xref: /openbmc/linux/kernel/bpf/verifier.c (revision bcda5fd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 };
265 
266 struct btf *btf_vmlinux;
267 
268 static DEFINE_MUTEX(bpf_verifier_lock);
269 
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 	const struct bpf_line_info *linfo;
274 	const struct bpf_prog *prog;
275 	u32 i, nr_linfo;
276 
277 	prog = env->prog;
278 	nr_linfo = prog->aux->nr_linfo;
279 
280 	if (!nr_linfo || insn_off >= prog->len)
281 		return NULL;
282 
283 	linfo = prog->aux->linfo;
284 	for (i = 1; i < nr_linfo; i++)
285 		if (insn_off < linfo[i].insn_off)
286 			break;
287 
288 	return &linfo[i - 1];
289 }
290 
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 		       va_list args)
293 {
294 	unsigned int n;
295 
296 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297 
298 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 		  "verifier log line truncated - local buffer too short\n");
300 
301 	n = min(log->len_total - log->len_used - 1, n);
302 	log->kbuf[n] = '\0';
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		pr_err("BPF:%s\n", log->kbuf);
306 		return;
307 	}
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 	       type == PTR_TO_SOCKET_OR_NULL ||
451 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
453 	       type == PTR_TO_BTF_ID_OR_NULL ||
454 	       type == PTR_TO_MEM_OR_NULL ||
455 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 	       type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458 
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 	return reg->type == PTR_TO_MAP_VALUE &&
462 		map_value_has_spin_lock(reg->map_ptr);
463 }
464 
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 	return type == PTR_TO_SOCKET ||
468 		type == PTR_TO_SOCKET_OR_NULL ||
469 		type == PTR_TO_TCP_SOCK ||
470 		type == PTR_TO_TCP_SOCK_OR_NULL ||
471 		type == PTR_TO_MEM ||
472 		type == PTR_TO_MEM_OR_NULL;
473 }
474 
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479 
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 	       type == ARG_PTR_TO_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_CTX_OR_NULL ||
485 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 	       type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489 
490 /* Determine whether the function releases some resources allocated by another
491  * function call. The first reference type argument will be assumed to be
492  * released by release_reference().
493  */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_sk_release ||
497 	       func_id == BPF_FUNC_ringbuf_submit ||
498 	       func_id == BPF_FUNC_ringbuf_discard;
499 }
500 
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 	return func_id == BPF_FUNC_sk_lookup_tcp ||
504 		func_id == BPF_FUNC_sk_lookup_udp ||
505 		func_id == BPF_FUNC_skc_lookup_tcp ||
506 		func_id == BPF_FUNC_map_lookup_elem ||
507 	        func_id == BPF_FUNC_ringbuf_reserve;
508 }
509 
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 				const struct bpf_map *map)
512 {
513 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514 
515 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 	    func_id == BPF_FUNC_sk_lookup_udp ||
517 	    func_id == BPF_FUNC_skc_lookup_tcp ||
518 	    func_id == BPF_FUNC_ringbuf_reserve)
519 		return true;
520 
521 	if (func_id == BPF_FUNC_map_lookup_elem &&
522 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 	     map_type == BPF_MAP_TYPE_SOCKHASH))
524 		return true;
525 
526 	return false;
527 }
528 
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 	return func_id == BPF_FUNC_tcp_sock ||
532 		func_id == BPF_FUNC_sk_fullsock ||
533 		func_id == BPF_FUNC_skc_to_tcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 		func_id == BPF_FUNC_skc_to_udp6_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 	return BPF_CLASS(insn->code) == BPF_STX &&
543 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
544 	       insn->imm == BPF_CMPXCHG;
545 }
546 
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 	[NOT_INIT]		= "?",
550 	[SCALAR_VALUE]		= "inv",
551 	[PTR_TO_CTX]		= "ctx",
552 	[CONST_PTR_TO_MAP]	= "map_ptr",
553 	[PTR_TO_MAP_VALUE]	= "map_value",
554 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 	[PTR_TO_STACK]		= "fp",
556 	[PTR_TO_PACKET]		= "pkt",
557 	[PTR_TO_PACKET_META]	= "pkt_meta",
558 	[PTR_TO_PACKET_END]	= "pkt_end",
559 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
560 	[PTR_TO_SOCKET]		= "sock",
561 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 	[PTR_TO_SOCK_COMMON]	= "sock_common",
563 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
565 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
567 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
568 	[PTR_TO_BTF_ID]		= "ptr_",
569 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
570 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
571 	[PTR_TO_MEM]		= "mem",
572 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
573 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
574 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
576 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 	[PTR_TO_FUNC]		= "func",
578 	[PTR_TO_MAP_KEY]	= "map_key",
579 };
580 
581 static char slot_type_char[] = {
582 	[STACK_INVALID]	= '?',
583 	[STACK_SPILL]	= 'r',
584 	[STACK_MISC]	= 'm',
585 	[STACK_ZERO]	= '0',
586 };
587 
588 static void print_liveness(struct bpf_verifier_env *env,
589 			   enum bpf_reg_liveness live)
590 {
591 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 	    verbose(env, "_");
593 	if (live & REG_LIVE_READ)
594 		verbose(env, "r");
595 	if (live & REG_LIVE_WRITTEN)
596 		verbose(env, "w");
597 	if (live & REG_LIVE_DONE)
598 		verbose(env, "D");
599 }
600 
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 				   const struct bpf_reg_state *reg)
603 {
604 	struct bpf_verifier_state *cur = env->cur_state;
605 
606 	return cur->frame[reg->frameno];
607 }
608 
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613 
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 				 const struct bpf_func_state *state)
616 {
617 	const struct bpf_reg_state *reg;
618 	enum bpf_reg_type t;
619 	int i;
620 
621 	if (state->frameno)
622 		verbose(env, " frame%d:", state->frameno);
623 	for (i = 0; i < MAX_BPF_REG; i++) {
624 		reg = &state->regs[i];
625 		t = reg->type;
626 		if (t == NOT_INIT)
627 			continue;
628 		verbose(env, " R%d", i);
629 		print_liveness(env, reg->live);
630 		verbose(env, "=%s", reg_type_str[t]);
631 		if (t == SCALAR_VALUE && reg->precise)
632 			verbose(env, "P");
633 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 		    tnum_is_const(reg->var_off)) {
635 			/* reg->off should be 0 for SCALAR_VALUE */
636 			verbose(env, "%lld", reg->var_off.value + reg->off);
637 		} else {
638 			if (t == PTR_TO_BTF_ID ||
639 			    t == PTR_TO_BTF_ID_OR_NULL ||
640 			    t == PTR_TO_PERCPU_BTF_ID)
641 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 			verbose(env, "(id=%d", reg->id);
643 			if (reg_type_may_be_refcounted_or_null(t))
644 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 			if (t != SCALAR_VALUE)
646 				verbose(env, ",off=%d", reg->off);
647 			if (type_is_pkt_pointer(t))
648 				verbose(env, ",r=%d", reg->range);
649 			else if (t == CONST_PTR_TO_MAP ||
650 				 t == PTR_TO_MAP_KEY ||
651 				 t == PTR_TO_MAP_VALUE ||
652 				 t == PTR_TO_MAP_VALUE_OR_NULL)
653 				verbose(env, ",ks=%d,vs=%d",
654 					reg->map_ptr->key_size,
655 					reg->map_ptr->value_size);
656 			if (tnum_is_const(reg->var_off)) {
657 				/* Typically an immediate SCALAR_VALUE, but
658 				 * could be a pointer whose offset is too big
659 				 * for reg->off
660 				 */
661 				verbose(env, ",imm=%llx", reg->var_off.value);
662 			} else {
663 				if (reg->smin_value != reg->umin_value &&
664 				    reg->smin_value != S64_MIN)
665 					verbose(env, ",smin_value=%lld",
666 						(long long)reg->smin_value);
667 				if (reg->smax_value != reg->umax_value &&
668 				    reg->smax_value != S64_MAX)
669 					verbose(env, ",smax_value=%lld",
670 						(long long)reg->smax_value);
671 				if (reg->umin_value != 0)
672 					verbose(env, ",umin_value=%llu",
673 						(unsigned long long)reg->umin_value);
674 				if (reg->umax_value != U64_MAX)
675 					verbose(env, ",umax_value=%llu",
676 						(unsigned long long)reg->umax_value);
677 				if (!tnum_is_unknown(reg->var_off)) {
678 					char tn_buf[48];
679 
680 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 					verbose(env, ",var_off=%s", tn_buf);
682 				}
683 				if (reg->s32_min_value != reg->smin_value &&
684 				    reg->s32_min_value != S32_MIN)
685 					verbose(env, ",s32_min_value=%d",
686 						(int)(reg->s32_min_value));
687 				if (reg->s32_max_value != reg->smax_value &&
688 				    reg->s32_max_value != S32_MAX)
689 					verbose(env, ",s32_max_value=%d",
690 						(int)(reg->s32_max_value));
691 				if (reg->u32_min_value != reg->umin_value &&
692 				    reg->u32_min_value != U32_MIN)
693 					verbose(env, ",u32_min_value=%d",
694 						(int)(reg->u32_min_value));
695 				if (reg->u32_max_value != reg->umax_value &&
696 				    reg->u32_max_value != U32_MAX)
697 					verbose(env, ",u32_max_value=%d",
698 						(int)(reg->u32_max_value));
699 			}
700 			verbose(env, ")");
701 		}
702 	}
703 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 		char types_buf[BPF_REG_SIZE + 1];
705 		bool valid = false;
706 		int j;
707 
708 		for (j = 0; j < BPF_REG_SIZE; j++) {
709 			if (state->stack[i].slot_type[j] != STACK_INVALID)
710 				valid = true;
711 			types_buf[j] = slot_type_char[
712 					state->stack[i].slot_type[j]];
713 		}
714 		types_buf[BPF_REG_SIZE] = 0;
715 		if (!valid)
716 			continue;
717 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 		print_liveness(env, state->stack[i].spilled_ptr.live);
719 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 			reg = &state->stack[i].spilled_ptr;
721 			t = reg->type;
722 			verbose(env, "=%s", reg_type_str[t]);
723 			if (t == SCALAR_VALUE && reg->precise)
724 				verbose(env, "P");
725 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 				verbose(env, "%lld", reg->var_off.value + reg->off);
727 		} else {
728 			verbose(env, "=%s", types_buf);
729 		}
730 	}
731 	if (state->acquired_refs && state->refs[0].id) {
732 		verbose(env, " refs=%d", state->refs[0].id);
733 		for (i = 1; i < state->acquired_refs; i++)
734 			if (state->refs[i].id)
735 				verbose(env, ",%d", state->refs[i].id);
736 	}
737 	verbose(env, "\n");
738 }
739 
740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741  * small to hold src. This is different from krealloc since we don't want to preserve
742  * the contents of dst.
743  *
744  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745  * not be allocated.
746  */
747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
748 {
749 	size_t bytes;
750 
751 	if (ZERO_OR_NULL_PTR(src))
752 		goto out;
753 
754 	if (unlikely(check_mul_overflow(n, size, &bytes)))
755 		return NULL;
756 
757 	if (ksize(dst) < bytes) {
758 		kfree(dst);
759 		dst = kmalloc_track_caller(bytes, flags);
760 		if (!dst)
761 			return NULL;
762 	}
763 
764 	memcpy(dst, src, bytes);
765 out:
766 	return dst ? dst : ZERO_SIZE_PTR;
767 }
768 
769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
770  * small to hold new_n items. new items are zeroed out if the array grows.
771  *
772  * Contrary to krealloc_array, does not free arr if new_n is zero.
773  */
774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775 {
776 	if (!new_n || old_n == new_n)
777 		goto out;
778 
779 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 	if (!arr)
781 		return NULL;
782 
783 	if (new_n > old_n)
784 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
785 
786 out:
787 	return arr ? arr : ZERO_SIZE_PTR;
788 }
789 
790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791 {
792 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
794 	if (!dst->refs)
795 		return -ENOMEM;
796 
797 	dst->acquired_refs = src->acquired_refs;
798 	return 0;
799 }
800 
801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802 {
803 	size_t n = src->allocated_stack / BPF_REG_SIZE;
804 
805 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 				GFP_KERNEL);
807 	if (!dst->stack)
808 		return -ENOMEM;
809 
810 	dst->allocated_stack = src->allocated_stack;
811 	return 0;
812 }
813 
814 static int resize_reference_state(struct bpf_func_state *state, size_t n)
815 {
816 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 				    sizeof(struct bpf_reference_state));
818 	if (!state->refs)
819 		return -ENOMEM;
820 
821 	state->acquired_refs = n;
822 	return 0;
823 }
824 
825 static int grow_stack_state(struct bpf_func_state *state, int size)
826 {
827 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828 
829 	if (old_n >= n)
830 		return 0;
831 
832 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 	if (!state->stack)
834 		return -ENOMEM;
835 
836 	state->allocated_stack = size;
837 	return 0;
838 }
839 
840 /* Acquire a pointer id from the env and update the state->refs to include
841  * this new pointer reference.
842  * On success, returns a valid pointer id to associate with the register
843  * On failure, returns a negative errno.
844  */
845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
846 {
847 	struct bpf_func_state *state = cur_func(env);
848 	int new_ofs = state->acquired_refs;
849 	int id, err;
850 
851 	err = resize_reference_state(state, state->acquired_refs + 1);
852 	if (err)
853 		return err;
854 	id = ++env->id_gen;
855 	state->refs[new_ofs].id = id;
856 	state->refs[new_ofs].insn_idx = insn_idx;
857 
858 	return id;
859 }
860 
861 /* release function corresponding to acquire_reference_state(). Idempotent. */
862 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
863 {
864 	int i, last_idx;
865 
866 	last_idx = state->acquired_refs - 1;
867 	for (i = 0; i < state->acquired_refs; i++) {
868 		if (state->refs[i].id == ptr_id) {
869 			if (last_idx && i != last_idx)
870 				memcpy(&state->refs[i], &state->refs[last_idx],
871 				       sizeof(*state->refs));
872 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 			state->acquired_refs--;
874 			return 0;
875 		}
876 	}
877 	return -EINVAL;
878 }
879 
880 static void free_func_state(struct bpf_func_state *state)
881 {
882 	if (!state)
883 		return;
884 	kfree(state->refs);
885 	kfree(state->stack);
886 	kfree(state);
887 }
888 
889 static void clear_jmp_history(struct bpf_verifier_state *state)
890 {
891 	kfree(state->jmp_history);
892 	state->jmp_history = NULL;
893 	state->jmp_history_cnt = 0;
894 }
895 
896 static void free_verifier_state(struct bpf_verifier_state *state,
897 				bool free_self)
898 {
899 	int i;
900 
901 	for (i = 0; i <= state->curframe; i++) {
902 		free_func_state(state->frame[i]);
903 		state->frame[i] = NULL;
904 	}
905 	clear_jmp_history(state);
906 	if (free_self)
907 		kfree(state);
908 }
909 
910 /* copy verifier state from src to dst growing dst stack space
911  * when necessary to accommodate larger src stack
912  */
913 static int copy_func_state(struct bpf_func_state *dst,
914 			   const struct bpf_func_state *src)
915 {
916 	int err;
917 
918 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 	err = copy_reference_state(dst, src);
920 	if (err)
921 		return err;
922 	return copy_stack_state(dst, src);
923 }
924 
925 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 			       const struct bpf_verifier_state *src)
927 {
928 	struct bpf_func_state *dst;
929 	int i, err;
930 
931 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 					    GFP_USER);
934 	if (!dst_state->jmp_history)
935 		return -ENOMEM;
936 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
937 
938 	/* if dst has more stack frames then src frame, free them */
939 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 		free_func_state(dst_state->frame[i]);
941 		dst_state->frame[i] = NULL;
942 	}
943 	dst_state->speculative = src->speculative;
944 	dst_state->curframe = src->curframe;
945 	dst_state->active_spin_lock = src->active_spin_lock;
946 	dst_state->branches = src->branches;
947 	dst_state->parent = src->parent;
948 	dst_state->first_insn_idx = src->first_insn_idx;
949 	dst_state->last_insn_idx = src->last_insn_idx;
950 	for (i = 0; i <= src->curframe; i++) {
951 		dst = dst_state->frame[i];
952 		if (!dst) {
953 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 			if (!dst)
955 				return -ENOMEM;
956 			dst_state->frame[i] = dst;
957 		}
958 		err = copy_func_state(dst, src->frame[i]);
959 		if (err)
960 			return err;
961 	}
962 	return 0;
963 }
964 
965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966 {
967 	while (st) {
968 		u32 br = --st->branches;
969 
970 		/* WARN_ON(br > 1) technically makes sense here,
971 		 * but see comment in push_stack(), hence:
972 		 */
973 		WARN_ONCE((int)br < 0,
974 			  "BUG update_branch_counts:branches_to_explore=%d\n",
975 			  br);
976 		if (br)
977 			break;
978 		st = st->parent;
979 	}
980 }
981 
982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
983 		     int *insn_idx, bool pop_log)
984 {
985 	struct bpf_verifier_state *cur = env->cur_state;
986 	struct bpf_verifier_stack_elem *elem, *head = env->head;
987 	int err;
988 
989 	if (env->head == NULL)
990 		return -ENOENT;
991 
992 	if (cur) {
993 		err = copy_verifier_state(cur, &head->st);
994 		if (err)
995 			return err;
996 	}
997 	if (pop_log)
998 		bpf_vlog_reset(&env->log, head->log_pos);
999 	if (insn_idx)
1000 		*insn_idx = head->insn_idx;
1001 	if (prev_insn_idx)
1002 		*prev_insn_idx = head->prev_insn_idx;
1003 	elem = head->next;
1004 	free_verifier_state(&head->st, false);
1005 	kfree(head);
1006 	env->head = elem;
1007 	env->stack_size--;
1008 	return 0;
1009 }
1010 
1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012 					     int insn_idx, int prev_insn_idx,
1013 					     bool speculative)
1014 {
1015 	struct bpf_verifier_state *cur = env->cur_state;
1016 	struct bpf_verifier_stack_elem *elem;
1017 	int err;
1018 
1019 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020 	if (!elem)
1021 		goto err;
1022 
1023 	elem->insn_idx = insn_idx;
1024 	elem->prev_insn_idx = prev_insn_idx;
1025 	elem->next = env->head;
1026 	elem->log_pos = env->log.len_used;
1027 	env->head = elem;
1028 	env->stack_size++;
1029 	err = copy_verifier_state(&elem->st, cur);
1030 	if (err)
1031 		goto err;
1032 	elem->st.speculative |= speculative;
1033 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 		verbose(env, "The sequence of %d jumps is too complex.\n",
1035 			env->stack_size);
1036 		goto err;
1037 	}
1038 	if (elem->st.parent) {
1039 		++elem->st.parent->branches;
1040 		/* WARN_ON(branches > 2) technically makes sense here,
1041 		 * but
1042 		 * 1. speculative states will bump 'branches' for non-branch
1043 		 * instructions
1044 		 * 2. is_state_visited() heuristics may decide not to create
1045 		 * a new state for a sequence of branches and all such current
1046 		 * and cloned states will be pointing to a single parent state
1047 		 * which might have large 'branches' count.
1048 		 */
1049 	}
1050 	return &elem->st;
1051 err:
1052 	free_verifier_state(env->cur_state, true);
1053 	env->cur_state = NULL;
1054 	/* pop all elements and return */
1055 	while (!pop_stack(env, NULL, NULL, false));
1056 	return NULL;
1057 }
1058 
1059 #define CALLER_SAVED_REGS 6
1060 static const int caller_saved[CALLER_SAVED_REGS] = {
1061 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062 };
1063 
1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 				struct bpf_reg_state *reg);
1066 
1067 /* This helper doesn't clear reg->id */
1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069 {
1070 	reg->var_off = tnum_const(imm);
1071 	reg->smin_value = (s64)imm;
1072 	reg->smax_value = (s64)imm;
1073 	reg->umin_value = imm;
1074 	reg->umax_value = imm;
1075 
1076 	reg->s32_min_value = (s32)imm;
1077 	reg->s32_max_value = (s32)imm;
1078 	reg->u32_min_value = (u32)imm;
1079 	reg->u32_max_value = (u32)imm;
1080 }
1081 
1082 /* Mark the unknown part of a register (variable offset or scalar value) as
1083  * known to have the value @imm.
1084  */
1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086 {
1087 	/* Clear id, off, and union(map_ptr, range) */
1088 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 	___mark_reg_known(reg, imm);
1091 }
1092 
1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094 {
1095 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 	reg->s32_min_value = (s32)imm;
1097 	reg->s32_max_value = (s32)imm;
1098 	reg->u32_min_value = (u32)imm;
1099 	reg->u32_max_value = (u32)imm;
1100 }
1101 
1102 /* Mark the 'variable offset' part of a register as zero.  This should be
1103  * used only on registers holding a pointer type.
1104  */
1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106 {
1107 	__mark_reg_known(reg, 0);
1108 }
1109 
1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 	reg->type = SCALAR_VALUE;
1114 }
1115 
1116 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 				struct bpf_reg_state *regs, u32 regno)
1118 {
1119 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1120 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121 		/* Something bad happened, let's kill all regs */
1122 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1123 			__mark_reg_not_init(env, regs + regno);
1124 		return;
1125 	}
1126 	__mark_reg_known_zero(regs + regno);
1127 }
1128 
1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130 {
1131 	switch (reg->type) {
1132 	case PTR_TO_MAP_VALUE_OR_NULL: {
1133 		const struct bpf_map *map = reg->map_ptr;
1134 
1135 		if (map->inner_map_meta) {
1136 			reg->type = CONST_PTR_TO_MAP;
1137 			reg->map_ptr = map->inner_map_meta;
1138 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 			reg->type = PTR_TO_XDP_SOCK;
1140 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 			reg->type = PTR_TO_SOCKET;
1143 		} else {
1144 			reg->type = PTR_TO_MAP_VALUE;
1145 		}
1146 		break;
1147 	}
1148 	case PTR_TO_SOCKET_OR_NULL:
1149 		reg->type = PTR_TO_SOCKET;
1150 		break;
1151 	case PTR_TO_SOCK_COMMON_OR_NULL:
1152 		reg->type = PTR_TO_SOCK_COMMON;
1153 		break;
1154 	case PTR_TO_TCP_SOCK_OR_NULL:
1155 		reg->type = PTR_TO_TCP_SOCK;
1156 		break;
1157 	case PTR_TO_BTF_ID_OR_NULL:
1158 		reg->type = PTR_TO_BTF_ID;
1159 		break;
1160 	case PTR_TO_MEM_OR_NULL:
1161 		reg->type = PTR_TO_MEM;
1162 		break;
1163 	case PTR_TO_RDONLY_BUF_OR_NULL:
1164 		reg->type = PTR_TO_RDONLY_BUF;
1165 		break;
1166 	case PTR_TO_RDWR_BUF_OR_NULL:
1167 		reg->type = PTR_TO_RDWR_BUF;
1168 		break;
1169 	default:
1170 		WARN_ONCE(1, "unknown nullable register type");
1171 	}
1172 }
1173 
1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175 {
1176 	return type_is_pkt_pointer(reg->type);
1177 }
1178 
1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180 {
1181 	return reg_is_pkt_pointer(reg) ||
1182 	       reg->type == PTR_TO_PACKET_END;
1183 }
1184 
1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 				    enum bpf_reg_type which)
1188 {
1189 	/* The register can already have a range from prior markings.
1190 	 * This is fine as long as it hasn't been advanced from its
1191 	 * origin.
1192 	 */
1193 	return reg->type == which &&
1194 	       reg->id == 0 &&
1195 	       reg->off == 0 &&
1196 	       tnum_equals_const(reg->var_off, 0);
1197 }
1198 
1199 /* Reset the min/max bounds of a register */
1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201 {
1202 	reg->smin_value = S64_MIN;
1203 	reg->smax_value = S64_MAX;
1204 	reg->umin_value = 0;
1205 	reg->umax_value = U64_MAX;
1206 
1207 	reg->s32_min_value = S32_MIN;
1208 	reg->s32_max_value = S32_MAX;
1209 	reg->u32_min_value = 0;
1210 	reg->u32_max_value = U32_MAX;
1211 }
1212 
1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214 {
1215 	reg->smin_value = S64_MIN;
1216 	reg->smax_value = S64_MAX;
1217 	reg->umin_value = 0;
1218 	reg->umax_value = U64_MAX;
1219 }
1220 
1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222 {
1223 	reg->s32_min_value = S32_MIN;
1224 	reg->s32_max_value = S32_MAX;
1225 	reg->u32_min_value = 0;
1226 	reg->u32_max_value = U32_MAX;
1227 }
1228 
1229 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230 {
1231 	struct tnum var32_off = tnum_subreg(reg->var_off);
1232 
1233 	/* min signed is max(sign bit) | min(other bits) */
1234 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 			var32_off.value | (var32_off.mask & S32_MIN));
1236 	/* max signed is min(sign bit) | max(other bits) */
1237 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 			var32_off.value | (var32_off.mask & S32_MAX));
1239 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 	reg->u32_max_value = min(reg->u32_max_value,
1241 				 (u32)(var32_off.value | var32_off.mask));
1242 }
1243 
1244 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245 {
1246 	/* min signed is max(sign bit) | min(other bits) */
1247 	reg->smin_value = max_t(s64, reg->smin_value,
1248 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 	/* max signed is min(sign bit) | max(other bits) */
1250 	reg->smax_value = min_t(s64, reg->smax_value,
1251 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 	reg->umax_value = min(reg->umax_value,
1254 			      reg->var_off.value | reg->var_off.mask);
1255 }
1256 
1257 static void __update_reg_bounds(struct bpf_reg_state *reg)
1258 {
1259 	__update_reg32_bounds(reg);
1260 	__update_reg64_bounds(reg);
1261 }
1262 
1263 /* Uses signed min/max values to inform unsigned, and vice-versa */
1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265 {
1266 	/* Learn sign from signed bounds.
1267 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 	 * are the same, so combine.  This works even in the negative case, e.g.
1269 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 	 */
1271 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 		reg->s32_min_value = reg->u32_min_value =
1273 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 		reg->s32_max_value = reg->u32_max_value =
1275 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 		return;
1277 	}
1278 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1279 	 * boundary, so we must be careful.
1280 	 */
1281 	if ((s32)reg->u32_max_value >= 0) {
1282 		/* Positive.  We can't learn anything from the smin, but smax
1283 		 * is positive, hence safe.
1284 		 */
1285 		reg->s32_min_value = reg->u32_min_value;
1286 		reg->s32_max_value = reg->u32_max_value =
1287 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 	} else if ((s32)reg->u32_min_value < 0) {
1289 		/* Negative.  We can't learn anything from the smax, but smin
1290 		 * is negative, hence safe.
1291 		 */
1292 		reg->s32_min_value = reg->u32_min_value =
1293 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 		reg->s32_max_value = reg->u32_max_value;
1295 	}
1296 }
1297 
1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299 {
1300 	/* Learn sign from signed bounds.
1301 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 	 * are the same, so combine.  This works even in the negative case, e.g.
1303 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 	 */
1305 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 							  reg->umin_value);
1308 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 							  reg->umax_value);
1310 		return;
1311 	}
1312 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1313 	 * boundary, so we must be careful.
1314 	 */
1315 	if ((s64)reg->umax_value >= 0) {
1316 		/* Positive.  We can't learn anything from the smin, but smax
1317 		 * is positive, hence safe.
1318 		 */
1319 		reg->smin_value = reg->umin_value;
1320 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 							  reg->umax_value);
1322 	} else if ((s64)reg->umin_value < 0) {
1323 		/* Negative.  We can't learn anything from the smax, but smin
1324 		 * is negative, hence safe.
1325 		 */
1326 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 							  reg->umin_value);
1328 		reg->smax_value = reg->umax_value;
1329 	}
1330 }
1331 
1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333 {
1334 	__reg32_deduce_bounds(reg);
1335 	__reg64_deduce_bounds(reg);
1336 }
1337 
1338 /* Attempts to improve var_off based on unsigned min/max information */
1339 static void __reg_bound_offset(struct bpf_reg_state *reg)
1340 {
1341 	struct tnum var64_off = tnum_intersect(reg->var_off,
1342 					       tnum_range(reg->umin_value,
1343 							  reg->umax_value));
1344 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 						tnum_range(reg->u32_min_value,
1346 							   reg->u32_max_value));
1347 
1348 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349 }
1350 
1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352 {
1353 	reg->umin_value = reg->u32_min_value;
1354 	reg->umax_value = reg->u32_max_value;
1355 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 	 * but must be positive otherwise set to worse case bounds
1357 	 * and refine later from tnum.
1358 	 */
1359 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360 		reg->smax_value = reg->s32_max_value;
1361 	else
1362 		reg->smax_value = U32_MAX;
1363 	if (reg->s32_min_value >= 0)
1364 		reg->smin_value = reg->s32_min_value;
1365 	else
1366 		reg->smin_value = 0;
1367 }
1368 
1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	/* special case when 64-bit register has upper 32-bit register
1372 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 	 * allowing us to use 32-bit bounds directly,
1374 	 */
1375 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 		__reg_assign_32_into_64(reg);
1377 	} else {
1378 		/* Otherwise the best we can do is push lower 32bit known and
1379 		 * unknown bits into register (var_off set from jmp logic)
1380 		 * then learn as much as possible from the 64-bit tnum
1381 		 * known and unknown bits. The previous smin/smax bounds are
1382 		 * invalid here because of jmp32 compare so mark them unknown
1383 		 * so they do not impact tnum bounds calculation.
1384 		 */
1385 		__mark_reg64_unbounded(reg);
1386 		__update_reg_bounds(reg);
1387 	}
1388 
1389 	/* Intersecting with the old var_off might have improved our bounds
1390 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 	 */
1393 	__reg_deduce_bounds(reg);
1394 	__reg_bound_offset(reg);
1395 	__update_reg_bounds(reg);
1396 }
1397 
1398 static bool __reg64_bound_s32(s64 a)
1399 {
1400 	return a > S32_MIN && a < S32_MAX;
1401 }
1402 
1403 static bool __reg64_bound_u32(u64 a)
1404 {
1405 	return a > U32_MIN && a < U32_MAX;
1406 }
1407 
1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409 {
1410 	__mark_reg32_unbounded(reg);
1411 
1412 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413 		reg->s32_min_value = (s32)reg->smin_value;
1414 		reg->s32_max_value = (s32)reg->smax_value;
1415 	}
1416 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417 		reg->u32_min_value = (u32)reg->umin_value;
1418 		reg->u32_max_value = (u32)reg->umax_value;
1419 	}
1420 
1421 	/* Intersecting with the old var_off might have improved our bounds
1422 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 	 */
1425 	__reg_deduce_bounds(reg);
1426 	__reg_bound_offset(reg);
1427 	__update_reg_bounds(reg);
1428 }
1429 
1430 /* Mark a register as having a completely unknown (scalar) value. */
1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 			       struct bpf_reg_state *reg)
1433 {
1434 	/*
1435 	 * Clear type, id, off, and union(map_ptr, range) and
1436 	 * padding between 'type' and union
1437 	 */
1438 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439 	reg->type = SCALAR_VALUE;
1440 	reg->var_off = tnum_unknown;
1441 	reg->frameno = 0;
1442 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443 	__mark_reg_unbounded(reg);
1444 }
1445 
1446 static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 			     struct bpf_reg_state *regs, u32 regno)
1448 {
1449 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1450 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451 		/* Something bad happened, let's kill all regs except FP */
1452 		for (regno = 0; regno < BPF_REG_FP; regno++)
1453 			__mark_reg_not_init(env, regs + regno);
1454 		return;
1455 	}
1456 	__mark_reg_unknown(env, regs + regno);
1457 }
1458 
1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 				struct bpf_reg_state *reg)
1461 {
1462 	__mark_reg_unknown(env, reg);
1463 	reg->type = NOT_INIT;
1464 }
1465 
1466 static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 			      struct bpf_reg_state *regs, u32 regno)
1468 {
1469 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471 		/* Something bad happened, let's kill all regs except FP */
1472 		for (regno = 0; regno < BPF_REG_FP; regno++)
1473 			__mark_reg_not_init(env, regs + regno);
1474 		return;
1475 	}
1476 	__mark_reg_not_init(env, regs + regno);
1477 }
1478 
1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 			    struct bpf_reg_state *regs, u32 regno,
1481 			    enum bpf_reg_type reg_type,
1482 			    struct btf *btf, u32 btf_id)
1483 {
1484 	if (reg_type == SCALAR_VALUE) {
1485 		mark_reg_unknown(env, regs, regno);
1486 		return;
1487 	}
1488 	mark_reg_known_zero(env, regs, regno);
1489 	regs[regno].type = PTR_TO_BTF_ID;
1490 	regs[regno].btf = btf;
1491 	regs[regno].btf_id = btf_id;
1492 }
1493 
1494 #define DEF_NOT_SUBREG	(0)
1495 static void init_reg_state(struct bpf_verifier_env *env,
1496 			   struct bpf_func_state *state)
1497 {
1498 	struct bpf_reg_state *regs = state->regs;
1499 	int i;
1500 
1501 	for (i = 0; i < MAX_BPF_REG; i++) {
1502 		mark_reg_not_init(env, regs, i);
1503 		regs[i].live = REG_LIVE_NONE;
1504 		regs[i].parent = NULL;
1505 		regs[i].subreg_def = DEF_NOT_SUBREG;
1506 	}
1507 
1508 	/* frame pointer */
1509 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1510 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1511 	regs[BPF_REG_FP].frameno = state->frameno;
1512 }
1513 
1514 #define BPF_MAIN_FUNC (-1)
1515 static void init_func_state(struct bpf_verifier_env *env,
1516 			    struct bpf_func_state *state,
1517 			    int callsite, int frameno, int subprogno)
1518 {
1519 	state->callsite = callsite;
1520 	state->frameno = frameno;
1521 	state->subprogno = subprogno;
1522 	init_reg_state(env, state);
1523 }
1524 
1525 enum reg_arg_type {
1526 	SRC_OP,		/* register is used as source operand */
1527 	DST_OP,		/* register is used as destination operand */
1528 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1529 };
1530 
1531 static int cmp_subprogs(const void *a, const void *b)
1532 {
1533 	return ((struct bpf_subprog_info *)a)->start -
1534 	       ((struct bpf_subprog_info *)b)->start;
1535 }
1536 
1537 static int find_subprog(struct bpf_verifier_env *env, int off)
1538 {
1539 	struct bpf_subprog_info *p;
1540 
1541 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1543 	if (!p)
1544 		return -ENOENT;
1545 	return p - env->subprog_info;
1546 
1547 }
1548 
1549 static int add_subprog(struct bpf_verifier_env *env, int off)
1550 {
1551 	int insn_cnt = env->prog->len;
1552 	int ret;
1553 
1554 	if (off >= insn_cnt || off < 0) {
1555 		verbose(env, "call to invalid destination\n");
1556 		return -EINVAL;
1557 	}
1558 	ret = find_subprog(env, off);
1559 	if (ret >= 0)
1560 		return ret;
1561 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562 		verbose(env, "too many subprograms\n");
1563 		return -E2BIG;
1564 	}
1565 	/* determine subprog starts. The end is one before the next starts */
1566 	env->subprog_info[env->subprog_cnt++].start = off;
1567 	sort(env->subprog_info, env->subprog_cnt,
1568 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569 	return env->subprog_cnt - 1;
1570 }
1571 
1572 struct bpf_kfunc_desc {
1573 	struct btf_func_model func_model;
1574 	u32 func_id;
1575 	s32 imm;
1576 };
1577 
1578 #define MAX_KFUNC_DESCS 256
1579 struct bpf_kfunc_desc_tab {
1580 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 	u32 nr_descs;
1582 };
1583 
1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585 {
1586 	const struct bpf_kfunc_desc *d0 = a;
1587 	const struct bpf_kfunc_desc *d1 = b;
1588 
1589 	/* func_id is not greater than BTF_MAX_TYPE */
1590 	return d0->func_id - d1->func_id;
1591 }
1592 
1593 static const struct bpf_kfunc_desc *
1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595 {
1596 	struct bpf_kfunc_desc desc = {
1597 		.func_id = func_id,
1598 	};
1599 	struct bpf_kfunc_desc_tab *tab;
1600 
1601 	tab = prog->aux->kfunc_tab;
1602 	return bsearch(&desc, tab->descs, tab->nr_descs,
1603 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604 }
1605 
1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607 {
1608 	const struct btf_type *func, *func_proto;
1609 	struct bpf_kfunc_desc_tab *tab;
1610 	struct bpf_prog_aux *prog_aux;
1611 	struct bpf_kfunc_desc *desc;
1612 	const char *func_name;
1613 	unsigned long addr;
1614 	int err;
1615 
1616 	prog_aux = env->prog->aux;
1617 	tab = prog_aux->kfunc_tab;
1618 	if (!tab) {
1619 		if (!btf_vmlinux) {
1620 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 			return -ENOTSUPP;
1622 		}
1623 
1624 		if (!env->prog->jit_requested) {
1625 			verbose(env, "JIT is required for calling kernel function\n");
1626 			return -ENOTSUPP;
1627 		}
1628 
1629 		if (!bpf_jit_supports_kfunc_call()) {
1630 			verbose(env, "JIT does not support calling kernel function\n");
1631 			return -ENOTSUPP;
1632 		}
1633 
1634 		if (!env->prog->gpl_compatible) {
1635 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 			return -EINVAL;
1637 		}
1638 
1639 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 		if (!tab)
1641 			return -ENOMEM;
1642 		prog_aux->kfunc_tab = tab;
1643 	}
1644 
1645 	if (find_kfunc_desc(env->prog, func_id))
1646 		return 0;
1647 
1648 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 		verbose(env, "too many different kernel function calls\n");
1650 		return -E2BIG;
1651 	}
1652 
1653 	func = btf_type_by_id(btf_vmlinux, func_id);
1654 	if (!func || !btf_type_is_func(func)) {
1655 		verbose(env, "kernel btf_id %u is not a function\n",
1656 			func_id);
1657 		return -EINVAL;
1658 	}
1659 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 			func_id);
1663 		return -EINVAL;
1664 	}
1665 
1666 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 	addr = kallsyms_lookup_name(func_name);
1668 	if (!addr) {
1669 		verbose(env, "cannot find address for kernel function %s\n",
1670 			func_name);
1671 		return -EINVAL;
1672 	}
1673 
1674 	desc = &tab->descs[tab->nr_descs++];
1675 	desc->func_id = func_id;
1676 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 				     func_proto, func_name,
1679 				     &desc->func_model);
1680 	if (!err)
1681 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 		     kfunc_desc_cmp_by_id, NULL);
1683 	return err;
1684 }
1685 
1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687 {
1688 	const struct bpf_kfunc_desc *d0 = a;
1689 	const struct bpf_kfunc_desc *d1 = b;
1690 
1691 	if (d0->imm > d1->imm)
1692 		return 1;
1693 	else if (d0->imm < d1->imm)
1694 		return -1;
1695 	return 0;
1696 }
1697 
1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699 {
1700 	struct bpf_kfunc_desc_tab *tab;
1701 
1702 	tab = prog->aux->kfunc_tab;
1703 	if (!tab)
1704 		return;
1705 
1706 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 	     kfunc_desc_cmp_by_imm, NULL);
1708 }
1709 
1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711 {
1712 	return !!prog->aux->kfunc_tab;
1713 }
1714 
1715 const struct btf_func_model *
1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 			 const struct bpf_insn *insn)
1718 {
1719 	const struct bpf_kfunc_desc desc = {
1720 		.imm = insn->imm,
1721 	};
1722 	const struct bpf_kfunc_desc *res;
1723 	struct bpf_kfunc_desc_tab *tab;
1724 
1725 	tab = prog->aux->kfunc_tab;
1726 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728 
1729 	return res ? &res->func_model : NULL;
1730 }
1731 
1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733 {
1734 	struct bpf_subprog_info *subprog = env->subprog_info;
1735 	struct bpf_insn *insn = env->prog->insnsi;
1736 	int i, ret, insn_cnt = env->prog->len;
1737 
1738 	/* Add entry function. */
1739 	ret = add_subprog(env, 0);
1740 	if (ret)
1741 		return ret;
1742 
1743 	for (i = 0; i < insn_cnt; i++, insn++) {
1744 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 		    !bpf_pseudo_kfunc_call(insn))
1746 			continue;
1747 
1748 		if (!env->bpf_capable) {
1749 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750 			return -EPERM;
1751 		}
1752 
1753 		if (bpf_pseudo_func(insn)) {
1754 			ret = add_subprog(env, i + insn->imm + 1);
1755 			if (ret >= 0)
1756 				/* remember subprog */
1757 				insn[1].imm = ret;
1758 		} else if (bpf_pseudo_call(insn)) {
1759 			ret = add_subprog(env, i + insn->imm + 1);
1760 		} else {
1761 			ret = add_kfunc_call(env, insn->imm);
1762 		}
1763 
1764 		if (ret < 0)
1765 			return ret;
1766 	}
1767 
1768 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1769 	 * logic. 'subprog_cnt' should not be increased.
1770 	 */
1771 	subprog[env->subprog_cnt].start = insn_cnt;
1772 
1773 	if (env->log.level & BPF_LOG_LEVEL2)
1774 		for (i = 0; i < env->subprog_cnt; i++)
1775 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776 
1777 	return 0;
1778 }
1779 
1780 static int check_subprogs(struct bpf_verifier_env *env)
1781 {
1782 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 	struct bpf_subprog_info *subprog = env->subprog_info;
1784 	struct bpf_insn *insn = env->prog->insnsi;
1785 	int insn_cnt = env->prog->len;
1786 
1787 	/* now check that all jumps are within the same subprog */
1788 	subprog_start = subprog[cur_subprog].start;
1789 	subprog_end = subprog[cur_subprog + 1].start;
1790 	for (i = 0; i < insn_cnt; i++) {
1791 		u8 code = insn[i].code;
1792 
1793 		if (code == (BPF_JMP | BPF_CALL) &&
1794 		    insn[i].imm == BPF_FUNC_tail_call &&
1795 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1796 			subprog[cur_subprog].has_tail_call = true;
1797 		if (BPF_CLASS(code) == BPF_LD &&
1798 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 			subprog[cur_subprog].has_ld_abs = true;
1800 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801 			goto next;
1802 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 			goto next;
1804 		off = i + insn[i].off + 1;
1805 		if (off < subprog_start || off >= subprog_end) {
1806 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 			return -EINVAL;
1808 		}
1809 next:
1810 		if (i == subprog_end - 1) {
1811 			/* to avoid fall-through from one subprog into another
1812 			 * the last insn of the subprog should be either exit
1813 			 * or unconditional jump back
1814 			 */
1815 			if (code != (BPF_JMP | BPF_EXIT) &&
1816 			    code != (BPF_JMP | BPF_JA)) {
1817 				verbose(env, "last insn is not an exit or jmp\n");
1818 				return -EINVAL;
1819 			}
1820 			subprog_start = subprog_end;
1821 			cur_subprog++;
1822 			if (cur_subprog < env->subprog_cnt)
1823 				subprog_end = subprog[cur_subprog + 1].start;
1824 		}
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* Parentage chain of this register (or stack slot) should take care of all
1830  * issues like callee-saved registers, stack slot allocation time, etc.
1831  */
1832 static int mark_reg_read(struct bpf_verifier_env *env,
1833 			 const struct bpf_reg_state *state,
1834 			 struct bpf_reg_state *parent, u8 flag)
1835 {
1836 	bool writes = parent == state->parent; /* Observe write marks */
1837 	int cnt = 0;
1838 
1839 	while (parent) {
1840 		/* if read wasn't screened by an earlier write ... */
1841 		if (writes && state->live & REG_LIVE_WRITTEN)
1842 			break;
1843 		if (parent->live & REG_LIVE_DONE) {
1844 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 				reg_type_str[parent->type],
1846 				parent->var_off.value, parent->off);
1847 			return -EFAULT;
1848 		}
1849 		/* The first condition is more likely to be true than the
1850 		 * second, checked it first.
1851 		 */
1852 		if ((parent->live & REG_LIVE_READ) == flag ||
1853 		    parent->live & REG_LIVE_READ64)
1854 			/* The parentage chain never changes and
1855 			 * this parent was already marked as LIVE_READ.
1856 			 * There is no need to keep walking the chain again and
1857 			 * keep re-marking all parents as LIVE_READ.
1858 			 * This case happens when the same register is read
1859 			 * multiple times without writes into it in-between.
1860 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 			 * then no need to set the weak REG_LIVE_READ32.
1862 			 */
1863 			break;
1864 		/* ... then we depend on parent's value */
1865 		parent->live |= flag;
1866 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 		if (flag == REG_LIVE_READ64)
1868 			parent->live &= ~REG_LIVE_READ32;
1869 		state = parent;
1870 		parent = state->parent;
1871 		writes = true;
1872 		cnt++;
1873 	}
1874 
1875 	if (env->longest_mark_read_walk < cnt)
1876 		env->longest_mark_read_walk = cnt;
1877 	return 0;
1878 }
1879 
1880 /* This function is supposed to be used by the following 32-bit optimization
1881  * code only. It returns TRUE if the source or destination register operates
1882  * on 64-bit, otherwise return FALSE.
1883  */
1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886 {
1887 	u8 code, class, op;
1888 
1889 	code = insn->code;
1890 	class = BPF_CLASS(code);
1891 	op = BPF_OP(code);
1892 	if (class == BPF_JMP) {
1893 		/* BPF_EXIT for "main" will reach here. Return TRUE
1894 		 * conservatively.
1895 		 */
1896 		if (op == BPF_EXIT)
1897 			return true;
1898 		if (op == BPF_CALL) {
1899 			/* BPF to BPF call will reach here because of marking
1900 			 * caller saved clobber with DST_OP_NO_MARK for which we
1901 			 * don't care the register def because they are anyway
1902 			 * marked as NOT_INIT already.
1903 			 */
1904 			if (insn->src_reg == BPF_PSEUDO_CALL)
1905 				return false;
1906 			/* Helper call will reach here because of arg type
1907 			 * check, conservatively return TRUE.
1908 			 */
1909 			if (t == SRC_OP)
1910 				return true;
1911 
1912 			return false;
1913 		}
1914 	}
1915 
1916 	if (class == BPF_ALU64 || class == BPF_JMP ||
1917 	    /* BPF_END always use BPF_ALU class. */
1918 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 		return true;
1920 
1921 	if (class == BPF_ALU || class == BPF_JMP32)
1922 		return false;
1923 
1924 	if (class == BPF_LDX) {
1925 		if (t != SRC_OP)
1926 			return BPF_SIZE(code) == BPF_DW;
1927 		/* LDX source must be ptr. */
1928 		return true;
1929 	}
1930 
1931 	if (class == BPF_STX) {
1932 		/* BPF_STX (including atomic variants) has multiple source
1933 		 * operands, one of which is a ptr. Check whether the caller is
1934 		 * asking about it.
1935 		 */
1936 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937 			return true;
1938 		return BPF_SIZE(code) == BPF_DW;
1939 	}
1940 
1941 	if (class == BPF_LD) {
1942 		u8 mode = BPF_MODE(code);
1943 
1944 		/* LD_IMM64 */
1945 		if (mode == BPF_IMM)
1946 			return true;
1947 
1948 		/* Both LD_IND and LD_ABS return 32-bit data. */
1949 		if (t != SRC_OP)
1950 			return  false;
1951 
1952 		/* Implicit ctx ptr. */
1953 		if (regno == BPF_REG_6)
1954 			return true;
1955 
1956 		/* Explicit source could be any width. */
1957 		return true;
1958 	}
1959 
1960 	if (class == BPF_ST)
1961 		/* The only source register for BPF_ST is a ptr. */
1962 		return true;
1963 
1964 	/* Conservatively return true at default. */
1965 	return true;
1966 }
1967 
1968 /* Return the regno defined by the insn, or -1. */
1969 static int insn_def_regno(const struct bpf_insn *insn)
1970 {
1971 	switch (BPF_CLASS(insn->code)) {
1972 	case BPF_JMP:
1973 	case BPF_JMP32:
1974 	case BPF_ST:
1975 		return -1;
1976 	case BPF_STX:
1977 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 		    (insn->imm & BPF_FETCH)) {
1979 			if (insn->imm == BPF_CMPXCHG)
1980 				return BPF_REG_0;
1981 			else
1982 				return insn->src_reg;
1983 		} else {
1984 			return -1;
1985 		}
1986 	default:
1987 		return insn->dst_reg;
1988 	}
1989 }
1990 
1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993 {
1994 	int dst_reg = insn_def_regno(insn);
1995 
1996 	if (dst_reg == -1)
1997 		return false;
1998 
1999 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000 }
2001 
2002 static void mark_insn_zext(struct bpf_verifier_env *env,
2003 			   struct bpf_reg_state *reg)
2004 {
2005 	s32 def_idx = reg->subreg_def;
2006 
2007 	if (def_idx == DEF_NOT_SUBREG)
2008 		return;
2009 
2010 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 	/* The dst will be zero extended, so won't be sub-register anymore. */
2012 	reg->subreg_def = DEF_NOT_SUBREG;
2013 }
2014 
2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016 			 enum reg_arg_type t)
2017 {
2018 	struct bpf_verifier_state *vstate = env->cur_state;
2019 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021 	struct bpf_reg_state *reg, *regs = state->regs;
2022 	bool rw64;
2023 
2024 	if (regno >= MAX_BPF_REG) {
2025 		verbose(env, "R%d is invalid\n", regno);
2026 		return -EINVAL;
2027 	}
2028 
2029 	reg = &regs[regno];
2030 	rw64 = is_reg64(env, insn, regno, reg, t);
2031 	if (t == SRC_OP) {
2032 		/* check whether register used as source operand can be read */
2033 		if (reg->type == NOT_INIT) {
2034 			verbose(env, "R%d !read_ok\n", regno);
2035 			return -EACCES;
2036 		}
2037 		/* We don't need to worry about FP liveness because it's read-only */
2038 		if (regno == BPF_REG_FP)
2039 			return 0;
2040 
2041 		if (rw64)
2042 			mark_insn_zext(env, reg);
2043 
2044 		return mark_reg_read(env, reg, reg->parent,
2045 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046 	} else {
2047 		/* check whether register used as dest operand can be written to */
2048 		if (regno == BPF_REG_FP) {
2049 			verbose(env, "frame pointer is read only\n");
2050 			return -EACCES;
2051 		}
2052 		reg->live |= REG_LIVE_WRITTEN;
2053 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054 		if (t == DST_OP)
2055 			mark_reg_unknown(env, regs, regno);
2056 	}
2057 	return 0;
2058 }
2059 
2060 /* for any branch, call, exit record the history of jmps in the given state */
2061 static int push_jmp_history(struct bpf_verifier_env *env,
2062 			    struct bpf_verifier_state *cur)
2063 {
2064 	u32 cnt = cur->jmp_history_cnt;
2065 	struct bpf_idx_pair *p;
2066 
2067 	cnt++;
2068 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 	if (!p)
2070 		return -ENOMEM;
2071 	p[cnt - 1].idx = env->insn_idx;
2072 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 	cur->jmp_history = p;
2074 	cur->jmp_history_cnt = cnt;
2075 	return 0;
2076 }
2077 
2078 /* Backtrack one insn at a time. If idx is not at the top of recorded
2079  * history then previous instruction came from straight line execution.
2080  */
2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 			     u32 *history)
2083 {
2084 	u32 cnt = *history;
2085 
2086 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 		i = st->jmp_history[cnt - 1].prev_idx;
2088 		(*history)--;
2089 	} else {
2090 		i--;
2091 	}
2092 	return i;
2093 }
2094 
2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096 {
2097 	const struct btf_type *func;
2098 
2099 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 		return NULL;
2101 
2102 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2104 }
2105 
2106 /* For given verifier state backtrack_insn() is called from the last insn to
2107  * the first insn. Its purpose is to compute a bitmask of registers and
2108  * stack slots that needs precision in the parent verifier state.
2109  */
2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 			  u32 *reg_mask, u64 *stack_mask)
2112 {
2113 	const struct bpf_insn_cbs cbs = {
2114 		.cb_call	= disasm_kfunc_name,
2115 		.cb_print	= verbose,
2116 		.private_data	= env,
2117 	};
2118 	struct bpf_insn *insn = env->prog->insnsi + idx;
2119 	u8 class = BPF_CLASS(insn->code);
2120 	u8 opcode = BPF_OP(insn->code);
2121 	u8 mode = BPF_MODE(insn->code);
2122 	u32 dreg = 1u << insn->dst_reg;
2123 	u32 sreg = 1u << insn->src_reg;
2124 	u32 spi;
2125 
2126 	if (insn->code == 0)
2127 		return 0;
2128 	if (env->log.level & BPF_LOG_LEVEL) {
2129 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 		verbose(env, "%d: ", idx);
2131 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 	}
2133 
2134 	if (class == BPF_ALU || class == BPF_ALU64) {
2135 		if (!(*reg_mask & dreg))
2136 			return 0;
2137 		if (opcode == BPF_MOV) {
2138 			if (BPF_SRC(insn->code) == BPF_X) {
2139 				/* dreg = sreg
2140 				 * dreg needs precision after this insn
2141 				 * sreg needs precision before this insn
2142 				 */
2143 				*reg_mask &= ~dreg;
2144 				*reg_mask |= sreg;
2145 			} else {
2146 				/* dreg = K
2147 				 * dreg needs precision after this insn.
2148 				 * Corresponding register is already marked
2149 				 * as precise=true in this verifier state.
2150 				 * No further markings in parent are necessary
2151 				 */
2152 				*reg_mask &= ~dreg;
2153 			}
2154 		} else {
2155 			if (BPF_SRC(insn->code) == BPF_X) {
2156 				/* dreg += sreg
2157 				 * both dreg and sreg need precision
2158 				 * before this insn
2159 				 */
2160 				*reg_mask |= sreg;
2161 			} /* else dreg += K
2162 			   * dreg still needs precision before this insn
2163 			   */
2164 		}
2165 	} else if (class == BPF_LDX) {
2166 		if (!(*reg_mask & dreg))
2167 			return 0;
2168 		*reg_mask &= ~dreg;
2169 
2170 		/* scalars can only be spilled into stack w/o losing precision.
2171 		 * Load from any other memory can be zero extended.
2172 		 * The desire to keep that precision is already indicated
2173 		 * by 'precise' mark in corresponding register of this state.
2174 		 * No further tracking necessary.
2175 		 */
2176 		if (insn->src_reg != BPF_REG_FP)
2177 			return 0;
2178 		if (BPF_SIZE(insn->code) != BPF_DW)
2179 			return 0;
2180 
2181 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 		 * that [fp - off] slot contains scalar that needs to be
2183 		 * tracked with precision
2184 		 */
2185 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 		if (spi >= 64) {
2187 			verbose(env, "BUG spi %d\n", spi);
2188 			WARN_ONCE(1, "verifier backtracking bug");
2189 			return -EFAULT;
2190 		}
2191 		*stack_mask |= 1ull << spi;
2192 	} else if (class == BPF_STX || class == BPF_ST) {
2193 		if (*reg_mask & dreg)
2194 			/* stx & st shouldn't be using _scalar_ dst_reg
2195 			 * to access memory. It means backtracking
2196 			 * encountered a case of pointer subtraction.
2197 			 */
2198 			return -ENOTSUPP;
2199 		/* scalars can only be spilled into stack */
2200 		if (insn->dst_reg != BPF_REG_FP)
2201 			return 0;
2202 		if (BPF_SIZE(insn->code) != BPF_DW)
2203 			return 0;
2204 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 		if (spi >= 64) {
2206 			verbose(env, "BUG spi %d\n", spi);
2207 			WARN_ONCE(1, "verifier backtracking bug");
2208 			return -EFAULT;
2209 		}
2210 		if (!(*stack_mask & (1ull << spi)))
2211 			return 0;
2212 		*stack_mask &= ~(1ull << spi);
2213 		if (class == BPF_STX)
2214 			*reg_mask |= sreg;
2215 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2216 		if (opcode == BPF_CALL) {
2217 			if (insn->src_reg == BPF_PSEUDO_CALL)
2218 				return -ENOTSUPP;
2219 			/* regular helper call sets R0 */
2220 			*reg_mask &= ~1;
2221 			if (*reg_mask & 0x3f) {
2222 				/* if backtracing was looking for registers R1-R5
2223 				 * they should have been found already.
2224 				 */
2225 				verbose(env, "BUG regs %x\n", *reg_mask);
2226 				WARN_ONCE(1, "verifier backtracking bug");
2227 				return -EFAULT;
2228 			}
2229 		} else if (opcode == BPF_EXIT) {
2230 			return -ENOTSUPP;
2231 		}
2232 	} else if (class == BPF_LD) {
2233 		if (!(*reg_mask & dreg))
2234 			return 0;
2235 		*reg_mask &= ~dreg;
2236 		/* It's ld_imm64 or ld_abs or ld_ind.
2237 		 * For ld_imm64 no further tracking of precision
2238 		 * into parent is necessary
2239 		 */
2240 		if (mode == BPF_IND || mode == BPF_ABS)
2241 			/* to be analyzed */
2242 			return -ENOTSUPP;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /* the scalar precision tracking algorithm:
2248  * . at the start all registers have precise=false.
2249  * . scalar ranges are tracked as normal through alu and jmp insns.
2250  * . once precise value of the scalar register is used in:
2251  *   .  ptr + scalar alu
2252  *   . if (scalar cond K|scalar)
2253  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2254  *   backtrack through the verifier states and mark all registers and
2255  *   stack slots with spilled constants that these scalar regisers
2256  *   should be precise.
2257  * . during state pruning two registers (or spilled stack slots)
2258  *   are equivalent if both are not precise.
2259  *
2260  * Note the verifier cannot simply walk register parentage chain,
2261  * since many different registers and stack slots could have been
2262  * used to compute single precise scalar.
2263  *
2264  * The approach of starting with precise=true for all registers and then
2265  * backtrack to mark a register as not precise when the verifier detects
2266  * that program doesn't care about specific value (e.g., when helper
2267  * takes register as ARG_ANYTHING parameter) is not safe.
2268  *
2269  * It's ok to walk single parentage chain of the verifier states.
2270  * It's possible that this backtracking will go all the way till 1st insn.
2271  * All other branches will be explored for needing precision later.
2272  *
2273  * The backtracking needs to deal with cases like:
2274  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275  * r9 -= r8
2276  * r5 = r9
2277  * if r5 > 0x79f goto pc+7
2278  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279  * r5 += 1
2280  * ...
2281  * call bpf_perf_event_output#25
2282  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283  *
2284  * and this case:
2285  * r6 = 1
2286  * call foo // uses callee's r6 inside to compute r0
2287  * r0 += r6
2288  * if r0 == 0 goto
2289  *
2290  * to track above reg_mask/stack_mask needs to be independent for each frame.
2291  *
2292  * Also if parent's curframe > frame where backtracking started,
2293  * the verifier need to mark registers in both frames, otherwise callees
2294  * may incorrectly prune callers. This is similar to
2295  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296  *
2297  * For now backtracking falls back into conservative marking.
2298  */
2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 				     struct bpf_verifier_state *st)
2301 {
2302 	struct bpf_func_state *func;
2303 	struct bpf_reg_state *reg;
2304 	int i, j;
2305 
2306 	/* big hammer: mark all scalars precise in this path.
2307 	 * pop_stack may still get !precise scalars.
2308 	 */
2309 	for (; st; st = st->parent)
2310 		for (i = 0; i <= st->curframe; i++) {
2311 			func = st->frame[i];
2312 			for (j = 0; j < BPF_REG_FP; j++) {
2313 				reg = &func->regs[j];
2314 				if (reg->type != SCALAR_VALUE)
2315 					continue;
2316 				reg->precise = true;
2317 			}
2318 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 					continue;
2321 				reg = &func->stack[j].spilled_ptr;
2322 				if (reg->type != SCALAR_VALUE)
2323 					continue;
2324 				reg->precise = true;
2325 			}
2326 		}
2327 }
2328 
2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 				  int spi)
2331 {
2332 	struct bpf_verifier_state *st = env->cur_state;
2333 	int first_idx = st->first_insn_idx;
2334 	int last_idx = env->insn_idx;
2335 	struct bpf_func_state *func;
2336 	struct bpf_reg_state *reg;
2337 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339 	bool skip_first = true;
2340 	bool new_marks = false;
2341 	int i, err;
2342 
2343 	if (!env->bpf_capable)
2344 		return 0;
2345 
2346 	func = st->frame[st->curframe];
2347 	if (regno >= 0) {
2348 		reg = &func->regs[regno];
2349 		if (reg->type != SCALAR_VALUE) {
2350 			WARN_ONCE(1, "backtracing misuse");
2351 			return -EFAULT;
2352 		}
2353 		if (!reg->precise)
2354 			new_marks = true;
2355 		else
2356 			reg_mask = 0;
2357 		reg->precise = true;
2358 	}
2359 
2360 	while (spi >= 0) {
2361 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 			stack_mask = 0;
2363 			break;
2364 		}
2365 		reg = &func->stack[spi].spilled_ptr;
2366 		if (reg->type != SCALAR_VALUE) {
2367 			stack_mask = 0;
2368 			break;
2369 		}
2370 		if (!reg->precise)
2371 			new_marks = true;
2372 		else
2373 			stack_mask = 0;
2374 		reg->precise = true;
2375 		break;
2376 	}
2377 
2378 	if (!new_marks)
2379 		return 0;
2380 	if (!reg_mask && !stack_mask)
2381 		return 0;
2382 	for (;;) {
2383 		DECLARE_BITMAP(mask, 64);
2384 		u32 history = st->jmp_history_cnt;
2385 
2386 		if (env->log.level & BPF_LOG_LEVEL)
2387 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 		for (i = last_idx;;) {
2389 			if (skip_first) {
2390 				err = 0;
2391 				skip_first = false;
2392 			} else {
2393 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394 			}
2395 			if (err == -ENOTSUPP) {
2396 				mark_all_scalars_precise(env, st);
2397 				return 0;
2398 			} else if (err) {
2399 				return err;
2400 			}
2401 			if (!reg_mask && !stack_mask)
2402 				/* Found assignment(s) into tracked register in this state.
2403 				 * Since this state is already marked, just return.
2404 				 * Nothing to be tracked further in the parent state.
2405 				 */
2406 				return 0;
2407 			if (i == first_idx)
2408 				break;
2409 			i = get_prev_insn_idx(st, i, &history);
2410 			if (i >= env->prog->len) {
2411 				/* This can happen if backtracking reached insn 0
2412 				 * and there are still reg_mask or stack_mask
2413 				 * to backtrack.
2414 				 * It means the backtracking missed the spot where
2415 				 * particular register was initialized with a constant.
2416 				 */
2417 				verbose(env, "BUG backtracking idx %d\n", i);
2418 				WARN_ONCE(1, "verifier backtracking bug");
2419 				return -EFAULT;
2420 			}
2421 		}
2422 		st = st->parent;
2423 		if (!st)
2424 			break;
2425 
2426 		new_marks = false;
2427 		func = st->frame[st->curframe];
2428 		bitmap_from_u64(mask, reg_mask);
2429 		for_each_set_bit(i, mask, 32) {
2430 			reg = &func->regs[i];
2431 			if (reg->type != SCALAR_VALUE) {
2432 				reg_mask &= ~(1u << i);
2433 				continue;
2434 			}
2435 			if (!reg->precise)
2436 				new_marks = true;
2437 			reg->precise = true;
2438 		}
2439 
2440 		bitmap_from_u64(mask, stack_mask);
2441 		for_each_set_bit(i, mask, 64) {
2442 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443 				/* the sequence of instructions:
2444 				 * 2: (bf) r3 = r10
2445 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 				 * doesn't contain jmps. It's backtracked
2448 				 * as a single block.
2449 				 * During backtracking insn 3 is not recognized as
2450 				 * stack access, so at the end of backtracking
2451 				 * stack slot fp-8 is still marked in stack_mask.
2452 				 * However the parent state may not have accessed
2453 				 * fp-8 and it's "unallocated" stack space.
2454 				 * In such case fallback to conservative.
2455 				 */
2456 				mark_all_scalars_precise(env, st);
2457 				return 0;
2458 			}
2459 
2460 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 				stack_mask &= ~(1ull << i);
2462 				continue;
2463 			}
2464 			reg = &func->stack[i].spilled_ptr;
2465 			if (reg->type != SCALAR_VALUE) {
2466 				stack_mask &= ~(1ull << i);
2467 				continue;
2468 			}
2469 			if (!reg->precise)
2470 				new_marks = true;
2471 			reg->precise = true;
2472 		}
2473 		if (env->log.level & BPF_LOG_LEVEL) {
2474 			print_verifier_state(env, func);
2475 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 				new_marks ? "didn't have" : "already had",
2477 				reg_mask, stack_mask);
2478 		}
2479 
2480 		if (!reg_mask && !stack_mask)
2481 			break;
2482 		if (!new_marks)
2483 			break;
2484 
2485 		last_idx = st->last_insn_idx;
2486 		first_idx = st->first_insn_idx;
2487 	}
2488 	return 0;
2489 }
2490 
2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492 {
2493 	return __mark_chain_precision(env, regno, -1);
2494 }
2495 
2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497 {
2498 	return __mark_chain_precision(env, -1, spi);
2499 }
2500 
2501 static bool is_spillable_regtype(enum bpf_reg_type type)
2502 {
2503 	switch (type) {
2504 	case PTR_TO_MAP_VALUE:
2505 	case PTR_TO_MAP_VALUE_OR_NULL:
2506 	case PTR_TO_STACK:
2507 	case PTR_TO_CTX:
2508 	case PTR_TO_PACKET:
2509 	case PTR_TO_PACKET_META:
2510 	case PTR_TO_PACKET_END:
2511 	case PTR_TO_FLOW_KEYS:
2512 	case CONST_PTR_TO_MAP:
2513 	case PTR_TO_SOCKET:
2514 	case PTR_TO_SOCKET_OR_NULL:
2515 	case PTR_TO_SOCK_COMMON:
2516 	case PTR_TO_SOCK_COMMON_OR_NULL:
2517 	case PTR_TO_TCP_SOCK:
2518 	case PTR_TO_TCP_SOCK_OR_NULL:
2519 	case PTR_TO_XDP_SOCK:
2520 	case PTR_TO_BTF_ID:
2521 	case PTR_TO_BTF_ID_OR_NULL:
2522 	case PTR_TO_RDONLY_BUF:
2523 	case PTR_TO_RDONLY_BUF_OR_NULL:
2524 	case PTR_TO_RDWR_BUF:
2525 	case PTR_TO_RDWR_BUF_OR_NULL:
2526 	case PTR_TO_PERCPU_BTF_ID:
2527 	case PTR_TO_MEM:
2528 	case PTR_TO_MEM_OR_NULL:
2529 	case PTR_TO_FUNC:
2530 	case PTR_TO_MAP_KEY:
2531 		return true;
2532 	default:
2533 		return false;
2534 	}
2535 }
2536 
2537 /* Does this register contain a constant zero? */
2538 static bool register_is_null(struct bpf_reg_state *reg)
2539 {
2540 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541 }
2542 
2543 static bool register_is_const(struct bpf_reg_state *reg)
2544 {
2545 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546 }
2547 
2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549 {
2550 	return tnum_is_unknown(reg->var_off) &&
2551 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555 }
2556 
2557 static bool register_is_bounded(struct bpf_reg_state *reg)
2558 {
2559 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560 }
2561 
2562 static bool __is_pointer_value(bool allow_ptr_leaks,
2563 			       const struct bpf_reg_state *reg)
2564 {
2565 	if (allow_ptr_leaks)
2566 		return false;
2567 
2568 	return reg->type != SCALAR_VALUE;
2569 }
2570 
2571 static void save_register_state(struct bpf_func_state *state,
2572 				int spi, struct bpf_reg_state *reg)
2573 {
2574 	int i;
2575 
2576 	state->stack[spi].spilled_ptr = *reg;
2577 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578 
2579 	for (i = 0; i < BPF_REG_SIZE; i++)
2580 		state->stack[spi].slot_type[i] = STACK_SPILL;
2581 }
2582 
2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584  * stack boundary and alignment are checked in check_mem_access()
2585  */
2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 				       /* stack frame we're writing to */
2588 				       struct bpf_func_state *state,
2589 				       int off, int size, int value_regno,
2590 				       int insn_idx)
2591 {
2592 	struct bpf_func_state *cur; /* state of the current function */
2593 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595 	struct bpf_reg_state *reg = NULL;
2596 
2597 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598 	if (err)
2599 		return err;
2600 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 	 * so it's aligned access and [off, off + size) are within stack limits
2602 	 */
2603 	if (!env->allow_ptr_leaks &&
2604 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 	    size != BPF_REG_SIZE) {
2606 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 		return -EACCES;
2608 	}
2609 
2610 	cur = env->cur_state->frame[env->cur_state->curframe];
2611 	if (value_regno >= 0)
2612 		reg = &cur->regs[value_regno];
2613 	if (!env->bypass_spec_v4) {
2614 		bool sanitize = reg && is_spillable_regtype(reg->type);
2615 
2616 		for (i = 0; i < size; i++) {
2617 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2618 				sanitize = true;
2619 				break;
2620 			}
2621 		}
2622 
2623 		if (sanitize)
2624 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2625 	}
2626 
2627 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2628 	    !register_is_null(reg) && env->bpf_capable) {
2629 		if (dst_reg != BPF_REG_FP) {
2630 			/* The backtracking logic can only recognize explicit
2631 			 * stack slot address like [fp - 8]. Other spill of
2632 			 * scalar via different register has to be conservative.
2633 			 * Backtrack from here and mark all registers as precise
2634 			 * that contributed into 'reg' being a constant.
2635 			 */
2636 			err = mark_chain_precision(env, value_regno);
2637 			if (err)
2638 				return err;
2639 		}
2640 		save_register_state(state, spi, reg);
2641 	} else if (reg && is_spillable_regtype(reg->type)) {
2642 		/* register containing pointer is being spilled into stack */
2643 		if (size != BPF_REG_SIZE) {
2644 			verbose_linfo(env, insn_idx, "; ");
2645 			verbose(env, "invalid size of register spill\n");
2646 			return -EACCES;
2647 		}
2648 		if (state != cur && reg->type == PTR_TO_STACK) {
2649 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2650 			return -EINVAL;
2651 		}
2652 		save_register_state(state, spi, reg);
2653 	} else {
2654 		u8 type = STACK_MISC;
2655 
2656 		/* regular write of data into stack destroys any spilled ptr */
2657 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2658 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2659 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2660 			for (i = 0; i < BPF_REG_SIZE; i++)
2661 				state->stack[spi].slot_type[i] = STACK_MISC;
2662 
2663 		/* only mark the slot as written if all 8 bytes were written
2664 		 * otherwise read propagation may incorrectly stop too soon
2665 		 * when stack slots are partially written.
2666 		 * This heuristic means that read propagation will be
2667 		 * conservative, since it will add reg_live_read marks
2668 		 * to stack slots all the way to first state when programs
2669 		 * writes+reads less than 8 bytes
2670 		 */
2671 		if (size == BPF_REG_SIZE)
2672 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2673 
2674 		/* when we zero initialize stack slots mark them as such */
2675 		if (reg && register_is_null(reg)) {
2676 			/* backtracking doesn't work for STACK_ZERO yet. */
2677 			err = mark_chain_precision(env, value_regno);
2678 			if (err)
2679 				return err;
2680 			type = STACK_ZERO;
2681 		}
2682 
2683 		/* Mark slots affected by this stack write. */
2684 		for (i = 0; i < size; i++)
2685 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2686 				type;
2687 	}
2688 	return 0;
2689 }
2690 
2691 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2692  * known to contain a variable offset.
2693  * This function checks whether the write is permitted and conservatively
2694  * tracks the effects of the write, considering that each stack slot in the
2695  * dynamic range is potentially written to.
2696  *
2697  * 'off' includes 'regno->off'.
2698  * 'value_regno' can be -1, meaning that an unknown value is being written to
2699  * the stack.
2700  *
2701  * Spilled pointers in range are not marked as written because we don't know
2702  * what's going to be actually written. This means that read propagation for
2703  * future reads cannot be terminated by this write.
2704  *
2705  * For privileged programs, uninitialized stack slots are considered
2706  * initialized by this write (even though we don't know exactly what offsets
2707  * are going to be written to). The idea is that we don't want the verifier to
2708  * reject future reads that access slots written to through variable offsets.
2709  */
2710 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2711 				     /* func where register points to */
2712 				     struct bpf_func_state *state,
2713 				     int ptr_regno, int off, int size,
2714 				     int value_regno, int insn_idx)
2715 {
2716 	struct bpf_func_state *cur; /* state of the current function */
2717 	int min_off, max_off;
2718 	int i, err;
2719 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2720 	bool writing_zero = false;
2721 	/* set if the fact that we're writing a zero is used to let any
2722 	 * stack slots remain STACK_ZERO
2723 	 */
2724 	bool zero_used = false;
2725 
2726 	cur = env->cur_state->frame[env->cur_state->curframe];
2727 	ptr_reg = &cur->regs[ptr_regno];
2728 	min_off = ptr_reg->smin_value + off;
2729 	max_off = ptr_reg->smax_value + off + size;
2730 	if (value_regno >= 0)
2731 		value_reg = &cur->regs[value_regno];
2732 	if (value_reg && register_is_null(value_reg))
2733 		writing_zero = true;
2734 
2735 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2736 	if (err)
2737 		return err;
2738 
2739 
2740 	/* Variable offset writes destroy any spilled pointers in range. */
2741 	for (i = min_off; i < max_off; i++) {
2742 		u8 new_type, *stype;
2743 		int slot, spi;
2744 
2745 		slot = -i - 1;
2746 		spi = slot / BPF_REG_SIZE;
2747 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2748 
2749 		if (!env->allow_ptr_leaks
2750 				&& *stype != NOT_INIT
2751 				&& *stype != SCALAR_VALUE) {
2752 			/* Reject the write if there's are spilled pointers in
2753 			 * range. If we didn't reject here, the ptr status
2754 			 * would be erased below (even though not all slots are
2755 			 * actually overwritten), possibly opening the door to
2756 			 * leaks.
2757 			 */
2758 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2759 				insn_idx, i);
2760 			return -EINVAL;
2761 		}
2762 
2763 		/* Erase all spilled pointers. */
2764 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2765 
2766 		/* Update the slot type. */
2767 		new_type = STACK_MISC;
2768 		if (writing_zero && *stype == STACK_ZERO) {
2769 			new_type = STACK_ZERO;
2770 			zero_used = true;
2771 		}
2772 		/* If the slot is STACK_INVALID, we check whether it's OK to
2773 		 * pretend that it will be initialized by this write. The slot
2774 		 * might not actually be written to, and so if we mark it as
2775 		 * initialized future reads might leak uninitialized memory.
2776 		 * For privileged programs, we will accept such reads to slots
2777 		 * that may or may not be written because, if we're reject
2778 		 * them, the error would be too confusing.
2779 		 */
2780 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2781 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2782 					insn_idx, i);
2783 			return -EINVAL;
2784 		}
2785 		*stype = new_type;
2786 	}
2787 	if (zero_used) {
2788 		/* backtracking doesn't work for STACK_ZERO yet. */
2789 		err = mark_chain_precision(env, value_regno);
2790 		if (err)
2791 			return err;
2792 	}
2793 	return 0;
2794 }
2795 
2796 /* When register 'dst_regno' is assigned some values from stack[min_off,
2797  * max_off), we set the register's type according to the types of the
2798  * respective stack slots. If all the stack values are known to be zeros, then
2799  * so is the destination reg. Otherwise, the register is considered to be
2800  * SCALAR. This function does not deal with register filling; the caller must
2801  * ensure that all spilled registers in the stack range have been marked as
2802  * read.
2803  */
2804 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2805 				/* func where src register points to */
2806 				struct bpf_func_state *ptr_state,
2807 				int min_off, int max_off, int dst_regno)
2808 {
2809 	struct bpf_verifier_state *vstate = env->cur_state;
2810 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2811 	int i, slot, spi;
2812 	u8 *stype;
2813 	int zeros = 0;
2814 
2815 	for (i = min_off; i < max_off; i++) {
2816 		slot = -i - 1;
2817 		spi = slot / BPF_REG_SIZE;
2818 		stype = ptr_state->stack[spi].slot_type;
2819 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2820 			break;
2821 		zeros++;
2822 	}
2823 	if (zeros == max_off - min_off) {
2824 		/* any access_size read into register is zero extended,
2825 		 * so the whole register == const_zero
2826 		 */
2827 		__mark_reg_const_zero(&state->regs[dst_regno]);
2828 		/* backtracking doesn't support STACK_ZERO yet,
2829 		 * so mark it precise here, so that later
2830 		 * backtracking can stop here.
2831 		 * Backtracking may not need this if this register
2832 		 * doesn't participate in pointer adjustment.
2833 		 * Forward propagation of precise flag is not
2834 		 * necessary either. This mark is only to stop
2835 		 * backtracking. Any register that contributed
2836 		 * to const 0 was marked precise before spill.
2837 		 */
2838 		state->regs[dst_regno].precise = true;
2839 	} else {
2840 		/* have read misc data from the stack */
2841 		mark_reg_unknown(env, state->regs, dst_regno);
2842 	}
2843 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2844 }
2845 
2846 /* Read the stack at 'off' and put the results into the register indicated by
2847  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2848  * spilled reg.
2849  *
2850  * 'dst_regno' can be -1, meaning that the read value is not going to a
2851  * register.
2852  *
2853  * The access is assumed to be within the current stack bounds.
2854  */
2855 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2856 				      /* func where src register points to */
2857 				      struct bpf_func_state *reg_state,
2858 				      int off, int size, int dst_regno)
2859 {
2860 	struct bpf_verifier_state *vstate = env->cur_state;
2861 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2862 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2863 	struct bpf_reg_state *reg;
2864 	u8 *stype;
2865 
2866 	stype = reg_state->stack[spi].slot_type;
2867 	reg = &reg_state->stack[spi].spilled_ptr;
2868 
2869 	if (stype[0] == STACK_SPILL) {
2870 		if (size != BPF_REG_SIZE) {
2871 			if (reg->type != SCALAR_VALUE) {
2872 				verbose_linfo(env, env->insn_idx, "; ");
2873 				verbose(env, "invalid size of register fill\n");
2874 				return -EACCES;
2875 			}
2876 			if (dst_regno >= 0) {
2877 				mark_reg_unknown(env, state->regs, dst_regno);
2878 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2879 			}
2880 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2881 			return 0;
2882 		}
2883 		for (i = 1; i < BPF_REG_SIZE; i++) {
2884 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2885 				verbose(env, "corrupted spill memory\n");
2886 				return -EACCES;
2887 			}
2888 		}
2889 
2890 		if (dst_regno >= 0) {
2891 			/* restore register state from stack */
2892 			state->regs[dst_regno] = *reg;
2893 			/* mark reg as written since spilled pointer state likely
2894 			 * has its liveness marks cleared by is_state_visited()
2895 			 * which resets stack/reg liveness for state transitions
2896 			 */
2897 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2898 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2899 			/* If dst_regno==-1, the caller is asking us whether
2900 			 * it is acceptable to use this value as a SCALAR_VALUE
2901 			 * (e.g. for XADD).
2902 			 * We must not allow unprivileged callers to do that
2903 			 * with spilled pointers.
2904 			 */
2905 			verbose(env, "leaking pointer from stack off %d\n",
2906 				off);
2907 			return -EACCES;
2908 		}
2909 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2910 	} else {
2911 		u8 type;
2912 
2913 		for (i = 0; i < size; i++) {
2914 			type = stype[(slot - i) % BPF_REG_SIZE];
2915 			if (type == STACK_MISC)
2916 				continue;
2917 			if (type == STACK_ZERO)
2918 				continue;
2919 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2920 				off, i, size);
2921 			return -EACCES;
2922 		}
2923 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2924 		if (dst_regno >= 0)
2925 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2926 	}
2927 	return 0;
2928 }
2929 
2930 enum stack_access_src {
2931 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2932 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2933 };
2934 
2935 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2936 					 int regno, int off, int access_size,
2937 					 bool zero_size_allowed,
2938 					 enum stack_access_src type,
2939 					 struct bpf_call_arg_meta *meta);
2940 
2941 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2942 {
2943 	return cur_regs(env) + regno;
2944 }
2945 
2946 /* Read the stack at 'ptr_regno + off' and put the result into the register
2947  * 'dst_regno'.
2948  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2949  * but not its variable offset.
2950  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2951  *
2952  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2953  * filling registers (i.e. reads of spilled register cannot be detected when
2954  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2955  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2956  * offset; for a fixed offset check_stack_read_fixed_off should be used
2957  * instead.
2958  */
2959 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2960 				    int ptr_regno, int off, int size, int dst_regno)
2961 {
2962 	/* The state of the source register. */
2963 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2964 	struct bpf_func_state *ptr_state = func(env, reg);
2965 	int err;
2966 	int min_off, max_off;
2967 
2968 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2969 	 */
2970 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2971 					    false, ACCESS_DIRECT, NULL);
2972 	if (err)
2973 		return err;
2974 
2975 	min_off = reg->smin_value + off;
2976 	max_off = reg->smax_value + off;
2977 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2978 	return 0;
2979 }
2980 
2981 /* check_stack_read dispatches to check_stack_read_fixed_off or
2982  * check_stack_read_var_off.
2983  *
2984  * The caller must ensure that the offset falls within the allocated stack
2985  * bounds.
2986  *
2987  * 'dst_regno' is a register which will receive the value from the stack. It
2988  * can be -1, meaning that the read value is not going to a register.
2989  */
2990 static int check_stack_read(struct bpf_verifier_env *env,
2991 			    int ptr_regno, int off, int size,
2992 			    int dst_regno)
2993 {
2994 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2995 	struct bpf_func_state *state = func(env, reg);
2996 	int err;
2997 	/* Some accesses are only permitted with a static offset. */
2998 	bool var_off = !tnum_is_const(reg->var_off);
2999 
3000 	/* The offset is required to be static when reads don't go to a
3001 	 * register, in order to not leak pointers (see
3002 	 * check_stack_read_fixed_off).
3003 	 */
3004 	if (dst_regno < 0 && var_off) {
3005 		char tn_buf[48];
3006 
3007 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3008 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3009 			tn_buf, off, size);
3010 		return -EACCES;
3011 	}
3012 	/* Variable offset is prohibited for unprivileged mode for simplicity
3013 	 * since it requires corresponding support in Spectre masking for stack
3014 	 * ALU. See also retrieve_ptr_limit().
3015 	 */
3016 	if (!env->bypass_spec_v1 && var_off) {
3017 		char tn_buf[48];
3018 
3019 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3020 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3021 				ptr_regno, tn_buf);
3022 		return -EACCES;
3023 	}
3024 
3025 	if (!var_off) {
3026 		off += reg->var_off.value;
3027 		err = check_stack_read_fixed_off(env, state, off, size,
3028 						 dst_regno);
3029 	} else {
3030 		/* Variable offset stack reads need more conservative handling
3031 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3032 		 * branch.
3033 		 */
3034 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3035 					       dst_regno);
3036 	}
3037 	return err;
3038 }
3039 
3040 
3041 /* check_stack_write dispatches to check_stack_write_fixed_off or
3042  * check_stack_write_var_off.
3043  *
3044  * 'ptr_regno' is the register used as a pointer into the stack.
3045  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3046  * 'value_regno' is the register whose value we're writing to the stack. It can
3047  * be -1, meaning that we're not writing from a register.
3048  *
3049  * The caller must ensure that the offset falls within the maximum stack size.
3050  */
3051 static int check_stack_write(struct bpf_verifier_env *env,
3052 			     int ptr_regno, int off, int size,
3053 			     int value_regno, int insn_idx)
3054 {
3055 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3056 	struct bpf_func_state *state = func(env, reg);
3057 	int err;
3058 
3059 	if (tnum_is_const(reg->var_off)) {
3060 		off += reg->var_off.value;
3061 		err = check_stack_write_fixed_off(env, state, off, size,
3062 						  value_regno, insn_idx);
3063 	} else {
3064 		/* Variable offset stack reads need more conservative handling
3065 		 * than fixed offset ones.
3066 		 */
3067 		err = check_stack_write_var_off(env, state,
3068 						ptr_regno, off, size,
3069 						value_regno, insn_idx);
3070 	}
3071 	return err;
3072 }
3073 
3074 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3075 				 int off, int size, enum bpf_access_type type)
3076 {
3077 	struct bpf_reg_state *regs = cur_regs(env);
3078 	struct bpf_map *map = regs[regno].map_ptr;
3079 	u32 cap = bpf_map_flags_to_cap(map);
3080 
3081 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3082 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3083 			map->value_size, off, size);
3084 		return -EACCES;
3085 	}
3086 
3087 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3088 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3089 			map->value_size, off, size);
3090 		return -EACCES;
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3097 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3098 			      int off, int size, u32 mem_size,
3099 			      bool zero_size_allowed)
3100 {
3101 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3102 	struct bpf_reg_state *reg;
3103 
3104 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3105 		return 0;
3106 
3107 	reg = &cur_regs(env)[regno];
3108 	switch (reg->type) {
3109 	case PTR_TO_MAP_KEY:
3110 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3111 			mem_size, off, size);
3112 		break;
3113 	case PTR_TO_MAP_VALUE:
3114 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3115 			mem_size, off, size);
3116 		break;
3117 	case PTR_TO_PACKET:
3118 	case PTR_TO_PACKET_META:
3119 	case PTR_TO_PACKET_END:
3120 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3121 			off, size, regno, reg->id, off, mem_size);
3122 		break;
3123 	case PTR_TO_MEM:
3124 	default:
3125 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3126 			mem_size, off, size);
3127 	}
3128 
3129 	return -EACCES;
3130 }
3131 
3132 /* check read/write into a memory region with possible variable offset */
3133 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3134 				   int off, int size, u32 mem_size,
3135 				   bool zero_size_allowed)
3136 {
3137 	struct bpf_verifier_state *vstate = env->cur_state;
3138 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3139 	struct bpf_reg_state *reg = &state->regs[regno];
3140 	int err;
3141 
3142 	/* We may have adjusted the register pointing to memory region, so we
3143 	 * need to try adding each of min_value and max_value to off
3144 	 * to make sure our theoretical access will be safe.
3145 	 */
3146 	if (env->log.level & BPF_LOG_LEVEL)
3147 		print_verifier_state(env, state);
3148 
3149 	/* The minimum value is only important with signed
3150 	 * comparisons where we can't assume the floor of a
3151 	 * value is 0.  If we are using signed variables for our
3152 	 * index'es we need to make sure that whatever we use
3153 	 * will have a set floor within our range.
3154 	 */
3155 	if (reg->smin_value < 0 &&
3156 	    (reg->smin_value == S64_MIN ||
3157 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3158 	      reg->smin_value + off < 0)) {
3159 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3160 			regno);
3161 		return -EACCES;
3162 	}
3163 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3164 				 mem_size, zero_size_allowed);
3165 	if (err) {
3166 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3167 			regno);
3168 		return err;
3169 	}
3170 
3171 	/* If we haven't set a max value then we need to bail since we can't be
3172 	 * sure we won't do bad things.
3173 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3174 	 */
3175 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3176 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3177 			regno);
3178 		return -EACCES;
3179 	}
3180 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3181 				 mem_size, zero_size_allowed);
3182 	if (err) {
3183 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3184 			regno);
3185 		return err;
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 /* check read/write into a map element with possible variable offset */
3192 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3193 			    int off, int size, bool zero_size_allowed)
3194 {
3195 	struct bpf_verifier_state *vstate = env->cur_state;
3196 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3197 	struct bpf_reg_state *reg = &state->regs[regno];
3198 	struct bpf_map *map = reg->map_ptr;
3199 	int err;
3200 
3201 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3202 				      zero_size_allowed);
3203 	if (err)
3204 		return err;
3205 
3206 	if (map_value_has_spin_lock(map)) {
3207 		u32 lock = map->spin_lock_off;
3208 
3209 		/* if any part of struct bpf_spin_lock can be touched by
3210 		 * load/store reject this program.
3211 		 * To check that [x1, x2) overlaps with [y1, y2)
3212 		 * it is sufficient to check x1 < y2 && y1 < x2.
3213 		 */
3214 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3215 		     lock < reg->umax_value + off + size) {
3216 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3217 			return -EACCES;
3218 		}
3219 	}
3220 	return err;
3221 }
3222 
3223 #define MAX_PACKET_OFF 0xffff
3224 
3225 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3226 {
3227 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3228 }
3229 
3230 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3231 				       const struct bpf_call_arg_meta *meta,
3232 				       enum bpf_access_type t)
3233 {
3234 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3235 
3236 	switch (prog_type) {
3237 	/* Program types only with direct read access go here! */
3238 	case BPF_PROG_TYPE_LWT_IN:
3239 	case BPF_PROG_TYPE_LWT_OUT:
3240 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3241 	case BPF_PROG_TYPE_SK_REUSEPORT:
3242 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3243 	case BPF_PROG_TYPE_CGROUP_SKB:
3244 		if (t == BPF_WRITE)
3245 			return false;
3246 		fallthrough;
3247 
3248 	/* Program types with direct read + write access go here! */
3249 	case BPF_PROG_TYPE_SCHED_CLS:
3250 	case BPF_PROG_TYPE_SCHED_ACT:
3251 	case BPF_PROG_TYPE_XDP:
3252 	case BPF_PROG_TYPE_LWT_XMIT:
3253 	case BPF_PROG_TYPE_SK_SKB:
3254 	case BPF_PROG_TYPE_SK_MSG:
3255 		if (meta)
3256 			return meta->pkt_access;
3257 
3258 		env->seen_direct_write = true;
3259 		return true;
3260 
3261 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3262 		if (t == BPF_WRITE)
3263 			env->seen_direct_write = true;
3264 
3265 		return true;
3266 
3267 	default:
3268 		return false;
3269 	}
3270 }
3271 
3272 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3273 			       int size, bool zero_size_allowed)
3274 {
3275 	struct bpf_reg_state *regs = cur_regs(env);
3276 	struct bpf_reg_state *reg = &regs[regno];
3277 	int err;
3278 
3279 	/* We may have added a variable offset to the packet pointer; but any
3280 	 * reg->range we have comes after that.  We are only checking the fixed
3281 	 * offset.
3282 	 */
3283 
3284 	/* We don't allow negative numbers, because we aren't tracking enough
3285 	 * detail to prove they're safe.
3286 	 */
3287 	if (reg->smin_value < 0) {
3288 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3289 			regno);
3290 		return -EACCES;
3291 	}
3292 
3293 	err = reg->range < 0 ? -EINVAL :
3294 	      __check_mem_access(env, regno, off, size, reg->range,
3295 				 zero_size_allowed);
3296 	if (err) {
3297 		verbose(env, "R%d offset is outside of the packet\n", regno);
3298 		return err;
3299 	}
3300 
3301 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3302 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3303 	 * otherwise find_good_pkt_pointers would have refused to set range info
3304 	 * that __check_mem_access would have rejected this pkt access.
3305 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3306 	 */
3307 	env->prog->aux->max_pkt_offset =
3308 		max_t(u32, env->prog->aux->max_pkt_offset,
3309 		      off + reg->umax_value + size - 1);
3310 
3311 	return err;
3312 }
3313 
3314 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3315 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3316 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3317 			    struct btf **btf, u32 *btf_id)
3318 {
3319 	struct bpf_insn_access_aux info = {
3320 		.reg_type = *reg_type,
3321 		.log = &env->log,
3322 	};
3323 
3324 	if (env->ops->is_valid_access &&
3325 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3326 		/* A non zero info.ctx_field_size indicates that this field is a
3327 		 * candidate for later verifier transformation to load the whole
3328 		 * field and then apply a mask when accessed with a narrower
3329 		 * access than actual ctx access size. A zero info.ctx_field_size
3330 		 * will only allow for whole field access and rejects any other
3331 		 * type of narrower access.
3332 		 */
3333 		*reg_type = info.reg_type;
3334 
3335 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3336 			*btf = info.btf;
3337 			*btf_id = info.btf_id;
3338 		} else {
3339 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3340 		}
3341 		/* remember the offset of last byte accessed in ctx */
3342 		if (env->prog->aux->max_ctx_offset < off + size)
3343 			env->prog->aux->max_ctx_offset = off + size;
3344 		return 0;
3345 	}
3346 
3347 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3348 	return -EACCES;
3349 }
3350 
3351 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3352 				  int size)
3353 {
3354 	if (size < 0 || off < 0 ||
3355 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3356 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3357 			off, size);
3358 		return -EACCES;
3359 	}
3360 	return 0;
3361 }
3362 
3363 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3364 			     u32 regno, int off, int size,
3365 			     enum bpf_access_type t)
3366 {
3367 	struct bpf_reg_state *regs = cur_regs(env);
3368 	struct bpf_reg_state *reg = &regs[regno];
3369 	struct bpf_insn_access_aux info = {};
3370 	bool valid;
3371 
3372 	if (reg->smin_value < 0) {
3373 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3374 			regno);
3375 		return -EACCES;
3376 	}
3377 
3378 	switch (reg->type) {
3379 	case PTR_TO_SOCK_COMMON:
3380 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3381 		break;
3382 	case PTR_TO_SOCKET:
3383 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3384 		break;
3385 	case PTR_TO_TCP_SOCK:
3386 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3387 		break;
3388 	case PTR_TO_XDP_SOCK:
3389 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3390 		break;
3391 	default:
3392 		valid = false;
3393 	}
3394 
3395 
3396 	if (valid) {
3397 		env->insn_aux_data[insn_idx].ctx_field_size =
3398 			info.ctx_field_size;
3399 		return 0;
3400 	}
3401 
3402 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3403 		regno, reg_type_str[reg->type], off, size);
3404 
3405 	return -EACCES;
3406 }
3407 
3408 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3409 {
3410 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3411 }
3412 
3413 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3414 {
3415 	const struct bpf_reg_state *reg = reg_state(env, regno);
3416 
3417 	return reg->type == PTR_TO_CTX;
3418 }
3419 
3420 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3421 {
3422 	const struct bpf_reg_state *reg = reg_state(env, regno);
3423 
3424 	return type_is_sk_pointer(reg->type);
3425 }
3426 
3427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3428 {
3429 	const struct bpf_reg_state *reg = reg_state(env, regno);
3430 
3431 	return type_is_pkt_pointer(reg->type);
3432 }
3433 
3434 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3435 {
3436 	const struct bpf_reg_state *reg = reg_state(env, regno);
3437 
3438 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3439 	return reg->type == PTR_TO_FLOW_KEYS;
3440 }
3441 
3442 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3443 				   const struct bpf_reg_state *reg,
3444 				   int off, int size, bool strict)
3445 {
3446 	struct tnum reg_off;
3447 	int ip_align;
3448 
3449 	/* Byte size accesses are always allowed. */
3450 	if (!strict || size == 1)
3451 		return 0;
3452 
3453 	/* For platforms that do not have a Kconfig enabling
3454 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3455 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3456 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3457 	 * to this code only in strict mode where we want to emulate
3458 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3459 	 * unconditional IP align value of '2'.
3460 	 */
3461 	ip_align = 2;
3462 
3463 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3464 	if (!tnum_is_aligned(reg_off, size)) {
3465 		char tn_buf[48];
3466 
3467 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3468 		verbose(env,
3469 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3470 			ip_align, tn_buf, reg->off, off, size);
3471 		return -EACCES;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3478 				       const struct bpf_reg_state *reg,
3479 				       const char *pointer_desc,
3480 				       int off, int size, bool strict)
3481 {
3482 	struct tnum reg_off;
3483 
3484 	/* Byte size accesses are always allowed. */
3485 	if (!strict || size == 1)
3486 		return 0;
3487 
3488 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3489 	if (!tnum_is_aligned(reg_off, size)) {
3490 		char tn_buf[48];
3491 
3492 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3493 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3494 			pointer_desc, tn_buf, reg->off, off, size);
3495 		return -EACCES;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static int check_ptr_alignment(struct bpf_verifier_env *env,
3502 			       const struct bpf_reg_state *reg, int off,
3503 			       int size, bool strict_alignment_once)
3504 {
3505 	bool strict = env->strict_alignment || strict_alignment_once;
3506 	const char *pointer_desc = "";
3507 
3508 	switch (reg->type) {
3509 	case PTR_TO_PACKET:
3510 	case PTR_TO_PACKET_META:
3511 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3512 		 * right in front, treat it the very same way.
3513 		 */
3514 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3515 	case PTR_TO_FLOW_KEYS:
3516 		pointer_desc = "flow keys ";
3517 		break;
3518 	case PTR_TO_MAP_KEY:
3519 		pointer_desc = "key ";
3520 		break;
3521 	case PTR_TO_MAP_VALUE:
3522 		pointer_desc = "value ";
3523 		break;
3524 	case PTR_TO_CTX:
3525 		pointer_desc = "context ";
3526 		break;
3527 	case PTR_TO_STACK:
3528 		pointer_desc = "stack ";
3529 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3530 		 * and check_stack_read_fixed_off() relies on stack accesses being
3531 		 * aligned.
3532 		 */
3533 		strict = true;
3534 		break;
3535 	case PTR_TO_SOCKET:
3536 		pointer_desc = "sock ";
3537 		break;
3538 	case PTR_TO_SOCK_COMMON:
3539 		pointer_desc = "sock_common ";
3540 		break;
3541 	case PTR_TO_TCP_SOCK:
3542 		pointer_desc = "tcp_sock ";
3543 		break;
3544 	case PTR_TO_XDP_SOCK:
3545 		pointer_desc = "xdp_sock ";
3546 		break;
3547 	default:
3548 		break;
3549 	}
3550 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3551 					   strict);
3552 }
3553 
3554 static int update_stack_depth(struct bpf_verifier_env *env,
3555 			      const struct bpf_func_state *func,
3556 			      int off)
3557 {
3558 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3559 
3560 	if (stack >= -off)
3561 		return 0;
3562 
3563 	/* update known max for given subprogram */
3564 	env->subprog_info[func->subprogno].stack_depth = -off;
3565 	return 0;
3566 }
3567 
3568 /* starting from main bpf function walk all instructions of the function
3569  * and recursively walk all callees that given function can call.
3570  * Ignore jump and exit insns.
3571  * Since recursion is prevented by check_cfg() this algorithm
3572  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3573  */
3574 static int check_max_stack_depth(struct bpf_verifier_env *env)
3575 {
3576 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3577 	struct bpf_subprog_info *subprog = env->subprog_info;
3578 	struct bpf_insn *insn = env->prog->insnsi;
3579 	bool tail_call_reachable = false;
3580 	int ret_insn[MAX_CALL_FRAMES];
3581 	int ret_prog[MAX_CALL_FRAMES];
3582 	int j;
3583 
3584 process_func:
3585 	/* protect against potential stack overflow that might happen when
3586 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3587 	 * depth for such case down to 256 so that the worst case scenario
3588 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3589 	 * 8k).
3590 	 *
3591 	 * To get the idea what might happen, see an example:
3592 	 * func1 -> sub rsp, 128
3593 	 *  subfunc1 -> sub rsp, 256
3594 	 *  tailcall1 -> add rsp, 256
3595 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3596 	 *   subfunc2 -> sub rsp, 64
3597 	 *   subfunc22 -> sub rsp, 128
3598 	 *   tailcall2 -> add rsp, 128
3599 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3600 	 *
3601 	 * tailcall will unwind the current stack frame but it will not get rid
3602 	 * of caller's stack as shown on the example above.
3603 	 */
3604 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3605 		verbose(env,
3606 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3607 			depth);
3608 		return -EACCES;
3609 	}
3610 	/* round up to 32-bytes, since this is granularity
3611 	 * of interpreter stack size
3612 	 */
3613 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3614 	if (depth > MAX_BPF_STACK) {
3615 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3616 			frame + 1, depth);
3617 		return -EACCES;
3618 	}
3619 continue_func:
3620 	subprog_end = subprog[idx + 1].start;
3621 	for (; i < subprog_end; i++) {
3622 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3623 			continue;
3624 		/* remember insn and function to return to */
3625 		ret_insn[frame] = i + 1;
3626 		ret_prog[frame] = idx;
3627 
3628 		/* find the callee */
3629 		i = i + insn[i].imm + 1;
3630 		idx = find_subprog(env, i);
3631 		if (idx < 0) {
3632 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3633 				  i);
3634 			return -EFAULT;
3635 		}
3636 
3637 		if (subprog[idx].has_tail_call)
3638 			tail_call_reachable = true;
3639 
3640 		frame++;
3641 		if (frame >= MAX_CALL_FRAMES) {
3642 			verbose(env, "the call stack of %d frames is too deep !\n",
3643 				frame);
3644 			return -E2BIG;
3645 		}
3646 		goto process_func;
3647 	}
3648 	/* if tail call got detected across bpf2bpf calls then mark each of the
3649 	 * currently present subprog frames as tail call reachable subprogs;
3650 	 * this info will be utilized by JIT so that we will be preserving the
3651 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3652 	 */
3653 	if (tail_call_reachable)
3654 		for (j = 0; j < frame; j++)
3655 			subprog[ret_prog[j]].tail_call_reachable = true;
3656 	if (subprog[0].tail_call_reachable)
3657 		env->prog->aux->tail_call_reachable = true;
3658 
3659 	/* end of for() loop means the last insn of the 'subprog'
3660 	 * was reached. Doesn't matter whether it was JA or EXIT
3661 	 */
3662 	if (frame == 0)
3663 		return 0;
3664 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3665 	frame--;
3666 	i = ret_insn[frame];
3667 	idx = ret_prog[frame];
3668 	goto continue_func;
3669 }
3670 
3671 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3672 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3673 				  const struct bpf_insn *insn, int idx)
3674 {
3675 	int start = idx + insn->imm + 1, subprog;
3676 
3677 	subprog = find_subprog(env, start);
3678 	if (subprog < 0) {
3679 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3680 			  start);
3681 		return -EFAULT;
3682 	}
3683 	return env->subprog_info[subprog].stack_depth;
3684 }
3685 #endif
3686 
3687 int check_ctx_reg(struct bpf_verifier_env *env,
3688 		  const struct bpf_reg_state *reg, int regno)
3689 {
3690 	/* Access to ctx or passing it to a helper is only allowed in
3691 	 * its original, unmodified form.
3692 	 */
3693 
3694 	if (reg->off) {
3695 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3696 			regno, reg->off);
3697 		return -EACCES;
3698 	}
3699 
3700 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3701 		char tn_buf[48];
3702 
3703 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3704 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3705 		return -EACCES;
3706 	}
3707 
3708 	return 0;
3709 }
3710 
3711 static int __check_buffer_access(struct bpf_verifier_env *env,
3712 				 const char *buf_info,
3713 				 const struct bpf_reg_state *reg,
3714 				 int regno, int off, int size)
3715 {
3716 	if (off < 0) {
3717 		verbose(env,
3718 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3719 			regno, buf_info, off, size);
3720 		return -EACCES;
3721 	}
3722 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 		char tn_buf[48];
3724 
3725 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 		verbose(env,
3727 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3728 			regno, off, tn_buf);
3729 		return -EACCES;
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3736 				  const struct bpf_reg_state *reg,
3737 				  int regno, int off, int size)
3738 {
3739 	int err;
3740 
3741 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3742 	if (err)
3743 		return err;
3744 
3745 	if (off + size > env->prog->aux->max_tp_access)
3746 		env->prog->aux->max_tp_access = off + size;
3747 
3748 	return 0;
3749 }
3750 
3751 static int check_buffer_access(struct bpf_verifier_env *env,
3752 			       const struct bpf_reg_state *reg,
3753 			       int regno, int off, int size,
3754 			       bool zero_size_allowed,
3755 			       const char *buf_info,
3756 			       u32 *max_access)
3757 {
3758 	int err;
3759 
3760 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3761 	if (err)
3762 		return err;
3763 
3764 	if (off + size > *max_access)
3765 		*max_access = off + size;
3766 
3767 	return 0;
3768 }
3769 
3770 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3771 static void zext_32_to_64(struct bpf_reg_state *reg)
3772 {
3773 	reg->var_off = tnum_subreg(reg->var_off);
3774 	__reg_assign_32_into_64(reg);
3775 }
3776 
3777 /* truncate register to smaller size (in bytes)
3778  * must be called with size < BPF_REG_SIZE
3779  */
3780 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3781 {
3782 	u64 mask;
3783 
3784 	/* clear high bits in bit representation */
3785 	reg->var_off = tnum_cast(reg->var_off, size);
3786 
3787 	/* fix arithmetic bounds */
3788 	mask = ((u64)1 << (size * 8)) - 1;
3789 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3790 		reg->umin_value &= mask;
3791 		reg->umax_value &= mask;
3792 	} else {
3793 		reg->umin_value = 0;
3794 		reg->umax_value = mask;
3795 	}
3796 	reg->smin_value = reg->umin_value;
3797 	reg->smax_value = reg->umax_value;
3798 
3799 	/* If size is smaller than 32bit register the 32bit register
3800 	 * values are also truncated so we push 64-bit bounds into
3801 	 * 32-bit bounds. Above were truncated < 32-bits already.
3802 	 */
3803 	if (size >= 4)
3804 		return;
3805 	__reg_combine_64_into_32(reg);
3806 }
3807 
3808 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3809 {
3810 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3811 }
3812 
3813 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3814 {
3815 	void *ptr;
3816 	u64 addr;
3817 	int err;
3818 
3819 	err = map->ops->map_direct_value_addr(map, &addr, off);
3820 	if (err)
3821 		return err;
3822 	ptr = (void *)(long)addr + off;
3823 
3824 	switch (size) {
3825 	case sizeof(u8):
3826 		*val = (u64)*(u8 *)ptr;
3827 		break;
3828 	case sizeof(u16):
3829 		*val = (u64)*(u16 *)ptr;
3830 		break;
3831 	case sizeof(u32):
3832 		*val = (u64)*(u32 *)ptr;
3833 		break;
3834 	case sizeof(u64):
3835 		*val = *(u64 *)ptr;
3836 		break;
3837 	default:
3838 		return -EINVAL;
3839 	}
3840 	return 0;
3841 }
3842 
3843 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3844 				   struct bpf_reg_state *regs,
3845 				   int regno, int off, int size,
3846 				   enum bpf_access_type atype,
3847 				   int value_regno)
3848 {
3849 	struct bpf_reg_state *reg = regs + regno;
3850 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3851 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3852 	u32 btf_id;
3853 	int ret;
3854 
3855 	if (off < 0) {
3856 		verbose(env,
3857 			"R%d is ptr_%s invalid negative access: off=%d\n",
3858 			regno, tname, off);
3859 		return -EACCES;
3860 	}
3861 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3862 		char tn_buf[48];
3863 
3864 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3865 		verbose(env,
3866 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3867 			regno, tname, off, tn_buf);
3868 		return -EACCES;
3869 	}
3870 
3871 	if (env->ops->btf_struct_access) {
3872 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3873 						  off, size, atype, &btf_id);
3874 	} else {
3875 		if (atype != BPF_READ) {
3876 			verbose(env, "only read is supported\n");
3877 			return -EACCES;
3878 		}
3879 
3880 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3881 					atype, &btf_id);
3882 	}
3883 
3884 	if (ret < 0)
3885 		return ret;
3886 
3887 	if (atype == BPF_READ && value_regno >= 0)
3888 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3889 
3890 	return 0;
3891 }
3892 
3893 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3894 				   struct bpf_reg_state *regs,
3895 				   int regno, int off, int size,
3896 				   enum bpf_access_type atype,
3897 				   int value_regno)
3898 {
3899 	struct bpf_reg_state *reg = regs + regno;
3900 	struct bpf_map *map = reg->map_ptr;
3901 	const struct btf_type *t;
3902 	const char *tname;
3903 	u32 btf_id;
3904 	int ret;
3905 
3906 	if (!btf_vmlinux) {
3907 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3908 		return -ENOTSUPP;
3909 	}
3910 
3911 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3912 		verbose(env, "map_ptr access not supported for map type %d\n",
3913 			map->map_type);
3914 		return -ENOTSUPP;
3915 	}
3916 
3917 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3918 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3919 
3920 	if (!env->allow_ptr_to_map_access) {
3921 		verbose(env,
3922 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3923 			tname);
3924 		return -EPERM;
3925 	}
3926 
3927 	if (off < 0) {
3928 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3929 			regno, tname, off);
3930 		return -EACCES;
3931 	}
3932 
3933 	if (atype != BPF_READ) {
3934 		verbose(env, "only read from %s is supported\n", tname);
3935 		return -EACCES;
3936 	}
3937 
3938 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3939 	if (ret < 0)
3940 		return ret;
3941 
3942 	if (value_regno >= 0)
3943 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3944 
3945 	return 0;
3946 }
3947 
3948 /* Check that the stack access at the given offset is within bounds. The
3949  * maximum valid offset is -1.
3950  *
3951  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3952  * -state->allocated_stack for reads.
3953  */
3954 static int check_stack_slot_within_bounds(int off,
3955 					  struct bpf_func_state *state,
3956 					  enum bpf_access_type t)
3957 {
3958 	int min_valid_off;
3959 
3960 	if (t == BPF_WRITE)
3961 		min_valid_off = -MAX_BPF_STACK;
3962 	else
3963 		min_valid_off = -state->allocated_stack;
3964 
3965 	if (off < min_valid_off || off > -1)
3966 		return -EACCES;
3967 	return 0;
3968 }
3969 
3970 /* Check that the stack access at 'regno + off' falls within the maximum stack
3971  * bounds.
3972  *
3973  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3974  */
3975 static int check_stack_access_within_bounds(
3976 		struct bpf_verifier_env *env,
3977 		int regno, int off, int access_size,
3978 		enum stack_access_src src, enum bpf_access_type type)
3979 {
3980 	struct bpf_reg_state *regs = cur_regs(env);
3981 	struct bpf_reg_state *reg = regs + regno;
3982 	struct bpf_func_state *state = func(env, reg);
3983 	int min_off, max_off;
3984 	int err;
3985 	char *err_extra;
3986 
3987 	if (src == ACCESS_HELPER)
3988 		/* We don't know if helpers are reading or writing (or both). */
3989 		err_extra = " indirect access to";
3990 	else if (type == BPF_READ)
3991 		err_extra = " read from";
3992 	else
3993 		err_extra = " write to";
3994 
3995 	if (tnum_is_const(reg->var_off)) {
3996 		min_off = reg->var_off.value + off;
3997 		if (access_size > 0)
3998 			max_off = min_off + access_size - 1;
3999 		else
4000 			max_off = min_off;
4001 	} else {
4002 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4003 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4004 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4005 				err_extra, regno);
4006 			return -EACCES;
4007 		}
4008 		min_off = reg->smin_value + off;
4009 		if (access_size > 0)
4010 			max_off = reg->smax_value + off + access_size - 1;
4011 		else
4012 			max_off = min_off;
4013 	}
4014 
4015 	err = check_stack_slot_within_bounds(min_off, state, type);
4016 	if (!err)
4017 		err = check_stack_slot_within_bounds(max_off, state, type);
4018 
4019 	if (err) {
4020 		if (tnum_is_const(reg->var_off)) {
4021 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4022 				err_extra, regno, off, access_size);
4023 		} else {
4024 			char tn_buf[48];
4025 
4026 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4027 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4028 				err_extra, regno, tn_buf, access_size);
4029 		}
4030 	}
4031 	return err;
4032 }
4033 
4034 /* check whether memory at (regno + off) is accessible for t = (read | write)
4035  * if t==write, value_regno is a register which value is stored into memory
4036  * if t==read, value_regno is a register which will receive the value from memory
4037  * if t==write && value_regno==-1, some unknown value is stored into memory
4038  * if t==read && value_regno==-1, don't care what we read from memory
4039  */
4040 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4041 			    int off, int bpf_size, enum bpf_access_type t,
4042 			    int value_regno, bool strict_alignment_once)
4043 {
4044 	struct bpf_reg_state *regs = cur_regs(env);
4045 	struct bpf_reg_state *reg = regs + regno;
4046 	struct bpf_func_state *state;
4047 	int size, err = 0;
4048 
4049 	size = bpf_size_to_bytes(bpf_size);
4050 	if (size < 0)
4051 		return size;
4052 
4053 	/* alignment checks will add in reg->off themselves */
4054 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4055 	if (err)
4056 		return err;
4057 
4058 	/* for access checks, reg->off is just part of off */
4059 	off += reg->off;
4060 
4061 	if (reg->type == PTR_TO_MAP_KEY) {
4062 		if (t == BPF_WRITE) {
4063 			verbose(env, "write to change key R%d not allowed\n", regno);
4064 			return -EACCES;
4065 		}
4066 
4067 		err = check_mem_region_access(env, regno, off, size,
4068 					      reg->map_ptr->key_size, false);
4069 		if (err)
4070 			return err;
4071 		if (value_regno >= 0)
4072 			mark_reg_unknown(env, regs, value_regno);
4073 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4074 		if (t == BPF_WRITE && value_regno >= 0 &&
4075 		    is_pointer_value(env, value_regno)) {
4076 			verbose(env, "R%d leaks addr into map\n", value_regno);
4077 			return -EACCES;
4078 		}
4079 		err = check_map_access_type(env, regno, off, size, t);
4080 		if (err)
4081 			return err;
4082 		err = check_map_access(env, regno, off, size, false);
4083 		if (!err && t == BPF_READ && value_regno >= 0) {
4084 			struct bpf_map *map = reg->map_ptr;
4085 
4086 			/* if map is read-only, track its contents as scalars */
4087 			if (tnum_is_const(reg->var_off) &&
4088 			    bpf_map_is_rdonly(map) &&
4089 			    map->ops->map_direct_value_addr) {
4090 				int map_off = off + reg->var_off.value;
4091 				u64 val = 0;
4092 
4093 				err = bpf_map_direct_read(map, map_off, size,
4094 							  &val);
4095 				if (err)
4096 					return err;
4097 
4098 				regs[value_regno].type = SCALAR_VALUE;
4099 				__mark_reg_known(&regs[value_regno], val);
4100 			} else {
4101 				mark_reg_unknown(env, regs, value_regno);
4102 			}
4103 		}
4104 	} else if (reg->type == PTR_TO_MEM) {
4105 		if (t == BPF_WRITE && value_regno >= 0 &&
4106 		    is_pointer_value(env, value_regno)) {
4107 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4108 			return -EACCES;
4109 		}
4110 		err = check_mem_region_access(env, regno, off, size,
4111 					      reg->mem_size, false);
4112 		if (!err && t == BPF_READ && value_regno >= 0)
4113 			mark_reg_unknown(env, regs, value_regno);
4114 	} else if (reg->type == PTR_TO_CTX) {
4115 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4116 		struct btf *btf = NULL;
4117 		u32 btf_id = 0;
4118 
4119 		if (t == BPF_WRITE && value_regno >= 0 &&
4120 		    is_pointer_value(env, value_regno)) {
4121 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4122 			return -EACCES;
4123 		}
4124 
4125 		err = check_ctx_reg(env, reg, regno);
4126 		if (err < 0)
4127 			return err;
4128 
4129 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4130 		if (err)
4131 			verbose_linfo(env, insn_idx, "; ");
4132 		if (!err && t == BPF_READ && value_regno >= 0) {
4133 			/* ctx access returns either a scalar, or a
4134 			 * PTR_TO_PACKET[_META,_END]. In the latter
4135 			 * case, we know the offset is zero.
4136 			 */
4137 			if (reg_type == SCALAR_VALUE) {
4138 				mark_reg_unknown(env, regs, value_regno);
4139 			} else {
4140 				mark_reg_known_zero(env, regs,
4141 						    value_regno);
4142 				if (reg_type_may_be_null(reg_type))
4143 					regs[value_regno].id = ++env->id_gen;
4144 				/* A load of ctx field could have different
4145 				 * actual load size with the one encoded in the
4146 				 * insn. When the dst is PTR, it is for sure not
4147 				 * a sub-register.
4148 				 */
4149 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4150 				if (reg_type == PTR_TO_BTF_ID ||
4151 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4152 					regs[value_regno].btf = btf;
4153 					regs[value_regno].btf_id = btf_id;
4154 				}
4155 			}
4156 			regs[value_regno].type = reg_type;
4157 		}
4158 
4159 	} else if (reg->type == PTR_TO_STACK) {
4160 		/* Basic bounds checks. */
4161 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4162 		if (err)
4163 			return err;
4164 
4165 		state = func(env, reg);
4166 		err = update_stack_depth(env, state, off);
4167 		if (err)
4168 			return err;
4169 
4170 		if (t == BPF_READ)
4171 			err = check_stack_read(env, regno, off, size,
4172 					       value_regno);
4173 		else
4174 			err = check_stack_write(env, regno, off, size,
4175 						value_regno, insn_idx);
4176 	} else if (reg_is_pkt_pointer(reg)) {
4177 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4178 			verbose(env, "cannot write into packet\n");
4179 			return -EACCES;
4180 		}
4181 		if (t == BPF_WRITE && value_regno >= 0 &&
4182 		    is_pointer_value(env, value_regno)) {
4183 			verbose(env, "R%d leaks addr into packet\n",
4184 				value_regno);
4185 			return -EACCES;
4186 		}
4187 		err = check_packet_access(env, regno, off, size, false);
4188 		if (!err && t == BPF_READ && value_regno >= 0)
4189 			mark_reg_unknown(env, regs, value_regno);
4190 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4191 		if (t == BPF_WRITE && value_regno >= 0 &&
4192 		    is_pointer_value(env, value_regno)) {
4193 			verbose(env, "R%d leaks addr into flow keys\n",
4194 				value_regno);
4195 			return -EACCES;
4196 		}
4197 
4198 		err = check_flow_keys_access(env, off, size);
4199 		if (!err && t == BPF_READ && value_regno >= 0)
4200 			mark_reg_unknown(env, regs, value_regno);
4201 	} else if (type_is_sk_pointer(reg->type)) {
4202 		if (t == BPF_WRITE) {
4203 			verbose(env, "R%d cannot write into %s\n",
4204 				regno, reg_type_str[reg->type]);
4205 			return -EACCES;
4206 		}
4207 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4208 		if (!err && value_regno >= 0)
4209 			mark_reg_unknown(env, regs, value_regno);
4210 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4211 		err = check_tp_buffer_access(env, reg, regno, off, size);
4212 		if (!err && t == BPF_READ && value_regno >= 0)
4213 			mark_reg_unknown(env, regs, value_regno);
4214 	} else if (reg->type == PTR_TO_BTF_ID) {
4215 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4216 					      value_regno);
4217 	} else if (reg->type == CONST_PTR_TO_MAP) {
4218 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4219 					      value_regno);
4220 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4221 		if (t == BPF_WRITE) {
4222 			verbose(env, "R%d cannot write into %s\n",
4223 				regno, reg_type_str[reg->type]);
4224 			return -EACCES;
4225 		}
4226 		err = check_buffer_access(env, reg, regno, off, size, false,
4227 					  "rdonly",
4228 					  &env->prog->aux->max_rdonly_access);
4229 		if (!err && value_regno >= 0)
4230 			mark_reg_unknown(env, regs, value_regno);
4231 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4232 		err = check_buffer_access(env, reg, regno, off, size, false,
4233 					  "rdwr",
4234 					  &env->prog->aux->max_rdwr_access);
4235 		if (!err && t == BPF_READ && value_regno >= 0)
4236 			mark_reg_unknown(env, regs, value_regno);
4237 	} else {
4238 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4239 			reg_type_str[reg->type]);
4240 		return -EACCES;
4241 	}
4242 
4243 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4244 	    regs[value_regno].type == SCALAR_VALUE) {
4245 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4246 		coerce_reg_to_size(&regs[value_regno], size);
4247 	}
4248 	return err;
4249 }
4250 
4251 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4252 {
4253 	int load_reg;
4254 	int err;
4255 
4256 	switch (insn->imm) {
4257 	case BPF_ADD:
4258 	case BPF_ADD | BPF_FETCH:
4259 	case BPF_AND:
4260 	case BPF_AND | BPF_FETCH:
4261 	case BPF_OR:
4262 	case BPF_OR | BPF_FETCH:
4263 	case BPF_XOR:
4264 	case BPF_XOR | BPF_FETCH:
4265 	case BPF_XCHG:
4266 	case BPF_CMPXCHG:
4267 		break;
4268 	default:
4269 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4270 		return -EINVAL;
4271 	}
4272 
4273 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4274 		verbose(env, "invalid atomic operand size\n");
4275 		return -EINVAL;
4276 	}
4277 
4278 	/* check src1 operand */
4279 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4280 	if (err)
4281 		return err;
4282 
4283 	/* check src2 operand */
4284 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4285 	if (err)
4286 		return err;
4287 
4288 	if (insn->imm == BPF_CMPXCHG) {
4289 		/* Check comparison of R0 with memory location */
4290 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4291 		if (err)
4292 			return err;
4293 	}
4294 
4295 	if (is_pointer_value(env, insn->src_reg)) {
4296 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4297 		return -EACCES;
4298 	}
4299 
4300 	if (is_ctx_reg(env, insn->dst_reg) ||
4301 	    is_pkt_reg(env, insn->dst_reg) ||
4302 	    is_flow_key_reg(env, insn->dst_reg) ||
4303 	    is_sk_reg(env, insn->dst_reg)) {
4304 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4305 			insn->dst_reg,
4306 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4307 		return -EACCES;
4308 	}
4309 
4310 	if (insn->imm & BPF_FETCH) {
4311 		if (insn->imm == BPF_CMPXCHG)
4312 			load_reg = BPF_REG_0;
4313 		else
4314 			load_reg = insn->src_reg;
4315 
4316 		/* check and record load of old value */
4317 		err = check_reg_arg(env, load_reg, DST_OP);
4318 		if (err)
4319 			return err;
4320 	} else {
4321 		/* This instruction accesses a memory location but doesn't
4322 		 * actually load it into a register.
4323 		 */
4324 		load_reg = -1;
4325 	}
4326 
4327 	/* check whether we can read the memory */
4328 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4329 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4330 	if (err)
4331 		return err;
4332 
4333 	/* check whether we can write into the same memory */
4334 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4335 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4336 	if (err)
4337 		return err;
4338 
4339 	return 0;
4340 }
4341 
4342 /* When register 'regno' is used to read the stack (either directly or through
4343  * a helper function) make sure that it's within stack boundary and, depending
4344  * on the access type, that all elements of the stack are initialized.
4345  *
4346  * 'off' includes 'regno->off', but not its dynamic part (if any).
4347  *
4348  * All registers that have been spilled on the stack in the slots within the
4349  * read offsets are marked as read.
4350  */
4351 static int check_stack_range_initialized(
4352 		struct bpf_verifier_env *env, int regno, int off,
4353 		int access_size, bool zero_size_allowed,
4354 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4355 {
4356 	struct bpf_reg_state *reg = reg_state(env, regno);
4357 	struct bpf_func_state *state = func(env, reg);
4358 	int err, min_off, max_off, i, j, slot, spi;
4359 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4360 	enum bpf_access_type bounds_check_type;
4361 	/* Some accesses can write anything into the stack, others are
4362 	 * read-only.
4363 	 */
4364 	bool clobber = false;
4365 
4366 	if (access_size == 0 && !zero_size_allowed) {
4367 		verbose(env, "invalid zero-sized read\n");
4368 		return -EACCES;
4369 	}
4370 
4371 	if (type == ACCESS_HELPER) {
4372 		/* The bounds checks for writes are more permissive than for
4373 		 * reads. However, if raw_mode is not set, we'll do extra
4374 		 * checks below.
4375 		 */
4376 		bounds_check_type = BPF_WRITE;
4377 		clobber = true;
4378 	} else {
4379 		bounds_check_type = BPF_READ;
4380 	}
4381 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4382 					       type, bounds_check_type);
4383 	if (err)
4384 		return err;
4385 
4386 
4387 	if (tnum_is_const(reg->var_off)) {
4388 		min_off = max_off = reg->var_off.value + off;
4389 	} else {
4390 		/* Variable offset is prohibited for unprivileged mode for
4391 		 * simplicity since it requires corresponding support in
4392 		 * Spectre masking for stack ALU.
4393 		 * See also retrieve_ptr_limit().
4394 		 */
4395 		if (!env->bypass_spec_v1) {
4396 			char tn_buf[48];
4397 
4398 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4399 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4400 				regno, err_extra, tn_buf);
4401 			return -EACCES;
4402 		}
4403 		/* Only initialized buffer on stack is allowed to be accessed
4404 		 * with variable offset. With uninitialized buffer it's hard to
4405 		 * guarantee that whole memory is marked as initialized on
4406 		 * helper return since specific bounds are unknown what may
4407 		 * cause uninitialized stack leaking.
4408 		 */
4409 		if (meta && meta->raw_mode)
4410 			meta = NULL;
4411 
4412 		min_off = reg->smin_value + off;
4413 		max_off = reg->smax_value + off;
4414 	}
4415 
4416 	if (meta && meta->raw_mode) {
4417 		meta->access_size = access_size;
4418 		meta->regno = regno;
4419 		return 0;
4420 	}
4421 
4422 	for (i = min_off; i < max_off + access_size; i++) {
4423 		u8 *stype;
4424 
4425 		slot = -i - 1;
4426 		spi = slot / BPF_REG_SIZE;
4427 		if (state->allocated_stack <= slot)
4428 			goto err;
4429 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4430 		if (*stype == STACK_MISC)
4431 			goto mark;
4432 		if (*stype == STACK_ZERO) {
4433 			if (clobber) {
4434 				/* helper can write anything into the stack */
4435 				*stype = STACK_MISC;
4436 			}
4437 			goto mark;
4438 		}
4439 
4440 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4441 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4442 			goto mark;
4443 
4444 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4445 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4446 		     env->allow_ptr_leaks)) {
4447 			if (clobber) {
4448 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4449 				for (j = 0; j < BPF_REG_SIZE; j++)
4450 					state->stack[spi].slot_type[j] = STACK_MISC;
4451 			}
4452 			goto mark;
4453 		}
4454 
4455 err:
4456 		if (tnum_is_const(reg->var_off)) {
4457 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4458 				err_extra, regno, min_off, i - min_off, access_size);
4459 		} else {
4460 			char tn_buf[48];
4461 
4462 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4463 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4464 				err_extra, regno, tn_buf, i - min_off, access_size);
4465 		}
4466 		return -EACCES;
4467 mark:
4468 		/* reading any byte out of 8-byte 'spill_slot' will cause
4469 		 * the whole slot to be marked as 'read'
4470 		 */
4471 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4472 			      state->stack[spi].spilled_ptr.parent,
4473 			      REG_LIVE_READ64);
4474 	}
4475 	return update_stack_depth(env, state, min_off);
4476 }
4477 
4478 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4479 				   int access_size, bool zero_size_allowed,
4480 				   struct bpf_call_arg_meta *meta)
4481 {
4482 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4483 
4484 	switch (reg->type) {
4485 	case PTR_TO_PACKET:
4486 	case PTR_TO_PACKET_META:
4487 		return check_packet_access(env, regno, reg->off, access_size,
4488 					   zero_size_allowed);
4489 	case PTR_TO_MAP_KEY:
4490 		return check_mem_region_access(env, regno, reg->off, access_size,
4491 					       reg->map_ptr->key_size, false);
4492 	case PTR_TO_MAP_VALUE:
4493 		if (check_map_access_type(env, regno, reg->off, access_size,
4494 					  meta && meta->raw_mode ? BPF_WRITE :
4495 					  BPF_READ))
4496 			return -EACCES;
4497 		return check_map_access(env, regno, reg->off, access_size,
4498 					zero_size_allowed);
4499 	case PTR_TO_MEM:
4500 		return check_mem_region_access(env, regno, reg->off,
4501 					       access_size, reg->mem_size,
4502 					       zero_size_allowed);
4503 	case PTR_TO_RDONLY_BUF:
4504 		if (meta && meta->raw_mode)
4505 			return -EACCES;
4506 		return check_buffer_access(env, reg, regno, reg->off,
4507 					   access_size, zero_size_allowed,
4508 					   "rdonly",
4509 					   &env->prog->aux->max_rdonly_access);
4510 	case PTR_TO_RDWR_BUF:
4511 		return check_buffer_access(env, reg, regno, reg->off,
4512 					   access_size, zero_size_allowed,
4513 					   "rdwr",
4514 					   &env->prog->aux->max_rdwr_access);
4515 	case PTR_TO_STACK:
4516 		return check_stack_range_initialized(
4517 				env,
4518 				regno, reg->off, access_size,
4519 				zero_size_allowed, ACCESS_HELPER, meta);
4520 	default: /* scalar_value or invalid ptr */
4521 		/* Allow zero-byte read from NULL, regardless of pointer type */
4522 		if (zero_size_allowed && access_size == 0 &&
4523 		    register_is_null(reg))
4524 			return 0;
4525 
4526 		verbose(env, "R%d type=%s expected=%s\n", regno,
4527 			reg_type_str[reg->type],
4528 			reg_type_str[PTR_TO_STACK]);
4529 		return -EACCES;
4530 	}
4531 }
4532 
4533 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4534 		   u32 regno, u32 mem_size)
4535 {
4536 	if (register_is_null(reg))
4537 		return 0;
4538 
4539 	if (reg_type_may_be_null(reg->type)) {
4540 		/* Assuming that the register contains a value check if the memory
4541 		 * access is safe. Temporarily save and restore the register's state as
4542 		 * the conversion shouldn't be visible to a caller.
4543 		 */
4544 		const struct bpf_reg_state saved_reg = *reg;
4545 		int rv;
4546 
4547 		mark_ptr_not_null_reg(reg);
4548 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4549 		*reg = saved_reg;
4550 		return rv;
4551 	}
4552 
4553 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4554 }
4555 
4556 /* Implementation details:
4557  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4558  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4559  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4560  * value_or_null->value transition, since the verifier only cares about
4561  * the range of access to valid map value pointer and doesn't care about actual
4562  * address of the map element.
4563  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4564  * reg->id > 0 after value_or_null->value transition. By doing so
4565  * two bpf_map_lookups will be considered two different pointers that
4566  * point to different bpf_spin_locks.
4567  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4568  * dead-locks.
4569  * Since only one bpf_spin_lock is allowed the checks are simpler than
4570  * reg_is_refcounted() logic. The verifier needs to remember only
4571  * one spin_lock instead of array of acquired_refs.
4572  * cur_state->active_spin_lock remembers which map value element got locked
4573  * and clears it after bpf_spin_unlock.
4574  */
4575 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4576 			     bool is_lock)
4577 {
4578 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4579 	struct bpf_verifier_state *cur = env->cur_state;
4580 	bool is_const = tnum_is_const(reg->var_off);
4581 	struct bpf_map *map = reg->map_ptr;
4582 	u64 val = reg->var_off.value;
4583 
4584 	if (!is_const) {
4585 		verbose(env,
4586 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4587 			regno);
4588 		return -EINVAL;
4589 	}
4590 	if (!map->btf) {
4591 		verbose(env,
4592 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4593 			map->name);
4594 		return -EINVAL;
4595 	}
4596 	if (!map_value_has_spin_lock(map)) {
4597 		if (map->spin_lock_off == -E2BIG)
4598 			verbose(env,
4599 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4600 				map->name);
4601 		else if (map->spin_lock_off == -ENOENT)
4602 			verbose(env,
4603 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4604 				map->name);
4605 		else
4606 			verbose(env,
4607 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4608 				map->name);
4609 		return -EINVAL;
4610 	}
4611 	if (map->spin_lock_off != val + reg->off) {
4612 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4613 			val + reg->off);
4614 		return -EINVAL;
4615 	}
4616 	if (is_lock) {
4617 		if (cur->active_spin_lock) {
4618 			verbose(env,
4619 				"Locking two bpf_spin_locks are not allowed\n");
4620 			return -EINVAL;
4621 		}
4622 		cur->active_spin_lock = reg->id;
4623 	} else {
4624 		if (!cur->active_spin_lock) {
4625 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4626 			return -EINVAL;
4627 		}
4628 		if (cur->active_spin_lock != reg->id) {
4629 			verbose(env, "bpf_spin_unlock of different lock\n");
4630 			return -EINVAL;
4631 		}
4632 		cur->active_spin_lock = 0;
4633 	}
4634 	return 0;
4635 }
4636 
4637 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4638 {
4639 	return type == ARG_PTR_TO_MEM ||
4640 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4641 	       type == ARG_PTR_TO_UNINIT_MEM;
4642 }
4643 
4644 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4645 {
4646 	return type == ARG_CONST_SIZE ||
4647 	       type == ARG_CONST_SIZE_OR_ZERO;
4648 }
4649 
4650 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4651 {
4652 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4653 }
4654 
4655 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4656 {
4657 	return type == ARG_PTR_TO_INT ||
4658 	       type == ARG_PTR_TO_LONG;
4659 }
4660 
4661 static int int_ptr_type_to_size(enum bpf_arg_type type)
4662 {
4663 	if (type == ARG_PTR_TO_INT)
4664 		return sizeof(u32);
4665 	else if (type == ARG_PTR_TO_LONG)
4666 		return sizeof(u64);
4667 
4668 	return -EINVAL;
4669 }
4670 
4671 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4672 				 const struct bpf_call_arg_meta *meta,
4673 				 enum bpf_arg_type *arg_type)
4674 {
4675 	if (!meta->map_ptr) {
4676 		/* kernel subsystem misconfigured verifier */
4677 		verbose(env, "invalid map_ptr to access map->type\n");
4678 		return -EACCES;
4679 	}
4680 
4681 	switch (meta->map_ptr->map_type) {
4682 	case BPF_MAP_TYPE_SOCKMAP:
4683 	case BPF_MAP_TYPE_SOCKHASH:
4684 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4685 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4686 		} else {
4687 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4688 			return -EINVAL;
4689 		}
4690 		break;
4691 
4692 	default:
4693 		break;
4694 	}
4695 	return 0;
4696 }
4697 
4698 struct bpf_reg_types {
4699 	const enum bpf_reg_type types[10];
4700 	u32 *btf_id;
4701 };
4702 
4703 static const struct bpf_reg_types map_key_value_types = {
4704 	.types = {
4705 		PTR_TO_STACK,
4706 		PTR_TO_PACKET,
4707 		PTR_TO_PACKET_META,
4708 		PTR_TO_MAP_KEY,
4709 		PTR_TO_MAP_VALUE,
4710 	},
4711 };
4712 
4713 static const struct bpf_reg_types sock_types = {
4714 	.types = {
4715 		PTR_TO_SOCK_COMMON,
4716 		PTR_TO_SOCKET,
4717 		PTR_TO_TCP_SOCK,
4718 		PTR_TO_XDP_SOCK,
4719 	},
4720 };
4721 
4722 #ifdef CONFIG_NET
4723 static const struct bpf_reg_types btf_id_sock_common_types = {
4724 	.types = {
4725 		PTR_TO_SOCK_COMMON,
4726 		PTR_TO_SOCKET,
4727 		PTR_TO_TCP_SOCK,
4728 		PTR_TO_XDP_SOCK,
4729 		PTR_TO_BTF_ID,
4730 	},
4731 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4732 };
4733 #endif
4734 
4735 static const struct bpf_reg_types mem_types = {
4736 	.types = {
4737 		PTR_TO_STACK,
4738 		PTR_TO_PACKET,
4739 		PTR_TO_PACKET_META,
4740 		PTR_TO_MAP_KEY,
4741 		PTR_TO_MAP_VALUE,
4742 		PTR_TO_MEM,
4743 		PTR_TO_RDONLY_BUF,
4744 		PTR_TO_RDWR_BUF,
4745 	},
4746 };
4747 
4748 static const struct bpf_reg_types int_ptr_types = {
4749 	.types = {
4750 		PTR_TO_STACK,
4751 		PTR_TO_PACKET,
4752 		PTR_TO_PACKET_META,
4753 		PTR_TO_MAP_KEY,
4754 		PTR_TO_MAP_VALUE,
4755 	},
4756 };
4757 
4758 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4759 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4760 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4761 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4762 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4763 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4764 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4765 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4766 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4767 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4768 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4769 
4770 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4771 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4772 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4773 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4774 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4775 	[ARG_CONST_SIZE]		= &scalar_types,
4776 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4777 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4778 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4779 	[ARG_PTR_TO_CTX]		= &context_types,
4780 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4781 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4782 #ifdef CONFIG_NET
4783 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4784 #endif
4785 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4786 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4787 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4788 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4789 	[ARG_PTR_TO_MEM]		= &mem_types,
4790 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4791 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4792 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4793 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4794 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4795 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4796 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4797 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4798 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4799 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4800 };
4801 
4802 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4803 			  enum bpf_arg_type arg_type,
4804 			  const u32 *arg_btf_id)
4805 {
4806 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4807 	enum bpf_reg_type expected, type = reg->type;
4808 	const struct bpf_reg_types *compatible;
4809 	int i, j;
4810 
4811 	compatible = compatible_reg_types[arg_type];
4812 	if (!compatible) {
4813 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4814 		return -EFAULT;
4815 	}
4816 
4817 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4818 		expected = compatible->types[i];
4819 		if (expected == NOT_INIT)
4820 			break;
4821 
4822 		if (type == expected)
4823 			goto found;
4824 	}
4825 
4826 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4827 	for (j = 0; j + 1 < i; j++)
4828 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4829 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4830 	return -EACCES;
4831 
4832 found:
4833 	if (type == PTR_TO_BTF_ID) {
4834 		if (!arg_btf_id) {
4835 			if (!compatible->btf_id) {
4836 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4837 				return -EFAULT;
4838 			}
4839 			arg_btf_id = compatible->btf_id;
4840 		}
4841 
4842 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4843 					  btf_vmlinux, *arg_btf_id)) {
4844 			verbose(env, "R%d is of type %s but %s is expected\n",
4845 				regno, kernel_type_name(reg->btf, reg->btf_id),
4846 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4847 			return -EACCES;
4848 		}
4849 
4850 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4851 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4852 				regno);
4853 			return -EACCES;
4854 		}
4855 	}
4856 
4857 	return 0;
4858 }
4859 
4860 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4861 			  struct bpf_call_arg_meta *meta,
4862 			  const struct bpf_func_proto *fn)
4863 {
4864 	u32 regno = BPF_REG_1 + arg;
4865 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4866 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4867 	enum bpf_reg_type type = reg->type;
4868 	int err = 0;
4869 
4870 	if (arg_type == ARG_DONTCARE)
4871 		return 0;
4872 
4873 	err = check_reg_arg(env, regno, SRC_OP);
4874 	if (err)
4875 		return err;
4876 
4877 	if (arg_type == ARG_ANYTHING) {
4878 		if (is_pointer_value(env, regno)) {
4879 			verbose(env, "R%d leaks addr into helper function\n",
4880 				regno);
4881 			return -EACCES;
4882 		}
4883 		return 0;
4884 	}
4885 
4886 	if (type_is_pkt_pointer(type) &&
4887 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4888 		verbose(env, "helper access to the packet is not allowed\n");
4889 		return -EACCES;
4890 	}
4891 
4892 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4893 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4894 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4895 		err = resolve_map_arg_type(env, meta, &arg_type);
4896 		if (err)
4897 			return err;
4898 	}
4899 
4900 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4901 		/* A NULL register has a SCALAR_VALUE type, so skip
4902 		 * type checking.
4903 		 */
4904 		goto skip_type_check;
4905 
4906 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4907 	if (err)
4908 		return err;
4909 
4910 	if (type == PTR_TO_CTX) {
4911 		err = check_ctx_reg(env, reg, regno);
4912 		if (err < 0)
4913 			return err;
4914 	}
4915 
4916 skip_type_check:
4917 	if (reg->ref_obj_id) {
4918 		if (meta->ref_obj_id) {
4919 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4920 				regno, reg->ref_obj_id,
4921 				meta->ref_obj_id);
4922 			return -EFAULT;
4923 		}
4924 		meta->ref_obj_id = reg->ref_obj_id;
4925 	}
4926 
4927 	if (arg_type == ARG_CONST_MAP_PTR) {
4928 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4929 		meta->map_ptr = reg->map_ptr;
4930 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4931 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4932 		 * check that [key, key + map->key_size) are within
4933 		 * stack limits and initialized
4934 		 */
4935 		if (!meta->map_ptr) {
4936 			/* in function declaration map_ptr must come before
4937 			 * map_key, so that it's verified and known before
4938 			 * we have to check map_key here. Otherwise it means
4939 			 * that kernel subsystem misconfigured verifier
4940 			 */
4941 			verbose(env, "invalid map_ptr to access map->key\n");
4942 			return -EACCES;
4943 		}
4944 		err = check_helper_mem_access(env, regno,
4945 					      meta->map_ptr->key_size, false,
4946 					      NULL);
4947 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4948 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4949 		    !register_is_null(reg)) ||
4950 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4951 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4952 		 * check [value, value + map->value_size) validity
4953 		 */
4954 		if (!meta->map_ptr) {
4955 			/* kernel subsystem misconfigured verifier */
4956 			verbose(env, "invalid map_ptr to access map->value\n");
4957 			return -EACCES;
4958 		}
4959 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4960 		err = check_helper_mem_access(env, regno,
4961 					      meta->map_ptr->value_size, false,
4962 					      meta);
4963 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4964 		if (!reg->btf_id) {
4965 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4966 			return -EACCES;
4967 		}
4968 		meta->ret_btf = reg->btf;
4969 		meta->ret_btf_id = reg->btf_id;
4970 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4971 		if (meta->func_id == BPF_FUNC_spin_lock) {
4972 			if (process_spin_lock(env, regno, true))
4973 				return -EACCES;
4974 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4975 			if (process_spin_lock(env, regno, false))
4976 				return -EACCES;
4977 		} else {
4978 			verbose(env, "verifier internal error\n");
4979 			return -EFAULT;
4980 		}
4981 	} else if (arg_type == ARG_PTR_TO_FUNC) {
4982 		meta->subprogno = reg->subprogno;
4983 	} else if (arg_type_is_mem_ptr(arg_type)) {
4984 		/* The access to this pointer is only checked when we hit the
4985 		 * next is_mem_size argument below.
4986 		 */
4987 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4988 	} else if (arg_type_is_mem_size(arg_type)) {
4989 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4990 
4991 		/* This is used to refine r0 return value bounds for helpers
4992 		 * that enforce this value as an upper bound on return values.
4993 		 * See do_refine_retval_range() for helpers that can refine
4994 		 * the return value. C type of helper is u32 so we pull register
4995 		 * bound from umax_value however, if negative verifier errors
4996 		 * out. Only upper bounds can be learned because retval is an
4997 		 * int type and negative retvals are allowed.
4998 		 */
4999 		meta->msize_max_value = reg->umax_value;
5000 
5001 		/* The register is SCALAR_VALUE; the access check
5002 		 * happens using its boundaries.
5003 		 */
5004 		if (!tnum_is_const(reg->var_off))
5005 			/* For unprivileged variable accesses, disable raw
5006 			 * mode so that the program is required to
5007 			 * initialize all the memory that the helper could
5008 			 * just partially fill up.
5009 			 */
5010 			meta = NULL;
5011 
5012 		if (reg->smin_value < 0) {
5013 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5014 				regno);
5015 			return -EACCES;
5016 		}
5017 
5018 		if (reg->umin_value == 0) {
5019 			err = check_helper_mem_access(env, regno - 1, 0,
5020 						      zero_size_allowed,
5021 						      meta);
5022 			if (err)
5023 				return err;
5024 		}
5025 
5026 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5027 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5028 				regno);
5029 			return -EACCES;
5030 		}
5031 		err = check_helper_mem_access(env, regno - 1,
5032 					      reg->umax_value,
5033 					      zero_size_allowed, meta);
5034 		if (!err)
5035 			err = mark_chain_precision(env, regno);
5036 	} else if (arg_type_is_alloc_size(arg_type)) {
5037 		if (!tnum_is_const(reg->var_off)) {
5038 			verbose(env, "R%d is not a known constant'\n",
5039 				regno);
5040 			return -EACCES;
5041 		}
5042 		meta->mem_size = reg->var_off.value;
5043 	} else if (arg_type_is_int_ptr(arg_type)) {
5044 		int size = int_ptr_type_to_size(arg_type);
5045 
5046 		err = check_helper_mem_access(env, regno, size, false, meta);
5047 		if (err)
5048 			return err;
5049 		err = check_ptr_alignment(env, reg, 0, size, true);
5050 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5051 		struct bpf_map *map = reg->map_ptr;
5052 		int map_off;
5053 		u64 map_addr;
5054 		char *str_ptr;
5055 
5056 		if (!bpf_map_is_rdonly(map)) {
5057 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5058 			return -EACCES;
5059 		}
5060 
5061 		if (!tnum_is_const(reg->var_off)) {
5062 			verbose(env, "R%d is not a constant address'\n", regno);
5063 			return -EACCES;
5064 		}
5065 
5066 		if (!map->ops->map_direct_value_addr) {
5067 			verbose(env, "no direct value access support for this map type\n");
5068 			return -EACCES;
5069 		}
5070 
5071 		err = check_map_access(env, regno, reg->off,
5072 				       map->value_size - reg->off, false);
5073 		if (err)
5074 			return err;
5075 
5076 		map_off = reg->off + reg->var_off.value;
5077 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5078 		if (err) {
5079 			verbose(env, "direct value access on string failed\n");
5080 			return err;
5081 		}
5082 
5083 		str_ptr = (char *)(long)(map_addr);
5084 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5085 			verbose(env, "string is not zero-terminated\n");
5086 			return -EINVAL;
5087 		}
5088 	}
5089 
5090 	return err;
5091 }
5092 
5093 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5094 {
5095 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5096 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5097 
5098 	if (func_id != BPF_FUNC_map_update_elem)
5099 		return false;
5100 
5101 	/* It's not possible to get access to a locked struct sock in these
5102 	 * contexts, so updating is safe.
5103 	 */
5104 	switch (type) {
5105 	case BPF_PROG_TYPE_TRACING:
5106 		if (eatype == BPF_TRACE_ITER)
5107 			return true;
5108 		break;
5109 	case BPF_PROG_TYPE_SOCKET_FILTER:
5110 	case BPF_PROG_TYPE_SCHED_CLS:
5111 	case BPF_PROG_TYPE_SCHED_ACT:
5112 	case BPF_PROG_TYPE_XDP:
5113 	case BPF_PROG_TYPE_SK_REUSEPORT:
5114 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5115 	case BPF_PROG_TYPE_SK_LOOKUP:
5116 		return true;
5117 	default:
5118 		break;
5119 	}
5120 
5121 	verbose(env, "cannot update sockmap in this context\n");
5122 	return false;
5123 }
5124 
5125 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5126 {
5127 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5128 }
5129 
5130 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5131 					struct bpf_map *map, int func_id)
5132 {
5133 	if (!map)
5134 		return 0;
5135 
5136 	/* We need a two way check, first is from map perspective ... */
5137 	switch (map->map_type) {
5138 	case BPF_MAP_TYPE_PROG_ARRAY:
5139 		if (func_id != BPF_FUNC_tail_call)
5140 			goto error;
5141 		break;
5142 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5143 		if (func_id != BPF_FUNC_perf_event_read &&
5144 		    func_id != BPF_FUNC_perf_event_output &&
5145 		    func_id != BPF_FUNC_skb_output &&
5146 		    func_id != BPF_FUNC_perf_event_read_value &&
5147 		    func_id != BPF_FUNC_xdp_output)
5148 			goto error;
5149 		break;
5150 	case BPF_MAP_TYPE_RINGBUF:
5151 		if (func_id != BPF_FUNC_ringbuf_output &&
5152 		    func_id != BPF_FUNC_ringbuf_reserve &&
5153 		    func_id != BPF_FUNC_ringbuf_query)
5154 			goto error;
5155 		break;
5156 	case BPF_MAP_TYPE_STACK_TRACE:
5157 		if (func_id != BPF_FUNC_get_stackid)
5158 			goto error;
5159 		break;
5160 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5161 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5162 		    func_id != BPF_FUNC_current_task_under_cgroup)
5163 			goto error;
5164 		break;
5165 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5166 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5167 		if (func_id != BPF_FUNC_get_local_storage)
5168 			goto error;
5169 		break;
5170 	case BPF_MAP_TYPE_DEVMAP:
5171 	case BPF_MAP_TYPE_DEVMAP_HASH:
5172 		if (func_id != BPF_FUNC_redirect_map &&
5173 		    func_id != BPF_FUNC_map_lookup_elem)
5174 			goto error;
5175 		break;
5176 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5177 	 * appear.
5178 	 */
5179 	case BPF_MAP_TYPE_CPUMAP:
5180 		if (func_id != BPF_FUNC_redirect_map)
5181 			goto error;
5182 		break;
5183 	case BPF_MAP_TYPE_XSKMAP:
5184 		if (func_id != BPF_FUNC_redirect_map &&
5185 		    func_id != BPF_FUNC_map_lookup_elem)
5186 			goto error;
5187 		break;
5188 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5189 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5190 		if (func_id != BPF_FUNC_map_lookup_elem)
5191 			goto error;
5192 		break;
5193 	case BPF_MAP_TYPE_SOCKMAP:
5194 		if (func_id != BPF_FUNC_sk_redirect_map &&
5195 		    func_id != BPF_FUNC_sock_map_update &&
5196 		    func_id != BPF_FUNC_map_delete_elem &&
5197 		    func_id != BPF_FUNC_msg_redirect_map &&
5198 		    func_id != BPF_FUNC_sk_select_reuseport &&
5199 		    func_id != BPF_FUNC_map_lookup_elem &&
5200 		    !may_update_sockmap(env, func_id))
5201 			goto error;
5202 		break;
5203 	case BPF_MAP_TYPE_SOCKHASH:
5204 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5205 		    func_id != BPF_FUNC_sock_hash_update &&
5206 		    func_id != BPF_FUNC_map_delete_elem &&
5207 		    func_id != BPF_FUNC_msg_redirect_hash &&
5208 		    func_id != BPF_FUNC_sk_select_reuseport &&
5209 		    func_id != BPF_FUNC_map_lookup_elem &&
5210 		    !may_update_sockmap(env, func_id))
5211 			goto error;
5212 		break;
5213 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5214 		if (func_id != BPF_FUNC_sk_select_reuseport)
5215 			goto error;
5216 		break;
5217 	case BPF_MAP_TYPE_QUEUE:
5218 	case BPF_MAP_TYPE_STACK:
5219 		if (func_id != BPF_FUNC_map_peek_elem &&
5220 		    func_id != BPF_FUNC_map_pop_elem &&
5221 		    func_id != BPF_FUNC_map_push_elem)
5222 			goto error;
5223 		break;
5224 	case BPF_MAP_TYPE_SK_STORAGE:
5225 		if (func_id != BPF_FUNC_sk_storage_get &&
5226 		    func_id != BPF_FUNC_sk_storage_delete)
5227 			goto error;
5228 		break;
5229 	case BPF_MAP_TYPE_INODE_STORAGE:
5230 		if (func_id != BPF_FUNC_inode_storage_get &&
5231 		    func_id != BPF_FUNC_inode_storage_delete)
5232 			goto error;
5233 		break;
5234 	case BPF_MAP_TYPE_TASK_STORAGE:
5235 		if (func_id != BPF_FUNC_task_storage_get &&
5236 		    func_id != BPF_FUNC_task_storage_delete)
5237 			goto error;
5238 		break;
5239 	default:
5240 		break;
5241 	}
5242 
5243 	/* ... and second from the function itself. */
5244 	switch (func_id) {
5245 	case BPF_FUNC_tail_call:
5246 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5247 			goto error;
5248 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5249 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5250 			return -EINVAL;
5251 		}
5252 		break;
5253 	case BPF_FUNC_perf_event_read:
5254 	case BPF_FUNC_perf_event_output:
5255 	case BPF_FUNC_perf_event_read_value:
5256 	case BPF_FUNC_skb_output:
5257 	case BPF_FUNC_xdp_output:
5258 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5259 			goto error;
5260 		break;
5261 	case BPF_FUNC_ringbuf_output:
5262 	case BPF_FUNC_ringbuf_reserve:
5263 	case BPF_FUNC_ringbuf_query:
5264 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5265 			goto error;
5266 		break;
5267 	case BPF_FUNC_get_stackid:
5268 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5269 			goto error;
5270 		break;
5271 	case BPF_FUNC_current_task_under_cgroup:
5272 	case BPF_FUNC_skb_under_cgroup:
5273 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5274 			goto error;
5275 		break;
5276 	case BPF_FUNC_redirect_map:
5277 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5278 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5279 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5280 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5281 			goto error;
5282 		break;
5283 	case BPF_FUNC_sk_redirect_map:
5284 	case BPF_FUNC_msg_redirect_map:
5285 	case BPF_FUNC_sock_map_update:
5286 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5287 			goto error;
5288 		break;
5289 	case BPF_FUNC_sk_redirect_hash:
5290 	case BPF_FUNC_msg_redirect_hash:
5291 	case BPF_FUNC_sock_hash_update:
5292 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5293 			goto error;
5294 		break;
5295 	case BPF_FUNC_get_local_storage:
5296 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5297 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5298 			goto error;
5299 		break;
5300 	case BPF_FUNC_sk_select_reuseport:
5301 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5302 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5303 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5304 			goto error;
5305 		break;
5306 	case BPF_FUNC_map_peek_elem:
5307 	case BPF_FUNC_map_pop_elem:
5308 	case BPF_FUNC_map_push_elem:
5309 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5310 		    map->map_type != BPF_MAP_TYPE_STACK)
5311 			goto error;
5312 		break;
5313 	case BPF_FUNC_sk_storage_get:
5314 	case BPF_FUNC_sk_storage_delete:
5315 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5316 			goto error;
5317 		break;
5318 	case BPF_FUNC_inode_storage_get:
5319 	case BPF_FUNC_inode_storage_delete:
5320 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5321 			goto error;
5322 		break;
5323 	case BPF_FUNC_task_storage_get:
5324 	case BPF_FUNC_task_storage_delete:
5325 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5326 			goto error;
5327 		break;
5328 	default:
5329 		break;
5330 	}
5331 
5332 	return 0;
5333 error:
5334 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5335 		map->map_type, func_id_name(func_id), func_id);
5336 	return -EINVAL;
5337 }
5338 
5339 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5340 {
5341 	int count = 0;
5342 
5343 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5344 		count++;
5345 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5346 		count++;
5347 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5348 		count++;
5349 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5350 		count++;
5351 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5352 		count++;
5353 
5354 	/* We only support one arg being in raw mode at the moment,
5355 	 * which is sufficient for the helper functions we have
5356 	 * right now.
5357 	 */
5358 	return count <= 1;
5359 }
5360 
5361 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5362 				    enum bpf_arg_type arg_next)
5363 {
5364 	return (arg_type_is_mem_ptr(arg_curr) &&
5365 	        !arg_type_is_mem_size(arg_next)) ||
5366 	       (!arg_type_is_mem_ptr(arg_curr) &&
5367 		arg_type_is_mem_size(arg_next));
5368 }
5369 
5370 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5371 {
5372 	/* bpf_xxx(..., buf, len) call will access 'len'
5373 	 * bytes from memory 'buf'. Both arg types need
5374 	 * to be paired, so make sure there's no buggy
5375 	 * helper function specification.
5376 	 */
5377 	if (arg_type_is_mem_size(fn->arg1_type) ||
5378 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5379 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5380 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5381 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5382 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5383 		return false;
5384 
5385 	return true;
5386 }
5387 
5388 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5389 {
5390 	int count = 0;
5391 
5392 	if (arg_type_may_be_refcounted(fn->arg1_type))
5393 		count++;
5394 	if (arg_type_may_be_refcounted(fn->arg2_type))
5395 		count++;
5396 	if (arg_type_may_be_refcounted(fn->arg3_type))
5397 		count++;
5398 	if (arg_type_may_be_refcounted(fn->arg4_type))
5399 		count++;
5400 	if (arg_type_may_be_refcounted(fn->arg5_type))
5401 		count++;
5402 
5403 	/* A reference acquiring function cannot acquire
5404 	 * another refcounted ptr.
5405 	 */
5406 	if (may_be_acquire_function(func_id) && count)
5407 		return false;
5408 
5409 	/* We only support one arg being unreferenced at the moment,
5410 	 * which is sufficient for the helper functions we have right now.
5411 	 */
5412 	return count <= 1;
5413 }
5414 
5415 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5416 {
5417 	int i;
5418 
5419 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5420 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5421 			return false;
5422 
5423 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5424 			return false;
5425 	}
5426 
5427 	return true;
5428 }
5429 
5430 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5431 {
5432 	return check_raw_mode_ok(fn) &&
5433 	       check_arg_pair_ok(fn) &&
5434 	       check_btf_id_ok(fn) &&
5435 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5436 }
5437 
5438 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5439  * are now invalid, so turn them into unknown SCALAR_VALUE.
5440  */
5441 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5442 				     struct bpf_func_state *state)
5443 {
5444 	struct bpf_reg_state *regs = state->regs, *reg;
5445 	int i;
5446 
5447 	for (i = 0; i < MAX_BPF_REG; i++)
5448 		if (reg_is_pkt_pointer_any(&regs[i]))
5449 			mark_reg_unknown(env, regs, i);
5450 
5451 	bpf_for_each_spilled_reg(i, state, reg) {
5452 		if (!reg)
5453 			continue;
5454 		if (reg_is_pkt_pointer_any(reg))
5455 			__mark_reg_unknown(env, reg);
5456 	}
5457 }
5458 
5459 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5460 {
5461 	struct bpf_verifier_state *vstate = env->cur_state;
5462 	int i;
5463 
5464 	for (i = 0; i <= vstate->curframe; i++)
5465 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5466 }
5467 
5468 enum {
5469 	AT_PKT_END = -1,
5470 	BEYOND_PKT_END = -2,
5471 };
5472 
5473 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5474 {
5475 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5476 	struct bpf_reg_state *reg = &state->regs[regn];
5477 
5478 	if (reg->type != PTR_TO_PACKET)
5479 		/* PTR_TO_PACKET_META is not supported yet */
5480 		return;
5481 
5482 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5483 	 * How far beyond pkt_end it goes is unknown.
5484 	 * if (!range_open) it's the case of pkt >= pkt_end
5485 	 * if (range_open) it's the case of pkt > pkt_end
5486 	 * hence this pointer is at least 1 byte bigger than pkt_end
5487 	 */
5488 	if (range_open)
5489 		reg->range = BEYOND_PKT_END;
5490 	else
5491 		reg->range = AT_PKT_END;
5492 }
5493 
5494 static void release_reg_references(struct bpf_verifier_env *env,
5495 				   struct bpf_func_state *state,
5496 				   int ref_obj_id)
5497 {
5498 	struct bpf_reg_state *regs = state->regs, *reg;
5499 	int i;
5500 
5501 	for (i = 0; i < MAX_BPF_REG; i++)
5502 		if (regs[i].ref_obj_id == ref_obj_id)
5503 			mark_reg_unknown(env, regs, i);
5504 
5505 	bpf_for_each_spilled_reg(i, state, reg) {
5506 		if (!reg)
5507 			continue;
5508 		if (reg->ref_obj_id == ref_obj_id)
5509 			__mark_reg_unknown(env, reg);
5510 	}
5511 }
5512 
5513 /* The pointer with the specified id has released its reference to kernel
5514  * resources. Identify all copies of the same pointer and clear the reference.
5515  */
5516 static int release_reference(struct bpf_verifier_env *env,
5517 			     int ref_obj_id)
5518 {
5519 	struct bpf_verifier_state *vstate = env->cur_state;
5520 	int err;
5521 	int i;
5522 
5523 	err = release_reference_state(cur_func(env), ref_obj_id);
5524 	if (err)
5525 		return err;
5526 
5527 	for (i = 0; i <= vstate->curframe; i++)
5528 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5529 
5530 	return 0;
5531 }
5532 
5533 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5534 				    struct bpf_reg_state *regs)
5535 {
5536 	int i;
5537 
5538 	/* after the call registers r0 - r5 were scratched */
5539 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5540 		mark_reg_not_init(env, regs, caller_saved[i]);
5541 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5542 	}
5543 }
5544 
5545 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5546 				   struct bpf_func_state *caller,
5547 				   struct bpf_func_state *callee,
5548 				   int insn_idx);
5549 
5550 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5551 			     int *insn_idx, int subprog,
5552 			     set_callee_state_fn set_callee_state_cb)
5553 {
5554 	struct bpf_verifier_state *state = env->cur_state;
5555 	struct bpf_func_info_aux *func_info_aux;
5556 	struct bpf_func_state *caller, *callee;
5557 	int err;
5558 	bool is_global = false;
5559 
5560 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5561 		verbose(env, "the call stack of %d frames is too deep\n",
5562 			state->curframe + 2);
5563 		return -E2BIG;
5564 	}
5565 
5566 	caller = state->frame[state->curframe];
5567 	if (state->frame[state->curframe + 1]) {
5568 		verbose(env, "verifier bug. Frame %d already allocated\n",
5569 			state->curframe + 1);
5570 		return -EFAULT;
5571 	}
5572 
5573 	func_info_aux = env->prog->aux->func_info_aux;
5574 	if (func_info_aux)
5575 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5576 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5577 	if (err == -EFAULT)
5578 		return err;
5579 	if (is_global) {
5580 		if (err) {
5581 			verbose(env, "Caller passes invalid args into func#%d\n",
5582 				subprog);
5583 			return err;
5584 		} else {
5585 			if (env->log.level & BPF_LOG_LEVEL)
5586 				verbose(env,
5587 					"Func#%d is global and valid. Skipping.\n",
5588 					subprog);
5589 			clear_caller_saved_regs(env, caller->regs);
5590 
5591 			/* All global functions return a 64-bit SCALAR_VALUE */
5592 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5593 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5594 
5595 			/* continue with next insn after call */
5596 			return 0;
5597 		}
5598 	}
5599 
5600 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5601 	if (!callee)
5602 		return -ENOMEM;
5603 	state->frame[state->curframe + 1] = callee;
5604 
5605 	/* callee cannot access r0, r6 - r9 for reading and has to write
5606 	 * into its own stack before reading from it.
5607 	 * callee can read/write into caller's stack
5608 	 */
5609 	init_func_state(env, callee,
5610 			/* remember the callsite, it will be used by bpf_exit */
5611 			*insn_idx /* callsite */,
5612 			state->curframe + 1 /* frameno within this callchain */,
5613 			subprog /* subprog number within this prog */);
5614 
5615 	/* Transfer references to the callee */
5616 	err = copy_reference_state(callee, caller);
5617 	if (err)
5618 		return err;
5619 
5620 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5621 	if (err)
5622 		return err;
5623 
5624 	clear_caller_saved_regs(env, caller->regs);
5625 
5626 	/* only increment it after check_reg_arg() finished */
5627 	state->curframe++;
5628 
5629 	/* and go analyze first insn of the callee */
5630 	*insn_idx = env->subprog_info[subprog].start - 1;
5631 
5632 	if (env->log.level & BPF_LOG_LEVEL) {
5633 		verbose(env, "caller:\n");
5634 		print_verifier_state(env, caller);
5635 		verbose(env, "callee:\n");
5636 		print_verifier_state(env, callee);
5637 	}
5638 	return 0;
5639 }
5640 
5641 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5642 				   struct bpf_func_state *caller,
5643 				   struct bpf_func_state *callee)
5644 {
5645 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5646 	 *      void *callback_ctx, u64 flags);
5647 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5648 	 *      void *callback_ctx);
5649 	 */
5650 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5651 
5652 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5653 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5654 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5655 
5656 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5657 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5658 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5659 
5660 	/* pointer to stack or null */
5661 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5662 
5663 	/* unused */
5664 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5665 	return 0;
5666 }
5667 
5668 static int set_callee_state(struct bpf_verifier_env *env,
5669 			    struct bpf_func_state *caller,
5670 			    struct bpf_func_state *callee, int insn_idx)
5671 {
5672 	int i;
5673 
5674 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5675 	 * pointers, which connects us up to the liveness chain
5676 	 */
5677 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5678 		callee->regs[i] = caller->regs[i];
5679 	return 0;
5680 }
5681 
5682 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5683 			   int *insn_idx)
5684 {
5685 	int subprog, target_insn;
5686 
5687 	target_insn = *insn_idx + insn->imm + 1;
5688 	subprog = find_subprog(env, target_insn);
5689 	if (subprog < 0) {
5690 		verbose(env, "verifier bug. No program starts at insn %d\n",
5691 			target_insn);
5692 		return -EFAULT;
5693 	}
5694 
5695 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5696 }
5697 
5698 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5699 				       struct bpf_func_state *caller,
5700 				       struct bpf_func_state *callee,
5701 				       int insn_idx)
5702 {
5703 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5704 	struct bpf_map *map;
5705 	int err;
5706 
5707 	if (bpf_map_ptr_poisoned(insn_aux)) {
5708 		verbose(env, "tail_call abusing map_ptr\n");
5709 		return -EINVAL;
5710 	}
5711 
5712 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5713 	if (!map->ops->map_set_for_each_callback_args ||
5714 	    !map->ops->map_for_each_callback) {
5715 		verbose(env, "callback function not allowed for map\n");
5716 		return -ENOTSUPP;
5717 	}
5718 
5719 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5720 	if (err)
5721 		return err;
5722 
5723 	callee->in_callback_fn = true;
5724 	return 0;
5725 }
5726 
5727 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5728 {
5729 	struct bpf_verifier_state *state = env->cur_state;
5730 	struct bpf_func_state *caller, *callee;
5731 	struct bpf_reg_state *r0;
5732 	int err;
5733 
5734 	callee = state->frame[state->curframe];
5735 	r0 = &callee->regs[BPF_REG_0];
5736 	if (r0->type == PTR_TO_STACK) {
5737 		/* technically it's ok to return caller's stack pointer
5738 		 * (or caller's caller's pointer) back to the caller,
5739 		 * since these pointers are valid. Only current stack
5740 		 * pointer will be invalid as soon as function exits,
5741 		 * but let's be conservative
5742 		 */
5743 		verbose(env, "cannot return stack pointer to the caller\n");
5744 		return -EINVAL;
5745 	}
5746 
5747 	state->curframe--;
5748 	caller = state->frame[state->curframe];
5749 	if (callee->in_callback_fn) {
5750 		/* enforce R0 return value range [0, 1]. */
5751 		struct tnum range = tnum_range(0, 1);
5752 
5753 		if (r0->type != SCALAR_VALUE) {
5754 			verbose(env, "R0 not a scalar value\n");
5755 			return -EACCES;
5756 		}
5757 		if (!tnum_in(range, r0->var_off)) {
5758 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5759 			return -EINVAL;
5760 		}
5761 	} else {
5762 		/* return to the caller whatever r0 had in the callee */
5763 		caller->regs[BPF_REG_0] = *r0;
5764 	}
5765 
5766 	/* Transfer references to the caller */
5767 	err = copy_reference_state(caller, callee);
5768 	if (err)
5769 		return err;
5770 
5771 	*insn_idx = callee->callsite + 1;
5772 	if (env->log.level & BPF_LOG_LEVEL) {
5773 		verbose(env, "returning from callee:\n");
5774 		print_verifier_state(env, callee);
5775 		verbose(env, "to caller at %d:\n", *insn_idx);
5776 		print_verifier_state(env, caller);
5777 	}
5778 	/* clear everything in the callee */
5779 	free_func_state(callee);
5780 	state->frame[state->curframe + 1] = NULL;
5781 	return 0;
5782 }
5783 
5784 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5785 				   int func_id,
5786 				   struct bpf_call_arg_meta *meta)
5787 {
5788 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5789 
5790 	if (ret_type != RET_INTEGER ||
5791 	    (func_id != BPF_FUNC_get_stack &&
5792 	     func_id != BPF_FUNC_get_task_stack &&
5793 	     func_id != BPF_FUNC_probe_read_str &&
5794 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5795 	     func_id != BPF_FUNC_probe_read_user_str))
5796 		return;
5797 
5798 	ret_reg->smax_value = meta->msize_max_value;
5799 	ret_reg->s32_max_value = meta->msize_max_value;
5800 	ret_reg->smin_value = -MAX_ERRNO;
5801 	ret_reg->s32_min_value = -MAX_ERRNO;
5802 	__reg_deduce_bounds(ret_reg);
5803 	__reg_bound_offset(ret_reg);
5804 	__update_reg_bounds(ret_reg);
5805 }
5806 
5807 static int
5808 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5809 		int func_id, int insn_idx)
5810 {
5811 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5812 	struct bpf_map *map = meta->map_ptr;
5813 
5814 	if (func_id != BPF_FUNC_tail_call &&
5815 	    func_id != BPF_FUNC_map_lookup_elem &&
5816 	    func_id != BPF_FUNC_map_update_elem &&
5817 	    func_id != BPF_FUNC_map_delete_elem &&
5818 	    func_id != BPF_FUNC_map_push_elem &&
5819 	    func_id != BPF_FUNC_map_pop_elem &&
5820 	    func_id != BPF_FUNC_map_peek_elem &&
5821 	    func_id != BPF_FUNC_for_each_map_elem &&
5822 	    func_id != BPF_FUNC_redirect_map)
5823 		return 0;
5824 
5825 	if (map == NULL) {
5826 		verbose(env, "kernel subsystem misconfigured verifier\n");
5827 		return -EINVAL;
5828 	}
5829 
5830 	/* In case of read-only, some additional restrictions
5831 	 * need to be applied in order to prevent altering the
5832 	 * state of the map from program side.
5833 	 */
5834 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5835 	    (func_id == BPF_FUNC_map_delete_elem ||
5836 	     func_id == BPF_FUNC_map_update_elem ||
5837 	     func_id == BPF_FUNC_map_push_elem ||
5838 	     func_id == BPF_FUNC_map_pop_elem)) {
5839 		verbose(env, "write into map forbidden\n");
5840 		return -EACCES;
5841 	}
5842 
5843 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5844 		bpf_map_ptr_store(aux, meta->map_ptr,
5845 				  !meta->map_ptr->bypass_spec_v1);
5846 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5847 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5848 				  !meta->map_ptr->bypass_spec_v1);
5849 	return 0;
5850 }
5851 
5852 static int
5853 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5854 		int func_id, int insn_idx)
5855 {
5856 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5857 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5858 	struct bpf_map *map = meta->map_ptr;
5859 	struct tnum range;
5860 	u64 val;
5861 	int err;
5862 
5863 	if (func_id != BPF_FUNC_tail_call)
5864 		return 0;
5865 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5866 		verbose(env, "kernel subsystem misconfigured verifier\n");
5867 		return -EINVAL;
5868 	}
5869 
5870 	range = tnum_range(0, map->max_entries - 1);
5871 	reg = &regs[BPF_REG_3];
5872 
5873 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5874 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5875 		return 0;
5876 	}
5877 
5878 	err = mark_chain_precision(env, BPF_REG_3);
5879 	if (err)
5880 		return err;
5881 
5882 	val = reg->var_off.value;
5883 	if (bpf_map_key_unseen(aux))
5884 		bpf_map_key_store(aux, val);
5885 	else if (!bpf_map_key_poisoned(aux) &&
5886 		  bpf_map_key_immediate(aux) != val)
5887 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5888 	return 0;
5889 }
5890 
5891 static int check_reference_leak(struct bpf_verifier_env *env)
5892 {
5893 	struct bpf_func_state *state = cur_func(env);
5894 	int i;
5895 
5896 	for (i = 0; i < state->acquired_refs; i++) {
5897 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5898 			state->refs[i].id, state->refs[i].insn_idx);
5899 	}
5900 	return state->acquired_refs ? -EINVAL : 0;
5901 }
5902 
5903 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5904 				   struct bpf_reg_state *regs)
5905 {
5906 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5907 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5908 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
5909 	int err, fmt_map_off, num_args;
5910 	u64 fmt_addr;
5911 	char *fmt;
5912 
5913 	/* data must be an array of u64 */
5914 	if (data_len_reg->var_off.value % 8)
5915 		return -EINVAL;
5916 	num_args = data_len_reg->var_off.value / 8;
5917 
5918 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5919 	 * and map_direct_value_addr is set.
5920 	 */
5921 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5922 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5923 						  fmt_map_off);
5924 	if (err) {
5925 		verbose(env, "verifier bug\n");
5926 		return -EFAULT;
5927 	}
5928 	fmt = (char *)(long)fmt_addr + fmt_map_off;
5929 
5930 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5931 	 * can focus on validating the format specifiers.
5932 	 */
5933 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5934 	if (err < 0)
5935 		verbose(env, "Invalid format string\n");
5936 
5937 	return err;
5938 }
5939 
5940 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5941 			     int *insn_idx_p)
5942 {
5943 	const struct bpf_func_proto *fn = NULL;
5944 	struct bpf_reg_state *regs;
5945 	struct bpf_call_arg_meta meta;
5946 	int insn_idx = *insn_idx_p;
5947 	bool changes_data;
5948 	int i, err, func_id;
5949 
5950 	/* find function prototype */
5951 	func_id = insn->imm;
5952 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5953 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5954 			func_id);
5955 		return -EINVAL;
5956 	}
5957 
5958 	if (env->ops->get_func_proto)
5959 		fn = env->ops->get_func_proto(func_id, env->prog);
5960 	if (!fn) {
5961 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5962 			func_id);
5963 		return -EINVAL;
5964 	}
5965 
5966 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5967 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5968 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5969 		return -EINVAL;
5970 	}
5971 
5972 	if (fn->allowed && !fn->allowed(env->prog)) {
5973 		verbose(env, "helper call is not allowed in probe\n");
5974 		return -EINVAL;
5975 	}
5976 
5977 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5978 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5979 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5980 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5981 			func_id_name(func_id), func_id);
5982 		return -EINVAL;
5983 	}
5984 
5985 	memset(&meta, 0, sizeof(meta));
5986 	meta.pkt_access = fn->pkt_access;
5987 
5988 	err = check_func_proto(fn, func_id);
5989 	if (err) {
5990 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5991 			func_id_name(func_id), func_id);
5992 		return err;
5993 	}
5994 
5995 	meta.func_id = func_id;
5996 	/* check args */
5997 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5998 		err = check_func_arg(env, i, &meta, fn);
5999 		if (err)
6000 			return err;
6001 	}
6002 
6003 	err = record_func_map(env, &meta, func_id, insn_idx);
6004 	if (err)
6005 		return err;
6006 
6007 	err = record_func_key(env, &meta, func_id, insn_idx);
6008 	if (err)
6009 		return err;
6010 
6011 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6012 	 * is inferred from register state.
6013 	 */
6014 	for (i = 0; i < meta.access_size; i++) {
6015 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6016 				       BPF_WRITE, -1, false);
6017 		if (err)
6018 			return err;
6019 	}
6020 
6021 	if (func_id == BPF_FUNC_tail_call) {
6022 		err = check_reference_leak(env);
6023 		if (err) {
6024 			verbose(env, "tail_call would lead to reference leak\n");
6025 			return err;
6026 		}
6027 	} else if (is_release_function(func_id)) {
6028 		err = release_reference(env, meta.ref_obj_id);
6029 		if (err) {
6030 			verbose(env, "func %s#%d reference has not been acquired before\n",
6031 				func_id_name(func_id), func_id);
6032 			return err;
6033 		}
6034 	}
6035 
6036 	regs = cur_regs(env);
6037 
6038 	/* check that flags argument in get_local_storage(map, flags) is 0,
6039 	 * this is required because get_local_storage() can't return an error.
6040 	 */
6041 	if (func_id == BPF_FUNC_get_local_storage &&
6042 	    !register_is_null(&regs[BPF_REG_2])) {
6043 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6044 		return -EINVAL;
6045 	}
6046 
6047 	if (func_id == BPF_FUNC_for_each_map_elem) {
6048 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6049 					set_map_elem_callback_state);
6050 		if (err < 0)
6051 			return -EINVAL;
6052 	}
6053 
6054 	if (func_id == BPF_FUNC_snprintf) {
6055 		err = check_bpf_snprintf_call(env, regs);
6056 		if (err < 0)
6057 			return err;
6058 	}
6059 
6060 	/* reset caller saved regs */
6061 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6062 		mark_reg_not_init(env, regs, caller_saved[i]);
6063 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6064 	}
6065 
6066 	/* helper call returns 64-bit value. */
6067 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6068 
6069 	/* update return register (already marked as written above) */
6070 	if (fn->ret_type == RET_INTEGER) {
6071 		/* sets type to SCALAR_VALUE */
6072 		mark_reg_unknown(env, regs, BPF_REG_0);
6073 	} else if (fn->ret_type == RET_VOID) {
6074 		regs[BPF_REG_0].type = NOT_INIT;
6075 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6076 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6077 		/* There is no offset yet applied, variable or fixed */
6078 		mark_reg_known_zero(env, regs, BPF_REG_0);
6079 		/* remember map_ptr, so that check_map_access()
6080 		 * can check 'value_size' boundary of memory access
6081 		 * to map element returned from bpf_map_lookup_elem()
6082 		 */
6083 		if (meta.map_ptr == NULL) {
6084 			verbose(env,
6085 				"kernel subsystem misconfigured verifier\n");
6086 			return -EINVAL;
6087 		}
6088 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6089 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6090 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6091 			if (map_value_has_spin_lock(meta.map_ptr))
6092 				regs[BPF_REG_0].id = ++env->id_gen;
6093 		} else {
6094 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6095 		}
6096 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6097 		mark_reg_known_zero(env, regs, BPF_REG_0);
6098 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6099 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6100 		mark_reg_known_zero(env, regs, BPF_REG_0);
6101 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6102 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6103 		mark_reg_known_zero(env, regs, BPF_REG_0);
6104 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6105 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6106 		mark_reg_known_zero(env, regs, BPF_REG_0);
6107 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6108 		regs[BPF_REG_0].mem_size = meta.mem_size;
6109 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6110 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6111 		const struct btf_type *t;
6112 
6113 		mark_reg_known_zero(env, regs, BPF_REG_0);
6114 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6115 		if (!btf_type_is_struct(t)) {
6116 			u32 tsize;
6117 			const struct btf_type *ret;
6118 			const char *tname;
6119 
6120 			/* resolve the type size of ksym. */
6121 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6122 			if (IS_ERR(ret)) {
6123 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6124 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6125 					tname, PTR_ERR(ret));
6126 				return -EINVAL;
6127 			}
6128 			regs[BPF_REG_0].type =
6129 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6130 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6131 			regs[BPF_REG_0].mem_size = tsize;
6132 		} else {
6133 			regs[BPF_REG_0].type =
6134 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6135 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6136 			regs[BPF_REG_0].btf = meta.ret_btf;
6137 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6138 		}
6139 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6140 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6141 		int ret_btf_id;
6142 
6143 		mark_reg_known_zero(env, regs, BPF_REG_0);
6144 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6145 						     PTR_TO_BTF_ID :
6146 						     PTR_TO_BTF_ID_OR_NULL;
6147 		ret_btf_id = *fn->ret_btf_id;
6148 		if (ret_btf_id == 0) {
6149 			verbose(env, "invalid return type %d of func %s#%d\n",
6150 				fn->ret_type, func_id_name(func_id), func_id);
6151 			return -EINVAL;
6152 		}
6153 		/* current BPF helper definitions are only coming from
6154 		 * built-in code with type IDs from  vmlinux BTF
6155 		 */
6156 		regs[BPF_REG_0].btf = btf_vmlinux;
6157 		regs[BPF_REG_0].btf_id = ret_btf_id;
6158 	} else {
6159 		verbose(env, "unknown return type %d of func %s#%d\n",
6160 			fn->ret_type, func_id_name(func_id), func_id);
6161 		return -EINVAL;
6162 	}
6163 
6164 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6165 		regs[BPF_REG_0].id = ++env->id_gen;
6166 
6167 	if (is_ptr_cast_function(func_id)) {
6168 		/* For release_reference() */
6169 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6170 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6171 		int id = acquire_reference_state(env, insn_idx);
6172 
6173 		if (id < 0)
6174 			return id;
6175 		/* For mark_ptr_or_null_reg() */
6176 		regs[BPF_REG_0].id = id;
6177 		/* For release_reference() */
6178 		regs[BPF_REG_0].ref_obj_id = id;
6179 	}
6180 
6181 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6182 
6183 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6184 	if (err)
6185 		return err;
6186 
6187 	if ((func_id == BPF_FUNC_get_stack ||
6188 	     func_id == BPF_FUNC_get_task_stack) &&
6189 	    !env->prog->has_callchain_buf) {
6190 		const char *err_str;
6191 
6192 #ifdef CONFIG_PERF_EVENTS
6193 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6194 		err_str = "cannot get callchain buffer for func %s#%d\n";
6195 #else
6196 		err = -ENOTSUPP;
6197 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6198 #endif
6199 		if (err) {
6200 			verbose(env, err_str, func_id_name(func_id), func_id);
6201 			return err;
6202 		}
6203 
6204 		env->prog->has_callchain_buf = true;
6205 	}
6206 
6207 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6208 		env->prog->call_get_stack = true;
6209 
6210 	if (changes_data)
6211 		clear_all_pkt_pointers(env);
6212 	return 0;
6213 }
6214 
6215 /* mark_btf_func_reg_size() is used when the reg size is determined by
6216  * the BTF func_proto's return value size and argument.
6217  */
6218 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6219 				   size_t reg_size)
6220 {
6221 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6222 
6223 	if (regno == BPF_REG_0) {
6224 		/* Function return value */
6225 		reg->live |= REG_LIVE_WRITTEN;
6226 		reg->subreg_def = reg_size == sizeof(u64) ?
6227 			DEF_NOT_SUBREG : env->insn_idx + 1;
6228 	} else {
6229 		/* Function argument */
6230 		if (reg_size == sizeof(u64)) {
6231 			mark_insn_zext(env, reg);
6232 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6233 		} else {
6234 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6235 		}
6236 	}
6237 }
6238 
6239 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6240 {
6241 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6242 	struct bpf_reg_state *regs = cur_regs(env);
6243 	const char *func_name, *ptr_type_name;
6244 	u32 i, nargs, func_id, ptr_type_id;
6245 	const struct btf_param *args;
6246 	int err;
6247 
6248 	func_id = insn->imm;
6249 	func = btf_type_by_id(btf_vmlinux, func_id);
6250 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6251 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6252 
6253 	if (!env->ops->check_kfunc_call ||
6254 	    !env->ops->check_kfunc_call(func_id)) {
6255 		verbose(env, "calling kernel function %s is not allowed\n",
6256 			func_name);
6257 		return -EACCES;
6258 	}
6259 
6260 	/* Check the arguments */
6261 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6262 	if (err)
6263 		return err;
6264 
6265 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6266 		mark_reg_not_init(env, regs, caller_saved[i]);
6267 
6268 	/* Check return type */
6269 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6270 	if (btf_type_is_scalar(t)) {
6271 		mark_reg_unknown(env, regs, BPF_REG_0);
6272 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6273 	} else if (btf_type_is_ptr(t)) {
6274 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6275 						   &ptr_type_id);
6276 		if (!btf_type_is_struct(ptr_type)) {
6277 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6278 							   ptr_type->name_off);
6279 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6280 				func_name, btf_type_str(ptr_type),
6281 				ptr_type_name);
6282 			return -EINVAL;
6283 		}
6284 		mark_reg_known_zero(env, regs, BPF_REG_0);
6285 		regs[BPF_REG_0].btf = btf_vmlinux;
6286 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6287 		regs[BPF_REG_0].btf_id = ptr_type_id;
6288 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6289 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6290 
6291 	nargs = btf_type_vlen(func_proto);
6292 	args = (const struct btf_param *)(func_proto + 1);
6293 	for (i = 0; i < nargs; i++) {
6294 		u32 regno = i + 1;
6295 
6296 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6297 		if (btf_type_is_ptr(t))
6298 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6299 		else
6300 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6301 			mark_btf_func_reg_size(env, regno, t->size);
6302 	}
6303 
6304 	return 0;
6305 }
6306 
6307 static bool signed_add_overflows(s64 a, s64 b)
6308 {
6309 	/* Do the add in u64, where overflow is well-defined */
6310 	s64 res = (s64)((u64)a + (u64)b);
6311 
6312 	if (b < 0)
6313 		return res > a;
6314 	return res < a;
6315 }
6316 
6317 static bool signed_add32_overflows(s32 a, s32 b)
6318 {
6319 	/* Do the add in u32, where overflow is well-defined */
6320 	s32 res = (s32)((u32)a + (u32)b);
6321 
6322 	if (b < 0)
6323 		return res > a;
6324 	return res < a;
6325 }
6326 
6327 static bool signed_sub_overflows(s64 a, s64 b)
6328 {
6329 	/* Do the sub in u64, where overflow is well-defined */
6330 	s64 res = (s64)((u64)a - (u64)b);
6331 
6332 	if (b < 0)
6333 		return res < a;
6334 	return res > a;
6335 }
6336 
6337 static bool signed_sub32_overflows(s32 a, s32 b)
6338 {
6339 	/* Do the sub in u32, where overflow is well-defined */
6340 	s32 res = (s32)((u32)a - (u32)b);
6341 
6342 	if (b < 0)
6343 		return res < a;
6344 	return res > a;
6345 }
6346 
6347 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6348 				  const struct bpf_reg_state *reg,
6349 				  enum bpf_reg_type type)
6350 {
6351 	bool known = tnum_is_const(reg->var_off);
6352 	s64 val = reg->var_off.value;
6353 	s64 smin = reg->smin_value;
6354 
6355 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6356 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6357 			reg_type_str[type], val);
6358 		return false;
6359 	}
6360 
6361 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6362 		verbose(env, "%s pointer offset %d is not allowed\n",
6363 			reg_type_str[type], reg->off);
6364 		return false;
6365 	}
6366 
6367 	if (smin == S64_MIN) {
6368 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6369 			reg_type_str[type]);
6370 		return false;
6371 	}
6372 
6373 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6374 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6375 			smin, reg_type_str[type]);
6376 		return false;
6377 	}
6378 
6379 	return true;
6380 }
6381 
6382 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6383 {
6384 	return &env->insn_aux_data[env->insn_idx];
6385 }
6386 
6387 enum {
6388 	REASON_BOUNDS	= -1,
6389 	REASON_TYPE	= -2,
6390 	REASON_PATHS	= -3,
6391 	REASON_LIMIT	= -4,
6392 	REASON_STACK	= -5,
6393 };
6394 
6395 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6396 			      u32 *alu_limit, bool mask_to_left)
6397 {
6398 	u32 max = 0, ptr_limit = 0;
6399 
6400 	switch (ptr_reg->type) {
6401 	case PTR_TO_STACK:
6402 		/* Offset 0 is out-of-bounds, but acceptable start for the
6403 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6404 		 * offset where we would need to deal with min/max bounds is
6405 		 * currently prohibited for unprivileged.
6406 		 */
6407 		max = MAX_BPF_STACK + mask_to_left;
6408 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6409 		break;
6410 	case PTR_TO_MAP_VALUE:
6411 		max = ptr_reg->map_ptr->value_size;
6412 		ptr_limit = (mask_to_left ?
6413 			     ptr_reg->smin_value :
6414 			     ptr_reg->umax_value) + ptr_reg->off;
6415 		break;
6416 	default:
6417 		return REASON_TYPE;
6418 	}
6419 
6420 	if (ptr_limit >= max)
6421 		return REASON_LIMIT;
6422 	*alu_limit = ptr_limit;
6423 	return 0;
6424 }
6425 
6426 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6427 				    const struct bpf_insn *insn)
6428 {
6429 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6430 }
6431 
6432 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6433 				       u32 alu_state, u32 alu_limit)
6434 {
6435 	/* If we arrived here from different branches with different
6436 	 * state or limits to sanitize, then this won't work.
6437 	 */
6438 	if (aux->alu_state &&
6439 	    (aux->alu_state != alu_state ||
6440 	     aux->alu_limit != alu_limit))
6441 		return REASON_PATHS;
6442 
6443 	/* Corresponding fixup done in do_misc_fixups(). */
6444 	aux->alu_state = alu_state;
6445 	aux->alu_limit = alu_limit;
6446 	return 0;
6447 }
6448 
6449 static int sanitize_val_alu(struct bpf_verifier_env *env,
6450 			    struct bpf_insn *insn)
6451 {
6452 	struct bpf_insn_aux_data *aux = cur_aux(env);
6453 
6454 	if (can_skip_alu_sanitation(env, insn))
6455 		return 0;
6456 
6457 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6458 }
6459 
6460 static bool sanitize_needed(u8 opcode)
6461 {
6462 	return opcode == BPF_ADD || opcode == BPF_SUB;
6463 }
6464 
6465 struct bpf_sanitize_info {
6466 	struct bpf_insn_aux_data aux;
6467 	bool mask_to_left;
6468 };
6469 
6470 static struct bpf_verifier_state *
6471 sanitize_speculative_path(struct bpf_verifier_env *env,
6472 			  const struct bpf_insn *insn,
6473 			  u32 next_idx, u32 curr_idx)
6474 {
6475 	struct bpf_verifier_state *branch;
6476 	struct bpf_reg_state *regs;
6477 
6478 	branch = push_stack(env, next_idx, curr_idx, true);
6479 	if (branch && insn) {
6480 		regs = branch->frame[branch->curframe]->regs;
6481 		if (BPF_SRC(insn->code) == BPF_K) {
6482 			mark_reg_unknown(env, regs, insn->dst_reg);
6483 		} else if (BPF_SRC(insn->code) == BPF_X) {
6484 			mark_reg_unknown(env, regs, insn->dst_reg);
6485 			mark_reg_unknown(env, regs, insn->src_reg);
6486 		}
6487 	}
6488 	return branch;
6489 }
6490 
6491 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6492 			    struct bpf_insn *insn,
6493 			    const struct bpf_reg_state *ptr_reg,
6494 			    const struct bpf_reg_state *off_reg,
6495 			    struct bpf_reg_state *dst_reg,
6496 			    struct bpf_sanitize_info *info,
6497 			    const bool commit_window)
6498 {
6499 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6500 	struct bpf_verifier_state *vstate = env->cur_state;
6501 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6502 	bool off_is_neg = off_reg->smin_value < 0;
6503 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6504 	u8 opcode = BPF_OP(insn->code);
6505 	u32 alu_state, alu_limit;
6506 	struct bpf_reg_state tmp;
6507 	bool ret;
6508 	int err;
6509 
6510 	if (can_skip_alu_sanitation(env, insn))
6511 		return 0;
6512 
6513 	/* We already marked aux for masking from non-speculative
6514 	 * paths, thus we got here in the first place. We only care
6515 	 * to explore bad access from here.
6516 	 */
6517 	if (vstate->speculative)
6518 		goto do_sim;
6519 
6520 	if (!commit_window) {
6521 		if (!tnum_is_const(off_reg->var_off) &&
6522 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6523 			return REASON_BOUNDS;
6524 
6525 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6526 				     (opcode == BPF_SUB && !off_is_neg);
6527 	}
6528 
6529 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6530 	if (err < 0)
6531 		return err;
6532 
6533 	if (commit_window) {
6534 		/* In commit phase we narrow the masking window based on
6535 		 * the observed pointer move after the simulated operation.
6536 		 */
6537 		alu_state = info->aux.alu_state;
6538 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6539 	} else {
6540 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6541 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6542 		alu_state |= ptr_is_dst_reg ?
6543 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6544 
6545 		/* Limit pruning on unknown scalars to enable deep search for
6546 		 * potential masking differences from other program paths.
6547 		 */
6548 		if (!off_is_imm)
6549 			env->explore_alu_limits = true;
6550 	}
6551 
6552 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6553 	if (err < 0)
6554 		return err;
6555 do_sim:
6556 	/* If we're in commit phase, we're done here given we already
6557 	 * pushed the truncated dst_reg into the speculative verification
6558 	 * stack.
6559 	 *
6560 	 * Also, when register is a known constant, we rewrite register-based
6561 	 * operation to immediate-based, and thus do not need masking (and as
6562 	 * a consequence, do not need to simulate the zero-truncation either).
6563 	 */
6564 	if (commit_window || off_is_imm)
6565 		return 0;
6566 
6567 	/* Simulate and find potential out-of-bounds access under
6568 	 * speculative execution from truncation as a result of
6569 	 * masking when off was not within expected range. If off
6570 	 * sits in dst, then we temporarily need to move ptr there
6571 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6572 	 * for cases where we use K-based arithmetic in one direction
6573 	 * and truncated reg-based in the other in order to explore
6574 	 * bad access.
6575 	 */
6576 	if (!ptr_is_dst_reg) {
6577 		tmp = *dst_reg;
6578 		*dst_reg = *ptr_reg;
6579 	}
6580 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6581 					env->insn_idx);
6582 	if (!ptr_is_dst_reg && ret)
6583 		*dst_reg = tmp;
6584 	return !ret ? REASON_STACK : 0;
6585 }
6586 
6587 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6588 {
6589 	struct bpf_verifier_state *vstate = env->cur_state;
6590 
6591 	/* If we simulate paths under speculation, we don't update the
6592 	 * insn as 'seen' such that when we verify unreachable paths in
6593 	 * the non-speculative domain, sanitize_dead_code() can still
6594 	 * rewrite/sanitize them.
6595 	 */
6596 	if (!vstate->speculative)
6597 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6598 }
6599 
6600 static int sanitize_err(struct bpf_verifier_env *env,
6601 			const struct bpf_insn *insn, int reason,
6602 			const struct bpf_reg_state *off_reg,
6603 			const struct bpf_reg_state *dst_reg)
6604 {
6605 	static const char *err = "pointer arithmetic with it prohibited for !root";
6606 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6607 	u32 dst = insn->dst_reg, src = insn->src_reg;
6608 
6609 	switch (reason) {
6610 	case REASON_BOUNDS:
6611 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6612 			off_reg == dst_reg ? dst : src, err);
6613 		break;
6614 	case REASON_TYPE:
6615 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6616 			off_reg == dst_reg ? src : dst, err);
6617 		break;
6618 	case REASON_PATHS:
6619 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6620 			dst, op, err);
6621 		break;
6622 	case REASON_LIMIT:
6623 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6624 			dst, op, err);
6625 		break;
6626 	case REASON_STACK:
6627 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6628 			dst, err);
6629 		break;
6630 	default:
6631 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6632 			reason);
6633 		break;
6634 	}
6635 
6636 	return -EACCES;
6637 }
6638 
6639 /* check that stack access falls within stack limits and that 'reg' doesn't
6640  * have a variable offset.
6641  *
6642  * Variable offset is prohibited for unprivileged mode for simplicity since it
6643  * requires corresponding support in Spectre masking for stack ALU.  See also
6644  * retrieve_ptr_limit().
6645  *
6646  *
6647  * 'off' includes 'reg->off'.
6648  */
6649 static int check_stack_access_for_ptr_arithmetic(
6650 				struct bpf_verifier_env *env,
6651 				int regno,
6652 				const struct bpf_reg_state *reg,
6653 				int off)
6654 {
6655 	if (!tnum_is_const(reg->var_off)) {
6656 		char tn_buf[48];
6657 
6658 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6659 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6660 			regno, tn_buf, off);
6661 		return -EACCES;
6662 	}
6663 
6664 	if (off >= 0 || off < -MAX_BPF_STACK) {
6665 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6666 			"prohibited for !root; off=%d\n", regno, off);
6667 		return -EACCES;
6668 	}
6669 
6670 	return 0;
6671 }
6672 
6673 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6674 				 const struct bpf_insn *insn,
6675 				 const struct bpf_reg_state *dst_reg)
6676 {
6677 	u32 dst = insn->dst_reg;
6678 
6679 	/* For unprivileged we require that resulting offset must be in bounds
6680 	 * in order to be able to sanitize access later on.
6681 	 */
6682 	if (env->bypass_spec_v1)
6683 		return 0;
6684 
6685 	switch (dst_reg->type) {
6686 	case PTR_TO_STACK:
6687 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6688 					dst_reg->off + dst_reg->var_off.value))
6689 			return -EACCES;
6690 		break;
6691 	case PTR_TO_MAP_VALUE:
6692 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6693 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6694 				"prohibited for !root\n", dst);
6695 			return -EACCES;
6696 		}
6697 		break;
6698 	default:
6699 		break;
6700 	}
6701 
6702 	return 0;
6703 }
6704 
6705 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6706  * Caller should also handle BPF_MOV case separately.
6707  * If we return -EACCES, caller may want to try again treating pointer as a
6708  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6709  */
6710 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6711 				   struct bpf_insn *insn,
6712 				   const struct bpf_reg_state *ptr_reg,
6713 				   const struct bpf_reg_state *off_reg)
6714 {
6715 	struct bpf_verifier_state *vstate = env->cur_state;
6716 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6717 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6718 	bool known = tnum_is_const(off_reg->var_off);
6719 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6720 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6721 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6722 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6723 	struct bpf_sanitize_info info = {};
6724 	u8 opcode = BPF_OP(insn->code);
6725 	u32 dst = insn->dst_reg;
6726 	int ret;
6727 
6728 	dst_reg = &regs[dst];
6729 
6730 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6731 	    smin_val > smax_val || umin_val > umax_val) {
6732 		/* Taint dst register if offset had invalid bounds derived from
6733 		 * e.g. dead branches.
6734 		 */
6735 		__mark_reg_unknown(env, dst_reg);
6736 		return 0;
6737 	}
6738 
6739 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6740 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6741 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6742 			__mark_reg_unknown(env, dst_reg);
6743 			return 0;
6744 		}
6745 
6746 		verbose(env,
6747 			"R%d 32-bit pointer arithmetic prohibited\n",
6748 			dst);
6749 		return -EACCES;
6750 	}
6751 
6752 	switch (ptr_reg->type) {
6753 	case PTR_TO_MAP_VALUE_OR_NULL:
6754 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6755 			dst, reg_type_str[ptr_reg->type]);
6756 		return -EACCES;
6757 	case CONST_PTR_TO_MAP:
6758 		/* smin_val represents the known value */
6759 		if (known && smin_val == 0 && opcode == BPF_ADD)
6760 			break;
6761 		fallthrough;
6762 	case PTR_TO_PACKET_END:
6763 	case PTR_TO_SOCKET:
6764 	case PTR_TO_SOCKET_OR_NULL:
6765 	case PTR_TO_SOCK_COMMON:
6766 	case PTR_TO_SOCK_COMMON_OR_NULL:
6767 	case PTR_TO_TCP_SOCK:
6768 	case PTR_TO_TCP_SOCK_OR_NULL:
6769 	case PTR_TO_XDP_SOCK:
6770 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6771 			dst, reg_type_str[ptr_reg->type]);
6772 		return -EACCES;
6773 	default:
6774 		break;
6775 	}
6776 
6777 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6778 	 * The id may be overwritten later if we create a new variable offset.
6779 	 */
6780 	dst_reg->type = ptr_reg->type;
6781 	dst_reg->id = ptr_reg->id;
6782 
6783 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6784 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6785 		return -EINVAL;
6786 
6787 	/* pointer types do not carry 32-bit bounds at the moment. */
6788 	__mark_reg32_unbounded(dst_reg);
6789 
6790 	if (sanitize_needed(opcode)) {
6791 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6792 				       &info, false);
6793 		if (ret < 0)
6794 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6795 	}
6796 
6797 	switch (opcode) {
6798 	case BPF_ADD:
6799 		/* We can take a fixed offset as long as it doesn't overflow
6800 		 * the s32 'off' field
6801 		 */
6802 		if (known && (ptr_reg->off + smin_val ==
6803 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6804 			/* pointer += K.  Accumulate it into fixed offset */
6805 			dst_reg->smin_value = smin_ptr;
6806 			dst_reg->smax_value = smax_ptr;
6807 			dst_reg->umin_value = umin_ptr;
6808 			dst_reg->umax_value = umax_ptr;
6809 			dst_reg->var_off = ptr_reg->var_off;
6810 			dst_reg->off = ptr_reg->off + smin_val;
6811 			dst_reg->raw = ptr_reg->raw;
6812 			break;
6813 		}
6814 		/* A new variable offset is created.  Note that off_reg->off
6815 		 * == 0, since it's a scalar.
6816 		 * dst_reg gets the pointer type and since some positive
6817 		 * integer value was added to the pointer, give it a new 'id'
6818 		 * if it's a PTR_TO_PACKET.
6819 		 * this creates a new 'base' pointer, off_reg (variable) gets
6820 		 * added into the variable offset, and we copy the fixed offset
6821 		 * from ptr_reg.
6822 		 */
6823 		if (signed_add_overflows(smin_ptr, smin_val) ||
6824 		    signed_add_overflows(smax_ptr, smax_val)) {
6825 			dst_reg->smin_value = S64_MIN;
6826 			dst_reg->smax_value = S64_MAX;
6827 		} else {
6828 			dst_reg->smin_value = smin_ptr + smin_val;
6829 			dst_reg->smax_value = smax_ptr + smax_val;
6830 		}
6831 		if (umin_ptr + umin_val < umin_ptr ||
6832 		    umax_ptr + umax_val < umax_ptr) {
6833 			dst_reg->umin_value = 0;
6834 			dst_reg->umax_value = U64_MAX;
6835 		} else {
6836 			dst_reg->umin_value = umin_ptr + umin_val;
6837 			dst_reg->umax_value = umax_ptr + umax_val;
6838 		}
6839 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6840 		dst_reg->off = ptr_reg->off;
6841 		dst_reg->raw = ptr_reg->raw;
6842 		if (reg_is_pkt_pointer(ptr_reg)) {
6843 			dst_reg->id = ++env->id_gen;
6844 			/* something was added to pkt_ptr, set range to zero */
6845 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6846 		}
6847 		break;
6848 	case BPF_SUB:
6849 		if (dst_reg == off_reg) {
6850 			/* scalar -= pointer.  Creates an unknown scalar */
6851 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6852 				dst);
6853 			return -EACCES;
6854 		}
6855 		/* We don't allow subtraction from FP, because (according to
6856 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6857 		 * be able to deal with it.
6858 		 */
6859 		if (ptr_reg->type == PTR_TO_STACK) {
6860 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6861 				dst);
6862 			return -EACCES;
6863 		}
6864 		if (known && (ptr_reg->off - smin_val ==
6865 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6866 			/* pointer -= K.  Subtract it from fixed offset */
6867 			dst_reg->smin_value = smin_ptr;
6868 			dst_reg->smax_value = smax_ptr;
6869 			dst_reg->umin_value = umin_ptr;
6870 			dst_reg->umax_value = umax_ptr;
6871 			dst_reg->var_off = ptr_reg->var_off;
6872 			dst_reg->id = ptr_reg->id;
6873 			dst_reg->off = ptr_reg->off - smin_val;
6874 			dst_reg->raw = ptr_reg->raw;
6875 			break;
6876 		}
6877 		/* A new variable offset is created.  If the subtrahend is known
6878 		 * nonnegative, then any reg->range we had before is still good.
6879 		 */
6880 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6881 		    signed_sub_overflows(smax_ptr, smin_val)) {
6882 			/* Overflow possible, we know nothing */
6883 			dst_reg->smin_value = S64_MIN;
6884 			dst_reg->smax_value = S64_MAX;
6885 		} else {
6886 			dst_reg->smin_value = smin_ptr - smax_val;
6887 			dst_reg->smax_value = smax_ptr - smin_val;
6888 		}
6889 		if (umin_ptr < umax_val) {
6890 			/* Overflow possible, we know nothing */
6891 			dst_reg->umin_value = 0;
6892 			dst_reg->umax_value = U64_MAX;
6893 		} else {
6894 			/* Cannot overflow (as long as bounds are consistent) */
6895 			dst_reg->umin_value = umin_ptr - umax_val;
6896 			dst_reg->umax_value = umax_ptr - umin_val;
6897 		}
6898 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6899 		dst_reg->off = ptr_reg->off;
6900 		dst_reg->raw = ptr_reg->raw;
6901 		if (reg_is_pkt_pointer(ptr_reg)) {
6902 			dst_reg->id = ++env->id_gen;
6903 			/* something was added to pkt_ptr, set range to zero */
6904 			if (smin_val < 0)
6905 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6906 		}
6907 		break;
6908 	case BPF_AND:
6909 	case BPF_OR:
6910 	case BPF_XOR:
6911 		/* bitwise ops on pointers are troublesome, prohibit. */
6912 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6913 			dst, bpf_alu_string[opcode >> 4]);
6914 		return -EACCES;
6915 	default:
6916 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6917 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6918 			dst, bpf_alu_string[opcode >> 4]);
6919 		return -EACCES;
6920 	}
6921 
6922 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6923 		return -EINVAL;
6924 
6925 	__update_reg_bounds(dst_reg);
6926 	__reg_deduce_bounds(dst_reg);
6927 	__reg_bound_offset(dst_reg);
6928 
6929 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6930 		return -EACCES;
6931 	if (sanitize_needed(opcode)) {
6932 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6933 				       &info, true);
6934 		if (ret < 0)
6935 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6936 	}
6937 
6938 	return 0;
6939 }
6940 
6941 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6942 				 struct bpf_reg_state *src_reg)
6943 {
6944 	s32 smin_val = src_reg->s32_min_value;
6945 	s32 smax_val = src_reg->s32_max_value;
6946 	u32 umin_val = src_reg->u32_min_value;
6947 	u32 umax_val = src_reg->u32_max_value;
6948 
6949 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6950 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6951 		dst_reg->s32_min_value = S32_MIN;
6952 		dst_reg->s32_max_value = S32_MAX;
6953 	} else {
6954 		dst_reg->s32_min_value += smin_val;
6955 		dst_reg->s32_max_value += smax_val;
6956 	}
6957 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6958 	    dst_reg->u32_max_value + umax_val < umax_val) {
6959 		dst_reg->u32_min_value = 0;
6960 		dst_reg->u32_max_value = U32_MAX;
6961 	} else {
6962 		dst_reg->u32_min_value += umin_val;
6963 		dst_reg->u32_max_value += umax_val;
6964 	}
6965 }
6966 
6967 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6968 			       struct bpf_reg_state *src_reg)
6969 {
6970 	s64 smin_val = src_reg->smin_value;
6971 	s64 smax_val = src_reg->smax_value;
6972 	u64 umin_val = src_reg->umin_value;
6973 	u64 umax_val = src_reg->umax_value;
6974 
6975 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6976 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6977 		dst_reg->smin_value = S64_MIN;
6978 		dst_reg->smax_value = S64_MAX;
6979 	} else {
6980 		dst_reg->smin_value += smin_val;
6981 		dst_reg->smax_value += smax_val;
6982 	}
6983 	if (dst_reg->umin_value + umin_val < umin_val ||
6984 	    dst_reg->umax_value + umax_val < umax_val) {
6985 		dst_reg->umin_value = 0;
6986 		dst_reg->umax_value = U64_MAX;
6987 	} else {
6988 		dst_reg->umin_value += umin_val;
6989 		dst_reg->umax_value += umax_val;
6990 	}
6991 }
6992 
6993 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6994 				 struct bpf_reg_state *src_reg)
6995 {
6996 	s32 smin_val = src_reg->s32_min_value;
6997 	s32 smax_val = src_reg->s32_max_value;
6998 	u32 umin_val = src_reg->u32_min_value;
6999 	u32 umax_val = src_reg->u32_max_value;
7000 
7001 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7002 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7003 		/* Overflow possible, we know nothing */
7004 		dst_reg->s32_min_value = S32_MIN;
7005 		dst_reg->s32_max_value = S32_MAX;
7006 	} else {
7007 		dst_reg->s32_min_value -= smax_val;
7008 		dst_reg->s32_max_value -= smin_val;
7009 	}
7010 	if (dst_reg->u32_min_value < umax_val) {
7011 		/* Overflow possible, we know nothing */
7012 		dst_reg->u32_min_value = 0;
7013 		dst_reg->u32_max_value = U32_MAX;
7014 	} else {
7015 		/* Cannot overflow (as long as bounds are consistent) */
7016 		dst_reg->u32_min_value -= umax_val;
7017 		dst_reg->u32_max_value -= umin_val;
7018 	}
7019 }
7020 
7021 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7022 			       struct bpf_reg_state *src_reg)
7023 {
7024 	s64 smin_val = src_reg->smin_value;
7025 	s64 smax_val = src_reg->smax_value;
7026 	u64 umin_val = src_reg->umin_value;
7027 	u64 umax_val = src_reg->umax_value;
7028 
7029 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7030 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7031 		/* Overflow possible, we know nothing */
7032 		dst_reg->smin_value = S64_MIN;
7033 		dst_reg->smax_value = S64_MAX;
7034 	} else {
7035 		dst_reg->smin_value -= smax_val;
7036 		dst_reg->smax_value -= smin_val;
7037 	}
7038 	if (dst_reg->umin_value < umax_val) {
7039 		/* Overflow possible, we know nothing */
7040 		dst_reg->umin_value = 0;
7041 		dst_reg->umax_value = U64_MAX;
7042 	} else {
7043 		/* Cannot overflow (as long as bounds are consistent) */
7044 		dst_reg->umin_value -= umax_val;
7045 		dst_reg->umax_value -= umin_val;
7046 	}
7047 }
7048 
7049 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7050 				 struct bpf_reg_state *src_reg)
7051 {
7052 	s32 smin_val = src_reg->s32_min_value;
7053 	u32 umin_val = src_reg->u32_min_value;
7054 	u32 umax_val = src_reg->u32_max_value;
7055 
7056 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7057 		/* Ain't nobody got time to multiply that sign */
7058 		__mark_reg32_unbounded(dst_reg);
7059 		return;
7060 	}
7061 	/* Both values are positive, so we can work with unsigned and
7062 	 * copy the result to signed (unless it exceeds S32_MAX).
7063 	 */
7064 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7065 		/* Potential overflow, we know nothing */
7066 		__mark_reg32_unbounded(dst_reg);
7067 		return;
7068 	}
7069 	dst_reg->u32_min_value *= umin_val;
7070 	dst_reg->u32_max_value *= umax_val;
7071 	if (dst_reg->u32_max_value > S32_MAX) {
7072 		/* Overflow possible, we know nothing */
7073 		dst_reg->s32_min_value = S32_MIN;
7074 		dst_reg->s32_max_value = S32_MAX;
7075 	} else {
7076 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7077 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7078 	}
7079 }
7080 
7081 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7082 			       struct bpf_reg_state *src_reg)
7083 {
7084 	s64 smin_val = src_reg->smin_value;
7085 	u64 umin_val = src_reg->umin_value;
7086 	u64 umax_val = src_reg->umax_value;
7087 
7088 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7089 		/* Ain't nobody got time to multiply that sign */
7090 		__mark_reg64_unbounded(dst_reg);
7091 		return;
7092 	}
7093 	/* Both values are positive, so we can work with unsigned and
7094 	 * copy the result to signed (unless it exceeds S64_MAX).
7095 	 */
7096 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7097 		/* Potential overflow, we know nothing */
7098 		__mark_reg64_unbounded(dst_reg);
7099 		return;
7100 	}
7101 	dst_reg->umin_value *= umin_val;
7102 	dst_reg->umax_value *= umax_val;
7103 	if (dst_reg->umax_value > S64_MAX) {
7104 		/* Overflow possible, we know nothing */
7105 		dst_reg->smin_value = S64_MIN;
7106 		dst_reg->smax_value = S64_MAX;
7107 	} else {
7108 		dst_reg->smin_value = dst_reg->umin_value;
7109 		dst_reg->smax_value = dst_reg->umax_value;
7110 	}
7111 }
7112 
7113 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7114 				 struct bpf_reg_state *src_reg)
7115 {
7116 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7117 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7118 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7119 	s32 smin_val = src_reg->s32_min_value;
7120 	u32 umax_val = src_reg->u32_max_value;
7121 
7122 	if (src_known && dst_known) {
7123 		__mark_reg32_known(dst_reg, var32_off.value);
7124 		return;
7125 	}
7126 
7127 	/* We get our minimum from the var_off, since that's inherently
7128 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7129 	 */
7130 	dst_reg->u32_min_value = var32_off.value;
7131 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7132 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7133 		/* Lose signed bounds when ANDing negative numbers,
7134 		 * ain't nobody got time for that.
7135 		 */
7136 		dst_reg->s32_min_value = S32_MIN;
7137 		dst_reg->s32_max_value = S32_MAX;
7138 	} else {
7139 		/* ANDing two positives gives a positive, so safe to
7140 		 * cast result into s64.
7141 		 */
7142 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7143 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7144 	}
7145 }
7146 
7147 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7148 			       struct bpf_reg_state *src_reg)
7149 {
7150 	bool src_known = tnum_is_const(src_reg->var_off);
7151 	bool dst_known = tnum_is_const(dst_reg->var_off);
7152 	s64 smin_val = src_reg->smin_value;
7153 	u64 umax_val = src_reg->umax_value;
7154 
7155 	if (src_known && dst_known) {
7156 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7157 		return;
7158 	}
7159 
7160 	/* We get our minimum from the var_off, since that's inherently
7161 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7162 	 */
7163 	dst_reg->umin_value = dst_reg->var_off.value;
7164 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7165 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7166 		/* Lose signed bounds when ANDing negative numbers,
7167 		 * ain't nobody got time for that.
7168 		 */
7169 		dst_reg->smin_value = S64_MIN;
7170 		dst_reg->smax_value = S64_MAX;
7171 	} else {
7172 		/* ANDing two positives gives a positive, so safe to
7173 		 * cast result into s64.
7174 		 */
7175 		dst_reg->smin_value = dst_reg->umin_value;
7176 		dst_reg->smax_value = dst_reg->umax_value;
7177 	}
7178 	/* We may learn something more from the var_off */
7179 	__update_reg_bounds(dst_reg);
7180 }
7181 
7182 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7183 				struct bpf_reg_state *src_reg)
7184 {
7185 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7186 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7187 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7188 	s32 smin_val = src_reg->s32_min_value;
7189 	u32 umin_val = src_reg->u32_min_value;
7190 
7191 	if (src_known && dst_known) {
7192 		__mark_reg32_known(dst_reg, var32_off.value);
7193 		return;
7194 	}
7195 
7196 	/* We get our maximum from the var_off, and our minimum is the
7197 	 * maximum of the operands' minima
7198 	 */
7199 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7200 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7201 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7202 		/* Lose signed bounds when ORing negative numbers,
7203 		 * ain't nobody got time for that.
7204 		 */
7205 		dst_reg->s32_min_value = S32_MIN;
7206 		dst_reg->s32_max_value = S32_MAX;
7207 	} else {
7208 		/* ORing two positives gives a positive, so safe to
7209 		 * cast result into s64.
7210 		 */
7211 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7212 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7213 	}
7214 }
7215 
7216 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7217 			      struct bpf_reg_state *src_reg)
7218 {
7219 	bool src_known = tnum_is_const(src_reg->var_off);
7220 	bool dst_known = tnum_is_const(dst_reg->var_off);
7221 	s64 smin_val = src_reg->smin_value;
7222 	u64 umin_val = src_reg->umin_value;
7223 
7224 	if (src_known && dst_known) {
7225 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7226 		return;
7227 	}
7228 
7229 	/* We get our maximum from the var_off, and our minimum is the
7230 	 * maximum of the operands' minima
7231 	 */
7232 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7233 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7234 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7235 		/* Lose signed bounds when ORing negative numbers,
7236 		 * ain't nobody got time for that.
7237 		 */
7238 		dst_reg->smin_value = S64_MIN;
7239 		dst_reg->smax_value = S64_MAX;
7240 	} else {
7241 		/* ORing two positives gives a positive, so safe to
7242 		 * cast result into s64.
7243 		 */
7244 		dst_reg->smin_value = dst_reg->umin_value;
7245 		dst_reg->smax_value = dst_reg->umax_value;
7246 	}
7247 	/* We may learn something more from the var_off */
7248 	__update_reg_bounds(dst_reg);
7249 }
7250 
7251 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7252 				 struct bpf_reg_state *src_reg)
7253 {
7254 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7255 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7256 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7257 	s32 smin_val = src_reg->s32_min_value;
7258 
7259 	if (src_known && dst_known) {
7260 		__mark_reg32_known(dst_reg, var32_off.value);
7261 		return;
7262 	}
7263 
7264 	/* We get both minimum and maximum from the var32_off. */
7265 	dst_reg->u32_min_value = var32_off.value;
7266 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7267 
7268 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7269 		/* XORing two positive sign numbers gives a positive,
7270 		 * so safe to cast u32 result into s32.
7271 		 */
7272 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7273 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7274 	} else {
7275 		dst_reg->s32_min_value = S32_MIN;
7276 		dst_reg->s32_max_value = S32_MAX;
7277 	}
7278 }
7279 
7280 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7281 			       struct bpf_reg_state *src_reg)
7282 {
7283 	bool src_known = tnum_is_const(src_reg->var_off);
7284 	bool dst_known = tnum_is_const(dst_reg->var_off);
7285 	s64 smin_val = src_reg->smin_value;
7286 
7287 	if (src_known && dst_known) {
7288 		/* dst_reg->var_off.value has been updated earlier */
7289 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7290 		return;
7291 	}
7292 
7293 	/* We get both minimum and maximum from the var_off. */
7294 	dst_reg->umin_value = dst_reg->var_off.value;
7295 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7296 
7297 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7298 		/* XORing two positive sign numbers gives a positive,
7299 		 * so safe to cast u64 result into s64.
7300 		 */
7301 		dst_reg->smin_value = dst_reg->umin_value;
7302 		dst_reg->smax_value = dst_reg->umax_value;
7303 	} else {
7304 		dst_reg->smin_value = S64_MIN;
7305 		dst_reg->smax_value = S64_MAX;
7306 	}
7307 
7308 	__update_reg_bounds(dst_reg);
7309 }
7310 
7311 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7312 				   u64 umin_val, u64 umax_val)
7313 {
7314 	/* We lose all sign bit information (except what we can pick
7315 	 * up from var_off)
7316 	 */
7317 	dst_reg->s32_min_value = S32_MIN;
7318 	dst_reg->s32_max_value = S32_MAX;
7319 	/* If we might shift our top bit out, then we know nothing */
7320 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7321 		dst_reg->u32_min_value = 0;
7322 		dst_reg->u32_max_value = U32_MAX;
7323 	} else {
7324 		dst_reg->u32_min_value <<= umin_val;
7325 		dst_reg->u32_max_value <<= umax_val;
7326 	}
7327 }
7328 
7329 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7330 				 struct bpf_reg_state *src_reg)
7331 {
7332 	u32 umax_val = src_reg->u32_max_value;
7333 	u32 umin_val = src_reg->u32_min_value;
7334 	/* u32 alu operation will zext upper bits */
7335 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7336 
7337 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7338 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7339 	/* Not required but being careful mark reg64 bounds as unknown so
7340 	 * that we are forced to pick them up from tnum and zext later and
7341 	 * if some path skips this step we are still safe.
7342 	 */
7343 	__mark_reg64_unbounded(dst_reg);
7344 	__update_reg32_bounds(dst_reg);
7345 }
7346 
7347 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7348 				   u64 umin_val, u64 umax_val)
7349 {
7350 	/* Special case <<32 because it is a common compiler pattern to sign
7351 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7352 	 * positive we know this shift will also be positive so we can track
7353 	 * bounds correctly. Otherwise we lose all sign bit information except
7354 	 * what we can pick up from var_off. Perhaps we can generalize this
7355 	 * later to shifts of any length.
7356 	 */
7357 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7358 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7359 	else
7360 		dst_reg->smax_value = S64_MAX;
7361 
7362 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7363 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7364 	else
7365 		dst_reg->smin_value = S64_MIN;
7366 
7367 	/* If we might shift our top bit out, then we know nothing */
7368 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7369 		dst_reg->umin_value = 0;
7370 		dst_reg->umax_value = U64_MAX;
7371 	} else {
7372 		dst_reg->umin_value <<= umin_val;
7373 		dst_reg->umax_value <<= umax_val;
7374 	}
7375 }
7376 
7377 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7378 			       struct bpf_reg_state *src_reg)
7379 {
7380 	u64 umax_val = src_reg->umax_value;
7381 	u64 umin_val = src_reg->umin_value;
7382 
7383 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7384 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7385 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7386 
7387 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7388 	/* We may learn something more from the var_off */
7389 	__update_reg_bounds(dst_reg);
7390 }
7391 
7392 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7393 				 struct bpf_reg_state *src_reg)
7394 {
7395 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7396 	u32 umax_val = src_reg->u32_max_value;
7397 	u32 umin_val = src_reg->u32_min_value;
7398 
7399 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7400 	 * be negative, then either:
7401 	 * 1) src_reg might be zero, so the sign bit of the result is
7402 	 *    unknown, so we lose our signed bounds
7403 	 * 2) it's known negative, thus the unsigned bounds capture the
7404 	 *    signed bounds
7405 	 * 3) the signed bounds cross zero, so they tell us nothing
7406 	 *    about the result
7407 	 * If the value in dst_reg is known nonnegative, then again the
7408 	 * unsigned bounds capture the signed bounds.
7409 	 * Thus, in all cases it suffices to blow away our signed bounds
7410 	 * and rely on inferring new ones from the unsigned bounds and
7411 	 * var_off of the result.
7412 	 */
7413 	dst_reg->s32_min_value = S32_MIN;
7414 	dst_reg->s32_max_value = S32_MAX;
7415 
7416 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7417 	dst_reg->u32_min_value >>= umax_val;
7418 	dst_reg->u32_max_value >>= umin_val;
7419 
7420 	__mark_reg64_unbounded(dst_reg);
7421 	__update_reg32_bounds(dst_reg);
7422 }
7423 
7424 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7425 			       struct bpf_reg_state *src_reg)
7426 {
7427 	u64 umax_val = src_reg->umax_value;
7428 	u64 umin_val = src_reg->umin_value;
7429 
7430 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7431 	 * be negative, then either:
7432 	 * 1) src_reg might be zero, so the sign bit of the result is
7433 	 *    unknown, so we lose our signed bounds
7434 	 * 2) it's known negative, thus the unsigned bounds capture the
7435 	 *    signed bounds
7436 	 * 3) the signed bounds cross zero, so they tell us nothing
7437 	 *    about the result
7438 	 * If the value in dst_reg is known nonnegative, then again the
7439 	 * unsigned bounds capture the signed bounds.
7440 	 * Thus, in all cases it suffices to blow away our signed bounds
7441 	 * and rely on inferring new ones from the unsigned bounds and
7442 	 * var_off of the result.
7443 	 */
7444 	dst_reg->smin_value = S64_MIN;
7445 	dst_reg->smax_value = S64_MAX;
7446 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7447 	dst_reg->umin_value >>= umax_val;
7448 	dst_reg->umax_value >>= umin_val;
7449 
7450 	/* Its not easy to operate on alu32 bounds here because it depends
7451 	 * on bits being shifted in. Take easy way out and mark unbounded
7452 	 * so we can recalculate later from tnum.
7453 	 */
7454 	__mark_reg32_unbounded(dst_reg);
7455 	__update_reg_bounds(dst_reg);
7456 }
7457 
7458 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7459 				  struct bpf_reg_state *src_reg)
7460 {
7461 	u64 umin_val = src_reg->u32_min_value;
7462 
7463 	/* Upon reaching here, src_known is true and
7464 	 * umax_val is equal to umin_val.
7465 	 */
7466 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7467 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7468 
7469 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7470 
7471 	/* blow away the dst_reg umin_value/umax_value and rely on
7472 	 * dst_reg var_off to refine the result.
7473 	 */
7474 	dst_reg->u32_min_value = 0;
7475 	dst_reg->u32_max_value = U32_MAX;
7476 
7477 	__mark_reg64_unbounded(dst_reg);
7478 	__update_reg32_bounds(dst_reg);
7479 }
7480 
7481 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7482 				struct bpf_reg_state *src_reg)
7483 {
7484 	u64 umin_val = src_reg->umin_value;
7485 
7486 	/* Upon reaching here, src_known is true and umax_val is equal
7487 	 * to umin_val.
7488 	 */
7489 	dst_reg->smin_value >>= umin_val;
7490 	dst_reg->smax_value >>= umin_val;
7491 
7492 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7493 
7494 	/* blow away the dst_reg umin_value/umax_value and rely on
7495 	 * dst_reg var_off to refine the result.
7496 	 */
7497 	dst_reg->umin_value = 0;
7498 	dst_reg->umax_value = U64_MAX;
7499 
7500 	/* Its not easy to operate on alu32 bounds here because it depends
7501 	 * on bits being shifted in from upper 32-bits. Take easy way out
7502 	 * and mark unbounded so we can recalculate later from tnum.
7503 	 */
7504 	__mark_reg32_unbounded(dst_reg);
7505 	__update_reg_bounds(dst_reg);
7506 }
7507 
7508 /* WARNING: This function does calculations on 64-bit values, but the actual
7509  * execution may occur on 32-bit values. Therefore, things like bitshifts
7510  * need extra checks in the 32-bit case.
7511  */
7512 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7513 				      struct bpf_insn *insn,
7514 				      struct bpf_reg_state *dst_reg,
7515 				      struct bpf_reg_state src_reg)
7516 {
7517 	struct bpf_reg_state *regs = cur_regs(env);
7518 	u8 opcode = BPF_OP(insn->code);
7519 	bool src_known;
7520 	s64 smin_val, smax_val;
7521 	u64 umin_val, umax_val;
7522 	s32 s32_min_val, s32_max_val;
7523 	u32 u32_min_val, u32_max_val;
7524 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7525 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7526 	int ret;
7527 
7528 	smin_val = src_reg.smin_value;
7529 	smax_val = src_reg.smax_value;
7530 	umin_val = src_reg.umin_value;
7531 	umax_val = src_reg.umax_value;
7532 
7533 	s32_min_val = src_reg.s32_min_value;
7534 	s32_max_val = src_reg.s32_max_value;
7535 	u32_min_val = src_reg.u32_min_value;
7536 	u32_max_val = src_reg.u32_max_value;
7537 
7538 	if (alu32) {
7539 		src_known = tnum_subreg_is_const(src_reg.var_off);
7540 		if ((src_known &&
7541 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7542 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7543 			/* Taint dst register if offset had invalid bounds
7544 			 * derived from e.g. dead branches.
7545 			 */
7546 			__mark_reg_unknown(env, dst_reg);
7547 			return 0;
7548 		}
7549 	} else {
7550 		src_known = tnum_is_const(src_reg.var_off);
7551 		if ((src_known &&
7552 		     (smin_val != smax_val || umin_val != umax_val)) ||
7553 		    smin_val > smax_val || umin_val > umax_val) {
7554 			/* Taint dst register if offset had invalid bounds
7555 			 * derived from e.g. dead branches.
7556 			 */
7557 			__mark_reg_unknown(env, dst_reg);
7558 			return 0;
7559 		}
7560 	}
7561 
7562 	if (!src_known &&
7563 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7564 		__mark_reg_unknown(env, dst_reg);
7565 		return 0;
7566 	}
7567 
7568 	if (sanitize_needed(opcode)) {
7569 		ret = sanitize_val_alu(env, insn);
7570 		if (ret < 0)
7571 			return sanitize_err(env, insn, ret, NULL, NULL);
7572 	}
7573 
7574 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7575 	 * There are two classes of instructions: The first class we track both
7576 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7577 	 * greatest amount of precision when alu operations are mixed with jmp32
7578 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7579 	 * and BPF_OR. This is possible because these ops have fairly easy to
7580 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7581 	 * See alu32 verifier tests for examples. The second class of
7582 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7583 	 * with regards to tracking sign/unsigned bounds because the bits may
7584 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7585 	 * the reg unbounded in the subreg bound space and use the resulting
7586 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7587 	 */
7588 	switch (opcode) {
7589 	case BPF_ADD:
7590 		scalar32_min_max_add(dst_reg, &src_reg);
7591 		scalar_min_max_add(dst_reg, &src_reg);
7592 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7593 		break;
7594 	case BPF_SUB:
7595 		scalar32_min_max_sub(dst_reg, &src_reg);
7596 		scalar_min_max_sub(dst_reg, &src_reg);
7597 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7598 		break;
7599 	case BPF_MUL:
7600 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7601 		scalar32_min_max_mul(dst_reg, &src_reg);
7602 		scalar_min_max_mul(dst_reg, &src_reg);
7603 		break;
7604 	case BPF_AND:
7605 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7606 		scalar32_min_max_and(dst_reg, &src_reg);
7607 		scalar_min_max_and(dst_reg, &src_reg);
7608 		break;
7609 	case BPF_OR:
7610 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7611 		scalar32_min_max_or(dst_reg, &src_reg);
7612 		scalar_min_max_or(dst_reg, &src_reg);
7613 		break;
7614 	case BPF_XOR:
7615 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7616 		scalar32_min_max_xor(dst_reg, &src_reg);
7617 		scalar_min_max_xor(dst_reg, &src_reg);
7618 		break;
7619 	case BPF_LSH:
7620 		if (umax_val >= insn_bitness) {
7621 			/* Shifts greater than 31 or 63 are undefined.
7622 			 * This includes shifts by a negative number.
7623 			 */
7624 			mark_reg_unknown(env, regs, insn->dst_reg);
7625 			break;
7626 		}
7627 		if (alu32)
7628 			scalar32_min_max_lsh(dst_reg, &src_reg);
7629 		else
7630 			scalar_min_max_lsh(dst_reg, &src_reg);
7631 		break;
7632 	case BPF_RSH:
7633 		if (umax_val >= insn_bitness) {
7634 			/* Shifts greater than 31 or 63 are undefined.
7635 			 * This includes shifts by a negative number.
7636 			 */
7637 			mark_reg_unknown(env, regs, insn->dst_reg);
7638 			break;
7639 		}
7640 		if (alu32)
7641 			scalar32_min_max_rsh(dst_reg, &src_reg);
7642 		else
7643 			scalar_min_max_rsh(dst_reg, &src_reg);
7644 		break;
7645 	case BPF_ARSH:
7646 		if (umax_val >= insn_bitness) {
7647 			/* Shifts greater than 31 or 63 are undefined.
7648 			 * This includes shifts by a negative number.
7649 			 */
7650 			mark_reg_unknown(env, regs, insn->dst_reg);
7651 			break;
7652 		}
7653 		if (alu32)
7654 			scalar32_min_max_arsh(dst_reg, &src_reg);
7655 		else
7656 			scalar_min_max_arsh(dst_reg, &src_reg);
7657 		break;
7658 	default:
7659 		mark_reg_unknown(env, regs, insn->dst_reg);
7660 		break;
7661 	}
7662 
7663 	/* ALU32 ops are zero extended into 64bit register */
7664 	if (alu32)
7665 		zext_32_to_64(dst_reg);
7666 
7667 	__update_reg_bounds(dst_reg);
7668 	__reg_deduce_bounds(dst_reg);
7669 	__reg_bound_offset(dst_reg);
7670 	return 0;
7671 }
7672 
7673 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7674  * and var_off.
7675  */
7676 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7677 				   struct bpf_insn *insn)
7678 {
7679 	struct bpf_verifier_state *vstate = env->cur_state;
7680 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7681 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7682 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7683 	u8 opcode = BPF_OP(insn->code);
7684 	int err;
7685 
7686 	dst_reg = &regs[insn->dst_reg];
7687 	src_reg = NULL;
7688 	if (dst_reg->type != SCALAR_VALUE)
7689 		ptr_reg = dst_reg;
7690 	else
7691 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7692 		 * incorrectly propagated into other registers by find_equal_scalars()
7693 		 */
7694 		dst_reg->id = 0;
7695 	if (BPF_SRC(insn->code) == BPF_X) {
7696 		src_reg = &regs[insn->src_reg];
7697 		if (src_reg->type != SCALAR_VALUE) {
7698 			if (dst_reg->type != SCALAR_VALUE) {
7699 				/* Combining two pointers by any ALU op yields
7700 				 * an arbitrary scalar. Disallow all math except
7701 				 * pointer subtraction
7702 				 */
7703 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7704 					mark_reg_unknown(env, regs, insn->dst_reg);
7705 					return 0;
7706 				}
7707 				verbose(env, "R%d pointer %s pointer prohibited\n",
7708 					insn->dst_reg,
7709 					bpf_alu_string[opcode >> 4]);
7710 				return -EACCES;
7711 			} else {
7712 				/* scalar += pointer
7713 				 * This is legal, but we have to reverse our
7714 				 * src/dest handling in computing the range
7715 				 */
7716 				err = mark_chain_precision(env, insn->dst_reg);
7717 				if (err)
7718 					return err;
7719 				return adjust_ptr_min_max_vals(env, insn,
7720 							       src_reg, dst_reg);
7721 			}
7722 		} else if (ptr_reg) {
7723 			/* pointer += scalar */
7724 			err = mark_chain_precision(env, insn->src_reg);
7725 			if (err)
7726 				return err;
7727 			return adjust_ptr_min_max_vals(env, insn,
7728 						       dst_reg, src_reg);
7729 		}
7730 	} else {
7731 		/* Pretend the src is a reg with a known value, since we only
7732 		 * need to be able to read from this state.
7733 		 */
7734 		off_reg.type = SCALAR_VALUE;
7735 		__mark_reg_known(&off_reg, insn->imm);
7736 		src_reg = &off_reg;
7737 		if (ptr_reg) /* pointer += K */
7738 			return adjust_ptr_min_max_vals(env, insn,
7739 						       ptr_reg, src_reg);
7740 	}
7741 
7742 	/* Got here implies adding two SCALAR_VALUEs */
7743 	if (WARN_ON_ONCE(ptr_reg)) {
7744 		print_verifier_state(env, state);
7745 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7746 		return -EINVAL;
7747 	}
7748 	if (WARN_ON(!src_reg)) {
7749 		print_verifier_state(env, state);
7750 		verbose(env, "verifier internal error: no src_reg\n");
7751 		return -EINVAL;
7752 	}
7753 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7754 }
7755 
7756 /* check validity of 32-bit and 64-bit arithmetic operations */
7757 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7758 {
7759 	struct bpf_reg_state *regs = cur_regs(env);
7760 	u8 opcode = BPF_OP(insn->code);
7761 	int err;
7762 
7763 	if (opcode == BPF_END || opcode == BPF_NEG) {
7764 		if (opcode == BPF_NEG) {
7765 			if (BPF_SRC(insn->code) != 0 ||
7766 			    insn->src_reg != BPF_REG_0 ||
7767 			    insn->off != 0 || insn->imm != 0) {
7768 				verbose(env, "BPF_NEG uses reserved fields\n");
7769 				return -EINVAL;
7770 			}
7771 		} else {
7772 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7773 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7774 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7775 				verbose(env, "BPF_END uses reserved fields\n");
7776 				return -EINVAL;
7777 			}
7778 		}
7779 
7780 		/* check src operand */
7781 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7782 		if (err)
7783 			return err;
7784 
7785 		if (is_pointer_value(env, insn->dst_reg)) {
7786 			verbose(env, "R%d pointer arithmetic prohibited\n",
7787 				insn->dst_reg);
7788 			return -EACCES;
7789 		}
7790 
7791 		/* check dest operand */
7792 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7793 		if (err)
7794 			return err;
7795 
7796 	} else if (opcode == BPF_MOV) {
7797 
7798 		if (BPF_SRC(insn->code) == BPF_X) {
7799 			if (insn->imm != 0 || insn->off != 0) {
7800 				verbose(env, "BPF_MOV uses reserved fields\n");
7801 				return -EINVAL;
7802 			}
7803 
7804 			/* check src operand */
7805 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7806 			if (err)
7807 				return err;
7808 		} else {
7809 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7810 				verbose(env, "BPF_MOV uses reserved fields\n");
7811 				return -EINVAL;
7812 			}
7813 		}
7814 
7815 		/* check dest operand, mark as required later */
7816 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7817 		if (err)
7818 			return err;
7819 
7820 		if (BPF_SRC(insn->code) == BPF_X) {
7821 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7822 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7823 
7824 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7825 				/* case: R1 = R2
7826 				 * copy register state to dest reg
7827 				 */
7828 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7829 					/* Assign src and dst registers the same ID
7830 					 * that will be used by find_equal_scalars()
7831 					 * to propagate min/max range.
7832 					 */
7833 					src_reg->id = ++env->id_gen;
7834 				*dst_reg = *src_reg;
7835 				dst_reg->live |= REG_LIVE_WRITTEN;
7836 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7837 			} else {
7838 				/* R1 = (u32) R2 */
7839 				if (is_pointer_value(env, insn->src_reg)) {
7840 					verbose(env,
7841 						"R%d partial copy of pointer\n",
7842 						insn->src_reg);
7843 					return -EACCES;
7844 				} else if (src_reg->type == SCALAR_VALUE) {
7845 					*dst_reg = *src_reg;
7846 					/* Make sure ID is cleared otherwise
7847 					 * dst_reg min/max could be incorrectly
7848 					 * propagated into src_reg by find_equal_scalars()
7849 					 */
7850 					dst_reg->id = 0;
7851 					dst_reg->live |= REG_LIVE_WRITTEN;
7852 					dst_reg->subreg_def = env->insn_idx + 1;
7853 				} else {
7854 					mark_reg_unknown(env, regs,
7855 							 insn->dst_reg);
7856 				}
7857 				zext_32_to_64(dst_reg);
7858 			}
7859 		} else {
7860 			/* case: R = imm
7861 			 * remember the value we stored into this reg
7862 			 */
7863 			/* clear any state __mark_reg_known doesn't set */
7864 			mark_reg_unknown(env, regs, insn->dst_reg);
7865 			regs[insn->dst_reg].type = SCALAR_VALUE;
7866 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7867 				__mark_reg_known(regs + insn->dst_reg,
7868 						 insn->imm);
7869 			} else {
7870 				__mark_reg_known(regs + insn->dst_reg,
7871 						 (u32)insn->imm);
7872 			}
7873 		}
7874 
7875 	} else if (opcode > BPF_END) {
7876 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7877 		return -EINVAL;
7878 
7879 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7880 
7881 		if (BPF_SRC(insn->code) == BPF_X) {
7882 			if (insn->imm != 0 || insn->off != 0) {
7883 				verbose(env, "BPF_ALU uses reserved fields\n");
7884 				return -EINVAL;
7885 			}
7886 			/* check src1 operand */
7887 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7888 			if (err)
7889 				return err;
7890 		} else {
7891 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7892 				verbose(env, "BPF_ALU uses reserved fields\n");
7893 				return -EINVAL;
7894 			}
7895 		}
7896 
7897 		/* check src2 operand */
7898 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7899 		if (err)
7900 			return err;
7901 
7902 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7903 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7904 			verbose(env, "div by zero\n");
7905 			return -EINVAL;
7906 		}
7907 
7908 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7909 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7910 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7911 
7912 			if (insn->imm < 0 || insn->imm >= size) {
7913 				verbose(env, "invalid shift %d\n", insn->imm);
7914 				return -EINVAL;
7915 			}
7916 		}
7917 
7918 		/* check dest operand */
7919 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7920 		if (err)
7921 			return err;
7922 
7923 		return adjust_reg_min_max_vals(env, insn);
7924 	}
7925 
7926 	return 0;
7927 }
7928 
7929 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7930 				     struct bpf_reg_state *dst_reg,
7931 				     enum bpf_reg_type type, int new_range)
7932 {
7933 	struct bpf_reg_state *reg;
7934 	int i;
7935 
7936 	for (i = 0; i < MAX_BPF_REG; i++) {
7937 		reg = &state->regs[i];
7938 		if (reg->type == type && reg->id == dst_reg->id)
7939 			/* keep the maximum range already checked */
7940 			reg->range = max(reg->range, new_range);
7941 	}
7942 
7943 	bpf_for_each_spilled_reg(i, state, reg) {
7944 		if (!reg)
7945 			continue;
7946 		if (reg->type == type && reg->id == dst_reg->id)
7947 			reg->range = max(reg->range, new_range);
7948 	}
7949 }
7950 
7951 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7952 				   struct bpf_reg_state *dst_reg,
7953 				   enum bpf_reg_type type,
7954 				   bool range_right_open)
7955 {
7956 	int new_range, i;
7957 
7958 	if (dst_reg->off < 0 ||
7959 	    (dst_reg->off == 0 && range_right_open))
7960 		/* This doesn't give us any range */
7961 		return;
7962 
7963 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7964 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7965 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7966 		 * than pkt_end, but that's because it's also less than pkt.
7967 		 */
7968 		return;
7969 
7970 	new_range = dst_reg->off;
7971 	if (range_right_open)
7972 		new_range--;
7973 
7974 	/* Examples for register markings:
7975 	 *
7976 	 * pkt_data in dst register:
7977 	 *
7978 	 *   r2 = r3;
7979 	 *   r2 += 8;
7980 	 *   if (r2 > pkt_end) goto <handle exception>
7981 	 *   <access okay>
7982 	 *
7983 	 *   r2 = r3;
7984 	 *   r2 += 8;
7985 	 *   if (r2 < pkt_end) goto <access okay>
7986 	 *   <handle exception>
7987 	 *
7988 	 *   Where:
7989 	 *     r2 == dst_reg, pkt_end == src_reg
7990 	 *     r2=pkt(id=n,off=8,r=0)
7991 	 *     r3=pkt(id=n,off=0,r=0)
7992 	 *
7993 	 * pkt_data in src register:
7994 	 *
7995 	 *   r2 = r3;
7996 	 *   r2 += 8;
7997 	 *   if (pkt_end >= r2) goto <access okay>
7998 	 *   <handle exception>
7999 	 *
8000 	 *   r2 = r3;
8001 	 *   r2 += 8;
8002 	 *   if (pkt_end <= r2) goto <handle exception>
8003 	 *   <access okay>
8004 	 *
8005 	 *   Where:
8006 	 *     pkt_end == dst_reg, r2 == src_reg
8007 	 *     r2=pkt(id=n,off=8,r=0)
8008 	 *     r3=pkt(id=n,off=0,r=0)
8009 	 *
8010 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8011 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8012 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8013 	 * the check.
8014 	 */
8015 
8016 	/* If our ids match, then we must have the same max_value.  And we
8017 	 * don't care about the other reg's fixed offset, since if it's too big
8018 	 * the range won't allow anything.
8019 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8020 	 */
8021 	for (i = 0; i <= vstate->curframe; i++)
8022 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8023 					 new_range);
8024 }
8025 
8026 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8027 {
8028 	struct tnum subreg = tnum_subreg(reg->var_off);
8029 	s32 sval = (s32)val;
8030 
8031 	switch (opcode) {
8032 	case BPF_JEQ:
8033 		if (tnum_is_const(subreg))
8034 			return !!tnum_equals_const(subreg, val);
8035 		break;
8036 	case BPF_JNE:
8037 		if (tnum_is_const(subreg))
8038 			return !tnum_equals_const(subreg, val);
8039 		break;
8040 	case BPF_JSET:
8041 		if ((~subreg.mask & subreg.value) & val)
8042 			return 1;
8043 		if (!((subreg.mask | subreg.value) & val))
8044 			return 0;
8045 		break;
8046 	case BPF_JGT:
8047 		if (reg->u32_min_value > val)
8048 			return 1;
8049 		else if (reg->u32_max_value <= val)
8050 			return 0;
8051 		break;
8052 	case BPF_JSGT:
8053 		if (reg->s32_min_value > sval)
8054 			return 1;
8055 		else if (reg->s32_max_value <= sval)
8056 			return 0;
8057 		break;
8058 	case BPF_JLT:
8059 		if (reg->u32_max_value < val)
8060 			return 1;
8061 		else if (reg->u32_min_value >= val)
8062 			return 0;
8063 		break;
8064 	case BPF_JSLT:
8065 		if (reg->s32_max_value < sval)
8066 			return 1;
8067 		else if (reg->s32_min_value >= sval)
8068 			return 0;
8069 		break;
8070 	case BPF_JGE:
8071 		if (reg->u32_min_value >= val)
8072 			return 1;
8073 		else if (reg->u32_max_value < val)
8074 			return 0;
8075 		break;
8076 	case BPF_JSGE:
8077 		if (reg->s32_min_value >= sval)
8078 			return 1;
8079 		else if (reg->s32_max_value < sval)
8080 			return 0;
8081 		break;
8082 	case BPF_JLE:
8083 		if (reg->u32_max_value <= val)
8084 			return 1;
8085 		else if (reg->u32_min_value > val)
8086 			return 0;
8087 		break;
8088 	case BPF_JSLE:
8089 		if (reg->s32_max_value <= sval)
8090 			return 1;
8091 		else if (reg->s32_min_value > sval)
8092 			return 0;
8093 		break;
8094 	}
8095 
8096 	return -1;
8097 }
8098 
8099 
8100 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8101 {
8102 	s64 sval = (s64)val;
8103 
8104 	switch (opcode) {
8105 	case BPF_JEQ:
8106 		if (tnum_is_const(reg->var_off))
8107 			return !!tnum_equals_const(reg->var_off, val);
8108 		break;
8109 	case BPF_JNE:
8110 		if (tnum_is_const(reg->var_off))
8111 			return !tnum_equals_const(reg->var_off, val);
8112 		break;
8113 	case BPF_JSET:
8114 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8115 			return 1;
8116 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8117 			return 0;
8118 		break;
8119 	case BPF_JGT:
8120 		if (reg->umin_value > val)
8121 			return 1;
8122 		else if (reg->umax_value <= val)
8123 			return 0;
8124 		break;
8125 	case BPF_JSGT:
8126 		if (reg->smin_value > sval)
8127 			return 1;
8128 		else if (reg->smax_value <= sval)
8129 			return 0;
8130 		break;
8131 	case BPF_JLT:
8132 		if (reg->umax_value < val)
8133 			return 1;
8134 		else if (reg->umin_value >= val)
8135 			return 0;
8136 		break;
8137 	case BPF_JSLT:
8138 		if (reg->smax_value < sval)
8139 			return 1;
8140 		else if (reg->smin_value >= sval)
8141 			return 0;
8142 		break;
8143 	case BPF_JGE:
8144 		if (reg->umin_value >= val)
8145 			return 1;
8146 		else if (reg->umax_value < val)
8147 			return 0;
8148 		break;
8149 	case BPF_JSGE:
8150 		if (reg->smin_value >= sval)
8151 			return 1;
8152 		else if (reg->smax_value < sval)
8153 			return 0;
8154 		break;
8155 	case BPF_JLE:
8156 		if (reg->umax_value <= val)
8157 			return 1;
8158 		else if (reg->umin_value > val)
8159 			return 0;
8160 		break;
8161 	case BPF_JSLE:
8162 		if (reg->smax_value <= sval)
8163 			return 1;
8164 		else if (reg->smin_value > sval)
8165 			return 0;
8166 		break;
8167 	}
8168 
8169 	return -1;
8170 }
8171 
8172 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8173  * and return:
8174  *  1 - branch will be taken and "goto target" will be executed
8175  *  0 - branch will not be taken and fall-through to next insn
8176  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8177  *      range [0,10]
8178  */
8179 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8180 			   bool is_jmp32)
8181 {
8182 	if (__is_pointer_value(false, reg)) {
8183 		if (!reg_type_not_null(reg->type))
8184 			return -1;
8185 
8186 		/* If pointer is valid tests against zero will fail so we can
8187 		 * use this to direct branch taken.
8188 		 */
8189 		if (val != 0)
8190 			return -1;
8191 
8192 		switch (opcode) {
8193 		case BPF_JEQ:
8194 			return 0;
8195 		case BPF_JNE:
8196 			return 1;
8197 		default:
8198 			return -1;
8199 		}
8200 	}
8201 
8202 	if (is_jmp32)
8203 		return is_branch32_taken(reg, val, opcode);
8204 	return is_branch64_taken(reg, val, opcode);
8205 }
8206 
8207 static int flip_opcode(u32 opcode)
8208 {
8209 	/* How can we transform "a <op> b" into "b <op> a"? */
8210 	static const u8 opcode_flip[16] = {
8211 		/* these stay the same */
8212 		[BPF_JEQ  >> 4] = BPF_JEQ,
8213 		[BPF_JNE  >> 4] = BPF_JNE,
8214 		[BPF_JSET >> 4] = BPF_JSET,
8215 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8216 		[BPF_JGE  >> 4] = BPF_JLE,
8217 		[BPF_JGT  >> 4] = BPF_JLT,
8218 		[BPF_JLE  >> 4] = BPF_JGE,
8219 		[BPF_JLT  >> 4] = BPF_JGT,
8220 		[BPF_JSGE >> 4] = BPF_JSLE,
8221 		[BPF_JSGT >> 4] = BPF_JSLT,
8222 		[BPF_JSLE >> 4] = BPF_JSGE,
8223 		[BPF_JSLT >> 4] = BPF_JSGT
8224 	};
8225 	return opcode_flip[opcode >> 4];
8226 }
8227 
8228 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8229 				   struct bpf_reg_state *src_reg,
8230 				   u8 opcode)
8231 {
8232 	struct bpf_reg_state *pkt;
8233 
8234 	if (src_reg->type == PTR_TO_PACKET_END) {
8235 		pkt = dst_reg;
8236 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8237 		pkt = src_reg;
8238 		opcode = flip_opcode(opcode);
8239 	} else {
8240 		return -1;
8241 	}
8242 
8243 	if (pkt->range >= 0)
8244 		return -1;
8245 
8246 	switch (opcode) {
8247 	case BPF_JLE:
8248 		/* pkt <= pkt_end */
8249 		fallthrough;
8250 	case BPF_JGT:
8251 		/* pkt > pkt_end */
8252 		if (pkt->range == BEYOND_PKT_END)
8253 			/* pkt has at last one extra byte beyond pkt_end */
8254 			return opcode == BPF_JGT;
8255 		break;
8256 	case BPF_JLT:
8257 		/* pkt < pkt_end */
8258 		fallthrough;
8259 	case BPF_JGE:
8260 		/* pkt >= pkt_end */
8261 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8262 			return opcode == BPF_JGE;
8263 		break;
8264 	}
8265 	return -1;
8266 }
8267 
8268 /* Adjusts the register min/max values in the case that the dst_reg is the
8269  * variable register that we are working on, and src_reg is a constant or we're
8270  * simply doing a BPF_K check.
8271  * In JEQ/JNE cases we also adjust the var_off values.
8272  */
8273 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8274 			    struct bpf_reg_state *false_reg,
8275 			    u64 val, u32 val32,
8276 			    u8 opcode, bool is_jmp32)
8277 {
8278 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8279 	struct tnum false_64off = false_reg->var_off;
8280 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8281 	struct tnum true_64off = true_reg->var_off;
8282 	s64 sval = (s64)val;
8283 	s32 sval32 = (s32)val32;
8284 
8285 	/* If the dst_reg is a pointer, we can't learn anything about its
8286 	 * variable offset from the compare (unless src_reg were a pointer into
8287 	 * the same object, but we don't bother with that.
8288 	 * Since false_reg and true_reg have the same type by construction, we
8289 	 * only need to check one of them for pointerness.
8290 	 */
8291 	if (__is_pointer_value(false, false_reg))
8292 		return;
8293 
8294 	switch (opcode) {
8295 	case BPF_JEQ:
8296 	case BPF_JNE:
8297 	{
8298 		struct bpf_reg_state *reg =
8299 			opcode == BPF_JEQ ? true_reg : false_reg;
8300 
8301 		/* JEQ/JNE comparison doesn't change the register equivalence.
8302 		 * r1 = r2;
8303 		 * if (r1 == 42) goto label;
8304 		 * ...
8305 		 * label: // here both r1 and r2 are known to be 42.
8306 		 *
8307 		 * Hence when marking register as known preserve it's ID.
8308 		 */
8309 		if (is_jmp32)
8310 			__mark_reg32_known(reg, val32);
8311 		else
8312 			___mark_reg_known(reg, val);
8313 		break;
8314 	}
8315 	case BPF_JSET:
8316 		if (is_jmp32) {
8317 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8318 			if (is_power_of_2(val32))
8319 				true_32off = tnum_or(true_32off,
8320 						     tnum_const(val32));
8321 		} else {
8322 			false_64off = tnum_and(false_64off, tnum_const(~val));
8323 			if (is_power_of_2(val))
8324 				true_64off = tnum_or(true_64off,
8325 						     tnum_const(val));
8326 		}
8327 		break;
8328 	case BPF_JGE:
8329 	case BPF_JGT:
8330 	{
8331 		if (is_jmp32) {
8332 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8333 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8334 
8335 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8336 						       false_umax);
8337 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8338 						      true_umin);
8339 		} else {
8340 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8341 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8342 
8343 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8344 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8345 		}
8346 		break;
8347 	}
8348 	case BPF_JSGE:
8349 	case BPF_JSGT:
8350 	{
8351 		if (is_jmp32) {
8352 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8353 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8354 
8355 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8356 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8357 		} else {
8358 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8359 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8360 
8361 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8362 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8363 		}
8364 		break;
8365 	}
8366 	case BPF_JLE:
8367 	case BPF_JLT:
8368 	{
8369 		if (is_jmp32) {
8370 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8371 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8372 
8373 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8374 						       false_umin);
8375 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8376 						      true_umax);
8377 		} else {
8378 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8379 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8380 
8381 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8382 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8383 		}
8384 		break;
8385 	}
8386 	case BPF_JSLE:
8387 	case BPF_JSLT:
8388 	{
8389 		if (is_jmp32) {
8390 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8391 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8392 
8393 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8394 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8395 		} else {
8396 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8397 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8398 
8399 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8400 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8401 		}
8402 		break;
8403 	}
8404 	default:
8405 		return;
8406 	}
8407 
8408 	if (is_jmp32) {
8409 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8410 					     tnum_subreg(false_32off));
8411 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8412 					    tnum_subreg(true_32off));
8413 		__reg_combine_32_into_64(false_reg);
8414 		__reg_combine_32_into_64(true_reg);
8415 	} else {
8416 		false_reg->var_off = false_64off;
8417 		true_reg->var_off = true_64off;
8418 		__reg_combine_64_into_32(false_reg);
8419 		__reg_combine_64_into_32(true_reg);
8420 	}
8421 }
8422 
8423 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8424  * the variable reg.
8425  */
8426 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8427 				struct bpf_reg_state *false_reg,
8428 				u64 val, u32 val32,
8429 				u8 opcode, bool is_jmp32)
8430 {
8431 	opcode = flip_opcode(opcode);
8432 	/* This uses zero as "not present in table"; luckily the zero opcode,
8433 	 * BPF_JA, can't get here.
8434 	 */
8435 	if (opcode)
8436 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8437 }
8438 
8439 /* Regs are known to be equal, so intersect their min/max/var_off */
8440 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8441 				  struct bpf_reg_state *dst_reg)
8442 {
8443 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8444 							dst_reg->umin_value);
8445 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8446 							dst_reg->umax_value);
8447 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8448 							dst_reg->smin_value);
8449 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8450 							dst_reg->smax_value);
8451 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8452 							     dst_reg->var_off);
8453 	/* We might have learned new bounds from the var_off. */
8454 	__update_reg_bounds(src_reg);
8455 	__update_reg_bounds(dst_reg);
8456 	/* We might have learned something about the sign bit. */
8457 	__reg_deduce_bounds(src_reg);
8458 	__reg_deduce_bounds(dst_reg);
8459 	/* We might have learned some bits from the bounds. */
8460 	__reg_bound_offset(src_reg);
8461 	__reg_bound_offset(dst_reg);
8462 	/* Intersecting with the old var_off might have improved our bounds
8463 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8464 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8465 	 */
8466 	__update_reg_bounds(src_reg);
8467 	__update_reg_bounds(dst_reg);
8468 }
8469 
8470 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8471 				struct bpf_reg_state *true_dst,
8472 				struct bpf_reg_state *false_src,
8473 				struct bpf_reg_state *false_dst,
8474 				u8 opcode)
8475 {
8476 	switch (opcode) {
8477 	case BPF_JEQ:
8478 		__reg_combine_min_max(true_src, true_dst);
8479 		break;
8480 	case BPF_JNE:
8481 		__reg_combine_min_max(false_src, false_dst);
8482 		break;
8483 	}
8484 }
8485 
8486 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8487 				 struct bpf_reg_state *reg, u32 id,
8488 				 bool is_null)
8489 {
8490 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8491 	    !WARN_ON_ONCE(!reg->id)) {
8492 		/* Old offset (both fixed and variable parts) should
8493 		 * have been known-zero, because we don't allow pointer
8494 		 * arithmetic on pointers that might be NULL.
8495 		 */
8496 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8497 				 !tnum_equals_const(reg->var_off, 0) ||
8498 				 reg->off)) {
8499 			__mark_reg_known_zero(reg);
8500 			reg->off = 0;
8501 		}
8502 		if (is_null) {
8503 			reg->type = SCALAR_VALUE;
8504 			/* We don't need id and ref_obj_id from this point
8505 			 * onwards anymore, thus we should better reset it,
8506 			 * so that state pruning has chances to take effect.
8507 			 */
8508 			reg->id = 0;
8509 			reg->ref_obj_id = 0;
8510 
8511 			return;
8512 		}
8513 
8514 		mark_ptr_not_null_reg(reg);
8515 
8516 		if (!reg_may_point_to_spin_lock(reg)) {
8517 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8518 			 * in release_reg_references().
8519 			 *
8520 			 * reg->id is still used by spin_lock ptr. Other
8521 			 * than spin_lock ptr type, reg->id can be reset.
8522 			 */
8523 			reg->id = 0;
8524 		}
8525 	}
8526 }
8527 
8528 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8529 				    bool is_null)
8530 {
8531 	struct bpf_reg_state *reg;
8532 	int i;
8533 
8534 	for (i = 0; i < MAX_BPF_REG; i++)
8535 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8536 
8537 	bpf_for_each_spilled_reg(i, state, reg) {
8538 		if (!reg)
8539 			continue;
8540 		mark_ptr_or_null_reg(state, reg, id, is_null);
8541 	}
8542 }
8543 
8544 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8545  * be folded together at some point.
8546  */
8547 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8548 				  bool is_null)
8549 {
8550 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8551 	struct bpf_reg_state *regs = state->regs;
8552 	u32 ref_obj_id = regs[regno].ref_obj_id;
8553 	u32 id = regs[regno].id;
8554 	int i;
8555 
8556 	if (ref_obj_id && ref_obj_id == id && is_null)
8557 		/* regs[regno] is in the " == NULL" branch.
8558 		 * No one could have freed the reference state before
8559 		 * doing the NULL check.
8560 		 */
8561 		WARN_ON_ONCE(release_reference_state(state, id));
8562 
8563 	for (i = 0; i <= vstate->curframe; i++)
8564 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8565 }
8566 
8567 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8568 				   struct bpf_reg_state *dst_reg,
8569 				   struct bpf_reg_state *src_reg,
8570 				   struct bpf_verifier_state *this_branch,
8571 				   struct bpf_verifier_state *other_branch)
8572 {
8573 	if (BPF_SRC(insn->code) != BPF_X)
8574 		return false;
8575 
8576 	/* Pointers are always 64-bit. */
8577 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8578 		return false;
8579 
8580 	switch (BPF_OP(insn->code)) {
8581 	case BPF_JGT:
8582 		if ((dst_reg->type == PTR_TO_PACKET &&
8583 		     src_reg->type == PTR_TO_PACKET_END) ||
8584 		    (dst_reg->type == PTR_TO_PACKET_META &&
8585 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8586 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8587 			find_good_pkt_pointers(this_branch, dst_reg,
8588 					       dst_reg->type, false);
8589 			mark_pkt_end(other_branch, insn->dst_reg, true);
8590 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8591 			    src_reg->type == PTR_TO_PACKET) ||
8592 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8593 			    src_reg->type == PTR_TO_PACKET_META)) {
8594 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8595 			find_good_pkt_pointers(other_branch, src_reg,
8596 					       src_reg->type, true);
8597 			mark_pkt_end(this_branch, insn->src_reg, false);
8598 		} else {
8599 			return false;
8600 		}
8601 		break;
8602 	case BPF_JLT:
8603 		if ((dst_reg->type == PTR_TO_PACKET &&
8604 		     src_reg->type == PTR_TO_PACKET_END) ||
8605 		    (dst_reg->type == PTR_TO_PACKET_META &&
8606 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8607 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8608 			find_good_pkt_pointers(other_branch, dst_reg,
8609 					       dst_reg->type, true);
8610 			mark_pkt_end(this_branch, insn->dst_reg, false);
8611 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8612 			    src_reg->type == PTR_TO_PACKET) ||
8613 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8614 			    src_reg->type == PTR_TO_PACKET_META)) {
8615 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8616 			find_good_pkt_pointers(this_branch, src_reg,
8617 					       src_reg->type, false);
8618 			mark_pkt_end(other_branch, insn->src_reg, true);
8619 		} else {
8620 			return false;
8621 		}
8622 		break;
8623 	case BPF_JGE:
8624 		if ((dst_reg->type == PTR_TO_PACKET &&
8625 		     src_reg->type == PTR_TO_PACKET_END) ||
8626 		    (dst_reg->type == PTR_TO_PACKET_META &&
8627 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8628 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8629 			find_good_pkt_pointers(this_branch, dst_reg,
8630 					       dst_reg->type, true);
8631 			mark_pkt_end(other_branch, insn->dst_reg, false);
8632 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8633 			    src_reg->type == PTR_TO_PACKET) ||
8634 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8635 			    src_reg->type == PTR_TO_PACKET_META)) {
8636 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8637 			find_good_pkt_pointers(other_branch, src_reg,
8638 					       src_reg->type, false);
8639 			mark_pkt_end(this_branch, insn->src_reg, true);
8640 		} else {
8641 			return false;
8642 		}
8643 		break;
8644 	case BPF_JLE:
8645 		if ((dst_reg->type == PTR_TO_PACKET &&
8646 		     src_reg->type == PTR_TO_PACKET_END) ||
8647 		    (dst_reg->type == PTR_TO_PACKET_META &&
8648 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8649 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8650 			find_good_pkt_pointers(other_branch, dst_reg,
8651 					       dst_reg->type, false);
8652 			mark_pkt_end(this_branch, insn->dst_reg, true);
8653 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8654 			    src_reg->type == PTR_TO_PACKET) ||
8655 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8656 			    src_reg->type == PTR_TO_PACKET_META)) {
8657 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8658 			find_good_pkt_pointers(this_branch, src_reg,
8659 					       src_reg->type, true);
8660 			mark_pkt_end(other_branch, insn->src_reg, false);
8661 		} else {
8662 			return false;
8663 		}
8664 		break;
8665 	default:
8666 		return false;
8667 	}
8668 
8669 	return true;
8670 }
8671 
8672 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8673 			       struct bpf_reg_state *known_reg)
8674 {
8675 	struct bpf_func_state *state;
8676 	struct bpf_reg_state *reg;
8677 	int i, j;
8678 
8679 	for (i = 0; i <= vstate->curframe; i++) {
8680 		state = vstate->frame[i];
8681 		for (j = 0; j < MAX_BPF_REG; j++) {
8682 			reg = &state->regs[j];
8683 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8684 				*reg = *known_reg;
8685 		}
8686 
8687 		bpf_for_each_spilled_reg(j, state, reg) {
8688 			if (!reg)
8689 				continue;
8690 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8691 				*reg = *known_reg;
8692 		}
8693 	}
8694 }
8695 
8696 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8697 			     struct bpf_insn *insn, int *insn_idx)
8698 {
8699 	struct bpf_verifier_state *this_branch = env->cur_state;
8700 	struct bpf_verifier_state *other_branch;
8701 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8702 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8703 	u8 opcode = BPF_OP(insn->code);
8704 	bool is_jmp32;
8705 	int pred = -1;
8706 	int err;
8707 
8708 	/* Only conditional jumps are expected to reach here. */
8709 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8710 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8711 		return -EINVAL;
8712 	}
8713 
8714 	if (BPF_SRC(insn->code) == BPF_X) {
8715 		if (insn->imm != 0) {
8716 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8717 			return -EINVAL;
8718 		}
8719 
8720 		/* check src1 operand */
8721 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8722 		if (err)
8723 			return err;
8724 
8725 		if (is_pointer_value(env, insn->src_reg)) {
8726 			verbose(env, "R%d pointer comparison prohibited\n",
8727 				insn->src_reg);
8728 			return -EACCES;
8729 		}
8730 		src_reg = &regs[insn->src_reg];
8731 	} else {
8732 		if (insn->src_reg != BPF_REG_0) {
8733 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8734 			return -EINVAL;
8735 		}
8736 	}
8737 
8738 	/* check src2 operand */
8739 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8740 	if (err)
8741 		return err;
8742 
8743 	dst_reg = &regs[insn->dst_reg];
8744 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8745 
8746 	if (BPF_SRC(insn->code) == BPF_K) {
8747 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8748 	} else if (src_reg->type == SCALAR_VALUE &&
8749 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8750 		pred = is_branch_taken(dst_reg,
8751 				       tnum_subreg(src_reg->var_off).value,
8752 				       opcode,
8753 				       is_jmp32);
8754 	} else if (src_reg->type == SCALAR_VALUE &&
8755 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8756 		pred = is_branch_taken(dst_reg,
8757 				       src_reg->var_off.value,
8758 				       opcode,
8759 				       is_jmp32);
8760 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8761 		   reg_is_pkt_pointer_any(src_reg) &&
8762 		   !is_jmp32) {
8763 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8764 	}
8765 
8766 	if (pred >= 0) {
8767 		/* If we get here with a dst_reg pointer type it is because
8768 		 * above is_branch_taken() special cased the 0 comparison.
8769 		 */
8770 		if (!__is_pointer_value(false, dst_reg))
8771 			err = mark_chain_precision(env, insn->dst_reg);
8772 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8773 		    !__is_pointer_value(false, src_reg))
8774 			err = mark_chain_precision(env, insn->src_reg);
8775 		if (err)
8776 			return err;
8777 	}
8778 
8779 	if (pred == 1) {
8780 		/* Only follow the goto, ignore fall-through. If needed, push
8781 		 * the fall-through branch for simulation under speculative
8782 		 * execution.
8783 		 */
8784 		if (!env->bypass_spec_v1 &&
8785 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8786 					       *insn_idx))
8787 			return -EFAULT;
8788 		*insn_idx += insn->off;
8789 		return 0;
8790 	} else if (pred == 0) {
8791 		/* Only follow the fall-through branch, since that's where the
8792 		 * program will go. If needed, push the goto branch for
8793 		 * simulation under speculative execution.
8794 		 */
8795 		if (!env->bypass_spec_v1 &&
8796 		    !sanitize_speculative_path(env, insn,
8797 					       *insn_idx + insn->off + 1,
8798 					       *insn_idx))
8799 			return -EFAULT;
8800 		return 0;
8801 	}
8802 
8803 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8804 				  false);
8805 	if (!other_branch)
8806 		return -EFAULT;
8807 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8808 
8809 	/* detect if we are comparing against a constant value so we can adjust
8810 	 * our min/max values for our dst register.
8811 	 * this is only legit if both are scalars (or pointers to the same
8812 	 * object, I suppose, but we don't support that right now), because
8813 	 * otherwise the different base pointers mean the offsets aren't
8814 	 * comparable.
8815 	 */
8816 	if (BPF_SRC(insn->code) == BPF_X) {
8817 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8818 
8819 		if (dst_reg->type == SCALAR_VALUE &&
8820 		    src_reg->type == SCALAR_VALUE) {
8821 			if (tnum_is_const(src_reg->var_off) ||
8822 			    (is_jmp32 &&
8823 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8824 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8825 						dst_reg,
8826 						src_reg->var_off.value,
8827 						tnum_subreg(src_reg->var_off).value,
8828 						opcode, is_jmp32);
8829 			else if (tnum_is_const(dst_reg->var_off) ||
8830 				 (is_jmp32 &&
8831 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8832 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8833 						    src_reg,
8834 						    dst_reg->var_off.value,
8835 						    tnum_subreg(dst_reg->var_off).value,
8836 						    opcode, is_jmp32);
8837 			else if (!is_jmp32 &&
8838 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8839 				/* Comparing for equality, we can combine knowledge */
8840 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8841 						    &other_branch_regs[insn->dst_reg],
8842 						    src_reg, dst_reg, opcode);
8843 			if (src_reg->id &&
8844 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8845 				find_equal_scalars(this_branch, src_reg);
8846 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8847 			}
8848 
8849 		}
8850 	} else if (dst_reg->type == SCALAR_VALUE) {
8851 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8852 					dst_reg, insn->imm, (u32)insn->imm,
8853 					opcode, is_jmp32);
8854 	}
8855 
8856 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8857 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8858 		find_equal_scalars(this_branch, dst_reg);
8859 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8860 	}
8861 
8862 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8863 	 * NOTE: these optimizations below are related with pointer comparison
8864 	 *       which will never be JMP32.
8865 	 */
8866 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8867 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8868 	    reg_type_may_be_null(dst_reg->type)) {
8869 		/* Mark all identical registers in each branch as either
8870 		 * safe or unknown depending R == 0 or R != 0 conditional.
8871 		 */
8872 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8873 				      opcode == BPF_JNE);
8874 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8875 				      opcode == BPF_JEQ);
8876 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8877 					   this_branch, other_branch) &&
8878 		   is_pointer_value(env, insn->dst_reg)) {
8879 		verbose(env, "R%d pointer comparison prohibited\n",
8880 			insn->dst_reg);
8881 		return -EACCES;
8882 	}
8883 	if (env->log.level & BPF_LOG_LEVEL)
8884 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8885 	return 0;
8886 }
8887 
8888 /* verify BPF_LD_IMM64 instruction */
8889 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8890 {
8891 	struct bpf_insn_aux_data *aux = cur_aux(env);
8892 	struct bpf_reg_state *regs = cur_regs(env);
8893 	struct bpf_reg_state *dst_reg;
8894 	struct bpf_map *map;
8895 	int err;
8896 
8897 	if (BPF_SIZE(insn->code) != BPF_DW) {
8898 		verbose(env, "invalid BPF_LD_IMM insn\n");
8899 		return -EINVAL;
8900 	}
8901 	if (insn->off != 0) {
8902 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8903 		return -EINVAL;
8904 	}
8905 
8906 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8907 	if (err)
8908 		return err;
8909 
8910 	dst_reg = &regs[insn->dst_reg];
8911 	if (insn->src_reg == 0) {
8912 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8913 
8914 		dst_reg->type = SCALAR_VALUE;
8915 		__mark_reg_known(&regs[insn->dst_reg], imm);
8916 		return 0;
8917 	}
8918 
8919 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8920 		mark_reg_known_zero(env, regs, insn->dst_reg);
8921 
8922 		dst_reg->type = aux->btf_var.reg_type;
8923 		switch (dst_reg->type) {
8924 		case PTR_TO_MEM:
8925 			dst_reg->mem_size = aux->btf_var.mem_size;
8926 			break;
8927 		case PTR_TO_BTF_ID:
8928 		case PTR_TO_PERCPU_BTF_ID:
8929 			dst_reg->btf = aux->btf_var.btf;
8930 			dst_reg->btf_id = aux->btf_var.btf_id;
8931 			break;
8932 		default:
8933 			verbose(env, "bpf verifier is misconfigured\n");
8934 			return -EFAULT;
8935 		}
8936 		return 0;
8937 	}
8938 
8939 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8940 		struct bpf_prog_aux *aux = env->prog->aux;
8941 		u32 subprogno = insn[1].imm;
8942 
8943 		if (!aux->func_info) {
8944 			verbose(env, "missing btf func_info\n");
8945 			return -EINVAL;
8946 		}
8947 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8948 			verbose(env, "callback function not static\n");
8949 			return -EINVAL;
8950 		}
8951 
8952 		dst_reg->type = PTR_TO_FUNC;
8953 		dst_reg->subprogno = subprogno;
8954 		return 0;
8955 	}
8956 
8957 	map = env->used_maps[aux->map_index];
8958 	mark_reg_known_zero(env, regs, insn->dst_reg);
8959 	dst_reg->map_ptr = map;
8960 
8961 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8962 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8963 		dst_reg->type = PTR_TO_MAP_VALUE;
8964 		dst_reg->off = aux->map_off;
8965 		if (map_value_has_spin_lock(map))
8966 			dst_reg->id = ++env->id_gen;
8967 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8968 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8969 		dst_reg->type = CONST_PTR_TO_MAP;
8970 	} else {
8971 		verbose(env, "bpf verifier is misconfigured\n");
8972 		return -EINVAL;
8973 	}
8974 
8975 	return 0;
8976 }
8977 
8978 static bool may_access_skb(enum bpf_prog_type type)
8979 {
8980 	switch (type) {
8981 	case BPF_PROG_TYPE_SOCKET_FILTER:
8982 	case BPF_PROG_TYPE_SCHED_CLS:
8983 	case BPF_PROG_TYPE_SCHED_ACT:
8984 		return true;
8985 	default:
8986 		return false;
8987 	}
8988 }
8989 
8990 /* verify safety of LD_ABS|LD_IND instructions:
8991  * - they can only appear in the programs where ctx == skb
8992  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8993  *   preserve R6-R9, and store return value into R0
8994  *
8995  * Implicit input:
8996  *   ctx == skb == R6 == CTX
8997  *
8998  * Explicit input:
8999  *   SRC == any register
9000  *   IMM == 32-bit immediate
9001  *
9002  * Output:
9003  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9004  */
9005 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9006 {
9007 	struct bpf_reg_state *regs = cur_regs(env);
9008 	static const int ctx_reg = BPF_REG_6;
9009 	u8 mode = BPF_MODE(insn->code);
9010 	int i, err;
9011 
9012 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9013 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9014 		return -EINVAL;
9015 	}
9016 
9017 	if (!env->ops->gen_ld_abs) {
9018 		verbose(env, "bpf verifier is misconfigured\n");
9019 		return -EINVAL;
9020 	}
9021 
9022 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9023 	    BPF_SIZE(insn->code) == BPF_DW ||
9024 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9025 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9026 		return -EINVAL;
9027 	}
9028 
9029 	/* check whether implicit source operand (register R6) is readable */
9030 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9031 	if (err)
9032 		return err;
9033 
9034 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9035 	 * gen_ld_abs() may terminate the program at runtime, leading to
9036 	 * reference leak.
9037 	 */
9038 	err = check_reference_leak(env);
9039 	if (err) {
9040 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9041 		return err;
9042 	}
9043 
9044 	if (env->cur_state->active_spin_lock) {
9045 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9046 		return -EINVAL;
9047 	}
9048 
9049 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9050 		verbose(env,
9051 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9052 		return -EINVAL;
9053 	}
9054 
9055 	if (mode == BPF_IND) {
9056 		/* check explicit source operand */
9057 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9058 		if (err)
9059 			return err;
9060 	}
9061 
9062 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9063 	if (err < 0)
9064 		return err;
9065 
9066 	/* reset caller saved regs to unreadable */
9067 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9068 		mark_reg_not_init(env, regs, caller_saved[i]);
9069 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9070 	}
9071 
9072 	/* mark destination R0 register as readable, since it contains
9073 	 * the value fetched from the packet.
9074 	 * Already marked as written above.
9075 	 */
9076 	mark_reg_unknown(env, regs, BPF_REG_0);
9077 	/* ld_abs load up to 32-bit skb data. */
9078 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9079 	return 0;
9080 }
9081 
9082 static int check_return_code(struct bpf_verifier_env *env)
9083 {
9084 	struct tnum enforce_attach_type_range = tnum_unknown;
9085 	const struct bpf_prog *prog = env->prog;
9086 	struct bpf_reg_state *reg;
9087 	struct tnum range = tnum_range(0, 1);
9088 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9089 	int err;
9090 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
9091 
9092 	/* LSM and struct_ops func-ptr's return type could be "void" */
9093 	if (!is_subprog &&
9094 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9095 	     prog_type == BPF_PROG_TYPE_LSM) &&
9096 	    !prog->aux->attach_func_proto->type)
9097 		return 0;
9098 
9099 	/* eBPF calling convention is such that R0 is used
9100 	 * to return the value from eBPF program.
9101 	 * Make sure that it's readable at this time
9102 	 * of bpf_exit, which means that program wrote
9103 	 * something into it earlier
9104 	 */
9105 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9106 	if (err)
9107 		return err;
9108 
9109 	if (is_pointer_value(env, BPF_REG_0)) {
9110 		verbose(env, "R0 leaks addr as return value\n");
9111 		return -EACCES;
9112 	}
9113 
9114 	reg = cur_regs(env) + BPF_REG_0;
9115 	if (is_subprog) {
9116 		if (reg->type != SCALAR_VALUE) {
9117 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9118 				reg_type_str[reg->type]);
9119 			return -EINVAL;
9120 		}
9121 		return 0;
9122 	}
9123 
9124 	switch (prog_type) {
9125 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9126 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9127 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9128 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9129 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9130 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9131 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9132 			range = tnum_range(1, 1);
9133 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9134 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9135 			range = tnum_range(0, 3);
9136 		break;
9137 	case BPF_PROG_TYPE_CGROUP_SKB:
9138 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9139 			range = tnum_range(0, 3);
9140 			enforce_attach_type_range = tnum_range(2, 3);
9141 		}
9142 		break;
9143 	case BPF_PROG_TYPE_CGROUP_SOCK:
9144 	case BPF_PROG_TYPE_SOCK_OPS:
9145 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9146 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9147 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9148 		break;
9149 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9150 		if (!env->prog->aux->attach_btf_id)
9151 			return 0;
9152 		range = tnum_const(0);
9153 		break;
9154 	case BPF_PROG_TYPE_TRACING:
9155 		switch (env->prog->expected_attach_type) {
9156 		case BPF_TRACE_FENTRY:
9157 		case BPF_TRACE_FEXIT:
9158 			range = tnum_const(0);
9159 			break;
9160 		case BPF_TRACE_RAW_TP:
9161 		case BPF_MODIFY_RETURN:
9162 			return 0;
9163 		case BPF_TRACE_ITER:
9164 			break;
9165 		default:
9166 			return -ENOTSUPP;
9167 		}
9168 		break;
9169 	case BPF_PROG_TYPE_SK_LOOKUP:
9170 		range = tnum_range(SK_DROP, SK_PASS);
9171 		break;
9172 	case BPF_PROG_TYPE_EXT:
9173 		/* freplace program can return anything as its return value
9174 		 * depends on the to-be-replaced kernel func or bpf program.
9175 		 */
9176 	default:
9177 		return 0;
9178 	}
9179 
9180 	if (reg->type != SCALAR_VALUE) {
9181 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9182 			reg_type_str[reg->type]);
9183 		return -EINVAL;
9184 	}
9185 
9186 	if (!tnum_in(range, reg->var_off)) {
9187 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9188 		return -EINVAL;
9189 	}
9190 
9191 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9192 	    tnum_in(enforce_attach_type_range, reg->var_off))
9193 		env->prog->enforce_expected_attach_type = 1;
9194 	return 0;
9195 }
9196 
9197 /* non-recursive DFS pseudo code
9198  * 1  procedure DFS-iterative(G,v):
9199  * 2      label v as discovered
9200  * 3      let S be a stack
9201  * 4      S.push(v)
9202  * 5      while S is not empty
9203  * 6            t <- S.pop()
9204  * 7            if t is what we're looking for:
9205  * 8                return t
9206  * 9            for all edges e in G.adjacentEdges(t) do
9207  * 10               if edge e is already labelled
9208  * 11                   continue with the next edge
9209  * 12               w <- G.adjacentVertex(t,e)
9210  * 13               if vertex w is not discovered and not explored
9211  * 14                   label e as tree-edge
9212  * 15                   label w as discovered
9213  * 16                   S.push(w)
9214  * 17                   continue at 5
9215  * 18               else if vertex w is discovered
9216  * 19                   label e as back-edge
9217  * 20               else
9218  * 21                   // vertex w is explored
9219  * 22                   label e as forward- or cross-edge
9220  * 23           label t as explored
9221  * 24           S.pop()
9222  *
9223  * convention:
9224  * 0x10 - discovered
9225  * 0x11 - discovered and fall-through edge labelled
9226  * 0x12 - discovered and fall-through and branch edges labelled
9227  * 0x20 - explored
9228  */
9229 
9230 enum {
9231 	DISCOVERED = 0x10,
9232 	EXPLORED = 0x20,
9233 	FALLTHROUGH = 1,
9234 	BRANCH = 2,
9235 };
9236 
9237 static u32 state_htab_size(struct bpf_verifier_env *env)
9238 {
9239 	return env->prog->len;
9240 }
9241 
9242 static struct bpf_verifier_state_list **explored_state(
9243 					struct bpf_verifier_env *env,
9244 					int idx)
9245 {
9246 	struct bpf_verifier_state *cur = env->cur_state;
9247 	struct bpf_func_state *state = cur->frame[cur->curframe];
9248 
9249 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9250 }
9251 
9252 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9253 {
9254 	env->insn_aux_data[idx].prune_point = true;
9255 }
9256 
9257 enum {
9258 	DONE_EXPLORING = 0,
9259 	KEEP_EXPLORING = 1,
9260 };
9261 
9262 /* t, w, e - match pseudo-code above:
9263  * t - index of current instruction
9264  * w - next instruction
9265  * e - edge
9266  */
9267 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9268 		     bool loop_ok)
9269 {
9270 	int *insn_stack = env->cfg.insn_stack;
9271 	int *insn_state = env->cfg.insn_state;
9272 
9273 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9274 		return DONE_EXPLORING;
9275 
9276 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9277 		return DONE_EXPLORING;
9278 
9279 	if (w < 0 || w >= env->prog->len) {
9280 		verbose_linfo(env, t, "%d: ", t);
9281 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9282 		return -EINVAL;
9283 	}
9284 
9285 	if (e == BRANCH)
9286 		/* mark branch target for state pruning */
9287 		init_explored_state(env, w);
9288 
9289 	if (insn_state[w] == 0) {
9290 		/* tree-edge */
9291 		insn_state[t] = DISCOVERED | e;
9292 		insn_state[w] = DISCOVERED;
9293 		if (env->cfg.cur_stack >= env->prog->len)
9294 			return -E2BIG;
9295 		insn_stack[env->cfg.cur_stack++] = w;
9296 		return KEEP_EXPLORING;
9297 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9298 		if (loop_ok && env->bpf_capable)
9299 			return DONE_EXPLORING;
9300 		verbose_linfo(env, t, "%d: ", t);
9301 		verbose_linfo(env, w, "%d: ", w);
9302 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9303 		return -EINVAL;
9304 	} else if (insn_state[w] == EXPLORED) {
9305 		/* forward- or cross-edge */
9306 		insn_state[t] = DISCOVERED | e;
9307 	} else {
9308 		verbose(env, "insn state internal bug\n");
9309 		return -EFAULT;
9310 	}
9311 	return DONE_EXPLORING;
9312 }
9313 
9314 static int visit_func_call_insn(int t, int insn_cnt,
9315 				struct bpf_insn *insns,
9316 				struct bpf_verifier_env *env,
9317 				bool visit_callee)
9318 {
9319 	int ret;
9320 
9321 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9322 	if (ret)
9323 		return ret;
9324 
9325 	if (t + 1 < insn_cnt)
9326 		init_explored_state(env, t + 1);
9327 	if (visit_callee) {
9328 		init_explored_state(env, t);
9329 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9330 				env, false);
9331 	}
9332 	return ret;
9333 }
9334 
9335 /* Visits the instruction at index t and returns one of the following:
9336  *  < 0 - an error occurred
9337  *  DONE_EXPLORING - the instruction was fully explored
9338  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9339  */
9340 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9341 {
9342 	struct bpf_insn *insns = env->prog->insnsi;
9343 	int ret;
9344 
9345 	if (bpf_pseudo_func(insns + t))
9346 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9347 
9348 	/* All non-branch instructions have a single fall-through edge. */
9349 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9350 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9351 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9352 
9353 	switch (BPF_OP(insns[t].code)) {
9354 	case BPF_EXIT:
9355 		return DONE_EXPLORING;
9356 
9357 	case BPF_CALL:
9358 		return visit_func_call_insn(t, insn_cnt, insns, env,
9359 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9360 
9361 	case BPF_JA:
9362 		if (BPF_SRC(insns[t].code) != BPF_K)
9363 			return -EINVAL;
9364 
9365 		/* unconditional jump with single edge */
9366 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9367 				true);
9368 		if (ret)
9369 			return ret;
9370 
9371 		/* unconditional jmp is not a good pruning point,
9372 		 * but it's marked, since backtracking needs
9373 		 * to record jmp history in is_state_visited().
9374 		 */
9375 		init_explored_state(env, t + insns[t].off + 1);
9376 		/* tell verifier to check for equivalent states
9377 		 * after every call and jump
9378 		 */
9379 		if (t + 1 < insn_cnt)
9380 			init_explored_state(env, t + 1);
9381 
9382 		return ret;
9383 
9384 	default:
9385 		/* conditional jump with two edges */
9386 		init_explored_state(env, t);
9387 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9388 		if (ret)
9389 			return ret;
9390 
9391 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9392 	}
9393 }
9394 
9395 /* non-recursive depth-first-search to detect loops in BPF program
9396  * loop == back-edge in directed graph
9397  */
9398 static int check_cfg(struct bpf_verifier_env *env)
9399 {
9400 	int insn_cnt = env->prog->len;
9401 	int *insn_stack, *insn_state;
9402 	int ret = 0;
9403 	int i;
9404 
9405 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9406 	if (!insn_state)
9407 		return -ENOMEM;
9408 
9409 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9410 	if (!insn_stack) {
9411 		kvfree(insn_state);
9412 		return -ENOMEM;
9413 	}
9414 
9415 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9416 	insn_stack[0] = 0; /* 0 is the first instruction */
9417 	env->cfg.cur_stack = 1;
9418 
9419 	while (env->cfg.cur_stack > 0) {
9420 		int t = insn_stack[env->cfg.cur_stack - 1];
9421 
9422 		ret = visit_insn(t, insn_cnt, env);
9423 		switch (ret) {
9424 		case DONE_EXPLORING:
9425 			insn_state[t] = EXPLORED;
9426 			env->cfg.cur_stack--;
9427 			break;
9428 		case KEEP_EXPLORING:
9429 			break;
9430 		default:
9431 			if (ret > 0) {
9432 				verbose(env, "visit_insn internal bug\n");
9433 				ret = -EFAULT;
9434 			}
9435 			goto err_free;
9436 		}
9437 	}
9438 
9439 	if (env->cfg.cur_stack < 0) {
9440 		verbose(env, "pop stack internal bug\n");
9441 		ret = -EFAULT;
9442 		goto err_free;
9443 	}
9444 
9445 	for (i = 0; i < insn_cnt; i++) {
9446 		if (insn_state[i] != EXPLORED) {
9447 			verbose(env, "unreachable insn %d\n", i);
9448 			ret = -EINVAL;
9449 			goto err_free;
9450 		}
9451 	}
9452 	ret = 0; /* cfg looks good */
9453 
9454 err_free:
9455 	kvfree(insn_state);
9456 	kvfree(insn_stack);
9457 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9458 	return ret;
9459 }
9460 
9461 static int check_abnormal_return(struct bpf_verifier_env *env)
9462 {
9463 	int i;
9464 
9465 	for (i = 1; i < env->subprog_cnt; i++) {
9466 		if (env->subprog_info[i].has_ld_abs) {
9467 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9468 			return -EINVAL;
9469 		}
9470 		if (env->subprog_info[i].has_tail_call) {
9471 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9472 			return -EINVAL;
9473 		}
9474 	}
9475 	return 0;
9476 }
9477 
9478 /* The minimum supported BTF func info size */
9479 #define MIN_BPF_FUNCINFO_SIZE	8
9480 #define MAX_FUNCINFO_REC_SIZE	252
9481 
9482 static int check_btf_func(struct bpf_verifier_env *env,
9483 			  const union bpf_attr *attr,
9484 			  bpfptr_t uattr)
9485 {
9486 	const struct btf_type *type, *func_proto, *ret_type;
9487 	u32 i, nfuncs, urec_size, min_size;
9488 	u32 krec_size = sizeof(struct bpf_func_info);
9489 	struct bpf_func_info *krecord;
9490 	struct bpf_func_info_aux *info_aux = NULL;
9491 	struct bpf_prog *prog;
9492 	const struct btf *btf;
9493 	bpfptr_t urecord;
9494 	u32 prev_offset = 0;
9495 	bool scalar_return;
9496 	int ret = -ENOMEM;
9497 
9498 	nfuncs = attr->func_info_cnt;
9499 	if (!nfuncs) {
9500 		if (check_abnormal_return(env))
9501 			return -EINVAL;
9502 		return 0;
9503 	}
9504 
9505 	if (nfuncs != env->subprog_cnt) {
9506 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9507 		return -EINVAL;
9508 	}
9509 
9510 	urec_size = attr->func_info_rec_size;
9511 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9512 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9513 	    urec_size % sizeof(u32)) {
9514 		verbose(env, "invalid func info rec size %u\n", urec_size);
9515 		return -EINVAL;
9516 	}
9517 
9518 	prog = env->prog;
9519 	btf = prog->aux->btf;
9520 
9521 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9522 	min_size = min_t(u32, krec_size, urec_size);
9523 
9524 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9525 	if (!krecord)
9526 		return -ENOMEM;
9527 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9528 	if (!info_aux)
9529 		goto err_free;
9530 
9531 	for (i = 0; i < nfuncs; i++) {
9532 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9533 		if (ret) {
9534 			if (ret == -E2BIG) {
9535 				verbose(env, "nonzero tailing record in func info");
9536 				/* set the size kernel expects so loader can zero
9537 				 * out the rest of the record.
9538 				 */
9539 				if (copy_to_bpfptr_offset(uattr,
9540 							  offsetof(union bpf_attr, func_info_rec_size),
9541 							  &min_size, sizeof(min_size)))
9542 					ret = -EFAULT;
9543 			}
9544 			goto err_free;
9545 		}
9546 
9547 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9548 			ret = -EFAULT;
9549 			goto err_free;
9550 		}
9551 
9552 		/* check insn_off */
9553 		ret = -EINVAL;
9554 		if (i == 0) {
9555 			if (krecord[i].insn_off) {
9556 				verbose(env,
9557 					"nonzero insn_off %u for the first func info record",
9558 					krecord[i].insn_off);
9559 				goto err_free;
9560 			}
9561 		} else if (krecord[i].insn_off <= prev_offset) {
9562 			verbose(env,
9563 				"same or smaller insn offset (%u) than previous func info record (%u)",
9564 				krecord[i].insn_off, prev_offset);
9565 			goto err_free;
9566 		}
9567 
9568 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9569 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9570 			goto err_free;
9571 		}
9572 
9573 		/* check type_id */
9574 		type = btf_type_by_id(btf, krecord[i].type_id);
9575 		if (!type || !btf_type_is_func(type)) {
9576 			verbose(env, "invalid type id %d in func info",
9577 				krecord[i].type_id);
9578 			goto err_free;
9579 		}
9580 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9581 
9582 		func_proto = btf_type_by_id(btf, type->type);
9583 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9584 			/* btf_func_check() already verified it during BTF load */
9585 			goto err_free;
9586 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9587 		scalar_return =
9588 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9589 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9590 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9591 			goto err_free;
9592 		}
9593 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9594 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9595 			goto err_free;
9596 		}
9597 
9598 		prev_offset = krecord[i].insn_off;
9599 		bpfptr_add(&urecord, urec_size);
9600 	}
9601 
9602 	prog->aux->func_info = krecord;
9603 	prog->aux->func_info_cnt = nfuncs;
9604 	prog->aux->func_info_aux = info_aux;
9605 	return 0;
9606 
9607 err_free:
9608 	kvfree(krecord);
9609 	kfree(info_aux);
9610 	return ret;
9611 }
9612 
9613 static void adjust_btf_func(struct bpf_verifier_env *env)
9614 {
9615 	struct bpf_prog_aux *aux = env->prog->aux;
9616 	int i;
9617 
9618 	if (!aux->func_info)
9619 		return;
9620 
9621 	for (i = 0; i < env->subprog_cnt; i++)
9622 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9623 }
9624 
9625 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9626 		sizeof(((struct bpf_line_info *)(0))->line_col))
9627 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9628 
9629 static int check_btf_line(struct bpf_verifier_env *env,
9630 			  const union bpf_attr *attr,
9631 			  bpfptr_t uattr)
9632 {
9633 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9634 	struct bpf_subprog_info *sub;
9635 	struct bpf_line_info *linfo;
9636 	struct bpf_prog *prog;
9637 	const struct btf *btf;
9638 	bpfptr_t ulinfo;
9639 	int err;
9640 
9641 	nr_linfo = attr->line_info_cnt;
9642 	if (!nr_linfo)
9643 		return 0;
9644 
9645 	rec_size = attr->line_info_rec_size;
9646 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9647 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9648 	    rec_size & (sizeof(u32) - 1))
9649 		return -EINVAL;
9650 
9651 	/* Need to zero it in case the userspace may
9652 	 * pass in a smaller bpf_line_info object.
9653 	 */
9654 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9655 			 GFP_KERNEL | __GFP_NOWARN);
9656 	if (!linfo)
9657 		return -ENOMEM;
9658 
9659 	prog = env->prog;
9660 	btf = prog->aux->btf;
9661 
9662 	s = 0;
9663 	sub = env->subprog_info;
9664 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9665 	expected_size = sizeof(struct bpf_line_info);
9666 	ncopy = min_t(u32, expected_size, rec_size);
9667 	for (i = 0; i < nr_linfo; i++) {
9668 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9669 		if (err) {
9670 			if (err == -E2BIG) {
9671 				verbose(env, "nonzero tailing record in line_info");
9672 				if (copy_to_bpfptr_offset(uattr,
9673 							  offsetof(union bpf_attr, line_info_rec_size),
9674 							  &expected_size, sizeof(expected_size)))
9675 					err = -EFAULT;
9676 			}
9677 			goto err_free;
9678 		}
9679 
9680 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9681 			err = -EFAULT;
9682 			goto err_free;
9683 		}
9684 
9685 		/*
9686 		 * Check insn_off to ensure
9687 		 * 1) strictly increasing AND
9688 		 * 2) bounded by prog->len
9689 		 *
9690 		 * The linfo[0].insn_off == 0 check logically falls into
9691 		 * the later "missing bpf_line_info for func..." case
9692 		 * because the first linfo[0].insn_off must be the
9693 		 * first sub also and the first sub must have
9694 		 * subprog_info[0].start == 0.
9695 		 */
9696 		if ((i && linfo[i].insn_off <= prev_offset) ||
9697 		    linfo[i].insn_off >= prog->len) {
9698 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9699 				i, linfo[i].insn_off, prev_offset,
9700 				prog->len);
9701 			err = -EINVAL;
9702 			goto err_free;
9703 		}
9704 
9705 		if (!prog->insnsi[linfo[i].insn_off].code) {
9706 			verbose(env,
9707 				"Invalid insn code at line_info[%u].insn_off\n",
9708 				i);
9709 			err = -EINVAL;
9710 			goto err_free;
9711 		}
9712 
9713 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9714 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9715 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9716 			err = -EINVAL;
9717 			goto err_free;
9718 		}
9719 
9720 		if (s != env->subprog_cnt) {
9721 			if (linfo[i].insn_off == sub[s].start) {
9722 				sub[s].linfo_idx = i;
9723 				s++;
9724 			} else if (sub[s].start < linfo[i].insn_off) {
9725 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9726 				err = -EINVAL;
9727 				goto err_free;
9728 			}
9729 		}
9730 
9731 		prev_offset = linfo[i].insn_off;
9732 		bpfptr_add(&ulinfo, rec_size);
9733 	}
9734 
9735 	if (s != env->subprog_cnt) {
9736 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9737 			env->subprog_cnt - s, s);
9738 		err = -EINVAL;
9739 		goto err_free;
9740 	}
9741 
9742 	prog->aux->linfo = linfo;
9743 	prog->aux->nr_linfo = nr_linfo;
9744 
9745 	return 0;
9746 
9747 err_free:
9748 	kvfree(linfo);
9749 	return err;
9750 }
9751 
9752 static int check_btf_info(struct bpf_verifier_env *env,
9753 			  const union bpf_attr *attr,
9754 			  bpfptr_t uattr)
9755 {
9756 	struct btf *btf;
9757 	int err;
9758 
9759 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9760 		if (check_abnormal_return(env))
9761 			return -EINVAL;
9762 		return 0;
9763 	}
9764 
9765 	btf = btf_get_by_fd(attr->prog_btf_fd);
9766 	if (IS_ERR(btf))
9767 		return PTR_ERR(btf);
9768 	if (btf_is_kernel(btf)) {
9769 		btf_put(btf);
9770 		return -EACCES;
9771 	}
9772 	env->prog->aux->btf = btf;
9773 
9774 	err = check_btf_func(env, attr, uattr);
9775 	if (err)
9776 		return err;
9777 
9778 	err = check_btf_line(env, attr, uattr);
9779 	if (err)
9780 		return err;
9781 
9782 	return 0;
9783 }
9784 
9785 /* check %cur's range satisfies %old's */
9786 static bool range_within(struct bpf_reg_state *old,
9787 			 struct bpf_reg_state *cur)
9788 {
9789 	return old->umin_value <= cur->umin_value &&
9790 	       old->umax_value >= cur->umax_value &&
9791 	       old->smin_value <= cur->smin_value &&
9792 	       old->smax_value >= cur->smax_value &&
9793 	       old->u32_min_value <= cur->u32_min_value &&
9794 	       old->u32_max_value >= cur->u32_max_value &&
9795 	       old->s32_min_value <= cur->s32_min_value &&
9796 	       old->s32_max_value >= cur->s32_max_value;
9797 }
9798 
9799 /* If in the old state two registers had the same id, then they need to have
9800  * the same id in the new state as well.  But that id could be different from
9801  * the old state, so we need to track the mapping from old to new ids.
9802  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9803  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9804  * regs with a different old id could still have new id 9, we don't care about
9805  * that.
9806  * So we look through our idmap to see if this old id has been seen before.  If
9807  * so, we require the new id to match; otherwise, we add the id pair to the map.
9808  */
9809 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9810 {
9811 	unsigned int i;
9812 
9813 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9814 		if (!idmap[i].old) {
9815 			/* Reached an empty slot; haven't seen this id before */
9816 			idmap[i].old = old_id;
9817 			idmap[i].cur = cur_id;
9818 			return true;
9819 		}
9820 		if (idmap[i].old == old_id)
9821 			return idmap[i].cur == cur_id;
9822 	}
9823 	/* We ran out of idmap slots, which should be impossible */
9824 	WARN_ON_ONCE(1);
9825 	return false;
9826 }
9827 
9828 static void clean_func_state(struct bpf_verifier_env *env,
9829 			     struct bpf_func_state *st)
9830 {
9831 	enum bpf_reg_liveness live;
9832 	int i, j;
9833 
9834 	for (i = 0; i < BPF_REG_FP; i++) {
9835 		live = st->regs[i].live;
9836 		/* liveness must not touch this register anymore */
9837 		st->regs[i].live |= REG_LIVE_DONE;
9838 		if (!(live & REG_LIVE_READ))
9839 			/* since the register is unused, clear its state
9840 			 * to make further comparison simpler
9841 			 */
9842 			__mark_reg_not_init(env, &st->regs[i]);
9843 	}
9844 
9845 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9846 		live = st->stack[i].spilled_ptr.live;
9847 		/* liveness must not touch this stack slot anymore */
9848 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9849 		if (!(live & REG_LIVE_READ)) {
9850 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9851 			for (j = 0; j < BPF_REG_SIZE; j++)
9852 				st->stack[i].slot_type[j] = STACK_INVALID;
9853 		}
9854 	}
9855 }
9856 
9857 static void clean_verifier_state(struct bpf_verifier_env *env,
9858 				 struct bpf_verifier_state *st)
9859 {
9860 	int i;
9861 
9862 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9863 		/* all regs in this state in all frames were already marked */
9864 		return;
9865 
9866 	for (i = 0; i <= st->curframe; i++)
9867 		clean_func_state(env, st->frame[i]);
9868 }
9869 
9870 /* the parentage chains form a tree.
9871  * the verifier states are added to state lists at given insn and
9872  * pushed into state stack for future exploration.
9873  * when the verifier reaches bpf_exit insn some of the verifer states
9874  * stored in the state lists have their final liveness state already,
9875  * but a lot of states will get revised from liveness point of view when
9876  * the verifier explores other branches.
9877  * Example:
9878  * 1: r0 = 1
9879  * 2: if r1 == 100 goto pc+1
9880  * 3: r0 = 2
9881  * 4: exit
9882  * when the verifier reaches exit insn the register r0 in the state list of
9883  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9884  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9885  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9886  *
9887  * Since the verifier pushes the branch states as it sees them while exploring
9888  * the program the condition of walking the branch instruction for the second
9889  * time means that all states below this branch were already explored and
9890  * their final liveness marks are already propagated.
9891  * Hence when the verifier completes the search of state list in is_state_visited()
9892  * we can call this clean_live_states() function to mark all liveness states
9893  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9894  * will not be used.
9895  * This function also clears the registers and stack for states that !READ
9896  * to simplify state merging.
9897  *
9898  * Important note here that walking the same branch instruction in the callee
9899  * doesn't meant that the states are DONE. The verifier has to compare
9900  * the callsites
9901  */
9902 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9903 			      struct bpf_verifier_state *cur)
9904 {
9905 	struct bpf_verifier_state_list *sl;
9906 	int i;
9907 
9908 	sl = *explored_state(env, insn);
9909 	while (sl) {
9910 		if (sl->state.branches)
9911 			goto next;
9912 		if (sl->state.insn_idx != insn ||
9913 		    sl->state.curframe != cur->curframe)
9914 			goto next;
9915 		for (i = 0; i <= cur->curframe; i++)
9916 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9917 				goto next;
9918 		clean_verifier_state(env, &sl->state);
9919 next:
9920 		sl = sl->next;
9921 	}
9922 }
9923 
9924 /* Returns true if (rold safe implies rcur safe) */
9925 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9926 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9927 {
9928 	bool equal;
9929 
9930 	if (!(rold->live & REG_LIVE_READ))
9931 		/* explored state didn't use this */
9932 		return true;
9933 
9934 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9935 
9936 	if (rold->type == PTR_TO_STACK)
9937 		/* two stack pointers are equal only if they're pointing to
9938 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9939 		 */
9940 		return equal && rold->frameno == rcur->frameno;
9941 
9942 	if (equal)
9943 		return true;
9944 
9945 	if (rold->type == NOT_INIT)
9946 		/* explored state can't have used this */
9947 		return true;
9948 	if (rcur->type == NOT_INIT)
9949 		return false;
9950 	switch (rold->type) {
9951 	case SCALAR_VALUE:
9952 		if (env->explore_alu_limits)
9953 			return false;
9954 		if (rcur->type == SCALAR_VALUE) {
9955 			if (!rold->precise && !rcur->precise)
9956 				return true;
9957 			/* new val must satisfy old val knowledge */
9958 			return range_within(rold, rcur) &&
9959 			       tnum_in(rold->var_off, rcur->var_off);
9960 		} else {
9961 			/* We're trying to use a pointer in place of a scalar.
9962 			 * Even if the scalar was unbounded, this could lead to
9963 			 * pointer leaks because scalars are allowed to leak
9964 			 * while pointers are not. We could make this safe in
9965 			 * special cases if root is calling us, but it's
9966 			 * probably not worth the hassle.
9967 			 */
9968 			return false;
9969 		}
9970 	case PTR_TO_MAP_KEY:
9971 	case PTR_TO_MAP_VALUE:
9972 		/* If the new min/max/var_off satisfy the old ones and
9973 		 * everything else matches, we are OK.
9974 		 * 'id' is not compared, since it's only used for maps with
9975 		 * bpf_spin_lock inside map element and in such cases if
9976 		 * the rest of the prog is valid for one map element then
9977 		 * it's valid for all map elements regardless of the key
9978 		 * used in bpf_map_lookup()
9979 		 */
9980 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9981 		       range_within(rold, rcur) &&
9982 		       tnum_in(rold->var_off, rcur->var_off);
9983 	case PTR_TO_MAP_VALUE_OR_NULL:
9984 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9985 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9986 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9987 		 * checked, doing so could have affected others with the same
9988 		 * id, and we can't check for that because we lost the id when
9989 		 * we converted to a PTR_TO_MAP_VALUE.
9990 		 */
9991 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9992 			return false;
9993 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9994 			return false;
9995 		/* Check our ids match any regs they're supposed to */
9996 		return check_ids(rold->id, rcur->id, idmap);
9997 	case PTR_TO_PACKET_META:
9998 	case PTR_TO_PACKET:
9999 		if (rcur->type != rold->type)
10000 			return false;
10001 		/* We must have at least as much range as the old ptr
10002 		 * did, so that any accesses which were safe before are
10003 		 * still safe.  This is true even if old range < old off,
10004 		 * since someone could have accessed through (ptr - k), or
10005 		 * even done ptr -= k in a register, to get a safe access.
10006 		 */
10007 		if (rold->range > rcur->range)
10008 			return false;
10009 		/* If the offsets don't match, we can't trust our alignment;
10010 		 * nor can we be sure that we won't fall out of range.
10011 		 */
10012 		if (rold->off != rcur->off)
10013 			return false;
10014 		/* id relations must be preserved */
10015 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10016 			return false;
10017 		/* new val must satisfy old val knowledge */
10018 		return range_within(rold, rcur) &&
10019 		       tnum_in(rold->var_off, rcur->var_off);
10020 	case PTR_TO_CTX:
10021 	case CONST_PTR_TO_MAP:
10022 	case PTR_TO_PACKET_END:
10023 	case PTR_TO_FLOW_KEYS:
10024 	case PTR_TO_SOCKET:
10025 	case PTR_TO_SOCKET_OR_NULL:
10026 	case PTR_TO_SOCK_COMMON:
10027 	case PTR_TO_SOCK_COMMON_OR_NULL:
10028 	case PTR_TO_TCP_SOCK:
10029 	case PTR_TO_TCP_SOCK_OR_NULL:
10030 	case PTR_TO_XDP_SOCK:
10031 		/* Only valid matches are exact, which memcmp() above
10032 		 * would have accepted
10033 		 */
10034 	default:
10035 		/* Don't know what's going on, just say it's not safe */
10036 		return false;
10037 	}
10038 
10039 	/* Shouldn't get here; if we do, say it's not safe */
10040 	WARN_ON_ONCE(1);
10041 	return false;
10042 }
10043 
10044 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10045 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10046 {
10047 	int i, spi;
10048 
10049 	/* walk slots of the explored stack and ignore any additional
10050 	 * slots in the current stack, since explored(safe) state
10051 	 * didn't use them
10052 	 */
10053 	for (i = 0; i < old->allocated_stack; i++) {
10054 		spi = i / BPF_REG_SIZE;
10055 
10056 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10057 			i += BPF_REG_SIZE - 1;
10058 			/* explored state didn't use this */
10059 			continue;
10060 		}
10061 
10062 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10063 			continue;
10064 
10065 		/* explored stack has more populated slots than current stack
10066 		 * and these slots were used
10067 		 */
10068 		if (i >= cur->allocated_stack)
10069 			return false;
10070 
10071 		/* if old state was safe with misc data in the stack
10072 		 * it will be safe with zero-initialized stack.
10073 		 * The opposite is not true
10074 		 */
10075 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10076 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10077 			continue;
10078 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10079 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10080 			/* Ex: old explored (safe) state has STACK_SPILL in
10081 			 * this stack slot, but current has STACK_MISC ->
10082 			 * this verifier states are not equivalent,
10083 			 * return false to continue verification of this path
10084 			 */
10085 			return false;
10086 		if (i % BPF_REG_SIZE)
10087 			continue;
10088 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10089 			continue;
10090 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10091 			     &cur->stack[spi].spilled_ptr, idmap))
10092 			/* when explored and current stack slot are both storing
10093 			 * spilled registers, check that stored pointers types
10094 			 * are the same as well.
10095 			 * Ex: explored safe path could have stored
10096 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10097 			 * but current path has stored:
10098 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10099 			 * such verifier states are not equivalent.
10100 			 * return false to continue verification of this path
10101 			 */
10102 			return false;
10103 	}
10104 	return true;
10105 }
10106 
10107 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10108 {
10109 	if (old->acquired_refs != cur->acquired_refs)
10110 		return false;
10111 	return !memcmp(old->refs, cur->refs,
10112 		       sizeof(*old->refs) * old->acquired_refs);
10113 }
10114 
10115 /* compare two verifier states
10116  *
10117  * all states stored in state_list are known to be valid, since
10118  * verifier reached 'bpf_exit' instruction through them
10119  *
10120  * this function is called when verifier exploring different branches of
10121  * execution popped from the state stack. If it sees an old state that has
10122  * more strict register state and more strict stack state then this execution
10123  * branch doesn't need to be explored further, since verifier already
10124  * concluded that more strict state leads to valid finish.
10125  *
10126  * Therefore two states are equivalent if register state is more conservative
10127  * and explored stack state is more conservative than the current one.
10128  * Example:
10129  *       explored                   current
10130  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10131  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10132  *
10133  * In other words if current stack state (one being explored) has more
10134  * valid slots than old one that already passed validation, it means
10135  * the verifier can stop exploring and conclude that current state is valid too
10136  *
10137  * Similarly with registers. If explored state has register type as invalid
10138  * whereas register type in current state is meaningful, it means that
10139  * the current state will reach 'bpf_exit' instruction safely
10140  */
10141 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10142 			      struct bpf_func_state *cur)
10143 {
10144 	int i;
10145 
10146 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10147 	for (i = 0; i < MAX_BPF_REG; i++)
10148 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10149 			     env->idmap_scratch))
10150 			return false;
10151 
10152 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10153 		return false;
10154 
10155 	if (!refsafe(old, cur))
10156 		return false;
10157 
10158 	return true;
10159 }
10160 
10161 static bool states_equal(struct bpf_verifier_env *env,
10162 			 struct bpf_verifier_state *old,
10163 			 struct bpf_verifier_state *cur)
10164 {
10165 	int i;
10166 
10167 	if (old->curframe != cur->curframe)
10168 		return false;
10169 
10170 	/* Verification state from speculative execution simulation
10171 	 * must never prune a non-speculative execution one.
10172 	 */
10173 	if (old->speculative && !cur->speculative)
10174 		return false;
10175 
10176 	if (old->active_spin_lock != cur->active_spin_lock)
10177 		return false;
10178 
10179 	/* for states to be equal callsites have to be the same
10180 	 * and all frame states need to be equivalent
10181 	 */
10182 	for (i = 0; i <= old->curframe; i++) {
10183 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10184 			return false;
10185 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10186 			return false;
10187 	}
10188 	return true;
10189 }
10190 
10191 /* Return 0 if no propagation happened. Return negative error code if error
10192  * happened. Otherwise, return the propagated bit.
10193  */
10194 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10195 				  struct bpf_reg_state *reg,
10196 				  struct bpf_reg_state *parent_reg)
10197 {
10198 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10199 	u8 flag = reg->live & REG_LIVE_READ;
10200 	int err;
10201 
10202 	/* When comes here, read flags of PARENT_REG or REG could be any of
10203 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10204 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10205 	 */
10206 	if (parent_flag == REG_LIVE_READ64 ||
10207 	    /* Or if there is no read flag from REG. */
10208 	    !flag ||
10209 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10210 	    parent_flag == flag)
10211 		return 0;
10212 
10213 	err = mark_reg_read(env, reg, parent_reg, flag);
10214 	if (err)
10215 		return err;
10216 
10217 	return flag;
10218 }
10219 
10220 /* A write screens off any subsequent reads; but write marks come from the
10221  * straight-line code between a state and its parent.  When we arrive at an
10222  * equivalent state (jump target or such) we didn't arrive by the straight-line
10223  * code, so read marks in the state must propagate to the parent regardless
10224  * of the state's write marks. That's what 'parent == state->parent' comparison
10225  * in mark_reg_read() is for.
10226  */
10227 static int propagate_liveness(struct bpf_verifier_env *env,
10228 			      const struct bpf_verifier_state *vstate,
10229 			      struct bpf_verifier_state *vparent)
10230 {
10231 	struct bpf_reg_state *state_reg, *parent_reg;
10232 	struct bpf_func_state *state, *parent;
10233 	int i, frame, err = 0;
10234 
10235 	if (vparent->curframe != vstate->curframe) {
10236 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10237 		     vparent->curframe, vstate->curframe);
10238 		return -EFAULT;
10239 	}
10240 	/* Propagate read liveness of registers... */
10241 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10242 	for (frame = 0; frame <= vstate->curframe; frame++) {
10243 		parent = vparent->frame[frame];
10244 		state = vstate->frame[frame];
10245 		parent_reg = parent->regs;
10246 		state_reg = state->regs;
10247 		/* We don't need to worry about FP liveness, it's read-only */
10248 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10249 			err = propagate_liveness_reg(env, &state_reg[i],
10250 						     &parent_reg[i]);
10251 			if (err < 0)
10252 				return err;
10253 			if (err == REG_LIVE_READ64)
10254 				mark_insn_zext(env, &parent_reg[i]);
10255 		}
10256 
10257 		/* Propagate stack slots. */
10258 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10259 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10260 			parent_reg = &parent->stack[i].spilled_ptr;
10261 			state_reg = &state->stack[i].spilled_ptr;
10262 			err = propagate_liveness_reg(env, state_reg,
10263 						     parent_reg);
10264 			if (err < 0)
10265 				return err;
10266 		}
10267 	}
10268 	return 0;
10269 }
10270 
10271 /* find precise scalars in the previous equivalent state and
10272  * propagate them into the current state
10273  */
10274 static int propagate_precision(struct bpf_verifier_env *env,
10275 			       const struct bpf_verifier_state *old)
10276 {
10277 	struct bpf_reg_state *state_reg;
10278 	struct bpf_func_state *state;
10279 	int i, err = 0;
10280 
10281 	state = old->frame[old->curframe];
10282 	state_reg = state->regs;
10283 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10284 		if (state_reg->type != SCALAR_VALUE ||
10285 		    !state_reg->precise)
10286 			continue;
10287 		if (env->log.level & BPF_LOG_LEVEL2)
10288 			verbose(env, "propagating r%d\n", i);
10289 		err = mark_chain_precision(env, i);
10290 		if (err < 0)
10291 			return err;
10292 	}
10293 
10294 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10295 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10296 			continue;
10297 		state_reg = &state->stack[i].spilled_ptr;
10298 		if (state_reg->type != SCALAR_VALUE ||
10299 		    !state_reg->precise)
10300 			continue;
10301 		if (env->log.level & BPF_LOG_LEVEL2)
10302 			verbose(env, "propagating fp%d\n",
10303 				(-i - 1) * BPF_REG_SIZE);
10304 		err = mark_chain_precision_stack(env, i);
10305 		if (err < 0)
10306 			return err;
10307 	}
10308 	return 0;
10309 }
10310 
10311 static bool states_maybe_looping(struct bpf_verifier_state *old,
10312 				 struct bpf_verifier_state *cur)
10313 {
10314 	struct bpf_func_state *fold, *fcur;
10315 	int i, fr = cur->curframe;
10316 
10317 	if (old->curframe != fr)
10318 		return false;
10319 
10320 	fold = old->frame[fr];
10321 	fcur = cur->frame[fr];
10322 	for (i = 0; i < MAX_BPF_REG; i++)
10323 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10324 			   offsetof(struct bpf_reg_state, parent)))
10325 			return false;
10326 	return true;
10327 }
10328 
10329 
10330 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10331 {
10332 	struct bpf_verifier_state_list *new_sl;
10333 	struct bpf_verifier_state_list *sl, **pprev;
10334 	struct bpf_verifier_state *cur = env->cur_state, *new;
10335 	int i, j, err, states_cnt = 0;
10336 	bool add_new_state = env->test_state_freq ? true : false;
10337 
10338 	cur->last_insn_idx = env->prev_insn_idx;
10339 	if (!env->insn_aux_data[insn_idx].prune_point)
10340 		/* this 'insn_idx' instruction wasn't marked, so we will not
10341 		 * be doing state search here
10342 		 */
10343 		return 0;
10344 
10345 	/* bpf progs typically have pruning point every 4 instructions
10346 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10347 	 * Do not add new state for future pruning if the verifier hasn't seen
10348 	 * at least 2 jumps and at least 8 instructions.
10349 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10350 	 * In tests that amounts to up to 50% reduction into total verifier
10351 	 * memory consumption and 20% verifier time speedup.
10352 	 */
10353 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10354 	    env->insn_processed - env->prev_insn_processed >= 8)
10355 		add_new_state = true;
10356 
10357 	pprev = explored_state(env, insn_idx);
10358 	sl = *pprev;
10359 
10360 	clean_live_states(env, insn_idx, cur);
10361 
10362 	while (sl) {
10363 		states_cnt++;
10364 		if (sl->state.insn_idx != insn_idx)
10365 			goto next;
10366 		if (sl->state.branches) {
10367 			if (states_maybe_looping(&sl->state, cur) &&
10368 			    states_equal(env, &sl->state, cur)) {
10369 				verbose_linfo(env, insn_idx, "; ");
10370 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10371 				return -EINVAL;
10372 			}
10373 			/* if the verifier is processing a loop, avoid adding new state
10374 			 * too often, since different loop iterations have distinct
10375 			 * states and may not help future pruning.
10376 			 * This threshold shouldn't be too low to make sure that
10377 			 * a loop with large bound will be rejected quickly.
10378 			 * The most abusive loop will be:
10379 			 * r1 += 1
10380 			 * if r1 < 1000000 goto pc-2
10381 			 * 1M insn_procssed limit / 100 == 10k peak states.
10382 			 * This threshold shouldn't be too high either, since states
10383 			 * at the end of the loop are likely to be useful in pruning.
10384 			 */
10385 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10386 			    env->insn_processed - env->prev_insn_processed < 100)
10387 				add_new_state = false;
10388 			goto miss;
10389 		}
10390 		if (states_equal(env, &sl->state, cur)) {
10391 			sl->hit_cnt++;
10392 			/* reached equivalent register/stack state,
10393 			 * prune the search.
10394 			 * Registers read by the continuation are read by us.
10395 			 * If we have any write marks in env->cur_state, they
10396 			 * will prevent corresponding reads in the continuation
10397 			 * from reaching our parent (an explored_state).  Our
10398 			 * own state will get the read marks recorded, but
10399 			 * they'll be immediately forgotten as we're pruning
10400 			 * this state and will pop a new one.
10401 			 */
10402 			err = propagate_liveness(env, &sl->state, cur);
10403 
10404 			/* if previous state reached the exit with precision and
10405 			 * current state is equivalent to it (except precsion marks)
10406 			 * the precision needs to be propagated back in
10407 			 * the current state.
10408 			 */
10409 			err = err ? : push_jmp_history(env, cur);
10410 			err = err ? : propagate_precision(env, &sl->state);
10411 			if (err)
10412 				return err;
10413 			return 1;
10414 		}
10415 miss:
10416 		/* when new state is not going to be added do not increase miss count.
10417 		 * Otherwise several loop iterations will remove the state
10418 		 * recorded earlier. The goal of these heuristics is to have
10419 		 * states from some iterations of the loop (some in the beginning
10420 		 * and some at the end) to help pruning.
10421 		 */
10422 		if (add_new_state)
10423 			sl->miss_cnt++;
10424 		/* heuristic to determine whether this state is beneficial
10425 		 * to keep checking from state equivalence point of view.
10426 		 * Higher numbers increase max_states_per_insn and verification time,
10427 		 * but do not meaningfully decrease insn_processed.
10428 		 */
10429 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10430 			/* the state is unlikely to be useful. Remove it to
10431 			 * speed up verification
10432 			 */
10433 			*pprev = sl->next;
10434 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10435 				u32 br = sl->state.branches;
10436 
10437 				WARN_ONCE(br,
10438 					  "BUG live_done but branches_to_explore %d\n",
10439 					  br);
10440 				free_verifier_state(&sl->state, false);
10441 				kfree(sl);
10442 				env->peak_states--;
10443 			} else {
10444 				/* cannot free this state, since parentage chain may
10445 				 * walk it later. Add it for free_list instead to
10446 				 * be freed at the end of verification
10447 				 */
10448 				sl->next = env->free_list;
10449 				env->free_list = sl;
10450 			}
10451 			sl = *pprev;
10452 			continue;
10453 		}
10454 next:
10455 		pprev = &sl->next;
10456 		sl = *pprev;
10457 	}
10458 
10459 	if (env->max_states_per_insn < states_cnt)
10460 		env->max_states_per_insn = states_cnt;
10461 
10462 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10463 		return push_jmp_history(env, cur);
10464 
10465 	if (!add_new_state)
10466 		return push_jmp_history(env, cur);
10467 
10468 	/* There were no equivalent states, remember the current one.
10469 	 * Technically the current state is not proven to be safe yet,
10470 	 * but it will either reach outer most bpf_exit (which means it's safe)
10471 	 * or it will be rejected. When there are no loops the verifier won't be
10472 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10473 	 * again on the way to bpf_exit.
10474 	 * When looping the sl->state.branches will be > 0 and this state
10475 	 * will not be considered for equivalence until branches == 0.
10476 	 */
10477 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10478 	if (!new_sl)
10479 		return -ENOMEM;
10480 	env->total_states++;
10481 	env->peak_states++;
10482 	env->prev_jmps_processed = env->jmps_processed;
10483 	env->prev_insn_processed = env->insn_processed;
10484 
10485 	/* add new state to the head of linked list */
10486 	new = &new_sl->state;
10487 	err = copy_verifier_state(new, cur);
10488 	if (err) {
10489 		free_verifier_state(new, false);
10490 		kfree(new_sl);
10491 		return err;
10492 	}
10493 	new->insn_idx = insn_idx;
10494 	WARN_ONCE(new->branches != 1,
10495 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10496 
10497 	cur->parent = new;
10498 	cur->first_insn_idx = insn_idx;
10499 	clear_jmp_history(cur);
10500 	new_sl->next = *explored_state(env, insn_idx);
10501 	*explored_state(env, insn_idx) = new_sl;
10502 	/* connect new state to parentage chain. Current frame needs all
10503 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10504 	 * to the stack implicitly by JITs) so in callers' frames connect just
10505 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10506 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10507 	 * from callee with its full parentage chain, anyway.
10508 	 */
10509 	/* clear write marks in current state: the writes we did are not writes
10510 	 * our child did, so they don't screen off its reads from us.
10511 	 * (There are no read marks in current state, because reads always mark
10512 	 * their parent and current state never has children yet.  Only
10513 	 * explored_states can get read marks.)
10514 	 */
10515 	for (j = 0; j <= cur->curframe; j++) {
10516 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10517 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10518 		for (i = 0; i < BPF_REG_FP; i++)
10519 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10520 	}
10521 
10522 	/* all stack frames are accessible from callee, clear them all */
10523 	for (j = 0; j <= cur->curframe; j++) {
10524 		struct bpf_func_state *frame = cur->frame[j];
10525 		struct bpf_func_state *newframe = new->frame[j];
10526 
10527 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10528 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10529 			frame->stack[i].spilled_ptr.parent =
10530 						&newframe->stack[i].spilled_ptr;
10531 		}
10532 	}
10533 	return 0;
10534 }
10535 
10536 /* Return true if it's OK to have the same insn return a different type. */
10537 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10538 {
10539 	switch (type) {
10540 	case PTR_TO_CTX:
10541 	case PTR_TO_SOCKET:
10542 	case PTR_TO_SOCKET_OR_NULL:
10543 	case PTR_TO_SOCK_COMMON:
10544 	case PTR_TO_SOCK_COMMON_OR_NULL:
10545 	case PTR_TO_TCP_SOCK:
10546 	case PTR_TO_TCP_SOCK_OR_NULL:
10547 	case PTR_TO_XDP_SOCK:
10548 	case PTR_TO_BTF_ID:
10549 	case PTR_TO_BTF_ID_OR_NULL:
10550 		return false;
10551 	default:
10552 		return true;
10553 	}
10554 }
10555 
10556 /* If an instruction was previously used with particular pointer types, then we
10557  * need to be careful to avoid cases such as the below, where it may be ok
10558  * for one branch accessing the pointer, but not ok for the other branch:
10559  *
10560  * R1 = sock_ptr
10561  * goto X;
10562  * ...
10563  * R1 = some_other_valid_ptr;
10564  * goto X;
10565  * ...
10566  * R2 = *(u32 *)(R1 + 0);
10567  */
10568 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10569 {
10570 	return src != prev && (!reg_type_mismatch_ok(src) ||
10571 			       !reg_type_mismatch_ok(prev));
10572 }
10573 
10574 static int do_check(struct bpf_verifier_env *env)
10575 {
10576 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10577 	struct bpf_verifier_state *state = env->cur_state;
10578 	struct bpf_insn *insns = env->prog->insnsi;
10579 	struct bpf_reg_state *regs;
10580 	int insn_cnt = env->prog->len;
10581 	bool do_print_state = false;
10582 	int prev_insn_idx = -1;
10583 
10584 	for (;;) {
10585 		struct bpf_insn *insn;
10586 		u8 class;
10587 		int err;
10588 
10589 		env->prev_insn_idx = prev_insn_idx;
10590 		if (env->insn_idx >= insn_cnt) {
10591 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10592 				env->insn_idx, insn_cnt);
10593 			return -EFAULT;
10594 		}
10595 
10596 		insn = &insns[env->insn_idx];
10597 		class = BPF_CLASS(insn->code);
10598 
10599 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10600 			verbose(env,
10601 				"BPF program is too large. Processed %d insn\n",
10602 				env->insn_processed);
10603 			return -E2BIG;
10604 		}
10605 
10606 		err = is_state_visited(env, env->insn_idx);
10607 		if (err < 0)
10608 			return err;
10609 		if (err == 1) {
10610 			/* found equivalent state, can prune the search */
10611 			if (env->log.level & BPF_LOG_LEVEL) {
10612 				if (do_print_state)
10613 					verbose(env, "\nfrom %d to %d%s: safe\n",
10614 						env->prev_insn_idx, env->insn_idx,
10615 						env->cur_state->speculative ?
10616 						" (speculative execution)" : "");
10617 				else
10618 					verbose(env, "%d: safe\n", env->insn_idx);
10619 			}
10620 			goto process_bpf_exit;
10621 		}
10622 
10623 		if (signal_pending(current))
10624 			return -EAGAIN;
10625 
10626 		if (need_resched())
10627 			cond_resched();
10628 
10629 		if (env->log.level & BPF_LOG_LEVEL2 ||
10630 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10631 			if (env->log.level & BPF_LOG_LEVEL2)
10632 				verbose(env, "%d:", env->insn_idx);
10633 			else
10634 				verbose(env, "\nfrom %d to %d%s:",
10635 					env->prev_insn_idx, env->insn_idx,
10636 					env->cur_state->speculative ?
10637 					" (speculative execution)" : "");
10638 			print_verifier_state(env, state->frame[state->curframe]);
10639 			do_print_state = false;
10640 		}
10641 
10642 		if (env->log.level & BPF_LOG_LEVEL) {
10643 			const struct bpf_insn_cbs cbs = {
10644 				.cb_call	= disasm_kfunc_name,
10645 				.cb_print	= verbose,
10646 				.private_data	= env,
10647 			};
10648 
10649 			verbose_linfo(env, env->insn_idx, "; ");
10650 			verbose(env, "%d: ", env->insn_idx);
10651 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10652 		}
10653 
10654 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10655 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10656 							   env->prev_insn_idx);
10657 			if (err)
10658 				return err;
10659 		}
10660 
10661 		regs = cur_regs(env);
10662 		sanitize_mark_insn_seen(env);
10663 		prev_insn_idx = env->insn_idx;
10664 
10665 		if (class == BPF_ALU || class == BPF_ALU64) {
10666 			err = check_alu_op(env, insn);
10667 			if (err)
10668 				return err;
10669 
10670 		} else if (class == BPF_LDX) {
10671 			enum bpf_reg_type *prev_src_type, src_reg_type;
10672 
10673 			/* check for reserved fields is already done */
10674 
10675 			/* check src operand */
10676 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10677 			if (err)
10678 				return err;
10679 
10680 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10681 			if (err)
10682 				return err;
10683 
10684 			src_reg_type = regs[insn->src_reg].type;
10685 
10686 			/* check that memory (src_reg + off) is readable,
10687 			 * the state of dst_reg will be updated by this func
10688 			 */
10689 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10690 					       insn->off, BPF_SIZE(insn->code),
10691 					       BPF_READ, insn->dst_reg, false);
10692 			if (err)
10693 				return err;
10694 
10695 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10696 
10697 			if (*prev_src_type == NOT_INIT) {
10698 				/* saw a valid insn
10699 				 * dst_reg = *(u32 *)(src_reg + off)
10700 				 * save type to validate intersecting paths
10701 				 */
10702 				*prev_src_type = src_reg_type;
10703 
10704 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10705 				/* ABuser program is trying to use the same insn
10706 				 * dst_reg = *(u32*) (src_reg + off)
10707 				 * with different pointer types:
10708 				 * src_reg == ctx in one branch and
10709 				 * src_reg == stack|map in some other branch.
10710 				 * Reject it.
10711 				 */
10712 				verbose(env, "same insn cannot be used with different pointers\n");
10713 				return -EINVAL;
10714 			}
10715 
10716 		} else if (class == BPF_STX) {
10717 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10718 
10719 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10720 				err = check_atomic(env, env->insn_idx, insn);
10721 				if (err)
10722 					return err;
10723 				env->insn_idx++;
10724 				continue;
10725 			}
10726 
10727 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10728 				verbose(env, "BPF_STX uses reserved fields\n");
10729 				return -EINVAL;
10730 			}
10731 
10732 			/* check src1 operand */
10733 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10734 			if (err)
10735 				return err;
10736 			/* check src2 operand */
10737 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10738 			if (err)
10739 				return err;
10740 
10741 			dst_reg_type = regs[insn->dst_reg].type;
10742 
10743 			/* check that memory (dst_reg + off) is writeable */
10744 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10745 					       insn->off, BPF_SIZE(insn->code),
10746 					       BPF_WRITE, insn->src_reg, false);
10747 			if (err)
10748 				return err;
10749 
10750 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10751 
10752 			if (*prev_dst_type == NOT_INIT) {
10753 				*prev_dst_type = dst_reg_type;
10754 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10755 				verbose(env, "same insn cannot be used with different pointers\n");
10756 				return -EINVAL;
10757 			}
10758 
10759 		} else if (class == BPF_ST) {
10760 			if (BPF_MODE(insn->code) != BPF_MEM ||
10761 			    insn->src_reg != BPF_REG_0) {
10762 				verbose(env, "BPF_ST uses reserved fields\n");
10763 				return -EINVAL;
10764 			}
10765 			/* check src operand */
10766 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10767 			if (err)
10768 				return err;
10769 
10770 			if (is_ctx_reg(env, insn->dst_reg)) {
10771 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10772 					insn->dst_reg,
10773 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10774 				return -EACCES;
10775 			}
10776 
10777 			/* check that memory (dst_reg + off) is writeable */
10778 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10779 					       insn->off, BPF_SIZE(insn->code),
10780 					       BPF_WRITE, -1, false);
10781 			if (err)
10782 				return err;
10783 
10784 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10785 			u8 opcode = BPF_OP(insn->code);
10786 
10787 			env->jmps_processed++;
10788 			if (opcode == BPF_CALL) {
10789 				if (BPF_SRC(insn->code) != BPF_K ||
10790 				    insn->off != 0 ||
10791 				    (insn->src_reg != BPF_REG_0 &&
10792 				     insn->src_reg != BPF_PSEUDO_CALL &&
10793 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10794 				    insn->dst_reg != BPF_REG_0 ||
10795 				    class == BPF_JMP32) {
10796 					verbose(env, "BPF_CALL uses reserved fields\n");
10797 					return -EINVAL;
10798 				}
10799 
10800 				if (env->cur_state->active_spin_lock &&
10801 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10802 				     insn->imm != BPF_FUNC_spin_unlock)) {
10803 					verbose(env, "function calls are not allowed while holding a lock\n");
10804 					return -EINVAL;
10805 				}
10806 				if (insn->src_reg == BPF_PSEUDO_CALL)
10807 					err = check_func_call(env, insn, &env->insn_idx);
10808 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10809 					err = check_kfunc_call(env, insn);
10810 				else
10811 					err = check_helper_call(env, insn, &env->insn_idx);
10812 				if (err)
10813 					return err;
10814 			} else if (opcode == BPF_JA) {
10815 				if (BPF_SRC(insn->code) != BPF_K ||
10816 				    insn->imm != 0 ||
10817 				    insn->src_reg != BPF_REG_0 ||
10818 				    insn->dst_reg != BPF_REG_0 ||
10819 				    class == BPF_JMP32) {
10820 					verbose(env, "BPF_JA uses reserved fields\n");
10821 					return -EINVAL;
10822 				}
10823 
10824 				env->insn_idx += insn->off + 1;
10825 				continue;
10826 
10827 			} else if (opcode == BPF_EXIT) {
10828 				if (BPF_SRC(insn->code) != BPF_K ||
10829 				    insn->imm != 0 ||
10830 				    insn->src_reg != BPF_REG_0 ||
10831 				    insn->dst_reg != BPF_REG_0 ||
10832 				    class == BPF_JMP32) {
10833 					verbose(env, "BPF_EXIT uses reserved fields\n");
10834 					return -EINVAL;
10835 				}
10836 
10837 				if (env->cur_state->active_spin_lock) {
10838 					verbose(env, "bpf_spin_unlock is missing\n");
10839 					return -EINVAL;
10840 				}
10841 
10842 				if (state->curframe) {
10843 					/* exit from nested function */
10844 					err = prepare_func_exit(env, &env->insn_idx);
10845 					if (err)
10846 						return err;
10847 					do_print_state = true;
10848 					continue;
10849 				}
10850 
10851 				err = check_reference_leak(env);
10852 				if (err)
10853 					return err;
10854 
10855 				err = check_return_code(env);
10856 				if (err)
10857 					return err;
10858 process_bpf_exit:
10859 				update_branch_counts(env, env->cur_state);
10860 				err = pop_stack(env, &prev_insn_idx,
10861 						&env->insn_idx, pop_log);
10862 				if (err < 0) {
10863 					if (err != -ENOENT)
10864 						return err;
10865 					break;
10866 				} else {
10867 					do_print_state = true;
10868 					continue;
10869 				}
10870 			} else {
10871 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10872 				if (err)
10873 					return err;
10874 			}
10875 		} else if (class == BPF_LD) {
10876 			u8 mode = BPF_MODE(insn->code);
10877 
10878 			if (mode == BPF_ABS || mode == BPF_IND) {
10879 				err = check_ld_abs(env, insn);
10880 				if (err)
10881 					return err;
10882 
10883 			} else if (mode == BPF_IMM) {
10884 				err = check_ld_imm(env, insn);
10885 				if (err)
10886 					return err;
10887 
10888 				env->insn_idx++;
10889 				sanitize_mark_insn_seen(env);
10890 			} else {
10891 				verbose(env, "invalid BPF_LD mode\n");
10892 				return -EINVAL;
10893 			}
10894 		} else {
10895 			verbose(env, "unknown insn class %d\n", class);
10896 			return -EINVAL;
10897 		}
10898 
10899 		env->insn_idx++;
10900 	}
10901 
10902 	return 0;
10903 }
10904 
10905 static int find_btf_percpu_datasec(struct btf *btf)
10906 {
10907 	const struct btf_type *t;
10908 	const char *tname;
10909 	int i, n;
10910 
10911 	/*
10912 	 * Both vmlinux and module each have their own ".data..percpu"
10913 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10914 	 * types to look at only module's own BTF types.
10915 	 */
10916 	n = btf_nr_types(btf);
10917 	if (btf_is_module(btf))
10918 		i = btf_nr_types(btf_vmlinux);
10919 	else
10920 		i = 1;
10921 
10922 	for(; i < n; i++) {
10923 		t = btf_type_by_id(btf, i);
10924 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10925 			continue;
10926 
10927 		tname = btf_name_by_offset(btf, t->name_off);
10928 		if (!strcmp(tname, ".data..percpu"))
10929 			return i;
10930 	}
10931 
10932 	return -ENOENT;
10933 }
10934 
10935 /* replace pseudo btf_id with kernel symbol address */
10936 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10937 			       struct bpf_insn *insn,
10938 			       struct bpf_insn_aux_data *aux)
10939 {
10940 	const struct btf_var_secinfo *vsi;
10941 	const struct btf_type *datasec;
10942 	struct btf_mod_pair *btf_mod;
10943 	const struct btf_type *t;
10944 	const char *sym_name;
10945 	bool percpu = false;
10946 	u32 type, id = insn->imm;
10947 	struct btf *btf;
10948 	s32 datasec_id;
10949 	u64 addr;
10950 	int i, btf_fd, err;
10951 
10952 	btf_fd = insn[1].imm;
10953 	if (btf_fd) {
10954 		btf = btf_get_by_fd(btf_fd);
10955 		if (IS_ERR(btf)) {
10956 			verbose(env, "invalid module BTF object FD specified.\n");
10957 			return -EINVAL;
10958 		}
10959 	} else {
10960 		if (!btf_vmlinux) {
10961 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10962 			return -EINVAL;
10963 		}
10964 		btf = btf_vmlinux;
10965 		btf_get(btf);
10966 	}
10967 
10968 	t = btf_type_by_id(btf, id);
10969 	if (!t) {
10970 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10971 		err = -ENOENT;
10972 		goto err_put;
10973 	}
10974 
10975 	if (!btf_type_is_var(t)) {
10976 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10977 		err = -EINVAL;
10978 		goto err_put;
10979 	}
10980 
10981 	sym_name = btf_name_by_offset(btf, t->name_off);
10982 	addr = kallsyms_lookup_name(sym_name);
10983 	if (!addr) {
10984 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10985 			sym_name);
10986 		err = -ENOENT;
10987 		goto err_put;
10988 	}
10989 
10990 	datasec_id = find_btf_percpu_datasec(btf);
10991 	if (datasec_id > 0) {
10992 		datasec = btf_type_by_id(btf, datasec_id);
10993 		for_each_vsi(i, datasec, vsi) {
10994 			if (vsi->type == id) {
10995 				percpu = true;
10996 				break;
10997 			}
10998 		}
10999 	}
11000 
11001 	insn[0].imm = (u32)addr;
11002 	insn[1].imm = addr >> 32;
11003 
11004 	type = t->type;
11005 	t = btf_type_skip_modifiers(btf, type, NULL);
11006 	if (percpu) {
11007 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11008 		aux->btf_var.btf = btf;
11009 		aux->btf_var.btf_id = type;
11010 	} else if (!btf_type_is_struct(t)) {
11011 		const struct btf_type *ret;
11012 		const char *tname;
11013 		u32 tsize;
11014 
11015 		/* resolve the type size of ksym. */
11016 		ret = btf_resolve_size(btf, t, &tsize);
11017 		if (IS_ERR(ret)) {
11018 			tname = btf_name_by_offset(btf, t->name_off);
11019 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11020 				tname, PTR_ERR(ret));
11021 			err = -EINVAL;
11022 			goto err_put;
11023 		}
11024 		aux->btf_var.reg_type = PTR_TO_MEM;
11025 		aux->btf_var.mem_size = tsize;
11026 	} else {
11027 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11028 		aux->btf_var.btf = btf;
11029 		aux->btf_var.btf_id = type;
11030 	}
11031 
11032 	/* check whether we recorded this BTF (and maybe module) already */
11033 	for (i = 0; i < env->used_btf_cnt; i++) {
11034 		if (env->used_btfs[i].btf == btf) {
11035 			btf_put(btf);
11036 			return 0;
11037 		}
11038 	}
11039 
11040 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11041 		err = -E2BIG;
11042 		goto err_put;
11043 	}
11044 
11045 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11046 	btf_mod->btf = btf;
11047 	btf_mod->module = NULL;
11048 
11049 	/* if we reference variables from kernel module, bump its refcount */
11050 	if (btf_is_module(btf)) {
11051 		btf_mod->module = btf_try_get_module(btf);
11052 		if (!btf_mod->module) {
11053 			err = -ENXIO;
11054 			goto err_put;
11055 		}
11056 	}
11057 
11058 	env->used_btf_cnt++;
11059 
11060 	return 0;
11061 err_put:
11062 	btf_put(btf);
11063 	return err;
11064 }
11065 
11066 static int check_map_prealloc(struct bpf_map *map)
11067 {
11068 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11069 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11070 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11071 		!(map->map_flags & BPF_F_NO_PREALLOC);
11072 }
11073 
11074 static bool is_tracing_prog_type(enum bpf_prog_type type)
11075 {
11076 	switch (type) {
11077 	case BPF_PROG_TYPE_KPROBE:
11078 	case BPF_PROG_TYPE_TRACEPOINT:
11079 	case BPF_PROG_TYPE_PERF_EVENT:
11080 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11081 		return true;
11082 	default:
11083 		return false;
11084 	}
11085 }
11086 
11087 static bool is_preallocated_map(struct bpf_map *map)
11088 {
11089 	if (!check_map_prealloc(map))
11090 		return false;
11091 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11092 		return false;
11093 	return true;
11094 }
11095 
11096 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11097 					struct bpf_map *map,
11098 					struct bpf_prog *prog)
11099 
11100 {
11101 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11102 	/*
11103 	 * Validate that trace type programs use preallocated hash maps.
11104 	 *
11105 	 * For programs attached to PERF events this is mandatory as the
11106 	 * perf NMI can hit any arbitrary code sequence.
11107 	 *
11108 	 * All other trace types using preallocated hash maps are unsafe as
11109 	 * well because tracepoint or kprobes can be inside locked regions
11110 	 * of the memory allocator or at a place where a recursion into the
11111 	 * memory allocator would see inconsistent state.
11112 	 *
11113 	 * On RT enabled kernels run-time allocation of all trace type
11114 	 * programs is strictly prohibited due to lock type constraints. On
11115 	 * !RT kernels it is allowed for backwards compatibility reasons for
11116 	 * now, but warnings are emitted so developers are made aware of
11117 	 * the unsafety and can fix their programs before this is enforced.
11118 	 */
11119 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11120 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11121 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11122 			return -EINVAL;
11123 		}
11124 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11125 			verbose(env, "trace type programs can only use preallocated hash map\n");
11126 			return -EINVAL;
11127 		}
11128 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11129 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11130 	}
11131 
11132 	if (map_value_has_spin_lock(map)) {
11133 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11134 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11135 			return -EINVAL;
11136 		}
11137 
11138 		if (is_tracing_prog_type(prog_type)) {
11139 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11140 			return -EINVAL;
11141 		}
11142 
11143 		if (prog->aux->sleepable) {
11144 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11145 			return -EINVAL;
11146 		}
11147 	}
11148 
11149 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11150 	    !bpf_offload_prog_map_match(prog, map)) {
11151 		verbose(env, "offload device mismatch between prog and map\n");
11152 		return -EINVAL;
11153 	}
11154 
11155 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11156 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11157 		return -EINVAL;
11158 	}
11159 
11160 	if (prog->aux->sleepable)
11161 		switch (map->map_type) {
11162 		case BPF_MAP_TYPE_HASH:
11163 		case BPF_MAP_TYPE_LRU_HASH:
11164 		case BPF_MAP_TYPE_ARRAY:
11165 		case BPF_MAP_TYPE_PERCPU_HASH:
11166 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11167 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11168 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11169 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11170 			if (!is_preallocated_map(map)) {
11171 				verbose(env,
11172 					"Sleepable programs can only use preallocated maps\n");
11173 				return -EINVAL;
11174 			}
11175 			break;
11176 		case BPF_MAP_TYPE_RINGBUF:
11177 			break;
11178 		default:
11179 			verbose(env,
11180 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11181 			return -EINVAL;
11182 		}
11183 
11184 	return 0;
11185 }
11186 
11187 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11188 {
11189 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11190 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11191 }
11192 
11193 /* find and rewrite pseudo imm in ld_imm64 instructions:
11194  *
11195  * 1. if it accesses map FD, replace it with actual map pointer.
11196  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11197  *
11198  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11199  */
11200 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11201 {
11202 	struct bpf_insn *insn = env->prog->insnsi;
11203 	int insn_cnt = env->prog->len;
11204 	int i, j, err;
11205 
11206 	err = bpf_prog_calc_tag(env->prog);
11207 	if (err)
11208 		return err;
11209 
11210 	for (i = 0; i < insn_cnt; i++, insn++) {
11211 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11212 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11213 			verbose(env, "BPF_LDX uses reserved fields\n");
11214 			return -EINVAL;
11215 		}
11216 
11217 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11218 			struct bpf_insn_aux_data *aux;
11219 			struct bpf_map *map;
11220 			struct fd f;
11221 			u64 addr;
11222 			u32 fd;
11223 
11224 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11225 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11226 			    insn[1].off != 0) {
11227 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11228 				return -EINVAL;
11229 			}
11230 
11231 			if (insn[0].src_reg == 0)
11232 				/* valid generic load 64-bit imm */
11233 				goto next_insn;
11234 
11235 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11236 				aux = &env->insn_aux_data[i];
11237 				err = check_pseudo_btf_id(env, insn, aux);
11238 				if (err)
11239 					return err;
11240 				goto next_insn;
11241 			}
11242 
11243 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11244 				aux = &env->insn_aux_data[i];
11245 				aux->ptr_type = PTR_TO_FUNC;
11246 				goto next_insn;
11247 			}
11248 
11249 			/* In final convert_pseudo_ld_imm64() step, this is
11250 			 * converted into regular 64-bit imm load insn.
11251 			 */
11252 			switch (insn[0].src_reg) {
11253 			case BPF_PSEUDO_MAP_VALUE:
11254 			case BPF_PSEUDO_MAP_IDX_VALUE:
11255 				break;
11256 			case BPF_PSEUDO_MAP_FD:
11257 			case BPF_PSEUDO_MAP_IDX:
11258 				if (insn[1].imm == 0)
11259 					break;
11260 				fallthrough;
11261 			default:
11262 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11263 				return -EINVAL;
11264 			}
11265 
11266 			switch (insn[0].src_reg) {
11267 			case BPF_PSEUDO_MAP_IDX_VALUE:
11268 			case BPF_PSEUDO_MAP_IDX:
11269 				if (bpfptr_is_null(env->fd_array)) {
11270 					verbose(env, "fd_idx without fd_array is invalid\n");
11271 					return -EPROTO;
11272 				}
11273 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11274 							    insn[0].imm * sizeof(fd),
11275 							    sizeof(fd)))
11276 					return -EFAULT;
11277 				break;
11278 			default:
11279 				fd = insn[0].imm;
11280 				break;
11281 			}
11282 
11283 			f = fdget(fd);
11284 			map = __bpf_map_get(f);
11285 			if (IS_ERR(map)) {
11286 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11287 					insn[0].imm);
11288 				return PTR_ERR(map);
11289 			}
11290 
11291 			err = check_map_prog_compatibility(env, map, env->prog);
11292 			if (err) {
11293 				fdput(f);
11294 				return err;
11295 			}
11296 
11297 			aux = &env->insn_aux_data[i];
11298 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11299 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11300 				addr = (unsigned long)map;
11301 			} else {
11302 				u32 off = insn[1].imm;
11303 
11304 				if (off >= BPF_MAX_VAR_OFF) {
11305 					verbose(env, "direct value offset of %u is not allowed\n", off);
11306 					fdput(f);
11307 					return -EINVAL;
11308 				}
11309 
11310 				if (!map->ops->map_direct_value_addr) {
11311 					verbose(env, "no direct value access support for this map type\n");
11312 					fdput(f);
11313 					return -EINVAL;
11314 				}
11315 
11316 				err = map->ops->map_direct_value_addr(map, &addr, off);
11317 				if (err) {
11318 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11319 						map->value_size, off);
11320 					fdput(f);
11321 					return err;
11322 				}
11323 
11324 				aux->map_off = off;
11325 				addr += off;
11326 			}
11327 
11328 			insn[0].imm = (u32)addr;
11329 			insn[1].imm = addr >> 32;
11330 
11331 			/* check whether we recorded this map already */
11332 			for (j = 0; j < env->used_map_cnt; j++) {
11333 				if (env->used_maps[j] == map) {
11334 					aux->map_index = j;
11335 					fdput(f);
11336 					goto next_insn;
11337 				}
11338 			}
11339 
11340 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11341 				fdput(f);
11342 				return -E2BIG;
11343 			}
11344 
11345 			/* hold the map. If the program is rejected by verifier,
11346 			 * the map will be released by release_maps() or it
11347 			 * will be used by the valid program until it's unloaded
11348 			 * and all maps are released in free_used_maps()
11349 			 */
11350 			bpf_map_inc(map);
11351 
11352 			aux->map_index = env->used_map_cnt;
11353 			env->used_maps[env->used_map_cnt++] = map;
11354 
11355 			if (bpf_map_is_cgroup_storage(map) &&
11356 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11357 				verbose(env, "only one cgroup storage of each type is allowed\n");
11358 				fdput(f);
11359 				return -EBUSY;
11360 			}
11361 
11362 			fdput(f);
11363 next_insn:
11364 			insn++;
11365 			i++;
11366 			continue;
11367 		}
11368 
11369 		/* Basic sanity check before we invest more work here. */
11370 		if (!bpf_opcode_in_insntable(insn->code)) {
11371 			verbose(env, "unknown opcode %02x\n", insn->code);
11372 			return -EINVAL;
11373 		}
11374 	}
11375 
11376 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11377 	 * 'struct bpf_map *' into a register instead of user map_fd.
11378 	 * These pointers will be used later by verifier to validate map access.
11379 	 */
11380 	return 0;
11381 }
11382 
11383 /* drop refcnt of maps used by the rejected program */
11384 static void release_maps(struct bpf_verifier_env *env)
11385 {
11386 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11387 			     env->used_map_cnt);
11388 }
11389 
11390 /* drop refcnt of maps used by the rejected program */
11391 static void release_btfs(struct bpf_verifier_env *env)
11392 {
11393 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11394 			     env->used_btf_cnt);
11395 }
11396 
11397 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11398 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11399 {
11400 	struct bpf_insn *insn = env->prog->insnsi;
11401 	int insn_cnt = env->prog->len;
11402 	int i;
11403 
11404 	for (i = 0; i < insn_cnt; i++, insn++) {
11405 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11406 			continue;
11407 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11408 			continue;
11409 		insn->src_reg = 0;
11410 	}
11411 }
11412 
11413 /* single env->prog->insni[off] instruction was replaced with the range
11414  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11415  * [0, off) and [off, end) to new locations, so the patched range stays zero
11416  */
11417 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11418 				struct bpf_prog *new_prog, u32 off, u32 cnt)
11419 {
11420 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11421 	struct bpf_insn *insn = new_prog->insnsi;
11422 	u32 old_seen = old_data[off].seen;
11423 	u32 prog_len;
11424 	int i;
11425 
11426 	/* aux info at OFF always needs adjustment, no matter fast path
11427 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11428 	 * original insn at old prog.
11429 	 */
11430 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11431 
11432 	if (cnt == 1)
11433 		return 0;
11434 	prog_len = new_prog->len;
11435 	new_data = vzalloc(array_size(prog_len,
11436 				      sizeof(struct bpf_insn_aux_data)));
11437 	if (!new_data)
11438 		return -ENOMEM;
11439 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11440 	memcpy(new_data + off + cnt - 1, old_data + off,
11441 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11442 	for (i = off; i < off + cnt - 1; i++) {
11443 		/* Expand insni[off]'s seen count to the patched range. */
11444 		new_data[i].seen = old_seen;
11445 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11446 	}
11447 	env->insn_aux_data = new_data;
11448 	vfree(old_data);
11449 	return 0;
11450 }
11451 
11452 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11453 {
11454 	int i;
11455 
11456 	if (len == 1)
11457 		return;
11458 	/* NOTE: fake 'exit' subprog should be updated as well. */
11459 	for (i = 0; i <= env->subprog_cnt; i++) {
11460 		if (env->subprog_info[i].start <= off)
11461 			continue;
11462 		env->subprog_info[i].start += len - 1;
11463 	}
11464 }
11465 
11466 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11467 {
11468 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11469 	int i, sz = prog->aux->size_poke_tab;
11470 	struct bpf_jit_poke_descriptor *desc;
11471 
11472 	for (i = 0; i < sz; i++) {
11473 		desc = &tab[i];
11474 		if (desc->insn_idx <= off)
11475 			continue;
11476 		desc->insn_idx += len - 1;
11477 	}
11478 }
11479 
11480 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11481 					    const struct bpf_insn *patch, u32 len)
11482 {
11483 	struct bpf_prog *new_prog;
11484 
11485 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11486 	if (IS_ERR(new_prog)) {
11487 		if (PTR_ERR(new_prog) == -ERANGE)
11488 			verbose(env,
11489 				"insn %d cannot be patched due to 16-bit range\n",
11490 				env->insn_aux_data[off].orig_idx);
11491 		return NULL;
11492 	}
11493 	if (adjust_insn_aux_data(env, new_prog, off, len))
11494 		return NULL;
11495 	adjust_subprog_starts(env, off, len);
11496 	adjust_poke_descs(new_prog, off, len);
11497 	return new_prog;
11498 }
11499 
11500 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11501 					      u32 off, u32 cnt)
11502 {
11503 	int i, j;
11504 
11505 	/* find first prog starting at or after off (first to remove) */
11506 	for (i = 0; i < env->subprog_cnt; i++)
11507 		if (env->subprog_info[i].start >= off)
11508 			break;
11509 	/* find first prog starting at or after off + cnt (first to stay) */
11510 	for (j = i; j < env->subprog_cnt; j++)
11511 		if (env->subprog_info[j].start >= off + cnt)
11512 			break;
11513 	/* if j doesn't start exactly at off + cnt, we are just removing
11514 	 * the front of previous prog
11515 	 */
11516 	if (env->subprog_info[j].start != off + cnt)
11517 		j--;
11518 
11519 	if (j > i) {
11520 		struct bpf_prog_aux *aux = env->prog->aux;
11521 		int move;
11522 
11523 		/* move fake 'exit' subprog as well */
11524 		move = env->subprog_cnt + 1 - j;
11525 
11526 		memmove(env->subprog_info + i,
11527 			env->subprog_info + j,
11528 			sizeof(*env->subprog_info) * move);
11529 		env->subprog_cnt -= j - i;
11530 
11531 		/* remove func_info */
11532 		if (aux->func_info) {
11533 			move = aux->func_info_cnt - j;
11534 
11535 			memmove(aux->func_info + i,
11536 				aux->func_info + j,
11537 				sizeof(*aux->func_info) * move);
11538 			aux->func_info_cnt -= j - i;
11539 			/* func_info->insn_off is set after all code rewrites,
11540 			 * in adjust_btf_func() - no need to adjust
11541 			 */
11542 		}
11543 	} else {
11544 		/* convert i from "first prog to remove" to "first to adjust" */
11545 		if (env->subprog_info[i].start == off)
11546 			i++;
11547 	}
11548 
11549 	/* update fake 'exit' subprog as well */
11550 	for (; i <= env->subprog_cnt; i++)
11551 		env->subprog_info[i].start -= cnt;
11552 
11553 	return 0;
11554 }
11555 
11556 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11557 				      u32 cnt)
11558 {
11559 	struct bpf_prog *prog = env->prog;
11560 	u32 i, l_off, l_cnt, nr_linfo;
11561 	struct bpf_line_info *linfo;
11562 
11563 	nr_linfo = prog->aux->nr_linfo;
11564 	if (!nr_linfo)
11565 		return 0;
11566 
11567 	linfo = prog->aux->linfo;
11568 
11569 	/* find first line info to remove, count lines to be removed */
11570 	for (i = 0; i < nr_linfo; i++)
11571 		if (linfo[i].insn_off >= off)
11572 			break;
11573 
11574 	l_off = i;
11575 	l_cnt = 0;
11576 	for (; i < nr_linfo; i++)
11577 		if (linfo[i].insn_off < off + cnt)
11578 			l_cnt++;
11579 		else
11580 			break;
11581 
11582 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11583 	 * last removed linfo.  prog is already modified, so prog->len == off
11584 	 * means no live instructions after (tail of the program was removed).
11585 	 */
11586 	if (prog->len != off && l_cnt &&
11587 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11588 		l_cnt--;
11589 		linfo[--i].insn_off = off + cnt;
11590 	}
11591 
11592 	/* remove the line info which refer to the removed instructions */
11593 	if (l_cnt) {
11594 		memmove(linfo + l_off, linfo + i,
11595 			sizeof(*linfo) * (nr_linfo - i));
11596 
11597 		prog->aux->nr_linfo -= l_cnt;
11598 		nr_linfo = prog->aux->nr_linfo;
11599 	}
11600 
11601 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11602 	for (i = l_off; i < nr_linfo; i++)
11603 		linfo[i].insn_off -= cnt;
11604 
11605 	/* fix up all subprogs (incl. 'exit') which start >= off */
11606 	for (i = 0; i <= env->subprog_cnt; i++)
11607 		if (env->subprog_info[i].linfo_idx > l_off) {
11608 			/* program may have started in the removed region but
11609 			 * may not be fully removed
11610 			 */
11611 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11612 				env->subprog_info[i].linfo_idx -= l_cnt;
11613 			else
11614 				env->subprog_info[i].linfo_idx = l_off;
11615 		}
11616 
11617 	return 0;
11618 }
11619 
11620 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11621 {
11622 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11623 	unsigned int orig_prog_len = env->prog->len;
11624 	int err;
11625 
11626 	if (bpf_prog_is_dev_bound(env->prog->aux))
11627 		bpf_prog_offload_remove_insns(env, off, cnt);
11628 
11629 	err = bpf_remove_insns(env->prog, off, cnt);
11630 	if (err)
11631 		return err;
11632 
11633 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11634 	if (err)
11635 		return err;
11636 
11637 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11638 	if (err)
11639 		return err;
11640 
11641 	memmove(aux_data + off,	aux_data + off + cnt,
11642 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11643 
11644 	return 0;
11645 }
11646 
11647 /* The verifier does more data flow analysis than llvm and will not
11648  * explore branches that are dead at run time. Malicious programs can
11649  * have dead code too. Therefore replace all dead at-run-time code
11650  * with 'ja -1'.
11651  *
11652  * Just nops are not optimal, e.g. if they would sit at the end of the
11653  * program and through another bug we would manage to jump there, then
11654  * we'd execute beyond program memory otherwise. Returning exception
11655  * code also wouldn't work since we can have subprogs where the dead
11656  * code could be located.
11657  */
11658 static void sanitize_dead_code(struct bpf_verifier_env *env)
11659 {
11660 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11661 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11662 	struct bpf_insn *insn = env->prog->insnsi;
11663 	const int insn_cnt = env->prog->len;
11664 	int i;
11665 
11666 	for (i = 0; i < insn_cnt; i++) {
11667 		if (aux_data[i].seen)
11668 			continue;
11669 		memcpy(insn + i, &trap, sizeof(trap));
11670 		aux_data[i].zext_dst = false;
11671 	}
11672 }
11673 
11674 static bool insn_is_cond_jump(u8 code)
11675 {
11676 	u8 op;
11677 
11678 	if (BPF_CLASS(code) == BPF_JMP32)
11679 		return true;
11680 
11681 	if (BPF_CLASS(code) != BPF_JMP)
11682 		return false;
11683 
11684 	op = BPF_OP(code);
11685 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11686 }
11687 
11688 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11689 {
11690 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11691 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11692 	struct bpf_insn *insn = env->prog->insnsi;
11693 	const int insn_cnt = env->prog->len;
11694 	int i;
11695 
11696 	for (i = 0; i < insn_cnt; i++, insn++) {
11697 		if (!insn_is_cond_jump(insn->code))
11698 			continue;
11699 
11700 		if (!aux_data[i + 1].seen)
11701 			ja.off = insn->off;
11702 		else if (!aux_data[i + 1 + insn->off].seen)
11703 			ja.off = 0;
11704 		else
11705 			continue;
11706 
11707 		if (bpf_prog_is_dev_bound(env->prog->aux))
11708 			bpf_prog_offload_replace_insn(env, i, &ja);
11709 
11710 		memcpy(insn, &ja, sizeof(ja));
11711 	}
11712 }
11713 
11714 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11715 {
11716 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11717 	int insn_cnt = env->prog->len;
11718 	int i, err;
11719 
11720 	for (i = 0; i < insn_cnt; i++) {
11721 		int j;
11722 
11723 		j = 0;
11724 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11725 			j++;
11726 		if (!j)
11727 			continue;
11728 
11729 		err = verifier_remove_insns(env, i, j);
11730 		if (err)
11731 			return err;
11732 		insn_cnt = env->prog->len;
11733 	}
11734 
11735 	return 0;
11736 }
11737 
11738 static int opt_remove_nops(struct bpf_verifier_env *env)
11739 {
11740 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11741 	struct bpf_insn *insn = env->prog->insnsi;
11742 	int insn_cnt = env->prog->len;
11743 	int i, err;
11744 
11745 	for (i = 0; i < insn_cnt; i++) {
11746 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11747 			continue;
11748 
11749 		err = verifier_remove_insns(env, i, 1);
11750 		if (err)
11751 			return err;
11752 		insn_cnt--;
11753 		i--;
11754 	}
11755 
11756 	return 0;
11757 }
11758 
11759 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11760 					 const union bpf_attr *attr)
11761 {
11762 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11763 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11764 	int i, patch_len, delta = 0, len = env->prog->len;
11765 	struct bpf_insn *insns = env->prog->insnsi;
11766 	struct bpf_prog *new_prog;
11767 	bool rnd_hi32;
11768 
11769 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11770 	zext_patch[1] = BPF_ZEXT_REG(0);
11771 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11772 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11773 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11774 	for (i = 0; i < len; i++) {
11775 		int adj_idx = i + delta;
11776 		struct bpf_insn insn;
11777 		int load_reg;
11778 
11779 		insn = insns[adj_idx];
11780 		load_reg = insn_def_regno(&insn);
11781 		if (!aux[adj_idx].zext_dst) {
11782 			u8 code, class;
11783 			u32 imm_rnd;
11784 
11785 			if (!rnd_hi32)
11786 				continue;
11787 
11788 			code = insn.code;
11789 			class = BPF_CLASS(code);
11790 			if (load_reg == -1)
11791 				continue;
11792 
11793 			/* NOTE: arg "reg" (the fourth one) is only used for
11794 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11795 			 *       here.
11796 			 */
11797 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11798 				if (class == BPF_LD &&
11799 				    BPF_MODE(code) == BPF_IMM)
11800 					i++;
11801 				continue;
11802 			}
11803 
11804 			/* ctx load could be transformed into wider load. */
11805 			if (class == BPF_LDX &&
11806 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11807 				continue;
11808 
11809 			imm_rnd = get_random_int();
11810 			rnd_hi32_patch[0] = insn;
11811 			rnd_hi32_patch[1].imm = imm_rnd;
11812 			rnd_hi32_patch[3].dst_reg = load_reg;
11813 			patch = rnd_hi32_patch;
11814 			patch_len = 4;
11815 			goto apply_patch_buffer;
11816 		}
11817 
11818 		/* Add in an zero-extend instruction if a) the JIT has requested
11819 		 * it or b) it's a CMPXCHG.
11820 		 *
11821 		 * The latter is because: BPF_CMPXCHG always loads a value into
11822 		 * R0, therefore always zero-extends. However some archs'
11823 		 * equivalent instruction only does this load when the
11824 		 * comparison is successful. This detail of CMPXCHG is
11825 		 * orthogonal to the general zero-extension behaviour of the
11826 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11827 		 */
11828 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11829 			continue;
11830 
11831 		if (WARN_ON(load_reg == -1)) {
11832 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11833 			return -EFAULT;
11834 		}
11835 
11836 		zext_patch[0] = insn;
11837 		zext_patch[1].dst_reg = load_reg;
11838 		zext_patch[1].src_reg = load_reg;
11839 		patch = zext_patch;
11840 		patch_len = 2;
11841 apply_patch_buffer:
11842 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11843 		if (!new_prog)
11844 			return -ENOMEM;
11845 		env->prog = new_prog;
11846 		insns = new_prog->insnsi;
11847 		aux = env->insn_aux_data;
11848 		delta += patch_len - 1;
11849 	}
11850 
11851 	return 0;
11852 }
11853 
11854 /* convert load instructions that access fields of a context type into a
11855  * sequence of instructions that access fields of the underlying structure:
11856  *     struct __sk_buff    -> struct sk_buff
11857  *     struct bpf_sock_ops -> struct sock
11858  */
11859 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11860 {
11861 	const struct bpf_verifier_ops *ops = env->ops;
11862 	int i, cnt, size, ctx_field_size, delta = 0;
11863 	const int insn_cnt = env->prog->len;
11864 	struct bpf_insn insn_buf[16], *insn;
11865 	u32 target_size, size_default, off;
11866 	struct bpf_prog *new_prog;
11867 	enum bpf_access_type type;
11868 	bool is_narrower_load;
11869 
11870 	if (ops->gen_prologue || env->seen_direct_write) {
11871 		if (!ops->gen_prologue) {
11872 			verbose(env, "bpf verifier is misconfigured\n");
11873 			return -EINVAL;
11874 		}
11875 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11876 					env->prog);
11877 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11878 			verbose(env, "bpf verifier is misconfigured\n");
11879 			return -EINVAL;
11880 		} else if (cnt) {
11881 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11882 			if (!new_prog)
11883 				return -ENOMEM;
11884 
11885 			env->prog = new_prog;
11886 			delta += cnt - 1;
11887 		}
11888 	}
11889 
11890 	if (bpf_prog_is_dev_bound(env->prog->aux))
11891 		return 0;
11892 
11893 	insn = env->prog->insnsi + delta;
11894 
11895 	for (i = 0; i < insn_cnt; i++, insn++) {
11896 		bpf_convert_ctx_access_t convert_ctx_access;
11897 		bool ctx_access;
11898 
11899 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11900 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11901 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11902 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11903 			type = BPF_READ;
11904 			ctx_access = true;
11905 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11906 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11907 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11908 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11909 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11910 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11911 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11912 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11913 			type = BPF_WRITE;
11914 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11915 		} else {
11916 			continue;
11917 		}
11918 
11919 		if (type == BPF_WRITE &&
11920 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
11921 			struct bpf_insn patch[] = {
11922 				*insn,
11923 				BPF_ST_NOSPEC(),
11924 			};
11925 
11926 			cnt = ARRAY_SIZE(patch);
11927 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11928 			if (!new_prog)
11929 				return -ENOMEM;
11930 
11931 			delta    += cnt - 1;
11932 			env->prog = new_prog;
11933 			insn      = new_prog->insnsi + i + delta;
11934 			continue;
11935 		}
11936 
11937 		if (!ctx_access)
11938 			continue;
11939 
11940 		switch (env->insn_aux_data[i + delta].ptr_type) {
11941 		case PTR_TO_CTX:
11942 			if (!ops->convert_ctx_access)
11943 				continue;
11944 			convert_ctx_access = ops->convert_ctx_access;
11945 			break;
11946 		case PTR_TO_SOCKET:
11947 		case PTR_TO_SOCK_COMMON:
11948 			convert_ctx_access = bpf_sock_convert_ctx_access;
11949 			break;
11950 		case PTR_TO_TCP_SOCK:
11951 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11952 			break;
11953 		case PTR_TO_XDP_SOCK:
11954 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11955 			break;
11956 		case PTR_TO_BTF_ID:
11957 			if (type == BPF_READ) {
11958 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11959 					BPF_SIZE((insn)->code);
11960 				env->prog->aux->num_exentries++;
11961 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11962 				verbose(env, "Writes through BTF pointers are not allowed\n");
11963 				return -EINVAL;
11964 			}
11965 			continue;
11966 		default:
11967 			continue;
11968 		}
11969 
11970 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11971 		size = BPF_LDST_BYTES(insn);
11972 
11973 		/* If the read access is a narrower load of the field,
11974 		 * convert to a 4/8-byte load, to minimum program type specific
11975 		 * convert_ctx_access changes. If conversion is successful,
11976 		 * we will apply proper mask to the result.
11977 		 */
11978 		is_narrower_load = size < ctx_field_size;
11979 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11980 		off = insn->off;
11981 		if (is_narrower_load) {
11982 			u8 size_code;
11983 
11984 			if (type == BPF_WRITE) {
11985 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11986 				return -EINVAL;
11987 			}
11988 
11989 			size_code = BPF_H;
11990 			if (ctx_field_size == 4)
11991 				size_code = BPF_W;
11992 			else if (ctx_field_size == 8)
11993 				size_code = BPF_DW;
11994 
11995 			insn->off = off & ~(size_default - 1);
11996 			insn->code = BPF_LDX | BPF_MEM | size_code;
11997 		}
11998 
11999 		target_size = 0;
12000 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12001 					 &target_size);
12002 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12003 		    (ctx_field_size && !target_size)) {
12004 			verbose(env, "bpf verifier is misconfigured\n");
12005 			return -EINVAL;
12006 		}
12007 
12008 		if (is_narrower_load && size < target_size) {
12009 			u8 shift = bpf_ctx_narrow_access_offset(
12010 				off, size, size_default) * 8;
12011 			if (ctx_field_size <= 4) {
12012 				if (shift)
12013 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12014 									insn->dst_reg,
12015 									shift);
12016 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12017 								(1 << size * 8) - 1);
12018 			} else {
12019 				if (shift)
12020 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12021 									insn->dst_reg,
12022 									shift);
12023 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12024 								(1ULL << size * 8) - 1);
12025 			}
12026 		}
12027 
12028 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12029 		if (!new_prog)
12030 			return -ENOMEM;
12031 
12032 		delta += cnt - 1;
12033 
12034 		/* keep walking new program and skip insns we just inserted */
12035 		env->prog = new_prog;
12036 		insn      = new_prog->insnsi + i + delta;
12037 	}
12038 
12039 	return 0;
12040 }
12041 
12042 static int jit_subprogs(struct bpf_verifier_env *env)
12043 {
12044 	struct bpf_prog *prog = env->prog, **func, *tmp;
12045 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12046 	struct bpf_map *map_ptr;
12047 	struct bpf_insn *insn;
12048 	void *old_bpf_func;
12049 	int err, num_exentries;
12050 
12051 	if (env->subprog_cnt <= 1)
12052 		return 0;
12053 
12054 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12055 		if (bpf_pseudo_func(insn)) {
12056 			env->insn_aux_data[i].call_imm = insn->imm;
12057 			/* subprog is encoded in insn[1].imm */
12058 			continue;
12059 		}
12060 
12061 		if (!bpf_pseudo_call(insn))
12062 			continue;
12063 		/* Upon error here we cannot fall back to interpreter but
12064 		 * need a hard reject of the program. Thus -EFAULT is
12065 		 * propagated in any case.
12066 		 */
12067 		subprog = find_subprog(env, i + insn->imm + 1);
12068 		if (subprog < 0) {
12069 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12070 				  i + insn->imm + 1);
12071 			return -EFAULT;
12072 		}
12073 		/* temporarily remember subprog id inside insn instead of
12074 		 * aux_data, since next loop will split up all insns into funcs
12075 		 */
12076 		insn->off = subprog;
12077 		/* remember original imm in case JIT fails and fallback
12078 		 * to interpreter will be needed
12079 		 */
12080 		env->insn_aux_data[i].call_imm = insn->imm;
12081 		/* point imm to __bpf_call_base+1 from JITs point of view */
12082 		insn->imm = 1;
12083 	}
12084 
12085 	err = bpf_prog_alloc_jited_linfo(prog);
12086 	if (err)
12087 		goto out_undo_insn;
12088 
12089 	err = -ENOMEM;
12090 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12091 	if (!func)
12092 		goto out_undo_insn;
12093 
12094 	for (i = 0; i < env->subprog_cnt; i++) {
12095 		subprog_start = subprog_end;
12096 		subprog_end = env->subprog_info[i + 1].start;
12097 
12098 		len = subprog_end - subprog_start;
12099 		/* BPF_PROG_RUN doesn't call subprogs directly,
12100 		 * hence main prog stats include the runtime of subprogs.
12101 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12102 		 * func[i]->stats will never be accessed and stays NULL
12103 		 */
12104 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12105 		if (!func[i])
12106 			goto out_free;
12107 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12108 		       len * sizeof(struct bpf_insn));
12109 		func[i]->type = prog->type;
12110 		func[i]->len = len;
12111 		if (bpf_prog_calc_tag(func[i]))
12112 			goto out_free;
12113 		func[i]->is_func = 1;
12114 		func[i]->aux->func_idx = i;
12115 		/* Below members will be freed only at prog->aux */
12116 		func[i]->aux->btf = prog->aux->btf;
12117 		func[i]->aux->func_info = prog->aux->func_info;
12118 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12119 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12120 
12121 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12122 			struct bpf_jit_poke_descriptor *poke;
12123 
12124 			poke = &prog->aux->poke_tab[j];
12125 			if (poke->insn_idx < subprog_end &&
12126 			    poke->insn_idx >= subprog_start)
12127 				poke->aux = func[i]->aux;
12128 		}
12129 
12130 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12131 		 * Long term would need debug info to populate names
12132 		 */
12133 		func[i]->aux->name[0] = 'F';
12134 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12135 		func[i]->jit_requested = 1;
12136 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12137 		func[i]->aux->linfo = prog->aux->linfo;
12138 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12139 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12140 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12141 		num_exentries = 0;
12142 		insn = func[i]->insnsi;
12143 		for (j = 0; j < func[i]->len; j++, insn++) {
12144 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12145 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12146 				num_exentries++;
12147 		}
12148 		func[i]->aux->num_exentries = num_exentries;
12149 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12150 		func[i] = bpf_int_jit_compile(func[i]);
12151 		if (!func[i]->jited) {
12152 			err = -ENOTSUPP;
12153 			goto out_free;
12154 		}
12155 		cond_resched();
12156 	}
12157 
12158 	/* at this point all bpf functions were successfully JITed
12159 	 * now populate all bpf_calls with correct addresses and
12160 	 * run last pass of JIT
12161 	 */
12162 	for (i = 0; i < env->subprog_cnt; i++) {
12163 		insn = func[i]->insnsi;
12164 		for (j = 0; j < func[i]->len; j++, insn++) {
12165 			if (bpf_pseudo_func(insn)) {
12166 				subprog = insn[1].imm;
12167 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12168 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12169 				continue;
12170 			}
12171 			if (!bpf_pseudo_call(insn))
12172 				continue;
12173 			subprog = insn->off;
12174 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12175 				    __bpf_call_base;
12176 		}
12177 
12178 		/* we use the aux data to keep a list of the start addresses
12179 		 * of the JITed images for each function in the program
12180 		 *
12181 		 * for some architectures, such as powerpc64, the imm field
12182 		 * might not be large enough to hold the offset of the start
12183 		 * address of the callee's JITed image from __bpf_call_base
12184 		 *
12185 		 * in such cases, we can lookup the start address of a callee
12186 		 * by using its subprog id, available from the off field of
12187 		 * the call instruction, as an index for this list
12188 		 */
12189 		func[i]->aux->func = func;
12190 		func[i]->aux->func_cnt = env->subprog_cnt;
12191 	}
12192 	for (i = 0; i < env->subprog_cnt; i++) {
12193 		old_bpf_func = func[i]->bpf_func;
12194 		tmp = bpf_int_jit_compile(func[i]);
12195 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12196 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12197 			err = -ENOTSUPP;
12198 			goto out_free;
12199 		}
12200 		cond_resched();
12201 	}
12202 
12203 	/* finally lock prog and jit images for all functions and
12204 	 * populate kallsysm
12205 	 */
12206 	for (i = 0; i < env->subprog_cnt; i++) {
12207 		bpf_prog_lock_ro(func[i]);
12208 		bpf_prog_kallsyms_add(func[i]);
12209 	}
12210 
12211 	/* Last step: make now unused interpreter insns from main
12212 	 * prog consistent for later dump requests, so they can
12213 	 * later look the same as if they were interpreted only.
12214 	 */
12215 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12216 		if (bpf_pseudo_func(insn)) {
12217 			insn[0].imm = env->insn_aux_data[i].call_imm;
12218 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12219 			continue;
12220 		}
12221 		if (!bpf_pseudo_call(insn))
12222 			continue;
12223 		insn->off = env->insn_aux_data[i].call_imm;
12224 		subprog = find_subprog(env, i + insn->off + 1);
12225 		insn->imm = subprog;
12226 	}
12227 
12228 	prog->jited = 1;
12229 	prog->bpf_func = func[0]->bpf_func;
12230 	prog->aux->func = func;
12231 	prog->aux->func_cnt = env->subprog_cnt;
12232 	bpf_prog_jit_attempt_done(prog);
12233 	return 0;
12234 out_free:
12235 	/* We failed JIT'ing, so at this point we need to unregister poke
12236 	 * descriptors from subprogs, so that kernel is not attempting to
12237 	 * patch it anymore as we're freeing the subprog JIT memory.
12238 	 */
12239 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12240 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12241 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12242 	}
12243 	/* At this point we're guaranteed that poke descriptors are not
12244 	 * live anymore. We can just unlink its descriptor table as it's
12245 	 * released with the main prog.
12246 	 */
12247 	for (i = 0; i < env->subprog_cnt; i++) {
12248 		if (!func[i])
12249 			continue;
12250 		func[i]->aux->poke_tab = NULL;
12251 		bpf_jit_free(func[i]);
12252 	}
12253 	kfree(func);
12254 out_undo_insn:
12255 	/* cleanup main prog to be interpreted */
12256 	prog->jit_requested = 0;
12257 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12258 		if (!bpf_pseudo_call(insn))
12259 			continue;
12260 		insn->off = 0;
12261 		insn->imm = env->insn_aux_data[i].call_imm;
12262 	}
12263 	bpf_prog_jit_attempt_done(prog);
12264 	return err;
12265 }
12266 
12267 static int fixup_call_args(struct bpf_verifier_env *env)
12268 {
12269 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12270 	struct bpf_prog *prog = env->prog;
12271 	struct bpf_insn *insn = prog->insnsi;
12272 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12273 	int i, depth;
12274 #endif
12275 	int err = 0;
12276 
12277 	if (env->prog->jit_requested &&
12278 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12279 		err = jit_subprogs(env);
12280 		if (err == 0)
12281 			return 0;
12282 		if (err == -EFAULT)
12283 			return err;
12284 	}
12285 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12286 	if (has_kfunc_call) {
12287 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12288 		return -EINVAL;
12289 	}
12290 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12291 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12292 		 * have to be rejected, since interpreter doesn't support them yet.
12293 		 */
12294 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12295 		return -EINVAL;
12296 	}
12297 	for (i = 0; i < prog->len; i++, insn++) {
12298 		if (bpf_pseudo_func(insn)) {
12299 			/* When JIT fails the progs with callback calls
12300 			 * have to be rejected, since interpreter doesn't support them yet.
12301 			 */
12302 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12303 			return -EINVAL;
12304 		}
12305 
12306 		if (!bpf_pseudo_call(insn))
12307 			continue;
12308 		depth = get_callee_stack_depth(env, insn, i);
12309 		if (depth < 0)
12310 			return depth;
12311 		bpf_patch_call_args(insn, depth);
12312 	}
12313 	err = 0;
12314 #endif
12315 	return err;
12316 }
12317 
12318 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12319 			    struct bpf_insn *insn)
12320 {
12321 	const struct bpf_kfunc_desc *desc;
12322 
12323 	/* insn->imm has the btf func_id. Replace it with
12324 	 * an address (relative to __bpf_base_call).
12325 	 */
12326 	desc = find_kfunc_desc(env->prog, insn->imm);
12327 	if (!desc) {
12328 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12329 			insn->imm);
12330 		return -EFAULT;
12331 	}
12332 
12333 	insn->imm = desc->imm;
12334 
12335 	return 0;
12336 }
12337 
12338 /* Do various post-verification rewrites in a single program pass.
12339  * These rewrites simplify JIT and interpreter implementations.
12340  */
12341 static int do_misc_fixups(struct bpf_verifier_env *env)
12342 {
12343 	struct bpf_prog *prog = env->prog;
12344 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12345 	struct bpf_insn *insn = prog->insnsi;
12346 	const struct bpf_func_proto *fn;
12347 	const int insn_cnt = prog->len;
12348 	const struct bpf_map_ops *ops;
12349 	struct bpf_insn_aux_data *aux;
12350 	struct bpf_insn insn_buf[16];
12351 	struct bpf_prog *new_prog;
12352 	struct bpf_map *map_ptr;
12353 	int i, ret, cnt, delta = 0;
12354 
12355 	for (i = 0; i < insn_cnt; i++, insn++) {
12356 		/* Make divide-by-zero exceptions impossible. */
12357 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12358 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12359 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12360 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12361 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12362 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12363 			struct bpf_insn *patchlet;
12364 			struct bpf_insn chk_and_div[] = {
12365 				/* [R,W]x div 0 -> 0 */
12366 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12367 					     BPF_JNE | BPF_K, insn->src_reg,
12368 					     0, 2, 0),
12369 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12370 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12371 				*insn,
12372 			};
12373 			struct bpf_insn chk_and_mod[] = {
12374 				/* [R,W]x mod 0 -> [R,W]x */
12375 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12376 					     BPF_JEQ | BPF_K, insn->src_reg,
12377 					     0, 1 + (is64 ? 0 : 1), 0),
12378 				*insn,
12379 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12380 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12381 			};
12382 
12383 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12384 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12385 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12386 
12387 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12388 			if (!new_prog)
12389 				return -ENOMEM;
12390 
12391 			delta    += cnt - 1;
12392 			env->prog = prog = new_prog;
12393 			insn      = new_prog->insnsi + i + delta;
12394 			continue;
12395 		}
12396 
12397 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12398 		if (BPF_CLASS(insn->code) == BPF_LD &&
12399 		    (BPF_MODE(insn->code) == BPF_ABS ||
12400 		     BPF_MODE(insn->code) == BPF_IND)) {
12401 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12402 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12403 				verbose(env, "bpf verifier is misconfigured\n");
12404 				return -EINVAL;
12405 			}
12406 
12407 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12408 			if (!new_prog)
12409 				return -ENOMEM;
12410 
12411 			delta    += cnt - 1;
12412 			env->prog = prog = new_prog;
12413 			insn      = new_prog->insnsi + i + delta;
12414 			continue;
12415 		}
12416 
12417 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12418 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12419 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12420 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12421 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12422 			struct bpf_insn *patch = &insn_buf[0];
12423 			bool issrc, isneg, isimm;
12424 			u32 off_reg;
12425 
12426 			aux = &env->insn_aux_data[i + delta];
12427 			if (!aux->alu_state ||
12428 			    aux->alu_state == BPF_ALU_NON_POINTER)
12429 				continue;
12430 
12431 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12432 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12433 				BPF_ALU_SANITIZE_SRC;
12434 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12435 
12436 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12437 			if (isimm) {
12438 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12439 			} else {
12440 				if (isneg)
12441 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12442 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12443 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12444 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12445 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12446 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12447 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12448 			}
12449 			if (!issrc)
12450 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12451 			insn->src_reg = BPF_REG_AX;
12452 			if (isneg)
12453 				insn->code = insn->code == code_add ?
12454 					     code_sub : code_add;
12455 			*patch++ = *insn;
12456 			if (issrc && isneg && !isimm)
12457 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12458 			cnt = patch - insn_buf;
12459 
12460 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12461 			if (!new_prog)
12462 				return -ENOMEM;
12463 
12464 			delta    += cnt - 1;
12465 			env->prog = prog = new_prog;
12466 			insn      = new_prog->insnsi + i + delta;
12467 			continue;
12468 		}
12469 
12470 		if (insn->code != (BPF_JMP | BPF_CALL))
12471 			continue;
12472 		if (insn->src_reg == BPF_PSEUDO_CALL)
12473 			continue;
12474 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12475 			ret = fixup_kfunc_call(env, insn);
12476 			if (ret)
12477 				return ret;
12478 			continue;
12479 		}
12480 
12481 		if (insn->imm == BPF_FUNC_get_route_realm)
12482 			prog->dst_needed = 1;
12483 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12484 			bpf_user_rnd_init_once();
12485 		if (insn->imm == BPF_FUNC_override_return)
12486 			prog->kprobe_override = 1;
12487 		if (insn->imm == BPF_FUNC_tail_call) {
12488 			/* If we tail call into other programs, we
12489 			 * cannot make any assumptions since they can
12490 			 * be replaced dynamically during runtime in
12491 			 * the program array.
12492 			 */
12493 			prog->cb_access = 1;
12494 			if (!allow_tail_call_in_subprogs(env))
12495 				prog->aux->stack_depth = MAX_BPF_STACK;
12496 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12497 
12498 			/* mark bpf_tail_call as different opcode to avoid
12499 			 * conditional branch in the interpreter for every normal
12500 			 * call and to prevent accidental JITing by JIT compiler
12501 			 * that doesn't support bpf_tail_call yet
12502 			 */
12503 			insn->imm = 0;
12504 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12505 
12506 			aux = &env->insn_aux_data[i + delta];
12507 			if (env->bpf_capable && !expect_blinding &&
12508 			    prog->jit_requested &&
12509 			    !bpf_map_key_poisoned(aux) &&
12510 			    !bpf_map_ptr_poisoned(aux) &&
12511 			    !bpf_map_ptr_unpriv(aux)) {
12512 				struct bpf_jit_poke_descriptor desc = {
12513 					.reason = BPF_POKE_REASON_TAIL_CALL,
12514 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12515 					.tail_call.key = bpf_map_key_immediate(aux),
12516 					.insn_idx = i + delta,
12517 				};
12518 
12519 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12520 				if (ret < 0) {
12521 					verbose(env, "adding tail call poke descriptor failed\n");
12522 					return ret;
12523 				}
12524 
12525 				insn->imm = ret + 1;
12526 				continue;
12527 			}
12528 
12529 			if (!bpf_map_ptr_unpriv(aux))
12530 				continue;
12531 
12532 			/* instead of changing every JIT dealing with tail_call
12533 			 * emit two extra insns:
12534 			 * if (index >= max_entries) goto out;
12535 			 * index &= array->index_mask;
12536 			 * to avoid out-of-bounds cpu speculation
12537 			 */
12538 			if (bpf_map_ptr_poisoned(aux)) {
12539 				verbose(env, "tail_call abusing map_ptr\n");
12540 				return -EINVAL;
12541 			}
12542 
12543 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12544 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12545 						  map_ptr->max_entries, 2);
12546 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12547 						    container_of(map_ptr,
12548 								 struct bpf_array,
12549 								 map)->index_mask);
12550 			insn_buf[2] = *insn;
12551 			cnt = 3;
12552 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12553 			if (!new_prog)
12554 				return -ENOMEM;
12555 
12556 			delta    += cnt - 1;
12557 			env->prog = prog = new_prog;
12558 			insn      = new_prog->insnsi + i + delta;
12559 			continue;
12560 		}
12561 
12562 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12563 		 * and other inlining handlers are currently limited to 64 bit
12564 		 * only.
12565 		 */
12566 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12567 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12568 		     insn->imm == BPF_FUNC_map_update_elem ||
12569 		     insn->imm == BPF_FUNC_map_delete_elem ||
12570 		     insn->imm == BPF_FUNC_map_push_elem   ||
12571 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12572 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12573 		     insn->imm == BPF_FUNC_redirect_map)) {
12574 			aux = &env->insn_aux_data[i + delta];
12575 			if (bpf_map_ptr_poisoned(aux))
12576 				goto patch_call_imm;
12577 
12578 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12579 			ops = map_ptr->ops;
12580 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12581 			    ops->map_gen_lookup) {
12582 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12583 				if (cnt == -EOPNOTSUPP)
12584 					goto patch_map_ops_generic;
12585 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12586 					verbose(env, "bpf verifier is misconfigured\n");
12587 					return -EINVAL;
12588 				}
12589 
12590 				new_prog = bpf_patch_insn_data(env, i + delta,
12591 							       insn_buf, cnt);
12592 				if (!new_prog)
12593 					return -ENOMEM;
12594 
12595 				delta    += cnt - 1;
12596 				env->prog = prog = new_prog;
12597 				insn      = new_prog->insnsi + i + delta;
12598 				continue;
12599 			}
12600 
12601 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12602 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12603 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12604 				     (int (*)(struct bpf_map *map, void *key))NULL));
12605 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12606 				     (int (*)(struct bpf_map *map, void *key, void *value,
12607 					      u64 flags))NULL));
12608 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12609 				     (int (*)(struct bpf_map *map, void *value,
12610 					      u64 flags))NULL));
12611 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12612 				     (int (*)(struct bpf_map *map, void *value))NULL));
12613 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12614 				     (int (*)(struct bpf_map *map, void *value))NULL));
12615 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12616 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12617 
12618 patch_map_ops_generic:
12619 			switch (insn->imm) {
12620 			case BPF_FUNC_map_lookup_elem:
12621 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12622 					    __bpf_call_base;
12623 				continue;
12624 			case BPF_FUNC_map_update_elem:
12625 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12626 					    __bpf_call_base;
12627 				continue;
12628 			case BPF_FUNC_map_delete_elem:
12629 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12630 					    __bpf_call_base;
12631 				continue;
12632 			case BPF_FUNC_map_push_elem:
12633 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12634 					    __bpf_call_base;
12635 				continue;
12636 			case BPF_FUNC_map_pop_elem:
12637 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12638 					    __bpf_call_base;
12639 				continue;
12640 			case BPF_FUNC_map_peek_elem:
12641 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12642 					    __bpf_call_base;
12643 				continue;
12644 			case BPF_FUNC_redirect_map:
12645 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12646 					    __bpf_call_base;
12647 				continue;
12648 			}
12649 
12650 			goto patch_call_imm;
12651 		}
12652 
12653 		/* Implement bpf_jiffies64 inline. */
12654 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12655 		    insn->imm == BPF_FUNC_jiffies64) {
12656 			struct bpf_insn ld_jiffies_addr[2] = {
12657 				BPF_LD_IMM64(BPF_REG_0,
12658 					     (unsigned long)&jiffies),
12659 			};
12660 
12661 			insn_buf[0] = ld_jiffies_addr[0];
12662 			insn_buf[1] = ld_jiffies_addr[1];
12663 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12664 						  BPF_REG_0, 0);
12665 			cnt = 3;
12666 
12667 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12668 						       cnt);
12669 			if (!new_prog)
12670 				return -ENOMEM;
12671 
12672 			delta    += cnt - 1;
12673 			env->prog = prog = new_prog;
12674 			insn      = new_prog->insnsi + i + delta;
12675 			continue;
12676 		}
12677 
12678 patch_call_imm:
12679 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12680 		/* all functions that have prototype and verifier allowed
12681 		 * programs to call them, must be real in-kernel functions
12682 		 */
12683 		if (!fn->func) {
12684 			verbose(env,
12685 				"kernel subsystem misconfigured func %s#%d\n",
12686 				func_id_name(insn->imm), insn->imm);
12687 			return -EFAULT;
12688 		}
12689 		insn->imm = fn->func - __bpf_call_base;
12690 	}
12691 
12692 	/* Since poke tab is now finalized, publish aux to tracker. */
12693 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12694 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12695 		if (!map_ptr->ops->map_poke_track ||
12696 		    !map_ptr->ops->map_poke_untrack ||
12697 		    !map_ptr->ops->map_poke_run) {
12698 			verbose(env, "bpf verifier is misconfigured\n");
12699 			return -EINVAL;
12700 		}
12701 
12702 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12703 		if (ret < 0) {
12704 			verbose(env, "tracking tail call prog failed\n");
12705 			return ret;
12706 		}
12707 	}
12708 
12709 	sort_kfunc_descs_by_imm(env->prog);
12710 
12711 	return 0;
12712 }
12713 
12714 static void free_states(struct bpf_verifier_env *env)
12715 {
12716 	struct bpf_verifier_state_list *sl, *sln;
12717 	int i;
12718 
12719 	sl = env->free_list;
12720 	while (sl) {
12721 		sln = sl->next;
12722 		free_verifier_state(&sl->state, false);
12723 		kfree(sl);
12724 		sl = sln;
12725 	}
12726 	env->free_list = NULL;
12727 
12728 	if (!env->explored_states)
12729 		return;
12730 
12731 	for (i = 0; i < state_htab_size(env); i++) {
12732 		sl = env->explored_states[i];
12733 
12734 		while (sl) {
12735 			sln = sl->next;
12736 			free_verifier_state(&sl->state, false);
12737 			kfree(sl);
12738 			sl = sln;
12739 		}
12740 		env->explored_states[i] = NULL;
12741 	}
12742 }
12743 
12744 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12745 {
12746 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12747 	struct bpf_verifier_state *state;
12748 	struct bpf_reg_state *regs;
12749 	int ret, i;
12750 
12751 	env->prev_linfo = NULL;
12752 	env->pass_cnt++;
12753 
12754 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12755 	if (!state)
12756 		return -ENOMEM;
12757 	state->curframe = 0;
12758 	state->speculative = false;
12759 	state->branches = 1;
12760 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12761 	if (!state->frame[0]) {
12762 		kfree(state);
12763 		return -ENOMEM;
12764 	}
12765 	env->cur_state = state;
12766 	init_func_state(env, state->frame[0],
12767 			BPF_MAIN_FUNC /* callsite */,
12768 			0 /* frameno */,
12769 			subprog);
12770 
12771 	regs = state->frame[state->curframe]->regs;
12772 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12773 		ret = btf_prepare_func_args(env, subprog, regs);
12774 		if (ret)
12775 			goto out;
12776 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12777 			if (regs[i].type == PTR_TO_CTX)
12778 				mark_reg_known_zero(env, regs, i);
12779 			else if (regs[i].type == SCALAR_VALUE)
12780 				mark_reg_unknown(env, regs, i);
12781 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12782 				const u32 mem_size = regs[i].mem_size;
12783 
12784 				mark_reg_known_zero(env, regs, i);
12785 				regs[i].mem_size = mem_size;
12786 				regs[i].id = ++env->id_gen;
12787 			}
12788 		}
12789 	} else {
12790 		/* 1st arg to a function */
12791 		regs[BPF_REG_1].type = PTR_TO_CTX;
12792 		mark_reg_known_zero(env, regs, BPF_REG_1);
12793 		ret = btf_check_subprog_arg_match(env, subprog, regs);
12794 		if (ret == -EFAULT)
12795 			/* unlikely verifier bug. abort.
12796 			 * ret == 0 and ret < 0 are sadly acceptable for
12797 			 * main() function due to backward compatibility.
12798 			 * Like socket filter program may be written as:
12799 			 * int bpf_prog(struct pt_regs *ctx)
12800 			 * and never dereference that ctx in the program.
12801 			 * 'struct pt_regs' is a type mismatch for socket
12802 			 * filter that should be using 'struct __sk_buff'.
12803 			 */
12804 			goto out;
12805 	}
12806 
12807 	ret = do_check(env);
12808 out:
12809 	/* check for NULL is necessary, since cur_state can be freed inside
12810 	 * do_check() under memory pressure.
12811 	 */
12812 	if (env->cur_state) {
12813 		free_verifier_state(env->cur_state, true);
12814 		env->cur_state = NULL;
12815 	}
12816 	while (!pop_stack(env, NULL, NULL, false));
12817 	if (!ret && pop_log)
12818 		bpf_vlog_reset(&env->log, 0);
12819 	free_states(env);
12820 	return ret;
12821 }
12822 
12823 /* Verify all global functions in a BPF program one by one based on their BTF.
12824  * All global functions must pass verification. Otherwise the whole program is rejected.
12825  * Consider:
12826  * int bar(int);
12827  * int foo(int f)
12828  * {
12829  *    return bar(f);
12830  * }
12831  * int bar(int b)
12832  * {
12833  *    ...
12834  * }
12835  * foo() will be verified first for R1=any_scalar_value. During verification it
12836  * will be assumed that bar() already verified successfully and call to bar()
12837  * from foo() will be checked for type match only. Later bar() will be verified
12838  * independently to check that it's safe for R1=any_scalar_value.
12839  */
12840 static int do_check_subprogs(struct bpf_verifier_env *env)
12841 {
12842 	struct bpf_prog_aux *aux = env->prog->aux;
12843 	int i, ret;
12844 
12845 	if (!aux->func_info)
12846 		return 0;
12847 
12848 	for (i = 1; i < env->subprog_cnt; i++) {
12849 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12850 			continue;
12851 		env->insn_idx = env->subprog_info[i].start;
12852 		WARN_ON_ONCE(env->insn_idx == 0);
12853 		ret = do_check_common(env, i);
12854 		if (ret) {
12855 			return ret;
12856 		} else if (env->log.level & BPF_LOG_LEVEL) {
12857 			verbose(env,
12858 				"Func#%d is safe for any args that match its prototype\n",
12859 				i);
12860 		}
12861 	}
12862 	return 0;
12863 }
12864 
12865 static int do_check_main(struct bpf_verifier_env *env)
12866 {
12867 	int ret;
12868 
12869 	env->insn_idx = 0;
12870 	ret = do_check_common(env, 0);
12871 	if (!ret)
12872 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12873 	return ret;
12874 }
12875 
12876 
12877 static void print_verification_stats(struct bpf_verifier_env *env)
12878 {
12879 	int i;
12880 
12881 	if (env->log.level & BPF_LOG_STATS) {
12882 		verbose(env, "verification time %lld usec\n",
12883 			div_u64(env->verification_time, 1000));
12884 		verbose(env, "stack depth ");
12885 		for (i = 0; i < env->subprog_cnt; i++) {
12886 			u32 depth = env->subprog_info[i].stack_depth;
12887 
12888 			verbose(env, "%d", depth);
12889 			if (i + 1 < env->subprog_cnt)
12890 				verbose(env, "+");
12891 		}
12892 		verbose(env, "\n");
12893 	}
12894 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12895 		"total_states %d peak_states %d mark_read %d\n",
12896 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12897 		env->max_states_per_insn, env->total_states,
12898 		env->peak_states, env->longest_mark_read_walk);
12899 }
12900 
12901 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12902 {
12903 	const struct btf_type *t, *func_proto;
12904 	const struct bpf_struct_ops *st_ops;
12905 	const struct btf_member *member;
12906 	struct bpf_prog *prog = env->prog;
12907 	u32 btf_id, member_idx;
12908 	const char *mname;
12909 
12910 	if (!prog->gpl_compatible) {
12911 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12912 		return -EINVAL;
12913 	}
12914 
12915 	btf_id = prog->aux->attach_btf_id;
12916 	st_ops = bpf_struct_ops_find(btf_id);
12917 	if (!st_ops) {
12918 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12919 			btf_id);
12920 		return -ENOTSUPP;
12921 	}
12922 
12923 	t = st_ops->type;
12924 	member_idx = prog->expected_attach_type;
12925 	if (member_idx >= btf_type_vlen(t)) {
12926 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12927 			member_idx, st_ops->name);
12928 		return -EINVAL;
12929 	}
12930 
12931 	member = &btf_type_member(t)[member_idx];
12932 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12933 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12934 					       NULL);
12935 	if (!func_proto) {
12936 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12937 			mname, member_idx, st_ops->name);
12938 		return -EINVAL;
12939 	}
12940 
12941 	if (st_ops->check_member) {
12942 		int err = st_ops->check_member(t, member);
12943 
12944 		if (err) {
12945 			verbose(env, "attach to unsupported member %s of struct %s\n",
12946 				mname, st_ops->name);
12947 			return err;
12948 		}
12949 	}
12950 
12951 	prog->aux->attach_func_proto = func_proto;
12952 	prog->aux->attach_func_name = mname;
12953 	env->ops = st_ops->verifier_ops;
12954 
12955 	return 0;
12956 }
12957 #define SECURITY_PREFIX "security_"
12958 
12959 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12960 {
12961 	if (within_error_injection_list(addr) ||
12962 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12963 		return 0;
12964 
12965 	return -EINVAL;
12966 }
12967 
12968 /* list of non-sleepable functions that are otherwise on
12969  * ALLOW_ERROR_INJECTION list
12970  */
12971 BTF_SET_START(btf_non_sleepable_error_inject)
12972 /* Three functions below can be called from sleepable and non-sleepable context.
12973  * Assume non-sleepable from bpf safety point of view.
12974  */
12975 BTF_ID(func, __add_to_page_cache_locked)
12976 BTF_ID(func, should_fail_alloc_page)
12977 BTF_ID(func, should_failslab)
12978 BTF_SET_END(btf_non_sleepable_error_inject)
12979 
12980 static int check_non_sleepable_error_inject(u32 btf_id)
12981 {
12982 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12983 }
12984 
12985 int bpf_check_attach_target(struct bpf_verifier_log *log,
12986 			    const struct bpf_prog *prog,
12987 			    const struct bpf_prog *tgt_prog,
12988 			    u32 btf_id,
12989 			    struct bpf_attach_target_info *tgt_info)
12990 {
12991 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12992 	const char prefix[] = "btf_trace_";
12993 	int ret = 0, subprog = -1, i;
12994 	const struct btf_type *t;
12995 	bool conservative = true;
12996 	const char *tname;
12997 	struct btf *btf;
12998 	long addr = 0;
12999 
13000 	if (!btf_id) {
13001 		bpf_log(log, "Tracing programs must provide btf_id\n");
13002 		return -EINVAL;
13003 	}
13004 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13005 	if (!btf) {
13006 		bpf_log(log,
13007 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13008 		return -EINVAL;
13009 	}
13010 	t = btf_type_by_id(btf, btf_id);
13011 	if (!t) {
13012 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13013 		return -EINVAL;
13014 	}
13015 	tname = btf_name_by_offset(btf, t->name_off);
13016 	if (!tname) {
13017 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13018 		return -EINVAL;
13019 	}
13020 	if (tgt_prog) {
13021 		struct bpf_prog_aux *aux = tgt_prog->aux;
13022 
13023 		for (i = 0; i < aux->func_info_cnt; i++)
13024 			if (aux->func_info[i].type_id == btf_id) {
13025 				subprog = i;
13026 				break;
13027 			}
13028 		if (subprog == -1) {
13029 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13030 			return -EINVAL;
13031 		}
13032 		conservative = aux->func_info_aux[subprog].unreliable;
13033 		if (prog_extension) {
13034 			if (conservative) {
13035 				bpf_log(log,
13036 					"Cannot replace static functions\n");
13037 				return -EINVAL;
13038 			}
13039 			if (!prog->jit_requested) {
13040 				bpf_log(log,
13041 					"Extension programs should be JITed\n");
13042 				return -EINVAL;
13043 			}
13044 		}
13045 		if (!tgt_prog->jited) {
13046 			bpf_log(log, "Can attach to only JITed progs\n");
13047 			return -EINVAL;
13048 		}
13049 		if (tgt_prog->type == prog->type) {
13050 			/* Cannot fentry/fexit another fentry/fexit program.
13051 			 * Cannot attach program extension to another extension.
13052 			 * It's ok to attach fentry/fexit to extension program.
13053 			 */
13054 			bpf_log(log, "Cannot recursively attach\n");
13055 			return -EINVAL;
13056 		}
13057 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13058 		    prog_extension &&
13059 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13060 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13061 			/* Program extensions can extend all program types
13062 			 * except fentry/fexit. The reason is the following.
13063 			 * The fentry/fexit programs are used for performance
13064 			 * analysis, stats and can be attached to any program
13065 			 * type except themselves. When extension program is
13066 			 * replacing XDP function it is necessary to allow
13067 			 * performance analysis of all functions. Both original
13068 			 * XDP program and its program extension. Hence
13069 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13070 			 * allowed. If extending of fentry/fexit was allowed it
13071 			 * would be possible to create long call chain
13072 			 * fentry->extension->fentry->extension beyond
13073 			 * reasonable stack size. Hence extending fentry is not
13074 			 * allowed.
13075 			 */
13076 			bpf_log(log, "Cannot extend fentry/fexit\n");
13077 			return -EINVAL;
13078 		}
13079 	} else {
13080 		if (prog_extension) {
13081 			bpf_log(log, "Cannot replace kernel functions\n");
13082 			return -EINVAL;
13083 		}
13084 	}
13085 
13086 	switch (prog->expected_attach_type) {
13087 	case BPF_TRACE_RAW_TP:
13088 		if (tgt_prog) {
13089 			bpf_log(log,
13090 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13091 			return -EINVAL;
13092 		}
13093 		if (!btf_type_is_typedef(t)) {
13094 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13095 				btf_id);
13096 			return -EINVAL;
13097 		}
13098 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13099 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13100 				btf_id, tname);
13101 			return -EINVAL;
13102 		}
13103 		tname += sizeof(prefix) - 1;
13104 		t = btf_type_by_id(btf, t->type);
13105 		if (!btf_type_is_ptr(t))
13106 			/* should never happen in valid vmlinux build */
13107 			return -EINVAL;
13108 		t = btf_type_by_id(btf, t->type);
13109 		if (!btf_type_is_func_proto(t))
13110 			/* should never happen in valid vmlinux build */
13111 			return -EINVAL;
13112 
13113 		break;
13114 	case BPF_TRACE_ITER:
13115 		if (!btf_type_is_func(t)) {
13116 			bpf_log(log, "attach_btf_id %u is not a function\n",
13117 				btf_id);
13118 			return -EINVAL;
13119 		}
13120 		t = btf_type_by_id(btf, t->type);
13121 		if (!btf_type_is_func_proto(t))
13122 			return -EINVAL;
13123 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13124 		if (ret)
13125 			return ret;
13126 		break;
13127 	default:
13128 		if (!prog_extension)
13129 			return -EINVAL;
13130 		fallthrough;
13131 	case BPF_MODIFY_RETURN:
13132 	case BPF_LSM_MAC:
13133 	case BPF_TRACE_FENTRY:
13134 	case BPF_TRACE_FEXIT:
13135 		if (!btf_type_is_func(t)) {
13136 			bpf_log(log, "attach_btf_id %u is not a function\n",
13137 				btf_id);
13138 			return -EINVAL;
13139 		}
13140 		if (prog_extension &&
13141 		    btf_check_type_match(log, prog, btf, t))
13142 			return -EINVAL;
13143 		t = btf_type_by_id(btf, t->type);
13144 		if (!btf_type_is_func_proto(t))
13145 			return -EINVAL;
13146 
13147 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13148 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13149 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13150 			return -EINVAL;
13151 
13152 		if (tgt_prog && conservative)
13153 			t = NULL;
13154 
13155 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13156 		if (ret < 0)
13157 			return ret;
13158 
13159 		if (tgt_prog) {
13160 			if (subprog == 0)
13161 				addr = (long) tgt_prog->bpf_func;
13162 			else
13163 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13164 		} else {
13165 			addr = kallsyms_lookup_name(tname);
13166 			if (!addr) {
13167 				bpf_log(log,
13168 					"The address of function %s cannot be found\n",
13169 					tname);
13170 				return -ENOENT;
13171 			}
13172 		}
13173 
13174 		if (prog->aux->sleepable) {
13175 			ret = -EINVAL;
13176 			switch (prog->type) {
13177 			case BPF_PROG_TYPE_TRACING:
13178 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13179 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13180 				 */
13181 				if (!check_non_sleepable_error_inject(btf_id) &&
13182 				    within_error_injection_list(addr))
13183 					ret = 0;
13184 				break;
13185 			case BPF_PROG_TYPE_LSM:
13186 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13187 				 * Only some of them are sleepable.
13188 				 */
13189 				if (bpf_lsm_is_sleepable_hook(btf_id))
13190 					ret = 0;
13191 				break;
13192 			default:
13193 				break;
13194 			}
13195 			if (ret) {
13196 				bpf_log(log, "%s is not sleepable\n", tname);
13197 				return ret;
13198 			}
13199 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13200 			if (tgt_prog) {
13201 				bpf_log(log, "can't modify return codes of BPF programs\n");
13202 				return -EINVAL;
13203 			}
13204 			ret = check_attach_modify_return(addr, tname);
13205 			if (ret) {
13206 				bpf_log(log, "%s() is not modifiable\n", tname);
13207 				return ret;
13208 			}
13209 		}
13210 
13211 		break;
13212 	}
13213 	tgt_info->tgt_addr = addr;
13214 	tgt_info->tgt_name = tname;
13215 	tgt_info->tgt_type = t;
13216 	return 0;
13217 }
13218 
13219 BTF_SET_START(btf_id_deny)
13220 BTF_ID_UNUSED
13221 #ifdef CONFIG_SMP
13222 BTF_ID(func, migrate_disable)
13223 BTF_ID(func, migrate_enable)
13224 #endif
13225 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13226 BTF_ID(func, rcu_read_unlock_strict)
13227 #endif
13228 BTF_SET_END(btf_id_deny)
13229 
13230 static int check_attach_btf_id(struct bpf_verifier_env *env)
13231 {
13232 	struct bpf_prog *prog = env->prog;
13233 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13234 	struct bpf_attach_target_info tgt_info = {};
13235 	u32 btf_id = prog->aux->attach_btf_id;
13236 	struct bpf_trampoline *tr;
13237 	int ret;
13238 	u64 key;
13239 
13240 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13241 		if (prog->aux->sleepable)
13242 			/* attach_btf_id checked to be zero already */
13243 			return 0;
13244 		verbose(env, "Syscall programs can only be sleepable\n");
13245 		return -EINVAL;
13246 	}
13247 
13248 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13249 	    prog->type != BPF_PROG_TYPE_LSM) {
13250 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13251 		return -EINVAL;
13252 	}
13253 
13254 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13255 		return check_struct_ops_btf_id(env);
13256 
13257 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13258 	    prog->type != BPF_PROG_TYPE_LSM &&
13259 	    prog->type != BPF_PROG_TYPE_EXT)
13260 		return 0;
13261 
13262 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13263 	if (ret)
13264 		return ret;
13265 
13266 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13267 		/* to make freplace equivalent to their targets, they need to
13268 		 * inherit env->ops and expected_attach_type for the rest of the
13269 		 * verification
13270 		 */
13271 		env->ops = bpf_verifier_ops[tgt_prog->type];
13272 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13273 	}
13274 
13275 	/* store info about the attachment target that will be used later */
13276 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13277 	prog->aux->attach_func_name = tgt_info.tgt_name;
13278 
13279 	if (tgt_prog) {
13280 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13281 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13282 	}
13283 
13284 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13285 		prog->aux->attach_btf_trace = true;
13286 		return 0;
13287 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13288 		if (!bpf_iter_prog_supported(prog))
13289 			return -EINVAL;
13290 		return 0;
13291 	}
13292 
13293 	if (prog->type == BPF_PROG_TYPE_LSM) {
13294 		ret = bpf_lsm_verify_prog(&env->log, prog);
13295 		if (ret < 0)
13296 			return ret;
13297 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13298 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13299 		return -EINVAL;
13300 	}
13301 
13302 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13303 	tr = bpf_trampoline_get(key, &tgt_info);
13304 	if (!tr)
13305 		return -ENOMEM;
13306 
13307 	prog->aux->dst_trampoline = tr;
13308 	return 0;
13309 }
13310 
13311 struct btf *bpf_get_btf_vmlinux(void)
13312 {
13313 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13314 		mutex_lock(&bpf_verifier_lock);
13315 		if (!btf_vmlinux)
13316 			btf_vmlinux = btf_parse_vmlinux();
13317 		mutex_unlock(&bpf_verifier_lock);
13318 	}
13319 	return btf_vmlinux;
13320 }
13321 
13322 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13323 {
13324 	u64 start_time = ktime_get_ns();
13325 	struct bpf_verifier_env *env;
13326 	struct bpf_verifier_log *log;
13327 	int i, len, ret = -EINVAL;
13328 	bool is_priv;
13329 
13330 	/* no program is valid */
13331 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13332 		return -EINVAL;
13333 
13334 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13335 	 * allocate/free it every time bpf_check() is called
13336 	 */
13337 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13338 	if (!env)
13339 		return -ENOMEM;
13340 	log = &env->log;
13341 
13342 	len = (*prog)->len;
13343 	env->insn_aux_data =
13344 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13345 	ret = -ENOMEM;
13346 	if (!env->insn_aux_data)
13347 		goto err_free_env;
13348 	for (i = 0; i < len; i++)
13349 		env->insn_aux_data[i].orig_idx = i;
13350 	env->prog = *prog;
13351 	env->ops = bpf_verifier_ops[env->prog->type];
13352 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13353 	is_priv = bpf_capable();
13354 
13355 	bpf_get_btf_vmlinux();
13356 
13357 	/* grab the mutex to protect few globals used by verifier */
13358 	if (!is_priv)
13359 		mutex_lock(&bpf_verifier_lock);
13360 
13361 	if (attr->log_level || attr->log_buf || attr->log_size) {
13362 		/* user requested verbose verifier output
13363 		 * and supplied buffer to store the verification trace
13364 		 */
13365 		log->level = attr->log_level;
13366 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13367 		log->len_total = attr->log_size;
13368 
13369 		ret = -EINVAL;
13370 		/* log attributes have to be sane */
13371 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13372 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13373 			goto err_unlock;
13374 	}
13375 
13376 	if (IS_ERR(btf_vmlinux)) {
13377 		/* Either gcc or pahole or kernel are broken. */
13378 		verbose(env, "in-kernel BTF is malformed\n");
13379 		ret = PTR_ERR(btf_vmlinux);
13380 		goto skip_full_check;
13381 	}
13382 
13383 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13384 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13385 		env->strict_alignment = true;
13386 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13387 		env->strict_alignment = false;
13388 
13389 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13390 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13391 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13392 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13393 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13394 	env->bpf_capable = bpf_capable();
13395 
13396 	if (is_priv)
13397 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13398 
13399 	env->explored_states = kvcalloc(state_htab_size(env),
13400 				       sizeof(struct bpf_verifier_state_list *),
13401 				       GFP_USER);
13402 	ret = -ENOMEM;
13403 	if (!env->explored_states)
13404 		goto skip_full_check;
13405 
13406 	ret = add_subprog_and_kfunc(env);
13407 	if (ret < 0)
13408 		goto skip_full_check;
13409 
13410 	ret = check_subprogs(env);
13411 	if (ret < 0)
13412 		goto skip_full_check;
13413 
13414 	ret = check_btf_info(env, attr, uattr);
13415 	if (ret < 0)
13416 		goto skip_full_check;
13417 
13418 	ret = check_attach_btf_id(env);
13419 	if (ret)
13420 		goto skip_full_check;
13421 
13422 	ret = resolve_pseudo_ldimm64(env);
13423 	if (ret < 0)
13424 		goto skip_full_check;
13425 
13426 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13427 		ret = bpf_prog_offload_verifier_prep(env->prog);
13428 		if (ret)
13429 			goto skip_full_check;
13430 	}
13431 
13432 	ret = check_cfg(env);
13433 	if (ret < 0)
13434 		goto skip_full_check;
13435 
13436 	ret = do_check_subprogs(env);
13437 	ret = ret ?: do_check_main(env);
13438 
13439 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13440 		ret = bpf_prog_offload_finalize(env);
13441 
13442 skip_full_check:
13443 	kvfree(env->explored_states);
13444 
13445 	if (ret == 0)
13446 		ret = check_max_stack_depth(env);
13447 
13448 	/* instruction rewrites happen after this point */
13449 	if (is_priv) {
13450 		if (ret == 0)
13451 			opt_hard_wire_dead_code_branches(env);
13452 		if (ret == 0)
13453 			ret = opt_remove_dead_code(env);
13454 		if (ret == 0)
13455 			ret = opt_remove_nops(env);
13456 	} else {
13457 		if (ret == 0)
13458 			sanitize_dead_code(env);
13459 	}
13460 
13461 	if (ret == 0)
13462 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13463 		ret = convert_ctx_accesses(env);
13464 
13465 	if (ret == 0)
13466 		ret = do_misc_fixups(env);
13467 
13468 	/* do 32-bit optimization after insn patching has done so those patched
13469 	 * insns could be handled correctly.
13470 	 */
13471 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13472 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13473 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13474 								     : false;
13475 	}
13476 
13477 	if (ret == 0)
13478 		ret = fixup_call_args(env);
13479 
13480 	env->verification_time = ktime_get_ns() - start_time;
13481 	print_verification_stats(env);
13482 
13483 	if (log->level && bpf_verifier_log_full(log))
13484 		ret = -ENOSPC;
13485 	if (log->level && !log->ubuf) {
13486 		ret = -EFAULT;
13487 		goto err_release_maps;
13488 	}
13489 
13490 	if (ret)
13491 		goto err_release_maps;
13492 
13493 	if (env->used_map_cnt) {
13494 		/* if program passed verifier, update used_maps in bpf_prog_info */
13495 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13496 							  sizeof(env->used_maps[0]),
13497 							  GFP_KERNEL);
13498 
13499 		if (!env->prog->aux->used_maps) {
13500 			ret = -ENOMEM;
13501 			goto err_release_maps;
13502 		}
13503 
13504 		memcpy(env->prog->aux->used_maps, env->used_maps,
13505 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13506 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13507 	}
13508 	if (env->used_btf_cnt) {
13509 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13510 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13511 							  sizeof(env->used_btfs[0]),
13512 							  GFP_KERNEL);
13513 		if (!env->prog->aux->used_btfs) {
13514 			ret = -ENOMEM;
13515 			goto err_release_maps;
13516 		}
13517 
13518 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13519 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13520 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13521 	}
13522 	if (env->used_map_cnt || env->used_btf_cnt) {
13523 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13524 		 * bpf_ld_imm64 instructions
13525 		 */
13526 		convert_pseudo_ld_imm64(env);
13527 	}
13528 
13529 	adjust_btf_func(env);
13530 
13531 err_release_maps:
13532 	if (!env->prog->aux->used_maps)
13533 		/* if we didn't copy map pointers into bpf_prog_info, release
13534 		 * them now. Otherwise free_used_maps() will release them.
13535 		 */
13536 		release_maps(env);
13537 	if (!env->prog->aux->used_btfs)
13538 		release_btfs(env);
13539 
13540 	/* extension progs temporarily inherit the attach_type of their targets
13541 	   for verification purposes, so set it back to zero before returning
13542 	 */
13543 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13544 		env->prog->expected_attach_type = 0;
13545 
13546 	*prog = env->prog;
13547 err_unlock:
13548 	if (!is_priv)
13549 		mutex_unlock(&bpf_verifier_lock);
13550 	vfree(env->insn_aux_data);
13551 err_free_env:
13552 	kfree(env);
13553 	return ret;
13554 }
13555