xref: /openbmc/linux/kernel/bpf/verifier.c (revision be122522)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_KEY_POISON	(1ULL << 63)
175 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
176 
177 #define BPF_MAP_PTR_UNPRIV	1UL
178 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
179 					  POISON_POINTER_DELTA))
180 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181 
182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183 {
184 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
185 }
186 
187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188 {
189 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
190 }
191 
192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 			      const struct bpf_map *map, bool unpriv)
194 {
195 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 	unpriv |= bpf_map_ptr_unpriv(aux);
197 	aux->map_ptr_state = (unsigned long)map |
198 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199 }
200 
201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202 {
203 	return aux->map_key_state & BPF_MAP_KEY_POISON;
204 }
205 
206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207 {
208 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209 }
210 
211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212 {
213 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214 }
215 
216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217 {
218 	bool poisoned = bpf_map_key_poisoned(aux);
219 
220 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
222 }
223 
224 struct bpf_call_arg_meta {
225 	struct bpf_map *map_ptr;
226 	bool raw_mode;
227 	bool pkt_access;
228 	int regno;
229 	int access_size;
230 	s64 msize_smax_value;
231 	u64 msize_umax_value;
232 	int ref_obj_id;
233 	int func_id;
234 	u32 btf_id;
235 };
236 
237 struct btf *btf_vmlinux;
238 
239 static DEFINE_MUTEX(bpf_verifier_lock);
240 
241 static const struct bpf_line_info *
242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243 {
244 	const struct bpf_line_info *linfo;
245 	const struct bpf_prog *prog;
246 	u32 i, nr_linfo;
247 
248 	prog = env->prog;
249 	nr_linfo = prog->aux->nr_linfo;
250 
251 	if (!nr_linfo || insn_off >= prog->len)
252 		return NULL;
253 
254 	linfo = prog->aux->linfo;
255 	for (i = 1; i < nr_linfo; i++)
256 		if (insn_off < linfo[i].insn_off)
257 			break;
258 
259 	return &linfo[i - 1];
260 }
261 
262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 		       va_list args)
264 {
265 	unsigned int n;
266 
267 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
268 
269 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 		  "verifier log line truncated - local buffer too short\n");
271 
272 	n = min(log->len_total - log->len_used - 1, n);
273 	log->kbuf[n] = '\0';
274 
275 	if (log->level == BPF_LOG_KERNEL) {
276 		pr_err("BPF:%s\n", log->kbuf);
277 		return;
278 	}
279 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 		log->len_used += n;
281 	else
282 		log->ubuf = NULL;
283 }
284 
285 /* log_level controls verbosity level of eBPF verifier.
286  * bpf_verifier_log_write() is used to dump the verification trace to the log,
287  * so the user can figure out what's wrong with the program
288  */
289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 					   const char *fmt, ...)
291 {
292 	va_list args;
293 
294 	if (!bpf_verifier_log_needed(&env->log))
295 		return;
296 
297 	va_start(args, fmt);
298 	bpf_verifier_vlog(&env->log, fmt, args);
299 	va_end(args);
300 }
301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302 
303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304 {
305 	struct bpf_verifier_env *env = private_data;
306 	va_list args;
307 
308 	if (!bpf_verifier_log_needed(&env->log))
309 		return;
310 
311 	va_start(args, fmt);
312 	bpf_verifier_vlog(&env->log, fmt, args);
313 	va_end(args);
314 }
315 
316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 			    const char *fmt, ...)
318 {
319 	va_list args;
320 
321 	if (!bpf_verifier_log_needed(log))
322 		return;
323 
324 	va_start(args, fmt);
325 	bpf_verifier_vlog(log, fmt, args);
326 	va_end(args);
327 }
328 
329 static const char *ltrim(const char *s)
330 {
331 	while (isspace(*s))
332 		s++;
333 
334 	return s;
335 }
336 
337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 					 u32 insn_off,
339 					 const char *prefix_fmt, ...)
340 {
341 	const struct bpf_line_info *linfo;
342 
343 	if (!bpf_verifier_log_needed(&env->log))
344 		return;
345 
346 	linfo = find_linfo(env, insn_off);
347 	if (!linfo || linfo == env->prev_linfo)
348 		return;
349 
350 	if (prefix_fmt) {
351 		va_list args;
352 
353 		va_start(args, prefix_fmt);
354 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 		va_end(args);
356 	}
357 
358 	verbose(env, "%s\n",
359 		ltrim(btf_name_by_offset(env->prog->aux->btf,
360 					 linfo->line_off)));
361 
362 	env->prev_linfo = linfo;
363 }
364 
365 static bool type_is_pkt_pointer(enum bpf_reg_type type)
366 {
367 	return type == PTR_TO_PACKET ||
368 	       type == PTR_TO_PACKET_META;
369 }
370 
371 static bool type_is_sk_pointer(enum bpf_reg_type type)
372 {
373 	return type == PTR_TO_SOCKET ||
374 		type == PTR_TO_SOCK_COMMON ||
375 		type == PTR_TO_TCP_SOCK ||
376 		type == PTR_TO_XDP_SOCK;
377 }
378 
379 static bool reg_type_may_be_null(enum bpf_reg_type type)
380 {
381 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
382 	       type == PTR_TO_SOCKET_OR_NULL ||
383 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 	       type == PTR_TO_TCP_SOCK_OR_NULL;
385 }
386 
387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388 {
389 	return reg->type == PTR_TO_MAP_VALUE &&
390 		map_value_has_spin_lock(reg->map_ptr);
391 }
392 
393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_SOCKET ||
396 		type == PTR_TO_SOCKET_OR_NULL ||
397 		type == PTR_TO_TCP_SOCK ||
398 		type == PTR_TO_TCP_SOCK_OR_NULL;
399 }
400 
401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
402 {
403 	return type == ARG_PTR_TO_SOCK_COMMON;
404 }
405 
406 /* Determine whether the function releases some resources allocated by another
407  * function call. The first reference type argument will be assumed to be
408  * released by release_reference().
409  */
410 static bool is_release_function(enum bpf_func_id func_id)
411 {
412 	return func_id == BPF_FUNC_sk_release;
413 }
414 
415 static bool is_acquire_function(enum bpf_func_id func_id)
416 {
417 	return func_id == BPF_FUNC_sk_lookup_tcp ||
418 		func_id == BPF_FUNC_sk_lookup_udp ||
419 		func_id == BPF_FUNC_skc_lookup_tcp;
420 }
421 
422 static bool is_ptr_cast_function(enum bpf_func_id func_id)
423 {
424 	return func_id == BPF_FUNC_tcp_sock ||
425 		func_id == BPF_FUNC_sk_fullsock;
426 }
427 
428 /* string representation of 'enum bpf_reg_type' */
429 static const char * const reg_type_str[] = {
430 	[NOT_INIT]		= "?",
431 	[SCALAR_VALUE]		= "inv",
432 	[PTR_TO_CTX]		= "ctx",
433 	[CONST_PTR_TO_MAP]	= "map_ptr",
434 	[PTR_TO_MAP_VALUE]	= "map_value",
435 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
436 	[PTR_TO_STACK]		= "fp",
437 	[PTR_TO_PACKET]		= "pkt",
438 	[PTR_TO_PACKET_META]	= "pkt_meta",
439 	[PTR_TO_PACKET_END]	= "pkt_end",
440 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
441 	[PTR_TO_SOCKET]		= "sock",
442 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
443 	[PTR_TO_SOCK_COMMON]	= "sock_common",
444 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
445 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
446 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
447 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
448 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
449 	[PTR_TO_BTF_ID]		= "ptr_",
450 };
451 
452 static char slot_type_char[] = {
453 	[STACK_INVALID]	= '?',
454 	[STACK_SPILL]	= 'r',
455 	[STACK_MISC]	= 'm',
456 	[STACK_ZERO]	= '0',
457 };
458 
459 static void print_liveness(struct bpf_verifier_env *env,
460 			   enum bpf_reg_liveness live)
461 {
462 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
463 	    verbose(env, "_");
464 	if (live & REG_LIVE_READ)
465 		verbose(env, "r");
466 	if (live & REG_LIVE_WRITTEN)
467 		verbose(env, "w");
468 	if (live & REG_LIVE_DONE)
469 		verbose(env, "D");
470 }
471 
472 static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 				   const struct bpf_reg_state *reg)
474 {
475 	struct bpf_verifier_state *cur = env->cur_state;
476 
477 	return cur->frame[reg->frameno];
478 }
479 
480 const char *kernel_type_name(u32 id)
481 {
482 	return btf_name_by_offset(btf_vmlinux,
483 				  btf_type_by_id(btf_vmlinux, id)->name_off);
484 }
485 
486 static void print_verifier_state(struct bpf_verifier_env *env,
487 				 const struct bpf_func_state *state)
488 {
489 	const struct bpf_reg_state *reg;
490 	enum bpf_reg_type t;
491 	int i;
492 
493 	if (state->frameno)
494 		verbose(env, " frame%d:", state->frameno);
495 	for (i = 0; i < MAX_BPF_REG; i++) {
496 		reg = &state->regs[i];
497 		t = reg->type;
498 		if (t == NOT_INIT)
499 			continue;
500 		verbose(env, " R%d", i);
501 		print_liveness(env, reg->live);
502 		verbose(env, "=%s", reg_type_str[t]);
503 		if (t == SCALAR_VALUE && reg->precise)
504 			verbose(env, "P");
505 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 		    tnum_is_const(reg->var_off)) {
507 			/* reg->off should be 0 for SCALAR_VALUE */
508 			verbose(env, "%lld", reg->var_off.value + reg->off);
509 		} else {
510 			if (t == PTR_TO_BTF_ID)
511 				verbose(env, "%s", kernel_type_name(reg->btf_id));
512 			verbose(env, "(id=%d", reg->id);
513 			if (reg_type_may_be_refcounted_or_null(t))
514 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
515 			if (t != SCALAR_VALUE)
516 				verbose(env, ",off=%d", reg->off);
517 			if (type_is_pkt_pointer(t))
518 				verbose(env, ",r=%d", reg->range);
519 			else if (t == CONST_PTR_TO_MAP ||
520 				 t == PTR_TO_MAP_VALUE ||
521 				 t == PTR_TO_MAP_VALUE_OR_NULL)
522 				verbose(env, ",ks=%d,vs=%d",
523 					reg->map_ptr->key_size,
524 					reg->map_ptr->value_size);
525 			if (tnum_is_const(reg->var_off)) {
526 				/* Typically an immediate SCALAR_VALUE, but
527 				 * could be a pointer whose offset is too big
528 				 * for reg->off
529 				 */
530 				verbose(env, ",imm=%llx", reg->var_off.value);
531 			} else {
532 				if (reg->smin_value != reg->umin_value &&
533 				    reg->smin_value != S64_MIN)
534 					verbose(env, ",smin_value=%lld",
535 						(long long)reg->smin_value);
536 				if (reg->smax_value != reg->umax_value &&
537 				    reg->smax_value != S64_MAX)
538 					verbose(env, ",smax_value=%lld",
539 						(long long)reg->smax_value);
540 				if (reg->umin_value != 0)
541 					verbose(env, ",umin_value=%llu",
542 						(unsigned long long)reg->umin_value);
543 				if (reg->umax_value != U64_MAX)
544 					verbose(env, ",umax_value=%llu",
545 						(unsigned long long)reg->umax_value);
546 				if (!tnum_is_unknown(reg->var_off)) {
547 					char tn_buf[48];
548 
549 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
550 					verbose(env, ",var_off=%s", tn_buf);
551 				}
552 			}
553 			verbose(env, ")");
554 		}
555 	}
556 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
557 		char types_buf[BPF_REG_SIZE + 1];
558 		bool valid = false;
559 		int j;
560 
561 		for (j = 0; j < BPF_REG_SIZE; j++) {
562 			if (state->stack[i].slot_type[j] != STACK_INVALID)
563 				valid = true;
564 			types_buf[j] = slot_type_char[
565 					state->stack[i].slot_type[j]];
566 		}
567 		types_buf[BPF_REG_SIZE] = 0;
568 		if (!valid)
569 			continue;
570 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 		print_liveness(env, state->stack[i].spilled_ptr.live);
572 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 			reg = &state->stack[i].spilled_ptr;
574 			t = reg->type;
575 			verbose(env, "=%s", reg_type_str[t]);
576 			if (t == SCALAR_VALUE && reg->precise)
577 				verbose(env, "P");
578 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 				verbose(env, "%lld", reg->var_off.value + reg->off);
580 		} else {
581 			verbose(env, "=%s", types_buf);
582 		}
583 	}
584 	if (state->acquired_refs && state->refs[0].id) {
585 		verbose(env, " refs=%d", state->refs[0].id);
586 		for (i = 1; i < state->acquired_refs; i++)
587 			if (state->refs[i].id)
588 				verbose(env, ",%d", state->refs[i].id);
589 	}
590 	verbose(env, "\n");
591 }
592 
593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
594 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
595 			       const struct bpf_func_state *src)	\
596 {									\
597 	if (!src->FIELD)						\
598 		return 0;						\
599 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
600 		/* internal bug, make state invalid to reject the program */ \
601 		memset(dst, 0, sizeof(*dst));				\
602 		return -EFAULT;						\
603 	}								\
604 	memcpy(dst->FIELD, src->FIELD,					\
605 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
606 	return 0;							\
607 }
608 /* copy_reference_state() */
609 COPY_STATE_FN(reference, acquired_refs, refs, 1)
610 /* copy_stack_state() */
611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612 #undef COPY_STATE_FN
613 
614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 				  bool copy_old)			\
617 {									\
618 	u32 old_size = state->COUNT;					\
619 	struct bpf_##NAME##_state *new_##FIELD;				\
620 	int slot = size / SIZE;						\
621 									\
622 	if (size <= old_size || !size) {				\
623 		if (copy_old)						\
624 			return 0;					\
625 		state->COUNT = slot * SIZE;				\
626 		if (!size && old_size) {				\
627 			kfree(state->FIELD);				\
628 			state->FIELD = NULL;				\
629 		}							\
630 		return 0;						\
631 	}								\
632 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 				    GFP_KERNEL);			\
634 	if (!new_##FIELD)						\
635 		return -ENOMEM;						\
636 	if (copy_old) {							\
637 		if (state->FIELD)					\
638 			memcpy(new_##FIELD, state->FIELD,		\
639 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 		memset(new_##FIELD + old_size / SIZE, 0,		\
641 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 	}								\
643 	state->COUNT = slot * SIZE;					\
644 	kfree(state->FIELD);						\
645 	state->FIELD = new_##FIELD;					\
646 	return 0;							\
647 }
648 /* realloc_reference_state() */
649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
650 /* realloc_stack_state() */
651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652 #undef REALLOC_STATE_FN
653 
654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655  * make it consume minimal amount of memory. check_stack_write() access from
656  * the program calls into realloc_func_state() to grow the stack size.
657  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658  * which realloc_stack_state() copies over. It points to previous
659  * bpf_verifier_state which is never reallocated.
660  */
661 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 			      int refs_size, bool copy_old)
663 {
664 	int err = realloc_reference_state(state, refs_size, copy_old);
665 	if (err)
666 		return err;
667 	return realloc_stack_state(state, stack_size, copy_old);
668 }
669 
670 /* Acquire a pointer id from the env and update the state->refs to include
671  * this new pointer reference.
672  * On success, returns a valid pointer id to associate with the register
673  * On failure, returns a negative errno.
674  */
675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
676 {
677 	struct bpf_func_state *state = cur_func(env);
678 	int new_ofs = state->acquired_refs;
679 	int id, err;
680 
681 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 	if (err)
683 		return err;
684 	id = ++env->id_gen;
685 	state->refs[new_ofs].id = id;
686 	state->refs[new_ofs].insn_idx = insn_idx;
687 
688 	return id;
689 }
690 
691 /* release function corresponding to acquire_reference_state(). Idempotent. */
692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
693 {
694 	int i, last_idx;
695 
696 	last_idx = state->acquired_refs - 1;
697 	for (i = 0; i < state->acquired_refs; i++) {
698 		if (state->refs[i].id == ptr_id) {
699 			if (last_idx && i != last_idx)
700 				memcpy(&state->refs[i], &state->refs[last_idx],
701 				       sizeof(*state->refs));
702 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 			state->acquired_refs--;
704 			return 0;
705 		}
706 	}
707 	return -EINVAL;
708 }
709 
710 static int transfer_reference_state(struct bpf_func_state *dst,
711 				    struct bpf_func_state *src)
712 {
713 	int err = realloc_reference_state(dst, src->acquired_refs, false);
714 	if (err)
715 		return err;
716 	err = copy_reference_state(dst, src);
717 	if (err)
718 		return err;
719 	return 0;
720 }
721 
722 static void free_func_state(struct bpf_func_state *state)
723 {
724 	if (!state)
725 		return;
726 	kfree(state->refs);
727 	kfree(state->stack);
728 	kfree(state);
729 }
730 
731 static void clear_jmp_history(struct bpf_verifier_state *state)
732 {
733 	kfree(state->jmp_history);
734 	state->jmp_history = NULL;
735 	state->jmp_history_cnt = 0;
736 }
737 
738 static void free_verifier_state(struct bpf_verifier_state *state,
739 				bool free_self)
740 {
741 	int i;
742 
743 	for (i = 0; i <= state->curframe; i++) {
744 		free_func_state(state->frame[i]);
745 		state->frame[i] = NULL;
746 	}
747 	clear_jmp_history(state);
748 	if (free_self)
749 		kfree(state);
750 }
751 
752 /* copy verifier state from src to dst growing dst stack space
753  * when necessary to accommodate larger src stack
754  */
755 static int copy_func_state(struct bpf_func_state *dst,
756 			   const struct bpf_func_state *src)
757 {
758 	int err;
759 
760 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 				 false);
762 	if (err)
763 		return err;
764 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 	err = copy_reference_state(dst, src);
766 	if (err)
767 		return err;
768 	return copy_stack_state(dst, src);
769 }
770 
771 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 			       const struct bpf_verifier_state *src)
773 {
774 	struct bpf_func_state *dst;
775 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
776 	int i, err;
777 
778 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 		kfree(dst_state->jmp_history);
780 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 		if (!dst_state->jmp_history)
782 			return -ENOMEM;
783 	}
784 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
786 
787 	/* if dst has more stack frames then src frame, free them */
788 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 		free_func_state(dst_state->frame[i]);
790 		dst_state->frame[i] = NULL;
791 	}
792 	dst_state->speculative = src->speculative;
793 	dst_state->curframe = src->curframe;
794 	dst_state->active_spin_lock = src->active_spin_lock;
795 	dst_state->branches = src->branches;
796 	dst_state->parent = src->parent;
797 	dst_state->first_insn_idx = src->first_insn_idx;
798 	dst_state->last_insn_idx = src->last_insn_idx;
799 	for (i = 0; i <= src->curframe; i++) {
800 		dst = dst_state->frame[i];
801 		if (!dst) {
802 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 			if (!dst)
804 				return -ENOMEM;
805 			dst_state->frame[i] = dst;
806 		}
807 		err = copy_func_state(dst, src->frame[i]);
808 		if (err)
809 			return err;
810 	}
811 	return 0;
812 }
813 
814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815 {
816 	while (st) {
817 		u32 br = --st->branches;
818 
819 		/* WARN_ON(br > 1) technically makes sense here,
820 		 * but see comment in push_stack(), hence:
821 		 */
822 		WARN_ONCE((int)br < 0,
823 			  "BUG update_branch_counts:branches_to_explore=%d\n",
824 			  br);
825 		if (br)
826 			break;
827 		st = st->parent;
828 	}
829 }
830 
831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 		     int *insn_idx)
833 {
834 	struct bpf_verifier_state *cur = env->cur_state;
835 	struct bpf_verifier_stack_elem *elem, *head = env->head;
836 	int err;
837 
838 	if (env->head == NULL)
839 		return -ENOENT;
840 
841 	if (cur) {
842 		err = copy_verifier_state(cur, &head->st);
843 		if (err)
844 			return err;
845 	}
846 	if (insn_idx)
847 		*insn_idx = head->insn_idx;
848 	if (prev_insn_idx)
849 		*prev_insn_idx = head->prev_insn_idx;
850 	elem = head->next;
851 	free_verifier_state(&head->st, false);
852 	kfree(head);
853 	env->head = elem;
854 	env->stack_size--;
855 	return 0;
856 }
857 
858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
859 					     int insn_idx, int prev_insn_idx,
860 					     bool speculative)
861 {
862 	struct bpf_verifier_state *cur = env->cur_state;
863 	struct bpf_verifier_stack_elem *elem;
864 	int err;
865 
866 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
867 	if (!elem)
868 		goto err;
869 
870 	elem->insn_idx = insn_idx;
871 	elem->prev_insn_idx = prev_insn_idx;
872 	elem->next = env->head;
873 	env->head = elem;
874 	env->stack_size++;
875 	err = copy_verifier_state(&elem->st, cur);
876 	if (err)
877 		goto err;
878 	elem->st.speculative |= speculative;
879 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 		verbose(env, "The sequence of %d jumps is too complex.\n",
881 			env->stack_size);
882 		goto err;
883 	}
884 	if (elem->st.parent) {
885 		++elem->st.parent->branches;
886 		/* WARN_ON(branches > 2) technically makes sense here,
887 		 * but
888 		 * 1. speculative states will bump 'branches' for non-branch
889 		 * instructions
890 		 * 2. is_state_visited() heuristics may decide not to create
891 		 * a new state for a sequence of branches and all such current
892 		 * and cloned states will be pointing to a single parent state
893 		 * which might have large 'branches' count.
894 		 */
895 	}
896 	return &elem->st;
897 err:
898 	free_verifier_state(env->cur_state, true);
899 	env->cur_state = NULL;
900 	/* pop all elements and return */
901 	while (!pop_stack(env, NULL, NULL));
902 	return NULL;
903 }
904 
905 #define CALLER_SAVED_REGS 6
906 static const int caller_saved[CALLER_SAVED_REGS] = {
907 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908 };
909 
910 static void __mark_reg_not_init(struct bpf_reg_state *reg);
911 
912 /* Mark the unknown part of a register (variable offset or scalar value) as
913  * known to have the value @imm.
914  */
915 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
916 {
917 	/* Clear id, off, and union(map_ptr, range) */
918 	memset(((u8 *)reg) + sizeof(reg->type), 0,
919 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
920 	reg->var_off = tnum_const(imm);
921 	reg->smin_value = (s64)imm;
922 	reg->smax_value = (s64)imm;
923 	reg->umin_value = imm;
924 	reg->umax_value = imm;
925 }
926 
927 /* Mark the 'variable offset' part of a register as zero.  This should be
928  * used only on registers holding a pointer type.
929  */
930 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
931 {
932 	__mark_reg_known(reg, 0);
933 }
934 
935 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
936 {
937 	__mark_reg_known(reg, 0);
938 	reg->type = SCALAR_VALUE;
939 }
940 
941 static void mark_reg_known_zero(struct bpf_verifier_env *env,
942 				struct bpf_reg_state *regs, u32 regno)
943 {
944 	if (WARN_ON(regno >= MAX_BPF_REG)) {
945 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
946 		/* Something bad happened, let's kill all regs */
947 		for (regno = 0; regno < MAX_BPF_REG; regno++)
948 			__mark_reg_not_init(regs + regno);
949 		return;
950 	}
951 	__mark_reg_known_zero(regs + regno);
952 }
953 
954 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
955 {
956 	return type_is_pkt_pointer(reg->type);
957 }
958 
959 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
960 {
961 	return reg_is_pkt_pointer(reg) ||
962 	       reg->type == PTR_TO_PACKET_END;
963 }
964 
965 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
966 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
967 				    enum bpf_reg_type which)
968 {
969 	/* The register can already have a range from prior markings.
970 	 * This is fine as long as it hasn't been advanced from its
971 	 * origin.
972 	 */
973 	return reg->type == which &&
974 	       reg->id == 0 &&
975 	       reg->off == 0 &&
976 	       tnum_equals_const(reg->var_off, 0);
977 }
978 
979 /* Attempts to improve min/max values based on var_off information */
980 static void __update_reg_bounds(struct bpf_reg_state *reg)
981 {
982 	/* min signed is max(sign bit) | min(other bits) */
983 	reg->smin_value = max_t(s64, reg->smin_value,
984 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
985 	/* max signed is min(sign bit) | max(other bits) */
986 	reg->smax_value = min_t(s64, reg->smax_value,
987 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
988 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
989 	reg->umax_value = min(reg->umax_value,
990 			      reg->var_off.value | reg->var_off.mask);
991 }
992 
993 /* Uses signed min/max values to inform unsigned, and vice-versa */
994 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
995 {
996 	/* Learn sign from signed bounds.
997 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
998 	 * are the same, so combine.  This works even in the negative case, e.g.
999 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1000 	 */
1001 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1002 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1003 							  reg->umin_value);
1004 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1005 							  reg->umax_value);
1006 		return;
1007 	}
1008 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1009 	 * boundary, so we must be careful.
1010 	 */
1011 	if ((s64)reg->umax_value >= 0) {
1012 		/* Positive.  We can't learn anything from the smin, but smax
1013 		 * is positive, hence safe.
1014 		 */
1015 		reg->smin_value = reg->umin_value;
1016 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1017 							  reg->umax_value);
1018 	} else if ((s64)reg->umin_value < 0) {
1019 		/* Negative.  We can't learn anything from the smax, but smin
1020 		 * is negative, hence safe.
1021 		 */
1022 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1023 							  reg->umin_value);
1024 		reg->smax_value = reg->umax_value;
1025 	}
1026 }
1027 
1028 /* Attempts to improve var_off based on unsigned min/max information */
1029 static void __reg_bound_offset(struct bpf_reg_state *reg)
1030 {
1031 	reg->var_off = tnum_intersect(reg->var_off,
1032 				      tnum_range(reg->umin_value,
1033 						 reg->umax_value));
1034 }
1035 
1036 static void __reg_bound_offset32(struct bpf_reg_state *reg)
1037 {
1038 	u64 mask = 0xffffFFFF;
1039 	struct tnum range = tnum_range(reg->umin_value & mask,
1040 				       reg->umax_value & mask);
1041 	struct tnum lo32 = tnum_cast(reg->var_off, 4);
1042 	struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1043 
1044 	reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1045 }
1046 
1047 /* Reset the min/max bounds of a register */
1048 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1049 {
1050 	reg->smin_value = S64_MIN;
1051 	reg->smax_value = S64_MAX;
1052 	reg->umin_value = 0;
1053 	reg->umax_value = U64_MAX;
1054 }
1055 
1056 /* Mark a register as having a completely unknown (scalar) value. */
1057 static void __mark_reg_unknown(struct bpf_reg_state *reg)
1058 {
1059 	/*
1060 	 * Clear type, id, off, and union(map_ptr, range) and
1061 	 * padding between 'type' and union
1062 	 */
1063 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1064 	reg->type = SCALAR_VALUE;
1065 	reg->var_off = tnum_unknown;
1066 	reg->frameno = 0;
1067 	__mark_reg_unbounded(reg);
1068 }
1069 
1070 static void mark_reg_unknown(struct bpf_verifier_env *env,
1071 			     struct bpf_reg_state *regs, u32 regno)
1072 {
1073 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1074 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1075 		/* Something bad happened, let's kill all regs except FP */
1076 		for (regno = 0; regno < BPF_REG_FP; regno++)
1077 			__mark_reg_not_init(regs + regno);
1078 		return;
1079 	}
1080 	regs += regno;
1081 	__mark_reg_unknown(regs);
1082 	/* constant backtracking is enabled for root without bpf2bpf calls */
1083 	regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1084 			true : false;
1085 }
1086 
1087 static void __mark_reg_not_init(struct bpf_reg_state *reg)
1088 {
1089 	__mark_reg_unknown(reg);
1090 	reg->type = NOT_INIT;
1091 }
1092 
1093 static void mark_reg_not_init(struct bpf_verifier_env *env,
1094 			      struct bpf_reg_state *regs, u32 regno)
1095 {
1096 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1097 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1098 		/* Something bad happened, let's kill all regs except FP */
1099 		for (regno = 0; regno < BPF_REG_FP; regno++)
1100 			__mark_reg_not_init(regs + regno);
1101 		return;
1102 	}
1103 	__mark_reg_not_init(regs + regno);
1104 }
1105 
1106 #define DEF_NOT_SUBREG	(0)
1107 static void init_reg_state(struct bpf_verifier_env *env,
1108 			   struct bpf_func_state *state)
1109 {
1110 	struct bpf_reg_state *regs = state->regs;
1111 	int i;
1112 
1113 	for (i = 0; i < MAX_BPF_REG; i++) {
1114 		mark_reg_not_init(env, regs, i);
1115 		regs[i].live = REG_LIVE_NONE;
1116 		regs[i].parent = NULL;
1117 		regs[i].subreg_def = DEF_NOT_SUBREG;
1118 	}
1119 
1120 	/* frame pointer */
1121 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1122 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1123 	regs[BPF_REG_FP].frameno = state->frameno;
1124 
1125 	/* 1st arg to a function */
1126 	regs[BPF_REG_1].type = PTR_TO_CTX;
1127 	mark_reg_known_zero(env, regs, BPF_REG_1);
1128 }
1129 
1130 #define BPF_MAIN_FUNC (-1)
1131 static void init_func_state(struct bpf_verifier_env *env,
1132 			    struct bpf_func_state *state,
1133 			    int callsite, int frameno, int subprogno)
1134 {
1135 	state->callsite = callsite;
1136 	state->frameno = frameno;
1137 	state->subprogno = subprogno;
1138 	init_reg_state(env, state);
1139 }
1140 
1141 enum reg_arg_type {
1142 	SRC_OP,		/* register is used as source operand */
1143 	DST_OP,		/* register is used as destination operand */
1144 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1145 };
1146 
1147 static int cmp_subprogs(const void *a, const void *b)
1148 {
1149 	return ((struct bpf_subprog_info *)a)->start -
1150 	       ((struct bpf_subprog_info *)b)->start;
1151 }
1152 
1153 static int find_subprog(struct bpf_verifier_env *env, int off)
1154 {
1155 	struct bpf_subprog_info *p;
1156 
1157 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1158 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1159 	if (!p)
1160 		return -ENOENT;
1161 	return p - env->subprog_info;
1162 
1163 }
1164 
1165 static int add_subprog(struct bpf_verifier_env *env, int off)
1166 {
1167 	int insn_cnt = env->prog->len;
1168 	int ret;
1169 
1170 	if (off >= insn_cnt || off < 0) {
1171 		verbose(env, "call to invalid destination\n");
1172 		return -EINVAL;
1173 	}
1174 	ret = find_subprog(env, off);
1175 	if (ret >= 0)
1176 		return 0;
1177 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1178 		verbose(env, "too many subprograms\n");
1179 		return -E2BIG;
1180 	}
1181 	env->subprog_info[env->subprog_cnt++].start = off;
1182 	sort(env->subprog_info, env->subprog_cnt,
1183 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1184 	return 0;
1185 }
1186 
1187 static int check_subprogs(struct bpf_verifier_env *env)
1188 {
1189 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1190 	struct bpf_subprog_info *subprog = env->subprog_info;
1191 	struct bpf_insn *insn = env->prog->insnsi;
1192 	int insn_cnt = env->prog->len;
1193 
1194 	/* Add entry function. */
1195 	ret = add_subprog(env, 0);
1196 	if (ret < 0)
1197 		return ret;
1198 
1199 	/* determine subprog starts. The end is one before the next starts */
1200 	for (i = 0; i < insn_cnt; i++) {
1201 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1202 			continue;
1203 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1204 			continue;
1205 		if (!env->allow_ptr_leaks) {
1206 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1207 			return -EPERM;
1208 		}
1209 		ret = add_subprog(env, i + insn[i].imm + 1);
1210 		if (ret < 0)
1211 			return ret;
1212 	}
1213 
1214 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1215 	 * logic. 'subprog_cnt' should not be increased.
1216 	 */
1217 	subprog[env->subprog_cnt].start = insn_cnt;
1218 
1219 	if (env->log.level & BPF_LOG_LEVEL2)
1220 		for (i = 0; i < env->subprog_cnt; i++)
1221 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1222 
1223 	/* now check that all jumps are within the same subprog */
1224 	subprog_start = subprog[cur_subprog].start;
1225 	subprog_end = subprog[cur_subprog + 1].start;
1226 	for (i = 0; i < insn_cnt; i++) {
1227 		u8 code = insn[i].code;
1228 
1229 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1230 			goto next;
1231 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1232 			goto next;
1233 		off = i + insn[i].off + 1;
1234 		if (off < subprog_start || off >= subprog_end) {
1235 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1236 			return -EINVAL;
1237 		}
1238 next:
1239 		if (i == subprog_end - 1) {
1240 			/* to avoid fall-through from one subprog into another
1241 			 * the last insn of the subprog should be either exit
1242 			 * or unconditional jump back
1243 			 */
1244 			if (code != (BPF_JMP | BPF_EXIT) &&
1245 			    code != (BPF_JMP | BPF_JA)) {
1246 				verbose(env, "last insn is not an exit or jmp\n");
1247 				return -EINVAL;
1248 			}
1249 			subprog_start = subprog_end;
1250 			cur_subprog++;
1251 			if (cur_subprog < env->subprog_cnt)
1252 				subprog_end = subprog[cur_subprog + 1].start;
1253 		}
1254 	}
1255 	return 0;
1256 }
1257 
1258 /* Parentage chain of this register (or stack slot) should take care of all
1259  * issues like callee-saved registers, stack slot allocation time, etc.
1260  */
1261 static int mark_reg_read(struct bpf_verifier_env *env,
1262 			 const struct bpf_reg_state *state,
1263 			 struct bpf_reg_state *parent, u8 flag)
1264 {
1265 	bool writes = parent == state->parent; /* Observe write marks */
1266 	int cnt = 0;
1267 
1268 	while (parent) {
1269 		/* if read wasn't screened by an earlier write ... */
1270 		if (writes && state->live & REG_LIVE_WRITTEN)
1271 			break;
1272 		if (parent->live & REG_LIVE_DONE) {
1273 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1274 				reg_type_str[parent->type],
1275 				parent->var_off.value, parent->off);
1276 			return -EFAULT;
1277 		}
1278 		/* The first condition is more likely to be true than the
1279 		 * second, checked it first.
1280 		 */
1281 		if ((parent->live & REG_LIVE_READ) == flag ||
1282 		    parent->live & REG_LIVE_READ64)
1283 			/* The parentage chain never changes and
1284 			 * this parent was already marked as LIVE_READ.
1285 			 * There is no need to keep walking the chain again and
1286 			 * keep re-marking all parents as LIVE_READ.
1287 			 * This case happens when the same register is read
1288 			 * multiple times without writes into it in-between.
1289 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1290 			 * then no need to set the weak REG_LIVE_READ32.
1291 			 */
1292 			break;
1293 		/* ... then we depend on parent's value */
1294 		parent->live |= flag;
1295 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1296 		if (flag == REG_LIVE_READ64)
1297 			parent->live &= ~REG_LIVE_READ32;
1298 		state = parent;
1299 		parent = state->parent;
1300 		writes = true;
1301 		cnt++;
1302 	}
1303 
1304 	if (env->longest_mark_read_walk < cnt)
1305 		env->longest_mark_read_walk = cnt;
1306 	return 0;
1307 }
1308 
1309 /* This function is supposed to be used by the following 32-bit optimization
1310  * code only. It returns TRUE if the source or destination register operates
1311  * on 64-bit, otherwise return FALSE.
1312  */
1313 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1314 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1315 {
1316 	u8 code, class, op;
1317 
1318 	code = insn->code;
1319 	class = BPF_CLASS(code);
1320 	op = BPF_OP(code);
1321 	if (class == BPF_JMP) {
1322 		/* BPF_EXIT for "main" will reach here. Return TRUE
1323 		 * conservatively.
1324 		 */
1325 		if (op == BPF_EXIT)
1326 			return true;
1327 		if (op == BPF_CALL) {
1328 			/* BPF to BPF call will reach here because of marking
1329 			 * caller saved clobber with DST_OP_NO_MARK for which we
1330 			 * don't care the register def because they are anyway
1331 			 * marked as NOT_INIT already.
1332 			 */
1333 			if (insn->src_reg == BPF_PSEUDO_CALL)
1334 				return false;
1335 			/* Helper call will reach here because of arg type
1336 			 * check, conservatively return TRUE.
1337 			 */
1338 			if (t == SRC_OP)
1339 				return true;
1340 
1341 			return false;
1342 		}
1343 	}
1344 
1345 	if (class == BPF_ALU64 || class == BPF_JMP ||
1346 	    /* BPF_END always use BPF_ALU class. */
1347 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1348 		return true;
1349 
1350 	if (class == BPF_ALU || class == BPF_JMP32)
1351 		return false;
1352 
1353 	if (class == BPF_LDX) {
1354 		if (t != SRC_OP)
1355 			return BPF_SIZE(code) == BPF_DW;
1356 		/* LDX source must be ptr. */
1357 		return true;
1358 	}
1359 
1360 	if (class == BPF_STX) {
1361 		if (reg->type != SCALAR_VALUE)
1362 			return true;
1363 		return BPF_SIZE(code) == BPF_DW;
1364 	}
1365 
1366 	if (class == BPF_LD) {
1367 		u8 mode = BPF_MODE(code);
1368 
1369 		/* LD_IMM64 */
1370 		if (mode == BPF_IMM)
1371 			return true;
1372 
1373 		/* Both LD_IND and LD_ABS return 32-bit data. */
1374 		if (t != SRC_OP)
1375 			return  false;
1376 
1377 		/* Implicit ctx ptr. */
1378 		if (regno == BPF_REG_6)
1379 			return true;
1380 
1381 		/* Explicit source could be any width. */
1382 		return true;
1383 	}
1384 
1385 	if (class == BPF_ST)
1386 		/* The only source register for BPF_ST is a ptr. */
1387 		return true;
1388 
1389 	/* Conservatively return true at default. */
1390 	return true;
1391 }
1392 
1393 /* Return TRUE if INSN doesn't have explicit value define. */
1394 static bool insn_no_def(struct bpf_insn *insn)
1395 {
1396 	u8 class = BPF_CLASS(insn->code);
1397 
1398 	return (class == BPF_JMP || class == BPF_JMP32 ||
1399 		class == BPF_STX || class == BPF_ST);
1400 }
1401 
1402 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1403 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1404 {
1405 	if (insn_no_def(insn))
1406 		return false;
1407 
1408 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1409 }
1410 
1411 static void mark_insn_zext(struct bpf_verifier_env *env,
1412 			   struct bpf_reg_state *reg)
1413 {
1414 	s32 def_idx = reg->subreg_def;
1415 
1416 	if (def_idx == DEF_NOT_SUBREG)
1417 		return;
1418 
1419 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1420 	/* The dst will be zero extended, so won't be sub-register anymore. */
1421 	reg->subreg_def = DEF_NOT_SUBREG;
1422 }
1423 
1424 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1425 			 enum reg_arg_type t)
1426 {
1427 	struct bpf_verifier_state *vstate = env->cur_state;
1428 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1429 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1430 	struct bpf_reg_state *reg, *regs = state->regs;
1431 	bool rw64;
1432 
1433 	if (regno >= MAX_BPF_REG) {
1434 		verbose(env, "R%d is invalid\n", regno);
1435 		return -EINVAL;
1436 	}
1437 
1438 	reg = &regs[regno];
1439 	rw64 = is_reg64(env, insn, regno, reg, t);
1440 	if (t == SRC_OP) {
1441 		/* check whether register used as source operand can be read */
1442 		if (reg->type == NOT_INIT) {
1443 			verbose(env, "R%d !read_ok\n", regno);
1444 			return -EACCES;
1445 		}
1446 		/* We don't need to worry about FP liveness because it's read-only */
1447 		if (regno == BPF_REG_FP)
1448 			return 0;
1449 
1450 		if (rw64)
1451 			mark_insn_zext(env, reg);
1452 
1453 		return mark_reg_read(env, reg, reg->parent,
1454 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1455 	} else {
1456 		/* check whether register used as dest operand can be written to */
1457 		if (regno == BPF_REG_FP) {
1458 			verbose(env, "frame pointer is read only\n");
1459 			return -EACCES;
1460 		}
1461 		reg->live |= REG_LIVE_WRITTEN;
1462 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1463 		if (t == DST_OP)
1464 			mark_reg_unknown(env, regs, regno);
1465 	}
1466 	return 0;
1467 }
1468 
1469 /* for any branch, call, exit record the history of jmps in the given state */
1470 static int push_jmp_history(struct bpf_verifier_env *env,
1471 			    struct bpf_verifier_state *cur)
1472 {
1473 	u32 cnt = cur->jmp_history_cnt;
1474 	struct bpf_idx_pair *p;
1475 
1476 	cnt++;
1477 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1478 	if (!p)
1479 		return -ENOMEM;
1480 	p[cnt - 1].idx = env->insn_idx;
1481 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1482 	cur->jmp_history = p;
1483 	cur->jmp_history_cnt = cnt;
1484 	return 0;
1485 }
1486 
1487 /* Backtrack one insn at a time. If idx is not at the top of recorded
1488  * history then previous instruction came from straight line execution.
1489  */
1490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1491 			     u32 *history)
1492 {
1493 	u32 cnt = *history;
1494 
1495 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1496 		i = st->jmp_history[cnt - 1].prev_idx;
1497 		(*history)--;
1498 	} else {
1499 		i--;
1500 	}
1501 	return i;
1502 }
1503 
1504 /* For given verifier state backtrack_insn() is called from the last insn to
1505  * the first insn. Its purpose is to compute a bitmask of registers and
1506  * stack slots that needs precision in the parent verifier state.
1507  */
1508 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1509 			  u32 *reg_mask, u64 *stack_mask)
1510 {
1511 	const struct bpf_insn_cbs cbs = {
1512 		.cb_print	= verbose,
1513 		.private_data	= env,
1514 	};
1515 	struct bpf_insn *insn = env->prog->insnsi + idx;
1516 	u8 class = BPF_CLASS(insn->code);
1517 	u8 opcode = BPF_OP(insn->code);
1518 	u8 mode = BPF_MODE(insn->code);
1519 	u32 dreg = 1u << insn->dst_reg;
1520 	u32 sreg = 1u << insn->src_reg;
1521 	u32 spi;
1522 
1523 	if (insn->code == 0)
1524 		return 0;
1525 	if (env->log.level & BPF_LOG_LEVEL) {
1526 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1527 		verbose(env, "%d: ", idx);
1528 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1529 	}
1530 
1531 	if (class == BPF_ALU || class == BPF_ALU64) {
1532 		if (!(*reg_mask & dreg))
1533 			return 0;
1534 		if (opcode == BPF_MOV) {
1535 			if (BPF_SRC(insn->code) == BPF_X) {
1536 				/* dreg = sreg
1537 				 * dreg needs precision after this insn
1538 				 * sreg needs precision before this insn
1539 				 */
1540 				*reg_mask &= ~dreg;
1541 				*reg_mask |= sreg;
1542 			} else {
1543 				/* dreg = K
1544 				 * dreg needs precision after this insn.
1545 				 * Corresponding register is already marked
1546 				 * as precise=true in this verifier state.
1547 				 * No further markings in parent are necessary
1548 				 */
1549 				*reg_mask &= ~dreg;
1550 			}
1551 		} else {
1552 			if (BPF_SRC(insn->code) == BPF_X) {
1553 				/* dreg += sreg
1554 				 * both dreg and sreg need precision
1555 				 * before this insn
1556 				 */
1557 				*reg_mask |= sreg;
1558 			} /* else dreg += K
1559 			   * dreg still needs precision before this insn
1560 			   */
1561 		}
1562 	} else if (class == BPF_LDX) {
1563 		if (!(*reg_mask & dreg))
1564 			return 0;
1565 		*reg_mask &= ~dreg;
1566 
1567 		/* scalars can only be spilled into stack w/o losing precision.
1568 		 * Load from any other memory can be zero extended.
1569 		 * The desire to keep that precision is already indicated
1570 		 * by 'precise' mark in corresponding register of this state.
1571 		 * No further tracking necessary.
1572 		 */
1573 		if (insn->src_reg != BPF_REG_FP)
1574 			return 0;
1575 		if (BPF_SIZE(insn->code) != BPF_DW)
1576 			return 0;
1577 
1578 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1579 		 * that [fp - off] slot contains scalar that needs to be
1580 		 * tracked with precision
1581 		 */
1582 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1583 		if (spi >= 64) {
1584 			verbose(env, "BUG spi %d\n", spi);
1585 			WARN_ONCE(1, "verifier backtracking bug");
1586 			return -EFAULT;
1587 		}
1588 		*stack_mask |= 1ull << spi;
1589 	} else if (class == BPF_STX || class == BPF_ST) {
1590 		if (*reg_mask & dreg)
1591 			/* stx & st shouldn't be using _scalar_ dst_reg
1592 			 * to access memory. It means backtracking
1593 			 * encountered a case of pointer subtraction.
1594 			 */
1595 			return -ENOTSUPP;
1596 		/* scalars can only be spilled into stack */
1597 		if (insn->dst_reg != BPF_REG_FP)
1598 			return 0;
1599 		if (BPF_SIZE(insn->code) != BPF_DW)
1600 			return 0;
1601 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1602 		if (spi >= 64) {
1603 			verbose(env, "BUG spi %d\n", spi);
1604 			WARN_ONCE(1, "verifier backtracking bug");
1605 			return -EFAULT;
1606 		}
1607 		if (!(*stack_mask & (1ull << spi)))
1608 			return 0;
1609 		*stack_mask &= ~(1ull << spi);
1610 		if (class == BPF_STX)
1611 			*reg_mask |= sreg;
1612 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1613 		if (opcode == BPF_CALL) {
1614 			if (insn->src_reg == BPF_PSEUDO_CALL)
1615 				return -ENOTSUPP;
1616 			/* regular helper call sets R0 */
1617 			*reg_mask &= ~1;
1618 			if (*reg_mask & 0x3f) {
1619 				/* if backtracing was looking for registers R1-R5
1620 				 * they should have been found already.
1621 				 */
1622 				verbose(env, "BUG regs %x\n", *reg_mask);
1623 				WARN_ONCE(1, "verifier backtracking bug");
1624 				return -EFAULT;
1625 			}
1626 		} else if (opcode == BPF_EXIT) {
1627 			return -ENOTSUPP;
1628 		}
1629 	} else if (class == BPF_LD) {
1630 		if (!(*reg_mask & dreg))
1631 			return 0;
1632 		*reg_mask &= ~dreg;
1633 		/* It's ld_imm64 or ld_abs or ld_ind.
1634 		 * For ld_imm64 no further tracking of precision
1635 		 * into parent is necessary
1636 		 */
1637 		if (mode == BPF_IND || mode == BPF_ABS)
1638 			/* to be analyzed */
1639 			return -ENOTSUPP;
1640 	}
1641 	return 0;
1642 }
1643 
1644 /* the scalar precision tracking algorithm:
1645  * . at the start all registers have precise=false.
1646  * . scalar ranges are tracked as normal through alu and jmp insns.
1647  * . once precise value of the scalar register is used in:
1648  *   .  ptr + scalar alu
1649  *   . if (scalar cond K|scalar)
1650  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1651  *   backtrack through the verifier states and mark all registers and
1652  *   stack slots with spilled constants that these scalar regisers
1653  *   should be precise.
1654  * . during state pruning two registers (or spilled stack slots)
1655  *   are equivalent if both are not precise.
1656  *
1657  * Note the verifier cannot simply walk register parentage chain,
1658  * since many different registers and stack slots could have been
1659  * used to compute single precise scalar.
1660  *
1661  * The approach of starting with precise=true for all registers and then
1662  * backtrack to mark a register as not precise when the verifier detects
1663  * that program doesn't care about specific value (e.g., when helper
1664  * takes register as ARG_ANYTHING parameter) is not safe.
1665  *
1666  * It's ok to walk single parentage chain of the verifier states.
1667  * It's possible that this backtracking will go all the way till 1st insn.
1668  * All other branches will be explored for needing precision later.
1669  *
1670  * The backtracking needs to deal with cases like:
1671  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1672  * r9 -= r8
1673  * r5 = r9
1674  * if r5 > 0x79f goto pc+7
1675  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1676  * r5 += 1
1677  * ...
1678  * call bpf_perf_event_output#25
1679  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1680  *
1681  * and this case:
1682  * r6 = 1
1683  * call foo // uses callee's r6 inside to compute r0
1684  * r0 += r6
1685  * if r0 == 0 goto
1686  *
1687  * to track above reg_mask/stack_mask needs to be independent for each frame.
1688  *
1689  * Also if parent's curframe > frame where backtracking started,
1690  * the verifier need to mark registers in both frames, otherwise callees
1691  * may incorrectly prune callers. This is similar to
1692  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1693  *
1694  * For now backtracking falls back into conservative marking.
1695  */
1696 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1697 				     struct bpf_verifier_state *st)
1698 {
1699 	struct bpf_func_state *func;
1700 	struct bpf_reg_state *reg;
1701 	int i, j;
1702 
1703 	/* big hammer: mark all scalars precise in this path.
1704 	 * pop_stack may still get !precise scalars.
1705 	 */
1706 	for (; st; st = st->parent)
1707 		for (i = 0; i <= st->curframe; i++) {
1708 			func = st->frame[i];
1709 			for (j = 0; j < BPF_REG_FP; j++) {
1710 				reg = &func->regs[j];
1711 				if (reg->type != SCALAR_VALUE)
1712 					continue;
1713 				reg->precise = true;
1714 			}
1715 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1716 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1717 					continue;
1718 				reg = &func->stack[j].spilled_ptr;
1719 				if (reg->type != SCALAR_VALUE)
1720 					continue;
1721 				reg->precise = true;
1722 			}
1723 		}
1724 }
1725 
1726 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1727 				  int spi)
1728 {
1729 	struct bpf_verifier_state *st = env->cur_state;
1730 	int first_idx = st->first_insn_idx;
1731 	int last_idx = env->insn_idx;
1732 	struct bpf_func_state *func;
1733 	struct bpf_reg_state *reg;
1734 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1735 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1736 	bool skip_first = true;
1737 	bool new_marks = false;
1738 	int i, err;
1739 
1740 	if (!env->allow_ptr_leaks)
1741 		/* backtracking is root only for now */
1742 		return 0;
1743 
1744 	func = st->frame[st->curframe];
1745 	if (regno >= 0) {
1746 		reg = &func->regs[regno];
1747 		if (reg->type != SCALAR_VALUE) {
1748 			WARN_ONCE(1, "backtracing misuse");
1749 			return -EFAULT;
1750 		}
1751 		if (!reg->precise)
1752 			new_marks = true;
1753 		else
1754 			reg_mask = 0;
1755 		reg->precise = true;
1756 	}
1757 
1758 	while (spi >= 0) {
1759 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1760 			stack_mask = 0;
1761 			break;
1762 		}
1763 		reg = &func->stack[spi].spilled_ptr;
1764 		if (reg->type != SCALAR_VALUE) {
1765 			stack_mask = 0;
1766 			break;
1767 		}
1768 		if (!reg->precise)
1769 			new_marks = true;
1770 		else
1771 			stack_mask = 0;
1772 		reg->precise = true;
1773 		break;
1774 	}
1775 
1776 	if (!new_marks)
1777 		return 0;
1778 	if (!reg_mask && !stack_mask)
1779 		return 0;
1780 	for (;;) {
1781 		DECLARE_BITMAP(mask, 64);
1782 		u32 history = st->jmp_history_cnt;
1783 
1784 		if (env->log.level & BPF_LOG_LEVEL)
1785 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1786 		for (i = last_idx;;) {
1787 			if (skip_first) {
1788 				err = 0;
1789 				skip_first = false;
1790 			} else {
1791 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1792 			}
1793 			if (err == -ENOTSUPP) {
1794 				mark_all_scalars_precise(env, st);
1795 				return 0;
1796 			} else if (err) {
1797 				return err;
1798 			}
1799 			if (!reg_mask && !stack_mask)
1800 				/* Found assignment(s) into tracked register in this state.
1801 				 * Since this state is already marked, just return.
1802 				 * Nothing to be tracked further in the parent state.
1803 				 */
1804 				return 0;
1805 			if (i == first_idx)
1806 				break;
1807 			i = get_prev_insn_idx(st, i, &history);
1808 			if (i >= env->prog->len) {
1809 				/* This can happen if backtracking reached insn 0
1810 				 * and there are still reg_mask or stack_mask
1811 				 * to backtrack.
1812 				 * It means the backtracking missed the spot where
1813 				 * particular register was initialized with a constant.
1814 				 */
1815 				verbose(env, "BUG backtracking idx %d\n", i);
1816 				WARN_ONCE(1, "verifier backtracking bug");
1817 				return -EFAULT;
1818 			}
1819 		}
1820 		st = st->parent;
1821 		if (!st)
1822 			break;
1823 
1824 		new_marks = false;
1825 		func = st->frame[st->curframe];
1826 		bitmap_from_u64(mask, reg_mask);
1827 		for_each_set_bit(i, mask, 32) {
1828 			reg = &func->regs[i];
1829 			if (reg->type != SCALAR_VALUE) {
1830 				reg_mask &= ~(1u << i);
1831 				continue;
1832 			}
1833 			if (!reg->precise)
1834 				new_marks = true;
1835 			reg->precise = true;
1836 		}
1837 
1838 		bitmap_from_u64(mask, stack_mask);
1839 		for_each_set_bit(i, mask, 64) {
1840 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1841 				/* the sequence of instructions:
1842 				 * 2: (bf) r3 = r10
1843 				 * 3: (7b) *(u64 *)(r3 -8) = r0
1844 				 * 4: (79) r4 = *(u64 *)(r10 -8)
1845 				 * doesn't contain jmps. It's backtracked
1846 				 * as a single block.
1847 				 * During backtracking insn 3 is not recognized as
1848 				 * stack access, so at the end of backtracking
1849 				 * stack slot fp-8 is still marked in stack_mask.
1850 				 * However the parent state may not have accessed
1851 				 * fp-8 and it's "unallocated" stack space.
1852 				 * In such case fallback to conservative.
1853 				 */
1854 				mark_all_scalars_precise(env, st);
1855 				return 0;
1856 			}
1857 
1858 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1859 				stack_mask &= ~(1ull << i);
1860 				continue;
1861 			}
1862 			reg = &func->stack[i].spilled_ptr;
1863 			if (reg->type != SCALAR_VALUE) {
1864 				stack_mask &= ~(1ull << i);
1865 				continue;
1866 			}
1867 			if (!reg->precise)
1868 				new_marks = true;
1869 			reg->precise = true;
1870 		}
1871 		if (env->log.level & BPF_LOG_LEVEL) {
1872 			print_verifier_state(env, func);
1873 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1874 				new_marks ? "didn't have" : "already had",
1875 				reg_mask, stack_mask);
1876 		}
1877 
1878 		if (!reg_mask && !stack_mask)
1879 			break;
1880 		if (!new_marks)
1881 			break;
1882 
1883 		last_idx = st->last_insn_idx;
1884 		first_idx = st->first_insn_idx;
1885 	}
1886 	return 0;
1887 }
1888 
1889 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1890 {
1891 	return __mark_chain_precision(env, regno, -1);
1892 }
1893 
1894 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1895 {
1896 	return __mark_chain_precision(env, -1, spi);
1897 }
1898 
1899 static bool is_spillable_regtype(enum bpf_reg_type type)
1900 {
1901 	switch (type) {
1902 	case PTR_TO_MAP_VALUE:
1903 	case PTR_TO_MAP_VALUE_OR_NULL:
1904 	case PTR_TO_STACK:
1905 	case PTR_TO_CTX:
1906 	case PTR_TO_PACKET:
1907 	case PTR_TO_PACKET_META:
1908 	case PTR_TO_PACKET_END:
1909 	case PTR_TO_FLOW_KEYS:
1910 	case CONST_PTR_TO_MAP:
1911 	case PTR_TO_SOCKET:
1912 	case PTR_TO_SOCKET_OR_NULL:
1913 	case PTR_TO_SOCK_COMMON:
1914 	case PTR_TO_SOCK_COMMON_OR_NULL:
1915 	case PTR_TO_TCP_SOCK:
1916 	case PTR_TO_TCP_SOCK_OR_NULL:
1917 	case PTR_TO_XDP_SOCK:
1918 		return true;
1919 	default:
1920 		return false;
1921 	}
1922 }
1923 
1924 /* Does this register contain a constant zero? */
1925 static bool register_is_null(struct bpf_reg_state *reg)
1926 {
1927 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1928 }
1929 
1930 static bool register_is_const(struct bpf_reg_state *reg)
1931 {
1932 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1933 }
1934 
1935 static void save_register_state(struct bpf_func_state *state,
1936 				int spi, struct bpf_reg_state *reg)
1937 {
1938 	int i;
1939 
1940 	state->stack[spi].spilled_ptr = *reg;
1941 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1942 
1943 	for (i = 0; i < BPF_REG_SIZE; i++)
1944 		state->stack[spi].slot_type[i] = STACK_SPILL;
1945 }
1946 
1947 /* check_stack_read/write functions track spill/fill of registers,
1948  * stack boundary and alignment are checked in check_mem_access()
1949  */
1950 static int check_stack_write(struct bpf_verifier_env *env,
1951 			     struct bpf_func_state *state, /* func where register points to */
1952 			     int off, int size, int value_regno, int insn_idx)
1953 {
1954 	struct bpf_func_state *cur; /* state of the current function */
1955 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1956 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1957 	struct bpf_reg_state *reg = NULL;
1958 
1959 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1960 				 state->acquired_refs, true);
1961 	if (err)
1962 		return err;
1963 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1964 	 * so it's aligned access and [off, off + size) are within stack limits
1965 	 */
1966 	if (!env->allow_ptr_leaks &&
1967 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1968 	    size != BPF_REG_SIZE) {
1969 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1970 		return -EACCES;
1971 	}
1972 
1973 	cur = env->cur_state->frame[env->cur_state->curframe];
1974 	if (value_regno >= 0)
1975 		reg = &cur->regs[value_regno];
1976 
1977 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1978 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1979 		if (dst_reg != BPF_REG_FP) {
1980 			/* The backtracking logic can only recognize explicit
1981 			 * stack slot address like [fp - 8]. Other spill of
1982 			 * scalar via different register has to be conervative.
1983 			 * Backtrack from here and mark all registers as precise
1984 			 * that contributed into 'reg' being a constant.
1985 			 */
1986 			err = mark_chain_precision(env, value_regno);
1987 			if (err)
1988 				return err;
1989 		}
1990 		save_register_state(state, spi, reg);
1991 	} else if (reg && is_spillable_regtype(reg->type)) {
1992 		/* register containing pointer is being spilled into stack */
1993 		if (size != BPF_REG_SIZE) {
1994 			verbose_linfo(env, insn_idx, "; ");
1995 			verbose(env, "invalid size of register spill\n");
1996 			return -EACCES;
1997 		}
1998 
1999 		if (state != cur && reg->type == PTR_TO_STACK) {
2000 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2001 			return -EINVAL;
2002 		}
2003 
2004 		if (!env->allow_ptr_leaks) {
2005 			bool sanitize = false;
2006 
2007 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2008 			    register_is_const(&state->stack[spi].spilled_ptr))
2009 				sanitize = true;
2010 			for (i = 0; i < BPF_REG_SIZE; i++)
2011 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2012 					sanitize = true;
2013 					break;
2014 				}
2015 			if (sanitize) {
2016 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2017 				int soff = (-spi - 1) * BPF_REG_SIZE;
2018 
2019 				/* detected reuse of integer stack slot with a pointer
2020 				 * which means either llvm is reusing stack slot or
2021 				 * an attacker is trying to exploit CVE-2018-3639
2022 				 * (speculative store bypass)
2023 				 * Have to sanitize that slot with preemptive
2024 				 * store of zero.
2025 				 */
2026 				if (*poff && *poff != soff) {
2027 					/* disallow programs where single insn stores
2028 					 * into two different stack slots, since verifier
2029 					 * cannot sanitize them
2030 					 */
2031 					verbose(env,
2032 						"insn %d cannot access two stack slots fp%d and fp%d",
2033 						insn_idx, *poff, soff);
2034 					return -EINVAL;
2035 				}
2036 				*poff = soff;
2037 			}
2038 		}
2039 		save_register_state(state, spi, reg);
2040 	} else {
2041 		u8 type = STACK_MISC;
2042 
2043 		/* regular write of data into stack destroys any spilled ptr */
2044 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2045 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2046 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2047 			for (i = 0; i < BPF_REG_SIZE; i++)
2048 				state->stack[spi].slot_type[i] = STACK_MISC;
2049 
2050 		/* only mark the slot as written if all 8 bytes were written
2051 		 * otherwise read propagation may incorrectly stop too soon
2052 		 * when stack slots are partially written.
2053 		 * This heuristic means that read propagation will be
2054 		 * conservative, since it will add reg_live_read marks
2055 		 * to stack slots all the way to first state when programs
2056 		 * writes+reads less than 8 bytes
2057 		 */
2058 		if (size == BPF_REG_SIZE)
2059 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2060 
2061 		/* when we zero initialize stack slots mark them as such */
2062 		if (reg && register_is_null(reg)) {
2063 			/* backtracking doesn't work for STACK_ZERO yet. */
2064 			err = mark_chain_precision(env, value_regno);
2065 			if (err)
2066 				return err;
2067 			type = STACK_ZERO;
2068 		}
2069 
2070 		/* Mark slots affected by this stack write. */
2071 		for (i = 0; i < size; i++)
2072 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2073 				type;
2074 	}
2075 	return 0;
2076 }
2077 
2078 static int check_stack_read(struct bpf_verifier_env *env,
2079 			    struct bpf_func_state *reg_state /* func where register points to */,
2080 			    int off, int size, int value_regno)
2081 {
2082 	struct bpf_verifier_state *vstate = env->cur_state;
2083 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2084 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2085 	struct bpf_reg_state *reg;
2086 	u8 *stype;
2087 
2088 	if (reg_state->allocated_stack <= slot) {
2089 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2090 			off, size);
2091 		return -EACCES;
2092 	}
2093 	stype = reg_state->stack[spi].slot_type;
2094 	reg = &reg_state->stack[spi].spilled_ptr;
2095 
2096 	if (stype[0] == STACK_SPILL) {
2097 		if (size != BPF_REG_SIZE) {
2098 			if (reg->type != SCALAR_VALUE) {
2099 				verbose_linfo(env, env->insn_idx, "; ");
2100 				verbose(env, "invalid size of register fill\n");
2101 				return -EACCES;
2102 			}
2103 			if (value_regno >= 0) {
2104 				mark_reg_unknown(env, state->regs, value_regno);
2105 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2106 			}
2107 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2108 			return 0;
2109 		}
2110 		for (i = 1; i < BPF_REG_SIZE; i++) {
2111 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2112 				verbose(env, "corrupted spill memory\n");
2113 				return -EACCES;
2114 			}
2115 		}
2116 
2117 		if (value_regno >= 0) {
2118 			/* restore register state from stack */
2119 			state->regs[value_regno] = *reg;
2120 			/* mark reg as written since spilled pointer state likely
2121 			 * has its liveness marks cleared by is_state_visited()
2122 			 * which resets stack/reg liveness for state transitions
2123 			 */
2124 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2125 		}
2126 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2127 	} else {
2128 		int zeros = 0;
2129 
2130 		for (i = 0; i < size; i++) {
2131 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2132 				continue;
2133 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2134 				zeros++;
2135 				continue;
2136 			}
2137 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2138 				off, i, size);
2139 			return -EACCES;
2140 		}
2141 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2142 		if (value_regno >= 0) {
2143 			if (zeros == size) {
2144 				/* any size read into register is zero extended,
2145 				 * so the whole register == const_zero
2146 				 */
2147 				__mark_reg_const_zero(&state->regs[value_regno]);
2148 				/* backtracking doesn't support STACK_ZERO yet,
2149 				 * so mark it precise here, so that later
2150 				 * backtracking can stop here.
2151 				 * Backtracking may not need this if this register
2152 				 * doesn't participate in pointer adjustment.
2153 				 * Forward propagation of precise flag is not
2154 				 * necessary either. This mark is only to stop
2155 				 * backtracking. Any register that contributed
2156 				 * to const 0 was marked precise before spill.
2157 				 */
2158 				state->regs[value_regno].precise = true;
2159 			} else {
2160 				/* have read misc data from the stack */
2161 				mark_reg_unknown(env, state->regs, value_regno);
2162 			}
2163 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2164 		}
2165 	}
2166 	return 0;
2167 }
2168 
2169 static int check_stack_access(struct bpf_verifier_env *env,
2170 			      const struct bpf_reg_state *reg,
2171 			      int off, int size)
2172 {
2173 	/* Stack accesses must be at a fixed offset, so that we
2174 	 * can determine what type of data were returned. See
2175 	 * check_stack_read().
2176 	 */
2177 	if (!tnum_is_const(reg->var_off)) {
2178 		char tn_buf[48];
2179 
2180 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2181 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2182 			tn_buf, off, size);
2183 		return -EACCES;
2184 	}
2185 
2186 	if (off >= 0 || off < -MAX_BPF_STACK) {
2187 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2188 		return -EACCES;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2195 				 int off, int size, enum bpf_access_type type)
2196 {
2197 	struct bpf_reg_state *regs = cur_regs(env);
2198 	struct bpf_map *map = regs[regno].map_ptr;
2199 	u32 cap = bpf_map_flags_to_cap(map);
2200 
2201 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2202 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2203 			map->value_size, off, size);
2204 		return -EACCES;
2205 	}
2206 
2207 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2208 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2209 			map->value_size, off, size);
2210 		return -EACCES;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 /* check read/write into map element returned by bpf_map_lookup_elem() */
2217 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2218 			      int size, bool zero_size_allowed)
2219 {
2220 	struct bpf_reg_state *regs = cur_regs(env);
2221 	struct bpf_map *map = regs[regno].map_ptr;
2222 
2223 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2224 	    off + size > map->value_size) {
2225 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2226 			map->value_size, off, size);
2227 		return -EACCES;
2228 	}
2229 	return 0;
2230 }
2231 
2232 /* check read/write into a map element with possible variable offset */
2233 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2234 			    int off, int size, bool zero_size_allowed)
2235 {
2236 	struct bpf_verifier_state *vstate = env->cur_state;
2237 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2238 	struct bpf_reg_state *reg = &state->regs[regno];
2239 	int err;
2240 
2241 	/* We may have adjusted the register to this map value, so we
2242 	 * need to try adding each of min_value and max_value to off
2243 	 * to make sure our theoretical access will be safe.
2244 	 */
2245 	if (env->log.level & BPF_LOG_LEVEL)
2246 		print_verifier_state(env, state);
2247 
2248 	/* The minimum value is only important with signed
2249 	 * comparisons where we can't assume the floor of a
2250 	 * value is 0.  If we are using signed variables for our
2251 	 * index'es we need to make sure that whatever we use
2252 	 * will have a set floor within our range.
2253 	 */
2254 	if (reg->smin_value < 0 &&
2255 	    (reg->smin_value == S64_MIN ||
2256 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2257 	      reg->smin_value + off < 0)) {
2258 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2259 			regno);
2260 		return -EACCES;
2261 	}
2262 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2263 				 zero_size_allowed);
2264 	if (err) {
2265 		verbose(env, "R%d min value is outside of the array range\n",
2266 			regno);
2267 		return err;
2268 	}
2269 
2270 	/* If we haven't set a max value then we need to bail since we can't be
2271 	 * sure we won't do bad things.
2272 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2273 	 */
2274 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2275 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2276 			regno);
2277 		return -EACCES;
2278 	}
2279 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2280 				 zero_size_allowed);
2281 	if (err)
2282 		verbose(env, "R%d max value is outside of the array range\n",
2283 			regno);
2284 
2285 	if (map_value_has_spin_lock(reg->map_ptr)) {
2286 		u32 lock = reg->map_ptr->spin_lock_off;
2287 
2288 		/* if any part of struct bpf_spin_lock can be touched by
2289 		 * load/store reject this program.
2290 		 * To check that [x1, x2) overlaps with [y1, y2)
2291 		 * it is sufficient to check x1 < y2 && y1 < x2.
2292 		 */
2293 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2294 		     lock < reg->umax_value + off + size) {
2295 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2296 			return -EACCES;
2297 		}
2298 	}
2299 	return err;
2300 }
2301 
2302 #define MAX_PACKET_OFF 0xffff
2303 
2304 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2305 				       const struct bpf_call_arg_meta *meta,
2306 				       enum bpf_access_type t)
2307 {
2308 	switch (env->prog->type) {
2309 	/* Program types only with direct read access go here! */
2310 	case BPF_PROG_TYPE_LWT_IN:
2311 	case BPF_PROG_TYPE_LWT_OUT:
2312 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2313 	case BPF_PROG_TYPE_SK_REUSEPORT:
2314 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2315 	case BPF_PROG_TYPE_CGROUP_SKB:
2316 		if (t == BPF_WRITE)
2317 			return false;
2318 		/* fallthrough */
2319 
2320 	/* Program types with direct read + write access go here! */
2321 	case BPF_PROG_TYPE_SCHED_CLS:
2322 	case BPF_PROG_TYPE_SCHED_ACT:
2323 	case BPF_PROG_TYPE_XDP:
2324 	case BPF_PROG_TYPE_LWT_XMIT:
2325 	case BPF_PROG_TYPE_SK_SKB:
2326 	case BPF_PROG_TYPE_SK_MSG:
2327 		if (meta)
2328 			return meta->pkt_access;
2329 
2330 		env->seen_direct_write = true;
2331 		return true;
2332 
2333 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2334 		if (t == BPF_WRITE)
2335 			env->seen_direct_write = true;
2336 
2337 		return true;
2338 
2339 	default:
2340 		return false;
2341 	}
2342 }
2343 
2344 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2345 				 int off, int size, bool zero_size_allowed)
2346 {
2347 	struct bpf_reg_state *regs = cur_regs(env);
2348 	struct bpf_reg_state *reg = &regs[regno];
2349 
2350 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2351 	    (u64)off + size > reg->range) {
2352 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2353 			off, size, regno, reg->id, reg->off, reg->range);
2354 		return -EACCES;
2355 	}
2356 	return 0;
2357 }
2358 
2359 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2360 			       int size, bool zero_size_allowed)
2361 {
2362 	struct bpf_reg_state *regs = cur_regs(env);
2363 	struct bpf_reg_state *reg = &regs[regno];
2364 	int err;
2365 
2366 	/* We may have added a variable offset to the packet pointer; but any
2367 	 * reg->range we have comes after that.  We are only checking the fixed
2368 	 * offset.
2369 	 */
2370 
2371 	/* We don't allow negative numbers, because we aren't tracking enough
2372 	 * detail to prove they're safe.
2373 	 */
2374 	if (reg->smin_value < 0) {
2375 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2376 			regno);
2377 		return -EACCES;
2378 	}
2379 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2380 	if (err) {
2381 		verbose(env, "R%d offset is outside of the packet\n", regno);
2382 		return err;
2383 	}
2384 
2385 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2386 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2387 	 * otherwise find_good_pkt_pointers would have refused to set range info
2388 	 * that __check_packet_access would have rejected this pkt access.
2389 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2390 	 */
2391 	env->prog->aux->max_pkt_offset =
2392 		max_t(u32, env->prog->aux->max_pkt_offset,
2393 		      off + reg->umax_value + size - 1);
2394 
2395 	return err;
2396 }
2397 
2398 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2399 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2400 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2401 			    u32 *btf_id)
2402 {
2403 	struct bpf_insn_access_aux info = {
2404 		.reg_type = *reg_type,
2405 		.log = &env->log,
2406 	};
2407 
2408 	if (env->ops->is_valid_access &&
2409 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2410 		/* A non zero info.ctx_field_size indicates that this field is a
2411 		 * candidate for later verifier transformation to load the whole
2412 		 * field and then apply a mask when accessed with a narrower
2413 		 * access than actual ctx access size. A zero info.ctx_field_size
2414 		 * will only allow for whole field access and rejects any other
2415 		 * type of narrower access.
2416 		 */
2417 		*reg_type = info.reg_type;
2418 
2419 		if (*reg_type == PTR_TO_BTF_ID)
2420 			*btf_id = info.btf_id;
2421 		else
2422 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2423 		/* remember the offset of last byte accessed in ctx */
2424 		if (env->prog->aux->max_ctx_offset < off + size)
2425 			env->prog->aux->max_ctx_offset = off + size;
2426 		return 0;
2427 	}
2428 
2429 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2430 	return -EACCES;
2431 }
2432 
2433 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2434 				  int size)
2435 {
2436 	if (size < 0 || off < 0 ||
2437 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2438 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2439 			off, size);
2440 		return -EACCES;
2441 	}
2442 	return 0;
2443 }
2444 
2445 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2446 			     u32 regno, int off, int size,
2447 			     enum bpf_access_type t)
2448 {
2449 	struct bpf_reg_state *regs = cur_regs(env);
2450 	struct bpf_reg_state *reg = &regs[regno];
2451 	struct bpf_insn_access_aux info = {};
2452 	bool valid;
2453 
2454 	if (reg->smin_value < 0) {
2455 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2456 			regno);
2457 		return -EACCES;
2458 	}
2459 
2460 	switch (reg->type) {
2461 	case PTR_TO_SOCK_COMMON:
2462 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2463 		break;
2464 	case PTR_TO_SOCKET:
2465 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2466 		break;
2467 	case PTR_TO_TCP_SOCK:
2468 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2469 		break;
2470 	case PTR_TO_XDP_SOCK:
2471 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2472 		break;
2473 	default:
2474 		valid = false;
2475 	}
2476 
2477 
2478 	if (valid) {
2479 		env->insn_aux_data[insn_idx].ctx_field_size =
2480 			info.ctx_field_size;
2481 		return 0;
2482 	}
2483 
2484 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2485 		regno, reg_type_str[reg->type], off, size);
2486 
2487 	return -EACCES;
2488 }
2489 
2490 static bool __is_pointer_value(bool allow_ptr_leaks,
2491 			       const struct bpf_reg_state *reg)
2492 {
2493 	if (allow_ptr_leaks)
2494 		return false;
2495 
2496 	return reg->type != SCALAR_VALUE;
2497 }
2498 
2499 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2500 {
2501 	return cur_regs(env) + regno;
2502 }
2503 
2504 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2505 {
2506 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2507 }
2508 
2509 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2510 {
2511 	const struct bpf_reg_state *reg = reg_state(env, regno);
2512 
2513 	return reg->type == PTR_TO_CTX;
2514 }
2515 
2516 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2517 {
2518 	const struct bpf_reg_state *reg = reg_state(env, regno);
2519 
2520 	return type_is_sk_pointer(reg->type);
2521 }
2522 
2523 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2524 {
2525 	const struct bpf_reg_state *reg = reg_state(env, regno);
2526 
2527 	return type_is_pkt_pointer(reg->type);
2528 }
2529 
2530 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2531 {
2532 	const struct bpf_reg_state *reg = reg_state(env, regno);
2533 
2534 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2535 	return reg->type == PTR_TO_FLOW_KEYS;
2536 }
2537 
2538 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2539 				   const struct bpf_reg_state *reg,
2540 				   int off, int size, bool strict)
2541 {
2542 	struct tnum reg_off;
2543 	int ip_align;
2544 
2545 	/* Byte size accesses are always allowed. */
2546 	if (!strict || size == 1)
2547 		return 0;
2548 
2549 	/* For platforms that do not have a Kconfig enabling
2550 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2551 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2552 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2553 	 * to this code only in strict mode where we want to emulate
2554 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2555 	 * unconditional IP align value of '2'.
2556 	 */
2557 	ip_align = 2;
2558 
2559 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2560 	if (!tnum_is_aligned(reg_off, size)) {
2561 		char tn_buf[48];
2562 
2563 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2564 		verbose(env,
2565 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2566 			ip_align, tn_buf, reg->off, off, size);
2567 		return -EACCES;
2568 	}
2569 
2570 	return 0;
2571 }
2572 
2573 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2574 				       const struct bpf_reg_state *reg,
2575 				       const char *pointer_desc,
2576 				       int off, int size, bool strict)
2577 {
2578 	struct tnum reg_off;
2579 
2580 	/* Byte size accesses are always allowed. */
2581 	if (!strict || size == 1)
2582 		return 0;
2583 
2584 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2585 	if (!tnum_is_aligned(reg_off, size)) {
2586 		char tn_buf[48];
2587 
2588 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2589 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2590 			pointer_desc, tn_buf, reg->off, off, size);
2591 		return -EACCES;
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 static int check_ptr_alignment(struct bpf_verifier_env *env,
2598 			       const struct bpf_reg_state *reg, int off,
2599 			       int size, bool strict_alignment_once)
2600 {
2601 	bool strict = env->strict_alignment || strict_alignment_once;
2602 	const char *pointer_desc = "";
2603 
2604 	switch (reg->type) {
2605 	case PTR_TO_PACKET:
2606 	case PTR_TO_PACKET_META:
2607 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2608 		 * right in front, treat it the very same way.
2609 		 */
2610 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2611 	case PTR_TO_FLOW_KEYS:
2612 		pointer_desc = "flow keys ";
2613 		break;
2614 	case PTR_TO_MAP_VALUE:
2615 		pointer_desc = "value ";
2616 		break;
2617 	case PTR_TO_CTX:
2618 		pointer_desc = "context ";
2619 		break;
2620 	case PTR_TO_STACK:
2621 		pointer_desc = "stack ";
2622 		/* The stack spill tracking logic in check_stack_write()
2623 		 * and check_stack_read() relies on stack accesses being
2624 		 * aligned.
2625 		 */
2626 		strict = true;
2627 		break;
2628 	case PTR_TO_SOCKET:
2629 		pointer_desc = "sock ";
2630 		break;
2631 	case PTR_TO_SOCK_COMMON:
2632 		pointer_desc = "sock_common ";
2633 		break;
2634 	case PTR_TO_TCP_SOCK:
2635 		pointer_desc = "tcp_sock ";
2636 		break;
2637 	case PTR_TO_XDP_SOCK:
2638 		pointer_desc = "xdp_sock ";
2639 		break;
2640 	default:
2641 		break;
2642 	}
2643 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2644 					   strict);
2645 }
2646 
2647 static int update_stack_depth(struct bpf_verifier_env *env,
2648 			      const struct bpf_func_state *func,
2649 			      int off)
2650 {
2651 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2652 
2653 	if (stack >= -off)
2654 		return 0;
2655 
2656 	/* update known max for given subprogram */
2657 	env->subprog_info[func->subprogno].stack_depth = -off;
2658 	return 0;
2659 }
2660 
2661 /* starting from main bpf function walk all instructions of the function
2662  * and recursively walk all callees that given function can call.
2663  * Ignore jump and exit insns.
2664  * Since recursion is prevented by check_cfg() this algorithm
2665  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2666  */
2667 static int check_max_stack_depth(struct bpf_verifier_env *env)
2668 {
2669 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2670 	struct bpf_subprog_info *subprog = env->subprog_info;
2671 	struct bpf_insn *insn = env->prog->insnsi;
2672 	int ret_insn[MAX_CALL_FRAMES];
2673 	int ret_prog[MAX_CALL_FRAMES];
2674 
2675 process_func:
2676 	/* round up to 32-bytes, since this is granularity
2677 	 * of interpreter stack size
2678 	 */
2679 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2680 	if (depth > MAX_BPF_STACK) {
2681 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2682 			frame + 1, depth);
2683 		return -EACCES;
2684 	}
2685 continue_func:
2686 	subprog_end = subprog[idx + 1].start;
2687 	for (; i < subprog_end; i++) {
2688 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2689 			continue;
2690 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2691 			continue;
2692 		/* remember insn and function to return to */
2693 		ret_insn[frame] = i + 1;
2694 		ret_prog[frame] = idx;
2695 
2696 		/* find the callee */
2697 		i = i + insn[i].imm + 1;
2698 		idx = find_subprog(env, i);
2699 		if (idx < 0) {
2700 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2701 				  i);
2702 			return -EFAULT;
2703 		}
2704 		frame++;
2705 		if (frame >= MAX_CALL_FRAMES) {
2706 			verbose(env, "the call stack of %d frames is too deep !\n",
2707 				frame);
2708 			return -E2BIG;
2709 		}
2710 		goto process_func;
2711 	}
2712 	/* end of for() loop means the last insn of the 'subprog'
2713 	 * was reached. Doesn't matter whether it was JA or EXIT
2714 	 */
2715 	if (frame == 0)
2716 		return 0;
2717 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2718 	frame--;
2719 	i = ret_insn[frame];
2720 	idx = ret_prog[frame];
2721 	goto continue_func;
2722 }
2723 
2724 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2725 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2726 				  const struct bpf_insn *insn, int idx)
2727 {
2728 	int start = idx + insn->imm + 1, subprog;
2729 
2730 	subprog = find_subprog(env, start);
2731 	if (subprog < 0) {
2732 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2733 			  start);
2734 		return -EFAULT;
2735 	}
2736 	return env->subprog_info[subprog].stack_depth;
2737 }
2738 #endif
2739 
2740 static int check_ctx_reg(struct bpf_verifier_env *env,
2741 			 const struct bpf_reg_state *reg, int regno)
2742 {
2743 	/* Access to ctx or passing it to a helper is only allowed in
2744 	 * its original, unmodified form.
2745 	 */
2746 
2747 	if (reg->off) {
2748 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2749 			regno, reg->off);
2750 		return -EACCES;
2751 	}
2752 
2753 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2754 		char tn_buf[48];
2755 
2756 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2757 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2758 		return -EACCES;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2765 				  const struct bpf_reg_state *reg,
2766 				  int regno, int off, int size)
2767 {
2768 	if (off < 0) {
2769 		verbose(env,
2770 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2771 			regno, off, size);
2772 		return -EACCES;
2773 	}
2774 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2775 		char tn_buf[48];
2776 
2777 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2778 		verbose(env,
2779 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2780 			regno, off, tn_buf);
2781 		return -EACCES;
2782 	}
2783 	if (off + size > env->prog->aux->max_tp_access)
2784 		env->prog->aux->max_tp_access = off + size;
2785 
2786 	return 0;
2787 }
2788 
2789 
2790 /* truncate register to smaller size (in bytes)
2791  * must be called with size < BPF_REG_SIZE
2792  */
2793 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2794 {
2795 	u64 mask;
2796 
2797 	/* clear high bits in bit representation */
2798 	reg->var_off = tnum_cast(reg->var_off, size);
2799 
2800 	/* fix arithmetic bounds */
2801 	mask = ((u64)1 << (size * 8)) - 1;
2802 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2803 		reg->umin_value &= mask;
2804 		reg->umax_value &= mask;
2805 	} else {
2806 		reg->umin_value = 0;
2807 		reg->umax_value = mask;
2808 	}
2809 	reg->smin_value = reg->umin_value;
2810 	reg->smax_value = reg->umax_value;
2811 }
2812 
2813 static bool bpf_map_is_rdonly(const struct bpf_map *map)
2814 {
2815 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2816 }
2817 
2818 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2819 {
2820 	void *ptr;
2821 	u64 addr;
2822 	int err;
2823 
2824 	err = map->ops->map_direct_value_addr(map, &addr, off);
2825 	if (err)
2826 		return err;
2827 	ptr = (void *)(long)addr + off;
2828 
2829 	switch (size) {
2830 	case sizeof(u8):
2831 		*val = (u64)*(u8 *)ptr;
2832 		break;
2833 	case sizeof(u16):
2834 		*val = (u64)*(u16 *)ptr;
2835 		break;
2836 	case sizeof(u32):
2837 		*val = (u64)*(u32 *)ptr;
2838 		break;
2839 	case sizeof(u64):
2840 		*val = *(u64 *)ptr;
2841 		break;
2842 	default:
2843 		return -EINVAL;
2844 	}
2845 	return 0;
2846 }
2847 
2848 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2849 				   struct bpf_reg_state *regs,
2850 				   int regno, int off, int size,
2851 				   enum bpf_access_type atype,
2852 				   int value_regno)
2853 {
2854 	struct bpf_reg_state *reg = regs + regno;
2855 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2856 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2857 	u32 btf_id;
2858 	int ret;
2859 
2860 	if (atype != BPF_READ) {
2861 		verbose(env, "only read is supported\n");
2862 		return -EACCES;
2863 	}
2864 
2865 	if (off < 0) {
2866 		verbose(env,
2867 			"R%d is ptr_%s invalid negative access: off=%d\n",
2868 			regno, tname, off);
2869 		return -EACCES;
2870 	}
2871 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2872 		char tn_buf[48];
2873 
2874 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2875 		verbose(env,
2876 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2877 			regno, tname, off, tn_buf);
2878 		return -EACCES;
2879 	}
2880 
2881 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
2882 	if (ret < 0)
2883 		return ret;
2884 
2885 	if (ret == SCALAR_VALUE) {
2886 		mark_reg_unknown(env, regs, value_regno);
2887 		return 0;
2888 	}
2889 	mark_reg_known_zero(env, regs, value_regno);
2890 	regs[value_regno].type = PTR_TO_BTF_ID;
2891 	regs[value_regno].btf_id = btf_id;
2892 	return 0;
2893 }
2894 
2895 /* check whether memory at (regno + off) is accessible for t = (read | write)
2896  * if t==write, value_regno is a register which value is stored into memory
2897  * if t==read, value_regno is a register which will receive the value from memory
2898  * if t==write && value_regno==-1, some unknown value is stored into memory
2899  * if t==read && value_regno==-1, don't care what we read from memory
2900  */
2901 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2902 			    int off, int bpf_size, enum bpf_access_type t,
2903 			    int value_regno, bool strict_alignment_once)
2904 {
2905 	struct bpf_reg_state *regs = cur_regs(env);
2906 	struct bpf_reg_state *reg = regs + regno;
2907 	struct bpf_func_state *state;
2908 	int size, err = 0;
2909 
2910 	size = bpf_size_to_bytes(bpf_size);
2911 	if (size < 0)
2912 		return size;
2913 
2914 	/* alignment checks will add in reg->off themselves */
2915 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2916 	if (err)
2917 		return err;
2918 
2919 	/* for access checks, reg->off is just part of off */
2920 	off += reg->off;
2921 
2922 	if (reg->type == PTR_TO_MAP_VALUE) {
2923 		if (t == BPF_WRITE && value_regno >= 0 &&
2924 		    is_pointer_value(env, value_regno)) {
2925 			verbose(env, "R%d leaks addr into map\n", value_regno);
2926 			return -EACCES;
2927 		}
2928 		err = check_map_access_type(env, regno, off, size, t);
2929 		if (err)
2930 			return err;
2931 		err = check_map_access(env, regno, off, size, false);
2932 		if (!err && t == BPF_READ && value_regno >= 0) {
2933 			struct bpf_map *map = reg->map_ptr;
2934 
2935 			/* if map is read-only, track its contents as scalars */
2936 			if (tnum_is_const(reg->var_off) &&
2937 			    bpf_map_is_rdonly(map) &&
2938 			    map->ops->map_direct_value_addr) {
2939 				int map_off = off + reg->var_off.value;
2940 				u64 val = 0;
2941 
2942 				err = bpf_map_direct_read(map, map_off, size,
2943 							  &val);
2944 				if (err)
2945 					return err;
2946 
2947 				regs[value_regno].type = SCALAR_VALUE;
2948 				__mark_reg_known(&regs[value_regno], val);
2949 			} else {
2950 				mark_reg_unknown(env, regs, value_regno);
2951 			}
2952 		}
2953 	} else if (reg->type == PTR_TO_CTX) {
2954 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2955 		u32 btf_id = 0;
2956 
2957 		if (t == BPF_WRITE && value_regno >= 0 &&
2958 		    is_pointer_value(env, value_regno)) {
2959 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2960 			return -EACCES;
2961 		}
2962 
2963 		err = check_ctx_reg(env, reg, regno);
2964 		if (err < 0)
2965 			return err;
2966 
2967 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2968 		if (err)
2969 			verbose_linfo(env, insn_idx, "; ");
2970 		if (!err && t == BPF_READ && value_regno >= 0) {
2971 			/* ctx access returns either a scalar, or a
2972 			 * PTR_TO_PACKET[_META,_END]. In the latter
2973 			 * case, we know the offset is zero.
2974 			 */
2975 			if (reg_type == SCALAR_VALUE) {
2976 				mark_reg_unknown(env, regs, value_regno);
2977 			} else {
2978 				mark_reg_known_zero(env, regs,
2979 						    value_regno);
2980 				if (reg_type_may_be_null(reg_type))
2981 					regs[value_regno].id = ++env->id_gen;
2982 				/* A load of ctx field could have different
2983 				 * actual load size with the one encoded in the
2984 				 * insn. When the dst is PTR, it is for sure not
2985 				 * a sub-register.
2986 				 */
2987 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2988 				if (reg_type == PTR_TO_BTF_ID)
2989 					regs[value_regno].btf_id = btf_id;
2990 			}
2991 			regs[value_regno].type = reg_type;
2992 		}
2993 
2994 	} else if (reg->type == PTR_TO_STACK) {
2995 		off += reg->var_off.value;
2996 		err = check_stack_access(env, reg, off, size);
2997 		if (err)
2998 			return err;
2999 
3000 		state = func(env, reg);
3001 		err = update_stack_depth(env, state, off);
3002 		if (err)
3003 			return err;
3004 
3005 		if (t == BPF_WRITE)
3006 			err = check_stack_write(env, state, off, size,
3007 						value_regno, insn_idx);
3008 		else
3009 			err = check_stack_read(env, state, off, size,
3010 					       value_regno);
3011 	} else if (reg_is_pkt_pointer(reg)) {
3012 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3013 			verbose(env, "cannot write into packet\n");
3014 			return -EACCES;
3015 		}
3016 		if (t == BPF_WRITE && value_regno >= 0 &&
3017 		    is_pointer_value(env, value_regno)) {
3018 			verbose(env, "R%d leaks addr into packet\n",
3019 				value_regno);
3020 			return -EACCES;
3021 		}
3022 		err = check_packet_access(env, regno, off, size, false);
3023 		if (!err && t == BPF_READ && value_regno >= 0)
3024 			mark_reg_unknown(env, regs, value_regno);
3025 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3026 		if (t == BPF_WRITE && value_regno >= 0 &&
3027 		    is_pointer_value(env, value_regno)) {
3028 			verbose(env, "R%d leaks addr into flow keys\n",
3029 				value_regno);
3030 			return -EACCES;
3031 		}
3032 
3033 		err = check_flow_keys_access(env, off, size);
3034 		if (!err && t == BPF_READ && value_regno >= 0)
3035 			mark_reg_unknown(env, regs, value_regno);
3036 	} else if (type_is_sk_pointer(reg->type)) {
3037 		if (t == BPF_WRITE) {
3038 			verbose(env, "R%d cannot write into %s\n",
3039 				regno, reg_type_str[reg->type]);
3040 			return -EACCES;
3041 		}
3042 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3043 		if (!err && value_regno >= 0)
3044 			mark_reg_unknown(env, regs, value_regno);
3045 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3046 		err = check_tp_buffer_access(env, reg, regno, off, size);
3047 		if (!err && t == BPF_READ && value_regno >= 0)
3048 			mark_reg_unknown(env, regs, value_regno);
3049 	} else if (reg->type == PTR_TO_BTF_ID) {
3050 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3051 					      value_regno);
3052 	} else {
3053 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3054 			reg_type_str[reg->type]);
3055 		return -EACCES;
3056 	}
3057 
3058 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3059 	    regs[value_regno].type == SCALAR_VALUE) {
3060 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3061 		coerce_reg_to_size(&regs[value_regno], size);
3062 	}
3063 	return err;
3064 }
3065 
3066 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3067 {
3068 	int err;
3069 
3070 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3071 	    insn->imm != 0) {
3072 		verbose(env, "BPF_XADD uses reserved fields\n");
3073 		return -EINVAL;
3074 	}
3075 
3076 	/* check src1 operand */
3077 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3078 	if (err)
3079 		return err;
3080 
3081 	/* check src2 operand */
3082 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3083 	if (err)
3084 		return err;
3085 
3086 	if (is_pointer_value(env, insn->src_reg)) {
3087 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3088 		return -EACCES;
3089 	}
3090 
3091 	if (is_ctx_reg(env, insn->dst_reg) ||
3092 	    is_pkt_reg(env, insn->dst_reg) ||
3093 	    is_flow_key_reg(env, insn->dst_reg) ||
3094 	    is_sk_reg(env, insn->dst_reg)) {
3095 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3096 			insn->dst_reg,
3097 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3098 		return -EACCES;
3099 	}
3100 
3101 	/* check whether atomic_add can read the memory */
3102 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3103 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3104 	if (err)
3105 		return err;
3106 
3107 	/* check whether atomic_add can write into the same memory */
3108 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3109 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3110 }
3111 
3112 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3113 				  int off, int access_size,
3114 				  bool zero_size_allowed)
3115 {
3116 	struct bpf_reg_state *reg = reg_state(env, regno);
3117 
3118 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3119 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3120 		if (tnum_is_const(reg->var_off)) {
3121 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3122 				regno, off, access_size);
3123 		} else {
3124 			char tn_buf[48];
3125 
3126 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3127 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3128 				regno, tn_buf, access_size);
3129 		}
3130 		return -EACCES;
3131 	}
3132 	return 0;
3133 }
3134 
3135 /* when register 'regno' is passed into function that will read 'access_size'
3136  * bytes from that pointer, make sure that it's within stack boundary
3137  * and all elements of stack are initialized.
3138  * Unlike most pointer bounds-checking functions, this one doesn't take an
3139  * 'off' argument, so it has to add in reg->off itself.
3140  */
3141 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3142 				int access_size, bool zero_size_allowed,
3143 				struct bpf_call_arg_meta *meta)
3144 {
3145 	struct bpf_reg_state *reg = reg_state(env, regno);
3146 	struct bpf_func_state *state = func(env, reg);
3147 	int err, min_off, max_off, i, j, slot, spi;
3148 
3149 	if (reg->type != PTR_TO_STACK) {
3150 		/* Allow zero-byte read from NULL, regardless of pointer type */
3151 		if (zero_size_allowed && access_size == 0 &&
3152 		    register_is_null(reg))
3153 			return 0;
3154 
3155 		verbose(env, "R%d type=%s expected=%s\n", regno,
3156 			reg_type_str[reg->type],
3157 			reg_type_str[PTR_TO_STACK]);
3158 		return -EACCES;
3159 	}
3160 
3161 	if (tnum_is_const(reg->var_off)) {
3162 		min_off = max_off = reg->var_off.value + reg->off;
3163 		err = __check_stack_boundary(env, regno, min_off, access_size,
3164 					     zero_size_allowed);
3165 		if (err)
3166 			return err;
3167 	} else {
3168 		/* Variable offset is prohibited for unprivileged mode for
3169 		 * simplicity since it requires corresponding support in
3170 		 * Spectre masking for stack ALU.
3171 		 * See also retrieve_ptr_limit().
3172 		 */
3173 		if (!env->allow_ptr_leaks) {
3174 			char tn_buf[48];
3175 
3176 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3177 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3178 				regno, tn_buf);
3179 			return -EACCES;
3180 		}
3181 		/* Only initialized buffer on stack is allowed to be accessed
3182 		 * with variable offset. With uninitialized buffer it's hard to
3183 		 * guarantee that whole memory is marked as initialized on
3184 		 * helper return since specific bounds are unknown what may
3185 		 * cause uninitialized stack leaking.
3186 		 */
3187 		if (meta && meta->raw_mode)
3188 			meta = NULL;
3189 
3190 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3191 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3192 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3193 				regno);
3194 			return -EACCES;
3195 		}
3196 		min_off = reg->smin_value + reg->off;
3197 		max_off = reg->smax_value + reg->off;
3198 		err = __check_stack_boundary(env, regno, min_off, access_size,
3199 					     zero_size_allowed);
3200 		if (err) {
3201 			verbose(env, "R%d min value is outside of stack bound\n",
3202 				regno);
3203 			return err;
3204 		}
3205 		err = __check_stack_boundary(env, regno, max_off, access_size,
3206 					     zero_size_allowed);
3207 		if (err) {
3208 			verbose(env, "R%d max value is outside of stack bound\n",
3209 				regno);
3210 			return err;
3211 		}
3212 	}
3213 
3214 	if (meta && meta->raw_mode) {
3215 		meta->access_size = access_size;
3216 		meta->regno = regno;
3217 		return 0;
3218 	}
3219 
3220 	for (i = min_off; i < max_off + access_size; i++) {
3221 		u8 *stype;
3222 
3223 		slot = -i - 1;
3224 		spi = slot / BPF_REG_SIZE;
3225 		if (state->allocated_stack <= slot)
3226 			goto err;
3227 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3228 		if (*stype == STACK_MISC)
3229 			goto mark;
3230 		if (*stype == STACK_ZERO) {
3231 			/* helper can write anything into the stack */
3232 			*stype = STACK_MISC;
3233 			goto mark;
3234 		}
3235 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3236 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3237 			__mark_reg_unknown(&state->stack[spi].spilled_ptr);
3238 			for (j = 0; j < BPF_REG_SIZE; j++)
3239 				state->stack[spi].slot_type[j] = STACK_MISC;
3240 			goto mark;
3241 		}
3242 
3243 err:
3244 		if (tnum_is_const(reg->var_off)) {
3245 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3246 				min_off, i - min_off, access_size);
3247 		} else {
3248 			char tn_buf[48];
3249 
3250 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3251 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3252 				tn_buf, i - min_off, access_size);
3253 		}
3254 		return -EACCES;
3255 mark:
3256 		/* reading any byte out of 8-byte 'spill_slot' will cause
3257 		 * the whole slot to be marked as 'read'
3258 		 */
3259 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3260 			      state->stack[spi].spilled_ptr.parent,
3261 			      REG_LIVE_READ64);
3262 	}
3263 	return update_stack_depth(env, state, min_off);
3264 }
3265 
3266 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3267 				   int access_size, bool zero_size_allowed,
3268 				   struct bpf_call_arg_meta *meta)
3269 {
3270 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3271 
3272 	switch (reg->type) {
3273 	case PTR_TO_PACKET:
3274 	case PTR_TO_PACKET_META:
3275 		return check_packet_access(env, regno, reg->off, access_size,
3276 					   zero_size_allowed);
3277 	case PTR_TO_MAP_VALUE:
3278 		if (check_map_access_type(env, regno, reg->off, access_size,
3279 					  meta && meta->raw_mode ? BPF_WRITE :
3280 					  BPF_READ))
3281 			return -EACCES;
3282 		return check_map_access(env, regno, reg->off, access_size,
3283 					zero_size_allowed);
3284 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3285 		return check_stack_boundary(env, regno, access_size,
3286 					    zero_size_allowed, meta);
3287 	}
3288 }
3289 
3290 /* Implementation details:
3291  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3292  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3293  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3294  * value_or_null->value transition, since the verifier only cares about
3295  * the range of access to valid map value pointer and doesn't care about actual
3296  * address of the map element.
3297  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3298  * reg->id > 0 after value_or_null->value transition. By doing so
3299  * two bpf_map_lookups will be considered two different pointers that
3300  * point to different bpf_spin_locks.
3301  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3302  * dead-locks.
3303  * Since only one bpf_spin_lock is allowed the checks are simpler than
3304  * reg_is_refcounted() logic. The verifier needs to remember only
3305  * one spin_lock instead of array of acquired_refs.
3306  * cur_state->active_spin_lock remembers which map value element got locked
3307  * and clears it after bpf_spin_unlock.
3308  */
3309 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3310 			     bool is_lock)
3311 {
3312 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3313 	struct bpf_verifier_state *cur = env->cur_state;
3314 	bool is_const = tnum_is_const(reg->var_off);
3315 	struct bpf_map *map = reg->map_ptr;
3316 	u64 val = reg->var_off.value;
3317 
3318 	if (reg->type != PTR_TO_MAP_VALUE) {
3319 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3320 		return -EINVAL;
3321 	}
3322 	if (!is_const) {
3323 		verbose(env,
3324 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3325 			regno);
3326 		return -EINVAL;
3327 	}
3328 	if (!map->btf) {
3329 		verbose(env,
3330 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3331 			map->name);
3332 		return -EINVAL;
3333 	}
3334 	if (!map_value_has_spin_lock(map)) {
3335 		if (map->spin_lock_off == -E2BIG)
3336 			verbose(env,
3337 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3338 				map->name);
3339 		else if (map->spin_lock_off == -ENOENT)
3340 			verbose(env,
3341 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3342 				map->name);
3343 		else
3344 			verbose(env,
3345 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3346 				map->name);
3347 		return -EINVAL;
3348 	}
3349 	if (map->spin_lock_off != val + reg->off) {
3350 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3351 			val + reg->off);
3352 		return -EINVAL;
3353 	}
3354 	if (is_lock) {
3355 		if (cur->active_spin_lock) {
3356 			verbose(env,
3357 				"Locking two bpf_spin_locks are not allowed\n");
3358 			return -EINVAL;
3359 		}
3360 		cur->active_spin_lock = reg->id;
3361 	} else {
3362 		if (!cur->active_spin_lock) {
3363 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3364 			return -EINVAL;
3365 		}
3366 		if (cur->active_spin_lock != reg->id) {
3367 			verbose(env, "bpf_spin_unlock of different lock\n");
3368 			return -EINVAL;
3369 		}
3370 		cur->active_spin_lock = 0;
3371 	}
3372 	return 0;
3373 }
3374 
3375 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3376 {
3377 	return type == ARG_PTR_TO_MEM ||
3378 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3379 	       type == ARG_PTR_TO_UNINIT_MEM;
3380 }
3381 
3382 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3383 {
3384 	return type == ARG_CONST_SIZE ||
3385 	       type == ARG_CONST_SIZE_OR_ZERO;
3386 }
3387 
3388 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3389 {
3390 	return type == ARG_PTR_TO_INT ||
3391 	       type == ARG_PTR_TO_LONG;
3392 }
3393 
3394 static int int_ptr_type_to_size(enum bpf_arg_type type)
3395 {
3396 	if (type == ARG_PTR_TO_INT)
3397 		return sizeof(u32);
3398 	else if (type == ARG_PTR_TO_LONG)
3399 		return sizeof(u64);
3400 
3401 	return -EINVAL;
3402 }
3403 
3404 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3405 			  enum bpf_arg_type arg_type,
3406 			  struct bpf_call_arg_meta *meta)
3407 {
3408 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3409 	enum bpf_reg_type expected_type, type = reg->type;
3410 	int err = 0;
3411 
3412 	if (arg_type == ARG_DONTCARE)
3413 		return 0;
3414 
3415 	err = check_reg_arg(env, regno, SRC_OP);
3416 	if (err)
3417 		return err;
3418 
3419 	if (arg_type == ARG_ANYTHING) {
3420 		if (is_pointer_value(env, regno)) {
3421 			verbose(env, "R%d leaks addr into helper function\n",
3422 				regno);
3423 			return -EACCES;
3424 		}
3425 		return 0;
3426 	}
3427 
3428 	if (type_is_pkt_pointer(type) &&
3429 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3430 		verbose(env, "helper access to the packet is not allowed\n");
3431 		return -EACCES;
3432 	}
3433 
3434 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3435 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3436 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3437 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3438 		expected_type = PTR_TO_STACK;
3439 		if (register_is_null(reg) &&
3440 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3441 			/* final test in check_stack_boundary() */;
3442 		else if (!type_is_pkt_pointer(type) &&
3443 			 type != PTR_TO_MAP_VALUE &&
3444 			 type != expected_type)
3445 			goto err_type;
3446 	} else if (arg_type == ARG_CONST_SIZE ||
3447 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3448 		expected_type = SCALAR_VALUE;
3449 		if (type != expected_type)
3450 			goto err_type;
3451 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3452 		expected_type = CONST_PTR_TO_MAP;
3453 		if (type != expected_type)
3454 			goto err_type;
3455 	} else if (arg_type == ARG_PTR_TO_CTX) {
3456 		expected_type = PTR_TO_CTX;
3457 		if (type != expected_type)
3458 			goto err_type;
3459 		err = check_ctx_reg(env, reg, regno);
3460 		if (err < 0)
3461 			return err;
3462 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3463 		expected_type = PTR_TO_SOCK_COMMON;
3464 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3465 		if (!type_is_sk_pointer(type))
3466 			goto err_type;
3467 		if (reg->ref_obj_id) {
3468 			if (meta->ref_obj_id) {
3469 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3470 					regno, reg->ref_obj_id,
3471 					meta->ref_obj_id);
3472 				return -EFAULT;
3473 			}
3474 			meta->ref_obj_id = reg->ref_obj_id;
3475 		}
3476 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3477 		expected_type = PTR_TO_SOCKET;
3478 		if (type != expected_type)
3479 			goto err_type;
3480 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3481 		expected_type = PTR_TO_BTF_ID;
3482 		if (type != expected_type)
3483 			goto err_type;
3484 		if (reg->btf_id != meta->btf_id) {
3485 			verbose(env, "Helper has type %s got %s in R%d\n",
3486 				kernel_type_name(meta->btf_id),
3487 				kernel_type_name(reg->btf_id), regno);
3488 
3489 			return -EACCES;
3490 		}
3491 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3492 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3493 				regno);
3494 			return -EACCES;
3495 		}
3496 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3497 		if (meta->func_id == BPF_FUNC_spin_lock) {
3498 			if (process_spin_lock(env, regno, true))
3499 				return -EACCES;
3500 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3501 			if (process_spin_lock(env, regno, false))
3502 				return -EACCES;
3503 		} else {
3504 			verbose(env, "verifier internal error\n");
3505 			return -EFAULT;
3506 		}
3507 	} else if (arg_type_is_mem_ptr(arg_type)) {
3508 		expected_type = PTR_TO_STACK;
3509 		/* One exception here. In case function allows for NULL to be
3510 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3511 		 * happens during stack boundary checking.
3512 		 */
3513 		if (register_is_null(reg) &&
3514 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3515 			/* final test in check_stack_boundary() */;
3516 		else if (!type_is_pkt_pointer(type) &&
3517 			 type != PTR_TO_MAP_VALUE &&
3518 			 type != expected_type)
3519 			goto err_type;
3520 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3521 	} else if (arg_type_is_int_ptr(arg_type)) {
3522 		expected_type = PTR_TO_STACK;
3523 		if (!type_is_pkt_pointer(type) &&
3524 		    type != PTR_TO_MAP_VALUE &&
3525 		    type != expected_type)
3526 			goto err_type;
3527 	} else {
3528 		verbose(env, "unsupported arg_type %d\n", arg_type);
3529 		return -EFAULT;
3530 	}
3531 
3532 	if (arg_type == ARG_CONST_MAP_PTR) {
3533 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3534 		meta->map_ptr = reg->map_ptr;
3535 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3536 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3537 		 * check that [key, key + map->key_size) are within
3538 		 * stack limits and initialized
3539 		 */
3540 		if (!meta->map_ptr) {
3541 			/* in function declaration map_ptr must come before
3542 			 * map_key, so that it's verified and known before
3543 			 * we have to check map_key here. Otherwise it means
3544 			 * that kernel subsystem misconfigured verifier
3545 			 */
3546 			verbose(env, "invalid map_ptr to access map->key\n");
3547 			return -EACCES;
3548 		}
3549 		err = check_helper_mem_access(env, regno,
3550 					      meta->map_ptr->key_size, false,
3551 					      NULL);
3552 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3553 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3554 		    !register_is_null(reg)) ||
3555 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3556 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3557 		 * check [value, value + map->value_size) validity
3558 		 */
3559 		if (!meta->map_ptr) {
3560 			/* kernel subsystem misconfigured verifier */
3561 			verbose(env, "invalid map_ptr to access map->value\n");
3562 			return -EACCES;
3563 		}
3564 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3565 		err = check_helper_mem_access(env, regno,
3566 					      meta->map_ptr->value_size, false,
3567 					      meta);
3568 	} else if (arg_type_is_mem_size(arg_type)) {
3569 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3570 
3571 		/* remember the mem_size which may be used later
3572 		 * to refine return values.
3573 		 */
3574 		meta->msize_smax_value = reg->smax_value;
3575 		meta->msize_umax_value = reg->umax_value;
3576 
3577 		/* The register is SCALAR_VALUE; the access check
3578 		 * happens using its boundaries.
3579 		 */
3580 		if (!tnum_is_const(reg->var_off))
3581 			/* For unprivileged variable accesses, disable raw
3582 			 * mode so that the program is required to
3583 			 * initialize all the memory that the helper could
3584 			 * just partially fill up.
3585 			 */
3586 			meta = NULL;
3587 
3588 		if (reg->smin_value < 0) {
3589 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3590 				regno);
3591 			return -EACCES;
3592 		}
3593 
3594 		if (reg->umin_value == 0) {
3595 			err = check_helper_mem_access(env, regno - 1, 0,
3596 						      zero_size_allowed,
3597 						      meta);
3598 			if (err)
3599 				return err;
3600 		}
3601 
3602 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3603 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3604 				regno);
3605 			return -EACCES;
3606 		}
3607 		err = check_helper_mem_access(env, regno - 1,
3608 					      reg->umax_value,
3609 					      zero_size_allowed, meta);
3610 		if (!err)
3611 			err = mark_chain_precision(env, regno);
3612 	} else if (arg_type_is_int_ptr(arg_type)) {
3613 		int size = int_ptr_type_to_size(arg_type);
3614 
3615 		err = check_helper_mem_access(env, regno, size, false, meta);
3616 		if (err)
3617 			return err;
3618 		err = check_ptr_alignment(env, reg, 0, size, true);
3619 	}
3620 
3621 	return err;
3622 err_type:
3623 	verbose(env, "R%d type=%s expected=%s\n", regno,
3624 		reg_type_str[type], reg_type_str[expected_type]);
3625 	return -EACCES;
3626 }
3627 
3628 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3629 					struct bpf_map *map, int func_id)
3630 {
3631 	if (!map)
3632 		return 0;
3633 
3634 	/* We need a two way check, first is from map perspective ... */
3635 	switch (map->map_type) {
3636 	case BPF_MAP_TYPE_PROG_ARRAY:
3637 		if (func_id != BPF_FUNC_tail_call)
3638 			goto error;
3639 		break;
3640 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3641 		if (func_id != BPF_FUNC_perf_event_read &&
3642 		    func_id != BPF_FUNC_perf_event_output &&
3643 		    func_id != BPF_FUNC_skb_output &&
3644 		    func_id != BPF_FUNC_perf_event_read_value)
3645 			goto error;
3646 		break;
3647 	case BPF_MAP_TYPE_STACK_TRACE:
3648 		if (func_id != BPF_FUNC_get_stackid)
3649 			goto error;
3650 		break;
3651 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3652 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3653 		    func_id != BPF_FUNC_current_task_under_cgroup)
3654 			goto error;
3655 		break;
3656 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3657 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3658 		if (func_id != BPF_FUNC_get_local_storage)
3659 			goto error;
3660 		break;
3661 	case BPF_MAP_TYPE_DEVMAP:
3662 	case BPF_MAP_TYPE_DEVMAP_HASH:
3663 		if (func_id != BPF_FUNC_redirect_map &&
3664 		    func_id != BPF_FUNC_map_lookup_elem)
3665 			goto error;
3666 		break;
3667 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3668 	 * appear.
3669 	 */
3670 	case BPF_MAP_TYPE_CPUMAP:
3671 		if (func_id != BPF_FUNC_redirect_map)
3672 			goto error;
3673 		break;
3674 	case BPF_MAP_TYPE_XSKMAP:
3675 		if (func_id != BPF_FUNC_redirect_map &&
3676 		    func_id != BPF_FUNC_map_lookup_elem)
3677 			goto error;
3678 		break;
3679 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3680 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3681 		if (func_id != BPF_FUNC_map_lookup_elem)
3682 			goto error;
3683 		break;
3684 	case BPF_MAP_TYPE_SOCKMAP:
3685 		if (func_id != BPF_FUNC_sk_redirect_map &&
3686 		    func_id != BPF_FUNC_sock_map_update &&
3687 		    func_id != BPF_FUNC_map_delete_elem &&
3688 		    func_id != BPF_FUNC_msg_redirect_map)
3689 			goto error;
3690 		break;
3691 	case BPF_MAP_TYPE_SOCKHASH:
3692 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3693 		    func_id != BPF_FUNC_sock_hash_update &&
3694 		    func_id != BPF_FUNC_map_delete_elem &&
3695 		    func_id != BPF_FUNC_msg_redirect_hash)
3696 			goto error;
3697 		break;
3698 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3699 		if (func_id != BPF_FUNC_sk_select_reuseport)
3700 			goto error;
3701 		break;
3702 	case BPF_MAP_TYPE_QUEUE:
3703 	case BPF_MAP_TYPE_STACK:
3704 		if (func_id != BPF_FUNC_map_peek_elem &&
3705 		    func_id != BPF_FUNC_map_pop_elem &&
3706 		    func_id != BPF_FUNC_map_push_elem)
3707 			goto error;
3708 		break;
3709 	case BPF_MAP_TYPE_SK_STORAGE:
3710 		if (func_id != BPF_FUNC_sk_storage_get &&
3711 		    func_id != BPF_FUNC_sk_storage_delete)
3712 			goto error;
3713 		break;
3714 	default:
3715 		break;
3716 	}
3717 
3718 	/* ... and second from the function itself. */
3719 	switch (func_id) {
3720 	case BPF_FUNC_tail_call:
3721 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3722 			goto error;
3723 		if (env->subprog_cnt > 1) {
3724 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3725 			return -EINVAL;
3726 		}
3727 		break;
3728 	case BPF_FUNC_perf_event_read:
3729 	case BPF_FUNC_perf_event_output:
3730 	case BPF_FUNC_perf_event_read_value:
3731 	case BPF_FUNC_skb_output:
3732 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3733 			goto error;
3734 		break;
3735 	case BPF_FUNC_get_stackid:
3736 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3737 			goto error;
3738 		break;
3739 	case BPF_FUNC_current_task_under_cgroup:
3740 	case BPF_FUNC_skb_under_cgroup:
3741 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3742 			goto error;
3743 		break;
3744 	case BPF_FUNC_redirect_map:
3745 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3746 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3747 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3748 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3749 			goto error;
3750 		break;
3751 	case BPF_FUNC_sk_redirect_map:
3752 	case BPF_FUNC_msg_redirect_map:
3753 	case BPF_FUNC_sock_map_update:
3754 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3755 			goto error;
3756 		break;
3757 	case BPF_FUNC_sk_redirect_hash:
3758 	case BPF_FUNC_msg_redirect_hash:
3759 	case BPF_FUNC_sock_hash_update:
3760 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3761 			goto error;
3762 		break;
3763 	case BPF_FUNC_get_local_storage:
3764 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3765 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3766 			goto error;
3767 		break;
3768 	case BPF_FUNC_sk_select_reuseport:
3769 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3770 			goto error;
3771 		break;
3772 	case BPF_FUNC_map_peek_elem:
3773 	case BPF_FUNC_map_pop_elem:
3774 	case BPF_FUNC_map_push_elem:
3775 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3776 		    map->map_type != BPF_MAP_TYPE_STACK)
3777 			goto error;
3778 		break;
3779 	case BPF_FUNC_sk_storage_get:
3780 	case BPF_FUNC_sk_storage_delete:
3781 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3782 			goto error;
3783 		break;
3784 	default:
3785 		break;
3786 	}
3787 
3788 	return 0;
3789 error:
3790 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3791 		map->map_type, func_id_name(func_id), func_id);
3792 	return -EINVAL;
3793 }
3794 
3795 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3796 {
3797 	int count = 0;
3798 
3799 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3800 		count++;
3801 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3802 		count++;
3803 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3804 		count++;
3805 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3806 		count++;
3807 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3808 		count++;
3809 
3810 	/* We only support one arg being in raw mode at the moment,
3811 	 * which is sufficient for the helper functions we have
3812 	 * right now.
3813 	 */
3814 	return count <= 1;
3815 }
3816 
3817 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3818 				    enum bpf_arg_type arg_next)
3819 {
3820 	return (arg_type_is_mem_ptr(arg_curr) &&
3821 	        !arg_type_is_mem_size(arg_next)) ||
3822 	       (!arg_type_is_mem_ptr(arg_curr) &&
3823 		arg_type_is_mem_size(arg_next));
3824 }
3825 
3826 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3827 {
3828 	/* bpf_xxx(..., buf, len) call will access 'len'
3829 	 * bytes from memory 'buf'. Both arg types need
3830 	 * to be paired, so make sure there's no buggy
3831 	 * helper function specification.
3832 	 */
3833 	if (arg_type_is_mem_size(fn->arg1_type) ||
3834 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3835 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3836 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3837 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3838 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3839 		return false;
3840 
3841 	return true;
3842 }
3843 
3844 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3845 {
3846 	int count = 0;
3847 
3848 	if (arg_type_may_be_refcounted(fn->arg1_type))
3849 		count++;
3850 	if (arg_type_may_be_refcounted(fn->arg2_type))
3851 		count++;
3852 	if (arg_type_may_be_refcounted(fn->arg3_type))
3853 		count++;
3854 	if (arg_type_may_be_refcounted(fn->arg4_type))
3855 		count++;
3856 	if (arg_type_may_be_refcounted(fn->arg5_type))
3857 		count++;
3858 
3859 	/* A reference acquiring function cannot acquire
3860 	 * another refcounted ptr.
3861 	 */
3862 	if (is_acquire_function(func_id) && count)
3863 		return false;
3864 
3865 	/* We only support one arg being unreferenced at the moment,
3866 	 * which is sufficient for the helper functions we have right now.
3867 	 */
3868 	return count <= 1;
3869 }
3870 
3871 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3872 {
3873 	return check_raw_mode_ok(fn) &&
3874 	       check_arg_pair_ok(fn) &&
3875 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3876 }
3877 
3878 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3879  * are now invalid, so turn them into unknown SCALAR_VALUE.
3880  */
3881 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3882 				     struct bpf_func_state *state)
3883 {
3884 	struct bpf_reg_state *regs = state->regs, *reg;
3885 	int i;
3886 
3887 	for (i = 0; i < MAX_BPF_REG; i++)
3888 		if (reg_is_pkt_pointer_any(&regs[i]))
3889 			mark_reg_unknown(env, regs, i);
3890 
3891 	bpf_for_each_spilled_reg(i, state, reg) {
3892 		if (!reg)
3893 			continue;
3894 		if (reg_is_pkt_pointer_any(reg))
3895 			__mark_reg_unknown(reg);
3896 	}
3897 }
3898 
3899 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3900 {
3901 	struct bpf_verifier_state *vstate = env->cur_state;
3902 	int i;
3903 
3904 	for (i = 0; i <= vstate->curframe; i++)
3905 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3906 }
3907 
3908 static void release_reg_references(struct bpf_verifier_env *env,
3909 				   struct bpf_func_state *state,
3910 				   int ref_obj_id)
3911 {
3912 	struct bpf_reg_state *regs = state->regs, *reg;
3913 	int i;
3914 
3915 	for (i = 0; i < MAX_BPF_REG; i++)
3916 		if (regs[i].ref_obj_id == ref_obj_id)
3917 			mark_reg_unknown(env, regs, i);
3918 
3919 	bpf_for_each_spilled_reg(i, state, reg) {
3920 		if (!reg)
3921 			continue;
3922 		if (reg->ref_obj_id == ref_obj_id)
3923 			__mark_reg_unknown(reg);
3924 	}
3925 }
3926 
3927 /* The pointer with the specified id has released its reference to kernel
3928  * resources. Identify all copies of the same pointer and clear the reference.
3929  */
3930 static int release_reference(struct bpf_verifier_env *env,
3931 			     int ref_obj_id)
3932 {
3933 	struct bpf_verifier_state *vstate = env->cur_state;
3934 	int err;
3935 	int i;
3936 
3937 	err = release_reference_state(cur_func(env), ref_obj_id);
3938 	if (err)
3939 		return err;
3940 
3941 	for (i = 0; i <= vstate->curframe; i++)
3942 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3943 
3944 	return 0;
3945 }
3946 
3947 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3948 			   int *insn_idx)
3949 {
3950 	struct bpf_verifier_state *state = env->cur_state;
3951 	struct bpf_func_state *caller, *callee;
3952 	int i, err, subprog, target_insn;
3953 
3954 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3955 		verbose(env, "the call stack of %d frames is too deep\n",
3956 			state->curframe + 2);
3957 		return -E2BIG;
3958 	}
3959 
3960 	target_insn = *insn_idx + insn->imm;
3961 	subprog = find_subprog(env, target_insn + 1);
3962 	if (subprog < 0) {
3963 		verbose(env, "verifier bug. No program starts at insn %d\n",
3964 			target_insn + 1);
3965 		return -EFAULT;
3966 	}
3967 
3968 	caller = state->frame[state->curframe];
3969 	if (state->frame[state->curframe + 1]) {
3970 		verbose(env, "verifier bug. Frame %d already allocated\n",
3971 			state->curframe + 1);
3972 		return -EFAULT;
3973 	}
3974 
3975 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3976 	if (!callee)
3977 		return -ENOMEM;
3978 	state->frame[state->curframe + 1] = callee;
3979 
3980 	/* callee cannot access r0, r6 - r9 for reading and has to write
3981 	 * into its own stack before reading from it.
3982 	 * callee can read/write into caller's stack
3983 	 */
3984 	init_func_state(env, callee,
3985 			/* remember the callsite, it will be used by bpf_exit */
3986 			*insn_idx /* callsite */,
3987 			state->curframe + 1 /* frameno within this callchain */,
3988 			subprog /* subprog number within this prog */);
3989 
3990 	/* Transfer references to the callee */
3991 	err = transfer_reference_state(callee, caller);
3992 	if (err)
3993 		return err;
3994 
3995 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3996 	 * pointers, which connects us up to the liveness chain
3997 	 */
3998 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3999 		callee->regs[i] = caller->regs[i];
4000 
4001 	/* after the call registers r0 - r5 were scratched */
4002 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4003 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
4004 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4005 	}
4006 
4007 	/* only increment it after check_reg_arg() finished */
4008 	state->curframe++;
4009 
4010 	if (btf_check_func_arg_match(env, subprog))
4011 		return -EINVAL;
4012 
4013 	/* and go analyze first insn of the callee */
4014 	*insn_idx = target_insn;
4015 
4016 	if (env->log.level & BPF_LOG_LEVEL) {
4017 		verbose(env, "caller:\n");
4018 		print_verifier_state(env, caller);
4019 		verbose(env, "callee:\n");
4020 		print_verifier_state(env, callee);
4021 	}
4022 	return 0;
4023 }
4024 
4025 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4026 {
4027 	struct bpf_verifier_state *state = env->cur_state;
4028 	struct bpf_func_state *caller, *callee;
4029 	struct bpf_reg_state *r0;
4030 	int err;
4031 
4032 	callee = state->frame[state->curframe];
4033 	r0 = &callee->regs[BPF_REG_0];
4034 	if (r0->type == PTR_TO_STACK) {
4035 		/* technically it's ok to return caller's stack pointer
4036 		 * (or caller's caller's pointer) back to the caller,
4037 		 * since these pointers are valid. Only current stack
4038 		 * pointer will be invalid as soon as function exits,
4039 		 * but let's be conservative
4040 		 */
4041 		verbose(env, "cannot return stack pointer to the caller\n");
4042 		return -EINVAL;
4043 	}
4044 
4045 	state->curframe--;
4046 	caller = state->frame[state->curframe];
4047 	/* return to the caller whatever r0 had in the callee */
4048 	caller->regs[BPF_REG_0] = *r0;
4049 
4050 	/* Transfer references to the caller */
4051 	err = transfer_reference_state(caller, callee);
4052 	if (err)
4053 		return err;
4054 
4055 	*insn_idx = callee->callsite + 1;
4056 	if (env->log.level & BPF_LOG_LEVEL) {
4057 		verbose(env, "returning from callee:\n");
4058 		print_verifier_state(env, callee);
4059 		verbose(env, "to caller at %d:\n", *insn_idx);
4060 		print_verifier_state(env, caller);
4061 	}
4062 	/* clear everything in the callee */
4063 	free_func_state(callee);
4064 	state->frame[state->curframe + 1] = NULL;
4065 	return 0;
4066 }
4067 
4068 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4069 				   int func_id,
4070 				   struct bpf_call_arg_meta *meta)
4071 {
4072 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4073 
4074 	if (ret_type != RET_INTEGER ||
4075 	    (func_id != BPF_FUNC_get_stack &&
4076 	     func_id != BPF_FUNC_probe_read_str))
4077 		return;
4078 
4079 	ret_reg->smax_value = meta->msize_smax_value;
4080 	ret_reg->umax_value = meta->msize_umax_value;
4081 	__reg_deduce_bounds(ret_reg);
4082 	__reg_bound_offset(ret_reg);
4083 }
4084 
4085 static int
4086 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4087 		int func_id, int insn_idx)
4088 {
4089 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4090 	struct bpf_map *map = meta->map_ptr;
4091 
4092 	if (func_id != BPF_FUNC_tail_call &&
4093 	    func_id != BPF_FUNC_map_lookup_elem &&
4094 	    func_id != BPF_FUNC_map_update_elem &&
4095 	    func_id != BPF_FUNC_map_delete_elem &&
4096 	    func_id != BPF_FUNC_map_push_elem &&
4097 	    func_id != BPF_FUNC_map_pop_elem &&
4098 	    func_id != BPF_FUNC_map_peek_elem)
4099 		return 0;
4100 
4101 	if (map == NULL) {
4102 		verbose(env, "kernel subsystem misconfigured verifier\n");
4103 		return -EINVAL;
4104 	}
4105 
4106 	/* In case of read-only, some additional restrictions
4107 	 * need to be applied in order to prevent altering the
4108 	 * state of the map from program side.
4109 	 */
4110 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4111 	    (func_id == BPF_FUNC_map_delete_elem ||
4112 	     func_id == BPF_FUNC_map_update_elem ||
4113 	     func_id == BPF_FUNC_map_push_elem ||
4114 	     func_id == BPF_FUNC_map_pop_elem)) {
4115 		verbose(env, "write into map forbidden\n");
4116 		return -EACCES;
4117 	}
4118 
4119 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4120 		bpf_map_ptr_store(aux, meta->map_ptr,
4121 				  meta->map_ptr->unpriv_array);
4122 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4123 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4124 				  meta->map_ptr->unpriv_array);
4125 	return 0;
4126 }
4127 
4128 static int
4129 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4130 		int func_id, int insn_idx)
4131 {
4132 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4133 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4134 	struct bpf_map *map = meta->map_ptr;
4135 	struct tnum range;
4136 	u64 val;
4137 
4138 	if (func_id != BPF_FUNC_tail_call)
4139 		return 0;
4140 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4141 		verbose(env, "kernel subsystem misconfigured verifier\n");
4142 		return -EINVAL;
4143 	}
4144 
4145 	range = tnum_range(0, map->max_entries - 1);
4146 	reg = &regs[BPF_REG_3];
4147 
4148 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4149 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4150 		return 0;
4151 	}
4152 
4153 	val = reg->var_off.value;
4154 	if (bpf_map_key_unseen(aux))
4155 		bpf_map_key_store(aux, val);
4156 	else if (!bpf_map_key_poisoned(aux) &&
4157 		  bpf_map_key_immediate(aux) != val)
4158 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4159 	return 0;
4160 }
4161 
4162 static int check_reference_leak(struct bpf_verifier_env *env)
4163 {
4164 	struct bpf_func_state *state = cur_func(env);
4165 	int i;
4166 
4167 	for (i = 0; i < state->acquired_refs; i++) {
4168 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4169 			state->refs[i].id, state->refs[i].insn_idx);
4170 	}
4171 	return state->acquired_refs ? -EINVAL : 0;
4172 }
4173 
4174 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4175 {
4176 	const struct bpf_func_proto *fn = NULL;
4177 	struct bpf_reg_state *regs;
4178 	struct bpf_call_arg_meta meta;
4179 	bool changes_data;
4180 	int i, err;
4181 
4182 	/* find function prototype */
4183 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4184 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4185 			func_id);
4186 		return -EINVAL;
4187 	}
4188 
4189 	if (env->ops->get_func_proto)
4190 		fn = env->ops->get_func_proto(func_id, env->prog);
4191 	if (!fn) {
4192 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4193 			func_id);
4194 		return -EINVAL;
4195 	}
4196 
4197 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4198 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4199 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4200 		return -EINVAL;
4201 	}
4202 
4203 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4204 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4205 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4206 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4207 			func_id_name(func_id), func_id);
4208 		return -EINVAL;
4209 	}
4210 
4211 	memset(&meta, 0, sizeof(meta));
4212 	meta.pkt_access = fn->pkt_access;
4213 
4214 	err = check_func_proto(fn, func_id);
4215 	if (err) {
4216 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4217 			func_id_name(func_id), func_id);
4218 		return err;
4219 	}
4220 
4221 	meta.func_id = func_id;
4222 	/* check args */
4223 	for (i = 0; i < 5; i++) {
4224 		err = btf_resolve_helper_id(&env->log, fn, i);
4225 		if (err > 0)
4226 			meta.btf_id = err;
4227 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4228 		if (err)
4229 			return err;
4230 	}
4231 
4232 	err = record_func_map(env, &meta, func_id, insn_idx);
4233 	if (err)
4234 		return err;
4235 
4236 	err = record_func_key(env, &meta, func_id, insn_idx);
4237 	if (err)
4238 		return err;
4239 
4240 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4241 	 * is inferred from register state.
4242 	 */
4243 	for (i = 0; i < meta.access_size; i++) {
4244 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4245 				       BPF_WRITE, -1, false);
4246 		if (err)
4247 			return err;
4248 	}
4249 
4250 	if (func_id == BPF_FUNC_tail_call) {
4251 		err = check_reference_leak(env);
4252 		if (err) {
4253 			verbose(env, "tail_call would lead to reference leak\n");
4254 			return err;
4255 		}
4256 	} else if (is_release_function(func_id)) {
4257 		err = release_reference(env, meta.ref_obj_id);
4258 		if (err) {
4259 			verbose(env, "func %s#%d reference has not been acquired before\n",
4260 				func_id_name(func_id), func_id);
4261 			return err;
4262 		}
4263 	}
4264 
4265 	regs = cur_regs(env);
4266 
4267 	/* check that flags argument in get_local_storage(map, flags) is 0,
4268 	 * this is required because get_local_storage() can't return an error.
4269 	 */
4270 	if (func_id == BPF_FUNC_get_local_storage &&
4271 	    !register_is_null(&regs[BPF_REG_2])) {
4272 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4273 		return -EINVAL;
4274 	}
4275 
4276 	/* reset caller saved regs */
4277 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4278 		mark_reg_not_init(env, regs, caller_saved[i]);
4279 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4280 	}
4281 
4282 	/* helper call returns 64-bit value. */
4283 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4284 
4285 	/* update return register (already marked as written above) */
4286 	if (fn->ret_type == RET_INTEGER) {
4287 		/* sets type to SCALAR_VALUE */
4288 		mark_reg_unknown(env, regs, BPF_REG_0);
4289 	} else if (fn->ret_type == RET_VOID) {
4290 		regs[BPF_REG_0].type = NOT_INIT;
4291 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4292 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4293 		/* There is no offset yet applied, variable or fixed */
4294 		mark_reg_known_zero(env, regs, BPF_REG_0);
4295 		/* remember map_ptr, so that check_map_access()
4296 		 * can check 'value_size' boundary of memory access
4297 		 * to map element returned from bpf_map_lookup_elem()
4298 		 */
4299 		if (meta.map_ptr == NULL) {
4300 			verbose(env,
4301 				"kernel subsystem misconfigured verifier\n");
4302 			return -EINVAL;
4303 		}
4304 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4305 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4306 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4307 			if (map_value_has_spin_lock(meta.map_ptr))
4308 				regs[BPF_REG_0].id = ++env->id_gen;
4309 		} else {
4310 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4311 			regs[BPF_REG_0].id = ++env->id_gen;
4312 		}
4313 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4314 		mark_reg_known_zero(env, regs, BPF_REG_0);
4315 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4316 		regs[BPF_REG_0].id = ++env->id_gen;
4317 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4318 		mark_reg_known_zero(env, regs, BPF_REG_0);
4319 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4320 		regs[BPF_REG_0].id = ++env->id_gen;
4321 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4322 		mark_reg_known_zero(env, regs, BPF_REG_0);
4323 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4324 		regs[BPF_REG_0].id = ++env->id_gen;
4325 	} else {
4326 		verbose(env, "unknown return type %d of func %s#%d\n",
4327 			fn->ret_type, func_id_name(func_id), func_id);
4328 		return -EINVAL;
4329 	}
4330 
4331 	if (is_ptr_cast_function(func_id)) {
4332 		/* For release_reference() */
4333 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4334 	} else if (is_acquire_function(func_id)) {
4335 		int id = acquire_reference_state(env, insn_idx);
4336 
4337 		if (id < 0)
4338 			return id;
4339 		/* For mark_ptr_or_null_reg() */
4340 		regs[BPF_REG_0].id = id;
4341 		/* For release_reference() */
4342 		regs[BPF_REG_0].ref_obj_id = id;
4343 	}
4344 
4345 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4346 
4347 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4348 	if (err)
4349 		return err;
4350 
4351 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4352 		const char *err_str;
4353 
4354 #ifdef CONFIG_PERF_EVENTS
4355 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4356 		err_str = "cannot get callchain buffer for func %s#%d\n";
4357 #else
4358 		err = -ENOTSUPP;
4359 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4360 #endif
4361 		if (err) {
4362 			verbose(env, err_str, func_id_name(func_id), func_id);
4363 			return err;
4364 		}
4365 
4366 		env->prog->has_callchain_buf = true;
4367 	}
4368 
4369 	if (changes_data)
4370 		clear_all_pkt_pointers(env);
4371 	return 0;
4372 }
4373 
4374 static bool signed_add_overflows(s64 a, s64 b)
4375 {
4376 	/* Do the add in u64, where overflow is well-defined */
4377 	s64 res = (s64)((u64)a + (u64)b);
4378 
4379 	if (b < 0)
4380 		return res > a;
4381 	return res < a;
4382 }
4383 
4384 static bool signed_sub_overflows(s64 a, s64 b)
4385 {
4386 	/* Do the sub in u64, where overflow is well-defined */
4387 	s64 res = (s64)((u64)a - (u64)b);
4388 
4389 	if (b < 0)
4390 		return res < a;
4391 	return res > a;
4392 }
4393 
4394 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4395 				  const struct bpf_reg_state *reg,
4396 				  enum bpf_reg_type type)
4397 {
4398 	bool known = tnum_is_const(reg->var_off);
4399 	s64 val = reg->var_off.value;
4400 	s64 smin = reg->smin_value;
4401 
4402 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4403 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4404 			reg_type_str[type], val);
4405 		return false;
4406 	}
4407 
4408 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4409 		verbose(env, "%s pointer offset %d is not allowed\n",
4410 			reg_type_str[type], reg->off);
4411 		return false;
4412 	}
4413 
4414 	if (smin == S64_MIN) {
4415 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4416 			reg_type_str[type]);
4417 		return false;
4418 	}
4419 
4420 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4421 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4422 			smin, reg_type_str[type]);
4423 		return false;
4424 	}
4425 
4426 	return true;
4427 }
4428 
4429 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4430 {
4431 	return &env->insn_aux_data[env->insn_idx];
4432 }
4433 
4434 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4435 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4436 {
4437 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4438 			    (opcode == BPF_SUB && !off_is_neg);
4439 	u32 off;
4440 
4441 	switch (ptr_reg->type) {
4442 	case PTR_TO_STACK:
4443 		/* Indirect variable offset stack access is prohibited in
4444 		 * unprivileged mode so it's not handled here.
4445 		 */
4446 		off = ptr_reg->off + ptr_reg->var_off.value;
4447 		if (mask_to_left)
4448 			*ptr_limit = MAX_BPF_STACK + off;
4449 		else
4450 			*ptr_limit = -off;
4451 		return 0;
4452 	case PTR_TO_MAP_VALUE:
4453 		if (mask_to_left) {
4454 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4455 		} else {
4456 			off = ptr_reg->smin_value + ptr_reg->off;
4457 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4458 		}
4459 		return 0;
4460 	default:
4461 		return -EINVAL;
4462 	}
4463 }
4464 
4465 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4466 				    const struct bpf_insn *insn)
4467 {
4468 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4469 }
4470 
4471 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4472 				       u32 alu_state, u32 alu_limit)
4473 {
4474 	/* If we arrived here from different branches with different
4475 	 * state or limits to sanitize, then this won't work.
4476 	 */
4477 	if (aux->alu_state &&
4478 	    (aux->alu_state != alu_state ||
4479 	     aux->alu_limit != alu_limit))
4480 		return -EACCES;
4481 
4482 	/* Corresponding fixup done in fixup_bpf_calls(). */
4483 	aux->alu_state = alu_state;
4484 	aux->alu_limit = alu_limit;
4485 	return 0;
4486 }
4487 
4488 static int sanitize_val_alu(struct bpf_verifier_env *env,
4489 			    struct bpf_insn *insn)
4490 {
4491 	struct bpf_insn_aux_data *aux = cur_aux(env);
4492 
4493 	if (can_skip_alu_sanitation(env, insn))
4494 		return 0;
4495 
4496 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4497 }
4498 
4499 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4500 			    struct bpf_insn *insn,
4501 			    const struct bpf_reg_state *ptr_reg,
4502 			    struct bpf_reg_state *dst_reg,
4503 			    bool off_is_neg)
4504 {
4505 	struct bpf_verifier_state *vstate = env->cur_state;
4506 	struct bpf_insn_aux_data *aux = cur_aux(env);
4507 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4508 	u8 opcode = BPF_OP(insn->code);
4509 	u32 alu_state, alu_limit;
4510 	struct bpf_reg_state tmp;
4511 	bool ret;
4512 
4513 	if (can_skip_alu_sanitation(env, insn))
4514 		return 0;
4515 
4516 	/* We already marked aux for masking from non-speculative
4517 	 * paths, thus we got here in the first place. We only care
4518 	 * to explore bad access from here.
4519 	 */
4520 	if (vstate->speculative)
4521 		goto do_sim;
4522 
4523 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4524 	alu_state |= ptr_is_dst_reg ?
4525 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4526 
4527 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4528 		return 0;
4529 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4530 		return -EACCES;
4531 do_sim:
4532 	/* Simulate and find potential out-of-bounds access under
4533 	 * speculative execution from truncation as a result of
4534 	 * masking when off was not within expected range. If off
4535 	 * sits in dst, then we temporarily need to move ptr there
4536 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4537 	 * for cases where we use K-based arithmetic in one direction
4538 	 * and truncated reg-based in the other in order to explore
4539 	 * bad access.
4540 	 */
4541 	if (!ptr_is_dst_reg) {
4542 		tmp = *dst_reg;
4543 		*dst_reg = *ptr_reg;
4544 	}
4545 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4546 	if (!ptr_is_dst_reg && ret)
4547 		*dst_reg = tmp;
4548 	return !ret ? -EFAULT : 0;
4549 }
4550 
4551 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4552  * Caller should also handle BPF_MOV case separately.
4553  * If we return -EACCES, caller may want to try again treating pointer as a
4554  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4555  */
4556 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4557 				   struct bpf_insn *insn,
4558 				   const struct bpf_reg_state *ptr_reg,
4559 				   const struct bpf_reg_state *off_reg)
4560 {
4561 	struct bpf_verifier_state *vstate = env->cur_state;
4562 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4563 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4564 	bool known = tnum_is_const(off_reg->var_off);
4565 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4566 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4567 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4568 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4569 	u32 dst = insn->dst_reg, src = insn->src_reg;
4570 	u8 opcode = BPF_OP(insn->code);
4571 	int ret;
4572 
4573 	dst_reg = &regs[dst];
4574 
4575 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4576 	    smin_val > smax_val || umin_val > umax_val) {
4577 		/* Taint dst register if offset had invalid bounds derived from
4578 		 * e.g. dead branches.
4579 		 */
4580 		__mark_reg_unknown(dst_reg);
4581 		return 0;
4582 	}
4583 
4584 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4585 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4586 		verbose(env,
4587 			"R%d 32-bit pointer arithmetic prohibited\n",
4588 			dst);
4589 		return -EACCES;
4590 	}
4591 
4592 	switch (ptr_reg->type) {
4593 	case PTR_TO_MAP_VALUE_OR_NULL:
4594 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4595 			dst, reg_type_str[ptr_reg->type]);
4596 		return -EACCES;
4597 	case CONST_PTR_TO_MAP:
4598 	case PTR_TO_PACKET_END:
4599 	case PTR_TO_SOCKET:
4600 	case PTR_TO_SOCKET_OR_NULL:
4601 	case PTR_TO_SOCK_COMMON:
4602 	case PTR_TO_SOCK_COMMON_OR_NULL:
4603 	case PTR_TO_TCP_SOCK:
4604 	case PTR_TO_TCP_SOCK_OR_NULL:
4605 	case PTR_TO_XDP_SOCK:
4606 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4607 			dst, reg_type_str[ptr_reg->type]);
4608 		return -EACCES;
4609 	case PTR_TO_MAP_VALUE:
4610 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4611 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4612 				off_reg == dst_reg ? dst : src);
4613 			return -EACCES;
4614 		}
4615 		/* fall-through */
4616 	default:
4617 		break;
4618 	}
4619 
4620 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4621 	 * The id may be overwritten later if we create a new variable offset.
4622 	 */
4623 	dst_reg->type = ptr_reg->type;
4624 	dst_reg->id = ptr_reg->id;
4625 
4626 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4627 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4628 		return -EINVAL;
4629 
4630 	switch (opcode) {
4631 	case BPF_ADD:
4632 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4633 		if (ret < 0) {
4634 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4635 			return ret;
4636 		}
4637 		/* We can take a fixed offset as long as it doesn't overflow
4638 		 * the s32 'off' field
4639 		 */
4640 		if (known && (ptr_reg->off + smin_val ==
4641 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4642 			/* pointer += K.  Accumulate it into fixed offset */
4643 			dst_reg->smin_value = smin_ptr;
4644 			dst_reg->smax_value = smax_ptr;
4645 			dst_reg->umin_value = umin_ptr;
4646 			dst_reg->umax_value = umax_ptr;
4647 			dst_reg->var_off = ptr_reg->var_off;
4648 			dst_reg->off = ptr_reg->off + smin_val;
4649 			dst_reg->raw = ptr_reg->raw;
4650 			break;
4651 		}
4652 		/* A new variable offset is created.  Note that off_reg->off
4653 		 * == 0, since it's a scalar.
4654 		 * dst_reg gets the pointer type and since some positive
4655 		 * integer value was added to the pointer, give it a new 'id'
4656 		 * if it's a PTR_TO_PACKET.
4657 		 * this creates a new 'base' pointer, off_reg (variable) gets
4658 		 * added into the variable offset, and we copy the fixed offset
4659 		 * from ptr_reg.
4660 		 */
4661 		if (signed_add_overflows(smin_ptr, smin_val) ||
4662 		    signed_add_overflows(smax_ptr, smax_val)) {
4663 			dst_reg->smin_value = S64_MIN;
4664 			dst_reg->smax_value = S64_MAX;
4665 		} else {
4666 			dst_reg->smin_value = smin_ptr + smin_val;
4667 			dst_reg->smax_value = smax_ptr + smax_val;
4668 		}
4669 		if (umin_ptr + umin_val < umin_ptr ||
4670 		    umax_ptr + umax_val < umax_ptr) {
4671 			dst_reg->umin_value = 0;
4672 			dst_reg->umax_value = U64_MAX;
4673 		} else {
4674 			dst_reg->umin_value = umin_ptr + umin_val;
4675 			dst_reg->umax_value = umax_ptr + umax_val;
4676 		}
4677 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4678 		dst_reg->off = ptr_reg->off;
4679 		dst_reg->raw = ptr_reg->raw;
4680 		if (reg_is_pkt_pointer(ptr_reg)) {
4681 			dst_reg->id = ++env->id_gen;
4682 			/* something was added to pkt_ptr, set range to zero */
4683 			dst_reg->raw = 0;
4684 		}
4685 		break;
4686 	case BPF_SUB:
4687 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4688 		if (ret < 0) {
4689 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4690 			return ret;
4691 		}
4692 		if (dst_reg == off_reg) {
4693 			/* scalar -= pointer.  Creates an unknown scalar */
4694 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4695 				dst);
4696 			return -EACCES;
4697 		}
4698 		/* We don't allow subtraction from FP, because (according to
4699 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4700 		 * be able to deal with it.
4701 		 */
4702 		if (ptr_reg->type == PTR_TO_STACK) {
4703 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4704 				dst);
4705 			return -EACCES;
4706 		}
4707 		if (known && (ptr_reg->off - smin_val ==
4708 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4709 			/* pointer -= K.  Subtract it from fixed offset */
4710 			dst_reg->smin_value = smin_ptr;
4711 			dst_reg->smax_value = smax_ptr;
4712 			dst_reg->umin_value = umin_ptr;
4713 			dst_reg->umax_value = umax_ptr;
4714 			dst_reg->var_off = ptr_reg->var_off;
4715 			dst_reg->id = ptr_reg->id;
4716 			dst_reg->off = ptr_reg->off - smin_val;
4717 			dst_reg->raw = ptr_reg->raw;
4718 			break;
4719 		}
4720 		/* A new variable offset is created.  If the subtrahend is known
4721 		 * nonnegative, then any reg->range we had before is still good.
4722 		 */
4723 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4724 		    signed_sub_overflows(smax_ptr, smin_val)) {
4725 			/* Overflow possible, we know nothing */
4726 			dst_reg->smin_value = S64_MIN;
4727 			dst_reg->smax_value = S64_MAX;
4728 		} else {
4729 			dst_reg->smin_value = smin_ptr - smax_val;
4730 			dst_reg->smax_value = smax_ptr - smin_val;
4731 		}
4732 		if (umin_ptr < umax_val) {
4733 			/* Overflow possible, we know nothing */
4734 			dst_reg->umin_value = 0;
4735 			dst_reg->umax_value = U64_MAX;
4736 		} else {
4737 			/* Cannot overflow (as long as bounds are consistent) */
4738 			dst_reg->umin_value = umin_ptr - umax_val;
4739 			dst_reg->umax_value = umax_ptr - umin_val;
4740 		}
4741 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4742 		dst_reg->off = ptr_reg->off;
4743 		dst_reg->raw = ptr_reg->raw;
4744 		if (reg_is_pkt_pointer(ptr_reg)) {
4745 			dst_reg->id = ++env->id_gen;
4746 			/* something was added to pkt_ptr, set range to zero */
4747 			if (smin_val < 0)
4748 				dst_reg->raw = 0;
4749 		}
4750 		break;
4751 	case BPF_AND:
4752 	case BPF_OR:
4753 	case BPF_XOR:
4754 		/* bitwise ops on pointers are troublesome, prohibit. */
4755 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4756 			dst, bpf_alu_string[opcode >> 4]);
4757 		return -EACCES;
4758 	default:
4759 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4760 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4761 			dst, bpf_alu_string[opcode >> 4]);
4762 		return -EACCES;
4763 	}
4764 
4765 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4766 		return -EINVAL;
4767 
4768 	__update_reg_bounds(dst_reg);
4769 	__reg_deduce_bounds(dst_reg);
4770 	__reg_bound_offset(dst_reg);
4771 
4772 	/* For unprivileged we require that resulting offset must be in bounds
4773 	 * in order to be able to sanitize access later on.
4774 	 */
4775 	if (!env->allow_ptr_leaks) {
4776 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
4777 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
4778 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4779 				"prohibited for !root\n", dst);
4780 			return -EACCES;
4781 		} else if (dst_reg->type == PTR_TO_STACK &&
4782 			   check_stack_access(env, dst_reg, dst_reg->off +
4783 					      dst_reg->var_off.value, 1)) {
4784 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4785 				"prohibited for !root\n", dst);
4786 			return -EACCES;
4787 		}
4788 	}
4789 
4790 	return 0;
4791 }
4792 
4793 /* WARNING: This function does calculations on 64-bit values, but the actual
4794  * execution may occur on 32-bit values. Therefore, things like bitshifts
4795  * need extra checks in the 32-bit case.
4796  */
4797 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4798 				      struct bpf_insn *insn,
4799 				      struct bpf_reg_state *dst_reg,
4800 				      struct bpf_reg_state src_reg)
4801 {
4802 	struct bpf_reg_state *regs = cur_regs(env);
4803 	u8 opcode = BPF_OP(insn->code);
4804 	bool src_known, dst_known;
4805 	s64 smin_val, smax_val;
4806 	u64 umin_val, umax_val;
4807 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4808 	u32 dst = insn->dst_reg;
4809 	int ret;
4810 
4811 	if (insn_bitness == 32) {
4812 		/* Relevant for 32-bit RSH: Information can propagate towards
4813 		 * LSB, so it isn't sufficient to only truncate the output to
4814 		 * 32 bits.
4815 		 */
4816 		coerce_reg_to_size(dst_reg, 4);
4817 		coerce_reg_to_size(&src_reg, 4);
4818 	}
4819 
4820 	smin_val = src_reg.smin_value;
4821 	smax_val = src_reg.smax_value;
4822 	umin_val = src_reg.umin_value;
4823 	umax_val = src_reg.umax_value;
4824 	src_known = tnum_is_const(src_reg.var_off);
4825 	dst_known = tnum_is_const(dst_reg->var_off);
4826 
4827 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4828 	    smin_val > smax_val || umin_val > umax_val) {
4829 		/* Taint dst register if offset had invalid bounds derived from
4830 		 * e.g. dead branches.
4831 		 */
4832 		__mark_reg_unknown(dst_reg);
4833 		return 0;
4834 	}
4835 
4836 	if (!src_known &&
4837 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4838 		__mark_reg_unknown(dst_reg);
4839 		return 0;
4840 	}
4841 
4842 	switch (opcode) {
4843 	case BPF_ADD:
4844 		ret = sanitize_val_alu(env, insn);
4845 		if (ret < 0) {
4846 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4847 			return ret;
4848 		}
4849 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4850 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4851 			dst_reg->smin_value = S64_MIN;
4852 			dst_reg->smax_value = S64_MAX;
4853 		} else {
4854 			dst_reg->smin_value += smin_val;
4855 			dst_reg->smax_value += smax_val;
4856 		}
4857 		if (dst_reg->umin_value + umin_val < umin_val ||
4858 		    dst_reg->umax_value + umax_val < umax_val) {
4859 			dst_reg->umin_value = 0;
4860 			dst_reg->umax_value = U64_MAX;
4861 		} else {
4862 			dst_reg->umin_value += umin_val;
4863 			dst_reg->umax_value += umax_val;
4864 		}
4865 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4866 		break;
4867 	case BPF_SUB:
4868 		ret = sanitize_val_alu(env, insn);
4869 		if (ret < 0) {
4870 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4871 			return ret;
4872 		}
4873 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4874 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4875 			/* Overflow possible, we know nothing */
4876 			dst_reg->smin_value = S64_MIN;
4877 			dst_reg->smax_value = S64_MAX;
4878 		} else {
4879 			dst_reg->smin_value -= smax_val;
4880 			dst_reg->smax_value -= smin_val;
4881 		}
4882 		if (dst_reg->umin_value < umax_val) {
4883 			/* Overflow possible, we know nothing */
4884 			dst_reg->umin_value = 0;
4885 			dst_reg->umax_value = U64_MAX;
4886 		} else {
4887 			/* Cannot overflow (as long as bounds are consistent) */
4888 			dst_reg->umin_value -= umax_val;
4889 			dst_reg->umax_value -= umin_val;
4890 		}
4891 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4892 		break;
4893 	case BPF_MUL:
4894 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4895 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4896 			/* Ain't nobody got time to multiply that sign */
4897 			__mark_reg_unbounded(dst_reg);
4898 			__update_reg_bounds(dst_reg);
4899 			break;
4900 		}
4901 		/* Both values are positive, so we can work with unsigned and
4902 		 * copy the result to signed (unless it exceeds S64_MAX).
4903 		 */
4904 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4905 			/* Potential overflow, we know nothing */
4906 			__mark_reg_unbounded(dst_reg);
4907 			/* (except what we can learn from the var_off) */
4908 			__update_reg_bounds(dst_reg);
4909 			break;
4910 		}
4911 		dst_reg->umin_value *= umin_val;
4912 		dst_reg->umax_value *= umax_val;
4913 		if (dst_reg->umax_value > S64_MAX) {
4914 			/* Overflow possible, we know nothing */
4915 			dst_reg->smin_value = S64_MIN;
4916 			dst_reg->smax_value = S64_MAX;
4917 		} else {
4918 			dst_reg->smin_value = dst_reg->umin_value;
4919 			dst_reg->smax_value = dst_reg->umax_value;
4920 		}
4921 		break;
4922 	case BPF_AND:
4923 		if (src_known && dst_known) {
4924 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4925 						  src_reg.var_off.value);
4926 			break;
4927 		}
4928 		/* We get our minimum from the var_off, since that's inherently
4929 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4930 		 */
4931 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4932 		dst_reg->umin_value = dst_reg->var_off.value;
4933 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4934 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4935 			/* Lose signed bounds when ANDing negative numbers,
4936 			 * ain't nobody got time for that.
4937 			 */
4938 			dst_reg->smin_value = S64_MIN;
4939 			dst_reg->smax_value = S64_MAX;
4940 		} else {
4941 			/* ANDing two positives gives a positive, so safe to
4942 			 * cast result into s64.
4943 			 */
4944 			dst_reg->smin_value = dst_reg->umin_value;
4945 			dst_reg->smax_value = dst_reg->umax_value;
4946 		}
4947 		/* We may learn something more from the var_off */
4948 		__update_reg_bounds(dst_reg);
4949 		break;
4950 	case BPF_OR:
4951 		if (src_known && dst_known) {
4952 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4953 						  src_reg.var_off.value);
4954 			break;
4955 		}
4956 		/* We get our maximum from the var_off, and our minimum is the
4957 		 * maximum of the operands' minima
4958 		 */
4959 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4960 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4961 		dst_reg->umax_value = dst_reg->var_off.value |
4962 				      dst_reg->var_off.mask;
4963 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4964 			/* Lose signed bounds when ORing negative numbers,
4965 			 * ain't nobody got time for that.
4966 			 */
4967 			dst_reg->smin_value = S64_MIN;
4968 			dst_reg->smax_value = S64_MAX;
4969 		} else {
4970 			/* ORing two positives gives a positive, so safe to
4971 			 * cast result into s64.
4972 			 */
4973 			dst_reg->smin_value = dst_reg->umin_value;
4974 			dst_reg->smax_value = dst_reg->umax_value;
4975 		}
4976 		/* We may learn something more from the var_off */
4977 		__update_reg_bounds(dst_reg);
4978 		break;
4979 	case BPF_LSH:
4980 		if (umax_val >= insn_bitness) {
4981 			/* Shifts greater than 31 or 63 are undefined.
4982 			 * This includes shifts by a negative number.
4983 			 */
4984 			mark_reg_unknown(env, regs, insn->dst_reg);
4985 			break;
4986 		}
4987 		/* We lose all sign bit information (except what we can pick
4988 		 * up from var_off)
4989 		 */
4990 		dst_reg->smin_value = S64_MIN;
4991 		dst_reg->smax_value = S64_MAX;
4992 		/* If we might shift our top bit out, then we know nothing */
4993 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4994 			dst_reg->umin_value = 0;
4995 			dst_reg->umax_value = U64_MAX;
4996 		} else {
4997 			dst_reg->umin_value <<= umin_val;
4998 			dst_reg->umax_value <<= umax_val;
4999 		}
5000 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5001 		/* We may learn something more from the var_off */
5002 		__update_reg_bounds(dst_reg);
5003 		break;
5004 	case BPF_RSH:
5005 		if (umax_val >= insn_bitness) {
5006 			/* Shifts greater than 31 or 63 are undefined.
5007 			 * This includes shifts by a negative number.
5008 			 */
5009 			mark_reg_unknown(env, regs, insn->dst_reg);
5010 			break;
5011 		}
5012 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5013 		 * be negative, then either:
5014 		 * 1) src_reg might be zero, so the sign bit of the result is
5015 		 *    unknown, so we lose our signed bounds
5016 		 * 2) it's known negative, thus the unsigned bounds capture the
5017 		 *    signed bounds
5018 		 * 3) the signed bounds cross zero, so they tell us nothing
5019 		 *    about the result
5020 		 * If the value in dst_reg is known nonnegative, then again the
5021 		 * unsigned bounts capture the signed bounds.
5022 		 * Thus, in all cases it suffices to blow away our signed bounds
5023 		 * and rely on inferring new ones from the unsigned bounds and
5024 		 * var_off of the result.
5025 		 */
5026 		dst_reg->smin_value = S64_MIN;
5027 		dst_reg->smax_value = S64_MAX;
5028 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5029 		dst_reg->umin_value >>= umax_val;
5030 		dst_reg->umax_value >>= umin_val;
5031 		/* We may learn something more from the var_off */
5032 		__update_reg_bounds(dst_reg);
5033 		break;
5034 	case BPF_ARSH:
5035 		if (umax_val >= insn_bitness) {
5036 			/* Shifts greater than 31 or 63 are undefined.
5037 			 * This includes shifts by a negative number.
5038 			 */
5039 			mark_reg_unknown(env, regs, insn->dst_reg);
5040 			break;
5041 		}
5042 
5043 		/* Upon reaching here, src_known is true and
5044 		 * umax_val is equal to umin_val.
5045 		 */
5046 		dst_reg->smin_value >>= umin_val;
5047 		dst_reg->smax_value >>= umin_val;
5048 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
5049 
5050 		/* blow away the dst_reg umin_value/umax_value and rely on
5051 		 * dst_reg var_off to refine the result.
5052 		 */
5053 		dst_reg->umin_value = 0;
5054 		dst_reg->umax_value = U64_MAX;
5055 		__update_reg_bounds(dst_reg);
5056 		break;
5057 	default:
5058 		mark_reg_unknown(env, regs, insn->dst_reg);
5059 		break;
5060 	}
5061 
5062 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5063 		/* 32-bit ALU ops are (32,32)->32 */
5064 		coerce_reg_to_size(dst_reg, 4);
5065 	}
5066 
5067 	__reg_deduce_bounds(dst_reg);
5068 	__reg_bound_offset(dst_reg);
5069 	return 0;
5070 }
5071 
5072 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5073  * and var_off.
5074  */
5075 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5076 				   struct bpf_insn *insn)
5077 {
5078 	struct bpf_verifier_state *vstate = env->cur_state;
5079 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5080 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5081 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5082 	u8 opcode = BPF_OP(insn->code);
5083 	int err;
5084 
5085 	dst_reg = &regs[insn->dst_reg];
5086 	src_reg = NULL;
5087 	if (dst_reg->type != SCALAR_VALUE)
5088 		ptr_reg = dst_reg;
5089 	if (BPF_SRC(insn->code) == BPF_X) {
5090 		src_reg = &regs[insn->src_reg];
5091 		if (src_reg->type != SCALAR_VALUE) {
5092 			if (dst_reg->type != SCALAR_VALUE) {
5093 				/* Combining two pointers by any ALU op yields
5094 				 * an arbitrary scalar. Disallow all math except
5095 				 * pointer subtraction
5096 				 */
5097 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5098 					mark_reg_unknown(env, regs, insn->dst_reg);
5099 					return 0;
5100 				}
5101 				verbose(env, "R%d pointer %s pointer prohibited\n",
5102 					insn->dst_reg,
5103 					bpf_alu_string[opcode >> 4]);
5104 				return -EACCES;
5105 			} else {
5106 				/* scalar += pointer
5107 				 * This is legal, but we have to reverse our
5108 				 * src/dest handling in computing the range
5109 				 */
5110 				err = mark_chain_precision(env, insn->dst_reg);
5111 				if (err)
5112 					return err;
5113 				return adjust_ptr_min_max_vals(env, insn,
5114 							       src_reg, dst_reg);
5115 			}
5116 		} else if (ptr_reg) {
5117 			/* pointer += scalar */
5118 			err = mark_chain_precision(env, insn->src_reg);
5119 			if (err)
5120 				return err;
5121 			return adjust_ptr_min_max_vals(env, insn,
5122 						       dst_reg, src_reg);
5123 		}
5124 	} else {
5125 		/* Pretend the src is a reg with a known value, since we only
5126 		 * need to be able to read from this state.
5127 		 */
5128 		off_reg.type = SCALAR_VALUE;
5129 		__mark_reg_known(&off_reg, insn->imm);
5130 		src_reg = &off_reg;
5131 		if (ptr_reg) /* pointer += K */
5132 			return adjust_ptr_min_max_vals(env, insn,
5133 						       ptr_reg, src_reg);
5134 	}
5135 
5136 	/* Got here implies adding two SCALAR_VALUEs */
5137 	if (WARN_ON_ONCE(ptr_reg)) {
5138 		print_verifier_state(env, state);
5139 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5140 		return -EINVAL;
5141 	}
5142 	if (WARN_ON(!src_reg)) {
5143 		print_verifier_state(env, state);
5144 		verbose(env, "verifier internal error: no src_reg\n");
5145 		return -EINVAL;
5146 	}
5147 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5148 }
5149 
5150 /* check validity of 32-bit and 64-bit arithmetic operations */
5151 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5152 {
5153 	struct bpf_reg_state *regs = cur_regs(env);
5154 	u8 opcode = BPF_OP(insn->code);
5155 	int err;
5156 
5157 	if (opcode == BPF_END || opcode == BPF_NEG) {
5158 		if (opcode == BPF_NEG) {
5159 			if (BPF_SRC(insn->code) != 0 ||
5160 			    insn->src_reg != BPF_REG_0 ||
5161 			    insn->off != 0 || insn->imm != 0) {
5162 				verbose(env, "BPF_NEG uses reserved fields\n");
5163 				return -EINVAL;
5164 			}
5165 		} else {
5166 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5167 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5168 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5169 				verbose(env, "BPF_END uses reserved fields\n");
5170 				return -EINVAL;
5171 			}
5172 		}
5173 
5174 		/* check src operand */
5175 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5176 		if (err)
5177 			return err;
5178 
5179 		if (is_pointer_value(env, insn->dst_reg)) {
5180 			verbose(env, "R%d pointer arithmetic prohibited\n",
5181 				insn->dst_reg);
5182 			return -EACCES;
5183 		}
5184 
5185 		/* check dest operand */
5186 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5187 		if (err)
5188 			return err;
5189 
5190 	} else if (opcode == BPF_MOV) {
5191 
5192 		if (BPF_SRC(insn->code) == BPF_X) {
5193 			if (insn->imm != 0 || insn->off != 0) {
5194 				verbose(env, "BPF_MOV uses reserved fields\n");
5195 				return -EINVAL;
5196 			}
5197 
5198 			/* check src operand */
5199 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5200 			if (err)
5201 				return err;
5202 		} else {
5203 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5204 				verbose(env, "BPF_MOV uses reserved fields\n");
5205 				return -EINVAL;
5206 			}
5207 		}
5208 
5209 		/* check dest operand, mark as required later */
5210 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5211 		if (err)
5212 			return err;
5213 
5214 		if (BPF_SRC(insn->code) == BPF_X) {
5215 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5216 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5217 
5218 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5219 				/* case: R1 = R2
5220 				 * copy register state to dest reg
5221 				 */
5222 				*dst_reg = *src_reg;
5223 				dst_reg->live |= REG_LIVE_WRITTEN;
5224 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5225 			} else {
5226 				/* R1 = (u32) R2 */
5227 				if (is_pointer_value(env, insn->src_reg)) {
5228 					verbose(env,
5229 						"R%d partial copy of pointer\n",
5230 						insn->src_reg);
5231 					return -EACCES;
5232 				} else if (src_reg->type == SCALAR_VALUE) {
5233 					*dst_reg = *src_reg;
5234 					dst_reg->live |= REG_LIVE_WRITTEN;
5235 					dst_reg->subreg_def = env->insn_idx + 1;
5236 				} else {
5237 					mark_reg_unknown(env, regs,
5238 							 insn->dst_reg);
5239 				}
5240 				coerce_reg_to_size(dst_reg, 4);
5241 			}
5242 		} else {
5243 			/* case: R = imm
5244 			 * remember the value we stored into this reg
5245 			 */
5246 			/* clear any state __mark_reg_known doesn't set */
5247 			mark_reg_unknown(env, regs, insn->dst_reg);
5248 			regs[insn->dst_reg].type = SCALAR_VALUE;
5249 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5250 				__mark_reg_known(regs + insn->dst_reg,
5251 						 insn->imm);
5252 			} else {
5253 				__mark_reg_known(regs + insn->dst_reg,
5254 						 (u32)insn->imm);
5255 			}
5256 		}
5257 
5258 	} else if (opcode > BPF_END) {
5259 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5260 		return -EINVAL;
5261 
5262 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5263 
5264 		if (BPF_SRC(insn->code) == BPF_X) {
5265 			if (insn->imm != 0 || insn->off != 0) {
5266 				verbose(env, "BPF_ALU uses reserved fields\n");
5267 				return -EINVAL;
5268 			}
5269 			/* check src1 operand */
5270 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5271 			if (err)
5272 				return err;
5273 		} else {
5274 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5275 				verbose(env, "BPF_ALU uses reserved fields\n");
5276 				return -EINVAL;
5277 			}
5278 		}
5279 
5280 		/* check src2 operand */
5281 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5282 		if (err)
5283 			return err;
5284 
5285 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5286 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5287 			verbose(env, "div by zero\n");
5288 			return -EINVAL;
5289 		}
5290 
5291 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5292 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5293 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5294 
5295 			if (insn->imm < 0 || insn->imm >= size) {
5296 				verbose(env, "invalid shift %d\n", insn->imm);
5297 				return -EINVAL;
5298 			}
5299 		}
5300 
5301 		/* check dest operand */
5302 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5303 		if (err)
5304 			return err;
5305 
5306 		return adjust_reg_min_max_vals(env, insn);
5307 	}
5308 
5309 	return 0;
5310 }
5311 
5312 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5313 				     struct bpf_reg_state *dst_reg,
5314 				     enum bpf_reg_type type, u16 new_range)
5315 {
5316 	struct bpf_reg_state *reg;
5317 	int i;
5318 
5319 	for (i = 0; i < MAX_BPF_REG; i++) {
5320 		reg = &state->regs[i];
5321 		if (reg->type == type && reg->id == dst_reg->id)
5322 			/* keep the maximum range already checked */
5323 			reg->range = max(reg->range, new_range);
5324 	}
5325 
5326 	bpf_for_each_spilled_reg(i, state, reg) {
5327 		if (!reg)
5328 			continue;
5329 		if (reg->type == type && reg->id == dst_reg->id)
5330 			reg->range = max(reg->range, new_range);
5331 	}
5332 }
5333 
5334 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5335 				   struct bpf_reg_state *dst_reg,
5336 				   enum bpf_reg_type type,
5337 				   bool range_right_open)
5338 {
5339 	u16 new_range;
5340 	int i;
5341 
5342 	if (dst_reg->off < 0 ||
5343 	    (dst_reg->off == 0 && range_right_open))
5344 		/* This doesn't give us any range */
5345 		return;
5346 
5347 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5348 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5349 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5350 		 * than pkt_end, but that's because it's also less than pkt.
5351 		 */
5352 		return;
5353 
5354 	new_range = dst_reg->off;
5355 	if (range_right_open)
5356 		new_range--;
5357 
5358 	/* Examples for register markings:
5359 	 *
5360 	 * pkt_data in dst register:
5361 	 *
5362 	 *   r2 = r3;
5363 	 *   r2 += 8;
5364 	 *   if (r2 > pkt_end) goto <handle exception>
5365 	 *   <access okay>
5366 	 *
5367 	 *   r2 = r3;
5368 	 *   r2 += 8;
5369 	 *   if (r2 < pkt_end) goto <access okay>
5370 	 *   <handle exception>
5371 	 *
5372 	 *   Where:
5373 	 *     r2 == dst_reg, pkt_end == src_reg
5374 	 *     r2=pkt(id=n,off=8,r=0)
5375 	 *     r3=pkt(id=n,off=0,r=0)
5376 	 *
5377 	 * pkt_data in src register:
5378 	 *
5379 	 *   r2 = r3;
5380 	 *   r2 += 8;
5381 	 *   if (pkt_end >= r2) goto <access okay>
5382 	 *   <handle exception>
5383 	 *
5384 	 *   r2 = r3;
5385 	 *   r2 += 8;
5386 	 *   if (pkt_end <= r2) goto <handle exception>
5387 	 *   <access okay>
5388 	 *
5389 	 *   Where:
5390 	 *     pkt_end == dst_reg, r2 == src_reg
5391 	 *     r2=pkt(id=n,off=8,r=0)
5392 	 *     r3=pkt(id=n,off=0,r=0)
5393 	 *
5394 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5395 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5396 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5397 	 * the check.
5398 	 */
5399 
5400 	/* If our ids match, then we must have the same max_value.  And we
5401 	 * don't care about the other reg's fixed offset, since if it's too big
5402 	 * the range won't allow anything.
5403 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5404 	 */
5405 	for (i = 0; i <= vstate->curframe; i++)
5406 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5407 					 new_range);
5408 }
5409 
5410 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5411  * and return:
5412  *  1 - branch will be taken and "goto target" will be executed
5413  *  0 - branch will not be taken and fall-through to next insn
5414  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5415  */
5416 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5417 			   bool is_jmp32)
5418 {
5419 	struct bpf_reg_state reg_lo;
5420 	s64 sval;
5421 
5422 	if (__is_pointer_value(false, reg))
5423 		return -1;
5424 
5425 	if (is_jmp32) {
5426 		reg_lo = *reg;
5427 		reg = &reg_lo;
5428 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5429 		 * could truncate high bits and update umin/umax according to
5430 		 * information of low bits.
5431 		 */
5432 		coerce_reg_to_size(reg, 4);
5433 		/* smin/smax need special handling. For example, after coerce,
5434 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5435 		 * used as operand to JMP32. It is a negative number from s32's
5436 		 * point of view, while it is a positive number when seen as
5437 		 * s64. The smin/smax are kept as s64, therefore, when used with
5438 		 * JMP32, they need to be transformed into s32, then sign
5439 		 * extended back to s64.
5440 		 *
5441 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5442 		 * different sign bit, then min/max relationship doesn't
5443 		 * maintain after casting into s32, for this case, set smin/smax
5444 		 * to safest range.
5445 		 */
5446 		if ((reg->umax_value ^ reg->umin_value) &
5447 		    (1ULL << 31)) {
5448 			reg->smin_value = S32_MIN;
5449 			reg->smax_value = S32_MAX;
5450 		}
5451 		reg->smin_value = (s64)(s32)reg->smin_value;
5452 		reg->smax_value = (s64)(s32)reg->smax_value;
5453 
5454 		val = (u32)val;
5455 		sval = (s64)(s32)val;
5456 	} else {
5457 		sval = (s64)val;
5458 	}
5459 
5460 	switch (opcode) {
5461 	case BPF_JEQ:
5462 		if (tnum_is_const(reg->var_off))
5463 			return !!tnum_equals_const(reg->var_off, val);
5464 		break;
5465 	case BPF_JNE:
5466 		if (tnum_is_const(reg->var_off))
5467 			return !tnum_equals_const(reg->var_off, val);
5468 		break;
5469 	case BPF_JSET:
5470 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5471 			return 1;
5472 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5473 			return 0;
5474 		break;
5475 	case BPF_JGT:
5476 		if (reg->umin_value > val)
5477 			return 1;
5478 		else if (reg->umax_value <= val)
5479 			return 0;
5480 		break;
5481 	case BPF_JSGT:
5482 		if (reg->smin_value > sval)
5483 			return 1;
5484 		else if (reg->smax_value < sval)
5485 			return 0;
5486 		break;
5487 	case BPF_JLT:
5488 		if (reg->umax_value < val)
5489 			return 1;
5490 		else if (reg->umin_value >= val)
5491 			return 0;
5492 		break;
5493 	case BPF_JSLT:
5494 		if (reg->smax_value < sval)
5495 			return 1;
5496 		else if (reg->smin_value >= sval)
5497 			return 0;
5498 		break;
5499 	case BPF_JGE:
5500 		if (reg->umin_value >= val)
5501 			return 1;
5502 		else if (reg->umax_value < val)
5503 			return 0;
5504 		break;
5505 	case BPF_JSGE:
5506 		if (reg->smin_value >= sval)
5507 			return 1;
5508 		else if (reg->smax_value < sval)
5509 			return 0;
5510 		break;
5511 	case BPF_JLE:
5512 		if (reg->umax_value <= val)
5513 			return 1;
5514 		else if (reg->umin_value > val)
5515 			return 0;
5516 		break;
5517 	case BPF_JSLE:
5518 		if (reg->smax_value <= sval)
5519 			return 1;
5520 		else if (reg->smin_value > sval)
5521 			return 0;
5522 		break;
5523 	}
5524 
5525 	return -1;
5526 }
5527 
5528 /* Generate min value of the high 32-bit from TNUM info. */
5529 static u64 gen_hi_min(struct tnum var)
5530 {
5531 	return var.value & ~0xffffffffULL;
5532 }
5533 
5534 /* Generate max value of the high 32-bit from TNUM info. */
5535 static u64 gen_hi_max(struct tnum var)
5536 {
5537 	return (var.value | var.mask) & ~0xffffffffULL;
5538 }
5539 
5540 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5541  * are with the same signedness.
5542  */
5543 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5544 {
5545 	return ((s32)sval >= 0 &&
5546 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5547 	       ((s32)sval < 0 &&
5548 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5549 }
5550 
5551 /* Adjusts the register min/max values in the case that the dst_reg is the
5552  * variable register that we are working on, and src_reg is a constant or we're
5553  * simply doing a BPF_K check.
5554  * In JEQ/JNE cases we also adjust the var_off values.
5555  */
5556 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5557 			    struct bpf_reg_state *false_reg, u64 val,
5558 			    u8 opcode, bool is_jmp32)
5559 {
5560 	s64 sval;
5561 
5562 	/* If the dst_reg is a pointer, we can't learn anything about its
5563 	 * variable offset from the compare (unless src_reg were a pointer into
5564 	 * the same object, but we don't bother with that.
5565 	 * Since false_reg and true_reg have the same type by construction, we
5566 	 * only need to check one of them for pointerness.
5567 	 */
5568 	if (__is_pointer_value(false, false_reg))
5569 		return;
5570 
5571 	val = is_jmp32 ? (u32)val : val;
5572 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5573 
5574 	switch (opcode) {
5575 	case BPF_JEQ:
5576 	case BPF_JNE:
5577 	{
5578 		struct bpf_reg_state *reg =
5579 			opcode == BPF_JEQ ? true_reg : false_reg;
5580 
5581 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5582 		 * if it is true we know the value for sure. Likewise for
5583 		 * BPF_JNE.
5584 		 */
5585 		if (is_jmp32) {
5586 			u64 old_v = reg->var_off.value;
5587 			u64 hi_mask = ~0xffffffffULL;
5588 
5589 			reg->var_off.value = (old_v & hi_mask) | val;
5590 			reg->var_off.mask &= hi_mask;
5591 		} else {
5592 			__mark_reg_known(reg, val);
5593 		}
5594 		break;
5595 	}
5596 	case BPF_JSET:
5597 		false_reg->var_off = tnum_and(false_reg->var_off,
5598 					      tnum_const(~val));
5599 		if (is_power_of_2(val))
5600 			true_reg->var_off = tnum_or(true_reg->var_off,
5601 						    tnum_const(val));
5602 		break;
5603 	case BPF_JGE:
5604 	case BPF_JGT:
5605 	{
5606 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5607 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5608 
5609 		if (is_jmp32) {
5610 			false_umax += gen_hi_max(false_reg->var_off);
5611 			true_umin += gen_hi_min(true_reg->var_off);
5612 		}
5613 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5614 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5615 		break;
5616 	}
5617 	case BPF_JSGE:
5618 	case BPF_JSGT:
5619 	{
5620 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5621 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5622 
5623 		/* If the full s64 was not sign-extended from s32 then don't
5624 		 * deduct further info.
5625 		 */
5626 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5627 			break;
5628 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5629 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5630 		break;
5631 	}
5632 	case BPF_JLE:
5633 	case BPF_JLT:
5634 	{
5635 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5636 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5637 
5638 		if (is_jmp32) {
5639 			false_umin += gen_hi_min(false_reg->var_off);
5640 			true_umax += gen_hi_max(true_reg->var_off);
5641 		}
5642 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5643 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5644 		break;
5645 	}
5646 	case BPF_JSLE:
5647 	case BPF_JSLT:
5648 	{
5649 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5650 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5651 
5652 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5653 			break;
5654 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5655 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5656 		break;
5657 	}
5658 	default:
5659 		break;
5660 	}
5661 
5662 	__reg_deduce_bounds(false_reg);
5663 	__reg_deduce_bounds(true_reg);
5664 	/* We might have learned some bits from the bounds. */
5665 	__reg_bound_offset(false_reg);
5666 	__reg_bound_offset(true_reg);
5667 	if (is_jmp32) {
5668 		__reg_bound_offset32(false_reg);
5669 		__reg_bound_offset32(true_reg);
5670 	}
5671 	/* Intersecting with the old var_off might have improved our bounds
5672 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5673 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5674 	 */
5675 	__update_reg_bounds(false_reg);
5676 	__update_reg_bounds(true_reg);
5677 }
5678 
5679 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5680  * the variable reg.
5681  */
5682 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5683 				struct bpf_reg_state *false_reg, u64 val,
5684 				u8 opcode, bool is_jmp32)
5685 {
5686 	s64 sval;
5687 
5688 	if (__is_pointer_value(false, false_reg))
5689 		return;
5690 
5691 	val = is_jmp32 ? (u32)val : val;
5692 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5693 
5694 	switch (opcode) {
5695 	case BPF_JEQ:
5696 	case BPF_JNE:
5697 	{
5698 		struct bpf_reg_state *reg =
5699 			opcode == BPF_JEQ ? true_reg : false_reg;
5700 
5701 		if (is_jmp32) {
5702 			u64 old_v = reg->var_off.value;
5703 			u64 hi_mask = ~0xffffffffULL;
5704 
5705 			reg->var_off.value = (old_v & hi_mask) | val;
5706 			reg->var_off.mask &= hi_mask;
5707 		} else {
5708 			__mark_reg_known(reg, val);
5709 		}
5710 		break;
5711 	}
5712 	case BPF_JSET:
5713 		false_reg->var_off = tnum_and(false_reg->var_off,
5714 					      tnum_const(~val));
5715 		if (is_power_of_2(val))
5716 			true_reg->var_off = tnum_or(true_reg->var_off,
5717 						    tnum_const(val));
5718 		break;
5719 	case BPF_JGE:
5720 	case BPF_JGT:
5721 	{
5722 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5723 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5724 
5725 		if (is_jmp32) {
5726 			false_umin += gen_hi_min(false_reg->var_off);
5727 			true_umax += gen_hi_max(true_reg->var_off);
5728 		}
5729 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5730 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5731 		break;
5732 	}
5733 	case BPF_JSGE:
5734 	case BPF_JSGT:
5735 	{
5736 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5737 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5738 
5739 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5740 			break;
5741 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5742 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5743 		break;
5744 	}
5745 	case BPF_JLE:
5746 	case BPF_JLT:
5747 	{
5748 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5749 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5750 
5751 		if (is_jmp32) {
5752 			false_umax += gen_hi_max(false_reg->var_off);
5753 			true_umin += gen_hi_min(true_reg->var_off);
5754 		}
5755 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5756 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5757 		break;
5758 	}
5759 	case BPF_JSLE:
5760 	case BPF_JSLT:
5761 	{
5762 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5763 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5764 
5765 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5766 			break;
5767 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5768 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5769 		break;
5770 	}
5771 	default:
5772 		break;
5773 	}
5774 
5775 	__reg_deduce_bounds(false_reg);
5776 	__reg_deduce_bounds(true_reg);
5777 	/* We might have learned some bits from the bounds. */
5778 	__reg_bound_offset(false_reg);
5779 	__reg_bound_offset(true_reg);
5780 	if (is_jmp32) {
5781 		__reg_bound_offset32(false_reg);
5782 		__reg_bound_offset32(true_reg);
5783 	}
5784 	/* Intersecting with the old var_off might have improved our bounds
5785 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5786 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5787 	 */
5788 	__update_reg_bounds(false_reg);
5789 	__update_reg_bounds(true_reg);
5790 }
5791 
5792 /* Regs are known to be equal, so intersect their min/max/var_off */
5793 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5794 				  struct bpf_reg_state *dst_reg)
5795 {
5796 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5797 							dst_reg->umin_value);
5798 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5799 							dst_reg->umax_value);
5800 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5801 							dst_reg->smin_value);
5802 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5803 							dst_reg->smax_value);
5804 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5805 							     dst_reg->var_off);
5806 	/* We might have learned new bounds from the var_off. */
5807 	__update_reg_bounds(src_reg);
5808 	__update_reg_bounds(dst_reg);
5809 	/* We might have learned something about the sign bit. */
5810 	__reg_deduce_bounds(src_reg);
5811 	__reg_deduce_bounds(dst_reg);
5812 	/* We might have learned some bits from the bounds. */
5813 	__reg_bound_offset(src_reg);
5814 	__reg_bound_offset(dst_reg);
5815 	/* Intersecting with the old var_off might have improved our bounds
5816 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5817 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5818 	 */
5819 	__update_reg_bounds(src_reg);
5820 	__update_reg_bounds(dst_reg);
5821 }
5822 
5823 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5824 				struct bpf_reg_state *true_dst,
5825 				struct bpf_reg_state *false_src,
5826 				struct bpf_reg_state *false_dst,
5827 				u8 opcode)
5828 {
5829 	switch (opcode) {
5830 	case BPF_JEQ:
5831 		__reg_combine_min_max(true_src, true_dst);
5832 		break;
5833 	case BPF_JNE:
5834 		__reg_combine_min_max(false_src, false_dst);
5835 		break;
5836 	}
5837 }
5838 
5839 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5840 				 struct bpf_reg_state *reg, u32 id,
5841 				 bool is_null)
5842 {
5843 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5844 		/* Old offset (both fixed and variable parts) should
5845 		 * have been known-zero, because we don't allow pointer
5846 		 * arithmetic on pointers that might be NULL.
5847 		 */
5848 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5849 				 !tnum_equals_const(reg->var_off, 0) ||
5850 				 reg->off)) {
5851 			__mark_reg_known_zero(reg);
5852 			reg->off = 0;
5853 		}
5854 		if (is_null) {
5855 			reg->type = SCALAR_VALUE;
5856 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5857 			if (reg->map_ptr->inner_map_meta) {
5858 				reg->type = CONST_PTR_TO_MAP;
5859 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5860 			} else if (reg->map_ptr->map_type ==
5861 				   BPF_MAP_TYPE_XSKMAP) {
5862 				reg->type = PTR_TO_XDP_SOCK;
5863 			} else {
5864 				reg->type = PTR_TO_MAP_VALUE;
5865 			}
5866 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5867 			reg->type = PTR_TO_SOCKET;
5868 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5869 			reg->type = PTR_TO_SOCK_COMMON;
5870 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5871 			reg->type = PTR_TO_TCP_SOCK;
5872 		}
5873 		if (is_null) {
5874 			/* We don't need id and ref_obj_id from this point
5875 			 * onwards anymore, thus we should better reset it,
5876 			 * so that state pruning has chances to take effect.
5877 			 */
5878 			reg->id = 0;
5879 			reg->ref_obj_id = 0;
5880 		} else if (!reg_may_point_to_spin_lock(reg)) {
5881 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5882 			 * in release_reg_references().
5883 			 *
5884 			 * reg->id is still used by spin_lock ptr. Other
5885 			 * than spin_lock ptr type, reg->id can be reset.
5886 			 */
5887 			reg->id = 0;
5888 		}
5889 	}
5890 }
5891 
5892 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5893 				    bool is_null)
5894 {
5895 	struct bpf_reg_state *reg;
5896 	int i;
5897 
5898 	for (i = 0; i < MAX_BPF_REG; i++)
5899 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5900 
5901 	bpf_for_each_spilled_reg(i, state, reg) {
5902 		if (!reg)
5903 			continue;
5904 		mark_ptr_or_null_reg(state, reg, id, is_null);
5905 	}
5906 }
5907 
5908 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5909  * be folded together at some point.
5910  */
5911 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5912 				  bool is_null)
5913 {
5914 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5915 	struct bpf_reg_state *regs = state->regs;
5916 	u32 ref_obj_id = regs[regno].ref_obj_id;
5917 	u32 id = regs[regno].id;
5918 	int i;
5919 
5920 	if (ref_obj_id && ref_obj_id == id && is_null)
5921 		/* regs[regno] is in the " == NULL" branch.
5922 		 * No one could have freed the reference state before
5923 		 * doing the NULL check.
5924 		 */
5925 		WARN_ON_ONCE(release_reference_state(state, id));
5926 
5927 	for (i = 0; i <= vstate->curframe; i++)
5928 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5929 }
5930 
5931 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5932 				   struct bpf_reg_state *dst_reg,
5933 				   struct bpf_reg_state *src_reg,
5934 				   struct bpf_verifier_state *this_branch,
5935 				   struct bpf_verifier_state *other_branch)
5936 {
5937 	if (BPF_SRC(insn->code) != BPF_X)
5938 		return false;
5939 
5940 	/* Pointers are always 64-bit. */
5941 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5942 		return false;
5943 
5944 	switch (BPF_OP(insn->code)) {
5945 	case BPF_JGT:
5946 		if ((dst_reg->type == PTR_TO_PACKET &&
5947 		     src_reg->type == PTR_TO_PACKET_END) ||
5948 		    (dst_reg->type == PTR_TO_PACKET_META &&
5949 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5950 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5951 			find_good_pkt_pointers(this_branch, dst_reg,
5952 					       dst_reg->type, false);
5953 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5954 			    src_reg->type == PTR_TO_PACKET) ||
5955 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5956 			    src_reg->type == PTR_TO_PACKET_META)) {
5957 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
5958 			find_good_pkt_pointers(other_branch, src_reg,
5959 					       src_reg->type, true);
5960 		} else {
5961 			return false;
5962 		}
5963 		break;
5964 	case BPF_JLT:
5965 		if ((dst_reg->type == PTR_TO_PACKET &&
5966 		     src_reg->type == PTR_TO_PACKET_END) ||
5967 		    (dst_reg->type == PTR_TO_PACKET_META &&
5968 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5969 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5970 			find_good_pkt_pointers(other_branch, dst_reg,
5971 					       dst_reg->type, true);
5972 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5973 			    src_reg->type == PTR_TO_PACKET) ||
5974 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5975 			    src_reg->type == PTR_TO_PACKET_META)) {
5976 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5977 			find_good_pkt_pointers(this_branch, src_reg,
5978 					       src_reg->type, false);
5979 		} else {
5980 			return false;
5981 		}
5982 		break;
5983 	case BPF_JGE:
5984 		if ((dst_reg->type == PTR_TO_PACKET &&
5985 		     src_reg->type == PTR_TO_PACKET_END) ||
5986 		    (dst_reg->type == PTR_TO_PACKET_META &&
5987 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5988 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5989 			find_good_pkt_pointers(this_branch, dst_reg,
5990 					       dst_reg->type, true);
5991 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5992 			    src_reg->type == PTR_TO_PACKET) ||
5993 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5994 			    src_reg->type == PTR_TO_PACKET_META)) {
5995 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5996 			find_good_pkt_pointers(other_branch, src_reg,
5997 					       src_reg->type, false);
5998 		} else {
5999 			return false;
6000 		}
6001 		break;
6002 	case BPF_JLE:
6003 		if ((dst_reg->type == PTR_TO_PACKET &&
6004 		     src_reg->type == PTR_TO_PACKET_END) ||
6005 		    (dst_reg->type == PTR_TO_PACKET_META &&
6006 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6007 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6008 			find_good_pkt_pointers(other_branch, dst_reg,
6009 					       dst_reg->type, false);
6010 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6011 			    src_reg->type == PTR_TO_PACKET) ||
6012 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6013 			    src_reg->type == PTR_TO_PACKET_META)) {
6014 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6015 			find_good_pkt_pointers(this_branch, src_reg,
6016 					       src_reg->type, true);
6017 		} else {
6018 			return false;
6019 		}
6020 		break;
6021 	default:
6022 		return false;
6023 	}
6024 
6025 	return true;
6026 }
6027 
6028 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6029 			     struct bpf_insn *insn, int *insn_idx)
6030 {
6031 	struct bpf_verifier_state *this_branch = env->cur_state;
6032 	struct bpf_verifier_state *other_branch;
6033 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6034 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6035 	u8 opcode = BPF_OP(insn->code);
6036 	bool is_jmp32;
6037 	int pred = -1;
6038 	int err;
6039 
6040 	/* Only conditional jumps are expected to reach here. */
6041 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6042 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6043 		return -EINVAL;
6044 	}
6045 
6046 	if (BPF_SRC(insn->code) == BPF_X) {
6047 		if (insn->imm != 0) {
6048 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6049 			return -EINVAL;
6050 		}
6051 
6052 		/* check src1 operand */
6053 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6054 		if (err)
6055 			return err;
6056 
6057 		if (is_pointer_value(env, insn->src_reg)) {
6058 			verbose(env, "R%d pointer comparison prohibited\n",
6059 				insn->src_reg);
6060 			return -EACCES;
6061 		}
6062 		src_reg = &regs[insn->src_reg];
6063 	} else {
6064 		if (insn->src_reg != BPF_REG_0) {
6065 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6066 			return -EINVAL;
6067 		}
6068 	}
6069 
6070 	/* check src2 operand */
6071 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6072 	if (err)
6073 		return err;
6074 
6075 	dst_reg = &regs[insn->dst_reg];
6076 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6077 
6078 	if (BPF_SRC(insn->code) == BPF_K)
6079 		pred = is_branch_taken(dst_reg, insn->imm,
6080 				       opcode, is_jmp32);
6081 	else if (src_reg->type == SCALAR_VALUE &&
6082 		 tnum_is_const(src_reg->var_off))
6083 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6084 				       opcode, is_jmp32);
6085 	if (pred >= 0) {
6086 		err = mark_chain_precision(env, insn->dst_reg);
6087 		if (BPF_SRC(insn->code) == BPF_X && !err)
6088 			err = mark_chain_precision(env, insn->src_reg);
6089 		if (err)
6090 			return err;
6091 	}
6092 	if (pred == 1) {
6093 		/* only follow the goto, ignore fall-through */
6094 		*insn_idx += insn->off;
6095 		return 0;
6096 	} else if (pred == 0) {
6097 		/* only follow fall-through branch, since
6098 		 * that's where the program will go
6099 		 */
6100 		return 0;
6101 	}
6102 
6103 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6104 				  false);
6105 	if (!other_branch)
6106 		return -EFAULT;
6107 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6108 
6109 	/* detect if we are comparing against a constant value so we can adjust
6110 	 * our min/max values for our dst register.
6111 	 * this is only legit if both are scalars (or pointers to the same
6112 	 * object, I suppose, but we don't support that right now), because
6113 	 * otherwise the different base pointers mean the offsets aren't
6114 	 * comparable.
6115 	 */
6116 	if (BPF_SRC(insn->code) == BPF_X) {
6117 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6118 		struct bpf_reg_state lo_reg0 = *dst_reg;
6119 		struct bpf_reg_state lo_reg1 = *src_reg;
6120 		struct bpf_reg_state *src_lo, *dst_lo;
6121 
6122 		dst_lo = &lo_reg0;
6123 		src_lo = &lo_reg1;
6124 		coerce_reg_to_size(dst_lo, 4);
6125 		coerce_reg_to_size(src_lo, 4);
6126 
6127 		if (dst_reg->type == SCALAR_VALUE &&
6128 		    src_reg->type == SCALAR_VALUE) {
6129 			if (tnum_is_const(src_reg->var_off) ||
6130 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
6131 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6132 						dst_reg,
6133 						is_jmp32
6134 						? src_lo->var_off.value
6135 						: src_reg->var_off.value,
6136 						opcode, is_jmp32);
6137 			else if (tnum_is_const(dst_reg->var_off) ||
6138 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
6139 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6140 						    src_reg,
6141 						    is_jmp32
6142 						    ? dst_lo->var_off.value
6143 						    : dst_reg->var_off.value,
6144 						    opcode, is_jmp32);
6145 			else if (!is_jmp32 &&
6146 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6147 				/* Comparing for equality, we can combine knowledge */
6148 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6149 						    &other_branch_regs[insn->dst_reg],
6150 						    src_reg, dst_reg, opcode);
6151 		}
6152 	} else if (dst_reg->type == SCALAR_VALUE) {
6153 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6154 					dst_reg, insn->imm, opcode, is_jmp32);
6155 	}
6156 
6157 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6158 	 * NOTE: these optimizations below are related with pointer comparison
6159 	 *       which will never be JMP32.
6160 	 */
6161 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6162 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6163 	    reg_type_may_be_null(dst_reg->type)) {
6164 		/* Mark all identical registers in each branch as either
6165 		 * safe or unknown depending R == 0 or R != 0 conditional.
6166 		 */
6167 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6168 				      opcode == BPF_JNE);
6169 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6170 				      opcode == BPF_JEQ);
6171 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6172 					   this_branch, other_branch) &&
6173 		   is_pointer_value(env, insn->dst_reg)) {
6174 		verbose(env, "R%d pointer comparison prohibited\n",
6175 			insn->dst_reg);
6176 		return -EACCES;
6177 	}
6178 	if (env->log.level & BPF_LOG_LEVEL)
6179 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6180 	return 0;
6181 }
6182 
6183 /* verify BPF_LD_IMM64 instruction */
6184 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6185 {
6186 	struct bpf_insn_aux_data *aux = cur_aux(env);
6187 	struct bpf_reg_state *regs = cur_regs(env);
6188 	struct bpf_map *map;
6189 	int err;
6190 
6191 	if (BPF_SIZE(insn->code) != BPF_DW) {
6192 		verbose(env, "invalid BPF_LD_IMM insn\n");
6193 		return -EINVAL;
6194 	}
6195 	if (insn->off != 0) {
6196 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6197 		return -EINVAL;
6198 	}
6199 
6200 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6201 	if (err)
6202 		return err;
6203 
6204 	if (insn->src_reg == 0) {
6205 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6206 
6207 		regs[insn->dst_reg].type = SCALAR_VALUE;
6208 		__mark_reg_known(&regs[insn->dst_reg], imm);
6209 		return 0;
6210 	}
6211 
6212 	map = env->used_maps[aux->map_index];
6213 	mark_reg_known_zero(env, regs, insn->dst_reg);
6214 	regs[insn->dst_reg].map_ptr = map;
6215 
6216 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6217 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6218 		regs[insn->dst_reg].off = aux->map_off;
6219 		if (map_value_has_spin_lock(map))
6220 			regs[insn->dst_reg].id = ++env->id_gen;
6221 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6222 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6223 	} else {
6224 		verbose(env, "bpf verifier is misconfigured\n");
6225 		return -EINVAL;
6226 	}
6227 
6228 	return 0;
6229 }
6230 
6231 static bool may_access_skb(enum bpf_prog_type type)
6232 {
6233 	switch (type) {
6234 	case BPF_PROG_TYPE_SOCKET_FILTER:
6235 	case BPF_PROG_TYPE_SCHED_CLS:
6236 	case BPF_PROG_TYPE_SCHED_ACT:
6237 		return true;
6238 	default:
6239 		return false;
6240 	}
6241 }
6242 
6243 /* verify safety of LD_ABS|LD_IND instructions:
6244  * - they can only appear in the programs where ctx == skb
6245  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6246  *   preserve R6-R9, and store return value into R0
6247  *
6248  * Implicit input:
6249  *   ctx == skb == R6 == CTX
6250  *
6251  * Explicit input:
6252  *   SRC == any register
6253  *   IMM == 32-bit immediate
6254  *
6255  * Output:
6256  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6257  */
6258 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6259 {
6260 	struct bpf_reg_state *regs = cur_regs(env);
6261 	u8 mode = BPF_MODE(insn->code);
6262 	int i, err;
6263 
6264 	if (!may_access_skb(env->prog->type)) {
6265 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6266 		return -EINVAL;
6267 	}
6268 
6269 	if (!env->ops->gen_ld_abs) {
6270 		verbose(env, "bpf verifier is misconfigured\n");
6271 		return -EINVAL;
6272 	}
6273 
6274 	if (env->subprog_cnt > 1) {
6275 		/* when program has LD_ABS insn JITs and interpreter assume
6276 		 * that r1 == ctx == skb which is not the case for callees
6277 		 * that can have arbitrary arguments. It's problematic
6278 		 * for main prog as well since JITs would need to analyze
6279 		 * all functions in order to make proper register save/restore
6280 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6281 		 */
6282 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6283 		return -EINVAL;
6284 	}
6285 
6286 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6287 	    BPF_SIZE(insn->code) == BPF_DW ||
6288 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6289 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6290 		return -EINVAL;
6291 	}
6292 
6293 	/* check whether implicit source operand (register R6) is readable */
6294 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
6295 	if (err)
6296 		return err;
6297 
6298 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6299 	 * gen_ld_abs() may terminate the program at runtime, leading to
6300 	 * reference leak.
6301 	 */
6302 	err = check_reference_leak(env);
6303 	if (err) {
6304 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6305 		return err;
6306 	}
6307 
6308 	if (env->cur_state->active_spin_lock) {
6309 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6310 		return -EINVAL;
6311 	}
6312 
6313 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
6314 		verbose(env,
6315 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6316 		return -EINVAL;
6317 	}
6318 
6319 	if (mode == BPF_IND) {
6320 		/* check explicit source operand */
6321 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6322 		if (err)
6323 			return err;
6324 	}
6325 
6326 	/* reset caller saved regs to unreadable */
6327 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6328 		mark_reg_not_init(env, regs, caller_saved[i]);
6329 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6330 	}
6331 
6332 	/* mark destination R0 register as readable, since it contains
6333 	 * the value fetched from the packet.
6334 	 * Already marked as written above.
6335 	 */
6336 	mark_reg_unknown(env, regs, BPF_REG_0);
6337 	/* ld_abs load up to 32-bit skb data. */
6338 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6339 	return 0;
6340 }
6341 
6342 static int check_return_code(struct bpf_verifier_env *env)
6343 {
6344 	struct tnum enforce_attach_type_range = tnum_unknown;
6345 	struct bpf_reg_state *reg;
6346 	struct tnum range = tnum_range(0, 1);
6347 
6348 	switch (env->prog->type) {
6349 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6350 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6351 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6352 			range = tnum_range(1, 1);
6353 		break;
6354 	case BPF_PROG_TYPE_CGROUP_SKB:
6355 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6356 			range = tnum_range(0, 3);
6357 			enforce_attach_type_range = tnum_range(2, 3);
6358 		}
6359 		break;
6360 	case BPF_PROG_TYPE_CGROUP_SOCK:
6361 	case BPF_PROG_TYPE_SOCK_OPS:
6362 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6363 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6364 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6365 		break;
6366 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6367 		if (!env->prog->aux->attach_btf_id)
6368 			return 0;
6369 		range = tnum_const(0);
6370 		break;
6371 	default:
6372 		return 0;
6373 	}
6374 
6375 	reg = cur_regs(env) + BPF_REG_0;
6376 	if (reg->type != SCALAR_VALUE) {
6377 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6378 			reg_type_str[reg->type]);
6379 		return -EINVAL;
6380 	}
6381 
6382 	if (!tnum_in(range, reg->var_off)) {
6383 		char tn_buf[48];
6384 
6385 		verbose(env, "At program exit the register R0 ");
6386 		if (!tnum_is_unknown(reg->var_off)) {
6387 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6388 			verbose(env, "has value %s", tn_buf);
6389 		} else {
6390 			verbose(env, "has unknown scalar value");
6391 		}
6392 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6393 		verbose(env, " should have been in %s\n", tn_buf);
6394 		return -EINVAL;
6395 	}
6396 
6397 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6398 	    tnum_in(enforce_attach_type_range, reg->var_off))
6399 		env->prog->enforce_expected_attach_type = 1;
6400 	return 0;
6401 }
6402 
6403 /* non-recursive DFS pseudo code
6404  * 1  procedure DFS-iterative(G,v):
6405  * 2      label v as discovered
6406  * 3      let S be a stack
6407  * 4      S.push(v)
6408  * 5      while S is not empty
6409  * 6            t <- S.pop()
6410  * 7            if t is what we're looking for:
6411  * 8                return t
6412  * 9            for all edges e in G.adjacentEdges(t) do
6413  * 10               if edge e is already labelled
6414  * 11                   continue with the next edge
6415  * 12               w <- G.adjacentVertex(t,e)
6416  * 13               if vertex w is not discovered and not explored
6417  * 14                   label e as tree-edge
6418  * 15                   label w as discovered
6419  * 16                   S.push(w)
6420  * 17                   continue at 5
6421  * 18               else if vertex w is discovered
6422  * 19                   label e as back-edge
6423  * 20               else
6424  * 21                   // vertex w is explored
6425  * 22                   label e as forward- or cross-edge
6426  * 23           label t as explored
6427  * 24           S.pop()
6428  *
6429  * convention:
6430  * 0x10 - discovered
6431  * 0x11 - discovered and fall-through edge labelled
6432  * 0x12 - discovered and fall-through and branch edges labelled
6433  * 0x20 - explored
6434  */
6435 
6436 enum {
6437 	DISCOVERED = 0x10,
6438 	EXPLORED = 0x20,
6439 	FALLTHROUGH = 1,
6440 	BRANCH = 2,
6441 };
6442 
6443 static u32 state_htab_size(struct bpf_verifier_env *env)
6444 {
6445 	return env->prog->len;
6446 }
6447 
6448 static struct bpf_verifier_state_list **explored_state(
6449 					struct bpf_verifier_env *env,
6450 					int idx)
6451 {
6452 	struct bpf_verifier_state *cur = env->cur_state;
6453 	struct bpf_func_state *state = cur->frame[cur->curframe];
6454 
6455 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6456 }
6457 
6458 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6459 {
6460 	env->insn_aux_data[idx].prune_point = true;
6461 }
6462 
6463 /* t, w, e - match pseudo-code above:
6464  * t - index of current instruction
6465  * w - next instruction
6466  * e - edge
6467  */
6468 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6469 		     bool loop_ok)
6470 {
6471 	int *insn_stack = env->cfg.insn_stack;
6472 	int *insn_state = env->cfg.insn_state;
6473 
6474 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6475 		return 0;
6476 
6477 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6478 		return 0;
6479 
6480 	if (w < 0 || w >= env->prog->len) {
6481 		verbose_linfo(env, t, "%d: ", t);
6482 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6483 		return -EINVAL;
6484 	}
6485 
6486 	if (e == BRANCH)
6487 		/* mark branch target for state pruning */
6488 		init_explored_state(env, w);
6489 
6490 	if (insn_state[w] == 0) {
6491 		/* tree-edge */
6492 		insn_state[t] = DISCOVERED | e;
6493 		insn_state[w] = DISCOVERED;
6494 		if (env->cfg.cur_stack >= env->prog->len)
6495 			return -E2BIG;
6496 		insn_stack[env->cfg.cur_stack++] = w;
6497 		return 1;
6498 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6499 		if (loop_ok && env->allow_ptr_leaks)
6500 			return 0;
6501 		verbose_linfo(env, t, "%d: ", t);
6502 		verbose_linfo(env, w, "%d: ", w);
6503 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6504 		return -EINVAL;
6505 	} else if (insn_state[w] == EXPLORED) {
6506 		/* forward- or cross-edge */
6507 		insn_state[t] = DISCOVERED | e;
6508 	} else {
6509 		verbose(env, "insn state internal bug\n");
6510 		return -EFAULT;
6511 	}
6512 	return 0;
6513 }
6514 
6515 /* non-recursive depth-first-search to detect loops in BPF program
6516  * loop == back-edge in directed graph
6517  */
6518 static int check_cfg(struct bpf_verifier_env *env)
6519 {
6520 	struct bpf_insn *insns = env->prog->insnsi;
6521 	int insn_cnt = env->prog->len;
6522 	int *insn_stack, *insn_state;
6523 	int ret = 0;
6524 	int i, t;
6525 
6526 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6527 	if (!insn_state)
6528 		return -ENOMEM;
6529 
6530 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6531 	if (!insn_stack) {
6532 		kvfree(insn_state);
6533 		return -ENOMEM;
6534 	}
6535 
6536 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6537 	insn_stack[0] = 0; /* 0 is the first instruction */
6538 	env->cfg.cur_stack = 1;
6539 
6540 peek_stack:
6541 	if (env->cfg.cur_stack == 0)
6542 		goto check_state;
6543 	t = insn_stack[env->cfg.cur_stack - 1];
6544 
6545 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6546 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6547 		u8 opcode = BPF_OP(insns[t].code);
6548 
6549 		if (opcode == BPF_EXIT) {
6550 			goto mark_explored;
6551 		} else if (opcode == BPF_CALL) {
6552 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6553 			if (ret == 1)
6554 				goto peek_stack;
6555 			else if (ret < 0)
6556 				goto err_free;
6557 			if (t + 1 < insn_cnt)
6558 				init_explored_state(env, t + 1);
6559 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6560 				init_explored_state(env, t);
6561 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6562 						env, false);
6563 				if (ret == 1)
6564 					goto peek_stack;
6565 				else if (ret < 0)
6566 					goto err_free;
6567 			}
6568 		} else if (opcode == BPF_JA) {
6569 			if (BPF_SRC(insns[t].code) != BPF_K) {
6570 				ret = -EINVAL;
6571 				goto err_free;
6572 			}
6573 			/* unconditional jump with single edge */
6574 			ret = push_insn(t, t + insns[t].off + 1,
6575 					FALLTHROUGH, env, true);
6576 			if (ret == 1)
6577 				goto peek_stack;
6578 			else if (ret < 0)
6579 				goto err_free;
6580 			/* unconditional jmp is not a good pruning point,
6581 			 * but it's marked, since backtracking needs
6582 			 * to record jmp history in is_state_visited().
6583 			 */
6584 			init_explored_state(env, t + insns[t].off + 1);
6585 			/* tell verifier to check for equivalent states
6586 			 * after every call and jump
6587 			 */
6588 			if (t + 1 < insn_cnt)
6589 				init_explored_state(env, t + 1);
6590 		} else {
6591 			/* conditional jump with two edges */
6592 			init_explored_state(env, t);
6593 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6594 			if (ret == 1)
6595 				goto peek_stack;
6596 			else if (ret < 0)
6597 				goto err_free;
6598 
6599 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6600 			if (ret == 1)
6601 				goto peek_stack;
6602 			else if (ret < 0)
6603 				goto err_free;
6604 		}
6605 	} else {
6606 		/* all other non-branch instructions with single
6607 		 * fall-through edge
6608 		 */
6609 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6610 		if (ret == 1)
6611 			goto peek_stack;
6612 		else if (ret < 0)
6613 			goto err_free;
6614 	}
6615 
6616 mark_explored:
6617 	insn_state[t] = EXPLORED;
6618 	if (env->cfg.cur_stack-- <= 0) {
6619 		verbose(env, "pop stack internal bug\n");
6620 		ret = -EFAULT;
6621 		goto err_free;
6622 	}
6623 	goto peek_stack;
6624 
6625 check_state:
6626 	for (i = 0; i < insn_cnt; i++) {
6627 		if (insn_state[i] != EXPLORED) {
6628 			verbose(env, "unreachable insn %d\n", i);
6629 			ret = -EINVAL;
6630 			goto err_free;
6631 		}
6632 	}
6633 	ret = 0; /* cfg looks good */
6634 
6635 err_free:
6636 	kvfree(insn_state);
6637 	kvfree(insn_stack);
6638 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6639 	return ret;
6640 }
6641 
6642 /* The minimum supported BTF func info size */
6643 #define MIN_BPF_FUNCINFO_SIZE	8
6644 #define MAX_FUNCINFO_REC_SIZE	252
6645 
6646 static int check_btf_func(struct bpf_verifier_env *env,
6647 			  const union bpf_attr *attr,
6648 			  union bpf_attr __user *uattr)
6649 {
6650 	u32 i, nfuncs, urec_size, min_size;
6651 	u32 krec_size = sizeof(struct bpf_func_info);
6652 	struct bpf_func_info *krecord;
6653 	struct bpf_func_info_aux *info_aux = NULL;
6654 	const struct btf_type *type;
6655 	struct bpf_prog *prog;
6656 	const struct btf *btf;
6657 	void __user *urecord;
6658 	u32 prev_offset = 0;
6659 	int ret = 0;
6660 
6661 	nfuncs = attr->func_info_cnt;
6662 	if (!nfuncs)
6663 		return 0;
6664 
6665 	if (nfuncs != env->subprog_cnt) {
6666 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6667 		return -EINVAL;
6668 	}
6669 
6670 	urec_size = attr->func_info_rec_size;
6671 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6672 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6673 	    urec_size % sizeof(u32)) {
6674 		verbose(env, "invalid func info rec size %u\n", urec_size);
6675 		return -EINVAL;
6676 	}
6677 
6678 	prog = env->prog;
6679 	btf = prog->aux->btf;
6680 
6681 	urecord = u64_to_user_ptr(attr->func_info);
6682 	min_size = min_t(u32, krec_size, urec_size);
6683 
6684 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6685 	if (!krecord)
6686 		return -ENOMEM;
6687 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6688 	if (!info_aux)
6689 		goto err_free;
6690 
6691 	for (i = 0; i < nfuncs; i++) {
6692 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6693 		if (ret) {
6694 			if (ret == -E2BIG) {
6695 				verbose(env, "nonzero tailing record in func info");
6696 				/* set the size kernel expects so loader can zero
6697 				 * out the rest of the record.
6698 				 */
6699 				if (put_user(min_size, &uattr->func_info_rec_size))
6700 					ret = -EFAULT;
6701 			}
6702 			goto err_free;
6703 		}
6704 
6705 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6706 			ret = -EFAULT;
6707 			goto err_free;
6708 		}
6709 
6710 		/* check insn_off */
6711 		if (i == 0) {
6712 			if (krecord[i].insn_off) {
6713 				verbose(env,
6714 					"nonzero insn_off %u for the first func info record",
6715 					krecord[i].insn_off);
6716 				ret = -EINVAL;
6717 				goto err_free;
6718 			}
6719 		} else if (krecord[i].insn_off <= prev_offset) {
6720 			verbose(env,
6721 				"same or smaller insn offset (%u) than previous func info record (%u)",
6722 				krecord[i].insn_off, prev_offset);
6723 			ret = -EINVAL;
6724 			goto err_free;
6725 		}
6726 
6727 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6728 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6729 			ret = -EINVAL;
6730 			goto err_free;
6731 		}
6732 
6733 		/* check type_id */
6734 		type = btf_type_by_id(btf, krecord[i].type_id);
6735 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6736 			verbose(env, "invalid type id %d in func info",
6737 				krecord[i].type_id);
6738 			ret = -EINVAL;
6739 			goto err_free;
6740 		}
6741 		prev_offset = krecord[i].insn_off;
6742 		urecord += urec_size;
6743 	}
6744 
6745 	prog->aux->func_info = krecord;
6746 	prog->aux->func_info_cnt = nfuncs;
6747 	prog->aux->func_info_aux = info_aux;
6748 	return 0;
6749 
6750 err_free:
6751 	kvfree(krecord);
6752 	kfree(info_aux);
6753 	return ret;
6754 }
6755 
6756 static void adjust_btf_func(struct bpf_verifier_env *env)
6757 {
6758 	struct bpf_prog_aux *aux = env->prog->aux;
6759 	int i;
6760 
6761 	if (!aux->func_info)
6762 		return;
6763 
6764 	for (i = 0; i < env->subprog_cnt; i++)
6765 		aux->func_info[i].insn_off = env->subprog_info[i].start;
6766 }
6767 
6768 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6769 		sizeof(((struct bpf_line_info *)(0))->line_col))
6770 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6771 
6772 static int check_btf_line(struct bpf_verifier_env *env,
6773 			  const union bpf_attr *attr,
6774 			  union bpf_attr __user *uattr)
6775 {
6776 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6777 	struct bpf_subprog_info *sub;
6778 	struct bpf_line_info *linfo;
6779 	struct bpf_prog *prog;
6780 	const struct btf *btf;
6781 	void __user *ulinfo;
6782 	int err;
6783 
6784 	nr_linfo = attr->line_info_cnt;
6785 	if (!nr_linfo)
6786 		return 0;
6787 
6788 	rec_size = attr->line_info_rec_size;
6789 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6790 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6791 	    rec_size & (sizeof(u32) - 1))
6792 		return -EINVAL;
6793 
6794 	/* Need to zero it in case the userspace may
6795 	 * pass in a smaller bpf_line_info object.
6796 	 */
6797 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6798 			 GFP_KERNEL | __GFP_NOWARN);
6799 	if (!linfo)
6800 		return -ENOMEM;
6801 
6802 	prog = env->prog;
6803 	btf = prog->aux->btf;
6804 
6805 	s = 0;
6806 	sub = env->subprog_info;
6807 	ulinfo = u64_to_user_ptr(attr->line_info);
6808 	expected_size = sizeof(struct bpf_line_info);
6809 	ncopy = min_t(u32, expected_size, rec_size);
6810 	for (i = 0; i < nr_linfo; i++) {
6811 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6812 		if (err) {
6813 			if (err == -E2BIG) {
6814 				verbose(env, "nonzero tailing record in line_info");
6815 				if (put_user(expected_size,
6816 					     &uattr->line_info_rec_size))
6817 					err = -EFAULT;
6818 			}
6819 			goto err_free;
6820 		}
6821 
6822 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6823 			err = -EFAULT;
6824 			goto err_free;
6825 		}
6826 
6827 		/*
6828 		 * Check insn_off to ensure
6829 		 * 1) strictly increasing AND
6830 		 * 2) bounded by prog->len
6831 		 *
6832 		 * The linfo[0].insn_off == 0 check logically falls into
6833 		 * the later "missing bpf_line_info for func..." case
6834 		 * because the first linfo[0].insn_off must be the
6835 		 * first sub also and the first sub must have
6836 		 * subprog_info[0].start == 0.
6837 		 */
6838 		if ((i && linfo[i].insn_off <= prev_offset) ||
6839 		    linfo[i].insn_off >= prog->len) {
6840 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6841 				i, linfo[i].insn_off, prev_offset,
6842 				prog->len);
6843 			err = -EINVAL;
6844 			goto err_free;
6845 		}
6846 
6847 		if (!prog->insnsi[linfo[i].insn_off].code) {
6848 			verbose(env,
6849 				"Invalid insn code at line_info[%u].insn_off\n",
6850 				i);
6851 			err = -EINVAL;
6852 			goto err_free;
6853 		}
6854 
6855 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6856 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6857 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6858 			err = -EINVAL;
6859 			goto err_free;
6860 		}
6861 
6862 		if (s != env->subprog_cnt) {
6863 			if (linfo[i].insn_off == sub[s].start) {
6864 				sub[s].linfo_idx = i;
6865 				s++;
6866 			} else if (sub[s].start < linfo[i].insn_off) {
6867 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6868 				err = -EINVAL;
6869 				goto err_free;
6870 			}
6871 		}
6872 
6873 		prev_offset = linfo[i].insn_off;
6874 		ulinfo += rec_size;
6875 	}
6876 
6877 	if (s != env->subprog_cnt) {
6878 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6879 			env->subprog_cnt - s, s);
6880 		err = -EINVAL;
6881 		goto err_free;
6882 	}
6883 
6884 	prog->aux->linfo = linfo;
6885 	prog->aux->nr_linfo = nr_linfo;
6886 
6887 	return 0;
6888 
6889 err_free:
6890 	kvfree(linfo);
6891 	return err;
6892 }
6893 
6894 static int check_btf_info(struct bpf_verifier_env *env,
6895 			  const union bpf_attr *attr,
6896 			  union bpf_attr __user *uattr)
6897 {
6898 	struct btf *btf;
6899 	int err;
6900 
6901 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6902 		return 0;
6903 
6904 	btf = btf_get_by_fd(attr->prog_btf_fd);
6905 	if (IS_ERR(btf))
6906 		return PTR_ERR(btf);
6907 	env->prog->aux->btf = btf;
6908 
6909 	err = check_btf_func(env, attr, uattr);
6910 	if (err)
6911 		return err;
6912 
6913 	err = check_btf_line(env, attr, uattr);
6914 	if (err)
6915 		return err;
6916 
6917 	return 0;
6918 }
6919 
6920 /* check %cur's range satisfies %old's */
6921 static bool range_within(struct bpf_reg_state *old,
6922 			 struct bpf_reg_state *cur)
6923 {
6924 	return old->umin_value <= cur->umin_value &&
6925 	       old->umax_value >= cur->umax_value &&
6926 	       old->smin_value <= cur->smin_value &&
6927 	       old->smax_value >= cur->smax_value;
6928 }
6929 
6930 /* Maximum number of register states that can exist at once */
6931 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6932 struct idpair {
6933 	u32 old;
6934 	u32 cur;
6935 };
6936 
6937 /* If in the old state two registers had the same id, then they need to have
6938  * the same id in the new state as well.  But that id could be different from
6939  * the old state, so we need to track the mapping from old to new ids.
6940  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6941  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6942  * regs with a different old id could still have new id 9, we don't care about
6943  * that.
6944  * So we look through our idmap to see if this old id has been seen before.  If
6945  * so, we require the new id to match; otherwise, we add the id pair to the map.
6946  */
6947 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6948 {
6949 	unsigned int i;
6950 
6951 	for (i = 0; i < ID_MAP_SIZE; i++) {
6952 		if (!idmap[i].old) {
6953 			/* Reached an empty slot; haven't seen this id before */
6954 			idmap[i].old = old_id;
6955 			idmap[i].cur = cur_id;
6956 			return true;
6957 		}
6958 		if (idmap[i].old == old_id)
6959 			return idmap[i].cur == cur_id;
6960 	}
6961 	/* We ran out of idmap slots, which should be impossible */
6962 	WARN_ON_ONCE(1);
6963 	return false;
6964 }
6965 
6966 static void clean_func_state(struct bpf_verifier_env *env,
6967 			     struct bpf_func_state *st)
6968 {
6969 	enum bpf_reg_liveness live;
6970 	int i, j;
6971 
6972 	for (i = 0; i < BPF_REG_FP; i++) {
6973 		live = st->regs[i].live;
6974 		/* liveness must not touch this register anymore */
6975 		st->regs[i].live |= REG_LIVE_DONE;
6976 		if (!(live & REG_LIVE_READ))
6977 			/* since the register is unused, clear its state
6978 			 * to make further comparison simpler
6979 			 */
6980 			__mark_reg_not_init(&st->regs[i]);
6981 	}
6982 
6983 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6984 		live = st->stack[i].spilled_ptr.live;
6985 		/* liveness must not touch this stack slot anymore */
6986 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6987 		if (!(live & REG_LIVE_READ)) {
6988 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
6989 			for (j = 0; j < BPF_REG_SIZE; j++)
6990 				st->stack[i].slot_type[j] = STACK_INVALID;
6991 		}
6992 	}
6993 }
6994 
6995 static void clean_verifier_state(struct bpf_verifier_env *env,
6996 				 struct bpf_verifier_state *st)
6997 {
6998 	int i;
6999 
7000 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7001 		/* all regs in this state in all frames were already marked */
7002 		return;
7003 
7004 	for (i = 0; i <= st->curframe; i++)
7005 		clean_func_state(env, st->frame[i]);
7006 }
7007 
7008 /* the parentage chains form a tree.
7009  * the verifier states are added to state lists at given insn and
7010  * pushed into state stack for future exploration.
7011  * when the verifier reaches bpf_exit insn some of the verifer states
7012  * stored in the state lists have their final liveness state already,
7013  * but a lot of states will get revised from liveness point of view when
7014  * the verifier explores other branches.
7015  * Example:
7016  * 1: r0 = 1
7017  * 2: if r1 == 100 goto pc+1
7018  * 3: r0 = 2
7019  * 4: exit
7020  * when the verifier reaches exit insn the register r0 in the state list of
7021  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7022  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7023  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7024  *
7025  * Since the verifier pushes the branch states as it sees them while exploring
7026  * the program the condition of walking the branch instruction for the second
7027  * time means that all states below this branch were already explored and
7028  * their final liveness markes are already propagated.
7029  * Hence when the verifier completes the search of state list in is_state_visited()
7030  * we can call this clean_live_states() function to mark all liveness states
7031  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7032  * will not be used.
7033  * This function also clears the registers and stack for states that !READ
7034  * to simplify state merging.
7035  *
7036  * Important note here that walking the same branch instruction in the callee
7037  * doesn't meant that the states are DONE. The verifier has to compare
7038  * the callsites
7039  */
7040 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7041 			      struct bpf_verifier_state *cur)
7042 {
7043 	struct bpf_verifier_state_list *sl;
7044 	int i;
7045 
7046 	sl = *explored_state(env, insn);
7047 	while (sl) {
7048 		if (sl->state.branches)
7049 			goto next;
7050 		if (sl->state.insn_idx != insn ||
7051 		    sl->state.curframe != cur->curframe)
7052 			goto next;
7053 		for (i = 0; i <= cur->curframe; i++)
7054 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7055 				goto next;
7056 		clean_verifier_state(env, &sl->state);
7057 next:
7058 		sl = sl->next;
7059 	}
7060 }
7061 
7062 /* Returns true if (rold safe implies rcur safe) */
7063 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7064 		    struct idpair *idmap)
7065 {
7066 	bool equal;
7067 
7068 	if (!(rold->live & REG_LIVE_READ))
7069 		/* explored state didn't use this */
7070 		return true;
7071 
7072 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7073 
7074 	if (rold->type == PTR_TO_STACK)
7075 		/* two stack pointers are equal only if they're pointing to
7076 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7077 		 */
7078 		return equal && rold->frameno == rcur->frameno;
7079 
7080 	if (equal)
7081 		return true;
7082 
7083 	if (rold->type == NOT_INIT)
7084 		/* explored state can't have used this */
7085 		return true;
7086 	if (rcur->type == NOT_INIT)
7087 		return false;
7088 	switch (rold->type) {
7089 	case SCALAR_VALUE:
7090 		if (rcur->type == SCALAR_VALUE) {
7091 			if (!rold->precise && !rcur->precise)
7092 				return true;
7093 			/* new val must satisfy old val knowledge */
7094 			return range_within(rold, rcur) &&
7095 			       tnum_in(rold->var_off, rcur->var_off);
7096 		} else {
7097 			/* We're trying to use a pointer in place of a scalar.
7098 			 * Even if the scalar was unbounded, this could lead to
7099 			 * pointer leaks because scalars are allowed to leak
7100 			 * while pointers are not. We could make this safe in
7101 			 * special cases if root is calling us, but it's
7102 			 * probably not worth the hassle.
7103 			 */
7104 			return false;
7105 		}
7106 	case PTR_TO_MAP_VALUE:
7107 		/* If the new min/max/var_off satisfy the old ones and
7108 		 * everything else matches, we are OK.
7109 		 * 'id' is not compared, since it's only used for maps with
7110 		 * bpf_spin_lock inside map element and in such cases if
7111 		 * the rest of the prog is valid for one map element then
7112 		 * it's valid for all map elements regardless of the key
7113 		 * used in bpf_map_lookup()
7114 		 */
7115 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7116 		       range_within(rold, rcur) &&
7117 		       tnum_in(rold->var_off, rcur->var_off);
7118 	case PTR_TO_MAP_VALUE_OR_NULL:
7119 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7120 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7121 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7122 		 * checked, doing so could have affected others with the same
7123 		 * id, and we can't check for that because we lost the id when
7124 		 * we converted to a PTR_TO_MAP_VALUE.
7125 		 */
7126 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7127 			return false;
7128 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7129 			return false;
7130 		/* Check our ids match any regs they're supposed to */
7131 		return check_ids(rold->id, rcur->id, idmap);
7132 	case PTR_TO_PACKET_META:
7133 	case PTR_TO_PACKET:
7134 		if (rcur->type != rold->type)
7135 			return false;
7136 		/* We must have at least as much range as the old ptr
7137 		 * did, so that any accesses which were safe before are
7138 		 * still safe.  This is true even if old range < old off,
7139 		 * since someone could have accessed through (ptr - k), or
7140 		 * even done ptr -= k in a register, to get a safe access.
7141 		 */
7142 		if (rold->range > rcur->range)
7143 			return false;
7144 		/* If the offsets don't match, we can't trust our alignment;
7145 		 * nor can we be sure that we won't fall out of range.
7146 		 */
7147 		if (rold->off != rcur->off)
7148 			return false;
7149 		/* id relations must be preserved */
7150 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7151 			return false;
7152 		/* new val must satisfy old val knowledge */
7153 		return range_within(rold, rcur) &&
7154 		       tnum_in(rold->var_off, rcur->var_off);
7155 	case PTR_TO_CTX:
7156 	case CONST_PTR_TO_MAP:
7157 	case PTR_TO_PACKET_END:
7158 	case PTR_TO_FLOW_KEYS:
7159 	case PTR_TO_SOCKET:
7160 	case PTR_TO_SOCKET_OR_NULL:
7161 	case PTR_TO_SOCK_COMMON:
7162 	case PTR_TO_SOCK_COMMON_OR_NULL:
7163 	case PTR_TO_TCP_SOCK:
7164 	case PTR_TO_TCP_SOCK_OR_NULL:
7165 	case PTR_TO_XDP_SOCK:
7166 		/* Only valid matches are exact, which memcmp() above
7167 		 * would have accepted
7168 		 */
7169 	default:
7170 		/* Don't know what's going on, just say it's not safe */
7171 		return false;
7172 	}
7173 
7174 	/* Shouldn't get here; if we do, say it's not safe */
7175 	WARN_ON_ONCE(1);
7176 	return false;
7177 }
7178 
7179 static bool stacksafe(struct bpf_func_state *old,
7180 		      struct bpf_func_state *cur,
7181 		      struct idpair *idmap)
7182 {
7183 	int i, spi;
7184 
7185 	/* walk slots of the explored stack and ignore any additional
7186 	 * slots in the current stack, since explored(safe) state
7187 	 * didn't use them
7188 	 */
7189 	for (i = 0; i < old->allocated_stack; i++) {
7190 		spi = i / BPF_REG_SIZE;
7191 
7192 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7193 			i += BPF_REG_SIZE - 1;
7194 			/* explored state didn't use this */
7195 			continue;
7196 		}
7197 
7198 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7199 			continue;
7200 
7201 		/* explored stack has more populated slots than current stack
7202 		 * and these slots were used
7203 		 */
7204 		if (i >= cur->allocated_stack)
7205 			return false;
7206 
7207 		/* if old state was safe with misc data in the stack
7208 		 * it will be safe with zero-initialized stack.
7209 		 * The opposite is not true
7210 		 */
7211 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7212 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7213 			continue;
7214 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7215 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7216 			/* Ex: old explored (safe) state has STACK_SPILL in
7217 			 * this stack slot, but current has has STACK_MISC ->
7218 			 * this verifier states are not equivalent,
7219 			 * return false to continue verification of this path
7220 			 */
7221 			return false;
7222 		if (i % BPF_REG_SIZE)
7223 			continue;
7224 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7225 			continue;
7226 		if (!regsafe(&old->stack[spi].spilled_ptr,
7227 			     &cur->stack[spi].spilled_ptr,
7228 			     idmap))
7229 			/* when explored and current stack slot are both storing
7230 			 * spilled registers, check that stored pointers types
7231 			 * are the same as well.
7232 			 * Ex: explored safe path could have stored
7233 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7234 			 * but current path has stored:
7235 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7236 			 * such verifier states are not equivalent.
7237 			 * return false to continue verification of this path
7238 			 */
7239 			return false;
7240 	}
7241 	return true;
7242 }
7243 
7244 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7245 {
7246 	if (old->acquired_refs != cur->acquired_refs)
7247 		return false;
7248 	return !memcmp(old->refs, cur->refs,
7249 		       sizeof(*old->refs) * old->acquired_refs);
7250 }
7251 
7252 /* compare two verifier states
7253  *
7254  * all states stored in state_list are known to be valid, since
7255  * verifier reached 'bpf_exit' instruction through them
7256  *
7257  * this function is called when verifier exploring different branches of
7258  * execution popped from the state stack. If it sees an old state that has
7259  * more strict register state and more strict stack state then this execution
7260  * branch doesn't need to be explored further, since verifier already
7261  * concluded that more strict state leads to valid finish.
7262  *
7263  * Therefore two states are equivalent if register state is more conservative
7264  * and explored stack state is more conservative than the current one.
7265  * Example:
7266  *       explored                   current
7267  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7268  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7269  *
7270  * In other words if current stack state (one being explored) has more
7271  * valid slots than old one that already passed validation, it means
7272  * the verifier can stop exploring and conclude that current state is valid too
7273  *
7274  * Similarly with registers. If explored state has register type as invalid
7275  * whereas register type in current state is meaningful, it means that
7276  * the current state will reach 'bpf_exit' instruction safely
7277  */
7278 static bool func_states_equal(struct bpf_func_state *old,
7279 			      struct bpf_func_state *cur)
7280 {
7281 	struct idpair *idmap;
7282 	bool ret = false;
7283 	int i;
7284 
7285 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7286 	/* If we failed to allocate the idmap, just say it's not safe */
7287 	if (!idmap)
7288 		return false;
7289 
7290 	for (i = 0; i < MAX_BPF_REG; i++) {
7291 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7292 			goto out_free;
7293 	}
7294 
7295 	if (!stacksafe(old, cur, idmap))
7296 		goto out_free;
7297 
7298 	if (!refsafe(old, cur))
7299 		goto out_free;
7300 	ret = true;
7301 out_free:
7302 	kfree(idmap);
7303 	return ret;
7304 }
7305 
7306 static bool states_equal(struct bpf_verifier_env *env,
7307 			 struct bpf_verifier_state *old,
7308 			 struct bpf_verifier_state *cur)
7309 {
7310 	int i;
7311 
7312 	if (old->curframe != cur->curframe)
7313 		return false;
7314 
7315 	/* Verification state from speculative execution simulation
7316 	 * must never prune a non-speculative execution one.
7317 	 */
7318 	if (old->speculative && !cur->speculative)
7319 		return false;
7320 
7321 	if (old->active_spin_lock != cur->active_spin_lock)
7322 		return false;
7323 
7324 	/* for states to be equal callsites have to be the same
7325 	 * and all frame states need to be equivalent
7326 	 */
7327 	for (i = 0; i <= old->curframe; i++) {
7328 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7329 			return false;
7330 		if (!func_states_equal(old->frame[i], cur->frame[i]))
7331 			return false;
7332 	}
7333 	return true;
7334 }
7335 
7336 /* Return 0 if no propagation happened. Return negative error code if error
7337  * happened. Otherwise, return the propagated bit.
7338  */
7339 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7340 				  struct bpf_reg_state *reg,
7341 				  struct bpf_reg_state *parent_reg)
7342 {
7343 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7344 	u8 flag = reg->live & REG_LIVE_READ;
7345 	int err;
7346 
7347 	/* When comes here, read flags of PARENT_REG or REG could be any of
7348 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7349 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7350 	 */
7351 	if (parent_flag == REG_LIVE_READ64 ||
7352 	    /* Or if there is no read flag from REG. */
7353 	    !flag ||
7354 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7355 	    parent_flag == flag)
7356 		return 0;
7357 
7358 	err = mark_reg_read(env, reg, parent_reg, flag);
7359 	if (err)
7360 		return err;
7361 
7362 	return flag;
7363 }
7364 
7365 /* A write screens off any subsequent reads; but write marks come from the
7366  * straight-line code between a state and its parent.  When we arrive at an
7367  * equivalent state (jump target or such) we didn't arrive by the straight-line
7368  * code, so read marks in the state must propagate to the parent regardless
7369  * of the state's write marks. That's what 'parent == state->parent' comparison
7370  * in mark_reg_read() is for.
7371  */
7372 static int propagate_liveness(struct bpf_verifier_env *env,
7373 			      const struct bpf_verifier_state *vstate,
7374 			      struct bpf_verifier_state *vparent)
7375 {
7376 	struct bpf_reg_state *state_reg, *parent_reg;
7377 	struct bpf_func_state *state, *parent;
7378 	int i, frame, err = 0;
7379 
7380 	if (vparent->curframe != vstate->curframe) {
7381 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7382 		     vparent->curframe, vstate->curframe);
7383 		return -EFAULT;
7384 	}
7385 	/* Propagate read liveness of registers... */
7386 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7387 	for (frame = 0; frame <= vstate->curframe; frame++) {
7388 		parent = vparent->frame[frame];
7389 		state = vstate->frame[frame];
7390 		parent_reg = parent->regs;
7391 		state_reg = state->regs;
7392 		/* We don't need to worry about FP liveness, it's read-only */
7393 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7394 			err = propagate_liveness_reg(env, &state_reg[i],
7395 						     &parent_reg[i]);
7396 			if (err < 0)
7397 				return err;
7398 			if (err == REG_LIVE_READ64)
7399 				mark_insn_zext(env, &parent_reg[i]);
7400 		}
7401 
7402 		/* Propagate stack slots. */
7403 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7404 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7405 			parent_reg = &parent->stack[i].spilled_ptr;
7406 			state_reg = &state->stack[i].spilled_ptr;
7407 			err = propagate_liveness_reg(env, state_reg,
7408 						     parent_reg);
7409 			if (err < 0)
7410 				return err;
7411 		}
7412 	}
7413 	return 0;
7414 }
7415 
7416 /* find precise scalars in the previous equivalent state and
7417  * propagate them into the current state
7418  */
7419 static int propagate_precision(struct bpf_verifier_env *env,
7420 			       const struct bpf_verifier_state *old)
7421 {
7422 	struct bpf_reg_state *state_reg;
7423 	struct bpf_func_state *state;
7424 	int i, err = 0;
7425 
7426 	state = old->frame[old->curframe];
7427 	state_reg = state->regs;
7428 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7429 		if (state_reg->type != SCALAR_VALUE ||
7430 		    !state_reg->precise)
7431 			continue;
7432 		if (env->log.level & BPF_LOG_LEVEL2)
7433 			verbose(env, "propagating r%d\n", i);
7434 		err = mark_chain_precision(env, i);
7435 		if (err < 0)
7436 			return err;
7437 	}
7438 
7439 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7440 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7441 			continue;
7442 		state_reg = &state->stack[i].spilled_ptr;
7443 		if (state_reg->type != SCALAR_VALUE ||
7444 		    !state_reg->precise)
7445 			continue;
7446 		if (env->log.level & BPF_LOG_LEVEL2)
7447 			verbose(env, "propagating fp%d\n",
7448 				(-i - 1) * BPF_REG_SIZE);
7449 		err = mark_chain_precision_stack(env, i);
7450 		if (err < 0)
7451 			return err;
7452 	}
7453 	return 0;
7454 }
7455 
7456 static bool states_maybe_looping(struct bpf_verifier_state *old,
7457 				 struct bpf_verifier_state *cur)
7458 {
7459 	struct bpf_func_state *fold, *fcur;
7460 	int i, fr = cur->curframe;
7461 
7462 	if (old->curframe != fr)
7463 		return false;
7464 
7465 	fold = old->frame[fr];
7466 	fcur = cur->frame[fr];
7467 	for (i = 0; i < MAX_BPF_REG; i++)
7468 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7469 			   offsetof(struct bpf_reg_state, parent)))
7470 			return false;
7471 	return true;
7472 }
7473 
7474 
7475 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7476 {
7477 	struct bpf_verifier_state_list *new_sl;
7478 	struct bpf_verifier_state_list *sl, **pprev;
7479 	struct bpf_verifier_state *cur = env->cur_state, *new;
7480 	int i, j, err, states_cnt = 0;
7481 	bool add_new_state = env->test_state_freq ? true : false;
7482 
7483 	cur->last_insn_idx = env->prev_insn_idx;
7484 	if (!env->insn_aux_data[insn_idx].prune_point)
7485 		/* this 'insn_idx' instruction wasn't marked, so we will not
7486 		 * be doing state search here
7487 		 */
7488 		return 0;
7489 
7490 	/* bpf progs typically have pruning point every 4 instructions
7491 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7492 	 * Do not add new state for future pruning if the verifier hasn't seen
7493 	 * at least 2 jumps and at least 8 instructions.
7494 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7495 	 * In tests that amounts to up to 50% reduction into total verifier
7496 	 * memory consumption and 20% verifier time speedup.
7497 	 */
7498 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7499 	    env->insn_processed - env->prev_insn_processed >= 8)
7500 		add_new_state = true;
7501 
7502 	pprev = explored_state(env, insn_idx);
7503 	sl = *pprev;
7504 
7505 	clean_live_states(env, insn_idx, cur);
7506 
7507 	while (sl) {
7508 		states_cnt++;
7509 		if (sl->state.insn_idx != insn_idx)
7510 			goto next;
7511 		if (sl->state.branches) {
7512 			if (states_maybe_looping(&sl->state, cur) &&
7513 			    states_equal(env, &sl->state, cur)) {
7514 				verbose_linfo(env, insn_idx, "; ");
7515 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7516 				return -EINVAL;
7517 			}
7518 			/* if the verifier is processing a loop, avoid adding new state
7519 			 * too often, since different loop iterations have distinct
7520 			 * states and may not help future pruning.
7521 			 * This threshold shouldn't be too low to make sure that
7522 			 * a loop with large bound will be rejected quickly.
7523 			 * The most abusive loop will be:
7524 			 * r1 += 1
7525 			 * if r1 < 1000000 goto pc-2
7526 			 * 1M insn_procssed limit / 100 == 10k peak states.
7527 			 * This threshold shouldn't be too high either, since states
7528 			 * at the end of the loop are likely to be useful in pruning.
7529 			 */
7530 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7531 			    env->insn_processed - env->prev_insn_processed < 100)
7532 				add_new_state = false;
7533 			goto miss;
7534 		}
7535 		if (states_equal(env, &sl->state, cur)) {
7536 			sl->hit_cnt++;
7537 			/* reached equivalent register/stack state,
7538 			 * prune the search.
7539 			 * Registers read by the continuation are read by us.
7540 			 * If we have any write marks in env->cur_state, they
7541 			 * will prevent corresponding reads in the continuation
7542 			 * from reaching our parent (an explored_state).  Our
7543 			 * own state will get the read marks recorded, but
7544 			 * they'll be immediately forgotten as we're pruning
7545 			 * this state and will pop a new one.
7546 			 */
7547 			err = propagate_liveness(env, &sl->state, cur);
7548 
7549 			/* if previous state reached the exit with precision and
7550 			 * current state is equivalent to it (except precsion marks)
7551 			 * the precision needs to be propagated back in
7552 			 * the current state.
7553 			 */
7554 			err = err ? : push_jmp_history(env, cur);
7555 			err = err ? : propagate_precision(env, &sl->state);
7556 			if (err)
7557 				return err;
7558 			return 1;
7559 		}
7560 miss:
7561 		/* when new state is not going to be added do not increase miss count.
7562 		 * Otherwise several loop iterations will remove the state
7563 		 * recorded earlier. The goal of these heuristics is to have
7564 		 * states from some iterations of the loop (some in the beginning
7565 		 * and some at the end) to help pruning.
7566 		 */
7567 		if (add_new_state)
7568 			sl->miss_cnt++;
7569 		/* heuristic to determine whether this state is beneficial
7570 		 * to keep checking from state equivalence point of view.
7571 		 * Higher numbers increase max_states_per_insn and verification time,
7572 		 * but do not meaningfully decrease insn_processed.
7573 		 */
7574 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7575 			/* the state is unlikely to be useful. Remove it to
7576 			 * speed up verification
7577 			 */
7578 			*pprev = sl->next;
7579 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7580 				u32 br = sl->state.branches;
7581 
7582 				WARN_ONCE(br,
7583 					  "BUG live_done but branches_to_explore %d\n",
7584 					  br);
7585 				free_verifier_state(&sl->state, false);
7586 				kfree(sl);
7587 				env->peak_states--;
7588 			} else {
7589 				/* cannot free this state, since parentage chain may
7590 				 * walk it later. Add it for free_list instead to
7591 				 * be freed at the end of verification
7592 				 */
7593 				sl->next = env->free_list;
7594 				env->free_list = sl;
7595 			}
7596 			sl = *pprev;
7597 			continue;
7598 		}
7599 next:
7600 		pprev = &sl->next;
7601 		sl = *pprev;
7602 	}
7603 
7604 	if (env->max_states_per_insn < states_cnt)
7605 		env->max_states_per_insn = states_cnt;
7606 
7607 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7608 		return push_jmp_history(env, cur);
7609 
7610 	if (!add_new_state)
7611 		return push_jmp_history(env, cur);
7612 
7613 	/* There were no equivalent states, remember the current one.
7614 	 * Technically the current state is not proven to be safe yet,
7615 	 * but it will either reach outer most bpf_exit (which means it's safe)
7616 	 * or it will be rejected. When there are no loops the verifier won't be
7617 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7618 	 * again on the way to bpf_exit.
7619 	 * When looping the sl->state.branches will be > 0 and this state
7620 	 * will not be considered for equivalence until branches == 0.
7621 	 */
7622 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7623 	if (!new_sl)
7624 		return -ENOMEM;
7625 	env->total_states++;
7626 	env->peak_states++;
7627 	env->prev_jmps_processed = env->jmps_processed;
7628 	env->prev_insn_processed = env->insn_processed;
7629 
7630 	/* add new state to the head of linked list */
7631 	new = &new_sl->state;
7632 	err = copy_verifier_state(new, cur);
7633 	if (err) {
7634 		free_verifier_state(new, false);
7635 		kfree(new_sl);
7636 		return err;
7637 	}
7638 	new->insn_idx = insn_idx;
7639 	WARN_ONCE(new->branches != 1,
7640 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7641 
7642 	cur->parent = new;
7643 	cur->first_insn_idx = insn_idx;
7644 	clear_jmp_history(cur);
7645 	new_sl->next = *explored_state(env, insn_idx);
7646 	*explored_state(env, insn_idx) = new_sl;
7647 	/* connect new state to parentage chain. Current frame needs all
7648 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7649 	 * to the stack implicitly by JITs) so in callers' frames connect just
7650 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7651 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7652 	 * from callee with its full parentage chain, anyway.
7653 	 */
7654 	/* clear write marks in current state: the writes we did are not writes
7655 	 * our child did, so they don't screen off its reads from us.
7656 	 * (There are no read marks in current state, because reads always mark
7657 	 * their parent and current state never has children yet.  Only
7658 	 * explored_states can get read marks.)
7659 	 */
7660 	for (j = 0; j <= cur->curframe; j++) {
7661 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7662 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7663 		for (i = 0; i < BPF_REG_FP; i++)
7664 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7665 	}
7666 
7667 	/* all stack frames are accessible from callee, clear them all */
7668 	for (j = 0; j <= cur->curframe; j++) {
7669 		struct bpf_func_state *frame = cur->frame[j];
7670 		struct bpf_func_state *newframe = new->frame[j];
7671 
7672 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7673 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7674 			frame->stack[i].spilled_ptr.parent =
7675 						&newframe->stack[i].spilled_ptr;
7676 		}
7677 	}
7678 	return 0;
7679 }
7680 
7681 /* Return true if it's OK to have the same insn return a different type. */
7682 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7683 {
7684 	switch (type) {
7685 	case PTR_TO_CTX:
7686 	case PTR_TO_SOCKET:
7687 	case PTR_TO_SOCKET_OR_NULL:
7688 	case PTR_TO_SOCK_COMMON:
7689 	case PTR_TO_SOCK_COMMON_OR_NULL:
7690 	case PTR_TO_TCP_SOCK:
7691 	case PTR_TO_TCP_SOCK_OR_NULL:
7692 	case PTR_TO_XDP_SOCK:
7693 	case PTR_TO_BTF_ID:
7694 		return false;
7695 	default:
7696 		return true;
7697 	}
7698 }
7699 
7700 /* If an instruction was previously used with particular pointer types, then we
7701  * need to be careful to avoid cases such as the below, where it may be ok
7702  * for one branch accessing the pointer, but not ok for the other branch:
7703  *
7704  * R1 = sock_ptr
7705  * goto X;
7706  * ...
7707  * R1 = some_other_valid_ptr;
7708  * goto X;
7709  * ...
7710  * R2 = *(u32 *)(R1 + 0);
7711  */
7712 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7713 {
7714 	return src != prev && (!reg_type_mismatch_ok(src) ||
7715 			       !reg_type_mismatch_ok(prev));
7716 }
7717 
7718 static int do_check(struct bpf_verifier_env *env)
7719 {
7720 	struct bpf_verifier_state *state;
7721 	struct bpf_insn *insns = env->prog->insnsi;
7722 	struct bpf_reg_state *regs;
7723 	int insn_cnt = env->prog->len;
7724 	bool do_print_state = false;
7725 	int prev_insn_idx = -1;
7726 
7727 	env->prev_linfo = NULL;
7728 
7729 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7730 	if (!state)
7731 		return -ENOMEM;
7732 	state->curframe = 0;
7733 	state->speculative = false;
7734 	state->branches = 1;
7735 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7736 	if (!state->frame[0]) {
7737 		kfree(state);
7738 		return -ENOMEM;
7739 	}
7740 	env->cur_state = state;
7741 	init_func_state(env, state->frame[0],
7742 			BPF_MAIN_FUNC /* callsite */,
7743 			0 /* frameno */,
7744 			0 /* subprogno, zero == main subprog */);
7745 
7746 	if (btf_check_func_arg_match(env, 0))
7747 		return -EINVAL;
7748 
7749 	for (;;) {
7750 		struct bpf_insn *insn;
7751 		u8 class;
7752 		int err;
7753 
7754 		env->prev_insn_idx = prev_insn_idx;
7755 		if (env->insn_idx >= insn_cnt) {
7756 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7757 				env->insn_idx, insn_cnt);
7758 			return -EFAULT;
7759 		}
7760 
7761 		insn = &insns[env->insn_idx];
7762 		class = BPF_CLASS(insn->code);
7763 
7764 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7765 			verbose(env,
7766 				"BPF program is too large. Processed %d insn\n",
7767 				env->insn_processed);
7768 			return -E2BIG;
7769 		}
7770 
7771 		err = is_state_visited(env, env->insn_idx);
7772 		if (err < 0)
7773 			return err;
7774 		if (err == 1) {
7775 			/* found equivalent state, can prune the search */
7776 			if (env->log.level & BPF_LOG_LEVEL) {
7777 				if (do_print_state)
7778 					verbose(env, "\nfrom %d to %d%s: safe\n",
7779 						env->prev_insn_idx, env->insn_idx,
7780 						env->cur_state->speculative ?
7781 						" (speculative execution)" : "");
7782 				else
7783 					verbose(env, "%d: safe\n", env->insn_idx);
7784 			}
7785 			goto process_bpf_exit;
7786 		}
7787 
7788 		if (signal_pending(current))
7789 			return -EAGAIN;
7790 
7791 		if (need_resched())
7792 			cond_resched();
7793 
7794 		if (env->log.level & BPF_LOG_LEVEL2 ||
7795 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7796 			if (env->log.level & BPF_LOG_LEVEL2)
7797 				verbose(env, "%d:", env->insn_idx);
7798 			else
7799 				verbose(env, "\nfrom %d to %d%s:",
7800 					env->prev_insn_idx, env->insn_idx,
7801 					env->cur_state->speculative ?
7802 					" (speculative execution)" : "");
7803 			print_verifier_state(env, state->frame[state->curframe]);
7804 			do_print_state = false;
7805 		}
7806 
7807 		if (env->log.level & BPF_LOG_LEVEL) {
7808 			const struct bpf_insn_cbs cbs = {
7809 				.cb_print	= verbose,
7810 				.private_data	= env,
7811 			};
7812 
7813 			verbose_linfo(env, env->insn_idx, "; ");
7814 			verbose(env, "%d: ", env->insn_idx);
7815 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7816 		}
7817 
7818 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7819 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7820 							   env->prev_insn_idx);
7821 			if (err)
7822 				return err;
7823 		}
7824 
7825 		regs = cur_regs(env);
7826 		env->insn_aux_data[env->insn_idx].seen = true;
7827 		prev_insn_idx = env->insn_idx;
7828 
7829 		if (class == BPF_ALU || class == BPF_ALU64) {
7830 			err = check_alu_op(env, insn);
7831 			if (err)
7832 				return err;
7833 
7834 		} else if (class == BPF_LDX) {
7835 			enum bpf_reg_type *prev_src_type, src_reg_type;
7836 
7837 			/* check for reserved fields is already done */
7838 
7839 			/* check src operand */
7840 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7841 			if (err)
7842 				return err;
7843 
7844 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7845 			if (err)
7846 				return err;
7847 
7848 			src_reg_type = regs[insn->src_reg].type;
7849 
7850 			/* check that memory (src_reg + off) is readable,
7851 			 * the state of dst_reg will be updated by this func
7852 			 */
7853 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7854 					       insn->off, BPF_SIZE(insn->code),
7855 					       BPF_READ, insn->dst_reg, false);
7856 			if (err)
7857 				return err;
7858 
7859 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7860 
7861 			if (*prev_src_type == NOT_INIT) {
7862 				/* saw a valid insn
7863 				 * dst_reg = *(u32 *)(src_reg + off)
7864 				 * save type to validate intersecting paths
7865 				 */
7866 				*prev_src_type = src_reg_type;
7867 
7868 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7869 				/* ABuser program is trying to use the same insn
7870 				 * dst_reg = *(u32*) (src_reg + off)
7871 				 * with different pointer types:
7872 				 * src_reg == ctx in one branch and
7873 				 * src_reg == stack|map in some other branch.
7874 				 * Reject it.
7875 				 */
7876 				verbose(env, "same insn cannot be used with different pointers\n");
7877 				return -EINVAL;
7878 			}
7879 
7880 		} else if (class == BPF_STX) {
7881 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7882 
7883 			if (BPF_MODE(insn->code) == BPF_XADD) {
7884 				err = check_xadd(env, env->insn_idx, insn);
7885 				if (err)
7886 					return err;
7887 				env->insn_idx++;
7888 				continue;
7889 			}
7890 
7891 			/* check src1 operand */
7892 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7893 			if (err)
7894 				return err;
7895 			/* check src2 operand */
7896 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7897 			if (err)
7898 				return err;
7899 
7900 			dst_reg_type = regs[insn->dst_reg].type;
7901 
7902 			/* check that memory (dst_reg + off) is writeable */
7903 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7904 					       insn->off, BPF_SIZE(insn->code),
7905 					       BPF_WRITE, insn->src_reg, false);
7906 			if (err)
7907 				return err;
7908 
7909 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7910 
7911 			if (*prev_dst_type == NOT_INIT) {
7912 				*prev_dst_type = dst_reg_type;
7913 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7914 				verbose(env, "same insn cannot be used with different pointers\n");
7915 				return -EINVAL;
7916 			}
7917 
7918 		} else if (class == BPF_ST) {
7919 			if (BPF_MODE(insn->code) != BPF_MEM ||
7920 			    insn->src_reg != BPF_REG_0) {
7921 				verbose(env, "BPF_ST uses reserved fields\n");
7922 				return -EINVAL;
7923 			}
7924 			/* check src operand */
7925 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7926 			if (err)
7927 				return err;
7928 
7929 			if (is_ctx_reg(env, insn->dst_reg)) {
7930 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7931 					insn->dst_reg,
7932 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7933 				return -EACCES;
7934 			}
7935 
7936 			/* check that memory (dst_reg + off) is writeable */
7937 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7938 					       insn->off, BPF_SIZE(insn->code),
7939 					       BPF_WRITE, -1, false);
7940 			if (err)
7941 				return err;
7942 
7943 		} else if (class == BPF_JMP || class == BPF_JMP32) {
7944 			u8 opcode = BPF_OP(insn->code);
7945 
7946 			env->jmps_processed++;
7947 			if (opcode == BPF_CALL) {
7948 				if (BPF_SRC(insn->code) != BPF_K ||
7949 				    insn->off != 0 ||
7950 				    (insn->src_reg != BPF_REG_0 &&
7951 				     insn->src_reg != BPF_PSEUDO_CALL) ||
7952 				    insn->dst_reg != BPF_REG_0 ||
7953 				    class == BPF_JMP32) {
7954 					verbose(env, "BPF_CALL uses reserved fields\n");
7955 					return -EINVAL;
7956 				}
7957 
7958 				if (env->cur_state->active_spin_lock &&
7959 				    (insn->src_reg == BPF_PSEUDO_CALL ||
7960 				     insn->imm != BPF_FUNC_spin_unlock)) {
7961 					verbose(env, "function calls are not allowed while holding a lock\n");
7962 					return -EINVAL;
7963 				}
7964 				if (insn->src_reg == BPF_PSEUDO_CALL)
7965 					err = check_func_call(env, insn, &env->insn_idx);
7966 				else
7967 					err = check_helper_call(env, insn->imm, env->insn_idx);
7968 				if (err)
7969 					return err;
7970 
7971 			} else if (opcode == BPF_JA) {
7972 				if (BPF_SRC(insn->code) != BPF_K ||
7973 				    insn->imm != 0 ||
7974 				    insn->src_reg != BPF_REG_0 ||
7975 				    insn->dst_reg != BPF_REG_0 ||
7976 				    class == BPF_JMP32) {
7977 					verbose(env, "BPF_JA uses reserved fields\n");
7978 					return -EINVAL;
7979 				}
7980 
7981 				env->insn_idx += insn->off + 1;
7982 				continue;
7983 
7984 			} else if (opcode == BPF_EXIT) {
7985 				if (BPF_SRC(insn->code) != BPF_K ||
7986 				    insn->imm != 0 ||
7987 				    insn->src_reg != BPF_REG_0 ||
7988 				    insn->dst_reg != BPF_REG_0 ||
7989 				    class == BPF_JMP32) {
7990 					verbose(env, "BPF_EXIT uses reserved fields\n");
7991 					return -EINVAL;
7992 				}
7993 
7994 				if (env->cur_state->active_spin_lock) {
7995 					verbose(env, "bpf_spin_unlock is missing\n");
7996 					return -EINVAL;
7997 				}
7998 
7999 				if (state->curframe) {
8000 					/* exit from nested function */
8001 					err = prepare_func_exit(env, &env->insn_idx);
8002 					if (err)
8003 						return err;
8004 					do_print_state = true;
8005 					continue;
8006 				}
8007 
8008 				err = check_reference_leak(env);
8009 				if (err)
8010 					return err;
8011 
8012 				/* eBPF calling convetion is such that R0 is used
8013 				 * to return the value from eBPF program.
8014 				 * Make sure that it's readable at this time
8015 				 * of bpf_exit, which means that program wrote
8016 				 * something into it earlier
8017 				 */
8018 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8019 				if (err)
8020 					return err;
8021 
8022 				if (is_pointer_value(env, BPF_REG_0)) {
8023 					verbose(env, "R0 leaks addr as return value\n");
8024 					return -EACCES;
8025 				}
8026 
8027 				err = check_return_code(env);
8028 				if (err)
8029 					return err;
8030 process_bpf_exit:
8031 				update_branch_counts(env, env->cur_state);
8032 				err = pop_stack(env, &prev_insn_idx,
8033 						&env->insn_idx);
8034 				if (err < 0) {
8035 					if (err != -ENOENT)
8036 						return err;
8037 					break;
8038 				} else {
8039 					do_print_state = true;
8040 					continue;
8041 				}
8042 			} else {
8043 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8044 				if (err)
8045 					return err;
8046 			}
8047 		} else if (class == BPF_LD) {
8048 			u8 mode = BPF_MODE(insn->code);
8049 
8050 			if (mode == BPF_ABS || mode == BPF_IND) {
8051 				err = check_ld_abs(env, insn);
8052 				if (err)
8053 					return err;
8054 
8055 			} else if (mode == BPF_IMM) {
8056 				err = check_ld_imm(env, insn);
8057 				if (err)
8058 					return err;
8059 
8060 				env->insn_idx++;
8061 				env->insn_aux_data[env->insn_idx].seen = true;
8062 			} else {
8063 				verbose(env, "invalid BPF_LD mode\n");
8064 				return -EINVAL;
8065 			}
8066 		} else {
8067 			verbose(env, "unknown insn class %d\n", class);
8068 			return -EINVAL;
8069 		}
8070 
8071 		env->insn_idx++;
8072 	}
8073 
8074 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
8075 	return 0;
8076 }
8077 
8078 static int check_map_prealloc(struct bpf_map *map)
8079 {
8080 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8081 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8082 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8083 		!(map->map_flags & BPF_F_NO_PREALLOC);
8084 }
8085 
8086 static bool is_tracing_prog_type(enum bpf_prog_type type)
8087 {
8088 	switch (type) {
8089 	case BPF_PROG_TYPE_KPROBE:
8090 	case BPF_PROG_TYPE_TRACEPOINT:
8091 	case BPF_PROG_TYPE_PERF_EVENT:
8092 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8093 		return true;
8094 	default:
8095 		return false;
8096 	}
8097 }
8098 
8099 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8100 					struct bpf_map *map,
8101 					struct bpf_prog *prog)
8102 
8103 {
8104 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8105 	 * preallocated hash maps, since doing memory allocation
8106 	 * in overflow_handler can crash depending on where nmi got
8107 	 * triggered.
8108 	 */
8109 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8110 		if (!check_map_prealloc(map)) {
8111 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8112 			return -EINVAL;
8113 		}
8114 		if (map->inner_map_meta &&
8115 		    !check_map_prealloc(map->inner_map_meta)) {
8116 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
8117 			return -EINVAL;
8118 		}
8119 	}
8120 
8121 	if ((is_tracing_prog_type(prog->type) ||
8122 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8123 	    map_value_has_spin_lock(map)) {
8124 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8125 		return -EINVAL;
8126 	}
8127 
8128 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8129 	    !bpf_offload_prog_map_match(prog, map)) {
8130 		verbose(env, "offload device mismatch between prog and map\n");
8131 		return -EINVAL;
8132 	}
8133 
8134 	return 0;
8135 }
8136 
8137 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8138 {
8139 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8140 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8141 }
8142 
8143 /* look for pseudo eBPF instructions that access map FDs and
8144  * replace them with actual map pointers
8145  */
8146 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8147 {
8148 	struct bpf_insn *insn = env->prog->insnsi;
8149 	int insn_cnt = env->prog->len;
8150 	int i, j, err;
8151 
8152 	err = bpf_prog_calc_tag(env->prog);
8153 	if (err)
8154 		return err;
8155 
8156 	for (i = 0; i < insn_cnt; i++, insn++) {
8157 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8158 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8159 			verbose(env, "BPF_LDX uses reserved fields\n");
8160 			return -EINVAL;
8161 		}
8162 
8163 		if (BPF_CLASS(insn->code) == BPF_STX &&
8164 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8165 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8166 			verbose(env, "BPF_STX uses reserved fields\n");
8167 			return -EINVAL;
8168 		}
8169 
8170 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8171 			struct bpf_insn_aux_data *aux;
8172 			struct bpf_map *map;
8173 			struct fd f;
8174 			u64 addr;
8175 
8176 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8177 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8178 			    insn[1].off != 0) {
8179 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8180 				return -EINVAL;
8181 			}
8182 
8183 			if (insn[0].src_reg == 0)
8184 				/* valid generic load 64-bit imm */
8185 				goto next_insn;
8186 
8187 			/* In final convert_pseudo_ld_imm64() step, this is
8188 			 * converted into regular 64-bit imm load insn.
8189 			 */
8190 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8191 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8192 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8193 			     insn[1].imm != 0)) {
8194 				verbose(env,
8195 					"unrecognized bpf_ld_imm64 insn\n");
8196 				return -EINVAL;
8197 			}
8198 
8199 			f = fdget(insn[0].imm);
8200 			map = __bpf_map_get(f);
8201 			if (IS_ERR(map)) {
8202 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8203 					insn[0].imm);
8204 				return PTR_ERR(map);
8205 			}
8206 
8207 			err = check_map_prog_compatibility(env, map, env->prog);
8208 			if (err) {
8209 				fdput(f);
8210 				return err;
8211 			}
8212 
8213 			aux = &env->insn_aux_data[i];
8214 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8215 				addr = (unsigned long)map;
8216 			} else {
8217 				u32 off = insn[1].imm;
8218 
8219 				if (off >= BPF_MAX_VAR_OFF) {
8220 					verbose(env, "direct value offset of %u is not allowed\n", off);
8221 					fdput(f);
8222 					return -EINVAL;
8223 				}
8224 
8225 				if (!map->ops->map_direct_value_addr) {
8226 					verbose(env, "no direct value access support for this map type\n");
8227 					fdput(f);
8228 					return -EINVAL;
8229 				}
8230 
8231 				err = map->ops->map_direct_value_addr(map, &addr, off);
8232 				if (err) {
8233 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8234 						map->value_size, off);
8235 					fdput(f);
8236 					return err;
8237 				}
8238 
8239 				aux->map_off = off;
8240 				addr += off;
8241 			}
8242 
8243 			insn[0].imm = (u32)addr;
8244 			insn[1].imm = addr >> 32;
8245 
8246 			/* check whether we recorded this map already */
8247 			for (j = 0; j < env->used_map_cnt; j++) {
8248 				if (env->used_maps[j] == map) {
8249 					aux->map_index = j;
8250 					fdput(f);
8251 					goto next_insn;
8252 				}
8253 			}
8254 
8255 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8256 				fdput(f);
8257 				return -E2BIG;
8258 			}
8259 
8260 			/* hold the map. If the program is rejected by verifier,
8261 			 * the map will be released by release_maps() or it
8262 			 * will be used by the valid program until it's unloaded
8263 			 * and all maps are released in free_used_maps()
8264 			 */
8265 			bpf_map_inc(map);
8266 
8267 			aux->map_index = env->used_map_cnt;
8268 			env->used_maps[env->used_map_cnt++] = map;
8269 
8270 			if (bpf_map_is_cgroup_storage(map) &&
8271 			    bpf_cgroup_storage_assign(env->prog, map)) {
8272 				verbose(env, "only one cgroup storage of each type is allowed\n");
8273 				fdput(f);
8274 				return -EBUSY;
8275 			}
8276 
8277 			fdput(f);
8278 next_insn:
8279 			insn++;
8280 			i++;
8281 			continue;
8282 		}
8283 
8284 		/* Basic sanity check before we invest more work here. */
8285 		if (!bpf_opcode_in_insntable(insn->code)) {
8286 			verbose(env, "unknown opcode %02x\n", insn->code);
8287 			return -EINVAL;
8288 		}
8289 	}
8290 
8291 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8292 	 * 'struct bpf_map *' into a register instead of user map_fd.
8293 	 * These pointers will be used later by verifier to validate map access.
8294 	 */
8295 	return 0;
8296 }
8297 
8298 /* drop refcnt of maps used by the rejected program */
8299 static void release_maps(struct bpf_verifier_env *env)
8300 {
8301 	enum bpf_cgroup_storage_type stype;
8302 	int i;
8303 
8304 	for_each_cgroup_storage_type(stype) {
8305 		if (!env->prog->aux->cgroup_storage[stype])
8306 			continue;
8307 		bpf_cgroup_storage_release(env->prog,
8308 			env->prog->aux->cgroup_storage[stype]);
8309 	}
8310 
8311 	for (i = 0; i < env->used_map_cnt; i++)
8312 		bpf_map_put(env->used_maps[i]);
8313 }
8314 
8315 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8316 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8317 {
8318 	struct bpf_insn *insn = env->prog->insnsi;
8319 	int insn_cnt = env->prog->len;
8320 	int i;
8321 
8322 	for (i = 0; i < insn_cnt; i++, insn++)
8323 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8324 			insn->src_reg = 0;
8325 }
8326 
8327 /* single env->prog->insni[off] instruction was replaced with the range
8328  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8329  * [0, off) and [off, end) to new locations, so the patched range stays zero
8330  */
8331 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8332 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8333 {
8334 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8335 	struct bpf_insn *insn = new_prog->insnsi;
8336 	u32 prog_len;
8337 	int i;
8338 
8339 	/* aux info at OFF always needs adjustment, no matter fast path
8340 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8341 	 * original insn at old prog.
8342 	 */
8343 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8344 
8345 	if (cnt == 1)
8346 		return 0;
8347 	prog_len = new_prog->len;
8348 	new_data = vzalloc(array_size(prog_len,
8349 				      sizeof(struct bpf_insn_aux_data)));
8350 	if (!new_data)
8351 		return -ENOMEM;
8352 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8353 	memcpy(new_data + off + cnt - 1, old_data + off,
8354 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8355 	for (i = off; i < off + cnt - 1; i++) {
8356 		new_data[i].seen = true;
8357 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8358 	}
8359 	env->insn_aux_data = new_data;
8360 	vfree(old_data);
8361 	return 0;
8362 }
8363 
8364 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8365 {
8366 	int i;
8367 
8368 	if (len == 1)
8369 		return;
8370 	/* NOTE: fake 'exit' subprog should be updated as well. */
8371 	for (i = 0; i <= env->subprog_cnt; i++) {
8372 		if (env->subprog_info[i].start <= off)
8373 			continue;
8374 		env->subprog_info[i].start += len - 1;
8375 	}
8376 }
8377 
8378 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8379 					    const struct bpf_insn *patch, u32 len)
8380 {
8381 	struct bpf_prog *new_prog;
8382 
8383 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8384 	if (IS_ERR(new_prog)) {
8385 		if (PTR_ERR(new_prog) == -ERANGE)
8386 			verbose(env,
8387 				"insn %d cannot be patched due to 16-bit range\n",
8388 				env->insn_aux_data[off].orig_idx);
8389 		return NULL;
8390 	}
8391 	if (adjust_insn_aux_data(env, new_prog, off, len))
8392 		return NULL;
8393 	adjust_subprog_starts(env, off, len);
8394 	return new_prog;
8395 }
8396 
8397 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8398 					      u32 off, u32 cnt)
8399 {
8400 	int i, j;
8401 
8402 	/* find first prog starting at or after off (first to remove) */
8403 	for (i = 0; i < env->subprog_cnt; i++)
8404 		if (env->subprog_info[i].start >= off)
8405 			break;
8406 	/* find first prog starting at or after off + cnt (first to stay) */
8407 	for (j = i; j < env->subprog_cnt; j++)
8408 		if (env->subprog_info[j].start >= off + cnt)
8409 			break;
8410 	/* if j doesn't start exactly at off + cnt, we are just removing
8411 	 * the front of previous prog
8412 	 */
8413 	if (env->subprog_info[j].start != off + cnt)
8414 		j--;
8415 
8416 	if (j > i) {
8417 		struct bpf_prog_aux *aux = env->prog->aux;
8418 		int move;
8419 
8420 		/* move fake 'exit' subprog as well */
8421 		move = env->subprog_cnt + 1 - j;
8422 
8423 		memmove(env->subprog_info + i,
8424 			env->subprog_info + j,
8425 			sizeof(*env->subprog_info) * move);
8426 		env->subprog_cnt -= j - i;
8427 
8428 		/* remove func_info */
8429 		if (aux->func_info) {
8430 			move = aux->func_info_cnt - j;
8431 
8432 			memmove(aux->func_info + i,
8433 				aux->func_info + j,
8434 				sizeof(*aux->func_info) * move);
8435 			aux->func_info_cnt -= j - i;
8436 			/* func_info->insn_off is set after all code rewrites,
8437 			 * in adjust_btf_func() - no need to adjust
8438 			 */
8439 		}
8440 	} else {
8441 		/* convert i from "first prog to remove" to "first to adjust" */
8442 		if (env->subprog_info[i].start == off)
8443 			i++;
8444 	}
8445 
8446 	/* update fake 'exit' subprog as well */
8447 	for (; i <= env->subprog_cnt; i++)
8448 		env->subprog_info[i].start -= cnt;
8449 
8450 	return 0;
8451 }
8452 
8453 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8454 				      u32 cnt)
8455 {
8456 	struct bpf_prog *prog = env->prog;
8457 	u32 i, l_off, l_cnt, nr_linfo;
8458 	struct bpf_line_info *linfo;
8459 
8460 	nr_linfo = prog->aux->nr_linfo;
8461 	if (!nr_linfo)
8462 		return 0;
8463 
8464 	linfo = prog->aux->linfo;
8465 
8466 	/* find first line info to remove, count lines to be removed */
8467 	for (i = 0; i < nr_linfo; i++)
8468 		if (linfo[i].insn_off >= off)
8469 			break;
8470 
8471 	l_off = i;
8472 	l_cnt = 0;
8473 	for (; i < nr_linfo; i++)
8474 		if (linfo[i].insn_off < off + cnt)
8475 			l_cnt++;
8476 		else
8477 			break;
8478 
8479 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8480 	 * last removed linfo.  prog is already modified, so prog->len == off
8481 	 * means no live instructions after (tail of the program was removed).
8482 	 */
8483 	if (prog->len != off && l_cnt &&
8484 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8485 		l_cnt--;
8486 		linfo[--i].insn_off = off + cnt;
8487 	}
8488 
8489 	/* remove the line info which refer to the removed instructions */
8490 	if (l_cnt) {
8491 		memmove(linfo + l_off, linfo + i,
8492 			sizeof(*linfo) * (nr_linfo - i));
8493 
8494 		prog->aux->nr_linfo -= l_cnt;
8495 		nr_linfo = prog->aux->nr_linfo;
8496 	}
8497 
8498 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8499 	for (i = l_off; i < nr_linfo; i++)
8500 		linfo[i].insn_off -= cnt;
8501 
8502 	/* fix up all subprogs (incl. 'exit') which start >= off */
8503 	for (i = 0; i <= env->subprog_cnt; i++)
8504 		if (env->subprog_info[i].linfo_idx > l_off) {
8505 			/* program may have started in the removed region but
8506 			 * may not be fully removed
8507 			 */
8508 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8509 				env->subprog_info[i].linfo_idx -= l_cnt;
8510 			else
8511 				env->subprog_info[i].linfo_idx = l_off;
8512 		}
8513 
8514 	return 0;
8515 }
8516 
8517 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8518 {
8519 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8520 	unsigned int orig_prog_len = env->prog->len;
8521 	int err;
8522 
8523 	if (bpf_prog_is_dev_bound(env->prog->aux))
8524 		bpf_prog_offload_remove_insns(env, off, cnt);
8525 
8526 	err = bpf_remove_insns(env->prog, off, cnt);
8527 	if (err)
8528 		return err;
8529 
8530 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8531 	if (err)
8532 		return err;
8533 
8534 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8535 	if (err)
8536 		return err;
8537 
8538 	memmove(aux_data + off,	aux_data + off + cnt,
8539 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8540 
8541 	return 0;
8542 }
8543 
8544 /* The verifier does more data flow analysis than llvm and will not
8545  * explore branches that are dead at run time. Malicious programs can
8546  * have dead code too. Therefore replace all dead at-run-time code
8547  * with 'ja -1'.
8548  *
8549  * Just nops are not optimal, e.g. if they would sit at the end of the
8550  * program and through another bug we would manage to jump there, then
8551  * we'd execute beyond program memory otherwise. Returning exception
8552  * code also wouldn't work since we can have subprogs where the dead
8553  * code could be located.
8554  */
8555 static void sanitize_dead_code(struct bpf_verifier_env *env)
8556 {
8557 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8558 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8559 	struct bpf_insn *insn = env->prog->insnsi;
8560 	const int insn_cnt = env->prog->len;
8561 	int i;
8562 
8563 	for (i = 0; i < insn_cnt; i++) {
8564 		if (aux_data[i].seen)
8565 			continue;
8566 		memcpy(insn + i, &trap, sizeof(trap));
8567 	}
8568 }
8569 
8570 static bool insn_is_cond_jump(u8 code)
8571 {
8572 	u8 op;
8573 
8574 	if (BPF_CLASS(code) == BPF_JMP32)
8575 		return true;
8576 
8577 	if (BPF_CLASS(code) != BPF_JMP)
8578 		return false;
8579 
8580 	op = BPF_OP(code);
8581 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8582 }
8583 
8584 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8585 {
8586 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8587 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8588 	struct bpf_insn *insn = env->prog->insnsi;
8589 	const int insn_cnt = env->prog->len;
8590 	int i;
8591 
8592 	for (i = 0; i < insn_cnt; i++, insn++) {
8593 		if (!insn_is_cond_jump(insn->code))
8594 			continue;
8595 
8596 		if (!aux_data[i + 1].seen)
8597 			ja.off = insn->off;
8598 		else if (!aux_data[i + 1 + insn->off].seen)
8599 			ja.off = 0;
8600 		else
8601 			continue;
8602 
8603 		if (bpf_prog_is_dev_bound(env->prog->aux))
8604 			bpf_prog_offload_replace_insn(env, i, &ja);
8605 
8606 		memcpy(insn, &ja, sizeof(ja));
8607 	}
8608 }
8609 
8610 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8611 {
8612 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8613 	int insn_cnt = env->prog->len;
8614 	int i, err;
8615 
8616 	for (i = 0; i < insn_cnt; i++) {
8617 		int j;
8618 
8619 		j = 0;
8620 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8621 			j++;
8622 		if (!j)
8623 			continue;
8624 
8625 		err = verifier_remove_insns(env, i, j);
8626 		if (err)
8627 			return err;
8628 		insn_cnt = env->prog->len;
8629 	}
8630 
8631 	return 0;
8632 }
8633 
8634 static int opt_remove_nops(struct bpf_verifier_env *env)
8635 {
8636 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8637 	struct bpf_insn *insn = env->prog->insnsi;
8638 	int insn_cnt = env->prog->len;
8639 	int i, err;
8640 
8641 	for (i = 0; i < insn_cnt; i++) {
8642 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8643 			continue;
8644 
8645 		err = verifier_remove_insns(env, i, 1);
8646 		if (err)
8647 			return err;
8648 		insn_cnt--;
8649 		i--;
8650 	}
8651 
8652 	return 0;
8653 }
8654 
8655 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8656 					 const union bpf_attr *attr)
8657 {
8658 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8659 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8660 	int i, patch_len, delta = 0, len = env->prog->len;
8661 	struct bpf_insn *insns = env->prog->insnsi;
8662 	struct bpf_prog *new_prog;
8663 	bool rnd_hi32;
8664 
8665 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8666 	zext_patch[1] = BPF_ZEXT_REG(0);
8667 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8668 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8669 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8670 	for (i = 0; i < len; i++) {
8671 		int adj_idx = i + delta;
8672 		struct bpf_insn insn;
8673 
8674 		insn = insns[adj_idx];
8675 		if (!aux[adj_idx].zext_dst) {
8676 			u8 code, class;
8677 			u32 imm_rnd;
8678 
8679 			if (!rnd_hi32)
8680 				continue;
8681 
8682 			code = insn.code;
8683 			class = BPF_CLASS(code);
8684 			if (insn_no_def(&insn))
8685 				continue;
8686 
8687 			/* NOTE: arg "reg" (the fourth one) is only used for
8688 			 *       BPF_STX which has been ruled out in above
8689 			 *       check, it is safe to pass NULL here.
8690 			 */
8691 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8692 				if (class == BPF_LD &&
8693 				    BPF_MODE(code) == BPF_IMM)
8694 					i++;
8695 				continue;
8696 			}
8697 
8698 			/* ctx load could be transformed into wider load. */
8699 			if (class == BPF_LDX &&
8700 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8701 				continue;
8702 
8703 			imm_rnd = get_random_int();
8704 			rnd_hi32_patch[0] = insn;
8705 			rnd_hi32_patch[1].imm = imm_rnd;
8706 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8707 			patch = rnd_hi32_patch;
8708 			patch_len = 4;
8709 			goto apply_patch_buffer;
8710 		}
8711 
8712 		if (!bpf_jit_needs_zext())
8713 			continue;
8714 
8715 		zext_patch[0] = insn;
8716 		zext_patch[1].dst_reg = insn.dst_reg;
8717 		zext_patch[1].src_reg = insn.dst_reg;
8718 		patch = zext_patch;
8719 		patch_len = 2;
8720 apply_patch_buffer:
8721 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8722 		if (!new_prog)
8723 			return -ENOMEM;
8724 		env->prog = new_prog;
8725 		insns = new_prog->insnsi;
8726 		aux = env->insn_aux_data;
8727 		delta += patch_len - 1;
8728 	}
8729 
8730 	return 0;
8731 }
8732 
8733 /* convert load instructions that access fields of a context type into a
8734  * sequence of instructions that access fields of the underlying structure:
8735  *     struct __sk_buff    -> struct sk_buff
8736  *     struct bpf_sock_ops -> struct sock
8737  */
8738 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8739 {
8740 	const struct bpf_verifier_ops *ops = env->ops;
8741 	int i, cnt, size, ctx_field_size, delta = 0;
8742 	const int insn_cnt = env->prog->len;
8743 	struct bpf_insn insn_buf[16], *insn;
8744 	u32 target_size, size_default, off;
8745 	struct bpf_prog *new_prog;
8746 	enum bpf_access_type type;
8747 	bool is_narrower_load;
8748 
8749 	if (ops->gen_prologue || env->seen_direct_write) {
8750 		if (!ops->gen_prologue) {
8751 			verbose(env, "bpf verifier is misconfigured\n");
8752 			return -EINVAL;
8753 		}
8754 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8755 					env->prog);
8756 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8757 			verbose(env, "bpf verifier is misconfigured\n");
8758 			return -EINVAL;
8759 		} else if (cnt) {
8760 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8761 			if (!new_prog)
8762 				return -ENOMEM;
8763 
8764 			env->prog = new_prog;
8765 			delta += cnt - 1;
8766 		}
8767 	}
8768 
8769 	if (bpf_prog_is_dev_bound(env->prog->aux))
8770 		return 0;
8771 
8772 	insn = env->prog->insnsi + delta;
8773 
8774 	for (i = 0; i < insn_cnt; i++, insn++) {
8775 		bpf_convert_ctx_access_t convert_ctx_access;
8776 
8777 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8778 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8779 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8780 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8781 			type = BPF_READ;
8782 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8783 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8784 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8785 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8786 			type = BPF_WRITE;
8787 		else
8788 			continue;
8789 
8790 		if (type == BPF_WRITE &&
8791 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
8792 			struct bpf_insn patch[] = {
8793 				/* Sanitize suspicious stack slot with zero.
8794 				 * There are no memory dependencies for this store,
8795 				 * since it's only using frame pointer and immediate
8796 				 * constant of zero
8797 				 */
8798 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8799 					   env->insn_aux_data[i + delta].sanitize_stack_off,
8800 					   0),
8801 				/* the original STX instruction will immediately
8802 				 * overwrite the same stack slot with appropriate value
8803 				 */
8804 				*insn,
8805 			};
8806 
8807 			cnt = ARRAY_SIZE(patch);
8808 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8809 			if (!new_prog)
8810 				return -ENOMEM;
8811 
8812 			delta    += cnt - 1;
8813 			env->prog = new_prog;
8814 			insn      = new_prog->insnsi + i + delta;
8815 			continue;
8816 		}
8817 
8818 		switch (env->insn_aux_data[i + delta].ptr_type) {
8819 		case PTR_TO_CTX:
8820 			if (!ops->convert_ctx_access)
8821 				continue;
8822 			convert_ctx_access = ops->convert_ctx_access;
8823 			break;
8824 		case PTR_TO_SOCKET:
8825 		case PTR_TO_SOCK_COMMON:
8826 			convert_ctx_access = bpf_sock_convert_ctx_access;
8827 			break;
8828 		case PTR_TO_TCP_SOCK:
8829 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8830 			break;
8831 		case PTR_TO_XDP_SOCK:
8832 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8833 			break;
8834 		case PTR_TO_BTF_ID:
8835 			if (type == BPF_WRITE) {
8836 				verbose(env, "Writes through BTF pointers are not allowed\n");
8837 				return -EINVAL;
8838 			}
8839 			insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code);
8840 			env->prog->aux->num_exentries++;
8841 			continue;
8842 		default:
8843 			continue;
8844 		}
8845 
8846 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8847 		size = BPF_LDST_BYTES(insn);
8848 
8849 		/* If the read access is a narrower load of the field,
8850 		 * convert to a 4/8-byte load, to minimum program type specific
8851 		 * convert_ctx_access changes. If conversion is successful,
8852 		 * we will apply proper mask to the result.
8853 		 */
8854 		is_narrower_load = size < ctx_field_size;
8855 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8856 		off = insn->off;
8857 		if (is_narrower_load) {
8858 			u8 size_code;
8859 
8860 			if (type == BPF_WRITE) {
8861 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8862 				return -EINVAL;
8863 			}
8864 
8865 			size_code = BPF_H;
8866 			if (ctx_field_size == 4)
8867 				size_code = BPF_W;
8868 			else if (ctx_field_size == 8)
8869 				size_code = BPF_DW;
8870 
8871 			insn->off = off & ~(size_default - 1);
8872 			insn->code = BPF_LDX | BPF_MEM | size_code;
8873 		}
8874 
8875 		target_size = 0;
8876 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8877 					 &target_size);
8878 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8879 		    (ctx_field_size && !target_size)) {
8880 			verbose(env, "bpf verifier is misconfigured\n");
8881 			return -EINVAL;
8882 		}
8883 
8884 		if (is_narrower_load && size < target_size) {
8885 			u8 shift = bpf_ctx_narrow_access_offset(
8886 				off, size, size_default) * 8;
8887 			if (ctx_field_size <= 4) {
8888 				if (shift)
8889 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8890 									insn->dst_reg,
8891 									shift);
8892 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8893 								(1 << size * 8) - 1);
8894 			} else {
8895 				if (shift)
8896 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8897 									insn->dst_reg,
8898 									shift);
8899 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8900 								(1ULL << size * 8) - 1);
8901 			}
8902 		}
8903 
8904 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8905 		if (!new_prog)
8906 			return -ENOMEM;
8907 
8908 		delta += cnt - 1;
8909 
8910 		/* keep walking new program and skip insns we just inserted */
8911 		env->prog = new_prog;
8912 		insn      = new_prog->insnsi + i + delta;
8913 	}
8914 
8915 	return 0;
8916 }
8917 
8918 static int jit_subprogs(struct bpf_verifier_env *env)
8919 {
8920 	struct bpf_prog *prog = env->prog, **func, *tmp;
8921 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8922 	struct bpf_insn *insn;
8923 	void *old_bpf_func;
8924 	int err;
8925 
8926 	if (env->subprog_cnt <= 1)
8927 		return 0;
8928 
8929 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8930 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8931 		    insn->src_reg != BPF_PSEUDO_CALL)
8932 			continue;
8933 		/* Upon error here we cannot fall back to interpreter but
8934 		 * need a hard reject of the program. Thus -EFAULT is
8935 		 * propagated in any case.
8936 		 */
8937 		subprog = find_subprog(env, i + insn->imm + 1);
8938 		if (subprog < 0) {
8939 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8940 				  i + insn->imm + 1);
8941 			return -EFAULT;
8942 		}
8943 		/* temporarily remember subprog id inside insn instead of
8944 		 * aux_data, since next loop will split up all insns into funcs
8945 		 */
8946 		insn->off = subprog;
8947 		/* remember original imm in case JIT fails and fallback
8948 		 * to interpreter will be needed
8949 		 */
8950 		env->insn_aux_data[i].call_imm = insn->imm;
8951 		/* point imm to __bpf_call_base+1 from JITs point of view */
8952 		insn->imm = 1;
8953 	}
8954 
8955 	err = bpf_prog_alloc_jited_linfo(prog);
8956 	if (err)
8957 		goto out_undo_insn;
8958 
8959 	err = -ENOMEM;
8960 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
8961 	if (!func)
8962 		goto out_undo_insn;
8963 
8964 	for (i = 0; i < env->subprog_cnt; i++) {
8965 		subprog_start = subprog_end;
8966 		subprog_end = env->subprog_info[i + 1].start;
8967 
8968 		len = subprog_end - subprog_start;
8969 		/* BPF_PROG_RUN doesn't call subprogs directly,
8970 		 * hence main prog stats include the runtime of subprogs.
8971 		 * subprogs don't have IDs and not reachable via prog_get_next_id
8972 		 * func[i]->aux->stats will never be accessed and stays NULL
8973 		 */
8974 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
8975 		if (!func[i])
8976 			goto out_free;
8977 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8978 		       len * sizeof(struct bpf_insn));
8979 		func[i]->type = prog->type;
8980 		func[i]->len = len;
8981 		if (bpf_prog_calc_tag(func[i]))
8982 			goto out_free;
8983 		func[i]->is_func = 1;
8984 		func[i]->aux->func_idx = i;
8985 		/* the btf and func_info will be freed only at prog->aux */
8986 		func[i]->aux->btf = prog->aux->btf;
8987 		func[i]->aux->func_info = prog->aux->func_info;
8988 
8989 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
8990 		 * Long term would need debug info to populate names
8991 		 */
8992 		func[i]->aux->name[0] = 'F';
8993 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
8994 		func[i]->jit_requested = 1;
8995 		func[i]->aux->linfo = prog->aux->linfo;
8996 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8997 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8998 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
8999 		func[i] = bpf_int_jit_compile(func[i]);
9000 		if (!func[i]->jited) {
9001 			err = -ENOTSUPP;
9002 			goto out_free;
9003 		}
9004 		cond_resched();
9005 	}
9006 	/* at this point all bpf functions were successfully JITed
9007 	 * now populate all bpf_calls with correct addresses and
9008 	 * run last pass of JIT
9009 	 */
9010 	for (i = 0; i < env->subprog_cnt; i++) {
9011 		insn = func[i]->insnsi;
9012 		for (j = 0; j < func[i]->len; j++, insn++) {
9013 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9014 			    insn->src_reg != BPF_PSEUDO_CALL)
9015 				continue;
9016 			subprog = insn->off;
9017 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9018 				    __bpf_call_base;
9019 		}
9020 
9021 		/* we use the aux data to keep a list of the start addresses
9022 		 * of the JITed images for each function in the program
9023 		 *
9024 		 * for some architectures, such as powerpc64, the imm field
9025 		 * might not be large enough to hold the offset of the start
9026 		 * address of the callee's JITed image from __bpf_call_base
9027 		 *
9028 		 * in such cases, we can lookup the start address of a callee
9029 		 * by using its subprog id, available from the off field of
9030 		 * the call instruction, as an index for this list
9031 		 */
9032 		func[i]->aux->func = func;
9033 		func[i]->aux->func_cnt = env->subprog_cnt;
9034 	}
9035 	for (i = 0; i < env->subprog_cnt; i++) {
9036 		old_bpf_func = func[i]->bpf_func;
9037 		tmp = bpf_int_jit_compile(func[i]);
9038 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9039 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9040 			err = -ENOTSUPP;
9041 			goto out_free;
9042 		}
9043 		cond_resched();
9044 	}
9045 
9046 	/* finally lock prog and jit images for all functions and
9047 	 * populate kallsysm
9048 	 */
9049 	for (i = 0; i < env->subprog_cnt; i++) {
9050 		bpf_prog_lock_ro(func[i]);
9051 		bpf_prog_kallsyms_add(func[i]);
9052 	}
9053 
9054 	/* Last step: make now unused interpreter insns from main
9055 	 * prog consistent for later dump requests, so they can
9056 	 * later look the same as if they were interpreted only.
9057 	 */
9058 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9059 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9060 		    insn->src_reg != BPF_PSEUDO_CALL)
9061 			continue;
9062 		insn->off = env->insn_aux_data[i].call_imm;
9063 		subprog = find_subprog(env, i + insn->off + 1);
9064 		insn->imm = subprog;
9065 	}
9066 
9067 	prog->jited = 1;
9068 	prog->bpf_func = func[0]->bpf_func;
9069 	prog->aux->func = func;
9070 	prog->aux->func_cnt = env->subprog_cnt;
9071 	bpf_prog_free_unused_jited_linfo(prog);
9072 	return 0;
9073 out_free:
9074 	for (i = 0; i < env->subprog_cnt; i++)
9075 		if (func[i])
9076 			bpf_jit_free(func[i]);
9077 	kfree(func);
9078 out_undo_insn:
9079 	/* cleanup main prog to be interpreted */
9080 	prog->jit_requested = 0;
9081 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9082 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9083 		    insn->src_reg != BPF_PSEUDO_CALL)
9084 			continue;
9085 		insn->off = 0;
9086 		insn->imm = env->insn_aux_data[i].call_imm;
9087 	}
9088 	bpf_prog_free_jited_linfo(prog);
9089 	return err;
9090 }
9091 
9092 static int fixup_call_args(struct bpf_verifier_env *env)
9093 {
9094 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9095 	struct bpf_prog *prog = env->prog;
9096 	struct bpf_insn *insn = prog->insnsi;
9097 	int i, depth;
9098 #endif
9099 	int err = 0;
9100 
9101 	if (env->prog->jit_requested &&
9102 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9103 		err = jit_subprogs(env);
9104 		if (err == 0)
9105 			return 0;
9106 		if (err == -EFAULT)
9107 			return err;
9108 	}
9109 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9110 	for (i = 0; i < prog->len; i++, insn++) {
9111 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9112 		    insn->src_reg != BPF_PSEUDO_CALL)
9113 			continue;
9114 		depth = get_callee_stack_depth(env, insn, i);
9115 		if (depth < 0)
9116 			return depth;
9117 		bpf_patch_call_args(insn, depth);
9118 	}
9119 	err = 0;
9120 #endif
9121 	return err;
9122 }
9123 
9124 /* fixup insn->imm field of bpf_call instructions
9125  * and inline eligible helpers as explicit sequence of BPF instructions
9126  *
9127  * this function is called after eBPF program passed verification
9128  */
9129 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9130 {
9131 	struct bpf_prog *prog = env->prog;
9132 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9133 	struct bpf_insn *insn = prog->insnsi;
9134 	const struct bpf_func_proto *fn;
9135 	const int insn_cnt = prog->len;
9136 	const struct bpf_map_ops *ops;
9137 	struct bpf_insn_aux_data *aux;
9138 	struct bpf_insn insn_buf[16];
9139 	struct bpf_prog *new_prog;
9140 	struct bpf_map *map_ptr;
9141 	int i, ret, cnt, delta = 0;
9142 
9143 	for (i = 0; i < insn_cnt; i++, insn++) {
9144 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9145 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9146 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9147 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9148 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9149 			struct bpf_insn mask_and_div[] = {
9150 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9151 				/* Rx div 0 -> 0 */
9152 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9153 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9154 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9155 				*insn,
9156 			};
9157 			struct bpf_insn mask_and_mod[] = {
9158 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9159 				/* Rx mod 0 -> Rx */
9160 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9161 				*insn,
9162 			};
9163 			struct bpf_insn *patchlet;
9164 
9165 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9166 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9167 				patchlet = mask_and_div + (is64 ? 1 : 0);
9168 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9169 			} else {
9170 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9171 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9172 			}
9173 
9174 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9175 			if (!new_prog)
9176 				return -ENOMEM;
9177 
9178 			delta    += cnt - 1;
9179 			env->prog = prog = new_prog;
9180 			insn      = new_prog->insnsi + i + delta;
9181 			continue;
9182 		}
9183 
9184 		if (BPF_CLASS(insn->code) == BPF_LD &&
9185 		    (BPF_MODE(insn->code) == BPF_ABS ||
9186 		     BPF_MODE(insn->code) == BPF_IND)) {
9187 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9188 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9189 				verbose(env, "bpf verifier is misconfigured\n");
9190 				return -EINVAL;
9191 			}
9192 
9193 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9194 			if (!new_prog)
9195 				return -ENOMEM;
9196 
9197 			delta    += cnt - 1;
9198 			env->prog = prog = new_prog;
9199 			insn      = new_prog->insnsi + i + delta;
9200 			continue;
9201 		}
9202 
9203 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9204 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9205 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9206 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9207 			struct bpf_insn insn_buf[16];
9208 			struct bpf_insn *patch = &insn_buf[0];
9209 			bool issrc, isneg;
9210 			u32 off_reg;
9211 
9212 			aux = &env->insn_aux_data[i + delta];
9213 			if (!aux->alu_state ||
9214 			    aux->alu_state == BPF_ALU_NON_POINTER)
9215 				continue;
9216 
9217 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9218 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9219 				BPF_ALU_SANITIZE_SRC;
9220 
9221 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9222 			if (isneg)
9223 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9224 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9225 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9226 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9227 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9228 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9229 			if (issrc) {
9230 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9231 							 off_reg);
9232 				insn->src_reg = BPF_REG_AX;
9233 			} else {
9234 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9235 							 BPF_REG_AX);
9236 			}
9237 			if (isneg)
9238 				insn->code = insn->code == code_add ?
9239 					     code_sub : code_add;
9240 			*patch++ = *insn;
9241 			if (issrc && isneg)
9242 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9243 			cnt = patch - insn_buf;
9244 
9245 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9246 			if (!new_prog)
9247 				return -ENOMEM;
9248 
9249 			delta    += cnt - 1;
9250 			env->prog = prog = new_prog;
9251 			insn      = new_prog->insnsi + i + delta;
9252 			continue;
9253 		}
9254 
9255 		if (insn->code != (BPF_JMP | BPF_CALL))
9256 			continue;
9257 		if (insn->src_reg == BPF_PSEUDO_CALL)
9258 			continue;
9259 
9260 		if (insn->imm == BPF_FUNC_get_route_realm)
9261 			prog->dst_needed = 1;
9262 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9263 			bpf_user_rnd_init_once();
9264 		if (insn->imm == BPF_FUNC_override_return)
9265 			prog->kprobe_override = 1;
9266 		if (insn->imm == BPF_FUNC_tail_call) {
9267 			/* If we tail call into other programs, we
9268 			 * cannot make any assumptions since they can
9269 			 * be replaced dynamically during runtime in
9270 			 * the program array.
9271 			 */
9272 			prog->cb_access = 1;
9273 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9274 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9275 
9276 			/* mark bpf_tail_call as different opcode to avoid
9277 			 * conditional branch in the interpeter for every normal
9278 			 * call and to prevent accidental JITing by JIT compiler
9279 			 * that doesn't support bpf_tail_call yet
9280 			 */
9281 			insn->imm = 0;
9282 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9283 
9284 			aux = &env->insn_aux_data[i + delta];
9285 			if (prog->jit_requested && !expect_blinding &&
9286 			    !bpf_map_key_poisoned(aux) &&
9287 			    !bpf_map_ptr_poisoned(aux) &&
9288 			    !bpf_map_ptr_unpriv(aux)) {
9289 				struct bpf_jit_poke_descriptor desc = {
9290 					.reason = BPF_POKE_REASON_TAIL_CALL,
9291 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9292 					.tail_call.key = bpf_map_key_immediate(aux),
9293 				};
9294 
9295 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
9296 				if (ret < 0) {
9297 					verbose(env, "adding tail call poke descriptor failed\n");
9298 					return ret;
9299 				}
9300 
9301 				insn->imm = ret + 1;
9302 				continue;
9303 			}
9304 
9305 			if (!bpf_map_ptr_unpriv(aux))
9306 				continue;
9307 
9308 			/* instead of changing every JIT dealing with tail_call
9309 			 * emit two extra insns:
9310 			 * if (index >= max_entries) goto out;
9311 			 * index &= array->index_mask;
9312 			 * to avoid out-of-bounds cpu speculation
9313 			 */
9314 			if (bpf_map_ptr_poisoned(aux)) {
9315 				verbose(env, "tail_call abusing map_ptr\n");
9316 				return -EINVAL;
9317 			}
9318 
9319 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9320 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9321 						  map_ptr->max_entries, 2);
9322 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9323 						    container_of(map_ptr,
9324 								 struct bpf_array,
9325 								 map)->index_mask);
9326 			insn_buf[2] = *insn;
9327 			cnt = 3;
9328 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9329 			if (!new_prog)
9330 				return -ENOMEM;
9331 
9332 			delta    += cnt - 1;
9333 			env->prog = prog = new_prog;
9334 			insn      = new_prog->insnsi + i + delta;
9335 			continue;
9336 		}
9337 
9338 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9339 		 * and other inlining handlers are currently limited to 64 bit
9340 		 * only.
9341 		 */
9342 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9343 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9344 		     insn->imm == BPF_FUNC_map_update_elem ||
9345 		     insn->imm == BPF_FUNC_map_delete_elem ||
9346 		     insn->imm == BPF_FUNC_map_push_elem   ||
9347 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9348 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9349 			aux = &env->insn_aux_data[i + delta];
9350 			if (bpf_map_ptr_poisoned(aux))
9351 				goto patch_call_imm;
9352 
9353 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9354 			ops = map_ptr->ops;
9355 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9356 			    ops->map_gen_lookup) {
9357 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9358 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9359 					verbose(env, "bpf verifier is misconfigured\n");
9360 					return -EINVAL;
9361 				}
9362 
9363 				new_prog = bpf_patch_insn_data(env, i + delta,
9364 							       insn_buf, cnt);
9365 				if (!new_prog)
9366 					return -ENOMEM;
9367 
9368 				delta    += cnt - 1;
9369 				env->prog = prog = new_prog;
9370 				insn      = new_prog->insnsi + i + delta;
9371 				continue;
9372 			}
9373 
9374 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9375 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9376 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9377 				     (int (*)(struct bpf_map *map, void *key))NULL));
9378 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9379 				     (int (*)(struct bpf_map *map, void *key, void *value,
9380 					      u64 flags))NULL));
9381 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9382 				     (int (*)(struct bpf_map *map, void *value,
9383 					      u64 flags))NULL));
9384 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9385 				     (int (*)(struct bpf_map *map, void *value))NULL));
9386 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9387 				     (int (*)(struct bpf_map *map, void *value))NULL));
9388 
9389 			switch (insn->imm) {
9390 			case BPF_FUNC_map_lookup_elem:
9391 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9392 					    __bpf_call_base;
9393 				continue;
9394 			case BPF_FUNC_map_update_elem:
9395 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9396 					    __bpf_call_base;
9397 				continue;
9398 			case BPF_FUNC_map_delete_elem:
9399 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9400 					    __bpf_call_base;
9401 				continue;
9402 			case BPF_FUNC_map_push_elem:
9403 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9404 					    __bpf_call_base;
9405 				continue;
9406 			case BPF_FUNC_map_pop_elem:
9407 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9408 					    __bpf_call_base;
9409 				continue;
9410 			case BPF_FUNC_map_peek_elem:
9411 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9412 					    __bpf_call_base;
9413 				continue;
9414 			}
9415 
9416 			goto patch_call_imm;
9417 		}
9418 
9419 patch_call_imm:
9420 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9421 		/* all functions that have prototype and verifier allowed
9422 		 * programs to call them, must be real in-kernel functions
9423 		 */
9424 		if (!fn->func) {
9425 			verbose(env,
9426 				"kernel subsystem misconfigured func %s#%d\n",
9427 				func_id_name(insn->imm), insn->imm);
9428 			return -EFAULT;
9429 		}
9430 		insn->imm = fn->func - __bpf_call_base;
9431 	}
9432 
9433 	/* Since poke tab is now finalized, publish aux to tracker. */
9434 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
9435 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
9436 		if (!map_ptr->ops->map_poke_track ||
9437 		    !map_ptr->ops->map_poke_untrack ||
9438 		    !map_ptr->ops->map_poke_run) {
9439 			verbose(env, "bpf verifier is misconfigured\n");
9440 			return -EINVAL;
9441 		}
9442 
9443 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9444 		if (ret < 0) {
9445 			verbose(env, "tracking tail call prog failed\n");
9446 			return ret;
9447 		}
9448 	}
9449 
9450 	return 0;
9451 }
9452 
9453 static void free_states(struct bpf_verifier_env *env)
9454 {
9455 	struct bpf_verifier_state_list *sl, *sln;
9456 	int i;
9457 
9458 	sl = env->free_list;
9459 	while (sl) {
9460 		sln = sl->next;
9461 		free_verifier_state(&sl->state, false);
9462 		kfree(sl);
9463 		sl = sln;
9464 	}
9465 
9466 	if (!env->explored_states)
9467 		return;
9468 
9469 	for (i = 0; i < state_htab_size(env); i++) {
9470 		sl = env->explored_states[i];
9471 
9472 		while (sl) {
9473 			sln = sl->next;
9474 			free_verifier_state(&sl->state, false);
9475 			kfree(sl);
9476 			sl = sln;
9477 		}
9478 	}
9479 
9480 	kvfree(env->explored_states);
9481 }
9482 
9483 static void print_verification_stats(struct bpf_verifier_env *env)
9484 {
9485 	int i;
9486 
9487 	if (env->log.level & BPF_LOG_STATS) {
9488 		verbose(env, "verification time %lld usec\n",
9489 			div_u64(env->verification_time, 1000));
9490 		verbose(env, "stack depth ");
9491 		for (i = 0; i < env->subprog_cnt; i++) {
9492 			u32 depth = env->subprog_info[i].stack_depth;
9493 
9494 			verbose(env, "%d", depth);
9495 			if (i + 1 < env->subprog_cnt)
9496 				verbose(env, "+");
9497 		}
9498 		verbose(env, "\n");
9499 	}
9500 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9501 		"total_states %d peak_states %d mark_read %d\n",
9502 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9503 		env->max_states_per_insn, env->total_states,
9504 		env->peak_states, env->longest_mark_read_walk);
9505 }
9506 
9507 static int check_attach_btf_id(struct bpf_verifier_env *env)
9508 {
9509 	struct bpf_prog *prog = env->prog;
9510 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
9511 	u32 btf_id = prog->aux->attach_btf_id;
9512 	const char prefix[] = "btf_trace_";
9513 	int ret = 0, subprog = -1, i;
9514 	struct bpf_trampoline *tr;
9515 	const struct btf_type *t;
9516 	bool conservative = true;
9517 	const char *tname;
9518 	struct btf *btf;
9519 	long addr;
9520 	u64 key;
9521 
9522 	if (prog->type != BPF_PROG_TYPE_TRACING)
9523 		return 0;
9524 
9525 	if (!btf_id) {
9526 		verbose(env, "Tracing programs must provide btf_id\n");
9527 		return -EINVAL;
9528 	}
9529 	btf = bpf_prog_get_target_btf(prog);
9530 	if (!btf) {
9531 		verbose(env,
9532 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9533 		return -EINVAL;
9534 	}
9535 	t = btf_type_by_id(btf, btf_id);
9536 	if (!t) {
9537 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9538 		return -EINVAL;
9539 	}
9540 	tname = btf_name_by_offset(btf, t->name_off);
9541 	if (!tname) {
9542 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9543 		return -EINVAL;
9544 	}
9545 	if (tgt_prog) {
9546 		struct bpf_prog_aux *aux = tgt_prog->aux;
9547 
9548 		for (i = 0; i < aux->func_info_cnt; i++)
9549 			if (aux->func_info[i].type_id == btf_id) {
9550 				subprog = i;
9551 				break;
9552 			}
9553 		if (subprog == -1) {
9554 			verbose(env, "Subprog %s doesn't exist\n", tname);
9555 			return -EINVAL;
9556 		}
9557 		conservative = aux->func_info_aux[subprog].unreliable;
9558 		key = ((u64)aux->id) << 32 | btf_id;
9559 	} else {
9560 		key = btf_id;
9561 	}
9562 
9563 	switch (prog->expected_attach_type) {
9564 	case BPF_TRACE_RAW_TP:
9565 		if (tgt_prog) {
9566 			verbose(env,
9567 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9568 			return -EINVAL;
9569 		}
9570 		if (!btf_type_is_typedef(t)) {
9571 			verbose(env, "attach_btf_id %u is not a typedef\n",
9572 				btf_id);
9573 			return -EINVAL;
9574 		}
9575 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
9576 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9577 				btf_id, tname);
9578 			return -EINVAL;
9579 		}
9580 		tname += sizeof(prefix) - 1;
9581 		t = btf_type_by_id(btf, t->type);
9582 		if (!btf_type_is_ptr(t))
9583 			/* should never happen in valid vmlinux build */
9584 			return -EINVAL;
9585 		t = btf_type_by_id(btf, t->type);
9586 		if (!btf_type_is_func_proto(t))
9587 			/* should never happen in valid vmlinux build */
9588 			return -EINVAL;
9589 
9590 		/* remember two read only pointers that are valid for
9591 		 * the life time of the kernel
9592 		 */
9593 		prog->aux->attach_func_name = tname;
9594 		prog->aux->attach_func_proto = t;
9595 		prog->aux->attach_btf_trace = true;
9596 		return 0;
9597 	case BPF_TRACE_FENTRY:
9598 	case BPF_TRACE_FEXIT:
9599 		if (!btf_type_is_func(t)) {
9600 			verbose(env, "attach_btf_id %u is not a function\n",
9601 				btf_id);
9602 			return -EINVAL;
9603 		}
9604 		t = btf_type_by_id(btf, t->type);
9605 		if (!btf_type_is_func_proto(t))
9606 			return -EINVAL;
9607 		tr = bpf_trampoline_lookup(key);
9608 		if (!tr)
9609 			return -ENOMEM;
9610 		prog->aux->attach_func_name = tname;
9611 		/* t is either vmlinux type or another program's type */
9612 		prog->aux->attach_func_proto = t;
9613 		mutex_lock(&tr->mutex);
9614 		if (tr->func.addr) {
9615 			prog->aux->trampoline = tr;
9616 			goto out;
9617 		}
9618 		if (tgt_prog && conservative) {
9619 			prog->aux->attach_func_proto = NULL;
9620 			t = NULL;
9621 		}
9622 		ret = btf_distill_func_proto(&env->log, btf, t,
9623 					     tname, &tr->func.model);
9624 		if (ret < 0)
9625 			goto out;
9626 		if (tgt_prog) {
9627 			if (!tgt_prog->jited) {
9628 				/* for now */
9629 				verbose(env, "Can trace only JITed BPF progs\n");
9630 				ret = -EINVAL;
9631 				goto out;
9632 			}
9633 			if (tgt_prog->type == BPF_PROG_TYPE_TRACING) {
9634 				/* prevent cycles */
9635 				verbose(env, "Cannot recursively attach\n");
9636 				ret = -EINVAL;
9637 				goto out;
9638 			}
9639 			if (subprog == 0)
9640 				addr = (long) tgt_prog->bpf_func;
9641 			else
9642 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
9643 		} else {
9644 			addr = kallsyms_lookup_name(tname);
9645 			if (!addr) {
9646 				verbose(env,
9647 					"The address of function %s cannot be found\n",
9648 					tname);
9649 				ret = -ENOENT;
9650 				goto out;
9651 			}
9652 		}
9653 		tr->func.addr = (void *)addr;
9654 		prog->aux->trampoline = tr;
9655 out:
9656 		mutex_unlock(&tr->mutex);
9657 		if (ret)
9658 			bpf_trampoline_put(tr);
9659 		return ret;
9660 	default:
9661 		return -EINVAL;
9662 	}
9663 }
9664 
9665 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9666 	      union bpf_attr __user *uattr)
9667 {
9668 	u64 start_time = ktime_get_ns();
9669 	struct bpf_verifier_env *env;
9670 	struct bpf_verifier_log *log;
9671 	int i, len, ret = -EINVAL;
9672 	bool is_priv;
9673 
9674 	/* no program is valid */
9675 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9676 		return -EINVAL;
9677 
9678 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9679 	 * allocate/free it every time bpf_check() is called
9680 	 */
9681 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9682 	if (!env)
9683 		return -ENOMEM;
9684 	log = &env->log;
9685 
9686 	len = (*prog)->len;
9687 	env->insn_aux_data =
9688 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9689 	ret = -ENOMEM;
9690 	if (!env->insn_aux_data)
9691 		goto err_free_env;
9692 	for (i = 0; i < len; i++)
9693 		env->insn_aux_data[i].orig_idx = i;
9694 	env->prog = *prog;
9695 	env->ops = bpf_verifier_ops[env->prog->type];
9696 	is_priv = capable(CAP_SYS_ADMIN);
9697 
9698 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
9699 		mutex_lock(&bpf_verifier_lock);
9700 		if (!btf_vmlinux)
9701 			btf_vmlinux = btf_parse_vmlinux();
9702 		mutex_unlock(&bpf_verifier_lock);
9703 	}
9704 
9705 	/* grab the mutex to protect few globals used by verifier */
9706 	if (!is_priv)
9707 		mutex_lock(&bpf_verifier_lock);
9708 
9709 	if (attr->log_level || attr->log_buf || attr->log_size) {
9710 		/* user requested verbose verifier output
9711 		 * and supplied buffer to store the verification trace
9712 		 */
9713 		log->level = attr->log_level;
9714 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9715 		log->len_total = attr->log_size;
9716 
9717 		ret = -EINVAL;
9718 		/* log attributes have to be sane */
9719 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9720 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9721 			goto err_unlock;
9722 	}
9723 
9724 	if (IS_ERR(btf_vmlinux)) {
9725 		/* Either gcc or pahole or kernel are broken. */
9726 		verbose(env, "in-kernel BTF is malformed\n");
9727 		ret = PTR_ERR(btf_vmlinux);
9728 		goto skip_full_check;
9729 	}
9730 
9731 	ret = check_attach_btf_id(env);
9732 	if (ret)
9733 		goto skip_full_check;
9734 
9735 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9736 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9737 		env->strict_alignment = true;
9738 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9739 		env->strict_alignment = false;
9740 
9741 	env->allow_ptr_leaks = is_priv;
9742 
9743 	if (is_priv)
9744 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9745 
9746 	ret = replace_map_fd_with_map_ptr(env);
9747 	if (ret < 0)
9748 		goto skip_full_check;
9749 
9750 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
9751 		ret = bpf_prog_offload_verifier_prep(env->prog);
9752 		if (ret)
9753 			goto skip_full_check;
9754 	}
9755 
9756 	env->explored_states = kvcalloc(state_htab_size(env),
9757 				       sizeof(struct bpf_verifier_state_list *),
9758 				       GFP_USER);
9759 	ret = -ENOMEM;
9760 	if (!env->explored_states)
9761 		goto skip_full_check;
9762 
9763 	ret = check_subprogs(env);
9764 	if (ret < 0)
9765 		goto skip_full_check;
9766 
9767 	ret = check_btf_info(env, attr, uattr);
9768 	if (ret < 0)
9769 		goto skip_full_check;
9770 
9771 	ret = check_cfg(env);
9772 	if (ret < 0)
9773 		goto skip_full_check;
9774 
9775 	ret = do_check(env);
9776 	if (env->cur_state) {
9777 		free_verifier_state(env->cur_state, true);
9778 		env->cur_state = NULL;
9779 	}
9780 
9781 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9782 		ret = bpf_prog_offload_finalize(env);
9783 
9784 skip_full_check:
9785 	while (!pop_stack(env, NULL, NULL));
9786 	free_states(env);
9787 
9788 	if (ret == 0)
9789 		ret = check_max_stack_depth(env);
9790 
9791 	/* instruction rewrites happen after this point */
9792 	if (is_priv) {
9793 		if (ret == 0)
9794 			opt_hard_wire_dead_code_branches(env);
9795 		if (ret == 0)
9796 			ret = opt_remove_dead_code(env);
9797 		if (ret == 0)
9798 			ret = opt_remove_nops(env);
9799 	} else {
9800 		if (ret == 0)
9801 			sanitize_dead_code(env);
9802 	}
9803 
9804 	if (ret == 0)
9805 		/* program is valid, convert *(u32*)(ctx + off) accesses */
9806 		ret = convert_ctx_accesses(env);
9807 
9808 	if (ret == 0)
9809 		ret = fixup_bpf_calls(env);
9810 
9811 	/* do 32-bit optimization after insn patching has done so those patched
9812 	 * insns could be handled correctly.
9813 	 */
9814 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9815 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9816 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9817 								     : false;
9818 	}
9819 
9820 	if (ret == 0)
9821 		ret = fixup_call_args(env);
9822 
9823 	env->verification_time = ktime_get_ns() - start_time;
9824 	print_verification_stats(env);
9825 
9826 	if (log->level && bpf_verifier_log_full(log))
9827 		ret = -ENOSPC;
9828 	if (log->level && !log->ubuf) {
9829 		ret = -EFAULT;
9830 		goto err_release_maps;
9831 	}
9832 
9833 	if (ret == 0 && env->used_map_cnt) {
9834 		/* if program passed verifier, update used_maps in bpf_prog_info */
9835 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9836 							  sizeof(env->used_maps[0]),
9837 							  GFP_KERNEL);
9838 
9839 		if (!env->prog->aux->used_maps) {
9840 			ret = -ENOMEM;
9841 			goto err_release_maps;
9842 		}
9843 
9844 		memcpy(env->prog->aux->used_maps, env->used_maps,
9845 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
9846 		env->prog->aux->used_map_cnt = env->used_map_cnt;
9847 
9848 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
9849 		 * bpf_ld_imm64 instructions
9850 		 */
9851 		convert_pseudo_ld_imm64(env);
9852 	}
9853 
9854 	if (ret == 0)
9855 		adjust_btf_func(env);
9856 
9857 err_release_maps:
9858 	if (!env->prog->aux->used_maps)
9859 		/* if we didn't copy map pointers into bpf_prog_info, release
9860 		 * them now. Otherwise free_used_maps() will release them.
9861 		 */
9862 		release_maps(env);
9863 	*prog = env->prog;
9864 err_unlock:
9865 	if (!is_priv)
9866 		mutex_unlock(&bpf_verifier_lock);
9867 	vfree(env->insn_aux_data);
9868 err_free_env:
9869 	kfree(env);
9870 	return ret;
9871 }
9872