xref: /openbmc/linux/kernel/bpf/verifier.c (revision bf459478)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 struct bpf_call_arg_meta {
238 	struct bpf_map *map_ptr;
239 	bool raw_mode;
240 	bool pkt_access;
241 	int regno;
242 	int access_size;
243 	int mem_size;
244 	u64 msize_max_value;
245 	int ref_obj_id;
246 	int func_id;
247 	struct btf *btf;
248 	u32 btf_id;
249 	struct btf *ret_btf;
250 	u32 ret_btf_id;
251 };
252 
253 struct btf *btf_vmlinux;
254 
255 static DEFINE_MUTEX(bpf_verifier_lock);
256 
257 static const struct bpf_line_info *
258 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
259 {
260 	const struct bpf_line_info *linfo;
261 	const struct bpf_prog *prog;
262 	u32 i, nr_linfo;
263 
264 	prog = env->prog;
265 	nr_linfo = prog->aux->nr_linfo;
266 
267 	if (!nr_linfo || insn_off >= prog->len)
268 		return NULL;
269 
270 	linfo = prog->aux->linfo;
271 	for (i = 1; i < nr_linfo; i++)
272 		if (insn_off < linfo[i].insn_off)
273 			break;
274 
275 	return &linfo[i - 1];
276 }
277 
278 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
279 		       va_list args)
280 {
281 	unsigned int n;
282 
283 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
284 
285 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
286 		  "verifier log line truncated - local buffer too short\n");
287 
288 	n = min(log->len_total - log->len_used - 1, n);
289 	log->kbuf[n] = '\0';
290 
291 	if (log->level == BPF_LOG_KERNEL) {
292 		pr_err("BPF:%s\n", log->kbuf);
293 		return;
294 	}
295 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
296 		log->len_used += n;
297 	else
298 		log->ubuf = NULL;
299 }
300 
301 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
302 {
303 	char zero = 0;
304 
305 	if (!bpf_verifier_log_needed(log))
306 		return;
307 
308 	log->len_used = new_pos;
309 	if (put_user(zero, log->ubuf + new_pos))
310 		log->ubuf = NULL;
311 }
312 
313 /* log_level controls verbosity level of eBPF verifier.
314  * bpf_verifier_log_write() is used to dump the verification trace to the log,
315  * so the user can figure out what's wrong with the program
316  */
317 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
318 					   const char *fmt, ...)
319 {
320 	va_list args;
321 
322 	if (!bpf_verifier_log_needed(&env->log))
323 		return;
324 
325 	va_start(args, fmt);
326 	bpf_verifier_vlog(&env->log, fmt, args);
327 	va_end(args);
328 }
329 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
330 
331 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
332 {
333 	struct bpf_verifier_env *env = private_data;
334 	va_list args;
335 
336 	if (!bpf_verifier_log_needed(&env->log))
337 		return;
338 
339 	va_start(args, fmt);
340 	bpf_verifier_vlog(&env->log, fmt, args);
341 	va_end(args);
342 }
343 
344 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
345 			    const char *fmt, ...)
346 {
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(log, fmt, args);
354 	va_end(args);
355 }
356 
357 static const char *ltrim(const char *s)
358 {
359 	while (isspace(*s))
360 		s++;
361 
362 	return s;
363 }
364 
365 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
366 					 u32 insn_off,
367 					 const char *prefix_fmt, ...)
368 {
369 	const struct bpf_line_info *linfo;
370 
371 	if (!bpf_verifier_log_needed(&env->log))
372 		return;
373 
374 	linfo = find_linfo(env, insn_off);
375 	if (!linfo || linfo == env->prev_linfo)
376 		return;
377 
378 	if (prefix_fmt) {
379 		va_list args;
380 
381 		va_start(args, prefix_fmt);
382 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
383 		va_end(args);
384 	}
385 
386 	verbose(env, "%s\n",
387 		ltrim(btf_name_by_offset(env->prog->aux->btf,
388 					 linfo->line_off)));
389 
390 	env->prev_linfo = linfo;
391 }
392 
393 static bool type_is_pkt_pointer(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_PACKET ||
396 	       type == PTR_TO_PACKET_META;
397 }
398 
399 static bool type_is_sk_pointer(enum bpf_reg_type type)
400 {
401 	return type == PTR_TO_SOCKET ||
402 		type == PTR_TO_SOCK_COMMON ||
403 		type == PTR_TO_TCP_SOCK ||
404 		type == PTR_TO_XDP_SOCK;
405 }
406 
407 static bool reg_type_not_null(enum bpf_reg_type type)
408 {
409 	return type == PTR_TO_SOCKET ||
410 		type == PTR_TO_TCP_SOCK ||
411 		type == PTR_TO_MAP_VALUE ||
412 		type == PTR_TO_SOCK_COMMON;
413 }
414 
415 static bool reg_type_may_be_null(enum bpf_reg_type type)
416 {
417 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
418 	       type == PTR_TO_SOCKET_OR_NULL ||
419 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
420 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
421 	       type == PTR_TO_BTF_ID_OR_NULL ||
422 	       type == PTR_TO_MEM_OR_NULL ||
423 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
424 	       type == PTR_TO_RDWR_BUF_OR_NULL;
425 }
426 
427 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
428 {
429 	return reg->type == PTR_TO_MAP_VALUE &&
430 		map_value_has_spin_lock(reg->map_ptr);
431 }
432 
433 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
434 {
435 	return type == PTR_TO_SOCKET ||
436 		type == PTR_TO_SOCKET_OR_NULL ||
437 		type == PTR_TO_TCP_SOCK ||
438 		type == PTR_TO_TCP_SOCK_OR_NULL ||
439 		type == PTR_TO_MEM ||
440 		type == PTR_TO_MEM_OR_NULL;
441 }
442 
443 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
444 {
445 	return type == ARG_PTR_TO_SOCK_COMMON;
446 }
447 
448 static bool arg_type_may_be_null(enum bpf_arg_type type)
449 {
450 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
451 	       type == ARG_PTR_TO_MEM_OR_NULL ||
452 	       type == ARG_PTR_TO_CTX_OR_NULL ||
453 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
454 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
455 }
456 
457 /* Determine whether the function releases some resources allocated by another
458  * function call. The first reference type argument will be assumed to be
459  * released by release_reference().
460  */
461 static bool is_release_function(enum bpf_func_id func_id)
462 {
463 	return func_id == BPF_FUNC_sk_release ||
464 	       func_id == BPF_FUNC_ringbuf_submit ||
465 	       func_id == BPF_FUNC_ringbuf_discard;
466 }
467 
468 static bool may_be_acquire_function(enum bpf_func_id func_id)
469 {
470 	return func_id == BPF_FUNC_sk_lookup_tcp ||
471 		func_id == BPF_FUNC_sk_lookup_udp ||
472 		func_id == BPF_FUNC_skc_lookup_tcp ||
473 		func_id == BPF_FUNC_map_lookup_elem ||
474 	        func_id == BPF_FUNC_ringbuf_reserve;
475 }
476 
477 static bool is_acquire_function(enum bpf_func_id func_id,
478 				const struct bpf_map *map)
479 {
480 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481 
482 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 	    func_id == BPF_FUNC_sk_lookup_udp ||
484 	    func_id == BPF_FUNC_skc_lookup_tcp ||
485 	    func_id == BPF_FUNC_ringbuf_reserve)
486 		return true;
487 
488 	if (func_id == BPF_FUNC_map_lookup_elem &&
489 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
490 	     map_type == BPF_MAP_TYPE_SOCKHASH))
491 		return true;
492 
493 	return false;
494 }
495 
496 static bool is_ptr_cast_function(enum bpf_func_id func_id)
497 {
498 	return func_id == BPF_FUNC_tcp_sock ||
499 		func_id == BPF_FUNC_sk_fullsock ||
500 		func_id == BPF_FUNC_skc_to_tcp_sock ||
501 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
502 		func_id == BPF_FUNC_skc_to_udp6_sock ||
503 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
505 }
506 
507 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
508 {
509 	return BPF_CLASS(insn->code) == BPF_STX &&
510 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
511 	       insn->imm == BPF_CMPXCHG;
512 }
513 
514 /* string representation of 'enum bpf_reg_type' */
515 static const char * const reg_type_str[] = {
516 	[NOT_INIT]		= "?",
517 	[SCALAR_VALUE]		= "inv",
518 	[PTR_TO_CTX]		= "ctx",
519 	[CONST_PTR_TO_MAP]	= "map_ptr",
520 	[PTR_TO_MAP_VALUE]	= "map_value",
521 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
522 	[PTR_TO_STACK]		= "fp",
523 	[PTR_TO_PACKET]		= "pkt",
524 	[PTR_TO_PACKET_META]	= "pkt_meta",
525 	[PTR_TO_PACKET_END]	= "pkt_end",
526 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
527 	[PTR_TO_SOCKET]		= "sock",
528 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
529 	[PTR_TO_SOCK_COMMON]	= "sock_common",
530 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
531 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
532 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
533 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
534 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
535 	[PTR_TO_BTF_ID]		= "ptr_",
536 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
537 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
538 	[PTR_TO_MEM]		= "mem",
539 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
540 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
541 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
542 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
543 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
544 };
545 
546 static char slot_type_char[] = {
547 	[STACK_INVALID]	= '?',
548 	[STACK_SPILL]	= 'r',
549 	[STACK_MISC]	= 'm',
550 	[STACK_ZERO]	= '0',
551 };
552 
553 static void print_liveness(struct bpf_verifier_env *env,
554 			   enum bpf_reg_liveness live)
555 {
556 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
557 	    verbose(env, "_");
558 	if (live & REG_LIVE_READ)
559 		verbose(env, "r");
560 	if (live & REG_LIVE_WRITTEN)
561 		verbose(env, "w");
562 	if (live & REG_LIVE_DONE)
563 		verbose(env, "D");
564 }
565 
566 static struct bpf_func_state *func(struct bpf_verifier_env *env,
567 				   const struct bpf_reg_state *reg)
568 {
569 	struct bpf_verifier_state *cur = env->cur_state;
570 
571 	return cur->frame[reg->frameno];
572 }
573 
574 static const char *kernel_type_name(const struct btf* btf, u32 id)
575 {
576 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
577 }
578 
579 static void print_verifier_state(struct bpf_verifier_env *env,
580 				 const struct bpf_func_state *state)
581 {
582 	const struct bpf_reg_state *reg;
583 	enum bpf_reg_type t;
584 	int i;
585 
586 	if (state->frameno)
587 		verbose(env, " frame%d:", state->frameno);
588 	for (i = 0; i < MAX_BPF_REG; i++) {
589 		reg = &state->regs[i];
590 		t = reg->type;
591 		if (t == NOT_INIT)
592 			continue;
593 		verbose(env, " R%d", i);
594 		print_liveness(env, reg->live);
595 		verbose(env, "=%s", reg_type_str[t]);
596 		if (t == SCALAR_VALUE && reg->precise)
597 			verbose(env, "P");
598 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
599 		    tnum_is_const(reg->var_off)) {
600 			/* reg->off should be 0 for SCALAR_VALUE */
601 			verbose(env, "%lld", reg->var_off.value + reg->off);
602 		} else {
603 			if (t == PTR_TO_BTF_ID ||
604 			    t == PTR_TO_BTF_ID_OR_NULL ||
605 			    t == PTR_TO_PERCPU_BTF_ID)
606 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
607 			verbose(env, "(id=%d", reg->id);
608 			if (reg_type_may_be_refcounted_or_null(t))
609 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
610 			if (t != SCALAR_VALUE)
611 				verbose(env, ",off=%d", reg->off);
612 			if (type_is_pkt_pointer(t))
613 				verbose(env, ",r=%d", reg->range);
614 			else if (t == CONST_PTR_TO_MAP ||
615 				 t == PTR_TO_MAP_VALUE ||
616 				 t == PTR_TO_MAP_VALUE_OR_NULL)
617 				verbose(env, ",ks=%d,vs=%d",
618 					reg->map_ptr->key_size,
619 					reg->map_ptr->value_size);
620 			if (tnum_is_const(reg->var_off)) {
621 				/* Typically an immediate SCALAR_VALUE, but
622 				 * could be a pointer whose offset is too big
623 				 * for reg->off
624 				 */
625 				verbose(env, ",imm=%llx", reg->var_off.value);
626 			} else {
627 				if (reg->smin_value != reg->umin_value &&
628 				    reg->smin_value != S64_MIN)
629 					verbose(env, ",smin_value=%lld",
630 						(long long)reg->smin_value);
631 				if (reg->smax_value != reg->umax_value &&
632 				    reg->smax_value != S64_MAX)
633 					verbose(env, ",smax_value=%lld",
634 						(long long)reg->smax_value);
635 				if (reg->umin_value != 0)
636 					verbose(env, ",umin_value=%llu",
637 						(unsigned long long)reg->umin_value);
638 				if (reg->umax_value != U64_MAX)
639 					verbose(env, ",umax_value=%llu",
640 						(unsigned long long)reg->umax_value);
641 				if (!tnum_is_unknown(reg->var_off)) {
642 					char tn_buf[48];
643 
644 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
645 					verbose(env, ",var_off=%s", tn_buf);
646 				}
647 				if (reg->s32_min_value != reg->smin_value &&
648 				    reg->s32_min_value != S32_MIN)
649 					verbose(env, ",s32_min_value=%d",
650 						(int)(reg->s32_min_value));
651 				if (reg->s32_max_value != reg->smax_value &&
652 				    reg->s32_max_value != S32_MAX)
653 					verbose(env, ",s32_max_value=%d",
654 						(int)(reg->s32_max_value));
655 				if (reg->u32_min_value != reg->umin_value &&
656 				    reg->u32_min_value != U32_MIN)
657 					verbose(env, ",u32_min_value=%d",
658 						(int)(reg->u32_min_value));
659 				if (reg->u32_max_value != reg->umax_value &&
660 				    reg->u32_max_value != U32_MAX)
661 					verbose(env, ",u32_max_value=%d",
662 						(int)(reg->u32_max_value));
663 			}
664 			verbose(env, ")");
665 		}
666 	}
667 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
668 		char types_buf[BPF_REG_SIZE + 1];
669 		bool valid = false;
670 		int j;
671 
672 		for (j = 0; j < BPF_REG_SIZE; j++) {
673 			if (state->stack[i].slot_type[j] != STACK_INVALID)
674 				valid = true;
675 			types_buf[j] = slot_type_char[
676 					state->stack[i].slot_type[j]];
677 		}
678 		types_buf[BPF_REG_SIZE] = 0;
679 		if (!valid)
680 			continue;
681 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
682 		print_liveness(env, state->stack[i].spilled_ptr.live);
683 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
684 			reg = &state->stack[i].spilled_ptr;
685 			t = reg->type;
686 			verbose(env, "=%s", reg_type_str[t]);
687 			if (t == SCALAR_VALUE && reg->precise)
688 				verbose(env, "P");
689 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
690 				verbose(env, "%lld", reg->var_off.value + reg->off);
691 		} else {
692 			verbose(env, "=%s", types_buf);
693 		}
694 	}
695 	if (state->acquired_refs && state->refs[0].id) {
696 		verbose(env, " refs=%d", state->refs[0].id);
697 		for (i = 1; i < state->acquired_refs; i++)
698 			if (state->refs[i].id)
699 				verbose(env, ",%d", state->refs[i].id);
700 	}
701 	verbose(env, "\n");
702 }
703 
704 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
705 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
706 			       const struct bpf_func_state *src)	\
707 {									\
708 	if (!src->FIELD)						\
709 		return 0;						\
710 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
711 		/* internal bug, make state invalid to reject the program */ \
712 		memset(dst, 0, sizeof(*dst));				\
713 		return -EFAULT;						\
714 	}								\
715 	memcpy(dst->FIELD, src->FIELD,					\
716 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
717 	return 0;							\
718 }
719 /* copy_reference_state() */
720 COPY_STATE_FN(reference, acquired_refs, refs, 1)
721 /* copy_stack_state() */
722 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
723 #undef COPY_STATE_FN
724 
725 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
726 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
727 				  bool copy_old)			\
728 {									\
729 	u32 old_size = state->COUNT;					\
730 	struct bpf_##NAME##_state *new_##FIELD;				\
731 	int slot = size / SIZE;						\
732 									\
733 	if (size <= old_size || !size) {				\
734 		if (copy_old)						\
735 			return 0;					\
736 		state->COUNT = slot * SIZE;				\
737 		if (!size && old_size) {				\
738 			kfree(state->FIELD);				\
739 			state->FIELD = NULL;				\
740 		}							\
741 		return 0;						\
742 	}								\
743 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
744 				    GFP_KERNEL);			\
745 	if (!new_##FIELD)						\
746 		return -ENOMEM;						\
747 	if (copy_old) {							\
748 		if (state->FIELD)					\
749 			memcpy(new_##FIELD, state->FIELD,		\
750 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
751 		memset(new_##FIELD + old_size / SIZE, 0,		\
752 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
753 	}								\
754 	state->COUNT = slot * SIZE;					\
755 	kfree(state->FIELD);						\
756 	state->FIELD = new_##FIELD;					\
757 	return 0;							\
758 }
759 /* realloc_reference_state() */
760 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
761 /* realloc_stack_state() */
762 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
763 #undef REALLOC_STATE_FN
764 
765 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
766  * make it consume minimal amount of memory. check_stack_write() access from
767  * the program calls into realloc_func_state() to grow the stack size.
768  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
769  * which realloc_stack_state() copies over. It points to previous
770  * bpf_verifier_state which is never reallocated.
771  */
772 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
773 			      int refs_size, bool copy_old)
774 {
775 	int err = realloc_reference_state(state, refs_size, copy_old);
776 	if (err)
777 		return err;
778 	return realloc_stack_state(state, stack_size, copy_old);
779 }
780 
781 /* Acquire a pointer id from the env and update the state->refs to include
782  * this new pointer reference.
783  * On success, returns a valid pointer id to associate with the register
784  * On failure, returns a negative errno.
785  */
786 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
787 {
788 	struct bpf_func_state *state = cur_func(env);
789 	int new_ofs = state->acquired_refs;
790 	int id, err;
791 
792 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
793 	if (err)
794 		return err;
795 	id = ++env->id_gen;
796 	state->refs[new_ofs].id = id;
797 	state->refs[new_ofs].insn_idx = insn_idx;
798 
799 	return id;
800 }
801 
802 /* release function corresponding to acquire_reference_state(). Idempotent. */
803 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
804 {
805 	int i, last_idx;
806 
807 	last_idx = state->acquired_refs - 1;
808 	for (i = 0; i < state->acquired_refs; i++) {
809 		if (state->refs[i].id == ptr_id) {
810 			if (last_idx && i != last_idx)
811 				memcpy(&state->refs[i], &state->refs[last_idx],
812 				       sizeof(*state->refs));
813 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
814 			state->acquired_refs--;
815 			return 0;
816 		}
817 	}
818 	return -EINVAL;
819 }
820 
821 static int transfer_reference_state(struct bpf_func_state *dst,
822 				    struct bpf_func_state *src)
823 {
824 	int err = realloc_reference_state(dst, src->acquired_refs, false);
825 	if (err)
826 		return err;
827 	err = copy_reference_state(dst, src);
828 	if (err)
829 		return err;
830 	return 0;
831 }
832 
833 static void free_func_state(struct bpf_func_state *state)
834 {
835 	if (!state)
836 		return;
837 	kfree(state->refs);
838 	kfree(state->stack);
839 	kfree(state);
840 }
841 
842 static void clear_jmp_history(struct bpf_verifier_state *state)
843 {
844 	kfree(state->jmp_history);
845 	state->jmp_history = NULL;
846 	state->jmp_history_cnt = 0;
847 }
848 
849 static void free_verifier_state(struct bpf_verifier_state *state,
850 				bool free_self)
851 {
852 	int i;
853 
854 	for (i = 0; i <= state->curframe; i++) {
855 		free_func_state(state->frame[i]);
856 		state->frame[i] = NULL;
857 	}
858 	clear_jmp_history(state);
859 	if (free_self)
860 		kfree(state);
861 }
862 
863 /* copy verifier state from src to dst growing dst stack space
864  * when necessary to accommodate larger src stack
865  */
866 static int copy_func_state(struct bpf_func_state *dst,
867 			   const struct bpf_func_state *src)
868 {
869 	int err;
870 
871 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
872 				 false);
873 	if (err)
874 		return err;
875 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
876 	err = copy_reference_state(dst, src);
877 	if (err)
878 		return err;
879 	return copy_stack_state(dst, src);
880 }
881 
882 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
883 			       const struct bpf_verifier_state *src)
884 {
885 	struct bpf_func_state *dst;
886 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
887 	int i, err;
888 
889 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
890 		kfree(dst_state->jmp_history);
891 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
892 		if (!dst_state->jmp_history)
893 			return -ENOMEM;
894 	}
895 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
896 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
897 
898 	/* if dst has more stack frames then src frame, free them */
899 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
900 		free_func_state(dst_state->frame[i]);
901 		dst_state->frame[i] = NULL;
902 	}
903 	dst_state->speculative = src->speculative;
904 	dst_state->curframe = src->curframe;
905 	dst_state->active_spin_lock = src->active_spin_lock;
906 	dst_state->branches = src->branches;
907 	dst_state->parent = src->parent;
908 	dst_state->first_insn_idx = src->first_insn_idx;
909 	dst_state->last_insn_idx = src->last_insn_idx;
910 	for (i = 0; i <= src->curframe; i++) {
911 		dst = dst_state->frame[i];
912 		if (!dst) {
913 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
914 			if (!dst)
915 				return -ENOMEM;
916 			dst_state->frame[i] = dst;
917 		}
918 		err = copy_func_state(dst, src->frame[i]);
919 		if (err)
920 			return err;
921 	}
922 	return 0;
923 }
924 
925 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
926 {
927 	while (st) {
928 		u32 br = --st->branches;
929 
930 		/* WARN_ON(br > 1) technically makes sense here,
931 		 * but see comment in push_stack(), hence:
932 		 */
933 		WARN_ONCE((int)br < 0,
934 			  "BUG update_branch_counts:branches_to_explore=%d\n",
935 			  br);
936 		if (br)
937 			break;
938 		st = st->parent;
939 	}
940 }
941 
942 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
943 		     int *insn_idx, bool pop_log)
944 {
945 	struct bpf_verifier_state *cur = env->cur_state;
946 	struct bpf_verifier_stack_elem *elem, *head = env->head;
947 	int err;
948 
949 	if (env->head == NULL)
950 		return -ENOENT;
951 
952 	if (cur) {
953 		err = copy_verifier_state(cur, &head->st);
954 		if (err)
955 			return err;
956 	}
957 	if (pop_log)
958 		bpf_vlog_reset(&env->log, head->log_pos);
959 	if (insn_idx)
960 		*insn_idx = head->insn_idx;
961 	if (prev_insn_idx)
962 		*prev_insn_idx = head->prev_insn_idx;
963 	elem = head->next;
964 	free_verifier_state(&head->st, false);
965 	kfree(head);
966 	env->head = elem;
967 	env->stack_size--;
968 	return 0;
969 }
970 
971 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
972 					     int insn_idx, int prev_insn_idx,
973 					     bool speculative)
974 {
975 	struct bpf_verifier_state *cur = env->cur_state;
976 	struct bpf_verifier_stack_elem *elem;
977 	int err;
978 
979 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
980 	if (!elem)
981 		goto err;
982 
983 	elem->insn_idx = insn_idx;
984 	elem->prev_insn_idx = prev_insn_idx;
985 	elem->next = env->head;
986 	elem->log_pos = env->log.len_used;
987 	env->head = elem;
988 	env->stack_size++;
989 	err = copy_verifier_state(&elem->st, cur);
990 	if (err)
991 		goto err;
992 	elem->st.speculative |= speculative;
993 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
994 		verbose(env, "The sequence of %d jumps is too complex.\n",
995 			env->stack_size);
996 		goto err;
997 	}
998 	if (elem->st.parent) {
999 		++elem->st.parent->branches;
1000 		/* WARN_ON(branches > 2) technically makes sense here,
1001 		 * but
1002 		 * 1. speculative states will bump 'branches' for non-branch
1003 		 * instructions
1004 		 * 2. is_state_visited() heuristics may decide not to create
1005 		 * a new state for a sequence of branches and all such current
1006 		 * and cloned states will be pointing to a single parent state
1007 		 * which might have large 'branches' count.
1008 		 */
1009 	}
1010 	return &elem->st;
1011 err:
1012 	free_verifier_state(env->cur_state, true);
1013 	env->cur_state = NULL;
1014 	/* pop all elements and return */
1015 	while (!pop_stack(env, NULL, NULL, false));
1016 	return NULL;
1017 }
1018 
1019 #define CALLER_SAVED_REGS 6
1020 static const int caller_saved[CALLER_SAVED_REGS] = {
1021 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1022 };
1023 
1024 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1025 				struct bpf_reg_state *reg);
1026 
1027 /* This helper doesn't clear reg->id */
1028 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1029 {
1030 	reg->var_off = tnum_const(imm);
1031 	reg->smin_value = (s64)imm;
1032 	reg->smax_value = (s64)imm;
1033 	reg->umin_value = imm;
1034 	reg->umax_value = imm;
1035 
1036 	reg->s32_min_value = (s32)imm;
1037 	reg->s32_max_value = (s32)imm;
1038 	reg->u32_min_value = (u32)imm;
1039 	reg->u32_max_value = (u32)imm;
1040 }
1041 
1042 /* Mark the unknown part of a register (variable offset or scalar value) as
1043  * known to have the value @imm.
1044  */
1045 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1046 {
1047 	/* Clear id, off, and union(map_ptr, range) */
1048 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1049 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1050 	___mark_reg_known(reg, imm);
1051 }
1052 
1053 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1054 {
1055 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1056 	reg->s32_min_value = (s32)imm;
1057 	reg->s32_max_value = (s32)imm;
1058 	reg->u32_min_value = (u32)imm;
1059 	reg->u32_max_value = (u32)imm;
1060 }
1061 
1062 /* Mark the 'variable offset' part of a register as zero.  This should be
1063  * used only on registers holding a pointer type.
1064  */
1065 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1066 {
1067 	__mark_reg_known(reg, 0);
1068 }
1069 
1070 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1071 {
1072 	__mark_reg_known(reg, 0);
1073 	reg->type = SCALAR_VALUE;
1074 }
1075 
1076 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1077 				struct bpf_reg_state *regs, u32 regno)
1078 {
1079 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1080 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1081 		/* Something bad happened, let's kill all regs */
1082 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1083 			__mark_reg_not_init(env, regs + regno);
1084 		return;
1085 	}
1086 	__mark_reg_known_zero(regs + regno);
1087 }
1088 
1089 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1090 {
1091 	switch (reg->type) {
1092 	case PTR_TO_MAP_VALUE_OR_NULL: {
1093 		const struct bpf_map *map = reg->map_ptr;
1094 
1095 		if (map->inner_map_meta) {
1096 			reg->type = CONST_PTR_TO_MAP;
1097 			reg->map_ptr = map->inner_map_meta;
1098 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1099 			reg->type = PTR_TO_XDP_SOCK;
1100 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1101 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1102 			reg->type = PTR_TO_SOCKET;
1103 		} else {
1104 			reg->type = PTR_TO_MAP_VALUE;
1105 		}
1106 		break;
1107 	}
1108 	case PTR_TO_SOCKET_OR_NULL:
1109 		reg->type = PTR_TO_SOCKET;
1110 		break;
1111 	case PTR_TO_SOCK_COMMON_OR_NULL:
1112 		reg->type = PTR_TO_SOCK_COMMON;
1113 		break;
1114 	case PTR_TO_TCP_SOCK_OR_NULL:
1115 		reg->type = PTR_TO_TCP_SOCK;
1116 		break;
1117 	case PTR_TO_BTF_ID_OR_NULL:
1118 		reg->type = PTR_TO_BTF_ID;
1119 		break;
1120 	case PTR_TO_MEM_OR_NULL:
1121 		reg->type = PTR_TO_MEM;
1122 		break;
1123 	case PTR_TO_RDONLY_BUF_OR_NULL:
1124 		reg->type = PTR_TO_RDONLY_BUF;
1125 		break;
1126 	case PTR_TO_RDWR_BUF_OR_NULL:
1127 		reg->type = PTR_TO_RDWR_BUF;
1128 		break;
1129 	default:
1130 		WARN_ONCE(1, "unknown nullable register type");
1131 	}
1132 }
1133 
1134 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1135 {
1136 	return type_is_pkt_pointer(reg->type);
1137 }
1138 
1139 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1140 {
1141 	return reg_is_pkt_pointer(reg) ||
1142 	       reg->type == PTR_TO_PACKET_END;
1143 }
1144 
1145 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1146 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1147 				    enum bpf_reg_type which)
1148 {
1149 	/* The register can already have a range from prior markings.
1150 	 * This is fine as long as it hasn't been advanced from its
1151 	 * origin.
1152 	 */
1153 	return reg->type == which &&
1154 	       reg->id == 0 &&
1155 	       reg->off == 0 &&
1156 	       tnum_equals_const(reg->var_off, 0);
1157 }
1158 
1159 /* Reset the min/max bounds of a register */
1160 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1161 {
1162 	reg->smin_value = S64_MIN;
1163 	reg->smax_value = S64_MAX;
1164 	reg->umin_value = 0;
1165 	reg->umax_value = U64_MAX;
1166 
1167 	reg->s32_min_value = S32_MIN;
1168 	reg->s32_max_value = S32_MAX;
1169 	reg->u32_min_value = 0;
1170 	reg->u32_max_value = U32_MAX;
1171 }
1172 
1173 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1174 {
1175 	reg->smin_value = S64_MIN;
1176 	reg->smax_value = S64_MAX;
1177 	reg->umin_value = 0;
1178 	reg->umax_value = U64_MAX;
1179 }
1180 
1181 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1182 {
1183 	reg->s32_min_value = S32_MIN;
1184 	reg->s32_max_value = S32_MAX;
1185 	reg->u32_min_value = 0;
1186 	reg->u32_max_value = U32_MAX;
1187 }
1188 
1189 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1190 {
1191 	struct tnum var32_off = tnum_subreg(reg->var_off);
1192 
1193 	/* min signed is max(sign bit) | min(other bits) */
1194 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1195 			var32_off.value | (var32_off.mask & S32_MIN));
1196 	/* max signed is min(sign bit) | max(other bits) */
1197 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1198 			var32_off.value | (var32_off.mask & S32_MAX));
1199 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1200 	reg->u32_max_value = min(reg->u32_max_value,
1201 				 (u32)(var32_off.value | var32_off.mask));
1202 }
1203 
1204 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1205 {
1206 	/* min signed is max(sign bit) | min(other bits) */
1207 	reg->smin_value = max_t(s64, reg->smin_value,
1208 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1209 	/* max signed is min(sign bit) | max(other bits) */
1210 	reg->smax_value = min_t(s64, reg->smax_value,
1211 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1212 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1213 	reg->umax_value = min(reg->umax_value,
1214 			      reg->var_off.value | reg->var_off.mask);
1215 }
1216 
1217 static void __update_reg_bounds(struct bpf_reg_state *reg)
1218 {
1219 	__update_reg32_bounds(reg);
1220 	__update_reg64_bounds(reg);
1221 }
1222 
1223 /* Uses signed min/max values to inform unsigned, and vice-versa */
1224 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1225 {
1226 	/* Learn sign from signed bounds.
1227 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1228 	 * are the same, so combine.  This works even in the negative case, e.g.
1229 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1230 	 */
1231 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1232 		reg->s32_min_value = reg->u32_min_value =
1233 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1234 		reg->s32_max_value = reg->u32_max_value =
1235 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1236 		return;
1237 	}
1238 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1239 	 * boundary, so we must be careful.
1240 	 */
1241 	if ((s32)reg->u32_max_value >= 0) {
1242 		/* Positive.  We can't learn anything from the smin, but smax
1243 		 * is positive, hence safe.
1244 		 */
1245 		reg->s32_min_value = reg->u32_min_value;
1246 		reg->s32_max_value = reg->u32_max_value =
1247 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1248 	} else if ((s32)reg->u32_min_value < 0) {
1249 		/* Negative.  We can't learn anything from the smax, but smin
1250 		 * is negative, hence safe.
1251 		 */
1252 		reg->s32_min_value = reg->u32_min_value =
1253 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1254 		reg->s32_max_value = reg->u32_max_value;
1255 	}
1256 }
1257 
1258 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1259 {
1260 	/* Learn sign from signed bounds.
1261 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1262 	 * are the same, so combine.  This works even in the negative case, e.g.
1263 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1264 	 */
1265 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1266 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1267 							  reg->umin_value);
1268 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1269 							  reg->umax_value);
1270 		return;
1271 	}
1272 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1273 	 * boundary, so we must be careful.
1274 	 */
1275 	if ((s64)reg->umax_value >= 0) {
1276 		/* Positive.  We can't learn anything from the smin, but smax
1277 		 * is positive, hence safe.
1278 		 */
1279 		reg->smin_value = reg->umin_value;
1280 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1281 							  reg->umax_value);
1282 	} else if ((s64)reg->umin_value < 0) {
1283 		/* Negative.  We can't learn anything from the smax, but smin
1284 		 * is negative, hence safe.
1285 		 */
1286 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1287 							  reg->umin_value);
1288 		reg->smax_value = reg->umax_value;
1289 	}
1290 }
1291 
1292 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1293 {
1294 	__reg32_deduce_bounds(reg);
1295 	__reg64_deduce_bounds(reg);
1296 }
1297 
1298 /* Attempts to improve var_off based on unsigned min/max information */
1299 static void __reg_bound_offset(struct bpf_reg_state *reg)
1300 {
1301 	struct tnum var64_off = tnum_intersect(reg->var_off,
1302 					       tnum_range(reg->umin_value,
1303 							  reg->umax_value));
1304 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1305 						tnum_range(reg->u32_min_value,
1306 							   reg->u32_max_value));
1307 
1308 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1309 }
1310 
1311 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1312 {
1313 	reg->umin_value = reg->u32_min_value;
1314 	reg->umax_value = reg->u32_max_value;
1315 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1316 	 * but must be positive otherwise set to worse case bounds
1317 	 * and refine later from tnum.
1318 	 */
1319 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1320 		reg->smax_value = reg->s32_max_value;
1321 	else
1322 		reg->smax_value = U32_MAX;
1323 	if (reg->s32_min_value >= 0)
1324 		reg->smin_value = reg->s32_min_value;
1325 	else
1326 		reg->smin_value = 0;
1327 }
1328 
1329 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1330 {
1331 	/* special case when 64-bit register has upper 32-bit register
1332 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1333 	 * allowing us to use 32-bit bounds directly,
1334 	 */
1335 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1336 		__reg_assign_32_into_64(reg);
1337 	} else {
1338 		/* Otherwise the best we can do is push lower 32bit known and
1339 		 * unknown bits into register (var_off set from jmp logic)
1340 		 * then learn as much as possible from the 64-bit tnum
1341 		 * known and unknown bits. The previous smin/smax bounds are
1342 		 * invalid here because of jmp32 compare so mark them unknown
1343 		 * so they do not impact tnum bounds calculation.
1344 		 */
1345 		__mark_reg64_unbounded(reg);
1346 		__update_reg_bounds(reg);
1347 	}
1348 
1349 	/* Intersecting with the old var_off might have improved our bounds
1350 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1351 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1352 	 */
1353 	__reg_deduce_bounds(reg);
1354 	__reg_bound_offset(reg);
1355 	__update_reg_bounds(reg);
1356 }
1357 
1358 static bool __reg64_bound_s32(s64 a)
1359 {
1360 	return a > S32_MIN && a < S32_MAX;
1361 }
1362 
1363 static bool __reg64_bound_u32(u64 a)
1364 {
1365 	if (a > U32_MIN && a < U32_MAX)
1366 		return true;
1367 	return false;
1368 }
1369 
1370 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1371 {
1372 	__mark_reg32_unbounded(reg);
1373 
1374 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1375 		reg->s32_min_value = (s32)reg->smin_value;
1376 		reg->s32_max_value = (s32)reg->smax_value;
1377 	}
1378 	if (__reg64_bound_u32(reg->umin_value))
1379 		reg->u32_min_value = (u32)reg->umin_value;
1380 	if (__reg64_bound_u32(reg->umax_value))
1381 		reg->u32_max_value = (u32)reg->umax_value;
1382 
1383 	/* Intersecting with the old var_off might have improved our bounds
1384 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1385 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1386 	 */
1387 	__reg_deduce_bounds(reg);
1388 	__reg_bound_offset(reg);
1389 	__update_reg_bounds(reg);
1390 }
1391 
1392 /* Mark a register as having a completely unknown (scalar) value. */
1393 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1394 			       struct bpf_reg_state *reg)
1395 {
1396 	/*
1397 	 * Clear type, id, off, and union(map_ptr, range) and
1398 	 * padding between 'type' and union
1399 	 */
1400 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1401 	reg->type = SCALAR_VALUE;
1402 	reg->var_off = tnum_unknown;
1403 	reg->frameno = 0;
1404 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1405 	__mark_reg_unbounded(reg);
1406 }
1407 
1408 static void mark_reg_unknown(struct bpf_verifier_env *env,
1409 			     struct bpf_reg_state *regs, u32 regno)
1410 {
1411 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1412 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1413 		/* Something bad happened, let's kill all regs except FP */
1414 		for (regno = 0; regno < BPF_REG_FP; regno++)
1415 			__mark_reg_not_init(env, regs + regno);
1416 		return;
1417 	}
1418 	__mark_reg_unknown(env, regs + regno);
1419 }
1420 
1421 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1422 				struct bpf_reg_state *reg)
1423 {
1424 	__mark_reg_unknown(env, reg);
1425 	reg->type = NOT_INIT;
1426 }
1427 
1428 static void mark_reg_not_init(struct bpf_verifier_env *env,
1429 			      struct bpf_reg_state *regs, u32 regno)
1430 {
1431 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1432 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1433 		/* Something bad happened, let's kill all regs except FP */
1434 		for (regno = 0; regno < BPF_REG_FP; regno++)
1435 			__mark_reg_not_init(env, regs + regno);
1436 		return;
1437 	}
1438 	__mark_reg_not_init(env, regs + regno);
1439 }
1440 
1441 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1442 			    struct bpf_reg_state *regs, u32 regno,
1443 			    enum bpf_reg_type reg_type,
1444 			    struct btf *btf, u32 btf_id)
1445 {
1446 	if (reg_type == SCALAR_VALUE) {
1447 		mark_reg_unknown(env, regs, regno);
1448 		return;
1449 	}
1450 	mark_reg_known_zero(env, regs, regno);
1451 	regs[regno].type = PTR_TO_BTF_ID;
1452 	regs[regno].btf = btf;
1453 	regs[regno].btf_id = btf_id;
1454 }
1455 
1456 #define DEF_NOT_SUBREG	(0)
1457 static void init_reg_state(struct bpf_verifier_env *env,
1458 			   struct bpf_func_state *state)
1459 {
1460 	struct bpf_reg_state *regs = state->regs;
1461 	int i;
1462 
1463 	for (i = 0; i < MAX_BPF_REG; i++) {
1464 		mark_reg_not_init(env, regs, i);
1465 		regs[i].live = REG_LIVE_NONE;
1466 		regs[i].parent = NULL;
1467 		regs[i].subreg_def = DEF_NOT_SUBREG;
1468 	}
1469 
1470 	/* frame pointer */
1471 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1472 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1473 	regs[BPF_REG_FP].frameno = state->frameno;
1474 }
1475 
1476 #define BPF_MAIN_FUNC (-1)
1477 static void init_func_state(struct bpf_verifier_env *env,
1478 			    struct bpf_func_state *state,
1479 			    int callsite, int frameno, int subprogno)
1480 {
1481 	state->callsite = callsite;
1482 	state->frameno = frameno;
1483 	state->subprogno = subprogno;
1484 	init_reg_state(env, state);
1485 }
1486 
1487 enum reg_arg_type {
1488 	SRC_OP,		/* register is used as source operand */
1489 	DST_OP,		/* register is used as destination operand */
1490 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1491 };
1492 
1493 static int cmp_subprogs(const void *a, const void *b)
1494 {
1495 	return ((struct bpf_subprog_info *)a)->start -
1496 	       ((struct bpf_subprog_info *)b)->start;
1497 }
1498 
1499 static int find_subprog(struct bpf_verifier_env *env, int off)
1500 {
1501 	struct bpf_subprog_info *p;
1502 
1503 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1504 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1505 	if (!p)
1506 		return -ENOENT;
1507 	return p - env->subprog_info;
1508 
1509 }
1510 
1511 static int add_subprog(struct bpf_verifier_env *env, int off)
1512 {
1513 	int insn_cnt = env->prog->len;
1514 	int ret;
1515 
1516 	if (off >= insn_cnt || off < 0) {
1517 		verbose(env, "call to invalid destination\n");
1518 		return -EINVAL;
1519 	}
1520 	ret = find_subprog(env, off);
1521 	if (ret >= 0)
1522 		return 0;
1523 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1524 		verbose(env, "too many subprograms\n");
1525 		return -E2BIG;
1526 	}
1527 	env->subprog_info[env->subprog_cnt++].start = off;
1528 	sort(env->subprog_info, env->subprog_cnt,
1529 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1530 	return 0;
1531 }
1532 
1533 static int check_subprogs(struct bpf_verifier_env *env)
1534 {
1535 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1536 	struct bpf_subprog_info *subprog = env->subprog_info;
1537 	struct bpf_insn *insn = env->prog->insnsi;
1538 	int insn_cnt = env->prog->len;
1539 
1540 	/* Add entry function. */
1541 	ret = add_subprog(env, 0);
1542 	if (ret < 0)
1543 		return ret;
1544 
1545 	/* determine subprog starts. The end is one before the next starts */
1546 	for (i = 0; i < insn_cnt; i++) {
1547 		if (!bpf_pseudo_call(insn + i))
1548 			continue;
1549 		if (!env->bpf_capable) {
1550 			verbose(env,
1551 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1552 			return -EPERM;
1553 		}
1554 		ret = add_subprog(env, i + insn[i].imm + 1);
1555 		if (ret < 0)
1556 			return ret;
1557 	}
1558 
1559 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1560 	 * logic. 'subprog_cnt' should not be increased.
1561 	 */
1562 	subprog[env->subprog_cnt].start = insn_cnt;
1563 
1564 	if (env->log.level & BPF_LOG_LEVEL2)
1565 		for (i = 0; i < env->subprog_cnt; i++)
1566 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1567 
1568 	/* now check that all jumps are within the same subprog */
1569 	subprog_start = subprog[cur_subprog].start;
1570 	subprog_end = subprog[cur_subprog + 1].start;
1571 	for (i = 0; i < insn_cnt; i++) {
1572 		u8 code = insn[i].code;
1573 
1574 		if (code == (BPF_JMP | BPF_CALL) &&
1575 		    insn[i].imm == BPF_FUNC_tail_call &&
1576 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1577 			subprog[cur_subprog].has_tail_call = true;
1578 		if (BPF_CLASS(code) == BPF_LD &&
1579 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1580 			subprog[cur_subprog].has_ld_abs = true;
1581 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1582 			goto next;
1583 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1584 			goto next;
1585 		off = i + insn[i].off + 1;
1586 		if (off < subprog_start || off >= subprog_end) {
1587 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1588 			return -EINVAL;
1589 		}
1590 next:
1591 		if (i == subprog_end - 1) {
1592 			/* to avoid fall-through from one subprog into another
1593 			 * the last insn of the subprog should be either exit
1594 			 * or unconditional jump back
1595 			 */
1596 			if (code != (BPF_JMP | BPF_EXIT) &&
1597 			    code != (BPF_JMP | BPF_JA)) {
1598 				verbose(env, "last insn is not an exit or jmp\n");
1599 				return -EINVAL;
1600 			}
1601 			subprog_start = subprog_end;
1602 			cur_subprog++;
1603 			if (cur_subprog < env->subprog_cnt)
1604 				subprog_end = subprog[cur_subprog + 1].start;
1605 		}
1606 	}
1607 	return 0;
1608 }
1609 
1610 /* Parentage chain of this register (or stack slot) should take care of all
1611  * issues like callee-saved registers, stack slot allocation time, etc.
1612  */
1613 static int mark_reg_read(struct bpf_verifier_env *env,
1614 			 const struct bpf_reg_state *state,
1615 			 struct bpf_reg_state *parent, u8 flag)
1616 {
1617 	bool writes = parent == state->parent; /* Observe write marks */
1618 	int cnt = 0;
1619 
1620 	while (parent) {
1621 		/* if read wasn't screened by an earlier write ... */
1622 		if (writes && state->live & REG_LIVE_WRITTEN)
1623 			break;
1624 		if (parent->live & REG_LIVE_DONE) {
1625 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1626 				reg_type_str[parent->type],
1627 				parent->var_off.value, parent->off);
1628 			return -EFAULT;
1629 		}
1630 		/* The first condition is more likely to be true than the
1631 		 * second, checked it first.
1632 		 */
1633 		if ((parent->live & REG_LIVE_READ) == flag ||
1634 		    parent->live & REG_LIVE_READ64)
1635 			/* The parentage chain never changes and
1636 			 * this parent was already marked as LIVE_READ.
1637 			 * There is no need to keep walking the chain again and
1638 			 * keep re-marking all parents as LIVE_READ.
1639 			 * This case happens when the same register is read
1640 			 * multiple times without writes into it in-between.
1641 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1642 			 * then no need to set the weak REG_LIVE_READ32.
1643 			 */
1644 			break;
1645 		/* ... then we depend on parent's value */
1646 		parent->live |= flag;
1647 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1648 		if (flag == REG_LIVE_READ64)
1649 			parent->live &= ~REG_LIVE_READ32;
1650 		state = parent;
1651 		parent = state->parent;
1652 		writes = true;
1653 		cnt++;
1654 	}
1655 
1656 	if (env->longest_mark_read_walk < cnt)
1657 		env->longest_mark_read_walk = cnt;
1658 	return 0;
1659 }
1660 
1661 /* This function is supposed to be used by the following 32-bit optimization
1662  * code only. It returns TRUE if the source or destination register operates
1663  * on 64-bit, otherwise return FALSE.
1664  */
1665 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1666 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1667 {
1668 	u8 code, class, op;
1669 
1670 	code = insn->code;
1671 	class = BPF_CLASS(code);
1672 	op = BPF_OP(code);
1673 	if (class == BPF_JMP) {
1674 		/* BPF_EXIT for "main" will reach here. Return TRUE
1675 		 * conservatively.
1676 		 */
1677 		if (op == BPF_EXIT)
1678 			return true;
1679 		if (op == BPF_CALL) {
1680 			/* BPF to BPF call will reach here because of marking
1681 			 * caller saved clobber with DST_OP_NO_MARK for which we
1682 			 * don't care the register def because they are anyway
1683 			 * marked as NOT_INIT already.
1684 			 */
1685 			if (insn->src_reg == BPF_PSEUDO_CALL)
1686 				return false;
1687 			/* Helper call will reach here because of arg type
1688 			 * check, conservatively return TRUE.
1689 			 */
1690 			if (t == SRC_OP)
1691 				return true;
1692 
1693 			return false;
1694 		}
1695 	}
1696 
1697 	if (class == BPF_ALU64 || class == BPF_JMP ||
1698 	    /* BPF_END always use BPF_ALU class. */
1699 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1700 		return true;
1701 
1702 	if (class == BPF_ALU || class == BPF_JMP32)
1703 		return false;
1704 
1705 	if (class == BPF_LDX) {
1706 		if (t != SRC_OP)
1707 			return BPF_SIZE(code) == BPF_DW;
1708 		/* LDX source must be ptr. */
1709 		return true;
1710 	}
1711 
1712 	if (class == BPF_STX) {
1713 		/* BPF_STX (including atomic variants) has multiple source
1714 		 * operands, one of which is a ptr. Check whether the caller is
1715 		 * asking about it.
1716 		 */
1717 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1718 			return true;
1719 		return BPF_SIZE(code) == BPF_DW;
1720 	}
1721 
1722 	if (class == BPF_LD) {
1723 		u8 mode = BPF_MODE(code);
1724 
1725 		/* LD_IMM64 */
1726 		if (mode == BPF_IMM)
1727 			return true;
1728 
1729 		/* Both LD_IND and LD_ABS return 32-bit data. */
1730 		if (t != SRC_OP)
1731 			return  false;
1732 
1733 		/* Implicit ctx ptr. */
1734 		if (regno == BPF_REG_6)
1735 			return true;
1736 
1737 		/* Explicit source could be any width. */
1738 		return true;
1739 	}
1740 
1741 	if (class == BPF_ST)
1742 		/* The only source register for BPF_ST is a ptr. */
1743 		return true;
1744 
1745 	/* Conservatively return true at default. */
1746 	return true;
1747 }
1748 
1749 /* Return the regno defined by the insn, or -1. */
1750 static int insn_def_regno(const struct bpf_insn *insn)
1751 {
1752 	switch (BPF_CLASS(insn->code)) {
1753 	case BPF_JMP:
1754 	case BPF_JMP32:
1755 	case BPF_ST:
1756 		return -1;
1757 	case BPF_STX:
1758 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1759 		    (insn->imm & BPF_FETCH)) {
1760 			if (insn->imm == BPF_CMPXCHG)
1761 				return BPF_REG_0;
1762 			else
1763 				return insn->src_reg;
1764 		} else {
1765 			return -1;
1766 		}
1767 	default:
1768 		return insn->dst_reg;
1769 	}
1770 }
1771 
1772 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1773 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1774 {
1775 	int dst_reg = insn_def_regno(insn);
1776 
1777 	if (dst_reg == -1)
1778 		return false;
1779 
1780 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1781 }
1782 
1783 static void mark_insn_zext(struct bpf_verifier_env *env,
1784 			   struct bpf_reg_state *reg)
1785 {
1786 	s32 def_idx = reg->subreg_def;
1787 
1788 	if (def_idx == DEF_NOT_SUBREG)
1789 		return;
1790 
1791 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1792 	/* The dst will be zero extended, so won't be sub-register anymore. */
1793 	reg->subreg_def = DEF_NOT_SUBREG;
1794 }
1795 
1796 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1797 			 enum reg_arg_type t)
1798 {
1799 	struct bpf_verifier_state *vstate = env->cur_state;
1800 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1801 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1802 	struct bpf_reg_state *reg, *regs = state->regs;
1803 	bool rw64;
1804 
1805 	if (regno >= MAX_BPF_REG) {
1806 		verbose(env, "R%d is invalid\n", regno);
1807 		return -EINVAL;
1808 	}
1809 
1810 	reg = &regs[regno];
1811 	rw64 = is_reg64(env, insn, regno, reg, t);
1812 	if (t == SRC_OP) {
1813 		/* check whether register used as source operand can be read */
1814 		if (reg->type == NOT_INIT) {
1815 			verbose(env, "R%d !read_ok\n", regno);
1816 			return -EACCES;
1817 		}
1818 		/* We don't need to worry about FP liveness because it's read-only */
1819 		if (regno == BPF_REG_FP)
1820 			return 0;
1821 
1822 		if (rw64)
1823 			mark_insn_zext(env, reg);
1824 
1825 		return mark_reg_read(env, reg, reg->parent,
1826 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1827 	} else {
1828 		/* check whether register used as dest operand can be written to */
1829 		if (regno == BPF_REG_FP) {
1830 			verbose(env, "frame pointer is read only\n");
1831 			return -EACCES;
1832 		}
1833 		reg->live |= REG_LIVE_WRITTEN;
1834 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1835 		if (t == DST_OP)
1836 			mark_reg_unknown(env, regs, regno);
1837 	}
1838 	return 0;
1839 }
1840 
1841 /* for any branch, call, exit record the history of jmps in the given state */
1842 static int push_jmp_history(struct bpf_verifier_env *env,
1843 			    struct bpf_verifier_state *cur)
1844 {
1845 	u32 cnt = cur->jmp_history_cnt;
1846 	struct bpf_idx_pair *p;
1847 
1848 	cnt++;
1849 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1850 	if (!p)
1851 		return -ENOMEM;
1852 	p[cnt - 1].idx = env->insn_idx;
1853 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1854 	cur->jmp_history = p;
1855 	cur->jmp_history_cnt = cnt;
1856 	return 0;
1857 }
1858 
1859 /* Backtrack one insn at a time. If idx is not at the top of recorded
1860  * history then previous instruction came from straight line execution.
1861  */
1862 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1863 			     u32 *history)
1864 {
1865 	u32 cnt = *history;
1866 
1867 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1868 		i = st->jmp_history[cnt - 1].prev_idx;
1869 		(*history)--;
1870 	} else {
1871 		i--;
1872 	}
1873 	return i;
1874 }
1875 
1876 /* For given verifier state backtrack_insn() is called from the last insn to
1877  * the first insn. Its purpose is to compute a bitmask of registers and
1878  * stack slots that needs precision in the parent verifier state.
1879  */
1880 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1881 			  u32 *reg_mask, u64 *stack_mask)
1882 {
1883 	const struct bpf_insn_cbs cbs = {
1884 		.cb_print	= verbose,
1885 		.private_data	= env,
1886 	};
1887 	struct bpf_insn *insn = env->prog->insnsi + idx;
1888 	u8 class = BPF_CLASS(insn->code);
1889 	u8 opcode = BPF_OP(insn->code);
1890 	u8 mode = BPF_MODE(insn->code);
1891 	u32 dreg = 1u << insn->dst_reg;
1892 	u32 sreg = 1u << insn->src_reg;
1893 	u32 spi;
1894 
1895 	if (insn->code == 0)
1896 		return 0;
1897 	if (env->log.level & BPF_LOG_LEVEL) {
1898 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1899 		verbose(env, "%d: ", idx);
1900 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1901 	}
1902 
1903 	if (class == BPF_ALU || class == BPF_ALU64) {
1904 		if (!(*reg_mask & dreg))
1905 			return 0;
1906 		if (opcode == BPF_MOV) {
1907 			if (BPF_SRC(insn->code) == BPF_X) {
1908 				/* dreg = sreg
1909 				 * dreg needs precision after this insn
1910 				 * sreg needs precision before this insn
1911 				 */
1912 				*reg_mask &= ~dreg;
1913 				*reg_mask |= sreg;
1914 			} else {
1915 				/* dreg = K
1916 				 * dreg needs precision after this insn.
1917 				 * Corresponding register is already marked
1918 				 * as precise=true in this verifier state.
1919 				 * No further markings in parent are necessary
1920 				 */
1921 				*reg_mask &= ~dreg;
1922 			}
1923 		} else {
1924 			if (BPF_SRC(insn->code) == BPF_X) {
1925 				/* dreg += sreg
1926 				 * both dreg and sreg need precision
1927 				 * before this insn
1928 				 */
1929 				*reg_mask |= sreg;
1930 			} /* else dreg += K
1931 			   * dreg still needs precision before this insn
1932 			   */
1933 		}
1934 	} else if (class == BPF_LDX) {
1935 		if (!(*reg_mask & dreg))
1936 			return 0;
1937 		*reg_mask &= ~dreg;
1938 
1939 		/* scalars can only be spilled into stack w/o losing precision.
1940 		 * Load from any other memory can be zero extended.
1941 		 * The desire to keep that precision is already indicated
1942 		 * by 'precise' mark in corresponding register of this state.
1943 		 * No further tracking necessary.
1944 		 */
1945 		if (insn->src_reg != BPF_REG_FP)
1946 			return 0;
1947 		if (BPF_SIZE(insn->code) != BPF_DW)
1948 			return 0;
1949 
1950 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1951 		 * that [fp - off] slot contains scalar that needs to be
1952 		 * tracked with precision
1953 		 */
1954 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1955 		if (spi >= 64) {
1956 			verbose(env, "BUG spi %d\n", spi);
1957 			WARN_ONCE(1, "verifier backtracking bug");
1958 			return -EFAULT;
1959 		}
1960 		*stack_mask |= 1ull << spi;
1961 	} else if (class == BPF_STX || class == BPF_ST) {
1962 		if (*reg_mask & dreg)
1963 			/* stx & st shouldn't be using _scalar_ dst_reg
1964 			 * to access memory. It means backtracking
1965 			 * encountered a case of pointer subtraction.
1966 			 */
1967 			return -ENOTSUPP;
1968 		/* scalars can only be spilled into stack */
1969 		if (insn->dst_reg != BPF_REG_FP)
1970 			return 0;
1971 		if (BPF_SIZE(insn->code) != BPF_DW)
1972 			return 0;
1973 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1974 		if (spi >= 64) {
1975 			verbose(env, "BUG spi %d\n", spi);
1976 			WARN_ONCE(1, "verifier backtracking bug");
1977 			return -EFAULT;
1978 		}
1979 		if (!(*stack_mask & (1ull << spi)))
1980 			return 0;
1981 		*stack_mask &= ~(1ull << spi);
1982 		if (class == BPF_STX)
1983 			*reg_mask |= sreg;
1984 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1985 		if (opcode == BPF_CALL) {
1986 			if (insn->src_reg == BPF_PSEUDO_CALL)
1987 				return -ENOTSUPP;
1988 			/* regular helper call sets R0 */
1989 			*reg_mask &= ~1;
1990 			if (*reg_mask & 0x3f) {
1991 				/* if backtracing was looking for registers R1-R5
1992 				 * they should have been found already.
1993 				 */
1994 				verbose(env, "BUG regs %x\n", *reg_mask);
1995 				WARN_ONCE(1, "verifier backtracking bug");
1996 				return -EFAULT;
1997 			}
1998 		} else if (opcode == BPF_EXIT) {
1999 			return -ENOTSUPP;
2000 		}
2001 	} else if (class == BPF_LD) {
2002 		if (!(*reg_mask & dreg))
2003 			return 0;
2004 		*reg_mask &= ~dreg;
2005 		/* It's ld_imm64 or ld_abs or ld_ind.
2006 		 * For ld_imm64 no further tracking of precision
2007 		 * into parent is necessary
2008 		 */
2009 		if (mode == BPF_IND || mode == BPF_ABS)
2010 			/* to be analyzed */
2011 			return -ENOTSUPP;
2012 	}
2013 	return 0;
2014 }
2015 
2016 /* the scalar precision tracking algorithm:
2017  * . at the start all registers have precise=false.
2018  * . scalar ranges are tracked as normal through alu and jmp insns.
2019  * . once precise value of the scalar register is used in:
2020  *   .  ptr + scalar alu
2021  *   . if (scalar cond K|scalar)
2022  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2023  *   backtrack through the verifier states and mark all registers and
2024  *   stack slots with spilled constants that these scalar regisers
2025  *   should be precise.
2026  * . during state pruning two registers (or spilled stack slots)
2027  *   are equivalent if both are not precise.
2028  *
2029  * Note the verifier cannot simply walk register parentage chain,
2030  * since many different registers and stack slots could have been
2031  * used to compute single precise scalar.
2032  *
2033  * The approach of starting with precise=true for all registers and then
2034  * backtrack to mark a register as not precise when the verifier detects
2035  * that program doesn't care about specific value (e.g., when helper
2036  * takes register as ARG_ANYTHING parameter) is not safe.
2037  *
2038  * It's ok to walk single parentage chain of the verifier states.
2039  * It's possible that this backtracking will go all the way till 1st insn.
2040  * All other branches will be explored for needing precision later.
2041  *
2042  * The backtracking needs to deal with cases like:
2043  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2044  * r9 -= r8
2045  * r5 = r9
2046  * if r5 > 0x79f goto pc+7
2047  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2048  * r5 += 1
2049  * ...
2050  * call bpf_perf_event_output#25
2051  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2052  *
2053  * and this case:
2054  * r6 = 1
2055  * call foo // uses callee's r6 inside to compute r0
2056  * r0 += r6
2057  * if r0 == 0 goto
2058  *
2059  * to track above reg_mask/stack_mask needs to be independent for each frame.
2060  *
2061  * Also if parent's curframe > frame where backtracking started,
2062  * the verifier need to mark registers in both frames, otherwise callees
2063  * may incorrectly prune callers. This is similar to
2064  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2065  *
2066  * For now backtracking falls back into conservative marking.
2067  */
2068 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2069 				     struct bpf_verifier_state *st)
2070 {
2071 	struct bpf_func_state *func;
2072 	struct bpf_reg_state *reg;
2073 	int i, j;
2074 
2075 	/* big hammer: mark all scalars precise in this path.
2076 	 * pop_stack may still get !precise scalars.
2077 	 */
2078 	for (; st; st = st->parent)
2079 		for (i = 0; i <= st->curframe; i++) {
2080 			func = st->frame[i];
2081 			for (j = 0; j < BPF_REG_FP; j++) {
2082 				reg = &func->regs[j];
2083 				if (reg->type != SCALAR_VALUE)
2084 					continue;
2085 				reg->precise = true;
2086 			}
2087 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2088 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2089 					continue;
2090 				reg = &func->stack[j].spilled_ptr;
2091 				if (reg->type != SCALAR_VALUE)
2092 					continue;
2093 				reg->precise = true;
2094 			}
2095 		}
2096 }
2097 
2098 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2099 				  int spi)
2100 {
2101 	struct bpf_verifier_state *st = env->cur_state;
2102 	int first_idx = st->first_insn_idx;
2103 	int last_idx = env->insn_idx;
2104 	struct bpf_func_state *func;
2105 	struct bpf_reg_state *reg;
2106 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2107 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2108 	bool skip_first = true;
2109 	bool new_marks = false;
2110 	int i, err;
2111 
2112 	if (!env->bpf_capable)
2113 		return 0;
2114 
2115 	func = st->frame[st->curframe];
2116 	if (regno >= 0) {
2117 		reg = &func->regs[regno];
2118 		if (reg->type != SCALAR_VALUE) {
2119 			WARN_ONCE(1, "backtracing misuse");
2120 			return -EFAULT;
2121 		}
2122 		if (!reg->precise)
2123 			new_marks = true;
2124 		else
2125 			reg_mask = 0;
2126 		reg->precise = true;
2127 	}
2128 
2129 	while (spi >= 0) {
2130 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2131 			stack_mask = 0;
2132 			break;
2133 		}
2134 		reg = &func->stack[spi].spilled_ptr;
2135 		if (reg->type != SCALAR_VALUE) {
2136 			stack_mask = 0;
2137 			break;
2138 		}
2139 		if (!reg->precise)
2140 			new_marks = true;
2141 		else
2142 			stack_mask = 0;
2143 		reg->precise = true;
2144 		break;
2145 	}
2146 
2147 	if (!new_marks)
2148 		return 0;
2149 	if (!reg_mask && !stack_mask)
2150 		return 0;
2151 	for (;;) {
2152 		DECLARE_BITMAP(mask, 64);
2153 		u32 history = st->jmp_history_cnt;
2154 
2155 		if (env->log.level & BPF_LOG_LEVEL)
2156 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2157 		for (i = last_idx;;) {
2158 			if (skip_first) {
2159 				err = 0;
2160 				skip_first = false;
2161 			} else {
2162 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2163 			}
2164 			if (err == -ENOTSUPP) {
2165 				mark_all_scalars_precise(env, st);
2166 				return 0;
2167 			} else if (err) {
2168 				return err;
2169 			}
2170 			if (!reg_mask && !stack_mask)
2171 				/* Found assignment(s) into tracked register in this state.
2172 				 * Since this state is already marked, just return.
2173 				 * Nothing to be tracked further in the parent state.
2174 				 */
2175 				return 0;
2176 			if (i == first_idx)
2177 				break;
2178 			i = get_prev_insn_idx(st, i, &history);
2179 			if (i >= env->prog->len) {
2180 				/* This can happen if backtracking reached insn 0
2181 				 * and there are still reg_mask or stack_mask
2182 				 * to backtrack.
2183 				 * It means the backtracking missed the spot where
2184 				 * particular register was initialized with a constant.
2185 				 */
2186 				verbose(env, "BUG backtracking idx %d\n", i);
2187 				WARN_ONCE(1, "verifier backtracking bug");
2188 				return -EFAULT;
2189 			}
2190 		}
2191 		st = st->parent;
2192 		if (!st)
2193 			break;
2194 
2195 		new_marks = false;
2196 		func = st->frame[st->curframe];
2197 		bitmap_from_u64(mask, reg_mask);
2198 		for_each_set_bit(i, mask, 32) {
2199 			reg = &func->regs[i];
2200 			if (reg->type != SCALAR_VALUE) {
2201 				reg_mask &= ~(1u << i);
2202 				continue;
2203 			}
2204 			if (!reg->precise)
2205 				new_marks = true;
2206 			reg->precise = true;
2207 		}
2208 
2209 		bitmap_from_u64(mask, stack_mask);
2210 		for_each_set_bit(i, mask, 64) {
2211 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2212 				/* the sequence of instructions:
2213 				 * 2: (bf) r3 = r10
2214 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2215 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2216 				 * doesn't contain jmps. It's backtracked
2217 				 * as a single block.
2218 				 * During backtracking insn 3 is not recognized as
2219 				 * stack access, so at the end of backtracking
2220 				 * stack slot fp-8 is still marked in stack_mask.
2221 				 * However the parent state may not have accessed
2222 				 * fp-8 and it's "unallocated" stack space.
2223 				 * In such case fallback to conservative.
2224 				 */
2225 				mark_all_scalars_precise(env, st);
2226 				return 0;
2227 			}
2228 
2229 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2230 				stack_mask &= ~(1ull << i);
2231 				continue;
2232 			}
2233 			reg = &func->stack[i].spilled_ptr;
2234 			if (reg->type != SCALAR_VALUE) {
2235 				stack_mask &= ~(1ull << i);
2236 				continue;
2237 			}
2238 			if (!reg->precise)
2239 				new_marks = true;
2240 			reg->precise = true;
2241 		}
2242 		if (env->log.level & BPF_LOG_LEVEL) {
2243 			print_verifier_state(env, func);
2244 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2245 				new_marks ? "didn't have" : "already had",
2246 				reg_mask, stack_mask);
2247 		}
2248 
2249 		if (!reg_mask && !stack_mask)
2250 			break;
2251 		if (!new_marks)
2252 			break;
2253 
2254 		last_idx = st->last_insn_idx;
2255 		first_idx = st->first_insn_idx;
2256 	}
2257 	return 0;
2258 }
2259 
2260 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2261 {
2262 	return __mark_chain_precision(env, regno, -1);
2263 }
2264 
2265 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2266 {
2267 	return __mark_chain_precision(env, -1, spi);
2268 }
2269 
2270 static bool is_spillable_regtype(enum bpf_reg_type type)
2271 {
2272 	switch (type) {
2273 	case PTR_TO_MAP_VALUE:
2274 	case PTR_TO_MAP_VALUE_OR_NULL:
2275 	case PTR_TO_STACK:
2276 	case PTR_TO_CTX:
2277 	case PTR_TO_PACKET:
2278 	case PTR_TO_PACKET_META:
2279 	case PTR_TO_PACKET_END:
2280 	case PTR_TO_FLOW_KEYS:
2281 	case CONST_PTR_TO_MAP:
2282 	case PTR_TO_SOCKET:
2283 	case PTR_TO_SOCKET_OR_NULL:
2284 	case PTR_TO_SOCK_COMMON:
2285 	case PTR_TO_SOCK_COMMON_OR_NULL:
2286 	case PTR_TO_TCP_SOCK:
2287 	case PTR_TO_TCP_SOCK_OR_NULL:
2288 	case PTR_TO_XDP_SOCK:
2289 	case PTR_TO_BTF_ID:
2290 	case PTR_TO_BTF_ID_OR_NULL:
2291 	case PTR_TO_RDONLY_BUF:
2292 	case PTR_TO_RDONLY_BUF_OR_NULL:
2293 	case PTR_TO_RDWR_BUF:
2294 	case PTR_TO_RDWR_BUF_OR_NULL:
2295 	case PTR_TO_PERCPU_BTF_ID:
2296 	case PTR_TO_MEM:
2297 	case PTR_TO_MEM_OR_NULL:
2298 		return true;
2299 	default:
2300 		return false;
2301 	}
2302 }
2303 
2304 /* Does this register contain a constant zero? */
2305 static bool register_is_null(struct bpf_reg_state *reg)
2306 {
2307 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2308 }
2309 
2310 static bool register_is_const(struct bpf_reg_state *reg)
2311 {
2312 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2313 }
2314 
2315 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2316 {
2317 	return tnum_is_unknown(reg->var_off) &&
2318 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2319 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2320 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2321 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2322 }
2323 
2324 static bool register_is_bounded(struct bpf_reg_state *reg)
2325 {
2326 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2327 }
2328 
2329 static bool __is_pointer_value(bool allow_ptr_leaks,
2330 			       const struct bpf_reg_state *reg)
2331 {
2332 	if (allow_ptr_leaks)
2333 		return false;
2334 
2335 	return reg->type != SCALAR_VALUE;
2336 }
2337 
2338 static void save_register_state(struct bpf_func_state *state,
2339 				int spi, struct bpf_reg_state *reg)
2340 {
2341 	int i;
2342 
2343 	state->stack[spi].spilled_ptr = *reg;
2344 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2345 
2346 	for (i = 0; i < BPF_REG_SIZE; i++)
2347 		state->stack[spi].slot_type[i] = STACK_SPILL;
2348 }
2349 
2350 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2351  * stack boundary and alignment are checked in check_mem_access()
2352  */
2353 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2354 				       /* stack frame we're writing to */
2355 				       struct bpf_func_state *state,
2356 				       int off, int size, int value_regno,
2357 				       int insn_idx)
2358 {
2359 	struct bpf_func_state *cur; /* state of the current function */
2360 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2361 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2362 	struct bpf_reg_state *reg = NULL;
2363 
2364 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2365 				 state->acquired_refs, true);
2366 	if (err)
2367 		return err;
2368 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2369 	 * so it's aligned access and [off, off + size) are within stack limits
2370 	 */
2371 	if (!env->allow_ptr_leaks &&
2372 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2373 	    size != BPF_REG_SIZE) {
2374 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2375 		return -EACCES;
2376 	}
2377 
2378 	cur = env->cur_state->frame[env->cur_state->curframe];
2379 	if (value_regno >= 0)
2380 		reg = &cur->regs[value_regno];
2381 
2382 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2383 	    !register_is_null(reg) && env->bpf_capable) {
2384 		if (dst_reg != BPF_REG_FP) {
2385 			/* The backtracking logic can only recognize explicit
2386 			 * stack slot address like [fp - 8]. Other spill of
2387 			 * scalar via different register has to be conervative.
2388 			 * Backtrack from here and mark all registers as precise
2389 			 * that contributed into 'reg' being a constant.
2390 			 */
2391 			err = mark_chain_precision(env, value_regno);
2392 			if (err)
2393 				return err;
2394 		}
2395 		save_register_state(state, spi, reg);
2396 	} else if (reg && is_spillable_regtype(reg->type)) {
2397 		/* register containing pointer is being spilled into stack */
2398 		if (size != BPF_REG_SIZE) {
2399 			verbose_linfo(env, insn_idx, "; ");
2400 			verbose(env, "invalid size of register spill\n");
2401 			return -EACCES;
2402 		}
2403 
2404 		if (state != cur && reg->type == PTR_TO_STACK) {
2405 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2406 			return -EINVAL;
2407 		}
2408 
2409 		if (!env->bypass_spec_v4) {
2410 			bool sanitize = false;
2411 
2412 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2413 			    register_is_const(&state->stack[spi].spilled_ptr))
2414 				sanitize = true;
2415 			for (i = 0; i < BPF_REG_SIZE; i++)
2416 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2417 					sanitize = true;
2418 					break;
2419 				}
2420 			if (sanitize) {
2421 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2422 				int soff = (-spi - 1) * BPF_REG_SIZE;
2423 
2424 				/* detected reuse of integer stack slot with a pointer
2425 				 * which means either llvm is reusing stack slot or
2426 				 * an attacker is trying to exploit CVE-2018-3639
2427 				 * (speculative store bypass)
2428 				 * Have to sanitize that slot with preemptive
2429 				 * store of zero.
2430 				 */
2431 				if (*poff && *poff != soff) {
2432 					/* disallow programs where single insn stores
2433 					 * into two different stack slots, since verifier
2434 					 * cannot sanitize them
2435 					 */
2436 					verbose(env,
2437 						"insn %d cannot access two stack slots fp%d and fp%d",
2438 						insn_idx, *poff, soff);
2439 					return -EINVAL;
2440 				}
2441 				*poff = soff;
2442 			}
2443 		}
2444 		save_register_state(state, spi, reg);
2445 	} else {
2446 		u8 type = STACK_MISC;
2447 
2448 		/* regular write of data into stack destroys any spilled ptr */
2449 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2450 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2451 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2452 			for (i = 0; i < BPF_REG_SIZE; i++)
2453 				state->stack[spi].slot_type[i] = STACK_MISC;
2454 
2455 		/* only mark the slot as written if all 8 bytes were written
2456 		 * otherwise read propagation may incorrectly stop too soon
2457 		 * when stack slots are partially written.
2458 		 * This heuristic means that read propagation will be
2459 		 * conservative, since it will add reg_live_read marks
2460 		 * to stack slots all the way to first state when programs
2461 		 * writes+reads less than 8 bytes
2462 		 */
2463 		if (size == BPF_REG_SIZE)
2464 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2465 
2466 		/* when we zero initialize stack slots mark them as such */
2467 		if (reg && register_is_null(reg)) {
2468 			/* backtracking doesn't work for STACK_ZERO yet. */
2469 			err = mark_chain_precision(env, value_regno);
2470 			if (err)
2471 				return err;
2472 			type = STACK_ZERO;
2473 		}
2474 
2475 		/* Mark slots affected by this stack write. */
2476 		for (i = 0; i < size; i++)
2477 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2478 				type;
2479 	}
2480 	return 0;
2481 }
2482 
2483 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2484  * known to contain a variable offset.
2485  * This function checks whether the write is permitted and conservatively
2486  * tracks the effects of the write, considering that each stack slot in the
2487  * dynamic range is potentially written to.
2488  *
2489  * 'off' includes 'regno->off'.
2490  * 'value_regno' can be -1, meaning that an unknown value is being written to
2491  * the stack.
2492  *
2493  * Spilled pointers in range are not marked as written because we don't know
2494  * what's going to be actually written. This means that read propagation for
2495  * future reads cannot be terminated by this write.
2496  *
2497  * For privileged programs, uninitialized stack slots are considered
2498  * initialized by this write (even though we don't know exactly what offsets
2499  * are going to be written to). The idea is that we don't want the verifier to
2500  * reject future reads that access slots written to through variable offsets.
2501  */
2502 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2503 				     /* func where register points to */
2504 				     struct bpf_func_state *state,
2505 				     int ptr_regno, int off, int size,
2506 				     int value_regno, int insn_idx)
2507 {
2508 	struct bpf_func_state *cur; /* state of the current function */
2509 	int min_off, max_off;
2510 	int i, err;
2511 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2512 	bool writing_zero = false;
2513 	/* set if the fact that we're writing a zero is used to let any
2514 	 * stack slots remain STACK_ZERO
2515 	 */
2516 	bool zero_used = false;
2517 
2518 	cur = env->cur_state->frame[env->cur_state->curframe];
2519 	ptr_reg = &cur->regs[ptr_regno];
2520 	min_off = ptr_reg->smin_value + off;
2521 	max_off = ptr_reg->smax_value + off + size;
2522 	if (value_regno >= 0)
2523 		value_reg = &cur->regs[value_regno];
2524 	if (value_reg && register_is_null(value_reg))
2525 		writing_zero = true;
2526 
2527 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2528 				 state->acquired_refs, true);
2529 	if (err)
2530 		return err;
2531 
2532 
2533 	/* Variable offset writes destroy any spilled pointers in range. */
2534 	for (i = min_off; i < max_off; i++) {
2535 		u8 new_type, *stype;
2536 		int slot, spi;
2537 
2538 		slot = -i - 1;
2539 		spi = slot / BPF_REG_SIZE;
2540 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2541 
2542 		if (!env->allow_ptr_leaks
2543 				&& *stype != NOT_INIT
2544 				&& *stype != SCALAR_VALUE) {
2545 			/* Reject the write if there's are spilled pointers in
2546 			 * range. If we didn't reject here, the ptr status
2547 			 * would be erased below (even though not all slots are
2548 			 * actually overwritten), possibly opening the door to
2549 			 * leaks.
2550 			 */
2551 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2552 				insn_idx, i);
2553 			return -EINVAL;
2554 		}
2555 
2556 		/* Erase all spilled pointers. */
2557 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2558 
2559 		/* Update the slot type. */
2560 		new_type = STACK_MISC;
2561 		if (writing_zero && *stype == STACK_ZERO) {
2562 			new_type = STACK_ZERO;
2563 			zero_used = true;
2564 		}
2565 		/* If the slot is STACK_INVALID, we check whether it's OK to
2566 		 * pretend that it will be initialized by this write. The slot
2567 		 * might not actually be written to, and so if we mark it as
2568 		 * initialized future reads might leak uninitialized memory.
2569 		 * For privileged programs, we will accept such reads to slots
2570 		 * that may or may not be written because, if we're reject
2571 		 * them, the error would be too confusing.
2572 		 */
2573 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2574 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2575 					insn_idx, i);
2576 			return -EINVAL;
2577 		}
2578 		*stype = new_type;
2579 	}
2580 	if (zero_used) {
2581 		/* backtracking doesn't work for STACK_ZERO yet. */
2582 		err = mark_chain_precision(env, value_regno);
2583 		if (err)
2584 			return err;
2585 	}
2586 	return 0;
2587 }
2588 
2589 /* When register 'dst_regno' is assigned some values from stack[min_off,
2590  * max_off), we set the register's type according to the types of the
2591  * respective stack slots. If all the stack values are known to be zeros, then
2592  * so is the destination reg. Otherwise, the register is considered to be
2593  * SCALAR. This function does not deal with register filling; the caller must
2594  * ensure that all spilled registers in the stack range have been marked as
2595  * read.
2596  */
2597 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2598 				/* func where src register points to */
2599 				struct bpf_func_state *ptr_state,
2600 				int min_off, int max_off, int dst_regno)
2601 {
2602 	struct bpf_verifier_state *vstate = env->cur_state;
2603 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2604 	int i, slot, spi;
2605 	u8 *stype;
2606 	int zeros = 0;
2607 
2608 	for (i = min_off; i < max_off; i++) {
2609 		slot = -i - 1;
2610 		spi = slot / BPF_REG_SIZE;
2611 		stype = ptr_state->stack[spi].slot_type;
2612 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2613 			break;
2614 		zeros++;
2615 	}
2616 	if (zeros == max_off - min_off) {
2617 		/* any access_size read into register is zero extended,
2618 		 * so the whole register == const_zero
2619 		 */
2620 		__mark_reg_const_zero(&state->regs[dst_regno]);
2621 		/* backtracking doesn't support STACK_ZERO yet,
2622 		 * so mark it precise here, so that later
2623 		 * backtracking can stop here.
2624 		 * Backtracking may not need this if this register
2625 		 * doesn't participate in pointer adjustment.
2626 		 * Forward propagation of precise flag is not
2627 		 * necessary either. This mark is only to stop
2628 		 * backtracking. Any register that contributed
2629 		 * to const 0 was marked precise before spill.
2630 		 */
2631 		state->regs[dst_regno].precise = true;
2632 	} else {
2633 		/* have read misc data from the stack */
2634 		mark_reg_unknown(env, state->regs, dst_regno);
2635 	}
2636 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2637 }
2638 
2639 /* Read the stack at 'off' and put the results into the register indicated by
2640  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2641  * spilled reg.
2642  *
2643  * 'dst_regno' can be -1, meaning that the read value is not going to a
2644  * register.
2645  *
2646  * The access is assumed to be within the current stack bounds.
2647  */
2648 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2649 				      /* func where src register points to */
2650 				      struct bpf_func_state *reg_state,
2651 				      int off, int size, int dst_regno)
2652 {
2653 	struct bpf_verifier_state *vstate = env->cur_state;
2654 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2655 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2656 	struct bpf_reg_state *reg;
2657 	u8 *stype;
2658 
2659 	stype = reg_state->stack[spi].slot_type;
2660 	reg = &reg_state->stack[spi].spilled_ptr;
2661 
2662 	if (stype[0] == STACK_SPILL) {
2663 		if (size != BPF_REG_SIZE) {
2664 			if (reg->type != SCALAR_VALUE) {
2665 				verbose_linfo(env, env->insn_idx, "; ");
2666 				verbose(env, "invalid size of register fill\n");
2667 				return -EACCES;
2668 			}
2669 			if (dst_regno >= 0) {
2670 				mark_reg_unknown(env, state->regs, dst_regno);
2671 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2672 			}
2673 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2674 			return 0;
2675 		}
2676 		for (i = 1; i < BPF_REG_SIZE; i++) {
2677 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2678 				verbose(env, "corrupted spill memory\n");
2679 				return -EACCES;
2680 			}
2681 		}
2682 
2683 		if (dst_regno >= 0) {
2684 			/* restore register state from stack */
2685 			state->regs[dst_regno] = *reg;
2686 			/* mark reg as written since spilled pointer state likely
2687 			 * has its liveness marks cleared by is_state_visited()
2688 			 * which resets stack/reg liveness for state transitions
2689 			 */
2690 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2691 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2692 			/* If dst_regno==-1, the caller is asking us whether
2693 			 * it is acceptable to use this value as a SCALAR_VALUE
2694 			 * (e.g. for XADD).
2695 			 * We must not allow unprivileged callers to do that
2696 			 * with spilled pointers.
2697 			 */
2698 			verbose(env, "leaking pointer from stack off %d\n",
2699 				off);
2700 			return -EACCES;
2701 		}
2702 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2703 	} else {
2704 		u8 type;
2705 
2706 		for (i = 0; i < size; i++) {
2707 			type = stype[(slot - i) % BPF_REG_SIZE];
2708 			if (type == STACK_MISC)
2709 				continue;
2710 			if (type == STACK_ZERO)
2711 				continue;
2712 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2713 				off, i, size);
2714 			return -EACCES;
2715 		}
2716 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2717 		if (dst_regno >= 0)
2718 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2719 	}
2720 	return 0;
2721 }
2722 
2723 enum stack_access_src {
2724 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2725 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2726 };
2727 
2728 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2729 					 int regno, int off, int access_size,
2730 					 bool zero_size_allowed,
2731 					 enum stack_access_src type,
2732 					 struct bpf_call_arg_meta *meta);
2733 
2734 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2735 {
2736 	return cur_regs(env) + regno;
2737 }
2738 
2739 /* Read the stack at 'ptr_regno + off' and put the result into the register
2740  * 'dst_regno'.
2741  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2742  * but not its variable offset.
2743  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2744  *
2745  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2746  * filling registers (i.e. reads of spilled register cannot be detected when
2747  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2748  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2749  * offset; for a fixed offset check_stack_read_fixed_off should be used
2750  * instead.
2751  */
2752 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2753 				    int ptr_regno, int off, int size, int dst_regno)
2754 {
2755 	/* The state of the source register. */
2756 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2757 	struct bpf_func_state *ptr_state = func(env, reg);
2758 	int err;
2759 	int min_off, max_off;
2760 
2761 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2762 	 */
2763 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2764 					    false, ACCESS_DIRECT, NULL);
2765 	if (err)
2766 		return err;
2767 
2768 	min_off = reg->smin_value + off;
2769 	max_off = reg->smax_value + off;
2770 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2771 	return 0;
2772 }
2773 
2774 /* check_stack_read dispatches to check_stack_read_fixed_off or
2775  * check_stack_read_var_off.
2776  *
2777  * The caller must ensure that the offset falls within the allocated stack
2778  * bounds.
2779  *
2780  * 'dst_regno' is a register which will receive the value from the stack. It
2781  * can be -1, meaning that the read value is not going to a register.
2782  */
2783 static int check_stack_read(struct bpf_verifier_env *env,
2784 			    int ptr_regno, int off, int size,
2785 			    int dst_regno)
2786 {
2787 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2788 	struct bpf_func_state *state = func(env, reg);
2789 	int err;
2790 	/* Some accesses are only permitted with a static offset. */
2791 	bool var_off = !tnum_is_const(reg->var_off);
2792 
2793 	/* The offset is required to be static when reads don't go to a
2794 	 * register, in order to not leak pointers (see
2795 	 * check_stack_read_fixed_off).
2796 	 */
2797 	if (dst_regno < 0 && var_off) {
2798 		char tn_buf[48];
2799 
2800 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2801 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2802 			tn_buf, off, size);
2803 		return -EACCES;
2804 	}
2805 	/* Variable offset is prohibited for unprivileged mode for simplicity
2806 	 * since it requires corresponding support in Spectre masking for stack
2807 	 * ALU. See also retrieve_ptr_limit().
2808 	 */
2809 	if (!env->bypass_spec_v1 && var_off) {
2810 		char tn_buf[48];
2811 
2812 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2813 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2814 				ptr_regno, tn_buf);
2815 		return -EACCES;
2816 	}
2817 
2818 	if (!var_off) {
2819 		off += reg->var_off.value;
2820 		err = check_stack_read_fixed_off(env, state, off, size,
2821 						 dst_regno);
2822 	} else {
2823 		/* Variable offset stack reads need more conservative handling
2824 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2825 		 * branch.
2826 		 */
2827 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2828 					       dst_regno);
2829 	}
2830 	return err;
2831 }
2832 
2833 
2834 /* check_stack_write dispatches to check_stack_write_fixed_off or
2835  * check_stack_write_var_off.
2836  *
2837  * 'ptr_regno' is the register used as a pointer into the stack.
2838  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2839  * 'value_regno' is the register whose value we're writing to the stack. It can
2840  * be -1, meaning that we're not writing from a register.
2841  *
2842  * The caller must ensure that the offset falls within the maximum stack size.
2843  */
2844 static int check_stack_write(struct bpf_verifier_env *env,
2845 			     int ptr_regno, int off, int size,
2846 			     int value_regno, int insn_idx)
2847 {
2848 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2849 	struct bpf_func_state *state = func(env, reg);
2850 	int err;
2851 
2852 	if (tnum_is_const(reg->var_off)) {
2853 		off += reg->var_off.value;
2854 		err = check_stack_write_fixed_off(env, state, off, size,
2855 						  value_regno, insn_idx);
2856 	} else {
2857 		/* Variable offset stack reads need more conservative handling
2858 		 * than fixed offset ones.
2859 		 */
2860 		err = check_stack_write_var_off(env, state,
2861 						ptr_regno, off, size,
2862 						value_regno, insn_idx);
2863 	}
2864 	return err;
2865 }
2866 
2867 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2868 				 int off, int size, enum bpf_access_type type)
2869 {
2870 	struct bpf_reg_state *regs = cur_regs(env);
2871 	struct bpf_map *map = regs[regno].map_ptr;
2872 	u32 cap = bpf_map_flags_to_cap(map);
2873 
2874 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2875 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2876 			map->value_size, off, size);
2877 		return -EACCES;
2878 	}
2879 
2880 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2881 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2882 			map->value_size, off, size);
2883 		return -EACCES;
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2890 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2891 			      int off, int size, u32 mem_size,
2892 			      bool zero_size_allowed)
2893 {
2894 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2895 	struct bpf_reg_state *reg;
2896 
2897 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2898 		return 0;
2899 
2900 	reg = &cur_regs(env)[regno];
2901 	switch (reg->type) {
2902 	case PTR_TO_MAP_VALUE:
2903 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2904 			mem_size, off, size);
2905 		break;
2906 	case PTR_TO_PACKET:
2907 	case PTR_TO_PACKET_META:
2908 	case PTR_TO_PACKET_END:
2909 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2910 			off, size, regno, reg->id, off, mem_size);
2911 		break;
2912 	case PTR_TO_MEM:
2913 	default:
2914 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2915 			mem_size, off, size);
2916 	}
2917 
2918 	return -EACCES;
2919 }
2920 
2921 /* check read/write into a memory region with possible variable offset */
2922 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2923 				   int off, int size, u32 mem_size,
2924 				   bool zero_size_allowed)
2925 {
2926 	struct bpf_verifier_state *vstate = env->cur_state;
2927 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2928 	struct bpf_reg_state *reg = &state->regs[regno];
2929 	int err;
2930 
2931 	/* We may have adjusted the register pointing to memory region, so we
2932 	 * need to try adding each of min_value and max_value to off
2933 	 * to make sure our theoretical access will be safe.
2934 	 */
2935 	if (env->log.level & BPF_LOG_LEVEL)
2936 		print_verifier_state(env, state);
2937 
2938 	/* The minimum value is only important with signed
2939 	 * comparisons where we can't assume the floor of a
2940 	 * value is 0.  If we are using signed variables for our
2941 	 * index'es we need to make sure that whatever we use
2942 	 * will have a set floor within our range.
2943 	 */
2944 	if (reg->smin_value < 0 &&
2945 	    (reg->smin_value == S64_MIN ||
2946 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2947 	      reg->smin_value + off < 0)) {
2948 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2949 			regno);
2950 		return -EACCES;
2951 	}
2952 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2953 				 mem_size, zero_size_allowed);
2954 	if (err) {
2955 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2956 			regno);
2957 		return err;
2958 	}
2959 
2960 	/* If we haven't set a max value then we need to bail since we can't be
2961 	 * sure we won't do bad things.
2962 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2963 	 */
2964 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2965 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2966 			regno);
2967 		return -EACCES;
2968 	}
2969 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2970 				 mem_size, zero_size_allowed);
2971 	if (err) {
2972 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2973 			regno);
2974 		return err;
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 /* check read/write into a map element with possible variable offset */
2981 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2982 			    int off, int size, bool zero_size_allowed)
2983 {
2984 	struct bpf_verifier_state *vstate = env->cur_state;
2985 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2986 	struct bpf_reg_state *reg = &state->regs[regno];
2987 	struct bpf_map *map = reg->map_ptr;
2988 	int err;
2989 
2990 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2991 				      zero_size_allowed);
2992 	if (err)
2993 		return err;
2994 
2995 	if (map_value_has_spin_lock(map)) {
2996 		u32 lock = map->spin_lock_off;
2997 
2998 		/* if any part of struct bpf_spin_lock can be touched by
2999 		 * load/store reject this program.
3000 		 * To check that [x1, x2) overlaps with [y1, y2)
3001 		 * it is sufficient to check x1 < y2 && y1 < x2.
3002 		 */
3003 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3004 		     lock < reg->umax_value + off + size) {
3005 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3006 			return -EACCES;
3007 		}
3008 	}
3009 	return err;
3010 }
3011 
3012 #define MAX_PACKET_OFF 0xffff
3013 
3014 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3015 {
3016 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3017 }
3018 
3019 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3020 				       const struct bpf_call_arg_meta *meta,
3021 				       enum bpf_access_type t)
3022 {
3023 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3024 
3025 	switch (prog_type) {
3026 	/* Program types only with direct read access go here! */
3027 	case BPF_PROG_TYPE_LWT_IN:
3028 	case BPF_PROG_TYPE_LWT_OUT:
3029 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3030 	case BPF_PROG_TYPE_SK_REUSEPORT:
3031 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3032 	case BPF_PROG_TYPE_CGROUP_SKB:
3033 		if (t == BPF_WRITE)
3034 			return false;
3035 		fallthrough;
3036 
3037 	/* Program types with direct read + write access go here! */
3038 	case BPF_PROG_TYPE_SCHED_CLS:
3039 	case BPF_PROG_TYPE_SCHED_ACT:
3040 	case BPF_PROG_TYPE_XDP:
3041 	case BPF_PROG_TYPE_LWT_XMIT:
3042 	case BPF_PROG_TYPE_SK_SKB:
3043 	case BPF_PROG_TYPE_SK_MSG:
3044 		if (meta)
3045 			return meta->pkt_access;
3046 
3047 		env->seen_direct_write = true;
3048 		return true;
3049 
3050 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3051 		if (t == BPF_WRITE)
3052 			env->seen_direct_write = true;
3053 
3054 		return true;
3055 
3056 	default:
3057 		return false;
3058 	}
3059 }
3060 
3061 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3062 			       int size, bool zero_size_allowed)
3063 {
3064 	struct bpf_reg_state *regs = cur_regs(env);
3065 	struct bpf_reg_state *reg = &regs[regno];
3066 	int err;
3067 
3068 	/* We may have added a variable offset to the packet pointer; but any
3069 	 * reg->range we have comes after that.  We are only checking the fixed
3070 	 * offset.
3071 	 */
3072 
3073 	/* We don't allow negative numbers, because we aren't tracking enough
3074 	 * detail to prove they're safe.
3075 	 */
3076 	if (reg->smin_value < 0) {
3077 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3078 			regno);
3079 		return -EACCES;
3080 	}
3081 
3082 	err = reg->range < 0 ? -EINVAL :
3083 	      __check_mem_access(env, regno, off, size, reg->range,
3084 				 zero_size_allowed);
3085 	if (err) {
3086 		verbose(env, "R%d offset is outside of the packet\n", regno);
3087 		return err;
3088 	}
3089 
3090 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3091 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3092 	 * otherwise find_good_pkt_pointers would have refused to set range info
3093 	 * that __check_mem_access would have rejected this pkt access.
3094 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3095 	 */
3096 	env->prog->aux->max_pkt_offset =
3097 		max_t(u32, env->prog->aux->max_pkt_offset,
3098 		      off + reg->umax_value + size - 1);
3099 
3100 	return err;
3101 }
3102 
3103 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3104 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3105 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3106 			    struct btf **btf, u32 *btf_id)
3107 {
3108 	struct bpf_insn_access_aux info = {
3109 		.reg_type = *reg_type,
3110 		.log = &env->log,
3111 	};
3112 
3113 	if (env->ops->is_valid_access &&
3114 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3115 		/* A non zero info.ctx_field_size indicates that this field is a
3116 		 * candidate for later verifier transformation to load the whole
3117 		 * field and then apply a mask when accessed with a narrower
3118 		 * access than actual ctx access size. A zero info.ctx_field_size
3119 		 * will only allow for whole field access and rejects any other
3120 		 * type of narrower access.
3121 		 */
3122 		*reg_type = info.reg_type;
3123 
3124 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3125 			*btf = info.btf;
3126 			*btf_id = info.btf_id;
3127 		} else {
3128 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3129 		}
3130 		/* remember the offset of last byte accessed in ctx */
3131 		if (env->prog->aux->max_ctx_offset < off + size)
3132 			env->prog->aux->max_ctx_offset = off + size;
3133 		return 0;
3134 	}
3135 
3136 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3137 	return -EACCES;
3138 }
3139 
3140 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3141 				  int size)
3142 {
3143 	if (size < 0 || off < 0 ||
3144 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3145 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3146 			off, size);
3147 		return -EACCES;
3148 	}
3149 	return 0;
3150 }
3151 
3152 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3153 			     u32 regno, int off, int size,
3154 			     enum bpf_access_type t)
3155 {
3156 	struct bpf_reg_state *regs = cur_regs(env);
3157 	struct bpf_reg_state *reg = &regs[regno];
3158 	struct bpf_insn_access_aux info = {};
3159 	bool valid;
3160 
3161 	if (reg->smin_value < 0) {
3162 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3163 			regno);
3164 		return -EACCES;
3165 	}
3166 
3167 	switch (reg->type) {
3168 	case PTR_TO_SOCK_COMMON:
3169 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3170 		break;
3171 	case PTR_TO_SOCKET:
3172 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3173 		break;
3174 	case PTR_TO_TCP_SOCK:
3175 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3176 		break;
3177 	case PTR_TO_XDP_SOCK:
3178 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3179 		break;
3180 	default:
3181 		valid = false;
3182 	}
3183 
3184 
3185 	if (valid) {
3186 		env->insn_aux_data[insn_idx].ctx_field_size =
3187 			info.ctx_field_size;
3188 		return 0;
3189 	}
3190 
3191 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3192 		regno, reg_type_str[reg->type], off, size);
3193 
3194 	return -EACCES;
3195 }
3196 
3197 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3198 {
3199 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3200 }
3201 
3202 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3203 {
3204 	const struct bpf_reg_state *reg = reg_state(env, regno);
3205 
3206 	return reg->type == PTR_TO_CTX;
3207 }
3208 
3209 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3210 {
3211 	const struct bpf_reg_state *reg = reg_state(env, regno);
3212 
3213 	return type_is_sk_pointer(reg->type);
3214 }
3215 
3216 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3217 {
3218 	const struct bpf_reg_state *reg = reg_state(env, regno);
3219 
3220 	return type_is_pkt_pointer(reg->type);
3221 }
3222 
3223 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3224 {
3225 	const struct bpf_reg_state *reg = reg_state(env, regno);
3226 
3227 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3228 	return reg->type == PTR_TO_FLOW_KEYS;
3229 }
3230 
3231 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3232 				   const struct bpf_reg_state *reg,
3233 				   int off, int size, bool strict)
3234 {
3235 	struct tnum reg_off;
3236 	int ip_align;
3237 
3238 	/* Byte size accesses are always allowed. */
3239 	if (!strict || size == 1)
3240 		return 0;
3241 
3242 	/* For platforms that do not have a Kconfig enabling
3243 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3244 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3245 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3246 	 * to this code only in strict mode where we want to emulate
3247 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3248 	 * unconditional IP align value of '2'.
3249 	 */
3250 	ip_align = 2;
3251 
3252 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3253 	if (!tnum_is_aligned(reg_off, size)) {
3254 		char tn_buf[48];
3255 
3256 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3257 		verbose(env,
3258 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3259 			ip_align, tn_buf, reg->off, off, size);
3260 		return -EACCES;
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3267 				       const struct bpf_reg_state *reg,
3268 				       const char *pointer_desc,
3269 				       int off, int size, bool strict)
3270 {
3271 	struct tnum reg_off;
3272 
3273 	/* Byte size accesses are always allowed. */
3274 	if (!strict || size == 1)
3275 		return 0;
3276 
3277 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3278 	if (!tnum_is_aligned(reg_off, size)) {
3279 		char tn_buf[48];
3280 
3281 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3282 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3283 			pointer_desc, tn_buf, reg->off, off, size);
3284 		return -EACCES;
3285 	}
3286 
3287 	return 0;
3288 }
3289 
3290 static int check_ptr_alignment(struct bpf_verifier_env *env,
3291 			       const struct bpf_reg_state *reg, int off,
3292 			       int size, bool strict_alignment_once)
3293 {
3294 	bool strict = env->strict_alignment || strict_alignment_once;
3295 	const char *pointer_desc = "";
3296 
3297 	switch (reg->type) {
3298 	case PTR_TO_PACKET:
3299 	case PTR_TO_PACKET_META:
3300 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3301 		 * right in front, treat it the very same way.
3302 		 */
3303 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3304 	case PTR_TO_FLOW_KEYS:
3305 		pointer_desc = "flow keys ";
3306 		break;
3307 	case PTR_TO_MAP_VALUE:
3308 		pointer_desc = "value ";
3309 		break;
3310 	case PTR_TO_CTX:
3311 		pointer_desc = "context ";
3312 		break;
3313 	case PTR_TO_STACK:
3314 		pointer_desc = "stack ";
3315 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3316 		 * and check_stack_read_fixed_off() relies on stack accesses being
3317 		 * aligned.
3318 		 */
3319 		strict = true;
3320 		break;
3321 	case PTR_TO_SOCKET:
3322 		pointer_desc = "sock ";
3323 		break;
3324 	case PTR_TO_SOCK_COMMON:
3325 		pointer_desc = "sock_common ";
3326 		break;
3327 	case PTR_TO_TCP_SOCK:
3328 		pointer_desc = "tcp_sock ";
3329 		break;
3330 	case PTR_TO_XDP_SOCK:
3331 		pointer_desc = "xdp_sock ";
3332 		break;
3333 	default:
3334 		break;
3335 	}
3336 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3337 					   strict);
3338 }
3339 
3340 static int update_stack_depth(struct bpf_verifier_env *env,
3341 			      const struct bpf_func_state *func,
3342 			      int off)
3343 {
3344 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3345 
3346 	if (stack >= -off)
3347 		return 0;
3348 
3349 	/* update known max for given subprogram */
3350 	env->subprog_info[func->subprogno].stack_depth = -off;
3351 	return 0;
3352 }
3353 
3354 /* starting from main bpf function walk all instructions of the function
3355  * and recursively walk all callees that given function can call.
3356  * Ignore jump and exit insns.
3357  * Since recursion is prevented by check_cfg() this algorithm
3358  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3359  */
3360 static int check_max_stack_depth(struct bpf_verifier_env *env)
3361 {
3362 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3363 	struct bpf_subprog_info *subprog = env->subprog_info;
3364 	struct bpf_insn *insn = env->prog->insnsi;
3365 	bool tail_call_reachable = false;
3366 	int ret_insn[MAX_CALL_FRAMES];
3367 	int ret_prog[MAX_CALL_FRAMES];
3368 	int j;
3369 
3370 process_func:
3371 	/* protect against potential stack overflow that might happen when
3372 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3373 	 * depth for such case down to 256 so that the worst case scenario
3374 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3375 	 * 8k).
3376 	 *
3377 	 * To get the idea what might happen, see an example:
3378 	 * func1 -> sub rsp, 128
3379 	 *  subfunc1 -> sub rsp, 256
3380 	 *  tailcall1 -> add rsp, 256
3381 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3382 	 *   subfunc2 -> sub rsp, 64
3383 	 *   subfunc22 -> sub rsp, 128
3384 	 *   tailcall2 -> add rsp, 128
3385 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3386 	 *
3387 	 * tailcall will unwind the current stack frame but it will not get rid
3388 	 * of caller's stack as shown on the example above.
3389 	 */
3390 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3391 		verbose(env,
3392 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3393 			depth);
3394 		return -EACCES;
3395 	}
3396 	/* round up to 32-bytes, since this is granularity
3397 	 * of interpreter stack size
3398 	 */
3399 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3400 	if (depth > MAX_BPF_STACK) {
3401 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3402 			frame + 1, depth);
3403 		return -EACCES;
3404 	}
3405 continue_func:
3406 	subprog_end = subprog[idx + 1].start;
3407 	for (; i < subprog_end; i++) {
3408 		if (!bpf_pseudo_call(insn + i))
3409 			continue;
3410 		/* remember insn and function to return to */
3411 		ret_insn[frame] = i + 1;
3412 		ret_prog[frame] = idx;
3413 
3414 		/* find the callee */
3415 		i = i + insn[i].imm + 1;
3416 		idx = find_subprog(env, i);
3417 		if (idx < 0) {
3418 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3419 				  i);
3420 			return -EFAULT;
3421 		}
3422 
3423 		if (subprog[idx].has_tail_call)
3424 			tail_call_reachable = true;
3425 
3426 		frame++;
3427 		if (frame >= MAX_CALL_FRAMES) {
3428 			verbose(env, "the call stack of %d frames is too deep !\n",
3429 				frame);
3430 			return -E2BIG;
3431 		}
3432 		goto process_func;
3433 	}
3434 	/* if tail call got detected across bpf2bpf calls then mark each of the
3435 	 * currently present subprog frames as tail call reachable subprogs;
3436 	 * this info will be utilized by JIT so that we will be preserving the
3437 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3438 	 */
3439 	if (tail_call_reachable)
3440 		for (j = 0; j < frame; j++)
3441 			subprog[ret_prog[j]].tail_call_reachable = true;
3442 
3443 	/* end of for() loop means the last insn of the 'subprog'
3444 	 * was reached. Doesn't matter whether it was JA or EXIT
3445 	 */
3446 	if (frame == 0)
3447 		return 0;
3448 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3449 	frame--;
3450 	i = ret_insn[frame];
3451 	idx = ret_prog[frame];
3452 	goto continue_func;
3453 }
3454 
3455 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3456 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3457 				  const struct bpf_insn *insn, int idx)
3458 {
3459 	int start = idx + insn->imm + 1, subprog;
3460 
3461 	subprog = find_subprog(env, start);
3462 	if (subprog < 0) {
3463 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3464 			  start);
3465 		return -EFAULT;
3466 	}
3467 	return env->subprog_info[subprog].stack_depth;
3468 }
3469 #endif
3470 
3471 int check_ctx_reg(struct bpf_verifier_env *env,
3472 		  const struct bpf_reg_state *reg, int regno)
3473 {
3474 	/* Access to ctx or passing it to a helper is only allowed in
3475 	 * its original, unmodified form.
3476 	 */
3477 
3478 	if (reg->off) {
3479 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3480 			regno, reg->off);
3481 		return -EACCES;
3482 	}
3483 
3484 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3485 		char tn_buf[48];
3486 
3487 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3488 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3489 		return -EACCES;
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static int __check_buffer_access(struct bpf_verifier_env *env,
3496 				 const char *buf_info,
3497 				 const struct bpf_reg_state *reg,
3498 				 int regno, int off, int size)
3499 {
3500 	if (off < 0) {
3501 		verbose(env,
3502 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3503 			regno, buf_info, off, size);
3504 		return -EACCES;
3505 	}
3506 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3507 		char tn_buf[48];
3508 
3509 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3510 		verbose(env,
3511 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3512 			regno, off, tn_buf);
3513 		return -EACCES;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
3519 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3520 				  const struct bpf_reg_state *reg,
3521 				  int regno, int off, int size)
3522 {
3523 	int err;
3524 
3525 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3526 	if (err)
3527 		return err;
3528 
3529 	if (off + size > env->prog->aux->max_tp_access)
3530 		env->prog->aux->max_tp_access = off + size;
3531 
3532 	return 0;
3533 }
3534 
3535 static int check_buffer_access(struct bpf_verifier_env *env,
3536 			       const struct bpf_reg_state *reg,
3537 			       int regno, int off, int size,
3538 			       bool zero_size_allowed,
3539 			       const char *buf_info,
3540 			       u32 *max_access)
3541 {
3542 	int err;
3543 
3544 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3545 	if (err)
3546 		return err;
3547 
3548 	if (off + size > *max_access)
3549 		*max_access = off + size;
3550 
3551 	return 0;
3552 }
3553 
3554 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3555 static void zext_32_to_64(struct bpf_reg_state *reg)
3556 {
3557 	reg->var_off = tnum_subreg(reg->var_off);
3558 	__reg_assign_32_into_64(reg);
3559 }
3560 
3561 /* truncate register to smaller size (in bytes)
3562  * must be called with size < BPF_REG_SIZE
3563  */
3564 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3565 {
3566 	u64 mask;
3567 
3568 	/* clear high bits in bit representation */
3569 	reg->var_off = tnum_cast(reg->var_off, size);
3570 
3571 	/* fix arithmetic bounds */
3572 	mask = ((u64)1 << (size * 8)) - 1;
3573 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3574 		reg->umin_value &= mask;
3575 		reg->umax_value &= mask;
3576 	} else {
3577 		reg->umin_value = 0;
3578 		reg->umax_value = mask;
3579 	}
3580 	reg->smin_value = reg->umin_value;
3581 	reg->smax_value = reg->umax_value;
3582 
3583 	/* If size is smaller than 32bit register the 32bit register
3584 	 * values are also truncated so we push 64-bit bounds into
3585 	 * 32-bit bounds. Above were truncated < 32-bits already.
3586 	 */
3587 	if (size >= 4)
3588 		return;
3589 	__reg_combine_64_into_32(reg);
3590 }
3591 
3592 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3593 {
3594 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3595 }
3596 
3597 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3598 {
3599 	void *ptr;
3600 	u64 addr;
3601 	int err;
3602 
3603 	err = map->ops->map_direct_value_addr(map, &addr, off);
3604 	if (err)
3605 		return err;
3606 	ptr = (void *)(long)addr + off;
3607 
3608 	switch (size) {
3609 	case sizeof(u8):
3610 		*val = (u64)*(u8 *)ptr;
3611 		break;
3612 	case sizeof(u16):
3613 		*val = (u64)*(u16 *)ptr;
3614 		break;
3615 	case sizeof(u32):
3616 		*val = (u64)*(u32 *)ptr;
3617 		break;
3618 	case sizeof(u64):
3619 		*val = *(u64 *)ptr;
3620 		break;
3621 	default:
3622 		return -EINVAL;
3623 	}
3624 	return 0;
3625 }
3626 
3627 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3628 				   struct bpf_reg_state *regs,
3629 				   int regno, int off, int size,
3630 				   enum bpf_access_type atype,
3631 				   int value_regno)
3632 {
3633 	struct bpf_reg_state *reg = regs + regno;
3634 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3635 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3636 	u32 btf_id;
3637 	int ret;
3638 
3639 	if (off < 0) {
3640 		verbose(env,
3641 			"R%d is ptr_%s invalid negative access: off=%d\n",
3642 			regno, tname, off);
3643 		return -EACCES;
3644 	}
3645 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3646 		char tn_buf[48];
3647 
3648 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3649 		verbose(env,
3650 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3651 			regno, tname, off, tn_buf);
3652 		return -EACCES;
3653 	}
3654 
3655 	if (env->ops->btf_struct_access) {
3656 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3657 						  off, size, atype, &btf_id);
3658 	} else {
3659 		if (atype != BPF_READ) {
3660 			verbose(env, "only read is supported\n");
3661 			return -EACCES;
3662 		}
3663 
3664 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3665 					atype, &btf_id);
3666 	}
3667 
3668 	if (ret < 0)
3669 		return ret;
3670 
3671 	if (atype == BPF_READ && value_regno >= 0)
3672 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3673 
3674 	return 0;
3675 }
3676 
3677 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3678 				   struct bpf_reg_state *regs,
3679 				   int regno, int off, int size,
3680 				   enum bpf_access_type atype,
3681 				   int value_regno)
3682 {
3683 	struct bpf_reg_state *reg = regs + regno;
3684 	struct bpf_map *map = reg->map_ptr;
3685 	const struct btf_type *t;
3686 	const char *tname;
3687 	u32 btf_id;
3688 	int ret;
3689 
3690 	if (!btf_vmlinux) {
3691 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3692 		return -ENOTSUPP;
3693 	}
3694 
3695 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3696 		verbose(env, "map_ptr access not supported for map type %d\n",
3697 			map->map_type);
3698 		return -ENOTSUPP;
3699 	}
3700 
3701 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3702 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3703 
3704 	if (!env->allow_ptr_to_map_access) {
3705 		verbose(env,
3706 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3707 			tname);
3708 		return -EPERM;
3709 	}
3710 
3711 	if (off < 0) {
3712 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3713 			regno, tname, off);
3714 		return -EACCES;
3715 	}
3716 
3717 	if (atype != BPF_READ) {
3718 		verbose(env, "only read from %s is supported\n", tname);
3719 		return -EACCES;
3720 	}
3721 
3722 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3723 	if (ret < 0)
3724 		return ret;
3725 
3726 	if (value_regno >= 0)
3727 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3728 
3729 	return 0;
3730 }
3731 
3732 /* Check that the stack access at the given offset is within bounds. The
3733  * maximum valid offset is -1.
3734  *
3735  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3736  * -state->allocated_stack for reads.
3737  */
3738 static int check_stack_slot_within_bounds(int off,
3739 					  struct bpf_func_state *state,
3740 					  enum bpf_access_type t)
3741 {
3742 	int min_valid_off;
3743 
3744 	if (t == BPF_WRITE)
3745 		min_valid_off = -MAX_BPF_STACK;
3746 	else
3747 		min_valid_off = -state->allocated_stack;
3748 
3749 	if (off < min_valid_off || off > -1)
3750 		return -EACCES;
3751 	return 0;
3752 }
3753 
3754 /* Check that the stack access at 'regno + off' falls within the maximum stack
3755  * bounds.
3756  *
3757  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3758  */
3759 static int check_stack_access_within_bounds(
3760 		struct bpf_verifier_env *env,
3761 		int regno, int off, int access_size,
3762 		enum stack_access_src src, enum bpf_access_type type)
3763 {
3764 	struct bpf_reg_state *regs = cur_regs(env);
3765 	struct bpf_reg_state *reg = regs + regno;
3766 	struct bpf_func_state *state = func(env, reg);
3767 	int min_off, max_off;
3768 	int err;
3769 	char *err_extra;
3770 
3771 	if (src == ACCESS_HELPER)
3772 		/* We don't know if helpers are reading or writing (or both). */
3773 		err_extra = " indirect access to";
3774 	else if (type == BPF_READ)
3775 		err_extra = " read from";
3776 	else
3777 		err_extra = " write to";
3778 
3779 	if (tnum_is_const(reg->var_off)) {
3780 		min_off = reg->var_off.value + off;
3781 		if (access_size > 0)
3782 			max_off = min_off + access_size - 1;
3783 		else
3784 			max_off = min_off;
3785 	} else {
3786 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3787 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3788 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3789 				err_extra, regno);
3790 			return -EACCES;
3791 		}
3792 		min_off = reg->smin_value + off;
3793 		if (access_size > 0)
3794 			max_off = reg->smax_value + off + access_size - 1;
3795 		else
3796 			max_off = min_off;
3797 	}
3798 
3799 	err = check_stack_slot_within_bounds(min_off, state, type);
3800 	if (!err)
3801 		err = check_stack_slot_within_bounds(max_off, state, type);
3802 
3803 	if (err) {
3804 		if (tnum_is_const(reg->var_off)) {
3805 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3806 				err_extra, regno, off, access_size);
3807 		} else {
3808 			char tn_buf[48];
3809 
3810 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3811 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3812 				err_extra, regno, tn_buf, access_size);
3813 		}
3814 	}
3815 	return err;
3816 }
3817 
3818 /* check whether memory at (regno + off) is accessible for t = (read | write)
3819  * if t==write, value_regno is a register which value is stored into memory
3820  * if t==read, value_regno is a register which will receive the value from memory
3821  * if t==write && value_regno==-1, some unknown value is stored into memory
3822  * if t==read && value_regno==-1, don't care what we read from memory
3823  */
3824 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3825 			    int off, int bpf_size, enum bpf_access_type t,
3826 			    int value_regno, bool strict_alignment_once)
3827 {
3828 	struct bpf_reg_state *regs = cur_regs(env);
3829 	struct bpf_reg_state *reg = regs + regno;
3830 	struct bpf_func_state *state;
3831 	int size, err = 0;
3832 
3833 	size = bpf_size_to_bytes(bpf_size);
3834 	if (size < 0)
3835 		return size;
3836 
3837 	/* alignment checks will add in reg->off themselves */
3838 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3839 	if (err)
3840 		return err;
3841 
3842 	/* for access checks, reg->off is just part of off */
3843 	off += reg->off;
3844 
3845 	if (reg->type == PTR_TO_MAP_VALUE) {
3846 		if (t == BPF_WRITE && value_regno >= 0 &&
3847 		    is_pointer_value(env, value_regno)) {
3848 			verbose(env, "R%d leaks addr into map\n", value_regno);
3849 			return -EACCES;
3850 		}
3851 		err = check_map_access_type(env, regno, off, size, t);
3852 		if (err)
3853 			return err;
3854 		err = check_map_access(env, regno, off, size, false);
3855 		if (!err && t == BPF_READ && value_regno >= 0) {
3856 			struct bpf_map *map = reg->map_ptr;
3857 
3858 			/* if map is read-only, track its contents as scalars */
3859 			if (tnum_is_const(reg->var_off) &&
3860 			    bpf_map_is_rdonly(map) &&
3861 			    map->ops->map_direct_value_addr) {
3862 				int map_off = off + reg->var_off.value;
3863 				u64 val = 0;
3864 
3865 				err = bpf_map_direct_read(map, map_off, size,
3866 							  &val);
3867 				if (err)
3868 					return err;
3869 
3870 				regs[value_regno].type = SCALAR_VALUE;
3871 				__mark_reg_known(&regs[value_regno], val);
3872 			} else {
3873 				mark_reg_unknown(env, regs, value_regno);
3874 			}
3875 		}
3876 	} else if (reg->type == PTR_TO_MEM) {
3877 		if (t == BPF_WRITE && value_regno >= 0 &&
3878 		    is_pointer_value(env, value_regno)) {
3879 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3880 			return -EACCES;
3881 		}
3882 		err = check_mem_region_access(env, regno, off, size,
3883 					      reg->mem_size, false);
3884 		if (!err && t == BPF_READ && value_regno >= 0)
3885 			mark_reg_unknown(env, regs, value_regno);
3886 	} else if (reg->type == PTR_TO_CTX) {
3887 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3888 		struct btf *btf = NULL;
3889 		u32 btf_id = 0;
3890 
3891 		if (t == BPF_WRITE && value_regno >= 0 &&
3892 		    is_pointer_value(env, value_regno)) {
3893 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3894 			return -EACCES;
3895 		}
3896 
3897 		err = check_ctx_reg(env, reg, regno);
3898 		if (err < 0)
3899 			return err;
3900 
3901 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3902 		if (err)
3903 			verbose_linfo(env, insn_idx, "; ");
3904 		if (!err && t == BPF_READ && value_regno >= 0) {
3905 			/* ctx access returns either a scalar, or a
3906 			 * PTR_TO_PACKET[_META,_END]. In the latter
3907 			 * case, we know the offset is zero.
3908 			 */
3909 			if (reg_type == SCALAR_VALUE) {
3910 				mark_reg_unknown(env, regs, value_regno);
3911 			} else {
3912 				mark_reg_known_zero(env, regs,
3913 						    value_regno);
3914 				if (reg_type_may_be_null(reg_type))
3915 					regs[value_regno].id = ++env->id_gen;
3916 				/* A load of ctx field could have different
3917 				 * actual load size with the one encoded in the
3918 				 * insn. When the dst is PTR, it is for sure not
3919 				 * a sub-register.
3920 				 */
3921 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3922 				if (reg_type == PTR_TO_BTF_ID ||
3923 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3924 					regs[value_regno].btf = btf;
3925 					regs[value_regno].btf_id = btf_id;
3926 				}
3927 			}
3928 			regs[value_regno].type = reg_type;
3929 		}
3930 
3931 	} else if (reg->type == PTR_TO_STACK) {
3932 		/* Basic bounds checks. */
3933 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3934 		if (err)
3935 			return err;
3936 
3937 		state = func(env, reg);
3938 		err = update_stack_depth(env, state, off);
3939 		if (err)
3940 			return err;
3941 
3942 		if (t == BPF_READ)
3943 			err = check_stack_read(env, regno, off, size,
3944 					       value_regno);
3945 		else
3946 			err = check_stack_write(env, regno, off, size,
3947 						value_regno, insn_idx);
3948 	} else if (reg_is_pkt_pointer(reg)) {
3949 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3950 			verbose(env, "cannot write into packet\n");
3951 			return -EACCES;
3952 		}
3953 		if (t == BPF_WRITE && value_regno >= 0 &&
3954 		    is_pointer_value(env, value_regno)) {
3955 			verbose(env, "R%d leaks addr into packet\n",
3956 				value_regno);
3957 			return -EACCES;
3958 		}
3959 		err = check_packet_access(env, regno, off, size, false);
3960 		if (!err && t == BPF_READ && value_regno >= 0)
3961 			mark_reg_unknown(env, regs, value_regno);
3962 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3963 		if (t == BPF_WRITE && value_regno >= 0 &&
3964 		    is_pointer_value(env, value_regno)) {
3965 			verbose(env, "R%d leaks addr into flow keys\n",
3966 				value_regno);
3967 			return -EACCES;
3968 		}
3969 
3970 		err = check_flow_keys_access(env, off, size);
3971 		if (!err && t == BPF_READ && value_regno >= 0)
3972 			mark_reg_unknown(env, regs, value_regno);
3973 	} else if (type_is_sk_pointer(reg->type)) {
3974 		if (t == BPF_WRITE) {
3975 			verbose(env, "R%d cannot write into %s\n",
3976 				regno, reg_type_str[reg->type]);
3977 			return -EACCES;
3978 		}
3979 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3980 		if (!err && value_regno >= 0)
3981 			mark_reg_unknown(env, regs, value_regno);
3982 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3983 		err = check_tp_buffer_access(env, reg, regno, off, size);
3984 		if (!err && t == BPF_READ && value_regno >= 0)
3985 			mark_reg_unknown(env, regs, value_regno);
3986 	} else if (reg->type == PTR_TO_BTF_ID) {
3987 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3988 					      value_regno);
3989 	} else if (reg->type == CONST_PTR_TO_MAP) {
3990 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3991 					      value_regno);
3992 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3993 		if (t == BPF_WRITE) {
3994 			verbose(env, "R%d cannot write into %s\n",
3995 				regno, reg_type_str[reg->type]);
3996 			return -EACCES;
3997 		}
3998 		err = check_buffer_access(env, reg, regno, off, size, false,
3999 					  "rdonly",
4000 					  &env->prog->aux->max_rdonly_access);
4001 		if (!err && value_regno >= 0)
4002 			mark_reg_unknown(env, regs, value_regno);
4003 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4004 		err = check_buffer_access(env, reg, regno, off, size, false,
4005 					  "rdwr",
4006 					  &env->prog->aux->max_rdwr_access);
4007 		if (!err && t == BPF_READ && value_regno >= 0)
4008 			mark_reg_unknown(env, regs, value_regno);
4009 	} else {
4010 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4011 			reg_type_str[reg->type]);
4012 		return -EACCES;
4013 	}
4014 
4015 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4016 	    regs[value_regno].type == SCALAR_VALUE) {
4017 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4018 		coerce_reg_to_size(&regs[value_regno], size);
4019 	}
4020 	return err;
4021 }
4022 
4023 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4024 {
4025 	int load_reg;
4026 	int err;
4027 
4028 	switch (insn->imm) {
4029 	case BPF_ADD:
4030 	case BPF_ADD | BPF_FETCH:
4031 	case BPF_AND:
4032 	case BPF_AND | BPF_FETCH:
4033 	case BPF_OR:
4034 	case BPF_OR | BPF_FETCH:
4035 	case BPF_XOR:
4036 	case BPF_XOR | BPF_FETCH:
4037 	case BPF_XCHG:
4038 	case BPF_CMPXCHG:
4039 		break;
4040 	default:
4041 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4042 		return -EINVAL;
4043 	}
4044 
4045 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4046 		verbose(env, "invalid atomic operand size\n");
4047 		return -EINVAL;
4048 	}
4049 
4050 	/* check src1 operand */
4051 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4052 	if (err)
4053 		return err;
4054 
4055 	/* check src2 operand */
4056 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4057 	if (err)
4058 		return err;
4059 
4060 	if (insn->imm == BPF_CMPXCHG) {
4061 		/* Check comparison of R0 with memory location */
4062 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4063 		if (err)
4064 			return err;
4065 	}
4066 
4067 	if (is_pointer_value(env, insn->src_reg)) {
4068 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4069 		return -EACCES;
4070 	}
4071 
4072 	if (is_ctx_reg(env, insn->dst_reg) ||
4073 	    is_pkt_reg(env, insn->dst_reg) ||
4074 	    is_flow_key_reg(env, insn->dst_reg) ||
4075 	    is_sk_reg(env, insn->dst_reg)) {
4076 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4077 			insn->dst_reg,
4078 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4079 		return -EACCES;
4080 	}
4081 
4082 	if (insn->imm & BPF_FETCH) {
4083 		if (insn->imm == BPF_CMPXCHG)
4084 			load_reg = BPF_REG_0;
4085 		else
4086 			load_reg = insn->src_reg;
4087 
4088 		/* check and record load of old value */
4089 		err = check_reg_arg(env, load_reg, DST_OP);
4090 		if (err)
4091 			return err;
4092 	} else {
4093 		/* This instruction accesses a memory location but doesn't
4094 		 * actually load it into a register.
4095 		 */
4096 		load_reg = -1;
4097 	}
4098 
4099 	/* check whether we can read the memory */
4100 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4101 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4102 	if (err)
4103 		return err;
4104 
4105 	/* check whether we can write into the same memory */
4106 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4107 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4108 	if (err)
4109 		return err;
4110 
4111 	return 0;
4112 }
4113 
4114 /* When register 'regno' is used to read the stack (either directly or through
4115  * a helper function) make sure that it's within stack boundary and, depending
4116  * on the access type, that all elements of the stack are initialized.
4117  *
4118  * 'off' includes 'regno->off', but not its dynamic part (if any).
4119  *
4120  * All registers that have been spilled on the stack in the slots within the
4121  * read offsets are marked as read.
4122  */
4123 static int check_stack_range_initialized(
4124 		struct bpf_verifier_env *env, int regno, int off,
4125 		int access_size, bool zero_size_allowed,
4126 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4127 {
4128 	struct bpf_reg_state *reg = reg_state(env, regno);
4129 	struct bpf_func_state *state = func(env, reg);
4130 	int err, min_off, max_off, i, j, slot, spi;
4131 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4132 	enum bpf_access_type bounds_check_type;
4133 	/* Some accesses can write anything into the stack, others are
4134 	 * read-only.
4135 	 */
4136 	bool clobber = false;
4137 
4138 	if (access_size == 0 && !zero_size_allowed) {
4139 		verbose(env, "invalid zero-sized read\n");
4140 		return -EACCES;
4141 	}
4142 
4143 	if (type == ACCESS_HELPER) {
4144 		/* The bounds checks for writes are more permissive than for
4145 		 * reads. However, if raw_mode is not set, we'll do extra
4146 		 * checks below.
4147 		 */
4148 		bounds_check_type = BPF_WRITE;
4149 		clobber = true;
4150 	} else {
4151 		bounds_check_type = BPF_READ;
4152 	}
4153 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4154 					       type, bounds_check_type);
4155 	if (err)
4156 		return err;
4157 
4158 
4159 	if (tnum_is_const(reg->var_off)) {
4160 		min_off = max_off = reg->var_off.value + off;
4161 	} else {
4162 		/* Variable offset is prohibited for unprivileged mode for
4163 		 * simplicity since it requires corresponding support in
4164 		 * Spectre masking for stack ALU.
4165 		 * See also retrieve_ptr_limit().
4166 		 */
4167 		if (!env->bypass_spec_v1) {
4168 			char tn_buf[48];
4169 
4170 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4171 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4172 				regno, err_extra, tn_buf);
4173 			return -EACCES;
4174 		}
4175 		/* Only initialized buffer on stack is allowed to be accessed
4176 		 * with variable offset. With uninitialized buffer it's hard to
4177 		 * guarantee that whole memory is marked as initialized on
4178 		 * helper return since specific bounds are unknown what may
4179 		 * cause uninitialized stack leaking.
4180 		 */
4181 		if (meta && meta->raw_mode)
4182 			meta = NULL;
4183 
4184 		min_off = reg->smin_value + off;
4185 		max_off = reg->smax_value + off;
4186 	}
4187 
4188 	if (meta && meta->raw_mode) {
4189 		meta->access_size = access_size;
4190 		meta->regno = regno;
4191 		return 0;
4192 	}
4193 
4194 	for (i = min_off; i < max_off + access_size; i++) {
4195 		u8 *stype;
4196 
4197 		slot = -i - 1;
4198 		spi = slot / BPF_REG_SIZE;
4199 		if (state->allocated_stack <= slot)
4200 			goto err;
4201 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4202 		if (*stype == STACK_MISC)
4203 			goto mark;
4204 		if (*stype == STACK_ZERO) {
4205 			if (clobber) {
4206 				/* helper can write anything into the stack */
4207 				*stype = STACK_MISC;
4208 			}
4209 			goto mark;
4210 		}
4211 
4212 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4213 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4214 			goto mark;
4215 
4216 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4217 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4218 		     env->allow_ptr_leaks)) {
4219 			if (clobber) {
4220 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4221 				for (j = 0; j < BPF_REG_SIZE; j++)
4222 					state->stack[spi].slot_type[j] = STACK_MISC;
4223 			}
4224 			goto mark;
4225 		}
4226 
4227 err:
4228 		if (tnum_is_const(reg->var_off)) {
4229 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4230 				err_extra, regno, min_off, i - min_off, access_size);
4231 		} else {
4232 			char tn_buf[48];
4233 
4234 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4235 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4236 				err_extra, regno, tn_buf, i - min_off, access_size);
4237 		}
4238 		return -EACCES;
4239 mark:
4240 		/* reading any byte out of 8-byte 'spill_slot' will cause
4241 		 * the whole slot to be marked as 'read'
4242 		 */
4243 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4244 			      state->stack[spi].spilled_ptr.parent,
4245 			      REG_LIVE_READ64);
4246 	}
4247 	return update_stack_depth(env, state, min_off);
4248 }
4249 
4250 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4251 				   int access_size, bool zero_size_allowed,
4252 				   struct bpf_call_arg_meta *meta)
4253 {
4254 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4255 
4256 	switch (reg->type) {
4257 	case PTR_TO_PACKET:
4258 	case PTR_TO_PACKET_META:
4259 		return check_packet_access(env, regno, reg->off, access_size,
4260 					   zero_size_allowed);
4261 	case PTR_TO_MAP_VALUE:
4262 		if (check_map_access_type(env, regno, reg->off, access_size,
4263 					  meta && meta->raw_mode ? BPF_WRITE :
4264 					  BPF_READ))
4265 			return -EACCES;
4266 		return check_map_access(env, regno, reg->off, access_size,
4267 					zero_size_allowed);
4268 	case PTR_TO_MEM:
4269 		return check_mem_region_access(env, regno, reg->off,
4270 					       access_size, reg->mem_size,
4271 					       zero_size_allowed);
4272 	case PTR_TO_RDONLY_BUF:
4273 		if (meta && meta->raw_mode)
4274 			return -EACCES;
4275 		return check_buffer_access(env, reg, regno, reg->off,
4276 					   access_size, zero_size_allowed,
4277 					   "rdonly",
4278 					   &env->prog->aux->max_rdonly_access);
4279 	case PTR_TO_RDWR_BUF:
4280 		return check_buffer_access(env, reg, regno, reg->off,
4281 					   access_size, zero_size_allowed,
4282 					   "rdwr",
4283 					   &env->prog->aux->max_rdwr_access);
4284 	case PTR_TO_STACK:
4285 		return check_stack_range_initialized(
4286 				env,
4287 				regno, reg->off, access_size,
4288 				zero_size_allowed, ACCESS_HELPER, meta);
4289 	default: /* scalar_value or invalid ptr */
4290 		/* Allow zero-byte read from NULL, regardless of pointer type */
4291 		if (zero_size_allowed && access_size == 0 &&
4292 		    register_is_null(reg))
4293 			return 0;
4294 
4295 		verbose(env, "R%d type=%s expected=%s\n", regno,
4296 			reg_type_str[reg->type],
4297 			reg_type_str[PTR_TO_STACK]);
4298 		return -EACCES;
4299 	}
4300 }
4301 
4302 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4303 		   u32 regno, u32 mem_size)
4304 {
4305 	if (register_is_null(reg))
4306 		return 0;
4307 
4308 	if (reg_type_may_be_null(reg->type)) {
4309 		/* Assuming that the register contains a value check if the memory
4310 		 * access is safe. Temporarily save and restore the register's state as
4311 		 * the conversion shouldn't be visible to a caller.
4312 		 */
4313 		const struct bpf_reg_state saved_reg = *reg;
4314 		int rv;
4315 
4316 		mark_ptr_not_null_reg(reg);
4317 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4318 		*reg = saved_reg;
4319 		return rv;
4320 	}
4321 
4322 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4323 }
4324 
4325 /* Implementation details:
4326  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4327  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4328  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4329  * value_or_null->value transition, since the verifier only cares about
4330  * the range of access to valid map value pointer and doesn't care about actual
4331  * address of the map element.
4332  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4333  * reg->id > 0 after value_or_null->value transition. By doing so
4334  * two bpf_map_lookups will be considered two different pointers that
4335  * point to different bpf_spin_locks.
4336  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4337  * dead-locks.
4338  * Since only one bpf_spin_lock is allowed the checks are simpler than
4339  * reg_is_refcounted() logic. The verifier needs to remember only
4340  * one spin_lock instead of array of acquired_refs.
4341  * cur_state->active_spin_lock remembers which map value element got locked
4342  * and clears it after bpf_spin_unlock.
4343  */
4344 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4345 			     bool is_lock)
4346 {
4347 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4348 	struct bpf_verifier_state *cur = env->cur_state;
4349 	bool is_const = tnum_is_const(reg->var_off);
4350 	struct bpf_map *map = reg->map_ptr;
4351 	u64 val = reg->var_off.value;
4352 
4353 	if (!is_const) {
4354 		verbose(env,
4355 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4356 			regno);
4357 		return -EINVAL;
4358 	}
4359 	if (!map->btf) {
4360 		verbose(env,
4361 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4362 			map->name);
4363 		return -EINVAL;
4364 	}
4365 	if (!map_value_has_spin_lock(map)) {
4366 		if (map->spin_lock_off == -E2BIG)
4367 			verbose(env,
4368 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4369 				map->name);
4370 		else if (map->spin_lock_off == -ENOENT)
4371 			verbose(env,
4372 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4373 				map->name);
4374 		else
4375 			verbose(env,
4376 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4377 				map->name);
4378 		return -EINVAL;
4379 	}
4380 	if (map->spin_lock_off != val + reg->off) {
4381 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4382 			val + reg->off);
4383 		return -EINVAL;
4384 	}
4385 	if (is_lock) {
4386 		if (cur->active_spin_lock) {
4387 			verbose(env,
4388 				"Locking two bpf_spin_locks are not allowed\n");
4389 			return -EINVAL;
4390 		}
4391 		cur->active_spin_lock = reg->id;
4392 	} else {
4393 		if (!cur->active_spin_lock) {
4394 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4395 			return -EINVAL;
4396 		}
4397 		if (cur->active_spin_lock != reg->id) {
4398 			verbose(env, "bpf_spin_unlock of different lock\n");
4399 			return -EINVAL;
4400 		}
4401 		cur->active_spin_lock = 0;
4402 	}
4403 	return 0;
4404 }
4405 
4406 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4407 {
4408 	return type == ARG_PTR_TO_MEM ||
4409 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4410 	       type == ARG_PTR_TO_UNINIT_MEM;
4411 }
4412 
4413 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4414 {
4415 	return type == ARG_CONST_SIZE ||
4416 	       type == ARG_CONST_SIZE_OR_ZERO;
4417 }
4418 
4419 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4420 {
4421 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4422 }
4423 
4424 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4425 {
4426 	return type == ARG_PTR_TO_INT ||
4427 	       type == ARG_PTR_TO_LONG;
4428 }
4429 
4430 static int int_ptr_type_to_size(enum bpf_arg_type type)
4431 {
4432 	if (type == ARG_PTR_TO_INT)
4433 		return sizeof(u32);
4434 	else if (type == ARG_PTR_TO_LONG)
4435 		return sizeof(u64);
4436 
4437 	return -EINVAL;
4438 }
4439 
4440 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4441 				 const struct bpf_call_arg_meta *meta,
4442 				 enum bpf_arg_type *arg_type)
4443 {
4444 	if (!meta->map_ptr) {
4445 		/* kernel subsystem misconfigured verifier */
4446 		verbose(env, "invalid map_ptr to access map->type\n");
4447 		return -EACCES;
4448 	}
4449 
4450 	switch (meta->map_ptr->map_type) {
4451 	case BPF_MAP_TYPE_SOCKMAP:
4452 	case BPF_MAP_TYPE_SOCKHASH:
4453 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4454 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4455 		} else {
4456 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4457 			return -EINVAL;
4458 		}
4459 		break;
4460 
4461 	default:
4462 		break;
4463 	}
4464 	return 0;
4465 }
4466 
4467 struct bpf_reg_types {
4468 	const enum bpf_reg_type types[10];
4469 	u32 *btf_id;
4470 };
4471 
4472 static const struct bpf_reg_types map_key_value_types = {
4473 	.types = {
4474 		PTR_TO_STACK,
4475 		PTR_TO_PACKET,
4476 		PTR_TO_PACKET_META,
4477 		PTR_TO_MAP_VALUE,
4478 	},
4479 };
4480 
4481 static const struct bpf_reg_types sock_types = {
4482 	.types = {
4483 		PTR_TO_SOCK_COMMON,
4484 		PTR_TO_SOCKET,
4485 		PTR_TO_TCP_SOCK,
4486 		PTR_TO_XDP_SOCK,
4487 	},
4488 };
4489 
4490 #ifdef CONFIG_NET
4491 static const struct bpf_reg_types btf_id_sock_common_types = {
4492 	.types = {
4493 		PTR_TO_SOCK_COMMON,
4494 		PTR_TO_SOCKET,
4495 		PTR_TO_TCP_SOCK,
4496 		PTR_TO_XDP_SOCK,
4497 		PTR_TO_BTF_ID,
4498 	},
4499 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4500 };
4501 #endif
4502 
4503 static const struct bpf_reg_types mem_types = {
4504 	.types = {
4505 		PTR_TO_STACK,
4506 		PTR_TO_PACKET,
4507 		PTR_TO_PACKET_META,
4508 		PTR_TO_MAP_VALUE,
4509 		PTR_TO_MEM,
4510 		PTR_TO_RDONLY_BUF,
4511 		PTR_TO_RDWR_BUF,
4512 	},
4513 };
4514 
4515 static const struct bpf_reg_types int_ptr_types = {
4516 	.types = {
4517 		PTR_TO_STACK,
4518 		PTR_TO_PACKET,
4519 		PTR_TO_PACKET_META,
4520 		PTR_TO_MAP_VALUE,
4521 	},
4522 };
4523 
4524 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4525 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4526 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4527 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4528 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4529 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4530 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4531 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4532 
4533 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4534 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4535 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4536 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4537 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4538 	[ARG_CONST_SIZE]		= &scalar_types,
4539 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4540 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4541 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4542 	[ARG_PTR_TO_CTX]		= &context_types,
4543 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4544 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4545 #ifdef CONFIG_NET
4546 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4547 #endif
4548 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4549 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4550 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4551 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4552 	[ARG_PTR_TO_MEM]		= &mem_types,
4553 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4554 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4555 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4556 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4557 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4558 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4559 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4560 };
4561 
4562 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4563 			  enum bpf_arg_type arg_type,
4564 			  const u32 *arg_btf_id)
4565 {
4566 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4567 	enum bpf_reg_type expected, type = reg->type;
4568 	const struct bpf_reg_types *compatible;
4569 	int i, j;
4570 
4571 	compatible = compatible_reg_types[arg_type];
4572 	if (!compatible) {
4573 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4574 		return -EFAULT;
4575 	}
4576 
4577 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4578 		expected = compatible->types[i];
4579 		if (expected == NOT_INIT)
4580 			break;
4581 
4582 		if (type == expected)
4583 			goto found;
4584 	}
4585 
4586 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4587 	for (j = 0; j + 1 < i; j++)
4588 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4589 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4590 	return -EACCES;
4591 
4592 found:
4593 	if (type == PTR_TO_BTF_ID) {
4594 		if (!arg_btf_id) {
4595 			if (!compatible->btf_id) {
4596 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4597 				return -EFAULT;
4598 			}
4599 			arg_btf_id = compatible->btf_id;
4600 		}
4601 
4602 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4603 					  btf_vmlinux, *arg_btf_id)) {
4604 			verbose(env, "R%d is of type %s but %s is expected\n",
4605 				regno, kernel_type_name(reg->btf, reg->btf_id),
4606 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4607 			return -EACCES;
4608 		}
4609 
4610 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4611 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4612 				regno);
4613 			return -EACCES;
4614 		}
4615 	}
4616 
4617 	return 0;
4618 }
4619 
4620 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4621 			  struct bpf_call_arg_meta *meta,
4622 			  const struct bpf_func_proto *fn)
4623 {
4624 	u32 regno = BPF_REG_1 + arg;
4625 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4626 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4627 	enum bpf_reg_type type = reg->type;
4628 	int err = 0;
4629 
4630 	if (arg_type == ARG_DONTCARE)
4631 		return 0;
4632 
4633 	err = check_reg_arg(env, regno, SRC_OP);
4634 	if (err)
4635 		return err;
4636 
4637 	if (arg_type == ARG_ANYTHING) {
4638 		if (is_pointer_value(env, regno)) {
4639 			verbose(env, "R%d leaks addr into helper function\n",
4640 				regno);
4641 			return -EACCES;
4642 		}
4643 		return 0;
4644 	}
4645 
4646 	if (type_is_pkt_pointer(type) &&
4647 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4648 		verbose(env, "helper access to the packet is not allowed\n");
4649 		return -EACCES;
4650 	}
4651 
4652 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4653 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4654 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4655 		err = resolve_map_arg_type(env, meta, &arg_type);
4656 		if (err)
4657 			return err;
4658 	}
4659 
4660 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4661 		/* A NULL register has a SCALAR_VALUE type, so skip
4662 		 * type checking.
4663 		 */
4664 		goto skip_type_check;
4665 
4666 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4667 	if (err)
4668 		return err;
4669 
4670 	if (type == PTR_TO_CTX) {
4671 		err = check_ctx_reg(env, reg, regno);
4672 		if (err < 0)
4673 			return err;
4674 	}
4675 
4676 skip_type_check:
4677 	if (reg->ref_obj_id) {
4678 		if (meta->ref_obj_id) {
4679 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4680 				regno, reg->ref_obj_id,
4681 				meta->ref_obj_id);
4682 			return -EFAULT;
4683 		}
4684 		meta->ref_obj_id = reg->ref_obj_id;
4685 	}
4686 
4687 	if (arg_type == ARG_CONST_MAP_PTR) {
4688 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4689 		meta->map_ptr = reg->map_ptr;
4690 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4691 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4692 		 * check that [key, key + map->key_size) are within
4693 		 * stack limits and initialized
4694 		 */
4695 		if (!meta->map_ptr) {
4696 			/* in function declaration map_ptr must come before
4697 			 * map_key, so that it's verified and known before
4698 			 * we have to check map_key here. Otherwise it means
4699 			 * that kernel subsystem misconfigured verifier
4700 			 */
4701 			verbose(env, "invalid map_ptr to access map->key\n");
4702 			return -EACCES;
4703 		}
4704 		err = check_helper_mem_access(env, regno,
4705 					      meta->map_ptr->key_size, false,
4706 					      NULL);
4707 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4708 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4709 		    !register_is_null(reg)) ||
4710 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4711 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4712 		 * check [value, value + map->value_size) validity
4713 		 */
4714 		if (!meta->map_ptr) {
4715 			/* kernel subsystem misconfigured verifier */
4716 			verbose(env, "invalid map_ptr to access map->value\n");
4717 			return -EACCES;
4718 		}
4719 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4720 		err = check_helper_mem_access(env, regno,
4721 					      meta->map_ptr->value_size, false,
4722 					      meta);
4723 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4724 		if (!reg->btf_id) {
4725 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4726 			return -EACCES;
4727 		}
4728 		meta->ret_btf = reg->btf;
4729 		meta->ret_btf_id = reg->btf_id;
4730 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4731 		if (meta->func_id == BPF_FUNC_spin_lock) {
4732 			if (process_spin_lock(env, regno, true))
4733 				return -EACCES;
4734 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4735 			if (process_spin_lock(env, regno, false))
4736 				return -EACCES;
4737 		} else {
4738 			verbose(env, "verifier internal error\n");
4739 			return -EFAULT;
4740 		}
4741 	} else if (arg_type_is_mem_ptr(arg_type)) {
4742 		/* The access to this pointer is only checked when we hit the
4743 		 * next is_mem_size argument below.
4744 		 */
4745 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4746 	} else if (arg_type_is_mem_size(arg_type)) {
4747 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4748 
4749 		/* This is used to refine r0 return value bounds for helpers
4750 		 * that enforce this value as an upper bound on return values.
4751 		 * See do_refine_retval_range() for helpers that can refine
4752 		 * the return value. C type of helper is u32 so we pull register
4753 		 * bound from umax_value however, if negative verifier errors
4754 		 * out. Only upper bounds can be learned because retval is an
4755 		 * int type and negative retvals are allowed.
4756 		 */
4757 		meta->msize_max_value = reg->umax_value;
4758 
4759 		/* The register is SCALAR_VALUE; the access check
4760 		 * happens using its boundaries.
4761 		 */
4762 		if (!tnum_is_const(reg->var_off))
4763 			/* For unprivileged variable accesses, disable raw
4764 			 * mode so that the program is required to
4765 			 * initialize all the memory that the helper could
4766 			 * just partially fill up.
4767 			 */
4768 			meta = NULL;
4769 
4770 		if (reg->smin_value < 0) {
4771 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4772 				regno);
4773 			return -EACCES;
4774 		}
4775 
4776 		if (reg->umin_value == 0) {
4777 			err = check_helper_mem_access(env, regno - 1, 0,
4778 						      zero_size_allowed,
4779 						      meta);
4780 			if (err)
4781 				return err;
4782 		}
4783 
4784 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4785 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4786 				regno);
4787 			return -EACCES;
4788 		}
4789 		err = check_helper_mem_access(env, regno - 1,
4790 					      reg->umax_value,
4791 					      zero_size_allowed, meta);
4792 		if (!err)
4793 			err = mark_chain_precision(env, regno);
4794 	} else if (arg_type_is_alloc_size(arg_type)) {
4795 		if (!tnum_is_const(reg->var_off)) {
4796 			verbose(env, "R%d is not a known constant'\n",
4797 				regno);
4798 			return -EACCES;
4799 		}
4800 		meta->mem_size = reg->var_off.value;
4801 	} else if (arg_type_is_int_ptr(arg_type)) {
4802 		int size = int_ptr_type_to_size(arg_type);
4803 
4804 		err = check_helper_mem_access(env, regno, size, false, meta);
4805 		if (err)
4806 			return err;
4807 		err = check_ptr_alignment(env, reg, 0, size, true);
4808 	}
4809 
4810 	return err;
4811 }
4812 
4813 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4814 {
4815 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4816 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4817 
4818 	if (func_id != BPF_FUNC_map_update_elem)
4819 		return false;
4820 
4821 	/* It's not possible to get access to a locked struct sock in these
4822 	 * contexts, so updating is safe.
4823 	 */
4824 	switch (type) {
4825 	case BPF_PROG_TYPE_TRACING:
4826 		if (eatype == BPF_TRACE_ITER)
4827 			return true;
4828 		break;
4829 	case BPF_PROG_TYPE_SOCKET_FILTER:
4830 	case BPF_PROG_TYPE_SCHED_CLS:
4831 	case BPF_PROG_TYPE_SCHED_ACT:
4832 	case BPF_PROG_TYPE_XDP:
4833 	case BPF_PROG_TYPE_SK_REUSEPORT:
4834 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4835 	case BPF_PROG_TYPE_SK_LOOKUP:
4836 		return true;
4837 	default:
4838 		break;
4839 	}
4840 
4841 	verbose(env, "cannot update sockmap in this context\n");
4842 	return false;
4843 }
4844 
4845 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4846 {
4847 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4848 }
4849 
4850 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4851 					struct bpf_map *map, int func_id)
4852 {
4853 	if (!map)
4854 		return 0;
4855 
4856 	/* We need a two way check, first is from map perspective ... */
4857 	switch (map->map_type) {
4858 	case BPF_MAP_TYPE_PROG_ARRAY:
4859 		if (func_id != BPF_FUNC_tail_call)
4860 			goto error;
4861 		break;
4862 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4863 		if (func_id != BPF_FUNC_perf_event_read &&
4864 		    func_id != BPF_FUNC_perf_event_output &&
4865 		    func_id != BPF_FUNC_skb_output &&
4866 		    func_id != BPF_FUNC_perf_event_read_value &&
4867 		    func_id != BPF_FUNC_xdp_output)
4868 			goto error;
4869 		break;
4870 	case BPF_MAP_TYPE_RINGBUF:
4871 		if (func_id != BPF_FUNC_ringbuf_output &&
4872 		    func_id != BPF_FUNC_ringbuf_reserve &&
4873 		    func_id != BPF_FUNC_ringbuf_submit &&
4874 		    func_id != BPF_FUNC_ringbuf_discard &&
4875 		    func_id != BPF_FUNC_ringbuf_query)
4876 			goto error;
4877 		break;
4878 	case BPF_MAP_TYPE_STACK_TRACE:
4879 		if (func_id != BPF_FUNC_get_stackid)
4880 			goto error;
4881 		break;
4882 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4883 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4884 		    func_id != BPF_FUNC_current_task_under_cgroup)
4885 			goto error;
4886 		break;
4887 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4888 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4889 		if (func_id != BPF_FUNC_get_local_storage)
4890 			goto error;
4891 		break;
4892 	case BPF_MAP_TYPE_DEVMAP:
4893 	case BPF_MAP_TYPE_DEVMAP_HASH:
4894 		if (func_id != BPF_FUNC_redirect_map &&
4895 		    func_id != BPF_FUNC_map_lookup_elem)
4896 			goto error;
4897 		break;
4898 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4899 	 * appear.
4900 	 */
4901 	case BPF_MAP_TYPE_CPUMAP:
4902 		if (func_id != BPF_FUNC_redirect_map)
4903 			goto error;
4904 		break;
4905 	case BPF_MAP_TYPE_XSKMAP:
4906 		if (func_id != BPF_FUNC_redirect_map &&
4907 		    func_id != BPF_FUNC_map_lookup_elem)
4908 			goto error;
4909 		break;
4910 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4911 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4912 		if (func_id != BPF_FUNC_map_lookup_elem)
4913 			goto error;
4914 		break;
4915 	case BPF_MAP_TYPE_SOCKMAP:
4916 		if (func_id != BPF_FUNC_sk_redirect_map &&
4917 		    func_id != BPF_FUNC_sock_map_update &&
4918 		    func_id != BPF_FUNC_map_delete_elem &&
4919 		    func_id != BPF_FUNC_msg_redirect_map &&
4920 		    func_id != BPF_FUNC_sk_select_reuseport &&
4921 		    func_id != BPF_FUNC_map_lookup_elem &&
4922 		    !may_update_sockmap(env, func_id))
4923 			goto error;
4924 		break;
4925 	case BPF_MAP_TYPE_SOCKHASH:
4926 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4927 		    func_id != BPF_FUNC_sock_hash_update &&
4928 		    func_id != BPF_FUNC_map_delete_elem &&
4929 		    func_id != BPF_FUNC_msg_redirect_hash &&
4930 		    func_id != BPF_FUNC_sk_select_reuseport &&
4931 		    func_id != BPF_FUNC_map_lookup_elem &&
4932 		    !may_update_sockmap(env, func_id))
4933 			goto error;
4934 		break;
4935 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4936 		if (func_id != BPF_FUNC_sk_select_reuseport)
4937 			goto error;
4938 		break;
4939 	case BPF_MAP_TYPE_QUEUE:
4940 	case BPF_MAP_TYPE_STACK:
4941 		if (func_id != BPF_FUNC_map_peek_elem &&
4942 		    func_id != BPF_FUNC_map_pop_elem &&
4943 		    func_id != BPF_FUNC_map_push_elem)
4944 			goto error;
4945 		break;
4946 	case BPF_MAP_TYPE_SK_STORAGE:
4947 		if (func_id != BPF_FUNC_sk_storage_get &&
4948 		    func_id != BPF_FUNC_sk_storage_delete)
4949 			goto error;
4950 		break;
4951 	case BPF_MAP_TYPE_INODE_STORAGE:
4952 		if (func_id != BPF_FUNC_inode_storage_get &&
4953 		    func_id != BPF_FUNC_inode_storage_delete)
4954 			goto error;
4955 		break;
4956 	case BPF_MAP_TYPE_TASK_STORAGE:
4957 		if (func_id != BPF_FUNC_task_storage_get &&
4958 		    func_id != BPF_FUNC_task_storage_delete)
4959 			goto error;
4960 		break;
4961 	default:
4962 		break;
4963 	}
4964 
4965 	/* ... and second from the function itself. */
4966 	switch (func_id) {
4967 	case BPF_FUNC_tail_call:
4968 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4969 			goto error;
4970 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4971 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4972 			return -EINVAL;
4973 		}
4974 		break;
4975 	case BPF_FUNC_perf_event_read:
4976 	case BPF_FUNC_perf_event_output:
4977 	case BPF_FUNC_perf_event_read_value:
4978 	case BPF_FUNC_skb_output:
4979 	case BPF_FUNC_xdp_output:
4980 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4981 			goto error;
4982 		break;
4983 	case BPF_FUNC_get_stackid:
4984 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4985 			goto error;
4986 		break;
4987 	case BPF_FUNC_current_task_under_cgroup:
4988 	case BPF_FUNC_skb_under_cgroup:
4989 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4990 			goto error;
4991 		break;
4992 	case BPF_FUNC_redirect_map:
4993 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4994 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4995 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4996 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4997 			goto error;
4998 		break;
4999 	case BPF_FUNC_sk_redirect_map:
5000 	case BPF_FUNC_msg_redirect_map:
5001 	case BPF_FUNC_sock_map_update:
5002 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5003 			goto error;
5004 		break;
5005 	case BPF_FUNC_sk_redirect_hash:
5006 	case BPF_FUNC_msg_redirect_hash:
5007 	case BPF_FUNC_sock_hash_update:
5008 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5009 			goto error;
5010 		break;
5011 	case BPF_FUNC_get_local_storage:
5012 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5013 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5014 			goto error;
5015 		break;
5016 	case BPF_FUNC_sk_select_reuseport:
5017 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5018 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5019 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5020 			goto error;
5021 		break;
5022 	case BPF_FUNC_map_peek_elem:
5023 	case BPF_FUNC_map_pop_elem:
5024 	case BPF_FUNC_map_push_elem:
5025 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5026 		    map->map_type != BPF_MAP_TYPE_STACK)
5027 			goto error;
5028 		break;
5029 	case BPF_FUNC_sk_storage_get:
5030 	case BPF_FUNC_sk_storage_delete:
5031 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5032 			goto error;
5033 		break;
5034 	case BPF_FUNC_inode_storage_get:
5035 	case BPF_FUNC_inode_storage_delete:
5036 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5037 			goto error;
5038 		break;
5039 	case BPF_FUNC_task_storage_get:
5040 	case BPF_FUNC_task_storage_delete:
5041 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5042 			goto error;
5043 		break;
5044 	default:
5045 		break;
5046 	}
5047 
5048 	return 0;
5049 error:
5050 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5051 		map->map_type, func_id_name(func_id), func_id);
5052 	return -EINVAL;
5053 }
5054 
5055 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5056 {
5057 	int count = 0;
5058 
5059 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5060 		count++;
5061 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5062 		count++;
5063 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5064 		count++;
5065 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5066 		count++;
5067 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5068 		count++;
5069 
5070 	/* We only support one arg being in raw mode at the moment,
5071 	 * which is sufficient for the helper functions we have
5072 	 * right now.
5073 	 */
5074 	return count <= 1;
5075 }
5076 
5077 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5078 				    enum bpf_arg_type arg_next)
5079 {
5080 	return (arg_type_is_mem_ptr(arg_curr) &&
5081 	        !arg_type_is_mem_size(arg_next)) ||
5082 	       (!arg_type_is_mem_ptr(arg_curr) &&
5083 		arg_type_is_mem_size(arg_next));
5084 }
5085 
5086 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5087 {
5088 	/* bpf_xxx(..., buf, len) call will access 'len'
5089 	 * bytes from memory 'buf'. Both arg types need
5090 	 * to be paired, so make sure there's no buggy
5091 	 * helper function specification.
5092 	 */
5093 	if (arg_type_is_mem_size(fn->arg1_type) ||
5094 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5095 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5096 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5097 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5098 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5099 		return false;
5100 
5101 	return true;
5102 }
5103 
5104 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5105 {
5106 	int count = 0;
5107 
5108 	if (arg_type_may_be_refcounted(fn->arg1_type))
5109 		count++;
5110 	if (arg_type_may_be_refcounted(fn->arg2_type))
5111 		count++;
5112 	if (arg_type_may_be_refcounted(fn->arg3_type))
5113 		count++;
5114 	if (arg_type_may_be_refcounted(fn->arg4_type))
5115 		count++;
5116 	if (arg_type_may_be_refcounted(fn->arg5_type))
5117 		count++;
5118 
5119 	/* A reference acquiring function cannot acquire
5120 	 * another refcounted ptr.
5121 	 */
5122 	if (may_be_acquire_function(func_id) && count)
5123 		return false;
5124 
5125 	/* We only support one arg being unreferenced at the moment,
5126 	 * which is sufficient for the helper functions we have right now.
5127 	 */
5128 	return count <= 1;
5129 }
5130 
5131 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5132 {
5133 	int i;
5134 
5135 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5136 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5137 			return false;
5138 
5139 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5140 			return false;
5141 	}
5142 
5143 	return true;
5144 }
5145 
5146 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5147 {
5148 	return check_raw_mode_ok(fn) &&
5149 	       check_arg_pair_ok(fn) &&
5150 	       check_btf_id_ok(fn) &&
5151 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5152 }
5153 
5154 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5155  * are now invalid, so turn them into unknown SCALAR_VALUE.
5156  */
5157 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5158 				     struct bpf_func_state *state)
5159 {
5160 	struct bpf_reg_state *regs = state->regs, *reg;
5161 	int i;
5162 
5163 	for (i = 0; i < MAX_BPF_REG; i++)
5164 		if (reg_is_pkt_pointer_any(&regs[i]))
5165 			mark_reg_unknown(env, regs, i);
5166 
5167 	bpf_for_each_spilled_reg(i, state, reg) {
5168 		if (!reg)
5169 			continue;
5170 		if (reg_is_pkt_pointer_any(reg))
5171 			__mark_reg_unknown(env, reg);
5172 	}
5173 }
5174 
5175 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5176 {
5177 	struct bpf_verifier_state *vstate = env->cur_state;
5178 	int i;
5179 
5180 	for (i = 0; i <= vstate->curframe; i++)
5181 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5182 }
5183 
5184 enum {
5185 	AT_PKT_END = -1,
5186 	BEYOND_PKT_END = -2,
5187 };
5188 
5189 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5190 {
5191 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5192 	struct bpf_reg_state *reg = &state->regs[regn];
5193 
5194 	if (reg->type != PTR_TO_PACKET)
5195 		/* PTR_TO_PACKET_META is not supported yet */
5196 		return;
5197 
5198 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5199 	 * How far beyond pkt_end it goes is unknown.
5200 	 * if (!range_open) it's the case of pkt >= pkt_end
5201 	 * if (range_open) it's the case of pkt > pkt_end
5202 	 * hence this pointer is at least 1 byte bigger than pkt_end
5203 	 */
5204 	if (range_open)
5205 		reg->range = BEYOND_PKT_END;
5206 	else
5207 		reg->range = AT_PKT_END;
5208 }
5209 
5210 static void release_reg_references(struct bpf_verifier_env *env,
5211 				   struct bpf_func_state *state,
5212 				   int ref_obj_id)
5213 {
5214 	struct bpf_reg_state *regs = state->regs, *reg;
5215 	int i;
5216 
5217 	for (i = 0; i < MAX_BPF_REG; i++)
5218 		if (regs[i].ref_obj_id == ref_obj_id)
5219 			mark_reg_unknown(env, regs, i);
5220 
5221 	bpf_for_each_spilled_reg(i, state, reg) {
5222 		if (!reg)
5223 			continue;
5224 		if (reg->ref_obj_id == ref_obj_id)
5225 			__mark_reg_unknown(env, reg);
5226 	}
5227 }
5228 
5229 /* The pointer with the specified id has released its reference to kernel
5230  * resources. Identify all copies of the same pointer and clear the reference.
5231  */
5232 static int release_reference(struct bpf_verifier_env *env,
5233 			     int ref_obj_id)
5234 {
5235 	struct bpf_verifier_state *vstate = env->cur_state;
5236 	int err;
5237 	int i;
5238 
5239 	err = release_reference_state(cur_func(env), ref_obj_id);
5240 	if (err)
5241 		return err;
5242 
5243 	for (i = 0; i <= vstate->curframe; i++)
5244 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5245 
5246 	return 0;
5247 }
5248 
5249 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5250 				    struct bpf_reg_state *regs)
5251 {
5252 	int i;
5253 
5254 	/* after the call registers r0 - r5 were scratched */
5255 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5256 		mark_reg_not_init(env, regs, caller_saved[i]);
5257 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5258 	}
5259 }
5260 
5261 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5262 			   int *insn_idx)
5263 {
5264 	struct bpf_verifier_state *state = env->cur_state;
5265 	struct bpf_func_info_aux *func_info_aux;
5266 	struct bpf_func_state *caller, *callee;
5267 	int i, err, subprog, target_insn;
5268 	bool is_global = false;
5269 
5270 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5271 		verbose(env, "the call stack of %d frames is too deep\n",
5272 			state->curframe + 2);
5273 		return -E2BIG;
5274 	}
5275 
5276 	target_insn = *insn_idx + insn->imm;
5277 	subprog = find_subprog(env, target_insn + 1);
5278 	if (subprog < 0) {
5279 		verbose(env, "verifier bug. No program starts at insn %d\n",
5280 			target_insn + 1);
5281 		return -EFAULT;
5282 	}
5283 
5284 	caller = state->frame[state->curframe];
5285 	if (state->frame[state->curframe + 1]) {
5286 		verbose(env, "verifier bug. Frame %d already allocated\n",
5287 			state->curframe + 1);
5288 		return -EFAULT;
5289 	}
5290 
5291 	func_info_aux = env->prog->aux->func_info_aux;
5292 	if (func_info_aux)
5293 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5294 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5295 	if (err == -EFAULT)
5296 		return err;
5297 	if (is_global) {
5298 		if (err) {
5299 			verbose(env, "Caller passes invalid args into func#%d\n",
5300 				subprog);
5301 			return err;
5302 		} else {
5303 			if (env->log.level & BPF_LOG_LEVEL)
5304 				verbose(env,
5305 					"Func#%d is global and valid. Skipping.\n",
5306 					subprog);
5307 			clear_caller_saved_regs(env, caller->regs);
5308 
5309 			/* All global functions return a 64-bit SCALAR_VALUE */
5310 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5311 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5312 
5313 			/* continue with next insn after call */
5314 			return 0;
5315 		}
5316 	}
5317 
5318 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5319 	if (!callee)
5320 		return -ENOMEM;
5321 	state->frame[state->curframe + 1] = callee;
5322 
5323 	/* callee cannot access r0, r6 - r9 for reading and has to write
5324 	 * into its own stack before reading from it.
5325 	 * callee can read/write into caller's stack
5326 	 */
5327 	init_func_state(env, callee,
5328 			/* remember the callsite, it will be used by bpf_exit */
5329 			*insn_idx /* callsite */,
5330 			state->curframe + 1 /* frameno within this callchain */,
5331 			subprog /* subprog number within this prog */);
5332 
5333 	/* Transfer references to the callee */
5334 	err = transfer_reference_state(callee, caller);
5335 	if (err)
5336 		return err;
5337 
5338 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5339 	 * pointers, which connects us up to the liveness chain
5340 	 */
5341 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5342 		callee->regs[i] = caller->regs[i];
5343 
5344 	clear_caller_saved_regs(env, caller->regs);
5345 
5346 	/* only increment it after check_reg_arg() finished */
5347 	state->curframe++;
5348 
5349 	/* and go analyze first insn of the callee */
5350 	*insn_idx = target_insn;
5351 
5352 	if (env->log.level & BPF_LOG_LEVEL) {
5353 		verbose(env, "caller:\n");
5354 		print_verifier_state(env, caller);
5355 		verbose(env, "callee:\n");
5356 		print_verifier_state(env, callee);
5357 	}
5358 	return 0;
5359 }
5360 
5361 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5362 {
5363 	struct bpf_verifier_state *state = env->cur_state;
5364 	struct bpf_func_state *caller, *callee;
5365 	struct bpf_reg_state *r0;
5366 	int err;
5367 
5368 	callee = state->frame[state->curframe];
5369 	r0 = &callee->regs[BPF_REG_0];
5370 	if (r0->type == PTR_TO_STACK) {
5371 		/* technically it's ok to return caller's stack pointer
5372 		 * (or caller's caller's pointer) back to the caller,
5373 		 * since these pointers are valid. Only current stack
5374 		 * pointer will be invalid as soon as function exits,
5375 		 * but let's be conservative
5376 		 */
5377 		verbose(env, "cannot return stack pointer to the caller\n");
5378 		return -EINVAL;
5379 	}
5380 
5381 	state->curframe--;
5382 	caller = state->frame[state->curframe];
5383 	/* return to the caller whatever r0 had in the callee */
5384 	caller->regs[BPF_REG_0] = *r0;
5385 
5386 	/* Transfer references to the caller */
5387 	err = transfer_reference_state(caller, callee);
5388 	if (err)
5389 		return err;
5390 
5391 	*insn_idx = callee->callsite + 1;
5392 	if (env->log.level & BPF_LOG_LEVEL) {
5393 		verbose(env, "returning from callee:\n");
5394 		print_verifier_state(env, callee);
5395 		verbose(env, "to caller at %d:\n", *insn_idx);
5396 		print_verifier_state(env, caller);
5397 	}
5398 	/* clear everything in the callee */
5399 	free_func_state(callee);
5400 	state->frame[state->curframe + 1] = NULL;
5401 	return 0;
5402 }
5403 
5404 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5405 				   int func_id,
5406 				   struct bpf_call_arg_meta *meta)
5407 {
5408 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5409 
5410 	if (ret_type != RET_INTEGER ||
5411 	    (func_id != BPF_FUNC_get_stack &&
5412 	     func_id != BPF_FUNC_probe_read_str &&
5413 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5414 	     func_id != BPF_FUNC_probe_read_user_str))
5415 		return;
5416 
5417 	ret_reg->smax_value = meta->msize_max_value;
5418 	ret_reg->s32_max_value = meta->msize_max_value;
5419 	ret_reg->smin_value = -MAX_ERRNO;
5420 	ret_reg->s32_min_value = -MAX_ERRNO;
5421 	__reg_deduce_bounds(ret_reg);
5422 	__reg_bound_offset(ret_reg);
5423 	__update_reg_bounds(ret_reg);
5424 }
5425 
5426 static int
5427 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5428 		int func_id, int insn_idx)
5429 {
5430 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5431 	struct bpf_map *map = meta->map_ptr;
5432 
5433 	if (func_id != BPF_FUNC_tail_call &&
5434 	    func_id != BPF_FUNC_map_lookup_elem &&
5435 	    func_id != BPF_FUNC_map_update_elem &&
5436 	    func_id != BPF_FUNC_map_delete_elem &&
5437 	    func_id != BPF_FUNC_map_push_elem &&
5438 	    func_id != BPF_FUNC_map_pop_elem &&
5439 	    func_id != BPF_FUNC_map_peek_elem)
5440 		return 0;
5441 
5442 	if (map == NULL) {
5443 		verbose(env, "kernel subsystem misconfigured verifier\n");
5444 		return -EINVAL;
5445 	}
5446 
5447 	/* In case of read-only, some additional restrictions
5448 	 * need to be applied in order to prevent altering the
5449 	 * state of the map from program side.
5450 	 */
5451 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5452 	    (func_id == BPF_FUNC_map_delete_elem ||
5453 	     func_id == BPF_FUNC_map_update_elem ||
5454 	     func_id == BPF_FUNC_map_push_elem ||
5455 	     func_id == BPF_FUNC_map_pop_elem)) {
5456 		verbose(env, "write into map forbidden\n");
5457 		return -EACCES;
5458 	}
5459 
5460 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5461 		bpf_map_ptr_store(aux, meta->map_ptr,
5462 				  !meta->map_ptr->bypass_spec_v1);
5463 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5464 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5465 				  !meta->map_ptr->bypass_spec_v1);
5466 	return 0;
5467 }
5468 
5469 static int
5470 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5471 		int func_id, int insn_idx)
5472 {
5473 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5474 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5475 	struct bpf_map *map = meta->map_ptr;
5476 	struct tnum range;
5477 	u64 val;
5478 	int err;
5479 
5480 	if (func_id != BPF_FUNC_tail_call)
5481 		return 0;
5482 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5483 		verbose(env, "kernel subsystem misconfigured verifier\n");
5484 		return -EINVAL;
5485 	}
5486 
5487 	range = tnum_range(0, map->max_entries - 1);
5488 	reg = &regs[BPF_REG_3];
5489 
5490 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5491 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5492 		return 0;
5493 	}
5494 
5495 	err = mark_chain_precision(env, BPF_REG_3);
5496 	if (err)
5497 		return err;
5498 
5499 	val = reg->var_off.value;
5500 	if (bpf_map_key_unseen(aux))
5501 		bpf_map_key_store(aux, val);
5502 	else if (!bpf_map_key_poisoned(aux) &&
5503 		  bpf_map_key_immediate(aux) != val)
5504 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5505 	return 0;
5506 }
5507 
5508 static int check_reference_leak(struct bpf_verifier_env *env)
5509 {
5510 	struct bpf_func_state *state = cur_func(env);
5511 	int i;
5512 
5513 	for (i = 0; i < state->acquired_refs; i++) {
5514 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5515 			state->refs[i].id, state->refs[i].insn_idx);
5516 	}
5517 	return state->acquired_refs ? -EINVAL : 0;
5518 }
5519 
5520 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5521 {
5522 	const struct bpf_func_proto *fn = NULL;
5523 	struct bpf_reg_state *regs;
5524 	struct bpf_call_arg_meta meta;
5525 	bool changes_data;
5526 	int i, err;
5527 
5528 	/* find function prototype */
5529 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5530 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5531 			func_id);
5532 		return -EINVAL;
5533 	}
5534 
5535 	if (env->ops->get_func_proto)
5536 		fn = env->ops->get_func_proto(func_id, env->prog);
5537 	if (!fn) {
5538 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5539 			func_id);
5540 		return -EINVAL;
5541 	}
5542 
5543 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5544 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5545 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5546 		return -EINVAL;
5547 	}
5548 
5549 	if (fn->allowed && !fn->allowed(env->prog)) {
5550 		verbose(env, "helper call is not allowed in probe\n");
5551 		return -EINVAL;
5552 	}
5553 
5554 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5555 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5556 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5557 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5558 			func_id_name(func_id), func_id);
5559 		return -EINVAL;
5560 	}
5561 
5562 	memset(&meta, 0, sizeof(meta));
5563 	meta.pkt_access = fn->pkt_access;
5564 
5565 	err = check_func_proto(fn, func_id);
5566 	if (err) {
5567 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5568 			func_id_name(func_id), func_id);
5569 		return err;
5570 	}
5571 
5572 	meta.func_id = func_id;
5573 	/* check args */
5574 	for (i = 0; i < 5; i++) {
5575 		err = check_func_arg(env, i, &meta, fn);
5576 		if (err)
5577 			return err;
5578 	}
5579 
5580 	err = record_func_map(env, &meta, func_id, insn_idx);
5581 	if (err)
5582 		return err;
5583 
5584 	err = record_func_key(env, &meta, func_id, insn_idx);
5585 	if (err)
5586 		return err;
5587 
5588 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5589 	 * is inferred from register state.
5590 	 */
5591 	for (i = 0; i < meta.access_size; i++) {
5592 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5593 				       BPF_WRITE, -1, false);
5594 		if (err)
5595 			return err;
5596 	}
5597 
5598 	if (func_id == BPF_FUNC_tail_call) {
5599 		err = check_reference_leak(env);
5600 		if (err) {
5601 			verbose(env, "tail_call would lead to reference leak\n");
5602 			return err;
5603 		}
5604 	} else if (is_release_function(func_id)) {
5605 		err = release_reference(env, meta.ref_obj_id);
5606 		if (err) {
5607 			verbose(env, "func %s#%d reference has not been acquired before\n",
5608 				func_id_name(func_id), func_id);
5609 			return err;
5610 		}
5611 	}
5612 
5613 	regs = cur_regs(env);
5614 
5615 	/* check that flags argument in get_local_storage(map, flags) is 0,
5616 	 * this is required because get_local_storage() can't return an error.
5617 	 */
5618 	if (func_id == BPF_FUNC_get_local_storage &&
5619 	    !register_is_null(&regs[BPF_REG_2])) {
5620 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5621 		return -EINVAL;
5622 	}
5623 
5624 	/* reset caller saved regs */
5625 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5626 		mark_reg_not_init(env, regs, caller_saved[i]);
5627 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5628 	}
5629 
5630 	/* helper call returns 64-bit value. */
5631 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5632 
5633 	/* update return register (already marked as written above) */
5634 	if (fn->ret_type == RET_INTEGER) {
5635 		/* sets type to SCALAR_VALUE */
5636 		mark_reg_unknown(env, regs, BPF_REG_0);
5637 	} else if (fn->ret_type == RET_VOID) {
5638 		regs[BPF_REG_0].type = NOT_INIT;
5639 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5640 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5641 		/* There is no offset yet applied, variable or fixed */
5642 		mark_reg_known_zero(env, regs, BPF_REG_0);
5643 		/* remember map_ptr, so that check_map_access()
5644 		 * can check 'value_size' boundary of memory access
5645 		 * to map element returned from bpf_map_lookup_elem()
5646 		 */
5647 		if (meta.map_ptr == NULL) {
5648 			verbose(env,
5649 				"kernel subsystem misconfigured verifier\n");
5650 			return -EINVAL;
5651 		}
5652 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5653 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5654 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5655 			if (map_value_has_spin_lock(meta.map_ptr))
5656 				regs[BPF_REG_0].id = ++env->id_gen;
5657 		} else {
5658 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5659 		}
5660 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5661 		mark_reg_known_zero(env, regs, BPF_REG_0);
5662 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5663 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5664 		mark_reg_known_zero(env, regs, BPF_REG_0);
5665 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5666 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5667 		mark_reg_known_zero(env, regs, BPF_REG_0);
5668 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5669 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5670 		mark_reg_known_zero(env, regs, BPF_REG_0);
5671 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5672 		regs[BPF_REG_0].mem_size = meta.mem_size;
5673 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5674 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5675 		const struct btf_type *t;
5676 
5677 		mark_reg_known_zero(env, regs, BPF_REG_0);
5678 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5679 		if (!btf_type_is_struct(t)) {
5680 			u32 tsize;
5681 			const struct btf_type *ret;
5682 			const char *tname;
5683 
5684 			/* resolve the type size of ksym. */
5685 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5686 			if (IS_ERR(ret)) {
5687 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5688 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5689 					tname, PTR_ERR(ret));
5690 				return -EINVAL;
5691 			}
5692 			regs[BPF_REG_0].type =
5693 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5694 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5695 			regs[BPF_REG_0].mem_size = tsize;
5696 		} else {
5697 			regs[BPF_REG_0].type =
5698 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5699 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5700 			regs[BPF_REG_0].btf = meta.ret_btf;
5701 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5702 		}
5703 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5704 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5705 		int ret_btf_id;
5706 
5707 		mark_reg_known_zero(env, regs, BPF_REG_0);
5708 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5709 						     PTR_TO_BTF_ID :
5710 						     PTR_TO_BTF_ID_OR_NULL;
5711 		ret_btf_id = *fn->ret_btf_id;
5712 		if (ret_btf_id == 0) {
5713 			verbose(env, "invalid return type %d of func %s#%d\n",
5714 				fn->ret_type, func_id_name(func_id), func_id);
5715 			return -EINVAL;
5716 		}
5717 		/* current BPF helper definitions are only coming from
5718 		 * built-in code with type IDs from  vmlinux BTF
5719 		 */
5720 		regs[BPF_REG_0].btf = btf_vmlinux;
5721 		regs[BPF_REG_0].btf_id = ret_btf_id;
5722 	} else {
5723 		verbose(env, "unknown return type %d of func %s#%d\n",
5724 			fn->ret_type, func_id_name(func_id), func_id);
5725 		return -EINVAL;
5726 	}
5727 
5728 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5729 		regs[BPF_REG_0].id = ++env->id_gen;
5730 
5731 	if (is_ptr_cast_function(func_id)) {
5732 		/* For release_reference() */
5733 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5734 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5735 		int id = acquire_reference_state(env, insn_idx);
5736 
5737 		if (id < 0)
5738 			return id;
5739 		/* For mark_ptr_or_null_reg() */
5740 		regs[BPF_REG_0].id = id;
5741 		/* For release_reference() */
5742 		regs[BPF_REG_0].ref_obj_id = id;
5743 	}
5744 
5745 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5746 
5747 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5748 	if (err)
5749 		return err;
5750 
5751 	if ((func_id == BPF_FUNC_get_stack ||
5752 	     func_id == BPF_FUNC_get_task_stack) &&
5753 	    !env->prog->has_callchain_buf) {
5754 		const char *err_str;
5755 
5756 #ifdef CONFIG_PERF_EVENTS
5757 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5758 		err_str = "cannot get callchain buffer for func %s#%d\n";
5759 #else
5760 		err = -ENOTSUPP;
5761 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5762 #endif
5763 		if (err) {
5764 			verbose(env, err_str, func_id_name(func_id), func_id);
5765 			return err;
5766 		}
5767 
5768 		env->prog->has_callchain_buf = true;
5769 	}
5770 
5771 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5772 		env->prog->call_get_stack = true;
5773 
5774 	if (changes_data)
5775 		clear_all_pkt_pointers(env);
5776 	return 0;
5777 }
5778 
5779 static bool signed_add_overflows(s64 a, s64 b)
5780 {
5781 	/* Do the add in u64, where overflow is well-defined */
5782 	s64 res = (s64)((u64)a + (u64)b);
5783 
5784 	if (b < 0)
5785 		return res > a;
5786 	return res < a;
5787 }
5788 
5789 static bool signed_add32_overflows(s32 a, s32 b)
5790 {
5791 	/* Do the add in u32, where overflow is well-defined */
5792 	s32 res = (s32)((u32)a + (u32)b);
5793 
5794 	if (b < 0)
5795 		return res > a;
5796 	return res < a;
5797 }
5798 
5799 static bool signed_sub_overflows(s64 a, s64 b)
5800 {
5801 	/* Do the sub in u64, where overflow is well-defined */
5802 	s64 res = (s64)((u64)a - (u64)b);
5803 
5804 	if (b < 0)
5805 		return res < a;
5806 	return res > a;
5807 }
5808 
5809 static bool signed_sub32_overflows(s32 a, s32 b)
5810 {
5811 	/* Do the sub in u32, where overflow is well-defined */
5812 	s32 res = (s32)((u32)a - (u32)b);
5813 
5814 	if (b < 0)
5815 		return res < a;
5816 	return res > a;
5817 }
5818 
5819 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5820 				  const struct bpf_reg_state *reg,
5821 				  enum bpf_reg_type type)
5822 {
5823 	bool known = tnum_is_const(reg->var_off);
5824 	s64 val = reg->var_off.value;
5825 	s64 smin = reg->smin_value;
5826 
5827 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5828 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5829 			reg_type_str[type], val);
5830 		return false;
5831 	}
5832 
5833 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5834 		verbose(env, "%s pointer offset %d is not allowed\n",
5835 			reg_type_str[type], reg->off);
5836 		return false;
5837 	}
5838 
5839 	if (smin == S64_MIN) {
5840 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5841 			reg_type_str[type]);
5842 		return false;
5843 	}
5844 
5845 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5846 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5847 			smin, reg_type_str[type]);
5848 		return false;
5849 	}
5850 
5851 	return true;
5852 }
5853 
5854 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5855 {
5856 	return &env->insn_aux_data[env->insn_idx];
5857 }
5858 
5859 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5860 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5861 {
5862 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5863 			    (opcode == BPF_SUB && !off_is_neg);
5864 	u32 off, max;
5865 
5866 	switch (ptr_reg->type) {
5867 	case PTR_TO_STACK:
5868 		/* Offset 0 is out-of-bounds, but acceptable start for the
5869 		 * left direction, see BPF_REG_FP.
5870 		 */
5871 		max = MAX_BPF_STACK + mask_to_left;
5872 		/* Indirect variable offset stack access is prohibited in
5873 		 * unprivileged mode so it's not handled here.
5874 		 */
5875 		off = ptr_reg->off + ptr_reg->var_off.value;
5876 		if (mask_to_left)
5877 			*ptr_limit = MAX_BPF_STACK + off;
5878 		else
5879 			*ptr_limit = -off - 1;
5880 		return *ptr_limit >= max ? -ERANGE : 0;
5881 	case PTR_TO_MAP_VALUE:
5882 		max = ptr_reg->map_ptr->value_size;
5883 		if (mask_to_left) {
5884 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5885 		} else {
5886 			off = ptr_reg->smin_value + ptr_reg->off;
5887 			*ptr_limit = ptr_reg->map_ptr->value_size - off - 1;
5888 		}
5889 		return *ptr_limit >= max ? -ERANGE : 0;
5890 	default:
5891 		return -EINVAL;
5892 	}
5893 }
5894 
5895 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5896 				    const struct bpf_insn *insn)
5897 {
5898 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5899 }
5900 
5901 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5902 				       u32 alu_state, u32 alu_limit)
5903 {
5904 	/* If we arrived here from different branches with different
5905 	 * state or limits to sanitize, then this won't work.
5906 	 */
5907 	if (aux->alu_state &&
5908 	    (aux->alu_state != alu_state ||
5909 	     aux->alu_limit != alu_limit))
5910 		return -EACCES;
5911 
5912 	/* Corresponding fixup done in fixup_bpf_calls(). */
5913 	aux->alu_state = alu_state;
5914 	aux->alu_limit = alu_limit;
5915 	return 0;
5916 }
5917 
5918 static int sanitize_val_alu(struct bpf_verifier_env *env,
5919 			    struct bpf_insn *insn)
5920 {
5921 	struct bpf_insn_aux_data *aux = cur_aux(env);
5922 
5923 	if (can_skip_alu_sanitation(env, insn))
5924 		return 0;
5925 
5926 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5927 }
5928 
5929 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5930 			    struct bpf_insn *insn,
5931 			    const struct bpf_reg_state *ptr_reg,
5932 			    struct bpf_reg_state *dst_reg,
5933 			    bool off_is_neg)
5934 {
5935 	struct bpf_verifier_state *vstate = env->cur_state;
5936 	struct bpf_insn_aux_data *aux = cur_aux(env);
5937 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5938 	u8 opcode = BPF_OP(insn->code);
5939 	u32 alu_state, alu_limit;
5940 	struct bpf_reg_state tmp;
5941 	bool ret;
5942 	int err;
5943 
5944 	if (can_skip_alu_sanitation(env, insn))
5945 		return 0;
5946 
5947 	/* We already marked aux for masking from non-speculative
5948 	 * paths, thus we got here in the first place. We only care
5949 	 * to explore bad access from here.
5950 	 */
5951 	if (vstate->speculative)
5952 		goto do_sim;
5953 
5954 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5955 	alu_state |= ptr_is_dst_reg ?
5956 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5957 
5958 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg);
5959 	if (err < 0)
5960 		return err;
5961 
5962 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5963 	if (err < 0)
5964 		return err;
5965 do_sim:
5966 	/* Simulate and find potential out-of-bounds access under
5967 	 * speculative execution from truncation as a result of
5968 	 * masking when off was not within expected range. If off
5969 	 * sits in dst, then we temporarily need to move ptr there
5970 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5971 	 * for cases where we use K-based arithmetic in one direction
5972 	 * and truncated reg-based in the other in order to explore
5973 	 * bad access.
5974 	 */
5975 	if (!ptr_is_dst_reg) {
5976 		tmp = *dst_reg;
5977 		*dst_reg = *ptr_reg;
5978 	}
5979 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5980 	if (!ptr_is_dst_reg && ret)
5981 		*dst_reg = tmp;
5982 	return !ret ? -EFAULT : 0;
5983 }
5984 
5985 /* check that stack access falls within stack limits and that 'reg' doesn't
5986  * have a variable offset.
5987  *
5988  * Variable offset is prohibited for unprivileged mode for simplicity since it
5989  * requires corresponding support in Spectre masking for stack ALU.  See also
5990  * retrieve_ptr_limit().
5991  *
5992  *
5993  * 'off' includes 'reg->off'.
5994  */
5995 static int check_stack_access_for_ptr_arithmetic(
5996 				struct bpf_verifier_env *env,
5997 				int regno,
5998 				const struct bpf_reg_state *reg,
5999 				int off)
6000 {
6001 	if (!tnum_is_const(reg->var_off)) {
6002 		char tn_buf[48];
6003 
6004 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6005 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6006 			regno, tn_buf, off);
6007 		return -EACCES;
6008 	}
6009 
6010 	if (off >= 0 || off < -MAX_BPF_STACK) {
6011 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6012 			"prohibited for !root; off=%d\n", regno, off);
6013 		return -EACCES;
6014 	}
6015 
6016 	return 0;
6017 }
6018 
6019 
6020 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6021  * Caller should also handle BPF_MOV case separately.
6022  * If we return -EACCES, caller may want to try again treating pointer as a
6023  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6024  */
6025 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6026 				   struct bpf_insn *insn,
6027 				   const struct bpf_reg_state *ptr_reg,
6028 				   const struct bpf_reg_state *off_reg)
6029 {
6030 	struct bpf_verifier_state *vstate = env->cur_state;
6031 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6032 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6033 	bool known = tnum_is_const(off_reg->var_off);
6034 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6035 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6036 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6037 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6038 	u32 dst = insn->dst_reg, src = insn->src_reg;
6039 	u8 opcode = BPF_OP(insn->code);
6040 	int ret;
6041 
6042 	dst_reg = &regs[dst];
6043 
6044 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6045 	    smin_val > smax_val || umin_val > umax_val) {
6046 		/* Taint dst register if offset had invalid bounds derived from
6047 		 * e.g. dead branches.
6048 		 */
6049 		__mark_reg_unknown(env, dst_reg);
6050 		return 0;
6051 	}
6052 
6053 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6054 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6055 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6056 			__mark_reg_unknown(env, dst_reg);
6057 			return 0;
6058 		}
6059 
6060 		verbose(env,
6061 			"R%d 32-bit pointer arithmetic prohibited\n",
6062 			dst);
6063 		return -EACCES;
6064 	}
6065 
6066 	switch (ptr_reg->type) {
6067 	case PTR_TO_MAP_VALUE_OR_NULL:
6068 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6069 			dst, reg_type_str[ptr_reg->type]);
6070 		return -EACCES;
6071 	case CONST_PTR_TO_MAP:
6072 		/* smin_val represents the known value */
6073 		if (known && smin_val == 0 && opcode == BPF_ADD)
6074 			break;
6075 		fallthrough;
6076 	case PTR_TO_PACKET_END:
6077 	case PTR_TO_SOCKET:
6078 	case PTR_TO_SOCKET_OR_NULL:
6079 	case PTR_TO_SOCK_COMMON:
6080 	case PTR_TO_SOCK_COMMON_OR_NULL:
6081 	case PTR_TO_TCP_SOCK:
6082 	case PTR_TO_TCP_SOCK_OR_NULL:
6083 	case PTR_TO_XDP_SOCK:
6084 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6085 			dst, reg_type_str[ptr_reg->type]);
6086 		return -EACCES;
6087 	case PTR_TO_MAP_VALUE:
6088 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
6089 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6090 				off_reg == dst_reg ? dst : src);
6091 			return -EACCES;
6092 		}
6093 		fallthrough;
6094 	default:
6095 		break;
6096 	}
6097 
6098 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6099 	 * The id may be overwritten later if we create a new variable offset.
6100 	 */
6101 	dst_reg->type = ptr_reg->type;
6102 	dst_reg->id = ptr_reg->id;
6103 
6104 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6105 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6106 		return -EINVAL;
6107 
6108 	/* pointer types do not carry 32-bit bounds at the moment. */
6109 	__mark_reg32_unbounded(dst_reg);
6110 
6111 	switch (opcode) {
6112 	case BPF_ADD:
6113 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6114 		if (ret < 0) {
6115 			verbose(env, "R%d tried to add from different maps, paths, or prohibited types\n", dst);
6116 			return ret;
6117 		}
6118 		/* We can take a fixed offset as long as it doesn't overflow
6119 		 * the s32 'off' field
6120 		 */
6121 		if (known && (ptr_reg->off + smin_val ==
6122 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6123 			/* pointer += K.  Accumulate it into fixed offset */
6124 			dst_reg->smin_value = smin_ptr;
6125 			dst_reg->smax_value = smax_ptr;
6126 			dst_reg->umin_value = umin_ptr;
6127 			dst_reg->umax_value = umax_ptr;
6128 			dst_reg->var_off = ptr_reg->var_off;
6129 			dst_reg->off = ptr_reg->off + smin_val;
6130 			dst_reg->raw = ptr_reg->raw;
6131 			break;
6132 		}
6133 		/* A new variable offset is created.  Note that off_reg->off
6134 		 * == 0, since it's a scalar.
6135 		 * dst_reg gets the pointer type and since some positive
6136 		 * integer value was added to the pointer, give it a new 'id'
6137 		 * if it's a PTR_TO_PACKET.
6138 		 * this creates a new 'base' pointer, off_reg (variable) gets
6139 		 * added into the variable offset, and we copy the fixed offset
6140 		 * from ptr_reg.
6141 		 */
6142 		if (signed_add_overflows(smin_ptr, smin_val) ||
6143 		    signed_add_overflows(smax_ptr, smax_val)) {
6144 			dst_reg->smin_value = S64_MIN;
6145 			dst_reg->smax_value = S64_MAX;
6146 		} else {
6147 			dst_reg->smin_value = smin_ptr + smin_val;
6148 			dst_reg->smax_value = smax_ptr + smax_val;
6149 		}
6150 		if (umin_ptr + umin_val < umin_ptr ||
6151 		    umax_ptr + umax_val < umax_ptr) {
6152 			dst_reg->umin_value = 0;
6153 			dst_reg->umax_value = U64_MAX;
6154 		} else {
6155 			dst_reg->umin_value = umin_ptr + umin_val;
6156 			dst_reg->umax_value = umax_ptr + umax_val;
6157 		}
6158 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6159 		dst_reg->off = ptr_reg->off;
6160 		dst_reg->raw = ptr_reg->raw;
6161 		if (reg_is_pkt_pointer(ptr_reg)) {
6162 			dst_reg->id = ++env->id_gen;
6163 			/* something was added to pkt_ptr, set range to zero */
6164 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6165 		}
6166 		break;
6167 	case BPF_SUB:
6168 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6169 		if (ret < 0) {
6170 			verbose(env, "R%d tried to sub from different maps, paths, or prohibited types\n", dst);
6171 			return ret;
6172 		}
6173 		if (dst_reg == off_reg) {
6174 			/* scalar -= pointer.  Creates an unknown scalar */
6175 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6176 				dst);
6177 			return -EACCES;
6178 		}
6179 		/* We don't allow subtraction from FP, because (according to
6180 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6181 		 * be able to deal with it.
6182 		 */
6183 		if (ptr_reg->type == PTR_TO_STACK) {
6184 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6185 				dst);
6186 			return -EACCES;
6187 		}
6188 		if (known && (ptr_reg->off - smin_val ==
6189 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6190 			/* pointer -= K.  Subtract it from fixed offset */
6191 			dst_reg->smin_value = smin_ptr;
6192 			dst_reg->smax_value = smax_ptr;
6193 			dst_reg->umin_value = umin_ptr;
6194 			dst_reg->umax_value = umax_ptr;
6195 			dst_reg->var_off = ptr_reg->var_off;
6196 			dst_reg->id = ptr_reg->id;
6197 			dst_reg->off = ptr_reg->off - smin_val;
6198 			dst_reg->raw = ptr_reg->raw;
6199 			break;
6200 		}
6201 		/* A new variable offset is created.  If the subtrahend is known
6202 		 * nonnegative, then any reg->range we had before is still good.
6203 		 */
6204 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6205 		    signed_sub_overflows(smax_ptr, smin_val)) {
6206 			/* Overflow possible, we know nothing */
6207 			dst_reg->smin_value = S64_MIN;
6208 			dst_reg->smax_value = S64_MAX;
6209 		} else {
6210 			dst_reg->smin_value = smin_ptr - smax_val;
6211 			dst_reg->smax_value = smax_ptr - smin_val;
6212 		}
6213 		if (umin_ptr < umax_val) {
6214 			/* Overflow possible, we know nothing */
6215 			dst_reg->umin_value = 0;
6216 			dst_reg->umax_value = U64_MAX;
6217 		} else {
6218 			/* Cannot overflow (as long as bounds are consistent) */
6219 			dst_reg->umin_value = umin_ptr - umax_val;
6220 			dst_reg->umax_value = umax_ptr - umin_val;
6221 		}
6222 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6223 		dst_reg->off = ptr_reg->off;
6224 		dst_reg->raw = ptr_reg->raw;
6225 		if (reg_is_pkt_pointer(ptr_reg)) {
6226 			dst_reg->id = ++env->id_gen;
6227 			/* something was added to pkt_ptr, set range to zero */
6228 			if (smin_val < 0)
6229 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6230 		}
6231 		break;
6232 	case BPF_AND:
6233 	case BPF_OR:
6234 	case BPF_XOR:
6235 		/* bitwise ops on pointers are troublesome, prohibit. */
6236 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6237 			dst, bpf_alu_string[opcode >> 4]);
6238 		return -EACCES;
6239 	default:
6240 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6241 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6242 			dst, bpf_alu_string[opcode >> 4]);
6243 		return -EACCES;
6244 	}
6245 
6246 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6247 		return -EINVAL;
6248 
6249 	__update_reg_bounds(dst_reg);
6250 	__reg_deduce_bounds(dst_reg);
6251 	__reg_bound_offset(dst_reg);
6252 
6253 	/* For unprivileged we require that resulting offset must be in bounds
6254 	 * in order to be able to sanitize access later on.
6255 	 */
6256 	if (!env->bypass_spec_v1) {
6257 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
6258 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
6259 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6260 				"prohibited for !root\n", dst);
6261 			return -EACCES;
6262 		} else if (dst_reg->type == PTR_TO_STACK &&
6263 			   check_stack_access_for_ptr_arithmetic(
6264 				   env, dst, dst_reg, dst_reg->off +
6265 				   dst_reg->var_off.value)) {
6266 			return -EACCES;
6267 		}
6268 	}
6269 
6270 	return 0;
6271 }
6272 
6273 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6274 				 struct bpf_reg_state *src_reg)
6275 {
6276 	s32 smin_val = src_reg->s32_min_value;
6277 	s32 smax_val = src_reg->s32_max_value;
6278 	u32 umin_val = src_reg->u32_min_value;
6279 	u32 umax_val = src_reg->u32_max_value;
6280 
6281 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6282 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6283 		dst_reg->s32_min_value = S32_MIN;
6284 		dst_reg->s32_max_value = S32_MAX;
6285 	} else {
6286 		dst_reg->s32_min_value += smin_val;
6287 		dst_reg->s32_max_value += smax_val;
6288 	}
6289 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6290 	    dst_reg->u32_max_value + umax_val < umax_val) {
6291 		dst_reg->u32_min_value = 0;
6292 		dst_reg->u32_max_value = U32_MAX;
6293 	} else {
6294 		dst_reg->u32_min_value += umin_val;
6295 		dst_reg->u32_max_value += umax_val;
6296 	}
6297 }
6298 
6299 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6300 			       struct bpf_reg_state *src_reg)
6301 {
6302 	s64 smin_val = src_reg->smin_value;
6303 	s64 smax_val = src_reg->smax_value;
6304 	u64 umin_val = src_reg->umin_value;
6305 	u64 umax_val = src_reg->umax_value;
6306 
6307 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6308 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6309 		dst_reg->smin_value = S64_MIN;
6310 		dst_reg->smax_value = S64_MAX;
6311 	} else {
6312 		dst_reg->smin_value += smin_val;
6313 		dst_reg->smax_value += smax_val;
6314 	}
6315 	if (dst_reg->umin_value + umin_val < umin_val ||
6316 	    dst_reg->umax_value + umax_val < umax_val) {
6317 		dst_reg->umin_value = 0;
6318 		dst_reg->umax_value = U64_MAX;
6319 	} else {
6320 		dst_reg->umin_value += umin_val;
6321 		dst_reg->umax_value += umax_val;
6322 	}
6323 }
6324 
6325 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6326 				 struct bpf_reg_state *src_reg)
6327 {
6328 	s32 smin_val = src_reg->s32_min_value;
6329 	s32 smax_val = src_reg->s32_max_value;
6330 	u32 umin_val = src_reg->u32_min_value;
6331 	u32 umax_val = src_reg->u32_max_value;
6332 
6333 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6334 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6335 		/* Overflow possible, we know nothing */
6336 		dst_reg->s32_min_value = S32_MIN;
6337 		dst_reg->s32_max_value = S32_MAX;
6338 	} else {
6339 		dst_reg->s32_min_value -= smax_val;
6340 		dst_reg->s32_max_value -= smin_val;
6341 	}
6342 	if (dst_reg->u32_min_value < umax_val) {
6343 		/* Overflow possible, we know nothing */
6344 		dst_reg->u32_min_value = 0;
6345 		dst_reg->u32_max_value = U32_MAX;
6346 	} else {
6347 		/* Cannot overflow (as long as bounds are consistent) */
6348 		dst_reg->u32_min_value -= umax_val;
6349 		dst_reg->u32_max_value -= umin_val;
6350 	}
6351 }
6352 
6353 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6354 			       struct bpf_reg_state *src_reg)
6355 {
6356 	s64 smin_val = src_reg->smin_value;
6357 	s64 smax_val = src_reg->smax_value;
6358 	u64 umin_val = src_reg->umin_value;
6359 	u64 umax_val = src_reg->umax_value;
6360 
6361 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6362 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6363 		/* Overflow possible, we know nothing */
6364 		dst_reg->smin_value = S64_MIN;
6365 		dst_reg->smax_value = S64_MAX;
6366 	} else {
6367 		dst_reg->smin_value -= smax_val;
6368 		dst_reg->smax_value -= smin_val;
6369 	}
6370 	if (dst_reg->umin_value < umax_val) {
6371 		/* Overflow possible, we know nothing */
6372 		dst_reg->umin_value = 0;
6373 		dst_reg->umax_value = U64_MAX;
6374 	} else {
6375 		/* Cannot overflow (as long as bounds are consistent) */
6376 		dst_reg->umin_value -= umax_val;
6377 		dst_reg->umax_value -= umin_val;
6378 	}
6379 }
6380 
6381 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6382 				 struct bpf_reg_state *src_reg)
6383 {
6384 	s32 smin_val = src_reg->s32_min_value;
6385 	u32 umin_val = src_reg->u32_min_value;
6386 	u32 umax_val = src_reg->u32_max_value;
6387 
6388 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6389 		/* Ain't nobody got time to multiply that sign */
6390 		__mark_reg32_unbounded(dst_reg);
6391 		return;
6392 	}
6393 	/* Both values are positive, so we can work with unsigned and
6394 	 * copy the result to signed (unless it exceeds S32_MAX).
6395 	 */
6396 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6397 		/* Potential overflow, we know nothing */
6398 		__mark_reg32_unbounded(dst_reg);
6399 		return;
6400 	}
6401 	dst_reg->u32_min_value *= umin_val;
6402 	dst_reg->u32_max_value *= umax_val;
6403 	if (dst_reg->u32_max_value > S32_MAX) {
6404 		/* Overflow possible, we know nothing */
6405 		dst_reg->s32_min_value = S32_MIN;
6406 		dst_reg->s32_max_value = S32_MAX;
6407 	} else {
6408 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6409 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6410 	}
6411 }
6412 
6413 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6414 			       struct bpf_reg_state *src_reg)
6415 {
6416 	s64 smin_val = src_reg->smin_value;
6417 	u64 umin_val = src_reg->umin_value;
6418 	u64 umax_val = src_reg->umax_value;
6419 
6420 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6421 		/* Ain't nobody got time to multiply that sign */
6422 		__mark_reg64_unbounded(dst_reg);
6423 		return;
6424 	}
6425 	/* Both values are positive, so we can work with unsigned and
6426 	 * copy the result to signed (unless it exceeds S64_MAX).
6427 	 */
6428 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6429 		/* Potential overflow, we know nothing */
6430 		__mark_reg64_unbounded(dst_reg);
6431 		return;
6432 	}
6433 	dst_reg->umin_value *= umin_val;
6434 	dst_reg->umax_value *= umax_val;
6435 	if (dst_reg->umax_value > S64_MAX) {
6436 		/* Overflow possible, we know nothing */
6437 		dst_reg->smin_value = S64_MIN;
6438 		dst_reg->smax_value = S64_MAX;
6439 	} else {
6440 		dst_reg->smin_value = dst_reg->umin_value;
6441 		dst_reg->smax_value = dst_reg->umax_value;
6442 	}
6443 }
6444 
6445 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6446 				 struct bpf_reg_state *src_reg)
6447 {
6448 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6449 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6450 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6451 	s32 smin_val = src_reg->s32_min_value;
6452 	u32 umax_val = src_reg->u32_max_value;
6453 
6454 	/* Assuming scalar64_min_max_and will be called so its safe
6455 	 * to skip updating register for known 32-bit case.
6456 	 */
6457 	if (src_known && dst_known)
6458 		return;
6459 
6460 	/* We get our minimum from the var_off, since that's inherently
6461 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6462 	 */
6463 	dst_reg->u32_min_value = var32_off.value;
6464 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6465 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6466 		/* Lose signed bounds when ANDing negative numbers,
6467 		 * ain't nobody got time for that.
6468 		 */
6469 		dst_reg->s32_min_value = S32_MIN;
6470 		dst_reg->s32_max_value = S32_MAX;
6471 	} else {
6472 		/* ANDing two positives gives a positive, so safe to
6473 		 * cast result into s64.
6474 		 */
6475 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6476 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6477 	}
6478 
6479 }
6480 
6481 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6482 			       struct bpf_reg_state *src_reg)
6483 {
6484 	bool src_known = tnum_is_const(src_reg->var_off);
6485 	bool dst_known = tnum_is_const(dst_reg->var_off);
6486 	s64 smin_val = src_reg->smin_value;
6487 	u64 umax_val = src_reg->umax_value;
6488 
6489 	if (src_known && dst_known) {
6490 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6491 		return;
6492 	}
6493 
6494 	/* We get our minimum from the var_off, since that's inherently
6495 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6496 	 */
6497 	dst_reg->umin_value = dst_reg->var_off.value;
6498 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6499 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6500 		/* Lose signed bounds when ANDing negative numbers,
6501 		 * ain't nobody got time for that.
6502 		 */
6503 		dst_reg->smin_value = S64_MIN;
6504 		dst_reg->smax_value = S64_MAX;
6505 	} else {
6506 		/* ANDing two positives gives a positive, so safe to
6507 		 * cast result into s64.
6508 		 */
6509 		dst_reg->smin_value = dst_reg->umin_value;
6510 		dst_reg->smax_value = dst_reg->umax_value;
6511 	}
6512 	/* We may learn something more from the var_off */
6513 	__update_reg_bounds(dst_reg);
6514 }
6515 
6516 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6517 				struct bpf_reg_state *src_reg)
6518 {
6519 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6520 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6521 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6522 	s32 smin_val = src_reg->s32_min_value;
6523 	u32 umin_val = src_reg->u32_min_value;
6524 
6525 	/* Assuming scalar64_min_max_or will be called so it is safe
6526 	 * to skip updating register for known case.
6527 	 */
6528 	if (src_known && dst_known)
6529 		return;
6530 
6531 	/* We get our maximum from the var_off, and our minimum is the
6532 	 * maximum of the operands' minima
6533 	 */
6534 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6535 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6536 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6537 		/* Lose signed bounds when ORing negative numbers,
6538 		 * ain't nobody got time for that.
6539 		 */
6540 		dst_reg->s32_min_value = S32_MIN;
6541 		dst_reg->s32_max_value = S32_MAX;
6542 	} else {
6543 		/* ORing two positives gives a positive, so safe to
6544 		 * cast result into s64.
6545 		 */
6546 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6547 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6548 	}
6549 }
6550 
6551 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6552 			      struct bpf_reg_state *src_reg)
6553 {
6554 	bool src_known = tnum_is_const(src_reg->var_off);
6555 	bool dst_known = tnum_is_const(dst_reg->var_off);
6556 	s64 smin_val = src_reg->smin_value;
6557 	u64 umin_val = src_reg->umin_value;
6558 
6559 	if (src_known && dst_known) {
6560 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6561 		return;
6562 	}
6563 
6564 	/* We get our maximum from the var_off, and our minimum is the
6565 	 * maximum of the operands' minima
6566 	 */
6567 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6568 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6569 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6570 		/* Lose signed bounds when ORing negative numbers,
6571 		 * ain't nobody got time for that.
6572 		 */
6573 		dst_reg->smin_value = S64_MIN;
6574 		dst_reg->smax_value = S64_MAX;
6575 	} else {
6576 		/* ORing two positives gives a positive, so safe to
6577 		 * cast result into s64.
6578 		 */
6579 		dst_reg->smin_value = dst_reg->umin_value;
6580 		dst_reg->smax_value = dst_reg->umax_value;
6581 	}
6582 	/* We may learn something more from the var_off */
6583 	__update_reg_bounds(dst_reg);
6584 }
6585 
6586 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6587 				 struct bpf_reg_state *src_reg)
6588 {
6589 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6590 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6591 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6592 	s32 smin_val = src_reg->s32_min_value;
6593 
6594 	/* Assuming scalar64_min_max_xor will be called so it is safe
6595 	 * to skip updating register for known case.
6596 	 */
6597 	if (src_known && dst_known)
6598 		return;
6599 
6600 	/* We get both minimum and maximum from the var32_off. */
6601 	dst_reg->u32_min_value = var32_off.value;
6602 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6603 
6604 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6605 		/* XORing two positive sign numbers gives a positive,
6606 		 * so safe to cast u32 result into s32.
6607 		 */
6608 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6609 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6610 	} else {
6611 		dst_reg->s32_min_value = S32_MIN;
6612 		dst_reg->s32_max_value = S32_MAX;
6613 	}
6614 }
6615 
6616 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6617 			       struct bpf_reg_state *src_reg)
6618 {
6619 	bool src_known = tnum_is_const(src_reg->var_off);
6620 	bool dst_known = tnum_is_const(dst_reg->var_off);
6621 	s64 smin_val = src_reg->smin_value;
6622 
6623 	if (src_known && dst_known) {
6624 		/* dst_reg->var_off.value has been updated earlier */
6625 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6626 		return;
6627 	}
6628 
6629 	/* We get both minimum and maximum from the var_off. */
6630 	dst_reg->umin_value = dst_reg->var_off.value;
6631 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6632 
6633 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6634 		/* XORing two positive sign numbers gives a positive,
6635 		 * so safe to cast u64 result into s64.
6636 		 */
6637 		dst_reg->smin_value = dst_reg->umin_value;
6638 		dst_reg->smax_value = dst_reg->umax_value;
6639 	} else {
6640 		dst_reg->smin_value = S64_MIN;
6641 		dst_reg->smax_value = S64_MAX;
6642 	}
6643 
6644 	__update_reg_bounds(dst_reg);
6645 }
6646 
6647 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6648 				   u64 umin_val, u64 umax_val)
6649 {
6650 	/* We lose all sign bit information (except what we can pick
6651 	 * up from var_off)
6652 	 */
6653 	dst_reg->s32_min_value = S32_MIN;
6654 	dst_reg->s32_max_value = S32_MAX;
6655 	/* If we might shift our top bit out, then we know nothing */
6656 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6657 		dst_reg->u32_min_value = 0;
6658 		dst_reg->u32_max_value = U32_MAX;
6659 	} else {
6660 		dst_reg->u32_min_value <<= umin_val;
6661 		dst_reg->u32_max_value <<= umax_val;
6662 	}
6663 }
6664 
6665 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6666 				 struct bpf_reg_state *src_reg)
6667 {
6668 	u32 umax_val = src_reg->u32_max_value;
6669 	u32 umin_val = src_reg->u32_min_value;
6670 	/* u32 alu operation will zext upper bits */
6671 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6672 
6673 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6674 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6675 	/* Not required but being careful mark reg64 bounds as unknown so
6676 	 * that we are forced to pick them up from tnum and zext later and
6677 	 * if some path skips this step we are still safe.
6678 	 */
6679 	__mark_reg64_unbounded(dst_reg);
6680 	__update_reg32_bounds(dst_reg);
6681 }
6682 
6683 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6684 				   u64 umin_val, u64 umax_val)
6685 {
6686 	/* Special case <<32 because it is a common compiler pattern to sign
6687 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6688 	 * positive we know this shift will also be positive so we can track
6689 	 * bounds correctly. Otherwise we lose all sign bit information except
6690 	 * what we can pick up from var_off. Perhaps we can generalize this
6691 	 * later to shifts of any length.
6692 	 */
6693 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6694 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6695 	else
6696 		dst_reg->smax_value = S64_MAX;
6697 
6698 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6699 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6700 	else
6701 		dst_reg->smin_value = S64_MIN;
6702 
6703 	/* If we might shift our top bit out, then we know nothing */
6704 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6705 		dst_reg->umin_value = 0;
6706 		dst_reg->umax_value = U64_MAX;
6707 	} else {
6708 		dst_reg->umin_value <<= umin_val;
6709 		dst_reg->umax_value <<= umax_val;
6710 	}
6711 }
6712 
6713 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6714 			       struct bpf_reg_state *src_reg)
6715 {
6716 	u64 umax_val = src_reg->umax_value;
6717 	u64 umin_val = src_reg->umin_value;
6718 
6719 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6720 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6721 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6722 
6723 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6724 	/* We may learn something more from the var_off */
6725 	__update_reg_bounds(dst_reg);
6726 }
6727 
6728 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6729 				 struct bpf_reg_state *src_reg)
6730 {
6731 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6732 	u32 umax_val = src_reg->u32_max_value;
6733 	u32 umin_val = src_reg->u32_min_value;
6734 
6735 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6736 	 * be negative, then either:
6737 	 * 1) src_reg might be zero, so the sign bit of the result is
6738 	 *    unknown, so we lose our signed bounds
6739 	 * 2) it's known negative, thus the unsigned bounds capture the
6740 	 *    signed bounds
6741 	 * 3) the signed bounds cross zero, so they tell us nothing
6742 	 *    about the result
6743 	 * If the value in dst_reg is known nonnegative, then again the
6744 	 * unsigned bounds capture the signed bounds.
6745 	 * Thus, in all cases it suffices to blow away our signed bounds
6746 	 * and rely on inferring new ones from the unsigned bounds and
6747 	 * var_off of the result.
6748 	 */
6749 	dst_reg->s32_min_value = S32_MIN;
6750 	dst_reg->s32_max_value = S32_MAX;
6751 
6752 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6753 	dst_reg->u32_min_value >>= umax_val;
6754 	dst_reg->u32_max_value >>= umin_val;
6755 
6756 	__mark_reg64_unbounded(dst_reg);
6757 	__update_reg32_bounds(dst_reg);
6758 }
6759 
6760 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6761 			       struct bpf_reg_state *src_reg)
6762 {
6763 	u64 umax_val = src_reg->umax_value;
6764 	u64 umin_val = src_reg->umin_value;
6765 
6766 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6767 	 * be negative, then either:
6768 	 * 1) src_reg might be zero, so the sign bit of the result is
6769 	 *    unknown, so we lose our signed bounds
6770 	 * 2) it's known negative, thus the unsigned bounds capture the
6771 	 *    signed bounds
6772 	 * 3) the signed bounds cross zero, so they tell us nothing
6773 	 *    about the result
6774 	 * If the value in dst_reg is known nonnegative, then again the
6775 	 * unsigned bounds capture the signed bounds.
6776 	 * Thus, in all cases it suffices to blow away our signed bounds
6777 	 * and rely on inferring new ones from the unsigned bounds and
6778 	 * var_off of the result.
6779 	 */
6780 	dst_reg->smin_value = S64_MIN;
6781 	dst_reg->smax_value = S64_MAX;
6782 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6783 	dst_reg->umin_value >>= umax_val;
6784 	dst_reg->umax_value >>= umin_val;
6785 
6786 	/* Its not easy to operate on alu32 bounds here because it depends
6787 	 * on bits being shifted in. Take easy way out and mark unbounded
6788 	 * so we can recalculate later from tnum.
6789 	 */
6790 	__mark_reg32_unbounded(dst_reg);
6791 	__update_reg_bounds(dst_reg);
6792 }
6793 
6794 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6795 				  struct bpf_reg_state *src_reg)
6796 {
6797 	u64 umin_val = src_reg->u32_min_value;
6798 
6799 	/* Upon reaching here, src_known is true and
6800 	 * umax_val is equal to umin_val.
6801 	 */
6802 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6803 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6804 
6805 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6806 
6807 	/* blow away the dst_reg umin_value/umax_value and rely on
6808 	 * dst_reg var_off to refine the result.
6809 	 */
6810 	dst_reg->u32_min_value = 0;
6811 	dst_reg->u32_max_value = U32_MAX;
6812 
6813 	__mark_reg64_unbounded(dst_reg);
6814 	__update_reg32_bounds(dst_reg);
6815 }
6816 
6817 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6818 				struct bpf_reg_state *src_reg)
6819 {
6820 	u64 umin_val = src_reg->umin_value;
6821 
6822 	/* Upon reaching here, src_known is true and umax_val is equal
6823 	 * to umin_val.
6824 	 */
6825 	dst_reg->smin_value >>= umin_val;
6826 	dst_reg->smax_value >>= umin_val;
6827 
6828 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6829 
6830 	/* blow away the dst_reg umin_value/umax_value and rely on
6831 	 * dst_reg var_off to refine the result.
6832 	 */
6833 	dst_reg->umin_value = 0;
6834 	dst_reg->umax_value = U64_MAX;
6835 
6836 	/* Its not easy to operate on alu32 bounds here because it depends
6837 	 * on bits being shifted in from upper 32-bits. Take easy way out
6838 	 * and mark unbounded so we can recalculate later from tnum.
6839 	 */
6840 	__mark_reg32_unbounded(dst_reg);
6841 	__update_reg_bounds(dst_reg);
6842 }
6843 
6844 /* WARNING: This function does calculations on 64-bit values, but the actual
6845  * execution may occur on 32-bit values. Therefore, things like bitshifts
6846  * need extra checks in the 32-bit case.
6847  */
6848 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6849 				      struct bpf_insn *insn,
6850 				      struct bpf_reg_state *dst_reg,
6851 				      struct bpf_reg_state src_reg)
6852 {
6853 	struct bpf_reg_state *regs = cur_regs(env);
6854 	u8 opcode = BPF_OP(insn->code);
6855 	bool src_known;
6856 	s64 smin_val, smax_val;
6857 	u64 umin_val, umax_val;
6858 	s32 s32_min_val, s32_max_val;
6859 	u32 u32_min_val, u32_max_val;
6860 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6861 	u32 dst = insn->dst_reg;
6862 	int ret;
6863 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6864 
6865 	smin_val = src_reg.smin_value;
6866 	smax_val = src_reg.smax_value;
6867 	umin_val = src_reg.umin_value;
6868 	umax_val = src_reg.umax_value;
6869 
6870 	s32_min_val = src_reg.s32_min_value;
6871 	s32_max_val = src_reg.s32_max_value;
6872 	u32_min_val = src_reg.u32_min_value;
6873 	u32_max_val = src_reg.u32_max_value;
6874 
6875 	if (alu32) {
6876 		src_known = tnum_subreg_is_const(src_reg.var_off);
6877 		if ((src_known &&
6878 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6879 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6880 			/* Taint dst register if offset had invalid bounds
6881 			 * derived from e.g. dead branches.
6882 			 */
6883 			__mark_reg_unknown(env, dst_reg);
6884 			return 0;
6885 		}
6886 	} else {
6887 		src_known = tnum_is_const(src_reg.var_off);
6888 		if ((src_known &&
6889 		     (smin_val != smax_val || umin_val != umax_val)) ||
6890 		    smin_val > smax_val || umin_val > umax_val) {
6891 			/* Taint dst register if offset had invalid bounds
6892 			 * derived from e.g. dead branches.
6893 			 */
6894 			__mark_reg_unknown(env, dst_reg);
6895 			return 0;
6896 		}
6897 	}
6898 
6899 	if (!src_known &&
6900 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6901 		__mark_reg_unknown(env, dst_reg);
6902 		return 0;
6903 	}
6904 
6905 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6906 	 * There are two classes of instructions: The first class we track both
6907 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6908 	 * greatest amount of precision when alu operations are mixed with jmp32
6909 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6910 	 * and BPF_OR. This is possible because these ops have fairly easy to
6911 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6912 	 * See alu32 verifier tests for examples. The second class of
6913 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6914 	 * with regards to tracking sign/unsigned bounds because the bits may
6915 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6916 	 * the reg unbounded in the subreg bound space and use the resulting
6917 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6918 	 */
6919 	switch (opcode) {
6920 	case BPF_ADD:
6921 		ret = sanitize_val_alu(env, insn);
6922 		if (ret < 0) {
6923 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6924 			return ret;
6925 		}
6926 		scalar32_min_max_add(dst_reg, &src_reg);
6927 		scalar_min_max_add(dst_reg, &src_reg);
6928 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6929 		break;
6930 	case BPF_SUB:
6931 		ret = sanitize_val_alu(env, insn);
6932 		if (ret < 0) {
6933 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6934 			return ret;
6935 		}
6936 		scalar32_min_max_sub(dst_reg, &src_reg);
6937 		scalar_min_max_sub(dst_reg, &src_reg);
6938 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6939 		break;
6940 	case BPF_MUL:
6941 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6942 		scalar32_min_max_mul(dst_reg, &src_reg);
6943 		scalar_min_max_mul(dst_reg, &src_reg);
6944 		break;
6945 	case BPF_AND:
6946 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6947 		scalar32_min_max_and(dst_reg, &src_reg);
6948 		scalar_min_max_and(dst_reg, &src_reg);
6949 		break;
6950 	case BPF_OR:
6951 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6952 		scalar32_min_max_or(dst_reg, &src_reg);
6953 		scalar_min_max_or(dst_reg, &src_reg);
6954 		break;
6955 	case BPF_XOR:
6956 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6957 		scalar32_min_max_xor(dst_reg, &src_reg);
6958 		scalar_min_max_xor(dst_reg, &src_reg);
6959 		break;
6960 	case BPF_LSH:
6961 		if (umax_val >= insn_bitness) {
6962 			/* Shifts greater than 31 or 63 are undefined.
6963 			 * This includes shifts by a negative number.
6964 			 */
6965 			mark_reg_unknown(env, regs, insn->dst_reg);
6966 			break;
6967 		}
6968 		if (alu32)
6969 			scalar32_min_max_lsh(dst_reg, &src_reg);
6970 		else
6971 			scalar_min_max_lsh(dst_reg, &src_reg);
6972 		break;
6973 	case BPF_RSH:
6974 		if (umax_val >= insn_bitness) {
6975 			/* Shifts greater than 31 or 63 are undefined.
6976 			 * This includes shifts by a negative number.
6977 			 */
6978 			mark_reg_unknown(env, regs, insn->dst_reg);
6979 			break;
6980 		}
6981 		if (alu32)
6982 			scalar32_min_max_rsh(dst_reg, &src_reg);
6983 		else
6984 			scalar_min_max_rsh(dst_reg, &src_reg);
6985 		break;
6986 	case BPF_ARSH:
6987 		if (umax_val >= insn_bitness) {
6988 			/* Shifts greater than 31 or 63 are undefined.
6989 			 * This includes shifts by a negative number.
6990 			 */
6991 			mark_reg_unknown(env, regs, insn->dst_reg);
6992 			break;
6993 		}
6994 		if (alu32)
6995 			scalar32_min_max_arsh(dst_reg, &src_reg);
6996 		else
6997 			scalar_min_max_arsh(dst_reg, &src_reg);
6998 		break;
6999 	default:
7000 		mark_reg_unknown(env, regs, insn->dst_reg);
7001 		break;
7002 	}
7003 
7004 	/* ALU32 ops are zero extended into 64bit register */
7005 	if (alu32)
7006 		zext_32_to_64(dst_reg);
7007 
7008 	__update_reg_bounds(dst_reg);
7009 	__reg_deduce_bounds(dst_reg);
7010 	__reg_bound_offset(dst_reg);
7011 	return 0;
7012 }
7013 
7014 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7015  * and var_off.
7016  */
7017 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7018 				   struct bpf_insn *insn)
7019 {
7020 	struct bpf_verifier_state *vstate = env->cur_state;
7021 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7022 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7023 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7024 	u8 opcode = BPF_OP(insn->code);
7025 	int err;
7026 
7027 	dst_reg = &regs[insn->dst_reg];
7028 	src_reg = NULL;
7029 	if (dst_reg->type != SCALAR_VALUE)
7030 		ptr_reg = dst_reg;
7031 	else
7032 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7033 		 * incorrectly propagated into other registers by find_equal_scalars()
7034 		 */
7035 		dst_reg->id = 0;
7036 	if (BPF_SRC(insn->code) == BPF_X) {
7037 		src_reg = &regs[insn->src_reg];
7038 		if (src_reg->type != SCALAR_VALUE) {
7039 			if (dst_reg->type != SCALAR_VALUE) {
7040 				/* Combining two pointers by any ALU op yields
7041 				 * an arbitrary scalar. Disallow all math except
7042 				 * pointer subtraction
7043 				 */
7044 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7045 					mark_reg_unknown(env, regs, insn->dst_reg);
7046 					return 0;
7047 				}
7048 				verbose(env, "R%d pointer %s pointer prohibited\n",
7049 					insn->dst_reg,
7050 					bpf_alu_string[opcode >> 4]);
7051 				return -EACCES;
7052 			} else {
7053 				/* scalar += pointer
7054 				 * This is legal, but we have to reverse our
7055 				 * src/dest handling in computing the range
7056 				 */
7057 				err = mark_chain_precision(env, insn->dst_reg);
7058 				if (err)
7059 					return err;
7060 				return adjust_ptr_min_max_vals(env, insn,
7061 							       src_reg, dst_reg);
7062 			}
7063 		} else if (ptr_reg) {
7064 			/* pointer += scalar */
7065 			err = mark_chain_precision(env, insn->src_reg);
7066 			if (err)
7067 				return err;
7068 			return adjust_ptr_min_max_vals(env, insn,
7069 						       dst_reg, src_reg);
7070 		}
7071 	} else {
7072 		/* Pretend the src is a reg with a known value, since we only
7073 		 * need to be able to read from this state.
7074 		 */
7075 		off_reg.type = SCALAR_VALUE;
7076 		__mark_reg_known(&off_reg, insn->imm);
7077 		src_reg = &off_reg;
7078 		if (ptr_reg) /* pointer += K */
7079 			return adjust_ptr_min_max_vals(env, insn,
7080 						       ptr_reg, src_reg);
7081 	}
7082 
7083 	/* Got here implies adding two SCALAR_VALUEs */
7084 	if (WARN_ON_ONCE(ptr_reg)) {
7085 		print_verifier_state(env, state);
7086 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7087 		return -EINVAL;
7088 	}
7089 	if (WARN_ON(!src_reg)) {
7090 		print_verifier_state(env, state);
7091 		verbose(env, "verifier internal error: no src_reg\n");
7092 		return -EINVAL;
7093 	}
7094 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7095 }
7096 
7097 /* check validity of 32-bit and 64-bit arithmetic operations */
7098 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7099 {
7100 	struct bpf_reg_state *regs = cur_regs(env);
7101 	u8 opcode = BPF_OP(insn->code);
7102 	int err;
7103 
7104 	if (opcode == BPF_END || opcode == BPF_NEG) {
7105 		if (opcode == BPF_NEG) {
7106 			if (BPF_SRC(insn->code) != 0 ||
7107 			    insn->src_reg != BPF_REG_0 ||
7108 			    insn->off != 0 || insn->imm != 0) {
7109 				verbose(env, "BPF_NEG uses reserved fields\n");
7110 				return -EINVAL;
7111 			}
7112 		} else {
7113 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7114 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7115 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7116 				verbose(env, "BPF_END uses reserved fields\n");
7117 				return -EINVAL;
7118 			}
7119 		}
7120 
7121 		/* check src operand */
7122 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7123 		if (err)
7124 			return err;
7125 
7126 		if (is_pointer_value(env, insn->dst_reg)) {
7127 			verbose(env, "R%d pointer arithmetic prohibited\n",
7128 				insn->dst_reg);
7129 			return -EACCES;
7130 		}
7131 
7132 		/* check dest operand */
7133 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7134 		if (err)
7135 			return err;
7136 
7137 	} else if (opcode == BPF_MOV) {
7138 
7139 		if (BPF_SRC(insn->code) == BPF_X) {
7140 			if (insn->imm != 0 || insn->off != 0) {
7141 				verbose(env, "BPF_MOV uses reserved fields\n");
7142 				return -EINVAL;
7143 			}
7144 
7145 			/* check src operand */
7146 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7147 			if (err)
7148 				return err;
7149 		} else {
7150 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7151 				verbose(env, "BPF_MOV uses reserved fields\n");
7152 				return -EINVAL;
7153 			}
7154 		}
7155 
7156 		/* check dest operand, mark as required later */
7157 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7158 		if (err)
7159 			return err;
7160 
7161 		if (BPF_SRC(insn->code) == BPF_X) {
7162 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7163 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7164 
7165 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7166 				/* case: R1 = R2
7167 				 * copy register state to dest reg
7168 				 */
7169 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7170 					/* Assign src and dst registers the same ID
7171 					 * that will be used by find_equal_scalars()
7172 					 * to propagate min/max range.
7173 					 */
7174 					src_reg->id = ++env->id_gen;
7175 				*dst_reg = *src_reg;
7176 				dst_reg->live |= REG_LIVE_WRITTEN;
7177 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7178 			} else {
7179 				/* R1 = (u32) R2 */
7180 				if (is_pointer_value(env, insn->src_reg)) {
7181 					verbose(env,
7182 						"R%d partial copy of pointer\n",
7183 						insn->src_reg);
7184 					return -EACCES;
7185 				} else if (src_reg->type == SCALAR_VALUE) {
7186 					*dst_reg = *src_reg;
7187 					/* Make sure ID is cleared otherwise
7188 					 * dst_reg min/max could be incorrectly
7189 					 * propagated into src_reg by find_equal_scalars()
7190 					 */
7191 					dst_reg->id = 0;
7192 					dst_reg->live |= REG_LIVE_WRITTEN;
7193 					dst_reg->subreg_def = env->insn_idx + 1;
7194 				} else {
7195 					mark_reg_unknown(env, regs,
7196 							 insn->dst_reg);
7197 				}
7198 				zext_32_to_64(dst_reg);
7199 			}
7200 		} else {
7201 			/* case: R = imm
7202 			 * remember the value we stored into this reg
7203 			 */
7204 			/* clear any state __mark_reg_known doesn't set */
7205 			mark_reg_unknown(env, regs, insn->dst_reg);
7206 			regs[insn->dst_reg].type = SCALAR_VALUE;
7207 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7208 				__mark_reg_known(regs + insn->dst_reg,
7209 						 insn->imm);
7210 			} else {
7211 				__mark_reg_known(regs + insn->dst_reg,
7212 						 (u32)insn->imm);
7213 			}
7214 		}
7215 
7216 	} else if (opcode > BPF_END) {
7217 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7218 		return -EINVAL;
7219 
7220 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7221 
7222 		if (BPF_SRC(insn->code) == BPF_X) {
7223 			if (insn->imm != 0 || insn->off != 0) {
7224 				verbose(env, "BPF_ALU uses reserved fields\n");
7225 				return -EINVAL;
7226 			}
7227 			/* check src1 operand */
7228 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7229 			if (err)
7230 				return err;
7231 		} else {
7232 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7233 				verbose(env, "BPF_ALU uses reserved fields\n");
7234 				return -EINVAL;
7235 			}
7236 		}
7237 
7238 		/* check src2 operand */
7239 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7240 		if (err)
7241 			return err;
7242 
7243 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7244 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7245 			verbose(env, "div by zero\n");
7246 			return -EINVAL;
7247 		}
7248 
7249 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7250 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7251 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7252 
7253 			if (insn->imm < 0 || insn->imm >= size) {
7254 				verbose(env, "invalid shift %d\n", insn->imm);
7255 				return -EINVAL;
7256 			}
7257 		}
7258 
7259 		/* check dest operand */
7260 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7261 		if (err)
7262 			return err;
7263 
7264 		return adjust_reg_min_max_vals(env, insn);
7265 	}
7266 
7267 	return 0;
7268 }
7269 
7270 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7271 				     struct bpf_reg_state *dst_reg,
7272 				     enum bpf_reg_type type, int new_range)
7273 {
7274 	struct bpf_reg_state *reg;
7275 	int i;
7276 
7277 	for (i = 0; i < MAX_BPF_REG; i++) {
7278 		reg = &state->regs[i];
7279 		if (reg->type == type && reg->id == dst_reg->id)
7280 			/* keep the maximum range already checked */
7281 			reg->range = max(reg->range, new_range);
7282 	}
7283 
7284 	bpf_for_each_spilled_reg(i, state, reg) {
7285 		if (!reg)
7286 			continue;
7287 		if (reg->type == type && reg->id == dst_reg->id)
7288 			reg->range = max(reg->range, new_range);
7289 	}
7290 }
7291 
7292 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7293 				   struct bpf_reg_state *dst_reg,
7294 				   enum bpf_reg_type type,
7295 				   bool range_right_open)
7296 {
7297 	int new_range, i;
7298 
7299 	if (dst_reg->off < 0 ||
7300 	    (dst_reg->off == 0 && range_right_open))
7301 		/* This doesn't give us any range */
7302 		return;
7303 
7304 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7305 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7306 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7307 		 * than pkt_end, but that's because it's also less than pkt.
7308 		 */
7309 		return;
7310 
7311 	new_range = dst_reg->off;
7312 	if (range_right_open)
7313 		new_range--;
7314 
7315 	/* Examples for register markings:
7316 	 *
7317 	 * pkt_data in dst register:
7318 	 *
7319 	 *   r2 = r3;
7320 	 *   r2 += 8;
7321 	 *   if (r2 > pkt_end) goto <handle exception>
7322 	 *   <access okay>
7323 	 *
7324 	 *   r2 = r3;
7325 	 *   r2 += 8;
7326 	 *   if (r2 < pkt_end) goto <access okay>
7327 	 *   <handle exception>
7328 	 *
7329 	 *   Where:
7330 	 *     r2 == dst_reg, pkt_end == src_reg
7331 	 *     r2=pkt(id=n,off=8,r=0)
7332 	 *     r3=pkt(id=n,off=0,r=0)
7333 	 *
7334 	 * pkt_data in src register:
7335 	 *
7336 	 *   r2 = r3;
7337 	 *   r2 += 8;
7338 	 *   if (pkt_end >= r2) goto <access okay>
7339 	 *   <handle exception>
7340 	 *
7341 	 *   r2 = r3;
7342 	 *   r2 += 8;
7343 	 *   if (pkt_end <= r2) goto <handle exception>
7344 	 *   <access okay>
7345 	 *
7346 	 *   Where:
7347 	 *     pkt_end == dst_reg, r2 == src_reg
7348 	 *     r2=pkt(id=n,off=8,r=0)
7349 	 *     r3=pkt(id=n,off=0,r=0)
7350 	 *
7351 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7352 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7353 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7354 	 * the check.
7355 	 */
7356 
7357 	/* If our ids match, then we must have the same max_value.  And we
7358 	 * don't care about the other reg's fixed offset, since if it's too big
7359 	 * the range won't allow anything.
7360 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7361 	 */
7362 	for (i = 0; i <= vstate->curframe; i++)
7363 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7364 					 new_range);
7365 }
7366 
7367 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7368 {
7369 	struct tnum subreg = tnum_subreg(reg->var_off);
7370 	s32 sval = (s32)val;
7371 
7372 	switch (opcode) {
7373 	case BPF_JEQ:
7374 		if (tnum_is_const(subreg))
7375 			return !!tnum_equals_const(subreg, val);
7376 		break;
7377 	case BPF_JNE:
7378 		if (tnum_is_const(subreg))
7379 			return !tnum_equals_const(subreg, val);
7380 		break;
7381 	case BPF_JSET:
7382 		if ((~subreg.mask & subreg.value) & val)
7383 			return 1;
7384 		if (!((subreg.mask | subreg.value) & val))
7385 			return 0;
7386 		break;
7387 	case BPF_JGT:
7388 		if (reg->u32_min_value > val)
7389 			return 1;
7390 		else if (reg->u32_max_value <= val)
7391 			return 0;
7392 		break;
7393 	case BPF_JSGT:
7394 		if (reg->s32_min_value > sval)
7395 			return 1;
7396 		else if (reg->s32_max_value <= sval)
7397 			return 0;
7398 		break;
7399 	case BPF_JLT:
7400 		if (reg->u32_max_value < val)
7401 			return 1;
7402 		else if (reg->u32_min_value >= val)
7403 			return 0;
7404 		break;
7405 	case BPF_JSLT:
7406 		if (reg->s32_max_value < sval)
7407 			return 1;
7408 		else if (reg->s32_min_value >= sval)
7409 			return 0;
7410 		break;
7411 	case BPF_JGE:
7412 		if (reg->u32_min_value >= val)
7413 			return 1;
7414 		else if (reg->u32_max_value < val)
7415 			return 0;
7416 		break;
7417 	case BPF_JSGE:
7418 		if (reg->s32_min_value >= sval)
7419 			return 1;
7420 		else if (reg->s32_max_value < sval)
7421 			return 0;
7422 		break;
7423 	case BPF_JLE:
7424 		if (reg->u32_max_value <= val)
7425 			return 1;
7426 		else if (reg->u32_min_value > val)
7427 			return 0;
7428 		break;
7429 	case BPF_JSLE:
7430 		if (reg->s32_max_value <= sval)
7431 			return 1;
7432 		else if (reg->s32_min_value > sval)
7433 			return 0;
7434 		break;
7435 	}
7436 
7437 	return -1;
7438 }
7439 
7440 
7441 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7442 {
7443 	s64 sval = (s64)val;
7444 
7445 	switch (opcode) {
7446 	case BPF_JEQ:
7447 		if (tnum_is_const(reg->var_off))
7448 			return !!tnum_equals_const(reg->var_off, val);
7449 		break;
7450 	case BPF_JNE:
7451 		if (tnum_is_const(reg->var_off))
7452 			return !tnum_equals_const(reg->var_off, val);
7453 		break;
7454 	case BPF_JSET:
7455 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7456 			return 1;
7457 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7458 			return 0;
7459 		break;
7460 	case BPF_JGT:
7461 		if (reg->umin_value > val)
7462 			return 1;
7463 		else if (reg->umax_value <= val)
7464 			return 0;
7465 		break;
7466 	case BPF_JSGT:
7467 		if (reg->smin_value > sval)
7468 			return 1;
7469 		else if (reg->smax_value <= sval)
7470 			return 0;
7471 		break;
7472 	case BPF_JLT:
7473 		if (reg->umax_value < val)
7474 			return 1;
7475 		else if (reg->umin_value >= val)
7476 			return 0;
7477 		break;
7478 	case BPF_JSLT:
7479 		if (reg->smax_value < sval)
7480 			return 1;
7481 		else if (reg->smin_value >= sval)
7482 			return 0;
7483 		break;
7484 	case BPF_JGE:
7485 		if (reg->umin_value >= val)
7486 			return 1;
7487 		else if (reg->umax_value < val)
7488 			return 0;
7489 		break;
7490 	case BPF_JSGE:
7491 		if (reg->smin_value >= sval)
7492 			return 1;
7493 		else if (reg->smax_value < sval)
7494 			return 0;
7495 		break;
7496 	case BPF_JLE:
7497 		if (reg->umax_value <= val)
7498 			return 1;
7499 		else if (reg->umin_value > val)
7500 			return 0;
7501 		break;
7502 	case BPF_JSLE:
7503 		if (reg->smax_value <= sval)
7504 			return 1;
7505 		else if (reg->smin_value > sval)
7506 			return 0;
7507 		break;
7508 	}
7509 
7510 	return -1;
7511 }
7512 
7513 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7514  * and return:
7515  *  1 - branch will be taken and "goto target" will be executed
7516  *  0 - branch will not be taken and fall-through to next insn
7517  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7518  *      range [0,10]
7519  */
7520 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7521 			   bool is_jmp32)
7522 {
7523 	if (__is_pointer_value(false, reg)) {
7524 		if (!reg_type_not_null(reg->type))
7525 			return -1;
7526 
7527 		/* If pointer is valid tests against zero will fail so we can
7528 		 * use this to direct branch taken.
7529 		 */
7530 		if (val != 0)
7531 			return -1;
7532 
7533 		switch (opcode) {
7534 		case BPF_JEQ:
7535 			return 0;
7536 		case BPF_JNE:
7537 			return 1;
7538 		default:
7539 			return -1;
7540 		}
7541 	}
7542 
7543 	if (is_jmp32)
7544 		return is_branch32_taken(reg, val, opcode);
7545 	return is_branch64_taken(reg, val, opcode);
7546 }
7547 
7548 static int flip_opcode(u32 opcode)
7549 {
7550 	/* How can we transform "a <op> b" into "b <op> a"? */
7551 	static const u8 opcode_flip[16] = {
7552 		/* these stay the same */
7553 		[BPF_JEQ  >> 4] = BPF_JEQ,
7554 		[BPF_JNE  >> 4] = BPF_JNE,
7555 		[BPF_JSET >> 4] = BPF_JSET,
7556 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7557 		[BPF_JGE  >> 4] = BPF_JLE,
7558 		[BPF_JGT  >> 4] = BPF_JLT,
7559 		[BPF_JLE  >> 4] = BPF_JGE,
7560 		[BPF_JLT  >> 4] = BPF_JGT,
7561 		[BPF_JSGE >> 4] = BPF_JSLE,
7562 		[BPF_JSGT >> 4] = BPF_JSLT,
7563 		[BPF_JSLE >> 4] = BPF_JSGE,
7564 		[BPF_JSLT >> 4] = BPF_JSGT
7565 	};
7566 	return opcode_flip[opcode >> 4];
7567 }
7568 
7569 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7570 				   struct bpf_reg_state *src_reg,
7571 				   u8 opcode)
7572 {
7573 	struct bpf_reg_state *pkt;
7574 
7575 	if (src_reg->type == PTR_TO_PACKET_END) {
7576 		pkt = dst_reg;
7577 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7578 		pkt = src_reg;
7579 		opcode = flip_opcode(opcode);
7580 	} else {
7581 		return -1;
7582 	}
7583 
7584 	if (pkt->range >= 0)
7585 		return -1;
7586 
7587 	switch (opcode) {
7588 	case BPF_JLE:
7589 		/* pkt <= pkt_end */
7590 		fallthrough;
7591 	case BPF_JGT:
7592 		/* pkt > pkt_end */
7593 		if (pkt->range == BEYOND_PKT_END)
7594 			/* pkt has at last one extra byte beyond pkt_end */
7595 			return opcode == BPF_JGT;
7596 		break;
7597 	case BPF_JLT:
7598 		/* pkt < pkt_end */
7599 		fallthrough;
7600 	case BPF_JGE:
7601 		/* pkt >= pkt_end */
7602 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7603 			return opcode == BPF_JGE;
7604 		break;
7605 	}
7606 	return -1;
7607 }
7608 
7609 /* Adjusts the register min/max values in the case that the dst_reg is the
7610  * variable register that we are working on, and src_reg is a constant or we're
7611  * simply doing a BPF_K check.
7612  * In JEQ/JNE cases we also adjust the var_off values.
7613  */
7614 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7615 			    struct bpf_reg_state *false_reg,
7616 			    u64 val, u32 val32,
7617 			    u8 opcode, bool is_jmp32)
7618 {
7619 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7620 	struct tnum false_64off = false_reg->var_off;
7621 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7622 	struct tnum true_64off = true_reg->var_off;
7623 	s64 sval = (s64)val;
7624 	s32 sval32 = (s32)val32;
7625 
7626 	/* If the dst_reg is a pointer, we can't learn anything about its
7627 	 * variable offset from the compare (unless src_reg were a pointer into
7628 	 * the same object, but we don't bother with that.
7629 	 * Since false_reg and true_reg have the same type by construction, we
7630 	 * only need to check one of them for pointerness.
7631 	 */
7632 	if (__is_pointer_value(false, false_reg))
7633 		return;
7634 
7635 	switch (opcode) {
7636 	case BPF_JEQ:
7637 	case BPF_JNE:
7638 	{
7639 		struct bpf_reg_state *reg =
7640 			opcode == BPF_JEQ ? true_reg : false_reg;
7641 
7642 		/* JEQ/JNE comparison doesn't change the register equivalence.
7643 		 * r1 = r2;
7644 		 * if (r1 == 42) goto label;
7645 		 * ...
7646 		 * label: // here both r1 and r2 are known to be 42.
7647 		 *
7648 		 * Hence when marking register as known preserve it's ID.
7649 		 */
7650 		if (is_jmp32)
7651 			__mark_reg32_known(reg, val32);
7652 		else
7653 			___mark_reg_known(reg, val);
7654 		break;
7655 	}
7656 	case BPF_JSET:
7657 		if (is_jmp32) {
7658 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7659 			if (is_power_of_2(val32))
7660 				true_32off = tnum_or(true_32off,
7661 						     tnum_const(val32));
7662 		} else {
7663 			false_64off = tnum_and(false_64off, tnum_const(~val));
7664 			if (is_power_of_2(val))
7665 				true_64off = tnum_or(true_64off,
7666 						     tnum_const(val));
7667 		}
7668 		break;
7669 	case BPF_JGE:
7670 	case BPF_JGT:
7671 	{
7672 		if (is_jmp32) {
7673 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7674 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7675 
7676 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7677 						       false_umax);
7678 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7679 						      true_umin);
7680 		} else {
7681 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7682 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7683 
7684 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7685 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7686 		}
7687 		break;
7688 	}
7689 	case BPF_JSGE:
7690 	case BPF_JSGT:
7691 	{
7692 		if (is_jmp32) {
7693 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7694 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7695 
7696 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7697 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7698 		} else {
7699 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7700 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7701 
7702 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7703 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7704 		}
7705 		break;
7706 	}
7707 	case BPF_JLE:
7708 	case BPF_JLT:
7709 	{
7710 		if (is_jmp32) {
7711 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7712 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7713 
7714 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7715 						       false_umin);
7716 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7717 						      true_umax);
7718 		} else {
7719 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7720 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7721 
7722 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7723 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7724 		}
7725 		break;
7726 	}
7727 	case BPF_JSLE:
7728 	case BPF_JSLT:
7729 	{
7730 		if (is_jmp32) {
7731 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7732 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7733 
7734 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7735 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7736 		} else {
7737 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7738 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7739 
7740 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7741 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7742 		}
7743 		break;
7744 	}
7745 	default:
7746 		return;
7747 	}
7748 
7749 	if (is_jmp32) {
7750 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7751 					     tnum_subreg(false_32off));
7752 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7753 					    tnum_subreg(true_32off));
7754 		__reg_combine_32_into_64(false_reg);
7755 		__reg_combine_32_into_64(true_reg);
7756 	} else {
7757 		false_reg->var_off = false_64off;
7758 		true_reg->var_off = true_64off;
7759 		__reg_combine_64_into_32(false_reg);
7760 		__reg_combine_64_into_32(true_reg);
7761 	}
7762 }
7763 
7764 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7765  * the variable reg.
7766  */
7767 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7768 				struct bpf_reg_state *false_reg,
7769 				u64 val, u32 val32,
7770 				u8 opcode, bool is_jmp32)
7771 {
7772 	opcode = flip_opcode(opcode);
7773 	/* This uses zero as "not present in table"; luckily the zero opcode,
7774 	 * BPF_JA, can't get here.
7775 	 */
7776 	if (opcode)
7777 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7778 }
7779 
7780 /* Regs are known to be equal, so intersect their min/max/var_off */
7781 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7782 				  struct bpf_reg_state *dst_reg)
7783 {
7784 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7785 							dst_reg->umin_value);
7786 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7787 							dst_reg->umax_value);
7788 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7789 							dst_reg->smin_value);
7790 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7791 							dst_reg->smax_value);
7792 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7793 							     dst_reg->var_off);
7794 	/* We might have learned new bounds from the var_off. */
7795 	__update_reg_bounds(src_reg);
7796 	__update_reg_bounds(dst_reg);
7797 	/* We might have learned something about the sign bit. */
7798 	__reg_deduce_bounds(src_reg);
7799 	__reg_deduce_bounds(dst_reg);
7800 	/* We might have learned some bits from the bounds. */
7801 	__reg_bound_offset(src_reg);
7802 	__reg_bound_offset(dst_reg);
7803 	/* Intersecting with the old var_off might have improved our bounds
7804 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7805 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7806 	 */
7807 	__update_reg_bounds(src_reg);
7808 	__update_reg_bounds(dst_reg);
7809 }
7810 
7811 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7812 				struct bpf_reg_state *true_dst,
7813 				struct bpf_reg_state *false_src,
7814 				struct bpf_reg_state *false_dst,
7815 				u8 opcode)
7816 {
7817 	switch (opcode) {
7818 	case BPF_JEQ:
7819 		__reg_combine_min_max(true_src, true_dst);
7820 		break;
7821 	case BPF_JNE:
7822 		__reg_combine_min_max(false_src, false_dst);
7823 		break;
7824 	}
7825 }
7826 
7827 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7828 				 struct bpf_reg_state *reg, u32 id,
7829 				 bool is_null)
7830 {
7831 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7832 	    !WARN_ON_ONCE(!reg->id)) {
7833 		/* Old offset (both fixed and variable parts) should
7834 		 * have been known-zero, because we don't allow pointer
7835 		 * arithmetic on pointers that might be NULL.
7836 		 */
7837 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7838 				 !tnum_equals_const(reg->var_off, 0) ||
7839 				 reg->off)) {
7840 			__mark_reg_known_zero(reg);
7841 			reg->off = 0;
7842 		}
7843 		if (is_null) {
7844 			reg->type = SCALAR_VALUE;
7845 			/* We don't need id and ref_obj_id from this point
7846 			 * onwards anymore, thus we should better reset it,
7847 			 * so that state pruning has chances to take effect.
7848 			 */
7849 			reg->id = 0;
7850 			reg->ref_obj_id = 0;
7851 
7852 			return;
7853 		}
7854 
7855 		mark_ptr_not_null_reg(reg);
7856 
7857 		if (!reg_may_point_to_spin_lock(reg)) {
7858 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7859 			 * in release_reg_references().
7860 			 *
7861 			 * reg->id is still used by spin_lock ptr. Other
7862 			 * than spin_lock ptr type, reg->id can be reset.
7863 			 */
7864 			reg->id = 0;
7865 		}
7866 	}
7867 }
7868 
7869 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7870 				    bool is_null)
7871 {
7872 	struct bpf_reg_state *reg;
7873 	int i;
7874 
7875 	for (i = 0; i < MAX_BPF_REG; i++)
7876 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7877 
7878 	bpf_for_each_spilled_reg(i, state, reg) {
7879 		if (!reg)
7880 			continue;
7881 		mark_ptr_or_null_reg(state, reg, id, is_null);
7882 	}
7883 }
7884 
7885 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7886  * be folded together at some point.
7887  */
7888 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7889 				  bool is_null)
7890 {
7891 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7892 	struct bpf_reg_state *regs = state->regs;
7893 	u32 ref_obj_id = regs[regno].ref_obj_id;
7894 	u32 id = regs[regno].id;
7895 	int i;
7896 
7897 	if (ref_obj_id && ref_obj_id == id && is_null)
7898 		/* regs[regno] is in the " == NULL" branch.
7899 		 * No one could have freed the reference state before
7900 		 * doing the NULL check.
7901 		 */
7902 		WARN_ON_ONCE(release_reference_state(state, id));
7903 
7904 	for (i = 0; i <= vstate->curframe; i++)
7905 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7906 }
7907 
7908 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7909 				   struct bpf_reg_state *dst_reg,
7910 				   struct bpf_reg_state *src_reg,
7911 				   struct bpf_verifier_state *this_branch,
7912 				   struct bpf_verifier_state *other_branch)
7913 {
7914 	if (BPF_SRC(insn->code) != BPF_X)
7915 		return false;
7916 
7917 	/* Pointers are always 64-bit. */
7918 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7919 		return false;
7920 
7921 	switch (BPF_OP(insn->code)) {
7922 	case BPF_JGT:
7923 		if ((dst_reg->type == PTR_TO_PACKET &&
7924 		     src_reg->type == PTR_TO_PACKET_END) ||
7925 		    (dst_reg->type == PTR_TO_PACKET_META &&
7926 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7927 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7928 			find_good_pkt_pointers(this_branch, dst_reg,
7929 					       dst_reg->type, false);
7930 			mark_pkt_end(other_branch, insn->dst_reg, true);
7931 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7932 			    src_reg->type == PTR_TO_PACKET) ||
7933 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7934 			    src_reg->type == PTR_TO_PACKET_META)) {
7935 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7936 			find_good_pkt_pointers(other_branch, src_reg,
7937 					       src_reg->type, true);
7938 			mark_pkt_end(this_branch, insn->src_reg, false);
7939 		} else {
7940 			return false;
7941 		}
7942 		break;
7943 	case BPF_JLT:
7944 		if ((dst_reg->type == PTR_TO_PACKET &&
7945 		     src_reg->type == PTR_TO_PACKET_END) ||
7946 		    (dst_reg->type == PTR_TO_PACKET_META &&
7947 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7948 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7949 			find_good_pkt_pointers(other_branch, dst_reg,
7950 					       dst_reg->type, true);
7951 			mark_pkt_end(this_branch, insn->dst_reg, false);
7952 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7953 			    src_reg->type == PTR_TO_PACKET) ||
7954 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7955 			    src_reg->type == PTR_TO_PACKET_META)) {
7956 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7957 			find_good_pkt_pointers(this_branch, src_reg,
7958 					       src_reg->type, false);
7959 			mark_pkt_end(other_branch, insn->src_reg, true);
7960 		} else {
7961 			return false;
7962 		}
7963 		break;
7964 	case BPF_JGE:
7965 		if ((dst_reg->type == PTR_TO_PACKET &&
7966 		     src_reg->type == PTR_TO_PACKET_END) ||
7967 		    (dst_reg->type == PTR_TO_PACKET_META &&
7968 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7969 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7970 			find_good_pkt_pointers(this_branch, dst_reg,
7971 					       dst_reg->type, true);
7972 			mark_pkt_end(other_branch, insn->dst_reg, false);
7973 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7974 			    src_reg->type == PTR_TO_PACKET) ||
7975 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7976 			    src_reg->type == PTR_TO_PACKET_META)) {
7977 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7978 			find_good_pkt_pointers(other_branch, src_reg,
7979 					       src_reg->type, false);
7980 			mark_pkt_end(this_branch, insn->src_reg, true);
7981 		} else {
7982 			return false;
7983 		}
7984 		break;
7985 	case BPF_JLE:
7986 		if ((dst_reg->type == PTR_TO_PACKET &&
7987 		     src_reg->type == PTR_TO_PACKET_END) ||
7988 		    (dst_reg->type == PTR_TO_PACKET_META &&
7989 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7990 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7991 			find_good_pkt_pointers(other_branch, dst_reg,
7992 					       dst_reg->type, false);
7993 			mark_pkt_end(this_branch, insn->dst_reg, true);
7994 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7995 			    src_reg->type == PTR_TO_PACKET) ||
7996 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7997 			    src_reg->type == PTR_TO_PACKET_META)) {
7998 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7999 			find_good_pkt_pointers(this_branch, src_reg,
8000 					       src_reg->type, true);
8001 			mark_pkt_end(other_branch, insn->src_reg, false);
8002 		} else {
8003 			return false;
8004 		}
8005 		break;
8006 	default:
8007 		return false;
8008 	}
8009 
8010 	return true;
8011 }
8012 
8013 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8014 			       struct bpf_reg_state *known_reg)
8015 {
8016 	struct bpf_func_state *state;
8017 	struct bpf_reg_state *reg;
8018 	int i, j;
8019 
8020 	for (i = 0; i <= vstate->curframe; i++) {
8021 		state = vstate->frame[i];
8022 		for (j = 0; j < MAX_BPF_REG; j++) {
8023 			reg = &state->regs[j];
8024 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8025 				*reg = *known_reg;
8026 		}
8027 
8028 		bpf_for_each_spilled_reg(j, state, reg) {
8029 			if (!reg)
8030 				continue;
8031 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8032 				*reg = *known_reg;
8033 		}
8034 	}
8035 }
8036 
8037 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8038 			     struct bpf_insn *insn, int *insn_idx)
8039 {
8040 	struct bpf_verifier_state *this_branch = env->cur_state;
8041 	struct bpf_verifier_state *other_branch;
8042 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8043 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8044 	u8 opcode = BPF_OP(insn->code);
8045 	bool is_jmp32;
8046 	int pred = -1;
8047 	int err;
8048 
8049 	/* Only conditional jumps are expected to reach here. */
8050 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8051 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8052 		return -EINVAL;
8053 	}
8054 
8055 	if (BPF_SRC(insn->code) == BPF_X) {
8056 		if (insn->imm != 0) {
8057 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8058 			return -EINVAL;
8059 		}
8060 
8061 		/* check src1 operand */
8062 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8063 		if (err)
8064 			return err;
8065 
8066 		if (is_pointer_value(env, insn->src_reg)) {
8067 			verbose(env, "R%d pointer comparison prohibited\n",
8068 				insn->src_reg);
8069 			return -EACCES;
8070 		}
8071 		src_reg = &regs[insn->src_reg];
8072 	} else {
8073 		if (insn->src_reg != BPF_REG_0) {
8074 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8075 			return -EINVAL;
8076 		}
8077 	}
8078 
8079 	/* check src2 operand */
8080 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8081 	if (err)
8082 		return err;
8083 
8084 	dst_reg = &regs[insn->dst_reg];
8085 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8086 
8087 	if (BPF_SRC(insn->code) == BPF_K) {
8088 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8089 	} else if (src_reg->type == SCALAR_VALUE &&
8090 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8091 		pred = is_branch_taken(dst_reg,
8092 				       tnum_subreg(src_reg->var_off).value,
8093 				       opcode,
8094 				       is_jmp32);
8095 	} else if (src_reg->type == SCALAR_VALUE &&
8096 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8097 		pred = is_branch_taken(dst_reg,
8098 				       src_reg->var_off.value,
8099 				       opcode,
8100 				       is_jmp32);
8101 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8102 		   reg_is_pkt_pointer_any(src_reg) &&
8103 		   !is_jmp32) {
8104 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8105 	}
8106 
8107 	if (pred >= 0) {
8108 		/* If we get here with a dst_reg pointer type it is because
8109 		 * above is_branch_taken() special cased the 0 comparison.
8110 		 */
8111 		if (!__is_pointer_value(false, dst_reg))
8112 			err = mark_chain_precision(env, insn->dst_reg);
8113 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8114 		    !__is_pointer_value(false, src_reg))
8115 			err = mark_chain_precision(env, insn->src_reg);
8116 		if (err)
8117 			return err;
8118 	}
8119 	if (pred == 1) {
8120 		/* only follow the goto, ignore fall-through */
8121 		*insn_idx += insn->off;
8122 		return 0;
8123 	} else if (pred == 0) {
8124 		/* only follow fall-through branch, since
8125 		 * that's where the program will go
8126 		 */
8127 		return 0;
8128 	}
8129 
8130 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8131 				  false);
8132 	if (!other_branch)
8133 		return -EFAULT;
8134 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8135 
8136 	/* detect if we are comparing against a constant value so we can adjust
8137 	 * our min/max values for our dst register.
8138 	 * this is only legit if both are scalars (or pointers to the same
8139 	 * object, I suppose, but we don't support that right now), because
8140 	 * otherwise the different base pointers mean the offsets aren't
8141 	 * comparable.
8142 	 */
8143 	if (BPF_SRC(insn->code) == BPF_X) {
8144 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8145 
8146 		if (dst_reg->type == SCALAR_VALUE &&
8147 		    src_reg->type == SCALAR_VALUE) {
8148 			if (tnum_is_const(src_reg->var_off) ||
8149 			    (is_jmp32 &&
8150 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8151 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8152 						dst_reg,
8153 						src_reg->var_off.value,
8154 						tnum_subreg(src_reg->var_off).value,
8155 						opcode, is_jmp32);
8156 			else if (tnum_is_const(dst_reg->var_off) ||
8157 				 (is_jmp32 &&
8158 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8159 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8160 						    src_reg,
8161 						    dst_reg->var_off.value,
8162 						    tnum_subreg(dst_reg->var_off).value,
8163 						    opcode, is_jmp32);
8164 			else if (!is_jmp32 &&
8165 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8166 				/* Comparing for equality, we can combine knowledge */
8167 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8168 						    &other_branch_regs[insn->dst_reg],
8169 						    src_reg, dst_reg, opcode);
8170 			if (src_reg->id &&
8171 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8172 				find_equal_scalars(this_branch, src_reg);
8173 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8174 			}
8175 
8176 		}
8177 	} else if (dst_reg->type == SCALAR_VALUE) {
8178 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8179 					dst_reg, insn->imm, (u32)insn->imm,
8180 					opcode, is_jmp32);
8181 	}
8182 
8183 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8184 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8185 		find_equal_scalars(this_branch, dst_reg);
8186 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8187 	}
8188 
8189 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8190 	 * NOTE: these optimizations below are related with pointer comparison
8191 	 *       which will never be JMP32.
8192 	 */
8193 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8194 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8195 	    reg_type_may_be_null(dst_reg->type)) {
8196 		/* Mark all identical registers in each branch as either
8197 		 * safe or unknown depending R == 0 or R != 0 conditional.
8198 		 */
8199 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8200 				      opcode == BPF_JNE);
8201 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8202 				      opcode == BPF_JEQ);
8203 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8204 					   this_branch, other_branch) &&
8205 		   is_pointer_value(env, insn->dst_reg)) {
8206 		verbose(env, "R%d pointer comparison prohibited\n",
8207 			insn->dst_reg);
8208 		return -EACCES;
8209 	}
8210 	if (env->log.level & BPF_LOG_LEVEL)
8211 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8212 	return 0;
8213 }
8214 
8215 /* verify BPF_LD_IMM64 instruction */
8216 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8217 {
8218 	struct bpf_insn_aux_data *aux = cur_aux(env);
8219 	struct bpf_reg_state *regs = cur_regs(env);
8220 	struct bpf_reg_state *dst_reg;
8221 	struct bpf_map *map;
8222 	int err;
8223 
8224 	if (BPF_SIZE(insn->code) != BPF_DW) {
8225 		verbose(env, "invalid BPF_LD_IMM insn\n");
8226 		return -EINVAL;
8227 	}
8228 	if (insn->off != 0) {
8229 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8230 		return -EINVAL;
8231 	}
8232 
8233 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8234 	if (err)
8235 		return err;
8236 
8237 	dst_reg = &regs[insn->dst_reg];
8238 	if (insn->src_reg == 0) {
8239 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8240 
8241 		dst_reg->type = SCALAR_VALUE;
8242 		__mark_reg_known(&regs[insn->dst_reg], imm);
8243 		return 0;
8244 	}
8245 
8246 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8247 		mark_reg_known_zero(env, regs, insn->dst_reg);
8248 
8249 		dst_reg->type = aux->btf_var.reg_type;
8250 		switch (dst_reg->type) {
8251 		case PTR_TO_MEM:
8252 			dst_reg->mem_size = aux->btf_var.mem_size;
8253 			break;
8254 		case PTR_TO_BTF_ID:
8255 		case PTR_TO_PERCPU_BTF_ID:
8256 			dst_reg->btf = aux->btf_var.btf;
8257 			dst_reg->btf_id = aux->btf_var.btf_id;
8258 			break;
8259 		default:
8260 			verbose(env, "bpf verifier is misconfigured\n");
8261 			return -EFAULT;
8262 		}
8263 		return 0;
8264 	}
8265 
8266 	map = env->used_maps[aux->map_index];
8267 	mark_reg_known_zero(env, regs, insn->dst_reg);
8268 	dst_reg->map_ptr = map;
8269 
8270 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8271 		dst_reg->type = PTR_TO_MAP_VALUE;
8272 		dst_reg->off = aux->map_off;
8273 		if (map_value_has_spin_lock(map))
8274 			dst_reg->id = ++env->id_gen;
8275 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8276 		dst_reg->type = CONST_PTR_TO_MAP;
8277 	} else {
8278 		verbose(env, "bpf verifier is misconfigured\n");
8279 		return -EINVAL;
8280 	}
8281 
8282 	return 0;
8283 }
8284 
8285 static bool may_access_skb(enum bpf_prog_type type)
8286 {
8287 	switch (type) {
8288 	case BPF_PROG_TYPE_SOCKET_FILTER:
8289 	case BPF_PROG_TYPE_SCHED_CLS:
8290 	case BPF_PROG_TYPE_SCHED_ACT:
8291 		return true;
8292 	default:
8293 		return false;
8294 	}
8295 }
8296 
8297 /* verify safety of LD_ABS|LD_IND instructions:
8298  * - they can only appear in the programs where ctx == skb
8299  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8300  *   preserve R6-R9, and store return value into R0
8301  *
8302  * Implicit input:
8303  *   ctx == skb == R6 == CTX
8304  *
8305  * Explicit input:
8306  *   SRC == any register
8307  *   IMM == 32-bit immediate
8308  *
8309  * Output:
8310  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8311  */
8312 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8313 {
8314 	struct bpf_reg_state *regs = cur_regs(env);
8315 	static const int ctx_reg = BPF_REG_6;
8316 	u8 mode = BPF_MODE(insn->code);
8317 	int i, err;
8318 
8319 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8320 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8321 		return -EINVAL;
8322 	}
8323 
8324 	if (!env->ops->gen_ld_abs) {
8325 		verbose(env, "bpf verifier is misconfigured\n");
8326 		return -EINVAL;
8327 	}
8328 
8329 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8330 	    BPF_SIZE(insn->code) == BPF_DW ||
8331 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8332 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8333 		return -EINVAL;
8334 	}
8335 
8336 	/* check whether implicit source operand (register R6) is readable */
8337 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8338 	if (err)
8339 		return err;
8340 
8341 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8342 	 * gen_ld_abs() may terminate the program at runtime, leading to
8343 	 * reference leak.
8344 	 */
8345 	err = check_reference_leak(env);
8346 	if (err) {
8347 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8348 		return err;
8349 	}
8350 
8351 	if (env->cur_state->active_spin_lock) {
8352 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8353 		return -EINVAL;
8354 	}
8355 
8356 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8357 		verbose(env,
8358 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8359 		return -EINVAL;
8360 	}
8361 
8362 	if (mode == BPF_IND) {
8363 		/* check explicit source operand */
8364 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8365 		if (err)
8366 			return err;
8367 	}
8368 
8369 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8370 	if (err < 0)
8371 		return err;
8372 
8373 	/* reset caller saved regs to unreadable */
8374 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8375 		mark_reg_not_init(env, regs, caller_saved[i]);
8376 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8377 	}
8378 
8379 	/* mark destination R0 register as readable, since it contains
8380 	 * the value fetched from the packet.
8381 	 * Already marked as written above.
8382 	 */
8383 	mark_reg_unknown(env, regs, BPF_REG_0);
8384 	/* ld_abs load up to 32-bit skb data. */
8385 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8386 	return 0;
8387 }
8388 
8389 static int check_return_code(struct bpf_verifier_env *env)
8390 {
8391 	struct tnum enforce_attach_type_range = tnum_unknown;
8392 	const struct bpf_prog *prog = env->prog;
8393 	struct bpf_reg_state *reg;
8394 	struct tnum range = tnum_range(0, 1);
8395 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8396 	int err;
8397 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8398 
8399 	/* LSM and struct_ops func-ptr's return type could be "void" */
8400 	if (!is_subprog &&
8401 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8402 	     prog_type == BPF_PROG_TYPE_LSM) &&
8403 	    !prog->aux->attach_func_proto->type)
8404 		return 0;
8405 
8406 	/* eBPF calling convetion is such that R0 is used
8407 	 * to return the value from eBPF program.
8408 	 * Make sure that it's readable at this time
8409 	 * of bpf_exit, which means that program wrote
8410 	 * something into it earlier
8411 	 */
8412 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8413 	if (err)
8414 		return err;
8415 
8416 	if (is_pointer_value(env, BPF_REG_0)) {
8417 		verbose(env, "R0 leaks addr as return value\n");
8418 		return -EACCES;
8419 	}
8420 
8421 	reg = cur_regs(env) + BPF_REG_0;
8422 	if (is_subprog) {
8423 		if (reg->type != SCALAR_VALUE) {
8424 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8425 				reg_type_str[reg->type]);
8426 			return -EINVAL;
8427 		}
8428 		return 0;
8429 	}
8430 
8431 	switch (prog_type) {
8432 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8433 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8434 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8435 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8436 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8437 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8438 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8439 			range = tnum_range(1, 1);
8440 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8441 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8442 			range = tnum_range(0, 3);
8443 		break;
8444 	case BPF_PROG_TYPE_CGROUP_SKB:
8445 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8446 			range = tnum_range(0, 3);
8447 			enforce_attach_type_range = tnum_range(2, 3);
8448 		}
8449 		break;
8450 	case BPF_PROG_TYPE_CGROUP_SOCK:
8451 	case BPF_PROG_TYPE_SOCK_OPS:
8452 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8453 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8454 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8455 		break;
8456 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8457 		if (!env->prog->aux->attach_btf_id)
8458 			return 0;
8459 		range = tnum_const(0);
8460 		break;
8461 	case BPF_PROG_TYPE_TRACING:
8462 		switch (env->prog->expected_attach_type) {
8463 		case BPF_TRACE_FENTRY:
8464 		case BPF_TRACE_FEXIT:
8465 			range = tnum_const(0);
8466 			break;
8467 		case BPF_TRACE_RAW_TP:
8468 		case BPF_MODIFY_RETURN:
8469 			return 0;
8470 		case BPF_TRACE_ITER:
8471 			break;
8472 		default:
8473 			return -ENOTSUPP;
8474 		}
8475 		break;
8476 	case BPF_PROG_TYPE_SK_LOOKUP:
8477 		range = tnum_range(SK_DROP, SK_PASS);
8478 		break;
8479 	case BPF_PROG_TYPE_EXT:
8480 		/* freplace program can return anything as its return value
8481 		 * depends on the to-be-replaced kernel func or bpf program.
8482 		 */
8483 	default:
8484 		return 0;
8485 	}
8486 
8487 	if (reg->type != SCALAR_VALUE) {
8488 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8489 			reg_type_str[reg->type]);
8490 		return -EINVAL;
8491 	}
8492 
8493 	if (!tnum_in(range, reg->var_off)) {
8494 		char tn_buf[48];
8495 
8496 		verbose(env, "At program exit the register R0 ");
8497 		if (!tnum_is_unknown(reg->var_off)) {
8498 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8499 			verbose(env, "has value %s", tn_buf);
8500 		} else {
8501 			verbose(env, "has unknown scalar value");
8502 		}
8503 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8504 		verbose(env, " should have been in %s\n", tn_buf);
8505 		return -EINVAL;
8506 	}
8507 
8508 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8509 	    tnum_in(enforce_attach_type_range, reg->var_off))
8510 		env->prog->enforce_expected_attach_type = 1;
8511 	return 0;
8512 }
8513 
8514 /* non-recursive DFS pseudo code
8515  * 1  procedure DFS-iterative(G,v):
8516  * 2      label v as discovered
8517  * 3      let S be a stack
8518  * 4      S.push(v)
8519  * 5      while S is not empty
8520  * 6            t <- S.pop()
8521  * 7            if t is what we're looking for:
8522  * 8                return t
8523  * 9            for all edges e in G.adjacentEdges(t) do
8524  * 10               if edge e is already labelled
8525  * 11                   continue with the next edge
8526  * 12               w <- G.adjacentVertex(t,e)
8527  * 13               if vertex w is not discovered and not explored
8528  * 14                   label e as tree-edge
8529  * 15                   label w as discovered
8530  * 16                   S.push(w)
8531  * 17                   continue at 5
8532  * 18               else if vertex w is discovered
8533  * 19                   label e as back-edge
8534  * 20               else
8535  * 21                   // vertex w is explored
8536  * 22                   label e as forward- or cross-edge
8537  * 23           label t as explored
8538  * 24           S.pop()
8539  *
8540  * convention:
8541  * 0x10 - discovered
8542  * 0x11 - discovered and fall-through edge labelled
8543  * 0x12 - discovered and fall-through and branch edges labelled
8544  * 0x20 - explored
8545  */
8546 
8547 enum {
8548 	DISCOVERED = 0x10,
8549 	EXPLORED = 0x20,
8550 	FALLTHROUGH = 1,
8551 	BRANCH = 2,
8552 };
8553 
8554 static u32 state_htab_size(struct bpf_verifier_env *env)
8555 {
8556 	return env->prog->len;
8557 }
8558 
8559 static struct bpf_verifier_state_list **explored_state(
8560 					struct bpf_verifier_env *env,
8561 					int idx)
8562 {
8563 	struct bpf_verifier_state *cur = env->cur_state;
8564 	struct bpf_func_state *state = cur->frame[cur->curframe];
8565 
8566 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8567 }
8568 
8569 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8570 {
8571 	env->insn_aux_data[idx].prune_point = true;
8572 }
8573 
8574 enum {
8575 	DONE_EXPLORING = 0,
8576 	KEEP_EXPLORING = 1,
8577 };
8578 
8579 /* t, w, e - match pseudo-code above:
8580  * t - index of current instruction
8581  * w - next instruction
8582  * e - edge
8583  */
8584 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8585 		     bool loop_ok)
8586 {
8587 	int *insn_stack = env->cfg.insn_stack;
8588 	int *insn_state = env->cfg.insn_state;
8589 
8590 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8591 		return DONE_EXPLORING;
8592 
8593 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8594 		return DONE_EXPLORING;
8595 
8596 	if (w < 0 || w >= env->prog->len) {
8597 		verbose_linfo(env, t, "%d: ", t);
8598 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8599 		return -EINVAL;
8600 	}
8601 
8602 	if (e == BRANCH)
8603 		/* mark branch target for state pruning */
8604 		init_explored_state(env, w);
8605 
8606 	if (insn_state[w] == 0) {
8607 		/* tree-edge */
8608 		insn_state[t] = DISCOVERED | e;
8609 		insn_state[w] = DISCOVERED;
8610 		if (env->cfg.cur_stack >= env->prog->len)
8611 			return -E2BIG;
8612 		insn_stack[env->cfg.cur_stack++] = w;
8613 		return KEEP_EXPLORING;
8614 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8615 		if (loop_ok && env->bpf_capable)
8616 			return DONE_EXPLORING;
8617 		verbose_linfo(env, t, "%d: ", t);
8618 		verbose_linfo(env, w, "%d: ", w);
8619 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8620 		return -EINVAL;
8621 	} else if (insn_state[w] == EXPLORED) {
8622 		/* forward- or cross-edge */
8623 		insn_state[t] = DISCOVERED | e;
8624 	} else {
8625 		verbose(env, "insn state internal bug\n");
8626 		return -EFAULT;
8627 	}
8628 	return DONE_EXPLORING;
8629 }
8630 
8631 /* Visits the instruction at index t and returns one of the following:
8632  *  < 0 - an error occurred
8633  *  DONE_EXPLORING - the instruction was fully explored
8634  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8635  */
8636 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8637 {
8638 	struct bpf_insn *insns = env->prog->insnsi;
8639 	int ret;
8640 
8641 	/* All non-branch instructions have a single fall-through edge. */
8642 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8643 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8644 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8645 
8646 	switch (BPF_OP(insns[t].code)) {
8647 	case BPF_EXIT:
8648 		return DONE_EXPLORING;
8649 
8650 	case BPF_CALL:
8651 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8652 		if (ret)
8653 			return ret;
8654 
8655 		if (t + 1 < insn_cnt)
8656 			init_explored_state(env, t + 1);
8657 		if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8658 			init_explored_state(env, t);
8659 			ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8660 					env, false);
8661 		}
8662 		return ret;
8663 
8664 	case BPF_JA:
8665 		if (BPF_SRC(insns[t].code) != BPF_K)
8666 			return -EINVAL;
8667 
8668 		/* unconditional jump with single edge */
8669 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8670 				true);
8671 		if (ret)
8672 			return ret;
8673 
8674 		/* unconditional jmp is not a good pruning point,
8675 		 * but it's marked, since backtracking needs
8676 		 * to record jmp history in is_state_visited().
8677 		 */
8678 		init_explored_state(env, t + insns[t].off + 1);
8679 		/* tell verifier to check for equivalent states
8680 		 * after every call and jump
8681 		 */
8682 		if (t + 1 < insn_cnt)
8683 			init_explored_state(env, t + 1);
8684 
8685 		return ret;
8686 
8687 	default:
8688 		/* conditional jump with two edges */
8689 		init_explored_state(env, t);
8690 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8691 		if (ret)
8692 			return ret;
8693 
8694 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8695 	}
8696 }
8697 
8698 /* non-recursive depth-first-search to detect loops in BPF program
8699  * loop == back-edge in directed graph
8700  */
8701 static int check_cfg(struct bpf_verifier_env *env)
8702 {
8703 	int insn_cnt = env->prog->len;
8704 	int *insn_stack, *insn_state;
8705 	int ret = 0;
8706 	int i;
8707 
8708 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8709 	if (!insn_state)
8710 		return -ENOMEM;
8711 
8712 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8713 	if (!insn_stack) {
8714 		kvfree(insn_state);
8715 		return -ENOMEM;
8716 	}
8717 
8718 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8719 	insn_stack[0] = 0; /* 0 is the first instruction */
8720 	env->cfg.cur_stack = 1;
8721 
8722 	while (env->cfg.cur_stack > 0) {
8723 		int t = insn_stack[env->cfg.cur_stack - 1];
8724 
8725 		ret = visit_insn(t, insn_cnt, env);
8726 		switch (ret) {
8727 		case DONE_EXPLORING:
8728 			insn_state[t] = EXPLORED;
8729 			env->cfg.cur_stack--;
8730 			break;
8731 		case KEEP_EXPLORING:
8732 			break;
8733 		default:
8734 			if (ret > 0) {
8735 				verbose(env, "visit_insn internal bug\n");
8736 				ret = -EFAULT;
8737 			}
8738 			goto err_free;
8739 		}
8740 	}
8741 
8742 	if (env->cfg.cur_stack < 0) {
8743 		verbose(env, "pop stack internal bug\n");
8744 		ret = -EFAULT;
8745 		goto err_free;
8746 	}
8747 
8748 	for (i = 0; i < insn_cnt; i++) {
8749 		if (insn_state[i] != EXPLORED) {
8750 			verbose(env, "unreachable insn %d\n", i);
8751 			ret = -EINVAL;
8752 			goto err_free;
8753 		}
8754 	}
8755 	ret = 0; /* cfg looks good */
8756 
8757 err_free:
8758 	kvfree(insn_state);
8759 	kvfree(insn_stack);
8760 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8761 	return ret;
8762 }
8763 
8764 static int check_abnormal_return(struct bpf_verifier_env *env)
8765 {
8766 	int i;
8767 
8768 	for (i = 1; i < env->subprog_cnt; i++) {
8769 		if (env->subprog_info[i].has_ld_abs) {
8770 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8771 			return -EINVAL;
8772 		}
8773 		if (env->subprog_info[i].has_tail_call) {
8774 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8775 			return -EINVAL;
8776 		}
8777 	}
8778 	return 0;
8779 }
8780 
8781 /* The minimum supported BTF func info size */
8782 #define MIN_BPF_FUNCINFO_SIZE	8
8783 #define MAX_FUNCINFO_REC_SIZE	252
8784 
8785 static int check_btf_func(struct bpf_verifier_env *env,
8786 			  const union bpf_attr *attr,
8787 			  union bpf_attr __user *uattr)
8788 {
8789 	const struct btf_type *type, *func_proto, *ret_type;
8790 	u32 i, nfuncs, urec_size, min_size;
8791 	u32 krec_size = sizeof(struct bpf_func_info);
8792 	struct bpf_func_info *krecord;
8793 	struct bpf_func_info_aux *info_aux = NULL;
8794 	struct bpf_prog *prog;
8795 	const struct btf *btf;
8796 	void __user *urecord;
8797 	u32 prev_offset = 0;
8798 	bool scalar_return;
8799 	int ret = -ENOMEM;
8800 
8801 	nfuncs = attr->func_info_cnt;
8802 	if (!nfuncs) {
8803 		if (check_abnormal_return(env))
8804 			return -EINVAL;
8805 		return 0;
8806 	}
8807 
8808 	if (nfuncs != env->subprog_cnt) {
8809 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8810 		return -EINVAL;
8811 	}
8812 
8813 	urec_size = attr->func_info_rec_size;
8814 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8815 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8816 	    urec_size % sizeof(u32)) {
8817 		verbose(env, "invalid func info rec size %u\n", urec_size);
8818 		return -EINVAL;
8819 	}
8820 
8821 	prog = env->prog;
8822 	btf = prog->aux->btf;
8823 
8824 	urecord = u64_to_user_ptr(attr->func_info);
8825 	min_size = min_t(u32, krec_size, urec_size);
8826 
8827 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8828 	if (!krecord)
8829 		return -ENOMEM;
8830 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8831 	if (!info_aux)
8832 		goto err_free;
8833 
8834 	for (i = 0; i < nfuncs; i++) {
8835 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8836 		if (ret) {
8837 			if (ret == -E2BIG) {
8838 				verbose(env, "nonzero tailing record in func info");
8839 				/* set the size kernel expects so loader can zero
8840 				 * out the rest of the record.
8841 				 */
8842 				if (put_user(min_size, &uattr->func_info_rec_size))
8843 					ret = -EFAULT;
8844 			}
8845 			goto err_free;
8846 		}
8847 
8848 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8849 			ret = -EFAULT;
8850 			goto err_free;
8851 		}
8852 
8853 		/* check insn_off */
8854 		ret = -EINVAL;
8855 		if (i == 0) {
8856 			if (krecord[i].insn_off) {
8857 				verbose(env,
8858 					"nonzero insn_off %u for the first func info record",
8859 					krecord[i].insn_off);
8860 				goto err_free;
8861 			}
8862 		} else if (krecord[i].insn_off <= prev_offset) {
8863 			verbose(env,
8864 				"same or smaller insn offset (%u) than previous func info record (%u)",
8865 				krecord[i].insn_off, prev_offset);
8866 			goto err_free;
8867 		}
8868 
8869 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8870 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8871 			goto err_free;
8872 		}
8873 
8874 		/* check type_id */
8875 		type = btf_type_by_id(btf, krecord[i].type_id);
8876 		if (!type || !btf_type_is_func(type)) {
8877 			verbose(env, "invalid type id %d in func info",
8878 				krecord[i].type_id);
8879 			goto err_free;
8880 		}
8881 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8882 
8883 		func_proto = btf_type_by_id(btf, type->type);
8884 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8885 			/* btf_func_check() already verified it during BTF load */
8886 			goto err_free;
8887 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8888 		scalar_return =
8889 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8890 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8891 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8892 			goto err_free;
8893 		}
8894 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8895 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8896 			goto err_free;
8897 		}
8898 
8899 		prev_offset = krecord[i].insn_off;
8900 		urecord += urec_size;
8901 	}
8902 
8903 	prog->aux->func_info = krecord;
8904 	prog->aux->func_info_cnt = nfuncs;
8905 	prog->aux->func_info_aux = info_aux;
8906 	return 0;
8907 
8908 err_free:
8909 	kvfree(krecord);
8910 	kfree(info_aux);
8911 	return ret;
8912 }
8913 
8914 static void adjust_btf_func(struct bpf_verifier_env *env)
8915 {
8916 	struct bpf_prog_aux *aux = env->prog->aux;
8917 	int i;
8918 
8919 	if (!aux->func_info)
8920 		return;
8921 
8922 	for (i = 0; i < env->subprog_cnt; i++)
8923 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8924 }
8925 
8926 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8927 		sizeof(((struct bpf_line_info *)(0))->line_col))
8928 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8929 
8930 static int check_btf_line(struct bpf_verifier_env *env,
8931 			  const union bpf_attr *attr,
8932 			  union bpf_attr __user *uattr)
8933 {
8934 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8935 	struct bpf_subprog_info *sub;
8936 	struct bpf_line_info *linfo;
8937 	struct bpf_prog *prog;
8938 	const struct btf *btf;
8939 	void __user *ulinfo;
8940 	int err;
8941 
8942 	nr_linfo = attr->line_info_cnt;
8943 	if (!nr_linfo)
8944 		return 0;
8945 
8946 	rec_size = attr->line_info_rec_size;
8947 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8948 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8949 	    rec_size & (sizeof(u32) - 1))
8950 		return -EINVAL;
8951 
8952 	/* Need to zero it in case the userspace may
8953 	 * pass in a smaller bpf_line_info object.
8954 	 */
8955 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8956 			 GFP_KERNEL | __GFP_NOWARN);
8957 	if (!linfo)
8958 		return -ENOMEM;
8959 
8960 	prog = env->prog;
8961 	btf = prog->aux->btf;
8962 
8963 	s = 0;
8964 	sub = env->subprog_info;
8965 	ulinfo = u64_to_user_ptr(attr->line_info);
8966 	expected_size = sizeof(struct bpf_line_info);
8967 	ncopy = min_t(u32, expected_size, rec_size);
8968 	for (i = 0; i < nr_linfo; i++) {
8969 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8970 		if (err) {
8971 			if (err == -E2BIG) {
8972 				verbose(env, "nonzero tailing record in line_info");
8973 				if (put_user(expected_size,
8974 					     &uattr->line_info_rec_size))
8975 					err = -EFAULT;
8976 			}
8977 			goto err_free;
8978 		}
8979 
8980 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8981 			err = -EFAULT;
8982 			goto err_free;
8983 		}
8984 
8985 		/*
8986 		 * Check insn_off to ensure
8987 		 * 1) strictly increasing AND
8988 		 * 2) bounded by prog->len
8989 		 *
8990 		 * The linfo[0].insn_off == 0 check logically falls into
8991 		 * the later "missing bpf_line_info for func..." case
8992 		 * because the first linfo[0].insn_off must be the
8993 		 * first sub also and the first sub must have
8994 		 * subprog_info[0].start == 0.
8995 		 */
8996 		if ((i && linfo[i].insn_off <= prev_offset) ||
8997 		    linfo[i].insn_off >= prog->len) {
8998 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8999 				i, linfo[i].insn_off, prev_offset,
9000 				prog->len);
9001 			err = -EINVAL;
9002 			goto err_free;
9003 		}
9004 
9005 		if (!prog->insnsi[linfo[i].insn_off].code) {
9006 			verbose(env,
9007 				"Invalid insn code at line_info[%u].insn_off\n",
9008 				i);
9009 			err = -EINVAL;
9010 			goto err_free;
9011 		}
9012 
9013 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9014 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9015 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9016 			err = -EINVAL;
9017 			goto err_free;
9018 		}
9019 
9020 		if (s != env->subprog_cnt) {
9021 			if (linfo[i].insn_off == sub[s].start) {
9022 				sub[s].linfo_idx = i;
9023 				s++;
9024 			} else if (sub[s].start < linfo[i].insn_off) {
9025 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9026 				err = -EINVAL;
9027 				goto err_free;
9028 			}
9029 		}
9030 
9031 		prev_offset = linfo[i].insn_off;
9032 		ulinfo += rec_size;
9033 	}
9034 
9035 	if (s != env->subprog_cnt) {
9036 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9037 			env->subprog_cnt - s, s);
9038 		err = -EINVAL;
9039 		goto err_free;
9040 	}
9041 
9042 	prog->aux->linfo = linfo;
9043 	prog->aux->nr_linfo = nr_linfo;
9044 
9045 	return 0;
9046 
9047 err_free:
9048 	kvfree(linfo);
9049 	return err;
9050 }
9051 
9052 static int check_btf_info(struct bpf_verifier_env *env,
9053 			  const union bpf_attr *attr,
9054 			  union bpf_attr __user *uattr)
9055 {
9056 	struct btf *btf;
9057 	int err;
9058 
9059 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9060 		if (check_abnormal_return(env))
9061 			return -EINVAL;
9062 		return 0;
9063 	}
9064 
9065 	btf = btf_get_by_fd(attr->prog_btf_fd);
9066 	if (IS_ERR(btf))
9067 		return PTR_ERR(btf);
9068 	if (btf_is_kernel(btf)) {
9069 		btf_put(btf);
9070 		return -EACCES;
9071 	}
9072 	env->prog->aux->btf = btf;
9073 
9074 	err = check_btf_func(env, attr, uattr);
9075 	if (err)
9076 		return err;
9077 
9078 	err = check_btf_line(env, attr, uattr);
9079 	if (err)
9080 		return err;
9081 
9082 	return 0;
9083 }
9084 
9085 /* check %cur's range satisfies %old's */
9086 static bool range_within(struct bpf_reg_state *old,
9087 			 struct bpf_reg_state *cur)
9088 {
9089 	return old->umin_value <= cur->umin_value &&
9090 	       old->umax_value >= cur->umax_value &&
9091 	       old->smin_value <= cur->smin_value &&
9092 	       old->smax_value >= cur->smax_value &&
9093 	       old->u32_min_value <= cur->u32_min_value &&
9094 	       old->u32_max_value >= cur->u32_max_value &&
9095 	       old->s32_min_value <= cur->s32_min_value &&
9096 	       old->s32_max_value >= cur->s32_max_value;
9097 }
9098 
9099 /* Maximum number of register states that can exist at once */
9100 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9101 struct idpair {
9102 	u32 old;
9103 	u32 cur;
9104 };
9105 
9106 /* If in the old state two registers had the same id, then they need to have
9107  * the same id in the new state as well.  But that id could be different from
9108  * the old state, so we need to track the mapping from old to new ids.
9109  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9110  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9111  * regs with a different old id could still have new id 9, we don't care about
9112  * that.
9113  * So we look through our idmap to see if this old id has been seen before.  If
9114  * so, we require the new id to match; otherwise, we add the id pair to the map.
9115  */
9116 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9117 {
9118 	unsigned int i;
9119 
9120 	for (i = 0; i < ID_MAP_SIZE; i++) {
9121 		if (!idmap[i].old) {
9122 			/* Reached an empty slot; haven't seen this id before */
9123 			idmap[i].old = old_id;
9124 			idmap[i].cur = cur_id;
9125 			return true;
9126 		}
9127 		if (idmap[i].old == old_id)
9128 			return idmap[i].cur == cur_id;
9129 	}
9130 	/* We ran out of idmap slots, which should be impossible */
9131 	WARN_ON_ONCE(1);
9132 	return false;
9133 }
9134 
9135 static void clean_func_state(struct bpf_verifier_env *env,
9136 			     struct bpf_func_state *st)
9137 {
9138 	enum bpf_reg_liveness live;
9139 	int i, j;
9140 
9141 	for (i = 0; i < BPF_REG_FP; i++) {
9142 		live = st->regs[i].live;
9143 		/* liveness must not touch this register anymore */
9144 		st->regs[i].live |= REG_LIVE_DONE;
9145 		if (!(live & REG_LIVE_READ))
9146 			/* since the register is unused, clear its state
9147 			 * to make further comparison simpler
9148 			 */
9149 			__mark_reg_not_init(env, &st->regs[i]);
9150 	}
9151 
9152 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9153 		live = st->stack[i].spilled_ptr.live;
9154 		/* liveness must not touch this stack slot anymore */
9155 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9156 		if (!(live & REG_LIVE_READ)) {
9157 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9158 			for (j = 0; j < BPF_REG_SIZE; j++)
9159 				st->stack[i].slot_type[j] = STACK_INVALID;
9160 		}
9161 	}
9162 }
9163 
9164 static void clean_verifier_state(struct bpf_verifier_env *env,
9165 				 struct bpf_verifier_state *st)
9166 {
9167 	int i;
9168 
9169 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9170 		/* all regs in this state in all frames were already marked */
9171 		return;
9172 
9173 	for (i = 0; i <= st->curframe; i++)
9174 		clean_func_state(env, st->frame[i]);
9175 }
9176 
9177 /* the parentage chains form a tree.
9178  * the verifier states are added to state lists at given insn and
9179  * pushed into state stack for future exploration.
9180  * when the verifier reaches bpf_exit insn some of the verifer states
9181  * stored in the state lists have their final liveness state already,
9182  * but a lot of states will get revised from liveness point of view when
9183  * the verifier explores other branches.
9184  * Example:
9185  * 1: r0 = 1
9186  * 2: if r1 == 100 goto pc+1
9187  * 3: r0 = 2
9188  * 4: exit
9189  * when the verifier reaches exit insn the register r0 in the state list of
9190  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9191  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9192  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9193  *
9194  * Since the verifier pushes the branch states as it sees them while exploring
9195  * the program the condition of walking the branch instruction for the second
9196  * time means that all states below this branch were already explored and
9197  * their final liveness markes are already propagated.
9198  * Hence when the verifier completes the search of state list in is_state_visited()
9199  * we can call this clean_live_states() function to mark all liveness states
9200  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9201  * will not be used.
9202  * This function also clears the registers and stack for states that !READ
9203  * to simplify state merging.
9204  *
9205  * Important note here that walking the same branch instruction in the callee
9206  * doesn't meant that the states are DONE. The verifier has to compare
9207  * the callsites
9208  */
9209 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9210 			      struct bpf_verifier_state *cur)
9211 {
9212 	struct bpf_verifier_state_list *sl;
9213 	int i;
9214 
9215 	sl = *explored_state(env, insn);
9216 	while (sl) {
9217 		if (sl->state.branches)
9218 			goto next;
9219 		if (sl->state.insn_idx != insn ||
9220 		    sl->state.curframe != cur->curframe)
9221 			goto next;
9222 		for (i = 0; i <= cur->curframe; i++)
9223 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9224 				goto next;
9225 		clean_verifier_state(env, &sl->state);
9226 next:
9227 		sl = sl->next;
9228 	}
9229 }
9230 
9231 /* Returns true if (rold safe implies rcur safe) */
9232 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9233 		    struct idpair *idmap)
9234 {
9235 	bool equal;
9236 
9237 	if (!(rold->live & REG_LIVE_READ))
9238 		/* explored state didn't use this */
9239 		return true;
9240 
9241 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9242 
9243 	if (rold->type == PTR_TO_STACK)
9244 		/* two stack pointers are equal only if they're pointing to
9245 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9246 		 */
9247 		return equal && rold->frameno == rcur->frameno;
9248 
9249 	if (equal)
9250 		return true;
9251 
9252 	if (rold->type == NOT_INIT)
9253 		/* explored state can't have used this */
9254 		return true;
9255 	if (rcur->type == NOT_INIT)
9256 		return false;
9257 	switch (rold->type) {
9258 	case SCALAR_VALUE:
9259 		if (rcur->type == SCALAR_VALUE) {
9260 			if (!rold->precise && !rcur->precise)
9261 				return true;
9262 			/* new val must satisfy old val knowledge */
9263 			return range_within(rold, rcur) &&
9264 			       tnum_in(rold->var_off, rcur->var_off);
9265 		} else {
9266 			/* We're trying to use a pointer in place of a scalar.
9267 			 * Even if the scalar was unbounded, this could lead to
9268 			 * pointer leaks because scalars are allowed to leak
9269 			 * while pointers are not. We could make this safe in
9270 			 * special cases if root is calling us, but it's
9271 			 * probably not worth the hassle.
9272 			 */
9273 			return false;
9274 		}
9275 	case PTR_TO_MAP_VALUE:
9276 		/* If the new min/max/var_off satisfy the old ones and
9277 		 * everything else matches, we are OK.
9278 		 * 'id' is not compared, since it's only used for maps with
9279 		 * bpf_spin_lock inside map element and in such cases if
9280 		 * the rest of the prog is valid for one map element then
9281 		 * it's valid for all map elements regardless of the key
9282 		 * used in bpf_map_lookup()
9283 		 */
9284 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9285 		       range_within(rold, rcur) &&
9286 		       tnum_in(rold->var_off, rcur->var_off);
9287 	case PTR_TO_MAP_VALUE_OR_NULL:
9288 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9289 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9290 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9291 		 * checked, doing so could have affected others with the same
9292 		 * id, and we can't check for that because we lost the id when
9293 		 * we converted to a PTR_TO_MAP_VALUE.
9294 		 */
9295 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9296 			return false;
9297 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9298 			return false;
9299 		/* Check our ids match any regs they're supposed to */
9300 		return check_ids(rold->id, rcur->id, idmap);
9301 	case PTR_TO_PACKET_META:
9302 	case PTR_TO_PACKET:
9303 		if (rcur->type != rold->type)
9304 			return false;
9305 		/* We must have at least as much range as the old ptr
9306 		 * did, so that any accesses which were safe before are
9307 		 * still safe.  This is true even if old range < old off,
9308 		 * since someone could have accessed through (ptr - k), or
9309 		 * even done ptr -= k in a register, to get a safe access.
9310 		 */
9311 		if (rold->range > rcur->range)
9312 			return false;
9313 		/* If the offsets don't match, we can't trust our alignment;
9314 		 * nor can we be sure that we won't fall out of range.
9315 		 */
9316 		if (rold->off != rcur->off)
9317 			return false;
9318 		/* id relations must be preserved */
9319 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9320 			return false;
9321 		/* new val must satisfy old val knowledge */
9322 		return range_within(rold, rcur) &&
9323 		       tnum_in(rold->var_off, rcur->var_off);
9324 	case PTR_TO_CTX:
9325 	case CONST_PTR_TO_MAP:
9326 	case PTR_TO_PACKET_END:
9327 	case PTR_TO_FLOW_KEYS:
9328 	case PTR_TO_SOCKET:
9329 	case PTR_TO_SOCKET_OR_NULL:
9330 	case PTR_TO_SOCK_COMMON:
9331 	case PTR_TO_SOCK_COMMON_OR_NULL:
9332 	case PTR_TO_TCP_SOCK:
9333 	case PTR_TO_TCP_SOCK_OR_NULL:
9334 	case PTR_TO_XDP_SOCK:
9335 		/* Only valid matches are exact, which memcmp() above
9336 		 * would have accepted
9337 		 */
9338 	default:
9339 		/* Don't know what's going on, just say it's not safe */
9340 		return false;
9341 	}
9342 
9343 	/* Shouldn't get here; if we do, say it's not safe */
9344 	WARN_ON_ONCE(1);
9345 	return false;
9346 }
9347 
9348 static bool stacksafe(struct bpf_func_state *old,
9349 		      struct bpf_func_state *cur,
9350 		      struct idpair *idmap)
9351 {
9352 	int i, spi;
9353 
9354 	/* walk slots of the explored stack and ignore any additional
9355 	 * slots in the current stack, since explored(safe) state
9356 	 * didn't use them
9357 	 */
9358 	for (i = 0; i < old->allocated_stack; i++) {
9359 		spi = i / BPF_REG_SIZE;
9360 
9361 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9362 			i += BPF_REG_SIZE - 1;
9363 			/* explored state didn't use this */
9364 			continue;
9365 		}
9366 
9367 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9368 			continue;
9369 
9370 		/* explored stack has more populated slots than current stack
9371 		 * and these slots were used
9372 		 */
9373 		if (i >= cur->allocated_stack)
9374 			return false;
9375 
9376 		/* if old state was safe with misc data in the stack
9377 		 * it will be safe with zero-initialized stack.
9378 		 * The opposite is not true
9379 		 */
9380 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9381 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9382 			continue;
9383 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9384 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9385 			/* Ex: old explored (safe) state has STACK_SPILL in
9386 			 * this stack slot, but current has STACK_MISC ->
9387 			 * this verifier states are not equivalent,
9388 			 * return false to continue verification of this path
9389 			 */
9390 			return false;
9391 		if (i % BPF_REG_SIZE)
9392 			continue;
9393 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
9394 			continue;
9395 		if (!regsafe(&old->stack[spi].spilled_ptr,
9396 			     &cur->stack[spi].spilled_ptr,
9397 			     idmap))
9398 			/* when explored and current stack slot are both storing
9399 			 * spilled registers, check that stored pointers types
9400 			 * are the same as well.
9401 			 * Ex: explored safe path could have stored
9402 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9403 			 * but current path has stored:
9404 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9405 			 * such verifier states are not equivalent.
9406 			 * return false to continue verification of this path
9407 			 */
9408 			return false;
9409 	}
9410 	return true;
9411 }
9412 
9413 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9414 {
9415 	if (old->acquired_refs != cur->acquired_refs)
9416 		return false;
9417 	return !memcmp(old->refs, cur->refs,
9418 		       sizeof(*old->refs) * old->acquired_refs);
9419 }
9420 
9421 /* compare two verifier states
9422  *
9423  * all states stored in state_list are known to be valid, since
9424  * verifier reached 'bpf_exit' instruction through them
9425  *
9426  * this function is called when verifier exploring different branches of
9427  * execution popped from the state stack. If it sees an old state that has
9428  * more strict register state and more strict stack state then this execution
9429  * branch doesn't need to be explored further, since verifier already
9430  * concluded that more strict state leads to valid finish.
9431  *
9432  * Therefore two states are equivalent if register state is more conservative
9433  * and explored stack state is more conservative than the current one.
9434  * Example:
9435  *       explored                   current
9436  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9437  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9438  *
9439  * In other words if current stack state (one being explored) has more
9440  * valid slots than old one that already passed validation, it means
9441  * the verifier can stop exploring and conclude that current state is valid too
9442  *
9443  * Similarly with registers. If explored state has register type as invalid
9444  * whereas register type in current state is meaningful, it means that
9445  * the current state will reach 'bpf_exit' instruction safely
9446  */
9447 static bool func_states_equal(struct bpf_func_state *old,
9448 			      struct bpf_func_state *cur)
9449 {
9450 	struct idpair *idmap;
9451 	bool ret = false;
9452 	int i;
9453 
9454 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9455 	/* If we failed to allocate the idmap, just say it's not safe */
9456 	if (!idmap)
9457 		return false;
9458 
9459 	for (i = 0; i < MAX_BPF_REG; i++) {
9460 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9461 			goto out_free;
9462 	}
9463 
9464 	if (!stacksafe(old, cur, idmap))
9465 		goto out_free;
9466 
9467 	if (!refsafe(old, cur))
9468 		goto out_free;
9469 	ret = true;
9470 out_free:
9471 	kfree(idmap);
9472 	return ret;
9473 }
9474 
9475 static bool states_equal(struct bpf_verifier_env *env,
9476 			 struct bpf_verifier_state *old,
9477 			 struct bpf_verifier_state *cur)
9478 {
9479 	int i;
9480 
9481 	if (old->curframe != cur->curframe)
9482 		return false;
9483 
9484 	/* Verification state from speculative execution simulation
9485 	 * must never prune a non-speculative execution one.
9486 	 */
9487 	if (old->speculative && !cur->speculative)
9488 		return false;
9489 
9490 	if (old->active_spin_lock != cur->active_spin_lock)
9491 		return false;
9492 
9493 	/* for states to be equal callsites have to be the same
9494 	 * and all frame states need to be equivalent
9495 	 */
9496 	for (i = 0; i <= old->curframe; i++) {
9497 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9498 			return false;
9499 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9500 			return false;
9501 	}
9502 	return true;
9503 }
9504 
9505 /* Return 0 if no propagation happened. Return negative error code if error
9506  * happened. Otherwise, return the propagated bit.
9507  */
9508 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9509 				  struct bpf_reg_state *reg,
9510 				  struct bpf_reg_state *parent_reg)
9511 {
9512 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9513 	u8 flag = reg->live & REG_LIVE_READ;
9514 	int err;
9515 
9516 	/* When comes here, read flags of PARENT_REG or REG could be any of
9517 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9518 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9519 	 */
9520 	if (parent_flag == REG_LIVE_READ64 ||
9521 	    /* Or if there is no read flag from REG. */
9522 	    !flag ||
9523 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9524 	    parent_flag == flag)
9525 		return 0;
9526 
9527 	err = mark_reg_read(env, reg, parent_reg, flag);
9528 	if (err)
9529 		return err;
9530 
9531 	return flag;
9532 }
9533 
9534 /* A write screens off any subsequent reads; but write marks come from the
9535  * straight-line code between a state and its parent.  When we arrive at an
9536  * equivalent state (jump target or such) we didn't arrive by the straight-line
9537  * code, so read marks in the state must propagate to the parent regardless
9538  * of the state's write marks. That's what 'parent == state->parent' comparison
9539  * in mark_reg_read() is for.
9540  */
9541 static int propagate_liveness(struct bpf_verifier_env *env,
9542 			      const struct bpf_verifier_state *vstate,
9543 			      struct bpf_verifier_state *vparent)
9544 {
9545 	struct bpf_reg_state *state_reg, *parent_reg;
9546 	struct bpf_func_state *state, *parent;
9547 	int i, frame, err = 0;
9548 
9549 	if (vparent->curframe != vstate->curframe) {
9550 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9551 		     vparent->curframe, vstate->curframe);
9552 		return -EFAULT;
9553 	}
9554 	/* Propagate read liveness of registers... */
9555 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9556 	for (frame = 0; frame <= vstate->curframe; frame++) {
9557 		parent = vparent->frame[frame];
9558 		state = vstate->frame[frame];
9559 		parent_reg = parent->regs;
9560 		state_reg = state->regs;
9561 		/* We don't need to worry about FP liveness, it's read-only */
9562 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9563 			err = propagate_liveness_reg(env, &state_reg[i],
9564 						     &parent_reg[i]);
9565 			if (err < 0)
9566 				return err;
9567 			if (err == REG_LIVE_READ64)
9568 				mark_insn_zext(env, &parent_reg[i]);
9569 		}
9570 
9571 		/* Propagate stack slots. */
9572 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9573 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9574 			parent_reg = &parent->stack[i].spilled_ptr;
9575 			state_reg = &state->stack[i].spilled_ptr;
9576 			err = propagate_liveness_reg(env, state_reg,
9577 						     parent_reg);
9578 			if (err < 0)
9579 				return err;
9580 		}
9581 	}
9582 	return 0;
9583 }
9584 
9585 /* find precise scalars in the previous equivalent state and
9586  * propagate them into the current state
9587  */
9588 static int propagate_precision(struct bpf_verifier_env *env,
9589 			       const struct bpf_verifier_state *old)
9590 {
9591 	struct bpf_reg_state *state_reg;
9592 	struct bpf_func_state *state;
9593 	int i, err = 0;
9594 
9595 	state = old->frame[old->curframe];
9596 	state_reg = state->regs;
9597 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9598 		if (state_reg->type != SCALAR_VALUE ||
9599 		    !state_reg->precise)
9600 			continue;
9601 		if (env->log.level & BPF_LOG_LEVEL2)
9602 			verbose(env, "propagating r%d\n", i);
9603 		err = mark_chain_precision(env, i);
9604 		if (err < 0)
9605 			return err;
9606 	}
9607 
9608 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9609 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9610 			continue;
9611 		state_reg = &state->stack[i].spilled_ptr;
9612 		if (state_reg->type != SCALAR_VALUE ||
9613 		    !state_reg->precise)
9614 			continue;
9615 		if (env->log.level & BPF_LOG_LEVEL2)
9616 			verbose(env, "propagating fp%d\n",
9617 				(-i - 1) * BPF_REG_SIZE);
9618 		err = mark_chain_precision_stack(env, i);
9619 		if (err < 0)
9620 			return err;
9621 	}
9622 	return 0;
9623 }
9624 
9625 static bool states_maybe_looping(struct bpf_verifier_state *old,
9626 				 struct bpf_verifier_state *cur)
9627 {
9628 	struct bpf_func_state *fold, *fcur;
9629 	int i, fr = cur->curframe;
9630 
9631 	if (old->curframe != fr)
9632 		return false;
9633 
9634 	fold = old->frame[fr];
9635 	fcur = cur->frame[fr];
9636 	for (i = 0; i < MAX_BPF_REG; i++)
9637 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9638 			   offsetof(struct bpf_reg_state, parent)))
9639 			return false;
9640 	return true;
9641 }
9642 
9643 
9644 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9645 {
9646 	struct bpf_verifier_state_list *new_sl;
9647 	struct bpf_verifier_state_list *sl, **pprev;
9648 	struct bpf_verifier_state *cur = env->cur_state, *new;
9649 	int i, j, err, states_cnt = 0;
9650 	bool add_new_state = env->test_state_freq ? true : false;
9651 
9652 	cur->last_insn_idx = env->prev_insn_idx;
9653 	if (!env->insn_aux_data[insn_idx].prune_point)
9654 		/* this 'insn_idx' instruction wasn't marked, so we will not
9655 		 * be doing state search here
9656 		 */
9657 		return 0;
9658 
9659 	/* bpf progs typically have pruning point every 4 instructions
9660 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9661 	 * Do not add new state for future pruning if the verifier hasn't seen
9662 	 * at least 2 jumps and at least 8 instructions.
9663 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9664 	 * In tests that amounts to up to 50% reduction into total verifier
9665 	 * memory consumption and 20% verifier time speedup.
9666 	 */
9667 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9668 	    env->insn_processed - env->prev_insn_processed >= 8)
9669 		add_new_state = true;
9670 
9671 	pprev = explored_state(env, insn_idx);
9672 	sl = *pprev;
9673 
9674 	clean_live_states(env, insn_idx, cur);
9675 
9676 	while (sl) {
9677 		states_cnt++;
9678 		if (sl->state.insn_idx != insn_idx)
9679 			goto next;
9680 		if (sl->state.branches) {
9681 			if (states_maybe_looping(&sl->state, cur) &&
9682 			    states_equal(env, &sl->state, cur)) {
9683 				verbose_linfo(env, insn_idx, "; ");
9684 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9685 				return -EINVAL;
9686 			}
9687 			/* if the verifier is processing a loop, avoid adding new state
9688 			 * too often, since different loop iterations have distinct
9689 			 * states and may not help future pruning.
9690 			 * This threshold shouldn't be too low to make sure that
9691 			 * a loop with large bound will be rejected quickly.
9692 			 * The most abusive loop will be:
9693 			 * r1 += 1
9694 			 * if r1 < 1000000 goto pc-2
9695 			 * 1M insn_procssed limit / 100 == 10k peak states.
9696 			 * This threshold shouldn't be too high either, since states
9697 			 * at the end of the loop are likely to be useful in pruning.
9698 			 */
9699 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9700 			    env->insn_processed - env->prev_insn_processed < 100)
9701 				add_new_state = false;
9702 			goto miss;
9703 		}
9704 		if (states_equal(env, &sl->state, cur)) {
9705 			sl->hit_cnt++;
9706 			/* reached equivalent register/stack state,
9707 			 * prune the search.
9708 			 * Registers read by the continuation are read by us.
9709 			 * If we have any write marks in env->cur_state, they
9710 			 * will prevent corresponding reads in the continuation
9711 			 * from reaching our parent (an explored_state).  Our
9712 			 * own state will get the read marks recorded, but
9713 			 * they'll be immediately forgotten as we're pruning
9714 			 * this state and will pop a new one.
9715 			 */
9716 			err = propagate_liveness(env, &sl->state, cur);
9717 
9718 			/* if previous state reached the exit with precision and
9719 			 * current state is equivalent to it (except precsion marks)
9720 			 * the precision needs to be propagated back in
9721 			 * the current state.
9722 			 */
9723 			err = err ? : push_jmp_history(env, cur);
9724 			err = err ? : propagate_precision(env, &sl->state);
9725 			if (err)
9726 				return err;
9727 			return 1;
9728 		}
9729 miss:
9730 		/* when new state is not going to be added do not increase miss count.
9731 		 * Otherwise several loop iterations will remove the state
9732 		 * recorded earlier. The goal of these heuristics is to have
9733 		 * states from some iterations of the loop (some in the beginning
9734 		 * and some at the end) to help pruning.
9735 		 */
9736 		if (add_new_state)
9737 			sl->miss_cnt++;
9738 		/* heuristic to determine whether this state is beneficial
9739 		 * to keep checking from state equivalence point of view.
9740 		 * Higher numbers increase max_states_per_insn and verification time,
9741 		 * but do not meaningfully decrease insn_processed.
9742 		 */
9743 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9744 			/* the state is unlikely to be useful. Remove it to
9745 			 * speed up verification
9746 			 */
9747 			*pprev = sl->next;
9748 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9749 				u32 br = sl->state.branches;
9750 
9751 				WARN_ONCE(br,
9752 					  "BUG live_done but branches_to_explore %d\n",
9753 					  br);
9754 				free_verifier_state(&sl->state, false);
9755 				kfree(sl);
9756 				env->peak_states--;
9757 			} else {
9758 				/* cannot free this state, since parentage chain may
9759 				 * walk it later. Add it for free_list instead to
9760 				 * be freed at the end of verification
9761 				 */
9762 				sl->next = env->free_list;
9763 				env->free_list = sl;
9764 			}
9765 			sl = *pprev;
9766 			continue;
9767 		}
9768 next:
9769 		pprev = &sl->next;
9770 		sl = *pprev;
9771 	}
9772 
9773 	if (env->max_states_per_insn < states_cnt)
9774 		env->max_states_per_insn = states_cnt;
9775 
9776 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9777 		return push_jmp_history(env, cur);
9778 
9779 	if (!add_new_state)
9780 		return push_jmp_history(env, cur);
9781 
9782 	/* There were no equivalent states, remember the current one.
9783 	 * Technically the current state is not proven to be safe yet,
9784 	 * but it will either reach outer most bpf_exit (which means it's safe)
9785 	 * or it will be rejected. When there are no loops the verifier won't be
9786 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9787 	 * again on the way to bpf_exit.
9788 	 * When looping the sl->state.branches will be > 0 and this state
9789 	 * will not be considered for equivalence until branches == 0.
9790 	 */
9791 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9792 	if (!new_sl)
9793 		return -ENOMEM;
9794 	env->total_states++;
9795 	env->peak_states++;
9796 	env->prev_jmps_processed = env->jmps_processed;
9797 	env->prev_insn_processed = env->insn_processed;
9798 
9799 	/* add new state to the head of linked list */
9800 	new = &new_sl->state;
9801 	err = copy_verifier_state(new, cur);
9802 	if (err) {
9803 		free_verifier_state(new, false);
9804 		kfree(new_sl);
9805 		return err;
9806 	}
9807 	new->insn_idx = insn_idx;
9808 	WARN_ONCE(new->branches != 1,
9809 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9810 
9811 	cur->parent = new;
9812 	cur->first_insn_idx = insn_idx;
9813 	clear_jmp_history(cur);
9814 	new_sl->next = *explored_state(env, insn_idx);
9815 	*explored_state(env, insn_idx) = new_sl;
9816 	/* connect new state to parentage chain. Current frame needs all
9817 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9818 	 * to the stack implicitly by JITs) so in callers' frames connect just
9819 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9820 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9821 	 * from callee with its full parentage chain, anyway.
9822 	 */
9823 	/* clear write marks in current state: the writes we did are not writes
9824 	 * our child did, so they don't screen off its reads from us.
9825 	 * (There are no read marks in current state, because reads always mark
9826 	 * their parent and current state never has children yet.  Only
9827 	 * explored_states can get read marks.)
9828 	 */
9829 	for (j = 0; j <= cur->curframe; j++) {
9830 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9831 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9832 		for (i = 0; i < BPF_REG_FP; i++)
9833 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9834 	}
9835 
9836 	/* all stack frames are accessible from callee, clear them all */
9837 	for (j = 0; j <= cur->curframe; j++) {
9838 		struct bpf_func_state *frame = cur->frame[j];
9839 		struct bpf_func_state *newframe = new->frame[j];
9840 
9841 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9842 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9843 			frame->stack[i].spilled_ptr.parent =
9844 						&newframe->stack[i].spilled_ptr;
9845 		}
9846 	}
9847 	return 0;
9848 }
9849 
9850 /* Return true if it's OK to have the same insn return a different type. */
9851 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9852 {
9853 	switch (type) {
9854 	case PTR_TO_CTX:
9855 	case PTR_TO_SOCKET:
9856 	case PTR_TO_SOCKET_OR_NULL:
9857 	case PTR_TO_SOCK_COMMON:
9858 	case PTR_TO_SOCK_COMMON_OR_NULL:
9859 	case PTR_TO_TCP_SOCK:
9860 	case PTR_TO_TCP_SOCK_OR_NULL:
9861 	case PTR_TO_XDP_SOCK:
9862 	case PTR_TO_BTF_ID:
9863 	case PTR_TO_BTF_ID_OR_NULL:
9864 		return false;
9865 	default:
9866 		return true;
9867 	}
9868 }
9869 
9870 /* If an instruction was previously used with particular pointer types, then we
9871  * need to be careful to avoid cases such as the below, where it may be ok
9872  * for one branch accessing the pointer, but not ok for the other branch:
9873  *
9874  * R1 = sock_ptr
9875  * goto X;
9876  * ...
9877  * R1 = some_other_valid_ptr;
9878  * goto X;
9879  * ...
9880  * R2 = *(u32 *)(R1 + 0);
9881  */
9882 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9883 {
9884 	return src != prev && (!reg_type_mismatch_ok(src) ||
9885 			       !reg_type_mismatch_ok(prev));
9886 }
9887 
9888 static int do_check(struct bpf_verifier_env *env)
9889 {
9890 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9891 	struct bpf_verifier_state *state = env->cur_state;
9892 	struct bpf_insn *insns = env->prog->insnsi;
9893 	struct bpf_reg_state *regs;
9894 	int insn_cnt = env->prog->len;
9895 	bool do_print_state = false;
9896 	int prev_insn_idx = -1;
9897 
9898 	for (;;) {
9899 		struct bpf_insn *insn;
9900 		u8 class;
9901 		int err;
9902 
9903 		env->prev_insn_idx = prev_insn_idx;
9904 		if (env->insn_idx >= insn_cnt) {
9905 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9906 				env->insn_idx, insn_cnt);
9907 			return -EFAULT;
9908 		}
9909 
9910 		insn = &insns[env->insn_idx];
9911 		class = BPF_CLASS(insn->code);
9912 
9913 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9914 			verbose(env,
9915 				"BPF program is too large. Processed %d insn\n",
9916 				env->insn_processed);
9917 			return -E2BIG;
9918 		}
9919 
9920 		err = is_state_visited(env, env->insn_idx);
9921 		if (err < 0)
9922 			return err;
9923 		if (err == 1) {
9924 			/* found equivalent state, can prune the search */
9925 			if (env->log.level & BPF_LOG_LEVEL) {
9926 				if (do_print_state)
9927 					verbose(env, "\nfrom %d to %d%s: safe\n",
9928 						env->prev_insn_idx, env->insn_idx,
9929 						env->cur_state->speculative ?
9930 						" (speculative execution)" : "");
9931 				else
9932 					verbose(env, "%d: safe\n", env->insn_idx);
9933 			}
9934 			goto process_bpf_exit;
9935 		}
9936 
9937 		if (signal_pending(current))
9938 			return -EAGAIN;
9939 
9940 		if (need_resched())
9941 			cond_resched();
9942 
9943 		if (env->log.level & BPF_LOG_LEVEL2 ||
9944 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9945 			if (env->log.level & BPF_LOG_LEVEL2)
9946 				verbose(env, "%d:", env->insn_idx);
9947 			else
9948 				verbose(env, "\nfrom %d to %d%s:",
9949 					env->prev_insn_idx, env->insn_idx,
9950 					env->cur_state->speculative ?
9951 					" (speculative execution)" : "");
9952 			print_verifier_state(env, state->frame[state->curframe]);
9953 			do_print_state = false;
9954 		}
9955 
9956 		if (env->log.level & BPF_LOG_LEVEL) {
9957 			const struct bpf_insn_cbs cbs = {
9958 				.cb_print	= verbose,
9959 				.private_data	= env,
9960 			};
9961 
9962 			verbose_linfo(env, env->insn_idx, "; ");
9963 			verbose(env, "%d: ", env->insn_idx);
9964 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9965 		}
9966 
9967 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9968 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9969 							   env->prev_insn_idx);
9970 			if (err)
9971 				return err;
9972 		}
9973 
9974 		regs = cur_regs(env);
9975 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9976 		prev_insn_idx = env->insn_idx;
9977 
9978 		if (class == BPF_ALU || class == BPF_ALU64) {
9979 			err = check_alu_op(env, insn);
9980 			if (err)
9981 				return err;
9982 
9983 		} else if (class == BPF_LDX) {
9984 			enum bpf_reg_type *prev_src_type, src_reg_type;
9985 
9986 			/* check for reserved fields is already done */
9987 
9988 			/* check src operand */
9989 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9990 			if (err)
9991 				return err;
9992 
9993 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9994 			if (err)
9995 				return err;
9996 
9997 			src_reg_type = regs[insn->src_reg].type;
9998 
9999 			/* check that memory (src_reg + off) is readable,
10000 			 * the state of dst_reg will be updated by this func
10001 			 */
10002 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10003 					       insn->off, BPF_SIZE(insn->code),
10004 					       BPF_READ, insn->dst_reg, false);
10005 			if (err)
10006 				return err;
10007 
10008 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10009 
10010 			if (*prev_src_type == NOT_INIT) {
10011 				/* saw a valid insn
10012 				 * dst_reg = *(u32 *)(src_reg + off)
10013 				 * save type to validate intersecting paths
10014 				 */
10015 				*prev_src_type = src_reg_type;
10016 
10017 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10018 				/* ABuser program is trying to use the same insn
10019 				 * dst_reg = *(u32*) (src_reg + off)
10020 				 * with different pointer types:
10021 				 * src_reg == ctx in one branch and
10022 				 * src_reg == stack|map in some other branch.
10023 				 * Reject it.
10024 				 */
10025 				verbose(env, "same insn cannot be used with different pointers\n");
10026 				return -EINVAL;
10027 			}
10028 
10029 		} else if (class == BPF_STX) {
10030 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10031 
10032 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10033 				err = check_atomic(env, env->insn_idx, insn);
10034 				if (err)
10035 					return err;
10036 				env->insn_idx++;
10037 				continue;
10038 			}
10039 
10040 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10041 				verbose(env, "BPF_STX uses reserved fields\n");
10042 				return -EINVAL;
10043 			}
10044 
10045 			/* check src1 operand */
10046 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10047 			if (err)
10048 				return err;
10049 			/* check src2 operand */
10050 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10051 			if (err)
10052 				return err;
10053 
10054 			dst_reg_type = regs[insn->dst_reg].type;
10055 
10056 			/* check that memory (dst_reg + off) is writeable */
10057 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10058 					       insn->off, BPF_SIZE(insn->code),
10059 					       BPF_WRITE, insn->src_reg, false);
10060 			if (err)
10061 				return err;
10062 
10063 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10064 
10065 			if (*prev_dst_type == NOT_INIT) {
10066 				*prev_dst_type = dst_reg_type;
10067 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10068 				verbose(env, "same insn cannot be used with different pointers\n");
10069 				return -EINVAL;
10070 			}
10071 
10072 		} else if (class == BPF_ST) {
10073 			if (BPF_MODE(insn->code) != BPF_MEM ||
10074 			    insn->src_reg != BPF_REG_0) {
10075 				verbose(env, "BPF_ST uses reserved fields\n");
10076 				return -EINVAL;
10077 			}
10078 			/* check src operand */
10079 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10080 			if (err)
10081 				return err;
10082 
10083 			if (is_ctx_reg(env, insn->dst_reg)) {
10084 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10085 					insn->dst_reg,
10086 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10087 				return -EACCES;
10088 			}
10089 
10090 			/* check that memory (dst_reg + off) is writeable */
10091 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10092 					       insn->off, BPF_SIZE(insn->code),
10093 					       BPF_WRITE, -1, false);
10094 			if (err)
10095 				return err;
10096 
10097 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10098 			u8 opcode = BPF_OP(insn->code);
10099 
10100 			env->jmps_processed++;
10101 			if (opcode == BPF_CALL) {
10102 				if (BPF_SRC(insn->code) != BPF_K ||
10103 				    insn->off != 0 ||
10104 				    (insn->src_reg != BPF_REG_0 &&
10105 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10106 				    insn->dst_reg != BPF_REG_0 ||
10107 				    class == BPF_JMP32) {
10108 					verbose(env, "BPF_CALL uses reserved fields\n");
10109 					return -EINVAL;
10110 				}
10111 
10112 				if (env->cur_state->active_spin_lock &&
10113 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10114 				     insn->imm != BPF_FUNC_spin_unlock)) {
10115 					verbose(env, "function calls are not allowed while holding a lock\n");
10116 					return -EINVAL;
10117 				}
10118 				if (insn->src_reg == BPF_PSEUDO_CALL)
10119 					err = check_func_call(env, insn, &env->insn_idx);
10120 				else
10121 					err = check_helper_call(env, insn->imm, env->insn_idx);
10122 				if (err)
10123 					return err;
10124 
10125 			} else if (opcode == BPF_JA) {
10126 				if (BPF_SRC(insn->code) != BPF_K ||
10127 				    insn->imm != 0 ||
10128 				    insn->src_reg != BPF_REG_0 ||
10129 				    insn->dst_reg != BPF_REG_0 ||
10130 				    class == BPF_JMP32) {
10131 					verbose(env, "BPF_JA uses reserved fields\n");
10132 					return -EINVAL;
10133 				}
10134 
10135 				env->insn_idx += insn->off + 1;
10136 				continue;
10137 
10138 			} else if (opcode == BPF_EXIT) {
10139 				if (BPF_SRC(insn->code) != BPF_K ||
10140 				    insn->imm != 0 ||
10141 				    insn->src_reg != BPF_REG_0 ||
10142 				    insn->dst_reg != BPF_REG_0 ||
10143 				    class == BPF_JMP32) {
10144 					verbose(env, "BPF_EXIT uses reserved fields\n");
10145 					return -EINVAL;
10146 				}
10147 
10148 				if (env->cur_state->active_spin_lock) {
10149 					verbose(env, "bpf_spin_unlock is missing\n");
10150 					return -EINVAL;
10151 				}
10152 
10153 				if (state->curframe) {
10154 					/* exit from nested function */
10155 					err = prepare_func_exit(env, &env->insn_idx);
10156 					if (err)
10157 						return err;
10158 					do_print_state = true;
10159 					continue;
10160 				}
10161 
10162 				err = check_reference_leak(env);
10163 				if (err)
10164 					return err;
10165 
10166 				err = check_return_code(env);
10167 				if (err)
10168 					return err;
10169 process_bpf_exit:
10170 				update_branch_counts(env, env->cur_state);
10171 				err = pop_stack(env, &prev_insn_idx,
10172 						&env->insn_idx, pop_log);
10173 				if (err < 0) {
10174 					if (err != -ENOENT)
10175 						return err;
10176 					break;
10177 				} else {
10178 					do_print_state = true;
10179 					continue;
10180 				}
10181 			} else {
10182 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10183 				if (err)
10184 					return err;
10185 			}
10186 		} else if (class == BPF_LD) {
10187 			u8 mode = BPF_MODE(insn->code);
10188 
10189 			if (mode == BPF_ABS || mode == BPF_IND) {
10190 				err = check_ld_abs(env, insn);
10191 				if (err)
10192 					return err;
10193 
10194 			} else if (mode == BPF_IMM) {
10195 				err = check_ld_imm(env, insn);
10196 				if (err)
10197 					return err;
10198 
10199 				env->insn_idx++;
10200 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10201 			} else {
10202 				verbose(env, "invalid BPF_LD mode\n");
10203 				return -EINVAL;
10204 			}
10205 		} else {
10206 			verbose(env, "unknown insn class %d\n", class);
10207 			return -EINVAL;
10208 		}
10209 
10210 		env->insn_idx++;
10211 	}
10212 
10213 	return 0;
10214 }
10215 
10216 static int find_btf_percpu_datasec(struct btf *btf)
10217 {
10218 	const struct btf_type *t;
10219 	const char *tname;
10220 	int i, n;
10221 
10222 	/*
10223 	 * Both vmlinux and module each have their own ".data..percpu"
10224 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10225 	 * types to look at only module's own BTF types.
10226 	 */
10227 	n = btf_nr_types(btf);
10228 	if (btf_is_module(btf))
10229 		i = btf_nr_types(btf_vmlinux);
10230 	else
10231 		i = 1;
10232 
10233 	for(; i < n; i++) {
10234 		t = btf_type_by_id(btf, i);
10235 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10236 			continue;
10237 
10238 		tname = btf_name_by_offset(btf, t->name_off);
10239 		if (!strcmp(tname, ".data..percpu"))
10240 			return i;
10241 	}
10242 
10243 	return -ENOENT;
10244 }
10245 
10246 /* replace pseudo btf_id with kernel symbol address */
10247 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10248 			       struct bpf_insn *insn,
10249 			       struct bpf_insn_aux_data *aux)
10250 {
10251 	const struct btf_var_secinfo *vsi;
10252 	const struct btf_type *datasec;
10253 	struct btf_mod_pair *btf_mod;
10254 	const struct btf_type *t;
10255 	const char *sym_name;
10256 	bool percpu = false;
10257 	u32 type, id = insn->imm;
10258 	struct btf *btf;
10259 	s32 datasec_id;
10260 	u64 addr;
10261 	int i, btf_fd, err;
10262 
10263 	btf_fd = insn[1].imm;
10264 	if (btf_fd) {
10265 		btf = btf_get_by_fd(btf_fd);
10266 		if (IS_ERR(btf)) {
10267 			verbose(env, "invalid module BTF object FD specified.\n");
10268 			return -EINVAL;
10269 		}
10270 	} else {
10271 		if (!btf_vmlinux) {
10272 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10273 			return -EINVAL;
10274 		}
10275 		btf = btf_vmlinux;
10276 		btf_get(btf);
10277 	}
10278 
10279 	t = btf_type_by_id(btf, id);
10280 	if (!t) {
10281 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10282 		err = -ENOENT;
10283 		goto err_put;
10284 	}
10285 
10286 	if (!btf_type_is_var(t)) {
10287 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10288 		err = -EINVAL;
10289 		goto err_put;
10290 	}
10291 
10292 	sym_name = btf_name_by_offset(btf, t->name_off);
10293 	addr = kallsyms_lookup_name(sym_name);
10294 	if (!addr) {
10295 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10296 			sym_name);
10297 		err = -ENOENT;
10298 		goto err_put;
10299 	}
10300 
10301 	datasec_id = find_btf_percpu_datasec(btf);
10302 	if (datasec_id > 0) {
10303 		datasec = btf_type_by_id(btf, datasec_id);
10304 		for_each_vsi(i, datasec, vsi) {
10305 			if (vsi->type == id) {
10306 				percpu = true;
10307 				break;
10308 			}
10309 		}
10310 	}
10311 
10312 	insn[0].imm = (u32)addr;
10313 	insn[1].imm = addr >> 32;
10314 
10315 	type = t->type;
10316 	t = btf_type_skip_modifiers(btf, type, NULL);
10317 	if (percpu) {
10318 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10319 		aux->btf_var.btf = btf;
10320 		aux->btf_var.btf_id = type;
10321 	} else if (!btf_type_is_struct(t)) {
10322 		const struct btf_type *ret;
10323 		const char *tname;
10324 		u32 tsize;
10325 
10326 		/* resolve the type size of ksym. */
10327 		ret = btf_resolve_size(btf, t, &tsize);
10328 		if (IS_ERR(ret)) {
10329 			tname = btf_name_by_offset(btf, t->name_off);
10330 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10331 				tname, PTR_ERR(ret));
10332 			err = -EINVAL;
10333 			goto err_put;
10334 		}
10335 		aux->btf_var.reg_type = PTR_TO_MEM;
10336 		aux->btf_var.mem_size = tsize;
10337 	} else {
10338 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10339 		aux->btf_var.btf = btf;
10340 		aux->btf_var.btf_id = type;
10341 	}
10342 
10343 	/* check whether we recorded this BTF (and maybe module) already */
10344 	for (i = 0; i < env->used_btf_cnt; i++) {
10345 		if (env->used_btfs[i].btf == btf) {
10346 			btf_put(btf);
10347 			return 0;
10348 		}
10349 	}
10350 
10351 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
10352 		err = -E2BIG;
10353 		goto err_put;
10354 	}
10355 
10356 	btf_mod = &env->used_btfs[env->used_btf_cnt];
10357 	btf_mod->btf = btf;
10358 	btf_mod->module = NULL;
10359 
10360 	/* if we reference variables from kernel module, bump its refcount */
10361 	if (btf_is_module(btf)) {
10362 		btf_mod->module = btf_try_get_module(btf);
10363 		if (!btf_mod->module) {
10364 			err = -ENXIO;
10365 			goto err_put;
10366 		}
10367 	}
10368 
10369 	env->used_btf_cnt++;
10370 
10371 	return 0;
10372 err_put:
10373 	btf_put(btf);
10374 	return err;
10375 }
10376 
10377 static int check_map_prealloc(struct bpf_map *map)
10378 {
10379 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10380 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10381 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10382 		!(map->map_flags & BPF_F_NO_PREALLOC);
10383 }
10384 
10385 static bool is_tracing_prog_type(enum bpf_prog_type type)
10386 {
10387 	switch (type) {
10388 	case BPF_PROG_TYPE_KPROBE:
10389 	case BPF_PROG_TYPE_TRACEPOINT:
10390 	case BPF_PROG_TYPE_PERF_EVENT:
10391 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10392 		return true;
10393 	default:
10394 		return false;
10395 	}
10396 }
10397 
10398 static bool is_preallocated_map(struct bpf_map *map)
10399 {
10400 	if (!check_map_prealloc(map))
10401 		return false;
10402 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10403 		return false;
10404 	return true;
10405 }
10406 
10407 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10408 					struct bpf_map *map,
10409 					struct bpf_prog *prog)
10410 
10411 {
10412 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10413 	/*
10414 	 * Validate that trace type programs use preallocated hash maps.
10415 	 *
10416 	 * For programs attached to PERF events this is mandatory as the
10417 	 * perf NMI can hit any arbitrary code sequence.
10418 	 *
10419 	 * All other trace types using preallocated hash maps are unsafe as
10420 	 * well because tracepoint or kprobes can be inside locked regions
10421 	 * of the memory allocator or at a place where a recursion into the
10422 	 * memory allocator would see inconsistent state.
10423 	 *
10424 	 * On RT enabled kernels run-time allocation of all trace type
10425 	 * programs is strictly prohibited due to lock type constraints. On
10426 	 * !RT kernels it is allowed for backwards compatibility reasons for
10427 	 * now, but warnings are emitted so developers are made aware of
10428 	 * the unsafety and can fix their programs before this is enforced.
10429 	 */
10430 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10431 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10432 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10433 			return -EINVAL;
10434 		}
10435 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10436 			verbose(env, "trace type programs can only use preallocated hash map\n");
10437 			return -EINVAL;
10438 		}
10439 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10440 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10441 	}
10442 
10443 	if (map_value_has_spin_lock(map)) {
10444 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10445 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10446 			return -EINVAL;
10447 		}
10448 
10449 		if (is_tracing_prog_type(prog_type)) {
10450 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10451 			return -EINVAL;
10452 		}
10453 
10454 		if (prog->aux->sleepable) {
10455 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10456 			return -EINVAL;
10457 		}
10458 	}
10459 
10460 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10461 	    !bpf_offload_prog_map_match(prog, map)) {
10462 		verbose(env, "offload device mismatch between prog and map\n");
10463 		return -EINVAL;
10464 	}
10465 
10466 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10467 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10468 		return -EINVAL;
10469 	}
10470 
10471 	if (prog->aux->sleepable)
10472 		switch (map->map_type) {
10473 		case BPF_MAP_TYPE_HASH:
10474 		case BPF_MAP_TYPE_LRU_HASH:
10475 		case BPF_MAP_TYPE_ARRAY:
10476 		case BPF_MAP_TYPE_PERCPU_HASH:
10477 		case BPF_MAP_TYPE_PERCPU_ARRAY:
10478 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10479 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10480 		case BPF_MAP_TYPE_HASH_OF_MAPS:
10481 			if (!is_preallocated_map(map)) {
10482 				verbose(env,
10483 					"Sleepable programs can only use preallocated maps\n");
10484 				return -EINVAL;
10485 			}
10486 			break;
10487 		case BPF_MAP_TYPE_RINGBUF:
10488 			break;
10489 		default:
10490 			verbose(env,
10491 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
10492 			return -EINVAL;
10493 		}
10494 
10495 	return 0;
10496 }
10497 
10498 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10499 {
10500 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10501 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10502 }
10503 
10504 /* find and rewrite pseudo imm in ld_imm64 instructions:
10505  *
10506  * 1. if it accesses map FD, replace it with actual map pointer.
10507  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10508  *
10509  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10510  */
10511 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10512 {
10513 	struct bpf_insn *insn = env->prog->insnsi;
10514 	int insn_cnt = env->prog->len;
10515 	int i, j, err;
10516 
10517 	err = bpf_prog_calc_tag(env->prog);
10518 	if (err)
10519 		return err;
10520 
10521 	for (i = 0; i < insn_cnt; i++, insn++) {
10522 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10523 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10524 			verbose(env, "BPF_LDX uses reserved fields\n");
10525 			return -EINVAL;
10526 		}
10527 
10528 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10529 			struct bpf_insn_aux_data *aux;
10530 			struct bpf_map *map;
10531 			struct fd f;
10532 			u64 addr;
10533 
10534 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10535 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10536 			    insn[1].off != 0) {
10537 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10538 				return -EINVAL;
10539 			}
10540 
10541 			if (insn[0].src_reg == 0)
10542 				/* valid generic load 64-bit imm */
10543 				goto next_insn;
10544 
10545 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10546 				aux = &env->insn_aux_data[i];
10547 				err = check_pseudo_btf_id(env, insn, aux);
10548 				if (err)
10549 					return err;
10550 				goto next_insn;
10551 			}
10552 
10553 			/* In final convert_pseudo_ld_imm64() step, this is
10554 			 * converted into regular 64-bit imm load insn.
10555 			 */
10556 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10557 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10558 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10559 			     insn[1].imm != 0)) {
10560 				verbose(env,
10561 					"unrecognized bpf_ld_imm64 insn\n");
10562 				return -EINVAL;
10563 			}
10564 
10565 			f = fdget(insn[0].imm);
10566 			map = __bpf_map_get(f);
10567 			if (IS_ERR(map)) {
10568 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10569 					insn[0].imm);
10570 				return PTR_ERR(map);
10571 			}
10572 
10573 			err = check_map_prog_compatibility(env, map, env->prog);
10574 			if (err) {
10575 				fdput(f);
10576 				return err;
10577 			}
10578 
10579 			aux = &env->insn_aux_data[i];
10580 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10581 				addr = (unsigned long)map;
10582 			} else {
10583 				u32 off = insn[1].imm;
10584 
10585 				if (off >= BPF_MAX_VAR_OFF) {
10586 					verbose(env, "direct value offset of %u is not allowed\n", off);
10587 					fdput(f);
10588 					return -EINVAL;
10589 				}
10590 
10591 				if (!map->ops->map_direct_value_addr) {
10592 					verbose(env, "no direct value access support for this map type\n");
10593 					fdput(f);
10594 					return -EINVAL;
10595 				}
10596 
10597 				err = map->ops->map_direct_value_addr(map, &addr, off);
10598 				if (err) {
10599 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10600 						map->value_size, off);
10601 					fdput(f);
10602 					return err;
10603 				}
10604 
10605 				aux->map_off = off;
10606 				addr += off;
10607 			}
10608 
10609 			insn[0].imm = (u32)addr;
10610 			insn[1].imm = addr >> 32;
10611 
10612 			/* check whether we recorded this map already */
10613 			for (j = 0; j < env->used_map_cnt; j++) {
10614 				if (env->used_maps[j] == map) {
10615 					aux->map_index = j;
10616 					fdput(f);
10617 					goto next_insn;
10618 				}
10619 			}
10620 
10621 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10622 				fdput(f);
10623 				return -E2BIG;
10624 			}
10625 
10626 			/* hold the map. If the program is rejected by verifier,
10627 			 * the map will be released by release_maps() or it
10628 			 * will be used by the valid program until it's unloaded
10629 			 * and all maps are released in free_used_maps()
10630 			 */
10631 			bpf_map_inc(map);
10632 
10633 			aux->map_index = env->used_map_cnt;
10634 			env->used_maps[env->used_map_cnt++] = map;
10635 
10636 			if (bpf_map_is_cgroup_storage(map) &&
10637 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10638 				verbose(env, "only one cgroup storage of each type is allowed\n");
10639 				fdput(f);
10640 				return -EBUSY;
10641 			}
10642 
10643 			fdput(f);
10644 next_insn:
10645 			insn++;
10646 			i++;
10647 			continue;
10648 		}
10649 
10650 		/* Basic sanity check before we invest more work here. */
10651 		if (!bpf_opcode_in_insntable(insn->code)) {
10652 			verbose(env, "unknown opcode %02x\n", insn->code);
10653 			return -EINVAL;
10654 		}
10655 	}
10656 
10657 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10658 	 * 'struct bpf_map *' into a register instead of user map_fd.
10659 	 * These pointers will be used later by verifier to validate map access.
10660 	 */
10661 	return 0;
10662 }
10663 
10664 /* drop refcnt of maps used by the rejected program */
10665 static void release_maps(struct bpf_verifier_env *env)
10666 {
10667 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10668 			     env->used_map_cnt);
10669 }
10670 
10671 /* drop refcnt of maps used by the rejected program */
10672 static void release_btfs(struct bpf_verifier_env *env)
10673 {
10674 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10675 			     env->used_btf_cnt);
10676 }
10677 
10678 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10679 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10680 {
10681 	struct bpf_insn *insn = env->prog->insnsi;
10682 	int insn_cnt = env->prog->len;
10683 	int i;
10684 
10685 	for (i = 0; i < insn_cnt; i++, insn++)
10686 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10687 			insn->src_reg = 0;
10688 }
10689 
10690 /* single env->prog->insni[off] instruction was replaced with the range
10691  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10692  * [0, off) and [off, end) to new locations, so the patched range stays zero
10693  */
10694 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10695 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10696 {
10697 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10698 	struct bpf_insn *insn = new_prog->insnsi;
10699 	u32 prog_len;
10700 	int i;
10701 
10702 	/* aux info at OFF always needs adjustment, no matter fast path
10703 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10704 	 * original insn at old prog.
10705 	 */
10706 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10707 
10708 	if (cnt == 1)
10709 		return 0;
10710 	prog_len = new_prog->len;
10711 	new_data = vzalloc(array_size(prog_len,
10712 				      sizeof(struct bpf_insn_aux_data)));
10713 	if (!new_data)
10714 		return -ENOMEM;
10715 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10716 	memcpy(new_data + off + cnt - 1, old_data + off,
10717 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10718 	for (i = off; i < off + cnt - 1; i++) {
10719 		new_data[i].seen = env->pass_cnt;
10720 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10721 	}
10722 	env->insn_aux_data = new_data;
10723 	vfree(old_data);
10724 	return 0;
10725 }
10726 
10727 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10728 {
10729 	int i;
10730 
10731 	if (len == 1)
10732 		return;
10733 	/* NOTE: fake 'exit' subprog should be updated as well. */
10734 	for (i = 0; i <= env->subprog_cnt; i++) {
10735 		if (env->subprog_info[i].start <= off)
10736 			continue;
10737 		env->subprog_info[i].start += len - 1;
10738 	}
10739 }
10740 
10741 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10742 {
10743 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10744 	int i, sz = prog->aux->size_poke_tab;
10745 	struct bpf_jit_poke_descriptor *desc;
10746 
10747 	for (i = 0; i < sz; i++) {
10748 		desc = &tab[i];
10749 		desc->insn_idx += len - 1;
10750 	}
10751 }
10752 
10753 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10754 					    const struct bpf_insn *patch, u32 len)
10755 {
10756 	struct bpf_prog *new_prog;
10757 
10758 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10759 	if (IS_ERR(new_prog)) {
10760 		if (PTR_ERR(new_prog) == -ERANGE)
10761 			verbose(env,
10762 				"insn %d cannot be patched due to 16-bit range\n",
10763 				env->insn_aux_data[off].orig_idx);
10764 		return NULL;
10765 	}
10766 	if (adjust_insn_aux_data(env, new_prog, off, len))
10767 		return NULL;
10768 	adjust_subprog_starts(env, off, len);
10769 	adjust_poke_descs(new_prog, len);
10770 	return new_prog;
10771 }
10772 
10773 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10774 					      u32 off, u32 cnt)
10775 {
10776 	int i, j;
10777 
10778 	/* find first prog starting at or after off (first to remove) */
10779 	for (i = 0; i < env->subprog_cnt; i++)
10780 		if (env->subprog_info[i].start >= off)
10781 			break;
10782 	/* find first prog starting at or after off + cnt (first to stay) */
10783 	for (j = i; j < env->subprog_cnt; j++)
10784 		if (env->subprog_info[j].start >= off + cnt)
10785 			break;
10786 	/* if j doesn't start exactly at off + cnt, we are just removing
10787 	 * the front of previous prog
10788 	 */
10789 	if (env->subprog_info[j].start != off + cnt)
10790 		j--;
10791 
10792 	if (j > i) {
10793 		struct bpf_prog_aux *aux = env->prog->aux;
10794 		int move;
10795 
10796 		/* move fake 'exit' subprog as well */
10797 		move = env->subprog_cnt + 1 - j;
10798 
10799 		memmove(env->subprog_info + i,
10800 			env->subprog_info + j,
10801 			sizeof(*env->subprog_info) * move);
10802 		env->subprog_cnt -= j - i;
10803 
10804 		/* remove func_info */
10805 		if (aux->func_info) {
10806 			move = aux->func_info_cnt - j;
10807 
10808 			memmove(aux->func_info + i,
10809 				aux->func_info + j,
10810 				sizeof(*aux->func_info) * move);
10811 			aux->func_info_cnt -= j - i;
10812 			/* func_info->insn_off is set after all code rewrites,
10813 			 * in adjust_btf_func() - no need to adjust
10814 			 */
10815 		}
10816 	} else {
10817 		/* convert i from "first prog to remove" to "first to adjust" */
10818 		if (env->subprog_info[i].start == off)
10819 			i++;
10820 	}
10821 
10822 	/* update fake 'exit' subprog as well */
10823 	for (; i <= env->subprog_cnt; i++)
10824 		env->subprog_info[i].start -= cnt;
10825 
10826 	return 0;
10827 }
10828 
10829 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10830 				      u32 cnt)
10831 {
10832 	struct bpf_prog *prog = env->prog;
10833 	u32 i, l_off, l_cnt, nr_linfo;
10834 	struct bpf_line_info *linfo;
10835 
10836 	nr_linfo = prog->aux->nr_linfo;
10837 	if (!nr_linfo)
10838 		return 0;
10839 
10840 	linfo = prog->aux->linfo;
10841 
10842 	/* find first line info to remove, count lines to be removed */
10843 	for (i = 0; i < nr_linfo; i++)
10844 		if (linfo[i].insn_off >= off)
10845 			break;
10846 
10847 	l_off = i;
10848 	l_cnt = 0;
10849 	for (; i < nr_linfo; i++)
10850 		if (linfo[i].insn_off < off + cnt)
10851 			l_cnt++;
10852 		else
10853 			break;
10854 
10855 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10856 	 * last removed linfo.  prog is already modified, so prog->len == off
10857 	 * means no live instructions after (tail of the program was removed).
10858 	 */
10859 	if (prog->len != off && l_cnt &&
10860 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10861 		l_cnt--;
10862 		linfo[--i].insn_off = off + cnt;
10863 	}
10864 
10865 	/* remove the line info which refer to the removed instructions */
10866 	if (l_cnt) {
10867 		memmove(linfo + l_off, linfo + i,
10868 			sizeof(*linfo) * (nr_linfo - i));
10869 
10870 		prog->aux->nr_linfo -= l_cnt;
10871 		nr_linfo = prog->aux->nr_linfo;
10872 	}
10873 
10874 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10875 	for (i = l_off; i < nr_linfo; i++)
10876 		linfo[i].insn_off -= cnt;
10877 
10878 	/* fix up all subprogs (incl. 'exit') which start >= off */
10879 	for (i = 0; i <= env->subprog_cnt; i++)
10880 		if (env->subprog_info[i].linfo_idx > l_off) {
10881 			/* program may have started in the removed region but
10882 			 * may not be fully removed
10883 			 */
10884 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10885 				env->subprog_info[i].linfo_idx -= l_cnt;
10886 			else
10887 				env->subprog_info[i].linfo_idx = l_off;
10888 		}
10889 
10890 	return 0;
10891 }
10892 
10893 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10894 {
10895 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10896 	unsigned int orig_prog_len = env->prog->len;
10897 	int err;
10898 
10899 	if (bpf_prog_is_dev_bound(env->prog->aux))
10900 		bpf_prog_offload_remove_insns(env, off, cnt);
10901 
10902 	err = bpf_remove_insns(env->prog, off, cnt);
10903 	if (err)
10904 		return err;
10905 
10906 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10907 	if (err)
10908 		return err;
10909 
10910 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10911 	if (err)
10912 		return err;
10913 
10914 	memmove(aux_data + off,	aux_data + off + cnt,
10915 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10916 
10917 	return 0;
10918 }
10919 
10920 /* The verifier does more data flow analysis than llvm and will not
10921  * explore branches that are dead at run time. Malicious programs can
10922  * have dead code too. Therefore replace all dead at-run-time code
10923  * with 'ja -1'.
10924  *
10925  * Just nops are not optimal, e.g. if they would sit at the end of the
10926  * program and through another bug we would manage to jump there, then
10927  * we'd execute beyond program memory otherwise. Returning exception
10928  * code also wouldn't work since we can have subprogs where the dead
10929  * code could be located.
10930  */
10931 static void sanitize_dead_code(struct bpf_verifier_env *env)
10932 {
10933 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10934 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10935 	struct bpf_insn *insn = env->prog->insnsi;
10936 	const int insn_cnt = env->prog->len;
10937 	int i;
10938 
10939 	for (i = 0; i < insn_cnt; i++) {
10940 		if (aux_data[i].seen)
10941 			continue;
10942 		memcpy(insn + i, &trap, sizeof(trap));
10943 	}
10944 }
10945 
10946 static bool insn_is_cond_jump(u8 code)
10947 {
10948 	u8 op;
10949 
10950 	if (BPF_CLASS(code) == BPF_JMP32)
10951 		return true;
10952 
10953 	if (BPF_CLASS(code) != BPF_JMP)
10954 		return false;
10955 
10956 	op = BPF_OP(code);
10957 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10958 }
10959 
10960 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10961 {
10962 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10963 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10964 	struct bpf_insn *insn = env->prog->insnsi;
10965 	const int insn_cnt = env->prog->len;
10966 	int i;
10967 
10968 	for (i = 0; i < insn_cnt; i++, insn++) {
10969 		if (!insn_is_cond_jump(insn->code))
10970 			continue;
10971 
10972 		if (!aux_data[i + 1].seen)
10973 			ja.off = insn->off;
10974 		else if (!aux_data[i + 1 + insn->off].seen)
10975 			ja.off = 0;
10976 		else
10977 			continue;
10978 
10979 		if (bpf_prog_is_dev_bound(env->prog->aux))
10980 			bpf_prog_offload_replace_insn(env, i, &ja);
10981 
10982 		memcpy(insn, &ja, sizeof(ja));
10983 	}
10984 }
10985 
10986 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10987 {
10988 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10989 	int insn_cnt = env->prog->len;
10990 	int i, err;
10991 
10992 	for (i = 0; i < insn_cnt; i++) {
10993 		int j;
10994 
10995 		j = 0;
10996 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10997 			j++;
10998 		if (!j)
10999 			continue;
11000 
11001 		err = verifier_remove_insns(env, i, j);
11002 		if (err)
11003 			return err;
11004 		insn_cnt = env->prog->len;
11005 	}
11006 
11007 	return 0;
11008 }
11009 
11010 static int opt_remove_nops(struct bpf_verifier_env *env)
11011 {
11012 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11013 	struct bpf_insn *insn = env->prog->insnsi;
11014 	int insn_cnt = env->prog->len;
11015 	int i, err;
11016 
11017 	for (i = 0; i < insn_cnt; i++) {
11018 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11019 			continue;
11020 
11021 		err = verifier_remove_insns(env, i, 1);
11022 		if (err)
11023 			return err;
11024 		insn_cnt--;
11025 		i--;
11026 	}
11027 
11028 	return 0;
11029 }
11030 
11031 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11032 					 const union bpf_attr *attr)
11033 {
11034 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11035 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11036 	int i, patch_len, delta = 0, len = env->prog->len;
11037 	struct bpf_insn *insns = env->prog->insnsi;
11038 	struct bpf_prog *new_prog;
11039 	bool rnd_hi32;
11040 
11041 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11042 	zext_patch[1] = BPF_ZEXT_REG(0);
11043 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11044 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11045 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11046 	for (i = 0; i < len; i++) {
11047 		int adj_idx = i + delta;
11048 		struct bpf_insn insn;
11049 		int load_reg;
11050 
11051 		insn = insns[adj_idx];
11052 		load_reg = insn_def_regno(&insn);
11053 		if (!aux[adj_idx].zext_dst) {
11054 			u8 code, class;
11055 			u32 imm_rnd;
11056 
11057 			if (!rnd_hi32)
11058 				continue;
11059 
11060 			code = insn.code;
11061 			class = BPF_CLASS(code);
11062 			if (load_reg == -1)
11063 				continue;
11064 
11065 			/* NOTE: arg "reg" (the fourth one) is only used for
11066 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11067 			 *       here.
11068 			 */
11069 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11070 				if (class == BPF_LD &&
11071 				    BPF_MODE(code) == BPF_IMM)
11072 					i++;
11073 				continue;
11074 			}
11075 
11076 			/* ctx load could be transformed into wider load. */
11077 			if (class == BPF_LDX &&
11078 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11079 				continue;
11080 
11081 			imm_rnd = get_random_int();
11082 			rnd_hi32_patch[0] = insn;
11083 			rnd_hi32_patch[1].imm = imm_rnd;
11084 			rnd_hi32_patch[3].dst_reg = load_reg;
11085 			patch = rnd_hi32_patch;
11086 			patch_len = 4;
11087 			goto apply_patch_buffer;
11088 		}
11089 
11090 		/* Add in an zero-extend instruction if a) the JIT has requested
11091 		 * it or b) it's a CMPXCHG.
11092 		 *
11093 		 * The latter is because: BPF_CMPXCHG always loads a value into
11094 		 * R0, therefore always zero-extends. However some archs'
11095 		 * equivalent instruction only does this load when the
11096 		 * comparison is successful. This detail of CMPXCHG is
11097 		 * orthogonal to the general zero-extension behaviour of the
11098 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11099 		 */
11100 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11101 			continue;
11102 
11103 		if (WARN_ON(load_reg == -1)) {
11104 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11105 			return -EFAULT;
11106 		}
11107 
11108 		zext_patch[0] = insn;
11109 		zext_patch[1].dst_reg = load_reg;
11110 		zext_patch[1].src_reg = load_reg;
11111 		patch = zext_patch;
11112 		patch_len = 2;
11113 apply_patch_buffer:
11114 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11115 		if (!new_prog)
11116 			return -ENOMEM;
11117 		env->prog = new_prog;
11118 		insns = new_prog->insnsi;
11119 		aux = env->insn_aux_data;
11120 		delta += patch_len - 1;
11121 	}
11122 
11123 	return 0;
11124 }
11125 
11126 /* convert load instructions that access fields of a context type into a
11127  * sequence of instructions that access fields of the underlying structure:
11128  *     struct __sk_buff    -> struct sk_buff
11129  *     struct bpf_sock_ops -> struct sock
11130  */
11131 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11132 {
11133 	const struct bpf_verifier_ops *ops = env->ops;
11134 	int i, cnt, size, ctx_field_size, delta = 0;
11135 	const int insn_cnt = env->prog->len;
11136 	struct bpf_insn insn_buf[16], *insn;
11137 	u32 target_size, size_default, off;
11138 	struct bpf_prog *new_prog;
11139 	enum bpf_access_type type;
11140 	bool is_narrower_load;
11141 
11142 	if (ops->gen_prologue || env->seen_direct_write) {
11143 		if (!ops->gen_prologue) {
11144 			verbose(env, "bpf verifier is misconfigured\n");
11145 			return -EINVAL;
11146 		}
11147 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11148 					env->prog);
11149 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11150 			verbose(env, "bpf verifier is misconfigured\n");
11151 			return -EINVAL;
11152 		} else if (cnt) {
11153 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11154 			if (!new_prog)
11155 				return -ENOMEM;
11156 
11157 			env->prog = new_prog;
11158 			delta += cnt - 1;
11159 		}
11160 	}
11161 
11162 	if (bpf_prog_is_dev_bound(env->prog->aux))
11163 		return 0;
11164 
11165 	insn = env->prog->insnsi + delta;
11166 
11167 	for (i = 0; i < insn_cnt; i++, insn++) {
11168 		bpf_convert_ctx_access_t convert_ctx_access;
11169 
11170 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11171 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11172 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11173 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11174 			type = BPF_READ;
11175 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11176 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11177 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11178 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11179 			type = BPF_WRITE;
11180 		else
11181 			continue;
11182 
11183 		if (type == BPF_WRITE &&
11184 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11185 			struct bpf_insn patch[] = {
11186 				/* Sanitize suspicious stack slot with zero.
11187 				 * There are no memory dependencies for this store,
11188 				 * since it's only using frame pointer and immediate
11189 				 * constant of zero
11190 				 */
11191 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11192 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11193 					   0),
11194 				/* the original STX instruction will immediately
11195 				 * overwrite the same stack slot with appropriate value
11196 				 */
11197 				*insn,
11198 			};
11199 
11200 			cnt = ARRAY_SIZE(patch);
11201 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11202 			if (!new_prog)
11203 				return -ENOMEM;
11204 
11205 			delta    += cnt - 1;
11206 			env->prog = new_prog;
11207 			insn      = new_prog->insnsi + i + delta;
11208 			continue;
11209 		}
11210 
11211 		switch (env->insn_aux_data[i + delta].ptr_type) {
11212 		case PTR_TO_CTX:
11213 			if (!ops->convert_ctx_access)
11214 				continue;
11215 			convert_ctx_access = ops->convert_ctx_access;
11216 			break;
11217 		case PTR_TO_SOCKET:
11218 		case PTR_TO_SOCK_COMMON:
11219 			convert_ctx_access = bpf_sock_convert_ctx_access;
11220 			break;
11221 		case PTR_TO_TCP_SOCK:
11222 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11223 			break;
11224 		case PTR_TO_XDP_SOCK:
11225 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11226 			break;
11227 		case PTR_TO_BTF_ID:
11228 			if (type == BPF_READ) {
11229 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11230 					BPF_SIZE((insn)->code);
11231 				env->prog->aux->num_exentries++;
11232 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11233 				verbose(env, "Writes through BTF pointers are not allowed\n");
11234 				return -EINVAL;
11235 			}
11236 			continue;
11237 		default:
11238 			continue;
11239 		}
11240 
11241 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11242 		size = BPF_LDST_BYTES(insn);
11243 
11244 		/* If the read access is a narrower load of the field,
11245 		 * convert to a 4/8-byte load, to minimum program type specific
11246 		 * convert_ctx_access changes. If conversion is successful,
11247 		 * we will apply proper mask to the result.
11248 		 */
11249 		is_narrower_load = size < ctx_field_size;
11250 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11251 		off = insn->off;
11252 		if (is_narrower_load) {
11253 			u8 size_code;
11254 
11255 			if (type == BPF_WRITE) {
11256 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11257 				return -EINVAL;
11258 			}
11259 
11260 			size_code = BPF_H;
11261 			if (ctx_field_size == 4)
11262 				size_code = BPF_W;
11263 			else if (ctx_field_size == 8)
11264 				size_code = BPF_DW;
11265 
11266 			insn->off = off & ~(size_default - 1);
11267 			insn->code = BPF_LDX | BPF_MEM | size_code;
11268 		}
11269 
11270 		target_size = 0;
11271 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11272 					 &target_size);
11273 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11274 		    (ctx_field_size && !target_size)) {
11275 			verbose(env, "bpf verifier is misconfigured\n");
11276 			return -EINVAL;
11277 		}
11278 
11279 		if (is_narrower_load && size < target_size) {
11280 			u8 shift = bpf_ctx_narrow_access_offset(
11281 				off, size, size_default) * 8;
11282 			if (ctx_field_size <= 4) {
11283 				if (shift)
11284 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11285 									insn->dst_reg,
11286 									shift);
11287 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11288 								(1 << size * 8) - 1);
11289 			} else {
11290 				if (shift)
11291 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11292 									insn->dst_reg,
11293 									shift);
11294 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11295 								(1ULL << size * 8) - 1);
11296 			}
11297 		}
11298 
11299 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11300 		if (!new_prog)
11301 			return -ENOMEM;
11302 
11303 		delta += cnt - 1;
11304 
11305 		/* keep walking new program and skip insns we just inserted */
11306 		env->prog = new_prog;
11307 		insn      = new_prog->insnsi + i + delta;
11308 	}
11309 
11310 	return 0;
11311 }
11312 
11313 static int jit_subprogs(struct bpf_verifier_env *env)
11314 {
11315 	struct bpf_prog *prog = env->prog, **func, *tmp;
11316 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11317 	struct bpf_map *map_ptr;
11318 	struct bpf_insn *insn;
11319 	void *old_bpf_func;
11320 	int err, num_exentries;
11321 
11322 	if (env->subprog_cnt <= 1)
11323 		return 0;
11324 
11325 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11326 		if (!bpf_pseudo_call(insn))
11327 			continue;
11328 		/* Upon error here we cannot fall back to interpreter but
11329 		 * need a hard reject of the program. Thus -EFAULT is
11330 		 * propagated in any case.
11331 		 */
11332 		subprog = find_subprog(env, i + insn->imm + 1);
11333 		if (subprog < 0) {
11334 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11335 				  i + insn->imm + 1);
11336 			return -EFAULT;
11337 		}
11338 		/* temporarily remember subprog id inside insn instead of
11339 		 * aux_data, since next loop will split up all insns into funcs
11340 		 */
11341 		insn->off = subprog;
11342 		/* remember original imm in case JIT fails and fallback
11343 		 * to interpreter will be needed
11344 		 */
11345 		env->insn_aux_data[i].call_imm = insn->imm;
11346 		/* point imm to __bpf_call_base+1 from JITs point of view */
11347 		insn->imm = 1;
11348 	}
11349 
11350 	err = bpf_prog_alloc_jited_linfo(prog);
11351 	if (err)
11352 		goto out_undo_insn;
11353 
11354 	err = -ENOMEM;
11355 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11356 	if (!func)
11357 		goto out_undo_insn;
11358 
11359 	for (i = 0; i < env->subprog_cnt; i++) {
11360 		subprog_start = subprog_end;
11361 		subprog_end = env->subprog_info[i + 1].start;
11362 
11363 		len = subprog_end - subprog_start;
11364 		/* BPF_PROG_RUN doesn't call subprogs directly,
11365 		 * hence main prog stats include the runtime of subprogs.
11366 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11367 		 * func[i]->stats will never be accessed and stays NULL
11368 		 */
11369 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11370 		if (!func[i])
11371 			goto out_free;
11372 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11373 		       len * sizeof(struct bpf_insn));
11374 		func[i]->type = prog->type;
11375 		func[i]->len = len;
11376 		if (bpf_prog_calc_tag(func[i]))
11377 			goto out_free;
11378 		func[i]->is_func = 1;
11379 		func[i]->aux->func_idx = i;
11380 		/* the btf and func_info will be freed only at prog->aux */
11381 		func[i]->aux->btf = prog->aux->btf;
11382 		func[i]->aux->func_info = prog->aux->func_info;
11383 
11384 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11385 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11386 			int ret;
11387 
11388 			if (!(insn_idx >= subprog_start &&
11389 			      insn_idx <= subprog_end))
11390 				continue;
11391 
11392 			ret = bpf_jit_add_poke_descriptor(func[i],
11393 							  &prog->aux->poke_tab[j]);
11394 			if (ret < 0) {
11395 				verbose(env, "adding tail call poke descriptor failed\n");
11396 				goto out_free;
11397 			}
11398 
11399 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11400 
11401 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11402 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11403 			if (ret < 0) {
11404 				verbose(env, "tracking tail call prog failed\n");
11405 				goto out_free;
11406 			}
11407 		}
11408 
11409 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
11410 		 * Long term would need debug info to populate names
11411 		 */
11412 		func[i]->aux->name[0] = 'F';
11413 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11414 		func[i]->jit_requested = 1;
11415 		func[i]->aux->linfo = prog->aux->linfo;
11416 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11417 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11418 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11419 		num_exentries = 0;
11420 		insn = func[i]->insnsi;
11421 		for (j = 0; j < func[i]->len; j++, insn++) {
11422 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11423 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11424 				num_exentries++;
11425 		}
11426 		func[i]->aux->num_exentries = num_exentries;
11427 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11428 		func[i] = bpf_int_jit_compile(func[i]);
11429 		if (!func[i]->jited) {
11430 			err = -ENOTSUPP;
11431 			goto out_free;
11432 		}
11433 		cond_resched();
11434 	}
11435 
11436 	/* Untrack main program's aux structs so that during map_poke_run()
11437 	 * we will not stumble upon the unfilled poke descriptors; each
11438 	 * of the main program's poke descs got distributed across subprogs
11439 	 * and got tracked onto map, so we are sure that none of them will
11440 	 * be missed after the operation below
11441 	 */
11442 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11443 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11444 
11445 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11446 	}
11447 
11448 	/* at this point all bpf functions were successfully JITed
11449 	 * now populate all bpf_calls with correct addresses and
11450 	 * run last pass of JIT
11451 	 */
11452 	for (i = 0; i < env->subprog_cnt; i++) {
11453 		insn = func[i]->insnsi;
11454 		for (j = 0; j < func[i]->len; j++, insn++) {
11455 			if (!bpf_pseudo_call(insn))
11456 				continue;
11457 			subprog = insn->off;
11458 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11459 				    __bpf_call_base;
11460 		}
11461 
11462 		/* we use the aux data to keep a list of the start addresses
11463 		 * of the JITed images for each function in the program
11464 		 *
11465 		 * for some architectures, such as powerpc64, the imm field
11466 		 * might not be large enough to hold the offset of the start
11467 		 * address of the callee's JITed image from __bpf_call_base
11468 		 *
11469 		 * in such cases, we can lookup the start address of a callee
11470 		 * by using its subprog id, available from the off field of
11471 		 * the call instruction, as an index for this list
11472 		 */
11473 		func[i]->aux->func = func;
11474 		func[i]->aux->func_cnt = env->subprog_cnt;
11475 	}
11476 	for (i = 0; i < env->subprog_cnt; i++) {
11477 		old_bpf_func = func[i]->bpf_func;
11478 		tmp = bpf_int_jit_compile(func[i]);
11479 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11480 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11481 			err = -ENOTSUPP;
11482 			goto out_free;
11483 		}
11484 		cond_resched();
11485 	}
11486 
11487 	/* finally lock prog and jit images for all functions and
11488 	 * populate kallsysm
11489 	 */
11490 	for (i = 0; i < env->subprog_cnt; i++) {
11491 		bpf_prog_lock_ro(func[i]);
11492 		bpf_prog_kallsyms_add(func[i]);
11493 	}
11494 
11495 	/* Last step: make now unused interpreter insns from main
11496 	 * prog consistent for later dump requests, so they can
11497 	 * later look the same as if they were interpreted only.
11498 	 */
11499 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11500 		if (!bpf_pseudo_call(insn))
11501 			continue;
11502 		insn->off = env->insn_aux_data[i].call_imm;
11503 		subprog = find_subprog(env, i + insn->off + 1);
11504 		insn->imm = subprog;
11505 	}
11506 
11507 	prog->jited = 1;
11508 	prog->bpf_func = func[0]->bpf_func;
11509 	prog->aux->func = func;
11510 	prog->aux->func_cnt = env->subprog_cnt;
11511 	bpf_prog_free_unused_jited_linfo(prog);
11512 	return 0;
11513 out_free:
11514 	for (i = 0; i < env->subprog_cnt; i++) {
11515 		if (!func[i])
11516 			continue;
11517 
11518 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11519 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11520 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11521 		}
11522 		bpf_jit_free(func[i]);
11523 	}
11524 	kfree(func);
11525 out_undo_insn:
11526 	/* cleanup main prog to be interpreted */
11527 	prog->jit_requested = 0;
11528 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11529 		if (!bpf_pseudo_call(insn))
11530 			continue;
11531 		insn->off = 0;
11532 		insn->imm = env->insn_aux_data[i].call_imm;
11533 	}
11534 	bpf_prog_free_jited_linfo(prog);
11535 	return err;
11536 }
11537 
11538 static int fixup_call_args(struct bpf_verifier_env *env)
11539 {
11540 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11541 	struct bpf_prog *prog = env->prog;
11542 	struct bpf_insn *insn = prog->insnsi;
11543 	int i, depth;
11544 #endif
11545 	int err = 0;
11546 
11547 	if (env->prog->jit_requested &&
11548 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11549 		err = jit_subprogs(env);
11550 		if (err == 0)
11551 			return 0;
11552 		if (err == -EFAULT)
11553 			return err;
11554 	}
11555 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11556 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11557 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11558 		 * have to be rejected, since interpreter doesn't support them yet.
11559 		 */
11560 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11561 		return -EINVAL;
11562 	}
11563 	for (i = 0; i < prog->len; i++, insn++) {
11564 		if (!bpf_pseudo_call(insn))
11565 			continue;
11566 		depth = get_callee_stack_depth(env, insn, i);
11567 		if (depth < 0)
11568 			return depth;
11569 		bpf_patch_call_args(insn, depth);
11570 	}
11571 	err = 0;
11572 #endif
11573 	return err;
11574 }
11575 
11576 /* fixup insn->imm field of bpf_call instructions
11577  * and inline eligible helpers as explicit sequence of BPF instructions
11578  *
11579  * this function is called after eBPF program passed verification
11580  */
11581 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11582 {
11583 	struct bpf_prog *prog = env->prog;
11584 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11585 	struct bpf_insn *insn = prog->insnsi;
11586 	const struct bpf_func_proto *fn;
11587 	const int insn_cnt = prog->len;
11588 	const struct bpf_map_ops *ops;
11589 	struct bpf_insn_aux_data *aux;
11590 	struct bpf_insn insn_buf[16];
11591 	struct bpf_prog *new_prog;
11592 	struct bpf_map *map_ptr;
11593 	int i, ret, cnt, delta = 0;
11594 
11595 	for (i = 0; i < insn_cnt; i++, insn++) {
11596 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11597 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11598 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11599 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11600 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11601 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11602 			struct bpf_insn *patchlet;
11603 			struct bpf_insn chk_and_div[] = {
11604 				/* [R,W]x div 0 -> 0 */
11605 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11606 					     BPF_JNE | BPF_K, insn->src_reg,
11607 					     0, 2, 0),
11608 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11609 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11610 				*insn,
11611 			};
11612 			struct bpf_insn chk_and_mod[] = {
11613 				/* [R,W]x mod 0 -> [R,W]x */
11614 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11615 					     BPF_JEQ | BPF_K, insn->src_reg,
11616 					     0, 1 + (is64 ? 0 : 1), 0),
11617 				*insn,
11618 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11619 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11620 			};
11621 
11622 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11623 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11624 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11625 
11626 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11627 			if (!new_prog)
11628 				return -ENOMEM;
11629 
11630 			delta    += cnt - 1;
11631 			env->prog = prog = new_prog;
11632 			insn      = new_prog->insnsi + i + delta;
11633 			continue;
11634 		}
11635 
11636 		if (BPF_CLASS(insn->code) == BPF_LD &&
11637 		    (BPF_MODE(insn->code) == BPF_ABS ||
11638 		     BPF_MODE(insn->code) == BPF_IND)) {
11639 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11640 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11641 				verbose(env, "bpf verifier is misconfigured\n");
11642 				return -EINVAL;
11643 			}
11644 
11645 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11646 			if (!new_prog)
11647 				return -ENOMEM;
11648 
11649 			delta    += cnt - 1;
11650 			env->prog = prog = new_prog;
11651 			insn      = new_prog->insnsi + i + delta;
11652 			continue;
11653 		}
11654 
11655 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11656 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11657 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11658 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11659 			struct bpf_insn insn_buf[16];
11660 			struct bpf_insn *patch = &insn_buf[0];
11661 			bool issrc, isneg;
11662 			u32 off_reg;
11663 
11664 			aux = &env->insn_aux_data[i + delta];
11665 			if (!aux->alu_state ||
11666 			    aux->alu_state == BPF_ALU_NON_POINTER)
11667 				continue;
11668 
11669 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11670 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11671 				BPF_ALU_SANITIZE_SRC;
11672 
11673 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11674 			if (isneg)
11675 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11676 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11677 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11678 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11679 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11680 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11681 			if (issrc) {
11682 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11683 							 off_reg);
11684 				insn->src_reg = BPF_REG_AX;
11685 			} else {
11686 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11687 							 BPF_REG_AX);
11688 			}
11689 			if (isneg)
11690 				insn->code = insn->code == code_add ?
11691 					     code_sub : code_add;
11692 			*patch++ = *insn;
11693 			if (issrc && isneg)
11694 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11695 			cnt = patch - insn_buf;
11696 
11697 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11698 			if (!new_prog)
11699 				return -ENOMEM;
11700 
11701 			delta    += cnt - 1;
11702 			env->prog = prog = new_prog;
11703 			insn      = new_prog->insnsi + i + delta;
11704 			continue;
11705 		}
11706 
11707 		if (insn->code != (BPF_JMP | BPF_CALL))
11708 			continue;
11709 		if (insn->src_reg == BPF_PSEUDO_CALL)
11710 			continue;
11711 
11712 		if (insn->imm == BPF_FUNC_get_route_realm)
11713 			prog->dst_needed = 1;
11714 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11715 			bpf_user_rnd_init_once();
11716 		if (insn->imm == BPF_FUNC_override_return)
11717 			prog->kprobe_override = 1;
11718 		if (insn->imm == BPF_FUNC_tail_call) {
11719 			/* If we tail call into other programs, we
11720 			 * cannot make any assumptions since they can
11721 			 * be replaced dynamically during runtime in
11722 			 * the program array.
11723 			 */
11724 			prog->cb_access = 1;
11725 			if (!allow_tail_call_in_subprogs(env))
11726 				prog->aux->stack_depth = MAX_BPF_STACK;
11727 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11728 
11729 			/* mark bpf_tail_call as different opcode to avoid
11730 			 * conditional branch in the interpeter for every normal
11731 			 * call and to prevent accidental JITing by JIT compiler
11732 			 * that doesn't support bpf_tail_call yet
11733 			 */
11734 			insn->imm = 0;
11735 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11736 
11737 			aux = &env->insn_aux_data[i + delta];
11738 			if (env->bpf_capable && !expect_blinding &&
11739 			    prog->jit_requested &&
11740 			    !bpf_map_key_poisoned(aux) &&
11741 			    !bpf_map_ptr_poisoned(aux) &&
11742 			    !bpf_map_ptr_unpriv(aux)) {
11743 				struct bpf_jit_poke_descriptor desc = {
11744 					.reason = BPF_POKE_REASON_TAIL_CALL,
11745 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11746 					.tail_call.key = bpf_map_key_immediate(aux),
11747 					.insn_idx = i + delta,
11748 				};
11749 
11750 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11751 				if (ret < 0) {
11752 					verbose(env, "adding tail call poke descriptor failed\n");
11753 					return ret;
11754 				}
11755 
11756 				insn->imm = ret + 1;
11757 				continue;
11758 			}
11759 
11760 			if (!bpf_map_ptr_unpriv(aux))
11761 				continue;
11762 
11763 			/* instead of changing every JIT dealing with tail_call
11764 			 * emit two extra insns:
11765 			 * if (index >= max_entries) goto out;
11766 			 * index &= array->index_mask;
11767 			 * to avoid out-of-bounds cpu speculation
11768 			 */
11769 			if (bpf_map_ptr_poisoned(aux)) {
11770 				verbose(env, "tail_call abusing map_ptr\n");
11771 				return -EINVAL;
11772 			}
11773 
11774 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11775 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11776 						  map_ptr->max_entries, 2);
11777 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11778 						    container_of(map_ptr,
11779 								 struct bpf_array,
11780 								 map)->index_mask);
11781 			insn_buf[2] = *insn;
11782 			cnt = 3;
11783 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11784 			if (!new_prog)
11785 				return -ENOMEM;
11786 
11787 			delta    += cnt - 1;
11788 			env->prog = prog = new_prog;
11789 			insn      = new_prog->insnsi + i + delta;
11790 			continue;
11791 		}
11792 
11793 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11794 		 * and other inlining handlers are currently limited to 64 bit
11795 		 * only.
11796 		 */
11797 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11798 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11799 		     insn->imm == BPF_FUNC_map_update_elem ||
11800 		     insn->imm == BPF_FUNC_map_delete_elem ||
11801 		     insn->imm == BPF_FUNC_map_push_elem   ||
11802 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11803 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11804 			aux = &env->insn_aux_data[i + delta];
11805 			if (bpf_map_ptr_poisoned(aux))
11806 				goto patch_call_imm;
11807 
11808 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11809 			ops = map_ptr->ops;
11810 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11811 			    ops->map_gen_lookup) {
11812 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11813 				if (cnt == -EOPNOTSUPP)
11814 					goto patch_map_ops_generic;
11815 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11816 					verbose(env, "bpf verifier is misconfigured\n");
11817 					return -EINVAL;
11818 				}
11819 
11820 				new_prog = bpf_patch_insn_data(env, i + delta,
11821 							       insn_buf, cnt);
11822 				if (!new_prog)
11823 					return -ENOMEM;
11824 
11825 				delta    += cnt - 1;
11826 				env->prog = prog = new_prog;
11827 				insn      = new_prog->insnsi + i + delta;
11828 				continue;
11829 			}
11830 
11831 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11832 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11833 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11834 				     (int (*)(struct bpf_map *map, void *key))NULL));
11835 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11836 				     (int (*)(struct bpf_map *map, void *key, void *value,
11837 					      u64 flags))NULL));
11838 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11839 				     (int (*)(struct bpf_map *map, void *value,
11840 					      u64 flags))NULL));
11841 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11842 				     (int (*)(struct bpf_map *map, void *value))NULL));
11843 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11844 				     (int (*)(struct bpf_map *map, void *value))NULL));
11845 patch_map_ops_generic:
11846 			switch (insn->imm) {
11847 			case BPF_FUNC_map_lookup_elem:
11848 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11849 					    __bpf_call_base;
11850 				continue;
11851 			case BPF_FUNC_map_update_elem:
11852 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11853 					    __bpf_call_base;
11854 				continue;
11855 			case BPF_FUNC_map_delete_elem:
11856 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11857 					    __bpf_call_base;
11858 				continue;
11859 			case BPF_FUNC_map_push_elem:
11860 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11861 					    __bpf_call_base;
11862 				continue;
11863 			case BPF_FUNC_map_pop_elem:
11864 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11865 					    __bpf_call_base;
11866 				continue;
11867 			case BPF_FUNC_map_peek_elem:
11868 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11869 					    __bpf_call_base;
11870 				continue;
11871 			}
11872 
11873 			goto patch_call_imm;
11874 		}
11875 
11876 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11877 		    insn->imm == BPF_FUNC_jiffies64) {
11878 			struct bpf_insn ld_jiffies_addr[2] = {
11879 				BPF_LD_IMM64(BPF_REG_0,
11880 					     (unsigned long)&jiffies),
11881 			};
11882 
11883 			insn_buf[0] = ld_jiffies_addr[0];
11884 			insn_buf[1] = ld_jiffies_addr[1];
11885 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11886 						  BPF_REG_0, 0);
11887 			cnt = 3;
11888 
11889 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11890 						       cnt);
11891 			if (!new_prog)
11892 				return -ENOMEM;
11893 
11894 			delta    += cnt - 1;
11895 			env->prog = prog = new_prog;
11896 			insn      = new_prog->insnsi + i + delta;
11897 			continue;
11898 		}
11899 
11900 patch_call_imm:
11901 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11902 		/* all functions that have prototype and verifier allowed
11903 		 * programs to call them, must be real in-kernel functions
11904 		 */
11905 		if (!fn->func) {
11906 			verbose(env,
11907 				"kernel subsystem misconfigured func %s#%d\n",
11908 				func_id_name(insn->imm), insn->imm);
11909 			return -EFAULT;
11910 		}
11911 		insn->imm = fn->func - __bpf_call_base;
11912 	}
11913 
11914 	/* Since poke tab is now finalized, publish aux to tracker. */
11915 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11916 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11917 		if (!map_ptr->ops->map_poke_track ||
11918 		    !map_ptr->ops->map_poke_untrack ||
11919 		    !map_ptr->ops->map_poke_run) {
11920 			verbose(env, "bpf verifier is misconfigured\n");
11921 			return -EINVAL;
11922 		}
11923 
11924 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11925 		if (ret < 0) {
11926 			verbose(env, "tracking tail call prog failed\n");
11927 			return ret;
11928 		}
11929 	}
11930 
11931 	return 0;
11932 }
11933 
11934 static void free_states(struct bpf_verifier_env *env)
11935 {
11936 	struct bpf_verifier_state_list *sl, *sln;
11937 	int i;
11938 
11939 	sl = env->free_list;
11940 	while (sl) {
11941 		sln = sl->next;
11942 		free_verifier_state(&sl->state, false);
11943 		kfree(sl);
11944 		sl = sln;
11945 	}
11946 	env->free_list = NULL;
11947 
11948 	if (!env->explored_states)
11949 		return;
11950 
11951 	for (i = 0; i < state_htab_size(env); i++) {
11952 		sl = env->explored_states[i];
11953 
11954 		while (sl) {
11955 			sln = sl->next;
11956 			free_verifier_state(&sl->state, false);
11957 			kfree(sl);
11958 			sl = sln;
11959 		}
11960 		env->explored_states[i] = NULL;
11961 	}
11962 }
11963 
11964 /* The verifier is using insn_aux_data[] to store temporary data during
11965  * verification and to store information for passes that run after the
11966  * verification like dead code sanitization. do_check_common() for subprogram N
11967  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11968  * temporary data after do_check_common() finds that subprogram N cannot be
11969  * verified independently. pass_cnt counts the number of times
11970  * do_check_common() was run and insn->aux->seen tells the pass number
11971  * insn_aux_data was touched. These variables are compared to clear temporary
11972  * data from failed pass. For testing and experiments do_check_common() can be
11973  * run multiple times even when prior attempt to verify is unsuccessful.
11974  */
11975 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11976 {
11977 	struct bpf_insn *insn = env->prog->insnsi;
11978 	struct bpf_insn_aux_data *aux;
11979 	int i, class;
11980 
11981 	for (i = 0; i < env->prog->len; i++) {
11982 		class = BPF_CLASS(insn[i].code);
11983 		if (class != BPF_LDX && class != BPF_STX)
11984 			continue;
11985 		aux = &env->insn_aux_data[i];
11986 		if (aux->seen != env->pass_cnt)
11987 			continue;
11988 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11989 	}
11990 }
11991 
11992 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11993 {
11994 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11995 	struct bpf_verifier_state *state;
11996 	struct bpf_reg_state *regs;
11997 	int ret, i;
11998 
11999 	env->prev_linfo = NULL;
12000 	env->pass_cnt++;
12001 
12002 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12003 	if (!state)
12004 		return -ENOMEM;
12005 	state->curframe = 0;
12006 	state->speculative = false;
12007 	state->branches = 1;
12008 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12009 	if (!state->frame[0]) {
12010 		kfree(state);
12011 		return -ENOMEM;
12012 	}
12013 	env->cur_state = state;
12014 	init_func_state(env, state->frame[0],
12015 			BPF_MAIN_FUNC /* callsite */,
12016 			0 /* frameno */,
12017 			subprog);
12018 
12019 	regs = state->frame[state->curframe]->regs;
12020 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12021 		ret = btf_prepare_func_args(env, subprog, regs);
12022 		if (ret)
12023 			goto out;
12024 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12025 			if (regs[i].type == PTR_TO_CTX)
12026 				mark_reg_known_zero(env, regs, i);
12027 			else if (regs[i].type == SCALAR_VALUE)
12028 				mark_reg_unknown(env, regs, i);
12029 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12030 				const u32 mem_size = regs[i].mem_size;
12031 
12032 				mark_reg_known_zero(env, regs, i);
12033 				regs[i].mem_size = mem_size;
12034 				regs[i].id = ++env->id_gen;
12035 			}
12036 		}
12037 	} else {
12038 		/* 1st arg to a function */
12039 		regs[BPF_REG_1].type = PTR_TO_CTX;
12040 		mark_reg_known_zero(env, regs, BPF_REG_1);
12041 		ret = btf_check_func_arg_match(env, subprog, regs);
12042 		if (ret == -EFAULT)
12043 			/* unlikely verifier bug. abort.
12044 			 * ret == 0 and ret < 0 are sadly acceptable for
12045 			 * main() function due to backward compatibility.
12046 			 * Like socket filter program may be written as:
12047 			 * int bpf_prog(struct pt_regs *ctx)
12048 			 * and never dereference that ctx in the program.
12049 			 * 'struct pt_regs' is a type mismatch for socket
12050 			 * filter that should be using 'struct __sk_buff'.
12051 			 */
12052 			goto out;
12053 	}
12054 
12055 	ret = do_check(env);
12056 out:
12057 	/* check for NULL is necessary, since cur_state can be freed inside
12058 	 * do_check() under memory pressure.
12059 	 */
12060 	if (env->cur_state) {
12061 		free_verifier_state(env->cur_state, true);
12062 		env->cur_state = NULL;
12063 	}
12064 	while (!pop_stack(env, NULL, NULL, false));
12065 	if (!ret && pop_log)
12066 		bpf_vlog_reset(&env->log, 0);
12067 	free_states(env);
12068 	if (ret)
12069 		/* clean aux data in case subprog was rejected */
12070 		sanitize_insn_aux_data(env);
12071 	return ret;
12072 }
12073 
12074 /* Verify all global functions in a BPF program one by one based on their BTF.
12075  * All global functions must pass verification. Otherwise the whole program is rejected.
12076  * Consider:
12077  * int bar(int);
12078  * int foo(int f)
12079  * {
12080  *    return bar(f);
12081  * }
12082  * int bar(int b)
12083  * {
12084  *    ...
12085  * }
12086  * foo() will be verified first for R1=any_scalar_value. During verification it
12087  * will be assumed that bar() already verified successfully and call to bar()
12088  * from foo() will be checked for type match only. Later bar() will be verified
12089  * independently to check that it's safe for R1=any_scalar_value.
12090  */
12091 static int do_check_subprogs(struct bpf_verifier_env *env)
12092 {
12093 	struct bpf_prog_aux *aux = env->prog->aux;
12094 	int i, ret;
12095 
12096 	if (!aux->func_info)
12097 		return 0;
12098 
12099 	for (i = 1; i < env->subprog_cnt; i++) {
12100 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12101 			continue;
12102 		env->insn_idx = env->subprog_info[i].start;
12103 		WARN_ON_ONCE(env->insn_idx == 0);
12104 		ret = do_check_common(env, i);
12105 		if (ret) {
12106 			return ret;
12107 		} else if (env->log.level & BPF_LOG_LEVEL) {
12108 			verbose(env,
12109 				"Func#%d is safe for any args that match its prototype\n",
12110 				i);
12111 		}
12112 	}
12113 	return 0;
12114 }
12115 
12116 static int do_check_main(struct bpf_verifier_env *env)
12117 {
12118 	int ret;
12119 
12120 	env->insn_idx = 0;
12121 	ret = do_check_common(env, 0);
12122 	if (!ret)
12123 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12124 	return ret;
12125 }
12126 
12127 
12128 static void print_verification_stats(struct bpf_verifier_env *env)
12129 {
12130 	int i;
12131 
12132 	if (env->log.level & BPF_LOG_STATS) {
12133 		verbose(env, "verification time %lld usec\n",
12134 			div_u64(env->verification_time, 1000));
12135 		verbose(env, "stack depth ");
12136 		for (i = 0; i < env->subprog_cnt; i++) {
12137 			u32 depth = env->subprog_info[i].stack_depth;
12138 
12139 			verbose(env, "%d", depth);
12140 			if (i + 1 < env->subprog_cnt)
12141 				verbose(env, "+");
12142 		}
12143 		verbose(env, "\n");
12144 	}
12145 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12146 		"total_states %d peak_states %d mark_read %d\n",
12147 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12148 		env->max_states_per_insn, env->total_states,
12149 		env->peak_states, env->longest_mark_read_walk);
12150 }
12151 
12152 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12153 {
12154 	const struct btf_type *t, *func_proto;
12155 	const struct bpf_struct_ops *st_ops;
12156 	const struct btf_member *member;
12157 	struct bpf_prog *prog = env->prog;
12158 	u32 btf_id, member_idx;
12159 	const char *mname;
12160 
12161 	btf_id = prog->aux->attach_btf_id;
12162 	st_ops = bpf_struct_ops_find(btf_id);
12163 	if (!st_ops) {
12164 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12165 			btf_id);
12166 		return -ENOTSUPP;
12167 	}
12168 
12169 	t = st_ops->type;
12170 	member_idx = prog->expected_attach_type;
12171 	if (member_idx >= btf_type_vlen(t)) {
12172 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12173 			member_idx, st_ops->name);
12174 		return -EINVAL;
12175 	}
12176 
12177 	member = &btf_type_member(t)[member_idx];
12178 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12179 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12180 					       NULL);
12181 	if (!func_proto) {
12182 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12183 			mname, member_idx, st_ops->name);
12184 		return -EINVAL;
12185 	}
12186 
12187 	if (st_ops->check_member) {
12188 		int err = st_ops->check_member(t, member);
12189 
12190 		if (err) {
12191 			verbose(env, "attach to unsupported member %s of struct %s\n",
12192 				mname, st_ops->name);
12193 			return err;
12194 		}
12195 	}
12196 
12197 	prog->aux->attach_func_proto = func_proto;
12198 	prog->aux->attach_func_name = mname;
12199 	env->ops = st_ops->verifier_ops;
12200 
12201 	return 0;
12202 }
12203 #define SECURITY_PREFIX "security_"
12204 
12205 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12206 {
12207 	if (within_error_injection_list(addr) ||
12208 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12209 		return 0;
12210 
12211 	return -EINVAL;
12212 }
12213 
12214 /* list of non-sleepable functions that are otherwise on
12215  * ALLOW_ERROR_INJECTION list
12216  */
12217 BTF_SET_START(btf_non_sleepable_error_inject)
12218 /* Three functions below can be called from sleepable and non-sleepable context.
12219  * Assume non-sleepable from bpf safety point of view.
12220  */
12221 BTF_ID(func, __add_to_page_cache_locked)
12222 BTF_ID(func, should_fail_alloc_page)
12223 BTF_ID(func, should_failslab)
12224 BTF_SET_END(btf_non_sleepable_error_inject)
12225 
12226 static int check_non_sleepable_error_inject(u32 btf_id)
12227 {
12228 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12229 }
12230 
12231 int bpf_check_attach_target(struct bpf_verifier_log *log,
12232 			    const struct bpf_prog *prog,
12233 			    const struct bpf_prog *tgt_prog,
12234 			    u32 btf_id,
12235 			    struct bpf_attach_target_info *tgt_info)
12236 {
12237 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12238 	const char prefix[] = "btf_trace_";
12239 	int ret = 0, subprog = -1, i;
12240 	const struct btf_type *t;
12241 	bool conservative = true;
12242 	const char *tname;
12243 	struct btf *btf;
12244 	long addr = 0;
12245 
12246 	if (!btf_id) {
12247 		bpf_log(log, "Tracing programs must provide btf_id\n");
12248 		return -EINVAL;
12249 	}
12250 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12251 	if (!btf) {
12252 		bpf_log(log,
12253 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12254 		return -EINVAL;
12255 	}
12256 	t = btf_type_by_id(btf, btf_id);
12257 	if (!t) {
12258 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12259 		return -EINVAL;
12260 	}
12261 	tname = btf_name_by_offset(btf, t->name_off);
12262 	if (!tname) {
12263 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12264 		return -EINVAL;
12265 	}
12266 	if (tgt_prog) {
12267 		struct bpf_prog_aux *aux = tgt_prog->aux;
12268 
12269 		for (i = 0; i < aux->func_info_cnt; i++)
12270 			if (aux->func_info[i].type_id == btf_id) {
12271 				subprog = i;
12272 				break;
12273 			}
12274 		if (subprog == -1) {
12275 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12276 			return -EINVAL;
12277 		}
12278 		conservative = aux->func_info_aux[subprog].unreliable;
12279 		if (prog_extension) {
12280 			if (conservative) {
12281 				bpf_log(log,
12282 					"Cannot replace static functions\n");
12283 				return -EINVAL;
12284 			}
12285 			if (!prog->jit_requested) {
12286 				bpf_log(log,
12287 					"Extension programs should be JITed\n");
12288 				return -EINVAL;
12289 			}
12290 		}
12291 		if (!tgt_prog->jited) {
12292 			bpf_log(log, "Can attach to only JITed progs\n");
12293 			return -EINVAL;
12294 		}
12295 		if (tgt_prog->type == prog->type) {
12296 			/* Cannot fentry/fexit another fentry/fexit program.
12297 			 * Cannot attach program extension to another extension.
12298 			 * It's ok to attach fentry/fexit to extension program.
12299 			 */
12300 			bpf_log(log, "Cannot recursively attach\n");
12301 			return -EINVAL;
12302 		}
12303 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12304 		    prog_extension &&
12305 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12306 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12307 			/* Program extensions can extend all program types
12308 			 * except fentry/fexit. The reason is the following.
12309 			 * The fentry/fexit programs are used for performance
12310 			 * analysis, stats and can be attached to any program
12311 			 * type except themselves. When extension program is
12312 			 * replacing XDP function it is necessary to allow
12313 			 * performance analysis of all functions. Both original
12314 			 * XDP program and its program extension. Hence
12315 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12316 			 * allowed. If extending of fentry/fexit was allowed it
12317 			 * would be possible to create long call chain
12318 			 * fentry->extension->fentry->extension beyond
12319 			 * reasonable stack size. Hence extending fentry is not
12320 			 * allowed.
12321 			 */
12322 			bpf_log(log, "Cannot extend fentry/fexit\n");
12323 			return -EINVAL;
12324 		}
12325 	} else {
12326 		if (prog_extension) {
12327 			bpf_log(log, "Cannot replace kernel functions\n");
12328 			return -EINVAL;
12329 		}
12330 	}
12331 
12332 	switch (prog->expected_attach_type) {
12333 	case BPF_TRACE_RAW_TP:
12334 		if (tgt_prog) {
12335 			bpf_log(log,
12336 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12337 			return -EINVAL;
12338 		}
12339 		if (!btf_type_is_typedef(t)) {
12340 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12341 				btf_id);
12342 			return -EINVAL;
12343 		}
12344 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12345 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12346 				btf_id, tname);
12347 			return -EINVAL;
12348 		}
12349 		tname += sizeof(prefix) - 1;
12350 		t = btf_type_by_id(btf, t->type);
12351 		if (!btf_type_is_ptr(t))
12352 			/* should never happen in valid vmlinux build */
12353 			return -EINVAL;
12354 		t = btf_type_by_id(btf, t->type);
12355 		if (!btf_type_is_func_proto(t))
12356 			/* should never happen in valid vmlinux build */
12357 			return -EINVAL;
12358 
12359 		break;
12360 	case BPF_TRACE_ITER:
12361 		if (!btf_type_is_func(t)) {
12362 			bpf_log(log, "attach_btf_id %u is not a function\n",
12363 				btf_id);
12364 			return -EINVAL;
12365 		}
12366 		t = btf_type_by_id(btf, t->type);
12367 		if (!btf_type_is_func_proto(t))
12368 			return -EINVAL;
12369 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12370 		if (ret)
12371 			return ret;
12372 		break;
12373 	default:
12374 		if (!prog_extension)
12375 			return -EINVAL;
12376 		fallthrough;
12377 	case BPF_MODIFY_RETURN:
12378 	case BPF_LSM_MAC:
12379 	case BPF_TRACE_FENTRY:
12380 	case BPF_TRACE_FEXIT:
12381 		if (!btf_type_is_func(t)) {
12382 			bpf_log(log, "attach_btf_id %u is not a function\n",
12383 				btf_id);
12384 			return -EINVAL;
12385 		}
12386 		if (prog_extension &&
12387 		    btf_check_type_match(log, prog, btf, t))
12388 			return -EINVAL;
12389 		t = btf_type_by_id(btf, t->type);
12390 		if (!btf_type_is_func_proto(t))
12391 			return -EINVAL;
12392 
12393 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12394 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12395 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12396 			return -EINVAL;
12397 
12398 		if (tgt_prog && conservative)
12399 			t = NULL;
12400 
12401 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12402 		if (ret < 0)
12403 			return ret;
12404 
12405 		if (tgt_prog) {
12406 			if (subprog == 0)
12407 				addr = (long) tgt_prog->bpf_func;
12408 			else
12409 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12410 		} else {
12411 			addr = kallsyms_lookup_name(tname);
12412 			if (!addr) {
12413 				bpf_log(log,
12414 					"The address of function %s cannot be found\n",
12415 					tname);
12416 				return -ENOENT;
12417 			}
12418 		}
12419 
12420 		if (prog->aux->sleepable) {
12421 			ret = -EINVAL;
12422 			switch (prog->type) {
12423 			case BPF_PROG_TYPE_TRACING:
12424 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12425 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12426 				 */
12427 				if (!check_non_sleepable_error_inject(btf_id) &&
12428 				    within_error_injection_list(addr))
12429 					ret = 0;
12430 				break;
12431 			case BPF_PROG_TYPE_LSM:
12432 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12433 				 * Only some of them are sleepable.
12434 				 */
12435 				if (bpf_lsm_is_sleepable_hook(btf_id))
12436 					ret = 0;
12437 				break;
12438 			default:
12439 				break;
12440 			}
12441 			if (ret) {
12442 				bpf_log(log, "%s is not sleepable\n", tname);
12443 				return ret;
12444 			}
12445 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12446 			if (tgt_prog) {
12447 				bpf_log(log, "can't modify return codes of BPF programs\n");
12448 				return -EINVAL;
12449 			}
12450 			ret = check_attach_modify_return(addr, tname);
12451 			if (ret) {
12452 				bpf_log(log, "%s() is not modifiable\n", tname);
12453 				return ret;
12454 			}
12455 		}
12456 
12457 		break;
12458 	}
12459 	tgt_info->tgt_addr = addr;
12460 	tgt_info->tgt_name = tname;
12461 	tgt_info->tgt_type = t;
12462 	return 0;
12463 }
12464 
12465 static int check_attach_btf_id(struct bpf_verifier_env *env)
12466 {
12467 	struct bpf_prog *prog = env->prog;
12468 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12469 	struct bpf_attach_target_info tgt_info = {};
12470 	u32 btf_id = prog->aux->attach_btf_id;
12471 	struct bpf_trampoline *tr;
12472 	int ret;
12473 	u64 key;
12474 
12475 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12476 	    prog->type != BPF_PROG_TYPE_LSM) {
12477 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12478 		return -EINVAL;
12479 	}
12480 
12481 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12482 		return check_struct_ops_btf_id(env);
12483 
12484 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12485 	    prog->type != BPF_PROG_TYPE_LSM &&
12486 	    prog->type != BPF_PROG_TYPE_EXT)
12487 		return 0;
12488 
12489 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12490 	if (ret)
12491 		return ret;
12492 
12493 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12494 		/* to make freplace equivalent to their targets, they need to
12495 		 * inherit env->ops and expected_attach_type for the rest of the
12496 		 * verification
12497 		 */
12498 		env->ops = bpf_verifier_ops[tgt_prog->type];
12499 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12500 	}
12501 
12502 	/* store info about the attachment target that will be used later */
12503 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12504 	prog->aux->attach_func_name = tgt_info.tgt_name;
12505 
12506 	if (tgt_prog) {
12507 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12508 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12509 	}
12510 
12511 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12512 		prog->aux->attach_btf_trace = true;
12513 		return 0;
12514 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12515 		if (!bpf_iter_prog_supported(prog))
12516 			return -EINVAL;
12517 		return 0;
12518 	}
12519 
12520 	if (prog->type == BPF_PROG_TYPE_LSM) {
12521 		ret = bpf_lsm_verify_prog(&env->log, prog);
12522 		if (ret < 0)
12523 			return ret;
12524 	}
12525 
12526 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12527 	tr = bpf_trampoline_get(key, &tgt_info);
12528 	if (!tr)
12529 		return -ENOMEM;
12530 
12531 	prog->aux->dst_trampoline = tr;
12532 	return 0;
12533 }
12534 
12535 struct btf *bpf_get_btf_vmlinux(void)
12536 {
12537 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12538 		mutex_lock(&bpf_verifier_lock);
12539 		if (!btf_vmlinux)
12540 			btf_vmlinux = btf_parse_vmlinux();
12541 		mutex_unlock(&bpf_verifier_lock);
12542 	}
12543 	return btf_vmlinux;
12544 }
12545 
12546 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12547 	      union bpf_attr __user *uattr)
12548 {
12549 	u64 start_time = ktime_get_ns();
12550 	struct bpf_verifier_env *env;
12551 	struct bpf_verifier_log *log;
12552 	int i, len, ret = -EINVAL;
12553 	bool is_priv;
12554 
12555 	/* no program is valid */
12556 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12557 		return -EINVAL;
12558 
12559 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12560 	 * allocate/free it every time bpf_check() is called
12561 	 */
12562 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12563 	if (!env)
12564 		return -ENOMEM;
12565 	log = &env->log;
12566 
12567 	len = (*prog)->len;
12568 	env->insn_aux_data =
12569 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12570 	ret = -ENOMEM;
12571 	if (!env->insn_aux_data)
12572 		goto err_free_env;
12573 	for (i = 0; i < len; i++)
12574 		env->insn_aux_data[i].orig_idx = i;
12575 	env->prog = *prog;
12576 	env->ops = bpf_verifier_ops[env->prog->type];
12577 	is_priv = bpf_capable();
12578 
12579 	bpf_get_btf_vmlinux();
12580 
12581 	/* grab the mutex to protect few globals used by verifier */
12582 	if (!is_priv)
12583 		mutex_lock(&bpf_verifier_lock);
12584 
12585 	if (attr->log_level || attr->log_buf || attr->log_size) {
12586 		/* user requested verbose verifier output
12587 		 * and supplied buffer to store the verification trace
12588 		 */
12589 		log->level = attr->log_level;
12590 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12591 		log->len_total = attr->log_size;
12592 
12593 		ret = -EINVAL;
12594 		/* log attributes have to be sane */
12595 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12596 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12597 			goto err_unlock;
12598 	}
12599 
12600 	if (IS_ERR(btf_vmlinux)) {
12601 		/* Either gcc or pahole or kernel are broken. */
12602 		verbose(env, "in-kernel BTF is malformed\n");
12603 		ret = PTR_ERR(btf_vmlinux);
12604 		goto skip_full_check;
12605 	}
12606 
12607 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12608 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12609 		env->strict_alignment = true;
12610 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12611 		env->strict_alignment = false;
12612 
12613 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12614 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12615 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12616 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12617 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12618 	env->bpf_capable = bpf_capable();
12619 
12620 	if (is_priv)
12621 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12622 
12623 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12624 		ret = bpf_prog_offload_verifier_prep(env->prog);
12625 		if (ret)
12626 			goto skip_full_check;
12627 	}
12628 
12629 	env->explored_states = kvcalloc(state_htab_size(env),
12630 				       sizeof(struct bpf_verifier_state_list *),
12631 				       GFP_USER);
12632 	ret = -ENOMEM;
12633 	if (!env->explored_states)
12634 		goto skip_full_check;
12635 
12636 	ret = check_subprogs(env);
12637 	if (ret < 0)
12638 		goto skip_full_check;
12639 
12640 	ret = check_btf_info(env, attr, uattr);
12641 	if (ret < 0)
12642 		goto skip_full_check;
12643 
12644 	ret = check_attach_btf_id(env);
12645 	if (ret)
12646 		goto skip_full_check;
12647 
12648 	ret = resolve_pseudo_ldimm64(env);
12649 	if (ret < 0)
12650 		goto skip_full_check;
12651 
12652 	ret = check_cfg(env);
12653 	if (ret < 0)
12654 		goto skip_full_check;
12655 
12656 	ret = do_check_subprogs(env);
12657 	ret = ret ?: do_check_main(env);
12658 
12659 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12660 		ret = bpf_prog_offload_finalize(env);
12661 
12662 skip_full_check:
12663 	kvfree(env->explored_states);
12664 
12665 	if (ret == 0)
12666 		ret = check_max_stack_depth(env);
12667 
12668 	/* instruction rewrites happen after this point */
12669 	if (is_priv) {
12670 		if (ret == 0)
12671 			opt_hard_wire_dead_code_branches(env);
12672 		if (ret == 0)
12673 			ret = opt_remove_dead_code(env);
12674 		if (ret == 0)
12675 			ret = opt_remove_nops(env);
12676 	} else {
12677 		if (ret == 0)
12678 			sanitize_dead_code(env);
12679 	}
12680 
12681 	if (ret == 0)
12682 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12683 		ret = convert_ctx_accesses(env);
12684 
12685 	if (ret == 0)
12686 		ret = fixup_bpf_calls(env);
12687 
12688 	/* do 32-bit optimization after insn patching has done so those patched
12689 	 * insns could be handled correctly.
12690 	 */
12691 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12692 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12693 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12694 								     : false;
12695 	}
12696 
12697 	if (ret == 0)
12698 		ret = fixup_call_args(env);
12699 
12700 	env->verification_time = ktime_get_ns() - start_time;
12701 	print_verification_stats(env);
12702 
12703 	if (log->level && bpf_verifier_log_full(log))
12704 		ret = -ENOSPC;
12705 	if (log->level && !log->ubuf) {
12706 		ret = -EFAULT;
12707 		goto err_release_maps;
12708 	}
12709 
12710 	if (ret)
12711 		goto err_release_maps;
12712 
12713 	if (env->used_map_cnt) {
12714 		/* if program passed verifier, update used_maps in bpf_prog_info */
12715 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12716 							  sizeof(env->used_maps[0]),
12717 							  GFP_KERNEL);
12718 
12719 		if (!env->prog->aux->used_maps) {
12720 			ret = -ENOMEM;
12721 			goto err_release_maps;
12722 		}
12723 
12724 		memcpy(env->prog->aux->used_maps, env->used_maps,
12725 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12726 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12727 	}
12728 	if (env->used_btf_cnt) {
12729 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12730 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12731 							  sizeof(env->used_btfs[0]),
12732 							  GFP_KERNEL);
12733 		if (!env->prog->aux->used_btfs) {
12734 			ret = -ENOMEM;
12735 			goto err_release_maps;
12736 		}
12737 
12738 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
12739 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12740 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12741 	}
12742 	if (env->used_map_cnt || env->used_btf_cnt) {
12743 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12744 		 * bpf_ld_imm64 instructions
12745 		 */
12746 		convert_pseudo_ld_imm64(env);
12747 	}
12748 
12749 	adjust_btf_func(env);
12750 
12751 err_release_maps:
12752 	if (!env->prog->aux->used_maps)
12753 		/* if we didn't copy map pointers into bpf_prog_info, release
12754 		 * them now. Otherwise free_used_maps() will release them.
12755 		 */
12756 		release_maps(env);
12757 	if (!env->prog->aux->used_btfs)
12758 		release_btfs(env);
12759 
12760 	/* extension progs temporarily inherit the attach_type of their targets
12761 	   for verification purposes, so set it back to zero before returning
12762 	 */
12763 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12764 		env->prog->expected_attach_type = 0;
12765 
12766 	*prog = env->prog;
12767 err_unlock:
12768 	if (!is_priv)
12769 		mutex_unlock(&bpf_verifier_lock);
12770 	vfree(env->insn_aux_data);
12771 err_free_env:
12772 	kfree(env);
12773 	return ret;
12774 }
12775