		return err;
4409 
4410 	/* check whether we can write into the same memory */
4411 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4412 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4413 	if (err)
4414 		return err;
4415 
4416 	return 0;
4417 }
4418 
4419 /* When register 'regno' is used to read the stack (either directly or through
4420  * a helper function) make sure that it's within stack boundary and, depending
4421  * on the access type, that all elements of the stack are initialized.
4422  *
4423  * 'off' includes 'regno->off', but not its dynamic part (if any).
4424  *
4425  * All registers that have been spilled on the stack in the slots within the
4426  * read offsets are marked as read.
4427  */
4428 static int check_stack_range_initialized(
4429 		struct bpf_verifier_env *env, int regno, int off,
4430 		int access_size, bool zero_size_allowed,
4431 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4432 {
4433 	struct bpf_reg_state *reg = reg_state(env, regno);
4434 	struct bpf_func_state *state = func(env, reg);
4435 	int err, min_off, max_off, i, j, slot, spi;
4436 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4437 	enum bpf_access_type bounds_check_type;
4438 	/* Some accesses can write anything into the stack, others are
4439 	 * read-only.
4440 	 */
4441 	bool clobber = false;
4442 
4443 	if (access_size == 0 && !zero_size_allowed) {
4444 		verbose(env, "invalid zero-sized read\n");
4445 		return -EACCES;
4446 	}
4447 
4448 	if (type == ACCESS_HELPER) {
4449 		/* The bounds checks for writes are more permissive than for
4450 		 * reads. However, if raw_mode is not set, we'll do extra
4451 		 * checks below.
4452 		 */
4453 		bounds_check_type = BPF_WRITE;
4454 		clobber = true;
4455 	} else {
4456 		bounds_check_type = BPF_READ;
4457 	}
4458 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4459 					       type, bounds_check_type);
4460 	if (err)
4461 		return err;
4462 
4463 
4464 	if (tnum_is_const(reg->var_off)) {
4465 		min_off = max_off = reg->var_off.value + off;
4466 	} else {
4467 		/* Variable offset is prohibited for unprivileged mode for
4468 		 * simplicity since it requires corresponding support in
4469 		 * Spectre masking for stack ALU.
4470 		 * See also retrieve_ptr_limit().
4471 		 */
4472 		if (!env->bypass_spec_v1) {
4473 			char tn_buf[48];
4474 
4475 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4476 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4477 				regno, err_extra, tn_buf);
4478 			return -EACCES;
4479 		}
4480 		/* Only initialized buffer on stack is allowed to be accessed
4481 		 * with variable offset. With uninitialized buffer it's hard to
4482 		 * guarantee that whole memory is marked as initialized on
4483 		 * helper return since specific bounds are unknown what may
4484 		 * cause uninitialized stack leaking.
4485 		 */
4486 		if (meta && meta->raw_mode)
4487 			meta = NULL;
4488 
4489 		min_off = reg->smin_value + off;
4490 		max_off = reg->smax_value + off;
4491 	}
4492 
4493 	if (meta && meta->raw_mode) {
4494 		meta->access_size = access_size;
4495 		meta->regno = regno;
4496 		return 0;
4497 	}
4498 
4499 	for (i = min_off; i < max_off + access_size; i++) {
4500 		u8 *stype;
4501 
4502 		slot = -i - 1;
4503 		spi = slot / BPF_REG_SIZE;
4504 		if (state->allocated_stack <= slot)
4505 			goto err;
4506 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4507 		if (*stype == STACK_MISC)
4508 			goto mark;
4509 		if (*stype == STACK_ZERO) {
4510 			if (clobber) {
4511 				/* helper can write anything into the stack */
4512 				*stype = STACK_MISC;
4513 			}
4514 			goto mark;
4515 		}
4516 
4517 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4518 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4519 			goto mark;
4520 
4521 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4522 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4523 		     env->allow_ptr_leaks)) {
4524 			if (clobber) {
4525 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4526 				for (j = 0; j < BPF_REG_SIZE; j++)
4527 					state->stack[spi].slot_type[j] = STACK_MISC;
4528 			}
4529 			goto mark;
4530 		}
4531 
4532 err:
4533 		if (tnum_is_const(reg->var_off)) {
4534 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4535 				err_extra, regno, min_off, i - min_off, access_size);
4536 		} else {
4537 			char tn_buf[48];
4538 
4539 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4540 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4541 				err_extra, regno, tn_buf, i - min_off, access_size);
4542 		}
4543 		return -EACCES;
4544 mark:
4545 		/* reading any byte out of 8-byte 'spill_slot' will cause
4546 		 * the whole slot to be marked as 'read'
4547 		 */
4548 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4549 			      state->stack[spi].spilled_ptr.parent,
4550 			      REG_LIVE_READ64);
4551 	}
4552 	return update_stack_depth(env, state, min_off);
4553 }
4554 
4555 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4556 				   int access_size, bool zero_size_allowed,
4557 				   struct bpf_call_arg_meta *meta)
4558 {
4559 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4560 
4561 	switch (reg->type) {
4562 	case PTR_TO_PACKET:
4563 	case PTR_TO_PACKET_META:
4564 		return check_packet_access(env, regno, reg->off, access_size,
4565 					   zero_size_allowed);
4566 	case PTR_TO_MAP_KEY:
4567 		return check_mem_region_access(env, regno, reg->off, access_size,
4568 					       reg->map_ptr->key_size, false);
4569 	case PTR_TO_MAP_VALUE:
4570 		if (check_map_access_type(env, regno, reg->off, access_size,
4571 					  meta && meta->raw_mode ? BPF_WRITE :
4572 					  BPF_READ))
4573 			return -EACCES;
4574 		return check_map_access(env, regno, reg->off, access_size,
4575 					zero_size_allowed);
4576 	case PTR_TO_MEM:
4577 		return check_mem_region_access(env, regno, reg->off,
4578 					       access_size, reg->mem_size,
4579 					       zero_size_allowed);
4580 	case PTR_TO_RDONLY_BUF:
4581 		if (meta && meta->raw_mode)
4582 			return -EACCES;
4583 		return check_buffer_access(env, reg, regno, reg->off,
4584 					   access_size, zero_size_allowed,
4585 					   "rdonly",
4586 					   &env->prog->aux->max_rdonly_access);
4587 	case PTR_TO_RDWR_BUF:
4588 		return check_buffer_access(env, reg, regno, reg->off,
4589 					   access_size, zero_size_allowed,
4590 					   "rdwr",
4591 					   &env->prog->aux->max_rdwr_access);
4592 	case PTR_TO_STACK:
4593 		return check_stack_range_initialized(
4594 				env,
4595 				regno, reg->off, access_size,
4596 				zero_size_allowed, ACCESS_HELPER, meta);
4597 	default: /* scalar_value or invalid ptr */
4598 		/* Allow zero-byte read from NULL, regardless of pointer type */
4599 		if (zero_size_allowed && access_size == 0 &&
4600 		    register_is_null(reg))
4601 			return 0;
4602 
4603 		verbose(env, "R%d type=%s expected=%s\n", regno,
4604 			reg_type_str[reg->type],
4605 			reg_type_str[PTR_TO_STACK]);
4606 		return -EACCES;
4607 	}
4608 }
4609 
4610 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4611 		   u32 regno, u32 mem_size)
4612 {
4613 	if (register_is_null(reg))
4614 		return 0;
4615 
4616 	if (reg_type_may_be_null(reg->type)) {
4617 		/* Assuming that the register contains a value check if the memory
4618 		 * access is safe. Temporarily save and restore the register's state as
4619 		 * the conversion shouldn't be visible to a caller.
4620 		 */
4621 		const struct bpf_reg_state saved_reg = *reg;
4622 		int rv;
4623 
4624 		mark_ptr_not_null_reg(reg);
4625 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4626 		*reg = saved_reg;
4627 		return rv;
4628 	}
4629 
4630 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4631 }
4632 
4633 /* Implementation details:
4634  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4635  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4636  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4637  * value_or_null->value transition, since the verifier only cares about
4638  * the range of access to valid map value pointer and doesn't care about actual
4639  * address of the map element.
4640  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4641  * reg->id > 0 after value_or_null->value transition. By doing so
4642  * two bpf_map_lookups will be considered two different pointers that
4643  * point to different bpf_spin_locks.
4644  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4645  * dead-locks.
4646  * Since only one bpf_spin_lock is allowed the checks are simpler than
4647  * reg_is_refcounted() logic. The verifier needs to remember only
4648  * one spin_lock instead of array of acquired_refs.
4649  * cur_state->active_spin_lock remembers which map value element got locked
4650  * and clears it after bpf_spin_unlock.
4651  */
4652 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4653 			     bool is_lock)
4654 {
4655 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4656 	struct bpf_verifier_state *cur = env->cur_state;
4657 	bool is_const = tnum_is_const(reg->var_off);
4658 	struct bpf_map *map = reg->map_ptr;
4659 	u64 val = reg->var_off.value;
4660 
4661 	if (!is_const) {
4662 		verbose(env,
4663 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4664 			regno);
4665 		return -EINVAL;
4666 	}
4667 	if (!map->btf) {
4668 		verbose(env,
4669 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4670 			map->name);
4671 		return -EINVAL;
4672 	}
4673 	if (!map_value_has_spin_lock(map)) {
4674 		if (map->spin_lock_off == -E2BIG)
4675 			verbose(env,
4676 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4677 				map->name);
4678 		else if (map->spin_lock_off == -ENOENT)
4679 			verbose(env,
4680 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4681 				map->name);
4682 		else
4683 			verbose(env,
4684 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4685 				map->name);
4686 		return -EINVAL;
4687 	}
4688 	if (map->spin_lock_off != val + reg->off) {
4689 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4690 			val + reg->off);
4691 		return -EINVAL;
4692 	}
4693 	if (is_lock) {
4694 		if (cur->active_spin_lock) {
4695 			verbose(env,
4696 				"Locking two bpf_spin_locks are not allowed\n");
4697 			return -EINVAL;
4698 		}
4699 		cur->active_spin_lock = reg->id;
4700 	} else {
4701 		if (!cur->active_spin_lock) {
4702 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4703 			return -EINVAL;
4704 		}
4705 		if (cur->active_spin_lock != reg->id) {
4706 			verbose(env, "bpf_spin_unlock of different lock\n");
4707 			return -EINVAL;
4708 		}
4709 		cur->active_spin_lock = 0;
4710 	}
4711 	return 0;
4712 }
4713 
4714 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4715 			      struct bpf_call_arg_meta *meta)
4716 {
4717 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4718 	bool is_const = tnum_is_const(reg->var_off);
4719 	struct bpf_map *map = reg->map_ptr;
4720 	u64 val = reg->var_off.value;
4721 
4722 	if (!is_const) {
4723 		verbose(env,
4724 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4725 			regno);
4726 		return -EINVAL;
4727 	}
4728 	if (!map->btf) {
4729 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4730 			map->name);
4731 		return -EINVAL;
4732 	}
4733 	if (!map_value_has_timer(map)) {
4734 		if (map->timer_off == -E2BIG)
4735 			verbose(env,
4736 				"map '%s' has more than one 'struct bpf_timer'\n",
4737 				map->name);
4738 		else if (map->timer_off == -ENOENT)
4739 			verbose(env,
4740 				"map '%s' doesn't have 'struct bpf_timer'\n",
4741 				map->name);
4742 		else
4743 			verbose(env,
4744 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4745 				map->name);
4746 		return -EINVAL;
4747 	}
4748 	if (map->timer_off != val + reg->off) {
4749 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4750 			val + reg->off, map->timer_off);
4751 		return -EINVAL;
4752 	}
4753 	if (meta->map_ptr) {
4754 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4755 		return -EFAULT;
4756 	}
4757 	meta->map_uid = reg->map_uid;
4758 	meta->map_ptr = map;
4759 	return 0;
4760 }
4761 
4762 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4763 {
4764 	return type == ARG_PTR_TO_MEM ||
4765 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4766 	       type == ARG_PTR_TO_UNINIT_MEM;
4767 }
4768 
4769 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4770 {
4771 	return type == ARG_CONST_SIZE ||
4772 	       type == ARG_CONST_SIZE_OR_ZERO;
4773 }
4774 
4775 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4776 {
4777 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4778 }
4779 
4780 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4781 {
4782 	return type == ARG_PTR_TO_INT ||
4783 	       type == ARG_PTR_TO_LONG;
4784 }
4785 
4786 static int int_ptr_type_to_size(enum bpf_arg_type type)
4787 {
4788 	if (type == ARG_PTR_TO_INT)
4789 		return sizeof(u32);
4790 	else if (type == ARG_PTR_TO_LONG)
4791 		return sizeof(u64);
4792 
4793 	return -EINVAL;
4794 }
4795 
4796 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4797 				 const struct bpf_call_arg_meta *meta,
4798 				 enum bpf_arg_type *arg_type)
4799 {
4800 	if (!meta->map_ptr) {
4801 		/* kernel subsystem misconfigured verifier */
4802 		verbose(env, "invalid map_ptr to access map->type\n");
4803 		return -EACCES;
4804 	}
4805 
4806 	switch (meta->map_ptr->map_type) {
4807 	case BPF_MAP_TYPE_SOCKMAP:
4808 	case BPF_MAP_TYPE_SOCKHASH:
4809 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4810 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4811 		} else {
4812 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4813 			return -EINVAL;
4814 		}
4815 		break;
4816 
4817 	default:
4818 		break;
4819 	}
4820 	return 0;
4821 }
4822 
4823 struct bpf_reg_types {
4824 	const enum bpf_reg_type types[10];
4825 	u32 *btf_id;
4826 };
4827 
4828 static const struct bpf_reg_types map_key_value_types = {
4829 	.types = {
4830 		PTR_TO_STACK,
4831 		PTR_TO_PACKET,
4832 		PTR_TO_PACKET_META,
4833 		PTR_TO_MAP_KEY,
4834 		PTR_TO_MAP_VALUE,
4835 	},
4836 };
4837 
4838 static const struct bpf_reg_types sock_types = {
4839 	.types = {
4840 		PTR_TO_SOCK_COMMON,
4841 		PTR_TO_SOCKET,
4842 		PTR_TO_TCP_SOCK,
4843 		PTR_TO_XDP_SOCK,
4844 	},
4845 };
4846 
4847 #ifdef CONFIG_NET
4848 static const struct bpf_reg_types btf_id_sock_common_types = {
4849 	.types = {
4850 		PTR_TO_SOCK_COMMON,
4851 		PTR_TO_SOCKET,
4852 		PTR_TO_TCP_SOCK,
4853 		PTR_TO_XDP_SOCK,
4854 		PTR_TO_BTF_ID,
4855 	},
4856 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4857 };
4858 #endif
4859 
4860 static const struct bpf_reg_types mem_types = {
4861 	.types = {
4862 		PTR_TO_STACK,
4863 		PTR_TO_PACKET,
4864 		PTR_TO_PACKET_META,
4865 		PTR_TO_MAP_KEY,
4866 		PTR_TO_MAP_VALUE,
4867 		PTR_TO_MEM,
4868 		PTR_TO_RDONLY_BUF,
4869 		PTR_TO_RDWR_BUF,
4870 	},
4871 };
4872 
4873 static const struct bpf_reg_types int_ptr_types = {
4874 	.types = {
4875 		PTR_TO_STACK,
4876 		PTR_TO_PACKET,
4877 		PTR_TO_PACKET_META,
4878 		PTR_TO_MAP_KEY,
4879 		PTR_TO_MAP_VALUE,
4880 	},
4881 };
4882 
4883 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4884 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4885 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4886 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4887 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4888 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4889 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4890 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4891 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4892 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4893 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4894 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
4895 
4896 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4897 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4898 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4899 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4900 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4901 	[ARG_CONST_SIZE]		= &scalar_types,
4902 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4903 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4904 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4905 	[ARG_PTR_TO_CTX]		= &context_types,
4906 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4907 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4908 #ifdef CONFIG_NET
4909 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4910 #endif
4911 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4912 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4913 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4914 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4915 	[ARG_PTR_TO_MEM]		= &mem_types,
4916 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4917 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4918 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4919 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4920 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4921 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4922 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4923 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4924 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4925 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4926 	[ARG_PTR_TO_TIMER]		= &timer_types,
4927 };
4928 
4929 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4930 			  enum bpf_arg_type arg_type,
4931 			  const u32 *arg_btf_id)
4932 {
4933 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4934 	enum bpf_reg_type expected, type = reg->type;
4935 	const struct bpf_reg_types *compatible;
4936 	int i, j;
4937 
4938 	compatible = compatible_reg_types[arg_type];
4939 	if (!compatible) {
4940 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4941 		return -EFAULT;
4942 	}
4943 
4944 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4945 		expected = compatible->types[i];
4946 		if (expected == NOT_INIT)
4947 			break;
4948 
4949 		if (type == expected)
4950 			goto found;
4951 	}
4952 
4953 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4954 	for (j = 0; j + 1 < i; j++)
4955 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4956 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4957 	return -EACCES;
4958 
4959 found:
4960 	if (type == PTR_TO_BTF_ID) {
4961 		if (!arg_btf_id) {
4962 			if (!compatible->btf_id) {
4963 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4964 				return -EFAULT;
4965 			}
4966 			arg_btf_id = compatible->btf_id;
4967 		}
4968 
4969 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4970 					  btf_vmlinux, *arg_btf_id)) {
4971 			verbose(env, "R%d is of type %s but %s is expected\n",
4972 				regno, kernel_type_name(reg->btf, reg->btf_id),
4973 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4974 			return -EACCES;
4975 		}
4976 
4977 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4978 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4979 				regno);
4980 			return -EACCES;
4981 		}
4982 	}
4983 
4984 	return 0;
4985 }
4986 
4987 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4988 			  struct bpf_call_arg_meta *meta,
4989 			  const struct bpf_func_proto *fn)
4990 {
4991 	u32 regno = BPF_REG_1 + arg;
4992 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4993 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4994 	enum bpf_reg_type type = reg->type;
4995 	int err = 0;
4996 
4997 	if (arg_type == ARG_DONTCARE)
4998 		return 0;
4999 
5000 	err = check_reg_arg(env, regno, SRC_OP);
5001 	if (err)
5002 		return err;
5003 
5004 	if (arg_type == ARG_ANYTHING) {
5005 		if (is_pointer_value(env, regno)) {
5006 			verbose(env, "R%d leaks addr into helper function\n",
5007 				regno);
5008 			return -EACCES;
5009 		}
5010 		return 0;
5011 	}
5012 
5013 	if (type_is_pkt_pointer(type) &&
5014 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5015 		verbose(env, "helper access to the packet is not allowed\n");
5016 		return -EACCES;
5017 	}
5018 
5019 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5020 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5021 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5022 		err = resolve_map_arg_type(env, meta, &arg_type);
5023 		if (err)
5024 			return err;
5025 	}
5026 
5027 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5028 		/* A NULL register has a SCALAR_VALUE type, so skip
5029 		 * type checking.
5030 		 */
5031 		goto skip_type_check;
5032 
5033 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5034 	if (err)
5035 		return err;
5036 
5037 	if (type == PTR_TO_CTX) {
5038 		err = check_ctx_reg(env, reg, regno);
5039 		if (err < 0)
5040 			return err;
5041 	}
5042 
5043 skip_type_check:
5044 	if (reg->ref_obj_id) {
5045 		if (meta->ref_obj_id) {
5046 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5047 				regno, reg->ref_obj_id,
5048 				meta->ref_obj_id);
5049 			return -EFAULT;
5050 		}
5051 		meta->ref_obj_id = reg->ref_obj_id;
5052 	}
5053 
5054 	if (arg_type == ARG_CONST_MAP_PTR) {
5055 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5056 		if (meta->map_ptr) {
5057 			/* Use map_uid (which is unique id of inner map) to reject:
5058 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5059 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5060 			 * if (inner_map1 && inner_map2) {
5061 			 *     timer = bpf_map_lookup_elem(inner_map1);
5062 			 *     if (timer)
5063 			 *         // mismatch would have been allowed
5064 			 *         bpf_timer_init(timer, inner_map2);
5065 			 * }
5066 			 *
5067 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5068 			 */
5069 			if (meta->map_ptr != reg->map_ptr ||
5070 			    meta->map_uid != reg->map_uid) {
5071 				verbose(env,
5072 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5073 					meta->map_uid, reg->map_uid);
5074 				return -EINVAL;
5075 			}
5076 		}
5077 		meta->map_ptr = reg->map_ptr;
5078 		meta->map_uid = reg->map_uid;
5079 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5080 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5081 		 * check that [key, key + map->key_size) are within
5082 		 * stack limits and initialized
5083 		 */
5084 		if (!meta->map_ptr) {
5085 			/* in function declaration map_ptr must come before
5086 			 * map_key, so that it's verified and known before
5087 			 * we have to check map_key here. Otherwise it means
5088 			 * that kernel subsystem misconfigured verifier
5089 			 */
5090 			verbose(env, "invalid map_ptr to access map->key\n");
5091 			return -EACCES;
5092 		}
5093 		err = check_helper_mem_access(env, regno,
5094 					      meta->map_ptr->key_size, false,
5095 					      NULL);
5096 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5097 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5098 		    !register_is_null(reg)) ||
5099 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5100 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5101 		 * check [value, value + map->value_size) validity
5102 		 */
5103 		if (!meta->map_ptr) {
5104 			/* kernel subsystem misconfigured verifier */
5105 			verbose(env, "invalid map_ptr to access map->value\n");
5106 			return -EACCES;
5107 		}
5108 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5109 		err = check_helper_mem_access(env, regno,
5110 					      meta->map_ptr->value_size, false,
5111 					      meta);
5112 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5113 		if (!reg->btf_id) {
5114 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5115 			return -EACCES;
5116 		}
5117 		meta->ret_btf = reg->btf;
5118 		meta->ret_btf_id = reg->btf_id;
5119 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5120 		if (meta->func_id == BPF_FUNC_spin_lock) {
5121 			if (process_spin_lock(env, regno, true))
5122 				return -EACCES;
5123 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5124 			if (process_spin_lock(env, regno, false))
5125 				return -EACCES;
5126 		} else {
5127 			verbose(env, "verifier internal error\n");
5128 			return -EFAULT;
5129 		}
5130 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5131 		if (process_timer_func(env, regno, meta))
5132 			return -EACCES;
5133 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5134 		meta->subprogno = reg->subprogno;
5135 	} else if (arg_type_is_mem_ptr(arg_type)) {
5136 		/* The access to this pointer is only checked when we hit the
5137 		 * next is_mem_size argument below.
5138 		 */
5139 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5140 	} else if (arg_type_is_mem_size(arg_type)) {
5141 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5142 
5143 		/* This is used to refine r0 return value bounds for helpers
5144 		 * that enforce this value as an upper bound on return values.
5145 		 * See do_refine_retval_range() for helpers that can refine
5146 		 * the return value. C type of helper is u32 so we pull register
5147 		 * bound from umax_value however, if negative verifier errors
5148 		 * out. Only upper bounds can be learned because retval is an
5149 		 * int type and negative retvals are allowed.
5150 		 */
5151 		meta->msize_max_value = reg->umax_value;
5152 
5153 		/* The register is SCALAR_VALUE; the access check
5154 		 * happens using its boundaries.
5155 		 */
5156 		if (!tnum_is_const(reg->var_off))
5157 			/* For unprivileged variable accesses, disable raw
5158 			 * mode so that the program is required to
5159 			 * initialize all the memory that the helper could
5160 			 * just partially fill up.
5161 			 */
5162 			meta = NULL;
5163 
5164 		if (reg->smin_value < 0) {
5165 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5166 				regno);
5167 			return -EACCES;
5168 		}
5169 
5170 		if (reg->umin_value == 0) {
5171 			err = check_helper_mem_access(env, regno - 1, 0,
5172 						      zero_size_allowed,
5173 						      meta);
5174 			if (err)
5175 				return err;
5176 		}
5177 
5178 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5179 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5180 				regno);
5181 			return -EACCES;
5182 		}
5183 		err = check_helper_mem_access(env, regno - 1,
5184 					      reg->umax_value,
5185 					      zero_size_allowed, meta);
5186 		if (!err)
5187 			err = mark_chain_precision(env, regno);
5188 	} else if (arg_type_is_alloc_size(arg_type)) {
5189 		if (!tnum_is_const(reg->var_off)) {
5190 			verbose(env, "R%d is not a known constant'\n",
5191 				regno);
5192 			return -EACCES;
5193 		}
5194 		meta->mem_size = reg->var_off.value;
5195 	} else if (arg_type_is_int_ptr(arg_type)) {
5196 		int size = int_ptr_type_to_size(arg_type);
5197 
5198 		err = check_helper_mem_access(env, regno, size, false, meta);
5199 		if (err)
5200 			return err;
5201 		err = check_ptr_alignment(env, reg, 0, size, true);
5202 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5203 		struct bpf_map *map = reg->map_ptr;
5204 		int map_off;
5205 		u64 map_addr;
5206 		char *str_ptr;
5207 
5208 		if (!bpf_map_is_rdonly(map)) {
5209 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5210 			return -EACCES;
5211 		}
5212 
5213 		if (!tnum_is_const(reg->var_off)) {
5214 			verbose(env, "R%d is not a constant address'\n", regno);
5215 			return -EACCES;
5216 		}
5217 
5218 		if (!map->ops->map_direct_value_addr) {
5219 			verbose(env, "no direct value access support for this map type\n");
5220 			return -EACCES;
5221 		}
5222 
5223 		err = check_map_access(env, regno, reg->off,
5224 				       map->value_size - reg->off, false);
5225 		if (err)
5226 			return err;
5227 
5228 		map_off = reg->off + reg->var_off.value;
5229 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5230 		if (err) {
5231 			verbose(env, "direct value access on string failed\n");
5232 			return err;
5233 		}
5234 
5235 		str_ptr = (char *)(long)(map_addr);
5236 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5237 			verbose(env, "string is not zero-terminated\n");
5238 			return -EINVAL;
5239 		}
5240 	}
5241 
5242 	return err;
5243 }
5244 
5245 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5246 {
5247 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5248 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5249 
5250 	if (func_id != BPF_FUNC_map_update_elem)
5251 		return false;
5252 
5253 	/* It's not possible to get access to a locked struct sock in these
5254 	 * contexts, so updating is safe.
5255 	 */
5256 	switch (type) {
5257 	case BPF_PROG_TYPE_TRACING:
5258 		if (eatype == BPF_TRACE_ITER)
5259 			return true;
5260 		break;
5261 	case BPF_PROG_TYPE_SOCKET_FILTER:
5262 	case BPF_PROG_TYPE_SCHED_CLS:
5263 	case BPF_PROG_TYPE_SCHED_ACT:
5264 	case BPF_PROG_TYPE_XDP:
5265 	case BPF_PROG_TYPE_SK_REUSEPORT:
5266 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5267 	case BPF_PROG_TYPE_SK_LOOKUP:
5268 		return true;
5269 	default:
5270 		break;
5271 	}
5272 
5273 	verbose(env, "cannot update sockmap in this context\n");
5274 	return false;
5275 }
5276 
5277 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5278 {
5279 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5280 }
5281 
5282 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5283 					struct bpf_map *map, int func_id)
5284 {
5285 	if (!map)
5286 		return 0;
5287 
5288 	/* We need a two way check, first is from map perspective ... */
5289 	switch (map->map_type) {
5290 	case BPF_MAP_TYPE_PROG_ARRAY:
5291 		if (func_id != BPF_FUNC_tail_call)
5292 			goto error;
5293 		break;
5294 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5295 		if (func_id != BPF_FUNC_perf_event_read &&
5296 		    func_id != BPF_FUNC_perf_event_output &&
5297 		    func_id != BPF_FUNC_skb_output &&
5298 		    func_id != BPF_FUNC_perf_event_read_value &&
5299 		    func_id != BPF_FUNC_xdp_output)
5300 			goto error;
5301 		break;
5302 	case BPF_MAP_TYPE_RINGBUF:
5303 		if (func_id != BPF_FUNC_ringbuf_output &&
5304 		    func_id != BPF_FUNC_ringbuf_reserve &&
5305 		    func_id != BPF_FUNC_ringbuf_query)
5306 			goto error;
5307 		break;
5308 	case BPF_MAP_TYPE_STACK_TRACE:
5309 		if (func_id != BPF_FUNC_get_stackid)
5310 			goto error;
5311 		break;
5312 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5313 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5314 		    func_id != BPF_FUNC_current_task_under_cgroup)
5315 			goto error;
5316 		break;
5317 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5318 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5319 		if (func_id != BPF_FUNC_get_local_storage)
5320 			goto error;
5321 		break;
5322 	case BPF_MAP_TYPE_DEVMAP:
5323 	case BPF_MAP_TYPE_DEVMAP_HASH:
5324 		if (func_id != BPF_FUNC_redirect_map &&
5325 		    func_id != BPF_FUNC_map_lookup_elem)
5326 			goto error;
5327 		break;
5328 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5329 	 * appear.
5330 	 */
5331 	case BPF_MAP_TYPE_CPUMAP:
5332 		if (func_id != BPF_FUNC_redirect_map)
5333 			goto error;
5334 		break;
5335 	case BPF_MAP_TYPE_XSKMAP:
5336 		if (func_id != BPF_FUNC_redirect_map &&
5337 		    func_id != BPF_FUNC_map_lookup_elem)
5338 			goto error;
5339 		break;
5340 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5341 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5342 		if (func_id != BPF_FUNC_map_lookup_elem)
5343 			goto error;
5344 		break;
5345 	case BPF_MAP_TYPE_SOCKMAP:
5346 		if (func_id != BPF_FUNC_sk_redirect_map &&
5347 		    func_id != BPF_FUNC_sock_map_update &&
5348 		    func_id != BPF_FUNC_map_delete_elem &&
5349 		    func_id != BPF_FUNC_msg_redirect_map &&
5350 		    func_id != BPF_FUNC_sk_select_reuseport &&
5351 		    func_id != BPF_FUNC_map_lookup_elem &&
5352 		    !may_update_sockmap(env, func_id))
5353 			goto error;
5354 		break;
5355 	case BPF_MAP_TYPE_SOCKHASH:
5356 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5357 		    func_id != BPF_FUNC_sock_hash_update &&
5358 		    func_id != BPF_FUNC_map_delete_elem &&
5359 		    func_id != BPF_FUNC_msg_redirect_hash &&
5360 		    func_id != BPF_FUNC_sk_select_reuseport &&
5361 		    func_id != BPF_FUNC_map_lookup_elem &&
5362 		    !may_update_sockmap(env, func_id))
5363 			goto error;
5364 		break;
5365 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5366 		if (func_id != BPF_FUNC_sk_select_reuseport)
5367 			goto error;
5368 		break;
5369 	case BPF_MAP_TYPE_QUEUE:
5370 	case BPF_MAP_TYPE_STACK:
5371 		if (func_id != BPF_FUNC_map_peek_elem &&
5372 		    func_id != BPF_FUNC_map_pop_elem &&
5373 		    func_id != BPF_FUNC_map_push_elem)
5374 			goto error;
5375 		break;
5376 	case BPF_MAP_TYPE_SK_STORAGE:
5377 		if (func_id != BPF_FUNC_sk_storage_get &&
5378 		    func_id != BPF_FUNC_sk_storage_delete)
5379 			goto error;
5380 		break;
5381 	case BPF_MAP_TYPE_INODE_STORAGE:
5382 		if (func_id != BPF_FUNC_inode_storage_get &&
5383 		    func_id != BPF_FUNC_inode_storage_delete)
5384 			goto error;
5385 		break;
5386 	case BPF_MAP_TYPE_TASK_STORAGE:
5387 		if (func_id != BPF_FUNC_task_storage_get &&
5388 		    func_id != BPF_FUNC_task_storage_delete)
5389 			goto error;
5390 		break;
5391 	default:
5392 		break;
5393 	}
5394 
5395 	/* ... and second from the function itself. */
5396 	switch (func_id) {
5397 	case BPF_FUNC_tail_call:
5398 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5399 			goto error;
5400 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5401 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5402 			return -EINVAL;
5403 		}
5404 		break;
5405 	case BPF_FUNC_perf_event_read:
5406 	case BPF_FUNC_perf_event_output:
5407 	case BPF_FUNC_perf_event_read_value:
5408 	case BPF_FUNC_skb_output:
5409 	case BPF_FUNC_xdp_output:
5410 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5411 			goto error;
5412 		break;
5413 	case BPF_FUNC_ringbuf_output:
5414 	case BPF_FUNC_ringbuf_reserve:
5415 	case BPF_FUNC_ringbuf_query:
5416 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5417 			goto error;
5418 		break;
5419 	case BPF_FUNC_get_stackid:
5420 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5421 			goto error;
5422 		break;
5423 	case BPF_FUNC_current_task_under_cgroup:
5424 	case BPF_FUNC_skb_under_cgroup:
5425 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5426 			goto error;
5427 		break;
5428 	case BPF_FUNC_redirect_map:
5429 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5430 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5431 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5432 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5433 			goto error;
5434 		break;
5435 	case BPF_FUNC_sk_redirect_map:
5436 	case BPF_FUNC_msg_redirect_map:
5437 	case BPF_FUNC_sock_map_update:
5438 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5439 			goto error;
5440 		break;
5441 	case BPF_FUNC_sk_redirect_hash:
5442 	case BPF_FUNC_msg_redirect_hash:
5443 	case BPF_FUNC_sock_hash_update:
5444 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5445 			goto error;
5446 		break;
5447 	case BPF_FUNC_get_local_storage:
5448 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5449 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5450 			goto error;
5451 		break;
5452 	case BPF_FUNC_sk_select_reuseport:
5453 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5454 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5455 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5456 			goto error;
5457 		break;
5458 	case BPF_FUNC_map_peek_elem:
5459 	case BPF_FUNC_map_pop_elem:
5460 	case BPF_FUNC_map_push_elem:
5461 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5462 		    map->map_type != BPF_MAP_TYPE_STACK)
5463 			goto error;
5464 		break;
5465 	case BPF_FUNC_sk_storage_get:
5466 	case BPF_FUNC_sk_storage_delete:
5467 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5468 			goto error;
5469 		break;
5470 	case BPF_FUNC_inode_storage_get:
5471 	case BPF_FUNC_inode_storage_delete:
5472 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5473 			goto error;
5474 		break;
5475 	case BPF_FUNC_task_storage_get:
5476 	case BPF_FUNC_task_storage_delete:
5477 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5478 			goto error;
5479 		break;
5480 	default:
5481 		break;
5482 	}
5483 
5484 	return 0;
5485 error:
5486 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5487 		map->map_type, func_id_name(func_id), func_id);
5488 	return -EINVAL;
5489 }
5490 
5491 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5492 {
5493 	int count = 0;
5494 
5495 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5496 		count++;
5497 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5498 		count++;
5499 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5500 		count++;
5501 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5502 		count++;
5503 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5504 		count++;
5505 
5506 	/* We only support one arg being in raw mode at the moment,
5507 	 * which is sufficient for the helper functions we have
5508 	 * right now.
5509 	 */
5510 	return count <= 1;
5511 }
5512 
5513 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5514 				    enum bpf_arg_type arg_next)
5515 {
5516 	return (arg_type_is_mem_ptr(arg_curr) &&
5517 	        !arg_type_is_mem_size(arg_next)) ||
5518 	       (!arg_type_is_mem_ptr(arg_curr) &&
5519 		arg_type_is_mem_size(arg_next));
5520 }
5521 
5522 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5523 {
5524 	/* bpf_xxx(..., buf, len) call will access 'len'
5525 	 * bytes from memory 'buf'. Both arg types need
5526 	 * to be paired, so make sure there's no buggy
5527 	 * helper function specification.
5528 	 */
5529 	if (arg_type_is_mem_size(fn->arg1_type) ||
5530 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5531 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5532 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5533 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5534 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5535 		return false;
5536 
5537 	return true;
5538 }
5539 
5540 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5541 {
5542 	int count = 0;
5543 
5544 	if (arg_type_may_be_refcounted(fn->arg1_type))
5545 		count++;
5546 	if (arg_type_may_be_refcounted(fn->arg2_type))
5547 		count++;
5548 	if (arg_type_may_be_refcounted(fn->arg3_type))
5549 		count++;
5550 	if (arg_type_may_be_refcounted(fn->arg4_type))
5551 		count++;
5552 	if (arg_type_may_be_refcounted(fn->arg5_type))
5553 		count++;
5554 
5555 	/* A reference acquiring function cannot acquire
5556 	 * another refcounted ptr.
5557 	 */
5558 	if (may_be_acquire_function(func_id) && count)
5559 		return false;
5560 
5561 	/* We only support one arg being unreferenced at the moment,
5562 	 * which is sufficient for the helper functions we have right now.
5563 	 */
5564 	return count <= 1;
5565 }
5566 
5567 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5568 {
5569 	int i;
5570 
5571 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5572 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5573 			return false;
5574 
5575 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5576 			return false;
5577 	}
5578 
5579 	return true;
5580 }
5581 
5582 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5583 {
5584 	return check_raw_mode_ok(fn) &&
5585 	       check_arg_pair_ok(fn) &&
5586 	       check_btf_id_ok(fn) &&
5587 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5588 }
5589 
5590 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5591  * are now invalid, so turn them into unknown SCALAR_VALUE.
5592  */
5593 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5594 				     struct bpf_func_state *state)
5595 {
5596 	struct bpf_reg_state *regs = state->regs, *reg;
5597 	int i;
5598 
5599 	for (i = 0; i < MAX_BPF_REG; i++)
5600 		if (reg_is_pkt_pointer_any(&regs[i]))
5601 			mark_reg_unknown(env, regs, i);
5602 
5603 	bpf_for_each_spilled_reg(i, state, reg) {
5604 		if (!reg)
5605 			continue;
5606 		if (reg_is_pkt_pointer_any(reg))
5607 			__mark_reg_unknown(env, reg);
5608 	}
5609 }
5610 
5611 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5612 {
5613 	struct bpf_verifier_state *vstate = env->cur_state;
5614 	int i;
5615 
5616 	for (i = 0; i <= vstate->curframe; i++)
5617 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5618 }
5619 
5620 enum {
5621 	AT_PKT_END = -1,
5622 	BEYOND_PKT_END = -2,
5623 };
5624 
5625 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5626 {
5627 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5628 	struct bpf_reg_state *reg = &state->regs[regn];
5629 
5630 	if (reg->type != PTR_TO_PACKET)
5631 		/* PTR_TO_PACKET_META is not supported yet */
5632 		return;
5633 
5634 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5635 	 * How far beyond pkt_end it goes is unknown.
5636 	 * if (!range_open) it's the case of pkt >= pkt_end
5637 	 * if (range_open) it's the case of pkt > pkt_end
5638 	 * hence this pointer is at least 1 byte bigger than pkt_end
5639 	 */
5640 	if (range_open)
5641 		reg->range = BEYOND_PKT_END;
5642 	else
5643 		reg->range = AT_PKT_END;
5644 }
5645 
5646 static void release_reg_references(struct bpf_verifier_env *env,
5647 				   struct bpf_func_state *state,
5648 				   int ref_obj_id)
5649 {
5650 	struct bpf_reg_state *regs = state->regs, *reg;
5651 	int i;
5652 
5653 	for (i = 0; i < MAX_BPF_REG; i++)
5654 		if (regs[i].ref_obj_id == ref_obj_id)
5655 			mark_reg_unknown(env, regs, i);
5656 
5657 	bpf_for_each_spilled_reg(i, state, reg) {
5658 		if (!reg)
5659 			continue;
5660 		if (reg->ref_obj_id == ref_obj_id)
5661 			__mark_reg_unknown(env, reg);
5662 	}
5663 }
5664 
5665 /* The pointer with the specified id has released its reference to kernel
5666  * resources. Identify all copies of the same pointer and clear the reference.
5667  */
5668 static int release_reference(struct bpf_verifier_env *env,
5669 			     int ref_obj_id)
5670 {
5671 	struct bpf_verifier_state *vstate = env->cur_state;
5672 	int err;
5673 	int i;
5674 
5675 	err = release_reference_state(cur_func(env), ref_obj_id);
5676 	if (err)
5677 		return err;
5678 
5679 	for (i = 0; i <= vstate->curframe; i++)
5680 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5681 
5682 	return 0;
5683 }
5684 
5685 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5686 				    struct bpf_reg_state *regs)
5687 {
5688 	int i;
5689 
5690 	/* after the call registers r0 - r5 were scratched */
5691 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5692 		mark_reg_not_init(env, regs, caller_saved[i]);
5693 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5694 	}
5695 }
5696 
5697 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5698 				   struct bpf_func_state *caller,
5699 				   struct bpf_func_state *callee,
5700 				   int insn_idx);
5701 
5702 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5703 			     int *insn_idx, int subprog,
5704 			     set_callee_state_fn set_callee_state_cb)
5705 {
5706 	struct bpf_verifier_state *state = env->cur_state;
5707 	struct bpf_func_info_aux *func_info_aux;
5708 	struct bpf_func_state *caller, *callee;
5709 	int err;
5710 	bool is_global = false;
5711 
5712 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5713 		verbose(env, "the call stack of %d frames is too deep\n",
5714 			state->curframe + 2);
5715 		return -E2BIG;
5716 	}
5717 
5718 	caller = state->frame[state->curframe];
5719 	if (state->frame[state->curframe + 1]) {
5720 		verbose(env, "verifier bug. Frame %d already allocated\n",
5721 			state->curframe + 1);
5722 		return -EFAULT;
5723 	}
5724 
5725 	func_info_aux = env->prog->aux->func_info_aux;
5726 	if (func_info_aux)
5727 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5728 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5729 	if (err == -EFAULT)
5730 		return err;
5731 	if (is_global) {
5732 		if (err) {
5733 			verbose(env, "Caller passes invalid args into func#%d\n",
5734 				subprog);
5735 			return err;
5736 		} else {
5737 			if (env->log.level & BPF_LOG_LEVEL)
5738 				verbose(env,
5739 					"Func#%d is global and valid. Skipping.\n",
5740 					subprog);
5741 			clear_caller_saved_regs(env, caller->regs);
5742 
5743 			/* All global functions return a 64-bit SCALAR_VALUE */
5744 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5745 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5746 
5747 			/* continue with next insn after call */
5748 			return 0;
5749 		}
5750 	}
5751 
5752 	if (insn->code == (BPF_JMP | BPF_CALL) &&
5753 	    insn->imm == BPF_FUNC_timer_set_callback) {
5754 		struct bpf_verifier_state *async_cb;
5755 
5756 		/* there is no real recursion here. timer callbacks are async */
5757 		env->subprog_info[subprog].is_async_cb = true;
5758 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5759 					 *insn_idx, subprog);
5760 		if (!async_cb)
5761 			return -EFAULT;
5762 		callee = async_cb->frame[0];
5763 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
5764 
5765 		/* Convert bpf_timer_set_callback() args into timer callback args */
5766 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
5767 		if (err)
5768 			return err;
5769 
5770 		clear_caller_saved_regs(env, caller->regs);
5771 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
5772 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5773 		/* continue with next insn after call */
5774 		return 0;
5775 	}
5776 
5777 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5778 	if (!callee)
5779 		return -ENOMEM;
5780 	state->frame[state->curframe + 1] = callee;
5781 
5782 	/* callee cannot access r0, r6 - r9 for reading and has to write
5783 	 * into its own stack before reading from it.
5784 	 * callee can read/write into caller's stack
5785 	 */
5786 	init_func_state(env, callee,
5787 			/* remember the callsite, it will be used by bpf_exit */
5788 			*insn_idx /* callsite */,
5789 			state->curframe + 1 /* frameno within this callchain */,
5790 			subprog /* subprog number within this prog */);
5791 
5792 	/* Transfer references to the callee */
5793 	err = copy_reference_state(callee, caller);
5794 	if (err)
5795 		return err;
5796 
5797 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5798 	if (err)
5799 		return err;
5800 
5801 	clear_caller_saved_regs(env, caller->regs);
5802 
5803 	/* only increment it after check_reg_arg() finished */
5804 	state->curframe++;
5805 
5806 	/* and go analyze first insn of the callee */
5807 	*insn_idx = env->subprog_info[subprog].start - 1;
5808 
5809 	if (env->log.level & BPF_LOG_LEVEL) {
5810 		verbose(env, "caller:\n");
5811 		print_verifier_state(env, caller);
5812 		verbose(env, "callee:\n");
5813 		print_verifier_state(env, callee);
5814 	}
5815 	return 0;
5816 }
5817 
5818 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5819 				   struct bpf_func_state *caller,
5820 				   struct bpf_func_state *callee)
5821 {
5822 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5823 	 *      void *callback_ctx, u64 flags);
5824 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5825 	 *      void *callback_ctx);
5826 	 */
5827 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5828 
5829 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5830 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5831 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5832 
5833 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5834 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5835 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5836 
5837 	/* pointer to stack or null */
5838 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5839 
5840 	/* unused */
5841 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5842 	return 0;
5843 }
5844 
5845 static int set_callee_state(struct bpf_verifier_env *env,
5846 			    struct bpf_func_state *caller,
5847 			    struct bpf_func_state *callee, int insn_idx)
5848 {
5849 	int i;
5850 
5851 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5852 	 * pointers, which connects us up to the liveness chain
5853 	 */
5854 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5855 		callee->regs[i] = caller->regs[i];
5856 	return 0;
5857 }
5858 
5859 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5860 			   int *insn_idx)
5861 {
5862 	int subprog, target_insn;
5863 
5864 	target_insn = *insn_idx + insn->imm + 1;
5865 	subprog = find_subprog(env, target_insn);
5866 	if (subprog < 0) {
5867 		verbose(env, "verifier bug. No program starts at insn %d\n",
5868 			target_insn);
5869 		return -EFAULT;
5870 	}
5871 
5872 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5873 }
5874 
5875 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5876 				       struct bpf_func_state *caller,
5877 				       struct bpf_func_state *callee,
5878 				       int insn_idx)
5879 {
5880 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5881 	struct bpf_map *map;
5882 	int err;
5883 
5884 	if (bpf_map_ptr_poisoned(insn_aux)) {
5885 		verbose(env, "tail_call abusing map_ptr\n");
5886 		return -EINVAL;
5887 	}
5888 
5889 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5890 	if (!map->ops->map_set_for_each_callback_args ||
5891 	    !map->ops->map_for_each_callback) {
5892 		verbose(env, "callback function not allowed for map\n");
5893 		return -ENOTSUPP;
5894 	}
5895 
5896 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5897 	if (err)
5898 		return err;
5899 
5900 	callee->in_callback_fn = true;
5901 	return 0;
5902 }
5903 
5904 static int set_timer_callback_state(struct bpf_verifier_env *env,
5905 				    struct bpf_func_state *caller,
5906 				    struct bpf_func_state *callee,
5907 				    int insn_idx)
5908 {
5909 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
5910 
5911 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
5912 	 * callback_fn(struct bpf_map *map, void *key, void *value);
5913 	 */
5914 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
5915 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
5916 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
5917 
5918 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5919 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5920 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
5921 
5922 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5923 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5924 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
5925 
5926 	/* unused */
5927 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
5928 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5929 	callee->in_async_callback_fn = true;
5930 	return 0;
5931 }
5932 
5933 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5934 {
5935 	struct bpf_verifier_state *state = env->cur_state;
5936 	struct bpf_func_state *caller, *callee;
5937 	struct bpf_reg_state *r0;
5938 	int err;
5939 
5940 	callee = state->frame[state->curframe];
5941 	r0 = &callee->regs[BPF_REG_0];
5942 	if (r0->type == PTR_TO_STACK) {
5943 		/* technically it's ok to return caller's stack pointer
5944 		 * (or caller's caller's pointer) back to the caller,
5945 		 * since these pointers are valid. Only current stack
5946 		 * pointer will be invalid as soon as function exits,
5947 		 * but let's be conservative
5948 		 */
5949 		verbose(env, "cannot return stack pointer to the caller\n");
5950 		return -EINVAL;
5951 	}
5952 
5953 	state->curframe--;
5954 	caller = state->frame[state->curframe];
5955 	if (callee->in_callback_fn) {
5956 		/* enforce R0 return value range [0, 1]. */
5957 		struct tnum range = tnum_range(0, 1);
5958 
5959 		if (r0->type != SCALAR_VALUE) {
5960 			verbose(env, "R0 not a scalar value\n");
5961 			return -EACCES;
5962 		}
5963 		if (!tnum_in(range, r0->var_off)) {
5964 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5965 			return -EINVAL;
5966 		}
5967 	} else {
5968 		/* return to the caller whatever r0 had in the callee */
5969 		caller->regs[BPF_REG_0] = *r0;
5970 	}
5971 
5972 	/* Transfer references to the caller */
5973 	err = copy_reference_state(caller, callee);
5974 	if (err)
5975 		return err;
5976 
5977 	*insn_idx = callee->callsite + 1;
5978 	if (env->log.level & BPF_LOG_LEVEL) {
5979 		verbose(env, "returning from callee:\n");
5980 		print_verifier_state(env, callee);
5981 		verbose(env, "to caller at %d:\n", *insn_idx);
5982 		print_verifier_state(env, caller);
5983 	}
5984 	/* clear everything in the callee */
5985 	free_func_state(callee);
5986 	state->frame[state->curframe + 1] = NULL;
5987 	return 0;
5988 }
5989 
5990 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5991 				   int func_id,
5992 				   struct bpf_call_arg_meta *meta)
5993 {
5994 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5995 
5996 	if (ret_type != RET_INTEGER ||
5997 	    (func_id != BPF_FUNC_get_stack &&
5998 	     func_id != BPF_FUNC_get_task_stack &&
5999 	     func_id != BPF_FUNC_probe_read_str &&
6000 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6001 	     func_id != BPF_FUNC_probe_read_user_str))
6002 		return;
6003 
6004 	ret_reg->smax_value = meta->msize_max_value;
6005 	ret_reg->s32_max_value = meta->msize_max_value;
6006 	ret_reg->smin_value = -MAX_ERRNO;
6007 	ret_reg->s32_min_value = -MAX_ERRNO;
6008 	__reg_deduce_bounds(ret_reg);
6009 	__reg_bound_offset(ret_reg);
6010 	__update_reg_bounds(ret_reg);
6011 }
6012 
6013 static int
6014 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6015 		int func_id, int insn_idx)
6016 {
6017 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6018 	struct bpf_map *map = meta->map_ptr;
6019 
6020 	if (func_id != BPF_FUNC_tail_call &&
6021 	    func_id != BPF_FUNC_map_lookup_elem &&
6022 	    func_id != BPF_FUNC_map_update_elem &&
6023 	    func_id != BPF_FUNC_map_delete_elem &&
6024 	    func_id != BPF_FUNC_map_push_elem &&
6025 	    func_id != BPF_FUNC_map_pop_elem &&
6026 	    func_id != BPF_FUNC_map_peek_elem &&
6027 	    func_id != BPF_FUNC_for_each_map_elem &&
6028 	    func_id != BPF_FUNC_redirect_map)
6029 		return 0;
6030 
6031 	if (map == NULL) {
6032 		verbose(env, "kernel subsystem misconfigured verifier\n");
6033 		return -EINVAL;
6034 	}
6035 
6036 	/* In case of read-only, some additional restrictions
6037 	 * need to be applied in order to prevent altering the
6038 	 * state of the map from program side.
6039 	 */
6040 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6041 	    (func_id == BPF_FUNC_map_delete_elem ||
6042 	     func_id == BPF_FUNC_map_update_elem ||
6043 	     func_id == BPF_FUNC_map_push_elem ||
6044 	     func_id == BPF_FUNC_map_pop_elem)) {
6045 		verbose(env, "write into map forbidden\n");
6046 		return -EACCES;
6047 	}
6048 
6049 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6050 		bpf_map_ptr_store(aux, meta->map_ptr,
6051 				  !meta->map_ptr->bypass_spec_v1);
6052 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6053 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6054 				  !meta->map_ptr->bypass_spec_v1);
6055 	return 0;
6056 }
6057 
6058 static int
6059 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6060 		int func_id, int insn_idx)
6061 {
6062 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6063 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6064 	struct bpf_map *map = meta->map_ptr;
6065 	struct tnum range;
6066 	u64 val;
6067 	int err;
6068 
6069 	if (func_id != BPF_FUNC_tail_call)
6070 		return 0;
6071 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6072 		verbose(env, "kernel subsystem misconfigured verifier\n");
6073 		return -EINVAL;
6074 	}
6075 
6076 	range = tnum_range(0, map->max_entries - 1);
6077 	reg = &regs[BPF_REG_3];
6078 
6079 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6080 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6081 		return 0;
6082 	}
6083 
6084 	err = mark_chain_precision(env, BPF_REG_3);
6085 	if (err)
6086 		return err;
6087 
6088 	val = reg->var_off.value;
6089 	if (bpf_map_key_unseen(aux))
6090 		bpf_map_key_store(aux, val);
6091 	else if (!bpf_map_key_poisoned(aux) &&
6092 		  bpf_map_key_immediate(aux) != val)
6093 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6094 	return 0;
6095 }
6096 
6097 static int check_reference_leak(struct bpf_verifier_env *env)
6098 {
6099 	struct bpf_func_state *state = cur_func(env);
6100 	int i;
6101 
6102 	for (i = 0; i < state->acquired_refs; i++) {
6103 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6104 			state->refs[i].id, state->refs[i].insn_idx);
6105 	}
6106 	return state->acquired_refs ? -EINVAL : 0;
6107 }
6108 
6109 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6110 				   struct bpf_reg_state *regs)
6111 {
6112 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6113 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6114 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6115 	int err, fmt_map_off, num_args;
6116 	u64 fmt_addr;
6117 	char *fmt;
6118 
6119 	/* data must be an array of u64 */
6120 	if (data_len_reg->var_off.value % 8)
6121 		return -EINVAL;
6122 	num_args = data_len_reg->var_off.value / 8;
6123 
6124 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6125 	 * and map_direct_value_addr is set.
6126 	 */
6127 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6128 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6129 						  fmt_map_off);
6130 	if (err) {
6131 		verbose(env, "verifier bug\n");
6132 		return -EFAULT;
6133 	}
6134 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6135 
6136 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6137 	 * can focus on validating the format specifiers.
6138 	 */
6139 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6140 	if (err < 0)
6141 		verbose(env, "Invalid format string\n");
6142 
6143 	return err;
6144 }
6145 
6146 static int check_get_func_ip(struct bpf_verifier_env *env)
6147 {
6148 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6149 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6150 	int func_id = BPF_FUNC_get_func_ip;
6151 
6152 	if (type == BPF_PROG_TYPE_TRACING) {
6153 		if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6154 		    eatype != BPF_MODIFY_RETURN) {
6155 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6156 				func_id_name(func_id), func_id);
6157 			return -ENOTSUPP;
6158 		}
6159 		return 0;
6160 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6161 		return 0;
6162 	}
6163 
6164 	verbose(env, "func %s#%d not supported for program type %d\n",
6165 		func_id_name(func_id), func_id, type);
6166 	return -ENOTSUPP;
6167 }
6168 
6169 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6170 			     int *insn_idx_p)
6171 {
6172 	const struct bpf_func_proto *fn = NULL;
6173 	struct bpf_reg_state *regs;
6174 	struct bpf_call_arg_meta meta;
6175 	int insn_idx = *insn_idx_p;
6176 	bool changes_data;
6177 	int i, err, func_id;
6178 
6179 	/* find function prototype */
6180 	func_id = insn->imm;
6181 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6182 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6183 			func_id);
6184 		return -EINVAL;
6185 	}
6186 
6187 	if (env->ops->get_func_proto)
6188 		fn = env->ops->get_func_proto(func_id, env->prog);
6189 	if (!fn) {
6190 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6191 			func_id);
6192 		return -EINVAL;
6193 	}
6194 
6195 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6196 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6197 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6198 		return -EINVAL;
6199 	}
6200 
6201 	if (fn->allowed && !fn->allowed(env->prog)) {
6202 		verbose(env, "helper call is not allowed in probe\n");
6203 		return -EINVAL;
6204 	}
6205 
6206 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6207 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6208 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6209 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6210 			func_id_name(func_id), func_id);
6211 		return -EINVAL;
6212 	}
6213 
6214 	memset(&meta, 0, sizeof(meta));
6215 	meta.pkt_access = fn->pkt_access;
6216 
6217 	err = check_func_proto(fn, func_id);
6218 	if (err) {
6219 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6220 			func_id_name(func_id), func_id);
6221 		return err;
6222 	}
6223 
6224 	meta.func_id = func_id;
6225 	/* check args */
6226 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6227 		err = check_func_arg(env, i, &meta, fn);
6228 		if (err)
6229 			return err;
6230 	}
6231 
6232 	err = record_func_map(env, &meta, func_id, insn_idx);
6233 	if (err)
6234 		return err;
6235 
6236 	err = record_func_key(env, &meta, func_id, insn_idx);
6237 	if (err)
6238 		return err;
6239 
6240 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6241 	 * is inferred from register state.
6242 	 */
6243 	for (i = 0; i < meta.access_size; i++) {
6244 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6245 				       BPF_WRITE, -1, false);
6246 		if (err)
6247 			return err;
6248 	}
6249 
6250 	if (func_id == BPF_FUNC_tail_call) {
6251 		err = check_reference_leak(env);
6252 		if (err) {
6253 			verbose(env, "tail_call would lead to reference leak\n");
6254 			return err;
6255 		}
6256 	} else if (is_release_function(func_id)) {
6257 		err = release_reference(env, meta.ref_obj_id);
6258 		if (err) {
6259 			verbose(env, "func %s#%d reference has not been acquired before\n",
6260 				func_id_name(func_id), func_id);
6261 			return err;
6262 		}
6263 	}
6264 
6265 	regs = cur_regs(env);
6266 
6267 	/* check that flags argument in get_local_storage(map, flags) is 0,
6268 	 * this is required because get_local_storage() can't return an error.
6269 	 */
6270 	if (func_id == BPF_FUNC_get_local_storage &&
6271 	    !register_is_null(&regs[BPF_REG_2])) {
6272 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6273 		return -EINVAL;
6274 	}
6275 
6276 	if (func_id == BPF_FUNC_for_each_map_elem) {
6277 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6278 					set_map_elem_callback_state);
6279 		if (err < 0)
6280 			return -EINVAL;
6281 	}
6282 
6283 	if (func_id == BPF_FUNC_timer_set_callback) {
6284 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6285 					set_timer_callback_state);
6286 		if (err < 0)
6287 			return -EINVAL;
6288 	}
6289 
6290 	if (func_id == BPF_FUNC_snprintf) {
6291 		err = check_bpf_snprintf_call(env, regs);
6292 		if (err < 0)
6293 			return err;
6294 	}
6295 
6296 	/* reset caller saved regs */
6297 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6298 		mark_reg_not_init(env, regs, caller_saved[i]);
6299 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6300 	}
6301 
6302 	/* helper call returns 64-bit value. */
6303 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6304 
6305 	/* update return register (already marked as written above) */
6306 	if (fn->ret_type == RET_INTEGER) {
6307 		/* sets type to SCALAR_VALUE */
6308 		mark_reg_unknown(env, regs, BPF_REG_0);
6309 	} else if (fn->ret_type == RET_VOID) {
6310 		regs[BPF_REG_0].type = NOT_INIT;
6311 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6312 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6313 		/* There is no offset yet applied, variable or fixed */
6314 		mark_reg_known_zero(env, regs, BPF_REG_0);
6315 		/* remember map_ptr, so that check_map_access()
6316 		 * can check 'value_size' boundary of memory access
6317 		 * to map element returned from bpf_map_lookup_elem()
6318 		 */
6319 		if (meta.map_ptr == NULL) {
6320 			verbose(env,
6321 				"kernel subsystem misconfigured verifier\n");
6322 			return -EINVAL;
6323 		}
6324 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6325 		regs[BPF_REG_0].map_uid = meta.map_uid;
6326 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6327 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6328 			if (map_value_has_spin_lock(meta.map_ptr))
6329 				regs[BPF_REG_0].id = ++env->id_gen;
6330 		} else {
6331 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6332 		}
6333 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6334 		mark_reg_known_zero(env, regs, BPF_REG_0);
6335 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6336 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6337 		mark_reg_known_zero(env, regs, BPF_REG_0);
6338 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6339 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6340 		mark_reg_known_zero(env, regs, BPF_REG_0);
6341 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6342 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6343 		mark_reg_known_zero(env, regs, BPF_REG_0);
6344 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6345 		regs[BPF_REG_0].mem_size = meta.mem_size;
6346 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6347 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6348 		const struct btf_type *t;
6349 
6350 		mark_reg_known_zero(env, regs, BPF_REG_0);
6351 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6352 		if (!btf_type_is_struct(t)) {
6353 			u32 tsize;
6354 			const struct btf_type *ret;
6355 			const char *tname;
6356 
6357 			/* resolve the type size of ksym. */
6358 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6359 			if (IS_ERR(ret)) {
6360 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6361 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6362 					tname, PTR_ERR(ret));
6363 				return -EINVAL;
6364 			}
6365 			regs[BPF_REG_0].type =
6366 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6367 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6368 			regs[BPF_REG_0].mem_size = tsize;
6369 		} else {
6370 			regs[BPF_REG_0].type =
6371 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6372 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6373 			regs[BPF_REG_0].btf = meta.ret_btf;
6374 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6375 		}
6376 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6377 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6378 		int ret_btf_id;
6379 
6380 		mark_reg_known_zero(env, regs, BPF_REG_0);
6381 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6382 						     PTR_TO_BTF_ID :
6383 						     PTR_TO_BTF_ID_OR_NULL;
6384 		ret_btf_id = *fn->ret_btf_id;
6385 		if (ret_btf_id == 0) {
6386 			verbose(env, "invalid return type %d of func %s#%d\n",
6387 				fn->ret_type, func_id_name(func_id), func_id);
6388 			return -EINVAL;
6389 		}
6390 		/* current BPF helper definitions are only coming from
6391 		 * built-in code with type IDs from  vmlinux BTF
6392 		 */
6393 		regs[BPF_REG_0].btf = btf_vmlinux;
6394 		regs[BPF_REG_0].btf_id = ret_btf_id;
6395 	} else {
6396 		verbose(env, "unknown return type %d of func %s#%d\n",
6397 			fn->ret_type, func_id_name(func_id), func_id);
6398 		return -EINVAL;
6399 	}
6400 
6401 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6402 		regs[BPF_REG_0].id = ++env->id_gen;
6403 
6404 	if (is_ptr_cast_function(func_id)) {
6405 		/* For release_reference() */
6406 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6407 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6408 		int id = acquire_reference_state(env, insn_idx);
6409 
6410 		if (id < 0)
6411 			return id;
6412 		/* For mark_ptr_or_null_reg() */
6413 		regs[BPF_REG_0].id = id;
6414 		/* For release_reference() */
6415 		regs[BPF_REG_0].ref_obj_id = id;
6416 	}
6417 
6418 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6419 
6420 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6421 	if (err)
6422 		return err;
6423 
6424 	if ((func_id == BPF_FUNC_get_stack ||
6425 	     func_id == BPF_FUNC_get_task_stack) &&
6426 	    !env->prog->has_callchain_buf) {
6427 		const char *err_str;
6428 
6429 #ifdef CONFIG_PERF_EVENTS
6430 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6431 		err_str = "cannot get callchain buffer for func %s#%d\n";
6432 #else
6433 		err = -ENOTSUPP;
6434 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6435 #endif
6436 		if (err) {
6437 			verbose(env, err_str, func_id_name(func_id), func_id);
6438 			return err;
6439 		}
6440 
6441 		env->prog->has_callchain_buf = true;
6442 	}
6443 
6444 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6445 		env->prog->call_get_stack = true;
6446 
6447 	if (func_id == BPF_FUNC_get_func_ip) {
6448 		if (check_get_func_ip(env))
6449 			return -ENOTSUPP;
6450 		env->prog->call_get_func_ip = true;
6451 	}
6452 
6453 	if (changes_data)
6454 		clear_all_pkt_pointers(env);
6455 	return 0;
6456 }
6457 
6458 /* mark_btf_func_reg_size() is used when the reg size is determined by
6459  * the BTF func_proto's return value size and argument.
6460  */
6461 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6462 				   size_t reg_size)
6463 {
6464 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6465 
6466 	if (regno == BPF_REG_0) {
6467 		/* Function return value */
6468 		reg->live |= REG_LIVE_WRITTEN;
6469 		reg->subreg_def = reg_size == sizeof(u64) ?
6470 			DEF_NOT_SUBREG : env->insn_idx + 1;
6471 	} else {
6472 		/* Function argument */
6473 		if (reg_size == sizeof(u64)) {
6474 			mark_insn_zext(env, reg);
6475 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6476 		} else {
6477 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6478 		}
6479 	}
6480 }
6481 
6482 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6483 {
6484 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6485 	struct bpf_reg_state *regs = cur_regs(env);
6486 	const char *func_name, *ptr_type_name;
6487 	u32 i, nargs, func_id, ptr_type_id;
6488 	const struct btf_param *args;
6489 	int err;
6490 
6491 	func_id = insn->imm;
6492 	func = btf_type_by_id(btf_vmlinux, func_id);
6493 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6494 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6495 
6496 	if (!env->ops->check_kfunc_call ||
6497 	    !env->ops->check_kfunc_call(func_id)) {
6498 		verbose(env, "calling kernel function %s is not allowed\n",
6499 			func_name);
6500 		return -EACCES;
6501 	}
6502 
6503 	/* Check the arguments */
6504 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6505 	if (err)
6506 		return err;
6507 
6508 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6509 		mark_reg_not_init(env, regs, caller_saved[i]);
6510 
6511 	/* Check return type */
6512 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6513 	if (btf_type_is_scalar(t)) {
6514 		mark_reg_unknown(env, regs, BPF_REG_0);
6515 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6516 	} else if (btf_type_is_ptr(t)) {
6517 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6518 						   &ptr_type_id);
6519 		if (!btf_type_is_struct(ptr_type)) {
6520 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6521 							   ptr_type->name_off);
6522 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6523 				func_name, btf_type_str(ptr_type),
6524 				ptr_type_name);
6525 			return -EINVAL;
6526 		}
6527 		mark_reg_known_zero(env, regs, BPF_REG_0);
6528 		regs[BPF_REG_0].btf = btf_vmlinux;
6529 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6530 		regs[BPF_REG_0].btf_id = ptr_type_id;
6531 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6532 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6533 
6534 	nargs = btf_type_vlen(func_proto);
6535 	args = (const struct btf_param *)(func_proto + 1);
6536 	for (i = 0; i < nargs; i++) {
6537 		u32 regno = i + 1;
6538 
6539 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6540 		if (btf_type_is_ptr(t))
6541 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6542 		else
6543 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6544 			mark_btf_func_reg_size(env, regno, t->size);
6545 	}
6546 
6547 	return 0;
6548 }
6549 
6550 static bool signed_add_overflows(s64 a, s64 b)
6551 {
6552 	/* Do the add in u64, where overflow is well-defined */
6553 	s64 res = (s64)((u64)a + (u64)b);
6554 
6555 	if (b < 0)
6556 		return res > a;
6557 	return res < a;
6558 }
6559 
6560 static bool signed_add32_overflows(s32 a, s32 b)
6561 {
6562 	/* Do the add in u32, where overflow is well-defined */
6563 	s32 res = (s32)((u32)a + (u32)b);
6564 
6565 	if (b < 0)
6566 		return res > a;
6567 	return res < a;
6568 }
6569 
6570 static bool signed_sub_overflows(s64 a, s64 b)
6571 {
6572 	/* Do the sub in u64, where overflow is well-defined */
6573 	s64 res = (s64)((u64)a - (u64)b);
6574 
6575 	if (b < 0)
6576 		return res < a;
6577 	return res > a;
6578 }
6579 
6580 static bool signed_sub32_overflows(s32 a, s32 b)
6581 {
6582 	/* Do the sub in u32, where overflow is well-defined */
6583 	s32 res = (s32)((u32)a - (u32)b);
6584 
6585 	if (b < 0)
6586 		return res < a;
6587 	return res > a;
6588 }
6589 
6590 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6591 				  const struct bpf_reg_state *reg,
6592 				  enum bpf_reg_type type)
6593 {
6594 	bool known = tnum_is_const(reg->var_off);
6595 	s64 val = reg->var_off.value;
6596 	s64 smin = reg->smin_value;
6597 
6598 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6599 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6600 			reg_type_str[type], val);
6601 		return false;
6602 	}
6603 
6604 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6605 		verbose(env, "%s pointer offset %d is not allowed\n",
6606 			reg_type_str[type], reg->off);
6607 		return false;
6608 	}
6609 
6610 	if (smin == S64_MIN) {
6611 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6612 			reg_type_str[type]);
6613 		return false;
6614 	}
6615 
6616 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6617 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6618 			smin, reg_type_str[type]);
6619 		return false;
6620 	}
6621 
6622 	return true;
6623 }
6624 
6625 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6626 {
6627 	return &env->insn_aux_data[env->insn_idx];
6628 }
6629 
6630 enum {
6631 	REASON_BOUNDS	= -1,
6632 	REASON_TYPE	= -2,
6633 	REASON_PATHS	= -3,
6634 	REASON_LIMIT	= -4,
6635 	REASON_STACK	= -5,
6636 };
6637 
6638 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6639 			      u32 *alu_limit, bool mask_to_left)
6640 {
6641 	u32 max = 0, ptr_limit = 0;
6642 
6643 	switch (ptr_reg->type) {
6644 	case PTR_TO_STACK:
6645 		/* Offset 0 is out-of-bounds, but acceptable start for the
6646 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6647 		 * offset where we would need to deal with min/max bounds is
6648 		 * currently prohibited for unprivileged.
6649 		 */
6650 		max = MAX_BPF_STACK + mask_to_left;
6651 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6652 		break;
6653 	case PTR_TO_MAP_VALUE:
6654 		max = ptr_reg->map_ptr->value_size;
6655 		ptr_limit = (mask_to_left ?
6656 			     ptr_reg->smin_value :
6657 			     ptr_reg->umax_value) + ptr_reg->off;
6658 		break;
6659 	default:
6660 		return REASON_TYPE;
6661 	}
6662 
6663 	if (ptr_limit >= max)
6664 		return REASON_LIMIT;
6665 	*alu_limit = ptr_limit;
6666 	return 0;
6667 }
6668 
6669 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6670 				    const struct bpf_insn *insn)
6671 {
6672 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6673 }
6674 
6675 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6676 				       u32 alu_state, u32 alu_limit)
6677 {
6678 	/* If we arrived here from different branches with different
6679 	 * state or limits to sanitize, then this won't work.
6680 	 */
6681 	if (aux->alu_state &&
6682 	    (aux->alu_state != alu_state ||
6683 	     aux->alu_limit != alu_limit))
6684 		return REASON_PATHS;
6685 
6686 	/* Corresponding fixup done in do_misc_fixups(). */
6687 	aux->alu_state = alu_state;
6688 	aux->alu_limit = alu_limit;
6689 	return 0;
6690 }
6691 
6692 static int sanitize_val_alu(struct bpf_verifier_env *env,
6693 			    struct bpf_insn *insn)
6694 {
6695 	struct bpf_insn_aux_data *aux = cur_aux(env);
6696 
6697 	if (can_skip_alu_sanitation(env, insn))
6698 		return 0;
6699 
6700 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6701 }
6702 
6703 static bool sanitize_needed(u8 opcode)
6704 {
6705 	return opcode == BPF_ADD || opcode == BPF_SUB;
6706 }
6707 
6708 struct bpf_sanitize_info {
6709 	struct bpf_insn_aux_data aux;
6710 	bool mask_to_left;
6711 };
6712 
6713 static struct bpf_verifier_state *
6714 sanitize_speculative_path(struct bpf_verifier_env *env,
6715 			  const struct bpf_insn *insn,
6716 			  u32 next_idx, u32 curr_idx)
6717 {
6718 	struct bpf_verifier_state *branch;
6719 	struct bpf_reg_state *regs;
6720 
6721 	branch = push_stack(env, next_idx, curr_idx, true);
6722 	if (branch && insn) {
6723 		regs = branch->frame[branch->curframe]->regs;
6724 		if (BPF_SRC(insn->code) == BPF_K) {
6725 			mark_reg_unknown(env, regs, insn->dst_reg);
6726 		} else if (BPF_SRC(insn->code) == BPF_X) {
6727 			mark_reg_unknown(env, regs, insn->dst_reg);
6728 			mark_reg_unknown(env, regs, insn->src_reg);
6729 		}
6730 	}
6731 	return branch;
6732 }
6733 
6734 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6735 			    struct bpf_insn *insn,
6736 			    const struct bpf_reg_state *ptr_reg,
6737 			    const struct bpf_reg_state *off_reg,
6738 			    struct bpf_reg_state *dst_reg,
6739 			    struct bpf_sanitize_info *info,
6740 			    const bool commit_window)
6741 {
6742 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6743 	struct bpf_verifier_state *vstate = env->cur_state;
6744 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6745 	bool off_is_neg = off_reg->smin_value < 0;
6746 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6747 	u8 opcode = BPF_OP(insn->code);
6748 	u32 alu_state, alu_limit;
6749 	struct bpf_reg_state tmp;
6750 	bool ret;
6751 	int err;
6752 
6753 	if (can_skip_alu_sanitation(env, insn))
6754 		return 0;
6755 
6756 	/* We already marked aux for masking from non-speculative
6757 	 * paths, thus we got here in the first place. We only care
6758 	 * to explore bad access from here.
6759 	 */
6760 	if (vstate->speculative)
6761 		goto do_sim;
6762 
6763 	if (!commit_window) {
6764 		if (!tnum_is_const(off_reg->var_off) &&
6765 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6766 			return REASON_BOUNDS;
6767 
6768 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6769 				     (opcode == BPF_SUB && !off_is_neg);
6770 	}
6771 
6772 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6773 	if (err < 0)
6774 		return err;
6775 
6776 	if (commit_window) {
6777 		/* In commit phase we narrow the masking window based on
6778 		 * the observed pointer move after the simulated operation.
6779 		 */
6780 		alu_state = info->aux.alu_state;
6781 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6782 	} else {
6783 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6784 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6785 		alu_state |= ptr_is_dst_reg ?
6786 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6787 
6788 		/* Limit pruning on unknown scalars to enable deep search for
6789 		 * potential masking differences from other program paths.
6790 		 */
6791 		if (!off_is_imm)
6792 			env->explore_alu_limits = true;
6793 	}
6794 
6795 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6796 	if (err < 0)
6797 		return err;
6798 do_sim:
6799 	/* If we're in commit phase, we're done here given we already
6800 	 * pushed the truncated dst_reg into the speculative verification
6801 	 * stack.
6802 	 *
6803 	 * Also, when register is a known constant, we rewrite register-based
6804 	 * operation to immediate-based, and thus do not need masking (and as
6805 	 * a consequence, do not need to simulate the zero-truncation either).
6806 	 */
6807 	if (commit_window || off_is_imm)
6808 		return 0;
6809 
6810 	/* Simulate and find potential out-of-bounds access under
6811 	 * speculative execution from truncation as a result of
6812 	 * masking when off was not within expected range. If off
6813 	 * sits in dst, then we temporarily need to move ptr there
6814 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6815 	 * for cases where we use K-based arithmetic in one direction
6816 	 * and truncated reg-based in the other in order to explore
6817 	 * bad access.
6818 	 */
6819 	if (!ptr_is_dst_reg) {
6820 		tmp = *dst_reg;
6821 		*dst_reg = *ptr_reg;
6822 	}
6823 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6824 					env->insn_idx);
6825 	if (!ptr_is_dst_reg && ret)
6826 		*dst_reg = tmp;
6827 	return !ret ? REASON_STACK : 0;
6828 }
6829 
6830 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6831 {
6832 	struct bpf_verifier_state *vstate = env->cur_state;
6833 
6834 	/* If we simulate paths under speculation, we don't update the
6835 	 * insn as 'seen' such that when we verify unreachable paths in
6836 	 * the non-speculative domain, sanitize_dead_code() can still
6837 	 * rewrite/sanitize them.
6838 	 */
6839 	if (!vstate->speculative)
6840 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6841 }
6842 
6843 static int sanitize_err(struct bpf_verifier_env *env,
6844 			const struct bpf_insn *insn, int reason,
6845 			const struct bpf_reg_state *off_reg,
6846 			const struct bpf_reg_state *dst_reg)
6847 {
6848 	static const char *err = "pointer arithmetic with it prohibited for !root";
6849 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6850 	u32 dst = insn->dst_reg, src = insn->src_reg;
6851 
6852 	switch (reason) {
6853 	case REASON_BOUNDS:
6854 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6855 			off_reg == dst_reg ? dst : src, err);
6856 		break;
6857 	case REASON_TYPE:
6858 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6859 			off_reg == dst_reg ? src : dst, err);
6860 		break;
6861 	case REASON_PATHS:
6862 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6863 			dst, op, err);
6864 		break;
6865 	case REASON_LIMIT:
6866 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6867 			dst, op, err);
6868 		break;
6869 	case REASON_STACK:
6870 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6871 			dst, err);
6872 		break;
6873 	default:
6874 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6875 			reason);
6876 		break;
6877 	}
6878 
6879 	return -EACCES;
6880 }
6881 
6882 /* check that stack access falls within stack limits and that 'reg' doesn't
6883  * have a variable offset.
6884  *
6885  * Variable offset is prohibited for unprivileged mode for simplicity since it
6886  * requires corresponding support in Spectre masking for stack ALU.  See also
6887  * retrieve_ptr_limit().
6888  *
6889  *
6890  * 'off' includes 'reg->off'.
6891  */
6892 static int check_stack_access_for_ptr_arithmetic(
6893 				struct bpf_verifier_env *env,
6894 				int regno,
6895 				const struct bpf_reg_state *reg,
6896 				int off)
6897 {
6898 	if (!tnum_is_const(reg->var_off)) {
6899 		char tn_buf[48];
6900 
6901 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6902 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6903 			regno, tn_buf, off);
6904 		return -EACCES;
6905 	}
6906 
6907 	if (off >= 0 || off < -MAX_BPF_STACK) {
6908 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6909 			"prohibited for !root; off=%d\n", regno, off);
6910 		return -EACCES;
6911 	}
6912 
6913 	return 0;
6914 }
6915 
6916 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6917 				 const struct bpf_insn *insn,
6918 				 const struct bpf_reg_state *dst_reg)
6919 {
6920 	u32 dst = insn->dst_reg;
6921 
6922 	/* For unprivileged we require that resulting offset must be in bounds
6923 	 * in order to be able to sanitize access later on.
6924 	 */
6925 	if (env->bypass_spec_v1)
6926 		return 0;
6927 
6928 	switch (dst_reg->type) {
6929 	case PTR_TO_STACK:
6930 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6931 					dst_reg->off + dst_reg->var_off.value))
6932 			return -EACCES;
6933 		break;
6934 	case PTR_TO_MAP_VALUE:
6935 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6936 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6937 				"prohibited for !root\n", dst);
6938 			return -EACCES;
6939 		}
6940 		break;
6941 	default:
6942 		break;
6943 	}
6944 
6945 	return 0;
6946 }
6947 
6948 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6949  * Caller should also handle BPF_MOV case separately.
6950  * If we return -EACCES, caller may want to try again treating pointer as a
6951  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6952  */
6953 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6954 				   struct bpf_insn *insn,
6955 				   const struct bpf_reg_state *ptr_reg,
6956 				   const struct bpf_reg_state *off_reg)
6957 {
6958 	struct bpf_verifier_state *vstate = env->cur_state;
6959 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6960 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6961 	bool known = tnum_is_const(off_reg->var_off);
6962 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6963 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6964 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6965 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6966 	struct bpf_sanitize_info info = {};
6967 	u8 opcode = BPF_OP(insn->code);
6968 	u32 dst = insn->dst_reg;
6969 	int ret;
6970 
6971 	dst_reg = &regs[dst];
6972 
6973 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6974 	    smin_val > smax_val || umin_val > umax_val) {
6975 		/* Taint dst register if offset had invalid bounds derived from
6976 		 * e.g. dead branches.
6977 		 */
6978 		__mark_reg_unknown(env, dst_reg);
6979 		return 0;
6980 	}
6981 
6982 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6983 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6984 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6985 			__mark_reg_unknown(env, dst_reg);
6986 			return 0;
6987 		}
6988 
6989 		verbose(env,
6990 			"R%d 32-bit pointer arithmetic prohibited\n",
6991 			dst);
6992 		return -EACCES;
6993 	}
6994 
6995 	switch (ptr_reg->type) {
6996 	case PTR_TO_MAP_VALUE_OR_NULL:
6997 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6998 			dst, reg_type_str[ptr_reg->type]);
6999 		return -EACCES;
7000 	case CONST_PTR_TO_MAP:
7001 		/* smin_val represents the known value */
7002 		if (known && smin_val == 0 && opcode == BPF_ADD)
7003 			break;
7004 		fallthrough;
7005 	case PTR_TO_PACKET_END:
7006 	case PTR_TO_SOCKET:
7007 	case PTR_TO_SOCKET_OR_NULL:
7008 	case PTR_TO_SOCK_COMMON:
7009 	case PTR_TO_SOCK_COMMON_OR_NULL:
7010 	case PTR_TO_TCP_SOCK:
7011 	case PTR_TO_TCP_SOCK_OR_NULL:
7012 	case PTR_TO_XDP_SOCK:
7013 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7014 			dst, reg_type_str[ptr_reg->type]);
7015 		return -EACCES;
7016 	default:
7017 		break;
7018 	}
7019 
7020 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7021 	 * The id may be overwritten later if we create a new variable offset.
7022 	 */
7023 	dst_reg->type = ptr_reg->type;
7024 	dst_reg->id = ptr_reg->id;
7025 
7026 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7027 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7028 		return -EINVAL;
7029 
7030 	/* pointer types do not carry 32-bit bounds at the moment. */
7031 	__mark_reg32_unbounded(dst_reg);
7032 
7033 	if (sanitize_needed(opcode)) {
7034 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7035 				       &info, false);
7036 		if (ret < 0)
7037 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7038 	}
7039 
7040 	switch (opcode) {
7041 	case BPF_ADD:
7042 		/* We can take a fixed offset as long as it doesn't overflow
7043 		 * the s32 'off' field
7044 		 */
7045 		if (known && (ptr_reg->off + smin_val ==
7046 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7047 			/* pointer += K.  Accumulate it into fixed offset */
7048 			dst_reg->smin_value = smin_ptr;
7049 			dst_reg->smax_value = smax_ptr;
7050 			dst_reg->umin_value = umin_ptr;
7051 			dst_reg->umax_value = umax_ptr;
7052 			dst_reg->var_off = ptr_reg->var_off;
7053 			dst_reg->off = ptr_reg->off + smin_val;
7054 			dst_reg->raw = ptr_reg->raw;
7055 			break;
7056 		}
7057 		/* A new variable offset is created.  Note that off_reg->off
7058 		 * == 0, since it's a scalar.
7059 		 * dst_reg gets the pointer type and since some positive
7060 		 * integer value was added to the pointer, give it a new 'id'
7061 		 * if it's a PTR_TO_PACKET.
7062 		 * this creates a new 'base' pointer, off_reg (variable) gets
7063 		 * added into the variable offset, and we copy the fixed offset
7064 		 * from ptr_reg.
7065 		 */
7066 		if (signed_add_overflows(smin_ptr, smin_val) ||
7067 		    signed_add_overflows(smax_ptr, smax_val)) {
7068 			dst_reg->smin_value = S64_MIN;
7069 			dst_reg->smax_value = S64_MAX;
7070 		} else {
7071 			dst_reg->smin_value = smin_ptr + smin_val;
7072 			dst_reg->smax_value = smax_ptr + smax_val;
7073 		}
7074 		if (umin_ptr + umin_val < umin_ptr ||
7075 		    umax_ptr + umax_val < umax_ptr) {
7076 			dst_reg->umin_value = 0;
7077 			dst_reg->umax_value = U64_MAX;
7078 		} else {
7079 			dst_reg->umin_value = umin_ptr + umin_val;
7080 			dst_reg->umax_value = umax_ptr + umax_val;
7081 		}
7082 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7083 		dst_reg->off = ptr_reg->off;
7084 		dst_reg->raw = ptr_reg->raw;
7085 		if (reg_is_pkt_pointer(ptr_reg)) {
7086 			dst_reg->id = ++env->id_gen;
7087 			/* something was added to pkt_ptr, set range to zero */
7088 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7089 		}
7090 		break;
7091 	case BPF_SUB:
7092 		if (dst_reg == off_reg) {
7093 			/* scalar -= pointer.  Creates an unknown scalar */
7094 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7095 				dst);
7096 			return -EACCES;
7097 		}
7098 		/* We don't allow subtraction from FP, because (according to
7099 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7100 		 * be able to deal with it.
7101 		 */
7102 		if (ptr_reg->type == PTR_TO_STACK) {
7103 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7104 				dst);
7105 			return -EACCES;
7106 		}
7107 		if (known && (ptr_reg->off - smin_val ==
7108 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7109 			/* pointer -= K.  Subtract it from fixed offset */
7110 			dst_reg->smin_value = smin_ptr;
7111 			dst_reg->smax_value = smax_ptr;
7112 			dst_reg->umin_value = umin_ptr;
7113 			dst_reg->umax_value = umax_ptr;
7114 			dst_reg->var_off = ptr_reg->var_off;
7115 			dst_reg->id = ptr_reg->id;
7116 			dst_reg->off = ptr_reg->off - smin_val;
7117 			dst_reg->raw = ptr_reg->raw;
7118 			break;
7119 		}
7120 		/* A new variable offset is created.  If the subtrahend is known
7121 		 * nonnegative, then any reg->range we had before is still good.
7122 		 */
7123 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7124 		    signed_sub_overflows(smax_ptr, smin_val)) {
7125 			/* Overflow possible, we know nothing */
7126 			dst_reg->smin_value = S64_MIN;
7127 			dst_reg->smax_value = S64_MAX;
7128 		} else {
7129 			dst_reg->smin_value = smin_ptr - smax_val;
7130 			dst_reg->smax_value = smax_ptr - smin_val;
7131 		}
7132 		if (umin_ptr < umax_val) {
7133 			/* Overflow possible, we know nothing */
7134 			dst_reg->umin_value = 0;
7135 			dst_reg->umax_value = U64_MAX;
7136 		} else {
7137 			/* Cannot overflow (as long as bounds are consistent) */
7138 			dst_reg->umin_value = umin_ptr - umax_val;
7139 			dst_reg->umax_value = umax_ptr - umin_val;
7140 		}
7141 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7142 		dst_reg->off = ptr_reg->off;
7143 		dst_reg->raw = ptr_reg->raw;
7144 		if (reg_is_pkt_pointer(ptr_reg)) {
7145 			dst_reg->id = ++env->id_gen;
7146 			/* something was added to pkt_ptr, set range to zero */
7147 			if (smin_val < 0)
7148 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7149 		}
7150 		break;
7151 	case BPF_AND:
7152 	case BPF_OR:
7153 	case BPF_XOR:
7154 		/* bitwise ops on pointers are troublesome, prohibit. */
7155 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7156 			dst, bpf_alu_string[opcode >> 4]);
7157 		return -EACCES;
7158 	default:
7159 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7160 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7161 			dst, bpf_alu_string[opcode >> 4]);
7162 		return -EACCES;
7163 	}
7164 
7165 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7166 		return -EINVAL;
7167 
7168 	__update_reg_bounds(dst_reg);
7169 	__reg_deduce_bounds(dst_reg);
7170 	__reg_bound_offset(dst_reg);
7171 
7172 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7173 		return -EACCES;
7174 	if (sanitize_needed(opcode)) {
7175 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7176 				       &info, true);
7177 		if (ret < 0)
7178 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7179 	}
7180 
7181 	return 0;
7182 }
7183 
7184 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7185 				 struct bpf_reg_state *src_reg)
7186 {
7187 	s32 smin_val = src_reg->s32_min_value;
7188 	s32 smax_val = src_reg->s32_max_value;
7189 	u32 umin_val = src_reg->u32_min_value;
7190 	u32 umax_val = src_reg->u32_max_value;
7191 
7192 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7193 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7194 		dst_reg->s32_min_value = S32_MIN;
7195 		dst_reg->s32_max_value = S32_MAX;
7196 	} else {
7197 		dst_reg->s32_min_value += smin_val;
7198 		dst_reg->s32_max_value += smax_val;
7199 	}
7200 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7201 	    dst_reg->u32_max_value + umax_val < umax_val) {
7202 		dst_reg->u32_min_value = 0;
7203 		dst_reg->u32_max_value = U32_MAX;
7204 	} else {
7205 		dst_reg->u32_min_value += umin_val;
7206 		dst_reg->u32_max_value += umax_val;
7207 	}
7208 }
7209 
7210 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7211 			       struct bpf_reg_state *src_reg)
7212 {
7213 	s64 smin_val = src_reg->smin_value;
7214 	s64 smax_val = src_reg->smax_value;
7215 	u64 umin_val = src_reg->umin_value;
7216 	u64 umax_val = src_reg->umax_value;
7217 
7218 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7219 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7220 		dst_reg->smin_value = S64_MIN;
7221 		dst_reg->smax_value = S64_MAX;
7222 	} else {
7223 		dst_reg->smin_value += smin_val;
7224 		dst_reg->smax_value += smax_val;
7225 	}
7226 	if (dst_reg->umin_value + umin_val < umin_val ||
7227 	    dst_reg->umax_value + umax_val < umax_val) {
7228 		dst_reg->umin_value = 0;
7229 		dst_reg->umax_value = U64_MAX;
7230 	} else {
7231 		dst_reg->umin_value += umin_val;
7232 		dst_reg->umax_value += umax_val;
7233 	}
7234 }
7235 
7236 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7237 				 struct bpf_reg_state *src_reg)
7238 {
7239 	s32 smin_val = src_reg->s32_min_value;
7240 	s32 smax_val = src_reg->s32_max_value;
7241 	u32 umin_val = src_reg->u32_min_value;
7242 	u32 umax_val = src_reg->u32_max_value;
7243 
7244 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7245 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7246 		/* Overflow possible, we know nothing */
7247 		dst_reg->s32_min_value = S32_MIN;
7248 		dst_reg->s32_max_value = S32_MAX;
7249 	} else {
7250 		dst_reg->s32_min_value -= smax_val;
7251 		dst_reg->s32_max_value -= smin_val;
7252 	}
7253 	if (dst_reg->u32_min_value < umax_val) {
7254 		/* Overflow possible, we know nothing */
7255 		dst_reg->u32_min_value = 0;
7256 		dst_reg->u32_max_value = U32_MAX;
7257 	} else {
7258 		/* Cannot overflow (as long as bounds are consistent) */
7259 		dst_reg->u32_min_value -= umax_val;
7260 		dst_reg->u32_max_value -= umin_val;
7261 	}
7262 }
7263 
7264 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7265 			       struct bpf_reg_state *src_reg)
7266 {
7267 	s64 smin_val = src_reg->smin_value;
7268 	s64 smax_val = src_reg->smax_value;
7269 	u64 umin_val = src_reg->umin_value;
7270 	u64 umax_val = src_reg->umax_value;
7271 
7272 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7273 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7274 		/* Overflow possible, we know nothing */
7275 		dst_reg->smin_value = S64_MIN;
7276 		dst_reg->smax_value = S64_MAX;
7277 	} else {
7278 		dst_reg->smin_value -= smax_val;
7279 		dst_reg->smax_value -= smin_val;
7280 	}
7281 	if (dst_reg->umin_value < umax_val) {
7282 		/* Overflow possible, we know nothing */
7283 		dst_reg->umin_value = 0;
7284 		dst_reg->umax_value = U64_MAX;
7285 	} else {
7286 		/* Cannot overflow (as long as bounds are consistent) */
7287 		dst_reg->umin_value -= umax_val;
7288 		dst_reg->umax_value -= umin_val;
7289 	}
7290 }
7291 
7292 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7293 				 struct bpf_reg_state *src_reg)
7294 {
7295 	s32 smin_val = src_reg->s32_min_value;
7296 	u32 umin_val = src_reg->u32_min_value;
7297 	u32 umax_val = src_reg->u32_max_value;
7298 
7299 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7300 		/* Ain't nobody got time to multiply that sign */
7301 		__mark_reg32_unbounded(dst_reg);
7302 		return;
7303 	}
7304 	/* Both values are positive, so we can work with unsigned and
7305 	 * copy the result to signed (unless it exceeds S32_MAX).
7306 	 */
7307 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7308 		/* Potential overflow, we know nothing */
7309 		__mark_reg32_unbounded(dst_reg);
7310 		return;
7311 	}
7312 	dst_reg->u32_min_value *= umin_val;
7313 	dst_reg->u32_max_value *= umax_val;
7314 	if (dst_reg->u32_max_value > S32_MAX) {
7315 		/* Overflow possible, we know nothing */
7316 		dst_reg->s32_min_value = S32_MIN;
7317 		dst_reg->s32_max_value = S32_MAX;
7318 	} else {
7319 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7320 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7321 	}
7322 }
7323 
7324 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7325 			       struct bpf_reg_state *src_reg)
7326 {
7327 	s64 smin_val = src_reg->smin_value;
7328 	u64 umin_val = src_reg->umin_value;
7329 	u64 umax_val = src_reg->umax_value;
7330 
7331 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7332 		/* Ain't nobody got time to multiply that sign */
7333 		__mark_reg64_unbounded(dst_reg);
7334 		return;
7335 	}
7336 	/* Both values are positive, so we can work with unsigned and
7337 	 * copy the result to signed (unless it exceeds S64_MAX).
7338 	 */
7339 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7340 		/* Potential overflow, we know nothing */
7341 		__mark_reg64_unbounded(dst_reg);
7342 		return;
7343 	}
7344 	dst_reg->umin_value *= umin_val;
7345 	dst_reg->umax_value *= umax_val;
7346 	if (dst_reg->umax_value > S64_MAX) {
7347 		/* Overflow possible, we know nothing */
7348 		dst_reg->smin_value = S64_MIN;
7349 		dst_reg->smax_value = S64_MAX;
7350 	} else {
7351 		dst_reg->smin_value = dst_reg->umin_value;
7352 		dst_reg->smax_value = dst_reg->umax_value;
7353 	}
7354 }
7355 
7356 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7357 				 struct bpf_reg_state *src_reg)
7358 {
7359 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7360 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7361 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7362 	s32 smin_val = src_reg->s32_min_value;
7363 	u32 umax_val = src_reg->u32_max_value;
7364 
7365 	if (src_known && dst_known) {
7366 		__mark_reg32_known(dst_reg, var32_off.value);
7367 		return;
7368 	}
7369 
7370 	/* We get our minimum from the var_off, since that's inherently
7371 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7372 	 */
7373 	dst_reg->u32_min_value = var32_off.value;
7374 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7375 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7376 		/* Lose signed bounds when ANDing negative numbers,
7377 		 * ain't nobody got time for that.
7378 		 */
7379 		dst_reg->s32_min_value = S32_MIN;
7380 		dst_reg->s32_max_value = S32_MAX;
7381 	} else {
7382 		/* ANDing two positives gives a positive, so safe to
7383 		 * cast result into s64.
7384 		 */
7385 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7386 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7387 	}
7388 }
7389 
7390 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7391 			       struct bpf_reg_state *src_reg)
7392 {
7393 	bool src_known = tnum_is_const(src_reg->var_off);
7394 	bool dst_known = tnum_is_const(dst_reg->var_off);
7395 	s64 smin_val = src_reg->smin_value;
7396 	u64 umax_val = src_reg->umax_value;
7397 
7398 	if (src_known && dst_known) {
7399 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7400 		return;
7401 	}
7402 
7403 	/* We get our minimum from the var_off, since that's inherently
7404 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7405 	 */
7406 	dst_reg->umin_value = dst_reg->var_off.value;
7407 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7408 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7409 		/* Lose signed bounds when ANDing negative numbers,
7410 		 * ain't nobody got time for that.
7411 		 */
7412 		dst_reg->smin_value = S64_MIN;
7413 		dst_reg->smax_value = S64_MAX;
7414 	} else {
7415 		/* ANDing two positives gives a positive, so safe to
7416 		 * cast result into s64.
7417 		 */
7418 		dst_reg->smin_value = dst_reg->umin_value;
7419 		dst_reg->smax_value = dst_reg->umax_value;
7420 	}
7421 	/* We may learn something more from the var_off */
7422 	__update_reg_bounds(dst_reg);
7423 }
7424 
7425 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7426 				struct bpf_reg_state *src_reg)
7427 {
7428 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7429 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7430 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7431 	s32 smin_val = src_reg->s32_min_value;
7432 	u32 umin_val = src_reg->u32_min_value;
7433 
7434 	if (src_known && dst_known) {
7435 		__mark_reg32_known(dst_reg, var32_off.value);
7436 		return;
7437 	}
7438 
7439 	/* We get our maximum from the var_off, and our minimum is the
7440 	 * maximum of the operands' minima
7441 	 */
7442 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7443 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7444 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7445 		/* Lose signed bounds when ORing negative numbers,
7446 		 * ain't nobody got time for that.
7447 		 */
7448 		dst_reg->s32_min_value = S32_MIN;
7449 		dst_reg->s32_max_value = S32_MAX;
7450 	} else {
7451 		/* ORing two positives gives a positive, so safe to
7452 		 * cast result into s64.
7453 		 */
7454 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7455 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7456 	}
7457 }
7458 
7459 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7460 			      struct bpf_reg_state *src_reg)
7461 {
7462 	bool src_known = tnum_is_const(src_reg->var_off);
7463 	bool dst_known = tnum_is_const(dst_reg->var_off);
7464 	s64 smin_val = src_reg->smin_value;
7465 	u64 umin_val = src_reg->umin_value;
7466 
7467 	if (src_known && dst_known) {
7468 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7469 		return;
7470 	}
7471 
7472 	/* We get our maximum from the var_off, and our minimum is the
7473 	 * maximum of the operands' minima
7474 	 */
7475 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7476 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7477 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7478 		/* Lose signed bounds when ORing negative numbers,
7479 		 * ain't nobody got time for that.
7480 		 */
7481 		dst_reg->smin_value = S64_MIN;
7482 		dst_reg->smax_value = S64_MAX;
7483 	} else {
7484 		/* ORing two positives gives a positive, so safe to
7485 		 * cast result into s64.
7486 		 */
7487 		dst_reg->smin_value = dst_reg->umin_value;
7488 		dst_reg->smax_value = dst_reg->umax_value;
7489 	}
7490 	/* We may learn something more from the var_off */
7491 	__update_reg_bounds(dst_reg);
7492 }
7493 
7494 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7495 				 struct bpf_reg_state *src_reg)
7496 {
7497 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7498 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7499 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7500 	s32 smin_val = src_reg->s32_min_value;
7501 
7502 	if (src_known && dst_known) {
7503 		__mark_reg32_known(dst_reg, var32_off.value);
7504 		return;
7505 	}
7506 
7507 	/* We get both minimum and maximum from the var32_off. */
7508 	dst_reg->u32_min_value = var32_off.value;
7509 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7510 
7511 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7512 		/* XORing two positive sign numbers gives a positive,
7513 		 * so safe to cast u32 result into s32.
7514 		 */
7515 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7516 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7517 	} else {
7518 		dst_reg->s32_min_value = S32_MIN;
7519 		dst_reg->s32_max_value = S32_MAX;
7520 	}
7521 }
7522 
7523 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7524 			       struct bpf_reg_state *src_reg)
7525 {
7526 	bool src_known = tnum_is_const(src_reg->var_off);
7527 	bool dst_known = tnum_is_const(dst_reg->var_off);
7528 	s64 smin_val = src_reg->smin_value;
7529 
7530 	if (src_known && dst_known) {
7531 		/* dst_reg->var_off.value has been updated earlier */
7532 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7533 		return;
7534 	}
7535 
7536 	/* We get both minimum and maximum from the var_off. */
7537 	dst_reg->umin_value = dst_reg->var_off.value;
7538 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7539 
7540 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7541 		/* XORing two positive sign numbers gives a positive,
7542 		 * so safe to cast u64 result into s64.
7543 		 */
7544 		dst_reg->smin_value = dst_reg->umin_value;
7545 		dst_reg->smax_value = dst_reg->umax_value;
7546 	} else {
7547 		dst_reg->smin_value = S64_MIN;
7548 		dst_reg->smax_value = S64_MAX;
7549 	}
7550 
7551 	__update_reg_bounds(dst_reg);
7552 }
7553 
7554 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7555 				   u64 umin_val, u64 umax_val)
7556 {
7557 	/* We lose all sign bit information (except what we can pick
7558 	 * up from var_off)
7559 	 */
7560 	dst_reg->s32_min_value = S32_MIN;
7561 	dst_reg->s32_max_value = S32_MAX;
7562 	/* If we might shift our top bit out, then we know nothing */
7563 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7564 		dst_reg->u32_min_value = 0;
7565 		dst_reg->u32_max_value = U32_MAX;
7566 	} else {
7567 		dst_reg->u32_min_value <<= umin_val;
7568 		dst_reg->u32_max_value <<= umax_val;
7569 	}
7570 }
7571 
7572 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7573 				 struct bpf_reg_state *src_reg)
7574 {
7575 	u32 umax_val = src_reg->u32_max_value;
7576 	u32 umin_val = src_reg->u32_min_value;
7577 	/* u32 alu operation will zext upper bits */
7578 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7579 
7580 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7581 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7582 	/* Not required but being careful mark reg64 bounds as unknown so
7583 	 * that we are forced to pick them up from tnum and zext later and
7584 	 * if some path skips this step we are still safe.
7585 	 */
7586 	__mark_reg64_unbounded(dst_reg);
7587 	__update_reg32_bounds(dst_reg);
7588 }
7589 
7590 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7591 				   u64 umin_val, u64 umax_val)
7592 {
7593 	/* Special case <<32 because it is a common compiler pattern to sign
7594 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7595 	 * positive we know this shift will also be positive so we can track
7596 	 * bounds correctly. Otherwise we lose all sign bit information except
7597 	 * what we can pick up from var_off. Perhaps we can generalize this
7598 	 * later to shifts of any length.
7599 	 */
7600 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7601 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7602 	else
7603 		dst_reg->smax_value = S64_MAX;
7604 
7605 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7606 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7607 	else
7608 		dst_reg->smin_value = S64_MIN;
7609 
7610 	/* If we might shift our top bit out, then we know nothing */
7611 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7612 		dst_reg->umin_value = 0;
7613 		dst_reg->umax_value = U64_MAX;
7614 	} else {
7615 		dst_reg->umin_value <<= umin_val;
7616 		dst_reg->umax_value <<= umax_val;
7617 	}
7618 }
7619 
7620 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7621 			       struct bpf_reg_state *src_reg)
7622 {
7623 	u64 umax_val = src_reg->umax_value;
7624 	u64 umin_val = src_reg->umin_value;
7625 
7626 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7627 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7628 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7629 
7630 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7631 	/* We may learn something more from the var_off */
7632 	__update_reg_bounds(dst_reg);
7633 }
7634 
7635 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7636 				 struct bpf_reg_state *src_reg)
7637 {
7638 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7639 	u32 umax_val = src_reg->u32_max_value;
7640 	u32 umin_val = src_reg->u32_min_value;
7641 
7642 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7643 	 * be negative, then either:
7644 	 * 1) src_reg might be zero, so the sign bit of the result is
7645 	 *    unknown, so we lose our signed bounds
7646 	 * 2) it's known negative, thus the unsigned bounds capture the
7647 	 *    signed bounds
7648 	 * 3) the signed bounds cross zero, so they tell us nothing
7649 	 *    about the result
7650 	 * If the value in dst_reg is known nonnegative, then again the
7651 	 * unsigned bounds capture the signed bounds.
7652 	 * Thus, in all cases it suffices to blow away our signed bounds
7653 	 * and rely on inferring new ones from the unsigned bounds and
7654 	 * var_off of the result.
7655 	 */
7656 	dst_reg->s32_min_value = S32_MIN;
7657 	dst_reg->s32_max_value = S32_MAX;
7658 
7659 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7660 	dst_reg->u32_min_value >>= umax_val;
7661 	dst_reg->u32_max_value >>= umin_val;
7662 
7663 	__mark_reg64_unbounded(dst_reg);
7664 	__update_reg32_bounds(dst_reg);
7665 }
7666 
7667 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7668 			       struct bpf_reg_state *src_reg)
7669 {
7670 	u64 umax_val = src_reg->umax_value;
7671 	u64 umin_val = src_reg->umin_value;
7672 
7673 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7674 	 * be negative, then either:
7675 	 * 1) src_reg might be zero, so the sign bit of the result is
7676 	 *    unknown, so we lose our signed bounds
7677 	 * 2) it's known negative, thus the unsigned bounds capture the
7678 	 *    signed bounds
7679 	 * 3) the signed bounds cross zero, so they tell us nothing
7680 	 *    about the result
7681 	 * If the value in dst_reg is known nonnegative, then again the
7682 	 * unsigned bounds capture the signed bounds.
7683 	 * Thus, in all cases it suffices to blow away our signed bounds
7684 	 * and rely on inferring new ones from the unsigned bounds and
7685 	 * var_off of the result.
7686 	 */
7687 	dst_reg->smin_value = S64_MIN;
7688 	dst_reg->smax_value = S64_MAX;
7689 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7690 	dst_reg->umin_value >>= umax_val;
7691 	dst_reg->umax_value >>= umin_val;
7692 
7693 	/* Its not easy to operate on alu32 bounds here because it depends
7694 	 * on bits being shifted in. Take easy way out and mark unbounded
7695 	 * so we can recalculate later from tnum.
7696 	 */
7697 	__mark_reg32_unbounded(dst_reg);
7698 	__update_reg_bounds(dst_reg);
7699 }
7700 
7701 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7702 				  struct bpf_reg_state *src_reg)
7703 {
7704 	u64 umin_val = src_reg->u32_min_value;
7705 
7706 	/* Upon reaching here, src_known is true and
7707 	 * umax_val is equal to umin_val.
7708 	 */
7709 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7710 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7711 
7712 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7713 
7714 	/* blow away the dst_reg umin_value/umax_value and rely on
7715 	 * dst_reg var_off to refine the result.
7716 	 */
7717 	dst_reg->u32_min_value = 0;
7718 	dst_reg->u32_max_value = U32_MAX;
7719 
7720 	__mark_reg64_unbounded(dst_reg);
7721 	__update_reg32_bounds(dst_reg);
7722 }
7723 
7724 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7725 				struct bpf_reg_state *src_reg)
7726 {
7727 	u64 umin_val = src_reg->umin_value;
7728 
7729 	/* Upon reaching here, src_known is true and umax_val is equal
7730 	 * to umin_val.
7731 	 */
7732 	dst_reg->smin_value >>= umin_val;
7733 	dst_reg->smax_value >>= umin_val;
7734 
7735 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7736 
7737 	/* blow away the dst_reg umin_value/umax_value and rely on
7738 	 * dst_reg var_off to refine the result.
7739 	 */
7740 	dst_reg->umin_value = 0;
7741 	dst_reg->umax_value = U64_MAX;
7742 
7743 	/* Its not easy to operate on alu32 bounds here because it depends
7744 	 * on bits being shifted in from upper 32-bits. Take easy way out
7745 	 * and mark unbounded so we can recalculate later from tnum.
7746 	 */
7747 	__mark_reg32_unbounded(dst_reg);
7748 	__update_reg_bounds(dst_reg);
7749 }
7750 
7751 /* WARNING: This function does calculations on 64-bit values, but the actual
7752  * execution may occur on 32-bit values. Therefore, things like bitshifts
7753  * need extra checks in the 32-bit case.
7754  */
7755 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7756 				      struct bpf_insn *insn,
7757 				      struct bpf_reg_state *dst_reg,
7758 				      struct bpf_reg_state src_reg)
7759 {
7760 	struct bpf_reg_state *regs = cur_regs(env);
7761 	u8 opcode = BPF_OP(insn->code);
7762 	bool src_known;
7763 	s64 smin_val, smax_val;
7764 	u64 umin_val, umax_val;
7765 	s32 s32_min_val, s32_max_val;
7766 	u32 u32_min_val, u32_max_val;
7767 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7768 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7769 	int ret;
7770 
7771 	smin_val = src_reg.smin_value;
7772 	smax_val = src_reg.smax_value;
7773 	umin_val = src_reg.umin_value;
7774 	umax_val = src_reg.umax_value;
7775 
7776 	s32_min_val = src_reg.s32_min_value;
7777 	s32_max_val = src_reg.s32_max_value;
7778 	u32_min_val = src_reg.u32_min_value;
7779 	u32_max_val = src_reg.u32_max_value;
7780 
7781 	if (alu32) {
7782 		src_known = tnum_subreg_is_const(src_reg.var_off);
7783 		if ((src_known &&
7784 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7785 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7786 			/* Taint dst register if offset had invalid bounds
7787 			 * derived from e.g. dead branches.
7788 			 */
7789 			__mark_reg_unknown(env, dst_reg);
7790 			return 0;
7791 		}
7792 	} else {
7793 		src_known = tnum_is_const(src_reg.var_off);
7794 		if ((src_known &&
7795 		     (smin_val != smax_val || umin_val != umax_val)) ||
7796 		    smin_val > smax_val || umin_val > umax_val) {
7797 			/* Taint dst register if offset had invalid bounds
7798 			 * derived from e.g. dead branches.
7799 			 */
7800 			__mark_reg_unknown(env, dst_reg);
7801 			return 0;
7802 		}
7803 	}
7804 
7805 	if (!src_known &&
7806 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7807 		__mark_reg_unknown(env, dst_reg);
7808 		return 0;
7809 	}
7810 
7811 	if (sanitize_needed(opcode)) {
7812 		ret = sanitize_val_alu(env, insn);
7813 		if (ret < 0)
7814 			return sanitize_err(env, insn, ret, NULL, NULL);
7815 	}
7816 
7817 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7818 	 * There are two classes of instructions: The first class we track both
7819 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7820 	 * greatest amount of precision when alu operations are mixed with jmp32
7821 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7822 	 * and BPF_OR. This is possible because these ops have fairly easy to
7823 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7824 	 * See alu32 verifier tests for examples. The second class of
7825 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7826 	 * with regards to tracking sign/unsigned bounds because the bits may
7827 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7828 	 * the reg unbounded in the subreg bound space and use the resulting
7829 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7830 	 */
7831 	switch (opcode) {
7832 	case BPF_ADD:
7833 		scalar32_min_max_add(dst_reg, &src_reg);
7834 		scalar_min_max_add(dst_reg, &src_reg);
7835 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7836 		break;
7837 	case BPF_SUB:
7838 		scalar32_min_max_sub(dst_reg, &src_reg);
7839 		scalar_min_max_sub(dst_reg, &src_reg);
7840 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7841 		break;
7842 	case BPF_MUL:
7843 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7844 		scalar32_min_max_mul(dst_reg, &src_reg);
7845 		scalar_min_max_mul(dst_reg, &src_reg);
7846 		break;
7847 	case BPF_AND:
7848 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7849 		scalar32_min_max_and(dst_reg, &src_reg);
7850 		scalar_min_max_and(dst_reg, &src_reg);
7851 		break;
7852 	case BPF_OR:
7853 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7854 		scalar32_min_max_or(dst_reg, &src_reg);
7855 		scalar_min_max_or(dst_reg, &src_reg);
7856 		break;
7857 	case BPF_XOR:
7858 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7859 		scalar32_min_max_xor(dst_reg, &src_reg);
7860 		scalar_min_max_xor(dst_reg, &src_reg);
7861 		break;
7862 	case BPF_LSH:
7863 		if (umax_val >= insn_bitness) {
7864 			/* Shifts greater than 31 or 63 are undefined.
7865 			 * This includes shifts by a negative number.
7866 			 */
7867 			mark_reg_unknown(env, regs, insn->dst_reg);
7868 			break;
7869 		}
7870 		if (alu32)
7871 			scalar32_min_max_lsh(dst_reg, &src_reg);
7872 		else
7873 			scalar_min_max_lsh(dst_reg, &src_reg);
7874 		break;
7875 	case BPF_RSH:
7876 		if (umax_val >= insn_bitness) {
7877 			/* Shifts greater than 31 or 63 are undefined.
7878 			 * This includes shifts by a negative number.
7879 			 */
7880 			mark_reg_unknown(env, regs, insn->dst_reg);
7881 			break;
7882 		}
7883 		if (alu32)
7884 			scalar32_min_max_rsh(dst_reg, &src_reg);
7885 		else
7886 			scalar_min_max_rsh(dst_reg, &src_reg);
7887 		break;
7888 	case BPF_ARSH:
7889 		if (umax_val >= insn_bitness) {
7890 			/* Shifts greater than 31 or 63 are undefined.
7891 			 * This includes shifts by a negative number.
7892 			 */
7893 			mark_reg_unknown(env, regs, insn->dst_reg);
7894 			break;
7895 		}
7896 		if (alu32)
7897 			scalar32_min_max_arsh(dst_reg, &src_reg);
7898 		else
7899 			scalar_min_max_arsh(dst_reg, &src_reg);
7900 		break;
7901 	default:
7902 		mark_reg_unknown(env, regs, insn->dst_reg);
7903 		break;
7904 	}
7905 
7906 	/* ALU32 ops are zero extended into 64bit register */
7907 	if (alu32)
7908 		zext_32_to_64(dst_reg);
7909 
7910 	__update_reg_bounds(dst_reg);
7911 	__reg_deduce_bounds(dst_reg);
7912 	__reg_bound_offset(dst_reg);
7913 	return 0;
7914 }
7915 
7916 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7917  * and var_off.
7918  */
7919 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7920 				   struct bpf_insn *insn)
7921 {
7922 	struct bpf_verifier_state *vstate = env->cur_state;
7923 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7924 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7925 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7926 	u8 opcode = BPF_OP(insn->code);
7927 	int err;
7928 
7929 	dst_reg = &regs[insn->dst_reg];
7930 	src_reg = NULL;
7931 	if (dst_reg->type != SCALAR_VALUE)
7932 		ptr_reg = dst_reg;
7933 	else
7934 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7935 		 * incorrectly propagated into other registers by find_equal_scalars()
7936 		 */
7937 		dst_reg->id = 0;
7938 	if (BPF_SRC(insn->code) == BPF_X) {
7939 		src_reg = &regs[insn->src_reg];
7940 		if (src_reg->type != SCALAR_VALUE) {
7941 			if (dst_reg->type != SCALAR_VALUE) {
7942 				/* Combining two pointers by any ALU op yields
7943 				 * an arbitrary scalar. Disallow all math except
7944 				 * pointer subtraction
7945 				 */
7946 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7947 					mark_reg_unknown(env, regs, insn->dst_reg);
7948 					return 0;
7949 				}
7950 				verbose(env, "R%d pointer %s pointer prohibited\n",
7951 					insn->dst_reg,
7952 					bpf_alu_string[opcode >> 4]);
7953 				return -EACCES;
7954 			} else {
7955 				/* scalar += pointer
7956 				 * This is legal, but we have to reverse our
7957 				 * src/dest handling in computing the range
7958 				 */
7959 				err = mark_chain_precision(env, insn->dst_reg);
7960 				if (err)
7961 					return err;
7962 				return adjust_ptr_min_max_vals(env, insn,
7963 							       src_reg, dst_reg);
7964 			}
7965 		} else if (ptr_reg) {
7966 			/* pointer += scalar */
7967 			err = mark_chain_precision(env, insn->src_reg);
7968 			if (err)
7969 				return err;
7970 			return adjust_ptr_min_max_vals(env, insn,
7971 						       dst_reg, src_reg);
7972 		}
7973 	} else {
7974 		/* Pretend the src is a reg with a known value, since we only
7975 		 * need to be able to read from this state.
7976 		 */
7977 		off_reg.type = SCALAR_VALUE;
7978 		__mark_reg_known(&off_reg, insn->imm);
7979 		src_reg = &off_reg;
7980 		if (ptr_reg) /* pointer += K */
7981 			return adjust_ptr_min_max_vals(env, insn,
7982 						       ptr_reg, src_reg);
7983 	}
7984 
7985 	/* Got here implies adding two SCALAR_VALUEs */
7986 	if (WARN_ON_ONCE(ptr_reg)) {
7987 		print_verifier_state(env, state);
7988 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7989 		return -EINVAL;
7990 	}
7991 	if (WARN_ON(!src_reg)) {
7992 		print_verifier_state(env, state);
7993 		verbose(env, "verifier internal error: no src_reg\n");
7994 		return -EINVAL;
7995 	}
7996 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7997 }
7998 
7999 /* check validity of 32-bit and 64-bit arithmetic operations */
8000 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8001 {
8002 	struct bpf_reg_state *regs = cur_regs(env);
8003 	u8 opcode = BPF_OP(insn->code);
8004 	int err;
8005 
8006 	if (opcode == BPF_END || opcode == BPF_NEG) {
8007 		if (opcode == BPF_NEG) {
8008 			if (BPF_SRC(insn->code) != 0 ||
8009 			    insn->src_reg != BPF_REG_0 ||
8010 			    insn->off != 0 || insn->imm != 0) {
8011 				verbose(env, "BPF_NEG uses reserved fields\n");
8012 				return -EINVAL;
8013 			}
8014 		} else {
8015 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8016 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8017 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8018 				verbose(env, "BPF_END uses reserved fields\n");
8019 				return -EINVAL;
8020 			}
8021 		}
8022 
8023 		/* check src operand */
8024 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8025 		if (err)
8026 			return err;
8027 
8028 		if (is_pointer_value(env, insn->dst_reg)) {
8029 			verbose(env, "R%d pointer arithmetic prohibited\n",
8030 				insn->dst_reg);
8031 			return -EACCES;
8032 		}
8033 
8034 		/* check dest operand */
8035 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8036 		if (err)
8037 			return err;
8038 
8039 	} else if (opcode == BPF_MOV) {
8040 
8041 		if (BPF_SRC(insn->code) == BPF_X) {
8042 			if (insn->imm != 0 || insn->off != 0) {
8043 				verbose(env, "BPF_MOV uses reserved fields\n");
8044 				return -EINVAL;
8045 			}
8046 
8047 			/* check src operand */
8048 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8049 			if (err)
8050 				return err;
8051 		} else {
8052 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8053 				verbose(env, "BPF_MOV uses reserved fields\n");
8054 				return -EINVAL;
8055 			}
8056 		}
8057 
8058 		/* check dest operand, mark as required later */
8059 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8060 		if (err)
8061 			return err;
8062 
8063 		if (BPF_SRC(insn->code) == BPF_X) {
8064 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8065 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8066 
8067 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8068 				/* case: R1 = R2
8069 				 * copy register state to dest reg
8070 				 */
8071 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8072 					/* Assign src and dst registers the same ID
8073 					 * that will be used by find_equal_scalars()
8074 					 * to propagate min/max range.
8075 					 */
8076 					src_reg->id = ++env->id_gen;
8077 				*dst_reg = *src_reg;
8078 				dst_reg->live |= REG_LIVE_WRITTEN;
8079 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8080 			} else {
8081 				/* R1 = (u32) R2 */
8082 				if (is_pointer_value(env, insn->src_reg)) {
8083 					verbose(env,
8084 						"R%d partial copy of pointer\n",
8085 						insn->src_reg);
8086 					return -EACCES;
8087 				} else if (src_reg->type == SCALAR_VALUE) {
8088 					*dst_reg = *src_reg;
8089 					/* Make sure ID is cleared otherwise
8090 					 * dst_reg min/max could be incorrectly
8091 					 * propagated into src_reg by find_equal_scalars()
8092 					 */
8093 					dst_reg->id = 0;
8094 					dst_reg->live |= REG_LIVE_WRITTEN;
8095 					dst_reg->subreg_def = env->insn_idx + 1;
8096 				} else {
8097 					mark_reg_unknown(env, regs,
8098 							 insn->dst_reg);
8099 				}
8100 				zext_32_to_64(dst_reg);
8101 			}
8102 		} else {
8103 			/* case: R = imm
8104 			 * remember the value we stored into this reg
8105 			 */
8106 			/* clear any state __mark_reg_known doesn't set */
8107 			mark_reg_unknown(env, regs, insn->dst_reg);
8108 			regs[insn->dst_reg].type = SCALAR_VALUE;
8109 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8110 				__mark_reg_known(regs + insn->dst_reg,
8111 						 insn->imm);
8112 			} else {
8113 				__mark_reg_known(regs + insn->dst_reg,
8114 						 (u32)insn->imm);
8115 			}
8116 		}
8117 
8118 	} else if (opcode > BPF_END) {
8119 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8120 		return -EINVAL;
8121 
8122 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8123 
8124 		if (BPF_SRC(insn->code) == BPF_X) {
8125 			if (insn->imm != 0 || insn->off != 0) {
8126 				verbose(env, "BPF_ALU uses reserved fields\n");
8127 				return -EINVAL;
8128 			}
8129 			/* check src1 operand */
8130 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8131 			if (err)
8132 				return err;
8133 		} else {
8134 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8135 				verbose(env, "BPF_ALU uses reserved fields\n");
8136 				return -EINVAL;
8137 			}
8138 		}
8139 
8140 		/* check src2 operand */
8141 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8142 		if (err)
8143 			return err;
8144 
8145 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8146 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8147 			verbose(env, "div by zero\n");
8148 			return -EINVAL;
8149 		}
8150 
8151 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8152 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8153 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8154 
8155 			if (insn->imm < 0 || insn->imm >= size) {
8156 				verbose(env, "invalid shift %d\n", insn->imm);
8157 				return -EINVAL;
8158 			}
8159 		}
8160 
8161 		/* check dest operand */
8162 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8163 		if (err)
8164 			return err;
8165 
8166 		return adjust_reg_min_max_vals(env, insn);
8167 	}
8168 
8169 	return 0;
8170 }
8171 
8172 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8173 				     struct bpf_reg_state *dst_reg,
8174 				     enum bpf_reg_type type, int new_range)
8175 {
8176 	struct bpf_reg_state *reg;
8177 	int i;
8178 
8179 	for (i = 0; i < MAX_BPF_REG; i++) {
8180 		reg = &state->regs[i];
8181 		if (reg->type == type && reg->id == dst_reg->id)
8182 			/* keep the maximum range already checked */
8183 			reg->range = max(reg->range, new_range);
8184 	}
8185 
8186 	bpf_for_each_spilled_reg(i, state, reg) {
8187 		if (!reg)
8188 			continue;
8189 		if (reg->type == type && reg->id == dst_reg->id)
8190 			reg->range = max(reg->range, new_range);
8191 	}
8192 }
8193 
8194 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8195 				   struct bpf_reg_state *dst_reg,
8196 				   enum bpf_reg_type type,
8197 				   bool range_right_open)
8198 {
8199 	int new_range, i;
8200 
8201 	if (dst_reg->off < 0 ||
8202 	    (dst_reg->off == 0 && range_right_open))
8203 		/* This doesn't give us any range */
8204 		return;
8205 
8206 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8207 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8208 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8209 		 * than pkt_end, but that's because it's also less than pkt.
8210 		 */
8211 		return;
8212 
8213 	new_range = dst_reg->off;
8214 	if (range_right_open)
8215 		new_range--;
8216 
8217 	/* Examples for register markings:
8218 	 *
8219 	 * pkt_data in dst register:
8220 	 *
8221 	 *   r2 = r3;
8222 	 *   r2 += 8;
8223 	 *   if (r2 > pkt_end) goto <handle exception>
8224 	 *   <access okay>
8225 	 *
8226 	 *   r2 = r3;
8227 	 *   r2 += 8;
8228 	 *   if (r2 < pkt_end) goto <access okay>
8229 	 *   <handle exception>
8230 	 *
8231 	 *   Where:
8232 	 *     r2 == dst_reg, pkt_end == src_reg
8233 	 *     r2=pkt(id=n,off=8,r=0)
8234 	 *     r3=pkt(id=n,off=0,r=0)
8235 	 *
8236 	 * pkt_data in src register:
8237 	 *
8238 	 *   r2 = r3;
8239 	 *   r2 += 8;
8240 	 *   if (pkt_end >= r2) goto <access okay>
8241 	 *   <handle exception>
8242 	 *
8243 	 *   r2 = r3;
8244 	 *   r2 += 8;
8245 	 *   if (pkt_end <= r2) goto <handle exception>
8246 	 *   <access okay>
8247 	 *
8248 	 *   Where:
8249 	 *     pkt_end == dst_reg, r2 == src_reg
8250 	 *     r2=pkt(id=n,off=8,r=0)
8251 	 *     r3=pkt(id=n,off=0,r=0)
8252 	 *
8253 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8254 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8255 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8256 	 * the check.
8257 	 */
8258 
8259 	/* If our ids match, then we must have the same max_value.  And we
8260 	 * don't care about the other reg's fixed offset, since if it's too big
8261 	 * the range won't allow anything.
8262 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8263 	 */
8264 	for (i = 0; i <= vstate->curframe; i++)
8265 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8266 					 new_range);
8267 }
8268 
8269 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8270 {
8271 	struct tnum subreg = tnum_subreg(reg->var_off);
8272 	s32 sval = (s32)val;
8273 
8274 	switch (opcode) {
8275 	case BPF_JEQ:
8276 		if (tnum_is_const(subreg))
8277 			return !!tnum_equals_const(subreg, val);
8278 		break;
8279 	case BPF_JNE:
8280 		if (tnum_is_const(subreg))
8281 			return !tnum_equals_const(subreg, val);
8282 		break;
8283 	case BPF_JSET:
8284 		if ((~subreg.mask & subreg.value) & val)
8285 			return 1;
8286 		if (!((subreg.mask | subreg.value) & val))
8287 			return 0;
8288 		break;
8289 	case BPF_JGT:
8290 		if (reg->u32_min_value > val)
8291 			return 1;
8292 		else if (reg->u32_max_value <= val)
8293 			return 0;
8294 		break;
8295 	case BPF_JSGT:
8296 		if (reg->s32_min_value > sval)
8297 			return 1;
8298 		else if (reg->s32_max_value <= sval)
8299 			return 0;
8300 		break;
8301 	case BPF_JLT:
8302 		if (reg->u32_max_value < val)
8303 			return 1;
8304 		else if (reg->u32_min_value >= val)
8305 			return 0;
8306 		break;
8307 	case BPF_JSLT:
8308 		if (reg->s32_max_value < sval)
8309 			return 1;
8310 		else if (reg->s32_min_value >= sval)
8311 			return 0;
8312 		break;
8313 	case BPF_JGE:
8314 		if (reg->u32_min_value >= val)
8315 			return 1;
8316 		else if (reg->u32_max_value < val)
8317 			return 0;
8318 		break;
8319 	case BPF_JSGE:
8320 		if (reg->s32_min_value >= sval)
8321 			return 1;
8322 		else if (reg->s32_max_value < sval)
8323 			return 0;
8324 		break;
8325 	case BPF_JLE:
8326 		if (reg->u32_max_value <= val)
8327 			return 1;
8328 		else if (reg->u32_min_value > val)
8329 			return 0;
8330 		break;
8331 	case BPF_JSLE:
8332 		if (reg->s32_max_value <= sval)
8333 			return 1;
8334 		else if (reg->s32_min_value > sval)
8335 			return 0;
8336 		break;
8337 	}
8338 
8339 	return -1;
8340 }
8341 
8342 
8343 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8344 {
8345 	s64 sval = (s64)val;
8346 
8347 	switch (opcode) {
8348 	case BPF_JEQ:
8349 		if (tnum_is_const(reg->var_off))
8350 			return !!tnum_equals_const(reg->var_off, val);
8351 		break;
8352 	case BPF_JNE:
8353 		if (tnum_is_const(reg->var_off))
8354 			return !tnum_equals_const(reg->var_off, val);
8355 		break;
8356 	case BPF_JSET:
8357 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8358 			return 1;
8359 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8360 			return 0;
8361 		break;
8362 	case BPF_JGT:
8363 		if (reg->umin_value > val)
8364 			return 1;
8365 		else if (reg->umax_value <= val)
8366 			return 0;
8367 		break;
8368 	case BPF_JSGT:
8369 		if (reg->smin_value > sval)
8370 			return 1;
8371 		else if (reg->smax_value <= sval)
8372 			return 0;
8373 		break;
8374 	case BPF_JLT:
8375 		if (reg->umax_value < val)
8376 			return 1;
8377 		else if (reg->umin_value >= val)
8378 			return 0;
8379 		break;
8380 	case BPF_JSLT:
8381 		if (reg->smax_value < sval)
8382 			return 1;
8383 		else if (reg->smin_value >= sval)
8384 			return 0;
8385 		break;
8386 	case BPF_JGE:
8387 		if (reg->umin_value >= val)
8388 			return 1;
8389 		else if (reg->umax_value < val)
8390 			return 0;
8391 		break;
8392 	case BPF_JSGE:
8393 		if (reg->smin_value >= sval)
8394 			return 1;
8395 		else if (reg->smax_value < sval)
8396 			return 0;
8397 		break;
8398 	case BPF_JLE:
8399 		if (reg->umax_value <= val)
8400 			return 1;
8401 		else if (reg->umin_value > val)
8402 			return 0;
8403 		break;
8404 	case BPF_JSLE:
8405 		if (reg->smax_value <= sval)
8406 			return 1;
8407 		else if (reg->smin_value > sval)
8408 			return 0;
8409 		break;
8410 	}
8411 
8412 	return -1;
8413 }
8414 
8415 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8416  * and return:
8417  *  1 - branch will be taken and "goto target" will be executed
8418  *  0 - branch will not be taken and fall-through to next insn
8419  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8420  *      range [0,10]
8421  */
8422 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8423 			   bool is_jmp32)
8424 {
8425 	if (__is_pointer_value(false, reg)) {
8426 		if (!reg_type_not_null(reg->type))
8427 			return -1;
8428 
8429 		/* If pointer is valid tests against zero will fail so we can
8430 		 * use this to direct branch taken.
8431 		 */
8432 		if (val != 0)
8433 			return -1;
8434 
8435 		switch (opcode) {
8436 		case BPF_JEQ:
8437 			return 0;
8438 		case BPF_JNE:
8439 			return 1;
8440 		default:
8441 			return -1;
8442 		}
8443 	}
8444 
8445 	if (is_jmp32)
8446 		return is_branch32_taken(reg, val, opcode);
8447 	return is_branch64_taken(reg, val, opcode);
8448 }
8449 
8450 static int flip_opcode(u32 opcode)
8451 {
8452 	/* How can we transform "a <op> b" into "b <op> a"? */
8453 	static const u8 opcode_flip[16] = {
8454 		/* these stay the same */
8455 		[BPF_JEQ  >> 4] = BPF_JEQ,
8456 		[BPF_JNE  >> 4] = BPF_JNE,
8457 		[BPF_JSET >> 4] = BPF_JSET,
8458 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8459 		[BPF_JGE  >> 4] = BPF_JLE,
8460 		[BPF_JGT  >> 4] = BPF_JLT,
8461 		[BPF_JLE  >> 4] = BPF_JGE,
8462 		[BPF_JLT  >> 4] = BPF_JGT,
8463 		[BPF_JSGE >> 4] = BPF_JSLE,
8464 		[BPF_JSGT >> 4] = BPF_JSLT,
8465 		[BPF_JSLE >> 4] = BPF_JSGE,
8466 		[BPF_JSLT >> 4] = BPF_JSGT
8467 	};
8468 	return opcode_flip[opcode >> 4];
8469 }
8470 
8471 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8472 				   struct bpf_reg_state *src_reg,
8473 				   u8 opcode)
8474 {
8475 	struct bpf_reg_state *pkt;
8476 
8477 	if (src_reg->type == PTR_TO_PACKET_END) {
8478 		pkt = dst_reg;
8479 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8480 		pkt = src_reg;
8481 		opcode = flip_opcode(opcode);
8482 	} else {
8483 		return -1;
8484 	}
8485 
8486 	if (pkt->range >= 0)
8487 		return -1;
8488 
8489 	switch (opcode) {
8490 	case BPF_JLE:
8491 		/* pkt <= pkt_end */
8492 		fallthrough;
8493 	case BPF_JGT:
8494 		/* pkt > pkt_end */
8495 		if (pkt->range == BEYOND_PKT_END)
8496 			/* pkt has at last one extra byte beyond pkt_end */
8497 			return opcode == BPF_JGT;
8498 		break;
8499 	case BPF_JLT:
8500 		/* pkt < pkt_end */
8501 		fallthrough;
8502 	case BPF_JGE:
8503 		/* pkt >= pkt_end */
8504 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8505 			return opcode == BPF_JGE;
8506 		break;
8507 	}
8508 	return -1;
8509 }
8510 
8511 /* Adjusts the register min/max values in the case that the dst_reg is the
8512  * variable register that we are working on, and src_reg is a constant or we're
8513  * simply doing a BPF_K check.
8514  * In JEQ/JNE cases we also adjust the var_off values.
8515  */
8516 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8517 			    struct bpf_reg_state *false_reg,
8518 			    u64 val, u32 val32,
8519 			    u8 opcode, bool is_jmp32)
8520 {
8521 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8522 	struct tnum false_64off = false_reg->var_off;
8523 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8524 	struct tnum true_64off = true_reg->var_off;
8525 	s64 sval = (s64)val;
8526 	s32 sval32 = (s32)val32;
8527 
8528 	/* If the dst_reg is a pointer, we can't learn anything about its
8529 	 * variable offset from the compare (unless src_reg were a pointer into
8530 	 * the same object, but we don't bother with that.
8531 	 * Since false_reg and true_reg have the same type by construction, we
8532 	 * only need to check one of them for pointerness.
8533 	 */
8534 	if (__is_pointer_value(false, false_reg))
8535 		return;
8536 
8537 	switch (opcode) {
8538 	case BPF_JEQ:
8539 	case BPF_JNE:
8540 	{
8541 		struct bpf_reg_state *reg =
8542 			opcode == BPF_JEQ ? true_reg : false_reg;
8543 
8544 		/* JEQ/JNE comparison doesn't change the register equivalence.
8545 		 * r1 = r2;
8546 		 * if (r1 == 42) goto label;
8547 		 * ...
8548 		 * label: // here both r1 and r2 are known to be 42.
8549 		 *
8550 		 * Hence when marking register as known preserve it's ID.
8551 		 */
8552 		if (is_jmp32)
8553 			__mark_reg32_known(reg, val32);
8554 		else
8555 			___mark_reg_known(reg, val);
8556 		break;
8557 	}
8558 	case BPF_JSET:
8559 		if (is_jmp32) {
8560 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8561 			if (is_power_of_2(val32))
8562 				true_32off = tnum_or(true_32off,
8563 						     tnum_const(val32));
8564 		} else {
8565 			false_64off = tnum_and(false_64off, tnum_const(~val));
8566 			if (is_power_of_2(val))
8567 				true_64off = tnum_or(true_64off,
8568 						     tnum_const(val));
8569 		}
8570 		break;
8571 	case BPF_JGE:
8572 	case BPF_JGT:
8573 	{
8574 		if (is_jmp32) {
8575 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8576 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8577 
8578 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8579 						       false_umax);
8580 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8581 						      true_umin);
8582 		} else {
8583 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8584 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8585 
8586 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8587 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8588 		}
8589 		break;
8590 	}
8591 	case BPF_JSGE:
8592 	case BPF_JSGT:
8593 	{
8594 		if (is_jmp32) {
8595 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8596 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8597 
8598 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8599 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8600 		} else {
8601 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8602 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8603 
8604 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8605 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8606 		}
8607 		break;
8608 	}
8609 	case BPF_JLE:
8610 	case BPF_JLT:
8611 	{
8612 		if (is_jmp32) {
8613 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8614 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8615 
8616 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8617 						       false_umin);
8618 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8619 						      true_umax);
8620 		} else {
8621 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8622 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8623 
8624 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8625 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8626 		}
8627 		break;
8628 	}
8629 	case BPF_JSLE:
8630 	case BPF_JSLT:
8631 	{
8632 		if (is_jmp32) {
8633 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8634 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8635 
8636 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8637 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8638 		} else {
8639 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8640 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8641 
8642 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8643 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8644 		}
8645 		break;
8646 	}
8647 	default:
8648 		return;
8649 	}
8650 
8651 	if (is_jmp32) {
8652 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8653 					     tnum_subreg(false_32off));
8654 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8655 					    tnum_subreg(true_32off));
8656 		__reg_combine_32_into_64(false_reg);
8657 		__reg_combine_32_into_64(true_reg);
8658 	} else {
8659 		false_reg->var_off = false_64off;
8660 		true_reg->var_off = true_64off;
8661 		__reg_combine_64_into_32(false_reg);
8662 		__reg_combine_64_into_32(true_reg);
8663 	}
8664 }
8665 
8666 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8667  * the variable reg.
8668  */
8669 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8670 				struct bpf_reg_state *false_reg,
8671 				u64 val, u32 val32,
8672 				u8 opcode, bool is_jmp32)
8673 {
8674 	opcode = flip_opcode(opcode);
8675 	/* This uses zero as "not present in table"; luckily the zero opcode,
8676 	 * BPF_JA, can't get here.
8677 	 */
8678 	if (opcode)
8679 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8680 }
8681 
8682 /* Regs are known to be equal, so intersect their min/max/var_off */
8683 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8684 				  struct bpf_reg_state *dst_reg)
8685 {
8686 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8687 							dst_reg->umin_value);
8688 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8689 							dst_reg->umax_value);
8690 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8691 							dst_reg->smin_value);
8692 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8693 							dst_reg->smax_value);
8694 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8695 							     dst_reg->var_off);
8696 	/* We might have learned new bounds from the var_off. */
8697 	__update_reg_bounds(src_reg);
8698 	__update_reg_bounds(dst_reg);
8699 	/* We might have learned something about the sign bit. */
8700 	__reg_deduce_bounds(src_reg);
8701 	__reg_deduce_bounds(dst_reg);
8702 	/* We might have learned some bits from the bounds. */
8703 	__reg_bound_offset(src_reg);
8704 	__reg_bound_offset(dst_reg);
8705 	/* Intersecting with the old var_off might have improved our bounds
8706 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8707 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8708 	 */
8709 	__update_reg_bounds(src_reg);
8710 	__update_reg_bounds(dst_reg);
8711 }
8712 
8713 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8714 				struct bpf_reg_state *true_dst,
8715 				struct bpf_reg_state *false_src,
8716 				struct bpf_reg_state *false_dst,
8717 				u8 opcode)
8718 {
8719 	switch (opcode) {
8720 	case BPF_JEQ:
8721 		__reg_combine_min_max(true_src, true_dst);
8722 		break;
8723 	case BPF_JNE:
8724 		__reg_combine_min_max(false_src, false_dst);
8725 		break;
8726 	}
8727 }
8728 
8729 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8730 				 struct bpf_reg_state *reg, u32 id,
8731 				 bool is_null)
8732 {
8733 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8734 	    !WARN_ON_ONCE(!reg->id)) {
8735 		/* Old offset (both fixed and variable parts) should
8736 		 * have been known-zero, because we don't allow pointer
8737 		 * arithmetic on pointers that might be NULL.
8738 		 */
8739 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8740 				 !tnum_equals_const(reg->var_off, 0) ||
8741 				 reg->off)) {
8742 			__mark_reg_known_zero(reg);
8743 			reg->off = 0;
8744 		}
8745 		if (is_null) {
8746 			reg->type = SCALAR_VALUE;
8747 			/* We don't need id and ref_obj_id from this point
8748 			 * onwards anymore, thus we should better reset it,
8749 			 * so that state pruning has chances to take effect.
8750 			 */
8751 			reg->id = 0;
8752 			reg->ref_obj_id = 0;
8753 
8754 			return;
8755 		}
8756 
8757 		mark_ptr_not_null_reg(reg);
8758 
8759 		if (!reg_may_point_to_spin_lock(reg)) {
8760 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8761 			 * in release_reg_references().
8762 			 *
8763 			 * reg->id is still used by spin_lock ptr. Other
8764 			 * than spin_lock ptr type, reg->id can be reset.
8765 			 */
8766 			reg->id = 0;
8767 		}
8768 	}
8769 }
8770 
8771 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8772 				    bool is_null)
8773 {
8774 	struct bpf_reg_state *reg;
8775 	int i;
8776 
8777 	for (i = 0; i < MAX_BPF_REG; i++)
8778 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8779 
8780 	bpf_for_each_spilled_reg(i, state, reg) {
8781 		if (!reg)
8782 			continue;
8783 		mark_ptr_or_null_reg(state, reg, id, is_null);
8784 	}
8785 }
8786 
8787 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8788  * be folded together at some point.
8789  */
8790 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8791 				  bool is_null)
8792 {
8793 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8794 	struct bpf_reg_state *regs = state->regs;
8795 	u32 ref_obj_id = regs[regno].ref_obj_id;
8796 	u32 id = regs[regno].id;
8797 	int i;
8798 
8799 	if (ref_obj_id && ref_obj_id == id && is_null)
8800 		/* regs[regno] is in the " == NULL" branch.
8801 		 * No one could have freed the reference state before
8802 		 * doing the NULL check.
8803 		 */
8804 		WARN_ON_ONCE(release_reference_state(state, id));
8805 
8806 	for (i = 0; i <= vstate->curframe; i++)
8807 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8808 }
8809 
8810 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8811 				   struct bpf_reg_state *dst_reg,
8812 				   struct bpf_reg_state *src_reg,
8813 				   struct bpf_verifier_state *this_branch,
8814 				   struct bpf_verifier_state *other_branch)
8815 {
8816 	if (BPF_SRC(insn->code) != BPF_X)
8817 		return false;
8818 
8819 	/* Pointers are always 64-bit. */
8820 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8821 		return false;
8822 
8823 	switch (BPF_OP(insn->code)) {
8824 	case BPF_JGT:
8825 		if ((dst_reg->type == PTR_TO_PACKET &&
8826 		     src_reg->type == PTR_TO_PACKET_END) ||
8827 		    (dst_reg->type == PTR_TO_PACKET_META &&
8828 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8829 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8830 			find_good_pkt_pointers(this_branch, dst_reg,
8831 					       dst_reg->type, false);
8832 			mark_pkt_end(other_branch, insn->dst_reg, true);
8833 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8834 			    src_reg->type == PTR_TO_PACKET) ||
8835 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8836 			    src_reg->type == PTR_TO_PACKET_META)) {
8837 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8838 			find_good_pkt_pointers(other_branch, src_reg,
8839 					       src_reg->type, true);
8840 			mark_pkt_end(this_branch, insn->src_reg, false);
8841 		} else {
8842 			return false;
8843 		}
8844 		break;
8845 	case BPF_JLT:
8846 		if ((dst_reg->type == PTR_TO_PACKET &&
8847 		     src_reg->type == PTR_TO_PACKET_END) ||
8848 		    (dst_reg->type == PTR_TO_PACKET_META &&
8849 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8850 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8851 			find_good_pkt_pointers(other_branch, dst_reg,
8852 					       dst_reg->type, true);
8853 			mark_pkt_end(this_branch, insn->dst_reg, false);
8854 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8855 			    src_reg->type == PTR_TO_PACKET) ||
8856 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8857 			    src_reg->type == PTR_TO_PACKET_META)) {
8858 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8859 			find_good_pkt_pointers(this_branch, src_reg,
8860 					       src_reg->type, false);
8861 			mark_pkt_end(other_branch, insn->src_reg, true);
8862 		} else {
8863 			return false;
8864 		}
8865 		break;
8866 	case BPF_JGE:
8867 		if ((dst_reg->type == PTR_TO_PACKET &&
8868 		     src_reg->type == PTR_TO_PACKET_END) ||
8869 		    (dst_reg->type == PTR_TO_PACKET_META &&
8870 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8871 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8872 			find_good_pkt_pointers(this_branch, dst_reg,
8873 					       dst_reg->type, true);
8874 			mark_pkt_end(other_branch, insn->dst_reg, false);
8875 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8876 			    src_reg->type == PTR_TO_PACKET) ||
8877 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8878 			    src_reg->type == PTR_TO_PACKET_META)) {
8879 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8880 			find_good_pkt_pointers(other_branch, src_reg,
8881 					       src_reg->type, false);
8882 			mark_pkt_end(this_branch, insn->src_reg, true);
8883 		} else {
8884 			return false;
8885 		}
8886 		break;
8887 	case BPF_JLE:
8888 		if ((dst_reg->type == PTR_TO_PACKET &&
8889 		     src_reg->type == PTR_TO_PACKET_END) ||
8890 		    (dst_reg->type == PTR_TO_PACKET_META &&
8891 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8892 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8893 			find_good_pkt_pointers(other_branch, dst_reg,
8894 					       dst_reg->type, false);
8895 			mark_pkt_end(this_branch, insn->dst_reg, true);
8896 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8897 			    src_reg->type == PTR_TO_PACKET) ||
8898 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8899 			    src_reg->type == PTR_TO_PACKET_META)) {
8900 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8901 			find_good_pkt_pointers(this_branch, src_reg,
8902 					       src_reg->type, true);
8903 			mark_pkt_end(other_branch, insn->src_reg, false);
8904 		} else {
8905 			return false;
8906 		}
8907 		break;
8908 	default:
8909 		return false;
8910 	}
8911 
8912 	return true;
8913 }
8914 
8915 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8916 			       struct bpf_reg_state *known_reg)
8917 {
8918 	struct bpf_func_state *state;
8919 	struct bpf_reg_state *reg;
8920 	int i, j;
8921 
8922 	for (i = 0; i <= vstate->curframe; i++) {
8923 		state = vstate->frame[i];
8924 		for (j = 0; j < MAX_BPF_REG; j++) {
8925 			reg = &state->regs[j];
8926 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8927 				*reg = *known_reg;
8928 		}
8929 
8930 		bpf_for_each_spilled_reg(j, state, reg) {
8931 			if (!reg)
8932 				continue;
8933 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8934 				*reg = *known_reg;
8935 		}
8936 	}
8937 }
8938 
8939 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8940 			     struct bpf_insn *insn, int *insn_idx)
8941 {
8942 	struct bpf_verifier_state *this_branch = env->cur_state;
8943 	struct bpf_verifier_state *other_branch;
8944 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8945 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8946 	u8 opcode = BPF_OP(insn->code);
8947 	bool is_jmp32;
8948 	int pred = -1;
8949 	int err;
8950 
8951 	/* Only conditional jumps are expected to reach here. */
8952 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8953 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8954 		return -EINVAL;
8955 	}
8956 
8957 	if (BPF_SRC(insn->code) == BPF_X) {
8958 		if (insn->imm != 0) {
8959 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8960 			return -EINVAL;
8961 		}
8962 
8963 		/* check src1 operand */
8964 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8965 		if (err)
8966 			return err;
8967 
8968 		if (is_pointer_value(env, insn->src_reg)) {
8969 			verbose(env, "R%d pointer comparison prohibited\n",
8970 				insn->src_reg);
8971 			return -EACCES;
8972 		}
8973 		src_reg = &regs[insn->src_reg];
8974 	} else {
8975 		if (insn->src_reg != BPF_REG_0) {
8976 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8977 			return -EINVAL;
8978 		}
8979 	}
8980 
8981 	/* check src2 operand */
8982 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8983 	if (err)
8984 		return err;
8985 
8986 	dst_reg = &regs[insn->dst_reg];
8987 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8988 
8989 	if (BPF_SRC(insn->code) == BPF_K) {
8990 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8991 	} else if (src_reg->type == SCALAR_VALUE &&
8992 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8993 		pred = is_branch_taken(dst_reg,
8994 				       tnum_subreg(src_reg->var_off).value,
8995 				       opcode,
8996 				       is_jmp32);
8997 	} else if (src_reg->type == SCALAR_VALUE &&
8998 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8999 		pred = is_branch_taken(dst_reg,
9000 				       src_reg->var_off.value,
9001 				       opcode,
9002 				       is_jmp32);
9003 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9004 		   reg_is_pkt_pointer_any(src_reg) &&
9005 		   !is_jmp32) {
9006 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9007 	}
9008 
9009 	if (pred >= 0) {
9010 		/* If we get here with a dst_reg pointer type it is because
9011 		 * above is_branch_taken() special cased the 0 comparison.
9012 		 */
9013 		if (!__is_pointer_value(false, dst_reg))
9014 			err = mark_chain_precision(env, insn->dst_reg);
9015 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9016 		    !__is_pointer_value(false, src_reg))
9017 			err = mark_chain_precision(env, insn->src_reg);
9018 		if (err)
9019 			return err;
9020 	}
9021 
9022 	if (pred == 1) {
9023 		/* Only follow the goto, ignore fall-through. If needed, push
9024 		 * the fall-through branch for simulation under speculative
9025 		 * execution.
9026 		 */
9027 		if (!env->bypass_spec_v1 &&
9028 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9029 					       *insn_idx))
9030 			return -EFAULT;
9031 		*insn_idx += insn->off;
9032 		return 0;
9033 	} else if (pred == 0) {
9034 		/* Only follow the fall-through branch, since that's where the
9035 		 * program will go. If needed, push the goto branch for
9036 		 * simulation under speculative execution.
9037 		 */
9038 		if (!env->bypass_spec_v1 &&
9039 		    !sanitize_speculative_path(env, insn,
9040 					       *insn_idx + insn->off + 1,
9041 					       *insn_idx))
9042 			return -EFAULT;
9043 		return 0;
9044 	}
9045 
9046 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9047 				  false);
9048 	if (!other_branch)
9049 		return -EFAULT;
9050 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9051 
9052 	/* detect if we are comparing against a constant value so we can adjust
9053 	 * our min/max values for our dst register.
9054 	 * this is only legit if both are scalars (or pointers to the same
9055 	 * object, I suppose, but we don't support that right now), because
9056 	 * otherwise the different base pointers mean the offsets aren't
9057 	 * comparable.
9058 	 */
9059 	if (BPF_SRC(insn->code) == BPF_X) {
9060 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9061 
9062 		if (dst_reg->type == SCALAR_VALUE &&
9063 		    src_reg->type == SCALAR_VALUE) {
9064 			if (tnum_is_const(src_reg->var_off) ||
9065 			    (is_jmp32 &&
9066 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9067 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9068 						dst_reg,
9069 						src_reg->var_off.value,
9070 						tnum_subreg(src_reg->var_off).value,
9071 						opcode, is_jmp32);
9072 			else if (tnum_is_const(dst_reg->var_off) ||
9073 				 (is_jmp32 &&
9074 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9075 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9076 						    src_reg,
9077 						    dst_reg->var_off.value,
9078 						    tnum_subreg(dst_reg->var_off).value,
9079 						    opcode, is_jmp32);
9080 			else if (!is_jmp32 &&
9081 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9082 				/* Comparing for equality, we can combine knowledge */
9083 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9084 						    &other_branch_regs[insn->dst_reg],
9085 						    src_reg, dst_reg, opcode);
9086 			if (src_reg->id &&
9087 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9088 				find_equal_scalars(this_branch, src_reg);
9089 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9090 			}
9091 
9092 		}
9093 	} else if (dst_reg->type == SCALAR_VALUE) {
9094 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9095 					dst_reg, insn->imm, (u32)insn->imm,
9096 					opcode, is_jmp32);
9097 	}
9098 
9099 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9100 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9101 		find_equal_scalars(this_branch, dst_reg);
9102 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9103 	}
9104 
9105 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9106 	 * NOTE: these optimizations below are related with pointer comparison
9107 	 *       which will never be JMP32.
9108 	 */
9109 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9110 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9111 	    reg_type_may_be_null(dst_reg->type)) {
9112 		/* Mark all identical registers in each branch as either
9113 		 * safe or unknown depending R == 0 or R != 0 conditional.
9114 		 */
9115 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9116 				      opcode == BPF_JNE);
9117 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9118 				      opcode == BPF_JEQ);
9119 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9120 					   this_branch, other_branch) &&
9121 		   is_pointer_value(env, insn->dst_reg)) {
9122 		verbose(env, "R%d pointer comparison prohibited\n",
9123 			insn->dst_reg);
9124 		return -EACCES;
9125 	}
9126 	if (env->log.level & BPF_LOG_LEVEL)
9127 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9128 	return 0;
9129 }
9130 
9131 /* verify BPF_LD_IMM64 instruction */
9132 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9133 {
9134 	struct bpf_insn_aux_data *aux = cur_aux(env);
9135 	struct bpf_reg_state *regs = cur_regs(env);
9136 	struct bpf_reg_state *dst_reg;
9137 	struct bpf_map *map;
9138 	int err;
9139 
9140 	if (BPF_SIZE(insn->code) != BPF_DW) {
9141 		verbose(env, "invalid BPF_LD_IMM insn\n");
9142 		return -EINVAL;
9143 	}
9144 	if (insn->off != 0) {
9145 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9146 		return -EINVAL;
9147 	}
9148 
9149 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9150 	if (err)
9151 		return err;
9152 
9153 	dst_reg = &regs[insn->dst_reg];
9154 	if (insn->src_reg == 0) {
9155 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9156 
9157 		dst_reg->type = SCALAR_VALUE;
9158 		__mark_reg_known(&regs[insn->dst_reg], imm);
9159 		return 0;
9160 	}
9161 
9162 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9163 		mark_reg_known_zero(env, regs, insn->dst_reg);
9164 
9165 		dst_reg->type = aux->btf_var.reg_type;
9166 		switch (dst_reg->type) {
9167 		case PTR_TO_MEM:
9168 			dst_reg->mem_size = aux->btf_var.mem_size;
9169 			break;
9170 		case PTR_TO_BTF_ID:
9171 		case PTR_TO_PERCPU_BTF_ID:
9172 			dst_reg->btf = aux->btf_var.btf;
9173 			dst_reg->btf_id = aux->btf_var.btf_id;
9174 			break;
9175 		default:
9176 			verbose(env, "bpf verifier is misconfigured\n");
9177 			return -EFAULT;
9178 		}
9179 		return 0;
9180 	}
9181 
9182 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9183 		struct bpf_prog_aux *aux = env->prog->aux;
9184 		u32 subprogno = insn[1].imm;
9185 
9186 		if (!aux->func_info) {
9187 			verbose(env, "missing btf func_info\n");
9188 			return -EINVAL;
9189 		}
9190 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9191 			verbose(env, "callback function not static\n");
9192 			return -EINVAL;
9193 		}
9194 
9195 		dst_reg->type = PTR_TO_FUNC;
9196 		dst_reg->subprogno = subprogno;
9197 		return 0;
9198 	}
9199 
9200 	map = env->used_maps[aux->map_index];
9201 	mark_reg_known_zero(env, regs, insn->dst_reg);
9202 	dst_reg->map_ptr = map;
9203 
9204 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9205 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9206 		dst_reg->type = PTR_TO_MAP_VALUE;
9207 		dst_reg->off = aux->map_off;
9208 		if (map_value_has_spin_lock(map))
9209 			dst_reg->id = ++env->id_gen;
9210 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9211 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9212 		dst_reg->type = CONST_PTR_TO_MAP;
9213 	} else {
9214 		verbose(env, "bpf verifier is misconfigured\n");
9215 		return -EINVAL;
9216 	}
9217 
9218 	return 0;
9219 }
9220 
9221 static bool may_access_skb(enum bpf_prog_type type)
9222 {
9223 	switch (type) {
9224 	case BPF_PROG_TYPE_SOCKET_FILTER:
9225 	case BPF_PROG_TYPE_SCHED_CLS:
9226 	case BPF_PROG_TYPE_SCHED_ACT:
9227 		return true;
9228 	default:
9229 		return false;
9230 	}
9231 }
9232 
9233 /* verify safety of LD_ABS|LD_IND instructions:
9234  * - they can only appear in the programs where ctx == skb
9235  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9236  *   preserve R6-R9, and store return value into R0
9237  *
9238  * Implicit input:
9239  *   ctx == skb == R6 == CTX
9240  *
9241  * Explicit input:
9242  *   SRC == any register
9243  *   IMM == 32-bit immediate
9244  *
9245  * Output:
9246  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9247  */
9248 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9249 {
9250 	struct bpf_reg_state *regs = cur_regs(env);
9251 	static const int ctx_reg = BPF_REG_6;
9252 	u8 mode = BPF_MODE(insn->code);
9253 	int i, err;
9254 
9255 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9256 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9257 		return -EINVAL;
9258 	}
9259 
9260 	if (!env->ops->gen_ld_abs) {
9261 		verbose(env, "bpf verifier is misconfigured\n");
9262 		return -EINVAL;
9263 	}
9264 
9265 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9266 	    BPF_SIZE(insn->code) == BPF_DW ||
9267 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9268 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9269 		return -EINVAL;
9270 	}
9271 
9272 	/* check whether implicit source operand (register R6) is readable */
9273 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9274 	if (err)
9275 		return err;
9276 
9277 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9278 	 * gen_ld_abs() may terminate the program at runtime, leading to
9279 	 * reference leak.
9280 	 */
9281 	err = check_reference_leak(env);
9282 	if (err) {
9283 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9284 		return err;
9285 	}
9286 
9287 	if (env->cur_state->active_spin_lock) {
9288 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9289 		return -EINVAL;
9290 	}
9291 
9292 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9293 		verbose(env,
9294 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9295 		return -EINVAL;
9296 	}
9297 
9298 	if (mode == BPF_IND) {
9299 		/* check explicit source operand */
9300 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9301 		if (err)
9302 			return err;
9303 	}
9304 
9305 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9306 	if (err < 0)
9307 		return err;
9308 
9309 	/* reset caller saved regs to unreadable */
9310 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9311 		mark_reg_not_init(env, regs, caller_saved[i]);
9312 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9313 	}
9314 
9315 	/* mark destination R0 register as readable, since it contains
9316 	 * the value fetched from the packet.
9317 	 * Already marked as written above.
9318 	 */
9319 	mark_reg_unknown(env, regs, BPF_REG_0);
9320 	/* ld_abs load up to 32-bit skb data. */
9321 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9322 	return 0;
9323 }
9324 
9325 static int check_return_code(struct bpf_verifier_env *env)
9326 {
9327 	struct tnum enforce_attach_type_range = tnum_unknown;
9328 	const struct bpf_prog *prog = env->prog;
9329 	struct bpf_reg_state *reg;
9330 	struct tnum range = tnum_range(0, 1);
9331 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9332 	int err;
9333 	struct bpf_func_state *frame = env->cur_state->frame[0];
9334 	const bool is_subprog = frame->subprogno;
9335 
9336 	/* LSM and struct_ops func-ptr's return type could be "void" */
9337 	if (!is_subprog &&
9338 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9339 	     prog_type == BPF_PROG_TYPE_LSM) &&
9340 	    !prog->aux->attach_func_proto->type)
9341 		return 0;
9342 
9343 	/* eBPF calling convention is such that R0 is used
9344 	 * to return the value from eBPF program.
9345 	 * Make sure that it's readable at this time
9346 	 * of bpf_exit, which means that program wrote
9347 	 * something into it earlier
9348 	 */
9349 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9350 	if (err)
9351 		return err;
9352 
9353 	if (is_pointer_value(env, BPF_REG_0)) {
9354 		verbose(env, "R0 leaks addr as return value\n");
9355 		return -EACCES;
9356 	}
9357 
9358 	reg = cur_regs(env) + BPF_REG_0;
9359 
9360 	if (frame->in_async_callback_fn) {
9361 		/* enforce return zero from async callbacks like timer */
9362 		if (reg->type != SCALAR_VALUE) {
9363 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9364 				reg_type_str[reg->type]);
9365 			return -EINVAL;
9366 		}
9367 
9368 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9369 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9370 			return -EINVAL;
9371 		}
9372 		return 0;
9373 	}
9374 
9375 	if (is_subprog) {
9376 		if (reg->type != SCALAR_VALUE) {
9377 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9378 				reg_type_str[reg->type]);
9379 			return -EINVAL;
9380 		}
9381 		return 0;
9382 	}
9383 
9384 	switch (prog_type) {
9385 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9386 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9387 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9388 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9389 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9390 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9391 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9392 			range = tnum_range(1, 1);
9393 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9394 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9395 			range = tnum_range(0, 3);
9396 		break;
9397 	case BPF_PROG_TYPE_CGROUP_SKB:
9398 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9399 			range = tnum_range(0, 3);
9400 			enforce_attach_type_range = tnum_range(2, 3);
9401 		}
9402 		break;
9403 	case BPF_PROG_TYPE_CGROUP_SOCK:
9404 	case BPF_PROG_TYPE_SOCK_OPS:
9405 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9406 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9407 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9408 		break;
9409 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9410 		if (!env->prog->aux->attach_btf_id)
9411 			return 0;
9412 		range = tnum_const(0);
9413 		break;
9414 	case BPF_PROG_TYPE_TRACING:
9415 		switch (env->prog->expected_attach_type) {
9416 		case BPF_TRACE_FENTRY:
9417 		case BPF_TRACE_FEXIT:
9418 			range = tnum_const(0);
9419 			break;
9420 		case BPF_TRACE_RAW_TP:
9421 		case BPF_MODIFY_RETURN:
9422 			return 0;
9423 		case BPF_TRACE_ITER:
9424 			break;
9425 		default:
9426 			return -ENOTSUPP;
9427 		}
9428 		break;
9429 	case BPF_PROG_TYPE_SK_LOOKUP:
9430 		range = tnum_range(SK_DROP, SK_PASS);
9431 		break;
9432 	case BPF_PROG_TYPE_EXT:
9433 		/* freplace program can return anything as its return value
9434 		 * depends on the to-be-replaced kernel func or bpf program.
9435 		 */
9436 	default:
9437 		return 0;
9438 	}
9439 
9440 	if (reg->type != SCALAR_VALUE) {
9441 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9442 			reg_type_str[reg->type]);
9443 		return -EINVAL;
9444 	}
9445 
9446 	if (!tnum_in(range, reg->var_off)) {
9447 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9448 		return -EINVAL;
9449 	}
9450 
9451 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9452 	    tnum_in(enforce_attach_type_range, reg->var_off))
9453 		env->prog->enforce_expected_attach_type = 1;
9454 	return 0;
9455 }
9456 
9457 /* non-recursive DFS pseudo code
9458  * 1  procedure DFS-iterative(G,v):
9459  * 2      label v as discovered
9460  * 3      let S be a stack
9461  * 4      S.push(v)
9462  * 5      while S is not empty
9463  * 6            t <- S.pop()
9464  * 7            if t is what we're looking for:
9465  * 8                return t
9466  * 9            for all edges e in G.adjacentEdges(t) do
9467  * 10               if edge e is already labelled
9468  * 11                   continue with the next edge
9469  * 12               w <- G.adjacentVertex(t,e)
9470  * 13               if vertex w is not discovered and not explored
9471  * 14                   label e as tree-edge
9472  * 15                   label w as discovered
9473  * 16                   S.push(w)
9474  * 17                   continue at 5
9475  * 18               else if vertex w is discovered
9476  * 19                   label e as back-edge
9477  * 20               else
9478  * 21                   // vertex w is explored
9479  * 22                   label e as forward- or cross-edge
9480  * 23           label t as explored
9481  * 24           S.pop()
9482  *
9483  * convention:
9484  * 0x10 - discovered
9485  * 0x11 - discovered and fall-through edge labelled
9486  * 0x12 - discovered and fall-through and branch edges labelled
9487  * 0x20 - explored
9488  */
9489 
9490 enum {
9491 	DISCOVERED = 0x10,
9492 	EXPLORED = 0x20,
9493 	FALLTHROUGH = 1,
9494 	BRANCH = 2,
9495 };
9496 
9497 static u32 state_htab_size(struct bpf_verifier_env *env)
9498 {
9499 	return env->prog->len;
9500 }
9501 
9502 static struct bpf_verifier_state_list **explored_state(
9503 					struct bpf_verifier_env *env,
9504 					int idx)
9505 {
9506 	struct bpf_verifier_state *cur = env->cur_state;
9507 	struct bpf_func_state *state = cur->frame[cur->curframe];
9508 
9509 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9510 }
9511 
9512 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9513 {
9514 	env->insn_aux_data[idx].prune_point = true;
9515 }
9516 
9517 enum {
9518 	DONE_EXPLORING = 0,
9519 	KEEP_EXPLORING = 1,
9520 };
9521 
9522 /* t, w, e - match pseudo-code above:
9523  * t - index of current instruction
9524  * w - next instruction
9525  * e - edge
9526  */
9527 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9528 		     bool loop_ok)
9529 {
9530 	int *insn_stack = env->cfg.insn_stack;
9531 	int *insn_state = env->cfg.insn_state;
9532 
9533 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9534 		return DONE_EXPLORING;
9535 
9536 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9537 		return DONE_EXPLORING;
9538 
9539 	if (w < 0 || w >= env->prog->len) {
9540 		verbose_linfo(env, t, "%d: ", t);
9541 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9542 		return -EINVAL;
9543 	}
9544 
9545 	if (e == BRANCH)
9546 		/* mark branch target for state pruning */
9547 		init_explored_state(env, w);
9548 
9549 	if (insn_state[w] == 0) {
9550 		/* tree-edge */
9551 		insn_state[t] = DISCOVERED | e;
9552 		insn_state[w] = DISCOVERED;
9553 		if (env->cfg.cur_stack >= env->prog->len)
9554 			return -E2BIG;
9555 		insn_stack[env->cfg.cur_stack++] = w;
9556 		return KEEP_EXPLORING;
9557 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9558 		if (loop_ok && env->bpf_capable)
9559 			return DONE_EXPLORING;
9560 		verbose_linfo(env, t, "%d: ", t);
9561 		verbose_linfo(env, w, "%d: ", w);
9562 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9563 		return -EINVAL;
9564 	} else if (insn_state[w] == EXPLORED) {
9565 		/* forward- or cross-edge */
9566 		insn_state[t] = DISCOVERED | e;
9567 	} else {
9568 		verbose(env, "insn state internal bug\n");
9569 		return -EFAULT;
9570 	}
9571 	return DONE_EXPLORING;
9572 }
9573 
9574 static int visit_func_call_insn(int t, int insn_cnt,
9575 				struct bpf_insn *insns,
9576 				struct bpf_verifier_env *env,
9577 				bool visit_callee)
9578 {
9579 	int ret;
9580 
9581 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9582 	if (ret)
9583 		return ret;
9584 
9585 	if (t + 1 < insn_cnt)
9586 		init_explored_state(env, t + 1);
9587 	if (visit_callee) {
9588 		init_explored_state(env, t);
9589 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9590 				/* It's ok to allow recursion from CFG point of
9591 				 * view. __check_func_call() will do the actual
9592 				 * check.
9593 				 */
9594 				bpf_pseudo_func(insns + t));
9595 	}
9596 	return ret;
9597 }
9598 
9599 /* Visits the instruction at index t and returns one of the following:
9600  *  < 0 - an error occurred
9601  *  DONE_EXPLORING - the instruction was fully explored
9602  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9603  */
9604 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9605 {
9606 	struct bpf_insn *insns = env->prog->insnsi;
9607 	int ret;
9608 
9609 	if (bpf_pseudo_func(insns + t))
9610 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9611 
9612 	/* All non-branch instructions have a single fall-through edge. */
9613 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9614 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9615 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9616 
9617 	switch (BPF_OP(insns[t].code)) {
9618 	case BPF_EXIT:
9619 		return DONE_EXPLORING;
9620 
9621 	case BPF_CALL:
9622 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9623 			/* Mark this call insn to trigger is_state_visited() check
9624 			 * before call itself is processed by __check_func_call().
9625 			 * Otherwise new async state will be pushed for further
9626 			 * exploration.
9627 			 */
9628 			init_explored_state(env, t);
9629 		return visit_func_call_insn(t, insn_cnt, insns, env,
9630 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9631 
9632 	case BPF_JA:
9633 		if (BPF_SRC(insns[t].code) != BPF_K)
9634 			return -EINVAL;
9635 
9636 		/* unconditional jump with single edge */
9637 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9638 				true);
9639 		if (ret)
9640 			return ret;
9641 
9642 		/* unconditional jmp is not a good pruning point,
9643 		 * but it's marked, since backtracking needs
9644 		 * to record jmp history in is_state_visited().
9645 		 */
9646 		init_explored_state(env, t + insns[t].off + 1);
9647 		/* tell verifier to check for equivalent states
9648 		 * after every call and jump
9649 		 */
9650 		if (t + 1 < insn_cnt)
9651 			init_explored_state(env, t + 1);
9652 
9653 		return ret;
9654 
9655 	default:
9656 		/* conditional jump with two edges */
9657 		init_explored_state(env, t);
9658 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9659 		if (ret)
9660 			return ret;
9661 
9662 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9663 	}
9664 }
9665 
9666 /* non-recursive depth-first-search to detect loops in BPF program
9667  * loop == back-edge in directed graph
9668  */
9669 static int check_cfg(struct bpf_verifier_env *env)
9670 {
9671 	int insn_cnt = env->prog->len;
9672 	int *insn_stack, *insn_state;
9673 	int ret = 0;
9674 	int i;
9675 
9676 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9677 	if (!insn_state)
9678 		return -ENOMEM;
9679 
9680 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9681 	if (!insn_stack) {
9682 		kvfree(insn_state);
9683 		return -ENOMEM;
9684 	}
9685 
9686 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9687 	insn_stack[0] = 0; /* 0 is the first instruction */
9688 	env->cfg.cur_stack = 1;
9689 
9690 	while (env->cfg.cur_stack > 0) {
9691 		int t = insn_stack[env->cfg.cur_stack - 1];
9692 
9693 		ret = visit_insn(t, insn_cnt, env);
9694 		switch (ret) {
9695 		case DONE_EXPLORING:
9696 			insn_state[t] = EXPLORED;
9697 			env->cfg.cur_stack--;
9698 			break;
9699 		case KEEP_EXPLORING:
9700 			break;
9701 		default:
9702 			if (ret > 0) {
9703 				verbose(env, "visit_insn internal bug\n");
9704 				ret = -EFAULT;
9705 			}
9706 			goto err_free;
9707 		}
9708 	}
9709 
9710 	if (env->cfg.cur_stack < 0) {
9711 		verbose(env, "pop stack internal bug\n");
9712 		ret = -EFAULT;
9713 		goto err_free;
9714 	}
9715 
9716 	for (i = 0; i < insn_cnt; i++) {
9717 		if (insn_state[i] != EXPLORED) {
9718 			verbose(env, "unreachable insn %d\n", i);
9719 			ret = -EINVAL;
9720 			goto err_free;
9721 		}
9722 	}
9723 	ret = 0; /* cfg looks good */
9724 
9725 err_free:
9726 	kvfree(insn_state);
9727 	kvfree(insn_stack);
9728 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9729 	return ret;
9730 }
9731 
9732 static int check_abnormal_return(struct bpf_verifier_env *env)
9733 {
9734 	int i;
9735 
9736 	for (i = 1; i < env->subprog_cnt; i++) {
9737 		if (env->subprog_info[i].has_ld_abs) {
9738 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9739 			return -EINVAL;
9740 		}
9741 		if (env->subprog_info[i].has_tail_call) {
9742 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9743 			return -EINVAL;
9744 		}
9745 	}
9746 	return 0;
9747 }
9748 
9749 /* The minimum supported BTF func info size */
9750 #define MIN_BPF_FUNCINFO_SIZE	8
9751 #define MAX_FUNCINFO_REC_SIZE	252
9752 
9753 static int check_btf_func(struct bpf_verifier_env *env,
9754 			  const union bpf_attr *attr,
9755 			  bpfptr_t uattr)
9756 {
9757 	const struct btf_type *type, *func_proto, *ret_type;
9758 	u32 i, nfuncs, urec_size, min_size;
9759 	u32 krec_size = sizeof(struct bpf_func_info);
9760 	struct bpf_func_info *krecord;
9761 	struct bpf_func_info_aux *info_aux = NULL;
9762 	struct bpf_prog *prog;
9763 	const struct btf *btf;
9764 	bpfptr_t urecord;
9765 	u32 prev_offset = 0;
9766 	bool scalar_return;
9767 	int ret = -ENOMEM;
9768 
9769 	nfuncs = attr->func_info_cnt;
9770 	if (!nfuncs) {
9771 		if (check_abnormal_return(env))
9772 			return -EINVAL;
9773 		return 0;
9774 	}
9775 
9776 	if (nfuncs != env->subprog_cnt) {
9777 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9778 		return -EINVAL;
9779 	}
9780 
9781 	urec_size = attr->func_info_rec_size;
9782 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9783 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9784 	    urec_size % sizeof(u32)) {
9785 		verbose(env, "invalid func info rec size %u\n", urec_size);
9786 		return -EINVAL;
9787 	}
9788 
9789 	prog = env->prog;
9790 	btf = prog->aux->btf;
9791 
9792 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9793 	min_size = min_t(u32, krec_size, urec_size);
9794 
9795 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9796 	if (!krecord)
9797 		return -ENOMEM;
9798 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9799 	if (!info_aux)
9800 		goto err_free;
9801 
9802 	for (i = 0; i < nfuncs; i++) {
9803 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9804 		if (ret) {
9805 			if (ret == -E2BIG) {
9806 				verbose(env, "nonzero tailing record in func info");
9807 				/* set the size kernel expects so loader can zero
9808 				 * out the rest of the record.
9809 				 */
9810 				if (copy_to_bpfptr_offset(uattr,
9811 							  offsetof(union bpf_attr, func_info_rec_size),
9812 							  &min_size, sizeof(min_size)))
9813 					ret = -EFAULT;
9814 			}
9815 			goto err_free;
9816 		}
9817 
9818 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9819 			ret = -EFAULT;
9820 			goto err_free;
9821 		}
9822 
9823 		/* check insn_off */
9824 		ret = -EINVAL;
9825 		if (i == 0) {
9826 			if (krecord[i].insn_off) {
9827 				verbose(env,
9828 					"nonzero insn_off %u for the first func info record",
9829 					krecord[i].insn_off);
9830 				goto err_free;
9831 			}
9832 		} else if (krecord[i].insn_off <= prev_offset) {
9833 			verbose(env,
9834 				"same or smaller insn offset (%u) than previous func info record (%u)",
9835 				krecord[i].insn_off, prev_offset);
9836 			goto err_free;
9837 		}
9838 
9839 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9840 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9841 			goto err_free;
9842 		}
9843 
9844 		/* check type_id */
9845 		type = btf_type_by_id(btf, krecord[i].type_id);
9846 		if (!type || !btf_type_is_func(type)) {
9847 			verbose(env, "invalid type id %d in func info",
9848 				krecord[i].type_id);
9849 			goto err_free;
9850 		}
9851 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9852 
9853 		func_proto = btf_type_by_id(btf, type->type);
9854 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9855 			/* btf_func_check() already verified it during BTF load */
9856 			goto err_free;
9857 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9858 		scalar_return =
9859 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9860 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9861 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9862 			goto err_free;
9863 		}
9864 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9865 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9866 			goto err_free;
9867 		}
9868 
9869 		prev_offset = krecord[i].insn_off;
9870 		bpfptr_add(&urecord, urec_size);
9871 	}
9872 
9873 	prog->aux->func_info = krecord;
9874 	prog->aux->func_info_cnt = nfuncs;
9875 	prog->aux->func_info_aux = info_aux;
9876 	return 0;
9877 
9878 err_free:
9879 	kvfree(krecord);
9880 	kfree(info_aux);
9881 	return ret;
9882 }
9883 
9884 static void adjust_btf_func(struct bpf_verifier_env *env)
9885 {
9886 	struct bpf_prog_aux *aux = env->prog->aux;
9887 	int i;
9888 
9889 	if (!aux->func_info)
9890 		return;
9891 
9892 	for (i = 0; i < env->subprog_cnt; i++)
9893 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9894 }
9895 
9896 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9897 		sizeof(((struct bpf_line_info *)(0))->line_col))
9898 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9899 
9900 static int check_btf_line(struct bpf_verifier_env *env,
9901 			  const union bpf_attr *attr,
9902 			  bpfptr_t uattr)
9903 {
9904 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9905 	struct bpf_subprog_info *sub;
9906 	struct bpf_line_info *linfo;
9907 	struct bpf_prog *prog;
9908 	const struct btf *btf;
9909 	bpfptr_t ulinfo;
9910 	int err;
9911 
9912 	nr_linfo = attr->line_info_cnt;
9913 	if (!nr_linfo)
9914 		return 0;
9915 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
9916 		return -EINVAL;
9917 
9918 	rec_size = attr->line_info_rec_size;
9919 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9920 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9921 	    rec_size & (sizeof(u32) - 1))
9922 		return -EINVAL;
9923 
9924 	/* Need to zero it in case the userspace may
9925 	 * pass in a smaller bpf_line_info object.
9926 	 */
9927 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9928 			 GFP_KERNEL | __GFP_NOWARN);
9929 	if (!linfo)
9930 		return -ENOMEM;
9931 
9932 	prog = env->prog;
9933 	btf = prog->aux->btf;
9934 
9935 	s = 0;
9936 	sub = env->subprog_info;
9937 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9938 	expected_size = sizeof(struct bpf_line_info);
9939 	ncopy = min_t(u32, expected_size, rec_size);
9940 	for (i = 0; i < nr_linfo; i++) {
9941 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9942 		if (err) {
9943 			if (err == -E2BIG) {
9944 				verbose(env, "nonzero tailing record in line_info");
9945 				if (copy_to_bpfptr_offset(uattr,
9946 							  offsetof(union bpf_attr, line_info_rec_size),
9947 							  &expected_size, sizeof(expected_size)))
9948 					err = -EFAULT;
9949 			}
9950 			goto err_free;
9951 		}
9952 
9953 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9954 			err = -EFAULT;
9955 			goto err_free;
9956 		}
9957 
9958 		/*
9959 		 * Check insn_off to ensure
9960 		 * 1) strictly increasing AND
9961 		 * 2) bounded by prog->len
9962 		 *
9963 		 * The linfo[0].insn_off == 0 check logically falls into
9964 		 * the later "missing bpf_line_info for func..." case
9965 		 * because the first linfo[0].insn_off must be the
9966 		 * first sub also and the first sub must have
9967 		 * subprog_info[0].start == 0.
9968 		 */
9969 		if ((i && linfo[i].insn_off <= prev_offset) ||
9970 		    linfo[i].insn_off >= prog->len) {
9971 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9972 				i, linfo[i].insn_off, prev_offset,
9973 				prog->len);
9974 			err = -EINVAL;
9975 			goto err_free;
9976 		}
9977 
9978 		if (!prog->insnsi[linfo[i].insn_off].code) {
9979 			verbose(env,
9980 				"Invalid insn code at line_info[%u].insn_off\n",
9981 				i);
9982 			err = -EINVAL;
9983 			goto err_free;
9984 		}
9985 
9986 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9987 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9988 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9989 			err = -EINVAL;
9990 			goto err_free;
9991 		}
9992 
9993 		if (s != env->subprog_cnt) {
9994 			if (linfo[i].insn_off == sub[s].start) {
9995 				sub[s].linfo_idx = i;
9996 				s++;
9997 			} else if (sub[s].start < linfo[i].insn_off) {
9998 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9999 				err = -EINVAL;
10000 				goto err_free;
10001 			}
10002 		}
10003 
10004 		prev_offset = linfo[i].insn_off;
10005 		bpfptr_add(&ulinfo, rec_size);
10006 	}
10007 
10008 	if (s != env->subprog_cnt) {
10009 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10010 			env->subprog_cnt - s, s);
10011 		err = -EINVAL;
10012 		goto err_free;
10013 	}
10014 
10015 	prog->aux->linfo = linfo;
10016 	prog->aux->nr_linfo = nr_linfo;
10017 
10018 	return 0;
10019 
10020 err_free:
10021 	kvfree(linfo);
10022 	return err;
10023 }
10024 
10025 static int check_btf_info(struct bpf_verifier_env *env,
10026 			  const union bpf_attr *attr,
10027 			  bpfptr_t uattr)
10028 {
10029 	struct btf *btf;
10030 	int err;
10031 
10032 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10033 		if (check_abnormal_return(env))
10034 			return -EINVAL;
10035 		return 0;
10036 	}
10037 
10038 	btf = btf_get_by_fd(attr->prog_btf_fd);
10039 	if (IS_ERR(btf))
10040 		return PTR_ERR(btf);
10041 	if (btf_is_kernel(btf)) {
10042 		btf_put(btf);
10043 		return -EACCES;
10044 	}
10045 	env->prog->aux->btf = btf;
10046 
10047 	err = check_btf_func(env, attr, uattr);
10048 	if (err)
10049 		return err;
10050 
10051 	err = check_btf_line(env, attr, uattr);
10052 	if (err)
10053 		return err;
10054 
10055 	return 0;
10056 }
10057 
10058 /* check %cur's range satisfies %old's */
10059 static bool range_within(struct bpf_reg_state *old,
10060 			 struct bpf_reg_state *cur)
10061 {
10062 	return old->umin_value <= cur->umin_value &&
10063 	       old->umax_value >= cur->umax_value &&
10064 	       old->smin_value <= cur->smin_value &&
10065 	       old->smax_value >= cur->smax_value &&
10066 	       old->u32_min_value <= cur->u32_min_value &&
10067 	       old->u32_max_value >= cur->u32_max_value &&
10068 	       old->s32_min_value <= cur->s32_min_value &&
10069 	       old->s32_max_value >= cur->s32_max_value;
10070 }
10071 
10072 /* If in the old state two registers had the same id, then they need to have
10073  * the same id in the new state as well.  But that id could be different from
10074  * the old state, so we need to track the mapping from old to new ids.
10075  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10076  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10077  * regs with a different old id could still have new id 9, we don't care about
10078  * that.
10079  * So we look through our idmap to see if this old id has been seen before.  If
10080  * so, we require the new id to match; otherwise, we add the id pair to the map.
10081  */
10082 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10083 {
10084 	unsigned int i;
10085 
10086 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10087 		if (!idmap[i].old) {
10088 			/* Reached an empty slot; haven't seen this id before */
10089 			idmap[i].old = old_id;
10090 			idmap[i].cur = cur_id;
10091 			return true;
10092 		}
10093 		if (idmap[i].old == old_id)
10094 			return idmap[i].cur == cur_id;
10095 	}
10096 	/* We ran out of idmap slots, which should be impossible */
10097 	WARN_ON_ONCE(1);
10098 	return false;
10099 }
10100 
10101 static void clean_func_state(struct bpf_verifier_env *env,
10102 			     struct bpf_func_state *st)
10103 {
10104 	enum bpf_reg_liveness live;
10105 	int i, j;
10106 
10107 	for (i = 0; i < BPF_REG_FP; i++) {
10108 		live = st->regs[i].live;
10109 		/* liveness must not touch this register anymore */
10110 		st->regs[i].live |= REG_LIVE_DONE;
10111 		if (!(live & REG_LIVE_READ))
10112 			/* since the register is unused, clear its state
10113 			 * to make further comparison simpler
10114 			 */
10115 			__mark_reg_not_init(env, &st->regs[i]);
10116 	}
10117 
10118 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10119 		live = st->stack[i].spilled_ptr.live;
10120 		/* liveness must not touch this stack slot anymore */
10121 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10122 		if (!(live & REG_LIVE_READ)) {
10123 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10124 			for (j = 0; j < BPF_REG_SIZE; j++)
10125 				st->stack[i].slot_type[j] = STACK_INVALID;
10126 		}
10127 	}
10128 }
10129 
10130 static void clean_verifier_state(struct bpf_verifier_env *env,
10131 				 struct bpf_verifier_state *st)
10132 {
10133 	int i;
10134 
10135 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10136 		/* all regs in this state in all frames were already marked */
10137 		return;
10138 
10139 	for (i = 0; i <= st->curframe; i++)
10140 		clean_func_state(env, st->frame[i]);
10141 }
10142 
10143 /* the parentage chains form a tree.
10144  * the verifier states are added to state lists at given insn and
10145  * pushed into state stack for future exploration.
10146  * when the verifier reaches bpf_exit insn some of the verifer states
10147  * stored in the state lists have their final liveness state already,
10148  * but a lot of states will get revised from liveness point of view when
10149  * the verifier explores other branches.
10150  * Example:
10151  * 1: r0 = 1
10152  * 2: if r1 == 100 goto pc+1
10153  * 3: r0 = 2
10154  * 4: exit
10155  * when the verifier reaches exit insn the register r0 in the state list of
10156  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10157  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10158  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10159  *
10160  * Since the verifier pushes the branch states as it sees them while exploring
10161  * the program the condition of walking the branch instruction for the second
10162  * time means that all states below this branch were already explored and
10163  * their final liveness marks are already propagated.
10164  * Hence when the verifier completes the search of state list in is_state_visited()
10165  * we can call this clean_live_states() function to mark all liveness states
10166  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10167  * will not be used.
10168  * This function also clears the registers and stack for states that !READ
10169  * to simplify state merging.
10170  *
10171  * Important note here that walking the same branch instruction in the callee
10172  * doesn't meant that the states are DONE. The verifier has to compare
10173  * the callsites
10174  */
10175 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10176 			      struct bpf_verifier_state *cur)
10177 {
10178 	struct bpf_verifier_state_list *sl;
10179 	int i;
10180 
10181 	sl = *explored_state(env, insn);
10182 	while (sl) {
10183 		if (sl->state.branches)
10184 			goto next;
10185 		if (sl->state.insn_idx != insn ||
10186 		    sl->state.curframe != cur->curframe)
10187 			goto next;
10188 		for (i = 0; i <= cur->curframe; i++)
10189 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10190 				goto next;
10191 		clean_verifier_state(env, &sl->state);
10192 next:
10193 		sl = sl->next;
10194 	}
10195 }
10196 
10197 /* Returns true if (rold safe implies rcur safe) */
10198 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10199 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10200 {
10201 	bool equal;
10202 
10203 	if (!(rold->live & REG_LIVE_READ))
10204 		/* explored state didn't use this */
10205 		return true;
10206 
10207 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10208 
10209 	if (rold->type == PTR_TO_STACK)
10210 		/* two stack pointers are equal only if they're pointing to
10211 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10212 		 */
10213 		return equal && rold->frameno == rcur->frameno;
10214 
10215 	if (equal)
10216 		return true;
10217 
10218 	if (rold->type == NOT_INIT)
10219 		/* explored state can't have used this */
10220 		return true;
10221 	if (rcur->type == NOT_INIT)
10222 		return false;
10223 	switch (rold->type) {
10224 	case SCALAR_VALUE:
10225 		if (env->explore_alu_limits)
10226 			return false;
10227 		if (rcur->type == SCALAR_VALUE) {
10228 			if (!rold->precise && !rcur->precise)
10229 				return true;
10230 			/* new val must satisfy old val knowledge */
10231 			return range_within(rold, rcur) &&
10232 			       tnum_in(rold->var_off, rcur->var_off);
10233 		} else {
10234 			/* We're trying to use a pointer in place of a scalar.
10235 			 * Even if the scalar was unbounded, this could lead to
10236 			 * pointer leaks because scalars are allowed to leak
10237 			 * while pointers are not. We could make this safe in
10238 			 * special cases if root is calling us, but it's
10239 			 * probably not worth the hassle.
10240 			 */
10241 			return false;
10242 		}
10243 	case PTR_TO_MAP_KEY:
10244 	case PTR_TO_MAP_VALUE:
10245 		/* If the new min/max/var_off satisfy the old ones and
10246 		 * everything else matches, we are OK.
10247 		 * 'id' is not compared, since it's only used for maps with
10248 		 * bpf_spin_lock inside map element and in such cases if
10249 		 * the rest of the prog is valid for one map element then
10250 		 * it's valid for all map elements regardless of the key
10251 		 * used in bpf_map_lookup()
10252 		 */
10253 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10254 		       range_within(rold, rcur) &&
10255 		       tnum_in(rold->var_off, rcur->var_off);
10256 	case PTR_TO_MAP_VALUE_OR_NULL:
10257 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10258 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10259 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10260 		 * checked, doing so could have affected others with the same
10261 		 * id, and we can't check for that because we lost the id when
10262 		 * we converted to a PTR_TO_MAP_VALUE.
10263 		 */
10264 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10265 			return false;
10266 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10267 			return false;
10268 		/* Check our ids match any regs they're supposed to */
10269 		return check_ids(rold->id, rcur->id, idmap);
10270 	case PTR_TO_PACKET_META:
10271 	case PTR_TO_PACKET:
10272 		if (rcur->type != rold->type)
10273 			return false;
10274 		/* We must have at least as much range as the old ptr
10275 		 * did, so that any accesses which were safe before are
10276 		 * still safe.  This is true even if old range < old off,
10277 		 * since someone could have accessed through (ptr - k), or
10278 		 * even done ptr -= k in a register, to get a safe access.
10279 		 */
10280 		if (rold->range > rcur->range)
10281 			return false;
10282 		/* If the offsets don't match, we can't trust our alignment;
10283 		 * nor can we be sure that we won't fall out of range.
10284 		 */
10285 		if (rold->off != rcur->off)
10286 			return false;
10287 		/* id relations must be preserved */
10288 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10289 			return false;
10290 		/* new val must satisfy old val knowledge */
10291 		return range_within(rold, rcur) &&
10292 		       tnum_in(rold->var_off, rcur->var_off);
10293 	case PTR_TO_CTX:
10294 	case CONST_PTR_TO_MAP:
10295 	case PTR_TO_PACKET_END:
10296 	case PTR_TO_FLOW_KEYS:
10297 	case PTR_TO_SOCKET:
10298 	case PTR_TO_SOCKET_OR_NULL:
10299 	case PTR_TO_SOCK_COMMON:
10300 	case PTR_TO_SOCK_COMMON_OR_NULL:
10301 	case PTR_TO_TCP_SOCK:
10302 	case PTR_TO_TCP_SOCK_OR_NULL:
10303 	case PTR_TO_XDP_SOCK:
10304 		/* Only valid matches are exact, which memcmp() above
10305 		 * would have accepted
10306 		 */
10307 	default:
10308 		/* Don't know what's going on, just say it's not safe */
10309 		return false;
10310 	}
10311 
10312 	/* Shouldn't get here; if we do, say it's not safe */
10313 	WARN_ON_ONCE(1);
10314 	return false;
10315 }
10316 
10317 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10318 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10319 {
10320 	int i, spi;
10321 
10322 	/* walk slots of the explored stack and ignore any additional
10323 	 * slots in the current stack, since explored(safe) state
10324 	 * didn't use them
10325 	 */
10326 	for (i = 0; i < old->allocated_stack; i++) {
10327 		spi = i / BPF_REG_SIZE;
10328 
10329 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10330 			i += BPF_REG_SIZE - 1;
10331 			/* explored state didn't use this */
10332 			continue;
10333 		}
10334 
10335 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10336 			continue;
10337 
10338 		/* explored stack has more populated slots than current stack
10339 		 * and these slots were used
10340 		 */
10341 		if (i >= cur->allocated_stack)
10342 			return false;
10343 
10344 		/* if old state was safe with misc data in the stack
10345 		 * it will be safe with zero-initialized stack.
10346 		 * The opposite is not true
10347 		 */
10348 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10349 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10350 			continue;
10351 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10352 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10353 			/* Ex: old explored (safe) state has STACK_SPILL in
10354 			 * this stack slot, but current has STACK_MISC ->
10355 			 * this verifier states are not equivalent,
10356 			 * return false to continue verification of this path
10357 			 */
10358 			return false;
10359 		if (i % BPF_REG_SIZE)
10360 			continue;
10361 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10362 			continue;
10363 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10364 			     &cur->stack[spi].spilled_ptr, idmap))
10365 			/* when explored and current stack slot are both storing
10366 			 * spilled registers, check that stored pointers types
10367 			 * are the same as well.
10368 			 * Ex: explored safe path could have stored
10369 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10370 			 * but current path has stored:
10371 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10372 			 * such verifier states are not equivalent.
10373 			 * return false to continue verification of this path
10374 			 */
10375 			return false;
10376 	}
10377 	return true;
10378 }
10379 
10380 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10381 {
10382 	if (old->acquired_refs != cur->acquired_refs)
10383 		return false;
10384 	return !memcmp(old->refs, cur->refs,
10385 		       sizeof(*old->refs) * old->acquired_refs);
10386 }
10387 
10388 /* compare two verifier states
10389  *
10390  * all states stored in state_list are known to be valid, since
10391  * verifier reached 'bpf_exit' instruction through them
10392  *
10393  * this function is called when verifier exploring different branches of
10394  * execution popped from the state stack. If it sees an old state that has
10395  * more strict register state and more strict stack state then this execution
10396  * branch doesn't need to be explored further, since verifier already
10397  * concluded that more strict state leads to valid finish.
10398  *
10399  * Therefore two states are equivalent if register state is more conservative
10400  * and explored stack state is more conservative than the current one.
10401  * Example:
10402  *       explored                   current
10403  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10404  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10405  *
10406  * In other words if current stack state (one being explored) has more
10407  * valid slots than old one that already passed validation, it means
10408  * the verifier can stop exploring and conclude that current state is valid too
10409  *
10410  * Similarly with registers. If explored state has register type as invalid
10411  * whereas register type in current state is meaningful, it means that
10412  * the current state will reach 'bpf_exit' instruction safely
10413  */
10414 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10415 			      struct bpf_func_state *cur)
10416 {
10417 	int i;
10418 
10419 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10420 	for (i = 0; i < MAX_BPF_REG; i++)
10421 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10422 			     env->idmap_scratch))
10423 			return false;
10424 
10425 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10426 		return false;
10427 
10428 	if (!refsafe(old, cur))
10429 		return false;
10430 
10431 	return true;
10432 }
10433 
10434 static bool states_equal(struct bpf_verifier_env *env,
10435 			 struct bpf_verifier_state *old,
10436 			 struct bpf_verifier_state *cur)
10437 {
10438 	int i;
10439 
10440 	if (old->curframe != cur->curframe)
10441 		return false;
10442 
10443 	/* Verification state from speculative execution simulation
10444 	 * must never prune a non-speculative execution one.
10445 	 */
10446 	if (old->speculative && !cur->speculative)
10447 		return false;
10448 
10449 	if (old->active_spin_lock != cur->active_spin_lock)
10450 		return false;
10451 
10452 	/* for states to be equal callsites have to be the same
10453 	 * and all frame states need to be equivalent
10454 	 */
10455 	for (i = 0; i <= old->curframe; i++) {
10456 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10457 			return false;
10458 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10459 			return false;
10460 	}
10461 	return true;
10462 }
10463 
10464 /* Return 0 if no propagation happened. Return negative error code if error
10465  * happened. Otherwise, return the propagated bit.
10466  */
10467 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10468 				  struct bpf_reg_state *reg,
10469 				  struct bpf_reg_state *parent_reg)
10470 {
10471 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10472 	u8 flag = reg->live & REG_LIVE_READ;
10473 	int err;
10474 
10475 	/* When comes here, read flags of PARENT_REG or REG could be any of
10476 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10477 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10478 	 */
10479 	if (parent_flag == REG_LIVE_READ64 ||
10480 	    /* Or if there is no read flag from REG. */
10481 	    !flag ||
10482 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10483 	    parent_flag == flag)
10484 		return 0;
10485 
10486 	err = mark_reg_read(env, reg, parent_reg, flag);
10487 	if (err)
10488 		return err;
10489 
10490 	return flag;
10491 }
10492 
10493 /* A write screens off any subsequent reads; but write marks come from the
10494  * straight-line code between a state and its parent.  When we arrive at an
10495  * equivalent state (jump target or such) we didn't arrive by the straight-line
10496  * code, so read marks in the state must propagate to the parent regardless
10497  * of the state's write marks. That's what 'parent == state->parent' comparison
10498  * in mark_reg_read() is for.
10499  */
10500 static int propagate_liveness(struct bpf_verifier_env *env,
10501 			      const struct bpf_verifier_state *vstate,
10502 			      struct bpf_verifier_state *vparent)
10503 {
10504 	struct bpf_reg_state *state_reg, *parent_reg;
10505 	struct bpf_func_state *state, *parent;
10506 	int i, frame, err = 0;
10507 
10508 	if (vparent->curframe != vstate->curframe) {
10509 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10510 		     vparent->curframe, vstate->curframe);
10511 		return -EFAULT;
10512 	}
10513 	/* Propagate read liveness of registers... */
10514 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10515 	for (frame = 0; frame <= vstate->curframe; frame++) {
10516 		parent = vparent->frame[frame];
10517 		state = vstate->frame[frame];
10518 		parent_reg = parent->regs;
10519 		state_reg = state->regs;
10520 		/* We don't need to worry about FP liveness, it's read-only */
10521 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10522 			err = propagate_liveness_reg(env, &state_reg[i],
10523 						     &parent_reg[i]);
10524 			if (err < 0)
10525 				return err;
10526 			if (err == REG_LIVE_READ64)
10527 				mark_insn_zext(env, &parent_reg[i]);
10528 		}
10529 
10530 		/* Propagate stack slots. */
10531 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10532 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10533 			parent_reg = &parent->stack[i].spilled_ptr;
10534 			state_reg = &state->stack[i].spilled_ptr;
10535 			err = propagate_liveness_reg(env, state_reg,
10536 						     parent_reg);
10537 			if (err < 0)
10538 				return err;
10539 		}
10540 	}
10541 	return 0;
10542 }
10543 
10544 /* find precise scalars in the previous equivalent state and
10545  * propagate them into the current state
10546  */
10547 static int propagate_precision(struct bpf_verifier_env *env,
10548 			       const struct bpf_verifier_state *old)
10549 {
10550 	struct bpf_reg_state *state_reg;
10551 	struct bpf_func_state *state;
10552 	int i, err = 0;
10553 
10554 	state = old->frame[old->curframe];
10555 	state_reg = state->regs;
10556 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10557 		if (state_reg->type != SCALAR_VALUE ||
10558 		    !state_reg->precise)
10559 			continue;
10560 		if (env->log.level & BPF_LOG_LEVEL2)
10561 			verbose(env, "propagating r%d\n", i);
10562 		err = mark_chain_precision(env, i);
10563 		if (err < 0)
10564 			return err;
10565 	}
10566 
10567 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10568 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10569 			continue;
10570 		state_reg = &state->stack[i].spilled_ptr;
10571 		if (state_reg->type != SCALAR_VALUE ||
10572 		    !state_reg->precise)
10573 			continue;
10574 		if (env->log.level & BPF_LOG_LEVEL2)
10575 			verbose(env, "propagating fp%d\n",
10576 				(-i - 1) * BPF_REG_SIZE);
10577 		err = mark_chain_precision_stack(env, i);
10578 		if (err < 0)
10579 			return err;
10580 	}
10581 	return 0;
10582 }
10583 
10584 static bool states_maybe_looping(struct bpf_verifier_state *old,
10585 				 struct bpf_verifier_state *cur)
10586 {
10587 	struct bpf_func_state *fold, *fcur;
10588 	int i, fr = cur->curframe;
10589 
10590 	if (old->curframe != fr)
10591 		return false;
10592 
10593 	fold = old->frame[fr];
10594 	fcur = cur->frame[fr];
10595 	for (i = 0; i < MAX_BPF_REG; i++)
10596 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10597 			   offsetof(struct bpf_reg_state, parent)))
10598 			return false;
10599 	return true;
10600 }
10601 
10602 
10603 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10604 {
10605 	struct bpf_verifier_state_list *new_sl;
10606 	struct bpf_verifier_state_list *sl, **pprev;
10607 	struct bpf_verifier_state *cur = env->cur_state, *new;
10608 	int i, j, err, states_cnt = 0;
10609 	bool add_new_state = env->test_state_freq ? true : false;
10610 
10611 	cur->last_insn_idx = env->prev_insn_idx;
10612 	if (!env->insn_aux_data[insn_idx].prune_point)
10613 		/* this 'insn_idx' instruction wasn't marked, so we will not
10614 		 * be doing state search here
10615 		 */
10616 		return 0;
10617 
10618 	/* bpf progs typically have pruning point every 4 instructions
10619 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10620 	 * Do not add new state for future pruning if the verifier hasn't seen
10621 	 * at least 2 jumps and at least 8 instructions.
10622 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10623 	 * In tests that amounts to up to 50% reduction into total verifier
10624 	 * memory consumption and 20% verifier time speedup.
10625 	 */
10626 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10627 	    env->insn_processed - env->prev_insn_processed >= 8)
10628 		add_new_state = true;
10629 
10630 	pprev = explored_state(env, insn_idx);
10631 	sl = *pprev;
10632 
10633 	clean_live_states(env, insn_idx, cur);
10634 
10635 	while (sl) {
10636 		states_cnt++;
10637 		if (sl->state.insn_idx != insn_idx)
10638 			goto next;
10639 
10640 		if (sl->state.branches) {
10641 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10642 
10643 			if (frame->in_async_callback_fn &&
10644 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10645 				/* Different async_entry_cnt means that the verifier is
10646 				 * processing another entry into async callback.
10647 				 * Seeing the same state is not an indication of infinite
10648 				 * loop or infinite recursion.
10649 				 * But finding the same state doesn't mean that it's safe
10650 				 * to stop processing the current state. The previous state
10651 				 * hasn't yet reached bpf_exit, since state.branches > 0.
10652 				 * Checking in_async_callback_fn alone is not enough either.
10653 				 * Since the verifier still needs to catch infinite loops
10654 				 * inside async callbacks.
10655 				 */
10656 			} else if (states_maybe_looping(&sl->state, cur) &&
10657 				   states_equal(env, &sl->state, cur)) {
10658 				verbose_linfo(env, insn_idx, "; ");
10659 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10660 				return -EINVAL;
10661 			}
10662 			/* if the verifier is processing a loop, avoid adding new state
10663 			 * too often, since different loop iterations have distinct
10664 			 * states and may not help future pruning.
10665 			 * This threshold shouldn't be too low to make sure that
10666 			 * a loop with large bound will be rejected quickly.
10667 			 * The most abusive loop will be:
10668 			 * r1 += 1
10669 			 * if r1 < 1000000 goto pc-2
10670 			 * 1M insn_procssed limit / 100 == 10k peak states.
10671 			 * This threshold shouldn't be too high either, since states
10672 			 * at the end of the loop are likely to be useful in pruning.
10673 			 */
10674 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10675 			    env->insn_processed - env->prev_insn_processed < 100)
10676 				add_new_state = false;
10677 			goto miss;
10678 		}
10679 		if (states_equal(env, &sl->state, cur)) {
10680 			sl->hit_cnt++;
10681 			/* reached equivalent register/stack state,
10682 			 * prune the search.
10683 			 * Registers read by the continuation are read by us.
10684 			 * If we have any write marks in env->cur_state, they
10685 			 * will prevent corresponding reads in the continuation
10686 			 * from reaching our parent (an explored_state).  Our
10687 			 * own state will get the read marks recorded, but
10688 			 * they'll be immediately forgotten as we're pruning
10689 			 * this state and will pop a new one.
10690 			 */
10691 			err = propagate_liveness(env, &sl->state, cur);
10692 
10693 			/* if previous state reached the exit with precision and
10694 			 * current state is equivalent to it (except precsion marks)
10695 			 * the precision needs to be propagated back in
10696 			 * the current state.
10697 			 */
10698 			err = err ? : push_jmp_history(env, cur);
10699 			err = err ? : propagate_precision(env, &sl->state);
10700 			if (err)
10701 				return err;
10702 			return 1;
10703 		}
10704 miss:
10705 		/* when new state is not going to be added do not increase miss count.
10706 		 * Otherwise several loop iterations will remove the state
10707 		 * recorded earlier. The goal of these heuristics is to have
10708 		 * states from some iterations of the loop (some in the beginning
10709 		 * and some at the end) to help pruning.
10710 		 */
10711 		if (add_new_state)
10712 			sl->miss_cnt++;
10713 		/* heuristic to determine whether this state is beneficial
10714 		 * to keep checking from state equivalence point of view.
10715 		 * Higher numbers increase max_states_per_insn and verification time,
10716 		 * but do not meaningfully decrease insn_processed.
10717 		 */
10718 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10719 			/* the state is unlikely to be useful. Remove it to
10720 			 * speed up verification
10721 			 */
10722 			*pprev = sl->next;
10723 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10724 				u32 br = sl->state.branches;
10725 
10726 				WARN_ONCE(br,
10727 					  "BUG live_done but branches_to_explore %d\n",
10728 					  br);
10729 				free_verifier_state(&sl->state, false);
10730 				kfree(sl);
10731 				env->peak_states--;
10732 			} else {
10733 				/* cannot free this state, since parentage chain may
10734 				 * walk it later. Add it for free_list instead to
10735 				 * be freed at the end of verification
10736 				 */
10737 				sl->next = env->free_list;
10738 				env->free_list = sl;
10739 			}
10740 			sl = *pprev;
10741 			continue;
10742 		}
10743 next:
10744 		pprev = &sl->next;
10745 		sl = *pprev;
10746 	}
10747 
10748 	if (env->max_states_per_insn < states_cnt)
10749 		env->max_states_per_insn = states_cnt;
10750 
10751 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10752 		return push_jmp_history(env, cur);
10753 
10754 	if (!add_new_state)
10755 		return push_jmp_history(env, cur);
10756 
10757 	/* There were no equivalent states, remember the current one.
10758 	 * Technically the current state is not proven to be safe yet,
10759 	 * but it will either reach outer most bpf_exit (which means it's safe)
10760 	 * or it will be rejected. When there are no loops the verifier won't be
10761 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10762 	 * again on the way to bpf_exit.
10763 	 * When looping the sl->state.branches will be > 0 and this state
10764 	 * will not be considered for equivalence until branches == 0.
10765 	 */
10766 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10767 	if (!new_sl)
10768 		return -ENOMEM;
10769 	env->total_states++;
10770 	env->peak_states++;
10771 	env->prev_jmps_processed = env->jmps_processed;
10772 	env->prev_insn_processed = env->insn_processed;
10773 
10774 	/* add new state to the head of linked list */
10775 	new = &new_sl->state;
10776 	err = copy_verifier_state(new, cur);
10777 	if (err) {
10778 		free_verifier_state(new, false);
10779 		kfree(new_sl);
10780 		return err;
10781 	}
10782 	new->insn_idx = insn_idx;
10783 	WARN_ONCE(new->branches != 1,
10784 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10785 
10786 	cur->parent = new;
10787 	cur->first_insn_idx = insn_idx;
10788 	clear_jmp_history(cur);
10789 	new_sl->next = *explored_state(env, insn_idx);
10790 	*explored_state(env, insn_idx) = new_sl;
10791 	/* connect new state to parentage chain. Current frame needs all
10792 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10793 	 * to the stack implicitly by JITs) so in callers' frames connect just
10794 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10795 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10796 	 * from callee with its full parentage chain, anyway.
10797 	 */
10798 	/* clear write marks in current state: the writes we did are not writes
10799 	 * our child did, so they don't screen off its reads from us.
10800 	 * (There are no read marks in current state, because reads always mark
10801 	 * their parent and current state never has children yet.  Only
10802 	 * explored_states can get read marks.)
10803 	 */
10804 	for (j = 0; j <= cur->curframe; j++) {
10805 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10806 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10807 		for (i = 0; i < BPF_REG_FP; i++)
10808 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10809 	}
10810 
10811 	/* all stack frames are accessible from callee, clear them all */
10812 	for (j = 0; j <= cur->curframe; j++) {
10813 		struct bpf_func_state *frame = cur->frame[j];
10814 		struct bpf_func_state *newframe = new->frame[j];
10815 
10816 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10817 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10818 			frame->stack[i].spilled_ptr.parent =
10819 						&newframe->stack[i].spilled_ptr;
10820 		}
10821 	}
10822 	return 0;
10823 }
10824 
10825 /* Return true if it's OK to have the same insn return a different type. */
10826 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10827 {
10828 	switch (type) {
10829 	case PTR_TO_CTX:
10830 	case PTR_TO_SOCKET:
10831 	case PTR_TO_SOCKET_OR_NULL:
10832 	case PTR_TO_SOCK_COMMON:
10833 	case PTR_TO_SOCK_COMMON_OR_NULL:
10834 	case PTR_TO_TCP_SOCK:
10835 	case PTR_TO_TCP_SOCK_OR_NULL:
10836 	case PTR_TO_XDP_SOCK:
10837 	case PTR_TO_BTF_ID:
10838 	case PTR_TO_BTF_ID_OR_NULL:
10839 		return false;
10840 	default:
10841 		return true;
10842 	}
10843 }
10844 
10845 /* If an instruction was previously used with particular pointer types, then we
10846  * need to be careful to avoid cases such as the below, where it may be ok
10847  * for one branch accessing the pointer, but not ok for the other branch:
10848  *
10849  * R1 = sock_ptr
10850  * goto X;
10851  * ...
10852  * R1 = some_other_valid_ptr;
10853  * goto X;
10854  * ...
10855  * R2 = *(u32 *)(R1 + 0);
10856  */
10857 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10858 {
10859 	return src != prev && (!reg_type_mismatch_ok(src) ||
10860 			       !reg_type_mismatch_ok(prev));
10861 }
10862 
10863 static int do_check(struct bpf_verifier_env *env)
10864 {
10865 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10866 	struct bpf_verifier_state *state = env->cur_state;
10867 	struct bpf_insn *insns = env->prog->insnsi;
10868 	struct bpf_reg_state *regs;
10869 	int insn_cnt = env->prog->len;
10870 	bool do_print_state = false;
10871 	int prev_insn_idx = -1;
10872 
10873 	for (;;) {
10874 		struct bpf_insn *insn;
10875 		u8 class;
10876 		int err;
10877 
10878 		env->prev_insn_idx = prev_insn_idx;
10879 		if (env->insn_idx >= insn_cnt) {
10880 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10881 				env->insn_idx, insn_cnt);
10882 			return -EFAULT;
10883 		}
10884 
10885 		insn = &insns[env->insn_idx];
10886 		class = BPF_CLASS(insn->code);
10887 
10888 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10889 			verbose(env,
10890 				"BPF program is too large. Processed %d insn\n",
10891 				env->insn_processed);
10892 			return -E2BIG;
10893 		}
10894 
10895 		err = is_state_visited(env, env->insn_idx);
10896 		if (err < 0)
10897 			return err;
10898 		if (err == 1) {
10899 			/* found equivalent state, can prune the search */
10900 			if (env->log.level & BPF_LOG_LEVEL) {
10901 				if (do_print_state)
10902 					verbose(env, "\nfrom %d to %d%s: safe\n",
10903 						env->prev_insn_idx, env->insn_idx,
10904 						env->cur_state->speculative ?
10905 						" (speculative execution)" : "");
10906 				else
10907 					verbose(env, "%d: safe\n", env->insn_idx);
10908 			}
10909 			goto process_bpf_exit;
10910 		}
10911 
10912 		if (signal_pending(current))
10913 			return -EAGAIN;
10914 
10915 		if (need_resched())
10916 			cond_resched();
10917 
10918 		if (env->log.level & BPF_LOG_LEVEL2 ||
10919 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10920 			if (env->log.level & BPF_LOG_LEVEL2)
10921 				verbose(env, "%d:", env->insn_idx);
10922 			else
10923 				verbose(env, "\nfrom %d to %d%s:",
10924 					env->prev_insn_idx, env->insn_idx,
10925 					env->cur_state->speculative ?
10926 					" (speculative execution)" : "");
10927 			print_verifier_state(env, state->frame[state->curframe]);
10928 			do_print_state = false;
10929 		}
10930 
10931 		if (env->log.level & BPF_LOG_LEVEL) {
10932 			const struct bpf_insn_cbs cbs = {
10933 				.cb_call	= disasm_kfunc_name,
10934 				.cb_print	= verbose,
10935 				.private_data	= env,
10936 			};
10937 
10938 			verbose_linfo(env, env->insn_idx, "; ");
10939 			verbose(env, "%d: ", env->insn_idx);
10940 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10941 		}
10942 
10943 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10944 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10945 							   env->prev_insn_idx);
10946 			if (err)
10947 				return err;
10948 		}
10949 
10950 		regs = cur_regs(env);
10951 		sanitize_mark_insn_seen(env);
10952 		prev_insn_idx = env->insn_idx;
10953 
10954 		if (class == BPF_ALU || class == BPF_ALU64) {
10955 			err = check_alu_op(env, insn);
10956 			if (err)
10957 				return err;
10958 
10959 		} else if (class == BPF_LDX) {
10960 			enum bpf_reg_type *prev_src_type, src_reg_type;
10961 
10962 			/* check for reserved fields is already done */
10963 
10964 			/* check src operand */
10965 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10966 			if (err)
10967 				return err;
10968 
10969 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10970 			if (err)
10971 				return err;
10972 
10973 			src_reg_type = regs[insn->src_reg].type;
10974 
10975 			/* check that memory (src_reg + off) is readable,
10976 			 * the state of dst_reg will be updated by this func
10977 			 */
10978 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10979 					       insn->off, BPF_SIZE(insn->code),
10980 					       BPF_READ, insn->dst_reg, false);
10981 			if (err)
10982 				return err;
10983 
10984 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10985 
10986 			if (*prev_src_type == NOT_INIT) {
10987 				/* saw a valid insn
10988 				 * dst_reg = *(u32 *)(src_reg + off)
10989 				 * save type to validate intersecting paths
10990 				 */
10991 				*prev_src_type = src_reg_type;
10992 
10993 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10994 				/* ABuser program is trying to use the same insn
10995 				 * dst_reg = *(u32*) (src_reg + off)
10996 				 * with different pointer types:
10997 				 * src_reg == ctx in one branch and
10998 				 * src_reg == stack|map in some other branch.
10999 				 * Reject it.
11000 				 */
11001 				verbose(env, "same insn cannot be used with different pointers\n");
11002 				return -EINVAL;
11003 			}
11004 
11005 		} else if (class == BPF_STX) {
11006 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11007 
11008 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11009 				err = check_atomic(env, env->insn_idx, insn);
11010 				if (err)
11011 					return err;
11012 				env->insn_idx++;
11013 				continue;
11014 			}
11015 
11016 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11017 				verbose(env, "BPF_STX uses reserved fields\n");
11018 				return -EINVAL;
11019 			}
11020 
11021 			/* check src1 operand */
11022 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11023 			if (err)
11024 				return err;
11025 			/* check src2 operand */
11026 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11027 			if (err)
11028 				return err;
11029 
11030 			dst_reg_type = regs[insn->dst_reg].type;
11031 
11032 			/* check that memory (dst_reg + off) is writeable */
11033 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11034 					       insn->off, BPF_SIZE(insn->code),
11035 					       BPF_WRITE, insn->src_reg, false);
11036 			if (err)
11037 				return err;
11038 
11039 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11040 
11041 			if (*prev_dst_type == NOT_INIT) {
11042 				*prev_dst_type = dst_reg_type;
11043 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11044 				verbose(env, "same insn cannot be used with different pointers\n");
11045 				return -EINVAL;
11046 			}
11047 
11048 		} else if (class == BPF_ST) {
11049 			if (BPF_MODE(insn->code) != BPF_MEM ||
11050 			    insn->src_reg != BPF_REG_0) {
11051 				verbose(env, "BPF_ST uses reserved fields\n");
11052 				return -EINVAL;
11053 			}
11054 			/* check src operand */
11055 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11056 			if (err)
11057 				return err;
11058 
11059 			if (is_ctx_reg(env, insn->dst_reg)) {
11060 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11061 					insn->dst_reg,
11062 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
11063 				return -EACCES;
11064 			}
11065 
11066 			/* check that memory (dst_reg + off) is writeable */
11067 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11068 					       insn->off, BPF_SIZE(insn->code),
11069 					       BPF_WRITE, -1, false);
11070 			if (err)
11071 				return err;
11072 
11073 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11074 			u8 opcode = BPF_OP(insn->code);
11075 
11076 			env->jmps_processed++;
11077 			if (opcode == BPF_CALL) {
11078 				if (BPF_SRC(insn->code) != BPF_K ||
11079 				    insn->off != 0 ||
11080 				    (insn->src_reg != BPF_REG_0 &&
11081 				     insn->src_reg != BPF_PSEUDO_CALL &&
11082 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11083 				    insn->dst_reg != BPF_REG_0 ||
11084 				    class == BPF_JMP32) {
11085 					verbose(env, "BPF_CALL uses reserved fields\n");
11086 					return -EINVAL;
11087 				}
11088 
11089 				if (env->cur_state->active_spin_lock &&
11090 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11091 				     insn->imm != BPF_FUNC_spin_unlock)) {
11092 					verbose(env, "function calls are not allowed while holding a lock\n");
11093 					return -EINVAL;
11094 				}
11095 				if (insn->src_reg == BPF_PSEUDO_CALL)
11096 					err = check_func_call(env, insn, &env->insn_idx);
11097 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11098 					err = check_kfunc_call(env, insn);
11099 				else
11100 					err = check_helper_call(env, insn, &env->insn_idx);
11101 				if (err)
11102 					return err;
11103 			} else if (opcode == BPF_JA) {
11104 				if (BPF_SRC(insn->code) != BPF_K ||
11105 				    insn->imm != 0 ||
11106 				    insn->src_reg != BPF_REG_0 ||
11107 				    insn->dst_reg != BPF_REG_0 ||
11108 				    class == BPF_JMP32) {
11109 					verbose(env, "BPF_JA uses reserved fields\n");
11110 					return -EINVAL;
11111 				}
11112 
11113 				env->insn_idx += insn->off + 1;
11114 				continue;
11115 
11116 			} else if (opcode == BPF_EXIT) {
11117 				if (BPF_SRC(insn->code) != BPF_K ||
11118 				    insn->imm != 0 ||
11119 				    insn->src_reg != BPF_REG_0 ||
11120 				    insn->dst_reg != BPF_REG_0 ||
11121 				    class == BPF_JMP32) {
11122 					verbose(env, "BPF_EXIT uses reserved fields\n");
11123 					return -EINVAL;
11124 				}
11125 
11126 				if (env->cur_state->active_spin_lock) {
11127 					verbose(env, "bpf_spin_unlock is missing\n");
11128 					return -EINVAL;
11129 				}
11130 
11131 				if (state->curframe) {
11132 					/* exit from nested function */
11133 					err = prepare_func_exit(env, &env->insn_idx);
11134 					if (err)
11135 						return err;
11136 					do_print_state = true;
11137 					continue;
11138 				}
11139 
11140 				err = check_reference_leak(env);
11141 				if (err)
11142 					return err;
11143 
11144 				err = check_return_code(env);
11145 				if (err)
11146 					return err;
11147 process_bpf_exit:
11148 				update_branch_counts(env, env->cur_state);
11149 				err = pop_stack(env, &prev_insn_idx,
11150 						&env->insn_idx, pop_log);
11151 				if (err < 0) {
11152 					if (err != -ENOENT)
11153 						return err;
11154 					break;
11155 				} else {
11156 					do_print_state = true;
11157 					continue;
11158 				}
11159 			} else {
11160 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11161 				if (err)
11162 					return err;
11163 			}
11164 		} else if (class == BPF_LD) {
11165 			u8 mode = BPF_MODE(insn->code);
11166 
11167 			if (mode == BPF_ABS || mode == BPF_IND) {
11168 				err = check_ld_abs(env, insn);
11169 				if (err)
11170 					return err;
11171 
11172 			} else if (mode == BPF_IMM) {
11173 				err = check_ld_imm(env, insn);
11174 				if (err)
11175 					return err;
11176 
11177 				env->insn_idx++;
11178 				sanitize_mark_insn_seen(env);
11179 			} else {
11180 				verbose(env, "invalid BPF_LD mode\n");
11181 				return -EINVAL;
11182 			}
11183 		} else {
11184 			verbose(env, "unknown insn class %d\n", class);
11185 			return -EINVAL;
11186 		}
11187 
11188 		env->insn_idx++;
11189 	}
11190 
11191 	return 0;
11192 }
11193 
11194 static int find_btf_percpu_datasec(struct btf *btf)
11195 {
11196 	const struct btf_type *t;
11197 	const char *tname;
11198 	int i, n;
11199 
11200 	/*
11201 	 * Both vmlinux and module each have their own ".data..percpu"
11202 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11203 	 * types to look at only module's own BTF types.
11204 	 */
11205 	n = btf_nr_types(btf);
11206 	if (btf_is_module(btf))
11207 		i = btf_nr_types(btf_vmlinux);
11208 	else
11209 		i = 1;
11210 
11211 	for(; i < n; i++) {
11212 		t = btf_type_by_id(btf, i);
11213 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11214 			continue;
11215 
11216 		tname = btf_name_by_offset(btf, t->name_off);
11217 		if (!strcmp(tname, ".data..percpu"))
11218 			return i;
11219 	}
11220 
11221 	return -ENOENT;
11222 }
11223 
11224 /* replace pseudo btf_id with kernel symbol address */
11225 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11226 			       struct bpf_insn *insn,
11227 			       struct bpf_insn_aux_data *aux)
11228 {
11229 	const struct btf_var_secinfo *vsi;
11230 	const struct btf_type *datasec;
11231 	struct btf_mod_pair *btf_mod;
11232 	const struct btf_type *t;
11233 	const char *sym_name;
11234 	bool percpu = false;
11235 	u32 type, id = insn->imm;
11236 	struct btf *btf;
11237 	s32 datasec_id;
11238 	u64 addr;
11239 	int i, btf_fd, err;
11240 
11241 	btf_fd = insn[1].imm;
11242 	if (btf_fd) {
11243 		btf = btf_get_by_fd(btf_fd);
11244 		if (IS_ERR(btf)) {
11245 			verbose(env, "invalid module BTF object FD specified.\n");
11246 			return -EINVAL;
11247 		}
11248 	} else {
11249 		if (!btf_vmlinux) {
11250 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11251 			return -EINVAL;
11252 		}
11253 		btf = btf_vmlinux;
11254 		btf_get(btf);
11255 	}
11256 
11257 	t = btf_type_by_id(btf, id);
11258 	if (!t) {
11259 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11260 		err = -ENOENT;
11261 		goto err_put;
11262 	}
11263 
11264 	if (!btf_type_is_var(t)) {
11265 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11266 		err = -EINVAL;
11267 		goto err_put;
11268 	}
11269 
11270 	sym_name = btf_name_by_offset(btf, t->name_off);
11271 	addr = kallsyms_lookup_name(sym_name);
11272 	if (!addr) {
11273 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11274 			sym_name);
11275 		err = -ENOENT;
11276 		goto err_put;
11277 	}
11278 
11279 	datasec_id = find_btf_percpu_datasec(btf);
11280 	if (datasec_id > 0) {
11281 		datasec = btf_type_by_id(btf, datasec_id);
11282 		for_each_vsi(i, datasec, vsi) {
11283 			if (vsi->type == id) {
11284 				percpu = true;
11285 				break;
11286 			}
11287 		}
11288 	}
11289 
11290 	insn[0].imm = (u32)addr;
11291 	insn[1].imm = addr >> 32;
11292 
11293 	type = t->type;
11294 	t = btf_type_skip_modifiers(btf, type, NULL);
11295 	if (percpu) {
11296 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11297 		aux->btf_var.btf = btf;
11298 		aux->btf_var.btf_id = type;
11299 	} else if (!btf_type_is_struct(t)) {
11300 		const struct btf_type *ret;
11301 		const char *tname;
11302 		u32 tsize;
11303 
11304 		/* resolve the type size of ksym. */
11305 		ret = btf_resolve_size(btf, t, &tsize);
11306 		if (IS_ERR(ret)) {
11307 			tname = btf_name_by_offset(btf, t->name_off);
11308 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11309 				tname, PTR_ERR(ret));
11310 			err = -EINVAL;
11311 			goto err_put;
11312 		}
11313 		aux->btf_var.reg_type = PTR_TO_MEM;
11314 		aux->btf_var.mem_size = tsize;
11315 	} else {
11316 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11317 		aux->btf_var.btf = btf;
11318 		aux->btf_var.btf_id = type;
11319 	}
11320 
11321 	/* check whether we recorded this BTF (and maybe module) already */
11322 	for (i = 0; i < env->used_btf_cnt; i++) {
11323 		if (env->used_btfs[i].btf == btf) {
11324 			btf_put(btf);
11325 			return 0;
11326 		}
11327 	}
11328 
11329 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11330 		err = -E2BIG;
11331 		goto err_put;
11332 	}
11333 
11334 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11335 	btf_mod->btf = btf;
11336 	btf_mod->module = NULL;
11337 
11338 	/* if we reference variables from kernel module, bump its refcount */
11339 	if (btf_is_module(btf)) {
11340 		btf_mod->module = btf_try_get_module(btf);
11341 		if (!btf_mod->module) {
11342 			err = -ENXIO;
11343 			goto err_put;
11344 		}
11345 	}
11346 
11347 	env->used_btf_cnt++;
11348 
11349 	return 0;
11350 err_put:
11351 	btf_put(btf);
11352 	return err;
11353 }
11354 
11355 static int check_map_prealloc(struct bpf_map *map)
11356 {
11357 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11358 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11359 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11360 		!(map->map_flags & BPF_F_NO_PREALLOC);
11361 }
11362 
11363 static bool is_tracing_prog_type(enum bpf_prog_type type)
11364 {
11365 	switch (type) {
11366 	case BPF_PROG_TYPE_KPROBE:
11367 	case BPF_PROG_TYPE_TRACEPOINT:
11368 	case BPF_PROG_TYPE_PERF_EVENT:
11369 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11370 		return true;
11371 	default:
11372 		return false;
11373 	}
11374 }
11375 
11376 static bool is_preallocated_map(struct bpf_map *map)
11377 {
11378 	if (!check_map_prealloc(map))
11379 		return false;
11380 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11381 		return false;
11382 	return true;
11383 }
11384 
11385 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11386 					struct bpf_map *map,
11387 					struct bpf_prog *prog)
11388 
11389 {
11390 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11391 	/*
11392 	 * Validate that trace type programs use preallocated hash maps.
11393 	 *
11394 	 * For programs attached to PERF events this is mandatory as the
11395 	 * perf NMI can hit any arbitrary code sequence.
11396 	 *
11397 	 * All other trace types using preallocated hash maps are unsafe as
11398 	 * well because tracepoint or kprobes can be inside locked regions
11399 	 * of the memory allocator or at a place where a recursion into the
11400 	 * memory allocator would see inconsistent state.
11401 	 *
11402 	 * On RT enabled kernels run-time allocation of all trace type
11403 	 * programs is strictly prohibited due to lock type constraints. On
11404 	 * !RT kernels it is allowed for backwards compatibility reasons for
11405 	 * now, but warnings are emitted so developers are made aware of
11406 	 * the unsafety and can fix their programs before this is enforced.
11407 	 */
11408 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11409 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11410 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11411 			return -EINVAL;
11412 		}
11413 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11414 			verbose(env, "trace type programs can only use preallocated hash map\n");
11415 			return -EINVAL;
11416 		}
11417 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11418 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11419 	}
11420 
11421 	if (map_value_has_spin_lock(map)) {
11422 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11423 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11424 			return -EINVAL;
11425 		}
11426 
11427 		if (is_tracing_prog_type(prog_type)) {
11428 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11429 			return -EINVAL;
11430 		}
11431 
11432 		if (prog->aux->sleepable) {
11433 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11434 			return -EINVAL;
11435 		}
11436 	}
11437 
11438 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11439 	    !bpf_offload_prog_map_match(prog, map)) {
11440 		verbose(env, "offload device mismatch between prog and map\n");
11441 		return -EINVAL;
11442 	}
11443 
11444 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11445 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11446 		return -EINVAL;
11447 	}
11448 
11449 	if (prog->aux->sleepable)
11450 		switch (map->map_type) {
11451 		case BPF_MAP_TYPE_HASH:
11452 		case BPF_MAP_TYPE_LRU_HASH:
11453 		case BPF_MAP_TYPE_ARRAY:
11454 		case BPF_MAP_TYPE_PERCPU_HASH:
11455 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11456 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11457 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11458 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11459 			if (!is_preallocated_map(map)) {
11460 				verbose(env,
11461 					"Sleepable programs can only use preallocated maps\n");
11462 				return -EINVAL;
11463 			}
11464 			break;
11465 		case BPF_MAP_TYPE_RINGBUF:
11466 			break;
11467 		default:
11468 			verbose(env,
11469 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11470 			return -EINVAL;
11471 		}
11472 
11473 	return 0;
11474 }
11475 
11476 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11477 {
11478 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11479 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11480 }
11481 
11482 /* find and rewrite pseudo imm in ld_imm64 instructions:
11483  *
11484  * 1. if it accesses map FD, replace it with actual map pointer.
11485  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11486  *
11487  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11488  */
11489 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11490 {
11491 	struct bpf_insn *insn = env->prog->insnsi;
11492 	int insn_cnt = env->prog->len;
11493 	int i, j, err;
11494 
11495 	err = bpf_prog_calc_tag(env->prog);
11496 	if (err)
11497 		return err;
11498 
11499 	for (i = 0; i < insn_cnt; i++, insn++) {
11500 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11501 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11502 			verbose(env, "BPF_LDX uses reserved fields\n");
11503 			return -EINVAL;
11504 		}
11505 
11506 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11507 			struct bpf_insn_aux_data *aux;
11508 			struct bpf_map *map;
11509 			struct fd f;
11510 			u64 addr;
11511 			u32 fd;
11512 
11513 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11514 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11515 			    insn[1].off != 0) {
11516 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11517 				return -EINVAL;
11518 			}
11519 
11520 			if (insn[0].src_reg == 0)
11521 				/* valid generic load 64-bit imm */
11522 				goto next_insn;
11523 
11524 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11525 				aux = &env->insn_aux_data[i];
11526 				err = check_pseudo_btf_id(env, insn, aux);
11527 				if (err)
11528 					return err;
11529 				goto next_insn;
11530 			}
11531 
11532 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11533 				aux = &env->insn_aux_data[i];
11534 				aux->ptr_type = PTR_TO_FUNC;
11535 				goto next_insn;
11536 			}
11537 
11538 			/* In final convert_pseudo_ld_imm64() step, this is
11539 			 * converted into regular 64-bit imm load insn.
11540 			 */
11541 			switch (insn[0].src_reg) {
11542 			case BPF_PSEUDO_MAP_VALUE:
11543 			case BPF_PSEUDO_MAP_IDX_VALUE:
11544 				break;
11545 			case BPF_PSEUDO_MAP_FD:
11546 			case BPF_PSEUDO_MAP_IDX:
11547 				if (insn[1].imm == 0)
11548 					break;
11549 				fallthrough;
11550 			default:
11551 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11552 				return -EINVAL;
11553 			}
11554 
11555 			switch (insn[0].src_reg) {
11556 			case BPF_PSEUDO_MAP_IDX_VALUE:
11557 			case BPF_PSEUDO_MAP_IDX:
11558 				if (bpfptr_is_null(env->fd_array)) {
11559 					verbose(env, "fd_idx without fd_array is invalid\n");
11560 					return -EPROTO;
11561 				}
11562 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11563 							    insn[0].imm * sizeof(fd),
11564 							    sizeof(fd)))
11565 					return -EFAULT;
11566 				break;
11567 			default:
11568 				fd = insn[0].imm;
11569 				break;
11570 			}
11571 
11572 			f = fdget(fd);
11573 			map = __bpf_map_get(f);
11574 			if (IS_ERR(map)) {
11575 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11576 					insn[0].imm);
11577 				return PTR_ERR(map);
11578 			}
11579 
11580 			err = check_map_prog_compatibility(env, map, env->prog);
11581 			if (err) {
11582 				fdput(f);
11583 				return err;
11584 			}
11585 
11586 			aux = &env->insn_aux_data[i];
11587 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11588 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11589 				addr = (unsigned long)map;
11590 			} else {
11591 				u32 off = insn[1].imm;
11592 
11593 				if (off >= BPF_MAX_VAR_OFF) {
11594 					verbose(env, "direct value offset of %u is not allowed\n", off);
11595 					fdput(f);
11596 					return -EINVAL;
11597 				}
11598 
11599 				if (!map->ops->map_direct_value_addr) {
11600 					verbose(env, "no direct value access support for this map type\n");
11601 					fdput(f);
11602 					return -EINVAL;
11603 				}
11604 
11605 				err = map->ops->map_direct_value_addr(map, &addr, off);
11606 				if (err) {
11607 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11608 						map->value_size, off);
11609 					fdput(f);
11610 					return err;
11611 				}
11612 
11613 				aux->map_off = off;
11614 				addr += off;
11615 			}
11616 
11617 			insn[0].imm = (u32)addr;
11618 			insn[1].imm = addr >> 32;
11619 
11620 			/* check whether we recorded this map already */
11621 			for (j = 0; j < env->used_map_cnt; j++) {
11622 				if (env->used_maps[j] == map) {
11623 					aux->map_index = j;
11624 					fdput(f);
11625 					goto next_insn;
11626 				}
11627 			}
11628 
11629 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11630 				fdput(f);
11631 				return -E2BIG;
11632 			}
11633 
11634 			/* hold the map. If the program is rejected by verifier,
11635 			 * the map will be released by release_maps() or it
11636 			 * will be used by the valid program until it's unloaded
11637 			 * and all maps are released in free_used_maps()
11638 			 */
11639 			bpf_map_inc(map);
11640 
11641 			aux->map_index = env->used_map_cnt;
11642 			env->used_maps[env->used_map_cnt++] = map;
11643 
11644 			if (bpf_map_is_cgroup_storage(map) &&
11645 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11646 				verbose(env, "only one cgroup storage of each type is allowed\n");
11647 				fdput(f);
11648 				return -EBUSY;
11649 			}
11650 
11651 			fdput(f);
11652 next_insn:
11653 			insn++;
11654 			i++;
11655 			continue;
11656 		}
11657 
11658 		/* Basic sanity check before we invest more work here. */
11659 		if (!bpf_opcode_in_insntable(insn->code)) {
11660 			verbose(env, "unknown opcode %02x\n", insn->code);
11661 			return -EINVAL;
11662 		}
11663 	}
11664 
11665 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11666 	 * 'struct bpf_map *' into a register instead of user map_fd.
11667 	 * These pointers will be used later by verifier to validate map access.
11668 	 */
11669 	return 0;
11670 }
11671 
11672 /* drop refcnt of maps used by the rejected program */
11673 static void release_maps(struct bpf_verifier_env *env)
11674 {
11675 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11676 			     env->used_map_cnt);
11677 }
11678 
11679 /* drop refcnt of maps used by the rejected program */
11680 static void release_btfs(struct bpf_verifier_env *env)
11681 {
11682 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11683 			     env->used_btf_cnt);
11684 }
11685 
11686 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11687 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11688 {
11689 	struct bpf_insn *insn = env->prog->insnsi;
11690 	int insn_cnt = env->prog->len;
11691 	int i;
11692 
11693 	for (i = 0; i < insn_cnt; i++, insn++) {
11694 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11695 			continue;
11696 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11697 			continue;
11698 		insn->src_reg = 0;
11699 	}
11700 }
11701 
11702 /* single env->prog->insni[off] instruction was replaced with the range
11703  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11704  * [0, off) and [off, end) to new locations, so the patched range stays zero
11705  */
11706 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11707 				 struct bpf_insn_aux_data *new_data,
11708 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
11709 {
11710 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11711 	struct bpf_insn *insn = new_prog->insnsi;
11712 	u32 old_seen = old_data[off].seen;
11713 	u32 prog_len;
11714 	int i;
11715 
11716 	/* aux info at OFF always needs adjustment, no matter fast path
11717 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11718 	 * original insn at old prog.
11719 	 */
11720 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11721 
11722 	if (cnt == 1)
11723 		return;
11724 	prog_len = new_prog->len;
11725 
11726 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11727 	memcpy(new_data + off + cnt - 1, old_data + off,
11728 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11729 	for (i = off; i < off + cnt - 1; i++) {
11730 		/* Expand insni[off]'s seen count to the patched range. */
11731 		new_data[i].seen = old_seen;
11732 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11733 	}
11734 	env->insn_aux_data = new_data;
11735 	vfree(old_data);
11736 }
11737 
11738 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11739 {
11740 	int i;
11741 
11742 	if (len == 1)
11743 		return;
11744 	/* NOTE: fake 'exit' subprog should be updated as well. */
11745 	for (i = 0; i <= env->subprog_cnt; i++) {
11746 		if (env->subprog_info[i].start <= off)
11747 			continue;
11748 		env->subprog_info[i].start += len - 1;
11749 	}
11750 }
11751 
11752 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11753 {
11754 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11755 	int i, sz = prog->aux->size_poke_tab;
11756 	struct bpf_jit_poke_descriptor *desc;
11757 
11758 	for (i = 0; i < sz; i++) {
11759 		desc = &tab[i];
11760 		if (desc->insn_idx <= off)
11761 			continue;
11762 		desc->insn_idx += len - 1;
11763 	}
11764 }
11765 
11766 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11767 					    const struct bpf_insn *patch, u32 len)
11768 {
11769 	struct bpf_prog *new_prog;
11770 	struct bpf_insn_aux_data *new_data = NULL;
11771 
11772 	if (len > 1) {
11773 		new_data = vzalloc(array_size(env->prog->len + len - 1,
11774 					      sizeof(struct bpf_insn_aux_data)));
11775 		if (!new_data)
11776 			return NULL;
11777 	}
11778 
11779 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11780 	if (IS_ERR(new_prog)) {
11781 		if (PTR_ERR(new_prog) == -ERANGE)
11782 			verbose(env,
11783 				"insn %d cannot be patched due to 16-bit range\n",
11784 				env->insn_aux_data[off].orig_idx);
11785 		vfree(new_data);
11786 		return NULL;
11787 	}
11788 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
11789 	adjust_subprog_starts(env, off, len);
11790 	adjust_poke_descs(new_prog, off, len);
11791 	return new_prog;
11792 }
11793 
11794 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11795 					      u32 off, u32 cnt)
11796 {
11797 	int i, j;
11798 
11799 	/* find first prog starting at or after off (first to remove) */
11800 	for (i = 0; i < env->subprog_cnt; i++)
11801 		if (env->subprog_info[i].start >= off)
11802 			break;
11803 	/* find first prog starting at or after off + cnt (first to stay) */
11804 	for (j = i; j < env->subprog_cnt; j++)
11805 		if (env->subprog_info[j].start >= off + cnt)
11806 			break;
11807 	/* if j doesn't start exactly at off + cnt, we are just removing
11808 	 * the front of previous prog
11809 	 */
11810 	if (env->subprog_info[j].start != off + cnt)
11811 		j--;
11812 
11813 	if (j > i) {
11814 		struct bpf_prog_aux *aux = env->prog->aux;
11815 		int move;
11816 
11817 		/* move fake 'exit' subprog as well */
11818 		move = env->subprog_cnt + 1 - j;
11819 
11820 		memmove(env->subprog_info + i,
11821 			env->subprog_info + j,
11822 			sizeof(*env->subprog_info) * move);
11823 		env->subprog_cnt -= j - i;
11824 
11825 		/* remove func_info */
11826 		if (aux->func_info) {
11827 			move = aux->func_info_cnt - j;
11828 
11829 			memmove(aux->func_info + i,
11830 				aux->func_info + j,
11831 				sizeof(*aux->func_info) * move);
11832 			aux->func_info_cnt -= j - i;
11833 			/* func_info->insn_off is set after all code rewrites,
11834 			 * in adjust_btf_func() - no need to adjust
11835 			 */
11836 		}
11837 	} else {
11838 		/* convert i from "first prog to remove" to "first to adjust" */
11839 		if (env->subprog_info[i].start == off)
11840 			i++;
11841 	}
11842 
11843 	/* update fake 'exit' subprog as well */
11844 	for (; i <= env->subprog_cnt; i++)
11845 		env->subprog_info[i].start -= cnt;
11846 
11847 	return 0;
11848 }
11849 
11850 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11851 				      u32 cnt)
11852 {
11853 	struct bpf_prog *prog = env->prog;
11854 	u32 i, l_off, l_cnt, nr_linfo;
11855 	struct bpf_line_info *linfo;
11856 
11857 	nr_linfo = prog->aux->nr_linfo;
11858 	if (!nr_linfo)
11859 		return 0;
11860 
11861 	linfo = prog->aux->linfo;
11862 
11863 	/* find first line info to remove, count lines to be removed */
11864 	for (i = 0; i < nr_linfo; i++)
11865 		if (linfo[i].insn_off >= off)
11866 			break;
11867 
11868 	l_off = i;
11869 	l_cnt = 0;
11870 	for (; i < nr_linfo; i++)
11871 		if (linfo[i].insn_off < off + cnt)
11872 			l_cnt++;
11873 		else
11874 			break;
11875 
11876 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11877 	 * last removed linfo.  prog is already modified, so prog->len == off
11878 	 * means no live instructions after (tail of the program was removed).
11879 	 */
11880 	if (prog->len != off && l_cnt &&
11881 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11882 		l_cnt--;
11883 		linfo[--i].insn_off = off + cnt;
11884 	}
11885 
11886 	/* remove the line info which refer to the removed instructions */
11887 	if (l_cnt) {
11888 		memmove(linfo + l_off, linfo + i,
11889 			sizeof(*linfo) * (nr_linfo - i));
11890 
11891 		prog->aux->nr_linfo -= l_cnt;
11892 		nr_linfo = prog->aux->nr_linfo;
11893 	}
11894 
11895 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11896 	for (i = l_off; i < nr_linfo; i++)
11897 		linfo[i].insn_off -= cnt;
11898 
11899 	/* fix up all subprogs (incl. 'exit') which start >= off */
11900 	for (i = 0; i <= env->subprog_cnt; i++)
11901 		if (env->subprog_info[i].linfo_idx > l_off) {
11902 			/* program may have started in the removed region but
11903 			 * may not be fully removed
11904 			 */
11905 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11906 				env->subprog_info[i].linfo_idx -= l_cnt;
11907 			else
11908 				env->subprog_info[i].linfo_idx = l_off;
11909 		}
11910 
11911 	return 0;
11912 }
11913 
11914 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11915 {
11916 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11917 	unsigned int orig_prog_len = env->prog->len;
11918 	int err;
11919 
11920 	if (bpf_prog_is_dev_bound(env->prog->aux))
11921 		bpf_prog_offload_remove_insns(env, off, cnt);
11922 
11923 	err = bpf_remove_insns(env->prog, off, cnt);
11924 	if (err)
11925 		return err;
11926 
11927 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11928 	if (err)
11929 		return err;
11930 
11931 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11932 	if (err)
11933 		return err;
11934 
11935 	memmove(aux_data + off,	aux_data + off + cnt,
11936 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11937 
11938 	return 0;
11939 }
11940 
11941 /* The verifier does more data flow analysis than llvm and will not
11942  * explore branches that are dead at run time. Malicious programs can
11943  * have dead code too. Therefore replace all dead at-run-time code
11944  * with 'ja -1'.
11945  *
11946  * Just nops are not optimal, e.g. if they would sit at the end of the
11947  * program and through another bug we would manage to jump there, then
11948  * we'd execute beyond program memory otherwise. Returning exception
11949  * code also wouldn't work since we can have subprogs where the dead
11950  * code could be located.
11951  */
11952 static void sanitize_dead_code(struct bpf_verifier_env *env)
11953 {
11954 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11955 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11956 	struct bpf_insn *insn = env->prog->insnsi;
11957 	const int insn_cnt = env->prog->len;
11958 	int i;
11959 
11960 	for (i = 0; i < insn_cnt; i++) {
11961 		if (aux_data[i].seen)
11962 			continue;
11963 		memcpy(insn + i, &trap, sizeof(trap));
11964 		aux_data[i].zext_dst = false;
11965 	}
11966 }
11967 
11968 static bool insn_is_cond_jump(u8 code)
11969 {
11970 	u8 op;
11971 
11972 	if (BPF_CLASS(code) == BPF_JMP32)
11973 		return true;
11974 
11975 	if (BPF_CLASS(code) != BPF_JMP)
11976 		return false;
11977 
11978 	op = BPF_OP(code);
11979 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11980 }
11981 
11982 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11983 {
11984 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11985 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11986 	struct bpf_insn *insn = env->prog->insnsi;
11987 	const int insn_cnt = env->prog->len;
11988 	int i;
11989 
11990 	for (i = 0; i < insn_cnt; i++, insn++) {
11991 		if (!insn_is_cond_jump(insn->code))
11992 			continue;
11993 
11994 		if (!aux_data[i + 1].seen)
11995 			ja.off = insn->off;
11996 		else if (!aux_data[i + 1 + insn->off].seen)
11997 			ja.off = 0;
11998 		else
11999 			continue;
12000 
12001 		if (bpf_prog_is_dev_bound(env->prog->aux))
12002 			bpf_prog_offload_replace_insn(env, i, &ja);
12003 
12004 		memcpy(insn, &ja, sizeof(ja));
12005 	}
12006 }
12007 
12008 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12009 {
12010 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12011 	int insn_cnt = env->prog->len;
12012 	int i, err;
12013 
12014 	for (i = 0; i < insn_cnt; i++) {
12015 		int j;
12016 
12017 		j = 0;
12018 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12019 			j++;
12020 		if (!j)
12021 			continue;
12022 
12023 		err = verifier_remove_insns(env, i, j);
12024 		if (err)
12025 			return err;
12026 		insn_cnt = env->prog->len;
12027 	}
12028 
12029 	return 0;
12030 }
12031 
12032 static int opt_remove_nops(struct bpf_verifier_env *env)
12033 {
12034 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12035 	struct bpf_insn *insn = env->prog->insnsi;
12036 	int insn_cnt = env->prog->len;
12037 	int i, err;
12038 
12039 	for (i = 0; i < insn_cnt; i++) {
12040 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12041 			continue;
12042 
12043 		err = verifier_remove_insns(env, i, 1);
12044 		if (err)
12045 			return err;
12046 		insn_cnt--;
12047 		i--;
12048 	}
12049 
12050 	return 0;
12051 }
12052 
12053 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12054 					 const union bpf_attr *attr)
12055 {
12056 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12057 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12058 	int i, patch_len, delta = 0, len = env->prog->len;
12059 	struct bpf_insn *insns = env->prog->insnsi;
12060 	struct bpf_prog *new_prog;
12061 	bool rnd_hi32;
12062 
12063 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12064 	zext_patch[1] = BPF_ZEXT_REG(0);
12065 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12066 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12067 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12068 	for (i = 0; i < len; i++) {
12069 		int adj_idx = i + delta;
12070 		struct bpf_insn insn;
12071 		int load_reg;
12072 
12073 		insn = insns[adj_idx];
12074 		load_reg = insn_def_regno(&insn);
12075 		if (!aux[adj_idx].zext_dst) {
12076 			u8 code, class;
12077 			u32 imm_rnd;
12078 
12079 			if (!rnd_hi32)
12080 				continue;
12081 
12082 			code = insn.code;
12083 			class = BPF_CLASS(code);
12084 			if (load_reg == -1)
12085 				continue;
12086 
12087 			/* NOTE: arg "reg" (the fourth one) is only used for
12088 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12089 			 *       here.
12090 			 */
12091 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12092 				if (class == BPF_LD &&
12093 				    BPF_MODE(code) == BPF_IMM)
12094 					i++;
12095 				continue;
12096 			}
12097 
12098 			/* ctx load could be transformed into wider load. */
12099 			if (class == BPF_LDX &&
12100 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12101 				continue;
12102 
12103 			imm_rnd = get_random_int();
12104 			rnd_hi32_patch[0] = insn;
12105 			rnd_hi32_patch[1].imm = imm_rnd;
12106 			rnd_hi32_patch[3].dst_reg = load_reg;
12107 			patch = rnd_hi32_patch;
12108 			patch_len = 4;
12109 			goto apply_patch_buffer;
12110 		}
12111 
12112 		/* Add in an zero-extend instruction if a) the JIT has requested
12113 		 * it or b) it's a CMPXCHG.
12114 		 *
12115 		 * The latter is because: BPF_CMPXCHG always loads a value into
12116 		 * R0, therefore always zero-extends. However some archs'
12117 		 * equivalent instruction only does this load when the
12118 		 * comparison is successful. This detail of CMPXCHG is
12119 		 * orthogonal to the general zero-extension behaviour of the
12120 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12121 		 */
12122 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12123 			continue;
12124 
12125 		if (WARN_ON(load_reg == -1)) {
12126 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12127 			return -EFAULT;
12128 		}
12129 
12130 		zext_patch[0] = insn;
12131 		zext_patch[1].dst_reg = load_reg;
12132 		zext_patch[1].src_reg = load_reg;
12133 		patch = zext_patch;
12134 		patch_len = 2;
12135 apply_patch_buffer:
12136 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12137 		if (!new_prog)
12138 			return -ENOMEM;
12139 		env->prog = new_prog;
12140 		insns = new_prog->insnsi;
12141 		aux = env->insn_aux_data;
12142 		delta += patch_len - 1;
12143 	}
12144 
12145 	return 0;
12146 }
12147 
12148 /* convert load instructions that access fields of a context type into a
12149  * sequence of instructions that access fields of the underlying structure:
12150  *     struct __sk_buff    -> struct sk_buff
12151  *     struct bpf_sock_ops -> struct sock
12152  */
12153 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12154 {
12155 	const struct bpf_verifier_ops *ops = env->ops;
12156 	int i, cnt, size, ctx_field_size, delta = 0;
12157 	const int insn_cnt = env->prog->len;
12158 	struct bpf_insn insn_buf[16], *insn;
12159 	u32 target_size, size_default, off;
12160 	struct bpf_prog *new_prog;
12161 	enum bpf_access_type type;
12162 	bool is_narrower_load;
12163 
12164 	if (ops->gen_prologue || env->seen_direct_write) {
12165 		if (!ops->gen_prologue) {
12166 			verbose(env, "bpf verifier is misconfigured\n");
12167 			return -EINVAL;
12168 		}
12169 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12170 					env->prog);
12171 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12172 			verbose(env, "bpf verifier is misconfigured\n");
12173 			return -EINVAL;
12174 		} else if (cnt) {
12175 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12176 			if (!new_prog)
12177 				return -ENOMEM;
12178 
12179 			env->prog = new_prog;
12180 			delta += cnt - 1;
12181 		}
12182 	}
12183 
12184 	if (bpf_prog_is_dev_bound(env->prog->aux))
12185 		return 0;
12186 
12187 	insn = env->prog->insnsi + delta;
12188 
12189 	for (i = 0; i < insn_cnt; i++, insn++) {
12190 		bpf_convert_ctx_access_t convert_ctx_access;
12191 		bool ctx_access;
12192 
12193 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12194 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12195 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12196 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12197 			type = BPF_READ;
12198 			ctx_access = true;
12199 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12200 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12201 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12202 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12203 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12204 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12205 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12206 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12207 			type = BPF_WRITE;
12208 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12209 		} else {
12210 			continue;
12211 		}
12212 
12213 		if (type == BPF_WRITE &&
12214 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12215 			struct bpf_insn patch[] = {
12216 				*insn,
12217 				BPF_ST_NOSPEC(),
12218 			};
12219 
12220 			cnt = ARRAY_SIZE(patch);
12221 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12222 			if (!new_prog)
12223 				return -ENOMEM;
12224 
12225 			delta    += cnt - 1;
12226 			env->prog = new_prog;
12227 			insn      = new_prog->insnsi + i + delta;
12228 			continue;
12229 		}
12230 
12231 		if (!ctx_access)
12232 			continue;
12233 
12234 		switch (env->insn_aux_data[i + delta].ptr_type) {
12235 		case PTR_TO_CTX:
12236 			if (!ops->convert_ctx_access)
12237 				continue;
12238 			convert_ctx_access = ops->convert_ctx_access;
12239 			break;
12240 		case PTR_TO_SOCKET:
12241 		case PTR_TO_SOCK_COMMON:
12242 			convert_ctx_access = bpf_sock_convert_ctx_access;
12243 			break;
12244 		case PTR_TO_TCP_SOCK:
12245 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12246 			break;
12247 		case PTR_TO_XDP_SOCK:
12248 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12249 			break;
12250 		case PTR_TO_BTF_ID:
12251 			if (type == BPF_READ) {
12252 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12253 					BPF_SIZE((insn)->code);
12254 				env->prog->aux->num_exentries++;
12255 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12256 				verbose(env, "Writes through BTF pointers are not allowed\n");
12257 				return -EINVAL;
12258 			}
12259 			continue;
12260 		default:
12261 			continue;
12262 		}
12263 
12264 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12265 		size = BPF_LDST_BYTES(insn);
12266 
12267 		/* If the read access is a narrower load of the field,
12268 		 * convert to a 4/8-byte load, to minimum program type specific
12269 		 * convert_ctx_access changes. If conversion is successful,
12270 		 * we will apply proper mask to the result.
12271 		 */
12272 		is_narrower_load = size < ctx_field_size;
12273 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12274 		off = insn->off;
12275 		if (is_narrower_load) {
12276 			u8 size_code;
12277 
12278 			if (type == BPF_WRITE) {
12279 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12280 				return -EINVAL;
12281 			}
12282 
12283 			size_code = BPF_H;
12284 			if (ctx_field_size == 4)
12285 				size_code = BPF_W;
12286 			else if (ctx_field_size == 8)
12287 				size_code = BPF_DW;
12288 
12289 			insn->off = off & ~(size_default - 1);
12290 			insn->code = BPF_LDX | BPF_MEM | size_code;
12291 		}
12292 
12293 		target_size = 0;
12294 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12295 					 &target_size);
12296 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12297 		    (ctx_field_size && !target_size)) {
12298 			verbose(env, "bpf verifier is misconfigured\n");
12299 			return -EINVAL;
12300 		}
12301 
12302 		if (is_narrower_load && size < target_size) {
12303 			u8 shift = bpf_ctx_narrow_access_offset(
12304 				off, size, size_default) * 8;
12305 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12306 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12307 				return -EINVAL;
12308 			}
12309 			if (ctx_field_size <= 4) {
12310 				if (shift)
12311 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12312 									insn->dst_reg,
12313 									shift);
12314 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12315 								(1 << size * 8) - 1);
12316 			} else {
12317 				if (shift)
12318 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12319 									insn->dst_reg,
12320 									shift);
12321 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12322 								(1ULL << size * 8) - 1);
12323 			}
12324 		}
12325 
12326 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12327 		if (!new_prog)
12328 			return -ENOMEM;
12329 
12330 		delta += cnt - 1;
12331 
12332 		/* keep walking new program and skip insns we just inserted */
12333 		env->prog = new_prog;
12334 		insn      = new_prog->insnsi + i + delta;
12335 	}
12336 
12337 	return 0;
12338 }
12339 
12340 static int jit_subprogs(struct bpf_verifier_env *env)
12341 {
12342 	struct bpf_prog *prog = env->prog, **func, *tmp;
12343 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12344 	struct bpf_map *map_ptr;
12345 	struct bpf_insn *insn;
12346 	void *old_bpf_func;
12347 	int err, num_exentries;
12348 
12349 	if (env->subprog_cnt <= 1)
12350 		return 0;
12351 
12352 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12353 		if (bpf_pseudo_func(insn)) {
12354 			env->insn_aux_data[i].call_imm = insn->imm;
12355 			/* subprog is encoded in insn[1].imm */
12356 			continue;
12357 		}
12358 
12359 		if (!bpf_pseudo_call(insn))
12360 			continue;
12361 		/* Upon error here we cannot fall back to interpreter but
12362 		 * need a hard reject of the program. Thus -EFAULT is
12363 		 * propagated in any case.
12364 		 */
12365 		subprog = find_subprog(env, i + insn->imm + 1);
12366 		if (subprog < 0) {
12367 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12368 				  i + insn->imm + 1);
12369 			return -EFAULT;
12370 		}
12371 		/* temporarily remember subprog id inside insn instead of
12372 		 * aux_data, since next loop will split up all insns into funcs
12373 		 */
12374 		insn->off = subprog;
12375 		/* remember original imm in case JIT fails and fallback
12376 		 * to interpreter will be needed
12377 		 */
12378 		env->insn_aux_data[i].call_imm = insn->imm;
12379 		/* point imm to __bpf_call_base+1 from JITs point of view */
12380 		insn->imm = 1;
12381 	}
12382 
12383 	err = bpf_prog_alloc_jited_linfo(prog);
12384 	if (err)
12385 		goto out_undo_insn;
12386 
12387 	err = -ENOMEM;
12388 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12389 	if (!func)
12390 		goto out_undo_insn;
12391 
12392 	for (i = 0; i < env->subprog_cnt; i++) {
12393 		subprog_start = subprog_end;
12394 		subprog_end = env->subprog_info[i + 1].start;
12395 
12396 		len = subprog_end - subprog_start;
12397 		/* bpf_prog_run() doesn't call subprogs directly,
12398 		 * hence main prog stats include the runtime of subprogs.
12399 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12400 		 * func[i]->stats will never be accessed and stays NULL
12401 		 */
12402 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12403 		if (!func[i])
12404 			goto out_free;
12405 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12406 		       len * sizeof(struct bpf_insn));
12407 		func[i]->type = prog->type;
12408 		func[i]->len = len;
12409 		if (bpf_prog_calc_tag(func[i]))
12410 			goto out_free;
12411 		func[i]->is_func = 1;
12412 		func[i]->aux->func_idx = i;
12413 		/* Below members will be freed only at prog->aux */
12414 		func[i]->aux->btf = prog->aux->btf;
12415 		func[i]->aux->func_info = prog->aux->func_info;
12416 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12417 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12418 
12419 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12420 			struct bpf_jit_poke_descriptor *poke;
12421 
12422 			poke = &prog->aux->poke_tab[j];
12423 			if (poke->insn_idx < subprog_end &&
12424 			    poke->insn_idx >= subprog_start)
12425 				poke->aux = func[i]->aux;
12426 		}
12427 
12428 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12429 		 * Long term would need debug info to populate names
12430 		 */
12431 		func[i]->aux->name[0] = 'F';
12432 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12433 		func[i]->jit_requested = 1;
12434 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12435 		func[i]->aux->linfo = prog->aux->linfo;
12436 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12437 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12438 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12439 		num_exentries = 0;
12440 		insn = func[i]->insnsi;
12441 		for (j = 0; j < func[i]->len; j++, insn++) {
12442 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12443 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12444 				num_exentries++;
12445 		}
12446 		func[i]->aux->num_exentries = num_exentries;
12447 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12448 		func[i] = bpf_int_jit_compile(func[i]);
12449 		if (!func[i]->jited) {
12450 			err = -ENOTSUPP;
12451 			goto out_free;
12452 		}
12453 		cond_resched();
12454 	}
12455 
12456 	/* at this point all bpf functions were successfully JITed
12457 	 * now populate all bpf_calls with correct addresses and
12458 	 * run last pass of JIT
12459 	 */
12460 	for (i = 0; i < env->subprog_cnt; i++) {
12461 		insn = func[i]->insnsi;
12462 		for (j = 0; j < func[i]->len; j++, insn++) {
12463 			if (bpf_pseudo_func(insn)) {
12464 				subprog = insn[1].imm;
12465 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12466 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12467 				continue;
12468 			}
12469 			if (!bpf_pseudo_call(insn))
12470 				continue;
12471 			subprog = insn->off;
12472 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12473 				    __bpf_call_base;
12474 		}
12475 
12476 		/* we use the aux data to keep a list of the start addresses
12477 		 * of the JITed images for each function in the program
12478 		 *
12479 		 * for some architectures, such as powerpc64, the imm field
12480 		 * might not be large enough to hold the offset of the start
12481 		 * address of the callee's JITed image from __bpf_call_base
12482 		 *
12483 		 * in such cases, we can lookup the start address of a callee
12484 		 * by using its subprog id, available from the off field of
12485 		 * the call instruction, as an index for this list
12486 		 */
12487 		func[i]->aux->func = func;
12488 		func[i]->aux->func_cnt = env->subprog_cnt;
12489 	}
12490 	for (i = 0; i < env->subprog_cnt; i++) {
12491 		old_bpf_func = func[i]->bpf_func;
12492 		tmp = bpf_int_jit_compile(func[i]);
12493 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12494 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12495 			err = -ENOTSUPP;
12496 			goto out_free;
12497 		}
12498 		cond_resched();
12499 	}
12500 
12501 	/* finally lock prog and jit images for all functions and
12502 	 * populate kallsysm
12503 	 */
12504 	for (i = 0; i < env->subprog_cnt; i++) {
12505 		bpf_prog_lock_ro(func[i]);
12506 		bpf_prog_kallsyms_add(func[i]);
12507 	}
12508 
12509 	/* Last step: make now unused interpreter insns from main
12510 	 * prog consistent for later dump requests, so they can
12511 	 * later look the same as if they were interpreted only.
12512 	 */
12513 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12514 		if (bpf_pseudo_func(insn)) {
12515 			insn[0].imm = env->insn_aux_data[i].call_imm;
12516 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12517 			continue;
12518 		}
12519 		if (!bpf_pseudo_call(insn))
12520 			continue;
12521 		insn->off = env->insn_aux_data[i].call_imm;
12522 		subprog = find_subprog(env, i + insn->off + 1);
12523 		insn->imm = subprog;
12524 	}
12525 
12526 	prog->jited = 1;
12527 	prog->bpf_func = func[0]->bpf_func;
12528 	prog->aux->func = func;
12529 	prog->aux->func_cnt = env->subprog_cnt;
12530 	bpf_prog_jit_attempt_done(prog);
12531 	return 0;
12532 out_free:
12533 	/* We failed JIT'ing, so at this point we need to unregister poke
12534 	 * descriptors from subprogs, so that kernel is not attempting to
12535 	 * patch it anymore as we're freeing the subprog JIT memory.
12536 	 */
12537 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12538 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12539 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12540 	}
12541 	/* At this point we're guaranteed that poke descriptors are not
12542 	 * live anymore. We can just unlink its descriptor table as it's
12543 	 * released with the main prog.
12544 	 */
12545 	for (i = 0; i < env->subprog_cnt; i++) {
12546 		if (!func[i])
12547 			continue;
12548 		func[i]->aux->poke_tab = NULL;
12549 		bpf_jit_free(func[i]);
12550 	}
12551 	kfree(func);
12552 out_undo_insn:
12553 	/* cleanup main prog to be interpreted */
12554 	prog->jit_requested = 0;
12555 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12556 		if (!bpf_pseudo_call(insn))
12557 			continue;
12558 		insn->off = 0;
12559 		insn->imm = env->insn_aux_data[i].call_imm;
12560 	}
12561 	bpf_prog_jit_attempt_done(prog);
12562 	return err;
12563 }
12564 
12565 static int fixup_call_args(struct bpf_verifier_env *env)
12566 {
12567 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12568 	struct bpf_prog *prog = env->prog;
12569 	struct bpf_insn *insn = prog->insnsi;
12570 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12571 	int i, depth;
12572 #endif
12573 	int err = 0;
12574 
12575 	if (env->prog->jit_requested &&
12576 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12577 		err = jit_subprogs(env);
12578 		if (err == 0)
12579 			return 0;
12580 		if (err == -EFAULT)
12581 			return err;
12582 	}
12583 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12584 	if (has_kfunc_call) {
12585 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12586 		return -EINVAL;
12587 	}
12588 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12589 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12590 		 * have to be rejected, since interpreter doesn't support them yet.
12591 		 */
12592 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12593 		return -EINVAL;
12594 	}
12595 	for (i = 0; i < prog->len; i++, insn++) {
12596 		if (bpf_pseudo_func(insn)) {
12597 			/* When JIT fails the progs with callback calls
12598 			 * have to be rejected, since interpreter doesn't support them yet.
12599 			 */
12600 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12601 			return -EINVAL;
12602 		}
12603 
12604 		if (!bpf_pseudo_call(insn))
12605 			continue;
12606 		depth = get_callee_stack_depth(env, insn, i);
12607 		if (depth < 0)
12608 			return depth;
12609 		bpf_patch_call_args(insn, depth);
12610 	}
12611 	err = 0;
12612 #endif
12613 	return err;
12614 }
12615 
12616 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12617 			    struct bpf_insn *insn)
12618 {
12619 	const struct bpf_kfunc_desc *desc;
12620 
12621 	/* insn->imm has the btf func_id. Replace it with
12622 	 * an address (relative to __bpf_base_call).
12623 	 */
12624 	desc = find_kfunc_desc(env->prog, insn->imm);
12625 	if (!desc) {
12626 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12627 			insn->imm);
12628 		return -EFAULT;
12629 	}
12630 
12631 	insn->imm = desc->imm;
12632 
12633 	return 0;
12634 }
12635 
12636 /* Do various post-verification rewrites in a single program pass.
12637  * These rewrites simplify JIT and interpreter implementations.
12638  */
12639 static int do_misc_fixups(struct bpf_verifier_env *env)
12640 {
12641 	struct bpf_prog *prog = env->prog;
12642 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12643 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12644 	struct bpf_insn *insn = prog->insnsi;
12645 	const struct bpf_func_proto *fn;
12646 	const int insn_cnt = prog->len;
12647 	const struct bpf_map_ops *ops;
12648 	struct bpf_insn_aux_data *aux;
12649 	struct bpf_insn insn_buf[16];
12650 	struct bpf_prog *new_prog;
12651 	struct bpf_map *map_ptr;
12652 	int i, ret, cnt, delta = 0;
12653 
12654 	for (i = 0; i < insn_cnt; i++, insn++) {
12655 		/* Make divide-by-zero exceptions impossible. */
12656 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12657 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12658 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12659 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12660 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12661 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12662 			struct bpf_insn *patchlet;
12663 			struct bpf_insn chk_and_div[] = {
12664 				/* [R,W]x div 0 -> 0 */
12665 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12666 					     BPF_JNE | BPF_K, insn->src_reg,
12667 					     0, 2, 0),
12668 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12669 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12670 				*insn,
12671 			};
12672 			struct bpf_insn chk_and_mod[] = {
12673 				/* [R,W]x mod 0 -> [R,W]x */
12674 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12675 					     BPF_JEQ | BPF_K, insn->src_reg,
12676 					     0, 1 + (is64 ? 0 : 1), 0),
12677 				*insn,
12678 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12679 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12680 			};
12681 
12682 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12683 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12684 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12685 
12686 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12687 			if (!new_prog)
12688 				return -ENOMEM;
12689 
12690 			delta    += cnt - 1;
12691 			env->prog = prog = new_prog;
12692 			insn      = new_prog->insnsi + i + delta;
12693 			continue;
12694 		}
12695 
12696 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12697 		if (BPF_CLASS(insn->code) == BPF_LD &&
12698 		    (BPF_MODE(insn->code) == BPF_ABS ||
12699 		     BPF_MODE(insn->code) == BPF_IND)) {
12700 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12701 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12702 				verbose(env, "bpf verifier is misconfigured\n");
12703 				return -EINVAL;
12704 			}
12705 
12706 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12707 			if (!new_prog)
12708 				return -ENOMEM;
12709 
12710 			delta    += cnt - 1;
12711 			env->prog = prog = new_prog;
12712 			insn      = new_prog->insnsi + i + delta;
12713 			continue;
12714 		}
12715 
12716 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12717 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12718 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12719 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12720 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12721 			struct bpf_insn *patch = &insn_buf[0];
12722 			bool issrc, isneg, isimm;
12723 			u32 off_reg;
12724 
12725 			aux = &env->insn_aux_data[i + delta];
12726 			if (!aux->alu_state ||
12727 			    aux->alu_state == BPF_ALU_NON_POINTER)
12728 				continue;
12729 
12730 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12731 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12732 				BPF_ALU_SANITIZE_SRC;
12733 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12734 
12735 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12736 			if (isimm) {
12737 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12738 			} else {
12739 				if (isneg)
12740 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12741 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12742 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12743 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12744 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12745 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12746 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12747 			}
12748 			if (!issrc)
12749 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12750 			insn->src_reg = BPF_REG_AX;
12751 			if (isneg)
12752 				insn->code = insn->code == code_add ?
12753 					     code_sub : code_add;
12754 			*patch++ = *insn;
12755 			if (issrc && isneg && !isimm)
12756 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12757 			cnt = patch - insn_buf;
12758 
12759 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12760 			if (!new_prog)
12761 				return -ENOMEM;
12762 
12763 			delta    += cnt - 1;
12764 			env->prog = prog = new_prog;
12765 			insn      = new_prog->insnsi + i + delta;
12766 			continue;
12767 		}
12768 
12769 		if (insn->code != (BPF_JMP | BPF_CALL))
12770 			continue;
12771 		if (insn->src_reg == BPF_PSEUDO_CALL)
12772 			continue;
12773 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12774 			ret = fixup_kfunc_call(env, insn);
12775 			if (ret)
12776 				return ret;
12777 			continue;
12778 		}
12779 
12780 		if (insn->imm == BPF_FUNC_get_route_realm)
12781 			prog->dst_needed = 1;
12782 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12783 			bpf_user_rnd_init_once();
12784 		if (insn->imm == BPF_FUNC_override_return)
12785 			prog->kprobe_override = 1;
12786 		if (insn->imm == BPF_FUNC_tail_call) {
12787 			/* If we tail call into other programs, we
12788 			 * cannot make any assumptions since they can
12789 			 * be replaced dynamically during runtime in
12790 			 * the program array.
12791 			 */
12792 			prog->cb_access = 1;
12793 			if (!allow_tail_call_in_subprogs(env))
12794 				prog->aux->stack_depth = MAX_BPF_STACK;
12795 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12796 
12797 			/* mark bpf_tail_call as different opcode to avoid
12798 			 * conditional branch in the interpreter for every normal
12799 			 * call and to prevent accidental JITing by JIT compiler
12800 			 * that doesn't support bpf_tail_call yet
12801 			 */
12802 			insn->imm = 0;
12803 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12804 
12805 			aux = &env->insn_aux_data[i + delta];
12806 			if (env->bpf_capable && !expect_blinding &&
12807 			    prog->jit_requested &&
12808 			    !bpf_map_key_poisoned(aux) &&
12809 			    !bpf_map_ptr_poisoned(aux) &&
12810 			    !bpf_map_ptr_unpriv(aux)) {
12811 				struct bpf_jit_poke_descriptor desc = {
12812 					.reason = BPF_POKE_REASON_TAIL_CALL,
12813 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12814 					.tail_call.key = bpf_map_key_immediate(aux),
12815 					.insn_idx = i + delta,
12816 				};
12817 
12818 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12819 				if (ret < 0) {
12820 					verbose(env, "adding tail call poke descriptor failed\n");
12821 					return ret;
12822 				}
12823 
12824 				insn->imm = ret + 1;
12825 				continue;
12826 			}
12827 
12828 			if (!bpf_map_ptr_unpriv(aux))
12829 				continue;
12830 
12831 			/* instead of changing every JIT dealing with tail_call
12832 			 * emit two extra insns:
12833 			 * if (index >= max_entries) goto out;
12834 			 * index &= array->index_mask;
12835 			 * to avoid out-of-bounds cpu speculation
12836 			 */
12837 			if (bpf_map_ptr_poisoned(aux)) {
12838 				verbose(env, "tail_call abusing map_ptr\n");
12839 				return -EINVAL;
12840 			}
12841 
12842 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12843 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12844 						  map_ptr->max_entries, 2);
12845 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12846 						    container_of(map_ptr,
12847 								 struct bpf_array,
12848 								 map)->index_mask);
12849 			insn_buf[2] = *insn;
12850 			cnt = 3;
12851 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12852 			if (!new_prog)
12853 				return -ENOMEM;
12854 
12855 			delta    += cnt - 1;
12856 			env->prog = prog = new_prog;
12857 			insn      = new_prog->insnsi + i + delta;
12858 			continue;
12859 		}
12860 
12861 		if (insn->imm == BPF_FUNC_timer_set_callback) {
12862 			/* The verifier will process callback_fn as many times as necessary
12863 			 * with different maps and the register states prepared by
12864 			 * set_timer_callback_state will be accurate.
12865 			 *
12866 			 * The following use case is valid:
12867 			 *   map1 is shared by prog1, prog2, prog3.
12868 			 *   prog1 calls bpf_timer_init for some map1 elements
12869 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
12870 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
12871 			 *   prog3 calls bpf_timer_start for some map1 elements.
12872 			 *     Those that were not both bpf_timer_init-ed and
12873 			 *     bpf_timer_set_callback-ed will return -EINVAL.
12874 			 */
12875 			struct bpf_insn ld_addrs[2] = {
12876 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
12877 			};
12878 
12879 			insn_buf[0] = ld_addrs[0];
12880 			insn_buf[1] = ld_addrs[1];
12881 			insn_buf[2] = *insn;
12882 			cnt = 3;
12883 
12884 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12885 			if (!new_prog)
12886 				return -ENOMEM;
12887 
12888 			delta    += cnt - 1;
12889 			env->prog = prog = new_prog;
12890 			insn      = new_prog->insnsi + i + delta;
12891 			goto patch_call_imm;
12892 		}
12893 
12894 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12895 		 * and other inlining handlers are currently limited to 64 bit
12896 		 * only.
12897 		 */
12898 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12899 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12900 		     insn->imm == BPF_FUNC_map_update_elem ||
12901 		     insn->imm == BPF_FUNC_map_delete_elem ||
12902 		     insn->imm == BPF_FUNC_map_push_elem   ||
12903 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12904 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12905 		     insn->imm == BPF_FUNC_redirect_map)) {
12906 			aux = &env->insn_aux_data[i + delta];
12907 			if (bpf_map_ptr_poisoned(aux))
12908 				goto patch_call_imm;
12909 
12910 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12911 			ops = map_ptr->ops;
12912 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12913 			    ops->map_gen_lookup) {
12914 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12915 				if (cnt == -EOPNOTSUPP)
12916 					goto patch_map_ops_generic;
12917 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12918 					verbose(env, "bpf verifier is misconfigured\n");
12919 					return -EINVAL;
12920 				}
12921 
12922 				new_prog = bpf_patch_insn_data(env, i + delta,
12923 							       insn_buf, cnt);
12924 				if (!new_prog)
12925 					return -ENOMEM;
12926 
12927 				delta    += cnt - 1;
12928 				env->prog = prog = new_prog;
12929 				insn      = new_prog->insnsi + i + delta;
12930 				continue;
12931 			}
12932 
12933 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12934 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12935 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12936 				     (int (*)(struct bpf_map *map, void *key))NULL));
12937 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12938 				     (int (*)(struct bpf_map *map, void *key, void *value,
12939 					      u64 flags))NULL));
12940 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12941 				     (int (*)(struct bpf_map *map, void *value,
12942 					      u64 flags))NULL));
12943 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12944 				     (int (*)(struct bpf_map *map, void *value))NULL));
12945 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12946 				     (int (*)(struct bpf_map *map, void *value))NULL));
12947 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12948 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12949 
12950 patch_map_ops_generic:
12951 			switch (insn->imm) {
12952 			case BPF_FUNC_map_lookup_elem:
12953 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12954 					    __bpf_call_base;
12955 				continue;
12956 			case BPF_FUNC_map_update_elem:
12957 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12958 					    __bpf_call_base;
12959 				continue;
12960 			case BPF_FUNC_map_delete_elem:
12961 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12962 					    __bpf_call_base;
12963 				continue;
12964 			case BPF_FUNC_map_push_elem:
12965 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12966 					    __bpf_call_base;
12967 				continue;
12968 			case BPF_FUNC_map_pop_elem:
12969 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12970 					    __bpf_call_base;
12971 				continue;
12972 			case BPF_FUNC_map_peek_elem:
12973 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12974 					    __bpf_call_base;
12975 				continue;
12976 			case BPF_FUNC_redirect_map:
12977 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12978 					    __bpf_call_base;
12979 				continue;
12980 			}
12981 
12982 			goto patch_call_imm;
12983 		}
12984 
12985 		/* Implement bpf_jiffies64 inline. */
12986 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12987 		    insn->imm == BPF_FUNC_jiffies64) {
12988 			struct bpf_insn ld_jiffies_addr[2] = {
12989 				BPF_LD_IMM64(BPF_REG_0,
12990 					     (unsigned long)&jiffies),
12991 			};
12992 
12993 			insn_buf[0] = ld_jiffies_addr[0];
12994 			insn_buf[1] = ld_jiffies_addr[1];
12995 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12996 						  BPF_REG_0, 0);
12997 			cnt = 3;
12998 
12999 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13000 						       cnt);
13001 			if (!new_prog)
13002 				return -ENOMEM;
13003 
13004 			delta    += cnt - 1;
13005 			env->prog = prog = new_prog;
13006 			insn      = new_prog->insnsi + i + delta;
13007 			continue;
13008 		}
13009 
13010 		/* Implement bpf_get_func_ip inline. */
13011 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13012 		    insn->imm == BPF_FUNC_get_func_ip) {
13013 			/* Load IP address from ctx - 8 */
13014 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13015 
13016 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13017 			if (!new_prog)
13018 				return -ENOMEM;
13019 
13020 			env->prog = prog = new_prog;
13021 			insn      = new_prog->insnsi + i + delta;
13022 			continue;
13023 		}
13024 
13025 patch_call_imm:
13026 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13027 		/* all functions that have prototype and verifier allowed
13028 		 * programs to call them, must be real in-kernel functions
13029 		 */
13030 		if (!fn->func) {
13031 			verbose(env,
13032 				"kernel subsystem misconfigured func %s#%d\n",
13033 				func_id_name(insn->imm), insn->imm);
13034 			return -EFAULT;
13035 		}
13036 		insn->imm = fn->func - __bpf_call_base;
13037 	}
13038 
13039 	/* Since poke tab is now finalized, publish aux to tracker. */
13040 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13041 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13042 		if (!map_ptr->ops->map_poke_track ||
13043 		    !map_ptr->ops->map_poke_untrack ||
13044 		    !map_ptr->ops->map_poke_run) {
13045 			verbose(env, "bpf verifier is misconfigured\n");
13046 			return -EINVAL;
13047 		}
13048 
13049 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13050 		if (ret < 0) {
13051 			verbose(env, "tracking tail call prog failed\n");
13052 			return ret;
13053 		}
13054 	}
13055 
13056 	sort_kfunc_descs_by_imm(env->prog);
13057 
13058 	return 0;
13059 }
13060 
13061 static void free_states(struct bpf_verifier_env *env)
13062 {
13063 	struct bpf_verifier_state_list *sl, *sln;
13064 	int i;
13065 
13066 	sl = env->free_list;
13067 	while (sl) {
13068 		sln = sl->next;
13069 		free_verifier_state(&sl->state, false);
13070 		kfree(sl);
13071 		sl = sln;
13072 	}
13073 	env->free_list = NULL;
13074 
13075 	if (!env->explored_states)
13076 		return;
13077 
13078 	for (i = 0; i < state_htab_size(env); i++) {
13079 		sl = env->explored_states[i];
13080 
13081 		while (sl) {
13082 			sln = sl->next;
13083 			free_verifier_state(&sl->state, false);
13084 			kfree(sl);
13085 			sl = sln;
13086 		}
13087 		env->explored_states[i] = NULL;
13088 	}
13089 }
13090 
13091 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13092 {
13093 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13094 	struct bpf_verifier_state *state;
13095 	struct bpf_reg_state *regs;
13096 	int ret, i;
13097 
13098 	env->prev_linfo = NULL;
13099 	env->pass_cnt++;
13100 
13101 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13102 	if (!state)
13103 		return -ENOMEM;
13104 	state->curframe = 0;
13105 	state->speculative = false;
13106 	state->branches = 1;
13107 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13108 	if (!state->frame[0]) {
13109 		kfree(state);
13110 		return -ENOMEM;
13111 	}
13112 	env->cur_state = state;
13113 	init_func_state(env, state->frame[0],
13114 			BPF_MAIN_FUNC /* callsite */,
13115 			0 /* frameno */,
13116 			subprog);
13117 
13118 	regs = state->frame[state->curframe]->regs;
13119 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13120 		ret = btf_prepare_func_args(env, subprog, regs);
13121 		if (ret)
13122 			goto out;
13123 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13124 			if (regs[i].type == PTR_TO_CTX)
13125 				mark_reg_known_zero(env, regs, i);
13126 			else if (regs[i].type == SCALAR_VALUE)
13127 				mark_reg_unknown(env, regs, i);
13128 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13129 				const u32 mem_size = regs[i].mem_size;
13130 
13131 				mark_reg_known_zero(env, regs, i);
13132 				regs[i].mem_size = mem_size;
13133 				regs[i].id = ++env->id_gen;
13134 			}
13135 		}
13136 	} else {
13137 		/* 1st arg to a function */
13138 		regs[BPF_REG_1].type = PTR_TO_CTX;
13139 		mark_reg_known_zero(env, regs, BPF_REG_1);
13140 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13141 		if (ret == -EFAULT)
13142 			/* unlikely verifier bug. abort.
13143 			 * ret == 0 and ret < 0 are sadly acceptable for
13144 			 * main() function due to backward compatibility.
13145 			 * Like socket filter program may be written as:
13146 			 * int bpf_prog(struct pt_regs *ctx)
13147 			 * and never dereference that ctx in the program.
13148 			 * 'struct pt_regs' is a type mismatch for socket
13149 			 * filter that should be using 'struct __sk_buff'.
13150 			 */
13151 			goto out;
13152 	}
13153 
13154 	ret = do_check(env);
13155 out:
13156 	/* check for NULL is necessary, since cur_state can be freed inside
13157 	 * do_check() under memory pressure.
13158 	 */
13159 	if (env->cur_state) {
13160 		free_verifier_state(env->cur_state, true);
13161 		env->cur_state = NULL;
13162 	}
13163 	while (!pop_stack(env, NULL, NULL, false));
13164 	if (!ret && pop_log)
13165 		bpf_vlog_reset(&env->log, 0);
13166 	free_states(env);
13167 	return ret;
13168 }
13169 
13170 /* Verify all global functions in a BPF program one by one based on their BTF.
13171  * All global functions must pass verification. Otherwise the whole program is rejected.
13172  * Consider:
13173  * int bar(int);
13174  * int foo(int f)
13175  * {
13176  *    return bar(f);
13177  * }
13178  * int bar(int b)
13179  * {
13180  *    ...
13181  * }
13182  * foo() will be verified first for R1=any_scalar_value. During verification it
13183  * will be assumed that bar() already verified successfully and call to bar()
13184  * from foo() will be checked for type match only. Later bar() will be verified
13185  * independently to check that it's safe for R1=any_scalar_value.
13186  */
13187 static int do_check_subprogs(struct bpf_verifier_env *env)
13188 {
13189 	struct bpf_prog_aux *aux = env->prog->aux;
13190 	int i, ret;
13191 
13192 	if (!aux->func_info)
13193 		return 0;
13194 
13195 	for (i = 1; i < env->subprog_cnt; i++) {
13196 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13197 			continue;
13198 		env->insn_idx = env->subprog_info[i].start;
13199 		WARN_ON_ONCE(env->insn_idx == 0);
13200 		ret = do_check_common(env, i);
13201 		if (ret) {
13202 			return ret;
13203 		} else if (env->log.level & BPF_LOG_LEVEL) {
13204 			verbose(env,
13205 				"Func#%d is safe for any args that match its prototype\n",
13206 				i);
13207 		}
13208 	}
13209 	return 0;
13210 }
13211 
13212 static int do_check_main(struct bpf_verifier_env *env)
13213 {
13214 	int ret;
13215 
13216 	env->insn_idx = 0;
13217 	ret = do_check_common(env, 0);
13218 	if (!ret)
13219 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13220 	return ret;
13221 }
13222 
13223 
13224 static void print_verification_stats(struct bpf_verifier_env *env)
13225 {
13226 	int i;
13227 
13228 	if (env->log.level & BPF_LOG_STATS) {
13229 		verbose(env, "verification time %lld usec\n",
13230 			div_u64(env->verification_time, 1000));
13231 		verbose(env, "stack depth ");
13232 		for (i = 0; i < env->subprog_cnt; i++) {
13233 			u32 depth = env->subprog_info[i].stack_depth;
13234 
13235 			verbose(env, "%d", depth);
13236 			if (i + 1 < env->subprog_cnt)
13237 				verbose(env, "+");
13238 		}
13239 		verbose(env, "\n");
13240 	}
13241 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13242 		"total_states %d peak_states %d mark_read %d\n",
13243 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13244 		env->max_states_per_insn, env->total_states,
13245 		env->peak_states, env->longest_mark_read_walk);
13246 }
13247 
13248 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13249 {
13250 	const struct btf_type *t, *func_proto;
13251 	const struct bpf_struct_ops *st_ops;
13252 	const struct btf_member *member;
13253 	struct bpf_prog *prog = env->prog;
13254 	u32 btf_id, member_idx;
13255 	const char *mname;
13256 
13257 	if (!prog->gpl_compatible) {
13258 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13259 		return -EINVAL;
13260 	}
13261 
13262 	btf_id = prog->aux->attach_btf_id;
13263 	st_ops = bpf_struct_ops_find(btf_id);
13264 	if (!st_ops) {
13265 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13266 			btf_id);
13267 		return -ENOTSUPP;
13268 	}
13269 
13270 	t = st_ops->type;
13271 	member_idx = prog->expected_attach_type;
13272 	if (member_idx >= btf_type_vlen(t)) {
13273 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13274 			member_idx, st_ops->name);
13275 		return -EINVAL;
13276 	}
13277 
13278 	member = &btf_type_member(t)[member_idx];
13279 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13280 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13281 					       NULL);
13282 	if (!func_proto) {
13283 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13284 			mname, member_idx, st_ops->name);
13285 		return -EINVAL;
13286 	}
13287 
13288 	if (st_ops->check_member) {
13289 		int err = st_ops->check_member(t, member);
13290 
13291 		if (err) {
13292 			verbose(env, "attach to unsupported member %s of struct %s\n",
13293 				mname, st_ops->name);
13294 			return err;
13295 		}
13296 	}
13297 
13298 	prog->aux->attach_func_proto = func_proto;
13299 	prog->aux->attach_func_name = mname;
13300 	env->ops = st_ops->verifier_ops;
13301 
13302 	return 0;
13303 }
13304 #define SECURITY_PREFIX "security_"
13305 
13306 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13307 {
13308 	if (within_error_injection_list(addr) ||
13309 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13310 		return 0;
13311 
13312 	return -EINVAL;
13313 }
13314 
13315 /* list of non-sleepable functions that are otherwise on
13316  * ALLOW_ERROR_INJECTION list
13317  */
13318 BTF_SET_START(btf_non_sleepable_error_inject)
13319 /* Three functions below can be called from sleepable and non-sleepable context.
13320  * Assume non-sleepable from bpf safety point of view.
13321  */
13322 BTF_ID(func, __add_to_page_cache_locked)
13323 BTF_ID(func, should_fail_alloc_page)
13324 BTF_ID(func, should_failslab)
13325 BTF_SET_END(btf_non_sleepable_error_inject)
13326 
13327 static int check_non_sleepable_error_inject(u32 btf_id)
13328 {
13329 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13330 }
13331 
13332 int bpf_check_attach_target(struct bpf_verifier_log *log,
13333 			    const struct bpf_prog *prog,
13334 			    const struct bpf_prog *tgt_prog,
13335 			    u32 btf_id,
13336 			    struct bpf_attach_target_info *tgt_info)
13337 {
13338 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13339 	const char prefix[] = "btf_trace_";
13340 	int ret = 0, subprog = -1, i;
13341 	const struct btf_type *t;
13342 	bool conservative = true;
13343 	const char *tname;
13344 	struct btf *btf;
13345 	long addr = 0;
13346 
13347 	if (!btf_id) {
13348 		bpf_log(log, "Tracing programs must provide btf_id\n");
13349 		return -EINVAL;
13350 	}
13351 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13352 	if (!btf) {
13353 		bpf_log(log,
13354 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13355 		return -EINVAL;
13356 	}
13357 	t = btf_type_by_id(btf, btf_id);
13358 	if (!t) {
13359 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13360 		return -EINVAL;
13361 	}
13362 	tname = btf_name_by_offset(btf, t->name_off);
13363 	if (!tname) {
13364 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13365 		return -EINVAL;
13366 	}
13367 	if (tgt_prog) {
13368 		struct bpf_prog_aux *aux = tgt_prog->aux;
13369 
13370 		for (i = 0; i < aux->func_info_cnt; i++)
13371 			if (aux->func_info[i].type_id == btf_id) {
13372 				subprog = i;
13373 				break;
13374 			}
13375 		if (subprog == -1) {
13376 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13377 			return -EINVAL;
13378 		}
13379 		conservative = aux->func_info_aux[subprog].unreliable;
13380 		if (prog_extension) {
13381 			if (conservative) {
13382 				bpf_log(log,
13383 					"Cannot replace static functions\n");
13384 				return -EINVAL;
13385 			}
13386 			if (!prog->jit_requested) {
13387 				bpf_log(log,
13388 					"Extension programs should be JITed\n");
13389 				return -EINVAL;
13390 			}
13391 		}
13392 		if (!tgt_prog->jited) {
13393 			bpf_log(log, "Can attach to only JITed progs\n");
13394 			return -EINVAL;
13395 		}
13396 		if (tgt_prog->type == prog->type) {
13397 			/* Cannot fentry/fexit another fentry/fexit program.
13398 			 * Cannot attach program extension to another extension.
13399 			 * It's ok to attach fentry/fexit to extension program.
13400 			 */
13401 			bpf_log(log, "Cannot recursively attach\n");
13402 			return -EINVAL;
13403 		}
13404 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13405 		    prog_extension &&
13406 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13407 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13408 			/* Program extensions can extend all program types
13409 			 * except fentry/fexit. The reason is the following.
13410 			 * The fentry/fexit programs are used for performance
13411 			 * analysis, stats and can be attached to any program
13412 			 * type except themselves. When extension program is
13413 			 * replacing XDP function it is necessary to allow
13414 			 * performance analysis of all functions. Both original
13415 			 * XDP program and its program extension. Hence
13416 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13417 			 * allowed. If extending of fentry/fexit was allowed it
13418 			 * would be possible to create long call chain
13419 			 * fentry->extension->fentry->extension beyond
13420 			 * reasonable stack size. Hence extending fentry is not
13421 			 * allowed.
13422 			 */
13423 			bpf_log(log, "Cannot extend fentry/fexit\n");
13424 			return -EINVAL;
13425 		}
13426 	} else {
13427 		if (prog_extension) {
13428 			bpf_log(log, "Cannot replace kernel functions\n");
13429 			return -EINVAL;
13430 		}
13431 	}
13432 
13433 	switch (prog->expected_attach_type) {
13434 	case BPF_TRACE_RAW_TP:
13435 		if (tgt_prog) {
13436 			bpf_log(log,
13437 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13438 			return -EINVAL;
13439 		}
13440 		if (!btf_type_is_typedef(t)) {
13441 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13442 				btf_id);
13443 			return -EINVAL;
13444 		}
13445 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13446 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13447 				btf_id, tname);
13448 			return -EINVAL;
13449 		}
13450 		tname += sizeof(prefix) - 1;
13451 		t = btf_type_by_id(btf, t->type);
13452 		if (!btf_type_is_ptr(t))
13453 			/* should never happen in valid vmlinux build */
13454 			return -EINVAL;
13455 		t = btf_type_by_id(btf, t->type);
13456 		if (!btf_type_is_func_proto(t))
13457 			/* should never happen in valid vmlinux build */
13458 			return -EINVAL;
13459 
13460 		break;
13461 	case BPF_TRACE_ITER:
13462 		if (!btf_type_is_func(t)) {
13463 			bpf_log(log, "attach_btf_id %u is not a function\n",
13464 				btf_id);
13465 			return -EINVAL;
13466 		}
13467 		t = btf_type_by_id(btf, t->type);
13468 		if (!btf_type_is_func_proto(t))
13469 			return -EINVAL;
13470 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13471 		if (ret)
13472 			return ret;
13473 		break;
13474 	default:
13475 		if (!prog_extension)
13476 			return -EINVAL;
13477 		fallthrough;
13478 	case BPF_MODIFY_RETURN:
13479 	case BPF_LSM_MAC:
13480 	case BPF_TRACE_FENTRY:
13481 	case BPF_TRACE_FEXIT:
13482 		if (!btf_type_is_func(t)) {
13483 			bpf_log(log, "attach_btf_id %u is not a function\n",
13484 				btf_id);
13485 			return -EINVAL;
13486 		}
13487 		if (prog_extension &&
13488 		    btf_check_type_match(log, prog, btf, t))
13489 			return -EINVAL;
13490 		t = btf_type_by_id(btf, t->type);
13491 		if (!btf_type_is_func_proto(t))
13492 			return -EINVAL;
13493 
13494 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13495 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13496 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13497 			return -EINVAL;
13498 
13499 		if (tgt_prog && conservative)
13500 			t = NULL;
13501 
13502 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13503 		if (ret < 0)
13504 			return ret;
13505 
13506 		if (tgt_prog) {
13507 			if (subprog == 0)
13508 				addr = (long) tgt_prog->bpf_func;
13509 			else
13510 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13511 		} else {
13512 			addr = kallsyms_lookup_name(tname);
13513 			if (!addr) {
13514 				bpf_log(log,
13515 					"The address of function %s cannot be found\n",
13516 					tname);
13517 				return -ENOENT;
13518 			}
13519 		}
13520 
13521 		if (prog->aux->sleepable) {
13522 			ret = -EINVAL;
13523 			switch (prog->type) {
13524 			case BPF_PROG_TYPE_TRACING:
13525 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13526 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13527 				 */
13528 				if (!check_non_sleepable_error_inject(btf_id) &&
13529 				    within_error_injection_list(addr))
13530 					ret = 0;
13531 				break;
13532 			case BPF_PROG_TYPE_LSM:
13533 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13534 				 * Only some of them are sleepable.
13535 				 */
13536 				if (bpf_lsm_is_sleepable_hook(btf_id))
13537 					ret = 0;
13538 				break;
13539 			default:
13540 				break;
13541 			}
13542 			if (ret) {
13543 				bpf_log(log, "%s is not sleepable\n", tname);
13544 				return ret;
13545 			}
13546 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13547 			if (tgt_prog) {
13548 				bpf_log(log, "can't modify return codes of BPF programs\n");
13549 				return -EINVAL;
13550 			}
13551 			ret = check_attach_modify_return(addr, tname);
13552 			if (ret) {
13553 				bpf_log(log, "%s() is not modifiable\n", tname);
13554 				return ret;
13555 			}
13556 		}
13557 
13558 		break;
13559 	}
13560 	tgt_info->tgt_addr = addr;
13561 	tgt_info->tgt_name = tname;
13562 	tgt_info->tgt_type = t;
13563 	return 0;
13564 }
13565 
13566 BTF_SET_START(btf_id_deny)
13567 BTF_ID_UNUSED
13568 #ifdef CONFIG_SMP
13569 BTF_ID(func, migrate_disable)
13570 BTF_ID(func, migrate_enable)
13571 #endif
13572 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13573 BTF_ID(func, rcu_read_unlock_strict)
13574 #endif
13575 BTF_SET_END(btf_id_deny)
13576 
13577 static int check_attach_btf_id(struct bpf_verifier_env *env)
13578 {
13579 	struct bpf_prog *prog = env->prog;
13580 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13581 	struct bpf_attach_target_info tgt_info = {};
13582 	u32 btf_id = prog->aux->attach_btf_id;
13583 	struct bpf_trampoline *tr;
13584 	int ret;
13585 	u64 key;
13586 
13587 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13588 		if (prog->aux->sleepable)
13589 			/* attach_btf_id checked to be zero already */
13590 			return 0;
13591 		verbose(env, "Syscall programs can only be sleepable\n");
13592 		return -EINVAL;
13593 	}
13594 
13595 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13596 	    prog->type != BPF_PROG_TYPE_LSM) {
13597 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13598 		return -EINVAL;
13599 	}
13600 
13601 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13602 		return check_struct_ops_btf_id(env);
13603 
13604 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13605 	    prog->type != BPF_PROG_TYPE_LSM &&
13606 	    prog->type != BPF_PROG_TYPE_EXT)
13607 		return 0;
13608 
13609 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13610 	if (ret)
13611 		return ret;
13612 
13613 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13614 		/* to make freplace equivalent to their targets, they need to
13615 		 * inherit env->ops and expected_attach_type for the rest of the
13616 		 * verification
13617 		 */
13618 		env->ops = bpf_verifier_ops[tgt_prog->type];
13619 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13620 	}
13621 
13622 	/* store info about the attachment target that will be used later */
13623 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13624 	prog->aux->attach_func_name = tgt_info.tgt_name;
13625 
13626 	if (tgt_prog) {
13627 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13628 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13629 	}
13630 
13631 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13632 		prog->aux->attach_btf_trace = true;
13633 		return 0;
13634 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13635 		if (!bpf_iter_prog_supported(prog))
13636 			return -EINVAL;
13637 		return 0;
13638 	}
13639 
13640 	if (prog->type == BPF_PROG_TYPE_LSM) {
13641 		ret = bpf_lsm_verify_prog(&env->log, prog);
13642 		if (ret < 0)
13643 			return ret;
13644 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13645 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13646 		return -EINVAL;
13647 	}
13648 
13649 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13650 	tr = bpf_trampoline_get(key, &tgt_info);
13651 	if (!tr)
13652 		return -ENOMEM;
13653 
13654 	prog->aux->dst_trampoline = tr;
13655 	return 0;
13656 }
13657 
13658 struct btf *bpf_get_btf_vmlinux(void)
13659 {
13660 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13661 		mutex_lock(&bpf_verifier_lock);
13662 		if (!btf_vmlinux)
13663 			btf_vmlinux = btf_parse_vmlinux();
13664 		mutex_unlock(&bpf_verifier_lock);
13665 	}
13666 	return btf_vmlinux;
13667 }
13668 
13669 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13670 {
13671 	u64 start_time = ktime_get_ns();
13672 	struct bpf_verifier_env *env;
13673 	struct bpf_verifier_log *log;
13674 	int i, len, ret = -EINVAL;
13675 	bool is_priv;
13676 
13677 	/* no program is valid */
13678 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13679 		return -EINVAL;
13680 
13681 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13682 	 * allocate/free it every time bpf_check() is called
13683 	 */
13684 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13685 	if (!env)
13686 		return -ENOMEM;
13687 	log = &env->log;
13688 
13689 	len = (*prog)->len;
13690 	env->insn_aux_data =
13691 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13692 	ret = -ENOMEM;
13693 	if (!env->insn_aux_data)
13694 		goto err_free_env;
13695 	for (i = 0; i < len; i++)
13696 		env->insn_aux_data[i].orig_idx = i;
13697 	env->prog = *prog;
13698 	env->ops = bpf_verifier_ops[env->prog->type];
13699 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13700 	is_priv = bpf_capable();
13701 
13702 	bpf_get_btf_vmlinux();
13703 
13704 	/* grab the mutex to protect few globals used by verifier */
13705 	if (!is_priv)
13706 		mutex_lock(&bpf_verifier_lock);
13707 
13708 	if (attr->log_level || attr->log_buf || attr->log_size) {
13709 		/* user requested verbose verifier output
13710 		 * and supplied buffer to store the verification trace
13711 		 */
13712 		log->level = attr->log_level;
13713 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13714 		log->len_total = attr->log_size;
13715 
13716 		ret = -EINVAL;
13717 		/* log attributes have to be sane */
13718 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13719 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13720 			goto err_unlock;
13721 	}
13722 
13723 	if (IS_ERR(btf_vmlinux)) {
13724 		/* Either gcc or pahole or kernel are broken. */
13725 		verbose(env, "in-kernel BTF is malformed\n");
13726 		ret = PTR_ERR(btf_vmlinux);
13727 		goto skip_full_check;
13728 	}
13729 
13730 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13731 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13732 		env->strict_alignment = true;
13733 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13734 		env->strict_alignment = false;
13735 
13736 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13737 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13738 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13739 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13740 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13741 	env->bpf_capable = bpf_capable();
13742 
13743 	if (is_priv)
13744 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13745 
13746 	env->explored_states = kvcalloc(state_htab_size(env),
13747 				       sizeof(struct bpf_verifier_state_list *),
13748 				       GFP_USER);
13749 	ret = -ENOMEM;
13750 	if (!env->explored_states)
13751 		goto skip_full_check;
13752 
13753 	ret = add_subprog_and_kfunc(env);
13754 	if (ret < 0)
13755 		goto skip_full_check;
13756 
13757 	ret = check_subprogs(env);
13758 	if (ret < 0)
13759 		goto skip_full_check;
13760 
13761 	ret = check_btf_info(env, attr, uattr);
13762 	if (ret < 0)
13763 		goto skip_full_check;
13764 
13765 	ret = check_attach_btf_id(env);
13766 	if (ret)
13767 		goto skip_full_check;
13768 
13769 	ret = resolve_pseudo_ldimm64(env);
13770 	if (ret < 0)
13771 		goto skip_full_check;
13772 
13773 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13774 		ret = bpf_prog_offload_verifier_prep(env->prog);
13775 		if (ret)
13776 			goto skip_full_check;
13777 	}
13778 
13779 	ret = check_cfg(env);
13780 	if (ret < 0)
13781 		goto skip_full_check;
13782 
13783 	ret = do_check_subprogs(env);
13784 	ret = ret ?: do_check_main(env);
13785 
13786 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13787 		ret = bpf_prog_offload_finalize(env);
13788 
13789 skip_full_check:
13790 	kvfree(env->explored_states);
13791 
13792 	if (ret == 0)
13793 		ret = check_max_stack_depth(env);
13794 
13795 	/* instruction rewrites happen after this point */
13796 	if (is_priv) {
13797 		if (ret == 0)
13798 			opt_hard_wire_dead_code_branches(env);
13799 		if (ret == 0)
13800 			ret = opt_remove_dead_code(env);
13801 		if (ret == 0)
13802 			ret = opt_remove_nops(env);
13803 	} else {
13804 		if (ret == 0)
13805 			sanitize_dead_code(env);
13806 	}
13807 
13808 	if (ret == 0)
13809 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13810 		ret = convert_ctx_accesses(env);
13811 
13812 	if (ret == 0)
13813 		ret = do_misc_fixups(env);
13814 
13815 	/* do 32-bit optimization after insn patching has done so those patched
13816 	 * insns could be handled correctly.
13817 	 */
13818 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13819 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13820 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13821 								     : false;
13822 	}
13823 
13824 	if (ret == 0)
13825 		ret = fixup_call_args(env);
13826 
13827 	env->verification_time = ktime_get_ns() - start_time;
13828 	print_verification_stats(env);
13829 
13830 	if (log->level && bpf_verifier_log_full(log))
13831 		ret = -ENOSPC;
13832 	if (log->level && !log->ubuf) {
13833 		ret = -EFAULT;
13834 		goto err_release_maps;
13835 	}
13836 
13837 	if (ret)
13838 		goto err_release_maps;
13839 
13840 	if (env->used_map_cnt) {
13841 		/* if program passed verifier, update used_maps in bpf_prog_info */
13842 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13843 							  sizeof(env->used_maps[0]),
13844 							  GFP_KERNEL);
13845 
13846 		if (!env->prog->aux->used_maps) {
13847 			ret = -ENOMEM;
13848 			goto err_release_maps;
13849 		}
13850 
13851 		memcpy(env->prog->aux->used_maps, env->used_maps,
13852 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13853 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13854 	}
13855 	if (env->used_btf_cnt) {
13856 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13857 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13858 							  sizeof(env->used_btfs[0]),
13859 							  GFP_KERNEL);
13860 		if (!env->prog->aux->used_btfs) {
13861 			ret = -ENOMEM;
13862 			goto err_release_maps;
13863 		}
13864 
13865 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13866 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13867 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13868 	}
13869 	if (env->used_map_cnt || env->used_btf_cnt) {
13870 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13871 		 * bpf_ld_imm64 instructions
13872 		 */
13873 		convert_pseudo_ld_imm64(env);
13874 	}
13875 
13876 	adjust_btf_func(env);
13877 
13878 err_release_maps:
13879 	if (!env->prog->aux->used_maps)
13880 		/* if we didn't copy map pointers into bpf_prog_info, release
13881 		 * them now. Otherwise free_used_maps() will release them.
13882 		 */
13883 		release_maps(env);
13884 	if (!env->prog->aux->used_btfs)
13885 		release_btfs(env);
13886 
13887 	/* extension progs temporarily inherit the attach_type of their targets
13888 	   for verification purposes, so set it back to zero before returning
13889 	 */
13890 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13891 		env->prog->expected_attach_type = 0;
13892 
13893 	*prog = env->prog;
13894 err_unlock:
13895 	if (!is_priv)
13896 		mutex_unlock(&bpf_verifier_lock);
13897 	vfree(env->insn_aux_data);
13898 err_free_env:
13899 	kfree(env);
13900 	return ret;
13901 }
13902