1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 }; 265 266 struct btf *btf_vmlinux; 267 268 static DEFINE_MUTEX(bpf_verifier_lock); 269 270 static const struct bpf_line_info * 271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 272 { 273 const struct bpf_line_info *linfo; 274 const struct bpf_prog *prog; 275 u32 i, nr_linfo; 276 277 prog = env->prog; 278 nr_linfo = prog->aux->nr_linfo; 279 280 if (!nr_linfo || insn_off >= prog->len) 281 return NULL; 282 283 linfo = prog->aux->linfo; 284 for (i = 1; i < nr_linfo; i++) 285 if (insn_off < linfo[i].insn_off) 286 break; 287 288 return &linfo[i - 1]; 289 } 290 291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 292 va_list args) 293 { 294 unsigned int n; 295 296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 297 298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 299 "verifier log line truncated - local buffer too short\n"); 300 301 n = min(log->len_total - log->len_used - 1, n); 302 log->kbuf[n] = '\0'; 303 304 if (log->level == BPF_LOG_KERNEL) { 305 pr_err("BPF:%s\n", log->kbuf); 306 return; 307 } 308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 309 log->len_used += n; 310 else 311 log->ubuf = NULL; 312 } 313 314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 315 { 316 char zero = 0; 317 318 if (!bpf_verifier_log_needed(log)) 319 return; 320 321 log->len_used = new_pos; 322 if (put_user(zero, log->ubuf + new_pos)) 323 log->ubuf = NULL; 324 } 325 326 /* log_level controls verbosity level of eBPF verifier. 327 * bpf_verifier_log_write() is used to dump the verification trace to the log, 328 * so the user can figure out what's wrong with the program 329 */ 330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 331 const char *fmt, ...) 332 { 333 va_list args; 334 335 if (!bpf_verifier_log_needed(&env->log)) 336 return; 337 338 va_start(args, fmt); 339 bpf_verifier_vlog(&env->log, fmt, args); 340 va_end(args); 341 } 342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 343 344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 345 { 346 struct bpf_verifier_env *env = private_data; 347 va_list args; 348 349 if (!bpf_verifier_log_needed(&env->log)) 350 return; 351 352 va_start(args, fmt); 353 bpf_verifier_vlog(&env->log, fmt, args); 354 va_end(args); 355 } 356 357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 358 const char *fmt, ...) 359 { 360 va_list args; 361 362 if (!bpf_verifier_log_needed(log)) 363 return; 364 365 va_start(args, fmt); 366 bpf_verifier_vlog(log, fmt, args); 367 va_end(args); 368 } 369 370 static const char *ltrim(const char *s) 371 { 372 while (isspace(*s)) 373 s++; 374 375 return s; 376 } 377 378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 379 u32 insn_off, 380 const char *prefix_fmt, ...) 381 { 382 const struct bpf_line_info *linfo; 383 384 if (!bpf_verifier_log_needed(&env->log)) 385 return; 386 387 linfo = find_linfo(env, insn_off); 388 if (!linfo || linfo == env->prev_linfo) 389 return; 390 391 if (prefix_fmt) { 392 va_list args; 393 394 va_start(args, prefix_fmt); 395 bpf_verifier_vlog(&env->log, prefix_fmt, args); 396 va_end(args); 397 } 398 399 verbose(env, "%s\n", 400 ltrim(btf_name_by_offset(env->prog->aux->btf, 401 linfo->line_off))); 402 403 env->prev_linfo = linfo; 404 } 405 406 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 407 struct bpf_reg_state *reg, 408 struct tnum *range, const char *ctx, 409 const char *reg_name) 410 { 411 char tn_buf[48]; 412 413 verbose(env, "At %s the register %s ", ctx, reg_name); 414 if (!tnum_is_unknown(reg->var_off)) { 415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 416 verbose(env, "has value %s", tn_buf); 417 } else { 418 verbose(env, "has unknown scalar value"); 419 } 420 tnum_strn(tn_buf, sizeof(tn_buf), *range); 421 verbose(env, " should have been in %s\n", tn_buf); 422 } 423 424 static bool type_is_pkt_pointer(enum bpf_reg_type type) 425 { 426 return type == PTR_TO_PACKET || 427 type == PTR_TO_PACKET_META; 428 } 429 430 static bool type_is_sk_pointer(enum bpf_reg_type type) 431 { 432 return type == PTR_TO_SOCKET || 433 type == PTR_TO_SOCK_COMMON || 434 type == PTR_TO_TCP_SOCK || 435 type == PTR_TO_XDP_SOCK; 436 } 437 438 static bool reg_type_not_null(enum bpf_reg_type type) 439 { 440 return type == PTR_TO_SOCKET || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_MAP_VALUE || 443 type == PTR_TO_MAP_KEY || 444 type == PTR_TO_SOCK_COMMON; 445 } 446 447 static bool reg_type_may_be_null(enum bpf_reg_type type) 448 { 449 return type == PTR_TO_MAP_VALUE_OR_NULL || 450 type == PTR_TO_SOCKET_OR_NULL || 451 type == PTR_TO_SOCK_COMMON_OR_NULL || 452 type == PTR_TO_TCP_SOCK_OR_NULL || 453 type == PTR_TO_BTF_ID_OR_NULL || 454 type == PTR_TO_MEM_OR_NULL || 455 type == PTR_TO_RDONLY_BUF_OR_NULL || 456 type == PTR_TO_RDWR_BUF_OR_NULL; 457 } 458 459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 460 { 461 return reg->type == PTR_TO_MAP_VALUE && 462 map_value_has_spin_lock(reg->map_ptr); 463 } 464 465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 466 { 467 return type == PTR_TO_SOCKET || 468 type == PTR_TO_SOCKET_OR_NULL || 469 type == PTR_TO_TCP_SOCK || 470 type == PTR_TO_TCP_SOCK_OR_NULL || 471 type == PTR_TO_MEM || 472 type == PTR_TO_MEM_OR_NULL; 473 } 474 475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 476 { 477 return type == ARG_PTR_TO_SOCK_COMMON; 478 } 479 480 static bool arg_type_may_be_null(enum bpf_arg_type type) 481 { 482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 483 type == ARG_PTR_TO_MEM_OR_NULL || 484 type == ARG_PTR_TO_CTX_OR_NULL || 485 type == ARG_PTR_TO_SOCKET_OR_NULL || 486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 487 type == ARG_PTR_TO_STACK_OR_NULL; 488 } 489 490 /* Determine whether the function releases some resources allocated by another 491 * function call. The first reference type argument will be assumed to be 492 * released by release_reference(). 493 */ 494 static bool is_release_function(enum bpf_func_id func_id) 495 { 496 return func_id == BPF_FUNC_sk_release || 497 func_id == BPF_FUNC_ringbuf_submit || 498 func_id == BPF_FUNC_ringbuf_discard; 499 } 500 501 static bool may_be_acquire_function(enum bpf_func_id func_id) 502 { 503 return func_id == BPF_FUNC_sk_lookup_tcp || 504 func_id == BPF_FUNC_sk_lookup_udp || 505 func_id == BPF_FUNC_skc_lookup_tcp || 506 func_id == BPF_FUNC_map_lookup_elem || 507 func_id == BPF_FUNC_ringbuf_reserve; 508 } 509 510 static bool is_acquire_function(enum bpf_func_id func_id, 511 const struct bpf_map *map) 512 { 513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 514 515 if (func_id == BPF_FUNC_sk_lookup_tcp || 516 func_id == BPF_FUNC_sk_lookup_udp || 517 func_id == BPF_FUNC_skc_lookup_tcp || 518 func_id == BPF_FUNC_ringbuf_reserve) 519 return true; 520 521 if (func_id == BPF_FUNC_map_lookup_elem && 522 (map_type == BPF_MAP_TYPE_SOCKMAP || 523 map_type == BPF_MAP_TYPE_SOCKHASH)) 524 return true; 525 526 return false; 527 } 528 529 static bool is_ptr_cast_function(enum bpf_func_id func_id) 530 { 531 return func_id == BPF_FUNC_tcp_sock || 532 func_id == BPF_FUNC_sk_fullsock || 533 func_id == BPF_FUNC_skc_to_tcp_sock || 534 func_id == BPF_FUNC_skc_to_tcp6_sock || 535 func_id == BPF_FUNC_skc_to_udp6_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 541 { 542 return BPF_CLASS(insn->code) == BPF_STX && 543 BPF_MODE(insn->code) == BPF_ATOMIC && 544 insn->imm == BPF_CMPXCHG; 545 } 546 547 /* string representation of 'enum bpf_reg_type' */ 548 static const char * const reg_type_str[] = { 549 [NOT_INIT] = "?", 550 [SCALAR_VALUE] = "inv", 551 [PTR_TO_CTX] = "ctx", 552 [CONST_PTR_TO_MAP] = "map_ptr", 553 [PTR_TO_MAP_VALUE] = "map_value", 554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 555 [PTR_TO_STACK] = "fp", 556 [PTR_TO_PACKET] = "pkt", 557 [PTR_TO_PACKET_META] = "pkt_meta", 558 [PTR_TO_PACKET_END] = "pkt_end", 559 [PTR_TO_FLOW_KEYS] = "flow_keys", 560 [PTR_TO_SOCKET] = "sock", 561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 562 [PTR_TO_SOCK_COMMON] = "sock_common", 563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 564 [PTR_TO_TCP_SOCK] = "tcp_sock", 565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 566 [PTR_TO_TP_BUFFER] = "tp_buffer", 567 [PTR_TO_XDP_SOCK] = "xdp_sock", 568 [PTR_TO_BTF_ID] = "ptr_", 569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 571 [PTR_TO_MEM] = "mem", 572 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 573 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 575 [PTR_TO_RDWR_BUF] = "rdwr_buf", 576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 577 [PTR_TO_FUNC] = "func", 578 [PTR_TO_MAP_KEY] = "map_key", 579 }; 580 581 static char slot_type_char[] = { 582 [STACK_INVALID] = '?', 583 [STACK_SPILL] = 'r', 584 [STACK_MISC] = 'm', 585 [STACK_ZERO] = '0', 586 }; 587 588 static void print_liveness(struct bpf_verifier_env *env, 589 enum bpf_reg_liveness live) 590 { 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 592 verbose(env, "_"); 593 if (live & REG_LIVE_READ) 594 verbose(env, "r"); 595 if (live & REG_LIVE_WRITTEN) 596 verbose(env, "w"); 597 if (live & REG_LIVE_DONE) 598 verbose(env, "D"); 599 } 600 601 static struct bpf_func_state *func(struct bpf_verifier_env *env, 602 const struct bpf_reg_state *reg) 603 { 604 struct bpf_verifier_state *cur = env->cur_state; 605 606 return cur->frame[reg->frameno]; 607 } 608 609 static const char *kernel_type_name(const struct btf* btf, u32 id) 610 { 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 612 } 613 614 static void print_verifier_state(struct bpf_verifier_env *env, 615 const struct bpf_func_state *state) 616 { 617 const struct bpf_reg_state *reg; 618 enum bpf_reg_type t; 619 int i; 620 621 if (state->frameno) 622 verbose(env, " frame%d:", state->frameno); 623 for (i = 0; i < MAX_BPF_REG; i++) { 624 reg = &state->regs[i]; 625 t = reg->type; 626 if (t == NOT_INIT) 627 continue; 628 verbose(env, " R%d", i); 629 print_liveness(env, reg->live); 630 verbose(env, "=%s", reg_type_str[t]); 631 if (t == SCALAR_VALUE && reg->precise) 632 verbose(env, "P"); 633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 634 tnum_is_const(reg->var_off)) { 635 /* reg->off should be 0 for SCALAR_VALUE */ 636 verbose(env, "%lld", reg->var_off.value + reg->off); 637 } else { 638 if (t == PTR_TO_BTF_ID || 639 t == PTR_TO_BTF_ID_OR_NULL || 640 t == PTR_TO_PERCPU_BTF_ID) 641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 642 verbose(env, "(id=%d", reg->id); 643 if (reg_type_may_be_refcounted_or_null(t)) 644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 645 if (t != SCALAR_VALUE) 646 verbose(env, ",off=%d", reg->off); 647 if (type_is_pkt_pointer(t)) 648 verbose(env, ",r=%d", reg->range); 649 else if (t == CONST_PTR_TO_MAP || 650 t == PTR_TO_MAP_KEY || 651 t == PTR_TO_MAP_VALUE || 652 t == PTR_TO_MAP_VALUE_OR_NULL) 653 verbose(env, ",ks=%d,vs=%d", 654 reg->map_ptr->key_size, 655 reg->map_ptr->value_size); 656 if (tnum_is_const(reg->var_off)) { 657 /* Typically an immediate SCALAR_VALUE, but 658 * could be a pointer whose offset is too big 659 * for reg->off 660 */ 661 verbose(env, ",imm=%llx", reg->var_off.value); 662 } else { 663 if (reg->smin_value != reg->umin_value && 664 reg->smin_value != S64_MIN) 665 verbose(env, ",smin_value=%lld", 666 (long long)reg->smin_value); 667 if (reg->smax_value != reg->umax_value && 668 reg->smax_value != S64_MAX) 669 verbose(env, ",smax_value=%lld", 670 (long long)reg->smax_value); 671 if (reg->umin_value != 0) 672 verbose(env, ",umin_value=%llu", 673 (unsigned long long)reg->umin_value); 674 if (reg->umax_value != U64_MAX) 675 verbose(env, ",umax_value=%llu", 676 (unsigned long long)reg->umax_value); 677 if (!tnum_is_unknown(reg->var_off)) { 678 char tn_buf[48]; 679 680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 681 verbose(env, ",var_off=%s", tn_buf); 682 } 683 if (reg->s32_min_value != reg->smin_value && 684 reg->s32_min_value != S32_MIN) 685 verbose(env, ",s32_min_value=%d", 686 (int)(reg->s32_min_value)); 687 if (reg->s32_max_value != reg->smax_value && 688 reg->s32_max_value != S32_MAX) 689 verbose(env, ",s32_max_value=%d", 690 (int)(reg->s32_max_value)); 691 if (reg->u32_min_value != reg->umin_value && 692 reg->u32_min_value != U32_MIN) 693 verbose(env, ",u32_min_value=%d", 694 (int)(reg->u32_min_value)); 695 if (reg->u32_max_value != reg->umax_value && 696 reg->u32_max_value != U32_MAX) 697 verbose(env, ",u32_max_value=%d", 698 (int)(reg->u32_max_value)); 699 } 700 verbose(env, ")"); 701 } 702 } 703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 704 char types_buf[BPF_REG_SIZE + 1]; 705 bool valid = false; 706 int j; 707 708 for (j = 0; j < BPF_REG_SIZE; j++) { 709 if (state->stack[i].slot_type[j] != STACK_INVALID) 710 valid = true; 711 types_buf[j] = slot_type_char[ 712 state->stack[i].slot_type[j]]; 713 } 714 types_buf[BPF_REG_SIZE] = 0; 715 if (!valid) 716 continue; 717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 718 print_liveness(env, state->stack[i].spilled_ptr.live); 719 if (state->stack[i].slot_type[0] == STACK_SPILL) { 720 reg = &state->stack[i].spilled_ptr; 721 t = reg->type; 722 verbose(env, "=%s", reg_type_str[t]); 723 if (t == SCALAR_VALUE && reg->precise) 724 verbose(env, "P"); 725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 726 verbose(env, "%lld", reg->var_off.value + reg->off); 727 } else { 728 verbose(env, "=%s", types_buf); 729 } 730 } 731 if (state->acquired_refs && state->refs[0].id) { 732 verbose(env, " refs=%d", state->refs[0].id); 733 for (i = 1; i < state->acquired_refs; i++) 734 if (state->refs[i].id) 735 verbose(env, ",%d", state->refs[i].id); 736 } 737 verbose(env, "\n"); 738 } 739 740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 741 * small to hold src. This is different from krealloc since we don't want to preserve 742 * the contents of dst. 743 * 744 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 745 * not be allocated. 746 */ 747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 748 { 749 size_t bytes; 750 751 if (ZERO_OR_NULL_PTR(src)) 752 goto out; 753 754 if (unlikely(check_mul_overflow(n, size, &bytes))) 755 return NULL; 756 757 if (ksize(dst) < bytes) { 758 kfree(dst); 759 dst = kmalloc_track_caller(bytes, flags); 760 if (!dst) 761 return NULL; 762 } 763 764 memcpy(dst, src, bytes); 765 out: 766 return dst ? dst : ZERO_SIZE_PTR; 767 } 768 769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 770 * small to hold new_n items. new items are zeroed out if the array grows. 771 * 772 * Contrary to krealloc_array, does not free arr if new_n is zero. 773 */ 774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 775 { 776 if (!new_n || old_n == new_n) 777 goto out; 778 779 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 780 if (!arr) 781 return NULL; 782 783 if (new_n > old_n) 784 memset(arr + old_n * size, 0, (new_n - old_n) * size); 785 786 out: 787 return arr ? arr : ZERO_SIZE_PTR; 788 } 789 790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 791 { 792 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 793 sizeof(struct bpf_reference_state), GFP_KERNEL); 794 if (!dst->refs) 795 return -ENOMEM; 796 797 dst->acquired_refs = src->acquired_refs; 798 return 0; 799 } 800 801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 802 { 803 size_t n = src->allocated_stack / BPF_REG_SIZE; 804 805 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 806 GFP_KERNEL); 807 if (!dst->stack) 808 return -ENOMEM; 809 810 dst->allocated_stack = src->allocated_stack; 811 return 0; 812 } 813 814 static int resize_reference_state(struct bpf_func_state *state, size_t n) 815 { 816 state->refs = realloc_array(state->refs, state->acquired_refs, n, 817 sizeof(struct bpf_reference_state)); 818 if (!state->refs) 819 return -ENOMEM; 820 821 state->acquired_refs = n; 822 return 0; 823 } 824 825 static int grow_stack_state(struct bpf_func_state *state, int size) 826 { 827 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 828 829 if (old_n >= n) 830 return 0; 831 832 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 833 if (!state->stack) 834 return -ENOMEM; 835 836 state->allocated_stack = size; 837 return 0; 838 } 839 840 /* Acquire a pointer id from the env and update the state->refs to include 841 * this new pointer reference. 842 * On success, returns a valid pointer id to associate with the register 843 * On failure, returns a negative errno. 844 */ 845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 846 { 847 struct bpf_func_state *state = cur_func(env); 848 int new_ofs = state->acquired_refs; 849 int id, err; 850 851 err = resize_reference_state(state, state->acquired_refs + 1); 852 if (err) 853 return err; 854 id = ++env->id_gen; 855 state->refs[new_ofs].id = id; 856 state->refs[new_ofs].insn_idx = insn_idx; 857 858 return id; 859 } 860 861 /* release function corresponding to acquire_reference_state(). Idempotent. */ 862 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 863 { 864 int i, last_idx; 865 866 last_idx = state->acquired_refs - 1; 867 for (i = 0; i < state->acquired_refs; i++) { 868 if (state->refs[i].id == ptr_id) { 869 if (last_idx && i != last_idx) 870 memcpy(&state->refs[i], &state->refs[last_idx], 871 sizeof(*state->refs)); 872 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 873 state->acquired_refs--; 874 return 0; 875 } 876 } 877 return -EINVAL; 878 } 879 880 static void free_func_state(struct bpf_func_state *state) 881 { 882 if (!state) 883 return; 884 kfree(state->refs); 885 kfree(state->stack); 886 kfree(state); 887 } 888 889 static void clear_jmp_history(struct bpf_verifier_state *state) 890 { 891 kfree(state->jmp_history); 892 state->jmp_history = NULL; 893 state->jmp_history_cnt = 0; 894 } 895 896 static void free_verifier_state(struct bpf_verifier_state *state, 897 bool free_self) 898 { 899 int i; 900 901 for (i = 0; i <= state->curframe; i++) { 902 free_func_state(state->frame[i]); 903 state->frame[i] = NULL; 904 } 905 clear_jmp_history(state); 906 if (free_self) 907 kfree(state); 908 } 909 910 /* copy verifier state from src to dst growing dst stack space 911 * when necessary to accommodate larger src stack 912 */ 913 static int copy_func_state(struct bpf_func_state *dst, 914 const struct bpf_func_state *src) 915 { 916 int err; 917 918 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 919 err = copy_reference_state(dst, src); 920 if (err) 921 return err; 922 return copy_stack_state(dst, src); 923 } 924 925 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 926 const struct bpf_verifier_state *src) 927 { 928 struct bpf_func_state *dst; 929 int i, err; 930 931 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 932 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 933 GFP_USER); 934 if (!dst_state->jmp_history) 935 return -ENOMEM; 936 dst_state->jmp_history_cnt = src->jmp_history_cnt; 937 938 /* if dst has more stack frames then src frame, free them */ 939 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 940 free_func_state(dst_state->frame[i]); 941 dst_state->frame[i] = NULL; 942 } 943 dst_state->speculative = src->speculative; 944 dst_state->curframe = src->curframe; 945 dst_state->active_spin_lock = src->active_spin_lock; 946 dst_state->branches = src->branches; 947 dst_state->parent = src->parent; 948 dst_state->first_insn_idx = src->first_insn_idx; 949 dst_state->last_insn_idx = src->last_insn_idx; 950 for (i = 0; i <= src->curframe; i++) { 951 dst = dst_state->frame[i]; 952 if (!dst) { 953 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 954 if (!dst) 955 return -ENOMEM; 956 dst_state->frame[i] = dst; 957 } 958 err = copy_func_state(dst, src->frame[i]); 959 if (err) 960 return err; 961 } 962 return 0; 963 } 964 965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 966 { 967 while (st) { 968 u32 br = --st->branches; 969 970 /* WARN_ON(br > 1) technically makes sense here, 971 * but see comment in push_stack(), hence: 972 */ 973 WARN_ONCE((int)br < 0, 974 "BUG update_branch_counts:branches_to_explore=%d\n", 975 br); 976 if (br) 977 break; 978 st = st->parent; 979 } 980 } 981 982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 983 int *insn_idx, bool pop_log) 984 { 985 struct bpf_verifier_state *cur = env->cur_state; 986 struct bpf_verifier_stack_elem *elem, *head = env->head; 987 int err; 988 989 if (env->head == NULL) 990 return -ENOENT; 991 992 if (cur) { 993 err = copy_verifier_state(cur, &head->st); 994 if (err) 995 return err; 996 } 997 if (pop_log) 998 bpf_vlog_reset(&env->log, head->log_pos); 999 if (insn_idx) 1000 *insn_idx = head->insn_idx; 1001 if (prev_insn_idx) 1002 *prev_insn_idx = head->prev_insn_idx; 1003 elem = head->next; 1004 free_verifier_state(&head->st, false); 1005 kfree(head); 1006 env->head = elem; 1007 env->stack_size--; 1008 return 0; 1009 } 1010 1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1012 int insn_idx, int prev_insn_idx, 1013 bool speculative) 1014 { 1015 struct bpf_verifier_state *cur = env->cur_state; 1016 struct bpf_verifier_stack_elem *elem; 1017 int err; 1018 1019 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1020 if (!elem) 1021 goto err; 1022 1023 elem->insn_idx = insn_idx; 1024 elem->prev_insn_idx = prev_insn_idx; 1025 elem->next = env->head; 1026 elem->log_pos = env->log.len_used; 1027 env->head = elem; 1028 env->stack_size++; 1029 err = copy_verifier_state(&elem->st, cur); 1030 if (err) 1031 goto err; 1032 elem->st.speculative |= speculative; 1033 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1034 verbose(env, "The sequence of %d jumps is too complex.\n", 1035 env->stack_size); 1036 goto err; 1037 } 1038 if (elem->st.parent) { 1039 ++elem->st.parent->branches; 1040 /* WARN_ON(branches > 2) technically makes sense here, 1041 * but 1042 * 1. speculative states will bump 'branches' for non-branch 1043 * instructions 1044 * 2. is_state_visited() heuristics may decide not to create 1045 * a new state for a sequence of branches and all such current 1046 * and cloned states will be pointing to a single parent state 1047 * which might have large 'branches' count. 1048 */ 1049 } 1050 return &elem->st; 1051 err: 1052 free_verifier_state(env->cur_state, true); 1053 env->cur_state = NULL; 1054 /* pop all elements and return */ 1055 while (!pop_stack(env, NULL, NULL, false)); 1056 return NULL; 1057 } 1058 1059 #define CALLER_SAVED_REGS 6 1060 static const int caller_saved[CALLER_SAVED_REGS] = { 1061 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1062 }; 1063 1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1065 struct bpf_reg_state *reg); 1066 1067 /* This helper doesn't clear reg->id */ 1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1069 { 1070 reg->var_off = tnum_const(imm); 1071 reg->smin_value = (s64)imm; 1072 reg->smax_value = (s64)imm; 1073 reg->umin_value = imm; 1074 reg->umax_value = imm; 1075 1076 reg->s32_min_value = (s32)imm; 1077 reg->s32_max_value = (s32)imm; 1078 reg->u32_min_value = (u32)imm; 1079 reg->u32_max_value = (u32)imm; 1080 } 1081 1082 /* Mark the unknown part of a register (variable offset or scalar value) as 1083 * known to have the value @imm. 1084 */ 1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1086 { 1087 /* Clear id, off, and union(map_ptr, range) */ 1088 memset(((u8 *)reg) + sizeof(reg->type), 0, 1089 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1090 ___mark_reg_known(reg, imm); 1091 } 1092 1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1094 { 1095 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1096 reg->s32_min_value = (s32)imm; 1097 reg->s32_max_value = (s32)imm; 1098 reg->u32_min_value = (u32)imm; 1099 reg->u32_max_value = (u32)imm; 1100 } 1101 1102 /* Mark the 'variable offset' part of a register as zero. This should be 1103 * used only on registers holding a pointer type. 1104 */ 1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1106 { 1107 __mark_reg_known(reg, 0); 1108 } 1109 1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1111 { 1112 __mark_reg_known(reg, 0); 1113 reg->type = SCALAR_VALUE; 1114 } 1115 1116 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1117 struct bpf_reg_state *regs, u32 regno) 1118 { 1119 if (WARN_ON(regno >= MAX_BPF_REG)) { 1120 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1121 /* Something bad happened, let's kill all regs */ 1122 for (regno = 0; regno < MAX_BPF_REG; regno++) 1123 __mark_reg_not_init(env, regs + regno); 1124 return; 1125 } 1126 __mark_reg_known_zero(regs + regno); 1127 } 1128 1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1130 { 1131 switch (reg->type) { 1132 case PTR_TO_MAP_VALUE_OR_NULL: { 1133 const struct bpf_map *map = reg->map_ptr; 1134 1135 if (map->inner_map_meta) { 1136 reg->type = CONST_PTR_TO_MAP; 1137 reg->map_ptr = map->inner_map_meta; 1138 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1139 reg->type = PTR_TO_XDP_SOCK; 1140 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1141 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1142 reg->type = PTR_TO_SOCKET; 1143 } else { 1144 reg->type = PTR_TO_MAP_VALUE; 1145 } 1146 break; 1147 } 1148 case PTR_TO_SOCKET_OR_NULL: 1149 reg->type = PTR_TO_SOCKET; 1150 break; 1151 case PTR_TO_SOCK_COMMON_OR_NULL: 1152 reg->type = PTR_TO_SOCK_COMMON; 1153 break; 1154 case PTR_TO_TCP_SOCK_OR_NULL: 1155 reg->type = PTR_TO_TCP_SOCK; 1156 break; 1157 case PTR_TO_BTF_ID_OR_NULL: 1158 reg->type = PTR_TO_BTF_ID; 1159 break; 1160 case PTR_TO_MEM_OR_NULL: 1161 reg->type = PTR_TO_MEM; 1162 break; 1163 case PTR_TO_RDONLY_BUF_OR_NULL: 1164 reg->type = PTR_TO_RDONLY_BUF; 1165 break; 1166 case PTR_TO_RDWR_BUF_OR_NULL: 1167 reg->type = PTR_TO_RDWR_BUF; 1168 break; 1169 default: 1170 WARN_ONCE(1, "unknown nullable register type"); 1171 } 1172 } 1173 1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1175 { 1176 return type_is_pkt_pointer(reg->type); 1177 } 1178 1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1180 { 1181 return reg_is_pkt_pointer(reg) || 1182 reg->type == PTR_TO_PACKET_END; 1183 } 1184 1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1187 enum bpf_reg_type which) 1188 { 1189 /* The register can already have a range from prior markings. 1190 * This is fine as long as it hasn't been advanced from its 1191 * origin. 1192 */ 1193 return reg->type == which && 1194 reg->id == 0 && 1195 reg->off == 0 && 1196 tnum_equals_const(reg->var_off, 0); 1197 } 1198 1199 /* Reset the min/max bounds of a register */ 1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1201 { 1202 reg->smin_value = S64_MIN; 1203 reg->smax_value = S64_MAX; 1204 reg->umin_value = 0; 1205 reg->umax_value = U64_MAX; 1206 1207 reg->s32_min_value = S32_MIN; 1208 reg->s32_max_value = S32_MAX; 1209 reg->u32_min_value = 0; 1210 reg->u32_max_value = U32_MAX; 1211 } 1212 1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1214 { 1215 reg->smin_value = S64_MIN; 1216 reg->smax_value = S64_MAX; 1217 reg->umin_value = 0; 1218 reg->umax_value = U64_MAX; 1219 } 1220 1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1222 { 1223 reg->s32_min_value = S32_MIN; 1224 reg->s32_max_value = S32_MAX; 1225 reg->u32_min_value = 0; 1226 reg->u32_max_value = U32_MAX; 1227 } 1228 1229 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1230 { 1231 struct tnum var32_off = tnum_subreg(reg->var_off); 1232 1233 /* min signed is max(sign bit) | min(other bits) */ 1234 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1235 var32_off.value | (var32_off.mask & S32_MIN)); 1236 /* max signed is min(sign bit) | max(other bits) */ 1237 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1238 var32_off.value | (var32_off.mask & S32_MAX)); 1239 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1240 reg->u32_max_value = min(reg->u32_max_value, 1241 (u32)(var32_off.value | var32_off.mask)); 1242 } 1243 1244 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1245 { 1246 /* min signed is max(sign bit) | min(other bits) */ 1247 reg->smin_value = max_t(s64, reg->smin_value, 1248 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1249 /* max signed is min(sign bit) | max(other bits) */ 1250 reg->smax_value = min_t(s64, reg->smax_value, 1251 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1252 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1253 reg->umax_value = min(reg->umax_value, 1254 reg->var_off.value | reg->var_off.mask); 1255 } 1256 1257 static void __update_reg_bounds(struct bpf_reg_state *reg) 1258 { 1259 __update_reg32_bounds(reg); 1260 __update_reg64_bounds(reg); 1261 } 1262 1263 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1265 { 1266 /* Learn sign from signed bounds. 1267 * If we cannot cross the sign boundary, then signed and unsigned bounds 1268 * are the same, so combine. This works even in the negative case, e.g. 1269 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1270 */ 1271 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1272 reg->s32_min_value = reg->u32_min_value = 1273 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1274 reg->s32_max_value = reg->u32_max_value = 1275 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1276 return; 1277 } 1278 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1279 * boundary, so we must be careful. 1280 */ 1281 if ((s32)reg->u32_max_value >= 0) { 1282 /* Positive. We can't learn anything from the smin, but smax 1283 * is positive, hence safe. 1284 */ 1285 reg->s32_min_value = reg->u32_min_value; 1286 reg->s32_max_value = reg->u32_max_value = 1287 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1288 } else if ((s32)reg->u32_min_value < 0) { 1289 /* Negative. We can't learn anything from the smax, but smin 1290 * is negative, hence safe. 1291 */ 1292 reg->s32_min_value = reg->u32_min_value = 1293 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1294 reg->s32_max_value = reg->u32_max_value; 1295 } 1296 } 1297 1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1299 { 1300 /* Learn sign from signed bounds. 1301 * If we cannot cross the sign boundary, then signed and unsigned bounds 1302 * are the same, so combine. This works even in the negative case, e.g. 1303 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1304 */ 1305 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1306 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1307 reg->umin_value); 1308 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1309 reg->umax_value); 1310 return; 1311 } 1312 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1313 * boundary, so we must be careful. 1314 */ 1315 if ((s64)reg->umax_value >= 0) { 1316 /* Positive. We can't learn anything from the smin, but smax 1317 * is positive, hence safe. 1318 */ 1319 reg->smin_value = reg->umin_value; 1320 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1321 reg->umax_value); 1322 } else if ((s64)reg->umin_value < 0) { 1323 /* Negative. We can't learn anything from the smax, but smin 1324 * is negative, hence safe. 1325 */ 1326 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1327 reg->umin_value); 1328 reg->smax_value = reg->umax_value; 1329 } 1330 } 1331 1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1333 { 1334 __reg32_deduce_bounds(reg); 1335 __reg64_deduce_bounds(reg); 1336 } 1337 1338 /* Attempts to improve var_off based on unsigned min/max information */ 1339 static void __reg_bound_offset(struct bpf_reg_state *reg) 1340 { 1341 struct tnum var64_off = tnum_intersect(reg->var_off, 1342 tnum_range(reg->umin_value, 1343 reg->umax_value)); 1344 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1345 tnum_range(reg->u32_min_value, 1346 reg->u32_max_value)); 1347 1348 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1349 } 1350 1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1352 { 1353 reg->umin_value = reg->u32_min_value; 1354 reg->umax_value = reg->u32_max_value; 1355 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1356 * but must be positive otherwise set to worse case bounds 1357 * and refine later from tnum. 1358 */ 1359 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1360 reg->smax_value = reg->s32_max_value; 1361 else 1362 reg->smax_value = U32_MAX; 1363 if (reg->s32_min_value >= 0) 1364 reg->smin_value = reg->s32_min_value; 1365 else 1366 reg->smin_value = 0; 1367 } 1368 1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1370 { 1371 /* special case when 64-bit register has upper 32-bit register 1372 * zeroed. Typically happens after zext or <<32, >>32 sequence 1373 * allowing us to use 32-bit bounds directly, 1374 */ 1375 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1376 __reg_assign_32_into_64(reg); 1377 } else { 1378 /* Otherwise the best we can do is push lower 32bit known and 1379 * unknown bits into register (var_off set from jmp logic) 1380 * then learn as much as possible from the 64-bit tnum 1381 * known and unknown bits. The previous smin/smax bounds are 1382 * invalid here because of jmp32 compare so mark them unknown 1383 * so they do not impact tnum bounds calculation. 1384 */ 1385 __mark_reg64_unbounded(reg); 1386 __update_reg_bounds(reg); 1387 } 1388 1389 /* Intersecting with the old var_off might have improved our bounds 1390 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1391 * then new var_off is (0; 0x7f...fc) which improves our umax. 1392 */ 1393 __reg_deduce_bounds(reg); 1394 __reg_bound_offset(reg); 1395 __update_reg_bounds(reg); 1396 } 1397 1398 static bool __reg64_bound_s32(s64 a) 1399 { 1400 return a > S32_MIN && a < S32_MAX; 1401 } 1402 1403 static bool __reg64_bound_u32(u64 a) 1404 { 1405 return a > U32_MIN && a < U32_MAX; 1406 } 1407 1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1409 { 1410 __mark_reg32_unbounded(reg); 1411 1412 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1413 reg->s32_min_value = (s32)reg->smin_value; 1414 reg->s32_max_value = (s32)reg->smax_value; 1415 } 1416 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1417 reg->u32_min_value = (u32)reg->umin_value; 1418 reg->u32_max_value = (u32)reg->umax_value; 1419 } 1420 1421 /* Intersecting with the old var_off might have improved our bounds 1422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1423 * then new var_off is (0; 0x7f...fc) which improves our umax. 1424 */ 1425 __reg_deduce_bounds(reg); 1426 __reg_bound_offset(reg); 1427 __update_reg_bounds(reg); 1428 } 1429 1430 /* Mark a register as having a completely unknown (scalar) value. */ 1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1432 struct bpf_reg_state *reg) 1433 { 1434 /* 1435 * Clear type, id, off, and union(map_ptr, range) and 1436 * padding between 'type' and union 1437 */ 1438 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1439 reg->type = SCALAR_VALUE; 1440 reg->var_off = tnum_unknown; 1441 reg->frameno = 0; 1442 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1443 __mark_reg_unbounded(reg); 1444 } 1445 1446 static void mark_reg_unknown(struct bpf_verifier_env *env, 1447 struct bpf_reg_state *regs, u32 regno) 1448 { 1449 if (WARN_ON(regno >= MAX_BPF_REG)) { 1450 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1451 /* Something bad happened, let's kill all regs except FP */ 1452 for (regno = 0; regno < BPF_REG_FP; regno++) 1453 __mark_reg_not_init(env, regs + regno); 1454 return; 1455 } 1456 __mark_reg_unknown(env, regs + regno); 1457 } 1458 1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1460 struct bpf_reg_state *reg) 1461 { 1462 __mark_reg_unknown(env, reg); 1463 reg->type = NOT_INIT; 1464 } 1465 1466 static void mark_reg_not_init(struct bpf_verifier_env *env, 1467 struct bpf_reg_state *regs, u32 regno) 1468 { 1469 if (WARN_ON(regno >= MAX_BPF_REG)) { 1470 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1471 /* Something bad happened, let's kill all regs except FP */ 1472 for (regno = 0; regno < BPF_REG_FP; regno++) 1473 __mark_reg_not_init(env, regs + regno); 1474 return; 1475 } 1476 __mark_reg_not_init(env, regs + regno); 1477 } 1478 1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1480 struct bpf_reg_state *regs, u32 regno, 1481 enum bpf_reg_type reg_type, 1482 struct btf *btf, u32 btf_id) 1483 { 1484 if (reg_type == SCALAR_VALUE) { 1485 mark_reg_unknown(env, regs, regno); 1486 return; 1487 } 1488 mark_reg_known_zero(env, regs, regno); 1489 regs[regno].type = PTR_TO_BTF_ID; 1490 regs[regno].btf = btf; 1491 regs[regno].btf_id = btf_id; 1492 } 1493 1494 #define DEF_NOT_SUBREG (0) 1495 static void init_reg_state(struct bpf_verifier_env *env, 1496 struct bpf_func_state *state) 1497 { 1498 struct bpf_reg_state *regs = state->regs; 1499 int i; 1500 1501 for (i = 0; i < MAX_BPF_REG; i++) { 1502 mark_reg_not_init(env, regs, i); 1503 regs[i].live = REG_LIVE_NONE; 1504 regs[i].parent = NULL; 1505 regs[i].subreg_def = DEF_NOT_SUBREG; 1506 } 1507 1508 /* frame pointer */ 1509 regs[BPF_REG_FP].type = PTR_TO_STACK; 1510 mark_reg_known_zero(env, regs, BPF_REG_FP); 1511 regs[BPF_REG_FP].frameno = state->frameno; 1512 } 1513 1514 #define BPF_MAIN_FUNC (-1) 1515 static void init_func_state(struct bpf_verifier_env *env, 1516 struct bpf_func_state *state, 1517 int callsite, int frameno, int subprogno) 1518 { 1519 state->callsite = callsite; 1520 state->frameno = frameno; 1521 state->subprogno = subprogno; 1522 init_reg_state(env, state); 1523 } 1524 1525 enum reg_arg_type { 1526 SRC_OP, /* register is used as source operand */ 1527 DST_OP, /* register is used as destination operand */ 1528 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1529 }; 1530 1531 static int cmp_subprogs(const void *a, const void *b) 1532 { 1533 return ((struct bpf_subprog_info *)a)->start - 1534 ((struct bpf_subprog_info *)b)->start; 1535 } 1536 1537 static int find_subprog(struct bpf_verifier_env *env, int off) 1538 { 1539 struct bpf_subprog_info *p; 1540 1541 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1542 sizeof(env->subprog_info[0]), cmp_subprogs); 1543 if (!p) 1544 return -ENOENT; 1545 return p - env->subprog_info; 1546 1547 } 1548 1549 static int add_subprog(struct bpf_verifier_env *env, int off) 1550 { 1551 int insn_cnt = env->prog->len; 1552 int ret; 1553 1554 if (off >= insn_cnt || off < 0) { 1555 verbose(env, "call to invalid destination\n"); 1556 return -EINVAL; 1557 } 1558 ret = find_subprog(env, off); 1559 if (ret >= 0) 1560 return ret; 1561 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1562 verbose(env, "too many subprograms\n"); 1563 return -E2BIG; 1564 } 1565 /* determine subprog starts. The end is one before the next starts */ 1566 env->subprog_info[env->subprog_cnt++].start = off; 1567 sort(env->subprog_info, env->subprog_cnt, 1568 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1569 return env->subprog_cnt - 1; 1570 } 1571 1572 struct bpf_kfunc_desc { 1573 struct btf_func_model func_model; 1574 u32 func_id; 1575 s32 imm; 1576 }; 1577 1578 #define MAX_KFUNC_DESCS 256 1579 struct bpf_kfunc_desc_tab { 1580 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1581 u32 nr_descs; 1582 }; 1583 1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b) 1585 { 1586 const struct bpf_kfunc_desc *d0 = a; 1587 const struct bpf_kfunc_desc *d1 = b; 1588 1589 /* func_id is not greater than BTF_MAX_TYPE */ 1590 return d0->func_id - d1->func_id; 1591 } 1592 1593 static const struct bpf_kfunc_desc * 1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id) 1595 { 1596 struct bpf_kfunc_desc desc = { 1597 .func_id = func_id, 1598 }; 1599 struct bpf_kfunc_desc_tab *tab; 1600 1601 tab = prog->aux->kfunc_tab; 1602 return bsearch(&desc, tab->descs, tab->nr_descs, 1603 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id); 1604 } 1605 1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id) 1607 { 1608 const struct btf_type *func, *func_proto; 1609 struct bpf_kfunc_desc_tab *tab; 1610 struct bpf_prog_aux *prog_aux; 1611 struct bpf_kfunc_desc *desc; 1612 const char *func_name; 1613 unsigned long addr; 1614 int err; 1615 1616 prog_aux = env->prog->aux; 1617 tab = prog_aux->kfunc_tab; 1618 if (!tab) { 1619 if (!btf_vmlinux) { 1620 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1621 return -ENOTSUPP; 1622 } 1623 1624 if (!env->prog->jit_requested) { 1625 verbose(env, "JIT is required for calling kernel function\n"); 1626 return -ENOTSUPP; 1627 } 1628 1629 if (!bpf_jit_supports_kfunc_call()) { 1630 verbose(env, "JIT does not support calling kernel function\n"); 1631 return -ENOTSUPP; 1632 } 1633 1634 if (!env->prog->gpl_compatible) { 1635 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1636 return -EINVAL; 1637 } 1638 1639 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1640 if (!tab) 1641 return -ENOMEM; 1642 prog_aux->kfunc_tab = tab; 1643 } 1644 1645 if (find_kfunc_desc(env->prog, func_id)) 1646 return 0; 1647 1648 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1649 verbose(env, "too many different kernel function calls\n"); 1650 return -E2BIG; 1651 } 1652 1653 func = btf_type_by_id(btf_vmlinux, func_id); 1654 if (!func || !btf_type_is_func(func)) { 1655 verbose(env, "kernel btf_id %u is not a function\n", 1656 func_id); 1657 return -EINVAL; 1658 } 1659 func_proto = btf_type_by_id(btf_vmlinux, func->type); 1660 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1661 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1662 func_id); 1663 return -EINVAL; 1664 } 1665 1666 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 1667 addr = kallsyms_lookup_name(func_name); 1668 if (!addr) { 1669 verbose(env, "cannot find address for kernel function %s\n", 1670 func_name); 1671 return -EINVAL; 1672 } 1673 1674 desc = &tab->descs[tab->nr_descs++]; 1675 desc->func_id = func_id; 1676 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base; 1677 err = btf_distill_func_proto(&env->log, btf_vmlinux, 1678 func_proto, func_name, 1679 &desc->func_model); 1680 if (!err) 1681 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1682 kfunc_desc_cmp_by_id, NULL); 1683 return err; 1684 } 1685 1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1687 { 1688 const struct bpf_kfunc_desc *d0 = a; 1689 const struct bpf_kfunc_desc *d1 = b; 1690 1691 if (d0->imm > d1->imm) 1692 return 1; 1693 else if (d0->imm < d1->imm) 1694 return -1; 1695 return 0; 1696 } 1697 1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1699 { 1700 struct bpf_kfunc_desc_tab *tab; 1701 1702 tab = prog->aux->kfunc_tab; 1703 if (!tab) 1704 return; 1705 1706 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1707 kfunc_desc_cmp_by_imm, NULL); 1708 } 1709 1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1711 { 1712 return !!prog->aux->kfunc_tab; 1713 } 1714 1715 const struct btf_func_model * 1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1717 const struct bpf_insn *insn) 1718 { 1719 const struct bpf_kfunc_desc desc = { 1720 .imm = insn->imm, 1721 }; 1722 const struct bpf_kfunc_desc *res; 1723 struct bpf_kfunc_desc_tab *tab; 1724 1725 tab = prog->aux->kfunc_tab; 1726 res = bsearch(&desc, tab->descs, tab->nr_descs, 1727 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1728 1729 return res ? &res->func_model : NULL; 1730 } 1731 1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1733 { 1734 struct bpf_subprog_info *subprog = env->subprog_info; 1735 struct bpf_insn *insn = env->prog->insnsi; 1736 int i, ret, insn_cnt = env->prog->len; 1737 1738 /* Add entry function. */ 1739 ret = add_subprog(env, 0); 1740 if (ret) 1741 return ret; 1742 1743 for (i = 0; i < insn_cnt; i++, insn++) { 1744 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1745 !bpf_pseudo_kfunc_call(insn)) 1746 continue; 1747 1748 if (!env->bpf_capable) { 1749 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1750 return -EPERM; 1751 } 1752 1753 if (bpf_pseudo_func(insn)) { 1754 ret = add_subprog(env, i + insn->imm + 1); 1755 if (ret >= 0) 1756 /* remember subprog */ 1757 insn[1].imm = ret; 1758 } else if (bpf_pseudo_call(insn)) { 1759 ret = add_subprog(env, i + insn->imm + 1); 1760 } else { 1761 ret = add_kfunc_call(env, insn->imm); 1762 } 1763 1764 if (ret < 0) 1765 return ret; 1766 } 1767 1768 /* Add a fake 'exit' subprog which could simplify subprog iteration 1769 * logic. 'subprog_cnt' should not be increased. 1770 */ 1771 subprog[env->subprog_cnt].start = insn_cnt; 1772 1773 if (env->log.level & BPF_LOG_LEVEL2) 1774 for (i = 0; i < env->subprog_cnt; i++) 1775 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1776 1777 return 0; 1778 } 1779 1780 static int check_subprogs(struct bpf_verifier_env *env) 1781 { 1782 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1783 struct bpf_subprog_info *subprog = env->subprog_info; 1784 struct bpf_insn *insn = env->prog->insnsi; 1785 int insn_cnt = env->prog->len; 1786 1787 /* now check that all jumps are within the same subprog */ 1788 subprog_start = subprog[cur_subprog].start; 1789 subprog_end = subprog[cur_subprog + 1].start; 1790 for (i = 0; i < insn_cnt; i++) { 1791 u8 code = insn[i].code; 1792 1793 if (code == (BPF_JMP | BPF_CALL) && 1794 insn[i].imm == BPF_FUNC_tail_call && 1795 insn[i].src_reg != BPF_PSEUDO_CALL) 1796 subprog[cur_subprog].has_tail_call = true; 1797 if (BPF_CLASS(code) == BPF_LD && 1798 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1799 subprog[cur_subprog].has_ld_abs = true; 1800 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1801 goto next; 1802 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1803 goto next; 1804 off = i + insn[i].off + 1; 1805 if (off < subprog_start || off >= subprog_end) { 1806 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1807 return -EINVAL; 1808 } 1809 next: 1810 if (i == subprog_end - 1) { 1811 /* to avoid fall-through from one subprog into another 1812 * the last insn of the subprog should be either exit 1813 * or unconditional jump back 1814 */ 1815 if (code != (BPF_JMP | BPF_EXIT) && 1816 code != (BPF_JMP | BPF_JA)) { 1817 verbose(env, "last insn is not an exit or jmp\n"); 1818 return -EINVAL; 1819 } 1820 subprog_start = subprog_end; 1821 cur_subprog++; 1822 if (cur_subprog < env->subprog_cnt) 1823 subprog_end = subprog[cur_subprog + 1].start; 1824 } 1825 } 1826 return 0; 1827 } 1828 1829 /* Parentage chain of this register (or stack slot) should take care of all 1830 * issues like callee-saved registers, stack slot allocation time, etc. 1831 */ 1832 static int mark_reg_read(struct bpf_verifier_env *env, 1833 const struct bpf_reg_state *state, 1834 struct bpf_reg_state *parent, u8 flag) 1835 { 1836 bool writes = parent == state->parent; /* Observe write marks */ 1837 int cnt = 0; 1838 1839 while (parent) { 1840 /* if read wasn't screened by an earlier write ... */ 1841 if (writes && state->live & REG_LIVE_WRITTEN) 1842 break; 1843 if (parent->live & REG_LIVE_DONE) { 1844 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1845 reg_type_str[parent->type], 1846 parent->var_off.value, parent->off); 1847 return -EFAULT; 1848 } 1849 /* The first condition is more likely to be true than the 1850 * second, checked it first. 1851 */ 1852 if ((parent->live & REG_LIVE_READ) == flag || 1853 parent->live & REG_LIVE_READ64) 1854 /* The parentage chain never changes and 1855 * this parent was already marked as LIVE_READ. 1856 * There is no need to keep walking the chain again and 1857 * keep re-marking all parents as LIVE_READ. 1858 * This case happens when the same register is read 1859 * multiple times without writes into it in-between. 1860 * Also, if parent has the stronger REG_LIVE_READ64 set, 1861 * then no need to set the weak REG_LIVE_READ32. 1862 */ 1863 break; 1864 /* ... then we depend on parent's value */ 1865 parent->live |= flag; 1866 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1867 if (flag == REG_LIVE_READ64) 1868 parent->live &= ~REG_LIVE_READ32; 1869 state = parent; 1870 parent = state->parent; 1871 writes = true; 1872 cnt++; 1873 } 1874 1875 if (env->longest_mark_read_walk < cnt) 1876 env->longest_mark_read_walk = cnt; 1877 return 0; 1878 } 1879 1880 /* This function is supposed to be used by the following 32-bit optimization 1881 * code only. It returns TRUE if the source or destination register operates 1882 * on 64-bit, otherwise return FALSE. 1883 */ 1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1885 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1886 { 1887 u8 code, class, op; 1888 1889 code = insn->code; 1890 class = BPF_CLASS(code); 1891 op = BPF_OP(code); 1892 if (class == BPF_JMP) { 1893 /* BPF_EXIT for "main" will reach here. Return TRUE 1894 * conservatively. 1895 */ 1896 if (op == BPF_EXIT) 1897 return true; 1898 if (op == BPF_CALL) { 1899 /* BPF to BPF call will reach here because of marking 1900 * caller saved clobber with DST_OP_NO_MARK for which we 1901 * don't care the register def because they are anyway 1902 * marked as NOT_INIT already. 1903 */ 1904 if (insn->src_reg == BPF_PSEUDO_CALL) 1905 return false; 1906 /* Helper call will reach here because of arg type 1907 * check, conservatively return TRUE. 1908 */ 1909 if (t == SRC_OP) 1910 return true; 1911 1912 return false; 1913 } 1914 } 1915 1916 if (class == BPF_ALU64 || class == BPF_JMP || 1917 /* BPF_END always use BPF_ALU class. */ 1918 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1919 return true; 1920 1921 if (class == BPF_ALU || class == BPF_JMP32) 1922 return false; 1923 1924 if (class == BPF_LDX) { 1925 if (t != SRC_OP) 1926 return BPF_SIZE(code) == BPF_DW; 1927 /* LDX source must be ptr. */ 1928 return true; 1929 } 1930 1931 if (class == BPF_STX) { 1932 /* BPF_STX (including atomic variants) has multiple source 1933 * operands, one of which is a ptr. Check whether the caller is 1934 * asking about it. 1935 */ 1936 if (t == SRC_OP && reg->type != SCALAR_VALUE) 1937 return true; 1938 return BPF_SIZE(code) == BPF_DW; 1939 } 1940 1941 if (class == BPF_LD) { 1942 u8 mode = BPF_MODE(code); 1943 1944 /* LD_IMM64 */ 1945 if (mode == BPF_IMM) 1946 return true; 1947 1948 /* Both LD_IND and LD_ABS return 32-bit data. */ 1949 if (t != SRC_OP) 1950 return false; 1951 1952 /* Implicit ctx ptr. */ 1953 if (regno == BPF_REG_6) 1954 return true; 1955 1956 /* Explicit source could be any width. */ 1957 return true; 1958 } 1959 1960 if (class == BPF_ST) 1961 /* The only source register for BPF_ST is a ptr. */ 1962 return true; 1963 1964 /* Conservatively return true at default. */ 1965 return true; 1966 } 1967 1968 /* Return the regno defined by the insn, or -1. */ 1969 static int insn_def_regno(const struct bpf_insn *insn) 1970 { 1971 switch (BPF_CLASS(insn->code)) { 1972 case BPF_JMP: 1973 case BPF_JMP32: 1974 case BPF_ST: 1975 return -1; 1976 case BPF_STX: 1977 if (BPF_MODE(insn->code) == BPF_ATOMIC && 1978 (insn->imm & BPF_FETCH)) { 1979 if (insn->imm == BPF_CMPXCHG) 1980 return BPF_REG_0; 1981 else 1982 return insn->src_reg; 1983 } else { 1984 return -1; 1985 } 1986 default: 1987 return insn->dst_reg; 1988 } 1989 } 1990 1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1993 { 1994 int dst_reg = insn_def_regno(insn); 1995 1996 if (dst_reg == -1) 1997 return false; 1998 1999 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2000 } 2001 2002 static void mark_insn_zext(struct bpf_verifier_env *env, 2003 struct bpf_reg_state *reg) 2004 { 2005 s32 def_idx = reg->subreg_def; 2006 2007 if (def_idx == DEF_NOT_SUBREG) 2008 return; 2009 2010 env->insn_aux_data[def_idx - 1].zext_dst = true; 2011 /* The dst will be zero extended, so won't be sub-register anymore. */ 2012 reg->subreg_def = DEF_NOT_SUBREG; 2013 } 2014 2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2016 enum reg_arg_type t) 2017 { 2018 struct bpf_verifier_state *vstate = env->cur_state; 2019 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2020 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2021 struct bpf_reg_state *reg, *regs = state->regs; 2022 bool rw64; 2023 2024 if (regno >= MAX_BPF_REG) { 2025 verbose(env, "R%d is invalid\n", regno); 2026 return -EINVAL; 2027 } 2028 2029 reg = ®s[regno]; 2030 rw64 = is_reg64(env, insn, regno, reg, t); 2031 if (t == SRC_OP) { 2032 /* check whether register used as source operand can be read */ 2033 if (reg->type == NOT_INIT) { 2034 verbose(env, "R%d !read_ok\n", regno); 2035 return -EACCES; 2036 } 2037 /* We don't need to worry about FP liveness because it's read-only */ 2038 if (regno == BPF_REG_FP) 2039 return 0; 2040 2041 if (rw64) 2042 mark_insn_zext(env, reg); 2043 2044 return mark_reg_read(env, reg, reg->parent, 2045 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2046 } else { 2047 /* check whether register used as dest operand can be written to */ 2048 if (regno == BPF_REG_FP) { 2049 verbose(env, "frame pointer is read only\n"); 2050 return -EACCES; 2051 } 2052 reg->live |= REG_LIVE_WRITTEN; 2053 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2054 if (t == DST_OP) 2055 mark_reg_unknown(env, regs, regno); 2056 } 2057 return 0; 2058 } 2059 2060 /* for any branch, call, exit record the history of jmps in the given state */ 2061 static int push_jmp_history(struct bpf_verifier_env *env, 2062 struct bpf_verifier_state *cur) 2063 { 2064 u32 cnt = cur->jmp_history_cnt; 2065 struct bpf_idx_pair *p; 2066 2067 cnt++; 2068 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2069 if (!p) 2070 return -ENOMEM; 2071 p[cnt - 1].idx = env->insn_idx; 2072 p[cnt - 1].prev_idx = env->prev_insn_idx; 2073 cur->jmp_history = p; 2074 cur->jmp_history_cnt = cnt; 2075 return 0; 2076 } 2077 2078 /* Backtrack one insn at a time. If idx is not at the top of recorded 2079 * history then previous instruction came from straight line execution. 2080 */ 2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2082 u32 *history) 2083 { 2084 u32 cnt = *history; 2085 2086 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2087 i = st->jmp_history[cnt - 1].prev_idx; 2088 (*history)--; 2089 } else { 2090 i--; 2091 } 2092 return i; 2093 } 2094 2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2096 { 2097 const struct btf_type *func; 2098 2099 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2100 return NULL; 2101 2102 func = btf_type_by_id(btf_vmlinux, insn->imm); 2103 return btf_name_by_offset(btf_vmlinux, func->name_off); 2104 } 2105 2106 /* For given verifier state backtrack_insn() is called from the last insn to 2107 * the first insn. Its purpose is to compute a bitmask of registers and 2108 * stack slots that needs precision in the parent verifier state. 2109 */ 2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2111 u32 *reg_mask, u64 *stack_mask) 2112 { 2113 const struct bpf_insn_cbs cbs = { 2114 .cb_call = disasm_kfunc_name, 2115 .cb_print = verbose, 2116 .private_data = env, 2117 }; 2118 struct bpf_insn *insn = env->prog->insnsi + idx; 2119 u8 class = BPF_CLASS(insn->code); 2120 u8 opcode = BPF_OP(insn->code); 2121 u8 mode = BPF_MODE(insn->code); 2122 u32 dreg = 1u << insn->dst_reg; 2123 u32 sreg = 1u << insn->src_reg; 2124 u32 spi; 2125 2126 if (insn->code == 0) 2127 return 0; 2128 if (env->log.level & BPF_LOG_LEVEL) { 2129 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2130 verbose(env, "%d: ", idx); 2131 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2132 } 2133 2134 if (class == BPF_ALU || class == BPF_ALU64) { 2135 if (!(*reg_mask & dreg)) 2136 return 0; 2137 if (opcode == BPF_MOV) { 2138 if (BPF_SRC(insn->code) == BPF_X) { 2139 /* dreg = sreg 2140 * dreg needs precision after this insn 2141 * sreg needs precision before this insn 2142 */ 2143 *reg_mask &= ~dreg; 2144 *reg_mask |= sreg; 2145 } else { 2146 /* dreg = K 2147 * dreg needs precision after this insn. 2148 * Corresponding register is already marked 2149 * as precise=true in this verifier state. 2150 * No further markings in parent are necessary 2151 */ 2152 *reg_mask &= ~dreg; 2153 } 2154 } else { 2155 if (BPF_SRC(insn->code) == BPF_X) { 2156 /* dreg += sreg 2157 * both dreg and sreg need precision 2158 * before this insn 2159 */ 2160 *reg_mask |= sreg; 2161 } /* else dreg += K 2162 * dreg still needs precision before this insn 2163 */ 2164 } 2165 } else if (class == BPF_LDX) { 2166 if (!(*reg_mask & dreg)) 2167 return 0; 2168 *reg_mask &= ~dreg; 2169 2170 /* scalars can only be spilled into stack w/o losing precision. 2171 * Load from any other memory can be zero extended. 2172 * The desire to keep that precision is already indicated 2173 * by 'precise' mark in corresponding register of this state. 2174 * No further tracking necessary. 2175 */ 2176 if (insn->src_reg != BPF_REG_FP) 2177 return 0; 2178 if (BPF_SIZE(insn->code) != BPF_DW) 2179 return 0; 2180 2181 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2182 * that [fp - off] slot contains scalar that needs to be 2183 * tracked with precision 2184 */ 2185 spi = (-insn->off - 1) / BPF_REG_SIZE; 2186 if (spi >= 64) { 2187 verbose(env, "BUG spi %d\n", spi); 2188 WARN_ONCE(1, "verifier backtracking bug"); 2189 return -EFAULT; 2190 } 2191 *stack_mask |= 1ull << spi; 2192 } else if (class == BPF_STX || class == BPF_ST) { 2193 if (*reg_mask & dreg) 2194 /* stx & st shouldn't be using _scalar_ dst_reg 2195 * to access memory. It means backtracking 2196 * encountered a case of pointer subtraction. 2197 */ 2198 return -ENOTSUPP; 2199 /* scalars can only be spilled into stack */ 2200 if (insn->dst_reg != BPF_REG_FP) 2201 return 0; 2202 if (BPF_SIZE(insn->code) != BPF_DW) 2203 return 0; 2204 spi = (-insn->off - 1) / BPF_REG_SIZE; 2205 if (spi >= 64) { 2206 verbose(env, "BUG spi %d\n", spi); 2207 WARN_ONCE(1, "verifier backtracking bug"); 2208 return -EFAULT; 2209 } 2210 if (!(*stack_mask & (1ull << spi))) 2211 return 0; 2212 *stack_mask &= ~(1ull << spi); 2213 if (class == BPF_STX) 2214 *reg_mask |= sreg; 2215 } else if (class == BPF_JMP || class == BPF_JMP32) { 2216 if (opcode == BPF_CALL) { 2217 if (insn->src_reg == BPF_PSEUDO_CALL) 2218 return -ENOTSUPP; 2219 /* regular helper call sets R0 */ 2220 *reg_mask &= ~1; 2221 if (*reg_mask & 0x3f) { 2222 /* if backtracing was looking for registers R1-R5 2223 * they should have been found already. 2224 */ 2225 verbose(env, "BUG regs %x\n", *reg_mask); 2226 WARN_ONCE(1, "verifier backtracking bug"); 2227 return -EFAULT; 2228 } 2229 } else if (opcode == BPF_EXIT) { 2230 return -ENOTSUPP; 2231 } 2232 } else if (class == BPF_LD) { 2233 if (!(*reg_mask & dreg)) 2234 return 0; 2235 *reg_mask &= ~dreg; 2236 /* It's ld_imm64 or ld_abs or ld_ind. 2237 * For ld_imm64 no further tracking of precision 2238 * into parent is necessary 2239 */ 2240 if (mode == BPF_IND || mode == BPF_ABS) 2241 /* to be analyzed */ 2242 return -ENOTSUPP; 2243 } 2244 return 0; 2245 } 2246 2247 /* the scalar precision tracking algorithm: 2248 * . at the start all registers have precise=false. 2249 * . scalar ranges are tracked as normal through alu and jmp insns. 2250 * . once precise value of the scalar register is used in: 2251 * . ptr + scalar alu 2252 * . if (scalar cond K|scalar) 2253 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2254 * backtrack through the verifier states and mark all registers and 2255 * stack slots with spilled constants that these scalar regisers 2256 * should be precise. 2257 * . during state pruning two registers (or spilled stack slots) 2258 * are equivalent if both are not precise. 2259 * 2260 * Note the verifier cannot simply walk register parentage chain, 2261 * since many different registers and stack slots could have been 2262 * used to compute single precise scalar. 2263 * 2264 * The approach of starting with precise=true for all registers and then 2265 * backtrack to mark a register as not precise when the verifier detects 2266 * that program doesn't care about specific value (e.g., when helper 2267 * takes register as ARG_ANYTHING parameter) is not safe. 2268 * 2269 * It's ok to walk single parentage chain of the verifier states. 2270 * It's possible that this backtracking will go all the way till 1st insn. 2271 * All other branches will be explored for needing precision later. 2272 * 2273 * The backtracking needs to deal with cases like: 2274 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2275 * r9 -= r8 2276 * r5 = r9 2277 * if r5 > 0x79f goto pc+7 2278 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2279 * r5 += 1 2280 * ... 2281 * call bpf_perf_event_output#25 2282 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2283 * 2284 * and this case: 2285 * r6 = 1 2286 * call foo // uses callee's r6 inside to compute r0 2287 * r0 += r6 2288 * if r0 == 0 goto 2289 * 2290 * to track above reg_mask/stack_mask needs to be independent for each frame. 2291 * 2292 * Also if parent's curframe > frame where backtracking started, 2293 * the verifier need to mark registers in both frames, otherwise callees 2294 * may incorrectly prune callers. This is similar to 2295 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2296 * 2297 * For now backtracking falls back into conservative marking. 2298 */ 2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2300 struct bpf_verifier_state *st) 2301 { 2302 struct bpf_func_state *func; 2303 struct bpf_reg_state *reg; 2304 int i, j; 2305 2306 /* big hammer: mark all scalars precise in this path. 2307 * pop_stack may still get !precise scalars. 2308 */ 2309 for (; st; st = st->parent) 2310 for (i = 0; i <= st->curframe; i++) { 2311 func = st->frame[i]; 2312 for (j = 0; j < BPF_REG_FP; j++) { 2313 reg = &func->regs[j]; 2314 if (reg->type != SCALAR_VALUE) 2315 continue; 2316 reg->precise = true; 2317 } 2318 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2319 if (func->stack[j].slot_type[0] != STACK_SPILL) 2320 continue; 2321 reg = &func->stack[j].spilled_ptr; 2322 if (reg->type != SCALAR_VALUE) 2323 continue; 2324 reg->precise = true; 2325 } 2326 } 2327 } 2328 2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2330 int spi) 2331 { 2332 struct bpf_verifier_state *st = env->cur_state; 2333 int first_idx = st->first_insn_idx; 2334 int last_idx = env->insn_idx; 2335 struct bpf_func_state *func; 2336 struct bpf_reg_state *reg; 2337 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2338 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2339 bool skip_first = true; 2340 bool new_marks = false; 2341 int i, err; 2342 2343 if (!env->bpf_capable) 2344 return 0; 2345 2346 func = st->frame[st->curframe]; 2347 if (regno >= 0) { 2348 reg = &func->regs[regno]; 2349 if (reg->type != SCALAR_VALUE) { 2350 WARN_ONCE(1, "backtracing misuse"); 2351 return -EFAULT; 2352 } 2353 if (!reg->precise) 2354 new_marks = true; 2355 else 2356 reg_mask = 0; 2357 reg->precise = true; 2358 } 2359 2360 while (spi >= 0) { 2361 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2362 stack_mask = 0; 2363 break; 2364 } 2365 reg = &func->stack[spi].spilled_ptr; 2366 if (reg->type != SCALAR_VALUE) { 2367 stack_mask = 0; 2368 break; 2369 } 2370 if (!reg->precise) 2371 new_marks = true; 2372 else 2373 stack_mask = 0; 2374 reg->precise = true; 2375 break; 2376 } 2377 2378 if (!new_marks) 2379 return 0; 2380 if (!reg_mask && !stack_mask) 2381 return 0; 2382 for (;;) { 2383 DECLARE_BITMAP(mask, 64); 2384 u32 history = st->jmp_history_cnt; 2385 2386 if (env->log.level & BPF_LOG_LEVEL) 2387 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2388 for (i = last_idx;;) { 2389 if (skip_first) { 2390 err = 0; 2391 skip_first = false; 2392 } else { 2393 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2394 } 2395 if (err == -ENOTSUPP) { 2396 mark_all_scalars_precise(env, st); 2397 return 0; 2398 } else if (err) { 2399 return err; 2400 } 2401 if (!reg_mask && !stack_mask) 2402 /* Found assignment(s) into tracked register in this state. 2403 * Since this state is already marked, just return. 2404 * Nothing to be tracked further in the parent state. 2405 */ 2406 return 0; 2407 if (i == first_idx) 2408 break; 2409 i = get_prev_insn_idx(st, i, &history); 2410 if (i >= env->prog->len) { 2411 /* This can happen if backtracking reached insn 0 2412 * and there are still reg_mask or stack_mask 2413 * to backtrack. 2414 * It means the backtracking missed the spot where 2415 * particular register was initialized with a constant. 2416 */ 2417 verbose(env, "BUG backtracking idx %d\n", i); 2418 WARN_ONCE(1, "verifier backtracking bug"); 2419 return -EFAULT; 2420 } 2421 } 2422 st = st->parent; 2423 if (!st) 2424 break; 2425 2426 new_marks = false; 2427 func = st->frame[st->curframe]; 2428 bitmap_from_u64(mask, reg_mask); 2429 for_each_set_bit(i, mask, 32) { 2430 reg = &func->regs[i]; 2431 if (reg->type != SCALAR_VALUE) { 2432 reg_mask &= ~(1u << i); 2433 continue; 2434 } 2435 if (!reg->precise) 2436 new_marks = true; 2437 reg->precise = true; 2438 } 2439 2440 bitmap_from_u64(mask, stack_mask); 2441 for_each_set_bit(i, mask, 64) { 2442 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2443 /* the sequence of instructions: 2444 * 2: (bf) r3 = r10 2445 * 3: (7b) *(u64 *)(r3 -8) = r0 2446 * 4: (79) r4 = *(u64 *)(r10 -8) 2447 * doesn't contain jmps. It's backtracked 2448 * as a single block. 2449 * During backtracking insn 3 is not recognized as 2450 * stack access, so at the end of backtracking 2451 * stack slot fp-8 is still marked in stack_mask. 2452 * However the parent state may not have accessed 2453 * fp-8 and it's "unallocated" stack space. 2454 * In such case fallback to conservative. 2455 */ 2456 mark_all_scalars_precise(env, st); 2457 return 0; 2458 } 2459 2460 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2461 stack_mask &= ~(1ull << i); 2462 continue; 2463 } 2464 reg = &func->stack[i].spilled_ptr; 2465 if (reg->type != SCALAR_VALUE) { 2466 stack_mask &= ~(1ull << i); 2467 continue; 2468 } 2469 if (!reg->precise) 2470 new_marks = true; 2471 reg->precise = true; 2472 } 2473 if (env->log.level & BPF_LOG_LEVEL) { 2474 print_verifier_state(env, func); 2475 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2476 new_marks ? "didn't have" : "already had", 2477 reg_mask, stack_mask); 2478 } 2479 2480 if (!reg_mask && !stack_mask) 2481 break; 2482 if (!new_marks) 2483 break; 2484 2485 last_idx = st->last_insn_idx; 2486 first_idx = st->first_insn_idx; 2487 } 2488 return 0; 2489 } 2490 2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2492 { 2493 return __mark_chain_precision(env, regno, -1); 2494 } 2495 2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2497 { 2498 return __mark_chain_precision(env, -1, spi); 2499 } 2500 2501 static bool is_spillable_regtype(enum bpf_reg_type type) 2502 { 2503 switch (type) { 2504 case PTR_TO_MAP_VALUE: 2505 case PTR_TO_MAP_VALUE_OR_NULL: 2506 case PTR_TO_STACK: 2507 case PTR_TO_CTX: 2508 case PTR_TO_PACKET: 2509 case PTR_TO_PACKET_META: 2510 case PTR_TO_PACKET_END: 2511 case PTR_TO_FLOW_KEYS: 2512 case CONST_PTR_TO_MAP: 2513 case PTR_TO_SOCKET: 2514 case PTR_TO_SOCKET_OR_NULL: 2515 case PTR_TO_SOCK_COMMON: 2516 case PTR_TO_SOCK_COMMON_OR_NULL: 2517 case PTR_TO_TCP_SOCK: 2518 case PTR_TO_TCP_SOCK_OR_NULL: 2519 case PTR_TO_XDP_SOCK: 2520 case PTR_TO_BTF_ID: 2521 case PTR_TO_BTF_ID_OR_NULL: 2522 case PTR_TO_RDONLY_BUF: 2523 case PTR_TO_RDONLY_BUF_OR_NULL: 2524 case PTR_TO_RDWR_BUF: 2525 case PTR_TO_RDWR_BUF_OR_NULL: 2526 case PTR_TO_PERCPU_BTF_ID: 2527 case PTR_TO_MEM: 2528 case PTR_TO_MEM_OR_NULL: 2529 case PTR_TO_FUNC: 2530 case PTR_TO_MAP_KEY: 2531 return true; 2532 default: 2533 return false; 2534 } 2535 } 2536 2537 /* Does this register contain a constant zero? */ 2538 static bool register_is_null(struct bpf_reg_state *reg) 2539 { 2540 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2541 } 2542 2543 static bool register_is_const(struct bpf_reg_state *reg) 2544 { 2545 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2546 } 2547 2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2549 { 2550 return tnum_is_unknown(reg->var_off) && 2551 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2552 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2553 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2554 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2555 } 2556 2557 static bool register_is_bounded(struct bpf_reg_state *reg) 2558 { 2559 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2560 } 2561 2562 static bool __is_pointer_value(bool allow_ptr_leaks, 2563 const struct bpf_reg_state *reg) 2564 { 2565 if (allow_ptr_leaks) 2566 return false; 2567 2568 return reg->type != SCALAR_VALUE; 2569 } 2570 2571 static void save_register_state(struct bpf_func_state *state, 2572 int spi, struct bpf_reg_state *reg) 2573 { 2574 int i; 2575 2576 state->stack[spi].spilled_ptr = *reg; 2577 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2578 2579 for (i = 0; i < BPF_REG_SIZE; i++) 2580 state->stack[spi].slot_type[i] = STACK_SPILL; 2581 } 2582 2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2584 * stack boundary and alignment are checked in check_mem_access() 2585 */ 2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2587 /* stack frame we're writing to */ 2588 struct bpf_func_state *state, 2589 int off, int size, int value_regno, 2590 int insn_idx) 2591 { 2592 struct bpf_func_state *cur; /* state of the current function */ 2593 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2594 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2595 struct bpf_reg_state *reg = NULL; 2596 2597 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2598 if (err) 2599 return err; 2600 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2601 * so it's aligned access and [off, off + size) are within stack limits 2602 */ 2603 if (!env->allow_ptr_leaks && 2604 state->stack[spi].slot_type[0] == STACK_SPILL && 2605 size != BPF_REG_SIZE) { 2606 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2607 return -EACCES; 2608 } 2609 2610 cur = env->cur_state->frame[env->cur_state->curframe]; 2611 if (value_regno >= 0) 2612 reg = &cur->regs[value_regno]; 2613 if (!env->bypass_spec_v4) { 2614 bool sanitize = reg && is_spillable_regtype(reg->type); 2615 2616 for (i = 0; i < size; i++) { 2617 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2618 sanitize = true; 2619 break; 2620 } 2621 } 2622 2623 if (sanitize) 2624 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2625 } 2626 2627 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2628 !register_is_null(reg) && env->bpf_capable) { 2629 if (dst_reg != BPF_REG_FP) { 2630 /* The backtracking logic can only recognize explicit 2631 * stack slot address like [fp - 8]. Other spill of 2632 * scalar via different register has to be conservative. 2633 * Backtrack from here and mark all registers as precise 2634 * that contributed into 'reg' being a constant. 2635 */ 2636 err = mark_chain_precision(env, value_regno); 2637 if (err) 2638 return err; 2639 } 2640 save_register_state(state, spi, reg); 2641 } else if (reg && is_spillable_regtype(reg->type)) { 2642 /* register containing pointer is being spilled into stack */ 2643 if (size != BPF_REG_SIZE) { 2644 verbose_linfo(env, insn_idx, "; "); 2645 verbose(env, "invalid size of register spill\n"); 2646 return -EACCES; 2647 } 2648 if (state != cur && reg->type == PTR_TO_STACK) { 2649 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2650 return -EINVAL; 2651 } 2652 save_register_state(state, spi, reg); 2653 } else { 2654 u8 type = STACK_MISC; 2655 2656 /* regular write of data into stack destroys any spilled ptr */ 2657 state->stack[spi].spilled_ptr.type = NOT_INIT; 2658 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2659 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2660 for (i = 0; i < BPF_REG_SIZE; i++) 2661 state->stack[spi].slot_type[i] = STACK_MISC; 2662 2663 /* only mark the slot as written if all 8 bytes were written 2664 * otherwise read propagation may incorrectly stop too soon 2665 * when stack slots are partially written. 2666 * This heuristic means that read propagation will be 2667 * conservative, since it will add reg_live_read marks 2668 * to stack slots all the way to first state when programs 2669 * writes+reads less than 8 bytes 2670 */ 2671 if (size == BPF_REG_SIZE) 2672 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2673 2674 /* when we zero initialize stack slots mark them as such */ 2675 if (reg && register_is_null(reg)) { 2676 /* backtracking doesn't work for STACK_ZERO yet. */ 2677 err = mark_chain_precision(env, value_regno); 2678 if (err) 2679 return err; 2680 type = STACK_ZERO; 2681 } 2682 2683 /* Mark slots affected by this stack write. */ 2684 for (i = 0; i < size; i++) 2685 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2686 type; 2687 } 2688 return 0; 2689 } 2690 2691 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2692 * known to contain a variable offset. 2693 * This function checks whether the write is permitted and conservatively 2694 * tracks the effects of the write, considering that each stack slot in the 2695 * dynamic range is potentially written to. 2696 * 2697 * 'off' includes 'regno->off'. 2698 * 'value_regno' can be -1, meaning that an unknown value is being written to 2699 * the stack. 2700 * 2701 * Spilled pointers in range are not marked as written because we don't know 2702 * what's going to be actually written. This means that read propagation for 2703 * future reads cannot be terminated by this write. 2704 * 2705 * For privileged programs, uninitialized stack slots are considered 2706 * initialized by this write (even though we don't know exactly what offsets 2707 * are going to be written to). The idea is that we don't want the verifier to 2708 * reject future reads that access slots written to through variable offsets. 2709 */ 2710 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2711 /* func where register points to */ 2712 struct bpf_func_state *state, 2713 int ptr_regno, int off, int size, 2714 int value_regno, int insn_idx) 2715 { 2716 struct bpf_func_state *cur; /* state of the current function */ 2717 int min_off, max_off; 2718 int i, err; 2719 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2720 bool writing_zero = false; 2721 /* set if the fact that we're writing a zero is used to let any 2722 * stack slots remain STACK_ZERO 2723 */ 2724 bool zero_used = false; 2725 2726 cur = env->cur_state->frame[env->cur_state->curframe]; 2727 ptr_reg = &cur->regs[ptr_regno]; 2728 min_off = ptr_reg->smin_value + off; 2729 max_off = ptr_reg->smax_value + off + size; 2730 if (value_regno >= 0) 2731 value_reg = &cur->regs[value_regno]; 2732 if (value_reg && register_is_null(value_reg)) 2733 writing_zero = true; 2734 2735 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2736 if (err) 2737 return err; 2738 2739 2740 /* Variable offset writes destroy any spilled pointers in range. */ 2741 for (i = min_off; i < max_off; i++) { 2742 u8 new_type, *stype; 2743 int slot, spi; 2744 2745 slot = -i - 1; 2746 spi = slot / BPF_REG_SIZE; 2747 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2748 2749 if (!env->allow_ptr_leaks 2750 && *stype != NOT_INIT 2751 && *stype != SCALAR_VALUE) { 2752 /* Reject the write if there's are spilled pointers in 2753 * range. If we didn't reject here, the ptr status 2754 * would be erased below (even though not all slots are 2755 * actually overwritten), possibly opening the door to 2756 * leaks. 2757 */ 2758 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2759 insn_idx, i); 2760 return -EINVAL; 2761 } 2762 2763 /* Erase all spilled pointers. */ 2764 state->stack[spi].spilled_ptr.type = NOT_INIT; 2765 2766 /* Update the slot type. */ 2767 new_type = STACK_MISC; 2768 if (writing_zero && *stype == STACK_ZERO) { 2769 new_type = STACK_ZERO; 2770 zero_used = true; 2771 } 2772 /* If the slot is STACK_INVALID, we check whether it's OK to 2773 * pretend that it will be initialized by this write. The slot 2774 * might not actually be written to, and so if we mark it as 2775 * initialized future reads might leak uninitialized memory. 2776 * For privileged programs, we will accept such reads to slots 2777 * that may or may not be written because, if we're reject 2778 * them, the error would be too confusing. 2779 */ 2780 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2781 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2782 insn_idx, i); 2783 return -EINVAL; 2784 } 2785 *stype = new_type; 2786 } 2787 if (zero_used) { 2788 /* backtracking doesn't work for STACK_ZERO yet. */ 2789 err = mark_chain_precision(env, value_regno); 2790 if (err) 2791 return err; 2792 } 2793 return 0; 2794 } 2795 2796 /* When register 'dst_regno' is assigned some values from stack[min_off, 2797 * max_off), we set the register's type according to the types of the 2798 * respective stack slots. If all the stack values are known to be zeros, then 2799 * so is the destination reg. Otherwise, the register is considered to be 2800 * SCALAR. This function does not deal with register filling; the caller must 2801 * ensure that all spilled registers in the stack range have been marked as 2802 * read. 2803 */ 2804 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2805 /* func where src register points to */ 2806 struct bpf_func_state *ptr_state, 2807 int min_off, int max_off, int dst_regno) 2808 { 2809 struct bpf_verifier_state *vstate = env->cur_state; 2810 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2811 int i, slot, spi; 2812 u8 *stype; 2813 int zeros = 0; 2814 2815 for (i = min_off; i < max_off; i++) { 2816 slot = -i - 1; 2817 spi = slot / BPF_REG_SIZE; 2818 stype = ptr_state->stack[spi].slot_type; 2819 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2820 break; 2821 zeros++; 2822 } 2823 if (zeros == max_off - min_off) { 2824 /* any access_size read into register is zero extended, 2825 * so the whole register == const_zero 2826 */ 2827 __mark_reg_const_zero(&state->regs[dst_regno]); 2828 /* backtracking doesn't support STACK_ZERO yet, 2829 * so mark it precise here, so that later 2830 * backtracking can stop here. 2831 * Backtracking may not need this if this register 2832 * doesn't participate in pointer adjustment. 2833 * Forward propagation of precise flag is not 2834 * necessary either. This mark is only to stop 2835 * backtracking. Any register that contributed 2836 * to const 0 was marked precise before spill. 2837 */ 2838 state->regs[dst_regno].precise = true; 2839 } else { 2840 /* have read misc data from the stack */ 2841 mark_reg_unknown(env, state->regs, dst_regno); 2842 } 2843 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2844 } 2845 2846 /* Read the stack at 'off' and put the results into the register indicated by 2847 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2848 * spilled reg. 2849 * 2850 * 'dst_regno' can be -1, meaning that the read value is not going to a 2851 * register. 2852 * 2853 * The access is assumed to be within the current stack bounds. 2854 */ 2855 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2856 /* func where src register points to */ 2857 struct bpf_func_state *reg_state, 2858 int off, int size, int dst_regno) 2859 { 2860 struct bpf_verifier_state *vstate = env->cur_state; 2861 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2862 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2863 struct bpf_reg_state *reg; 2864 u8 *stype; 2865 2866 stype = reg_state->stack[spi].slot_type; 2867 reg = ®_state->stack[spi].spilled_ptr; 2868 2869 if (stype[0] == STACK_SPILL) { 2870 if (size != BPF_REG_SIZE) { 2871 if (reg->type != SCALAR_VALUE) { 2872 verbose_linfo(env, env->insn_idx, "; "); 2873 verbose(env, "invalid size of register fill\n"); 2874 return -EACCES; 2875 } 2876 if (dst_regno >= 0) { 2877 mark_reg_unknown(env, state->regs, dst_regno); 2878 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2879 } 2880 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2881 return 0; 2882 } 2883 for (i = 1; i < BPF_REG_SIZE; i++) { 2884 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2885 verbose(env, "corrupted spill memory\n"); 2886 return -EACCES; 2887 } 2888 } 2889 2890 if (dst_regno >= 0) { 2891 /* restore register state from stack */ 2892 state->regs[dst_regno] = *reg; 2893 /* mark reg as written since spilled pointer state likely 2894 * has its liveness marks cleared by is_state_visited() 2895 * which resets stack/reg liveness for state transitions 2896 */ 2897 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2898 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2899 /* If dst_regno==-1, the caller is asking us whether 2900 * it is acceptable to use this value as a SCALAR_VALUE 2901 * (e.g. for XADD). 2902 * We must not allow unprivileged callers to do that 2903 * with spilled pointers. 2904 */ 2905 verbose(env, "leaking pointer from stack off %d\n", 2906 off); 2907 return -EACCES; 2908 } 2909 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2910 } else { 2911 u8 type; 2912 2913 for (i = 0; i < size; i++) { 2914 type = stype[(slot - i) % BPF_REG_SIZE]; 2915 if (type == STACK_MISC) 2916 continue; 2917 if (type == STACK_ZERO) 2918 continue; 2919 verbose(env, "invalid read from stack off %d+%d size %d\n", 2920 off, i, size); 2921 return -EACCES; 2922 } 2923 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2924 if (dst_regno >= 0) 2925 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2926 } 2927 return 0; 2928 } 2929 2930 enum stack_access_src { 2931 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2932 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2933 }; 2934 2935 static int check_stack_range_initialized(struct bpf_verifier_env *env, 2936 int regno, int off, int access_size, 2937 bool zero_size_allowed, 2938 enum stack_access_src type, 2939 struct bpf_call_arg_meta *meta); 2940 2941 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2942 { 2943 return cur_regs(env) + regno; 2944 } 2945 2946 /* Read the stack at 'ptr_regno + off' and put the result into the register 2947 * 'dst_regno'. 2948 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2949 * but not its variable offset. 2950 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2951 * 2952 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2953 * filling registers (i.e. reads of spilled register cannot be detected when 2954 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2955 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2956 * offset; for a fixed offset check_stack_read_fixed_off should be used 2957 * instead. 2958 */ 2959 static int check_stack_read_var_off(struct bpf_verifier_env *env, 2960 int ptr_regno, int off, int size, int dst_regno) 2961 { 2962 /* The state of the source register. */ 2963 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2964 struct bpf_func_state *ptr_state = func(env, reg); 2965 int err; 2966 int min_off, max_off; 2967 2968 /* Note that we pass a NULL meta, so raw access will not be permitted. 2969 */ 2970 err = check_stack_range_initialized(env, ptr_regno, off, size, 2971 false, ACCESS_DIRECT, NULL); 2972 if (err) 2973 return err; 2974 2975 min_off = reg->smin_value + off; 2976 max_off = reg->smax_value + off; 2977 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 2978 return 0; 2979 } 2980 2981 /* check_stack_read dispatches to check_stack_read_fixed_off or 2982 * check_stack_read_var_off. 2983 * 2984 * The caller must ensure that the offset falls within the allocated stack 2985 * bounds. 2986 * 2987 * 'dst_regno' is a register which will receive the value from the stack. It 2988 * can be -1, meaning that the read value is not going to a register. 2989 */ 2990 static int check_stack_read(struct bpf_verifier_env *env, 2991 int ptr_regno, int off, int size, 2992 int dst_regno) 2993 { 2994 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2995 struct bpf_func_state *state = func(env, reg); 2996 int err; 2997 /* Some accesses are only permitted with a static offset. */ 2998 bool var_off = !tnum_is_const(reg->var_off); 2999 3000 /* The offset is required to be static when reads don't go to a 3001 * register, in order to not leak pointers (see 3002 * check_stack_read_fixed_off). 3003 */ 3004 if (dst_regno < 0 && var_off) { 3005 char tn_buf[48]; 3006 3007 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3008 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3009 tn_buf, off, size); 3010 return -EACCES; 3011 } 3012 /* Variable offset is prohibited for unprivileged mode for simplicity 3013 * since it requires corresponding support in Spectre masking for stack 3014 * ALU. See also retrieve_ptr_limit(). 3015 */ 3016 if (!env->bypass_spec_v1 && var_off) { 3017 char tn_buf[48]; 3018 3019 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3020 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3021 ptr_regno, tn_buf); 3022 return -EACCES; 3023 } 3024 3025 if (!var_off) { 3026 off += reg->var_off.value; 3027 err = check_stack_read_fixed_off(env, state, off, size, 3028 dst_regno); 3029 } else { 3030 /* Variable offset stack reads need more conservative handling 3031 * than fixed offset ones. Note that dst_regno >= 0 on this 3032 * branch. 3033 */ 3034 err = check_stack_read_var_off(env, ptr_regno, off, size, 3035 dst_regno); 3036 } 3037 return err; 3038 } 3039 3040 3041 /* check_stack_write dispatches to check_stack_write_fixed_off or 3042 * check_stack_write_var_off. 3043 * 3044 * 'ptr_regno' is the register used as a pointer into the stack. 3045 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3046 * 'value_regno' is the register whose value we're writing to the stack. It can 3047 * be -1, meaning that we're not writing from a register. 3048 * 3049 * The caller must ensure that the offset falls within the maximum stack size. 3050 */ 3051 static int check_stack_write(struct bpf_verifier_env *env, 3052 int ptr_regno, int off, int size, 3053 int value_regno, int insn_idx) 3054 { 3055 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3056 struct bpf_func_state *state = func(env, reg); 3057 int err; 3058 3059 if (tnum_is_const(reg->var_off)) { 3060 off += reg->var_off.value; 3061 err = check_stack_write_fixed_off(env, state, off, size, 3062 value_regno, insn_idx); 3063 } else { 3064 /* Variable offset stack reads need more conservative handling 3065 * than fixed offset ones. 3066 */ 3067 err = check_stack_write_var_off(env, state, 3068 ptr_regno, off, size, 3069 value_regno, insn_idx); 3070 } 3071 return err; 3072 } 3073 3074 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3075 int off, int size, enum bpf_access_type type) 3076 { 3077 struct bpf_reg_state *regs = cur_regs(env); 3078 struct bpf_map *map = regs[regno].map_ptr; 3079 u32 cap = bpf_map_flags_to_cap(map); 3080 3081 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3082 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3083 map->value_size, off, size); 3084 return -EACCES; 3085 } 3086 3087 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3088 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3089 map->value_size, off, size); 3090 return -EACCES; 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3097 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3098 int off, int size, u32 mem_size, 3099 bool zero_size_allowed) 3100 { 3101 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3102 struct bpf_reg_state *reg; 3103 3104 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3105 return 0; 3106 3107 reg = &cur_regs(env)[regno]; 3108 switch (reg->type) { 3109 case PTR_TO_MAP_KEY: 3110 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3111 mem_size, off, size); 3112 break; 3113 case PTR_TO_MAP_VALUE: 3114 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3115 mem_size, off, size); 3116 break; 3117 case PTR_TO_PACKET: 3118 case PTR_TO_PACKET_META: 3119 case PTR_TO_PACKET_END: 3120 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3121 off, size, regno, reg->id, off, mem_size); 3122 break; 3123 case PTR_TO_MEM: 3124 default: 3125 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3126 mem_size, off, size); 3127 } 3128 3129 return -EACCES; 3130 } 3131 3132 /* check read/write into a memory region with possible variable offset */ 3133 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3134 int off, int size, u32 mem_size, 3135 bool zero_size_allowed) 3136 { 3137 struct bpf_verifier_state *vstate = env->cur_state; 3138 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3139 struct bpf_reg_state *reg = &state->regs[regno]; 3140 int err; 3141 3142 /* We may have adjusted the register pointing to memory region, so we 3143 * need to try adding each of min_value and max_value to off 3144 * to make sure our theoretical access will be safe. 3145 */ 3146 if (env->log.level & BPF_LOG_LEVEL) 3147 print_verifier_state(env, state); 3148 3149 /* The minimum value is only important with signed 3150 * comparisons where we can't assume the floor of a 3151 * value is 0. If we are using signed variables for our 3152 * index'es we need to make sure that whatever we use 3153 * will have a set floor within our range. 3154 */ 3155 if (reg->smin_value < 0 && 3156 (reg->smin_value == S64_MIN || 3157 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3158 reg->smin_value + off < 0)) { 3159 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3160 regno); 3161 return -EACCES; 3162 } 3163 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3164 mem_size, zero_size_allowed); 3165 if (err) { 3166 verbose(env, "R%d min value is outside of the allowed memory range\n", 3167 regno); 3168 return err; 3169 } 3170 3171 /* If we haven't set a max value then we need to bail since we can't be 3172 * sure we won't do bad things. 3173 * If reg->umax_value + off could overflow, treat that as unbounded too. 3174 */ 3175 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3176 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3177 regno); 3178 return -EACCES; 3179 } 3180 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3181 mem_size, zero_size_allowed); 3182 if (err) { 3183 verbose(env, "R%d max value is outside of the allowed memory range\n", 3184 regno); 3185 return err; 3186 } 3187 3188 return 0; 3189 } 3190 3191 /* check read/write into a map element with possible variable offset */ 3192 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3193 int off, int size, bool zero_size_allowed) 3194 { 3195 struct bpf_verifier_state *vstate = env->cur_state; 3196 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3197 struct bpf_reg_state *reg = &state->regs[regno]; 3198 struct bpf_map *map = reg->map_ptr; 3199 int err; 3200 3201 err = check_mem_region_access(env, regno, off, size, map->value_size, 3202 zero_size_allowed); 3203 if (err) 3204 return err; 3205 3206 if (map_value_has_spin_lock(map)) { 3207 u32 lock = map->spin_lock_off; 3208 3209 /* if any part of struct bpf_spin_lock can be touched by 3210 * load/store reject this program. 3211 * To check that [x1, x2) overlaps with [y1, y2) 3212 * it is sufficient to check x1 < y2 && y1 < x2. 3213 */ 3214 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3215 lock < reg->umax_value + off + size) { 3216 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3217 return -EACCES; 3218 } 3219 } 3220 return err; 3221 } 3222 3223 #define MAX_PACKET_OFF 0xffff 3224 3225 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3226 { 3227 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3228 } 3229 3230 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3231 const struct bpf_call_arg_meta *meta, 3232 enum bpf_access_type t) 3233 { 3234 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3235 3236 switch (prog_type) { 3237 /* Program types only with direct read access go here! */ 3238 case BPF_PROG_TYPE_LWT_IN: 3239 case BPF_PROG_TYPE_LWT_OUT: 3240 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3241 case BPF_PROG_TYPE_SK_REUSEPORT: 3242 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3243 case BPF_PROG_TYPE_CGROUP_SKB: 3244 if (t == BPF_WRITE) 3245 return false; 3246 fallthrough; 3247 3248 /* Program types with direct read + write access go here! */ 3249 case BPF_PROG_TYPE_SCHED_CLS: 3250 case BPF_PROG_TYPE_SCHED_ACT: 3251 case BPF_PROG_TYPE_XDP: 3252 case BPF_PROG_TYPE_LWT_XMIT: 3253 case BPF_PROG_TYPE_SK_SKB: 3254 case BPF_PROG_TYPE_SK_MSG: 3255 if (meta) 3256 return meta->pkt_access; 3257 3258 env->seen_direct_write = true; 3259 return true; 3260 3261 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3262 if (t == BPF_WRITE) 3263 env->seen_direct_write = true; 3264 3265 return true; 3266 3267 default: 3268 return false; 3269 } 3270 } 3271 3272 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3273 int size, bool zero_size_allowed) 3274 { 3275 struct bpf_reg_state *regs = cur_regs(env); 3276 struct bpf_reg_state *reg = ®s[regno]; 3277 int err; 3278 3279 /* We may have added a variable offset to the packet pointer; but any 3280 * reg->range we have comes after that. We are only checking the fixed 3281 * offset. 3282 */ 3283 3284 /* We don't allow negative numbers, because we aren't tracking enough 3285 * detail to prove they're safe. 3286 */ 3287 if (reg->smin_value < 0) { 3288 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3289 regno); 3290 return -EACCES; 3291 } 3292 3293 err = reg->range < 0 ? -EINVAL : 3294 __check_mem_access(env, regno, off, size, reg->range, 3295 zero_size_allowed); 3296 if (err) { 3297 verbose(env, "R%d offset is outside of the packet\n", regno); 3298 return err; 3299 } 3300 3301 /* __check_mem_access has made sure "off + size - 1" is within u16. 3302 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3303 * otherwise find_good_pkt_pointers would have refused to set range info 3304 * that __check_mem_access would have rejected this pkt access. 3305 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3306 */ 3307 env->prog->aux->max_pkt_offset = 3308 max_t(u32, env->prog->aux->max_pkt_offset, 3309 off + reg->umax_value + size - 1); 3310 3311 return err; 3312 } 3313 3314 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3315 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3316 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3317 struct btf **btf, u32 *btf_id) 3318 { 3319 struct bpf_insn_access_aux info = { 3320 .reg_type = *reg_type, 3321 .log = &env->log, 3322 }; 3323 3324 if (env->ops->is_valid_access && 3325 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3326 /* A non zero info.ctx_field_size indicates that this field is a 3327 * candidate for later verifier transformation to load the whole 3328 * field and then apply a mask when accessed with a narrower 3329 * access than actual ctx access size. A zero info.ctx_field_size 3330 * will only allow for whole field access and rejects any other 3331 * type of narrower access. 3332 */ 3333 *reg_type = info.reg_type; 3334 3335 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3336 *btf = info.btf; 3337 *btf_id = info.btf_id; 3338 } else { 3339 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3340 } 3341 /* remember the offset of last byte accessed in ctx */ 3342 if (env->prog->aux->max_ctx_offset < off + size) 3343 env->prog->aux->max_ctx_offset = off + size; 3344 return 0; 3345 } 3346 3347 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3348 return -EACCES; 3349 } 3350 3351 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3352 int size) 3353 { 3354 if (size < 0 || off < 0 || 3355 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3356 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3357 off, size); 3358 return -EACCES; 3359 } 3360 return 0; 3361 } 3362 3363 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3364 u32 regno, int off, int size, 3365 enum bpf_access_type t) 3366 { 3367 struct bpf_reg_state *regs = cur_regs(env); 3368 struct bpf_reg_state *reg = ®s[regno]; 3369 struct bpf_insn_access_aux info = {}; 3370 bool valid; 3371 3372 if (reg->smin_value < 0) { 3373 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3374 regno); 3375 return -EACCES; 3376 } 3377 3378 switch (reg->type) { 3379 case PTR_TO_SOCK_COMMON: 3380 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3381 break; 3382 case PTR_TO_SOCKET: 3383 valid = bpf_sock_is_valid_access(off, size, t, &info); 3384 break; 3385 case PTR_TO_TCP_SOCK: 3386 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3387 break; 3388 case PTR_TO_XDP_SOCK: 3389 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3390 break; 3391 default: 3392 valid = false; 3393 } 3394 3395 3396 if (valid) { 3397 env->insn_aux_data[insn_idx].ctx_field_size = 3398 info.ctx_field_size; 3399 return 0; 3400 } 3401 3402 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3403 regno, reg_type_str[reg->type], off, size); 3404 3405 return -EACCES; 3406 } 3407 3408 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3409 { 3410 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3411 } 3412 3413 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3414 { 3415 const struct bpf_reg_state *reg = reg_state(env, regno); 3416 3417 return reg->type == PTR_TO_CTX; 3418 } 3419 3420 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3421 { 3422 const struct bpf_reg_state *reg = reg_state(env, regno); 3423 3424 return type_is_sk_pointer(reg->type); 3425 } 3426 3427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3428 { 3429 const struct bpf_reg_state *reg = reg_state(env, regno); 3430 3431 return type_is_pkt_pointer(reg->type); 3432 } 3433 3434 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3435 { 3436 const struct bpf_reg_state *reg = reg_state(env, regno); 3437 3438 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3439 return reg->type == PTR_TO_FLOW_KEYS; 3440 } 3441 3442 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3443 const struct bpf_reg_state *reg, 3444 int off, int size, bool strict) 3445 { 3446 struct tnum reg_off; 3447 int ip_align; 3448 3449 /* Byte size accesses are always allowed. */ 3450 if (!strict || size == 1) 3451 return 0; 3452 3453 /* For platforms that do not have a Kconfig enabling 3454 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3455 * NET_IP_ALIGN is universally set to '2'. And on platforms 3456 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3457 * to this code only in strict mode where we want to emulate 3458 * the NET_IP_ALIGN==2 checking. Therefore use an 3459 * unconditional IP align value of '2'. 3460 */ 3461 ip_align = 2; 3462 3463 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3464 if (!tnum_is_aligned(reg_off, size)) { 3465 char tn_buf[48]; 3466 3467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3468 verbose(env, 3469 "misaligned packet access off %d+%s+%d+%d size %d\n", 3470 ip_align, tn_buf, reg->off, off, size); 3471 return -EACCES; 3472 } 3473 3474 return 0; 3475 } 3476 3477 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3478 const struct bpf_reg_state *reg, 3479 const char *pointer_desc, 3480 int off, int size, bool strict) 3481 { 3482 struct tnum reg_off; 3483 3484 /* Byte size accesses are always allowed. */ 3485 if (!strict || size == 1) 3486 return 0; 3487 3488 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3489 if (!tnum_is_aligned(reg_off, size)) { 3490 char tn_buf[48]; 3491 3492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3493 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3494 pointer_desc, tn_buf, reg->off, off, size); 3495 return -EACCES; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static int check_ptr_alignment(struct bpf_verifier_env *env, 3502 const struct bpf_reg_state *reg, int off, 3503 int size, bool strict_alignment_once) 3504 { 3505 bool strict = env->strict_alignment || strict_alignment_once; 3506 const char *pointer_desc = ""; 3507 3508 switch (reg->type) { 3509 case PTR_TO_PACKET: 3510 case PTR_TO_PACKET_META: 3511 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3512 * right in front, treat it the very same way. 3513 */ 3514 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3515 case PTR_TO_FLOW_KEYS: 3516 pointer_desc = "flow keys "; 3517 break; 3518 case PTR_TO_MAP_KEY: 3519 pointer_desc = "key "; 3520 break; 3521 case PTR_TO_MAP_VALUE: 3522 pointer_desc = "value "; 3523 break; 3524 case PTR_TO_CTX: 3525 pointer_desc = "context "; 3526 break; 3527 case PTR_TO_STACK: 3528 pointer_desc = "stack "; 3529 /* The stack spill tracking logic in check_stack_write_fixed_off() 3530 * and check_stack_read_fixed_off() relies on stack accesses being 3531 * aligned. 3532 */ 3533 strict = true; 3534 break; 3535 case PTR_TO_SOCKET: 3536 pointer_desc = "sock "; 3537 break; 3538 case PTR_TO_SOCK_COMMON: 3539 pointer_desc = "sock_common "; 3540 break; 3541 case PTR_TO_TCP_SOCK: 3542 pointer_desc = "tcp_sock "; 3543 break; 3544 case PTR_TO_XDP_SOCK: 3545 pointer_desc = "xdp_sock "; 3546 break; 3547 default: 3548 break; 3549 } 3550 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3551 strict); 3552 } 3553 3554 static int update_stack_depth(struct bpf_verifier_env *env, 3555 const struct bpf_func_state *func, 3556 int off) 3557 { 3558 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3559 3560 if (stack >= -off) 3561 return 0; 3562 3563 /* update known max for given subprogram */ 3564 env->subprog_info[func->subprogno].stack_depth = -off; 3565 return 0; 3566 } 3567 3568 /* starting from main bpf function walk all instructions of the function 3569 * and recursively walk all callees that given function can call. 3570 * Ignore jump and exit insns. 3571 * Since recursion is prevented by check_cfg() this algorithm 3572 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3573 */ 3574 static int check_max_stack_depth(struct bpf_verifier_env *env) 3575 { 3576 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3577 struct bpf_subprog_info *subprog = env->subprog_info; 3578 struct bpf_insn *insn = env->prog->insnsi; 3579 bool tail_call_reachable = false; 3580 int ret_insn[MAX_CALL_FRAMES]; 3581 int ret_prog[MAX_CALL_FRAMES]; 3582 int j; 3583 3584 process_func: 3585 /* protect against potential stack overflow that might happen when 3586 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3587 * depth for such case down to 256 so that the worst case scenario 3588 * would result in 8k stack size (32 which is tailcall limit * 256 = 3589 * 8k). 3590 * 3591 * To get the idea what might happen, see an example: 3592 * func1 -> sub rsp, 128 3593 * subfunc1 -> sub rsp, 256 3594 * tailcall1 -> add rsp, 256 3595 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3596 * subfunc2 -> sub rsp, 64 3597 * subfunc22 -> sub rsp, 128 3598 * tailcall2 -> add rsp, 128 3599 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3600 * 3601 * tailcall will unwind the current stack frame but it will not get rid 3602 * of caller's stack as shown on the example above. 3603 */ 3604 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3605 verbose(env, 3606 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3607 depth); 3608 return -EACCES; 3609 } 3610 /* round up to 32-bytes, since this is granularity 3611 * of interpreter stack size 3612 */ 3613 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3614 if (depth > MAX_BPF_STACK) { 3615 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3616 frame + 1, depth); 3617 return -EACCES; 3618 } 3619 continue_func: 3620 subprog_end = subprog[idx + 1].start; 3621 for (; i < subprog_end; i++) { 3622 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3623 continue; 3624 /* remember insn and function to return to */ 3625 ret_insn[frame] = i + 1; 3626 ret_prog[frame] = idx; 3627 3628 /* find the callee */ 3629 i = i + insn[i].imm + 1; 3630 idx = find_subprog(env, i); 3631 if (idx < 0) { 3632 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3633 i); 3634 return -EFAULT; 3635 } 3636 3637 if (subprog[idx].has_tail_call) 3638 tail_call_reachable = true; 3639 3640 frame++; 3641 if (frame >= MAX_CALL_FRAMES) { 3642 verbose(env, "the call stack of %d frames is too deep !\n", 3643 frame); 3644 return -E2BIG; 3645 } 3646 goto process_func; 3647 } 3648 /* if tail call got detected across bpf2bpf calls then mark each of the 3649 * currently present subprog frames as tail call reachable subprogs; 3650 * this info will be utilized by JIT so that we will be preserving the 3651 * tail call counter throughout bpf2bpf calls combined with tailcalls 3652 */ 3653 if (tail_call_reachable) 3654 for (j = 0; j < frame; j++) 3655 subprog[ret_prog[j]].tail_call_reachable = true; 3656 if (subprog[0].tail_call_reachable) 3657 env->prog->aux->tail_call_reachable = true; 3658 3659 /* end of for() loop means the last insn of the 'subprog' 3660 * was reached. Doesn't matter whether it was JA or EXIT 3661 */ 3662 if (frame == 0) 3663 return 0; 3664 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3665 frame--; 3666 i = ret_insn[frame]; 3667 idx = ret_prog[frame]; 3668 goto continue_func; 3669 } 3670 3671 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3672 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3673 const struct bpf_insn *insn, int idx) 3674 { 3675 int start = idx + insn->imm + 1, subprog; 3676 3677 subprog = find_subprog(env, start); 3678 if (subprog < 0) { 3679 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3680 start); 3681 return -EFAULT; 3682 } 3683 return env->subprog_info[subprog].stack_depth; 3684 } 3685 #endif 3686 3687 int check_ctx_reg(struct bpf_verifier_env *env, 3688 const struct bpf_reg_state *reg, int regno) 3689 { 3690 /* Access to ctx or passing it to a helper is only allowed in 3691 * its original, unmodified form. 3692 */ 3693 3694 if (reg->off) { 3695 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3696 regno, reg->off); 3697 return -EACCES; 3698 } 3699 3700 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3701 char tn_buf[48]; 3702 3703 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3704 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3705 return -EACCES; 3706 } 3707 3708 return 0; 3709 } 3710 3711 static int __check_buffer_access(struct bpf_verifier_env *env, 3712 const char *buf_info, 3713 const struct bpf_reg_state *reg, 3714 int regno, int off, int size) 3715 { 3716 if (off < 0) { 3717 verbose(env, 3718 "R%d invalid %s buffer access: off=%d, size=%d\n", 3719 regno, buf_info, off, size); 3720 return -EACCES; 3721 } 3722 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3723 char tn_buf[48]; 3724 3725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3726 verbose(env, 3727 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3728 regno, off, tn_buf); 3729 return -EACCES; 3730 } 3731 3732 return 0; 3733 } 3734 3735 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3736 const struct bpf_reg_state *reg, 3737 int regno, int off, int size) 3738 { 3739 int err; 3740 3741 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3742 if (err) 3743 return err; 3744 3745 if (off + size > env->prog->aux->max_tp_access) 3746 env->prog->aux->max_tp_access = off + size; 3747 3748 return 0; 3749 } 3750 3751 static int check_buffer_access(struct bpf_verifier_env *env, 3752 const struct bpf_reg_state *reg, 3753 int regno, int off, int size, 3754 bool zero_size_allowed, 3755 const char *buf_info, 3756 u32 *max_access) 3757 { 3758 int err; 3759 3760 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3761 if (err) 3762 return err; 3763 3764 if (off + size > *max_access) 3765 *max_access = off + size; 3766 3767 return 0; 3768 } 3769 3770 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3771 static void zext_32_to_64(struct bpf_reg_state *reg) 3772 { 3773 reg->var_off = tnum_subreg(reg->var_off); 3774 __reg_assign_32_into_64(reg); 3775 } 3776 3777 /* truncate register to smaller size (in bytes) 3778 * must be called with size < BPF_REG_SIZE 3779 */ 3780 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3781 { 3782 u64 mask; 3783 3784 /* clear high bits in bit representation */ 3785 reg->var_off = tnum_cast(reg->var_off, size); 3786 3787 /* fix arithmetic bounds */ 3788 mask = ((u64)1 << (size * 8)) - 1; 3789 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3790 reg->umin_value &= mask; 3791 reg->umax_value &= mask; 3792 } else { 3793 reg->umin_value = 0; 3794 reg->umax_value = mask; 3795 } 3796 reg->smin_value = reg->umin_value; 3797 reg->smax_value = reg->umax_value; 3798 3799 /* If size is smaller than 32bit register the 32bit register 3800 * values are also truncated so we push 64-bit bounds into 3801 * 32-bit bounds. Above were truncated < 32-bits already. 3802 */ 3803 if (size >= 4) 3804 return; 3805 __reg_combine_64_into_32(reg); 3806 } 3807 3808 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3809 { 3810 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3811 } 3812 3813 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3814 { 3815 void *ptr; 3816 u64 addr; 3817 int err; 3818 3819 err = map->ops->map_direct_value_addr(map, &addr, off); 3820 if (err) 3821 return err; 3822 ptr = (void *)(long)addr + off; 3823 3824 switch (size) { 3825 case sizeof(u8): 3826 *val = (u64)*(u8 *)ptr; 3827 break; 3828 case sizeof(u16): 3829 *val = (u64)*(u16 *)ptr; 3830 break; 3831 case sizeof(u32): 3832 *val = (u64)*(u32 *)ptr; 3833 break; 3834 case sizeof(u64): 3835 *val = *(u64 *)ptr; 3836 break; 3837 default: 3838 return -EINVAL; 3839 } 3840 return 0; 3841 } 3842 3843 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3844 struct bpf_reg_state *regs, 3845 int regno, int off, int size, 3846 enum bpf_access_type atype, 3847 int value_regno) 3848 { 3849 struct bpf_reg_state *reg = regs + regno; 3850 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3851 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3852 u32 btf_id; 3853 int ret; 3854 3855 if (off < 0) { 3856 verbose(env, 3857 "R%d is ptr_%s invalid negative access: off=%d\n", 3858 regno, tname, off); 3859 return -EACCES; 3860 } 3861 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3862 char tn_buf[48]; 3863 3864 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3865 verbose(env, 3866 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3867 regno, tname, off, tn_buf); 3868 return -EACCES; 3869 } 3870 3871 if (env->ops->btf_struct_access) { 3872 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3873 off, size, atype, &btf_id); 3874 } else { 3875 if (atype != BPF_READ) { 3876 verbose(env, "only read is supported\n"); 3877 return -EACCES; 3878 } 3879 3880 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3881 atype, &btf_id); 3882 } 3883 3884 if (ret < 0) 3885 return ret; 3886 3887 if (atype == BPF_READ && value_regno >= 0) 3888 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3889 3890 return 0; 3891 } 3892 3893 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3894 struct bpf_reg_state *regs, 3895 int regno, int off, int size, 3896 enum bpf_access_type atype, 3897 int value_regno) 3898 { 3899 struct bpf_reg_state *reg = regs + regno; 3900 struct bpf_map *map = reg->map_ptr; 3901 const struct btf_type *t; 3902 const char *tname; 3903 u32 btf_id; 3904 int ret; 3905 3906 if (!btf_vmlinux) { 3907 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3908 return -ENOTSUPP; 3909 } 3910 3911 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3912 verbose(env, "map_ptr access not supported for map type %d\n", 3913 map->map_type); 3914 return -ENOTSUPP; 3915 } 3916 3917 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3918 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3919 3920 if (!env->allow_ptr_to_map_access) { 3921 verbose(env, 3922 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3923 tname); 3924 return -EPERM; 3925 } 3926 3927 if (off < 0) { 3928 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3929 regno, tname, off); 3930 return -EACCES; 3931 } 3932 3933 if (atype != BPF_READ) { 3934 verbose(env, "only read from %s is supported\n", tname); 3935 return -EACCES; 3936 } 3937 3938 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3939 if (ret < 0) 3940 return ret; 3941 3942 if (value_regno >= 0) 3943 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3944 3945 return 0; 3946 } 3947 3948 /* Check that the stack access at the given offset is within bounds. The 3949 * maximum valid offset is -1. 3950 * 3951 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3952 * -state->allocated_stack for reads. 3953 */ 3954 static int check_stack_slot_within_bounds(int off, 3955 struct bpf_func_state *state, 3956 enum bpf_access_type t) 3957 { 3958 int min_valid_off; 3959 3960 if (t == BPF_WRITE) 3961 min_valid_off = -MAX_BPF_STACK; 3962 else 3963 min_valid_off = -state->allocated_stack; 3964 3965 if (off < min_valid_off || off > -1) 3966 return -EACCES; 3967 return 0; 3968 } 3969 3970 /* Check that the stack access at 'regno + off' falls within the maximum stack 3971 * bounds. 3972 * 3973 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3974 */ 3975 static int check_stack_access_within_bounds( 3976 struct bpf_verifier_env *env, 3977 int regno, int off, int access_size, 3978 enum stack_access_src src, enum bpf_access_type type) 3979 { 3980 struct bpf_reg_state *regs = cur_regs(env); 3981 struct bpf_reg_state *reg = regs + regno; 3982 struct bpf_func_state *state = func(env, reg); 3983 int min_off, max_off; 3984 int err; 3985 char *err_extra; 3986 3987 if (src == ACCESS_HELPER) 3988 /* We don't know if helpers are reading or writing (or both). */ 3989 err_extra = " indirect access to"; 3990 else if (type == BPF_READ) 3991 err_extra = " read from"; 3992 else 3993 err_extra = " write to"; 3994 3995 if (tnum_is_const(reg->var_off)) { 3996 min_off = reg->var_off.value + off; 3997 if (access_size > 0) 3998 max_off = min_off + access_size - 1; 3999 else 4000 max_off = min_off; 4001 } else { 4002 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4003 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4004 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4005 err_extra, regno); 4006 return -EACCES; 4007 } 4008 min_off = reg->smin_value + off; 4009 if (access_size > 0) 4010 max_off = reg->smax_value + off + access_size - 1; 4011 else 4012 max_off = min_off; 4013 } 4014 4015 err = check_stack_slot_within_bounds(min_off, state, type); 4016 if (!err) 4017 err = check_stack_slot_within_bounds(max_off, state, type); 4018 4019 if (err) { 4020 if (tnum_is_const(reg->var_off)) { 4021 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4022 err_extra, regno, off, access_size); 4023 } else { 4024 char tn_buf[48]; 4025 4026 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4027 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4028 err_extra, regno, tn_buf, access_size); 4029 } 4030 } 4031 return err; 4032 } 4033 4034 /* check whether memory at (regno + off) is accessible for t = (read | write) 4035 * if t==write, value_regno is a register which value is stored into memory 4036 * if t==read, value_regno is a register which will receive the value from memory 4037 * if t==write && value_regno==-1, some unknown value is stored into memory 4038 * if t==read && value_regno==-1, don't care what we read from memory 4039 */ 4040 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4041 int off, int bpf_size, enum bpf_access_type t, 4042 int value_regno, bool strict_alignment_once) 4043 { 4044 struct bpf_reg_state *regs = cur_regs(env); 4045 struct bpf_reg_state *reg = regs + regno; 4046 struct bpf_func_state *state; 4047 int size, err = 0; 4048 4049 size = bpf_size_to_bytes(bpf_size); 4050 if (size < 0) 4051 return size; 4052 4053 /* alignment checks will add in reg->off themselves */ 4054 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4055 if (err) 4056 return err; 4057 4058 /* for access checks, reg->off is just part of off */ 4059 off += reg->off; 4060 4061 if (reg->type == PTR_TO_MAP_KEY) { 4062 if (t == BPF_WRITE) { 4063 verbose(env, "write to change key R%d not allowed\n", regno); 4064 return -EACCES; 4065 } 4066 4067 err = check_mem_region_access(env, regno, off, size, 4068 reg->map_ptr->key_size, false); 4069 if (err) 4070 return err; 4071 if (value_regno >= 0) 4072 mark_reg_unknown(env, regs, value_regno); 4073 } else if (reg->type == PTR_TO_MAP_VALUE) { 4074 if (t == BPF_WRITE && value_regno >= 0 && 4075 is_pointer_value(env, value_regno)) { 4076 verbose(env, "R%d leaks addr into map\n", value_regno); 4077 return -EACCES; 4078 } 4079 err = check_map_access_type(env, regno, off, size, t); 4080 if (err) 4081 return err; 4082 err = check_map_access(env, regno, off, size, false); 4083 if (!err && t == BPF_READ && value_regno >= 0) { 4084 struct bpf_map *map = reg->map_ptr; 4085 4086 /* if map is read-only, track its contents as scalars */ 4087 if (tnum_is_const(reg->var_off) && 4088 bpf_map_is_rdonly(map) && 4089 map->ops->map_direct_value_addr) { 4090 int map_off = off + reg->var_off.value; 4091 u64 val = 0; 4092 4093 err = bpf_map_direct_read(map, map_off, size, 4094 &val); 4095 if (err) 4096 return err; 4097 4098 regs[value_regno].type = SCALAR_VALUE; 4099 __mark_reg_known(®s[value_regno], val); 4100 } else { 4101 mark_reg_unknown(env, regs, value_regno); 4102 } 4103 } 4104 } else if (reg->type == PTR_TO_MEM) { 4105 if (t == BPF_WRITE && value_regno >= 0 && 4106 is_pointer_value(env, value_regno)) { 4107 verbose(env, "R%d leaks addr into mem\n", value_regno); 4108 return -EACCES; 4109 } 4110 err = check_mem_region_access(env, regno, off, size, 4111 reg->mem_size, false); 4112 if (!err && t == BPF_READ && value_regno >= 0) 4113 mark_reg_unknown(env, regs, value_regno); 4114 } else if (reg->type == PTR_TO_CTX) { 4115 enum bpf_reg_type reg_type = SCALAR_VALUE; 4116 struct btf *btf = NULL; 4117 u32 btf_id = 0; 4118 4119 if (t == BPF_WRITE && value_regno >= 0 && 4120 is_pointer_value(env, value_regno)) { 4121 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4122 return -EACCES; 4123 } 4124 4125 err = check_ctx_reg(env, reg, regno); 4126 if (err < 0) 4127 return err; 4128 4129 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4130 if (err) 4131 verbose_linfo(env, insn_idx, "; "); 4132 if (!err && t == BPF_READ && value_regno >= 0) { 4133 /* ctx access returns either a scalar, or a 4134 * PTR_TO_PACKET[_META,_END]. In the latter 4135 * case, we know the offset is zero. 4136 */ 4137 if (reg_type == SCALAR_VALUE) { 4138 mark_reg_unknown(env, regs, value_regno); 4139 } else { 4140 mark_reg_known_zero(env, regs, 4141 value_regno); 4142 if (reg_type_may_be_null(reg_type)) 4143 regs[value_regno].id = ++env->id_gen; 4144 /* A load of ctx field could have different 4145 * actual load size with the one encoded in the 4146 * insn. When the dst is PTR, it is for sure not 4147 * a sub-register. 4148 */ 4149 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4150 if (reg_type == PTR_TO_BTF_ID || 4151 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4152 regs[value_regno].btf = btf; 4153 regs[value_regno].btf_id = btf_id; 4154 } 4155 } 4156 regs[value_regno].type = reg_type; 4157 } 4158 4159 } else if (reg->type == PTR_TO_STACK) { 4160 /* Basic bounds checks. */ 4161 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4162 if (err) 4163 return err; 4164 4165 state = func(env, reg); 4166 err = update_stack_depth(env, state, off); 4167 if (err) 4168 return err; 4169 4170 if (t == BPF_READ) 4171 err = check_stack_read(env, regno, off, size, 4172 value_regno); 4173 else 4174 err = check_stack_write(env, regno, off, size, 4175 value_regno, insn_idx); 4176 } else if (reg_is_pkt_pointer(reg)) { 4177 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4178 verbose(env, "cannot write into packet\n"); 4179 return -EACCES; 4180 } 4181 if (t == BPF_WRITE && value_regno >= 0 && 4182 is_pointer_value(env, value_regno)) { 4183 verbose(env, "R%d leaks addr into packet\n", 4184 value_regno); 4185 return -EACCES; 4186 } 4187 err = check_packet_access(env, regno, off, size, false); 4188 if (!err && t == BPF_READ && value_regno >= 0) 4189 mark_reg_unknown(env, regs, value_regno); 4190 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4191 if (t == BPF_WRITE && value_regno >= 0 && 4192 is_pointer_value(env, value_regno)) { 4193 verbose(env, "R%d leaks addr into flow keys\n", 4194 value_regno); 4195 return -EACCES; 4196 } 4197 4198 err = check_flow_keys_access(env, off, size); 4199 if (!err && t == BPF_READ && value_regno >= 0) 4200 mark_reg_unknown(env, regs, value_regno); 4201 } else if (type_is_sk_pointer(reg->type)) { 4202 if (t == BPF_WRITE) { 4203 verbose(env, "R%d cannot write into %s\n", 4204 regno, reg_type_str[reg->type]); 4205 return -EACCES; 4206 } 4207 err = check_sock_access(env, insn_idx, regno, off, size, t); 4208 if (!err && value_regno >= 0) 4209 mark_reg_unknown(env, regs, value_regno); 4210 } else if (reg->type == PTR_TO_TP_BUFFER) { 4211 err = check_tp_buffer_access(env, reg, regno, off, size); 4212 if (!err && t == BPF_READ && value_regno >= 0) 4213 mark_reg_unknown(env, regs, value_regno); 4214 } else if (reg->type == PTR_TO_BTF_ID) { 4215 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4216 value_regno); 4217 } else if (reg->type == CONST_PTR_TO_MAP) { 4218 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4219 value_regno); 4220 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4221 if (t == BPF_WRITE) { 4222 verbose(env, "R%d cannot write into %s\n", 4223 regno, reg_type_str[reg->type]); 4224 return -EACCES; 4225 } 4226 err = check_buffer_access(env, reg, regno, off, size, false, 4227 "rdonly", 4228 &env->prog->aux->max_rdonly_access); 4229 if (!err && value_regno >= 0) 4230 mark_reg_unknown(env, regs, value_regno); 4231 } else if (reg->type == PTR_TO_RDWR_BUF) { 4232 err = check_buffer_access(env, reg, regno, off, size, false, 4233 "rdwr", 4234 &env->prog->aux->max_rdwr_access); 4235 if (!err && t == BPF_READ && value_regno >= 0) 4236 mark_reg_unknown(env, regs, value_regno); 4237 } else { 4238 verbose(env, "R%d invalid mem access '%s'\n", regno, 4239 reg_type_str[reg->type]); 4240 return -EACCES; 4241 } 4242 4243 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4244 regs[value_regno].type == SCALAR_VALUE) { 4245 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4246 coerce_reg_to_size(®s[value_regno], size); 4247 } 4248 return err; 4249 } 4250 4251 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4252 { 4253 int load_reg; 4254 int err; 4255 4256 switch (insn->imm) { 4257 case BPF_ADD: 4258 case BPF_ADD | BPF_FETCH: 4259 case BPF_AND: 4260 case BPF_AND | BPF_FETCH: 4261 case BPF_OR: 4262 case BPF_OR | BPF_FETCH: 4263 case BPF_XOR: 4264 case BPF_XOR | BPF_FETCH: 4265 case BPF_XCHG: 4266 case BPF_CMPXCHG: 4267 break; 4268 default: 4269 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4270 return -EINVAL; 4271 } 4272 4273 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4274 verbose(env, "invalid atomic operand size\n"); 4275 return -EINVAL; 4276 } 4277 4278 /* check src1 operand */ 4279 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4280 if (err) 4281 return err; 4282 4283 /* check src2 operand */ 4284 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4285 if (err) 4286 return err; 4287 4288 if (insn->imm == BPF_CMPXCHG) { 4289 /* Check comparison of R0 with memory location */ 4290 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4291 if (err) 4292 return err; 4293 } 4294 4295 if (is_pointer_value(env, insn->src_reg)) { 4296 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4297 return -EACCES; 4298 } 4299 4300 if (is_ctx_reg(env, insn->dst_reg) || 4301 is_pkt_reg(env, insn->dst_reg) || 4302 is_flow_key_reg(env, insn->dst_reg) || 4303 is_sk_reg(env, insn->dst_reg)) { 4304 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4305 insn->dst_reg, 4306 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4307 return -EACCES; 4308 } 4309 4310 if (insn->imm & BPF_FETCH) { 4311 if (insn->imm == BPF_CMPXCHG) 4312 load_reg = BPF_REG_0; 4313 else 4314 load_reg = insn->src_reg; 4315 4316 /* check and record load of old value */ 4317 err = check_reg_arg(env, load_reg, DST_OP); 4318 if (err) 4319 return err; 4320 } else { 4321 /* This instruction accesses a memory location but doesn't 4322 * actually load it into a register. 4323 */ 4324 load_reg = -1; 4325 } 4326 4327 /* check whether we can read the memory */ 4328 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4329 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4330 if (err) 4331 return err; 4332 4333 /* check whether we can write into the same memory */ 4334 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4335 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4336 if (err) 4337 return err; 4338 4339 return 0; 4340 } 4341 4342 /* When register 'regno' is used to read the stack (either directly or through 4343 * a helper function) make sure that it's within stack boundary and, depending 4344 * on the access type, that all elements of the stack are initialized. 4345 * 4346 * 'off' includes 'regno->off', but not its dynamic part (if any). 4347 * 4348 * All registers that have been spilled on the stack in the slots within the 4349 * read offsets are marked as read. 4350 */ 4351 static int check_stack_range_initialized( 4352 struct bpf_verifier_env *env, int regno, int off, 4353 int access_size, bool zero_size_allowed, 4354 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4355 { 4356 struct bpf_reg_state *reg = reg_state(env, regno); 4357 struct bpf_func_state *state = func(env, reg); 4358 int err, min_off, max_off, i, j, slot, spi; 4359 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4360 enum bpf_access_type bounds_check_type; 4361 /* Some accesses can write anything into the stack, others are 4362 * read-only. 4363 */ 4364 bool clobber = false; 4365 4366 if (access_size == 0 && !zero_size_allowed) { 4367 verbose(env, "invalid zero-sized read\n"); 4368 return -EACCES; 4369 } 4370 4371 if (type == ACCESS_HELPER) { 4372 /* The bounds checks for writes are more permissive than for 4373 * reads. However, if raw_mode is not set, we'll do extra 4374 * checks below. 4375 */ 4376 bounds_check_type = BPF_WRITE; 4377 clobber = true; 4378 } else { 4379 bounds_check_type = BPF_READ; 4380 } 4381 err = check_stack_access_within_bounds(env, regno, off, access_size, 4382 type, bounds_check_type); 4383 if (err) 4384 return err; 4385 4386 4387 if (tnum_is_const(reg->var_off)) { 4388 min_off = max_off = reg->var_off.value + off; 4389 } else { 4390 /* Variable offset is prohibited for unprivileged mode for 4391 * simplicity since it requires corresponding support in 4392 * Spectre masking for stack ALU. 4393 * See also retrieve_ptr_limit(). 4394 */ 4395 if (!env->bypass_spec_v1) { 4396 char tn_buf[48]; 4397 4398 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4399 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4400 regno, err_extra, tn_buf); 4401 return -EACCES; 4402 } 4403 /* Only initialized buffer on stack is allowed to be accessed 4404 * with variable offset. With uninitialized buffer it's hard to 4405 * guarantee that whole memory is marked as initialized on 4406 * helper return since specific bounds are unknown what may 4407 * cause uninitialized stack leaking. 4408 */ 4409 if (meta && meta->raw_mode) 4410 meta = NULL; 4411 4412 min_off = reg->smin_value + off; 4413 max_off = reg->smax_value + off; 4414 } 4415 4416 if (meta && meta->raw_mode) { 4417 meta->access_size = access_size; 4418 meta->regno = regno; 4419 return 0; 4420 } 4421 4422 for (i = min_off; i < max_off + access_size; i++) { 4423 u8 *stype; 4424 4425 slot = -i - 1; 4426 spi = slot / BPF_REG_SIZE; 4427 if (state->allocated_stack <= slot) 4428 goto err; 4429 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4430 if (*stype == STACK_MISC) 4431 goto mark; 4432 if (*stype == STACK_ZERO) { 4433 if (clobber) { 4434 /* helper can write anything into the stack */ 4435 *stype = STACK_MISC; 4436 } 4437 goto mark; 4438 } 4439 4440 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4441 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4442 goto mark; 4443 4444 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4445 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4446 env->allow_ptr_leaks)) { 4447 if (clobber) { 4448 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4449 for (j = 0; j < BPF_REG_SIZE; j++) 4450 state->stack[spi].slot_type[j] = STACK_MISC; 4451 } 4452 goto mark; 4453 } 4454 4455 err: 4456 if (tnum_is_const(reg->var_off)) { 4457 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4458 err_extra, regno, min_off, i - min_off, access_size); 4459 } else { 4460 char tn_buf[48]; 4461 4462 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4463 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4464 err_extra, regno, tn_buf, i - min_off, access_size); 4465 } 4466 return -EACCES; 4467 mark: 4468 /* reading any byte out of 8-byte 'spill_slot' will cause 4469 * the whole slot to be marked as 'read' 4470 */ 4471 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4472 state->stack[spi].spilled_ptr.parent, 4473 REG_LIVE_READ64); 4474 } 4475 return update_stack_depth(env, state, min_off); 4476 } 4477 4478 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4479 int access_size, bool zero_size_allowed, 4480 struct bpf_call_arg_meta *meta) 4481 { 4482 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4483 4484 switch (reg->type) { 4485 case PTR_TO_PACKET: 4486 case PTR_TO_PACKET_META: 4487 return check_packet_access(env, regno, reg->off, access_size, 4488 zero_size_allowed); 4489 case PTR_TO_MAP_KEY: 4490 return check_mem_region_access(env, regno, reg->off, access_size, 4491 reg->map_ptr->key_size, false); 4492 case PTR_TO_MAP_VALUE: 4493 if (check_map_access_type(env, regno, reg->off, access_size, 4494 meta && meta->raw_mode ? BPF_WRITE : 4495 BPF_READ)) 4496 return -EACCES; 4497 return check_map_access(env, regno, reg->off, access_size, 4498 zero_size_allowed); 4499 case PTR_TO_MEM: 4500 return check_mem_region_access(env, regno, reg->off, 4501 access_size, reg->mem_size, 4502 zero_size_allowed); 4503 case PTR_TO_RDONLY_BUF: 4504 if (meta && meta->raw_mode) 4505 return -EACCES; 4506 return check_buffer_access(env, reg, regno, reg->off, 4507 access_size, zero_size_allowed, 4508 "rdonly", 4509 &env->prog->aux->max_rdonly_access); 4510 case PTR_TO_RDWR_BUF: 4511 return check_buffer_access(env, reg, regno, reg->off, 4512 access_size, zero_size_allowed, 4513 "rdwr", 4514 &env->prog->aux->max_rdwr_access); 4515 case PTR_TO_STACK: 4516 return check_stack_range_initialized( 4517 env, 4518 regno, reg->off, access_size, 4519 zero_size_allowed, ACCESS_HELPER, meta); 4520 default: /* scalar_value or invalid ptr */ 4521 /* Allow zero-byte read from NULL, regardless of pointer type */ 4522 if (zero_size_allowed && access_size == 0 && 4523 register_is_null(reg)) 4524 return 0; 4525 4526 verbose(env, "R%d type=%s expected=%s\n", regno, 4527 reg_type_str[reg->type], 4528 reg_type_str[PTR_TO_STACK]); 4529 return -EACCES; 4530 } 4531 } 4532 4533 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4534 u32 regno, u32 mem_size) 4535 { 4536 if (register_is_null(reg)) 4537 return 0; 4538 4539 if (reg_type_may_be_null(reg->type)) { 4540 /* Assuming that the register contains a value check if the memory 4541 * access is safe. Temporarily save and restore the register's state as 4542 * the conversion shouldn't be visible to a caller. 4543 */ 4544 const struct bpf_reg_state saved_reg = *reg; 4545 int rv; 4546 4547 mark_ptr_not_null_reg(reg); 4548 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4549 *reg = saved_reg; 4550 return rv; 4551 } 4552 4553 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4554 } 4555 4556 /* Implementation details: 4557 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4558 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4559 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4560 * value_or_null->value transition, since the verifier only cares about 4561 * the range of access to valid map value pointer and doesn't care about actual 4562 * address of the map element. 4563 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4564 * reg->id > 0 after value_or_null->value transition. By doing so 4565 * two bpf_map_lookups will be considered two different pointers that 4566 * point to different bpf_spin_locks. 4567 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4568 * dead-locks. 4569 * Since only one bpf_spin_lock is allowed the checks are simpler than 4570 * reg_is_refcounted() logic. The verifier needs to remember only 4571 * one spin_lock instead of array of acquired_refs. 4572 * cur_state->active_spin_lock remembers which map value element got locked 4573 * and clears it after bpf_spin_unlock. 4574 */ 4575 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4576 bool is_lock) 4577 { 4578 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4579 struct bpf_verifier_state *cur = env->cur_state; 4580 bool is_const = tnum_is_const(reg->var_off); 4581 struct bpf_map *map = reg->map_ptr; 4582 u64 val = reg->var_off.value; 4583 4584 if (!is_const) { 4585 verbose(env, 4586 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4587 regno); 4588 return -EINVAL; 4589 } 4590 if (!map->btf) { 4591 verbose(env, 4592 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4593 map->name); 4594 return -EINVAL; 4595 } 4596 if (!map_value_has_spin_lock(map)) { 4597 if (map->spin_lock_off == -E2BIG) 4598 verbose(env, 4599 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4600 map->name); 4601 else if (map->spin_lock_off == -ENOENT) 4602 verbose(env, 4603 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4604 map->name); 4605 else 4606 verbose(env, 4607 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4608 map->name); 4609 return -EINVAL; 4610 } 4611 if (map->spin_lock_off != val + reg->off) { 4612 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4613 val + reg->off); 4614 return -EINVAL; 4615 } 4616 if (is_lock) { 4617 if (cur->active_spin_lock) { 4618 verbose(env, 4619 "Locking two bpf_spin_locks are not allowed\n"); 4620 return -EINVAL; 4621 } 4622 cur->active_spin_lock = reg->id; 4623 } else { 4624 if (!cur->active_spin_lock) { 4625 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4626 return -EINVAL; 4627 } 4628 if (cur->active_spin_lock != reg->id) { 4629 verbose(env, "bpf_spin_unlock of different lock\n"); 4630 return -EINVAL; 4631 } 4632 cur->active_spin_lock = 0; 4633 } 4634 return 0; 4635 } 4636 4637 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4638 { 4639 return type == ARG_PTR_TO_MEM || 4640 type == ARG_PTR_TO_MEM_OR_NULL || 4641 type == ARG_PTR_TO_UNINIT_MEM; 4642 } 4643 4644 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4645 { 4646 return type == ARG_CONST_SIZE || 4647 type == ARG_CONST_SIZE_OR_ZERO; 4648 } 4649 4650 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4651 { 4652 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4653 } 4654 4655 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4656 { 4657 return type == ARG_PTR_TO_INT || 4658 type == ARG_PTR_TO_LONG; 4659 } 4660 4661 static int int_ptr_type_to_size(enum bpf_arg_type type) 4662 { 4663 if (type == ARG_PTR_TO_INT) 4664 return sizeof(u32); 4665 else if (type == ARG_PTR_TO_LONG) 4666 return sizeof(u64); 4667 4668 return -EINVAL; 4669 } 4670 4671 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4672 const struct bpf_call_arg_meta *meta, 4673 enum bpf_arg_type *arg_type) 4674 { 4675 if (!meta->map_ptr) { 4676 /* kernel subsystem misconfigured verifier */ 4677 verbose(env, "invalid map_ptr to access map->type\n"); 4678 return -EACCES; 4679 } 4680 4681 switch (meta->map_ptr->map_type) { 4682 case BPF_MAP_TYPE_SOCKMAP: 4683 case BPF_MAP_TYPE_SOCKHASH: 4684 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4685 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4686 } else { 4687 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4688 return -EINVAL; 4689 } 4690 break; 4691 4692 default: 4693 break; 4694 } 4695 return 0; 4696 } 4697 4698 struct bpf_reg_types { 4699 const enum bpf_reg_type types[10]; 4700 u32 *btf_id; 4701 }; 4702 4703 static const struct bpf_reg_types map_key_value_types = { 4704 .types = { 4705 PTR_TO_STACK, 4706 PTR_TO_PACKET, 4707 PTR_TO_PACKET_META, 4708 PTR_TO_MAP_KEY, 4709 PTR_TO_MAP_VALUE, 4710 }, 4711 }; 4712 4713 static const struct bpf_reg_types sock_types = { 4714 .types = { 4715 PTR_TO_SOCK_COMMON, 4716 PTR_TO_SOCKET, 4717 PTR_TO_TCP_SOCK, 4718 PTR_TO_XDP_SOCK, 4719 }, 4720 }; 4721 4722 #ifdef CONFIG_NET 4723 static const struct bpf_reg_types btf_id_sock_common_types = { 4724 .types = { 4725 PTR_TO_SOCK_COMMON, 4726 PTR_TO_SOCKET, 4727 PTR_TO_TCP_SOCK, 4728 PTR_TO_XDP_SOCK, 4729 PTR_TO_BTF_ID, 4730 }, 4731 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4732 }; 4733 #endif 4734 4735 static const struct bpf_reg_types mem_types = { 4736 .types = { 4737 PTR_TO_STACK, 4738 PTR_TO_PACKET, 4739 PTR_TO_PACKET_META, 4740 PTR_TO_MAP_KEY, 4741 PTR_TO_MAP_VALUE, 4742 PTR_TO_MEM, 4743 PTR_TO_RDONLY_BUF, 4744 PTR_TO_RDWR_BUF, 4745 }, 4746 }; 4747 4748 static const struct bpf_reg_types int_ptr_types = { 4749 .types = { 4750 PTR_TO_STACK, 4751 PTR_TO_PACKET, 4752 PTR_TO_PACKET_META, 4753 PTR_TO_MAP_KEY, 4754 PTR_TO_MAP_VALUE, 4755 }, 4756 }; 4757 4758 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4759 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4760 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4761 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4762 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4763 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4764 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4765 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4766 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 4767 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 4768 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 4769 4770 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4771 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4772 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4773 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4774 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4775 [ARG_CONST_SIZE] = &scalar_types, 4776 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4777 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4778 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4779 [ARG_PTR_TO_CTX] = &context_types, 4780 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4781 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4782 #ifdef CONFIG_NET 4783 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4784 #endif 4785 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4786 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4787 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4788 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4789 [ARG_PTR_TO_MEM] = &mem_types, 4790 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4791 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4792 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4793 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4794 [ARG_PTR_TO_INT] = &int_ptr_types, 4795 [ARG_PTR_TO_LONG] = &int_ptr_types, 4796 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4797 [ARG_PTR_TO_FUNC] = &func_ptr_types, 4798 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 4799 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 4800 }; 4801 4802 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4803 enum bpf_arg_type arg_type, 4804 const u32 *arg_btf_id) 4805 { 4806 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4807 enum bpf_reg_type expected, type = reg->type; 4808 const struct bpf_reg_types *compatible; 4809 int i, j; 4810 4811 compatible = compatible_reg_types[arg_type]; 4812 if (!compatible) { 4813 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4814 return -EFAULT; 4815 } 4816 4817 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4818 expected = compatible->types[i]; 4819 if (expected == NOT_INIT) 4820 break; 4821 4822 if (type == expected) 4823 goto found; 4824 } 4825 4826 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4827 for (j = 0; j + 1 < i; j++) 4828 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4829 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4830 return -EACCES; 4831 4832 found: 4833 if (type == PTR_TO_BTF_ID) { 4834 if (!arg_btf_id) { 4835 if (!compatible->btf_id) { 4836 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4837 return -EFAULT; 4838 } 4839 arg_btf_id = compatible->btf_id; 4840 } 4841 4842 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4843 btf_vmlinux, *arg_btf_id)) { 4844 verbose(env, "R%d is of type %s but %s is expected\n", 4845 regno, kernel_type_name(reg->btf, reg->btf_id), 4846 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4847 return -EACCES; 4848 } 4849 4850 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4851 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4852 regno); 4853 return -EACCES; 4854 } 4855 } 4856 4857 return 0; 4858 } 4859 4860 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4861 struct bpf_call_arg_meta *meta, 4862 const struct bpf_func_proto *fn) 4863 { 4864 u32 regno = BPF_REG_1 + arg; 4865 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4866 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4867 enum bpf_reg_type type = reg->type; 4868 int err = 0; 4869 4870 if (arg_type == ARG_DONTCARE) 4871 return 0; 4872 4873 err = check_reg_arg(env, regno, SRC_OP); 4874 if (err) 4875 return err; 4876 4877 if (arg_type == ARG_ANYTHING) { 4878 if (is_pointer_value(env, regno)) { 4879 verbose(env, "R%d leaks addr into helper function\n", 4880 regno); 4881 return -EACCES; 4882 } 4883 return 0; 4884 } 4885 4886 if (type_is_pkt_pointer(type) && 4887 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4888 verbose(env, "helper access to the packet is not allowed\n"); 4889 return -EACCES; 4890 } 4891 4892 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4893 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4894 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4895 err = resolve_map_arg_type(env, meta, &arg_type); 4896 if (err) 4897 return err; 4898 } 4899 4900 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4901 /* A NULL register has a SCALAR_VALUE type, so skip 4902 * type checking. 4903 */ 4904 goto skip_type_check; 4905 4906 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4907 if (err) 4908 return err; 4909 4910 if (type == PTR_TO_CTX) { 4911 err = check_ctx_reg(env, reg, regno); 4912 if (err < 0) 4913 return err; 4914 } 4915 4916 skip_type_check: 4917 if (reg->ref_obj_id) { 4918 if (meta->ref_obj_id) { 4919 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4920 regno, reg->ref_obj_id, 4921 meta->ref_obj_id); 4922 return -EFAULT; 4923 } 4924 meta->ref_obj_id = reg->ref_obj_id; 4925 } 4926 4927 if (arg_type == ARG_CONST_MAP_PTR) { 4928 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4929 meta->map_ptr = reg->map_ptr; 4930 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4931 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4932 * check that [key, key + map->key_size) are within 4933 * stack limits and initialized 4934 */ 4935 if (!meta->map_ptr) { 4936 /* in function declaration map_ptr must come before 4937 * map_key, so that it's verified and known before 4938 * we have to check map_key here. Otherwise it means 4939 * that kernel subsystem misconfigured verifier 4940 */ 4941 verbose(env, "invalid map_ptr to access map->key\n"); 4942 return -EACCES; 4943 } 4944 err = check_helper_mem_access(env, regno, 4945 meta->map_ptr->key_size, false, 4946 NULL); 4947 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4948 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4949 !register_is_null(reg)) || 4950 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4951 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4952 * check [value, value + map->value_size) validity 4953 */ 4954 if (!meta->map_ptr) { 4955 /* kernel subsystem misconfigured verifier */ 4956 verbose(env, "invalid map_ptr to access map->value\n"); 4957 return -EACCES; 4958 } 4959 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4960 err = check_helper_mem_access(env, regno, 4961 meta->map_ptr->value_size, false, 4962 meta); 4963 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4964 if (!reg->btf_id) { 4965 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4966 return -EACCES; 4967 } 4968 meta->ret_btf = reg->btf; 4969 meta->ret_btf_id = reg->btf_id; 4970 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4971 if (meta->func_id == BPF_FUNC_spin_lock) { 4972 if (process_spin_lock(env, regno, true)) 4973 return -EACCES; 4974 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4975 if (process_spin_lock(env, regno, false)) 4976 return -EACCES; 4977 } else { 4978 verbose(env, "verifier internal error\n"); 4979 return -EFAULT; 4980 } 4981 } else if (arg_type == ARG_PTR_TO_FUNC) { 4982 meta->subprogno = reg->subprogno; 4983 } else if (arg_type_is_mem_ptr(arg_type)) { 4984 /* The access to this pointer is only checked when we hit the 4985 * next is_mem_size argument below. 4986 */ 4987 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4988 } else if (arg_type_is_mem_size(arg_type)) { 4989 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4990 4991 /* This is used to refine r0 return value bounds for helpers 4992 * that enforce this value as an upper bound on return values. 4993 * See do_refine_retval_range() for helpers that can refine 4994 * the return value. C type of helper is u32 so we pull register 4995 * bound from umax_value however, if negative verifier errors 4996 * out. Only upper bounds can be learned because retval is an 4997 * int type and negative retvals are allowed. 4998 */ 4999 meta->msize_max_value = reg->umax_value; 5000 5001 /* The register is SCALAR_VALUE; the access check 5002 * happens using its boundaries. 5003 */ 5004 if (!tnum_is_const(reg->var_off)) 5005 /* For unprivileged variable accesses, disable raw 5006 * mode so that the program is required to 5007 * initialize all the memory that the helper could 5008 * just partially fill up. 5009 */ 5010 meta = NULL; 5011 5012 if (reg->smin_value < 0) { 5013 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5014 regno); 5015 return -EACCES; 5016 } 5017 5018 if (reg->umin_value == 0) { 5019 err = check_helper_mem_access(env, regno - 1, 0, 5020 zero_size_allowed, 5021 meta); 5022 if (err) 5023 return err; 5024 } 5025 5026 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5027 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5028 regno); 5029 return -EACCES; 5030 } 5031 err = check_helper_mem_access(env, regno - 1, 5032 reg->umax_value, 5033 zero_size_allowed, meta); 5034 if (!err) 5035 err = mark_chain_precision(env, regno); 5036 } else if (arg_type_is_alloc_size(arg_type)) { 5037 if (!tnum_is_const(reg->var_off)) { 5038 verbose(env, "R%d is not a known constant'\n", 5039 regno); 5040 return -EACCES; 5041 } 5042 meta->mem_size = reg->var_off.value; 5043 } else if (arg_type_is_int_ptr(arg_type)) { 5044 int size = int_ptr_type_to_size(arg_type); 5045 5046 err = check_helper_mem_access(env, regno, size, false, meta); 5047 if (err) 5048 return err; 5049 err = check_ptr_alignment(env, reg, 0, size, true); 5050 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5051 struct bpf_map *map = reg->map_ptr; 5052 int map_off; 5053 u64 map_addr; 5054 char *str_ptr; 5055 5056 if (!bpf_map_is_rdonly(map)) { 5057 verbose(env, "R%d does not point to a readonly map'\n", regno); 5058 return -EACCES; 5059 } 5060 5061 if (!tnum_is_const(reg->var_off)) { 5062 verbose(env, "R%d is not a constant address'\n", regno); 5063 return -EACCES; 5064 } 5065 5066 if (!map->ops->map_direct_value_addr) { 5067 verbose(env, "no direct value access support for this map type\n"); 5068 return -EACCES; 5069 } 5070 5071 err = check_map_access(env, regno, reg->off, 5072 map->value_size - reg->off, false); 5073 if (err) 5074 return err; 5075 5076 map_off = reg->off + reg->var_off.value; 5077 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5078 if (err) { 5079 verbose(env, "direct value access on string failed\n"); 5080 return err; 5081 } 5082 5083 str_ptr = (char *)(long)(map_addr); 5084 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5085 verbose(env, "string is not zero-terminated\n"); 5086 return -EINVAL; 5087 } 5088 } 5089 5090 return err; 5091 } 5092 5093 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5094 { 5095 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5096 enum bpf_prog_type type = resolve_prog_type(env->prog); 5097 5098 if (func_id != BPF_FUNC_map_update_elem) 5099 return false; 5100 5101 /* It's not possible to get access to a locked struct sock in these 5102 * contexts, so updating is safe. 5103 */ 5104 switch (type) { 5105 case BPF_PROG_TYPE_TRACING: 5106 if (eatype == BPF_TRACE_ITER) 5107 return true; 5108 break; 5109 case BPF_PROG_TYPE_SOCKET_FILTER: 5110 case BPF_PROG_TYPE_SCHED_CLS: 5111 case BPF_PROG_TYPE_SCHED_ACT: 5112 case BPF_PROG_TYPE_XDP: 5113 case BPF_PROG_TYPE_SK_REUSEPORT: 5114 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5115 case BPF_PROG_TYPE_SK_LOOKUP: 5116 return true; 5117 default: 5118 break; 5119 } 5120 5121 verbose(env, "cannot update sockmap in this context\n"); 5122 return false; 5123 } 5124 5125 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5126 { 5127 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5128 } 5129 5130 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5131 struct bpf_map *map, int func_id) 5132 { 5133 if (!map) 5134 return 0; 5135 5136 /* We need a two way check, first is from map perspective ... */ 5137 switch (map->map_type) { 5138 case BPF_MAP_TYPE_PROG_ARRAY: 5139 if (func_id != BPF_FUNC_tail_call) 5140 goto error; 5141 break; 5142 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5143 if (func_id != BPF_FUNC_perf_event_read && 5144 func_id != BPF_FUNC_perf_event_output && 5145 func_id != BPF_FUNC_skb_output && 5146 func_id != BPF_FUNC_perf_event_read_value && 5147 func_id != BPF_FUNC_xdp_output) 5148 goto error; 5149 break; 5150 case BPF_MAP_TYPE_RINGBUF: 5151 if (func_id != BPF_FUNC_ringbuf_output && 5152 func_id != BPF_FUNC_ringbuf_reserve && 5153 func_id != BPF_FUNC_ringbuf_query) 5154 goto error; 5155 break; 5156 case BPF_MAP_TYPE_STACK_TRACE: 5157 if (func_id != BPF_FUNC_get_stackid) 5158 goto error; 5159 break; 5160 case BPF_MAP_TYPE_CGROUP_ARRAY: 5161 if (func_id != BPF_FUNC_skb_under_cgroup && 5162 func_id != BPF_FUNC_current_task_under_cgroup) 5163 goto error; 5164 break; 5165 case BPF_MAP_TYPE_CGROUP_STORAGE: 5166 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5167 if (func_id != BPF_FUNC_get_local_storage) 5168 goto error; 5169 break; 5170 case BPF_MAP_TYPE_DEVMAP: 5171 case BPF_MAP_TYPE_DEVMAP_HASH: 5172 if (func_id != BPF_FUNC_redirect_map && 5173 func_id != BPF_FUNC_map_lookup_elem) 5174 goto error; 5175 break; 5176 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5177 * appear. 5178 */ 5179 case BPF_MAP_TYPE_CPUMAP: 5180 if (func_id != BPF_FUNC_redirect_map) 5181 goto error; 5182 break; 5183 case BPF_MAP_TYPE_XSKMAP: 5184 if (func_id != BPF_FUNC_redirect_map && 5185 func_id != BPF_FUNC_map_lookup_elem) 5186 goto error; 5187 break; 5188 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5189 case BPF_MAP_TYPE_HASH_OF_MAPS: 5190 if (func_id != BPF_FUNC_map_lookup_elem) 5191 goto error; 5192 break; 5193 case BPF_MAP_TYPE_SOCKMAP: 5194 if (func_id != BPF_FUNC_sk_redirect_map && 5195 func_id != BPF_FUNC_sock_map_update && 5196 func_id != BPF_FUNC_map_delete_elem && 5197 func_id != BPF_FUNC_msg_redirect_map && 5198 func_id != BPF_FUNC_sk_select_reuseport && 5199 func_id != BPF_FUNC_map_lookup_elem && 5200 !may_update_sockmap(env, func_id)) 5201 goto error; 5202 break; 5203 case BPF_MAP_TYPE_SOCKHASH: 5204 if (func_id != BPF_FUNC_sk_redirect_hash && 5205 func_id != BPF_FUNC_sock_hash_update && 5206 func_id != BPF_FUNC_map_delete_elem && 5207 func_id != BPF_FUNC_msg_redirect_hash && 5208 func_id != BPF_FUNC_sk_select_reuseport && 5209 func_id != BPF_FUNC_map_lookup_elem && 5210 !may_update_sockmap(env, func_id)) 5211 goto error; 5212 break; 5213 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5214 if (func_id != BPF_FUNC_sk_select_reuseport) 5215 goto error; 5216 break; 5217 case BPF_MAP_TYPE_QUEUE: 5218 case BPF_MAP_TYPE_STACK: 5219 if (func_id != BPF_FUNC_map_peek_elem && 5220 func_id != BPF_FUNC_map_pop_elem && 5221 func_id != BPF_FUNC_map_push_elem) 5222 goto error; 5223 break; 5224 case BPF_MAP_TYPE_SK_STORAGE: 5225 if (func_id != BPF_FUNC_sk_storage_get && 5226 func_id != BPF_FUNC_sk_storage_delete) 5227 goto error; 5228 break; 5229 case BPF_MAP_TYPE_INODE_STORAGE: 5230 if (func_id != BPF_FUNC_inode_storage_get && 5231 func_id != BPF_FUNC_inode_storage_delete) 5232 goto error; 5233 break; 5234 case BPF_MAP_TYPE_TASK_STORAGE: 5235 if (func_id != BPF_FUNC_task_storage_get && 5236 func_id != BPF_FUNC_task_storage_delete) 5237 goto error; 5238 break; 5239 default: 5240 break; 5241 } 5242 5243 /* ... and second from the function itself. */ 5244 switch (func_id) { 5245 case BPF_FUNC_tail_call: 5246 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5247 goto error; 5248 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5249 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5250 return -EINVAL; 5251 } 5252 break; 5253 case BPF_FUNC_perf_event_read: 5254 case BPF_FUNC_perf_event_output: 5255 case BPF_FUNC_perf_event_read_value: 5256 case BPF_FUNC_skb_output: 5257 case BPF_FUNC_xdp_output: 5258 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5259 goto error; 5260 break; 5261 case BPF_FUNC_ringbuf_output: 5262 case BPF_FUNC_ringbuf_reserve: 5263 case BPF_FUNC_ringbuf_query: 5264 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5265 goto error; 5266 break; 5267 case BPF_FUNC_get_stackid: 5268 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5269 goto error; 5270 break; 5271 case BPF_FUNC_current_task_under_cgroup: 5272 case BPF_FUNC_skb_under_cgroup: 5273 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5274 goto error; 5275 break; 5276 case BPF_FUNC_redirect_map: 5277 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5278 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5279 map->map_type != BPF_MAP_TYPE_CPUMAP && 5280 map->map_type != BPF_MAP_TYPE_XSKMAP) 5281 goto error; 5282 break; 5283 case BPF_FUNC_sk_redirect_map: 5284 case BPF_FUNC_msg_redirect_map: 5285 case BPF_FUNC_sock_map_update: 5286 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5287 goto error; 5288 break; 5289 case BPF_FUNC_sk_redirect_hash: 5290 case BPF_FUNC_msg_redirect_hash: 5291 case BPF_FUNC_sock_hash_update: 5292 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5293 goto error; 5294 break; 5295 case BPF_FUNC_get_local_storage: 5296 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5297 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5298 goto error; 5299 break; 5300 case BPF_FUNC_sk_select_reuseport: 5301 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5302 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5303 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5304 goto error; 5305 break; 5306 case BPF_FUNC_map_peek_elem: 5307 case BPF_FUNC_map_pop_elem: 5308 case BPF_FUNC_map_push_elem: 5309 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5310 map->map_type != BPF_MAP_TYPE_STACK) 5311 goto error; 5312 break; 5313 case BPF_FUNC_sk_storage_get: 5314 case BPF_FUNC_sk_storage_delete: 5315 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5316 goto error; 5317 break; 5318 case BPF_FUNC_inode_storage_get: 5319 case BPF_FUNC_inode_storage_delete: 5320 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5321 goto error; 5322 break; 5323 case BPF_FUNC_task_storage_get: 5324 case BPF_FUNC_task_storage_delete: 5325 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5326 goto error; 5327 break; 5328 default: 5329 break; 5330 } 5331 5332 return 0; 5333 error: 5334 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5335 map->map_type, func_id_name(func_id), func_id); 5336 return -EINVAL; 5337 } 5338 5339 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5340 { 5341 int count = 0; 5342 5343 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5344 count++; 5345 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5346 count++; 5347 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5348 count++; 5349 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5350 count++; 5351 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5352 count++; 5353 5354 /* We only support one arg being in raw mode at the moment, 5355 * which is sufficient for the helper functions we have 5356 * right now. 5357 */ 5358 return count <= 1; 5359 } 5360 5361 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5362 enum bpf_arg_type arg_next) 5363 { 5364 return (arg_type_is_mem_ptr(arg_curr) && 5365 !arg_type_is_mem_size(arg_next)) || 5366 (!arg_type_is_mem_ptr(arg_curr) && 5367 arg_type_is_mem_size(arg_next)); 5368 } 5369 5370 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5371 { 5372 /* bpf_xxx(..., buf, len) call will access 'len' 5373 * bytes from memory 'buf'. Both arg types need 5374 * to be paired, so make sure there's no buggy 5375 * helper function specification. 5376 */ 5377 if (arg_type_is_mem_size(fn->arg1_type) || 5378 arg_type_is_mem_ptr(fn->arg5_type) || 5379 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5380 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5381 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5382 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5383 return false; 5384 5385 return true; 5386 } 5387 5388 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5389 { 5390 int count = 0; 5391 5392 if (arg_type_may_be_refcounted(fn->arg1_type)) 5393 count++; 5394 if (arg_type_may_be_refcounted(fn->arg2_type)) 5395 count++; 5396 if (arg_type_may_be_refcounted(fn->arg3_type)) 5397 count++; 5398 if (arg_type_may_be_refcounted(fn->arg4_type)) 5399 count++; 5400 if (arg_type_may_be_refcounted(fn->arg5_type)) 5401 count++; 5402 5403 /* A reference acquiring function cannot acquire 5404 * another refcounted ptr. 5405 */ 5406 if (may_be_acquire_function(func_id) && count) 5407 return false; 5408 5409 /* We only support one arg being unreferenced at the moment, 5410 * which is sufficient for the helper functions we have right now. 5411 */ 5412 return count <= 1; 5413 } 5414 5415 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5416 { 5417 int i; 5418 5419 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5420 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5421 return false; 5422 5423 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5424 return false; 5425 } 5426 5427 return true; 5428 } 5429 5430 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5431 { 5432 return check_raw_mode_ok(fn) && 5433 check_arg_pair_ok(fn) && 5434 check_btf_id_ok(fn) && 5435 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5436 } 5437 5438 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5439 * are now invalid, so turn them into unknown SCALAR_VALUE. 5440 */ 5441 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5442 struct bpf_func_state *state) 5443 { 5444 struct bpf_reg_state *regs = state->regs, *reg; 5445 int i; 5446 5447 for (i = 0; i < MAX_BPF_REG; i++) 5448 if (reg_is_pkt_pointer_any(®s[i])) 5449 mark_reg_unknown(env, regs, i); 5450 5451 bpf_for_each_spilled_reg(i, state, reg) { 5452 if (!reg) 5453 continue; 5454 if (reg_is_pkt_pointer_any(reg)) 5455 __mark_reg_unknown(env, reg); 5456 } 5457 } 5458 5459 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5460 { 5461 struct bpf_verifier_state *vstate = env->cur_state; 5462 int i; 5463 5464 for (i = 0; i <= vstate->curframe; i++) 5465 __clear_all_pkt_pointers(env, vstate->frame[i]); 5466 } 5467 5468 enum { 5469 AT_PKT_END = -1, 5470 BEYOND_PKT_END = -2, 5471 }; 5472 5473 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5474 { 5475 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5476 struct bpf_reg_state *reg = &state->regs[regn]; 5477 5478 if (reg->type != PTR_TO_PACKET) 5479 /* PTR_TO_PACKET_META is not supported yet */ 5480 return; 5481 5482 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5483 * How far beyond pkt_end it goes is unknown. 5484 * if (!range_open) it's the case of pkt >= pkt_end 5485 * if (range_open) it's the case of pkt > pkt_end 5486 * hence this pointer is at least 1 byte bigger than pkt_end 5487 */ 5488 if (range_open) 5489 reg->range = BEYOND_PKT_END; 5490 else 5491 reg->range = AT_PKT_END; 5492 } 5493 5494 static void release_reg_references(struct bpf_verifier_env *env, 5495 struct bpf_func_state *state, 5496 int ref_obj_id) 5497 { 5498 struct bpf_reg_state *regs = state->regs, *reg; 5499 int i; 5500 5501 for (i = 0; i < MAX_BPF_REG; i++) 5502 if (regs[i].ref_obj_id == ref_obj_id) 5503 mark_reg_unknown(env, regs, i); 5504 5505 bpf_for_each_spilled_reg(i, state, reg) { 5506 if (!reg) 5507 continue; 5508 if (reg->ref_obj_id == ref_obj_id) 5509 __mark_reg_unknown(env, reg); 5510 } 5511 } 5512 5513 /* The pointer with the specified id has released its reference to kernel 5514 * resources. Identify all copies of the same pointer and clear the reference. 5515 */ 5516 static int release_reference(struct bpf_verifier_env *env, 5517 int ref_obj_id) 5518 { 5519 struct bpf_verifier_state *vstate = env->cur_state; 5520 int err; 5521 int i; 5522 5523 err = release_reference_state(cur_func(env), ref_obj_id); 5524 if (err) 5525 return err; 5526 5527 for (i = 0; i <= vstate->curframe; i++) 5528 release_reg_references(env, vstate->frame[i], ref_obj_id); 5529 5530 return 0; 5531 } 5532 5533 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5534 struct bpf_reg_state *regs) 5535 { 5536 int i; 5537 5538 /* after the call registers r0 - r5 were scratched */ 5539 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5540 mark_reg_not_init(env, regs, caller_saved[i]); 5541 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5542 } 5543 } 5544 5545 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5546 struct bpf_func_state *caller, 5547 struct bpf_func_state *callee, 5548 int insn_idx); 5549 5550 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5551 int *insn_idx, int subprog, 5552 set_callee_state_fn set_callee_state_cb) 5553 { 5554 struct bpf_verifier_state *state = env->cur_state; 5555 struct bpf_func_info_aux *func_info_aux; 5556 struct bpf_func_state *caller, *callee; 5557 int err; 5558 bool is_global = false; 5559 5560 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5561 verbose(env, "the call stack of %d frames is too deep\n", 5562 state->curframe + 2); 5563 return -E2BIG; 5564 } 5565 5566 caller = state->frame[state->curframe]; 5567 if (state->frame[state->curframe + 1]) { 5568 verbose(env, "verifier bug. Frame %d already allocated\n", 5569 state->curframe + 1); 5570 return -EFAULT; 5571 } 5572 5573 func_info_aux = env->prog->aux->func_info_aux; 5574 if (func_info_aux) 5575 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5576 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5577 if (err == -EFAULT) 5578 return err; 5579 if (is_global) { 5580 if (err) { 5581 verbose(env, "Caller passes invalid args into func#%d\n", 5582 subprog); 5583 return err; 5584 } else { 5585 if (env->log.level & BPF_LOG_LEVEL) 5586 verbose(env, 5587 "Func#%d is global and valid. Skipping.\n", 5588 subprog); 5589 clear_caller_saved_regs(env, caller->regs); 5590 5591 /* All global functions return a 64-bit SCALAR_VALUE */ 5592 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5593 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5594 5595 /* continue with next insn after call */ 5596 return 0; 5597 } 5598 } 5599 5600 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5601 if (!callee) 5602 return -ENOMEM; 5603 state->frame[state->curframe + 1] = callee; 5604 5605 /* callee cannot access r0, r6 - r9 for reading and has to write 5606 * into its own stack before reading from it. 5607 * callee can read/write into caller's stack 5608 */ 5609 init_func_state(env, callee, 5610 /* remember the callsite, it will be used by bpf_exit */ 5611 *insn_idx /* callsite */, 5612 state->curframe + 1 /* frameno within this callchain */, 5613 subprog /* subprog number within this prog */); 5614 5615 /* Transfer references to the callee */ 5616 err = copy_reference_state(callee, caller); 5617 if (err) 5618 return err; 5619 5620 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5621 if (err) 5622 return err; 5623 5624 clear_caller_saved_regs(env, caller->regs); 5625 5626 /* only increment it after check_reg_arg() finished */ 5627 state->curframe++; 5628 5629 /* and go analyze first insn of the callee */ 5630 *insn_idx = env->subprog_info[subprog].start - 1; 5631 5632 if (env->log.level & BPF_LOG_LEVEL) { 5633 verbose(env, "caller:\n"); 5634 print_verifier_state(env, caller); 5635 verbose(env, "callee:\n"); 5636 print_verifier_state(env, callee); 5637 } 5638 return 0; 5639 } 5640 5641 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 5642 struct bpf_func_state *caller, 5643 struct bpf_func_state *callee) 5644 { 5645 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 5646 * void *callback_ctx, u64 flags); 5647 * callback_fn(struct bpf_map *map, void *key, void *value, 5648 * void *callback_ctx); 5649 */ 5650 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 5651 5652 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5653 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5654 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5655 5656 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5657 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5658 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5659 5660 /* pointer to stack or null */ 5661 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 5662 5663 /* unused */ 5664 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5665 return 0; 5666 } 5667 5668 static int set_callee_state(struct bpf_verifier_env *env, 5669 struct bpf_func_state *caller, 5670 struct bpf_func_state *callee, int insn_idx) 5671 { 5672 int i; 5673 5674 /* copy r1 - r5 args that callee can access. The copy includes parent 5675 * pointers, which connects us up to the liveness chain 5676 */ 5677 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5678 callee->regs[i] = caller->regs[i]; 5679 return 0; 5680 } 5681 5682 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5683 int *insn_idx) 5684 { 5685 int subprog, target_insn; 5686 5687 target_insn = *insn_idx + insn->imm + 1; 5688 subprog = find_subprog(env, target_insn); 5689 if (subprog < 0) { 5690 verbose(env, "verifier bug. No program starts at insn %d\n", 5691 target_insn); 5692 return -EFAULT; 5693 } 5694 5695 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 5696 } 5697 5698 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 5699 struct bpf_func_state *caller, 5700 struct bpf_func_state *callee, 5701 int insn_idx) 5702 { 5703 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 5704 struct bpf_map *map; 5705 int err; 5706 5707 if (bpf_map_ptr_poisoned(insn_aux)) { 5708 verbose(env, "tail_call abusing map_ptr\n"); 5709 return -EINVAL; 5710 } 5711 5712 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 5713 if (!map->ops->map_set_for_each_callback_args || 5714 !map->ops->map_for_each_callback) { 5715 verbose(env, "callback function not allowed for map\n"); 5716 return -ENOTSUPP; 5717 } 5718 5719 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 5720 if (err) 5721 return err; 5722 5723 callee->in_callback_fn = true; 5724 return 0; 5725 } 5726 5727 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5728 { 5729 struct bpf_verifier_state *state = env->cur_state; 5730 struct bpf_func_state *caller, *callee; 5731 struct bpf_reg_state *r0; 5732 int err; 5733 5734 callee = state->frame[state->curframe]; 5735 r0 = &callee->regs[BPF_REG_0]; 5736 if (r0->type == PTR_TO_STACK) { 5737 /* technically it's ok to return caller's stack pointer 5738 * (or caller's caller's pointer) back to the caller, 5739 * since these pointers are valid. Only current stack 5740 * pointer will be invalid as soon as function exits, 5741 * but let's be conservative 5742 */ 5743 verbose(env, "cannot return stack pointer to the caller\n"); 5744 return -EINVAL; 5745 } 5746 5747 state->curframe--; 5748 caller = state->frame[state->curframe]; 5749 if (callee->in_callback_fn) { 5750 /* enforce R0 return value range [0, 1]. */ 5751 struct tnum range = tnum_range(0, 1); 5752 5753 if (r0->type != SCALAR_VALUE) { 5754 verbose(env, "R0 not a scalar value\n"); 5755 return -EACCES; 5756 } 5757 if (!tnum_in(range, r0->var_off)) { 5758 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 5759 return -EINVAL; 5760 } 5761 } else { 5762 /* return to the caller whatever r0 had in the callee */ 5763 caller->regs[BPF_REG_0] = *r0; 5764 } 5765 5766 /* Transfer references to the caller */ 5767 err = copy_reference_state(caller, callee); 5768 if (err) 5769 return err; 5770 5771 *insn_idx = callee->callsite + 1; 5772 if (env->log.level & BPF_LOG_LEVEL) { 5773 verbose(env, "returning from callee:\n"); 5774 print_verifier_state(env, callee); 5775 verbose(env, "to caller at %d:\n", *insn_idx); 5776 print_verifier_state(env, caller); 5777 } 5778 /* clear everything in the callee */ 5779 free_func_state(callee); 5780 state->frame[state->curframe + 1] = NULL; 5781 return 0; 5782 } 5783 5784 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 5785 int func_id, 5786 struct bpf_call_arg_meta *meta) 5787 { 5788 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5789 5790 if (ret_type != RET_INTEGER || 5791 (func_id != BPF_FUNC_get_stack && 5792 func_id != BPF_FUNC_get_task_stack && 5793 func_id != BPF_FUNC_probe_read_str && 5794 func_id != BPF_FUNC_probe_read_kernel_str && 5795 func_id != BPF_FUNC_probe_read_user_str)) 5796 return; 5797 5798 ret_reg->smax_value = meta->msize_max_value; 5799 ret_reg->s32_max_value = meta->msize_max_value; 5800 ret_reg->smin_value = -MAX_ERRNO; 5801 ret_reg->s32_min_value = -MAX_ERRNO; 5802 __reg_deduce_bounds(ret_reg); 5803 __reg_bound_offset(ret_reg); 5804 __update_reg_bounds(ret_reg); 5805 } 5806 5807 static int 5808 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5809 int func_id, int insn_idx) 5810 { 5811 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5812 struct bpf_map *map = meta->map_ptr; 5813 5814 if (func_id != BPF_FUNC_tail_call && 5815 func_id != BPF_FUNC_map_lookup_elem && 5816 func_id != BPF_FUNC_map_update_elem && 5817 func_id != BPF_FUNC_map_delete_elem && 5818 func_id != BPF_FUNC_map_push_elem && 5819 func_id != BPF_FUNC_map_pop_elem && 5820 func_id != BPF_FUNC_map_peek_elem && 5821 func_id != BPF_FUNC_for_each_map_elem && 5822 func_id != BPF_FUNC_redirect_map) 5823 return 0; 5824 5825 if (map == NULL) { 5826 verbose(env, "kernel subsystem misconfigured verifier\n"); 5827 return -EINVAL; 5828 } 5829 5830 /* In case of read-only, some additional restrictions 5831 * need to be applied in order to prevent altering the 5832 * state of the map from program side. 5833 */ 5834 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5835 (func_id == BPF_FUNC_map_delete_elem || 5836 func_id == BPF_FUNC_map_update_elem || 5837 func_id == BPF_FUNC_map_push_elem || 5838 func_id == BPF_FUNC_map_pop_elem)) { 5839 verbose(env, "write into map forbidden\n"); 5840 return -EACCES; 5841 } 5842 5843 if (!BPF_MAP_PTR(aux->map_ptr_state)) 5844 bpf_map_ptr_store(aux, meta->map_ptr, 5845 !meta->map_ptr->bypass_spec_v1); 5846 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 5847 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 5848 !meta->map_ptr->bypass_spec_v1); 5849 return 0; 5850 } 5851 5852 static int 5853 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5854 int func_id, int insn_idx) 5855 { 5856 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5857 struct bpf_reg_state *regs = cur_regs(env), *reg; 5858 struct bpf_map *map = meta->map_ptr; 5859 struct tnum range; 5860 u64 val; 5861 int err; 5862 5863 if (func_id != BPF_FUNC_tail_call) 5864 return 0; 5865 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5866 verbose(env, "kernel subsystem misconfigured verifier\n"); 5867 return -EINVAL; 5868 } 5869 5870 range = tnum_range(0, map->max_entries - 1); 5871 reg = ®s[BPF_REG_3]; 5872 5873 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5874 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5875 return 0; 5876 } 5877 5878 err = mark_chain_precision(env, BPF_REG_3); 5879 if (err) 5880 return err; 5881 5882 val = reg->var_off.value; 5883 if (bpf_map_key_unseen(aux)) 5884 bpf_map_key_store(aux, val); 5885 else if (!bpf_map_key_poisoned(aux) && 5886 bpf_map_key_immediate(aux) != val) 5887 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5888 return 0; 5889 } 5890 5891 static int check_reference_leak(struct bpf_verifier_env *env) 5892 { 5893 struct bpf_func_state *state = cur_func(env); 5894 int i; 5895 5896 for (i = 0; i < state->acquired_refs; i++) { 5897 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5898 state->refs[i].id, state->refs[i].insn_idx); 5899 } 5900 return state->acquired_refs ? -EINVAL : 0; 5901 } 5902 5903 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 5904 struct bpf_reg_state *regs) 5905 { 5906 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 5907 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 5908 struct bpf_map *fmt_map = fmt_reg->map_ptr; 5909 int err, fmt_map_off, num_args; 5910 u64 fmt_addr; 5911 char *fmt; 5912 5913 /* data must be an array of u64 */ 5914 if (data_len_reg->var_off.value % 8) 5915 return -EINVAL; 5916 num_args = data_len_reg->var_off.value / 8; 5917 5918 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 5919 * and map_direct_value_addr is set. 5920 */ 5921 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 5922 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 5923 fmt_map_off); 5924 if (err) { 5925 verbose(env, "verifier bug\n"); 5926 return -EFAULT; 5927 } 5928 fmt = (char *)(long)fmt_addr + fmt_map_off; 5929 5930 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 5931 * can focus on validating the format specifiers. 5932 */ 5933 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 5934 if (err < 0) 5935 verbose(env, "Invalid format string\n"); 5936 5937 return err; 5938 } 5939 5940 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5941 int *insn_idx_p) 5942 { 5943 const struct bpf_func_proto *fn = NULL; 5944 struct bpf_reg_state *regs; 5945 struct bpf_call_arg_meta meta; 5946 int insn_idx = *insn_idx_p; 5947 bool changes_data; 5948 int i, err, func_id; 5949 5950 /* find function prototype */ 5951 func_id = insn->imm; 5952 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5953 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5954 func_id); 5955 return -EINVAL; 5956 } 5957 5958 if (env->ops->get_func_proto) 5959 fn = env->ops->get_func_proto(func_id, env->prog); 5960 if (!fn) { 5961 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5962 func_id); 5963 return -EINVAL; 5964 } 5965 5966 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5967 if (!env->prog->gpl_compatible && fn->gpl_only) { 5968 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5969 return -EINVAL; 5970 } 5971 5972 if (fn->allowed && !fn->allowed(env->prog)) { 5973 verbose(env, "helper call is not allowed in probe\n"); 5974 return -EINVAL; 5975 } 5976 5977 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5978 changes_data = bpf_helper_changes_pkt_data(fn->func); 5979 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5980 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5981 func_id_name(func_id), func_id); 5982 return -EINVAL; 5983 } 5984 5985 memset(&meta, 0, sizeof(meta)); 5986 meta.pkt_access = fn->pkt_access; 5987 5988 err = check_func_proto(fn, func_id); 5989 if (err) { 5990 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5991 func_id_name(func_id), func_id); 5992 return err; 5993 } 5994 5995 meta.func_id = func_id; 5996 /* check args */ 5997 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 5998 err = check_func_arg(env, i, &meta, fn); 5999 if (err) 6000 return err; 6001 } 6002 6003 err = record_func_map(env, &meta, func_id, insn_idx); 6004 if (err) 6005 return err; 6006 6007 err = record_func_key(env, &meta, func_id, insn_idx); 6008 if (err) 6009 return err; 6010 6011 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6012 * is inferred from register state. 6013 */ 6014 for (i = 0; i < meta.access_size; i++) { 6015 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6016 BPF_WRITE, -1, false); 6017 if (err) 6018 return err; 6019 } 6020 6021 if (func_id == BPF_FUNC_tail_call) { 6022 err = check_reference_leak(env); 6023 if (err) { 6024 verbose(env, "tail_call would lead to reference leak\n"); 6025 return err; 6026 } 6027 } else if (is_release_function(func_id)) { 6028 err = release_reference(env, meta.ref_obj_id); 6029 if (err) { 6030 verbose(env, "func %s#%d reference has not been acquired before\n", 6031 func_id_name(func_id), func_id); 6032 return err; 6033 } 6034 } 6035 6036 regs = cur_regs(env); 6037 6038 /* check that flags argument in get_local_storage(map, flags) is 0, 6039 * this is required because get_local_storage() can't return an error. 6040 */ 6041 if (func_id == BPF_FUNC_get_local_storage && 6042 !register_is_null(®s[BPF_REG_2])) { 6043 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6044 return -EINVAL; 6045 } 6046 6047 if (func_id == BPF_FUNC_for_each_map_elem) { 6048 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6049 set_map_elem_callback_state); 6050 if (err < 0) 6051 return -EINVAL; 6052 } 6053 6054 if (func_id == BPF_FUNC_snprintf) { 6055 err = check_bpf_snprintf_call(env, regs); 6056 if (err < 0) 6057 return err; 6058 } 6059 6060 /* reset caller saved regs */ 6061 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6062 mark_reg_not_init(env, regs, caller_saved[i]); 6063 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6064 } 6065 6066 /* helper call returns 64-bit value. */ 6067 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6068 6069 /* update return register (already marked as written above) */ 6070 if (fn->ret_type == RET_INTEGER) { 6071 /* sets type to SCALAR_VALUE */ 6072 mark_reg_unknown(env, regs, BPF_REG_0); 6073 } else if (fn->ret_type == RET_VOID) { 6074 regs[BPF_REG_0].type = NOT_INIT; 6075 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6076 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6077 /* There is no offset yet applied, variable or fixed */ 6078 mark_reg_known_zero(env, regs, BPF_REG_0); 6079 /* remember map_ptr, so that check_map_access() 6080 * can check 'value_size' boundary of memory access 6081 * to map element returned from bpf_map_lookup_elem() 6082 */ 6083 if (meta.map_ptr == NULL) { 6084 verbose(env, 6085 "kernel subsystem misconfigured verifier\n"); 6086 return -EINVAL; 6087 } 6088 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6089 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6090 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6091 if (map_value_has_spin_lock(meta.map_ptr)) 6092 regs[BPF_REG_0].id = ++env->id_gen; 6093 } else { 6094 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6095 } 6096 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6097 mark_reg_known_zero(env, regs, BPF_REG_0); 6098 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6099 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6100 mark_reg_known_zero(env, regs, BPF_REG_0); 6101 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6102 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6103 mark_reg_known_zero(env, regs, BPF_REG_0); 6104 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6105 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6106 mark_reg_known_zero(env, regs, BPF_REG_0); 6107 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6108 regs[BPF_REG_0].mem_size = meta.mem_size; 6109 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6110 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6111 const struct btf_type *t; 6112 6113 mark_reg_known_zero(env, regs, BPF_REG_0); 6114 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6115 if (!btf_type_is_struct(t)) { 6116 u32 tsize; 6117 const struct btf_type *ret; 6118 const char *tname; 6119 6120 /* resolve the type size of ksym. */ 6121 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6122 if (IS_ERR(ret)) { 6123 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6124 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6125 tname, PTR_ERR(ret)); 6126 return -EINVAL; 6127 } 6128 regs[BPF_REG_0].type = 6129 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6130 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6131 regs[BPF_REG_0].mem_size = tsize; 6132 } else { 6133 regs[BPF_REG_0].type = 6134 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6135 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6136 regs[BPF_REG_0].btf = meta.ret_btf; 6137 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6138 } 6139 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6140 fn->ret_type == RET_PTR_TO_BTF_ID) { 6141 int ret_btf_id; 6142 6143 mark_reg_known_zero(env, regs, BPF_REG_0); 6144 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6145 PTR_TO_BTF_ID : 6146 PTR_TO_BTF_ID_OR_NULL; 6147 ret_btf_id = *fn->ret_btf_id; 6148 if (ret_btf_id == 0) { 6149 verbose(env, "invalid return type %d of func %s#%d\n", 6150 fn->ret_type, func_id_name(func_id), func_id); 6151 return -EINVAL; 6152 } 6153 /* current BPF helper definitions are only coming from 6154 * built-in code with type IDs from vmlinux BTF 6155 */ 6156 regs[BPF_REG_0].btf = btf_vmlinux; 6157 regs[BPF_REG_0].btf_id = ret_btf_id; 6158 } else { 6159 verbose(env, "unknown return type %d of func %s#%d\n", 6160 fn->ret_type, func_id_name(func_id), func_id); 6161 return -EINVAL; 6162 } 6163 6164 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6165 regs[BPF_REG_0].id = ++env->id_gen; 6166 6167 if (is_ptr_cast_function(func_id)) { 6168 /* For release_reference() */ 6169 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6170 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6171 int id = acquire_reference_state(env, insn_idx); 6172 6173 if (id < 0) 6174 return id; 6175 /* For mark_ptr_or_null_reg() */ 6176 regs[BPF_REG_0].id = id; 6177 /* For release_reference() */ 6178 regs[BPF_REG_0].ref_obj_id = id; 6179 } 6180 6181 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6182 6183 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6184 if (err) 6185 return err; 6186 6187 if ((func_id == BPF_FUNC_get_stack || 6188 func_id == BPF_FUNC_get_task_stack) && 6189 !env->prog->has_callchain_buf) { 6190 const char *err_str; 6191 6192 #ifdef CONFIG_PERF_EVENTS 6193 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6194 err_str = "cannot get callchain buffer for func %s#%d\n"; 6195 #else 6196 err = -ENOTSUPP; 6197 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6198 #endif 6199 if (err) { 6200 verbose(env, err_str, func_id_name(func_id), func_id); 6201 return err; 6202 } 6203 6204 env->prog->has_callchain_buf = true; 6205 } 6206 6207 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6208 env->prog->call_get_stack = true; 6209 6210 if (changes_data) 6211 clear_all_pkt_pointers(env); 6212 return 0; 6213 } 6214 6215 /* mark_btf_func_reg_size() is used when the reg size is determined by 6216 * the BTF func_proto's return value size and argument. 6217 */ 6218 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6219 size_t reg_size) 6220 { 6221 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6222 6223 if (regno == BPF_REG_0) { 6224 /* Function return value */ 6225 reg->live |= REG_LIVE_WRITTEN; 6226 reg->subreg_def = reg_size == sizeof(u64) ? 6227 DEF_NOT_SUBREG : env->insn_idx + 1; 6228 } else { 6229 /* Function argument */ 6230 if (reg_size == sizeof(u64)) { 6231 mark_insn_zext(env, reg); 6232 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6233 } else { 6234 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6235 } 6236 } 6237 } 6238 6239 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6240 { 6241 const struct btf_type *t, *func, *func_proto, *ptr_type; 6242 struct bpf_reg_state *regs = cur_regs(env); 6243 const char *func_name, *ptr_type_name; 6244 u32 i, nargs, func_id, ptr_type_id; 6245 const struct btf_param *args; 6246 int err; 6247 6248 func_id = insn->imm; 6249 func = btf_type_by_id(btf_vmlinux, func_id); 6250 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 6251 func_proto = btf_type_by_id(btf_vmlinux, func->type); 6252 6253 if (!env->ops->check_kfunc_call || 6254 !env->ops->check_kfunc_call(func_id)) { 6255 verbose(env, "calling kernel function %s is not allowed\n", 6256 func_name); 6257 return -EACCES; 6258 } 6259 6260 /* Check the arguments */ 6261 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs); 6262 if (err) 6263 return err; 6264 6265 for (i = 0; i < CALLER_SAVED_REGS; i++) 6266 mark_reg_not_init(env, regs, caller_saved[i]); 6267 6268 /* Check return type */ 6269 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL); 6270 if (btf_type_is_scalar(t)) { 6271 mark_reg_unknown(env, regs, BPF_REG_0); 6272 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6273 } else if (btf_type_is_ptr(t)) { 6274 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type, 6275 &ptr_type_id); 6276 if (!btf_type_is_struct(ptr_type)) { 6277 ptr_type_name = btf_name_by_offset(btf_vmlinux, 6278 ptr_type->name_off); 6279 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6280 func_name, btf_type_str(ptr_type), 6281 ptr_type_name); 6282 return -EINVAL; 6283 } 6284 mark_reg_known_zero(env, regs, BPF_REG_0); 6285 regs[BPF_REG_0].btf = btf_vmlinux; 6286 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6287 regs[BPF_REG_0].btf_id = ptr_type_id; 6288 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6289 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6290 6291 nargs = btf_type_vlen(func_proto); 6292 args = (const struct btf_param *)(func_proto + 1); 6293 for (i = 0; i < nargs; i++) { 6294 u32 regno = i + 1; 6295 6296 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL); 6297 if (btf_type_is_ptr(t)) 6298 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6299 else 6300 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6301 mark_btf_func_reg_size(env, regno, t->size); 6302 } 6303 6304 return 0; 6305 } 6306 6307 static bool signed_add_overflows(s64 a, s64 b) 6308 { 6309 /* Do the add in u64, where overflow is well-defined */ 6310 s64 res = (s64)((u64)a + (u64)b); 6311 6312 if (b < 0) 6313 return res > a; 6314 return res < a; 6315 } 6316 6317 static bool signed_add32_overflows(s32 a, s32 b) 6318 { 6319 /* Do the add in u32, where overflow is well-defined */ 6320 s32 res = (s32)((u32)a + (u32)b); 6321 6322 if (b < 0) 6323 return res > a; 6324 return res < a; 6325 } 6326 6327 static bool signed_sub_overflows(s64 a, s64 b) 6328 { 6329 /* Do the sub in u64, where overflow is well-defined */ 6330 s64 res = (s64)((u64)a - (u64)b); 6331 6332 if (b < 0) 6333 return res < a; 6334 return res > a; 6335 } 6336 6337 static bool signed_sub32_overflows(s32 a, s32 b) 6338 { 6339 /* Do the sub in u32, where overflow is well-defined */ 6340 s32 res = (s32)((u32)a - (u32)b); 6341 6342 if (b < 0) 6343 return res < a; 6344 return res > a; 6345 } 6346 6347 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6348 const struct bpf_reg_state *reg, 6349 enum bpf_reg_type type) 6350 { 6351 bool known = tnum_is_const(reg->var_off); 6352 s64 val = reg->var_off.value; 6353 s64 smin = reg->smin_value; 6354 6355 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6356 verbose(env, "math between %s pointer and %lld is not allowed\n", 6357 reg_type_str[type], val); 6358 return false; 6359 } 6360 6361 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6362 verbose(env, "%s pointer offset %d is not allowed\n", 6363 reg_type_str[type], reg->off); 6364 return false; 6365 } 6366 6367 if (smin == S64_MIN) { 6368 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6369 reg_type_str[type]); 6370 return false; 6371 } 6372 6373 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6374 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6375 smin, reg_type_str[type]); 6376 return false; 6377 } 6378 6379 return true; 6380 } 6381 6382 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6383 { 6384 return &env->insn_aux_data[env->insn_idx]; 6385 } 6386 6387 enum { 6388 REASON_BOUNDS = -1, 6389 REASON_TYPE = -2, 6390 REASON_PATHS = -3, 6391 REASON_LIMIT = -4, 6392 REASON_STACK = -5, 6393 }; 6394 6395 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6396 u32 *alu_limit, bool mask_to_left) 6397 { 6398 u32 max = 0, ptr_limit = 0; 6399 6400 switch (ptr_reg->type) { 6401 case PTR_TO_STACK: 6402 /* Offset 0 is out-of-bounds, but acceptable start for the 6403 * left direction, see BPF_REG_FP. Also, unknown scalar 6404 * offset where we would need to deal with min/max bounds is 6405 * currently prohibited for unprivileged. 6406 */ 6407 max = MAX_BPF_STACK + mask_to_left; 6408 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6409 break; 6410 case PTR_TO_MAP_VALUE: 6411 max = ptr_reg->map_ptr->value_size; 6412 ptr_limit = (mask_to_left ? 6413 ptr_reg->smin_value : 6414 ptr_reg->umax_value) + ptr_reg->off; 6415 break; 6416 default: 6417 return REASON_TYPE; 6418 } 6419 6420 if (ptr_limit >= max) 6421 return REASON_LIMIT; 6422 *alu_limit = ptr_limit; 6423 return 0; 6424 } 6425 6426 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6427 const struct bpf_insn *insn) 6428 { 6429 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6430 } 6431 6432 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6433 u32 alu_state, u32 alu_limit) 6434 { 6435 /* If we arrived here from different branches with different 6436 * state or limits to sanitize, then this won't work. 6437 */ 6438 if (aux->alu_state && 6439 (aux->alu_state != alu_state || 6440 aux->alu_limit != alu_limit)) 6441 return REASON_PATHS; 6442 6443 /* Corresponding fixup done in do_misc_fixups(). */ 6444 aux->alu_state = alu_state; 6445 aux->alu_limit = alu_limit; 6446 return 0; 6447 } 6448 6449 static int sanitize_val_alu(struct bpf_verifier_env *env, 6450 struct bpf_insn *insn) 6451 { 6452 struct bpf_insn_aux_data *aux = cur_aux(env); 6453 6454 if (can_skip_alu_sanitation(env, insn)) 6455 return 0; 6456 6457 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6458 } 6459 6460 static bool sanitize_needed(u8 opcode) 6461 { 6462 return opcode == BPF_ADD || opcode == BPF_SUB; 6463 } 6464 6465 struct bpf_sanitize_info { 6466 struct bpf_insn_aux_data aux; 6467 bool mask_to_left; 6468 }; 6469 6470 static struct bpf_verifier_state * 6471 sanitize_speculative_path(struct bpf_verifier_env *env, 6472 const struct bpf_insn *insn, 6473 u32 next_idx, u32 curr_idx) 6474 { 6475 struct bpf_verifier_state *branch; 6476 struct bpf_reg_state *regs; 6477 6478 branch = push_stack(env, next_idx, curr_idx, true); 6479 if (branch && insn) { 6480 regs = branch->frame[branch->curframe]->regs; 6481 if (BPF_SRC(insn->code) == BPF_K) { 6482 mark_reg_unknown(env, regs, insn->dst_reg); 6483 } else if (BPF_SRC(insn->code) == BPF_X) { 6484 mark_reg_unknown(env, regs, insn->dst_reg); 6485 mark_reg_unknown(env, regs, insn->src_reg); 6486 } 6487 } 6488 return branch; 6489 } 6490 6491 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6492 struct bpf_insn *insn, 6493 const struct bpf_reg_state *ptr_reg, 6494 const struct bpf_reg_state *off_reg, 6495 struct bpf_reg_state *dst_reg, 6496 struct bpf_sanitize_info *info, 6497 const bool commit_window) 6498 { 6499 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6500 struct bpf_verifier_state *vstate = env->cur_state; 6501 bool off_is_imm = tnum_is_const(off_reg->var_off); 6502 bool off_is_neg = off_reg->smin_value < 0; 6503 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6504 u8 opcode = BPF_OP(insn->code); 6505 u32 alu_state, alu_limit; 6506 struct bpf_reg_state tmp; 6507 bool ret; 6508 int err; 6509 6510 if (can_skip_alu_sanitation(env, insn)) 6511 return 0; 6512 6513 /* We already marked aux for masking from non-speculative 6514 * paths, thus we got here in the first place. We only care 6515 * to explore bad access from here. 6516 */ 6517 if (vstate->speculative) 6518 goto do_sim; 6519 6520 if (!commit_window) { 6521 if (!tnum_is_const(off_reg->var_off) && 6522 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6523 return REASON_BOUNDS; 6524 6525 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6526 (opcode == BPF_SUB && !off_is_neg); 6527 } 6528 6529 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6530 if (err < 0) 6531 return err; 6532 6533 if (commit_window) { 6534 /* In commit phase we narrow the masking window based on 6535 * the observed pointer move after the simulated operation. 6536 */ 6537 alu_state = info->aux.alu_state; 6538 alu_limit = abs(info->aux.alu_limit - alu_limit); 6539 } else { 6540 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6541 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6542 alu_state |= ptr_is_dst_reg ? 6543 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6544 6545 /* Limit pruning on unknown scalars to enable deep search for 6546 * potential masking differences from other program paths. 6547 */ 6548 if (!off_is_imm) 6549 env->explore_alu_limits = true; 6550 } 6551 6552 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 6553 if (err < 0) 6554 return err; 6555 do_sim: 6556 /* If we're in commit phase, we're done here given we already 6557 * pushed the truncated dst_reg into the speculative verification 6558 * stack. 6559 * 6560 * Also, when register is a known constant, we rewrite register-based 6561 * operation to immediate-based, and thus do not need masking (and as 6562 * a consequence, do not need to simulate the zero-truncation either). 6563 */ 6564 if (commit_window || off_is_imm) 6565 return 0; 6566 6567 /* Simulate and find potential out-of-bounds access under 6568 * speculative execution from truncation as a result of 6569 * masking when off was not within expected range. If off 6570 * sits in dst, then we temporarily need to move ptr there 6571 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6572 * for cases where we use K-based arithmetic in one direction 6573 * and truncated reg-based in the other in order to explore 6574 * bad access. 6575 */ 6576 if (!ptr_is_dst_reg) { 6577 tmp = *dst_reg; 6578 *dst_reg = *ptr_reg; 6579 } 6580 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 6581 env->insn_idx); 6582 if (!ptr_is_dst_reg && ret) 6583 *dst_reg = tmp; 6584 return !ret ? REASON_STACK : 0; 6585 } 6586 6587 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 6588 { 6589 struct bpf_verifier_state *vstate = env->cur_state; 6590 6591 /* If we simulate paths under speculation, we don't update the 6592 * insn as 'seen' such that when we verify unreachable paths in 6593 * the non-speculative domain, sanitize_dead_code() can still 6594 * rewrite/sanitize them. 6595 */ 6596 if (!vstate->speculative) 6597 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 6598 } 6599 6600 static int sanitize_err(struct bpf_verifier_env *env, 6601 const struct bpf_insn *insn, int reason, 6602 const struct bpf_reg_state *off_reg, 6603 const struct bpf_reg_state *dst_reg) 6604 { 6605 static const char *err = "pointer arithmetic with it prohibited for !root"; 6606 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6607 u32 dst = insn->dst_reg, src = insn->src_reg; 6608 6609 switch (reason) { 6610 case REASON_BOUNDS: 6611 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6612 off_reg == dst_reg ? dst : src, err); 6613 break; 6614 case REASON_TYPE: 6615 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6616 off_reg == dst_reg ? src : dst, err); 6617 break; 6618 case REASON_PATHS: 6619 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6620 dst, op, err); 6621 break; 6622 case REASON_LIMIT: 6623 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6624 dst, op, err); 6625 break; 6626 case REASON_STACK: 6627 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6628 dst, err); 6629 break; 6630 default: 6631 verbose(env, "verifier internal error: unknown reason (%d)\n", 6632 reason); 6633 break; 6634 } 6635 6636 return -EACCES; 6637 } 6638 6639 /* check that stack access falls within stack limits and that 'reg' doesn't 6640 * have a variable offset. 6641 * 6642 * Variable offset is prohibited for unprivileged mode for simplicity since it 6643 * requires corresponding support in Spectre masking for stack ALU. See also 6644 * retrieve_ptr_limit(). 6645 * 6646 * 6647 * 'off' includes 'reg->off'. 6648 */ 6649 static int check_stack_access_for_ptr_arithmetic( 6650 struct bpf_verifier_env *env, 6651 int regno, 6652 const struct bpf_reg_state *reg, 6653 int off) 6654 { 6655 if (!tnum_is_const(reg->var_off)) { 6656 char tn_buf[48]; 6657 6658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6659 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6660 regno, tn_buf, off); 6661 return -EACCES; 6662 } 6663 6664 if (off >= 0 || off < -MAX_BPF_STACK) { 6665 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6666 "prohibited for !root; off=%d\n", regno, off); 6667 return -EACCES; 6668 } 6669 6670 return 0; 6671 } 6672 6673 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6674 const struct bpf_insn *insn, 6675 const struct bpf_reg_state *dst_reg) 6676 { 6677 u32 dst = insn->dst_reg; 6678 6679 /* For unprivileged we require that resulting offset must be in bounds 6680 * in order to be able to sanitize access later on. 6681 */ 6682 if (env->bypass_spec_v1) 6683 return 0; 6684 6685 switch (dst_reg->type) { 6686 case PTR_TO_STACK: 6687 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6688 dst_reg->off + dst_reg->var_off.value)) 6689 return -EACCES; 6690 break; 6691 case PTR_TO_MAP_VALUE: 6692 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6693 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6694 "prohibited for !root\n", dst); 6695 return -EACCES; 6696 } 6697 break; 6698 default: 6699 break; 6700 } 6701 6702 return 0; 6703 } 6704 6705 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6706 * Caller should also handle BPF_MOV case separately. 6707 * If we return -EACCES, caller may want to try again treating pointer as a 6708 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6709 */ 6710 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6711 struct bpf_insn *insn, 6712 const struct bpf_reg_state *ptr_reg, 6713 const struct bpf_reg_state *off_reg) 6714 { 6715 struct bpf_verifier_state *vstate = env->cur_state; 6716 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6717 struct bpf_reg_state *regs = state->regs, *dst_reg; 6718 bool known = tnum_is_const(off_reg->var_off); 6719 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 6720 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6721 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6722 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6723 struct bpf_sanitize_info info = {}; 6724 u8 opcode = BPF_OP(insn->code); 6725 u32 dst = insn->dst_reg; 6726 int ret; 6727 6728 dst_reg = ®s[dst]; 6729 6730 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6731 smin_val > smax_val || umin_val > umax_val) { 6732 /* Taint dst register if offset had invalid bounds derived from 6733 * e.g. dead branches. 6734 */ 6735 __mark_reg_unknown(env, dst_reg); 6736 return 0; 6737 } 6738 6739 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6740 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6741 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6742 __mark_reg_unknown(env, dst_reg); 6743 return 0; 6744 } 6745 6746 verbose(env, 6747 "R%d 32-bit pointer arithmetic prohibited\n", 6748 dst); 6749 return -EACCES; 6750 } 6751 6752 switch (ptr_reg->type) { 6753 case PTR_TO_MAP_VALUE_OR_NULL: 6754 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 6755 dst, reg_type_str[ptr_reg->type]); 6756 return -EACCES; 6757 case CONST_PTR_TO_MAP: 6758 /* smin_val represents the known value */ 6759 if (known && smin_val == 0 && opcode == BPF_ADD) 6760 break; 6761 fallthrough; 6762 case PTR_TO_PACKET_END: 6763 case PTR_TO_SOCKET: 6764 case PTR_TO_SOCKET_OR_NULL: 6765 case PTR_TO_SOCK_COMMON: 6766 case PTR_TO_SOCK_COMMON_OR_NULL: 6767 case PTR_TO_TCP_SOCK: 6768 case PTR_TO_TCP_SOCK_OR_NULL: 6769 case PTR_TO_XDP_SOCK: 6770 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 6771 dst, reg_type_str[ptr_reg->type]); 6772 return -EACCES; 6773 default: 6774 break; 6775 } 6776 6777 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6778 * The id may be overwritten later if we create a new variable offset. 6779 */ 6780 dst_reg->type = ptr_reg->type; 6781 dst_reg->id = ptr_reg->id; 6782 6783 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 6784 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 6785 return -EINVAL; 6786 6787 /* pointer types do not carry 32-bit bounds at the moment. */ 6788 __mark_reg32_unbounded(dst_reg); 6789 6790 if (sanitize_needed(opcode)) { 6791 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 6792 &info, false); 6793 if (ret < 0) 6794 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6795 } 6796 6797 switch (opcode) { 6798 case BPF_ADD: 6799 /* We can take a fixed offset as long as it doesn't overflow 6800 * the s32 'off' field 6801 */ 6802 if (known && (ptr_reg->off + smin_val == 6803 (s64)(s32)(ptr_reg->off + smin_val))) { 6804 /* pointer += K. Accumulate it into fixed offset */ 6805 dst_reg->smin_value = smin_ptr; 6806 dst_reg->smax_value = smax_ptr; 6807 dst_reg->umin_value = umin_ptr; 6808 dst_reg->umax_value = umax_ptr; 6809 dst_reg->var_off = ptr_reg->var_off; 6810 dst_reg->off = ptr_reg->off + smin_val; 6811 dst_reg->raw = ptr_reg->raw; 6812 break; 6813 } 6814 /* A new variable offset is created. Note that off_reg->off 6815 * == 0, since it's a scalar. 6816 * dst_reg gets the pointer type and since some positive 6817 * integer value was added to the pointer, give it a new 'id' 6818 * if it's a PTR_TO_PACKET. 6819 * this creates a new 'base' pointer, off_reg (variable) gets 6820 * added into the variable offset, and we copy the fixed offset 6821 * from ptr_reg. 6822 */ 6823 if (signed_add_overflows(smin_ptr, smin_val) || 6824 signed_add_overflows(smax_ptr, smax_val)) { 6825 dst_reg->smin_value = S64_MIN; 6826 dst_reg->smax_value = S64_MAX; 6827 } else { 6828 dst_reg->smin_value = smin_ptr + smin_val; 6829 dst_reg->smax_value = smax_ptr + smax_val; 6830 } 6831 if (umin_ptr + umin_val < umin_ptr || 6832 umax_ptr + umax_val < umax_ptr) { 6833 dst_reg->umin_value = 0; 6834 dst_reg->umax_value = U64_MAX; 6835 } else { 6836 dst_reg->umin_value = umin_ptr + umin_val; 6837 dst_reg->umax_value = umax_ptr + umax_val; 6838 } 6839 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6840 dst_reg->off = ptr_reg->off; 6841 dst_reg->raw = ptr_reg->raw; 6842 if (reg_is_pkt_pointer(ptr_reg)) { 6843 dst_reg->id = ++env->id_gen; 6844 /* something was added to pkt_ptr, set range to zero */ 6845 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6846 } 6847 break; 6848 case BPF_SUB: 6849 if (dst_reg == off_reg) { 6850 /* scalar -= pointer. Creates an unknown scalar */ 6851 verbose(env, "R%d tried to subtract pointer from scalar\n", 6852 dst); 6853 return -EACCES; 6854 } 6855 /* We don't allow subtraction from FP, because (according to 6856 * test_verifier.c test "invalid fp arithmetic", JITs might not 6857 * be able to deal with it. 6858 */ 6859 if (ptr_reg->type == PTR_TO_STACK) { 6860 verbose(env, "R%d subtraction from stack pointer prohibited\n", 6861 dst); 6862 return -EACCES; 6863 } 6864 if (known && (ptr_reg->off - smin_val == 6865 (s64)(s32)(ptr_reg->off - smin_val))) { 6866 /* pointer -= K. Subtract it from fixed offset */ 6867 dst_reg->smin_value = smin_ptr; 6868 dst_reg->smax_value = smax_ptr; 6869 dst_reg->umin_value = umin_ptr; 6870 dst_reg->umax_value = umax_ptr; 6871 dst_reg->var_off = ptr_reg->var_off; 6872 dst_reg->id = ptr_reg->id; 6873 dst_reg->off = ptr_reg->off - smin_val; 6874 dst_reg->raw = ptr_reg->raw; 6875 break; 6876 } 6877 /* A new variable offset is created. If the subtrahend is known 6878 * nonnegative, then any reg->range we had before is still good. 6879 */ 6880 if (signed_sub_overflows(smin_ptr, smax_val) || 6881 signed_sub_overflows(smax_ptr, smin_val)) { 6882 /* Overflow possible, we know nothing */ 6883 dst_reg->smin_value = S64_MIN; 6884 dst_reg->smax_value = S64_MAX; 6885 } else { 6886 dst_reg->smin_value = smin_ptr - smax_val; 6887 dst_reg->smax_value = smax_ptr - smin_val; 6888 } 6889 if (umin_ptr < umax_val) { 6890 /* Overflow possible, we know nothing */ 6891 dst_reg->umin_value = 0; 6892 dst_reg->umax_value = U64_MAX; 6893 } else { 6894 /* Cannot overflow (as long as bounds are consistent) */ 6895 dst_reg->umin_value = umin_ptr - umax_val; 6896 dst_reg->umax_value = umax_ptr - umin_val; 6897 } 6898 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6899 dst_reg->off = ptr_reg->off; 6900 dst_reg->raw = ptr_reg->raw; 6901 if (reg_is_pkt_pointer(ptr_reg)) { 6902 dst_reg->id = ++env->id_gen; 6903 /* something was added to pkt_ptr, set range to zero */ 6904 if (smin_val < 0) 6905 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6906 } 6907 break; 6908 case BPF_AND: 6909 case BPF_OR: 6910 case BPF_XOR: 6911 /* bitwise ops on pointers are troublesome, prohibit. */ 6912 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 6913 dst, bpf_alu_string[opcode >> 4]); 6914 return -EACCES; 6915 default: 6916 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6917 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 6918 dst, bpf_alu_string[opcode >> 4]); 6919 return -EACCES; 6920 } 6921 6922 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 6923 return -EINVAL; 6924 6925 __update_reg_bounds(dst_reg); 6926 __reg_deduce_bounds(dst_reg); 6927 __reg_bound_offset(dst_reg); 6928 6929 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 6930 return -EACCES; 6931 if (sanitize_needed(opcode)) { 6932 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 6933 &info, true); 6934 if (ret < 0) 6935 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6936 } 6937 6938 return 0; 6939 } 6940 6941 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 6942 struct bpf_reg_state *src_reg) 6943 { 6944 s32 smin_val = src_reg->s32_min_value; 6945 s32 smax_val = src_reg->s32_max_value; 6946 u32 umin_val = src_reg->u32_min_value; 6947 u32 umax_val = src_reg->u32_max_value; 6948 6949 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6950 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6951 dst_reg->s32_min_value = S32_MIN; 6952 dst_reg->s32_max_value = S32_MAX; 6953 } else { 6954 dst_reg->s32_min_value += smin_val; 6955 dst_reg->s32_max_value += smax_val; 6956 } 6957 if (dst_reg->u32_min_value + umin_val < umin_val || 6958 dst_reg->u32_max_value + umax_val < umax_val) { 6959 dst_reg->u32_min_value = 0; 6960 dst_reg->u32_max_value = U32_MAX; 6961 } else { 6962 dst_reg->u32_min_value += umin_val; 6963 dst_reg->u32_max_value += umax_val; 6964 } 6965 } 6966 6967 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 6968 struct bpf_reg_state *src_reg) 6969 { 6970 s64 smin_val = src_reg->smin_value; 6971 s64 smax_val = src_reg->smax_value; 6972 u64 umin_val = src_reg->umin_value; 6973 u64 umax_val = src_reg->umax_value; 6974 6975 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 6976 signed_add_overflows(dst_reg->smax_value, smax_val)) { 6977 dst_reg->smin_value = S64_MIN; 6978 dst_reg->smax_value = S64_MAX; 6979 } else { 6980 dst_reg->smin_value += smin_val; 6981 dst_reg->smax_value += smax_val; 6982 } 6983 if (dst_reg->umin_value + umin_val < umin_val || 6984 dst_reg->umax_value + umax_val < umax_val) { 6985 dst_reg->umin_value = 0; 6986 dst_reg->umax_value = U64_MAX; 6987 } else { 6988 dst_reg->umin_value += umin_val; 6989 dst_reg->umax_value += umax_val; 6990 } 6991 } 6992 6993 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 6994 struct bpf_reg_state *src_reg) 6995 { 6996 s32 smin_val = src_reg->s32_min_value; 6997 s32 smax_val = src_reg->s32_max_value; 6998 u32 umin_val = src_reg->u32_min_value; 6999 u32 umax_val = src_reg->u32_max_value; 7000 7001 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7002 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7003 /* Overflow possible, we know nothing */ 7004 dst_reg->s32_min_value = S32_MIN; 7005 dst_reg->s32_max_value = S32_MAX; 7006 } else { 7007 dst_reg->s32_min_value -= smax_val; 7008 dst_reg->s32_max_value -= smin_val; 7009 } 7010 if (dst_reg->u32_min_value < umax_val) { 7011 /* Overflow possible, we know nothing */ 7012 dst_reg->u32_min_value = 0; 7013 dst_reg->u32_max_value = U32_MAX; 7014 } else { 7015 /* Cannot overflow (as long as bounds are consistent) */ 7016 dst_reg->u32_min_value -= umax_val; 7017 dst_reg->u32_max_value -= umin_val; 7018 } 7019 } 7020 7021 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7022 struct bpf_reg_state *src_reg) 7023 { 7024 s64 smin_val = src_reg->smin_value; 7025 s64 smax_val = src_reg->smax_value; 7026 u64 umin_val = src_reg->umin_value; 7027 u64 umax_val = src_reg->umax_value; 7028 7029 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7030 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7031 /* Overflow possible, we know nothing */ 7032 dst_reg->smin_value = S64_MIN; 7033 dst_reg->smax_value = S64_MAX; 7034 } else { 7035 dst_reg->smin_value -= smax_val; 7036 dst_reg->smax_value -= smin_val; 7037 } 7038 if (dst_reg->umin_value < umax_val) { 7039 /* Overflow possible, we know nothing */ 7040 dst_reg->umin_value = 0; 7041 dst_reg->umax_value = U64_MAX; 7042 } else { 7043 /* Cannot overflow (as long as bounds are consistent) */ 7044 dst_reg->umin_value -= umax_val; 7045 dst_reg->umax_value -= umin_val; 7046 } 7047 } 7048 7049 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7050 struct bpf_reg_state *src_reg) 7051 { 7052 s32 smin_val = src_reg->s32_min_value; 7053 u32 umin_val = src_reg->u32_min_value; 7054 u32 umax_val = src_reg->u32_max_value; 7055 7056 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7057 /* Ain't nobody got time to multiply that sign */ 7058 __mark_reg32_unbounded(dst_reg); 7059 return; 7060 } 7061 /* Both values are positive, so we can work with unsigned and 7062 * copy the result to signed (unless it exceeds S32_MAX). 7063 */ 7064 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7065 /* Potential overflow, we know nothing */ 7066 __mark_reg32_unbounded(dst_reg); 7067 return; 7068 } 7069 dst_reg->u32_min_value *= umin_val; 7070 dst_reg->u32_max_value *= umax_val; 7071 if (dst_reg->u32_max_value > S32_MAX) { 7072 /* Overflow possible, we know nothing */ 7073 dst_reg->s32_min_value = S32_MIN; 7074 dst_reg->s32_max_value = S32_MAX; 7075 } else { 7076 dst_reg->s32_min_value = dst_reg->u32_min_value; 7077 dst_reg->s32_max_value = dst_reg->u32_max_value; 7078 } 7079 } 7080 7081 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7082 struct bpf_reg_state *src_reg) 7083 { 7084 s64 smin_val = src_reg->smin_value; 7085 u64 umin_val = src_reg->umin_value; 7086 u64 umax_val = src_reg->umax_value; 7087 7088 if (smin_val < 0 || dst_reg->smin_value < 0) { 7089 /* Ain't nobody got time to multiply that sign */ 7090 __mark_reg64_unbounded(dst_reg); 7091 return; 7092 } 7093 /* Both values are positive, so we can work with unsigned and 7094 * copy the result to signed (unless it exceeds S64_MAX). 7095 */ 7096 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7097 /* Potential overflow, we know nothing */ 7098 __mark_reg64_unbounded(dst_reg); 7099 return; 7100 } 7101 dst_reg->umin_value *= umin_val; 7102 dst_reg->umax_value *= umax_val; 7103 if (dst_reg->umax_value > S64_MAX) { 7104 /* Overflow possible, we know nothing */ 7105 dst_reg->smin_value = S64_MIN; 7106 dst_reg->smax_value = S64_MAX; 7107 } else { 7108 dst_reg->smin_value = dst_reg->umin_value; 7109 dst_reg->smax_value = dst_reg->umax_value; 7110 } 7111 } 7112 7113 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7114 struct bpf_reg_state *src_reg) 7115 { 7116 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7117 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7118 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7119 s32 smin_val = src_reg->s32_min_value; 7120 u32 umax_val = src_reg->u32_max_value; 7121 7122 if (src_known && dst_known) { 7123 __mark_reg32_known(dst_reg, var32_off.value); 7124 return; 7125 } 7126 7127 /* We get our minimum from the var_off, since that's inherently 7128 * bitwise. Our maximum is the minimum of the operands' maxima. 7129 */ 7130 dst_reg->u32_min_value = var32_off.value; 7131 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7132 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7133 /* Lose signed bounds when ANDing negative numbers, 7134 * ain't nobody got time for that. 7135 */ 7136 dst_reg->s32_min_value = S32_MIN; 7137 dst_reg->s32_max_value = S32_MAX; 7138 } else { 7139 /* ANDing two positives gives a positive, so safe to 7140 * cast result into s64. 7141 */ 7142 dst_reg->s32_min_value = dst_reg->u32_min_value; 7143 dst_reg->s32_max_value = dst_reg->u32_max_value; 7144 } 7145 } 7146 7147 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7148 struct bpf_reg_state *src_reg) 7149 { 7150 bool src_known = tnum_is_const(src_reg->var_off); 7151 bool dst_known = tnum_is_const(dst_reg->var_off); 7152 s64 smin_val = src_reg->smin_value; 7153 u64 umax_val = src_reg->umax_value; 7154 7155 if (src_known && dst_known) { 7156 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7157 return; 7158 } 7159 7160 /* We get our minimum from the var_off, since that's inherently 7161 * bitwise. Our maximum is the minimum of the operands' maxima. 7162 */ 7163 dst_reg->umin_value = dst_reg->var_off.value; 7164 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7165 if (dst_reg->smin_value < 0 || smin_val < 0) { 7166 /* Lose signed bounds when ANDing negative numbers, 7167 * ain't nobody got time for that. 7168 */ 7169 dst_reg->smin_value = S64_MIN; 7170 dst_reg->smax_value = S64_MAX; 7171 } else { 7172 /* ANDing two positives gives a positive, so safe to 7173 * cast result into s64. 7174 */ 7175 dst_reg->smin_value = dst_reg->umin_value; 7176 dst_reg->smax_value = dst_reg->umax_value; 7177 } 7178 /* We may learn something more from the var_off */ 7179 __update_reg_bounds(dst_reg); 7180 } 7181 7182 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7183 struct bpf_reg_state *src_reg) 7184 { 7185 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7186 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7187 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7188 s32 smin_val = src_reg->s32_min_value; 7189 u32 umin_val = src_reg->u32_min_value; 7190 7191 if (src_known && dst_known) { 7192 __mark_reg32_known(dst_reg, var32_off.value); 7193 return; 7194 } 7195 7196 /* We get our maximum from the var_off, and our minimum is the 7197 * maximum of the operands' minima 7198 */ 7199 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7200 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7201 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7202 /* Lose signed bounds when ORing negative numbers, 7203 * ain't nobody got time for that. 7204 */ 7205 dst_reg->s32_min_value = S32_MIN; 7206 dst_reg->s32_max_value = S32_MAX; 7207 } else { 7208 /* ORing two positives gives a positive, so safe to 7209 * cast result into s64. 7210 */ 7211 dst_reg->s32_min_value = dst_reg->u32_min_value; 7212 dst_reg->s32_max_value = dst_reg->u32_max_value; 7213 } 7214 } 7215 7216 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7217 struct bpf_reg_state *src_reg) 7218 { 7219 bool src_known = tnum_is_const(src_reg->var_off); 7220 bool dst_known = tnum_is_const(dst_reg->var_off); 7221 s64 smin_val = src_reg->smin_value; 7222 u64 umin_val = src_reg->umin_value; 7223 7224 if (src_known && dst_known) { 7225 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7226 return; 7227 } 7228 7229 /* We get our maximum from the var_off, and our minimum is the 7230 * maximum of the operands' minima 7231 */ 7232 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7233 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7234 if (dst_reg->smin_value < 0 || smin_val < 0) { 7235 /* Lose signed bounds when ORing negative numbers, 7236 * ain't nobody got time for that. 7237 */ 7238 dst_reg->smin_value = S64_MIN; 7239 dst_reg->smax_value = S64_MAX; 7240 } else { 7241 /* ORing two positives gives a positive, so safe to 7242 * cast result into s64. 7243 */ 7244 dst_reg->smin_value = dst_reg->umin_value; 7245 dst_reg->smax_value = dst_reg->umax_value; 7246 } 7247 /* We may learn something more from the var_off */ 7248 __update_reg_bounds(dst_reg); 7249 } 7250 7251 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7252 struct bpf_reg_state *src_reg) 7253 { 7254 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7255 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7256 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7257 s32 smin_val = src_reg->s32_min_value; 7258 7259 if (src_known && dst_known) { 7260 __mark_reg32_known(dst_reg, var32_off.value); 7261 return; 7262 } 7263 7264 /* We get both minimum and maximum from the var32_off. */ 7265 dst_reg->u32_min_value = var32_off.value; 7266 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7267 7268 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7269 /* XORing two positive sign numbers gives a positive, 7270 * so safe to cast u32 result into s32. 7271 */ 7272 dst_reg->s32_min_value = dst_reg->u32_min_value; 7273 dst_reg->s32_max_value = dst_reg->u32_max_value; 7274 } else { 7275 dst_reg->s32_min_value = S32_MIN; 7276 dst_reg->s32_max_value = S32_MAX; 7277 } 7278 } 7279 7280 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7281 struct bpf_reg_state *src_reg) 7282 { 7283 bool src_known = tnum_is_const(src_reg->var_off); 7284 bool dst_known = tnum_is_const(dst_reg->var_off); 7285 s64 smin_val = src_reg->smin_value; 7286 7287 if (src_known && dst_known) { 7288 /* dst_reg->var_off.value has been updated earlier */ 7289 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7290 return; 7291 } 7292 7293 /* We get both minimum and maximum from the var_off. */ 7294 dst_reg->umin_value = dst_reg->var_off.value; 7295 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7296 7297 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7298 /* XORing two positive sign numbers gives a positive, 7299 * so safe to cast u64 result into s64. 7300 */ 7301 dst_reg->smin_value = dst_reg->umin_value; 7302 dst_reg->smax_value = dst_reg->umax_value; 7303 } else { 7304 dst_reg->smin_value = S64_MIN; 7305 dst_reg->smax_value = S64_MAX; 7306 } 7307 7308 __update_reg_bounds(dst_reg); 7309 } 7310 7311 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7312 u64 umin_val, u64 umax_val) 7313 { 7314 /* We lose all sign bit information (except what we can pick 7315 * up from var_off) 7316 */ 7317 dst_reg->s32_min_value = S32_MIN; 7318 dst_reg->s32_max_value = S32_MAX; 7319 /* If we might shift our top bit out, then we know nothing */ 7320 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7321 dst_reg->u32_min_value = 0; 7322 dst_reg->u32_max_value = U32_MAX; 7323 } else { 7324 dst_reg->u32_min_value <<= umin_val; 7325 dst_reg->u32_max_value <<= umax_val; 7326 } 7327 } 7328 7329 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7330 struct bpf_reg_state *src_reg) 7331 { 7332 u32 umax_val = src_reg->u32_max_value; 7333 u32 umin_val = src_reg->u32_min_value; 7334 /* u32 alu operation will zext upper bits */ 7335 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7336 7337 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7338 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7339 /* Not required but being careful mark reg64 bounds as unknown so 7340 * that we are forced to pick them up from tnum and zext later and 7341 * if some path skips this step we are still safe. 7342 */ 7343 __mark_reg64_unbounded(dst_reg); 7344 __update_reg32_bounds(dst_reg); 7345 } 7346 7347 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7348 u64 umin_val, u64 umax_val) 7349 { 7350 /* Special case <<32 because it is a common compiler pattern to sign 7351 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7352 * positive we know this shift will also be positive so we can track 7353 * bounds correctly. Otherwise we lose all sign bit information except 7354 * what we can pick up from var_off. Perhaps we can generalize this 7355 * later to shifts of any length. 7356 */ 7357 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7358 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7359 else 7360 dst_reg->smax_value = S64_MAX; 7361 7362 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7363 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7364 else 7365 dst_reg->smin_value = S64_MIN; 7366 7367 /* If we might shift our top bit out, then we know nothing */ 7368 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7369 dst_reg->umin_value = 0; 7370 dst_reg->umax_value = U64_MAX; 7371 } else { 7372 dst_reg->umin_value <<= umin_val; 7373 dst_reg->umax_value <<= umax_val; 7374 } 7375 } 7376 7377 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7378 struct bpf_reg_state *src_reg) 7379 { 7380 u64 umax_val = src_reg->umax_value; 7381 u64 umin_val = src_reg->umin_value; 7382 7383 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7384 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7385 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7386 7387 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7388 /* We may learn something more from the var_off */ 7389 __update_reg_bounds(dst_reg); 7390 } 7391 7392 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7393 struct bpf_reg_state *src_reg) 7394 { 7395 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7396 u32 umax_val = src_reg->u32_max_value; 7397 u32 umin_val = src_reg->u32_min_value; 7398 7399 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7400 * be negative, then either: 7401 * 1) src_reg might be zero, so the sign bit of the result is 7402 * unknown, so we lose our signed bounds 7403 * 2) it's known negative, thus the unsigned bounds capture the 7404 * signed bounds 7405 * 3) the signed bounds cross zero, so they tell us nothing 7406 * about the result 7407 * If the value in dst_reg is known nonnegative, then again the 7408 * unsigned bounds capture the signed bounds. 7409 * Thus, in all cases it suffices to blow away our signed bounds 7410 * and rely on inferring new ones from the unsigned bounds and 7411 * var_off of the result. 7412 */ 7413 dst_reg->s32_min_value = S32_MIN; 7414 dst_reg->s32_max_value = S32_MAX; 7415 7416 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7417 dst_reg->u32_min_value >>= umax_val; 7418 dst_reg->u32_max_value >>= umin_val; 7419 7420 __mark_reg64_unbounded(dst_reg); 7421 __update_reg32_bounds(dst_reg); 7422 } 7423 7424 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7425 struct bpf_reg_state *src_reg) 7426 { 7427 u64 umax_val = src_reg->umax_value; 7428 u64 umin_val = src_reg->umin_value; 7429 7430 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7431 * be negative, then either: 7432 * 1) src_reg might be zero, so the sign bit of the result is 7433 * unknown, so we lose our signed bounds 7434 * 2) it's known negative, thus the unsigned bounds capture the 7435 * signed bounds 7436 * 3) the signed bounds cross zero, so they tell us nothing 7437 * about the result 7438 * If the value in dst_reg is known nonnegative, then again the 7439 * unsigned bounds capture the signed bounds. 7440 * Thus, in all cases it suffices to blow away our signed bounds 7441 * and rely on inferring new ones from the unsigned bounds and 7442 * var_off of the result. 7443 */ 7444 dst_reg->smin_value = S64_MIN; 7445 dst_reg->smax_value = S64_MAX; 7446 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7447 dst_reg->umin_value >>= umax_val; 7448 dst_reg->umax_value >>= umin_val; 7449 7450 /* Its not easy to operate on alu32 bounds here because it depends 7451 * on bits being shifted in. Take easy way out and mark unbounded 7452 * so we can recalculate later from tnum. 7453 */ 7454 __mark_reg32_unbounded(dst_reg); 7455 __update_reg_bounds(dst_reg); 7456 } 7457 7458 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7459 struct bpf_reg_state *src_reg) 7460 { 7461 u64 umin_val = src_reg->u32_min_value; 7462 7463 /* Upon reaching here, src_known is true and 7464 * umax_val is equal to umin_val. 7465 */ 7466 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7467 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7468 7469 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7470 7471 /* blow away the dst_reg umin_value/umax_value and rely on 7472 * dst_reg var_off to refine the result. 7473 */ 7474 dst_reg->u32_min_value = 0; 7475 dst_reg->u32_max_value = U32_MAX; 7476 7477 __mark_reg64_unbounded(dst_reg); 7478 __update_reg32_bounds(dst_reg); 7479 } 7480 7481 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7482 struct bpf_reg_state *src_reg) 7483 { 7484 u64 umin_val = src_reg->umin_value; 7485 7486 /* Upon reaching here, src_known is true and umax_val is equal 7487 * to umin_val. 7488 */ 7489 dst_reg->smin_value >>= umin_val; 7490 dst_reg->smax_value >>= umin_val; 7491 7492 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7493 7494 /* blow away the dst_reg umin_value/umax_value and rely on 7495 * dst_reg var_off to refine the result. 7496 */ 7497 dst_reg->umin_value = 0; 7498 dst_reg->umax_value = U64_MAX; 7499 7500 /* Its not easy to operate on alu32 bounds here because it depends 7501 * on bits being shifted in from upper 32-bits. Take easy way out 7502 * and mark unbounded so we can recalculate later from tnum. 7503 */ 7504 __mark_reg32_unbounded(dst_reg); 7505 __update_reg_bounds(dst_reg); 7506 } 7507 7508 /* WARNING: This function does calculations on 64-bit values, but the actual 7509 * execution may occur on 32-bit values. Therefore, things like bitshifts 7510 * need extra checks in the 32-bit case. 7511 */ 7512 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7513 struct bpf_insn *insn, 7514 struct bpf_reg_state *dst_reg, 7515 struct bpf_reg_state src_reg) 7516 { 7517 struct bpf_reg_state *regs = cur_regs(env); 7518 u8 opcode = BPF_OP(insn->code); 7519 bool src_known; 7520 s64 smin_val, smax_val; 7521 u64 umin_val, umax_val; 7522 s32 s32_min_val, s32_max_val; 7523 u32 u32_min_val, u32_max_val; 7524 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7525 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7526 int ret; 7527 7528 smin_val = src_reg.smin_value; 7529 smax_val = src_reg.smax_value; 7530 umin_val = src_reg.umin_value; 7531 umax_val = src_reg.umax_value; 7532 7533 s32_min_val = src_reg.s32_min_value; 7534 s32_max_val = src_reg.s32_max_value; 7535 u32_min_val = src_reg.u32_min_value; 7536 u32_max_val = src_reg.u32_max_value; 7537 7538 if (alu32) { 7539 src_known = tnum_subreg_is_const(src_reg.var_off); 7540 if ((src_known && 7541 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7542 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7543 /* Taint dst register if offset had invalid bounds 7544 * derived from e.g. dead branches. 7545 */ 7546 __mark_reg_unknown(env, dst_reg); 7547 return 0; 7548 } 7549 } else { 7550 src_known = tnum_is_const(src_reg.var_off); 7551 if ((src_known && 7552 (smin_val != smax_val || umin_val != umax_val)) || 7553 smin_val > smax_val || umin_val > umax_val) { 7554 /* Taint dst register if offset had invalid bounds 7555 * derived from e.g. dead branches. 7556 */ 7557 __mark_reg_unknown(env, dst_reg); 7558 return 0; 7559 } 7560 } 7561 7562 if (!src_known && 7563 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 7564 __mark_reg_unknown(env, dst_reg); 7565 return 0; 7566 } 7567 7568 if (sanitize_needed(opcode)) { 7569 ret = sanitize_val_alu(env, insn); 7570 if (ret < 0) 7571 return sanitize_err(env, insn, ret, NULL, NULL); 7572 } 7573 7574 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 7575 * There are two classes of instructions: The first class we track both 7576 * alu32 and alu64 sign/unsigned bounds independently this provides the 7577 * greatest amount of precision when alu operations are mixed with jmp32 7578 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7579 * and BPF_OR. This is possible because these ops have fairly easy to 7580 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7581 * See alu32 verifier tests for examples. The second class of 7582 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7583 * with regards to tracking sign/unsigned bounds because the bits may 7584 * cross subreg boundaries in the alu64 case. When this happens we mark 7585 * the reg unbounded in the subreg bound space and use the resulting 7586 * tnum to calculate an approximation of the sign/unsigned bounds. 7587 */ 7588 switch (opcode) { 7589 case BPF_ADD: 7590 scalar32_min_max_add(dst_reg, &src_reg); 7591 scalar_min_max_add(dst_reg, &src_reg); 7592 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7593 break; 7594 case BPF_SUB: 7595 scalar32_min_max_sub(dst_reg, &src_reg); 7596 scalar_min_max_sub(dst_reg, &src_reg); 7597 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7598 break; 7599 case BPF_MUL: 7600 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7601 scalar32_min_max_mul(dst_reg, &src_reg); 7602 scalar_min_max_mul(dst_reg, &src_reg); 7603 break; 7604 case BPF_AND: 7605 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7606 scalar32_min_max_and(dst_reg, &src_reg); 7607 scalar_min_max_and(dst_reg, &src_reg); 7608 break; 7609 case BPF_OR: 7610 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7611 scalar32_min_max_or(dst_reg, &src_reg); 7612 scalar_min_max_or(dst_reg, &src_reg); 7613 break; 7614 case BPF_XOR: 7615 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7616 scalar32_min_max_xor(dst_reg, &src_reg); 7617 scalar_min_max_xor(dst_reg, &src_reg); 7618 break; 7619 case BPF_LSH: 7620 if (umax_val >= insn_bitness) { 7621 /* Shifts greater than 31 or 63 are undefined. 7622 * This includes shifts by a negative number. 7623 */ 7624 mark_reg_unknown(env, regs, insn->dst_reg); 7625 break; 7626 } 7627 if (alu32) 7628 scalar32_min_max_lsh(dst_reg, &src_reg); 7629 else 7630 scalar_min_max_lsh(dst_reg, &src_reg); 7631 break; 7632 case BPF_RSH: 7633 if (umax_val >= insn_bitness) { 7634 /* Shifts greater than 31 or 63 are undefined. 7635 * This includes shifts by a negative number. 7636 */ 7637 mark_reg_unknown(env, regs, insn->dst_reg); 7638 break; 7639 } 7640 if (alu32) 7641 scalar32_min_max_rsh(dst_reg, &src_reg); 7642 else 7643 scalar_min_max_rsh(dst_reg, &src_reg); 7644 break; 7645 case BPF_ARSH: 7646 if (umax_val >= insn_bitness) { 7647 /* Shifts greater than 31 or 63 are undefined. 7648 * This includes shifts by a negative number. 7649 */ 7650 mark_reg_unknown(env, regs, insn->dst_reg); 7651 break; 7652 } 7653 if (alu32) 7654 scalar32_min_max_arsh(dst_reg, &src_reg); 7655 else 7656 scalar_min_max_arsh(dst_reg, &src_reg); 7657 break; 7658 default: 7659 mark_reg_unknown(env, regs, insn->dst_reg); 7660 break; 7661 } 7662 7663 /* ALU32 ops are zero extended into 64bit register */ 7664 if (alu32) 7665 zext_32_to_64(dst_reg); 7666 7667 __update_reg_bounds(dst_reg); 7668 __reg_deduce_bounds(dst_reg); 7669 __reg_bound_offset(dst_reg); 7670 return 0; 7671 } 7672 7673 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7674 * and var_off. 7675 */ 7676 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7677 struct bpf_insn *insn) 7678 { 7679 struct bpf_verifier_state *vstate = env->cur_state; 7680 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7681 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7682 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7683 u8 opcode = BPF_OP(insn->code); 7684 int err; 7685 7686 dst_reg = ®s[insn->dst_reg]; 7687 src_reg = NULL; 7688 if (dst_reg->type != SCALAR_VALUE) 7689 ptr_reg = dst_reg; 7690 else 7691 /* Make sure ID is cleared otherwise dst_reg min/max could be 7692 * incorrectly propagated into other registers by find_equal_scalars() 7693 */ 7694 dst_reg->id = 0; 7695 if (BPF_SRC(insn->code) == BPF_X) { 7696 src_reg = ®s[insn->src_reg]; 7697 if (src_reg->type != SCALAR_VALUE) { 7698 if (dst_reg->type != SCALAR_VALUE) { 7699 /* Combining two pointers by any ALU op yields 7700 * an arbitrary scalar. Disallow all math except 7701 * pointer subtraction 7702 */ 7703 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7704 mark_reg_unknown(env, regs, insn->dst_reg); 7705 return 0; 7706 } 7707 verbose(env, "R%d pointer %s pointer prohibited\n", 7708 insn->dst_reg, 7709 bpf_alu_string[opcode >> 4]); 7710 return -EACCES; 7711 } else { 7712 /* scalar += pointer 7713 * This is legal, but we have to reverse our 7714 * src/dest handling in computing the range 7715 */ 7716 err = mark_chain_precision(env, insn->dst_reg); 7717 if (err) 7718 return err; 7719 return adjust_ptr_min_max_vals(env, insn, 7720 src_reg, dst_reg); 7721 } 7722 } else if (ptr_reg) { 7723 /* pointer += scalar */ 7724 err = mark_chain_precision(env, insn->src_reg); 7725 if (err) 7726 return err; 7727 return adjust_ptr_min_max_vals(env, insn, 7728 dst_reg, src_reg); 7729 } 7730 } else { 7731 /* Pretend the src is a reg with a known value, since we only 7732 * need to be able to read from this state. 7733 */ 7734 off_reg.type = SCALAR_VALUE; 7735 __mark_reg_known(&off_reg, insn->imm); 7736 src_reg = &off_reg; 7737 if (ptr_reg) /* pointer += K */ 7738 return adjust_ptr_min_max_vals(env, insn, 7739 ptr_reg, src_reg); 7740 } 7741 7742 /* Got here implies adding two SCALAR_VALUEs */ 7743 if (WARN_ON_ONCE(ptr_reg)) { 7744 print_verifier_state(env, state); 7745 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 7746 return -EINVAL; 7747 } 7748 if (WARN_ON(!src_reg)) { 7749 print_verifier_state(env, state); 7750 verbose(env, "verifier internal error: no src_reg\n"); 7751 return -EINVAL; 7752 } 7753 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 7754 } 7755 7756 /* check validity of 32-bit and 64-bit arithmetic operations */ 7757 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 7758 { 7759 struct bpf_reg_state *regs = cur_regs(env); 7760 u8 opcode = BPF_OP(insn->code); 7761 int err; 7762 7763 if (opcode == BPF_END || opcode == BPF_NEG) { 7764 if (opcode == BPF_NEG) { 7765 if (BPF_SRC(insn->code) != 0 || 7766 insn->src_reg != BPF_REG_0 || 7767 insn->off != 0 || insn->imm != 0) { 7768 verbose(env, "BPF_NEG uses reserved fields\n"); 7769 return -EINVAL; 7770 } 7771 } else { 7772 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 7773 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 7774 BPF_CLASS(insn->code) == BPF_ALU64) { 7775 verbose(env, "BPF_END uses reserved fields\n"); 7776 return -EINVAL; 7777 } 7778 } 7779 7780 /* check src operand */ 7781 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7782 if (err) 7783 return err; 7784 7785 if (is_pointer_value(env, insn->dst_reg)) { 7786 verbose(env, "R%d pointer arithmetic prohibited\n", 7787 insn->dst_reg); 7788 return -EACCES; 7789 } 7790 7791 /* check dest operand */ 7792 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7793 if (err) 7794 return err; 7795 7796 } else if (opcode == BPF_MOV) { 7797 7798 if (BPF_SRC(insn->code) == BPF_X) { 7799 if (insn->imm != 0 || insn->off != 0) { 7800 verbose(env, "BPF_MOV uses reserved fields\n"); 7801 return -EINVAL; 7802 } 7803 7804 /* check src operand */ 7805 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7806 if (err) 7807 return err; 7808 } else { 7809 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7810 verbose(env, "BPF_MOV uses reserved fields\n"); 7811 return -EINVAL; 7812 } 7813 } 7814 7815 /* check dest operand, mark as required later */ 7816 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7817 if (err) 7818 return err; 7819 7820 if (BPF_SRC(insn->code) == BPF_X) { 7821 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7822 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7823 7824 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7825 /* case: R1 = R2 7826 * copy register state to dest reg 7827 */ 7828 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 7829 /* Assign src and dst registers the same ID 7830 * that will be used by find_equal_scalars() 7831 * to propagate min/max range. 7832 */ 7833 src_reg->id = ++env->id_gen; 7834 *dst_reg = *src_reg; 7835 dst_reg->live |= REG_LIVE_WRITTEN; 7836 dst_reg->subreg_def = DEF_NOT_SUBREG; 7837 } else { 7838 /* R1 = (u32) R2 */ 7839 if (is_pointer_value(env, insn->src_reg)) { 7840 verbose(env, 7841 "R%d partial copy of pointer\n", 7842 insn->src_reg); 7843 return -EACCES; 7844 } else if (src_reg->type == SCALAR_VALUE) { 7845 *dst_reg = *src_reg; 7846 /* Make sure ID is cleared otherwise 7847 * dst_reg min/max could be incorrectly 7848 * propagated into src_reg by find_equal_scalars() 7849 */ 7850 dst_reg->id = 0; 7851 dst_reg->live |= REG_LIVE_WRITTEN; 7852 dst_reg->subreg_def = env->insn_idx + 1; 7853 } else { 7854 mark_reg_unknown(env, regs, 7855 insn->dst_reg); 7856 } 7857 zext_32_to_64(dst_reg); 7858 } 7859 } else { 7860 /* case: R = imm 7861 * remember the value we stored into this reg 7862 */ 7863 /* clear any state __mark_reg_known doesn't set */ 7864 mark_reg_unknown(env, regs, insn->dst_reg); 7865 regs[insn->dst_reg].type = SCALAR_VALUE; 7866 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7867 __mark_reg_known(regs + insn->dst_reg, 7868 insn->imm); 7869 } else { 7870 __mark_reg_known(regs + insn->dst_reg, 7871 (u32)insn->imm); 7872 } 7873 } 7874 7875 } else if (opcode > BPF_END) { 7876 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7877 return -EINVAL; 7878 7879 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7880 7881 if (BPF_SRC(insn->code) == BPF_X) { 7882 if (insn->imm != 0 || insn->off != 0) { 7883 verbose(env, "BPF_ALU uses reserved fields\n"); 7884 return -EINVAL; 7885 } 7886 /* check src1 operand */ 7887 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7888 if (err) 7889 return err; 7890 } else { 7891 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7892 verbose(env, "BPF_ALU uses reserved fields\n"); 7893 return -EINVAL; 7894 } 7895 } 7896 7897 /* check src2 operand */ 7898 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7899 if (err) 7900 return err; 7901 7902 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 7903 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7904 verbose(env, "div by zero\n"); 7905 return -EINVAL; 7906 } 7907 7908 if ((opcode == BPF_LSH || opcode == BPF_RSH || 7909 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7910 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 7911 7912 if (insn->imm < 0 || insn->imm >= size) { 7913 verbose(env, "invalid shift %d\n", insn->imm); 7914 return -EINVAL; 7915 } 7916 } 7917 7918 /* check dest operand */ 7919 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7920 if (err) 7921 return err; 7922 7923 return adjust_reg_min_max_vals(env, insn); 7924 } 7925 7926 return 0; 7927 } 7928 7929 static void __find_good_pkt_pointers(struct bpf_func_state *state, 7930 struct bpf_reg_state *dst_reg, 7931 enum bpf_reg_type type, int new_range) 7932 { 7933 struct bpf_reg_state *reg; 7934 int i; 7935 7936 for (i = 0; i < MAX_BPF_REG; i++) { 7937 reg = &state->regs[i]; 7938 if (reg->type == type && reg->id == dst_reg->id) 7939 /* keep the maximum range already checked */ 7940 reg->range = max(reg->range, new_range); 7941 } 7942 7943 bpf_for_each_spilled_reg(i, state, reg) { 7944 if (!reg) 7945 continue; 7946 if (reg->type == type && reg->id == dst_reg->id) 7947 reg->range = max(reg->range, new_range); 7948 } 7949 } 7950 7951 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 7952 struct bpf_reg_state *dst_reg, 7953 enum bpf_reg_type type, 7954 bool range_right_open) 7955 { 7956 int new_range, i; 7957 7958 if (dst_reg->off < 0 || 7959 (dst_reg->off == 0 && range_right_open)) 7960 /* This doesn't give us any range */ 7961 return; 7962 7963 if (dst_reg->umax_value > MAX_PACKET_OFF || 7964 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 7965 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7966 * than pkt_end, but that's because it's also less than pkt. 7967 */ 7968 return; 7969 7970 new_range = dst_reg->off; 7971 if (range_right_open) 7972 new_range--; 7973 7974 /* Examples for register markings: 7975 * 7976 * pkt_data in dst register: 7977 * 7978 * r2 = r3; 7979 * r2 += 8; 7980 * if (r2 > pkt_end) goto <handle exception> 7981 * <access okay> 7982 * 7983 * r2 = r3; 7984 * r2 += 8; 7985 * if (r2 < pkt_end) goto <access okay> 7986 * <handle exception> 7987 * 7988 * Where: 7989 * r2 == dst_reg, pkt_end == src_reg 7990 * r2=pkt(id=n,off=8,r=0) 7991 * r3=pkt(id=n,off=0,r=0) 7992 * 7993 * pkt_data in src register: 7994 * 7995 * r2 = r3; 7996 * r2 += 8; 7997 * if (pkt_end >= r2) goto <access okay> 7998 * <handle exception> 7999 * 8000 * r2 = r3; 8001 * r2 += 8; 8002 * if (pkt_end <= r2) goto <handle exception> 8003 * <access okay> 8004 * 8005 * Where: 8006 * pkt_end == dst_reg, r2 == src_reg 8007 * r2=pkt(id=n,off=8,r=0) 8008 * r3=pkt(id=n,off=0,r=0) 8009 * 8010 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8011 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8012 * and [r3, r3 + 8-1) respectively is safe to access depending on 8013 * the check. 8014 */ 8015 8016 /* If our ids match, then we must have the same max_value. And we 8017 * don't care about the other reg's fixed offset, since if it's too big 8018 * the range won't allow anything. 8019 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8020 */ 8021 for (i = 0; i <= vstate->curframe; i++) 8022 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8023 new_range); 8024 } 8025 8026 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8027 { 8028 struct tnum subreg = tnum_subreg(reg->var_off); 8029 s32 sval = (s32)val; 8030 8031 switch (opcode) { 8032 case BPF_JEQ: 8033 if (tnum_is_const(subreg)) 8034 return !!tnum_equals_const(subreg, val); 8035 break; 8036 case BPF_JNE: 8037 if (tnum_is_const(subreg)) 8038 return !tnum_equals_const(subreg, val); 8039 break; 8040 case BPF_JSET: 8041 if ((~subreg.mask & subreg.value) & val) 8042 return 1; 8043 if (!((subreg.mask | subreg.value) & val)) 8044 return 0; 8045 break; 8046 case BPF_JGT: 8047 if (reg->u32_min_value > val) 8048 return 1; 8049 else if (reg->u32_max_value <= val) 8050 return 0; 8051 break; 8052 case BPF_JSGT: 8053 if (reg->s32_min_value > sval) 8054 return 1; 8055 else if (reg->s32_max_value <= sval) 8056 return 0; 8057 break; 8058 case BPF_JLT: 8059 if (reg->u32_max_value < val) 8060 return 1; 8061 else if (reg->u32_min_value >= val) 8062 return 0; 8063 break; 8064 case BPF_JSLT: 8065 if (reg->s32_max_value < sval) 8066 return 1; 8067 else if (reg->s32_min_value >= sval) 8068 return 0; 8069 break; 8070 case BPF_JGE: 8071 if (reg->u32_min_value >= val) 8072 return 1; 8073 else if (reg->u32_max_value < val) 8074 return 0; 8075 break; 8076 case BPF_JSGE: 8077 if (reg->s32_min_value >= sval) 8078 return 1; 8079 else if (reg->s32_max_value < sval) 8080 return 0; 8081 break; 8082 case BPF_JLE: 8083 if (reg->u32_max_value <= val) 8084 return 1; 8085 else if (reg->u32_min_value > val) 8086 return 0; 8087 break; 8088 case BPF_JSLE: 8089 if (reg->s32_max_value <= sval) 8090 return 1; 8091 else if (reg->s32_min_value > sval) 8092 return 0; 8093 break; 8094 } 8095 8096 return -1; 8097 } 8098 8099 8100 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8101 { 8102 s64 sval = (s64)val; 8103 8104 switch (opcode) { 8105 case BPF_JEQ: 8106 if (tnum_is_const(reg->var_off)) 8107 return !!tnum_equals_const(reg->var_off, val); 8108 break; 8109 case BPF_JNE: 8110 if (tnum_is_const(reg->var_off)) 8111 return !tnum_equals_const(reg->var_off, val); 8112 break; 8113 case BPF_JSET: 8114 if ((~reg->var_off.mask & reg->var_off.value) & val) 8115 return 1; 8116 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8117 return 0; 8118 break; 8119 case BPF_JGT: 8120 if (reg->umin_value > val) 8121 return 1; 8122 else if (reg->umax_value <= val) 8123 return 0; 8124 break; 8125 case BPF_JSGT: 8126 if (reg->smin_value > sval) 8127 return 1; 8128 else if (reg->smax_value <= sval) 8129 return 0; 8130 break; 8131 case BPF_JLT: 8132 if (reg->umax_value < val) 8133 return 1; 8134 else if (reg->umin_value >= val) 8135 return 0; 8136 break; 8137 case BPF_JSLT: 8138 if (reg->smax_value < sval) 8139 return 1; 8140 else if (reg->smin_value >= sval) 8141 return 0; 8142 break; 8143 case BPF_JGE: 8144 if (reg->umin_value >= val) 8145 return 1; 8146 else if (reg->umax_value < val) 8147 return 0; 8148 break; 8149 case BPF_JSGE: 8150 if (reg->smin_value >= sval) 8151 return 1; 8152 else if (reg->smax_value < sval) 8153 return 0; 8154 break; 8155 case BPF_JLE: 8156 if (reg->umax_value <= val) 8157 return 1; 8158 else if (reg->umin_value > val) 8159 return 0; 8160 break; 8161 case BPF_JSLE: 8162 if (reg->smax_value <= sval) 8163 return 1; 8164 else if (reg->smin_value > sval) 8165 return 0; 8166 break; 8167 } 8168 8169 return -1; 8170 } 8171 8172 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8173 * and return: 8174 * 1 - branch will be taken and "goto target" will be executed 8175 * 0 - branch will not be taken and fall-through to next insn 8176 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8177 * range [0,10] 8178 */ 8179 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8180 bool is_jmp32) 8181 { 8182 if (__is_pointer_value(false, reg)) { 8183 if (!reg_type_not_null(reg->type)) 8184 return -1; 8185 8186 /* If pointer is valid tests against zero will fail so we can 8187 * use this to direct branch taken. 8188 */ 8189 if (val != 0) 8190 return -1; 8191 8192 switch (opcode) { 8193 case BPF_JEQ: 8194 return 0; 8195 case BPF_JNE: 8196 return 1; 8197 default: 8198 return -1; 8199 } 8200 } 8201 8202 if (is_jmp32) 8203 return is_branch32_taken(reg, val, opcode); 8204 return is_branch64_taken(reg, val, opcode); 8205 } 8206 8207 static int flip_opcode(u32 opcode) 8208 { 8209 /* How can we transform "a <op> b" into "b <op> a"? */ 8210 static const u8 opcode_flip[16] = { 8211 /* these stay the same */ 8212 [BPF_JEQ >> 4] = BPF_JEQ, 8213 [BPF_JNE >> 4] = BPF_JNE, 8214 [BPF_JSET >> 4] = BPF_JSET, 8215 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8216 [BPF_JGE >> 4] = BPF_JLE, 8217 [BPF_JGT >> 4] = BPF_JLT, 8218 [BPF_JLE >> 4] = BPF_JGE, 8219 [BPF_JLT >> 4] = BPF_JGT, 8220 [BPF_JSGE >> 4] = BPF_JSLE, 8221 [BPF_JSGT >> 4] = BPF_JSLT, 8222 [BPF_JSLE >> 4] = BPF_JSGE, 8223 [BPF_JSLT >> 4] = BPF_JSGT 8224 }; 8225 return opcode_flip[opcode >> 4]; 8226 } 8227 8228 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8229 struct bpf_reg_state *src_reg, 8230 u8 opcode) 8231 { 8232 struct bpf_reg_state *pkt; 8233 8234 if (src_reg->type == PTR_TO_PACKET_END) { 8235 pkt = dst_reg; 8236 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8237 pkt = src_reg; 8238 opcode = flip_opcode(opcode); 8239 } else { 8240 return -1; 8241 } 8242 8243 if (pkt->range >= 0) 8244 return -1; 8245 8246 switch (opcode) { 8247 case BPF_JLE: 8248 /* pkt <= pkt_end */ 8249 fallthrough; 8250 case BPF_JGT: 8251 /* pkt > pkt_end */ 8252 if (pkt->range == BEYOND_PKT_END) 8253 /* pkt has at last one extra byte beyond pkt_end */ 8254 return opcode == BPF_JGT; 8255 break; 8256 case BPF_JLT: 8257 /* pkt < pkt_end */ 8258 fallthrough; 8259 case BPF_JGE: 8260 /* pkt >= pkt_end */ 8261 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8262 return opcode == BPF_JGE; 8263 break; 8264 } 8265 return -1; 8266 } 8267 8268 /* Adjusts the register min/max values in the case that the dst_reg is the 8269 * variable register that we are working on, and src_reg is a constant or we're 8270 * simply doing a BPF_K check. 8271 * In JEQ/JNE cases we also adjust the var_off values. 8272 */ 8273 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8274 struct bpf_reg_state *false_reg, 8275 u64 val, u32 val32, 8276 u8 opcode, bool is_jmp32) 8277 { 8278 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8279 struct tnum false_64off = false_reg->var_off; 8280 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8281 struct tnum true_64off = true_reg->var_off; 8282 s64 sval = (s64)val; 8283 s32 sval32 = (s32)val32; 8284 8285 /* If the dst_reg is a pointer, we can't learn anything about its 8286 * variable offset from the compare (unless src_reg were a pointer into 8287 * the same object, but we don't bother with that. 8288 * Since false_reg and true_reg have the same type by construction, we 8289 * only need to check one of them for pointerness. 8290 */ 8291 if (__is_pointer_value(false, false_reg)) 8292 return; 8293 8294 switch (opcode) { 8295 case BPF_JEQ: 8296 case BPF_JNE: 8297 { 8298 struct bpf_reg_state *reg = 8299 opcode == BPF_JEQ ? true_reg : false_reg; 8300 8301 /* JEQ/JNE comparison doesn't change the register equivalence. 8302 * r1 = r2; 8303 * if (r1 == 42) goto label; 8304 * ... 8305 * label: // here both r1 and r2 are known to be 42. 8306 * 8307 * Hence when marking register as known preserve it's ID. 8308 */ 8309 if (is_jmp32) 8310 __mark_reg32_known(reg, val32); 8311 else 8312 ___mark_reg_known(reg, val); 8313 break; 8314 } 8315 case BPF_JSET: 8316 if (is_jmp32) { 8317 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8318 if (is_power_of_2(val32)) 8319 true_32off = tnum_or(true_32off, 8320 tnum_const(val32)); 8321 } else { 8322 false_64off = tnum_and(false_64off, tnum_const(~val)); 8323 if (is_power_of_2(val)) 8324 true_64off = tnum_or(true_64off, 8325 tnum_const(val)); 8326 } 8327 break; 8328 case BPF_JGE: 8329 case BPF_JGT: 8330 { 8331 if (is_jmp32) { 8332 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8333 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8334 8335 false_reg->u32_max_value = min(false_reg->u32_max_value, 8336 false_umax); 8337 true_reg->u32_min_value = max(true_reg->u32_min_value, 8338 true_umin); 8339 } else { 8340 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8341 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8342 8343 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8344 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8345 } 8346 break; 8347 } 8348 case BPF_JSGE: 8349 case BPF_JSGT: 8350 { 8351 if (is_jmp32) { 8352 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8353 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8354 8355 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8356 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8357 } else { 8358 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8359 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8360 8361 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8362 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8363 } 8364 break; 8365 } 8366 case BPF_JLE: 8367 case BPF_JLT: 8368 { 8369 if (is_jmp32) { 8370 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8371 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8372 8373 false_reg->u32_min_value = max(false_reg->u32_min_value, 8374 false_umin); 8375 true_reg->u32_max_value = min(true_reg->u32_max_value, 8376 true_umax); 8377 } else { 8378 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8379 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8380 8381 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8382 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8383 } 8384 break; 8385 } 8386 case BPF_JSLE: 8387 case BPF_JSLT: 8388 { 8389 if (is_jmp32) { 8390 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8391 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8392 8393 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8394 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8395 } else { 8396 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8397 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8398 8399 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8400 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8401 } 8402 break; 8403 } 8404 default: 8405 return; 8406 } 8407 8408 if (is_jmp32) { 8409 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8410 tnum_subreg(false_32off)); 8411 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8412 tnum_subreg(true_32off)); 8413 __reg_combine_32_into_64(false_reg); 8414 __reg_combine_32_into_64(true_reg); 8415 } else { 8416 false_reg->var_off = false_64off; 8417 true_reg->var_off = true_64off; 8418 __reg_combine_64_into_32(false_reg); 8419 __reg_combine_64_into_32(true_reg); 8420 } 8421 } 8422 8423 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8424 * the variable reg. 8425 */ 8426 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8427 struct bpf_reg_state *false_reg, 8428 u64 val, u32 val32, 8429 u8 opcode, bool is_jmp32) 8430 { 8431 opcode = flip_opcode(opcode); 8432 /* This uses zero as "not present in table"; luckily the zero opcode, 8433 * BPF_JA, can't get here. 8434 */ 8435 if (opcode) 8436 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8437 } 8438 8439 /* Regs are known to be equal, so intersect their min/max/var_off */ 8440 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8441 struct bpf_reg_state *dst_reg) 8442 { 8443 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8444 dst_reg->umin_value); 8445 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8446 dst_reg->umax_value); 8447 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8448 dst_reg->smin_value); 8449 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8450 dst_reg->smax_value); 8451 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8452 dst_reg->var_off); 8453 /* We might have learned new bounds from the var_off. */ 8454 __update_reg_bounds(src_reg); 8455 __update_reg_bounds(dst_reg); 8456 /* We might have learned something about the sign bit. */ 8457 __reg_deduce_bounds(src_reg); 8458 __reg_deduce_bounds(dst_reg); 8459 /* We might have learned some bits from the bounds. */ 8460 __reg_bound_offset(src_reg); 8461 __reg_bound_offset(dst_reg); 8462 /* Intersecting with the old var_off might have improved our bounds 8463 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8464 * then new var_off is (0; 0x7f...fc) which improves our umax. 8465 */ 8466 __update_reg_bounds(src_reg); 8467 __update_reg_bounds(dst_reg); 8468 } 8469 8470 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8471 struct bpf_reg_state *true_dst, 8472 struct bpf_reg_state *false_src, 8473 struct bpf_reg_state *false_dst, 8474 u8 opcode) 8475 { 8476 switch (opcode) { 8477 case BPF_JEQ: 8478 __reg_combine_min_max(true_src, true_dst); 8479 break; 8480 case BPF_JNE: 8481 __reg_combine_min_max(false_src, false_dst); 8482 break; 8483 } 8484 } 8485 8486 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8487 struct bpf_reg_state *reg, u32 id, 8488 bool is_null) 8489 { 8490 if (reg_type_may_be_null(reg->type) && reg->id == id && 8491 !WARN_ON_ONCE(!reg->id)) { 8492 /* Old offset (both fixed and variable parts) should 8493 * have been known-zero, because we don't allow pointer 8494 * arithmetic on pointers that might be NULL. 8495 */ 8496 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8497 !tnum_equals_const(reg->var_off, 0) || 8498 reg->off)) { 8499 __mark_reg_known_zero(reg); 8500 reg->off = 0; 8501 } 8502 if (is_null) { 8503 reg->type = SCALAR_VALUE; 8504 /* We don't need id and ref_obj_id from this point 8505 * onwards anymore, thus we should better reset it, 8506 * so that state pruning has chances to take effect. 8507 */ 8508 reg->id = 0; 8509 reg->ref_obj_id = 0; 8510 8511 return; 8512 } 8513 8514 mark_ptr_not_null_reg(reg); 8515 8516 if (!reg_may_point_to_spin_lock(reg)) { 8517 /* For not-NULL ptr, reg->ref_obj_id will be reset 8518 * in release_reg_references(). 8519 * 8520 * reg->id is still used by spin_lock ptr. Other 8521 * than spin_lock ptr type, reg->id can be reset. 8522 */ 8523 reg->id = 0; 8524 } 8525 } 8526 } 8527 8528 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8529 bool is_null) 8530 { 8531 struct bpf_reg_state *reg; 8532 int i; 8533 8534 for (i = 0; i < MAX_BPF_REG; i++) 8535 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8536 8537 bpf_for_each_spilled_reg(i, state, reg) { 8538 if (!reg) 8539 continue; 8540 mark_ptr_or_null_reg(state, reg, id, is_null); 8541 } 8542 } 8543 8544 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8545 * be folded together at some point. 8546 */ 8547 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8548 bool is_null) 8549 { 8550 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8551 struct bpf_reg_state *regs = state->regs; 8552 u32 ref_obj_id = regs[regno].ref_obj_id; 8553 u32 id = regs[regno].id; 8554 int i; 8555 8556 if (ref_obj_id && ref_obj_id == id && is_null) 8557 /* regs[regno] is in the " == NULL" branch. 8558 * No one could have freed the reference state before 8559 * doing the NULL check. 8560 */ 8561 WARN_ON_ONCE(release_reference_state(state, id)); 8562 8563 for (i = 0; i <= vstate->curframe; i++) 8564 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 8565 } 8566 8567 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 8568 struct bpf_reg_state *dst_reg, 8569 struct bpf_reg_state *src_reg, 8570 struct bpf_verifier_state *this_branch, 8571 struct bpf_verifier_state *other_branch) 8572 { 8573 if (BPF_SRC(insn->code) != BPF_X) 8574 return false; 8575 8576 /* Pointers are always 64-bit. */ 8577 if (BPF_CLASS(insn->code) == BPF_JMP32) 8578 return false; 8579 8580 switch (BPF_OP(insn->code)) { 8581 case BPF_JGT: 8582 if ((dst_reg->type == PTR_TO_PACKET && 8583 src_reg->type == PTR_TO_PACKET_END) || 8584 (dst_reg->type == PTR_TO_PACKET_META && 8585 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8586 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8587 find_good_pkt_pointers(this_branch, dst_reg, 8588 dst_reg->type, false); 8589 mark_pkt_end(other_branch, insn->dst_reg, true); 8590 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8591 src_reg->type == PTR_TO_PACKET) || 8592 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8593 src_reg->type == PTR_TO_PACKET_META)) { 8594 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8595 find_good_pkt_pointers(other_branch, src_reg, 8596 src_reg->type, true); 8597 mark_pkt_end(this_branch, insn->src_reg, false); 8598 } else { 8599 return false; 8600 } 8601 break; 8602 case BPF_JLT: 8603 if ((dst_reg->type == PTR_TO_PACKET && 8604 src_reg->type == PTR_TO_PACKET_END) || 8605 (dst_reg->type == PTR_TO_PACKET_META && 8606 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8607 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8608 find_good_pkt_pointers(other_branch, dst_reg, 8609 dst_reg->type, true); 8610 mark_pkt_end(this_branch, insn->dst_reg, false); 8611 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8612 src_reg->type == PTR_TO_PACKET) || 8613 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8614 src_reg->type == PTR_TO_PACKET_META)) { 8615 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8616 find_good_pkt_pointers(this_branch, src_reg, 8617 src_reg->type, false); 8618 mark_pkt_end(other_branch, insn->src_reg, true); 8619 } else { 8620 return false; 8621 } 8622 break; 8623 case BPF_JGE: 8624 if ((dst_reg->type == PTR_TO_PACKET && 8625 src_reg->type == PTR_TO_PACKET_END) || 8626 (dst_reg->type == PTR_TO_PACKET_META && 8627 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8628 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8629 find_good_pkt_pointers(this_branch, dst_reg, 8630 dst_reg->type, true); 8631 mark_pkt_end(other_branch, insn->dst_reg, false); 8632 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8633 src_reg->type == PTR_TO_PACKET) || 8634 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8635 src_reg->type == PTR_TO_PACKET_META)) { 8636 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8637 find_good_pkt_pointers(other_branch, src_reg, 8638 src_reg->type, false); 8639 mark_pkt_end(this_branch, insn->src_reg, true); 8640 } else { 8641 return false; 8642 } 8643 break; 8644 case BPF_JLE: 8645 if ((dst_reg->type == PTR_TO_PACKET && 8646 src_reg->type == PTR_TO_PACKET_END) || 8647 (dst_reg->type == PTR_TO_PACKET_META && 8648 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8649 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8650 find_good_pkt_pointers(other_branch, dst_reg, 8651 dst_reg->type, false); 8652 mark_pkt_end(this_branch, insn->dst_reg, true); 8653 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8654 src_reg->type == PTR_TO_PACKET) || 8655 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8656 src_reg->type == PTR_TO_PACKET_META)) { 8657 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8658 find_good_pkt_pointers(this_branch, src_reg, 8659 src_reg->type, true); 8660 mark_pkt_end(other_branch, insn->src_reg, false); 8661 } else { 8662 return false; 8663 } 8664 break; 8665 default: 8666 return false; 8667 } 8668 8669 return true; 8670 } 8671 8672 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8673 struct bpf_reg_state *known_reg) 8674 { 8675 struct bpf_func_state *state; 8676 struct bpf_reg_state *reg; 8677 int i, j; 8678 8679 for (i = 0; i <= vstate->curframe; i++) { 8680 state = vstate->frame[i]; 8681 for (j = 0; j < MAX_BPF_REG; j++) { 8682 reg = &state->regs[j]; 8683 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8684 *reg = *known_reg; 8685 } 8686 8687 bpf_for_each_spilled_reg(j, state, reg) { 8688 if (!reg) 8689 continue; 8690 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8691 *reg = *known_reg; 8692 } 8693 } 8694 } 8695 8696 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8697 struct bpf_insn *insn, int *insn_idx) 8698 { 8699 struct bpf_verifier_state *this_branch = env->cur_state; 8700 struct bpf_verifier_state *other_branch; 8701 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8702 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8703 u8 opcode = BPF_OP(insn->code); 8704 bool is_jmp32; 8705 int pred = -1; 8706 int err; 8707 8708 /* Only conditional jumps are expected to reach here. */ 8709 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8710 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8711 return -EINVAL; 8712 } 8713 8714 if (BPF_SRC(insn->code) == BPF_X) { 8715 if (insn->imm != 0) { 8716 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8717 return -EINVAL; 8718 } 8719 8720 /* check src1 operand */ 8721 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8722 if (err) 8723 return err; 8724 8725 if (is_pointer_value(env, insn->src_reg)) { 8726 verbose(env, "R%d pointer comparison prohibited\n", 8727 insn->src_reg); 8728 return -EACCES; 8729 } 8730 src_reg = ®s[insn->src_reg]; 8731 } else { 8732 if (insn->src_reg != BPF_REG_0) { 8733 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8734 return -EINVAL; 8735 } 8736 } 8737 8738 /* check src2 operand */ 8739 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8740 if (err) 8741 return err; 8742 8743 dst_reg = ®s[insn->dst_reg]; 8744 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 8745 8746 if (BPF_SRC(insn->code) == BPF_K) { 8747 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 8748 } else if (src_reg->type == SCALAR_VALUE && 8749 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 8750 pred = is_branch_taken(dst_reg, 8751 tnum_subreg(src_reg->var_off).value, 8752 opcode, 8753 is_jmp32); 8754 } else if (src_reg->type == SCALAR_VALUE && 8755 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 8756 pred = is_branch_taken(dst_reg, 8757 src_reg->var_off.value, 8758 opcode, 8759 is_jmp32); 8760 } else if (reg_is_pkt_pointer_any(dst_reg) && 8761 reg_is_pkt_pointer_any(src_reg) && 8762 !is_jmp32) { 8763 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 8764 } 8765 8766 if (pred >= 0) { 8767 /* If we get here with a dst_reg pointer type it is because 8768 * above is_branch_taken() special cased the 0 comparison. 8769 */ 8770 if (!__is_pointer_value(false, dst_reg)) 8771 err = mark_chain_precision(env, insn->dst_reg); 8772 if (BPF_SRC(insn->code) == BPF_X && !err && 8773 !__is_pointer_value(false, src_reg)) 8774 err = mark_chain_precision(env, insn->src_reg); 8775 if (err) 8776 return err; 8777 } 8778 8779 if (pred == 1) { 8780 /* Only follow the goto, ignore fall-through. If needed, push 8781 * the fall-through branch for simulation under speculative 8782 * execution. 8783 */ 8784 if (!env->bypass_spec_v1 && 8785 !sanitize_speculative_path(env, insn, *insn_idx + 1, 8786 *insn_idx)) 8787 return -EFAULT; 8788 *insn_idx += insn->off; 8789 return 0; 8790 } else if (pred == 0) { 8791 /* Only follow the fall-through branch, since that's where the 8792 * program will go. If needed, push the goto branch for 8793 * simulation under speculative execution. 8794 */ 8795 if (!env->bypass_spec_v1 && 8796 !sanitize_speculative_path(env, insn, 8797 *insn_idx + insn->off + 1, 8798 *insn_idx)) 8799 return -EFAULT; 8800 return 0; 8801 } 8802 8803 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 8804 false); 8805 if (!other_branch) 8806 return -EFAULT; 8807 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 8808 8809 /* detect if we are comparing against a constant value so we can adjust 8810 * our min/max values for our dst register. 8811 * this is only legit if both are scalars (or pointers to the same 8812 * object, I suppose, but we don't support that right now), because 8813 * otherwise the different base pointers mean the offsets aren't 8814 * comparable. 8815 */ 8816 if (BPF_SRC(insn->code) == BPF_X) { 8817 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 8818 8819 if (dst_reg->type == SCALAR_VALUE && 8820 src_reg->type == SCALAR_VALUE) { 8821 if (tnum_is_const(src_reg->var_off) || 8822 (is_jmp32 && 8823 tnum_is_const(tnum_subreg(src_reg->var_off)))) 8824 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8825 dst_reg, 8826 src_reg->var_off.value, 8827 tnum_subreg(src_reg->var_off).value, 8828 opcode, is_jmp32); 8829 else if (tnum_is_const(dst_reg->var_off) || 8830 (is_jmp32 && 8831 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 8832 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 8833 src_reg, 8834 dst_reg->var_off.value, 8835 tnum_subreg(dst_reg->var_off).value, 8836 opcode, is_jmp32); 8837 else if (!is_jmp32 && 8838 (opcode == BPF_JEQ || opcode == BPF_JNE)) 8839 /* Comparing for equality, we can combine knowledge */ 8840 reg_combine_min_max(&other_branch_regs[insn->src_reg], 8841 &other_branch_regs[insn->dst_reg], 8842 src_reg, dst_reg, opcode); 8843 if (src_reg->id && 8844 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 8845 find_equal_scalars(this_branch, src_reg); 8846 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 8847 } 8848 8849 } 8850 } else if (dst_reg->type == SCALAR_VALUE) { 8851 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8852 dst_reg, insn->imm, (u32)insn->imm, 8853 opcode, is_jmp32); 8854 } 8855 8856 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 8857 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 8858 find_equal_scalars(this_branch, dst_reg); 8859 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 8860 } 8861 8862 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 8863 * NOTE: these optimizations below are related with pointer comparison 8864 * which will never be JMP32. 8865 */ 8866 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 8867 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 8868 reg_type_may_be_null(dst_reg->type)) { 8869 /* Mark all identical registers in each branch as either 8870 * safe or unknown depending R == 0 or R != 0 conditional. 8871 */ 8872 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 8873 opcode == BPF_JNE); 8874 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 8875 opcode == BPF_JEQ); 8876 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 8877 this_branch, other_branch) && 8878 is_pointer_value(env, insn->dst_reg)) { 8879 verbose(env, "R%d pointer comparison prohibited\n", 8880 insn->dst_reg); 8881 return -EACCES; 8882 } 8883 if (env->log.level & BPF_LOG_LEVEL) 8884 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 8885 return 0; 8886 } 8887 8888 /* verify BPF_LD_IMM64 instruction */ 8889 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 8890 { 8891 struct bpf_insn_aux_data *aux = cur_aux(env); 8892 struct bpf_reg_state *regs = cur_regs(env); 8893 struct bpf_reg_state *dst_reg; 8894 struct bpf_map *map; 8895 int err; 8896 8897 if (BPF_SIZE(insn->code) != BPF_DW) { 8898 verbose(env, "invalid BPF_LD_IMM insn\n"); 8899 return -EINVAL; 8900 } 8901 if (insn->off != 0) { 8902 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 8903 return -EINVAL; 8904 } 8905 8906 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8907 if (err) 8908 return err; 8909 8910 dst_reg = ®s[insn->dst_reg]; 8911 if (insn->src_reg == 0) { 8912 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 8913 8914 dst_reg->type = SCALAR_VALUE; 8915 __mark_reg_known(®s[insn->dst_reg], imm); 8916 return 0; 8917 } 8918 8919 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8920 mark_reg_known_zero(env, regs, insn->dst_reg); 8921 8922 dst_reg->type = aux->btf_var.reg_type; 8923 switch (dst_reg->type) { 8924 case PTR_TO_MEM: 8925 dst_reg->mem_size = aux->btf_var.mem_size; 8926 break; 8927 case PTR_TO_BTF_ID: 8928 case PTR_TO_PERCPU_BTF_ID: 8929 dst_reg->btf = aux->btf_var.btf; 8930 dst_reg->btf_id = aux->btf_var.btf_id; 8931 break; 8932 default: 8933 verbose(env, "bpf verifier is misconfigured\n"); 8934 return -EFAULT; 8935 } 8936 return 0; 8937 } 8938 8939 if (insn->src_reg == BPF_PSEUDO_FUNC) { 8940 struct bpf_prog_aux *aux = env->prog->aux; 8941 u32 subprogno = insn[1].imm; 8942 8943 if (!aux->func_info) { 8944 verbose(env, "missing btf func_info\n"); 8945 return -EINVAL; 8946 } 8947 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 8948 verbose(env, "callback function not static\n"); 8949 return -EINVAL; 8950 } 8951 8952 dst_reg->type = PTR_TO_FUNC; 8953 dst_reg->subprogno = subprogno; 8954 return 0; 8955 } 8956 8957 map = env->used_maps[aux->map_index]; 8958 mark_reg_known_zero(env, regs, insn->dst_reg); 8959 dst_reg->map_ptr = map; 8960 8961 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 8962 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 8963 dst_reg->type = PTR_TO_MAP_VALUE; 8964 dst_reg->off = aux->map_off; 8965 if (map_value_has_spin_lock(map)) 8966 dst_reg->id = ++env->id_gen; 8967 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 8968 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 8969 dst_reg->type = CONST_PTR_TO_MAP; 8970 } else { 8971 verbose(env, "bpf verifier is misconfigured\n"); 8972 return -EINVAL; 8973 } 8974 8975 return 0; 8976 } 8977 8978 static bool may_access_skb(enum bpf_prog_type type) 8979 { 8980 switch (type) { 8981 case BPF_PROG_TYPE_SOCKET_FILTER: 8982 case BPF_PROG_TYPE_SCHED_CLS: 8983 case BPF_PROG_TYPE_SCHED_ACT: 8984 return true; 8985 default: 8986 return false; 8987 } 8988 } 8989 8990 /* verify safety of LD_ABS|LD_IND instructions: 8991 * - they can only appear in the programs where ctx == skb 8992 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8993 * preserve R6-R9, and store return value into R0 8994 * 8995 * Implicit input: 8996 * ctx == skb == R6 == CTX 8997 * 8998 * Explicit input: 8999 * SRC == any register 9000 * IMM == 32-bit immediate 9001 * 9002 * Output: 9003 * R0 - 8/16/32-bit skb data converted to cpu endianness 9004 */ 9005 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9006 { 9007 struct bpf_reg_state *regs = cur_regs(env); 9008 static const int ctx_reg = BPF_REG_6; 9009 u8 mode = BPF_MODE(insn->code); 9010 int i, err; 9011 9012 if (!may_access_skb(resolve_prog_type(env->prog))) { 9013 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9014 return -EINVAL; 9015 } 9016 9017 if (!env->ops->gen_ld_abs) { 9018 verbose(env, "bpf verifier is misconfigured\n"); 9019 return -EINVAL; 9020 } 9021 9022 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9023 BPF_SIZE(insn->code) == BPF_DW || 9024 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9025 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9026 return -EINVAL; 9027 } 9028 9029 /* check whether implicit source operand (register R6) is readable */ 9030 err = check_reg_arg(env, ctx_reg, SRC_OP); 9031 if (err) 9032 return err; 9033 9034 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9035 * gen_ld_abs() may terminate the program at runtime, leading to 9036 * reference leak. 9037 */ 9038 err = check_reference_leak(env); 9039 if (err) { 9040 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9041 return err; 9042 } 9043 9044 if (env->cur_state->active_spin_lock) { 9045 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9046 return -EINVAL; 9047 } 9048 9049 if (regs[ctx_reg].type != PTR_TO_CTX) { 9050 verbose(env, 9051 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9052 return -EINVAL; 9053 } 9054 9055 if (mode == BPF_IND) { 9056 /* check explicit source operand */ 9057 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9058 if (err) 9059 return err; 9060 } 9061 9062 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9063 if (err < 0) 9064 return err; 9065 9066 /* reset caller saved regs to unreadable */ 9067 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9068 mark_reg_not_init(env, regs, caller_saved[i]); 9069 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9070 } 9071 9072 /* mark destination R0 register as readable, since it contains 9073 * the value fetched from the packet. 9074 * Already marked as written above. 9075 */ 9076 mark_reg_unknown(env, regs, BPF_REG_0); 9077 /* ld_abs load up to 32-bit skb data. */ 9078 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9079 return 0; 9080 } 9081 9082 static int check_return_code(struct bpf_verifier_env *env) 9083 { 9084 struct tnum enforce_attach_type_range = tnum_unknown; 9085 const struct bpf_prog *prog = env->prog; 9086 struct bpf_reg_state *reg; 9087 struct tnum range = tnum_range(0, 1); 9088 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9089 int err; 9090 const bool is_subprog = env->cur_state->frame[0]->subprogno; 9091 9092 /* LSM and struct_ops func-ptr's return type could be "void" */ 9093 if (!is_subprog && 9094 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9095 prog_type == BPF_PROG_TYPE_LSM) && 9096 !prog->aux->attach_func_proto->type) 9097 return 0; 9098 9099 /* eBPF calling convention is such that R0 is used 9100 * to return the value from eBPF program. 9101 * Make sure that it's readable at this time 9102 * of bpf_exit, which means that program wrote 9103 * something into it earlier 9104 */ 9105 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9106 if (err) 9107 return err; 9108 9109 if (is_pointer_value(env, BPF_REG_0)) { 9110 verbose(env, "R0 leaks addr as return value\n"); 9111 return -EACCES; 9112 } 9113 9114 reg = cur_regs(env) + BPF_REG_0; 9115 if (is_subprog) { 9116 if (reg->type != SCALAR_VALUE) { 9117 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9118 reg_type_str[reg->type]); 9119 return -EINVAL; 9120 } 9121 return 0; 9122 } 9123 9124 switch (prog_type) { 9125 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9126 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9127 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9128 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9129 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9130 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9131 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9132 range = tnum_range(1, 1); 9133 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9134 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9135 range = tnum_range(0, 3); 9136 break; 9137 case BPF_PROG_TYPE_CGROUP_SKB: 9138 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9139 range = tnum_range(0, 3); 9140 enforce_attach_type_range = tnum_range(2, 3); 9141 } 9142 break; 9143 case BPF_PROG_TYPE_CGROUP_SOCK: 9144 case BPF_PROG_TYPE_SOCK_OPS: 9145 case BPF_PROG_TYPE_CGROUP_DEVICE: 9146 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9147 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9148 break; 9149 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9150 if (!env->prog->aux->attach_btf_id) 9151 return 0; 9152 range = tnum_const(0); 9153 break; 9154 case BPF_PROG_TYPE_TRACING: 9155 switch (env->prog->expected_attach_type) { 9156 case BPF_TRACE_FENTRY: 9157 case BPF_TRACE_FEXIT: 9158 range = tnum_const(0); 9159 break; 9160 case BPF_TRACE_RAW_TP: 9161 case BPF_MODIFY_RETURN: 9162 return 0; 9163 case BPF_TRACE_ITER: 9164 break; 9165 default: 9166 return -ENOTSUPP; 9167 } 9168 break; 9169 case BPF_PROG_TYPE_SK_LOOKUP: 9170 range = tnum_range(SK_DROP, SK_PASS); 9171 break; 9172 case BPF_PROG_TYPE_EXT: 9173 /* freplace program can return anything as its return value 9174 * depends on the to-be-replaced kernel func or bpf program. 9175 */ 9176 default: 9177 return 0; 9178 } 9179 9180 if (reg->type != SCALAR_VALUE) { 9181 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9182 reg_type_str[reg->type]); 9183 return -EINVAL; 9184 } 9185 9186 if (!tnum_in(range, reg->var_off)) { 9187 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9188 return -EINVAL; 9189 } 9190 9191 if (!tnum_is_unknown(enforce_attach_type_range) && 9192 tnum_in(enforce_attach_type_range, reg->var_off)) 9193 env->prog->enforce_expected_attach_type = 1; 9194 return 0; 9195 } 9196 9197 /* non-recursive DFS pseudo code 9198 * 1 procedure DFS-iterative(G,v): 9199 * 2 label v as discovered 9200 * 3 let S be a stack 9201 * 4 S.push(v) 9202 * 5 while S is not empty 9203 * 6 t <- S.pop() 9204 * 7 if t is what we're looking for: 9205 * 8 return t 9206 * 9 for all edges e in G.adjacentEdges(t) do 9207 * 10 if edge e is already labelled 9208 * 11 continue with the next edge 9209 * 12 w <- G.adjacentVertex(t,e) 9210 * 13 if vertex w is not discovered and not explored 9211 * 14 label e as tree-edge 9212 * 15 label w as discovered 9213 * 16 S.push(w) 9214 * 17 continue at 5 9215 * 18 else if vertex w is discovered 9216 * 19 label e as back-edge 9217 * 20 else 9218 * 21 // vertex w is explored 9219 * 22 label e as forward- or cross-edge 9220 * 23 label t as explored 9221 * 24 S.pop() 9222 * 9223 * convention: 9224 * 0x10 - discovered 9225 * 0x11 - discovered and fall-through edge labelled 9226 * 0x12 - discovered and fall-through and branch edges labelled 9227 * 0x20 - explored 9228 */ 9229 9230 enum { 9231 DISCOVERED = 0x10, 9232 EXPLORED = 0x20, 9233 FALLTHROUGH = 1, 9234 BRANCH = 2, 9235 }; 9236 9237 static u32 state_htab_size(struct bpf_verifier_env *env) 9238 { 9239 return env->prog->len; 9240 } 9241 9242 static struct bpf_verifier_state_list **explored_state( 9243 struct bpf_verifier_env *env, 9244 int idx) 9245 { 9246 struct bpf_verifier_state *cur = env->cur_state; 9247 struct bpf_func_state *state = cur->frame[cur->curframe]; 9248 9249 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9250 } 9251 9252 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9253 { 9254 env->insn_aux_data[idx].prune_point = true; 9255 } 9256 9257 enum { 9258 DONE_EXPLORING = 0, 9259 KEEP_EXPLORING = 1, 9260 }; 9261 9262 /* t, w, e - match pseudo-code above: 9263 * t - index of current instruction 9264 * w - next instruction 9265 * e - edge 9266 */ 9267 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9268 bool loop_ok) 9269 { 9270 int *insn_stack = env->cfg.insn_stack; 9271 int *insn_state = env->cfg.insn_state; 9272 9273 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9274 return DONE_EXPLORING; 9275 9276 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9277 return DONE_EXPLORING; 9278 9279 if (w < 0 || w >= env->prog->len) { 9280 verbose_linfo(env, t, "%d: ", t); 9281 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9282 return -EINVAL; 9283 } 9284 9285 if (e == BRANCH) 9286 /* mark branch target for state pruning */ 9287 init_explored_state(env, w); 9288 9289 if (insn_state[w] == 0) { 9290 /* tree-edge */ 9291 insn_state[t] = DISCOVERED | e; 9292 insn_state[w] = DISCOVERED; 9293 if (env->cfg.cur_stack >= env->prog->len) 9294 return -E2BIG; 9295 insn_stack[env->cfg.cur_stack++] = w; 9296 return KEEP_EXPLORING; 9297 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9298 if (loop_ok && env->bpf_capable) 9299 return DONE_EXPLORING; 9300 verbose_linfo(env, t, "%d: ", t); 9301 verbose_linfo(env, w, "%d: ", w); 9302 verbose(env, "back-edge from insn %d to %d\n", t, w); 9303 return -EINVAL; 9304 } else if (insn_state[w] == EXPLORED) { 9305 /* forward- or cross-edge */ 9306 insn_state[t] = DISCOVERED | e; 9307 } else { 9308 verbose(env, "insn state internal bug\n"); 9309 return -EFAULT; 9310 } 9311 return DONE_EXPLORING; 9312 } 9313 9314 static int visit_func_call_insn(int t, int insn_cnt, 9315 struct bpf_insn *insns, 9316 struct bpf_verifier_env *env, 9317 bool visit_callee) 9318 { 9319 int ret; 9320 9321 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9322 if (ret) 9323 return ret; 9324 9325 if (t + 1 < insn_cnt) 9326 init_explored_state(env, t + 1); 9327 if (visit_callee) { 9328 init_explored_state(env, t); 9329 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 9330 env, false); 9331 } 9332 return ret; 9333 } 9334 9335 /* Visits the instruction at index t and returns one of the following: 9336 * < 0 - an error occurred 9337 * DONE_EXPLORING - the instruction was fully explored 9338 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9339 */ 9340 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9341 { 9342 struct bpf_insn *insns = env->prog->insnsi; 9343 int ret; 9344 9345 if (bpf_pseudo_func(insns + t)) 9346 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9347 9348 /* All non-branch instructions have a single fall-through edge. */ 9349 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9350 BPF_CLASS(insns[t].code) != BPF_JMP32) 9351 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9352 9353 switch (BPF_OP(insns[t].code)) { 9354 case BPF_EXIT: 9355 return DONE_EXPLORING; 9356 9357 case BPF_CALL: 9358 return visit_func_call_insn(t, insn_cnt, insns, env, 9359 insns[t].src_reg == BPF_PSEUDO_CALL); 9360 9361 case BPF_JA: 9362 if (BPF_SRC(insns[t].code) != BPF_K) 9363 return -EINVAL; 9364 9365 /* unconditional jump with single edge */ 9366 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9367 true); 9368 if (ret) 9369 return ret; 9370 9371 /* unconditional jmp is not a good pruning point, 9372 * but it's marked, since backtracking needs 9373 * to record jmp history in is_state_visited(). 9374 */ 9375 init_explored_state(env, t + insns[t].off + 1); 9376 /* tell verifier to check for equivalent states 9377 * after every call and jump 9378 */ 9379 if (t + 1 < insn_cnt) 9380 init_explored_state(env, t + 1); 9381 9382 return ret; 9383 9384 default: 9385 /* conditional jump with two edges */ 9386 init_explored_state(env, t); 9387 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9388 if (ret) 9389 return ret; 9390 9391 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9392 } 9393 } 9394 9395 /* non-recursive depth-first-search to detect loops in BPF program 9396 * loop == back-edge in directed graph 9397 */ 9398 static int check_cfg(struct bpf_verifier_env *env) 9399 { 9400 int insn_cnt = env->prog->len; 9401 int *insn_stack, *insn_state; 9402 int ret = 0; 9403 int i; 9404 9405 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9406 if (!insn_state) 9407 return -ENOMEM; 9408 9409 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9410 if (!insn_stack) { 9411 kvfree(insn_state); 9412 return -ENOMEM; 9413 } 9414 9415 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9416 insn_stack[0] = 0; /* 0 is the first instruction */ 9417 env->cfg.cur_stack = 1; 9418 9419 while (env->cfg.cur_stack > 0) { 9420 int t = insn_stack[env->cfg.cur_stack - 1]; 9421 9422 ret = visit_insn(t, insn_cnt, env); 9423 switch (ret) { 9424 case DONE_EXPLORING: 9425 insn_state[t] = EXPLORED; 9426 env->cfg.cur_stack--; 9427 break; 9428 case KEEP_EXPLORING: 9429 break; 9430 default: 9431 if (ret > 0) { 9432 verbose(env, "visit_insn internal bug\n"); 9433 ret = -EFAULT; 9434 } 9435 goto err_free; 9436 } 9437 } 9438 9439 if (env->cfg.cur_stack < 0) { 9440 verbose(env, "pop stack internal bug\n"); 9441 ret = -EFAULT; 9442 goto err_free; 9443 } 9444 9445 for (i = 0; i < insn_cnt; i++) { 9446 if (insn_state[i] != EXPLORED) { 9447 verbose(env, "unreachable insn %d\n", i); 9448 ret = -EINVAL; 9449 goto err_free; 9450 } 9451 } 9452 ret = 0; /* cfg looks good */ 9453 9454 err_free: 9455 kvfree(insn_state); 9456 kvfree(insn_stack); 9457 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9458 return ret; 9459 } 9460 9461 static int check_abnormal_return(struct bpf_verifier_env *env) 9462 { 9463 int i; 9464 9465 for (i = 1; i < env->subprog_cnt; i++) { 9466 if (env->subprog_info[i].has_ld_abs) { 9467 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9468 return -EINVAL; 9469 } 9470 if (env->subprog_info[i].has_tail_call) { 9471 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9472 return -EINVAL; 9473 } 9474 } 9475 return 0; 9476 } 9477 9478 /* The minimum supported BTF func info size */ 9479 #define MIN_BPF_FUNCINFO_SIZE 8 9480 #define MAX_FUNCINFO_REC_SIZE 252 9481 9482 static int check_btf_func(struct bpf_verifier_env *env, 9483 const union bpf_attr *attr, 9484 bpfptr_t uattr) 9485 { 9486 const struct btf_type *type, *func_proto, *ret_type; 9487 u32 i, nfuncs, urec_size, min_size; 9488 u32 krec_size = sizeof(struct bpf_func_info); 9489 struct bpf_func_info *krecord; 9490 struct bpf_func_info_aux *info_aux = NULL; 9491 struct bpf_prog *prog; 9492 const struct btf *btf; 9493 bpfptr_t urecord; 9494 u32 prev_offset = 0; 9495 bool scalar_return; 9496 int ret = -ENOMEM; 9497 9498 nfuncs = attr->func_info_cnt; 9499 if (!nfuncs) { 9500 if (check_abnormal_return(env)) 9501 return -EINVAL; 9502 return 0; 9503 } 9504 9505 if (nfuncs != env->subprog_cnt) { 9506 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9507 return -EINVAL; 9508 } 9509 9510 urec_size = attr->func_info_rec_size; 9511 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9512 urec_size > MAX_FUNCINFO_REC_SIZE || 9513 urec_size % sizeof(u32)) { 9514 verbose(env, "invalid func info rec size %u\n", urec_size); 9515 return -EINVAL; 9516 } 9517 9518 prog = env->prog; 9519 btf = prog->aux->btf; 9520 9521 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 9522 min_size = min_t(u32, krec_size, urec_size); 9523 9524 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 9525 if (!krecord) 9526 return -ENOMEM; 9527 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 9528 if (!info_aux) 9529 goto err_free; 9530 9531 for (i = 0; i < nfuncs; i++) { 9532 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 9533 if (ret) { 9534 if (ret == -E2BIG) { 9535 verbose(env, "nonzero tailing record in func info"); 9536 /* set the size kernel expects so loader can zero 9537 * out the rest of the record. 9538 */ 9539 if (copy_to_bpfptr_offset(uattr, 9540 offsetof(union bpf_attr, func_info_rec_size), 9541 &min_size, sizeof(min_size))) 9542 ret = -EFAULT; 9543 } 9544 goto err_free; 9545 } 9546 9547 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 9548 ret = -EFAULT; 9549 goto err_free; 9550 } 9551 9552 /* check insn_off */ 9553 ret = -EINVAL; 9554 if (i == 0) { 9555 if (krecord[i].insn_off) { 9556 verbose(env, 9557 "nonzero insn_off %u for the first func info record", 9558 krecord[i].insn_off); 9559 goto err_free; 9560 } 9561 } else if (krecord[i].insn_off <= prev_offset) { 9562 verbose(env, 9563 "same or smaller insn offset (%u) than previous func info record (%u)", 9564 krecord[i].insn_off, prev_offset); 9565 goto err_free; 9566 } 9567 9568 if (env->subprog_info[i].start != krecord[i].insn_off) { 9569 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 9570 goto err_free; 9571 } 9572 9573 /* check type_id */ 9574 type = btf_type_by_id(btf, krecord[i].type_id); 9575 if (!type || !btf_type_is_func(type)) { 9576 verbose(env, "invalid type id %d in func info", 9577 krecord[i].type_id); 9578 goto err_free; 9579 } 9580 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 9581 9582 func_proto = btf_type_by_id(btf, type->type); 9583 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 9584 /* btf_func_check() already verified it during BTF load */ 9585 goto err_free; 9586 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 9587 scalar_return = 9588 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 9589 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 9590 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 9591 goto err_free; 9592 } 9593 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 9594 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 9595 goto err_free; 9596 } 9597 9598 prev_offset = krecord[i].insn_off; 9599 bpfptr_add(&urecord, urec_size); 9600 } 9601 9602 prog->aux->func_info = krecord; 9603 prog->aux->func_info_cnt = nfuncs; 9604 prog->aux->func_info_aux = info_aux; 9605 return 0; 9606 9607 err_free: 9608 kvfree(krecord); 9609 kfree(info_aux); 9610 return ret; 9611 } 9612 9613 static void adjust_btf_func(struct bpf_verifier_env *env) 9614 { 9615 struct bpf_prog_aux *aux = env->prog->aux; 9616 int i; 9617 9618 if (!aux->func_info) 9619 return; 9620 9621 for (i = 0; i < env->subprog_cnt; i++) 9622 aux->func_info[i].insn_off = env->subprog_info[i].start; 9623 } 9624 9625 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9626 sizeof(((struct bpf_line_info *)(0))->line_col)) 9627 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9628 9629 static int check_btf_line(struct bpf_verifier_env *env, 9630 const union bpf_attr *attr, 9631 bpfptr_t uattr) 9632 { 9633 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9634 struct bpf_subprog_info *sub; 9635 struct bpf_line_info *linfo; 9636 struct bpf_prog *prog; 9637 const struct btf *btf; 9638 bpfptr_t ulinfo; 9639 int err; 9640 9641 nr_linfo = attr->line_info_cnt; 9642 if (!nr_linfo) 9643 return 0; 9644 9645 rec_size = attr->line_info_rec_size; 9646 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9647 rec_size > MAX_LINEINFO_REC_SIZE || 9648 rec_size & (sizeof(u32) - 1)) 9649 return -EINVAL; 9650 9651 /* Need to zero it in case the userspace may 9652 * pass in a smaller bpf_line_info object. 9653 */ 9654 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9655 GFP_KERNEL | __GFP_NOWARN); 9656 if (!linfo) 9657 return -ENOMEM; 9658 9659 prog = env->prog; 9660 btf = prog->aux->btf; 9661 9662 s = 0; 9663 sub = env->subprog_info; 9664 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 9665 expected_size = sizeof(struct bpf_line_info); 9666 ncopy = min_t(u32, expected_size, rec_size); 9667 for (i = 0; i < nr_linfo; i++) { 9668 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9669 if (err) { 9670 if (err == -E2BIG) { 9671 verbose(env, "nonzero tailing record in line_info"); 9672 if (copy_to_bpfptr_offset(uattr, 9673 offsetof(union bpf_attr, line_info_rec_size), 9674 &expected_size, sizeof(expected_size))) 9675 err = -EFAULT; 9676 } 9677 goto err_free; 9678 } 9679 9680 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 9681 err = -EFAULT; 9682 goto err_free; 9683 } 9684 9685 /* 9686 * Check insn_off to ensure 9687 * 1) strictly increasing AND 9688 * 2) bounded by prog->len 9689 * 9690 * The linfo[0].insn_off == 0 check logically falls into 9691 * the later "missing bpf_line_info for func..." case 9692 * because the first linfo[0].insn_off must be the 9693 * first sub also and the first sub must have 9694 * subprog_info[0].start == 0. 9695 */ 9696 if ((i && linfo[i].insn_off <= prev_offset) || 9697 linfo[i].insn_off >= prog->len) { 9698 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 9699 i, linfo[i].insn_off, prev_offset, 9700 prog->len); 9701 err = -EINVAL; 9702 goto err_free; 9703 } 9704 9705 if (!prog->insnsi[linfo[i].insn_off].code) { 9706 verbose(env, 9707 "Invalid insn code at line_info[%u].insn_off\n", 9708 i); 9709 err = -EINVAL; 9710 goto err_free; 9711 } 9712 9713 if (!btf_name_by_offset(btf, linfo[i].line_off) || 9714 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 9715 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 9716 err = -EINVAL; 9717 goto err_free; 9718 } 9719 9720 if (s != env->subprog_cnt) { 9721 if (linfo[i].insn_off == sub[s].start) { 9722 sub[s].linfo_idx = i; 9723 s++; 9724 } else if (sub[s].start < linfo[i].insn_off) { 9725 verbose(env, "missing bpf_line_info for func#%u\n", s); 9726 err = -EINVAL; 9727 goto err_free; 9728 } 9729 } 9730 9731 prev_offset = linfo[i].insn_off; 9732 bpfptr_add(&ulinfo, rec_size); 9733 } 9734 9735 if (s != env->subprog_cnt) { 9736 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 9737 env->subprog_cnt - s, s); 9738 err = -EINVAL; 9739 goto err_free; 9740 } 9741 9742 prog->aux->linfo = linfo; 9743 prog->aux->nr_linfo = nr_linfo; 9744 9745 return 0; 9746 9747 err_free: 9748 kvfree(linfo); 9749 return err; 9750 } 9751 9752 static int check_btf_info(struct bpf_verifier_env *env, 9753 const union bpf_attr *attr, 9754 bpfptr_t uattr) 9755 { 9756 struct btf *btf; 9757 int err; 9758 9759 if (!attr->func_info_cnt && !attr->line_info_cnt) { 9760 if (check_abnormal_return(env)) 9761 return -EINVAL; 9762 return 0; 9763 } 9764 9765 btf = btf_get_by_fd(attr->prog_btf_fd); 9766 if (IS_ERR(btf)) 9767 return PTR_ERR(btf); 9768 if (btf_is_kernel(btf)) { 9769 btf_put(btf); 9770 return -EACCES; 9771 } 9772 env->prog->aux->btf = btf; 9773 9774 err = check_btf_func(env, attr, uattr); 9775 if (err) 9776 return err; 9777 9778 err = check_btf_line(env, attr, uattr); 9779 if (err) 9780 return err; 9781 9782 return 0; 9783 } 9784 9785 /* check %cur's range satisfies %old's */ 9786 static bool range_within(struct bpf_reg_state *old, 9787 struct bpf_reg_state *cur) 9788 { 9789 return old->umin_value <= cur->umin_value && 9790 old->umax_value >= cur->umax_value && 9791 old->smin_value <= cur->smin_value && 9792 old->smax_value >= cur->smax_value && 9793 old->u32_min_value <= cur->u32_min_value && 9794 old->u32_max_value >= cur->u32_max_value && 9795 old->s32_min_value <= cur->s32_min_value && 9796 old->s32_max_value >= cur->s32_max_value; 9797 } 9798 9799 /* If in the old state two registers had the same id, then they need to have 9800 * the same id in the new state as well. But that id could be different from 9801 * the old state, so we need to track the mapping from old to new ids. 9802 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 9803 * regs with old id 5 must also have new id 9 for the new state to be safe. But 9804 * regs with a different old id could still have new id 9, we don't care about 9805 * that. 9806 * So we look through our idmap to see if this old id has been seen before. If 9807 * so, we require the new id to match; otherwise, we add the id pair to the map. 9808 */ 9809 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 9810 { 9811 unsigned int i; 9812 9813 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 9814 if (!idmap[i].old) { 9815 /* Reached an empty slot; haven't seen this id before */ 9816 idmap[i].old = old_id; 9817 idmap[i].cur = cur_id; 9818 return true; 9819 } 9820 if (idmap[i].old == old_id) 9821 return idmap[i].cur == cur_id; 9822 } 9823 /* We ran out of idmap slots, which should be impossible */ 9824 WARN_ON_ONCE(1); 9825 return false; 9826 } 9827 9828 static void clean_func_state(struct bpf_verifier_env *env, 9829 struct bpf_func_state *st) 9830 { 9831 enum bpf_reg_liveness live; 9832 int i, j; 9833 9834 for (i = 0; i < BPF_REG_FP; i++) { 9835 live = st->regs[i].live; 9836 /* liveness must not touch this register anymore */ 9837 st->regs[i].live |= REG_LIVE_DONE; 9838 if (!(live & REG_LIVE_READ)) 9839 /* since the register is unused, clear its state 9840 * to make further comparison simpler 9841 */ 9842 __mark_reg_not_init(env, &st->regs[i]); 9843 } 9844 9845 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 9846 live = st->stack[i].spilled_ptr.live; 9847 /* liveness must not touch this stack slot anymore */ 9848 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 9849 if (!(live & REG_LIVE_READ)) { 9850 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 9851 for (j = 0; j < BPF_REG_SIZE; j++) 9852 st->stack[i].slot_type[j] = STACK_INVALID; 9853 } 9854 } 9855 } 9856 9857 static void clean_verifier_state(struct bpf_verifier_env *env, 9858 struct bpf_verifier_state *st) 9859 { 9860 int i; 9861 9862 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 9863 /* all regs in this state in all frames were already marked */ 9864 return; 9865 9866 for (i = 0; i <= st->curframe; i++) 9867 clean_func_state(env, st->frame[i]); 9868 } 9869 9870 /* the parentage chains form a tree. 9871 * the verifier states are added to state lists at given insn and 9872 * pushed into state stack for future exploration. 9873 * when the verifier reaches bpf_exit insn some of the verifer states 9874 * stored in the state lists have their final liveness state already, 9875 * but a lot of states will get revised from liveness point of view when 9876 * the verifier explores other branches. 9877 * Example: 9878 * 1: r0 = 1 9879 * 2: if r1 == 100 goto pc+1 9880 * 3: r0 = 2 9881 * 4: exit 9882 * when the verifier reaches exit insn the register r0 in the state list of 9883 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 9884 * of insn 2 and goes exploring further. At the insn 4 it will walk the 9885 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 9886 * 9887 * Since the verifier pushes the branch states as it sees them while exploring 9888 * the program the condition of walking the branch instruction for the second 9889 * time means that all states below this branch were already explored and 9890 * their final liveness marks are already propagated. 9891 * Hence when the verifier completes the search of state list in is_state_visited() 9892 * we can call this clean_live_states() function to mark all liveness states 9893 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 9894 * will not be used. 9895 * This function also clears the registers and stack for states that !READ 9896 * to simplify state merging. 9897 * 9898 * Important note here that walking the same branch instruction in the callee 9899 * doesn't meant that the states are DONE. The verifier has to compare 9900 * the callsites 9901 */ 9902 static void clean_live_states(struct bpf_verifier_env *env, int insn, 9903 struct bpf_verifier_state *cur) 9904 { 9905 struct bpf_verifier_state_list *sl; 9906 int i; 9907 9908 sl = *explored_state(env, insn); 9909 while (sl) { 9910 if (sl->state.branches) 9911 goto next; 9912 if (sl->state.insn_idx != insn || 9913 sl->state.curframe != cur->curframe) 9914 goto next; 9915 for (i = 0; i <= cur->curframe; i++) 9916 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 9917 goto next; 9918 clean_verifier_state(env, &sl->state); 9919 next: 9920 sl = sl->next; 9921 } 9922 } 9923 9924 /* Returns true if (rold safe implies rcur safe) */ 9925 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 9926 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 9927 { 9928 bool equal; 9929 9930 if (!(rold->live & REG_LIVE_READ)) 9931 /* explored state didn't use this */ 9932 return true; 9933 9934 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 9935 9936 if (rold->type == PTR_TO_STACK) 9937 /* two stack pointers are equal only if they're pointing to 9938 * the same stack frame, since fp-8 in foo != fp-8 in bar 9939 */ 9940 return equal && rold->frameno == rcur->frameno; 9941 9942 if (equal) 9943 return true; 9944 9945 if (rold->type == NOT_INIT) 9946 /* explored state can't have used this */ 9947 return true; 9948 if (rcur->type == NOT_INIT) 9949 return false; 9950 switch (rold->type) { 9951 case SCALAR_VALUE: 9952 if (env->explore_alu_limits) 9953 return false; 9954 if (rcur->type == SCALAR_VALUE) { 9955 if (!rold->precise && !rcur->precise) 9956 return true; 9957 /* new val must satisfy old val knowledge */ 9958 return range_within(rold, rcur) && 9959 tnum_in(rold->var_off, rcur->var_off); 9960 } else { 9961 /* We're trying to use a pointer in place of a scalar. 9962 * Even if the scalar was unbounded, this could lead to 9963 * pointer leaks because scalars are allowed to leak 9964 * while pointers are not. We could make this safe in 9965 * special cases if root is calling us, but it's 9966 * probably not worth the hassle. 9967 */ 9968 return false; 9969 } 9970 case PTR_TO_MAP_KEY: 9971 case PTR_TO_MAP_VALUE: 9972 /* If the new min/max/var_off satisfy the old ones and 9973 * everything else matches, we are OK. 9974 * 'id' is not compared, since it's only used for maps with 9975 * bpf_spin_lock inside map element and in such cases if 9976 * the rest of the prog is valid for one map element then 9977 * it's valid for all map elements regardless of the key 9978 * used in bpf_map_lookup() 9979 */ 9980 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 9981 range_within(rold, rcur) && 9982 tnum_in(rold->var_off, rcur->var_off); 9983 case PTR_TO_MAP_VALUE_OR_NULL: 9984 /* a PTR_TO_MAP_VALUE could be safe to use as a 9985 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9986 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9987 * checked, doing so could have affected others with the same 9988 * id, and we can't check for that because we lost the id when 9989 * we converted to a PTR_TO_MAP_VALUE. 9990 */ 9991 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 9992 return false; 9993 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 9994 return false; 9995 /* Check our ids match any regs they're supposed to */ 9996 return check_ids(rold->id, rcur->id, idmap); 9997 case PTR_TO_PACKET_META: 9998 case PTR_TO_PACKET: 9999 if (rcur->type != rold->type) 10000 return false; 10001 /* We must have at least as much range as the old ptr 10002 * did, so that any accesses which were safe before are 10003 * still safe. This is true even if old range < old off, 10004 * since someone could have accessed through (ptr - k), or 10005 * even done ptr -= k in a register, to get a safe access. 10006 */ 10007 if (rold->range > rcur->range) 10008 return false; 10009 /* If the offsets don't match, we can't trust our alignment; 10010 * nor can we be sure that we won't fall out of range. 10011 */ 10012 if (rold->off != rcur->off) 10013 return false; 10014 /* id relations must be preserved */ 10015 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10016 return false; 10017 /* new val must satisfy old val knowledge */ 10018 return range_within(rold, rcur) && 10019 tnum_in(rold->var_off, rcur->var_off); 10020 case PTR_TO_CTX: 10021 case CONST_PTR_TO_MAP: 10022 case PTR_TO_PACKET_END: 10023 case PTR_TO_FLOW_KEYS: 10024 case PTR_TO_SOCKET: 10025 case PTR_TO_SOCKET_OR_NULL: 10026 case PTR_TO_SOCK_COMMON: 10027 case PTR_TO_SOCK_COMMON_OR_NULL: 10028 case PTR_TO_TCP_SOCK: 10029 case PTR_TO_TCP_SOCK_OR_NULL: 10030 case PTR_TO_XDP_SOCK: 10031 /* Only valid matches are exact, which memcmp() above 10032 * would have accepted 10033 */ 10034 default: 10035 /* Don't know what's going on, just say it's not safe */ 10036 return false; 10037 } 10038 10039 /* Shouldn't get here; if we do, say it's not safe */ 10040 WARN_ON_ONCE(1); 10041 return false; 10042 } 10043 10044 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10045 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10046 { 10047 int i, spi; 10048 10049 /* walk slots of the explored stack and ignore any additional 10050 * slots in the current stack, since explored(safe) state 10051 * didn't use them 10052 */ 10053 for (i = 0; i < old->allocated_stack; i++) { 10054 spi = i / BPF_REG_SIZE; 10055 10056 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10057 i += BPF_REG_SIZE - 1; 10058 /* explored state didn't use this */ 10059 continue; 10060 } 10061 10062 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10063 continue; 10064 10065 /* explored stack has more populated slots than current stack 10066 * and these slots were used 10067 */ 10068 if (i >= cur->allocated_stack) 10069 return false; 10070 10071 /* if old state was safe with misc data in the stack 10072 * it will be safe with zero-initialized stack. 10073 * The opposite is not true 10074 */ 10075 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10076 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10077 continue; 10078 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10079 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10080 /* Ex: old explored (safe) state has STACK_SPILL in 10081 * this stack slot, but current has STACK_MISC -> 10082 * this verifier states are not equivalent, 10083 * return false to continue verification of this path 10084 */ 10085 return false; 10086 if (i % BPF_REG_SIZE) 10087 continue; 10088 if (old->stack[spi].slot_type[0] != STACK_SPILL) 10089 continue; 10090 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10091 &cur->stack[spi].spilled_ptr, idmap)) 10092 /* when explored and current stack slot are both storing 10093 * spilled registers, check that stored pointers types 10094 * are the same as well. 10095 * Ex: explored safe path could have stored 10096 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10097 * but current path has stored: 10098 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10099 * such verifier states are not equivalent. 10100 * return false to continue verification of this path 10101 */ 10102 return false; 10103 } 10104 return true; 10105 } 10106 10107 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10108 { 10109 if (old->acquired_refs != cur->acquired_refs) 10110 return false; 10111 return !memcmp(old->refs, cur->refs, 10112 sizeof(*old->refs) * old->acquired_refs); 10113 } 10114 10115 /* compare two verifier states 10116 * 10117 * all states stored in state_list are known to be valid, since 10118 * verifier reached 'bpf_exit' instruction through them 10119 * 10120 * this function is called when verifier exploring different branches of 10121 * execution popped from the state stack. If it sees an old state that has 10122 * more strict register state and more strict stack state then this execution 10123 * branch doesn't need to be explored further, since verifier already 10124 * concluded that more strict state leads to valid finish. 10125 * 10126 * Therefore two states are equivalent if register state is more conservative 10127 * and explored stack state is more conservative than the current one. 10128 * Example: 10129 * explored current 10130 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10131 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10132 * 10133 * In other words if current stack state (one being explored) has more 10134 * valid slots than old one that already passed validation, it means 10135 * the verifier can stop exploring and conclude that current state is valid too 10136 * 10137 * Similarly with registers. If explored state has register type as invalid 10138 * whereas register type in current state is meaningful, it means that 10139 * the current state will reach 'bpf_exit' instruction safely 10140 */ 10141 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10142 struct bpf_func_state *cur) 10143 { 10144 int i; 10145 10146 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10147 for (i = 0; i < MAX_BPF_REG; i++) 10148 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10149 env->idmap_scratch)) 10150 return false; 10151 10152 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10153 return false; 10154 10155 if (!refsafe(old, cur)) 10156 return false; 10157 10158 return true; 10159 } 10160 10161 static bool states_equal(struct bpf_verifier_env *env, 10162 struct bpf_verifier_state *old, 10163 struct bpf_verifier_state *cur) 10164 { 10165 int i; 10166 10167 if (old->curframe != cur->curframe) 10168 return false; 10169 10170 /* Verification state from speculative execution simulation 10171 * must never prune a non-speculative execution one. 10172 */ 10173 if (old->speculative && !cur->speculative) 10174 return false; 10175 10176 if (old->active_spin_lock != cur->active_spin_lock) 10177 return false; 10178 10179 /* for states to be equal callsites have to be the same 10180 * and all frame states need to be equivalent 10181 */ 10182 for (i = 0; i <= old->curframe; i++) { 10183 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10184 return false; 10185 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10186 return false; 10187 } 10188 return true; 10189 } 10190 10191 /* Return 0 if no propagation happened. Return negative error code if error 10192 * happened. Otherwise, return the propagated bit. 10193 */ 10194 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10195 struct bpf_reg_state *reg, 10196 struct bpf_reg_state *parent_reg) 10197 { 10198 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10199 u8 flag = reg->live & REG_LIVE_READ; 10200 int err; 10201 10202 /* When comes here, read flags of PARENT_REG or REG could be any of 10203 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10204 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10205 */ 10206 if (parent_flag == REG_LIVE_READ64 || 10207 /* Or if there is no read flag from REG. */ 10208 !flag || 10209 /* Or if the read flag from REG is the same as PARENT_REG. */ 10210 parent_flag == flag) 10211 return 0; 10212 10213 err = mark_reg_read(env, reg, parent_reg, flag); 10214 if (err) 10215 return err; 10216 10217 return flag; 10218 } 10219 10220 /* A write screens off any subsequent reads; but write marks come from the 10221 * straight-line code between a state and its parent. When we arrive at an 10222 * equivalent state (jump target or such) we didn't arrive by the straight-line 10223 * code, so read marks in the state must propagate to the parent regardless 10224 * of the state's write marks. That's what 'parent == state->parent' comparison 10225 * in mark_reg_read() is for. 10226 */ 10227 static int propagate_liveness(struct bpf_verifier_env *env, 10228 const struct bpf_verifier_state *vstate, 10229 struct bpf_verifier_state *vparent) 10230 { 10231 struct bpf_reg_state *state_reg, *parent_reg; 10232 struct bpf_func_state *state, *parent; 10233 int i, frame, err = 0; 10234 10235 if (vparent->curframe != vstate->curframe) { 10236 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10237 vparent->curframe, vstate->curframe); 10238 return -EFAULT; 10239 } 10240 /* Propagate read liveness of registers... */ 10241 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10242 for (frame = 0; frame <= vstate->curframe; frame++) { 10243 parent = vparent->frame[frame]; 10244 state = vstate->frame[frame]; 10245 parent_reg = parent->regs; 10246 state_reg = state->regs; 10247 /* We don't need to worry about FP liveness, it's read-only */ 10248 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10249 err = propagate_liveness_reg(env, &state_reg[i], 10250 &parent_reg[i]); 10251 if (err < 0) 10252 return err; 10253 if (err == REG_LIVE_READ64) 10254 mark_insn_zext(env, &parent_reg[i]); 10255 } 10256 10257 /* Propagate stack slots. */ 10258 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10259 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10260 parent_reg = &parent->stack[i].spilled_ptr; 10261 state_reg = &state->stack[i].spilled_ptr; 10262 err = propagate_liveness_reg(env, state_reg, 10263 parent_reg); 10264 if (err < 0) 10265 return err; 10266 } 10267 } 10268 return 0; 10269 } 10270 10271 /* find precise scalars in the previous equivalent state and 10272 * propagate them into the current state 10273 */ 10274 static int propagate_precision(struct bpf_verifier_env *env, 10275 const struct bpf_verifier_state *old) 10276 { 10277 struct bpf_reg_state *state_reg; 10278 struct bpf_func_state *state; 10279 int i, err = 0; 10280 10281 state = old->frame[old->curframe]; 10282 state_reg = state->regs; 10283 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10284 if (state_reg->type != SCALAR_VALUE || 10285 !state_reg->precise) 10286 continue; 10287 if (env->log.level & BPF_LOG_LEVEL2) 10288 verbose(env, "propagating r%d\n", i); 10289 err = mark_chain_precision(env, i); 10290 if (err < 0) 10291 return err; 10292 } 10293 10294 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10295 if (state->stack[i].slot_type[0] != STACK_SPILL) 10296 continue; 10297 state_reg = &state->stack[i].spilled_ptr; 10298 if (state_reg->type != SCALAR_VALUE || 10299 !state_reg->precise) 10300 continue; 10301 if (env->log.level & BPF_LOG_LEVEL2) 10302 verbose(env, "propagating fp%d\n", 10303 (-i - 1) * BPF_REG_SIZE); 10304 err = mark_chain_precision_stack(env, i); 10305 if (err < 0) 10306 return err; 10307 } 10308 return 0; 10309 } 10310 10311 static bool states_maybe_looping(struct bpf_verifier_state *old, 10312 struct bpf_verifier_state *cur) 10313 { 10314 struct bpf_func_state *fold, *fcur; 10315 int i, fr = cur->curframe; 10316 10317 if (old->curframe != fr) 10318 return false; 10319 10320 fold = old->frame[fr]; 10321 fcur = cur->frame[fr]; 10322 for (i = 0; i < MAX_BPF_REG; i++) 10323 if (memcmp(&fold->regs[i], &fcur->regs[i], 10324 offsetof(struct bpf_reg_state, parent))) 10325 return false; 10326 return true; 10327 } 10328 10329 10330 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10331 { 10332 struct bpf_verifier_state_list *new_sl; 10333 struct bpf_verifier_state_list *sl, **pprev; 10334 struct bpf_verifier_state *cur = env->cur_state, *new; 10335 int i, j, err, states_cnt = 0; 10336 bool add_new_state = env->test_state_freq ? true : false; 10337 10338 cur->last_insn_idx = env->prev_insn_idx; 10339 if (!env->insn_aux_data[insn_idx].prune_point) 10340 /* this 'insn_idx' instruction wasn't marked, so we will not 10341 * be doing state search here 10342 */ 10343 return 0; 10344 10345 /* bpf progs typically have pruning point every 4 instructions 10346 * http://vger.kernel.org/bpfconf2019.html#session-1 10347 * Do not add new state for future pruning if the verifier hasn't seen 10348 * at least 2 jumps and at least 8 instructions. 10349 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10350 * In tests that amounts to up to 50% reduction into total verifier 10351 * memory consumption and 20% verifier time speedup. 10352 */ 10353 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10354 env->insn_processed - env->prev_insn_processed >= 8) 10355 add_new_state = true; 10356 10357 pprev = explored_state(env, insn_idx); 10358 sl = *pprev; 10359 10360 clean_live_states(env, insn_idx, cur); 10361 10362 while (sl) { 10363 states_cnt++; 10364 if (sl->state.insn_idx != insn_idx) 10365 goto next; 10366 if (sl->state.branches) { 10367 if (states_maybe_looping(&sl->state, cur) && 10368 states_equal(env, &sl->state, cur)) { 10369 verbose_linfo(env, insn_idx, "; "); 10370 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10371 return -EINVAL; 10372 } 10373 /* if the verifier is processing a loop, avoid adding new state 10374 * too often, since different loop iterations have distinct 10375 * states and may not help future pruning. 10376 * This threshold shouldn't be too low to make sure that 10377 * a loop with large bound will be rejected quickly. 10378 * The most abusive loop will be: 10379 * r1 += 1 10380 * if r1 < 1000000 goto pc-2 10381 * 1M insn_procssed limit / 100 == 10k peak states. 10382 * This threshold shouldn't be too high either, since states 10383 * at the end of the loop are likely to be useful in pruning. 10384 */ 10385 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10386 env->insn_processed - env->prev_insn_processed < 100) 10387 add_new_state = false; 10388 goto miss; 10389 } 10390 if (states_equal(env, &sl->state, cur)) { 10391 sl->hit_cnt++; 10392 /* reached equivalent register/stack state, 10393 * prune the search. 10394 * Registers read by the continuation are read by us. 10395 * If we have any write marks in env->cur_state, they 10396 * will prevent corresponding reads in the continuation 10397 * from reaching our parent (an explored_state). Our 10398 * own state will get the read marks recorded, but 10399 * they'll be immediately forgotten as we're pruning 10400 * this state and will pop a new one. 10401 */ 10402 err = propagate_liveness(env, &sl->state, cur); 10403 10404 /* if previous state reached the exit with precision and 10405 * current state is equivalent to it (except precsion marks) 10406 * the precision needs to be propagated back in 10407 * the current state. 10408 */ 10409 err = err ? : push_jmp_history(env, cur); 10410 err = err ? : propagate_precision(env, &sl->state); 10411 if (err) 10412 return err; 10413 return 1; 10414 } 10415 miss: 10416 /* when new state is not going to be added do not increase miss count. 10417 * Otherwise several loop iterations will remove the state 10418 * recorded earlier. The goal of these heuristics is to have 10419 * states from some iterations of the loop (some in the beginning 10420 * and some at the end) to help pruning. 10421 */ 10422 if (add_new_state) 10423 sl->miss_cnt++; 10424 /* heuristic to determine whether this state is beneficial 10425 * to keep checking from state equivalence point of view. 10426 * Higher numbers increase max_states_per_insn and verification time, 10427 * but do not meaningfully decrease insn_processed. 10428 */ 10429 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10430 /* the state is unlikely to be useful. Remove it to 10431 * speed up verification 10432 */ 10433 *pprev = sl->next; 10434 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10435 u32 br = sl->state.branches; 10436 10437 WARN_ONCE(br, 10438 "BUG live_done but branches_to_explore %d\n", 10439 br); 10440 free_verifier_state(&sl->state, false); 10441 kfree(sl); 10442 env->peak_states--; 10443 } else { 10444 /* cannot free this state, since parentage chain may 10445 * walk it later. Add it for free_list instead to 10446 * be freed at the end of verification 10447 */ 10448 sl->next = env->free_list; 10449 env->free_list = sl; 10450 } 10451 sl = *pprev; 10452 continue; 10453 } 10454 next: 10455 pprev = &sl->next; 10456 sl = *pprev; 10457 } 10458 10459 if (env->max_states_per_insn < states_cnt) 10460 env->max_states_per_insn = states_cnt; 10461 10462 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10463 return push_jmp_history(env, cur); 10464 10465 if (!add_new_state) 10466 return push_jmp_history(env, cur); 10467 10468 /* There were no equivalent states, remember the current one. 10469 * Technically the current state is not proven to be safe yet, 10470 * but it will either reach outer most bpf_exit (which means it's safe) 10471 * or it will be rejected. When there are no loops the verifier won't be 10472 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10473 * again on the way to bpf_exit. 10474 * When looping the sl->state.branches will be > 0 and this state 10475 * will not be considered for equivalence until branches == 0. 10476 */ 10477 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10478 if (!new_sl) 10479 return -ENOMEM; 10480 env->total_states++; 10481 env->peak_states++; 10482 env->prev_jmps_processed = env->jmps_processed; 10483 env->prev_insn_processed = env->insn_processed; 10484 10485 /* add new state to the head of linked list */ 10486 new = &new_sl->state; 10487 err = copy_verifier_state(new, cur); 10488 if (err) { 10489 free_verifier_state(new, false); 10490 kfree(new_sl); 10491 return err; 10492 } 10493 new->insn_idx = insn_idx; 10494 WARN_ONCE(new->branches != 1, 10495 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10496 10497 cur->parent = new; 10498 cur->first_insn_idx = insn_idx; 10499 clear_jmp_history(cur); 10500 new_sl->next = *explored_state(env, insn_idx); 10501 *explored_state(env, insn_idx) = new_sl; 10502 /* connect new state to parentage chain. Current frame needs all 10503 * registers connected. Only r6 - r9 of the callers are alive (pushed 10504 * to the stack implicitly by JITs) so in callers' frames connect just 10505 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10506 * the state of the call instruction (with WRITTEN set), and r0 comes 10507 * from callee with its full parentage chain, anyway. 10508 */ 10509 /* clear write marks in current state: the writes we did are not writes 10510 * our child did, so they don't screen off its reads from us. 10511 * (There are no read marks in current state, because reads always mark 10512 * their parent and current state never has children yet. Only 10513 * explored_states can get read marks.) 10514 */ 10515 for (j = 0; j <= cur->curframe; j++) { 10516 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 10517 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 10518 for (i = 0; i < BPF_REG_FP; i++) 10519 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 10520 } 10521 10522 /* all stack frames are accessible from callee, clear them all */ 10523 for (j = 0; j <= cur->curframe; j++) { 10524 struct bpf_func_state *frame = cur->frame[j]; 10525 struct bpf_func_state *newframe = new->frame[j]; 10526 10527 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 10528 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 10529 frame->stack[i].spilled_ptr.parent = 10530 &newframe->stack[i].spilled_ptr; 10531 } 10532 } 10533 return 0; 10534 } 10535 10536 /* Return true if it's OK to have the same insn return a different type. */ 10537 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 10538 { 10539 switch (type) { 10540 case PTR_TO_CTX: 10541 case PTR_TO_SOCKET: 10542 case PTR_TO_SOCKET_OR_NULL: 10543 case PTR_TO_SOCK_COMMON: 10544 case PTR_TO_SOCK_COMMON_OR_NULL: 10545 case PTR_TO_TCP_SOCK: 10546 case PTR_TO_TCP_SOCK_OR_NULL: 10547 case PTR_TO_XDP_SOCK: 10548 case PTR_TO_BTF_ID: 10549 case PTR_TO_BTF_ID_OR_NULL: 10550 return false; 10551 default: 10552 return true; 10553 } 10554 } 10555 10556 /* If an instruction was previously used with particular pointer types, then we 10557 * need to be careful to avoid cases such as the below, where it may be ok 10558 * for one branch accessing the pointer, but not ok for the other branch: 10559 * 10560 * R1 = sock_ptr 10561 * goto X; 10562 * ... 10563 * R1 = some_other_valid_ptr; 10564 * goto X; 10565 * ... 10566 * R2 = *(u32 *)(R1 + 0); 10567 */ 10568 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 10569 { 10570 return src != prev && (!reg_type_mismatch_ok(src) || 10571 !reg_type_mismatch_ok(prev)); 10572 } 10573 10574 static int do_check(struct bpf_verifier_env *env) 10575 { 10576 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10577 struct bpf_verifier_state *state = env->cur_state; 10578 struct bpf_insn *insns = env->prog->insnsi; 10579 struct bpf_reg_state *regs; 10580 int insn_cnt = env->prog->len; 10581 bool do_print_state = false; 10582 int prev_insn_idx = -1; 10583 10584 for (;;) { 10585 struct bpf_insn *insn; 10586 u8 class; 10587 int err; 10588 10589 env->prev_insn_idx = prev_insn_idx; 10590 if (env->insn_idx >= insn_cnt) { 10591 verbose(env, "invalid insn idx %d insn_cnt %d\n", 10592 env->insn_idx, insn_cnt); 10593 return -EFAULT; 10594 } 10595 10596 insn = &insns[env->insn_idx]; 10597 class = BPF_CLASS(insn->code); 10598 10599 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 10600 verbose(env, 10601 "BPF program is too large. Processed %d insn\n", 10602 env->insn_processed); 10603 return -E2BIG; 10604 } 10605 10606 err = is_state_visited(env, env->insn_idx); 10607 if (err < 0) 10608 return err; 10609 if (err == 1) { 10610 /* found equivalent state, can prune the search */ 10611 if (env->log.level & BPF_LOG_LEVEL) { 10612 if (do_print_state) 10613 verbose(env, "\nfrom %d to %d%s: safe\n", 10614 env->prev_insn_idx, env->insn_idx, 10615 env->cur_state->speculative ? 10616 " (speculative execution)" : ""); 10617 else 10618 verbose(env, "%d: safe\n", env->insn_idx); 10619 } 10620 goto process_bpf_exit; 10621 } 10622 10623 if (signal_pending(current)) 10624 return -EAGAIN; 10625 10626 if (need_resched()) 10627 cond_resched(); 10628 10629 if (env->log.level & BPF_LOG_LEVEL2 || 10630 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10631 if (env->log.level & BPF_LOG_LEVEL2) 10632 verbose(env, "%d:", env->insn_idx); 10633 else 10634 verbose(env, "\nfrom %d to %d%s:", 10635 env->prev_insn_idx, env->insn_idx, 10636 env->cur_state->speculative ? 10637 " (speculative execution)" : ""); 10638 print_verifier_state(env, state->frame[state->curframe]); 10639 do_print_state = false; 10640 } 10641 10642 if (env->log.level & BPF_LOG_LEVEL) { 10643 const struct bpf_insn_cbs cbs = { 10644 .cb_call = disasm_kfunc_name, 10645 .cb_print = verbose, 10646 .private_data = env, 10647 }; 10648 10649 verbose_linfo(env, env->insn_idx, "; "); 10650 verbose(env, "%d: ", env->insn_idx); 10651 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10652 } 10653 10654 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10655 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10656 env->prev_insn_idx); 10657 if (err) 10658 return err; 10659 } 10660 10661 regs = cur_regs(env); 10662 sanitize_mark_insn_seen(env); 10663 prev_insn_idx = env->insn_idx; 10664 10665 if (class == BPF_ALU || class == BPF_ALU64) { 10666 err = check_alu_op(env, insn); 10667 if (err) 10668 return err; 10669 10670 } else if (class == BPF_LDX) { 10671 enum bpf_reg_type *prev_src_type, src_reg_type; 10672 10673 /* check for reserved fields is already done */ 10674 10675 /* check src operand */ 10676 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10677 if (err) 10678 return err; 10679 10680 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10681 if (err) 10682 return err; 10683 10684 src_reg_type = regs[insn->src_reg].type; 10685 10686 /* check that memory (src_reg + off) is readable, 10687 * the state of dst_reg will be updated by this func 10688 */ 10689 err = check_mem_access(env, env->insn_idx, insn->src_reg, 10690 insn->off, BPF_SIZE(insn->code), 10691 BPF_READ, insn->dst_reg, false); 10692 if (err) 10693 return err; 10694 10695 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10696 10697 if (*prev_src_type == NOT_INIT) { 10698 /* saw a valid insn 10699 * dst_reg = *(u32 *)(src_reg + off) 10700 * save type to validate intersecting paths 10701 */ 10702 *prev_src_type = src_reg_type; 10703 10704 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 10705 /* ABuser program is trying to use the same insn 10706 * dst_reg = *(u32*) (src_reg + off) 10707 * with different pointer types: 10708 * src_reg == ctx in one branch and 10709 * src_reg == stack|map in some other branch. 10710 * Reject it. 10711 */ 10712 verbose(env, "same insn cannot be used with different pointers\n"); 10713 return -EINVAL; 10714 } 10715 10716 } else if (class == BPF_STX) { 10717 enum bpf_reg_type *prev_dst_type, dst_reg_type; 10718 10719 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 10720 err = check_atomic(env, env->insn_idx, insn); 10721 if (err) 10722 return err; 10723 env->insn_idx++; 10724 continue; 10725 } 10726 10727 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 10728 verbose(env, "BPF_STX uses reserved fields\n"); 10729 return -EINVAL; 10730 } 10731 10732 /* check src1 operand */ 10733 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10734 if (err) 10735 return err; 10736 /* check src2 operand */ 10737 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10738 if (err) 10739 return err; 10740 10741 dst_reg_type = regs[insn->dst_reg].type; 10742 10743 /* check that memory (dst_reg + off) is writeable */ 10744 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10745 insn->off, BPF_SIZE(insn->code), 10746 BPF_WRITE, insn->src_reg, false); 10747 if (err) 10748 return err; 10749 10750 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10751 10752 if (*prev_dst_type == NOT_INIT) { 10753 *prev_dst_type = dst_reg_type; 10754 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 10755 verbose(env, "same insn cannot be used with different pointers\n"); 10756 return -EINVAL; 10757 } 10758 10759 } else if (class == BPF_ST) { 10760 if (BPF_MODE(insn->code) != BPF_MEM || 10761 insn->src_reg != BPF_REG_0) { 10762 verbose(env, "BPF_ST uses reserved fields\n"); 10763 return -EINVAL; 10764 } 10765 /* check src operand */ 10766 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10767 if (err) 10768 return err; 10769 10770 if (is_ctx_reg(env, insn->dst_reg)) { 10771 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 10772 insn->dst_reg, 10773 reg_type_str[reg_state(env, insn->dst_reg)->type]); 10774 return -EACCES; 10775 } 10776 10777 /* check that memory (dst_reg + off) is writeable */ 10778 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10779 insn->off, BPF_SIZE(insn->code), 10780 BPF_WRITE, -1, false); 10781 if (err) 10782 return err; 10783 10784 } else if (class == BPF_JMP || class == BPF_JMP32) { 10785 u8 opcode = BPF_OP(insn->code); 10786 10787 env->jmps_processed++; 10788 if (opcode == BPF_CALL) { 10789 if (BPF_SRC(insn->code) != BPF_K || 10790 insn->off != 0 || 10791 (insn->src_reg != BPF_REG_0 && 10792 insn->src_reg != BPF_PSEUDO_CALL && 10793 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 10794 insn->dst_reg != BPF_REG_0 || 10795 class == BPF_JMP32) { 10796 verbose(env, "BPF_CALL uses reserved fields\n"); 10797 return -EINVAL; 10798 } 10799 10800 if (env->cur_state->active_spin_lock && 10801 (insn->src_reg == BPF_PSEUDO_CALL || 10802 insn->imm != BPF_FUNC_spin_unlock)) { 10803 verbose(env, "function calls are not allowed while holding a lock\n"); 10804 return -EINVAL; 10805 } 10806 if (insn->src_reg == BPF_PSEUDO_CALL) 10807 err = check_func_call(env, insn, &env->insn_idx); 10808 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 10809 err = check_kfunc_call(env, insn); 10810 else 10811 err = check_helper_call(env, insn, &env->insn_idx); 10812 if (err) 10813 return err; 10814 } else if (opcode == BPF_JA) { 10815 if (BPF_SRC(insn->code) != BPF_K || 10816 insn->imm != 0 || 10817 insn->src_reg != BPF_REG_0 || 10818 insn->dst_reg != BPF_REG_0 || 10819 class == BPF_JMP32) { 10820 verbose(env, "BPF_JA uses reserved fields\n"); 10821 return -EINVAL; 10822 } 10823 10824 env->insn_idx += insn->off + 1; 10825 continue; 10826 10827 } else if (opcode == BPF_EXIT) { 10828 if (BPF_SRC(insn->code) != BPF_K || 10829 insn->imm != 0 || 10830 insn->src_reg != BPF_REG_0 || 10831 insn->dst_reg != BPF_REG_0 || 10832 class == BPF_JMP32) { 10833 verbose(env, "BPF_EXIT uses reserved fields\n"); 10834 return -EINVAL; 10835 } 10836 10837 if (env->cur_state->active_spin_lock) { 10838 verbose(env, "bpf_spin_unlock is missing\n"); 10839 return -EINVAL; 10840 } 10841 10842 if (state->curframe) { 10843 /* exit from nested function */ 10844 err = prepare_func_exit(env, &env->insn_idx); 10845 if (err) 10846 return err; 10847 do_print_state = true; 10848 continue; 10849 } 10850 10851 err = check_reference_leak(env); 10852 if (err) 10853 return err; 10854 10855 err = check_return_code(env); 10856 if (err) 10857 return err; 10858 process_bpf_exit: 10859 update_branch_counts(env, env->cur_state); 10860 err = pop_stack(env, &prev_insn_idx, 10861 &env->insn_idx, pop_log); 10862 if (err < 0) { 10863 if (err != -ENOENT) 10864 return err; 10865 break; 10866 } else { 10867 do_print_state = true; 10868 continue; 10869 } 10870 } else { 10871 err = check_cond_jmp_op(env, insn, &env->insn_idx); 10872 if (err) 10873 return err; 10874 } 10875 } else if (class == BPF_LD) { 10876 u8 mode = BPF_MODE(insn->code); 10877 10878 if (mode == BPF_ABS || mode == BPF_IND) { 10879 err = check_ld_abs(env, insn); 10880 if (err) 10881 return err; 10882 10883 } else if (mode == BPF_IMM) { 10884 err = check_ld_imm(env, insn); 10885 if (err) 10886 return err; 10887 10888 env->insn_idx++; 10889 sanitize_mark_insn_seen(env); 10890 } else { 10891 verbose(env, "invalid BPF_LD mode\n"); 10892 return -EINVAL; 10893 } 10894 } else { 10895 verbose(env, "unknown insn class %d\n", class); 10896 return -EINVAL; 10897 } 10898 10899 env->insn_idx++; 10900 } 10901 10902 return 0; 10903 } 10904 10905 static int find_btf_percpu_datasec(struct btf *btf) 10906 { 10907 const struct btf_type *t; 10908 const char *tname; 10909 int i, n; 10910 10911 /* 10912 * Both vmlinux and module each have their own ".data..percpu" 10913 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 10914 * types to look at only module's own BTF types. 10915 */ 10916 n = btf_nr_types(btf); 10917 if (btf_is_module(btf)) 10918 i = btf_nr_types(btf_vmlinux); 10919 else 10920 i = 1; 10921 10922 for(; i < n; i++) { 10923 t = btf_type_by_id(btf, i); 10924 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 10925 continue; 10926 10927 tname = btf_name_by_offset(btf, t->name_off); 10928 if (!strcmp(tname, ".data..percpu")) 10929 return i; 10930 } 10931 10932 return -ENOENT; 10933 } 10934 10935 /* replace pseudo btf_id with kernel symbol address */ 10936 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 10937 struct bpf_insn *insn, 10938 struct bpf_insn_aux_data *aux) 10939 { 10940 const struct btf_var_secinfo *vsi; 10941 const struct btf_type *datasec; 10942 struct btf_mod_pair *btf_mod; 10943 const struct btf_type *t; 10944 const char *sym_name; 10945 bool percpu = false; 10946 u32 type, id = insn->imm; 10947 struct btf *btf; 10948 s32 datasec_id; 10949 u64 addr; 10950 int i, btf_fd, err; 10951 10952 btf_fd = insn[1].imm; 10953 if (btf_fd) { 10954 btf = btf_get_by_fd(btf_fd); 10955 if (IS_ERR(btf)) { 10956 verbose(env, "invalid module BTF object FD specified.\n"); 10957 return -EINVAL; 10958 } 10959 } else { 10960 if (!btf_vmlinux) { 10961 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 10962 return -EINVAL; 10963 } 10964 btf = btf_vmlinux; 10965 btf_get(btf); 10966 } 10967 10968 t = btf_type_by_id(btf, id); 10969 if (!t) { 10970 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 10971 err = -ENOENT; 10972 goto err_put; 10973 } 10974 10975 if (!btf_type_is_var(t)) { 10976 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 10977 err = -EINVAL; 10978 goto err_put; 10979 } 10980 10981 sym_name = btf_name_by_offset(btf, t->name_off); 10982 addr = kallsyms_lookup_name(sym_name); 10983 if (!addr) { 10984 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 10985 sym_name); 10986 err = -ENOENT; 10987 goto err_put; 10988 } 10989 10990 datasec_id = find_btf_percpu_datasec(btf); 10991 if (datasec_id > 0) { 10992 datasec = btf_type_by_id(btf, datasec_id); 10993 for_each_vsi(i, datasec, vsi) { 10994 if (vsi->type == id) { 10995 percpu = true; 10996 break; 10997 } 10998 } 10999 } 11000 11001 insn[0].imm = (u32)addr; 11002 insn[1].imm = addr >> 32; 11003 11004 type = t->type; 11005 t = btf_type_skip_modifiers(btf, type, NULL); 11006 if (percpu) { 11007 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11008 aux->btf_var.btf = btf; 11009 aux->btf_var.btf_id = type; 11010 } else if (!btf_type_is_struct(t)) { 11011 const struct btf_type *ret; 11012 const char *tname; 11013 u32 tsize; 11014 11015 /* resolve the type size of ksym. */ 11016 ret = btf_resolve_size(btf, t, &tsize); 11017 if (IS_ERR(ret)) { 11018 tname = btf_name_by_offset(btf, t->name_off); 11019 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11020 tname, PTR_ERR(ret)); 11021 err = -EINVAL; 11022 goto err_put; 11023 } 11024 aux->btf_var.reg_type = PTR_TO_MEM; 11025 aux->btf_var.mem_size = tsize; 11026 } else { 11027 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11028 aux->btf_var.btf = btf; 11029 aux->btf_var.btf_id = type; 11030 } 11031 11032 /* check whether we recorded this BTF (and maybe module) already */ 11033 for (i = 0; i < env->used_btf_cnt; i++) { 11034 if (env->used_btfs[i].btf == btf) { 11035 btf_put(btf); 11036 return 0; 11037 } 11038 } 11039 11040 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11041 err = -E2BIG; 11042 goto err_put; 11043 } 11044 11045 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11046 btf_mod->btf = btf; 11047 btf_mod->module = NULL; 11048 11049 /* if we reference variables from kernel module, bump its refcount */ 11050 if (btf_is_module(btf)) { 11051 btf_mod->module = btf_try_get_module(btf); 11052 if (!btf_mod->module) { 11053 err = -ENXIO; 11054 goto err_put; 11055 } 11056 } 11057 11058 env->used_btf_cnt++; 11059 11060 return 0; 11061 err_put: 11062 btf_put(btf); 11063 return err; 11064 } 11065 11066 static int check_map_prealloc(struct bpf_map *map) 11067 { 11068 return (map->map_type != BPF_MAP_TYPE_HASH && 11069 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11070 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11071 !(map->map_flags & BPF_F_NO_PREALLOC); 11072 } 11073 11074 static bool is_tracing_prog_type(enum bpf_prog_type type) 11075 { 11076 switch (type) { 11077 case BPF_PROG_TYPE_KPROBE: 11078 case BPF_PROG_TYPE_TRACEPOINT: 11079 case BPF_PROG_TYPE_PERF_EVENT: 11080 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11081 return true; 11082 default: 11083 return false; 11084 } 11085 } 11086 11087 static bool is_preallocated_map(struct bpf_map *map) 11088 { 11089 if (!check_map_prealloc(map)) 11090 return false; 11091 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11092 return false; 11093 return true; 11094 } 11095 11096 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11097 struct bpf_map *map, 11098 struct bpf_prog *prog) 11099 11100 { 11101 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11102 /* 11103 * Validate that trace type programs use preallocated hash maps. 11104 * 11105 * For programs attached to PERF events this is mandatory as the 11106 * perf NMI can hit any arbitrary code sequence. 11107 * 11108 * All other trace types using preallocated hash maps are unsafe as 11109 * well because tracepoint or kprobes can be inside locked regions 11110 * of the memory allocator or at a place where a recursion into the 11111 * memory allocator would see inconsistent state. 11112 * 11113 * On RT enabled kernels run-time allocation of all trace type 11114 * programs is strictly prohibited due to lock type constraints. On 11115 * !RT kernels it is allowed for backwards compatibility reasons for 11116 * now, but warnings are emitted so developers are made aware of 11117 * the unsafety and can fix their programs before this is enforced. 11118 */ 11119 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11120 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11121 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11122 return -EINVAL; 11123 } 11124 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11125 verbose(env, "trace type programs can only use preallocated hash map\n"); 11126 return -EINVAL; 11127 } 11128 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11129 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11130 } 11131 11132 if (map_value_has_spin_lock(map)) { 11133 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11134 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11135 return -EINVAL; 11136 } 11137 11138 if (is_tracing_prog_type(prog_type)) { 11139 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11140 return -EINVAL; 11141 } 11142 11143 if (prog->aux->sleepable) { 11144 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11145 return -EINVAL; 11146 } 11147 } 11148 11149 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11150 !bpf_offload_prog_map_match(prog, map)) { 11151 verbose(env, "offload device mismatch between prog and map\n"); 11152 return -EINVAL; 11153 } 11154 11155 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11156 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11157 return -EINVAL; 11158 } 11159 11160 if (prog->aux->sleepable) 11161 switch (map->map_type) { 11162 case BPF_MAP_TYPE_HASH: 11163 case BPF_MAP_TYPE_LRU_HASH: 11164 case BPF_MAP_TYPE_ARRAY: 11165 case BPF_MAP_TYPE_PERCPU_HASH: 11166 case BPF_MAP_TYPE_PERCPU_ARRAY: 11167 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11168 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11169 case BPF_MAP_TYPE_HASH_OF_MAPS: 11170 if (!is_preallocated_map(map)) { 11171 verbose(env, 11172 "Sleepable programs can only use preallocated maps\n"); 11173 return -EINVAL; 11174 } 11175 break; 11176 case BPF_MAP_TYPE_RINGBUF: 11177 break; 11178 default: 11179 verbose(env, 11180 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11181 return -EINVAL; 11182 } 11183 11184 return 0; 11185 } 11186 11187 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11188 { 11189 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11190 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11191 } 11192 11193 /* find and rewrite pseudo imm in ld_imm64 instructions: 11194 * 11195 * 1. if it accesses map FD, replace it with actual map pointer. 11196 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11197 * 11198 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11199 */ 11200 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11201 { 11202 struct bpf_insn *insn = env->prog->insnsi; 11203 int insn_cnt = env->prog->len; 11204 int i, j, err; 11205 11206 err = bpf_prog_calc_tag(env->prog); 11207 if (err) 11208 return err; 11209 11210 for (i = 0; i < insn_cnt; i++, insn++) { 11211 if (BPF_CLASS(insn->code) == BPF_LDX && 11212 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11213 verbose(env, "BPF_LDX uses reserved fields\n"); 11214 return -EINVAL; 11215 } 11216 11217 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11218 struct bpf_insn_aux_data *aux; 11219 struct bpf_map *map; 11220 struct fd f; 11221 u64 addr; 11222 u32 fd; 11223 11224 if (i == insn_cnt - 1 || insn[1].code != 0 || 11225 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11226 insn[1].off != 0) { 11227 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11228 return -EINVAL; 11229 } 11230 11231 if (insn[0].src_reg == 0) 11232 /* valid generic load 64-bit imm */ 11233 goto next_insn; 11234 11235 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11236 aux = &env->insn_aux_data[i]; 11237 err = check_pseudo_btf_id(env, insn, aux); 11238 if (err) 11239 return err; 11240 goto next_insn; 11241 } 11242 11243 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11244 aux = &env->insn_aux_data[i]; 11245 aux->ptr_type = PTR_TO_FUNC; 11246 goto next_insn; 11247 } 11248 11249 /* In final convert_pseudo_ld_imm64() step, this is 11250 * converted into regular 64-bit imm load insn. 11251 */ 11252 switch (insn[0].src_reg) { 11253 case BPF_PSEUDO_MAP_VALUE: 11254 case BPF_PSEUDO_MAP_IDX_VALUE: 11255 break; 11256 case BPF_PSEUDO_MAP_FD: 11257 case BPF_PSEUDO_MAP_IDX: 11258 if (insn[1].imm == 0) 11259 break; 11260 fallthrough; 11261 default: 11262 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11263 return -EINVAL; 11264 } 11265 11266 switch (insn[0].src_reg) { 11267 case BPF_PSEUDO_MAP_IDX_VALUE: 11268 case BPF_PSEUDO_MAP_IDX: 11269 if (bpfptr_is_null(env->fd_array)) { 11270 verbose(env, "fd_idx without fd_array is invalid\n"); 11271 return -EPROTO; 11272 } 11273 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11274 insn[0].imm * sizeof(fd), 11275 sizeof(fd))) 11276 return -EFAULT; 11277 break; 11278 default: 11279 fd = insn[0].imm; 11280 break; 11281 } 11282 11283 f = fdget(fd); 11284 map = __bpf_map_get(f); 11285 if (IS_ERR(map)) { 11286 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11287 insn[0].imm); 11288 return PTR_ERR(map); 11289 } 11290 11291 err = check_map_prog_compatibility(env, map, env->prog); 11292 if (err) { 11293 fdput(f); 11294 return err; 11295 } 11296 11297 aux = &env->insn_aux_data[i]; 11298 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11299 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11300 addr = (unsigned long)map; 11301 } else { 11302 u32 off = insn[1].imm; 11303 11304 if (off >= BPF_MAX_VAR_OFF) { 11305 verbose(env, "direct value offset of %u is not allowed\n", off); 11306 fdput(f); 11307 return -EINVAL; 11308 } 11309 11310 if (!map->ops->map_direct_value_addr) { 11311 verbose(env, "no direct value access support for this map type\n"); 11312 fdput(f); 11313 return -EINVAL; 11314 } 11315 11316 err = map->ops->map_direct_value_addr(map, &addr, off); 11317 if (err) { 11318 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11319 map->value_size, off); 11320 fdput(f); 11321 return err; 11322 } 11323 11324 aux->map_off = off; 11325 addr += off; 11326 } 11327 11328 insn[0].imm = (u32)addr; 11329 insn[1].imm = addr >> 32; 11330 11331 /* check whether we recorded this map already */ 11332 for (j = 0; j < env->used_map_cnt; j++) { 11333 if (env->used_maps[j] == map) { 11334 aux->map_index = j; 11335 fdput(f); 11336 goto next_insn; 11337 } 11338 } 11339 11340 if (env->used_map_cnt >= MAX_USED_MAPS) { 11341 fdput(f); 11342 return -E2BIG; 11343 } 11344 11345 /* hold the map. If the program is rejected by verifier, 11346 * the map will be released by release_maps() or it 11347 * will be used by the valid program until it's unloaded 11348 * and all maps are released in free_used_maps() 11349 */ 11350 bpf_map_inc(map); 11351 11352 aux->map_index = env->used_map_cnt; 11353 env->used_maps[env->used_map_cnt++] = map; 11354 11355 if (bpf_map_is_cgroup_storage(map) && 11356 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11357 verbose(env, "only one cgroup storage of each type is allowed\n"); 11358 fdput(f); 11359 return -EBUSY; 11360 } 11361 11362 fdput(f); 11363 next_insn: 11364 insn++; 11365 i++; 11366 continue; 11367 } 11368 11369 /* Basic sanity check before we invest more work here. */ 11370 if (!bpf_opcode_in_insntable(insn->code)) { 11371 verbose(env, "unknown opcode %02x\n", insn->code); 11372 return -EINVAL; 11373 } 11374 } 11375 11376 /* now all pseudo BPF_LD_IMM64 instructions load valid 11377 * 'struct bpf_map *' into a register instead of user map_fd. 11378 * These pointers will be used later by verifier to validate map access. 11379 */ 11380 return 0; 11381 } 11382 11383 /* drop refcnt of maps used by the rejected program */ 11384 static void release_maps(struct bpf_verifier_env *env) 11385 { 11386 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11387 env->used_map_cnt); 11388 } 11389 11390 /* drop refcnt of maps used by the rejected program */ 11391 static void release_btfs(struct bpf_verifier_env *env) 11392 { 11393 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11394 env->used_btf_cnt); 11395 } 11396 11397 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11398 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11399 { 11400 struct bpf_insn *insn = env->prog->insnsi; 11401 int insn_cnt = env->prog->len; 11402 int i; 11403 11404 for (i = 0; i < insn_cnt; i++, insn++) { 11405 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11406 continue; 11407 if (insn->src_reg == BPF_PSEUDO_FUNC) 11408 continue; 11409 insn->src_reg = 0; 11410 } 11411 } 11412 11413 /* single env->prog->insni[off] instruction was replaced with the range 11414 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11415 * [0, off) and [off, end) to new locations, so the patched range stays zero 11416 */ 11417 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 11418 struct bpf_prog *new_prog, u32 off, u32 cnt) 11419 { 11420 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 11421 struct bpf_insn *insn = new_prog->insnsi; 11422 u32 old_seen = old_data[off].seen; 11423 u32 prog_len; 11424 int i; 11425 11426 /* aux info at OFF always needs adjustment, no matter fast path 11427 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11428 * original insn at old prog. 11429 */ 11430 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11431 11432 if (cnt == 1) 11433 return 0; 11434 prog_len = new_prog->len; 11435 new_data = vzalloc(array_size(prog_len, 11436 sizeof(struct bpf_insn_aux_data))); 11437 if (!new_data) 11438 return -ENOMEM; 11439 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11440 memcpy(new_data + off + cnt - 1, old_data + off, 11441 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11442 for (i = off; i < off + cnt - 1; i++) { 11443 /* Expand insni[off]'s seen count to the patched range. */ 11444 new_data[i].seen = old_seen; 11445 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11446 } 11447 env->insn_aux_data = new_data; 11448 vfree(old_data); 11449 return 0; 11450 } 11451 11452 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11453 { 11454 int i; 11455 11456 if (len == 1) 11457 return; 11458 /* NOTE: fake 'exit' subprog should be updated as well. */ 11459 for (i = 0; i <= env->subprog_cnt; i++) { 11460 if (env->subprog_info[i].start <= off) 11461 continue; 11462 env->subprog_info[i].start += len - 1; 11463 } 11464 } 11465 11466 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11467 { 11468 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11469 int i, sz = prog->aux->size_poke_tab; 11470 struct bpf_jit_poke_descriptor *desc; 11471 11472 for (i = 0; i < sz; i++) { 11473 desc = &tab[i]; 11474 if (desc->insn_idx <= off) 11475 continue; 11476 desc->insn_idx += len - 1; 11477 } 11478 } 11479 11480 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11481 const struct bpf_insn *patch, u32 len) 11482 { 11483 struct bpf_prog *new_prog; 11484 11485 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11486 if (IS_ERR(new_prog)) { 11487 if (PTR_ERR(new_prog) == -ERANGE) 11488 verbose(env, 11489 "insn %d cannot be patched due to 16-bit range\n", 11490 env->insn_aux_data[off].orig_idx); 11491 return NULL; 11492 } 11493 if (adjust_insn_aux_data(env, new_prog, off, len)) 11494 return NULL; 11495 adjust_subprog_starts(env, off, len); 11496 adjust_poke_descs(new_prog, off, len); 11497 return new_prog; 11498 } 11499 11500 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 11501 u32 off, u32 cnt) 11502 { 11503 int i, j; 11504 11505 /* find first prog starting at or after off (first to remove) */ 11506 for (i = 0; i < env->subprog_cnt; i++) 11507 if (env->subprog_info[i].start >= off) 11508 break; 11509 /* find first prog starting at or after off + cnt (first to stay) */ 11510 for (j = i; j < env->subprog_cnt; j++) 11511 if (env->subprog_info[j].start >= off + cnt) 11512 break; 11513 /* if j doesn't start exactly at off + cnt, we are just removing 11514 * the front of previous prog 11515 */ 11516 if (env->subprog_info[j].start != off + cnt) 11517 j--; 11518 11519 if (j > i) { 11520 struct bpf_prog_aux *aux = env->prog->aux; 11521 int move; 11522 11523 /* move fake 'exit' subprog as well */ 11524 move = env->subprog_cnt + 1 - j; 11525 11526 memmove(env->subprog_info + i, 11527 env->subprog_info + j, 11528 sizeof(*env->subprog_info) * move); 11529 env->subprog_cnt -= j - i; 11530 11531 /* remove func_info */ 11532 if (aux->func_info) { 11533 move = aux->func_info_cnt - j; 11534 11535 memmove(aux->func_info + i, 11536 aux->func_info + j, 11537 sizeof(*aux->func_info) * move); 11538 aux->func_info_cnt -= j - i; 11539 /* func_info->insn_off is set after all code rewrites, 11540 * in adjust_btf_func() - no need to adjust 11541 */ 11542 } 11543 } else { 11544 /* convert i from "first prog to remove" to "first to adjust" */ 11545 if (env->subprog_info[i].start == off) 11546 i++; 11547 } 11548 11549 /* update fake 'exit' subprog as well */ 11550 for (; i <= env->subprog_cnt; i++) 11551 env->subprog_info[i].start -= cnt; 11552 11553 return 0; 11554 } 11555 11556 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 11557 u32 cnt) 11558 { 11559 struct bpf_prog *prog = env->prog; 11560 u32 i, l_off, l_cnt, nr_linfo; 11561 struct bpf_line_info *linfo; 11562 11563 nr_linfo = prog->aux->nr_linfo; 11564 if (!nr_linfo) 11565 return 0; 11566 11567 linfo = prog->aux->linfo; 11568 11569 /* find first line info to remove, count lines to be removed */ 11570 for (i = 0; i < nr_linfo; i++) 11571 if (linfo[i].insn_off >= off) 11572 break; 11573 11574 l_off = i; 11575 l_cnt = 0; 11576 for (; i < nr_linfo; i++) 11577 if (linfo[i].insn_off < off + cnt) 11578 l_cnt++; 11579 else 11580 break; 11581 11582 /* First live insn doesn't match first live linfo, it needs to "inherit" 11583 * last removed linfo. prog is already modified, so prog->len == off 11584 * means no live instructions after (tail of the program was removed). 11585 */ 11586 if (prog->len != off && l_cnt && 11587 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 11588 l_cnt--; 11589 linfo[--i].insn_off = off + cnt; 11590 } 11591 11592 /* remove the line info which refer to the removed instructions */ 11593 if (l_cnt) { 11594 memmove(linfo + l_off, linfo + i, 11595 sizeof(*linfo) * (nr_linfo - i)); 11596 11597 prog->aux->nr_linfo -= l_cnt; 11598 nr_linfo = prog->aux->nr_linfo; 11599 } 11600 11601 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 11602 for (i = l_off; i < nr_linfo; i++) 11603 linfo[i].insn_off -= cnt; 11604 11605 /* fix up all subprogs (incl. 'exit') which start >= off */ 11606 for (i = 0; i <= env->subprog_cnt; i++) 11607 if (env->subprog_info[i].linfo_idx > l_off) { 11608 /* program may have started in the removed region but 11609 * may not be fully removed 11610 */ 11611 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 11612 env->subprog_info[i].linfo_idx -= l_cnt; 11613 else 11614 env->subprog_info[i].linfo_idx = l_off; 11615 } 11616 11617 return 0; 11618 } 11619 11620 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 11621 { 11622 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11623 unsigned int orig_prog_len = env->prog->len; 11624 int err; 11625 11626 if (bpf_prog_is_dev_bound(env->prog->aux)) 11627 bpf_prog_offload_remove_insns(env, off, cnt); 11628 11629 err = bpf_remove_insns(env->prog, off, cnt); 11630 if (err) 11631 return err; 11632 11633 err = adjust_subprog_starts_after_remove(env, off, cnt); 11634 if (err) 11635 return err; 11636 11637 err = bpf_adj_linfo_after_remove(env, off, cnt); 11638 if (err) 11639 return err; 11640 11641 memmove(aux_data + off, aux_data + off + cnt, 11642 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 11643 11644 return 0; 11645 } 11646 11647 /* The verifier does more data flow analysis than llvm and will not 11648 * explore branches that are dead at run time. Malicious programs can 11649 * have dead code too. Therefore replace all dead at-run-time code 11650 * with 'ja -1'. 11651 * 11652 * Just nops are not optimal, e.g. if they would sit at the end of the 11653 * program and through another bug we would manage to jump there, then 11654 * we'd execute beyond program memory otherwise. Returning exception 11655 * code also wouldn't work since we can have subprogs where the dead 11656 * code could be located. 11657 */ 11658 static void sanitize_dead_code(struct bpf_verifier_env *env) 11659 { 11660 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11661 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 11662 struct bpf_insn *insn = env->prog->insnsi; 11663 const int insn_cnt = env->prog->len; 11664 int i; 11665 11666 for (i = 0; i < insn_cnt; i++) { 11667 if (aux_data[i].seen) 11668 continue; 11669 memcpy(insn + i, &trap, sizeof(trap)); 11670 aux_data[i].zext_dst = false; 11671 } 11672 } 11673 11674 static bool insn_is_cond_jump(u8 code) 11675 { 11676 u8 op; 11677 11678 if (BPF_CLASS(code) == BPF_JMP32) 11679 return true; 11680 11681 if (BPF_CLASS(code) != BPF_JMP) 11682 return false; 11683 11684 op = BPF_OP(code); 11685 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 11686 } 11687 11688 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 11689 { 11690 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11691 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11692 struct bpf_insn *insn = env->prog->insnsi; 11693 const int insn_cnt = env->prog->len; 11694 int i; 11695 11696 for (i = 0; i < insn_cnt; i++, insn++) { 11697 if (!insn_is_cond_jump(insn->code)) 11698 continue; 11699 11700 if (!aux_data[i + 1].seen) 11701 ja.off = insn->off; 11702 else if (!aux_data[i + 1 + insn->off].seen) 11703 ja.off = 0; 11704 else 11705 continue; 11706 11707 if (bpf_prog_is_dev_bound(env->prog->aux)) 11708 bpf_prog_offload_replace_insn(env, i, &ja); 11709 11710 memcpy(insn, &ja, sizeof(ja)); 11711 } 11712 } 11713 11714 static int opt_remove_dead_code(struct bpf_verifier_env *env) 11715 { 11716 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11717 int insn_cnt = env->prog->len; 11718 int i, err; 11719 11720 for (i = 0; i < insn_cnt; i++) { 11721 int j; 11722 11723 j = 0; 11724 while (i + j < insn_cnt && !aux_data[i + j].seen) 11725 j++; 11726 if (!j) 11727 continue; 11728 11729 err = verifier_remove_insns(env, i, j); 11730 if (err) 11731 return err; 11732 insn_cnt = env->prog->len; 11733 } 11734 11735 return 0; 11736 } 11737 11738 static int opt_remove_nops(struct bpf_verifier_env *env) 11739 { 11740 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11741 struct bpf_insn *insn = env->prog->insnsi; 11742 int insn_cnt = env->prog->len; 11743 int i, err; 11744 11745 for (i = 0; i < insn_cnt; i++) { 11746 if (memcmp(&insn[i], &ja, sizeof(ja))) 11747 continue; 11748 11749 err = verifier_remove_insns(env, i, 1); 11750 if (err) 11751 return err; 11752 insn_cnt--; 11753 i--; 11754 } 11755 11756 return 0; 11757 } 11758 11759 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 11760 const union bpf_attr *attr) 11761 { 11762 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 11763 struct bpf_insn_aux_data *aux = env->insn_aux_data; 11764 int i, patch_len, delta = 0, len = env->prog->len; 11765 struct bpf_insn *insns = env->prog->insnsi; 11766 struct bpf_prog *new_prog; 11767 bool rnd_hi32; 11768 11769 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 11770 zext_patch[1] = BPF_ZEXT_REG(0); 11771 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 11772 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 11773 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 11774 for (i = 0; i < len; i++) { 11775 int adj_idx = i + delta; 11776 struct bpf_insn insn; 11777 int load_reg; 11778 11779 insn = insns[adj_idx]; 11780 load_reg = insn_def_regno(&insn); 11781 if (!aux[adj_idx].zext_dst) { 11782 u8 code, class; 11783 u32 imm_rnd; 11784 11785 if (!rnd_hi32) 11786 continue; 11787 11788 code = insn.code; 11789 class = BPF_CLASS(code); 11790 if (load_reg == -1) 11791 continue; 11792 11793 /* NOTE: arg "reg" (the fourth one) is only used for 11794 * BPF_STX + SRC_OP, so it is safe to pass NULL 11795 * here. 11796 */ 11797 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 11798 if (class == BPF_LD && 11799 BPF_MODE(code) == BPF_IMM) 11800 i++; 11801 continue; 11802 } 11803 11804 /* ctx load could be transformed into wider load. */ 11805 if (class == BPF_LDX && 11806 aux[adj_idx].ptr_type == PTR_TO_CTX) 11807 continue; 11808 11809 imm_rnd = get_random_int(); 11810 rnd_hi32_patch[0] = insn; 11811 rnd_hi32_patch[1].imm = imm_rnd; 11812 rnd_hi32_patch[3].dst_reg = load_reg; 11813 patch = rnd_hi32_patch; 11814 patch_len = 4; 11815 goto apply_patch_buffer; 11816 } 11817 11818 /* Add in an zero-extend instruction if a) the JIT has requested 11819 * it or b) it's a CMPXCHG. 11820 * 11821 * The latter is because: BPF_CMPXCHG always loads a value into 11822 * R0, therefore always zero-extends. However some archs' 11823 * equivalent instruction only does this load when the 11824 * comparison is successful. This detail of CMPXCHG is 11825 * orthogonal to the general zero-extension behaviour of the 11826 * CPU, so it's treated independently of bpf_jit_needs_zext. 11827 */ 11828 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 11829 continue; 11830 11831 if (WARN_ON(load_reg == -1)) { 11832 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 11833 return -EFAULT; 11834 } 11835 11836 zext_patch[0] = insn; 11837 zext_patch[1].dst_reg = load_reg; 11838 zext_patch[1].src_reg = load_reg; 11839 patch = zext_patch; 11840 patch_len = 2; 11841 apply_patch_buffer: 11842 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 11843 if (!new_prog) 11844 return -ENOMEM; 11845 env->prog = new_prog; 11846 insns = new_prog->insnsi; 11847 aux = env->insn_aux_data; 11848 delta += patch_len - 1; 11849 } 11850 11851 return 0; 11852 } 11853 11854 /* convert load instructions that access fields of a context type into a 11855 * sequence of instructions that access fields of the underlying structure: 11856 * struct __sk_buff -> struct sk_buff 11857 * struct bpf_sock_ops -> struct sock 11858 */ 11859 static int convert_ctx_accesses(struct bpf_verifier_env *env) 11860 { 11861 const struct bpf_verifier_ops *ops = env->ops; 11862 int i, cnt, size, ctx_field_size, delta = 0; 11863 const int insn_cnt = env->prog->len; 11864 struct bpf_insn insn_buf[16], *insn; 11865 u32 target_size, size_default, off; 11866 struct bpf_prog *new_prog; 11867 enum bpf_access_type type; 11868 bool is_narrower_load; 11869 11870 if (ops->gen_prologue || env->seen_direct_write) { 11871 if (!ops->gen_prologue) { 11872 verbose(env, "bpf verifier is misconfigured\n"); 11873 return -EINVAL; 11874 } 11875 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 11876 env->prog); 11877 if (cnt >= ARRAY_SIZE(insn_buf)) { 11878 verbose(env, "bpf verifier is misconfigured\n"); 11879 return -EINVAL; 11880 } else if (cnt) { 11881 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 11882 if (!new_prog) 11883 return -ENOMEM; 11884 11885 env->prog = new_prog; 11886 delta += cnt - 1; 11887 } 11888 } 11889 11890 if (bpf_prog_is_dev_bound(env->prog->aux)) 11891 return 0; 11892 11893 insn = env->prog->insnsi + delta; 11894 11895 for (i = 0; i < insn_cnt; i++, insn++) { 11896 bpf_convert_ctx_access_t convert_ctx_access; 11897 bool ctx_access; 11898 11899 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 11900 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 11901 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 11902 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 11903 type = BPF_READ; 11904 ctx_access = true; 11905 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 11906 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 11907 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 11908 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 11909 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 11910 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 11911 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 11912 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 11913 type = BPF_WRITE; 11914 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 11915 } else { 11916 continue; 11917 } 11918 11919 if (type == BPF_WRITE && 11920 env->insn_aux_data[i + delta].sanitize_stack_spill) { 11921 struct bpf_insn patch[] = { 11922 *insn, 11923 BPF_ST_NOSPEC(), 11924 }; 11925 11926 cnt = ARRAY_SIZE(patch); 11927 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 11928 if (!new_prog) 11929 return -ENOMEM; 11930 11931 delta += cnt - 1; 11932 env->prog = new_prog; 11933 insn = new_prog->insnsi + i + delta; 11934 continue; 11935 } 11936 11937 if (!ctx_access) 11938 continue; 11939 11940 switch (env->insn_aux_data[i + delta].ptr_type) { 11941 case PTR_TO_CTX: 11942 if (!ops->convert_ctx_access) 11943 continue; 11944 convert_ctx_access = ops->convert_ctx_access; 11945 break; 11946 case PTR_TO_SOCKET: 11947 case PTR_TO_SOCK_COMMON: 11948 convert_ctx_access = bpf_sock_convert_ctx_access; 11949 break; 11950 case PTR_TO_TCP_SOCK: 11951 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 11952 break; 11953 case PTR_TO_XDP_SOCK: 11954 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 11955 break; 11956 case PTR_TO_BTF_ID: 11957 if (type == BPF_READ) { 11958 insn->code = BPF_LDX | BPF_PROBE_MEM | 11959 BPF_SIZE((insn)->code); 11960 env->prog->aux->num_exentries++; 11961 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 11962 verbose(env, "Writes through BTF pointers are not allowed\n"); 11963 return -EINVAL; 11964 } 11965 continue; 11966 default: 11967 continue; 11968 } 11969 11970 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 11971 size = BPF_LDST_BYTES(insn); 11972 11973 /* If the read access is a narrower load of the field, 11974 * convert to a 4/8-byte load, to minimum program type specific 11975 * convert_ctx_access changes. If conversion is successful, 11976 * we will apply proper mask to the result. 11977 */ 11978 is_narrower_load = size < ctx_field_size; 11979 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 11980 off = insn->off; 11981 if (is_narrower_load) { 11982 u8 size_code; 11983 11984 if (type == BPF_WRITE) { 11985 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 11986 return -EINVAL; 11987 } 11988 11989 size_code = BPF_H; 11990 if (ctx_field_size == 4) 11991 size_code = BPF_W; 11992 else if (ctx_field_size == 8) 11993 size_code = BPF_DW; 11994 11995 insn->off = off & ~(size_default - 1); 11996 insn->code = BPF_LDX | BPF_MEM | size_code; 11997 } 11998 11999 target_size = 0; 12000 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12001 &target_size); 12002 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12003 (ctx_field_size && !target_size)) { 12004 verbose(env, "bpf verifier is misconfigured\n"); 12005 return -EINVAL; 12006 } 12007 12008 if (is_narrower_load && size < target_size) { 12009 u8 shift = bpf_ctx_narrow_access_offset( 12010 off, size, size_default) * 8; 12011 if (ctx_field_size <= 4) { 12012 if (shift) 12013 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12014 insn->dst_reg, 12015 shift); 12016 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12017 (1 << size * 8) - 1); 12018 } else { 12019 if (shift) 12020 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12021 insn->dst_reg, 12022 shift); 12023 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12024 (1ULL << size * 8) - 1); 12025 } 12026 } 12027 12028 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12029 if (!new_prog) 12030 return -ENOMEM; 12031 12032 delta += cnt - 1; 12033 12034 /* keep walking new program and skip insns we just inserted */ 12035 env->prog = new_prog; 12036 insn = new_prog->insnsi + i + delta; 12037 } 12038 12039 return 0; 12040 } 12041 12042 static int jit_subprogs(struct bpf_verifier_env *env) 12043 { 12044 struct bpf_prog *prog = env->prog, **func, *tmp; 12045 int i, j, subprog_start, subprog_end = 0, len, subprog; 12046 struct bpf_map *map_ptr; 12047 struct bpf_insn *insn; 12048 void *old_bpf_func; 12049 int err, num_exentries; 12050 12051 if (env->subprog_cnt <= 1) 12052 return 0; 12053 12054 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12055 if (bpf_pseudo_func(insn)) { 12056 env->insn_aux_data[i].call_imm = insn->imm; 12057 /* subprog is encoded in insn[1].imm */ 12058 continue; 12059 } 12060 12061 if (!bpf_pseudo_call(insn)) 12062 continue; 12063 /* Upon error here we cannot fall back to interpreter but 12064 * need a hard reject of the program. Thus -EFAULT is 12065 * propagated in any case. 12066 */ 12067 subprog = find_subprog(env, i + insn->imm + 1); 12068 if (subprog < 0) { 12069 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12070 i + insn->imm + 1); 12071 return -EFAULT; 12072 } 12073 /* temporarily remember subprog id inside insn instead of 12074 * aux_data, since next loop will split up all insns into funcs 12075 */ 12076 insn->off = subprog; 12077 /* remember original imm in case JIT fails and fallback 12078 * to interpreter will be needed 12079 */ 12080 env->insn_aux_data[i].call_imm = insn->imm; 12081 /* point imm to __bpf_call_base+1 from JITs point of view */ 12082 insn->imm = 1; 12083 } 12084 12085 err = bpf_prog_alloc_jited_linfo(prog); 12086 if (err) 12087 goto out_undo_insn; 12088 12089 err = -ENOMEM; 12090 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12091 if (!func) 12092 goto out_undo_insn; 12093 12094 for (i = 0; i < env->subprog_cnt; i++) { 12095 subprog_start = subprog_end; 12096 subprog_end = env->subprog_info[i + 1].start; 12097 12098 len = subprog_end - subprog_start; 12099 /* BPF_PROG_RUN doesn't call subprogs directly, 12100 * hence main prog stats include the runtime of subprogs. 12101 * subprogs don't have IDs and not reachable via prog_get_next_id 12102 * func[i]->stats will never be accessed and stays NULL 12103 */ 12104 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12105 if (!func[i]) 12106 goto out_free; 12107 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12108 len * sizeof(struct bpf_insn)); 12109 func[i]->type = prog->type; 12110 func[i]->len = len; 12111 if (bpf_prog_calc_tag(func[i])) 12112 goto out_free; 12113 func[i]->is_func = 1; 12114 func[i]->aux->func_idx = i; 12115 /* Below members will be freed only at prog->aux */ 12116 func[i]->aux->btf = prog->aux->btf; 12117 func[i]->aux->func_info = prog->aux->func_info; 12118 func[i]->aux->poke_tab = prog->aux->poke_tab; 12119 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12120 12121 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12122 struct bpf_jit_poke_descriptor *poke; 12123 12124 poke = &prog->aux->poke_tab[j]; 12125 if (poke->insn_idx < subprog_end && 12126 poke->insn_idx >= subprog_start) 12127 poke->aux = func[i]->aux; 12128 } 12129 12130 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12131 * Long term would need debug info to populate names 12132 */ 12133 func[i]->aux->name[0] = 'F'; 12134 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12135 func[i]->jit_requested = 1; 12136 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12137 func[i]->aux->linfo = prog->aux->linfo; 12138 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12139 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12140 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12141 num_exentries = 0; 12142 insn = func[i]->insnsi; 12143 for (j = 0; j < func[i]->len; j++, insn++) { 12144 if (BPF_CLASS(insn->code) == BPF_LDX && 12145 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12146 num_exentries++; 12147 } 12148 func[i]->aux->num_exentries = num_exentries; 12149 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12150 func[i] = bpf_int_jit_compile(func[i]); 12151 if (!func[i]->jited) { 12152 err = -ENOTSUPP; 12153 goto out_free; 12154 } 12155 cond_resched(); 12156 } 12157 12158 /* at this point all bpf functions were successfully JITed 12159 * now populate all bpf_calls with correct addresses and 12160 * run last pass of JIT 12161 */ 12162 for (i = 0; i < env->subprog_cnt; i++) { 12163 insn = func[i]->insnsi; 12164 for (j = 0; j < func[i]->len; j++, insn++) { 12165 if (bpf_pseudo_func(insn)) { 12166 subprog = insn[1].imm; 12167 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12168 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12169 continue; 12170 } 12171 if (!bpf_pseudo_call(insn)) 12172 continue; 12173 subprog = insn->off; 12174 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 12175 __bpf_call_base; 12176 } 12177 12178 /* we use the aux data to keep a list of the start addresses 12179 * of the JITed images for each function in the program 12180 * 12181 * for some architectures, such as powerpc64, the imm field 12182 * might not be large enough to hold the offset of the start 12183 * address of the callee's JITed image from __bpf_call_base 12184 * 12185 * in such cases, we can lookup the start address of a callee 12186 * by using its subprog id, available from the off field of 12187 * the call instruction, as an index for this list 12188 */ 12189 func[i]->aux->func = func; 12190 func[i]->aux->func_cnt = env->subprog_cnt; 12191 } 12192 for (i = 0; i < env->subprog_cnt; i++) { 12193 old_bpf_func = func[i]->bpf_func; 12194 tmp = bpf_int_jit_compile(func[i]); 12195 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12196 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12197 err = -ENOTSUPP; 12198 goto out_free; 12199 } 12200 cond_resched(); 12201 } 12202 12203 /* finally lock prog and jit images for all functions and 12204 * populate kallsysm 12205 */ 12206 for (i = 0; i < env->subprog_cnt; i++) { 12207 bpf_prog_lock_ro(func[i]); 12208 bpf_prog_kallsyms_add(func[i]); 12209 } 12210 12211 /* Last step: make now unused interpreter insns from main 12212 * prog consistent for later dump requests, so they can 12213 * later look the same as if they were interpreted only. 12214 */ 12215 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12216 if (bpf_pseudo_func(insn)) { 12217 insn[0].imm = env->insn_aux_data[i].call_imm; 12218 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12219 continue; 12220 } 12221 if (!bpf_pseudo_call(insn)) 12222 continue; 12223 insn->off = env->insn_aux_data[i].call_imm; 12224 subprog = find_subprog(env, i + insn->off + 1); 12225 insn->imm = subprog; 12226 } 12227 12228 prog->jited = 1; 12229 prog->bpf_func = func[0]->bpf_func; 12230 prog->aux->func = func; 12231 prog->aux->func_cnt = env->subprog_cnt; 12232 bpf_prog_jit_attempt_done(prog); 12233 return 0; 12234 out_free: 12235 /* We failed JIT'ing, so at this point we need to unregister poke 12236 * descriptors from subprogs, so that kernel is not attempting to 12237 * patch it anymore as we're freeing the subprog JIT memory. 12238 */ 12239 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12240 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12241 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12242 } 12243 /* At this point we're guaranteed that poke descriptors are not 12244 * live anymore. We can just unlink its descriptor table as it's 12245 * released with the main prog. 12246 */ 12247 for (i = 0; i < env->subprog_cnt; i++) { 12248 if (!func[i]) 12249 continue; 12250 func[i]->aux->poke_tab = NULL; 12251 bpf_jit_free(func[i]); 12252 } 12253 kfree(func); 12254 out_undo_insn: 12255 /* cleanup main prog to be interpreted */ 12256 prog->jit_requested = 0; 12257 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12258 if (!bpf_pseudo_call(insn)) 12259 continue; 12260 insn->off = 0; 12261 insn->imm = env->insn_aux_data[i].call_imm; 12262 } 12263 bpf_prog_jit_attempt_done(prog); 12264 return err; 12265 } 12266 12267 static int fixup_call_args(struct bpf_verifier_env *env) 12268 { 12269 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12270 struct bpf_prog *prog = env->prog; 12271 struct bpf_insn *insn = prog->insnsi; 12272 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12273 int i, depth; 12274 #endif 12275 int err = 0; 12276 12277 if (env->prog->jit_requested && 12278 !bpf_prog_is_dev_bound(env->prog->aux)) { 12279 err = jit_subprogs(env); 12280 if (err == 0) 12281 return 0; 12282 if (err == -EFAULT) 12283 return err; 12284 } 12285 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12286 if (has_kfunc_call) { 12287 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12288 return -EINVAL; 12289 } 12290 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12291 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12292 * have to be rejected, since interpreter doesn't support them yet. 12293 */ 12294 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12295 return -EINVAL; 12296 } 12297 for (i = 0; i < prog->len; i++, insn++) { 12298 if (bpf_pseudo_func(insn)) { 12299 /* When JIT fails the progs with callback calls 12300 * have to be rejected, since interpreter doesn't support them yet. 12301 */ 12302 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12303 return -EINVAL; 12304 } 12305 12306 if (!bpf_pseudo_call(insn)) 12307 continue; 12308 depth = get_callee_stack_depth(env, insn, i); 12309 if (depth < 0) 12310 return depth; 12311 bpf_patch_call_args(insn, depth); 12312 } 12313 err = 0; 12314 #endif 12315 return err; 12316 } 12317 12318 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12319 struct bpf_insn *insn) 12320 { 12321 const struct bpf_kfunc_desc *desc; 12322 12323 /* insn->imm has the btf func_id. Replace it with 12324 * an address (relative to __bpf_base_call). 12325 */ 12326 desc = find_kfunc_desc(env->prog, insn->imm); 12327 if (!desc) { 12328 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12329 insn->imm); 12330 return -EFAULT; 12331 } 12332 12333 insn->imm = desc->imm; 12334 12335 return 0; 12336 } 12337 12338 /* Do various post-verification rewrites in a single program pass. 12339 * These rewrites simplify JIT and interpreter implementations. 12340 */ 12341 static int do_misc_fixups(struct bpf_verifier_env *env) 12342 { 12343 struct bpf_prog *prog = env->prog; 12344 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12345 struct bpf_insn *insn = prog->insnsi; 12346 const struct bpf_func_proto *fn; 12347 const int insn_cnt = prog->len; 12348 const struct bpf_map_ops *ops; 12349 struct bpf_insn_aux_data *aux; 12350 struct bpf_insn insn_buf[16]; 12351 struct bpf_prog *new_prog; 12352 struct bpf_map *map_ptr; 12353 int i, ret, cnt, delta = 0; 12354 12355 for (i = 0; i < insn_cnt; i++, insn++) { 12356 /* Make divide-by-zero exceptions impossible. */ 12357 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12358 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12359 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12360 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12361 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12362 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12363 struct bpf_insn *patchlet; 12364 struct bpf_insn chk_and_div[] = { 12365 /* [R,W]x div 0 -> 0 */ 12366 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12367 BPF_JNE | BPF_K, insn->src_reg, 12368 0, 2, 0), 12369 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12370 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12371 *insn, 12372 }; 12373 struct bpf_insn chk_and_mod[] = { 12374 /* [R,W]x mod 0 -> [R,W]x */ 12375 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12376 BPF_JEQ | BPF_K, insn->src_reg, 12377 0, 1 + (is64 ? 0 : 1), 0), 12378 *insn, 12379 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12380 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12381 }; 12382 12383 patchlet = isdiv ? chk_and_div : chk_and_mod; 12384 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12385 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12386 12387 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12388 if (!new_prog) 12389 return -ENOMEM; 12390 12391 delta += cnt - 1; 12392 env->prog = prog = new_prog; 12393 insn = new_prog->insnsi + i + delta; 12394 continue; 12395 } 12396 12397 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12398 if (BPF_CLASS(insn->code) == BPF_LD && 12399 (BPF_MODE(insn->code) == BPF_ABS || 12400 BPF_MODE(insn->code) == BPF_IND)) { 12401 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12402 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12403 verbose(env, "bpf verifier is misconfigured\n"); 12404 return -EINVAL; 12405 } 12406 12407 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12408 if (!new_prog) 12409 return -ENOMEM; 12410 12411 delta += cnt - 1; 12412 env->prog = prog = new_prog; 12413 insn = new_prog->insnsi + i + delta; 12414 continue; 12415 } 12416 12417 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12418 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12419 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12420 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12421 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12422 struct bpf_insn *patch = &insn_buf[0]; 12423 bool issrc, isneg, isimm; 12424 u32 off_reg; 12425 12426 aux = &env->insn_aux_data[i + delta]; 12427 if (!aux->alu_state || 12428 aux->alu_state == BPF_ALU_NON_POINTER) 12429 continue; 12430 12431 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12432 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12433 BPF_ALU_SANITIZE_SRC; 12434 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12435 12436 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12437 if (isimm) { 12438 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12439 } else { 12440 if (isneg) 12441 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12442 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12443 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12444 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12445 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12446 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12447 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12448 } 12449 if (!issrc) 12450 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12451 insn->src_reg = BPF_REG_AX; 12452 if (isneg) 12453 insn->code = insn->code == code_add ? 12454 code_sub : code_add; 12455 *patch++ = *insn; 12456 if (issrc && isneg && !isimm) 12457 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12458 cnt = patch - insn_buf; 12459 12460 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12461 if (!new_prog) 12462 return -ENOMEM; 12463 12464 delta += cnt - 1; 12465 env->prog = prog = new_prog; 12466 insn = new_prog->insnsi + i + delta; 12467 continue; 12468 } 12469 12470 if (insn->code != (BPF_JMP | BPF_CALL)) 12471 continue; 12472 if (insn->src_reg == BPF_PSEUDO_CALL) 12473 continue; 12474 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12475 ret = fixup_kfunc_call(env, insn); 12476 if (ret) 12477 return ret; 12478 continue; 12479 } 12480 12481 if (insn->imm == BPF_FUNC_get_route_realm) 12482 prog->dst_needed = 1; 12483 if (insn->imm == BPF_FUNC_get_prandom_u32) 12484 bpf_user_rnd_init_once(); 12485 if (insn->imm == BPF_FUNC_override_return) 12486 prog->kprobe_override = 1; 12487 if (insn->imm == BPF_FUNC_tail_call) { 12488 /* If we tail call into other programs, we 12489 * cannot make any assumptions since they can 12490 * be replaced dynamically during runtime in 12491 * the program array. 12492 */ 12493 prog->cb_access = 1; 12494 if (!allow_tail_call_in_subprogs(env)) 12495 prog->aux->stack_depth = MAX_BPF_STACK; 12496 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 12497 12498 /* mark bpf_tail_call as different opcode to avoid 12499 * conditional branch in the interpreter for every normal 12500 * call and to prevent accidental JITing by JIT compiler 12501 * that doesn't support bpf_tail_call yet 12502 */ 12503 insn->imm = 0; 12504 insn->code = BPF_JMP | BPF_TAIL_CALL; 12505 12506 aux = &env->insn_aux_data[i + delta]; 12507 if (env->bpf_capable && !expect_blinding && 12508 prog->jit_requested && 12509 !bpf_map_key_poisoned(aux) && 12510 !bpf_map_ptr_poisoned(aux) && 12511 !bpf_map_ptr_unpriv(aux)) { 12512 struct bpf_jit_poke_descriptor desc = { 12513 .reason = BPF_POKE_REASON_TAIL_CALL, 12514 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 12515 .tail_call.key = bpf_map_key_immediate(aux), 12516 .insn_idx = i + delta, 12517 }; 12518 12519 ret = bpf_jit_add_poke_descriptor(prog, &desc); 12520 if (ret < 0) { 12521 verbose(env, "adding tail call poke descriptor failed\n"); 12522 return ret; 12523 } 12524 12525 insn->imm = ret + 1; 12526 continue; 12527 } 12528 12529 if (!bpf_map_ptr_unpriv(aux)) 12530 continue; 12531 12532 /* instead of changing every JIT dealing with tail_call 12533 * emit two extra insns: 12534 * if (index >= max_entries) goto out; 12535 * index &= array->index_mask; 12536 * to avoid out-of-bounds cpu speculation 12537 */ 12538 if (bpf_map_ptr_poisoned(aux)) { 12539 verbose(env, "tail_call abusing map_ptr\n"); 12540 return -EINVAL; 12541 } 12542 12543 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12544 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 12545 map_ptr->max_entries, 2); 12546 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 12547 container_of(map_ptr, 12548 struct bpf_array, 12549 map)->index_mask); 12550 insn_buf[2] = *insn; 12551 cnt = 3; 12552 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12553 if (!new_prog) 12554 return -ENOMEM; 12555 12556 delta += cnt - 1; 12557 env->prog = prog = new_prog; 12558 insn = new_prog->insnsi + i + delta; 12559 continue; 12560 } 12561 12562 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 12563 * and other inlining handlers are currently limited to 64 bit 12564 * only. 12565 */ 12566 if (prog->jit_requested && BITS_PER_LONG == 64 && 12567 (insn->imm == BPF_FUNC_map_lookup_elem || 12568 insn->imm == BPF_FUNC_map_update_elem || 12569 insn->imm == BPF_FUNC_map_delete_elem || 12570 insn->imm == BPF_FUNC_map_push_elem || 12571 insn->imm == BPF_FUNC_map_pop_elem || 12572 insn->imm == BPF_FUNC_map_peek_elem || 12573 insn->imm == BPF_FUNC_redirect_map)) { 12574 aux = &env->insn_aux_data[i + delta]; 12575 if (bpf_map_ptr_poisoned(aux)) 12576 goto patch_call_imm; 12577 12578 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12579 ops = map_ptr->ops; 12580 if (insn->imm == BPF_FUNC_map_lookup_elem && 12581 ops->map_gen_lookup) { 12582 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 12583 if (cnt == -EOPNOTSUPP) 12584 goto patch_map_ops_generic; 12585 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12586 verbose(env, "bpf verifier is misconfigured\n"); 12587 return -EINVAL; 12588 } 12589 12590 new_prog = bpf_patch_insn_data(env, i + delta, 12591 insn_buf, cnt); 12592 if (!new_prog) 12593 return -ENOMEM; 12594 12595 delta += cnt - 1; 12596 env->prog = prog = new_prog; 12597 insn = new_prog->insnsi + i + delta; 12598 continue; 12599 } 12600 12601 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 12602 (void *(*)(struct bpf_map *map, void *key))NULL)); 12603 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 12604 (int (*)(struct bpf_map *map, void *key))NULL)); 12605 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 12606 (int (*)(struct bpf_map *map, void *key, void *value, 12607 u64 flags))NULL)); 12608 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 12609 (int (*)(struct bpf_map *map, void *value, 12610 u64 flags))NULL)); 12611 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 12612 (int (*)(struct bpf_map *map, void *value))NULL)); 12613 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 12614 (int (*)(struct bpf_map *map, void *value))NULL)); 12615 BUILD_BUG_ON(!__same_type(ops->map_redirect, 12616 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 12617 12618 patch_map_ops_generic: 12619 switch (insn->imm) { 12620 case BPF_FUNC_map_lookup_elem: 12621 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 12622 __bpf_call_base; 12623 continue; 12624 case BPF_FUNC_map_update_elem: 12625 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 12626 __bpf_call_base; 12627 continue; 12628 case BPF_FUNC_map_delete_elem: 12629 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 12630 __bpf_call_base; 12631 continue; 12632 case BPF_FUNC_map_push_elem: 12633 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 12634 __bpf_call_base; 12635 continue; 12636 case BPF_FUNC_map_pop_elem: 12637 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 12638 __bpf_call_base; 12639 continue; 12640 case BPF_FUNC_map_peek_elem: 12641 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 12642 __bpf_call_base; 12643 continue; 12644 case BPF_FUNC_redirect_map: 12645 insn->imm = BPF_CAST_CALL(ops->map_redirect) - 12646 __bpf_call_base; 12647 continue; 12648 } 12649 12650 goto patch_call_imm; 12651 } 12652 12653 /* Implement bpf_jiffies64 inline. */ 12654 if (prog->jit_requested && BITS_PER_LONG == 64 && 12655 insn->imm == BPF_FUNC_jiffies64) { 12656 struct bpf_insn ld_jiffies_addr[2] = { 12657 BPF_LD_IMM64(BPF_REG_0, 12658 (unsigned long)&jiffies), 12659 }; 12660 12661 insn_buf[0] = ld_jiffies_addr[0]; 12662 insn_buf[1] = ld_jiffies_addr[1]; 12663 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 12664 BPF_REG_0, 0); 12665 cnt = 3; 12666 12667 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 12668 cnt); 12669 if (!new_prog) 12670 return -ENOMEM; 12671 12672 delta += cnt - 1; 12673 env->prog = prog = new_prog; 12674 insn = new_prog->insnsi + i + delta; 12675 continue; 12676 } 12677 12678 patch_call_imm: 12679 fn = env->ops->get_func_proto(insn->imm, env->prog); 12680 /* all functions that have prototype and verifier allowed 12681 * programs to call them, must be real in-kernel functions 12682 */ 12683 if (!fn->func) { 12684 verbose(env, 12685 "kernel subsystem misconfigured func %s#%d\n", 12686 func_id_name(insn->imm), insn->imm); 12687 return -EFAULT; 12688 } 12689 insn->imm = fn->func - __bpf_call_base; 12690 } 12691 12692 /* Since poke tab is now finalized, publish aux to tracker. */ 12693 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12694 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12695 if (!map_ptr->ops->map_poke_track || 12696 !map_ptr->ops->map_poke_untrack || 12697 !map_ptr->ops->map_poke_run) { 12698 verbose(env, "bpf verifier is misconfigured\n"); 12699 return -EINVAL; 12700 } 12701 12702 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 12703 if (ret < 0) { 12704 verbose(env, "tracking tail call prog failed\n"); 12705 return ret; 12706 } 12707 } 12708 12709 sort_kfunc_descs_by_imm(env->prog); 12710 12711 return 0; 12712 } 12713 12714 static void free_states(struct bpf_verifier_env *env) 12715 { 12716 struct bpf_verifier_state_list *sl, *sln; 12717 int i; 12718 12719 sl = env->free_list; 12720 while (sl) { 12721 sln = sl->next; 12722 free_verifier_state(&sl->state, false); 12723 kfree(sl); 12724 sl = sln; 12725 } 12726 env->free_list = NULL; 12727 12728 if (!env->explored_states) 12729 return; 12730 12731 for (i = 0; i < state_htab_size(env); i++) { 12732 sl = env->explored_states[i]; 12733 12734 while (sl) { 12735 sln = sl->next; 12736 free_verifier_state(&sl->state, false); 12737 kfree(sl); 12738 sl = sln; 12739 } 12740 env->explored_states[i] = NULL; 12741 } 12742 } 12743 12744 static int do_check_common(struct bpf_verifier_env *env, int subprog) 12745 { 12746 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12747 struct bpf_verifier_state *state; 12748 struct bpf_reg_state *regs; 12749 int ret, i; 12750 12751 env->prev_linfo = NULL; 12752 env->pass_cnt++; 12753 12754 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 12755 if (!state) 12756 return -ENOMEM; 12757 state->curframe = 0; 12758 state->speculative = false; 12759 state->branches = 1; 12760 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 12761 if (!state->frame[0]) { 12762 kfree(state); 12763 return -ENOMEM; 12764 } 12765 env->cur_state = state; 12766 init_func_state(env, state->frame[0], 12767 BPF_MAIN_FUNC /* callsite */, 12768 0 /* frameno */, 12769 subprog); 12770 12771 regs = state->frame[state->curframe]->regs; 12772 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 12773 ret = btf_prepare_func_args(env, subprog, regs); 12774 if (ret) 12775 goto out; 12776 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 12777 if (regs[i].type == PTR_TO_CTX) 12778 mark_reg_known_zero(env, regs, i); 12779 else if (regs[i].type == SCALAR_VALUE) 12780 mark_reg_unknown(env, regs, i); 12781 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 12782 const u32 mem_size = regs[i].mem_size; 12783 12784 mark_reg_known_zero(env, regs, i); 12785 regs[i].mem_size = mem_size; 12786 regs[i].id = ++env->id_gen; 12787 } 12788 } 12789 } else { 12790 /* 1st arg to a function */ 12791 regs[BPF_REG_1].type = PTR_TO_CTX; 12792 mark_reg_known_zero(env, regs, BPF_REG_1); 12793 ret = btf_check_subprog_arg_match(env, subprog, regs); 12794 if (ret == -EFAULT) 12795 /* unlikely verifier bug. abort. 12796 * ret == 0 and ret < 0 are sadly acceptable for 12797 * main() function due to backward compatibility. 12798 * Like socket filter program may be written as: 12799 * int bpf_prog(struct pt_regs *ctx) 12800 * and never dereference that ctx in the program. 12801 * 'struct pt_regs' is a type mismatch for socket 12802 * filter that should be using 'struct __sk_buff'. 12803 */ 12804 goto out; 12805 } 12806 12807 ret = do_check(env); 12808 out: 12809 /* check for NULL is necessary, since cur_state can be freed inside 12810 * do_check() under memory pressure. 12811 */ 12812 if (env->cur_state) { 12813 free_verifier_state(env->cur_state, true); 12814 env->cur_state = NULL; 12815 } 12816 while (!pop_stack(env, NULL, NULL, false)); 12817 if (!ret && pop_log) 12818 bpf_vlog_reset(&env->log, 0); 12819 free_states(env); 12820 return ret; 12821 } 12822 12823 /* Verify all global functions in a BPF program one by one based on their BTF. 12824 * All global functions must pass verification. Otherwise the whole program is rejected. 12825 * Consider: 12826 * int bar(int); 12827 * int foo(int f) 12828 * { 12829 * return bar(f); 12830 * } 12831 * int bar(int b) 12832 * { 12833 * ... 12834 * } 12835 * foo() will be verified first for R1=any_scalar_value. During verification it 12836 * will be assumed that bar() already verified successfully and call to bar() 12837 * from foo() will be checked for type match only. Later bar() will be verified 12838 * independently to check that it's safe for R1=any_scalar_value. 12839 */ 12840 static int do_check_subprogs(struct bpf_verifier_env *env) 12841 { 12842 struct bpf_prog_aux *aux = env->prog->aux; 12843 int i, ret; 12844 12845 if (!aux->func_info) 12846 return 0; 12847 12848 for (i = 1; i < env->subprog_cnt; i++) { 12849 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 12850 continue; 12851 env->insn_idx = env->subprog_info[i].start; 12852 WARN_ON_ONCE(env->insn_idx == 0); 12853 ret = do_check_common(env, i); 12854 if (ret) { 12855 return ret; 12856 } else if (env->log.level & BPF_LOG_LEVEL) { 12857 verbose(env, 12858 "Func#%d is safe for any args that match its prototype\n", 12859 i); 12860 } 12861 } 12862 return 0; 12863 } 12864 12865 static int do_check_main(struct bpf_verifier_env *env) 12866 { 12867 int ret; 12868 12869 env->insn_idx = 0; 12870 ret = do_check_common(env, 0); 12871 if (!ret) 12872 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 12873 return ret; 12874 } 12875 12876 12877 static void print_verification_stats(struct bpf_verifier_env *env) 12878 { 12879 int i; 12880 12881 if (env->log.level & BPF_LOG_STATS) { 12882 verbose(env, "verification time %lld usec\n", 12883 div_u64(env->verification_time, 1000)); 12884 verbose(env, "stack depth "); 12885 for (i = 0; i < env->subprog_cnt; i++) { 12886 u32 depth = env->subprog_info[i].stack_depth; 12887 12888 verbose(env, "%d", depth); 12889 if (i + 1 < env->subprog_cnt) 12890 verbose(env, "+"); 12891 } 12892 verbose(env, "\n"); 12893 } 12894 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 12895 "total_states %d peak_states %d mark_read %d\n", 12896 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 12897 env->max_states_per_insn, env->total_states, 12898 env->peak_states, env->longest_mark_read_walk); 12899 } 12900 12901 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 12902 { 12903 const struct btf_type *t, *func_proto; 12904 const struct bpf_struct_ops *st_ops; 12905 const struct btf_member *member; 12906 struct bpf_prog *prog = env->prog; 12907 u32 btf_id, member_idx; 12908 const char *mname; 12909 12910 if (!prog->gpl_compatible) { 12911 verbose(env, "struct ops programs must have a GPL compatible license\n"); 12912 return -EINVAL; 12913 } 12914 12915 btf_id = prog->aux->attach_btf_id; 12916 st_ops = bpf_struct_ops_find(btf_id); 12917 if (!st_ops) { 12918 verbose(env, "attach_btf_id %u is not a supported struct\n", 12919 btf_id); 12920 return -ENOTSUPP; 12921 } 12922 12923 t = st_ops->type; 12924 member_idx = prog->expected_attach_type; 12925 if (member_idx >= btf_type_vlen(t)) { 12926 verbose(env, "attach to invalid member idx %u of struct %s\n", 12927 member_idx, st_ops->name); 12928 return -EINVAL; 12929 } 12930 12931 member = &btf_type_member(t)[member_idx]; 12932 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 12933 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 12934 NULL); 12935 if (!func_proto) { 12936 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 12937 mname, member_idx, st_ops->name); 12938 return -EINVAL; 12939 } 12940 12941 if (st_ops->check_member) { 12942 int err = st_ops->check_member(t, member); 12943 12944 if (err) { 12945 verbose(env, "attach to unsupported member %s of struct %s\n", 12946 mname, st_ops->name); 12947 return err; 12948 } 12949 } 12950 12951 prog->aux->attach_func_proto = func_proto; 12952 prog->aux->attach_func_name = mname; 12953 env->ops = st_ops->verifier_ops; 12954 12955 return 0; 12956 } 12957 #define SECURITY_PREFIX "security_" 12958 12959 static int check_attach_modify_return(unsigned long addr, const char *func_name) 12960 { 12961 if (within_error_injection_list(addr) || 12962 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 12963 return 0; 12964 12965 return -EINVAL; 12966 } 12967 12968 /* list of non-sleepable functions that are otherwise on 12969 * ALLOW_ERROR_INJECTION list 12970 */ 12971 BTF_SET_START(btf_non_sleepable_error_inject) 12972 /* Three functions below can be called from sleepable and non-sleepable context. 12973 * Assume non-sleepable from bpf safety point of view. 12974 */ 12975 BTF_ID(func, __add_to_page_cache_locked) 12976 BTF_ID(func, should_fail_alloc_page) 12977 BTF_ID(func, should_failslab) 12978 BTF_SET_END(btf_non_sleepable_error_inject) 12979 12980 static int check_non_sleepable_error_inject(u32 btf_id) 12981 { 12982 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 12983 } 12984 12985 int bpf_check_attach_target(struct bpf_verifier_log *log, 12986 const struct bpf_prog *prog, 12987 const struct bpf_prog *tgt_prog, 12988 u32 btf_id, 12989 struct bpf_attach_target_info *tgt_info) 12990 { 12991 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 12992 const char prefix[] = "btf_trace_"; 12993 int ret = 0, subprog = -1, i; 12994 const struct btf_type *t; 12995 bool conservative = true; 12996 const char *tname; 12997 struct btf *btf; 12998 long addr = 0; 12999 13000 if (!btf_id) { 13001 bpf_log(log, "Tracing programs must provide btf_id\n"); 13002 return -EINVAL; 13003 } 13004 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13005 if (!btf) { 13006 bpf_log(log, 13007 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13008 return -EINVAL; 13009 } 13010 t = btf_type_by_id(btf, btf_id); 13011 if (!t) { 13012 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13013 return -EINVAL; 13014 } 13015 tname = btf_name_by_offset(btf, t->name_off); 13016 if (!tname) { 13017 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13018 return -EINVAL; 13019 } 13020 if (tgt_prog) { 13021 struct bpf_prog_aux *aux = tgt_prog->aux; 13022 13023 for (i = 0; i < aux->func_info_cnt; i++) 13024 if (aux->func_info[i].type_id == btf_id) { 13025 subprog = i; 13026 break; 13027 } 13028 if (subprog == -1) { 13029 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13030 return -EINVAL; 13031 } 13032 conservative = aux->func_info_aux[subprog].unreliable; 13033 if (prog_extension) { 13034 if (conservative) { 13035 bpf_log(log, 13036 "Cannot replace static functions\n"); 13037 return -EINVAL; 13038 } 13039 if (!prog->jit_requested) { 13040 bpf_log(log, 13041 "Extension programs should be JITed\n"); 13042 return -EINVAL; 13043 } 13044 } 13045 if (!tgt_prog->jited) { 13046 bpf_log(log, "Can attach to only JITed progs\n"); 13047 return -EINVAL; 13048 } 13049 if (tgt_prog->type == prog->type) { 13050 /* Cannot fentry/fexit another fentry/fexit program. 13051 * Cannot attach program extension to another extension. 13052 * It's ok to attach fentry/fexit to extension program. 13053 */ 13054 bpf_log(log, "Cannot recursively attach\n"); 13055 return -EINVAL; 13056 } 13057 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13058 prog_extension && 13059 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13060 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13061 /* Program extensions can extend all program types 13062 * except fentry/fexit. The reason is the following. 13063 * The fentry/fexit programs are used for performance 13064 * analysis, stats and can be attached to any program 13065 * type except themselves. When extension program is 13066 * replacing XDP function it is necessary to allow 13067 * performance analysis of all functions. Both original 13068 * XDP program and its program extension. Hence 13069 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13070 * allowed. If extending of fentry/fexit was allowed it 13071 * would be possible to create long call chain 13072 * fentry->extension->fentry->extension beyond 13073 * reasonable stack size. Hence extending fentry is not 13074 * allowed. 13075 */ 13076 bpf_log(log, "Cannot extend fentry/fexit\n"); 13077 return -EINVAL; 13078 } 13079 } else { 13080 if (prog_extension) { 13081 bpf_log(log, "Cannot replace kernel functions\n"); 13082 return -EINVAL; 13083 } 13084 } 13085 13086 switch (prog->expected_attach_type) { 13087 case BPF_TRACE_RAW_TP: 13088 if (tgt_prog) { 13089 bpf_log(log, 13090 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13091 return -EINVAL; 13092 } 13093 if (!btf_type_is_typedef(t)) { 13094 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13095 btf_id); 13096 return -EINVAL; 13097 } 13098 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13099 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13100 btf_id, tname); 13101 return -EINVAL; 13102 } 13103 tname += sizeof(prefix) - 1; 13104 t = btf_type_by_id(btf, t->type); 13105 if (!btf_type_is_ptr(t)) 13106 /* should never happen in valid vmlinux build */ 13107 return -EINVAL; 13108 t = btf_type_by_id(btf, t->type); 13109 if (!btf_type_is_func_proto(t)) 13110 /* should never happen in valid vmlinux build */ 13111 return -EINVAL; 13112 13113 break; 13114 case BPF_TRACE_ITER: 13115 if (!btf_type_is_func(t)) { 13116 bpf_log(log, "attach_btf_id %u is not a function\n", 13117 btf_id); 13118 return -EINVAL; 13119 } 13120 t = btf_type_by_id(btf, t->type); 13121 if (!btf_type_is_func_proto(t)) 13122 return -EINVAL; 13123 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13124 if (ret) 13125 return ret; 13126 break; 13127 default: 13128 if (!prog_extension) 13129 return -EINVAL; 13130 fallthrough; 13131 case BPF_MODIFY_RETURN: 13132 case BPF_LSM_MAC: 13133 case BPF_TRACE_FENTRY: 13134 case BPF_TRACE_FEXIT: 13135 if (!btf_type_is_func(t)) { 13136 bpf_log(log, "attach_btf_id %u is not a function\n", 13137 btf_id); 13138 return -EINVAL; 13139 } 13140 if (prog_extension && 13141 btf_check_type_match(log, prog, btf, t)) 13142 return -EINVAL; 13143 t = btf_type_by_id(btf, t->type); 13144 if (!btf_type_is_func_proto(t)) 13145 return -EINVAL; 13146 13147 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13148 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13149 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13150 return -EINVAL; 13151 13152 if (tgt_prog && conservative) 13153 t = NULL; 13154 13155 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13156 if (ret < 0) 13157 return ret; 13158 13159 if (tgt_prog) { 13160 if (subprog == 0) 13161 addr = (long) tgt_prog->bpf_func; 13162 else 13163 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13164 } else { 13165 addr = kallsyms_lookup_name(tname); 13166 if (!addr) { 13167 bpf_log(log, 13168 "The address of function %s cannot be found\n", 13169 tname); 13170 return -ENOENT; 13171 } 13172 } 13173 13174 if (prog->aux->sleepable) { 13175 ret = -EINVAL; 13176 switch (prog->type) { 13177 case BPF_PROG_TYPE_TRACING: 13178 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13179 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13180 */ 13181 if (!check_non_sleepable_error_inject(btf_id) && 13182 within_error_injection_list(addr)) 13183 ret = 0; 13184 break; 13185 case BPF_PROG_TYPE_LSM: 13186 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13187 * Only some of them are sleepable. 13188 */ 13189 if (bpf_lsm_is_sleepable_hook(btf_id)) 13190 ret = 0; 13191 break; 13192 default: 13193 break; 13194 } 13195 if (ret) { 13196 bpf_log(log, "%s is not sleepable\n", tname); 13197 return ret; 13198 } 13199 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13200 if (tgt_prog) { 13201 bpf_log(log, "can't modify return codes of BPF programs\n"); 13202 return -EINVAL; 13203 } 13204 ret = check_attach_modify_return(addr, tname); 13205 if (ret) { 13206 bpf_log(log, "%s() is not modifiable\n", tname); 13207 return ret; 13208 } 13209 } 13210 13211 break; 13212 } 13213 tgt_info->tgt_addr = addr; 13214 tgt_info->tgt_name = tname; 13215 tgt_info->tgt_type = t; 13216 return 0; 13217 } 13218 13219 BTF_SET_START(btf_id_deny) 13220 BTF_ID_UNUSED 13221 #ifdef CONFIG_SMP 13222 BTF_ID(func, migrate_disable) 13223 BTF_ID(func, migrate_enable) 13224 #endif 13225 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13226 BTF_ID(func, rcu_read_unlock_strict) 13227 #endif 13228 BTF_SET_END(btf_id_deny) 13229 13230 static int check_attach_btf_id(struct bpf_verifier_env *env) 13231 { 13232 struct bpf_prog *prog = env->prog; 13233 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13234 struct bpf_attach_target_info tgt_info = {}; 13235 u32 btf_id = prog->aux->attach_btf_id; 13236 struct bpf_trampoline *tr; 13237 int ret; 13238 u64 key; 13239 13240 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13241 if (prog->aux->sleepable) 13242 /* attach_btf_id checked to be zero already */ 13243 return 0; 13244 verbose(env, "Syscall programs can only be sleepable\n"); 13245 return -EINVAL; 13246 } 13247 13248 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13249 prog->type != BPF_PROG_TYPE_LSM) { 13250 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13251 return -EINVAL; 13252 } 13253 13254 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13255 return check_struct_ops_btf_id(env); 13256 13257 if (prog->type != BPF_PROG_TYPE_TRACING && 13258 prog->type != BPF_PROG_TYPE_LSM && 13259 prog->type != BPF_PROG_TYPE_EXT) 13260 return 0; 13261 13262 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13263 if (ret) 13264 return ret; 13265 13266 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13267 /* to make freplace equivalent to their targets, they need to 13268 * inherit env->ops and expected_attach_type for the rest of the 13269 * verification 13270 */ 13271 env->ops = bpf_verifier_ops[tgt_prog->type]; 13272 prog->expected_attach_type = tgt_prog->expected_attach_type; 13273 } 13274 13275 /* store info about the attachment target that will be used later */ 13276 prog->aux->attach_func_proto = tgt_info.tgt_type; 13277 prog->aux->attach_func_name = tgt_info.tgt_name; 13278 13279 if (tgt_prog) { 13280 prog->aux->saved_dst_prog_type = tgt_prog->type; 13281 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13282 } 13283 13284 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13285 prog->aux->attach_btf_trace = true; 13286 return 0; 13287 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13288 if (!bpf_iter_prog_supported(prog)) 13289 return -EINVAL; 13290 return 0; 13291 } 13292 13293 if (prog->type == BPF_PROG_TYPE_LSM) { 13294 ret = bpf_lsm_verify_prog(&env->log, prog); 13295 if (ret < 0) 13296 return ret; 13297 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13298 btf_id_set_contains(&btf_id_deny, btf_id)) { 13299 return -EINVAL; 13300 } 13301 13302 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13303 tr = bpf_trampoline_get(key, &tgt_info); 13304 if (!tr) 13305 return -ENOMEM; 13306 13307 prog->aux->dst_trampoline = tr; 13308 return 0; 13309 } 13310 13311 struct btf *bpf_get_btf_vmlinux(void) 13312 { 13313 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13314 mutex_lock(&bpf_verifier_lock); 13315 if (!btf_vmlinux) 13316 btf_vmlinux = btf_parse_vmlinux(); 13317 mutex_unlock(&bpf_verifier_lock); 13318 } 13319 return btf_vmlinux; 13320 } 13321 13322 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13323 { 13324 u64 start_time = ktime_get_ns(); 13325 struct bpf_verifier_env *env; 13326 struct bpf_verifier_log *log; 13327 int i, len, ret = -EINVAL; 13328 bool is_priv; 13329 13330 /* no program is valid */ 13331 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13332 return -EINVAL; 13333 13334 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13335 * allocate/free it every time bpf_check() is called 13336 */ 13337 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13338 if (!env) 13339 return -ENOMEM; 13340 log = &env->log; 13341 13342 len = (*prog)->len; 13343 env->insn_aux_data = 13344 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13345 ret = -ENOMEM; 13346 if (!env->insn_aux_data) 13347 goto err_free_env; 13348 for (i = 0; i < len; i++) 13349 env->insn_aux_data[i].orig_idx = i; 13350 env->prog = *prog; 13351 env->ops = bpf_verifier_ops[env->prog->type]; 13352 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13353 is_priv = bpf_capable(); 13354 13355 bpf_get_btf_vmlinux(); 13356 13357 /* grab the mutex to protect few globals used by verifier */ 13358 if (!is_priv) 13359 mutex_lock(&bpf_verifier_lock); 13360 13361 if (attr->log_level || attr->log_buf || attr->log_size) { 13362 /* user requested verbose verifier output 13363 * and supplied buffer to store the verification trace 13364 */ 13365 log->level = attr->log_level; 13366 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13367 log->len_total = attr->log_size; 13368 13369 ret = -EINVAL; 13370 /* log attributes have to be sane */ 13371 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13372 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13373 goto err_unlock; 13374 } 13375 13376 if (IS_ERR(btf_vmlinux)) { 13377 /* Either gcc or pahole or kernel are broken. */ 13378 verbose(env, "in-kernel BTF is malformed\n"); 13379 ret = PTR_ERR(btf_vmlinux); 13380 goto skip_full_check; 13381 } 13382 13383 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13384 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13385 env->strict_alignment = true; 13386 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13387 env->strict_alignment = false; 13388 13389 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13390 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13391 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13392 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13393 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13394 env->bpf_capable = bpf_capable(); 13395 13396 if (is_priv) 13397 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13398 13399 env->explored_states = kvcalloc(state_htab_size(env), 13400 sizeof(struct bpf_verifier_state_list *), 13401 GFP_USER); 13402 ret = -ENOMEM; 13403 if (!env->explored_states) 13404 goto skip_full_check; 13405 13406 ret = add_subprog_and_kfunc(env); 13407 if (ret < 0) 13408 goto skip_full_check; 13409 13410 ret = check_subprogs(env); 13411 if (ret < 0) 13412 goto skip_full_check; 13413 13414 ret = check_btf_info(env, attr, uattr); 13415 if (ret < 0) 13416 goto skip_full_check; 13417 13418 ret = check_attach_btf_id(env); 13419 if (ret) 13420 goto skip_full_check; 13421 13422 ret = resolve_pseudo_ldimm64(env); 13423 if (ret < 0) 13424 goto skip_full_check; 13425 13426 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13427 ret = bpf_prog_offload_verifier_prep(env->prog); 13428 if (ret) 13429 goto skip_full_check; 13430 } 13431 13432 ret = check_cfg(env); 13433 if (ret < 0) 13434 goto skip_full_check; 13435 13436 ret = do_check_subprogs(env); 13437 ret = ret ?: do_check_main(env); 13438 13439 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13440 ret = bpf_prog_offload_finalize(env); 13441 13442 skip_full_check: 13443 kvfree(env->explored_states); 13444 13445 if (ret == 0) 13446 ret = check_max_stack_depth(env); 13447 13448 /* instruction rewrites happen after this point */ 13449 if (is_priv) { 13450 if (ret == 0) 13451 opt_hard_wire_dead_code_branches(env); 13452 if (ret == 0) 13453 ret = opt_remove_dead_code(env); 13454 if (ret == 0) 13455 ret = opt_remove_nops(env); 13456 } else { 13457 if (ret == 0) 13458 sanitize_dead_code(env); 13459 } 13460 13461 if (ret == 0) 13462 /* program is valid, convert *(u32*)(ctx + off) accesses */ 13463 ret = convert_ctx_accesses(env); 13464 13465 if (ret == 0) 13466 ret = do_misc_fixups(env); 13467 13468 /* do 32-bit optimization after insn patching has done so those patched 13469 * insns could be handled correctly. 13470 */ 13471 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 13472 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 13473 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 13474 : false; 13475 } 13476 13477 if (ret == 0) 13478 ret = fixup_call_args(env); 13479 13480 env->verification_time = ktime_get_ns() - start_time; 13481 print_verification_stats(env); 13482 13483 if (log->level && bpf_verifier_log_full(log)) 13484 ret = -ENOSPC; 13485 if (log->level && !log->ubuf) { 13486 ret = -EFAULT; 13487 goto err_release_maps; 13488 } 13489 13490 if (ret) 13491 goto err_release_maps; 13492 13493 if (env->used_map_cnt) { 13494 /* if program passed verifier, update used_maps in bpf_prog_info */ 13495 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 13496 sizeof(env->used_maps[0]), 13497 GFP_KERNEL); 13498 13499 if (!env->prog->aux->used_maps) { 13500 ret = -ENOMEM; 13501 goto err_release_maps; 13502 } 13503 13504 memcpy(env->prog->aux->used_maps, env->used_maps, 13505 sizeof(env->used_maps[0]) * env->used_map_cnt); 13506 env->prog->aux->used_map_cnt = env->used_map_cnt; 13507 } 13508 if (env->used_btf_cnt) { 13509 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 13510 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 13511 sizeof(env->used_btfs[0]), 13512 GFP_KERNEL); 13513 if (!env->prog->aux->used_btfs) { 13514 ret = -ENOMEM; 13515 goto err_release_maps; 13516 } 13517 13518 memcpy(env->prog->aux->used_btfs, env->used_btfs, 13519 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 13520 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 13521 } 13522 if (env->used_map_cnt || env->used_btf_cnt) { 13523 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 13524 * bpf_ld_imm64 instructions 13525 */ 13526 convert_pseudo_ld_imm64(env); 13527 } 13528 13529 adjust_btf_func(env); 13530 13531 err_release_maps: 13532 if (!env->prog->aux->used_maps) 13533 /* if we didn't copy map pointers into bpf_prog_info, release 13534 * them now. Otherwise free_used_maps() will release them. 13535 */ 13536 release_maps(env); 13537 if (!env->prog->aux->used_btfs) 13538 release_btfs(env); 13539 13540 /* extension progs temporarily inherit the attach_type of their targets 13541 for verification purposes, so set it back to zero before returning 13542 */ 13543 if (env->prog->type == BPF_PROG_TYPE_EXT) 13544 env->prog->expected_attach_type = 0; 13545 13546 *prog = env->prog; 13547 err_unlock: 13548 if (!is_priv) 13549 mutex_unlock(&bpf_verifier_lock); 13550 vfree(env->insn_aux_data); 13551 err_free_env: 13552 kfree(env); 13553 return ret; 13554 } 13555