1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 29 #include "disasm.h" 30 31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 33 [_id] = & _name ## _verifier_ops, 34 #define BPF_MAP_TYPE(_id, _ops) 35 #define BPF_LINK_TYPE(_id, _name) 36 #include <linux/bpf_types.h> 37 #undef BPF_PROG_TYPE 38 #undef BPF_MAP_TYPE 39 #undef BPF_LINK_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all paths through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns either pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 /* length of verifier log at the time this state was pushed on stack */ 178 u32 log_pos; 179 }; 180 181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 182 #define BPF_COMPLEXITY_LIMIT_STATES 64 183 184 #define BPF_MAP_KEY_POISON (1ULL << 63) 185 #define BPF_MAP_KEY_SEEN (1ULL << 62) 186 187 #define BPF_MAP_PTR_UNPRIV 1UL 188 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 189 POISON_POINTER_DELTA)) 190 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 191 192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 196 static int ref_set_non_owning(struct bpf_verifier_env *env, 197 struct bpf_reg_state *reg); 198 static void specialize_kfunc(struct bpf_verifier_env *env, 199 u32 func_id, u16 offset, unsigned long *addr); 200 static bool is_trusted_reg(const struct bpf_reg_state *reg); 201 202 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 203 { 204 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 205 } 206 207 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 210 } 211 212 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 213 const struct bpf_map *map, bool unpriv) 214 { 215 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 216 unpriv |= bpf_map_ptr_unpriv(aux); 217 aux->map_ptr_state = (unsigned long)map | 218 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 219 } 220 221 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 222 { 223 return aux->map_key_state & BPF_MAP_KEY_POISON; 224 } 225 226 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 227 { 228 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 229 } 230 231 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 232 { 233 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 234 } 235 236 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 237 { 238 bool poisoned = bpf_map_key_poisoned(aux); 239 240 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 241 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 242 } 243 244 static bool bpf_helper_call(const struct bpf_insn *insn) 245 { 246 return insn->code == (BPF_JMP | BPF_CALL) && 247 insn->src_reg == 0; 248 } 249 250 static bool bpf_pseudo_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == BPF_PSEUDO_CALL; 254 } 255 256 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 260 } 261 262 struct bpf_call_arg_meta { 263 struct bpf_map *map_ptr; 264 bool raw_mode; 265 bool pkt_access; 266 u8 release_regno; 267 int regno; 268 int access_size; 269 int mem_size; 270 u64 msize_max_value; 271 int ref_obj_id; 272 int dynptr_id; 273 int map_uid; 274 int func_id; 275 struct btf *btf; 276 u32 btf_id; 277 struct btf *ret_btf; 278 u32 ret_btf_id; 279 u32 subprogno; 280 struct btf_field *kptr_field; 281 }; 282 283 struct bpf_kfunc_call_arg_meta { 284 /* In parameters */ 285 struct btf *btf; 286 u32 func_id; 287 u32 kfunc_flags; 288 const struct btf_type *func_proto; 289 const char *func_name; 290 /* Out parameters */ 291 u32 ref_obj_id; 292 u8 release_regno; 293 bool r0_rdonly; 294 u32 ret_btf_id; 295 u64 r0_size; 296 u32 subprogno; 297 struct { 298 u64 value; 299 bool found; 300 } arg_constant; 301 302 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 303 * generally to pass info about user-defined local kptr types to later 304 * verification logic 305 * bpf_obj_drop 306 * Record the local kptr type to be drop'd 307 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 308 * Record the local kptr type to be refcount_incr'd and use 309 * arg_owning_ref to determine whether refcount_acquire should be 310 * fallible 311 */ 312 struct btf *arg_btf; 313 u32 arg_btf_id; 314 bool arg_owning_ref; 315 316 struct { 317 struct btf_field *field; 318 } arg_list_head; 319 struct { 320 struct btf_field *field; 321 } arg_rbtree_root; 322 struct { 323 enum bpf_dynptr_type type; 324 u32 id; 325 u32 ref_obj_id; 326 } initialized_dynptr; 327 struct { 328 u8 spi; 329 u8 frameno; 330 } iter; 331 u64 mem_size; 332 }; 333 334 struct btf *btf_vmlinux; 335 336 static DEFINE_MUTEX(bpf_verifier_lock); 337 338 static const struct bpf_line_info * 339 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 340 { 341 const struct bpf_line_info *linfo; 342 const struct bpf_prog *prog; 343 u32 i, nr_linfo; 344 345 prog = env->prog; 346 nr_linfo = prog->aux->nr_linfo; 347 348 if (!nr_linfo || insn_off >= prog->len) 349 return NULL; 350 351 linfo = prog->aux->linfo; 352 for (i = 1; i < nr_linfo; i++) 353 if (insn_off < linfo[i].insn_off) 354 break; 355 356 return &linfo[i - 1]; 357 } 358 359 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 360 { 361 struct bpf_verifier_env *env = private_data; 362 va_list args; 363 364 if (!bpf_verifier_log_needed(&env->log)) 365 return; 366 367 va_start(args, fmt); 368 bpf_verifier_vlog(&env->log, fmt, args); 369 va_end(args); 370 } 371 372 static const char *ltrim(const char *s) 373 { 374 while (isspace(*s)) 375 s++; 376 377 return s; 378 } 379 380 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 381 u32 insn_off, 382 const char *prefix_fmt, ...) 383 { 384 const struct bpf_line_info *linfo; 385 386 if (!bpf_verifier_log_needed(&env->log)) 387 return; 388 389 linfo = find_linfo(env, insn_off); 390 if (!linfo || linfo == env->prev_linfo) 391 return; 392 393 if (prefix_fmt) { 394 va_list args; 395 396 va_start(args, prefix_fmt); 397 bpf_verifier_vlog(&env->log, prefix_fmt, args); 398 va_end(args); 399 } 400 401 verbose(env, "%s\n", 402 ltrim(btf_name_by_offset(env->prog->aux->btf, 403 linfo->line_off))); 404 405 env->prev_linfo = linfo; 406 } 407 408 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 409 struct bpf_reg_state *reg, 410 struct tnum *range, const char *ctx, 411 const char *reg_name) 412 { 413 char tn_buf[48]; 414 415 verbose(env, "At %s the register %s ", ctx, reg_name); 416 if (!tnum_is_unknown(reg->var_off)) { 417 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 418 verbose(env, "has value %s", tn_buf); 419 } else { 420 verbose(env, "has unknown scalar value"); 421 } 422 tnum_strn(tn_buf, sizeof(tn_buf), *range); 423 verbose(env, " should have been in %s\n", tn_buf); 424 } 425 426 static bool type_is_pkt_pointer(enum bpf_reg_type type) 427 { 428 type = base_type(type); 429 return type == PTR_TO_PACKET || 430 type == PTR_TO_PACKET_META; 431 } 432 433 static bool type_is_sk_pointer(enum bpf_reg_type type) 434 { 435 return type == PTR_TO_SOCKET || 436 type == PTR_TO_SOCK_COMMON || 437 type == PTR_TO_TCP_SOCK || 438 type == PTR_TO_XDP_SOCK; 439 } 440 441 static bool type_may_be_null(u32 type) 442 { 443 return type & PTR_MAYBE_NULL; 444 } 445 446 static bool reg_not_null(const struct bpf_reg_state *reg) 447 { 448 enum bpf_reg_type type; 449 450 type = reg->type; 451 if (type_may_be_null(type)) 452 return false; 453 454 type = base_type(type); 455 return type == PTR_TO_SOCKET || 456 type == PTR_TO_TCP_SOCK || 457 type == PTR_TO_MAP_VALUE || 458 type == PTR_TO_MAP_KEY || 459 type == PTR_TO_SOCK_COMMON || 460 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 461 type == PTR_TO_MEM; 462 } 463 464 static bool type_is_ptr_alloc_obj(u32 type) 465 { 466 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 467 } 468 469 static bool type_is_non_owning_ref(u32 type) 470 { 471 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 472 } 473 474 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 475 { 476 struct btf_record *rec = NULL; 477 struct btf_struct_meta *meta; 478 479 if (reg->type == PTR_TO_MAP_VALUE) { 480 rec = reg->map_ptr->record; 481 } else if (type_is_ptr_alloc_obj(reg->type)) { 482 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 483 if (meta) 484 rec = meta->record; 485 } 486 return rec; 487 } 488 489 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 490 { 491 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 492 493 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 494 } 495 496 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 497 { 498 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 499 } 500 501 static bool type_is_rdonly_mem(u32 type) 502 { 503 return type & MEM_RDONLY; 504 } 505 506 static bool is_acquire_function(enum bpf_func_id func_id, 507 const struct bpf_map *map) 508 { 509 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 510 511 if (func_id == BPF_FUNC_sk_lookup_tcp || 512 func_id == BPF_FUNC_sk_lookup_udp || 513 func_id == BPF_FUNC_skc_lookup_tcp || 514 func_id == BPF_FUNC_ringbuf_reserve || 515 func_id == BPF_FUNC_kptr_xchg) 516 return true; 517 518 if (func_id == BPF_FUNC_map_lookup_elem && 519 (map_type == BPF_MAP_TYPE_SOCKMAP || 520 map_type == BPF_MAP_TYPE_SOCKHASH)) 521 return true; 522 523 return false; 524 } 525 526 static bool is_ptr_cast_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_tcp_sock || 529 func_id == BPF_FUNC_sk_fullsock || 530 func_id == BPF_FUNC_skc_to_tcp_sock || 531 func_id == BPF_FUNC_skc_to_tcp6_sock || 532 func_id == BPF_FUNC_skc_to_udp6_sock || 533 func_id == BPF_FUNC_skc_to_mptcp_sock || 534 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 535 func_id == BPF_FUNC_skc_to_tcp_request_sock; 536 } 537 538 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 539 { 540 return func_id == BPF_FUNC_dynptr_data; 541 } 542 543 static bool is_callback_calling_kfunc(u32 btf_id); 544 545 static bool is_callback_calling_function(enum bpf_func_id func_id) 546 { 547 return func_id == BPF_FUNC_for_each_map_elem || 548 func_id == BPF_FUNC_timer_set_callback || 549 func_id == BPF_FUNC_find_vma || 550 func_id == BPF_FUNC_loop || 551 func_id == BPF_FUNC_user_ringbuf_drain; 552 } 553 554 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 555 { 556 return func_id == BPF_FUNC_timer_set_callback; 557 } 558 559 static bool is_storage_get_function(enum bpf_func_id func_id) 560 { 561 return func_id == BPF_FUNC_sk_storage_get || 562 func_id == BPF_FUNC_inode_storage_get || 563 func_id == BPF_FUNC_task_storage_get || 564 func_id == BPF_FUNC_cgrp_storage_get; 565 } 566 567 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 568 const struct bpf_map *map) 569 { 570 int ref_obj_uses = 0; 571 572 if (is_ptr_cast_function(func_id)) 573 ref_obj_uses++; 574 if (is_acquire_function(func_id, map)) 575 ref_obj_uses++; 576 if (is_dynptr_ref_function(func_id)) 577 ref_obj_uses++; 578 579 return ref_obj_uses > 1; 580 } 581 582 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 583 { 584 return BPF_CLASS(insn->code) == BPF_STX && 585 BPF_MODE(insn->code) == BPF_ATOMIC && 586 insn->imm == BPF_CMPXCHG; 587 } 588 589 /* string representation of 'enum bpf_reg_type' 590 * 591 * Note that reg_type_str() can not appear more than once in a single verbose() 592 * statement. 593 */ 594 static const char *reg_type_str(struct bpf_verifier_env *env, 595 enum bpf_reg_type type) 596 { 597 char postfix[16] = {0}, prefix[64] = {0}; 598 static const char * const str[] = { 599 [NOT_INIT] = "?", 600 [SCALAR_VALUE] = "scalar", 601 [PTR_TO_CTX] = "ctx", 602 [CONST_PTR_TO_MAP] = "map_ptr", 603 [PTR_TO_MAP_VALUE] = "map_value", 604 [PTR_TO_STACK] = "fp", 605 [PTR_TO_PACKET] = "pkt", 606 [PTR_TO_PACKET_META] = "pkt_meta", 607 [PTR_TO_PACKET_END] = "pkt_end", 608 [PTR_TO_FLOW_KEYS] = "flow_keys", 609 [PTR_TO_SOCKET] = "sock", 610 [PTR_TO_SOCK_COMMON] = "sock_common", 611 [PTR_TO_TCP_SOCK] = "tcp_sock", 612 [PTR_TO_TP_BUFFER] = "tp_buffer", 613 [PTR_TO_XDP_SOCK] = "xdp_sock", 614 [PTR_TO_BTF_ID] = "ptr_", 615 [PTR_TO_MEM] = "mem", 616 [PTR_TO_BUF] = "buf", 617 [PTR_TO_FUNC] = "func", 618 [PTR_TO_MAP_KEY] = "map_key", 619 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 620 }; 621 622 if (type & PTR_MAYBE_NULL) { 623 if (base_type(type) == PTR_TO_BTF_ID) 624 strncpy(postfix, "or_null_", 16); 625 else 626 strncpy(postfix, "_or_null", 16); 627 } 628 629 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 630 type & MEM_RDONLY ? "rdonly_" : "", 631 type & MEM_RINGBUF ? "ringbuf_" : "", 632 type & MEM_USER ? "user_" : "", 633 type & MEM_PERCPU ? "percpu_" : "", 634 type & MEM_RCU ? "rcu_" : "", 635 type & PTR_UNTRUSTED ? "untrusted_" : "", 636 type & PTR_TRUSTED ? "trusted_" : "" 637 ); 638 639 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 640 prefix, str[base_type(type)], postfix); 641 return env->tmp_str_buf; 642 } 643 644 static char slot_type_char[] = { 645 [STACK_INVALID] = '?', 646 [STACK_SPILL] = 'r', 647 [STACK_MISC] = 'm', 648 [STACK_ZERO] = '0', 649 [STACK_DYNPTR] = 'd', 650 [STACK_ITER] = 'i', 651 }; 652 653 static void print_liveness(struct bpf_verifier_env *env, 654 enum bpf_reg_liveness live) 655 { 656 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 657 verbose(env, "_"); 658 if (live & REG_LIVE_READ) 659 verbose(env, "r"); 660 if (live & REG_LIVE_WRITTEN) 661 verbose(env, "w"); 662 if (live & REG_LIVE_DONE) 663 verbose(env, "D"); 664 } 665 666 static int __get_spi(s32 off) 667 { 668 return (-off - 1) / BPF_REG_SIZE; 669 } 670 671 static struct bpf_func_state *func(struct bpf_verifier_env *env, 672 const struct bpf_reg_state *reg) 673 { 674 struct bpf_verifier_state *cur = env->cur_state; 675 676 return cur->frame[reg->frameno]; 677 } 678 679 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 680 { 681 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 682 683 /* We need to check that slots between [spi - nr_slots + 1, spi] are 684 * within [0, allocated_stack). 685 * 686 * Please note that the spi grows downwards. For example, a dynptr 687 * takes the size of two stack slots; the first slot will be at 688 * spi and the second slot will be at spi - 1. 689 */ 690 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 691 } 692 693 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 694 const char *obj_kind, int nr_slots) 695 { 696 int off, spi; 697 698 if (!tnum_is_const(reg->var_off)) { 699 verbose(env, "%s has to be at a constant offset\n", obj_kind); 700 return -EINVAL; 701 } 702 703 off = reg->off + reg->var_off.value; 704 if (off % BPF_REG_SIZE) { 705 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 706 return -EINVAL; 707 } 708 709 spi = __get_spi(off); 710 if (spi + 1 < nr_slots) { 711 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 712 return -EINVAL; 713 } 714 715 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 716 return -ERANGE; 717 return spi; 718 } 719 720 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 721 { 722 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 723 } 724 725 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 726 { 727 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 728 } 729 730 static const char *btf_type_name(const struct btf *btf, u32 id) 731 { 732 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 733 } 734 735 static const char *dynptr_type_str(enum bpf_dynptr_type type) 736 { 737 switch (type) { 738 case BPF_DYNPTR_TYPE_LOCAL: 739 return "local"; 740 case BPF_DYNPTR_TYPE_RINGBUF: 741 return "ringbuf"; 742 case BPF_DYNPTR_TYPE_SKB: 743 return "skb"; 744 case BPF_DYNPTR_TYPE_XDP: 745 return "xdp"; 746 case BPF_DYNPTR_TYPE_INVALID: 747 return "<invalid>"; 748 default: 749 WARN_ONCE(1, "unknown dynptr type %d\n", type); 750 return "<unknown>"; 751 } 752 } 753 754 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 755 { 756 if (!btf || btf_id == 0) 757 return "<invalid>"; 758 759 /* we already validated that type is valid and has conforming name */ 760 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 761 } 762 763 static const char *iter_state_str(enum bpf_iter_state state) 764 { 765 switch (state) { 766 case BPF_ITER_STATE_ACTIVE: 767 return "active"; 768 case BPF_ITER_STATE_DRAINED: 769 return "drained"; 770 case BPF_ITER_STATE_INVALID: 771 return "<invalid>"; 772 default: 773 WARN_ONCE(1, "unknown iter state %d\n", state); 774 return "<unknown>"; 775 } 776 } 777 778 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 779 { 780 env->scratched_regs |= 1U << regno; 781 } 782 783 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 784 { 785 env->scratched_stack_slots |= 1ULL << spi; 786 } 787 788 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 789 { 790 return (env->scratched_regs >> regno) & 1; 791 } 792 793 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 794 { 795 return (env->scratched_stack_slots >> regno) & 1; 796 } 797 798 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 799 { 800 return env->scratched_regs || env->scratched_stack_slots; 801 } 802 803 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 804 { 805 env->scratched_regs = 0U; 806 env->scratched_stack_slots = 0ULL; 807 } 808 809 /* Used for printing the entire verifier state. */ 810 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 811 { 812 env->scratched_regs = ~0U; 813 env->scratched_stack_slots = ~0ULL; 814 } 815 816 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 817 { 818 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 819 case DYNPTR_TYPE_LOCAL: 820 return BPF_DYNPTR_TYPE_LOCAL; 821 case DYNPTR_TYPE_RINGBUF: 822 return BPF_DYNPTR_TYPE_RINGBUF; 823 case DYNPTR_TYPE_SKB: 824 return BPF_DYNPTR_TYPE_SKB; 825 case DYNPTR_TYPE_XDP: 826 return BPF_DYNPTR_TYPE_XDP; 827 default: 828 return BPF_DYNPTR_TYPE_INVALID; 829 } 830 } 831 832 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 833 { 834 switch (type) { 835 case BPF_DYNPTR_TYPE_LOCAL: 836 return DYNPTR_TYPE_LOCAL; 837 case BPF_DYNPTR_TYPE_RINGBUF: 838 return DYNPTR_TYPE_RINGBUF; 839 case BPF_DYNPTR_TYPE_SKB: 840 return DYNPTR_TYPE_SKB; 841 case BPF_DYNPTR_TYPE_XDP: 842 return DYNPTR_TYPE_XDP; 843 default: 844 return 0; 845 } 846 } 847 848 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 849 { 850 return type == BPF_DYNPTR_TYPE_RINGBUF; 851 } 852 853 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 854 enum bpf_dynptr_type type, 855 bool first_slot, int dynptr_id); 856 857 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 858 struct bpf_reg_state *reg); 859 860 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 861 struct bpf_reg_state *sreg1, 862 struct bpf_reg_state *sreg2, 863 enum bpf_dynptr_type type) 864 { 865 int id = ++env->id_gen; 866 867 __mark_dynptr_reg(sreg1, type, true, id); 868 __mark_dynptr_reg(sreg2, type, false, id); 869 } 870 871 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 872 struct bpf_reg_state *reg, 873 enum bpf_dynptr_type type) 874 { 875 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 876 } 877 878 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 879 struct bpf_func_state *state, int spi); 880 881 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 882 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 883 { 884 struct bpf_func_state *state = func(env, reg); 885 enum bpf_dynptr_type type; 886 int spi, i, err; 887 888 spi = dynptr_get_spi(env, reg); 889 if (spi < 0) 890 return spi; 891 892 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 893 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 894 * to ensure that for the following example: 895 * [d1][d1][d2][d2] 896 * spi 3 2 1 0 897 * So marking spi = 2 should lead to destruction of both d1 and d2. In 898 * case they do belong to same dynptr, second call won't see slot_type 899 * as STACK_DYNPTR and will simply skip destruction. 900 */ 901 err = destroy_if_dynptr_stack_slot(env, state, spi); 902 if (err) 903 return err; 904 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 905 if (err) 906 return err; 907 908 for (i = 0; i < BPF_REG_SIZE; i++) { 909 state->stack[spi].slot_type[i] = STACK_DYNPTR; 910 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 911 } 912 913 type = arg_to_dynptr_type(arg_type); 914 if (type == BPF_DYNPTR_TYPE_INVALID) 915 return -EINVAL; 916 917 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 918 &state->stack[spi - 1].spilled_ptr, type); 919 920 if (dynptr_type_refcounted(type)) { 921 /* The id is used to track proper releasing */ 922 int id; 923 924 if (clone_ref_obj_id) 925 id = clone_ref_obj_id; 926 else 927 id = acquire_reference_state(env, insn_idx); 928 929 if (id < 0) 930 return id; 931 932 state->stack[spi].spilled_ptr.ref_obj_id = id; 933 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 934 } 935 936 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 937 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 938 939 return 0; 940 } 941 942 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 943 { 944 int i; 945 946 for (i = 0; i < BPF_REG_SIZE; i++) { 947 state->stack[spi].slot_type[i] = STACK_INVALID; 948 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 949 } 950 951 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 952 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 953 954 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 955 * 956 * While we don't allow reading STACK_INVALID, it is still possible to 957 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 958 * helpers or insns can do partial read of that part without failing, 959 * but check_stack_range_initialized, check_stack_read_var_off, and 960 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 961 * the slot conservatively. Hence we need to prevent those liveness 962 * marking walks. 963 * 964 * This was not a problem before because STACK_INVALID is only set by 965 * default (where the default reg state has its reg->parent as NULL), or 966 * in clean_live_states after REG_LIVE_DONE (at which point 967 * mark_reg_read won't walk reg->parent chain), but not randomly during 968 * verifier state exploration (like we did above). Hence, for our case 969 * parentage chain will still be live (i.e. reg->parent may be 970 * non-NULL), while earlier reg->parent was NULL, so we need 971 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 972 * done later on reads or by mark_dynptr_read as well to unnecessary 973 * mark registers in verifier state. 974 */ 975 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 976 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 977 } 978 979 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 980 { 981 struct bpf_func_state *state = func(env, reg); 982 int spi, ref_obj_id, i; 983 984 spi = dynptr_get_spi(env, reg); 985 if (spi < 0) 986 return spi; 987 988 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 989 invalidate_dynptr(env, state, spi); 990 return 0; 991 } 992 993 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 994 995 /* If the dynptr has a ref_obj_id, then we need to invalidate 996 * two things: 997 * 998 * 1) Any dynptrs with a matching ref_obj_id (clones) 999 * 2) Any slices derived from this dynptr. 1000 */ 1001 1002 /* Invalidate any slices associated with this dynptr */ 1003 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1004 1005 /* Invalidate any dynptr clones */ 1006 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1007 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1008 continue; 1009 1010 /* it should always be the case that if the ref obj id 1011 * matches then the stack slot also belongs to a 1012 * dynptr 1013 */ 1014 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1015 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1016 return -EFAULT; 1017 } 1018 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1019 invalidate_dynptr(env, state, i); 1020 } 1021 1022 return 0; 1023 } 1024 1025 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1026 struct bpf_reg_state *reg); 1027 1028 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1029 { 1030 if (!env->allow_ptr_leaks) 1031 __mark_reg_not_init(env, reg); 1032 else 1033 __mark_reg_unknown(env, reg); 1034 } 1035 1036 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1037 struct bpf_func_state *state, int spi) 1038 { 1039 struct bpf_func_state *fstate; 1040 struct bpf_reg_state *dreg; 1041 int i, dynptr_id; 1042 1043 /* We always ensure that STACK_DYNPTR is never set partially, 1044 * hence just checking for slot_type[0] is enough. This is 1045 * different for STACK_SPILL, where it may be only set for 1046 * 1 byte, so code has to use is_spilled_reg. 1047 */ 1048 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1049 return 0; 1050 1051 /* Reposition spi to first slot */ 1052 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1053 spi = spi + 1; 1054 1055 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1056 verbose(env, "cannot overwrite referenced dynptr\n"); 1057 return -EINVAL; 1058 } 1059 1060 mark_stack_slot_scratched(env, spi); 1061 mark_stack_slot_scratched(env, spi - 1); 1062 1063 /* Writing partially to one dynptr stack slot destroys both. */ 1064 for (i = 0; i < BPF_REG_SIZE; i++) { 1065 state->stack[spi].slot_type[i] = STACK_INVALID; 1066 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1067 } 1068 1069 dynptr_id = state->stack[spi].spilled_ptr.id; 1070 /* Invalidate any slices associated with this dynptr */ 1071 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1072 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1073 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1074 continue; 1075 if (dreg->dynptr_id == dynptr_id) 1076 mark_reg_invalid(env, dreg); 1077 })); 1078 1079 /* Do not release reference state, we are destroying dynptr on stack, 1080 * not using some helper to release it. Just reset register. 1081 */ 1082 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1083 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1084 1085 /* Same reason as unmark_stack_slots_dynptr above */ 1086 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1087 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1088 1089 return 0; 1090 } 1091 1092 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1093 { 1094 int spi; 1095 1096 if (reg->type == CONST_PTR_TO_DYNPTR) 1097 return false; 1098 1099 spi = dynptr_get_spi(env, reg); 1100 1101 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1102 * error because this just means the stack state hasn't been updated yet. 1103 * We will do check_mem_access to check and update stack bounds later. 1104 */ 1105 if (spi < 0 && spi != -ERANGE) 1106 return false; 1107 1108 /* We don't need to check if the stack slots are marked by previous 1109 * dynptr initializations because we allow overwriting existing unreferenced 1110 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1111 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1112 * touching are completely destructed before we reinitialize them for a new 1113 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1114 * instead of delaying it until the end where the user will get "Unreleased 1115 * reference" error. 1116 */ 1117 return true; 1118 } 1119 1120 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1121 { 1122 struct bpf_func_state *state = func(env, reg); 1123 int i, spi; 1124 1125 /* This already represents first slot of initialized bpf_dynptr. 1126 * 1127 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1128 * check_func_arg_reg_off's logic, so we don't need to check its 1129 * offset and alignment. 1130 */ 1131 if (reg->type == CONST_PTR_TO_DYNPTR) 1132 return true; 1133 1134 spi = dynptr_get_spi(env, reg); 1135 if (spi < 0) 1136 return false; 1137 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1138 return false; 1139 1140 for (i = 0; i < BPF_REG_SIZE; i++) { 1141 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1142 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1143 return false; 1144 } 1145 1146 return true; 1147 } 1148 1149 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1150 enum bpf_arg_type arg_type) 1151 { 1152 struct bpf_func_state *state = func(env, reg); 1153 enum bpf_dynptr_type dynptr_type; 1154 int spi; 1155 1156 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1157 if (arg_type == ARG_PTR_TO_DYNPTR) 1158 return true; 1159 1160 dynptr_type = arg_to_dynptr_type(arg_type); 1161 if (reg->type == CONST_PTR_TO_DYNPTR) { 1162 return reg->dynptr.type == dynptr_type; 1163 } else { 1164 spi = dynptr_get_spi(env, reg); 1165 if (spi < 0) 1166 return false; 1167 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1168 } 1169 } 1170 1171 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1172 1173 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1174 struct bpf_reg_state *reg, int insn_idx, 1175 struct btf *btf, u32 btf_id, int nr_slots) 1176 { 1177 struct bpf_func_state *state = func(env, reg); 1178 int spi, i, j, id; 1179 1180 spi = iter_get_spi(env, reg, nr_slots); 1181 if (spi < 0) 1182 return spi; 1183 1184 id = acquire_reference_state(env, insn_idx); 1185 if (id < 0) 1186 return id; 1187 1188 for (i = 0; i < nr_slots; i++) { 1189 struct bpf_stack_state *slot = &state->stack[spi - i]; 1190 struct bpf_reg_state *st = &slot->spilled_ptr; 1191 1192 __mark_reg_known_zero(st); 1193 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1194 st->live |= REG_LIVE_WRITTEN; 1195 st->ref_obj_id = i == 0 ? id : 0; 1196 st->iter.btf = btf; 1197 st->iter.btf_id = btf_id; 1198 st->iter.state = BPF_ITER_STATE_ACTIVE; 1199 st->iter.depth = 0; 1200 1201 for (j = 0; j < BPF_REG_SIZE; j++) 1202 slot->slot_type[j] = STACK_ITER; 1203 1204 mark_stack_slot_scratched(env, spi - i); 1205 } 1206 1207 return 0; 1208 } 1209 1210 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1211 struct bpf_reg_state *reg, int nr_slots) 1212 { 1213 struct bpf_func_state *state = func(env, reg); 1214 int spi, i, j; 1215 1216 spi = iter_get_spi(env, reg, nr_slots); 1217 if (spi < 0) 1218 return spi; 1219 1220 for (i = 0; i < nr_slots; i++) { 1221 struct bpf_stack_state *slot = &state->stack[spi - i]; 1222 struct bpf_reg_state *st = &slot->spilled_ptr; 1223 1224 if (i == 0) 1225 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1226 1227 __mark_reg_not_init(env, st); 1228 1229 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1230 st->live |= REG_LIVE_WRITTEN; 1231 1232 for (j = 0; j < BPF_REG_SIZE; j++) 1233 slot->slot_type[j] = STACK_INVALID; 1234 1235 mark_stack_slot_scratched(env, spi - i); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1242 struct bpf_reg_state *reg, int nr_slots) 1243 { 1244 struct bpf_func_state *state = func(env, reg); 1245 int spi, i, j; 1246 1247 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1248 * will do check_mem_access to check and update stack bounds later, so 1249 * return true for that case. 1250 */ 1251 spi = iter_get_spi(env, reg, nr_slots); 1252 if (spi == -ERANGE) 1253 return true; 1254 if (spi < 0) 1255 return false; 1256 1257 for (i = 0; i < nr_slots; i++) { 1258 struct bpf_stack_state *slot = &state->stack[spi - i]; 1259 1260 for (j = 0; j < BPF_REG_SIZE; j++) 1261 if (slot->slot_type[j] == STACK_ITER) 1262 return false; 1263 } 1264 1265 return true; 1266 } 1267 1268 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1269 struct btf *btf, u32 btf_id, int nr_slots) 1270 { 1271 struct bpf_func_state *state = func(env, reg); 1272 int spi, i, j; 1273 1274 spi = iter_get_spi(env, reg, nr_slots); 1275 if (spi < 0) 1276 return false; 1277 1278 for (i = 0; i < nr_slots; i++) { 1279 struct bpf_stack_state *slot = &state->stack[spi - i]; 1280 struct bpf_reg_state *st = &slot->spilled_ptr; 1281 1282 /* only main (first) slot has ref_obj_id set */ 1283 if (i == 0 && !st->ref_obj_id) 1284 return false; 1285 if (i != 0 && st->ref_obj_id) 1286 return false; 1287 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1288 return false; 1289 1290 for (j = 0; j < BPF_REG_SIZE; j++) 1291 if (slot->slot_type[j] != STACK_ITER) 1292 return false; 1293 } 1294 1295 return true; 1296 } 1297 1298 /* Check if given stack slot is "special": 1299 * - spilled register state (STACK_SPILL); 1300 * - dynptr state (STACK_DYNPTR); 1301 * - iter state (STACK_ITER). 1302 */ 1303 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1304 { 1305 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1306 1307 switch (type) { 1308 case STACK_SPILL: 1309 case STACK_DYNPTR: 1310 case STACK_ITER: 1311 return true; 1312 case STACK_INVALID: 1313 case STACK_MISC: 1314 case STACK_ZERO: 1315 return false; 1316 default: 1317 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1318 return true; 1319 } 1320 } 1321 1322 /* The reg state of a pointer or a bounded scalar was saved when 1323 * it was spilled to the stack. 1324 */ 1325 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1326 { 1327 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1328 } 1329 1330 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1331 { 1332 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1333 stack->spilled_ptr.type == SCALAR_VALUE; 1334 } 1335 1336 static void scrub_spilled_slot(u8 *stype) 1337 { 1338 if (*stype != STACK_INVALID) 1339 *stype = STACK_MISC; 1340 } 1341 1342 static void print_verifier_state(struct bpf_verifier_env *env, 1343 const struct bpf_func_state *state, 1344 bool print_all) 1345 { 1346 const struct bpf_reg_state *reg; 1347 enum bpf_reg_type t; 1348 int i; 1349 1350 if (state->frameno) 1351 verbose(env, " frame%d:", state->frameno); 1352 for (i = 0; i < MAX_BPF_REG; i++) { 1353 reg = &state->regs[i]; 1354 t = reg->type; 1355 if (t == NOT_INIT) 1356 continue; 1357 if (!print_all && !reg_scratched(env, i)) 1358 continue; 1359 verbose(env, " R%d", i); 1360 print_liveness(env, reg->live); 1361 verbose(env, "="); 1362 if (t == SCALAR_VALUE && reg->precise) 1363 verbose(env, "P"); 1364 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1365 tnum_is_const(reg->var_off)) { 1366 /* reg->off should be 0 for SCALAR_VALUE */ 1367 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1368 verbose(env, "%lld", reg->var_off.value + reg->off); 1369 } else { 1370 const char *sep = ""; 1371 1372 verbose(env, "%s", reg_type_str(env, t)); 1373 if (base_type(t) == PTR_TO_BTF_ID) 1374 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1375 verbose(env, "("); 1376 /* 1377 * _a stands for append, was shortened to avoid multiline statements below. 1378 * This macro is used to output a comma separated list of attributes. 1379 */ 1380 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1381 1382 if (reg->id) 1383 verbose_a("id=%d", reg->id); 1384 if (reg->ref_obj_id) 1385 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1386 if (type_is_non_owning_ref(reg->type)) 1387 verbose_a("%s", "non_own_ref"); 1388 if (t != SCALAR_VALUE) 1389 verbose_a("off=%d", reg->off); 1390 if (type_is_pkt_pointer(t)) 1391 verbose_a("r=%d", reg->range); 1392 else if (base_type(t) == CONST_PTR_TO_MAP || 1393 base_type(t) == PTR_TO_MAP_KEY || 1394 base_type(t) == PTR_TO_MAP_VALUE) 1395 verbose_a("ks=%d,vs=%d", 1396 reg->map_ptr->key_size, 1397 reg->map_ptr->value_size); 1398 if (tnum_is_const(reg->var_off)) { 1399 /* Typically an immediate SCALAR_VALUE, but 1400 * could be a pointer whose offset is too big 1401 * for reg->off 1402 */ 1403 verbose_a("imm=%llx", reg->var_off.value); 1404 } else { 1405 if (reg->smin_value != reg->umin_value && 1406 reg->smin_value != S64_MIN) 1407 verbose_a("smin=%lld", (long long)reg->smin_value); 1408 if (reg->smax_value != reg->umax_value && 1409 reg->smax_value != S64_MAX) 1410 verbose_a("smax=%lld", (long long)reg->smax_value); 1411 if (reg->umin_value != 0) 1412 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1413 if (reg->umax_value != U64_MAX) 1414 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1415 if (!tnum_is_unknown(reg->var_off)) { 1416 char tn_buf[48]; 1417 1418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1419 verbose_a("var_off=%s", tn_buf); 1420 } 1421 if (reg->s32_min_value != reg->smin_value && 1422 reg->s32_min_value != S32_MIN) 1423 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1424 if (reg->s32_max_value != reg->smax_value && 1425 reg->s32_max_value != S32_MAX) 1426 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1427 if (reg->u32_min_value != reg->umin_value && 1428 reg->u32_min_value != U32_MIN) 1429 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1430 if (reg->u32_max_value != reg->umax_value && 1431 reg->u32_max_value != U32_MAX) 1432 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1433 } 1434 #undef verbose_a 1435 1436 verbose(env, ")"); 1437 } 1438 } 1439 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1440 char types_buf[BPF_REG_SIZE + 1]; 1441 bool valid = false; 1442 int j; 1443 1444 for (j = 0; j < BPF_REG_SIZE; j++) { 1445 if (state->stack[i].slot_type[j] != STACK_INVALID) 1446 valid = true; 1447 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1448 } 1449 types_buf[BPF_REG_SIZE] = 0; 1450 if (!valid) 1451 continue; 1452 if (!print_all && !stack_slot_scratched(env, i)) 1453 continue; 1454 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1455 case STACK_SPILL: 1456 reg = &state->stack[i].spilled_ptr; 1457 t = reg->type; 1458 1459 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1460 print_liveness(env, reg->live); 1461 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1462 if (t == SCALAR_VALUE && reg->precise) 1463 verbose(env, "P"); 1464 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1465 verbose(env, "%lld", reg->var_off.value + reg->off); 1466 break; 1467 case STACK_DYNPTR: 1468 i += BPF_DYNPTR_NR_SLOTS - 1; 1469 reg = &state->stack[i].spilled_ptr; 1470 1471 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1472 print_liveness(env, reg->live); 1473 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1474 if (reg->ref_obj_id) 1475 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1476 break; 1477 case STACK_ITER: 1478 /* only main slot has ref_obj_id set; skip others */ 1479 reg = &state->stack[i].spilled_ptr; 1480 if (!reg->ref_obj_id) 1481 continue; 1482 1483 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1484 print_liveness(env, reg->live); 1485 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1486 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1487 reg->ref_obj_id, iter_state_str(reg->iter.state), 1488 reg->iter.depth); 1489 break; 1490 case STACK_MISC: 1491 case STACK_ZERO: 1492 default: 1493 reg = &state->stack[i].spilled_ptr; 1494 1495 for (j = 0; j < BPF_REG_SIZE; j++) 1496 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1497 types_buf[BPF_REG_SIZE] = 0; 1498 1499 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1500 print_liveness(env, reg->live); 1501 verbose(env, "=%s", types_buf); 1502 break; 1503 } 1504 } 1505 if (state->acquired_refs && state->refs[0].id) { 1506 verbose(env, " refs=%d", state->refs[0].id); 1507 for (i = 1; i < state->acquired_refs; i++) 1508 if (state->refs[i].id) 1509 verbose(env, ",%d", state->refs[i].id); 1510 } 1511 if (state->in_callback_fn) 1512 verbose(env, " cb"); 1513 if (state->in_async_callback_fn) 1514 verbose(env, " async_cb"); 1515 verbose(env, "\n"); 1516 mark_verifier_state_clean(env); 1517 } 1518 1519 static inline u32 vlog_alignment(u32 pos) 1520 { 1521 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1522 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1523 } 1524 1525 static void print_insn_state(struct bpf_verifier_env *env, 1526 const struct bpf_func_state *state) 1527 { 1528 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1529 /* remove new line character */ 1530 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1531 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1532 } else { 1533 verbose(env, "%d:", env->insn_idx); 1534 } 1535 print_verifier_state(env, state, false); 1536 } 1537 1538 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1539 * small to hold src. This is different from krealloc since we don't want to preserve 1540 * the contents of dst. 1541 * 1542 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1543 * not be allocated. 1544 */ 1545 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1546 { 1547 size_t alloc_bytes; 1548 void *orig = dst; 1549 size_t bytes; 1550 1551 if (ZERO_OR_NULL_PTR(src)) 1552 goto out; 1553 1554 if (unlikely(check_mul_overflow(n, size, &bytes))) 1555 return NULL; 1556 1557 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1558 dst = krealloc(orig, alloc_bytes, flags); 1559 if (!dst) { 1560 kfree(orig); 1561 return NULL; 1562 } 1563 1564 memcpy(dst, src, bytes); 1565 out: 1566 return dst ? dst : ZERO_SIZE_PTR; 1567 } 1568 1569 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1570 * small to hold new_n items. new items are zeroed out if the array grows. 1571 * 1572 * Contrary to krealloc_array, does not free arr if new_n is zero. 1573 */ 1574 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1575 { 1576 size_t alloc_size; 1577 void *new_arr; 1578 1579 if (!new_n || old_n == new_n) 1580 goto out; 1581 1582 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1583 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1584 if (!new_arr) { 1585 kfree(arr); 1586 return NULL; 1587 } 1588 arr = new_arr; 1589 1590 if (new_n > old_n) 1591 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1592 1593 out: 1594 return arr ? arr : ZERO_SIZE_PTR; 1595 } 1596 1597 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1598 { 1599 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1600 sizeof(struct bpf_reference_state), GFP_KERNEL); 1601 if (!dst->refs) 1602 return -ENOMEM; 1603 1604 dst->acquired_refs = src->acquired_refs; 1605 return 0; 1606 } 1607 1608 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1609 { 1610 size_t n = src->allocated_stack / BPF_REG_SIZE; 1611 1612 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1613 GFP_KERNEL); 1614 if (!dst->stack) 1615 return -ENOMEM; 1616 1617 dst->allocated_stack = src->allocated_stack; 1618 return 0; 1619 } 1620 1621 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1622 { 1623 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1624 sizeof(struct bpf_reference_state)); 1625 if (!state->refs) 1626 return -ENOMEM; 1627 1628 state->acquired_refs = n; 1629 return 0; 1630 } 1631 1632 static int grow_stack_state(struct bpf_func_state *state, int size) 1633 { 1634 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1635 1636 if (old_n >= n) 1637 return 0; 1638 1639 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1640 if (!state->stack) 1641 return -ENOMEM; 1642 1643 state->allocated_stack = size; 1644 return 0; 1645 } 1646 1647 /* Acquire a pointer id from the env and update the state->refs to include 1648 * this new pointer reference. 1649 * On success, returns a valid pointer id to associate with the register 1650 * On failure, returns a negative errno. 1651 */ 1652 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1653 { 1654 struct bpf_func_state *state = cur_func(env); 1655 int new_ofs = state->acquired_refs; 1656 int id, err; 1657 1658 err = resize_reference_state(state, state->acquired_refs + 1); 1659 if (err) 1660 return err; 1661 id = ++env->id_gen; 1662 state->refs[new_ofs].id = id; 1663 state->refs[new_ofs].insn_idx = insn_idx; 1664 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1665 1666 return id; 1667 } 1668 1669 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1670 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1671 { 1672 int i, last_idx; 1673 1674 last_idx = state->acquired_refs - 1; 1675 for (i = 0; i < state->acquired_refs; i++) { 1676 if (state->refs[i].id == ptr_id) { 1677 /* Cannot release caller references in callbacks */ 1678 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1679 return -EINVAL; 1680 if (last_idx && i != last_idx) 1681 memcpy(&state->refs[i], &state->refs[last_idx], 1682 sizeof(*state->refs)); 1683 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1684 state->acquired_refs--; 1685 return 0; 1686 } 1687 } 1688 return -EINVAL; 1689 } 1690 1691 static void free_func_state(struct bpf_func_state *state) 1692 { 1693 if (!state) 1694 return; 1695 kfree(state->refs); 1696 kfree(state->stack); 1697 kfree(state); 1698 } 1699 1700 static void clear_jmp_history(struct bpf_verifier_state *state) 1701 { 1702 kfree(state->jmp_history); 1703 state->jmp_history = NULL; 1704 state->jmp_history_cnt = 0; 1705 } 1706 1707 static void free_verifier_state(struct bpf_verifier_state *state, 1708 bool free_self) 1709 { 1710 int i; 1711 1712 for (i = 0; i <= state->curframe; i++) { 1713 free_func_state(state->frame[i]); 1714 state->frame[i] = NULL; 1715 } 1716 clear_jmp_history(state); 1717 if (free_self) 1718 kfree(state); 1719 } 1720 1721 /* copy verifier state from src to dst growing dst stack space 1722 * when necessary to accommodate larger src stack 1723 */ 1724 static int copy_func_state(struct bpf_func_state *dst, 1725 const struct bpf_func_state *src) 1726 { 1727 int err; 1728 1729 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1730 err = copy_reference_state(dst, src); 1731 if (err) 1732 return err; 1733 return copy_stack_state(dst, src); 1734 } 1735 1736 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1737 const struct bpf_verifier_state *src) 1738 { 1739 struct bpf_func_state *dst; 1740 int i, err; 1741 1742 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1743 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1744 GFP_USER); 1745 if (!dst_state->jmp_history) 1746 return -ENOMEM; 1747 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1748 1749 /* if dst has more stack frames then src frame, free them */ 1750 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1751 free_func_state(dst_state->frame[i]); 1752 dst_state->frame[i] = NULL; 1753 } 1754 dst_state->speculative = src->speculative; 1755 dst_state->active_rcu_lock = src->active_rcu_lock; 1756 dst_state->curframe = src->curframe; 1757 dst_state->active_lock.ptr = src->active_lock.ptr; 1758 dst_state->active_lock.id = src->active_lock.id; 1759 dst_state->branches = src->branches; 1760 dst_state->parent = src->parent; 1761 dst_state->first_insn_idx = src->first_insn_idx; 1762 dst_state->last_insn_idx = src->last_insn_idx; 1763 for (i = 0; i <= src->curframe; i++) { 1764 dst = dst_state->frame[i]; 1765 if (!dst) { 1766 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1767 if (!dst) 1768 return -ENOMEM; 1769 dst_state->frame[i] = dst; 1770 } 1771 err = copy_func_state(dst, src->frame[i]); 1772 if (err) 1773 return err; 1774 } 1775 return 0; 1776 } 1777 1778 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1779 { 1780 while (st) { 1781 u32 br = --st->branches; 1782 1783 /* WARN_ON(br > 1) technically makes sense here, 1784 * but see comment in push_stack(), hence: 1785 */ 1786 WARN_ONCE((int)br < 0, 1787 "BUG update_branch_counts:branches_to_explore=%d\n", 1788 br); 1789 if (br) 1790 break; 1791 st = st->parent; 1792 } 1793 } 1794 1795 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1796 int *insn_idx, bool pop_log) 1797 { 1798 struct bpf_verifier_state *cur = env->cur_state; 1799 struct bpf_verifier_stack_elem *elem, *head = env->head; 1800 int err; 1801 1802 if (env->head == NULL) 1803 return -ENOENT; 1804 1805 if (cur) { 1806 err = copy_verifier_state(cur, &head->st); 1807 if (err) 1808 return err; 1809 } 1810 if (pop_log) 1811 bpf_vlog_reset(&env->log, head->log_pos); 1812 if (insn_idx) 1813 *insn_idx = head->insn_idx; 1814 if (prev_insn_idx) 1815 *prev_insn_idx = head->prev_insn_idx; 1816 elem = head->next; 1817 free_verifier_state(&head->st, false); 1818 kfree(head); 1819 env->head = elem; 1820 env->stack_size--; 1821 return 0; 1822 } 1823 1824 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1825 int insn_idx, int prev_insn_idx, 1826 bool speculative) 1827 { 1828 struct bpf_verifier_state *cur = env->cur_state; 1829 struct bpf_verifier_stack_elem *elem; 1830 int err; 1831 1832 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1833 if (!elem) 1834 goto err; 1835 1836 elem->insn_idx = insn_idx; 1837 elem->prev_insn_idx = prev_insn_idx; 1838 elem->next = env->head; 1839 elem->log_pos = env->log.end_pos; 1840 env->head = elem; 1841 env->stack_size++; 1842 err = copy_verifier_state(&elem->st, cur); 1843 if (err) 1844 goto err; 1845 elem->st.speculative |= speculative; 1846 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1847 verbose(env, "The sequence of %d jumps is too complex.\n", 1848 env->stack_size); 1849 goto err; 1850 } 1851 if (elem->st.parent) { 1852 ++elem->st.parent->branches; 1853 /* WARN_ON(branches > 2) technically makes sense here, 1854 * but 1855 * 1. speculative states will bump 'branches' for non-branch 1856 * instructions 1857 * 2. is_state_visited() heuristics may decide not to create 1858 * a new state for a sequence of branches and all such current 1859 * and cloned states will be pointing to a single parent state 1860 * which might have large 'branches' count. 1861 */ 1862 } 1863 return &elem->st; 1864 err: 1865 free_verifier_state(env->cur_state, true); 1866 env->cur_state = NULL; 1867 /* pop all elements and return */ 1868 while (!pop_stack(env, NULL, NULL, false)); 1869 return NULL; 1870 } 1871 1872 #define CALLER_SAVED_REGS 6 1873 static const int caller_saved[CALLER_SAVED_REGS] = { 1874 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1875 }; 1876 1877 /* This helper doesn't clear reg->id */ 1878 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1879 { 1880 reg->var_off = tnum_const(imm); 1881 reg->smin_value = (s64)imm; 1882 reg->smax_value = (s64)imm; 1883 reg->umin_value = imm; 1884 reg->umax_value = imm; 1885 1886 reg->s32_min_value = (s32)imm; 1887 reg->s32_max_value = (s32)imm; 1888 reg->u32_min_value = (u32)imm; 1889 reg->u32_max_value = (u32)imm; 1890 } 1891 1892 /* Mark the unknown part of a register (variable offset or scalar value) as 1893 * known to have the value @imm. 1894 */ 1895 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1896 { 1897 /* Clear off and union(map_ptr, range) */ 1898 memset(((u8 *)reg) + sizeof(reg->type), 0, 1899 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1900 reg->id = 0; 1901 reg->ref_obj_id = 0; 1902 ___mark_reg_known(reg, imm); 1903 } 1904 1905 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1906 { 1907 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1908 reg->s32_min_value = (s32)imm; 1909 reg->s32_max_value = (s32)imm; 1910 reg->u32_min_value = (u32)imm; 1911 reg->u32_max_value = (u32)imm; 1912 } 1913 1914 /* Mark the 'variable offset' part of a register as zero. This should be 1915 * used only on registers holding a pointer type. 1916 */ 1917 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1918 { 1919 __mark_reg_known(reg, 0); 1920 } 1921 1922 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1923 { 1924 __mark_reg_known(reg, 0); 1925 reg->type = SCALAR_VALUE; 1926 } 1927 1928 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1929 struct bpf_reg_state *regs, u32 regno) 1930 { 1931 if (WARN_ON(regno >= MAX_BPF_REG)) { 1932 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1933 /* Something bad happened, let's kill all regs */ 1934 for (regno = 0; regno < MAX_BPF_REG; regno++) 1935 __mark_reg_not_init(env, regs + regno); 1936 return; 1937 } 1938 __mark_reg_known_zero(regs + regno); 1939 } 1940 1941 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1942 bool first_slot, int dynptr_id) 1943 { 1944 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1945 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1946 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1947 */ 1948 __mark_reg_known_zero(reg); 1949 reg->type = CONST_PTR_TO_DYNPTR; 1950 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1951 reg->id = dynptr_id; 1952 reg->dynptr.type = type; 1953 reg->dynptr.first_slot = first_slot; 1954 } 1955 1956 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1957 { 1958 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1959 const struct bpf_map *map = reg->map_ptr; 1960 1961 if (map->inner_map_meta) { 1962 reg->type = CONST_PTR_TO_MAP; 1963 reg->map_ptr = map->inner_map_meta; 1964 /* transfer reg's id which is unique for every map_lookup_elem 1965 * as UID of the inner map. 1966 */ 1967 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1968 reg->map_uid = reg->id; 1969 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1970 reg->type = PTR_TO_XDP_SOCK; 1971 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1972 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1973 reg->type = PTR_TO_SOCKET; 1974 } else { 1975 reg->type = PTR_TO_MAP_VALUE; 1976 } 1977 return; 1978 } 1979 1980 reg->type &= ~PTR_MAYBE_NULL; 1981 } 1982 1983 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1984 struct btf_field_graph_root *ds_head) 1985 { 1986 __mark_reg_known_zero(®s[regno]); 1987 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1988 regs[regno].btf = ds_head->btf; 1989 regs[regno].btf_id = ds_head->value_btf_id; 1990 regs[regno].off = ds_head->node_offset; 1991 } 1992 1993 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1994 { 1995 return type_is_pkt_pointer(reg->type); 1996 } 1997 1998 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1999 { 2000 return reg_is_pkt_pointer(reg) || 2001 reg->type == PTR_TO_PACKET_END; 2002 } 2003 2004 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2005 { 2006 return base_type(reg->type) == PTR_TO_MEM && 2007 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2008 } 2009 2010 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2011 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2012 enum bpf_reg_type which) 2013 { 2014 /* The register can already have a range from prior markings. 2015 * This is fine as long as it hasn't been advanced from its 2016 * origin. 2017 */ 2018 return reg->type == which && 2019 reg->id == 0 && 2020 reg->off == 0 && 2021 tnum_equals_const(reg->var_off, 0); 2022 } 2023 2024 /* Reset the min/max bounds of a register */ 2025 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2026 { 2027 reg->smin_value = S64_MIN; 2028 reg->smax_value = S64_MAX; 2029 reg->umin_value = 0; 2030 reg->umax_value = U64_MAX; 2031 2032 reg->s32_min_value = S32_MIN; 2033 reg->s32_max_value = S32_MAX; 2034 reg->u32_min_value = 0; 2035 reg->u32_max_value = U32_MAX; 2036 } 2037 2038 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2039 { 2040 reg->smin_value = S64_MIN; 2041 reg->smax_value = S64_MAX; 2042 reg->umin_value = 0; 2043 reg->umax_value = U64_MAX; 2044 } 2045 2046 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2047 { 2048 reg->s32_min_value = S32_MIN; 2049 reg->s32_max_value = S32_MAX; 2050 reg->u32_min_value = 0; 2051 reg->u32_max_value = U32_MAX; 2052 } 2053 2054 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2055 { 2056 struct tnum var32_off = tnum_subreg(reg->var_off); 2057 2058 /* min signed is max(sign bit) | min(other bits) */ 2059 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2060 var32_off.value | (var32_off.mask & S32_MIN)); 2061 /* max signed is min(sign bit) | max(other bits) */ 2062 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2063 var32_off.value | (var32_off.mask & S32_MAX)); 2064 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2065 reg->u32_max_value = min(reg->u32_max_value, 2066 (u32)(var32_off.value | var32_off.mask)); 2067 } 2068 2069 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2070 { 2071 /* min signed is max(sign bit) | min(other bits) */ 2072 reg->smin_value = max_t(s64, reg->smin_value, 2073 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2074 /* max signed is min(sign bit) | max(other bits) */ 2075 reg->smax_value = min_t(s64, reg->smax_value, 2076 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2077 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2078 reg->umax_value = min(reg->umax_value, 2079 reg->var_off.value | reg->var_off.mask); 2080 } 2081 2082 static void __update_reg_bounds(struct bpf_reg_state *reg) 2083 { 2084 __update_reg32_bounds(reg); 2085 __update_reg64_bounds(reg); 2086 } 2087 2088 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2089 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2090 { 2091 /* Learn sign from signed bounds. 2092 * If we cannot cross the sign boundary, then signed and unsigned bounds 2093 * are the same, so combine. This works even in the negative case, e.g. 2094 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2095 */ 2096 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2097 reg->s32_min_value = reg->u32_min_value = 2098 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2099 reg->s32_max_value = reg->u32_max_value = 2100 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2101 return; 2102 } 2103 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2104 * boundary, so we must be careful. 2105 */ 2106 if ((s32)reg->u32_max_value >= 0) { 2107 /* Positive. We can't learn anything from the smin, but smax 2108 * is positive, hence safe. 2109 */ 2110 reg->s32_min_value = reg->u32_min_value; 2111 reg->s32_max_value = reg->u32_max_value = 2112 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2113 } else if ((s32)reg->u32_min_value < 0) { 2114 /* Negative. We can't learn anything from the smax, but smin 2115 * is negative, hence safe. 2116 */ 2117 reg->s32_min_value = reg->u32_min_value = 2118 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2119 reg->s32_max_value = reg->u32_max_value; 2120 } 2121 } 2122 2123 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2124 { 2125 /* Learn sign from signed bounds. 2126 * If we cannot cross the sign boundary, then signed and unsigned bounds 2127 * are the same, so combine. This works even in the negative case, e.g. 2128 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2129 */ 2130 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2131 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2132 reg->umin_value); 2133 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2134 reg->umax_value); 2135 return; 2136 } 2137 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2138 * boundary, so we must be careful. 2139 */ 2140 if ((s64)reg->umax_value >= 0) { 2141 /* Positive. We can't learn anything from the smin, but smax 2142 * is positive, hence safe. 2143 */ 2144 reg->smin_value = reg->umin_value; 2145 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2146 reg->umax_value); 2147 } else if ((s64)reg->umin_value < 0) { 2148 /* Negative. We can't learn anything from the smax, but smin 2149 * is negative, hence safe. 2150 */ 2151 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2152 reg->umin_value); 2153 reg->smax_value = reg->umax_value; 2154 } 2155 } 2156 2157 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2158 { 2159 __reg32_deduce_bounds(reg); 2160 __reg64_deduce_bounds(reg); 2161 } 2162 2163 /* Attempts to improve var_off based on unsigned min/max information */ 2164 static void __reg_bound_offset(struct bpf_reg_state *reg) 2165 { 2166 struct tnum var64_off = tnum_intersect(reg->var_off, 2167 tnum_range(reg->umin_value, 2168 reg->umax_value)); 2169 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2170 tnum_range(reg->u32_min_value, 2171 reg->u32_max_value)); 2172 2173 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2174 } 2175 2176 static void reg_bounds_sync(struct bpf_reg_state *reg) 2177 { 2178 /* We might have learned new bounds from the var_off. */ 2179 __update_reg_bounds(reg); 2180 /* We might have learned something about the sign bit. */ 2181 __reg_deduce_bounds(reg); 2182 /* We might have learned some bits from the bounds. */ 2183 __reg_bound_offset(reg); 2184 /* Intersecting with the old var_off might have improved our bounds 2185 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2186 * then new var_off is (0; 0x7f...fc) which improves our umax. 2187 */ 2188 __update_reg_bounds(reg); 2189 } 2190 2191 static bool __reg32_bound_s64(s32 a) 2192 { 2193 return a >= 0 && a <= S32_MAX; 2194 } 2195 2196 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2197 { 2198 reg->umin_value = reg->u32_min_value; 2199 reg->umax_value = reg->u32_max_value; 2200 2201 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2202 * be positive otherwise set to worse case bounds and refine later 2203 * from tnum. 2204 */ 2205 if (__reg32_bound_s64(reg->s32_min_value) && 2206 __reg32_bound_s64(reg->s32_max_value)) { 2207 reg->smin_value = reg->s32_min_value; 2208 reg->smax_value = reg->s32_max_value; 2209 } else { 2210 reg->smin_value = 0; 2211 reg->smax_value = U32_MAX; 2212 } 2213 } 2214 2215 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2216 { 2217 /* special case when 64-bit register has upper 32-bit register 2218 * zeroed. Typically happens after zext or <<32, >>32 sequence 2219 * allowing us to use 32-bit bounds directly, 2220 */ 2221 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2222 __reg_assign_32_into_64(reg); 2223 } else { 2224 /* Otherwise the best we can do is push lower 32bit known and 2225 * unknown bits into register (var_off set from jmp logic) 2226 * then learn as much as possible from the 64-bit tnum 2227 * known and unknown bits. The previous smin/smax bounds are 2228 * invalid here because of jmp32 compare so mark them unknown 2229 * so they do not impact tnum bounds calculation. 2230 */ 2231 __mark_reg64_unbounded(reg); 2232 } 2233 reg_bounds_sync(reg); 2234 } 2235 2236 static bool __reg64_bound_s32(s64 a) 2237 { 2238 return a >= S32_MIN && a <= S32_MAX; 2239 } 2240 2241 static bool __reg64_bound_u32(u64 a) 2242 { 2243 return a >= U32_MIN && a <= U32_MAX; 2244 } 2245 2246 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2247 { 2248 __mark_reg32_unbounded(reg); 2249 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2250 reg->s32_min_value = (s32)reg->smin_value; 2251 reg->s32_max_value = (s32)reg->smax_value; 2252 } 2253 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2254 reg->u32_min_value = (u32)reg->umin_value; 2255 reg->u32_max_value = (u32)reg->umax_value; 2256 } 2257 reg_bounds_sync(reg); 2258 } 2259 2260 /* Mark a register as having a completely unknown (scalar) value. */ 2261 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2262 struct bpf_reg_state *reg) 2263 { 2264 /* 2265 * Clear type, off, and union(map_ptr, range) and 2266 * padding between 'type' and union 2267 */ 2268 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2269 reg->type = SCALAR_VALUE; 2270 reg->id = 0; 2271 reg->ref_obj_id = 0; 2272 reg->var_off = tnum_unknown; 2273 reg->frameno = 0; 2274 reg->precise = !env->bpf_capable; 2275 __mark_reg_unbounded(reg); 2276 } 2277 2278 static void mark_reg_unknown(struct bpf_verifier_env *env, 2279 struct bpf_reg_state *regs, u32 regno) 2280 { 2281 if (WARN_ON(regno >= MAX_BPF_REG)) { 2282 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2283 /* Something bad happened, let's kill all regs except FP */ 2284 for (regno = 0; regno < BPF_REG_FP; regno++) 2285 __mark_reg_not_init(env, regs + regno); 2286 return; 2287 } 2288 __mark_reg_unknown(env, regs + regno); 2289 } 2290 2291 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2292 struct bpf_reg_state *reg) 2293 { 2294 __mark_reg_unknown(env, reg); 2295 reg->type = NOT_INIT; 2296 } 2297 2298 static void mark_reg_not_init(struct bpf_verifier_env *env, 2299 struct bpf_reg_state *regs, u32 regno) 2300 { 2301 if (WARN_ON(regno >= MAX_BPF_REG)) { 2302 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2303 /* Something bad happened, let's kill all regs except FP */ 2304 for (regno = 0; regno < BPF_REG_FP; regno++) 2305 __mark_reg_not_init(env, regs + regno); 2306 return; 2307 } 2308 __mark_reg_not_init(env, regs + regno); 2309 } 2310 2311 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2312 struct bpf_reg_state *regs, u32 regno, 2313 enum bpf_reg_type reg_type, 2314 struct btf *btf, u32 btf_id, 2315 enum bpf_type_flag flag) 2316 { 2317 if (reg_type == SCALAR_VALUE) { 2318 mark_reg_unknown(env, regs, regno); 2319 return; 2320 } 2321 mark_reg_known_zero(env, regs, regno); 2322 regs[regno].type = PTR_TO_BTF_ID | flag; 2323 regs[regno].btf = btf; 2324 regs[regno].btf_id = btf_id; 2325 } 2326 2327 #define DEF_NOT_SUBREG (0) 2328 static void init_reg_state(struct bpf_verifier_env *env, 2329 struct bpf_func_state *state) 2330 { 2331 struct bpf_reg_state *regs = state->regs; 2332 int i; 2333 2334 for (i = 0; i < MAX_BPF_REG; i++) { 2335 mark_reg_not_init(env, regs, i); 2336 regs[i].live = REG_LIVE_NONE; 2337 regs[i].parent = NULL; 2338 regs[i].subreg_def = DEF_NOT_SUBREG; 2339 } 2340 2341 /* frame pointer */ 2342 regs[BPF_REG_FP].type = PTR_TO_STACK; 2343 mark_reg_known_zero(env, regs, BPF_REG_FP); 2344 regs[BPF_REG_FP].frameno = state->frameno; 2345 } 2346 2347 #define BPF_MAIN_FUNC (-1) 2348 static void init_func_state(struct bpf_verifier_env *env, 2349 struct bpf_func_state *state, 2350 int callsite, int frameno, int subprogno) 2351 { 2352 state->callsite = callsite; 2353 state->frameno = frameno; 2354 state->subprogno = subprogno; 2355 state->callback_ret_range = tnum_range(0, 0); 2356 init_reg_state(env, state); 2357 mark_verifier_state_scratched(env); 2358 } 2359 2360 /* Similar to push_stack(), but for async callbacks */ 2361 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2362 int insn_idx, int prev_insn_idx, 2363 int subprog) 2364 { 2365 struct bpf_verifier_stack_elem *elem; 2366 struct bpf_func_state *frame; 2367 2368 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2369 if (!elem) 2370 goto err; 2371 2372 elem->insn_idx = insn_idx; 2373 elem->prev_insn_idx = prev_insn_idx; 2374 elem->next = env->head; 2375 elem->log_pos = env->log.end_pos; 2376 env->head = elem; 2377 env->stack_size++; 2378 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2379 verbose(env, 2380 "The sequence of %d jumps is too complex for async cb.\n", 2381 env->stack_size); 2382 goto err; 2383 } 2384 /* Unlike push_stack() do not copy_verifier_state(). 2385 * The caller state doesn't matter. 2386 * This is async callback. It starts in a fresh stack. 2387 * Initialize it similar to do_check_common(). 2388 */ 2389 elem->st.branches = 1; 2390 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2391 if (!frame) 2392 goto err; 2393 init_func_state(env, frame, 2394 BPF_MAIN_FUNC /* callsite */, 2395 0 /* frameno within this callchain */, 2396 subprog /* subprog number within this prog */); 2397 elem->st.frame[0] = frame; 2398 return &elem->st; 2399 err: 2400 free_verifier_state(env->cur_state, true); 2401 env->cur_state = NULL; 2402 /* pop all elements and return */ 2403 while (!pop_stack(env, NULL, NULL, false)); 2404 return NULL; 2405 } 2406 2407 2408 enum reg_arg_type { 2409 SRC_OP, /* register is used as source operand */ 2410 DST_OP, /* register is used as destination operand */ 2411 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2412 }; 2413 2414 static int cmp_subprogs(const void *a, const void *b) 2415 { 2416 return ((struct bpf_subprog_info *)a)->start - 2417 ((struct bpf_subprog_info *)b)->start; 2418 } 2419 2420 static int find_subprog(struct bpf_verifier_env *env, int off) 2421 { 2422 struct bpf_subprog_info *p; 2423 2424 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2425 sizeof(env->subprog_info[0]), cmp_subprogs); 2426 if (!p) 2427 return -ENOENT; 2428 return p - env->subprog_info; 2429 2430 } 2431 2432 static int add_subprog(struct bpf_verifier_env *env, int off) 2433 { 2434 int insn_cnt = env->prog->len; 2435 int ret; 2436 2437 if (off >= insn_cnt || off < 0) { 2438 verbose(env, "call to invalid destination\n"); 2439 return -EINVAL; 2440 } 2441 ret = find_subprog(env, off); 2442 if (ret >= 0) 2443 return ret; 2444 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2445 verbose(env, "too many subprograms\n"); 2446 return -E2BIG; 2447 } 2448 /* determine subprog starts. The end is one before the next starts */ 2449 env->subprog_info[env->subprog_cnt++].start = off; 2450 sort(env->subprog_info, env->subprog_cnt, 2451 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2452 return env->subprog_cnt - 1; 2453 } 2454 2455 #define MAX_KFUNC_DESCS 256 2456 #define MAX_KFUNC_BTFS 256 2457 2458 struct bpf_kfunc_desc { 2459 struct btf_func_model func_model; 2460 u32 func_id; 2461 s32 imm; 2462 u16 offset; 2463 unsigned long addr; 2464 }; 2465 2466 struct bpf_kfunc_btf { 2467 struct btf *btf; 2468 struct module *module; 2469 u16 offset; 2470 }; 2471 2472 struct bpf_kfunc_desc_tab { 2473 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2474 * verification. JITs do lookups by bpf_insn, where func_id may not be 2475 * available, therefore at the end of verification do_misc_fixups() 2476 * sorts this by imm and offset. 2477 */ 2478 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2479 u32 nr_descs; 2480 }; 2481 2482 struct bpf_kfunc_btf_tab { 2483 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2484 u32 nr_descs; 2485 }; 2486 2487 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2488 { 2489 const struct bpf_kfunc_desc *d0 = a; 2490 const struct bpf_kfunc_desc *d1 = b; 2491 2492 /* func_id is not greater than BTF_MAX_TYPE */ 2493 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2494 } 2495 2496 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2497 { 2498 const struct bpf_kfunc_btf *d0 = a; 2499 const struct bpf_kfunc_btf *d1 = b; 2500 2501 return d0->offset - d1->offset; 2502 } 2503 2504 static const struct bpf_kfunc_desc * 2505 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2506 { 2507 struct bpf_kfunc_desc desc = { 2508 .func_id = func_id, 2509 .offset = offset, 2510 }; 2511 struct bpf_kfunc_desc_tab *tab; 2512 2513 tab = prog->aux->kfunc_tab; 2514 return bsearch(&desc, tab->descs, tab->nr_descs, 2515 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2516 } 2517 2518 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2519 u16 btf_fd_idx, u8 **func_addr) 2520 { 2521 const struct bpf_kfunc_desc *desc; 2522 2523 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2524 if (!desc) 2525 return -EFAULT; 2526 2527 *func_addr = (u8 *)desc->addr; 2528 return 0; 2529 } 2530 2531 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2532 s16 offset) 2533 { 2534 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2535 struct bpf_kfunc_btf_tab *tab; 2536 struct bpf_kfunc_btf *b; 2537 struct module *mod; 2538 struct btf *btf; 2539 int btf_fd; 2540 2541 tab = env->prog->aux->kfunc_btf_tab; 2542 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2543 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2544 if (!b) { 2545 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2546 verbose(env, "too many different module BTFs\n"); 2547 return ERR_PTR(-E2BIG); 2548 } 2549 2550 if (bpfptr_is_null(env->fd_array)) { 2551 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2552 return ERR_PTR(-EPROTO); 2553 } 2554 2555 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2556 offset * sizeof(btf_fd), 2557 sizeof(btf_fd))) 2558 return ERR_PTR(-EFAULT); 2559 2560 btf = btf_get_by_fd(btf_fd); 2561 if (IS_ERR(btf)) { 2562 verbose(env, "invalid module BTF fd specified\n"); 2563 return btf; 2564 } 2565 2566 if (!btf_is_module(btf)) { 2567 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2568 btf_put(btf); 2569 return ERR_PTR(-EINVAL); 2570 } 2571 2572 mod = btf_try_get_module(btf); 2573 if (!mod) { 2574 btf_put(btf); 2575 return ERR_PTR(-ENXIO); 2576 } 2577 2578 b = &tab->descs[tab->nr_descs++]; 2579 b->btf = btf; 2580 b->module = mod; 2581 b->offset = offset; 2582 2583 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2584 kfunc_btf_cmp_by_off, NULL); 2585 } 2586 return b->btf; 2587 } 2588 2589 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2590 { 2591 if (!tab) 2592 return; 2593 2594 while (tab->nr_descs--) { 2595 module_put(tab->descs[tab->nr_descs].module); 2596 btf_put(tab->descs[tab->nr_descs].btf); 2597 } 2598 kfree(tab); 2599 } 2600 2601 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2602 { 2603 if (offset) { 2604 if (offset < 0) { 2605 /* In the future, this can be allowed to increase limit 2606 * of fd index into fd_array, interpreted as u16. 2607 */ 2608 verbose(env, "negative offset disallowed for kernel module function call\n"); 2609 return ERR_PTR(-EINVAL); 2610 } 2611 2612 return __find_kfunc_desc_btf(env, offset); 2613 } 2614 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2615 } 2616 2617 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2618 { 2619 const struct btf_type *func, *func_proto; 2620 struct bpf_kfunc_btf_tab *btf_tab; 2621 struct bpf_kfunc_desc_tab *tab; 2622 struct bpf_prog_aux *prog_aux; 2623 struct bpf_kfunc_desc *desc; 2624 const char *func_name; 2625 struct btf *desc_btf; 2626 unsigned long call_imm; 2627 unsigned long addr; 2628 int err; 2629 2630 prog_aux = env->prog->aux; 2631 tab = prog_aux->kfunc_tab; 2632 btf_tab = prog_aux->kfunc_btf_tab; 2633 if (!tab) { 2634 if (!btf_vmlinux) { 2635 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2636 return -ENOTSUPP; 2637 } 2638 2639 if (!env->prog->jit_requested) { 2640 verbose(env, "JIT is required for calling kernel function\n"); 2641 return -ENOTSUPP; 2642 } 2643 2644 if (!bpf_jit_supports_kfunc_call()) { 2645 verbose(env, "JIT does not support calling kernel function\n"); 2646 return -ENOTSUPP; 2647 } 2648 2649 if (!env->prog->gpl_compatible) { 2650 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2651 return -EINVAL; 2652 } 2653 2654 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2655 if (!tab) 2656 return -ENOMEM; 2657 prog_aux->kfunc_tab = tab; 2658 } 2659 2660 /* func_id == 0 is always invalid, but instead of returning an error, be 2661 * conservative and wait until the code elimination pass before returning 2662 * error, so that invalid calls that get pruned out can be in BPF programs 2663 * loaded from userspace. It is also required that offset be untouched 2664 * for such calls. 2665 */ 2666 if (!func_id && !offset) 2667 return 0; 2668 2669 if (!btf_tab && offset) { 2670 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2671 if (!btf_tab) 2672 return -ENOMEM; 2673 prog_aux->kfunc_btf_tab = btf_tab; 2674 } 2675 2676 desc_btf = find_kfunc_desc_btf(env, offset); 2677 if (IS_ERR(desc_btf)) { 2678 verbose(env, "failed to find BTF for kernel function\n"); 2679 return PTR_ERR(desc_btf); 2680 } 2681 2682 if (find_kfunc_desc(env->prog, func_id, offset)) 2683 return 0; 2684 2685 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2686 verbose(env, "too many different kernel function calls\n"); 2687 return -E2BIG; 2688 } 2689 2690 func = btf_type_by_id(desc_btf, func_id); 2691 if (!func || !btf_type_is_func(func)) { 2692 verbose(env, "kernel btf_id %u is not a function\n", 2693 func_id); 2694 return -EINVAL; 2695 } 2696 func_proto = btf_type_by_id(desc_btf, func->type); 2697 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2698 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2699 func_id); 2700 return -EINVAL; 2701 } 2702 2703 func_name = btf_name_by_offset(desc_btf, func->name_off); 2704 addr = kallsyms_lookup_name(func_name); 2705 if (!addr) { 2706 verbose(env, "cannot find address for kernel function %s\n", 2707 func_name); 2708 return -EINVAL; 2709 } 2710 specialize_kfunc(env, func_id, offset, &addr); 2711 2712 if (bpf_jit_supports_far_kfunc_call()) { 2713 call_imm = func_id; 2714 } else { 2715 call_imm = BPF_CALL_IMM(addr); 2716 /* Check whether the relative offset overflows desc->imm */ 2717 if ((unsigned long)(s32)call_imm != call_imm) { 2718 verbose(env, "address of kernel function %s is out of range\n", 2719 func_name); 2720 return -EINVAL; 2721 } 2722 } 2723 2724 if (bpf_dev_bound_kfunc_id(func_id)) { 2725 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2726 if (err) 2727 return err; 2728 } 2729 2730 desc = &tab->descs[tab->nr_descs++]; 2731 desc->func_id = func_id; 2732 desc->imm = call_imm; 2733 desc->offset = offset; 2734 desc->addr = addr; 2735 err = btf_distill_func_proto(&env->log, desc_btf, 2736 func_proto, func_name, 2737 &desc->func_model); 2738 if (!err) 2739 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2740 kfunc_desc_cmp_by_id_off, NULL); 2741 return err; 2742 } 2743 2744 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2745 { 2746 const struct bpf_kfunc_desc *d0 = a; 2747 const struct bpf_kfunc_desc *d1 = b; 2748 2749 if (d0->imm != d1->imm) 2750 return d0->imm < d1->imm ? -1 : 1; 2751 if (d0->offset != d1->offset) 2752 return d0->offset < d1->offset ? -1 : 1; 2753 return 0; 2754 } 2755 2756 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2757 { 2758 struct bpf_kfunc_desc_tab *tab; 2759 2760 tab = prog->aux->kfunc_tab; 2761 if (!tab) 2762 return; 2763 2764 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2765 kfunc_desc_cmp_by_imm_off, NULL); 2766 } 2767 2768 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2769 { 2770 return !!prog->aux->kfunc_tab; 2771 } 2772 2773 const struct btf_func_model * 2774 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2775 const struct bpf_insn *insn) 2776 { 2777 const struct bpf_kfunc_desc desc = { 2778 .imm = insn->imm, 2779 .offset = insn->off, 2780 }; 2781 const struct bpf_kfunc_desc *res; 2782 struct bpf_kfunc_desc_tab *tab; 2783 2784 tab = prog->aux->kfunc_tab; 2785 res = bsearch(&desc, tab->descs, tab->nr_descs, 2786 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2787 2788 return res ? &res->func_model : NULL; 2789 } 2790 2791 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2792 { 2793 struct bpf_subprog_info *subprog = env->subprog_info; 2794 struct bpf_insn *insn = env->prog->insnsi; 2795 int i, ret, insn_cnt = env->prog->len; 2796 2797 /* Add entry function. */ 2798 ret = add_subprog(env, 0); 2799 if (ret) 2800 return ret; 2801 2802 for (i = 0; i < insn_cnt; i++, insn++) { 2803 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2804 !bpf_pseudo_kfunc_call(insn)) 2805 continue; 2806 2807 if (!env->bpf_capable) { 2808 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2809 return -EPERM; 2810 } 2811 2812 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2813 ret = add_subprog(env, i + insn->imm + 1); 2814 else 2815 ret = add_kfunc_call(env, insn->imm, insn->off); 2816 2817 if (ret < 0) 2818 return ret; 2819 } 2820 2821 /* Add a fake 'exit' subprog which could simplify subprog iteration 2822 * logic. 'subprog_cnt' should not be increased. 2823 */ 2824 subprog[env->subprog_cnt].start = insn_cnt; 2825 2826 if (env->log.level & BPF_LOG_LEVEL2) 2827 for (i = 0; i < env->subprog_cnt; i++) 2828 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2829 2830 return 0; 2831 } 2832 2833 static int check_subprogs(struct bpf_verifier_env *env) 2834 { 2835 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2836 struct bpf_subprog_info *subprog = env->subprog_info; 2837 struct bpf_insn *insn = env->prog->insnsi; 2838 int insn_cnt = env->prog->len; 2839 2840 /* now check that all jumps are within the same subprog */ 2841 subprog_start = subprog[cur_subprog].start; 2842 subprog_end = subprog[cur_subprog + 1].start; 2843 for (i = 0; i < insn_cnt; i++) { 2844 u8 code = insn[i].code; 2845 2846 if (code == (BPF_JMP | BPF_CALL) && 2847 insn[i].src_reg == 0 && 2848 insn[i].imm == BPF_FUNC_tail_call) 2849 subprog[cur_subprog].has_tail_call = true; 2850 if (BPF_CLASS(code) == BPF_LD && 2851 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2852 subprog[cur_subprog].has_ld_abs = true; 2853 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2854 goto next; 2855 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2856 goto next; 2857 off = i + insn[i].off + 1; 2858 if (off < subprog_start || off >= subprog_end) { 2859 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2860 return -EINVAL; 2861 } 2862 next: 2863 if (i == subprog_end - 1) { 2864 /* to avoid fall-through from one subprog into another 2865 * the last insn of the subprog should be either exit 2866 * or unconditional jump back 2867 */ 2868 if (code != (BPF_JMP | BPF_EXIT) && 2869 code != (BPF_JMP | BPF_JA)) { 2870 verbose(env, "last insn is not an exit or jmp\n"); 2871 return -EINVAL; 2872 } 2873 subprog_start = subprog_end; 2874 cur_subprog++; 2875 if (cur_subprog < env->subprog_cnt) 2876 subprog_end = subprog[cur_subprog + 1].start; 2877 } 2878 } 2879 return 0; 2880 } 2881 2882 /* Parentage chain of this register (or stack slot) should take care of all 2883 * issues like callee-saved registers, stack slot allocation time, etc. 2884 */ 2885 static int mark_reg_read(struct bpf_verifier_env *env, 2886 const struct bpf_reg_state *state, 2887 struct bpf_reg_state *parent, u8 flag) 2888 { 2889 bool writes = parent == state->parent; /* Observe write marks */ 2890 int cnt = 0; 2891 2892 while (parent) { 2893 /* if read wasn't screened by an earlier write ... */ 2894 if (writes && state->live & REG_LIVE_WRITTEN) 2895 break; 2896 if (parent->live & REG_LIVE_DONE) { 2897 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2898 reg_type_str(env, parent->type), 2899 parent->var_off.value, parent->off); 2900 return -EFAULT; 2901 } 2902 /* The first condition is more likely to be true than the 2903 * second, checked it first. 2904 */ 2905 if ((parent->live & REG_LIVE_READ) == flag || 2906 parent->live & REG_LIVE_READ64) 2907 /* The parentage chain never changes and 2908 * this parent was already marked as LIVE_READ. 2909 * There is no need to keep walking the chain again and 2910 * keep re-marking all parents as LIVE_READ. 2911 * This case happens when the same register is read 2912 * multiple times without writes into it in-between. 2913 * Also, if parent has the stronger REG_LIVE_READ64 set, 2914 * then no need to set the weak REG_LIVE_READ32. 2915 */ 2916 break; 2917 /* ... then we depend on parent's value */ 2918 parent->live |= flag; 2919 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2920 if (flag == REG_LIVE_READ64) 2921 parent->live &= ~REG_LIVE_READ32; 2922 state = parent; 2923 parent = state->parent; 2924 writes = true; 2925 cnt++; 2926 } 2927 2928 if (env->longest_mark_read_walk < cnt) 2929 env->longest_mark_read_walk = cnt; 2930 return 0; 2931 } 2932 2933 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2934 { 2935 struct bpf_func_state *state = func(env, reg); 2936 int spi, ret; 2937 2938 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2939 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2940 * check_kfunc_call. 2941 */ 2942 if (reg->type == CONST_PTR_TO_DYNPTR) 2943 return 0; 2944 spi = dynptr_get_spi(env, reg); 2945 if (spi < 0) 2946 return spi; 2947 /* Caller ensures dynptr is valid and initialized, which means spi is in 2948 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2949 * read. 2950 */ 2951 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2952 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2953 if (ret) 2954 return ret; 2955 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2956 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2957 } 2958 2959 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2960 int spi, int nr_slots) 2961 { 2962 struct bpf_func_state *state = func(env, reg); 2963 int err, i; 2964 2965 for (i = 0; i < nr_slots; i++) { 2966 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2967 2968 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2969 if (err) 2970 return err; 2971 2972 mark_stack_slot_scratched(env, spi - i); 2973 } 2974 2975 return 0; 2976 } 2977 2978 /* This function is supposed to be used by the following 32-bit optimization 2979 * code only. It returns TRUE if the source or destination register operates 2980 * on 64-bit, otherwise return FALSE. 2981 */ 2982 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2983 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2984 { 2985 u8 code, class, op; 2986 2987 code = insn->code; 2988 class = BPF_CLASS(code); 2989 op = BPF_OP(code); 2990 if (class == BPF_JMP) { 2991 /* BPF_EXIT for "main" will reach here. Return TRUE 2992 * conservatively. 2993 */ 2994 if (op == BPF_EXIT) 2995 return true; 2996 if (op == BPF_CALL) { 2997 /* BPF to BPF call will reach here because of marking 2998 * caller saved clobber with DST_OP_NO_MARK for which we 2999 * don't care the register def because they are anyway 3000 * marked as NOT_INIT already. 3001 */ 3002 if (insn->src_reg == BPF_PSEUDO_CALL) 3003 return false; 3004 /* Helper call will reach here because of arg type 3005 * check, conservatively return TRUE. 3006 */ 3007 if (t == SRC_OP) 3008 return true; 3009 3010 return false; 3011 } 3012 } 3013 3014 if (class == BPF_ALU64 || class == BPF_JMP || 3015 /* BPF_END always use BPF_ALU class. */ 3016 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3017 return true; 3018 3019 if (class == BPF_ALU || class == BPF_JMP32) 3020 return false; 3021 3022 if (class == BPF_LDX) { 3023 if (t != SRC_OP) 3024 return BPF_SIZE(code) == BPF_DW; 3025 /* LDX source must be ptr. */ 3026 return true; 3027 } 3028 3029 if (class == BPF_STX) { 3030 /* BPF_STX (including atomic variants) has multiple source 3031 * operands, one of which is a ptr. Check whether the caller is 3032 * asking about it. 3033 */ 3034 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3035 return true; 3036 return BPF_SIZE(code) == BPF_DW; 3037 } 3038 3039 if (class == BPF_LD) { 3040 u8 mode = BPF_MODE(code); 3041 3042 /* LD_IMM64 */ 3043 if (mode == BPF_IMM) 3044 return true; 3045 3046 /* Both LD_IND and LD_ABS return 32-bit data. */ 3047 if (t != SRC_OP) 3048 return false; 3049 3050 /* Implicit ctx ptr. */ 3051 if (regno == BPF_REG_6) 3052 return true; 3053 3054 /* Explicit source could be any width. */ 3055 return true; 3056 } 3057 3058 if (class == BPF_ST) 3059 /* The only source register for BPF_ST is a ptr. */ 3060 return true; 3061 3062 /* Conservatively return true at default. */ 3063 return true; 3064 } 3065 3066 /* Return the regno defined by the insn, or -1. */ 3067 static int insn_def_regno(const struct bpf_insn *insn) 3068 { 3069 switch (BPF_CLASS(insn->code)) { 3070 case BPF_JMP: 3071 case BPF_JMP32: 3072 case BPF_ST: 3073 return -1; 3074 case BPF_STX: 3075 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3076 (insn->imm & BPF_FETCH)) { 3077 if (insn->imm == BPF_CMPXCHG) 3078 return BPF_REG_0; 3079 else 3080 return insn->src_reg; 3081 } else { 3082 return -1; 3083 } 3084 default: 3085 return insn->dst_reg; 3086 } 3087 } 3088 3089 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3090 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3091 { 3092 int dst_reg = insn_def_regno(insn); 3093 3094 if (dst_reg == -1) 3095 return false; 3096 3097 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3098 } 3099 3100 static void mark_insn_zext(struct bpf_verifier_env *env, 3101 struct bpf_reg_state *reg) 3102 { 3103 s32 def_idx = reg->subreg_def; 3104 3105 if (def_idx == DEF_NOT_SUBREG) 3106 return; 3107 3108 env->insn_aux_data[def_idx - 1].zext_dst = true; 3109 /* The dst will be zero extended, so won't be sub-register anymore. */ 3110 reg->subreg_def = DEF_NOT_SUBREG; 3111 } 3112 3113 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3114 enum reg_arg_type t) 3115 { 3116 struct bpf_verifier_state *vstate = env->cur_state; 3117 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3118 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3119 struct bpf_reg_state *reg, *regs = state->regs; 3120 bool rw64; 3121 3122 if (regno >= MAX_BPF_REG) { 3123 verbose(env, "R%d is invalid\n", regno); 3124 return -EINVAL; 3125 } 3126 3127 mark_reg_scratched(env, regno); 3128 3129 reg = ®s[regno]; 3130 rw64 = is_reg64(env, insn, regno, reg, t); 3131 if (t == SRC_OP) { 3132 /* check whether register used as source operand can be read */ 3133 if (reg->type == NOT_INIT) { 3134 verbose(env, "R%d !read_ok\n", regno); 3135 return -EACCES; 3136 } 3137 /* We don't need to worry about FP liveness because it's read-only */ 3138 if (regno == BPF_REG_FP) 3139 return 0; 3140 3141 if (rw64) 3142 mark_insn_zext(env, reg); 3143 3144 return mark_reg_read(env, reg, reg->parent, 3145 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3146 } else { 3147 /* check whether register used as dest operand can be written to */ 3148 if (regno == BPF_REG_FP) { 3149 verbose(env, "frame pointer is read only\n"); 3150 return -EACCES; 3151 } 3152 reg->live |= REG_LIVE_WRITTEN; 3153 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3154 if (t == DST_OP) 3155 mark_reg_unknown(env, regs, regno); 3156 } 3157 return 0; 3158 } 3159 3160 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3161 { 3162 env->insn_aux_data[idx].jmp_point = true; 3163 } 3164 3165 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3166 { 3167 return env->insn_aux_data[insn_idx].jmp_point; 3168 } 3169 3170 /* for any branch, call, exit record the history of jmps in the given state */ 3171 static int push_jmp_history(struct bpf_verifier_env *env, 3172 struct bpf_verifier_state *cur) 3173 { 3174 u32 cnt = cur->jmp_history_cnt; 3175 struct bpf_idx_pair *p; 3176 size_t alloc_size; 3177 3178 if (!is_jmp_point(env, env->insn_idx)) 3179 return 0; 3180 3181 cnt++; 3182 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3183 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3184 if (!p) 3185 return -ENOMEM; 3186 p[cnt - 1].idx = env->insn_idx; 3187 p[cnt - 1].prev_idx = env->prev_insn_idx; 3188 cur->jmp_history = p; 3189 cur->jmp_history_cnt = cnt; 3190 return 0; 3191 } 3192 3193 /* Backtrack one insn at a time. If idx is not at the top of recorded 3194 * history then previous instruction came from straight line execution. 3195 */ 3196 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3197 u32 *history) 3198 { 3199 u32 cnt = *history; 3200 3201 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3202 i = st->jmp_history[cnt - 1].prev_idx; 3203 (*history)--; 3204 } else { 3205 i--; 3206 } 3207 return i; 3208 } 3209 3210 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3211 { 3212 const struct btf_type *func; 3213 struct btf *desc_btf; 3214 3215 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3216 return NULL; 3217 3218 desc_btf = find_kfunc_desc_btf(data, insn->off); 3219 if (IS_ERR(desc_btf)) 3220 return "<error>"; 3221 3222 func = btf_type_by_id(desc_btf, insn->imm); 3223 return btf_name_by_offset(desc_btf, func->name_off); 3224 } 3225 3226 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3227 { 3228 bt->frame = frame; 3229 } 3230 3231 static inline void bt_reset(struct backtrack_state *bt) 3232 { 3233 struct bpf_verifier_env *env = bt->env; 3234 3235 memset(bt, 0, sizeof(*bt)); 3236 bt->env = env; 3237 } 3238 3239 static inline u32 bt_empty(struct backtrack_state *bt) 3240 { 3241 u64 mask = 0; 3242 int i; 3243 3244 for (i = 0; i <= bt->frame; i++) 3245 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3246 3247 return mask == 0; 3248 } 3249 3250 static inline int bt_subprog_enter(struct backtrack_state *bt) 3251 { 3252 if (bt->frame == MAX_CALL_FRAMES - 1) { 3253 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3254 WARN_ONCE(1, "verifier backtracking bug"); 3255 return -EFAULT; 3256 } 3257 bt->frame++; 3258 return 0; 3259 } 3260 3261 static inline int bt_subprog_exit(struct backtrack_state *bt) 3262 { 3263 if (bt->frame == 0) { 3264 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3265 WARN_ONCE(1, "verifier backtracking bug"); 3266 return -EFAULT; 3267 } 3268 bt->frame--; 3269 return 0; 3270 } 3271 3272 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3273 { 3274 bt->reg_masks[frame] |= 1 << reg; 3275 } 3276 3277 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3278 { 3279 bt->reg_masks[frame] &= ~(1 << reg); 3280 } 3281 3282 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3283 { 3284 bt_set_frame_reg(bt, bt->frame, reg); 3285 } 3286 3287 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3288 { 3289 bt_clear_frame_reg(bt, bt->frame, reg); 3290 } 3291 3292 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3293 { 3294 bt->stack_masks[frame] |= 1ull << slot; 3295 } 3296 3297 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3298 { 3299 bt->stack_masks[frame] &= ~(1ull << slot); 3300 } 3301 3302 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3303 { 3304 bt_set_frame_slot(bt, bt->frame, slot); 3305 } 3306 3307 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3308 { 3309 bt_clear_frame_slot(bt, bt->frame, slot); 3310 } 3311 3312 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3313 { 3314 return bt->reg_masks[frame]; 3315 } 3316 3317 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3318 { 3319 return bt->reg_masks[bt->frame]; 3320 } 3321 3322 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3323 { 3324 return bt->stack_masks[frame]; 3325 } 3326 3327 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3328 { 3329 return bt->stack_masks[bt->frame]; 3330 } 3331 3332 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3333 { 3334 return bt->reg_masks[bt->frame] & (1 << reg); 3335 } 3336 3337 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3338 { 3339 return bt->stack_masks[bt->frame] & (1ull << slot); 3340 } 3341 3342 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3343 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3344 { 3345 DECLARE_BITMAP(mask, 64); 3346 bool first = true; 3347 int i, n; 3348 3349 buf[0] = '\0'; 3350 3351 bitmap_from_u64(mask, reg_mask); 3352 for_each_set_bit(i, mask, 32) { 3353 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3354 first = false; 3355 buf += n; 3356 buf_sz -= n; 3357 if (buf_sz < 0) 3358 break; 3359 } 3360 } 3361 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3362 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3363 { 3364 DECLARE_BITMAP(mask, 64); 3365 bool first = true; 3366 int i, n; 3367 3368 buf[0] = '\0'; 3369 3370 bitmap_from_u64(mask, stack_mask); 3371 for_each_set_bit(i, mask, 64) { 3372 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3373 first = false; 3374 buf += n; 3375 buf_sz -= n; 3376 if (buf_sz < 0) 3377 break; 3378 } 3379 } 3380 3381 /* For given verifier state backtrack_insn() is called from the last insn to 3382 * the first insn. Its purpose is to compute a bitmask of registers and 3383 * stack slots that needs precision in the parent verifier state. 3384 * 3385 * @idx is an index of the instruction we are currently processing; 3386 * @subseq_idx is an index of the subsequent instruction that: 3387 * - *would be* executed next, if jump history is viewed in forward order; 3388 * - *was* processed previously during backtracking. 3389 */ 3390 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3391 struct backtrack_state *bt) 3392 { 3393 const struct bpf_insn_cbs cbs = { 3394 .cb_call = disasm_kfunc_name, 3395 .cb_print = verbose, 3396 .private_data = env, 3397 }; 3398 struct bpf_insn *insn = env->prog->insnsi + idx; 3399 u8 class = BPF_CLASS(insn->code); 3400 u8 opcode = BPF_OP(insn->code); 3401 u8 mode = BPF_MODE(insn->code); 3402 u32 dreg = insn->dst_reg; 3403 u32 sreg = insn->src_reg; 3404 u32 spi, i; 3405 3406 if (insn->code == 0) 3407 return 0; 3408 if (env->log.level & BPF_LOG_LEVEL2) { 3409 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3410 verbose(env, "mark_precise: frame%d: regs=%s ", 3411 bt->frame, env->tmp_str_buf); 3412 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3413 verbose(env, "stack=%s before ", env->tmp_str_buf); 3414 verbose(env, "%d: ", idx); 3415 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3416 } 3417 3418 if (class == BPF_ALU || class == BPF_ALU64) { 3419 if (!bt_is_reg_set(bt, dreg)) 3420 return 0; 3421 if (opcode == BPF_MOV) { 3422 if (BPF_SRC(insn->code) == BPF_X) { 3423 /* dreg = sreg 3424 * dreg needs precision after this insn 3425 * sreg needs precision before this insn 3426 */ 3427 bt_clear_reg(bt, dreg); 3428 bt_set_reg(bt, sreg); 3429 } else { 3430 /* dreg = K 3431 * dreg needs precision after this insn. 3432 * Corresponding register is already marked 3433 * as precise=true in this verifier state. 3434 * No further markings in parent are necessary 3435 */ 3436 bt_clear_reg(bt, dreg); 3437 } 3438 } else { 3439 if (BPF_SRC(insn->code) == BPF_X) { 3440 /* dreg += sreg 3441 * both dreg and sreg need precision 3442 * before this insn 3443 */ 3444 bt_set_reg(bt, sreg); 3445 } /* else dreg += K 3446 * dreg still needs precision before this insn 3447 */ 3448 } 3449 } else if (class == BPF_LDX) { 3450 if (!bt_is_reg_set(bt, dreg)) 3451 return 0; 3452 bt_clear_reg(bt, dreg); 3453 3454 /* scalars can only be spilled into stack w/o losing precision. 3455 * Load from any other memory can be zero extended. 3456 * The desire to keep that precision is already indicated 3457 * by 'precise' mark in corresponding register of this state. 3458 * No further tracking necessary. 3459 */ 3460 if (insn->src_reg != BPF_REG_FP) 3461 return 0; 3462 3463 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3464 * that [fp - off] slot contains scalar that needs to be 3465 * tracked with precision 3466 */ 3467 spi = (-insn->off - 1) / BPF_REG_SIZE; 3468 if (spi >= 64) { 3469 verbose(env, "BUG spi %d\n", spi); 3470 WARN_ONCE(1, "verifier backtracking bug"); 3471 return -EFAULT; 3472 } 3473 bt_set_slot(bt, spi); 3474 } else if (class == BPF_STX || class == BPF_ST) { 3475 if (bt_is_reg_set(bt, dreg)) 3476 /* stx & st shouldn't be using _scalar_ dst_reg 3477 * to access memory. It means backtracking 3478 * encountered a case of pointer subtraction. 3479 */ 3480 return -ENOTSUPP; 3481 /* scalars can only be spilled into stack */ 3482 if (insn->dst_reg != BPF_REG_FP) 3483 return 0; 3484 spi = (-insn->off - 1) / BPF_REG_SIZE; 3485 if (spi >= 64) { 3486 verbose(env, "BUG spi %d\n", spi); 3487 WARN_ONCE(1, "verifier backtracking bug"); 3488 return -EFAULT; 3489 } 3490 if (!bt_is_slot_set(bt, spi)) 3491 return 0; 3492 bt_clear_slot(bt, spi); 3493 if (class == BPF_STX) 3494 bt_set_reg(bt, sreg); 3495 } else if (class == BPF_JMP || class == BPF_JMP32) { 3496 if (bpf_pseudo_call(insn)) { 3497 int subprog_insn_idx, subprog; 3498 3499 subprog_insn_idx = idx + insn->imm + 1; 3500 subprog = find_subprog(env, subprog_insn_idx); 3501 if (subprog < 0) 3502 return -EFAULT; 3503 3504 if (subprog_is_global(env, subprog)) { 3505 /* check that jump history doesn't have any 3506 * extra instructions from subprog; the next 3507 * instruction after call to global subprog 3508 * should be literally next instruction in 3509 * caller program 3510 */ 3511 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3512 /* r1-r5 are invalidated after subprog call, 3513 * so for global func call it shouldn't be set 3514 * anymore 3515 */ 3516 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3517 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3518 WARN_ONCE(1, "verifier backtracking bug"); 3519 return -EFAULT; 3520 } 3521 /* global subprog always sets R0 */ 3522 bt_clear_reg(bt, BPF_REG_0); 3523 return 0; 3524 } else { 3525 /* static subprog call instruction, which 3526 * means that we are exiting current subprog, 3527 * so only r1-r5 could be still requested as 3528 * precise, r0 and r6-r10 or any stack slot in 3529 * the current frame should be zero by now 3530 */ 3531 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3532 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3533 WARN_ONCE(1, "verifier backtracking bug"); 3534 return -EFAULT; 3535 } 3536 /* we don't track register spills perfectly, 3537 * so fallback to force-precise instead of failing */ 3538 if (bt_stack_mask(bt) != 0) 3539 return -ENOTSUPP; 3540 /* propagate r1-r5 to the caller */ 3541 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3542 if (bt_is_reg_set(bt, i)) { 3543 bt_clear_reg(bt, i); 3544 bt_set_frame_reg(bt, bt->frame - 1, i); 3545 } 3546 } 3547 if (bt_subprog_exit(bt)) 3548 return -EFAULT; 3549 return 0; 3550 } 3551 } else if ((bpf_helper_call(insn) && 3552 is_callback_calling_function(insn->imm) && 3553 !is_async_callback_calling_function(insn->imm)) || 3554 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3555 /* callback-calling helper or kfunc call, which means 3556 * we are exiting from subprog, but unlike the subprog 3557 * call handling above, we shouldn't propagate 3558 * precision of r1-r5 (if any requested), as they are 3559 * not actually arguments passed directly to callback 3560 * subprogs 3561 */ 3562 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3563 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3564 WARN_ONCE(1, "verifier backtracking bug"); 3565 return -EFAULT; 3566 } 3567 if (bt_stack_mask(bt) != 0) 3568 return -ENOTSUPP; 3569 /* clear r1-r5 in callback subprog's mask */ 3570 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3571 bt_clear_reg(bt, i); 3572 if (bt_subprog_exit(bt)) 3573 return -EFAULT; 3574 return 0; 3575 } else if (opcode == BPF_CALL) { 3576 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3577 * catch this error later. Make backtracking conservative 3578 * with ENOTSUPP. 3579 */ 3580 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3581 return -ENOTSUPP; 3582 /* regular helper call sets R0 */ 3583 bt_clear_reg(bt, BPF_REG_0); 3584 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3585 /* if backtracing was looking for registers R1-R5 3586 * they should have been found already. 3587 */ 3588 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3589 WARN_ONCE(1, "verifier backtracking bug"); 3590 return -EFAULT; 3591 } 3592 } else if (opcode == BPF_EXIT) { 3593 bool r0_precise; 3594 3595 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3596 /* if backtracing was looking for registers R1-R5 3597 * they should have been found already. 3598 */ 3599 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3600 WARN_ONCE(1, "verifier backtracking bug"); 3601 return -EFAULT; 3602 } 3603 3604 /* BPF_EXIT in subprog or callback always returns 3605 * right after the call instruction, so by checking 3606 * whether the instruction at subseq_idx-1 is subprog 3607 * call or not we can distinguish actual exit from 3608 * *subprog* from exit from *callback*. In the former 3609 * case, we need to propagate r0 precision, if 3610 * necessary. In the former we never do that. 3611 */ 3612 r0_precise = subseq_idx - 1 >= 0 && 3613 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3614 bt_is_reg_set(bt, BPF_REG_0); 3615 3616 bt_clear_reg(bt, BPF_REG_0); 3617 if (bt_subprog_enter(bt)) 3618 return -EFAULT; 3619 3620 if (r0_precise) 3621 bt_set_reg(bt, BPF_REG_0); 3622 /* r6-r9 and stack slots will stay set in caller frame 3623 * bitmasks until we return back from callee(s) 3624 */ 3625 return 0; 3626 } else if (BPF_SRC(insn->code) == BPF_X) { 3627 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3628 return 0; 3629 /* dreg <cond> sreg 3630 * Both dreg and sreg need precision before 3631 * this insn. If only sreg was marked precise 3632 * before it would be equally necessary to 3633 * propagate it to dreg. 3634 */ 3635 bt_set_reg(bt, dreg); 3636 bt_set_reg(bt, sreg); 3637 /* else dreg <cond> K 3638 * Only dreg still needs precision before 3639 * this insn, so for the K-based conditional 3640 * there is nothing new to be marked. 3641 */ 3642 } 3643 } else if (class == BPF_LD) { 3644 if (!bt_is_reg_set(bt, dreg)) 3645 return 0; 3646 bt_clear_reg(bt, dreg); 3647 /* It's ld_imm64 or ld_abs or ld_ind. 3648 * For ld_imm64 no further tracking of precision 3649 * into parent is necessary 3650 */ 3651 if (mode == BPF_IND || mode == BPF_ABS) 3652 /* to be analyzed */ 3653 return -ENOTSUPP; 3654 } 3655 return 0; 3656 } 3657 3658 /* the scalar precision tracking algorithm: 3659 * . at the start all registers have precise=false. 3660 * . scalar ranges are tracked as normal through alu and jmp insns. 3661 * . once precise value of the scalar register is used in: 3662 * . ptr + scalar alu 3663 * . if (scalar cond K|scalar) 3664 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3665 * backtrack through the verifier states and mark all registers and 3666 * stack slots with spilled constants that these scalar regisers 3667 * should be precise. 3668 * . during state pruning two registers (or spilled stack slots) 3669 * are equivalent if both are not precise. 3670 * 3671 * Note the verifier cannot simply walk register parentage chain, 3672 * since many different registers and stack slots could have been 3673 * used to compute single precise scalar. 3674 * 3675 * The approach of starting with precise=true for all registers and then 3676 * backtrack to mark a register as not precise when the verifier detects 3677 * that program doesn't care about specific value (e.g., when helper 3678 * takes register as ARG_ANYTHING parameter) is not safe. 3679 * 3680 * It's ok to walk single parentage chain of the verifier states. 3681 * It's possible that this backtracking will go all the way till 1st insn. 3682 * All other branches will be explored for needing precision later. 3683 * 3684 * The backtracking needs to deal with cases like: 3685 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3686 * r9 -= r8 3687 * r5 = r9 3688 * if r5 > 0x79f goto pc+7 3689 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3690 * r5 += 1 3691 * ... 3692 * call bpf_perf_event_output#25 3693 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3694 * 3695 * and this case: 3696 * r6 = 1 3697 * call foo // uses callee's r6 inside to compute r0 3698 * r0 += r6 3699 * if r0 == 0 goto 3700 * 3701 * to track above reg_mask/stack_mask needs to be independent for each frame. 3702 * 3703 * Also if parent's curframe > frame where backtracking started, 3704 * the verifier need to mark registers in both frames, otherwise callees 3705 * may incorrectly prune callers. This is similar to 3706 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3707 * 3708 * For now backtracking falls back into conservative marking. 3709 */ 3710 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3711 struct bpf_verifier_state *st) 3712 { 3713 struct bpf_func_state *func; 3714 struct bpf_reg_state *reg; 3715 int i, j; 3716 3717 if (env->log.level & BPF_LOG_LEVEL2) { 3718 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3719 st->curframe); 3720 } 3721 3722 /* big hammer: mark all scalars precise in this path. 3723 * pop_stack may still get !precise scalars. 3724 * We also skip current state and go straight to first parent state, 3725 * because precision markings in current non-checkpointed state are 3726 * not needed. See why in the comment in __mark_chain_precision below. 3727 */ 3728 for (st = st->parent; st; st = st->parent) { 3729 for (i = 0; i <= st->curframe; i++) { 3730 func = st->frame[i]; 3731 for (j = 0; j < BPF_REG_FP; j++) { 3732 reg = &func->regs[j]; 3733 if (reg->type != SCALAR_VALUE || reg->precise) 3734 continue; 3735 reg->precise = true; 3736 if (env->log.level & BPF_LOG_LEVEL2) { 3737 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3738 i, j); 3739 } 3740 } 3741 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3742 if (!is_spilled_reg(&func->stack[j])) 3743 continue; 3744 reg = &func->stack[j].spilled_ptr; 3745 if (reg->type != SCALAR_VALUE || reg->precise) 3746 continue; 3747 reg->precise = true; 3748 if (env->log.level & BPF_LOG_LEVEL2) { 3749 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3750 i, -(j + 1) * 8); 3751 } 3752 } 3753 } 3754 } 3755 } 3756 3757 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3758 { 3759 struct bpf_func_state *func; 3760 struct bpf_reg_state *reg; 3761 int i, j; 3762 3763 for (i = 0; i <= st->curframe; i++) { 3764 func = st->frame[i]; 3765 for (j = 0; j < BPF_REG_FP; j++) { 3766 reg = &func->regs[j]; 3767 if (reg->type != SCALAR_VALUE) 3768 continue; 3769 reg->precise = false; 3770 } 3771 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3772 if (!is_spilled_reg(&func->stack[j])) 3773 continue; 3774 reg = &func->stack[j].spilled_ptr; 3775 if (reg->type != SCALAR_VALUE) 3776 continue; 3777 reg->precise = false; 3778 } 3779 } 3780 } 3781 3782 static bool idset_contains(struct bpf_idset *s, u32 id) 3783 { 3784 u32 i; 3785 3786 for (i = 0; i < s->count; ++i) 3787 if (s->ids[i] == id) 3788 return true; 3789 3790 return false; 3791 } 3792 3793 static int idset_push(struct bpf_idset *s, u32 id) 3794 { 3795 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3796 return -EFAULT; 3797 s->ids[s->count++] = id; 3798 return 0; 3799 } 3800 3801 static void idset_reset(struct bpf_idset *s) 3802 { 3803 s->count = 0; 3804 } 3805 3806 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3807 * Mark all registers with these IDs as precise. 3808 */ 3809 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3810 { 3811 struct bpf_idset *precise_ids = &env->idset_scratch; 3812 struct backtrack_state *bt = &env->bt; 3813 struct bpf_func_state *func; 3814 struct bpf_reg_state *reg; 3815 DECLARE_BITMAP(mask, 64); 3816 int i, fr; 3817 3818 idset_reset(precise_ids); 3819 3820 for (fr = bt->frame; fr >= 0; fr--) { 3821 func = st->frame[fr]; 3822 3823 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3824 for_each_set_bit(i, mask, 32) { 3825 reg = &func->regs[i]; 3826 if (!reg->id || reg->type != SCALAR_VALUE) 3827 continue; 3828 if (idset_push(precise_ids, reg->id)) 3829 return -EFAULT; 3830 } 3831 3832 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3833 for_each_set_bit(i, mask, 64) { 3834 if (i >= func->allocated_stack / BPF_REG_SIZE) 3835 break; 3836 if (!is_spilled_scalar_reg(&func->stack[i])) 3837 continue; 3838 reg = &func->stack[i].spilled_ptr; 3839 if (!reg->id) 3840 continue; 3841 if (idset_push(precise_ids, reg->id)) 3842 return -EFAULT; 3843 } 3844 } 3845 3846 for (fr = 0; fr <= st->curframe; ++fr) { 3847 func = st->frame[fr]; 3848 3849 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3850 reg = &func->regs[i]; 3851 if (!reg->id) 3852 continue; 3853 if (!idset_contains(precise_ids, reg->id)) 3854 continue; 3855 bt_set_frame_reg(bt, fr, i); 3856 } 3857 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3858 if (!is_spilled_scalar_reg(&func->stack[i])) 3859 continue; 3860 reg = &func->stack[i].spilled_ptr; 3861 if (!reg->id) 3862 continue; 3863 if (!idset_contains(precise_ids, reg->id)) 3864 continue; 3865 bt_set_frame_slot(bt, fr, i); 3866 } 3867 } 3868 3869 return 0; 3870 } 3871 3872 /* 3873 * __mark_chain_precision() backtracks BPF program instruction sequence and 3874 * chain of verifier states making sure that register *regno* (if regno >= 0) 3875 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3876 * SCALARS, as well as any other registers and slots that contribute to 3877 * a tracked state of given registers/stack slots, depending on specific BPF 3878 * assembly instructions (see backtrack_insns() for exact instruction handling 3879 * logic). This backtracking relies on recorded jmp_history and is able to 3880 * traverse entire chain of parent states. This process ends only when all the 3881 * necessary registers/slots and their transitive dependencies are marked as 3882 * precise. 3883 * 3884 * One important and subtle aspect is that precise marks *do not matter* in 3885 * the currently verified state (current state). It is important to understand 3886 * why this is the case. 3887 * 3888 * First, note that current state is the state that is not yet "checkpointed", 3889 * i.e., it is not yet put into env->explored_states, and it has no children 3890 * states as well. It's ephemeral, and can end up either a) being discarded if 3891 * compatible explored state is found at some point or BPF_EXIT instruction is 3892 * reached or b) checkpointed and put into env->explored_states, branching out 3893 * into one or more children states. 3894 * 3895 * In the former case, precise markings in current state are completely 3896 * ignored by state comparison code (see regsafe() for details). Only 3897 * checkpointed ("old") state precise markings are important, and if old 3898 * state's register/slot is precise, regsafe() assumes current state's 3899 * register/slot as precise and checks value ranges exactly and precisely. If 3900 * states turn out to be compatible, current state's necessary precise 3901 * markings and any required parent states' precise markings are enforced 3902 * after the fact with propagate_precision() logic, after the fact. But it's 3903 * important to realize that in this case, even after marking current state 3904 * registers/slots as precise, we immediately discard current state. So what 3905 * actually matters is any of the precise markings propagated into current 3906 * state's parent states, which are always checkpointed (due to b) case above). 3907 * As such, for scenario a) it doesn't matter if current state has precise 3908 * markings set or not. 3909 * 3910 * Now, for the scenario b), checkpointing and forking into child(ren) 3911 * state(s). Note that before current state gets to checkpointing step, any 3912 * processed instruction always assumes precise SCALAR register/slot 3913 * knowledge: if precise value or range is useful to prune jump branch, BPF 3914 * verifier takes this opportunity enthusiastically. Similarly, when 3915 * register's value is used to calculate offset or memory address, exact 3916 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3917 * what we mentioned above about state comparison ignoring precise markings 3918 * during state comparison, BPF verifier ignores and also assumes precise 3919 * markings *at will* during instruction verification process. But as verifier 3920 * assumes precision, it also propagates any precision dependencies across 3921 * parent states, which are not yet finalized, so can be further restricted 3922 * based on new knowledge gained from restrictions enforced by their children 3923 * states. This is so that once those parent states are finalized, i.e., when 3924 * they have no more active children state, state comparison logic in 3925 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3926 * required for correctness. 3927 * 3928 * To build a bit more intuition, note also that once a state is checkpointed, 3929 * the path we took to get to that state is not important. This is crucial 3930 * property for state pruning. When state is checkpointed and finalized at 3931 * some instruction index, it can be correctly and safely used to "short 3932 * circuit" any *compatible* state that reaches exactly the same instruction 3933 * index. I.e., if we jumped to that instruction from a completely different 3934 * code path than original finalized state was derived from, it doesn't 3935 * matter, current state can be discarded because from that instruction 3936 * forward having a compatible state will ensure we will safely reach the 3937 * exit. States describe preconditions for further exploration, but completely 3938 * forget the history of how we got here. 3939 * 3940 * This also means that even if we needed precise SCALAR range to get to 3941 * finalized state, but from that point forward *that same* SCALAR register is 3942 * never used in a precise context (i.e., it's precise value is not needed for 3943 * correctness), it's correct and safe to mark such register as "imprecise" 3944 * (i.e., precise marking set to false). This is what we rely on when we do 3945 * not set precise marking in current state. If no child state requires 3946 * precision for any given SCALAR register, it's safe to dictate that it can 3947 * be imprecise. If any child state does require this register to be precise, 3948 * we'll mark it precise later retroactively during precise markings 3949 * propagation from child state to parent states. 3950 * 3951 * Skipping precise marking setting in current state is a mild version of 3952 * relying on the above observation. But we can utilize this property even 3953 * more aggressively by proactively forgetting any precise marking in the 3954 * current state (which we inherited from the parent state), right before we 3955 * checkpoint it and branch off into new child state. This is done by 3956 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3957 * finalized states which help in short circuiting more future states. 3958 */ 3959 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3960 { 3961 struct backtrack_state *bt = &env->bt; 3962 struct bpf_verifier_state *st = env->cur_state; 3963 int first_idx = st->first_insn_idx; 3964 int last_idx = env->insn_idx; 3965 int subseq_idx = -1; 3966 struct bpf_func_state *func; 3967 struct bpf_reg_state *reg; 3968 bool skip_first = true; 3969 int i, fr, err; 3970 3971 if (!env->bpf_capable) 3972 return 0; 3973 3974 /* set frame number from which we are starting to backtrack */ 3975 bt_init(bt, env->cur_state->curframe); 3976 3977 /* Do sanity checks against current state of register and/or stack 3978 * slot, but don't set precise flag in current state, as precision 3979 * tracking in the current state is unnecessary. 3980 */ 3981 func = st->frame[bt->frame]; 3982 if (regno >= 0) { 3983 reg = &func->regs[regno]; 3984 if (reg->type != SCALAR_VALUE) { 3985 WARN_ONCE(1, "backtracing misuse"); 3986 return -EFAULT; 3987 } 3988 bt_set_reg(bt, regno); 3989 } 3990 3991 if (bt_empty(bt)) 3992 return 0; 3993 3994 for (;;) { 3995 DECLARE_BITMAP(mask, 64); 3996 u32 history = st->jmp_history_cnt; 3997 3998 if (env->log.level & BPF_LOG_LEVEL2) { 3999 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4000 bt->frame, last_idx, first_idx, subseq_idx); 4001 } 4002 4003 /* If some register with scalar ID is marked as precise, 4004 * make sure that all registers sharing this ID are also precise. 4005 * This is needed to estimate effect of find_equal_scalars(). 4006 * Do this at the last instruction of each state, 4007 * bpf_reg_state::id fields are valid for these instructions. 4008 * 4009 * Allows to track precision in situation like below: 4010 * 4011 * r2 = unknown value 4012 * ... 4013 * --- state #0 --- 4014 * ... 4015 * r1 = r2 // r1 and r2 now share the same ID 4016 * ... 4017 * --- state #1 {r1.id = A, r2.id = A} --- 4018 * ... 4019 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4020 * ... 4021 * --- state #2 {r1.id = A, r2.id = A} --- 4022 * r3 = r10 4023 * r3 += r1 // need to mark both r1 and r2 4024 */ 4025 if (mark_precise_scalar_ids(env, st)) 4026 return -EFAULT; 4027 4028 if (last_idx < 0) { 4029 /* we are at the entry into subprog, which 4030 * is expected for global funcs, but only if 4031 * requested precise registers are R1-R5 4032 * (which are global func's input arguments) 4033 */ 4034 if (st->curframe == 0 && 4035 st->frame[0]->subprogno > 0 && 4036 st->frame[0]->callsite == BPF_MAIN_FUNC && 4037 bt_stack_mask(bt) == 0 && 4038 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4039 bitmap_from_u64(mask, bt_reg_mask(bt)); 4040 for_each_set_bit(i, mask, 32) { 4041 reg = &st->frame[0]->regs[i]; 4042 if (reg->type != SCALAR_VALUE) { 4043 bt_clear_reg(bt, i); 4044 continue; 4045 } 4046 reg->precise = true; 4047 } 4048 return 0; 4049 } 4050 4051 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4052 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4053 WARN_ONCE(1, "verifier backtracking bug"); 4054 return -EFAULT; 4055 } 4056 4057 for (i = last_idx;;) { 4058 if (skip_first) { 4059 err = 0; 4060 skip_first = false; 4061 } else { 4062 err = backtrack_insn(env, i, subseq_idx, bt); 4063 } 4064 if (err == -ENOTSUPP) { 4065 mark_all_scalars_precise(env, env->cur_state); 4066 bt_reset(bt); 4067 return 0; 4068 } else if (err) { 4069 return err; 4070 } 4071 if (bt_empty(bt)) 4072 /* Found assignment(s) into tracked register in this state. 4073 * Since this state is already marked, just return. 4074 * Nothing to be tracked further in the parent state. 4075 */ 4076 return 0; 4077 if (i == first_idx) 4078 break; 4079 subseq_idx = i; 4080 i = get_prev_insn_idx(st, i, &history); 4081 if (i >= env->prog->len) { 4082 /* This can happen if backtracking reached insn 0 4083 * and there are still reg_mask or stack_mask 4084 * to backtrack. 4085 * It means the backtracking missed the spot where 4086 * particular register was initialized with a constant. 4087 */ 4088 verbose(env, "BUG backtracking idx %d\n", i); 4089 WARN_ONCE(1, "verifier backtracking bug"); 4090 return -EFAULT; 4091 } 4092 } 4093 st = st->parent; 4094 if (!st) 4095 break; 4096 4097 for (fr = bt->frame; fr >= 0; fr--) { 4098 func = st->frame[fr]; 4099 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4100 for_each_set_bit(i, mask, 32) { 4101 reg = &func->regs[i]; 4102 if (reg->type != SCALAR_VALUE) { 4103 bt_clear_frame_reg(bt, fr, i); 4104 continue; 4105 } 4106 if (reg->precise) 4107 bt_clear_frame_reg(bt, fr, i); 4108 else 4109 reg->precise = true; 4110 } 4111 4112 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4113 for_each_set_bit(i, mask, 64) { 4114 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4115 /* the sequence of instructions: 4116 * 2: (bf) r3 = r10 4117 * 3: (7b) *(u64 *)(r3 -8) = r0 4118 * 4: (79) r4 = *(u64 *)(r10 -8) 4119 * doesn't contain jmps. It's backtracked 4120 * as a single block. 4121 * During backtracking insn 3 is not recognized as 4122 * stack access, so at the end of backtracking 4123 * stack slot fp-8 is still marked in stack_mask. 4124 * However the parent state may not have accessed 4125 * fp-8 and it's "unallocated" stack space. 4126 * In such case fallback to conservative. 4127 */ 4128 mark_all_scalars_precise(env, env->cur_state); 4129 bt_reset(bt); 4130 return 0; 4131 } 4132 4133 if (!is_spilled_scalar_reg(&func->stack[i])) { 4134 bt_clear_frame_slot(bt, fr, i); 4135 continue; 4136 } 4137 reg = &func->stack[i].spilled_ptr; 4138 if (reg->precise) 4139 bt_clear_frame_slot(bt, fr, i); 4140 else 4141 reg->precise = true; 4142 } 4143 if (env->log.level & BPF_LOG_LEVEL2) { 4144 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4145 bt_frame_reg_mask(bt, fr)); 4146 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4147 fr, env->tmp_str_buf); 4148 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4149 bt_frame_stack_mask(bt, fr)); 4150 verbose(env, "stack=%s: ", env->tmp_str_buf); 4151 print_verifier_state(env, func, true); 4152 } 4153 } 4154 4155 if (bt_empty(bt)) 4156 return 0; 4157 4158 subseq_idx = first_idx; 4159 last_idx = st->last_insn_idx; 4160 first_idx = st->first_insn_idx; 4161 } 4162 4163 /* if we still have requested precise regs or slots, we missed 4164 * something (e.g., stack access through non-r10 register), so 4165 * fallback to marking all precise 4166 */ 4167 if (!bt_empty(bt)) { 4168 mark_all_scalars_precise(env, env->cur_state); 4169 bt_reset(bt); 4170 } 4171 4172 return 0; 4173 } 4174 4175 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4176 { 4177 return __mark_chain_precision(env, regno); 4178 } 4179 4180 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4181 * desired reg and stack masks across all relevant frames 4182 */ 4183 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4184 { 4185 return __mark_chain_precision(env, -1); 4186 } 4187 4188 static bool is_spillable_regtype(enum bpf_reg_type type) 4189 { 4190 switch (base_type(type)) { 4191 case PTR_TO_MAP_VALUE: 4192 case PTR_TO_STACK: 4193 case PTR_TO_CTX: 4194 case PTR_TO_PACKET: 4195 case PTR_TO_PACKET_META: 4196 case PTR_TO_PACKET_END: 4197 case PTR_TO_FLOW_KEYS: 4198 case CONST_PTR_TO_MAP: 4199 case PTR_TO_SOCKET: 4200 case PTR_TO_SOCK_COMMON: 4201 case PTR_TO_TCP_SOCK: 4202 case PTR_TO_XDP_SOCK: 4203 case PTR_TO_BTF_ID: 4204 case PTR_TO_BUF: 4205 case PTR_TO_MEM: 4206 case PTR_TO_FUNC: 4207 case PTR_TO_MAP_KEY: 4208 return true; 4209 default: 4210 return false; 4211 } 4212 } 4213 4214 /* Does this register contain a constant zero? */ 4215 static bool register_is_null(struct bpf_reg_state *reg) 4216 { 4217 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4218 } 4219 4220 static bool register_is_const(struct bpf_reg_state *reg) 4221 { 4222 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4223 } 4224 4225 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4226 { 4227 return tnum_is_unknown(reg->var_off) && 4228 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4229 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4230 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4231 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4232 } 4233 4234 static bool register_is_bounded(struct bpf_reg_state *reg) 4235 { 4236 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4237 } 4238 4239 static bool __is_pointer_value(bool allow_ptr_leaks, 4240 const struct bpf_reg_state *reg) 4241 { 4242 if (allow_ptr_leaks) 4243 return false; 4244 4245 return reg->type != SCALAR_VALUE; 4246 } 4247 4248 /* Copy src state preserving dst->parent and dst->live fields */ 4249 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4250 { 4251 struct bpf_reg_state *parent = dst->parent; 4252 enum bpf_reg_liveness live = dst->live; 4253 4254 *dst = *src; 4255 dst->parent = parent; 4256 dst->live = live; 4257 } 4258 4259 static void save_register_state(struct bpf_func_state *state, 4260 int spi, struct bpf_reg_state *reg, 4261 int size) 4262 { 4263 int i; 4264 4265 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4266 if (size == BPF_REG_SIZE) 4267 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4268 4269 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4270 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4271 4272 /* size < 8 bytes spill */ 4273 for (; i; i--) 4274 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4275 } 4276 4277 static bool is_bpf_st_mem(struct bpf_insn *insn) 4278 { 4279 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4280 } 4281 4282 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4283 * stack boundary and alignment are checked in check_mem_access() 4284 */ 4285 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4286 /* stack frame we're writing to */ 4287 struct bpf_func_state *state, 4288 int off, int size, int value_regno, 4289 int insn_idx) 4290 { 4291 struct bpf_func_state *cur; /* state of the current function */ 4292 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4293 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4294 struct bpf_reg_state *reg = NULL; 4295 u32 dst_reg = insn->dst_reg; 4296 4297 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4298 if (err) 4299 return err; 4300 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4301 * so it's aligned access and [off, off + size) are within stack limits 4302 */ 4303 if (!env->allow_ptr_leaks && 4304 state->stack[spi].slot_type[0] == STACK_SPILL && 4305 size != BPF_REG_SIZE) { 4306 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4307 return -EACCES; 4308 } 4309 4310 cur = env->cur_state->frame[env->cur_state->curframe]; 4311 if (value_regno >= 0) 4312 reg = &cur->regs[value_regno]; 4313 if (!env->bypass_spec_v4) { 4314 bool sanitize = reg && is_spillable_regtype(reg->type); 4315 4316 for (i = 0; i < size; i++) { 4317 u8 type = state->stack[spi].slot_type[i]; 4318 4319 if (type != STACK_MISC && type != STACK_ZERO) { 4320 sanitize = true; 4321 break; 4322 } 4323 } 4324 4325 if (sanitize) 4326 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4327 } 4328 4329 err = destroy_if_dynptr_stack_slot(env, state, spi); 4330 if (err) 4331 return err; 4332 4333 mark_stack_slot_scratched(env, spi); 4334 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4335 !register_is_null(reg) && env->bpf_capable) { 4336 if (dst_reg != BPF_REG_FP) { 4337 /* The backtracking logic can only recognize explicit 4338 * stack slot address like [fp - 8]. Other spill of 4339 * scalar via different register has to be conservative. 4340 * Backtrack from here and mark all registers as precise 4341 * that contributed into 'reg' being a constant. 4342 */ 4343 err = mark_chain_precision(env, value_regno); 4344 if (err) 4345 return err; 4346 } 4347 save_register_state(state, spi, reg, size); 4348 /* Break the relation on a narrowing spill. */ 4349 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4350 state->stack[spi].spilled_ptr.id = 0; 4351 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4352 insn->imm != 0 && env->bpf_capable) { 4353 struct bpf_reg_state fake_reg = {}; 4354 4355 __mark_reg_known(&fake_reg, (u32)insn->imm); 4356 fake_reg.type = SCALAR_VALUE; 4357 save_register_state(state, spi, &fake_reg, size); 4358 } else if (reg && is_spillable_regtype(reg->type)) { 4359 /* register containing pointer is being spilled into stack */ 4360 if (size != BPF_REG_SIZE) { 4361 verbose_linfo(env, insn_idx, "; "); 4362 verbose(env, "invalid size of register spill\n"); 4363 return -EACCES; 4364 } 4365 if (state != cur && reg->type == PTR_TO_STACK) { 4366 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4367 return -EINVAL; 4368 } 4369 save_register_state(state, spi, reg, size); 4370 } else { 4371 u8 type = STACK_MISC; 4372 4373 /* regular write of data into stack destroys any spilled ptr */ 4374 state->stack[spi].spilled_ptr.type = NOT_INIT; 4375 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4376 if (is_stack_slot_special(&state->stack[spi])) 4377 for (i = 0; i < BPF_REG_SIZE; i++) 4378 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4379 4380 /* only mark the slot as written if all 8 bytes were written 4381 * otherwise read propagation may incorrectly stop too soon 4382 * when stack slots are partially written. 4383 * This heuristic means that read propagation will be 4384 * conservative, since it will add reg_live_read marks 4385 * to stack slots all the way to first state when programs 4386 * writes+reads less than 8 bytes 4387 */ 4388 if (size == BPF_REG_SIZE) 4389 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4390 4391 /* when we zero initialize stack slots mark them as such */ 4392 if ((reg && register_is_null(reg)) || 4393 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4394 /* backtracking doesn't work for STACK_ZERO yet. */ 4395 err = mark_chain_precision(env, value_regno); 4396 if (err) 4397 return err; 4398 type = STACK_ZERO; 4399 } 4400 4401 /* Mark slots affected by this stack write. */ 4402 for (i = 0; i < size; i++) 4403 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4404 type; 4405 } 4406 return 0; 4407 } 4408 4409 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4410 * known to contain a variable offset. 4411 * This function checks whether the write is permitted and conservatively 4412 * tracks the effects of the write, considering that each stack slot in the 4413 * dynamic range is potentially written to. 4414 * 4415 * 'off' includes 'regno->off'. 4416 * 'value_regno' can be -1, meaning that an unknown value is being written to 4417 * the stack. 4418 * 4419 * Spilled pointers in range are not marked as written because we don't know 4420 * what's going to be actually written. This means that read propagation for 4421 * future reads cannot be terminated by this write. 4422 * 4423 * For privileged programs, uninitialized stack slots are considered 4424 * initialized by this write (even though we don't know exactly what offsets 4425 * are going to be written to). The idea is that we don't want the verifier to 4426 * reject future reads that access slots written to through variable offsets. 4427 */ 4428 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4429 /* func where register points to */ 4430 struct bpf_func_state *state, 4431 int ptr_regno, int off, int size, 4432 int value_regno, int insn_idx) 4433 { 4434 struct bpf_func_state *cur; /* state of the current function */ 4435 int min_off, max_off; 4436 int i, err; 4437 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4438 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4439 bool writing_zero = false; 4440 /* set if the fact that we're writing a zero is used to let any 4441 * stack slots remain STACK_ZERO 4442 */ 4443 bool zero_used = false; 4444 4445 cur = env->cur_state->frame[env->cur_state->curframe]; 4446 ptr_reg = &cur->regs[ptr_regno]; 4447 min_off = ptr_reg->smin_value + off; 4448 max_off = ptr_reg->smax_value + off + size; 4449 if (value_regno >= 0) 4450 value_reg = &cur->regs[value_regno]; 4451 if ((value_reg && register_is_null(value_reg)) || 4452 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4453 writing_zero = true; 4454 4455 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4456 if (err) 4457 return err; 4458 4459 for (i = min_off; i < max_off; i++) { 4460 int spi; 4461 4462 spi = __get_spi(i); 4463 err = destroy_if_dynptr_stack_slot(env, state, spi); 4464 if (err) 4465 return err; 4466 } 4467 4468 /* Variable offset writes destroy any spilled pointers in range. */ 4469 for (i = min_off; i < max_off; i++) { 4470 u8 new_type, *stype; 4471 int slot, spi; 4472 4473 slot = -i - 1; 4474 spi = slot / BPF_REG_SIZE; 4475 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4476 mark_stack_slot_scratched(env, spi); 4477 4478 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4479 /* Reject the write if range we may write to has not 4480 * been initialized beforehand. If we didn't reject 4481 * here, the ptr status would be erased below (even 4482 * though not all slots are actually overwritten), 4483 * possibly opening the door to leaks. 4484 * 4485 * We do however catch STACK_INVALID case below, and 4486 * only allow reading possibly uninitialized memory 4487 * later for CAP_PERFMON, as the write may not happen to 4488 * that slot. 4489 */ 4490 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4491 insn_idx, i); 4492 return -EINVAL; 4493 } 4494 4495 /* Erase all spilled pointers. */ 4496 state->stack[spi].spilled_ptr.type = NOT_INIT; 4497 4498 /* Update the slot type. */ 4499 new_type = STACK_MISC; 4500 if (writing_zero && *stype == STACK_ZERO) { 4501 new_type = STACK_ZERO; 4502 zero_used = true; 4503 } 4504 /* If the slot is STACK_INVALID, we check whether it's OK to 4505 * pretend that it will be initialized by this write. The slot 4506 * might not actually be written to, and so if we mark it as 4507 * initialized future reads might leak uninitialized memory. 4508 * For privileged programs, we will accept such reads to slots 4509 * that may or may not be written because, if we're reject 4510 * them, the error would be too confusing. 4511 */ 4512 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4513 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4514 insn_idx, i); 4515 return -EINVAL; 4516 } 4517 *stype = new_type; 4518 } 4519 if (zero_used) { 4520 /* backtracking doesn't work for STACK_ZERO yet. */ 4521 err = mark_chain_precision(env, value_regno); 4522 if (err) 4523 return err; 4524 } 4525 return 0; 4526 } 4527 4528 /* When register 'dst_regno' is assigned some values from stack[min_off, 4529 * max_off), we set the register's type according to the types of the 4530 * respective stack slots. If all the stack values are known to be zeros, then 4531 * so is the destination reg. Otherwise, the register is considered to be 4532 * SCALAR. This function does not deal with register filling; the caller must 4533 * ensure that all spilled registers in the stack range have been marked as 4534 * read. 4535 */ 4536 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4537 /* func where src register points to */ 4538 struct bpf_func_state *ptr_state, 4539 int min_off, int max_off, int dst_regno) 4540 { 4541 struct bpf_verifier_state *vstate = env->cur_state; 4542 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4543 int i, slot, spi; 4544 u8 *stype; 4545 int zeros = 0; 4546 4547 for (i = min_off; i < max_off; i++) { 4548 slot = -i - 1; 4549 spi = slot / BPF_REG_SIZE; 4550 mark_stack_slot_scratched(env, spi); 4551 stype = ptr_state->stack[spi].slot_type; 4552 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4553 break; 4554 zeros++; 4555 } 4556 if (zeros == max_off - min_off) { 4557 /* any access_size read into register is zero extended, 4558 * so the whole register == const_zero 4559 */ 4560 __mark_reg_const_zero(&state->regs[dst_regno]); 4561 /* backtracking doesn't support STACK_ZERO yet, 4562 * so mark it precise here, so that later 4563 * backtracking can stop here. 4564 * Backtracking may not need this if this register 4565 * doesn't participate in pointer adjustment. 4566 * Forward propagation of precise flag is not 4567 * necessary either. This mark is only to stop 4568 * backtracking. Any register that contributed 4569 * to const 0 was marked precise before spill. 4570 */ 4571 state->regs[dst_regno].precise = true; 4572 } else { 4573 /* have read misc data from the stack */ 4574 mark_reg_unknown(env, state->regs, dst_regno); 4575 } 4576 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4577 } 4578 4579 /* Read the stack at 'off' and put the results into the register indicated by 4580 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4581 * spilled reg. 4582 * 4583 * 'dst_regno' can be -1, meaning that the read value is not going to a 4584 * register. 4585 * 4586 * The access is assumed to be within the current stack bounds. 4587 */ 4588 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4589 /* func where src register points to */ 4590 struct bpf_func_state *reg_state, 4591 int off, int size, int dst_regno) 4592 { 4593 struct bpf_verifier_state *vstate = env->cur_state; 4594 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4595 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4596 struct bpf_reg_state *reg; 4597 u8 *stype, type; 4598 4599 stype = reg_state->stack[spi].slot_type; 4600 reg = ®_state->stack[spi].spilled_ptr; 4601 4602 mark_stack_slot_scratched(env, spi); 4603 4604 if (is_spilled_reg(®_state->stack[spi])) { 4605 u8 spill_size = 1; 4606 4607 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4608 spill_size++; 4609 4610 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4611 if (reg->type != SCALAR_VALUE) { 4612 verbose_linfo(env, env->insn_idx, "; "); 4613 verbose(env, "invalid size of register fill\n"); 4614 return -EACCES; 4615 } 4616 4617 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4618 if (dst_regno < 0) 4619 return 0; 4620 4621 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4622 /* The earlier check_reg_arg() has decided the 4623 * subreg_def for this insn. Save it first. 4624 */ 4625 s32 subreg_def = state->regs[dst_regno].subreg_def; 4626 4627 copy_register_state(&state->regs[dst_regno], reg); 4628 state->regs[dst_regno].subreg_def = subreg_def; 4629 } else { 4630 for (i = 0; i < size; i++) { 4631 type = stype[(slot - i) % BPF_REG_SIZE]; 4632 if (type == STACK_SPILL) 4633 continue; 4634 if (type == STACK_MISC) 4635 continue; 4636 if (type == STACK_INVALID && env->allow_uninit_stack) 4637 continue; 4638 verbose(env, "invalid read from stack off %d+%d size %d\n", 4639 off, i, size); 4640 return -EACCES; 4641 } 4642 mark_reg_unknown(env, state->regs, dst_regno); 4643 } 4644 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4645 return 0; 4646 } 4647 4648 if (dst_regno >= 0) { 4649 /* restore register state from stack */ 4650 copy_register_state(&state->regs[dst_regno], reg); 4651 /* mark reg as written since spilled pointer state likely 4652 * has its liveness marks cleared by is_state_visited() 4653 * which resets stack/reg liveness for state transitions 4654 */ 4655 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4656 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4657 /* If dst_regno==-1, the caller is asking us whether 4658 * it is acceptable to use this value as a SCALAR_VALUE 4659 * (e.g. for XADD). 4660 * We must not allow unprivileged callers to do that 4661 * with spilled pointers. 4662 */ 4663 verbose(env, "leaking pointer from stack off %d\n", 4664 off); 4665 return -EACCES; 4666 } 4667 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4668 } else { 4669 for (i = 0; i < size; i++) { 4670 type = stype[(slot - i) % BPF_REG_SIZE]; 4671 if (type == STACK_MISC) 4672 continue; 4673 if (type == STACK_ZERO) 4674 continue; 4675 if (type == STACK_INVALID && env->allow_uninit_stack) 4676 continue; 4677 verbose(env, "invalid read from stack off %d+%d size %d\n", 4678 off, i, size); 4679 return -EACCES; 4680 } 4681 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4682 if (dst_regno >= 0) 4683 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4684 } 4685 return 0; 4686 } 4687 4688 enum bpf_access_src { 4689 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4690 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4691 }; 4692 4693 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4694 int regno, int off, int access_size, 4695 bool zero_size_allowed, 4696 enum bpf_access_src type, 4697 struct bpf_call_arg_meta *meta); 4698 4699 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4700 { 4701 return cur_regs(env) + regno; 4702 } 4703 4704 /* Read the stack at 'ptr_regno + off' and put the result into the register 4705 * 'dst_regno'. 4706 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4707 * but not its variable offset. 4708 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4709 * 4710 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4711 * filling registers (i.e. reads of spilled register cannot be detected when 4712 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4713 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4714 * offset; for a fixed offset check_stack_read_fixed_off should be used 4715 * instead. 4716 */ 4717 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4718 int ptr_regno, int off, int size, int dst_regno) 4719 { 4720 /* The state of the source register. */ 4721 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4722 struct bpf_func_state *ptr_state = func(env, reg); 4723 int err; 4724 int min_off, max_off; 4725 4726 /* Note that we pass a NULL meta, so raw access will not be permitted. 4727 */ 4728 err = check_stack_range_initialized(env, ptr_regno, off, size, 4729 false, ACCESS_DIRECT, NULL); 4730 if (err) 4731 return err; 4732 4733 min_off = reg->smin_value + off; 4734 max_off = reg->smax_value + off; 4735 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4736 return 0; 4737 } 4738 4739 /* check_stack_read dispatches to check_stack_read_fixed_off or 4740 * check_stack_read_var_off. 4741 * 4742 * The caller must ensure that the offset falls within the allocated stack 4743 * bounds. 4744 * 4745 * 'dst_regno' is a register which will receive the value from the stack. It 4746 * can be -1, meaning that the read value is not going to a register. 4747 */ 4748 static int check_stack_read(struct bpf_verifier_env *env, 4749 int ptr_regno, int off, int size, 4750 int dst_regno) 4751 { 4752 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4753 struct bpf_func_state *state = func(env, reg); 4754 int err; 4755 /* Some accesses are only permitted with a static offset. */ 4756 bool var_off = !tnum_is_const(reg->var_off); 4757 4758 /* The offset is required to be static when reads don't go to a 4759 * register, in order to not leak pointers (see 4760 * check_stack_read_fixed_off). 4761 */ 4762 if (dst_regno < 0 && var_off) { 4763 char tn_buf[48]; 4764 4765 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4766 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4767 tn_buf, off, size); 4768 return -EACCES; 4769 } 4770 /* Variable offset is prohibited for unprivileged mode for simplicity 4771 * since it requires corresponding support in Spectre masking for stack 4772 * ALU. See also retrieve_ptr_limit(). The check in 4773 * check_stack_access_for_ptr_arithmetic() called by 4774 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4775 * with variable offsets, therefore no check is required here. Further, 4776 * just checking it here would be insufficient as speculative stack 4777 * writes could still lead to unsafe speculative behaviour. 4778 */ 4779 if (!var_off) { 4780 off += reg->var_off.value; 4781 err = check_stack_read_fixed_off(env, state, off, size, 4782 dst_regno); 4783 } else { 4784 /* Variable offset stack reads need more conservative handling 4785 * than fixed offset ones. Note that dst_regno >= 0 on this 4786 * branch. 4787 */ 4788 err = check_stack_read_var_off(env, ptr_regno, off, size, 4789 dst_regno); 4790 } 4791 return err; 4792 } 4793 4794 4795 /* check_stack_write dispatches to check_stack_write_fixed_off or 4796 * check_stack_write_var_off. 4797 * 4798 * 'ptr_regno' is the register used as a pointer into the stack. 4799 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4800 * 'value_regno' is the register whose value we're writing to the stack. It can 4801 * be -1, meaning that we're not writing from a register. 4802 * 4803 * The caller must ensure that the offset falls within the maximum stack size. 4804 */ 4805 static int check_stack_write(struct bpf_verifier_env *env, 4806 int ptr_regno, int off, int size, 4807 int value_regno, int insn_idx) 4808 { 4809 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4810 struct bpf_func_state *state = func(env, reg); 4811 int err; 4812 4813 if (tnum_is_const(reg->var_off)) { 4814 off += reg->var_off.value; 4815 err = check_stack_write_fixed_off(env, state, off, size, 4816 value_regno, insn_idx); 4817 } else { 4818 /* Variable offset stack reads need more conservative handling 4819 * than fixed offset ones. 4820 */ 4821 err = check_stack_write_var_off(env, state, 4822 ptr_regno, off, size, 4823 value_regno, insn_idx); 4824 } 4825 return err; 4826 } 4827 4828 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4829 int off, int size, enum bpf_access_type type) 4830 { 4831 struct bpf_reg_state *regs = cur_regs(env); 4832 struct bpf_map *map = regs[regno].map_ptr; 4833 u32 cap = bpf_map_flags_to_cap(map); 4834 4835 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4836 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4837 map->value_size, off, size); 4838 return -EACCES; 4839 } 4840 4841 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4842 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4843 map->value_size, off, size); 4844 return -EACCES; 4845 } 4846 4847 return 0; 4848 } 4849 4850 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4851 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4852 int off, int size, u32 mem_size, 4853 bool zero_size_allowed) 4854 { 4855 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4856 struct bpf_reg_state *reg; 4857 4858 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4859 return 0; 4860 4861 reg = &cur_regs(env)[regno]; 4862 switch (reg->type) { 4863 case PTR_TO_MAP_KEY: 4864 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4865 mem_size, off, size); 4866 break; 4867 case PTR_TO_MAP_VALUE: 4868 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4869 mem_size, off, size); 4870 break; 4871 case PTR_TO_PACKET: 4872 case PTR_TO_PACKET_META: 4873 case PTR_TO_PACKET_END: 4874 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4875 off, size, regno, reg->id, off, mem_size); 4876 break; 4877 case PTR_TO_MEM: 4878 default: 4879 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4880 mem_size, off, size); 4881 } 4882 4883 return -EACCES; 4884 } 4885 4886 /* check read/write into a memory region with possible variable offset */ 4887 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4888 int off, int size, u32 mem_size, 4889 bool zero_size_allowed) 4890 { 4891 struct bpf_verifier_state *vstate = env->cur_state; 4892 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4893 struct bpf_reg_state *reg = &state->regs[regno]; 4894 int err; 4895 4896 /* We may have adjusted the register pointing to memory region, so we 4897 * need to try adding each of min_value and max_value to off 4898 * to make sure our theoretical access will be safe. 4899 * 4900 * The minimum value is only important with signed 4901 * comparisons where we can't assume the floor of a 4902 * value is 0. If we are using signed variables for our 4903 * index'es we need to make sure that whatever we use 4904 * will have a set floor within our range. 4905 */ 4906 if (reg->smin_value < 0 && 4907 (reg->smin_value == S64_MIN || 4908 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4909 reg->smin_value + off < 0)) { 4910 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4911 regno); 4912 return -EACCES; 4913 } 4914 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4915 mem_size, zero_size_allowed); 4916 if (err) { 4917 verbose(env, "R%d min value is outside of the allowed memory range\n", 4918 regno); 4919 return err; 4920 } 4921 4922 /* If we haven't set a max value then we need to bail since we can't be 4923 * sure we won't do bad things. 4924 * If reg->umax_value + off could overflow, treat that as unbounded too. 4925 */ 4926 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4927 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4928 regno); 4929 return -EACCES; 4930 } 4931 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4932 mem_size, zero_size_allowed); 4933 if (err) { 4934 verbose(env, "R%d max value is outside of the allowed memory range\n", 4935 regno); 4936 return err; 4937 } 4938 4939 return 0; 4940 } 4941 4942 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4943 const struct bpf_reg_state *reg, int regno, 4944 bool fixed_off_ok) 4945 { 4946 /* Access to this pointer-typed register or passing it to a helper 4947 * is only allowed in its original, unmodified form. 4948 */ 4949 4950 if (reg->off < 0) { 4951 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4952 reg_type_str(env, reg->type), regno, reg->off); 4953 return -EACCES; 4954 } 4955 4956 if (!fixed_off_ok && reg->off) { 4957 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4958 reg_type_str(env, reg->type), regno, reg->off); 4959 return -EACCES; 4960 } 4961 4962 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4963 char tn_buf[48]; 4964 4965 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4966 verbose(env, "variable %s access var_off=%s disallowed\n", 4967 reg_type_str(env, reg->type), tn_buf); 4968 return -EACCES; 4969 } 4970 4971 return 0; 4972 } 4973 4974 int check_ptr_off_reg(struct bpf_verifier_env *env, 4975 const struct bpf_reg_state *reg, int regno) 4976 { 4977 return __check_ptr_off_reg(env, reg, regno, false); 4978 } 4979 4980 static int map_kptr_match_type(struct bpf_verifier_env *env, 4981 struct btf_field *kptr_field, 4982 struct bpf_reg_state *reg, u32 regno) 4983 { 4984 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4985 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4986 const char *reg_name = ""; 4987 4988 /* Only unreferenced case accepts untrusted pointers */ 4989 if (kptr_field->type == BPF_KPTR_UNREF) 4990 perm_flags |= PTR_UNTRUSTED; 4991 4992 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4993 goto bad_type; 4994 4995 if (!btf_is_kernel(reg->btf)) { 4996 verbose(env, "R%d must point to kernel BTF\n", regno); 4997 return -EINVAL; 4998 } 4999 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5000 reg_name = btf_type_name(reg->btf, reg->btf_id); 5001 5002 /* For ref_ptr case, release function check should ensure we get one 5003 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5004 * normal store of unreferenced kptr, we must ensure var_off is zero. 5005 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5006 * reg->off and reg->ref_obj_id are not needed here. 5007 */ 5008 if (__check_ptr_off_reg(env, reg, regno, true)) 5009 return -EACCES; 5010 5011 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 5012 * we also need to take into account the reg->off. 5013 * 5014 * We want to support cases like: 5015 * 5016 * struct foo { 5017 * struct bar br; 5018 * struct baz bz; 5019 * }; 5020 * 5021 * struct foo *v; 5022 * v = func(); // PTR_TO_BTF_ID 5023 * val->foo = v; // reg->off is zero, btf and btf_id match type 5024 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5025 * // first member type of struct after comparison fails 5026 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5027 * // to match type 5028 * 5029 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5030 * is zero. We must also ensure that btf_struct_ids_match does not walk 5031 * the struct to match type against first member of struct, i.e. reject 5032 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5033 * strict mode to true for type match. 5034 */ 5035 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5036 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5037 kptr_field->type == BPF_KPTR_REF)) 5038 goto bad_type; 5039 return 0; 5040 bad_type: 5041 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5042 reg_type_str(env, reg->type), reg_name); 5043 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5044 if (kptr_field->type == BPF_KPTR_UNREF) 5045 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5046 targ_name); 5047 else 5048 verbose(env, "\n"); 5049 return -EINVAL; 5050 } 5051 5052 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5053 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5054 */ 5055 static bool in_rcu_cs(struct bpf_verifier_env *env) 5056 { 5057 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 5058 } 5059 5060 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5061 BTF_SET_START(rcu_protected_types) 5062 BTF_ID(struct, prog_test_ref_kfunc) 5063 BTF_ID(struct, cgroup) 5064 BTF_ID(struct, bpf_cpumask) 5065 BTF_ID(struct, task_struct) 5066 BTF_SET_END(rcu_protected_types) 5067 5068 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5069 { 5070 if (!btf_is_kernel(btf)) 5071 return false; 5072 return btf_id_set_contains(&rcu_protected_types, btf_id); 5073 } 5074 5075 static bool rcu_safe_kptr(const struct btf_field *field) 5076 { 5077 const struct btf_field_kptr *kptr = &field->kptr; 5078 5079 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5080 } 5081 5082 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5083 int value_regno, int insn_idx, 5084 struct btf_field *kptr_field) 5085 { 5086 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5087 int class = BPF_CLASS(insn->code); 5088 struct bpf_reg_state *val_reg; 5089 5090 /* Things we already checked for in check_map_access and caller: 5091 * - Reject cases where variable offset may touch kptr 5092 * - size of access (must be BPF_DW) 5093 * - tnum_is_const(reg->var_off) 5094 * - kptr_field->offset == off + reg->var_off.value 5095 */ 5096 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5097 if (BPF_MODE(insn->code) != BPF_MEM) { 5098 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5099 return -EACCES; 5100 } 5101 5102 /* We only allow loading referenced kptr, since it will be marked as 5103 * untrusted, similar to unreferenced kptr. 5104 */ 5105 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5106 verbose(env, "store to referenced kptr disallowed\n"); 5107 return -EACCES; 5108 } 5109 5110 if (class == BPF_LDX) { 5111 val_reg = reg_state(env, value_regno); 5112 /* We can simply mark the value_regno receiving the pointer 5113 * value from map as PTR_TO_BTF_ID, with the correct type. 5114 */ 5115 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5116 kptr_field->kptr.btf_id, 5117 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5118 PTR_MAYBE_NULL | MEM_RCU : 5119 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5120 /* For mark_ptr_or_null_reg */ 5121 val_reg->id = ++env->id_gen; 5122 } else if (class == BPF_STX) { 5123 val_reg = reg_state(env, value_regno); 5124 if (!register_is_null(val_reg) && 5125 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5126 return -EACCES; 5127 } else if (class == BPF_ST) { 5128 if (insn->imm) { 5129 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5130 kptr_field->offset); 5131 return -EACCES; 5132 } 5133 } else { 5134 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5135 return -EACCES; 5136 } 5137 return 0; 5138 } 5139 5140 /* check read/write into a map element with possible variable offset */ 5141 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5142 int off, int size, bool zero_size_allowed, 5143 enum bpf_access_src src) 5144 { 5145 struct bpf_verifier_state *vstate = env->cur_state; 5146 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5147 struct bpf_reg_state *reg = &state->regs[regno]; 5148 struct bpf_map *map = reg->map_ptr; 5149 struct btf_record *rec; 5150 int err, i; 5151 5152 err = check_mem_region_access(env, regno, off, size, map->value_size, 5153 zero_size_allowed); 5154 if (err) 5155 return err; 5156 5157 if (IS_ERR_OR_NULL(map->record)) 5158 return 0; 5159 rec = map->record; 5160 for (i = 0; i < rec->cnt; i++) { 5161 struct btf_field *field = &rec->fields[i]; 5162 u32 p = field->offset; 5163 5164 /* If any part of a field can be touched by load/store, reject 5165 * this program. To check that [x1, x2) overlaps with [y1, y2), 5166 * it is sufficient to check x1 < y2 && y1 < x2. 5167 */ 5168 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5169 p < reg->umax_value + off + size) { 5170 switch (field->type) { 5171 case BPF_KPTR_UNREF: 5172 case BPF_KPTR_REF: 5173 if (src != ACCESS_DIRECT) { 5174 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5175 return -EACCES; 5176 } 5177 if (!tnum_is_const(reg->var_off)) { 5178 verbose(env, "kptr access cannot have variable offset\n"); 5179 return -EACCES; 5180 } 5181 if (p != off + reg->var_off.value) { 5182 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5183 p, off + reg->var_off.value); 5184 return -EACCES; 5185 } 5186 if (size != bpf_size_to_bytes(BPF_DW)) { 5187 verbose(env, "kptr access size must be BPF_DW\n"); 5188 return -EACCES; 5189 } 5190 break; 5191 default: 5192 verbose(env, "%s cannot be accessed directly by load/store\n", 5193 btf_field_type_name(field->type)); 5194 return -EACCES; 5195 } 5196 } 5197 } 5198 return 0; 5199 } 5200 5201 #define MAX_PACKET_OFF 0xffff 5202 5203 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5204 const struct bpf_call_arg_meta *meta, 5205 enum bpf_access_type t) 5206 { 5207 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5208 5209 switch (prog_type) { 5210 /* Program types only with direct read access go here! */ 5211 case BPF_PROG_TYPE_LWT_IN: 5212 case BPF_PROG_TYPE_LWT_OUT: 5213 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5214 case BPF_PROG_TYPE_SK_REUSEPORT: 5215 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5216 case BPF_PROG_TYPE_CGROUP_SKB: 5217 if (t == BPF_WRITE) 5218 return false; 5219 fallthrough; 5220 5221 /* Program types with direct read + write access go here! */ 5222 case BPF_PROG_TYPE_SCHED_CLS: 5223 case BPF_PROG_TYPE_SCHED_ACT: 5224 case BPF_PROG_TYPE_XDP: 5225 case BPF_PROG_TYPE_LWT_XMIT: 5226 case BPF_PROG_TYPE_SK_SKB: 5227 case BPF_PROG_TYPE_SK_MSG: 5228 if (meta) 5229 return meta->pkt_access; 5230 5231 env->seen_direct_write = true; 5232 return true; 5233 5234 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5235 if (t == BPF_WRITE) 5236 env->seen_direct_write = true; 5237 5238 return true; 5239 5240 default: 5241 return false; 5242 } 5243 } 5244 5245 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5246 int size, bool zero_size_allowed) 5247 { 5248 struct bpf_reg_state *regs = cur_regs(env); 5249 struct bpf_reg_state *reg = ®s[regno]; 5250 int err; 5251 5252 /* We may have added a variable offset to the packet pointer; but any 5253 * reg->range we have comes after that. We are only checking the fixed 5254 * offset. 5255 */ 5256 5257 /* We don't allow negative numbers, because we aren't tracking enough 5258 * detail to prove they're safe. 5259 */ 5260 if (reg->smin_value < 0) { 5261 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5262 regno); 5263 return -EACCES; 5264 } 5265 5266 err = reg->range < 0 ? -EINVAL : 5267 __check_mem_access(env, regno, off, size, reg->range, 5268 zero_size_allowed); 5269 if (err) { 5270 verbose(env, "R%d offset is outside of the packet\n", regno); 5271 return err; 5272 } 5273 5274 /* __check_mem_access has made sure "off + size - 1" is within u16. 5275 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5276 * otherwise find_good_pkt_pointers would have refused to set range info 5277 * that __check_mem_access would have rejected this pkt access. 5278 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5279 */ 5280 env->prog->aux->max_pkt_offset = 5281 max_t(u32, env->prog->aux->max_pkt_offset, 5282 off + reg->umax_value + size - 1); 5283 5284 return err; 5285 } 5286 5287 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5288 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5289 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5290 struct btf **btf, u32 *btf_id) 5291 { 5292 struct bpf_insn_access_aux info = { 5293 .reg_type = *reg_type, 5294 .log = &env->log, 5295 }; 5296 5297 if (env->ops->is_valid_access && 5298 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5299 /* A non zero info.ctx_field_size indicates that this field is a 5300 * candidate for later verifier transformation to load the whole 5301 * field and then apply a mask when accessed with a narrower 5302 * access than actual ctx access size. A zero info.ctx_field_size 5303 * will only allow for whole field access and rejects any other 5304 * type of narrower access. 5305 */ 5306 *reg_type = info.reg_type; 5307 5308 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5309 *btf = info.btf; 5310 *btf_id = info.btf_id; 5311 } else { 5312 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5313 } 5314 /* remember the offset of last byte accessed in ctx */ 5315 if (env->prog->aux->max_ctx_offset < off + size) 5316 env->prog->aux->max_ctx_offset = off + size; 5317 return 0; 5318 } 5319 5320 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5321 return -EACCES; 5322 } 5323 5324 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5325 int size) 5326 { 5327 if (size < 0 || off < 0 || 5328 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5329 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5330 off, size); 5331 return -EACCES; 5332 } 5333 return 0; 5334 } 5335 5336 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5337 u32 regno, int off, int size, 5338 enum bpf_access_type t) 5339 { 5340 struct bpf_reg_state *regs = cur_regs(env); 5341 struct bpf_reg_state *reg = ®s[regno]; 5342 struct bpf_insn_access_aux info = {}; 5343 bool valid; 5344 5345 if (reg->smin_value < 0) { 5346 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5347 regno); 5348 return -EACCES; 5349 } 5350 5351 switch (reg->type) { 5352 case PTR_TO_SOCK_COMMON: 5353 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5354 break; 5355 case PTR_TO_SOCKET: 5356 valid = bpf_sock_is_valid_access(off, size, t, &info); 5357 break; 5358 case PTR_TO_TCP_SOCK: 5359 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5360 break; 5361 case PTR_TO_XDP_SOCK: 5362 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5363 break; 5364 default: 5365 valid = false; 5366 } 5367 5368 5369 if (valid) { 5370 env->insn_aux_data[insn_idx].ctx_field_size = 5371 info.ctx_field_size; 5372 return 0; 5373 } 5374 5375 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5376 regno, reg_type_str(env, reg->type), off, size); 5377 5378 return -EACCES; 5379 } 5380 5381 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5382 { 5383 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5384 } 5385 5386 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5387 { 5388 const struct bpf_reg_state *reg = reg_state(env, regno); 5389 5390 return reg->type == PTR_TO_CTX; 5391 } 5392 5393 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5394 { 5395 const struct bpf_reg_state *reg = reg_state(env, regno); 5396 5397 return type_is_sk_pointer(reg->type); 5398 } 5399 5400 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5401 { 5402 const struct bpf_reg_state *reg = reg_state(env, regno); 5403 5404 return type_is_pkt_pointer(reg->type); 5405 } 5406 5407 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5408 { 5409 const struct bpf_reg_state *reg = reg_state(env, regno); 5410 5411 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5412 return reg->type == PTR_TO_FLOW_KEYS; 5413 } 5414 5415 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5416 { 5417 /* A referenced register is always trusted. */ 5418 if (reg->ref_obj_id) 5419 return true; 5420 5421 /* If a register is not referenced, it is trusted if it has the 5422 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5423 * other type modifiers may be safe, but we elect to take an opt-in 5424 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5425 * not. 5426 * 5427 * Eventually, we should make PTR_TRUSTED the single source of truth 5428 * for whether a register is trusted. 5429 */ 5430 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5431 !bpf_type_has_unsafe_modifiers(reg->type); 5432 } 5433 5434 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5435 { 5436 return reg->type & MEM_RCU; 5437 } 5438 5439 static void clear_trusted_flags(enum bpf_type_flag *flag) 5440 { 5441 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5442 } 5443 5444 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5445 const struct bpf_reg_state *reg, 5446 int off, int size, bool strict) 5447 { 5448 struct tnum reg_off; 5449 int ip_align; 5450 5451 /* Byte size accesses are always allowed. */ 5452 if (!strict || size == 1) 5453 return 0; 5454 5455 /* For platforms that do not have a Kconfig enabling 5456 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5457 * NET_IP_ALIGN is universally set to '2'. And on platforms 5458 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5459 * to this code only in strict mode where we want to emulate 5460 * the NET_IP_ALIGN==2 checking. Therefore use an 5461 * unconditional IP align value of '2'. 5462 */ 5463 ip_align = 2; 5464 5465 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5466 if (!tnum_is_aligned(reg_off, size)) { 5467 char tn_buf[48]; 5468 5469 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5470 verbose(env, 5471 "misaligned packet access off %d+%s+%d+%d size %d\n", 5472 ip_align, tn_buf, reg->off, off, size); 5473 return -EACCES; 5474 } 5475 5476 return 0; 5477 } 5478 5479 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5480 const struct bpf_reg_state *reg, 5481 const char *pointer_desc, 5482 int off, int size, bool strict) 5483 { 5484 struct tnum reg_off; 5485 5486 /* Byte size accesses are always allowed. */ 5487 if (!strict || size == 1) 5488 return 0; 5489 5490 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5491 if (!tnum_is_aligned(reg_off, size)) { 5492 char tn_buf[48]; 5493 5494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5495 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5496 pointer_desc, tn_buf, reg->off, off, size); 5497 return -EACCES; 5498 } 5499 5500 return 0; 5501 } 5502 5503 static int check_ptr_alignment(struct bpf_verifier_env *env, 5504 const struct bpf_reg_state *reg, int off, 5505 int size, bool strict_alignment_once) 5506 { 5507 bool strict = env->strict_alignment || strict_alignment_once; 5508 const char *pointer_desc = ""; 5509 5510 switch (reg->type) { 5511 case PTR_TO_PACKET: 5512 case PTR_TO_PACKET_META: 5513 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5514 * right in front, treat it the very same way. 5515 */ 5516 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5517 case PTR_TO_FLOW_KEYS: 5518 pointer_desc = "flow keys "; 5519 break; 5520 case PTR_TO_MAP_KEY: 5521 pointer_desc = "key "; 5522 break; 5523 case PTR_TO_MAP_VALUE: 5524 pointer_desc = "value "; 5525 break; 5526 case PTR_TO_CTX: 5527 pointer_desc = "context "; 5528 break; 5529 case PTR_TO_STACK: 5530 pointer_desc = "stack "; 5531 /* The stack spill tracking logic in check_stack_write_fixed_off() 5532 * and check_stack_read_fixed_off() relies on stack accesses being 5533 * aligned. 5534 */ 5535 strict = true; 5536 break; 5537 case PTR_TO_SOCKET: 5538 pointer_desc = "sock "; 5539 break; 5540 case PTR_TO_SOCK_COMMON: 5541 pointer_desc = "sock_common "; 5542 break; 5543 case PTR_TO_TCP_SOCK: 5544 pointer_desc = "tcp_sock "; 5545 break; 5546 case PTR_TO_XDP_SOCK: 5547 pointer_desc = "xdp_sock "; 5548 break; 5549 default: 5550 break; 5551 } 5552 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5553 strict); 5554 } 5555 5556 static int update_stack_depth(struct bpf_verifier_env *env, 5557 const struct bpf_func_state *func, 5558 int off) 5559 { 5560 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5561 5562 if (stack >= -off) 5563 return 0; 5564 5565 /* update known max for given subprogram */ 5566 env->subprog_info[func->subprogno].stack_depth = -off; 5567 return 0; 5568 } 5569 5570 /* starting from main bpf function walk all instructions of the function 5571 * and recursively walk all callees that given function can call. 5572 * Ignore jump and exit insns. 5573 * Since recursion is prevented by check_cfg() this algorithm 5574 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5575 */ 5576 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5577 { 5578 struct bpf_subprog_info *subprog = env->subprog_info; 5579 struct bpf_insn *insn = env->prog->insnsi; 5580 int depth = 0, frame = 0, i, subprog_end; 5581 bool tail_call_reachable = false; 5582 int ret_insn[MAX_CALL_FRAMES]; 5583 int ret_prog[MAX_CALL_FRAMES]; 5584 int j; 5585 5586 i = subprog[idx].start; 5587 process_func: 5588 /* protect against potential stack overflow that might happen when 5589 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5590 * depth for such case down to 256 so that the worst case scenario 5591 * would result in 8k stack size (32 which is tailcall limit * 256 = 5592 * 8k). 5593 * 5594 * To get the idea what might happen, see an example: 5595 * func1 -> sub rsp, 128 5596 * subfunc1 -> sub rsp, 256 5597 * tailcall1 -> add rsp, 256 5598 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5599 * subfunc2 -> sub rsp, 64 5600 * subfunc22 -> sub rsp, 128 5601 * tailcall2 -> add rsp, 128 5602 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5603 * 5604 * tailcall will unwind the current stack frame but it will not get rid 5605 * of caller's stack as shown on the example above. 5606 */ 5607 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5608 verbose(env, 5609 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5610 depth); 5611 return -EACCES; 5612 } 5613 /* round up to 32-bytes, since this is granularity 5614 * of interpreter stack size 5615 */ 5616 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5617 if (depth > MAX_BPF_STACK) { 5618 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5619 frame + 1, depth); 5620 return -EACCES; 5621 } 5622 continue_func: 5623 subprog_end = subprog[idx + 1].start; 5624 for (; i < subprog_end; i++) { 5625 int next_insn, sidx; 5626 5627 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5628 continue; 5629 /* remember insn and function to return to */ 5630 ret_insn[frame] = i + 1; 5631 ret_prog[frame] = idx; 5632 5633 /* find the callee */ 5634 next_insn = i + insn[i].imm + 1; 5635 sidx = find_subprog(env, next_insn); 5636 if (sidx < 0) { 5637 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5638 next_insn); 5639 return -EFAULT; 5640 } 5641 if (subprog[sidx].is_async_cb) { 5642 if (subprog[sidx].has_tail_call) { 5643 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5644 return -EFAULT; 5645 } 5646 /* async callbacks don't increase bpf prog stack size unless called directly */ 5647 if (!bpf_pseudo_call(insn + i)) 5648 continue; 5649 } 5650 i = next_insn; 5651 idx = sidx; 5652 5653 if (subprog[idx].has_tail_call) 5654 tail_call_reachable = true; 5655 5656 frame++; 5657 if (frame >= MAX_CALL_FRAMES) { 5658 verbose(env, "the call stack of %d frames is too deep !\n", 5659 frame); 5660 return -E2BIG; 5661 } 5662 goto process_func; 5663 } 5664 /* if tail call got detected across bpf2bpf calls then mark each of the 5665 * currently present subprog frames as tail call reachable subprogs; 5666 * this info will be utilized by JIT so that we will be preserving the 5667 * tail call counter throughout bpf2bpf calls combined with tailcalls 5668 */ 5669 if (tail_call_reachable) 5670 for (j = 0; j < frame; j++) 5671 subprog[ret_prog[j]].tail_call_reachable = true; 5672 if (subprog[0].tail_call_reachable) 5673 env->prog->aux->tail_call_reachable = true; 5674 5675 /* end of for() loop means the last insn of the 'subprog' 5676 * was reached. Doesn't matter whether it was JA or EXIT 5677 */ 5678 if (frame == 0) 5679 return 0; 5680 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5681 frame--; 5682 i = ret_insn[frame]; 5683 idx = ret_prog[frame]; 5684 goto continue_func; 5685 } 5686 5687 static int check_max_stack_depth(struct bpf_verifier_env *env) 5688 { 5689 struct bpf_subprog_info *si = env->subprog_info; 5690 int ret; 5691 5692 for (int i = 0; i < env->subprog_cnt; i++) { 5693 if (!i || si[i].is_async_cb) { 5694 ret = check_max_stack_depth_subprog(env, i); 5695 if (ret < 0) 5696 return ret; 5697 } 5698 continue; 5699 } 5700 return 0; 5701 } 5702 5703 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5704 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5705 const struct bpf_insn *insn, int idx) 5706 { 5707 int start = idx + insn->imm + 1, subprog; 5708 5709 subprog = find_subprog(env, start); 5710 if (subprog < 0) { 5711 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5712 start); 5713 return -EFAULT; 5714 } 5715 return env->subprog_info[subprog].stack_depth; 5716 } 5717 #endif 5718 5719 static int __check_buffer_access(struct bpf_verifier_env *env, 5720 const char *buf_info, 5721 const struct bpf_reg_state *reg, 5722 int regno, int off, int size) 5723 { 5724 if (off < 0) { 5725 verbose(env, 5726 "R%d invalid %s buffer access: off=%d, size=%d\n", 5727 regno, buf_info, off, size); 5728 return -EACCES; 5729 } 5730 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5731 char tn_buf[48]; 5732 5733 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5734 verbose(env, 5735 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5736 regno, off, tn_buf); 5737 return -EACCES; 5738 } 5739 5740 return 0; 5741 } 5742 5743 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5744 const struct bpf_reg_state *reg, 5745 int regno, int off, int size) 5746 { 5747 int err; 5748 5749 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5750 if (err) 5751 return err; 5752 5753 if (off + size > env->prog->aux->max_tp_access) 5754 env->prog->aux->max_tp_access = off + size; 5755 5756 return 0; 5757 } 5758 5759 static int check_buffer_access(struct bpf_verifier_env *env, 5760 const struct bpf_reg_state *reg, 5761 int regno, int off, int size, 5762 bool zero_size_allowed, 5763 u32 *max_access) 5764 { 5765 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5766 int err; 5767 5768 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5769 if (err) 5770 return err; 5771 5772 if (off + size > *max_access) 5773 *max_access = off + size; 5774 5775 return 0; 5776 } 5777 5778 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5779 static void zext_32_to_64(struct bpf_reg_state *reg) 5780 { 5781 reg->var_off = tnum_subreg(reg->var_off); 5782 __reg_assign_32_into_64(reg); 5783 } 5784 5785 /* truncate register to smaller size (in bytes) 5786 * must be called with size < BPF_REG_SIZE 5787 */ 5788 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5789 { 5790 u64 mask; 5791 5792 /* clear high bits in bit representation */ 5793 reg->var_off = tnum_cast(reg->var_off, size); 5794 5795 /* fix arithmetic bounds */ 5796 mask = ((u64)1 << (size * 8)) - 1; 5797 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5798 reg->umin_value &= mask; 5799 reg->umax_value &= mask; 5800 } else { 5801 reg->umin_value = 0; 5802 reg->umax_value = mask; 5803 } 5804 reg->smin_value = reg->umin_value; 5805 reg->smax_value = reg->umax_value; 5806 5807 /* If size is smaller than 32bit register the 32bit register 5808 * values are also truncated so we push 64-bit bounds into 5809 * 32-bit bounds. Above were truncated < 32-bits already. 5810 */ 5811 if (size >= 4) 5812 return; 5813 __reg_combine_64_into_32(reg); 5814 } 5815 5816 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5817 { 5818 /* A map is considered read-only if the following condition are true: 5819 * 5820 * 1) BPF program side cannot change any of the map content. The 5821 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5822 * and was set at map creation time. 5823 * 2) The map value(s) have been initialized from user space by a 5824 * loader and then "frozen", such that no new map update/delete 5825 * operations from syscall side are possible for the rest of 5826 * the map's lifetime from that point onwards. 5827 * 3) Any parallel/pending map update/delete operations from syscall 5828 * side have been completed. Only after that point, it's safe to 5829 * assume that map value(s) are immutable. 5830 */ 5831 return (map->map_flags & BPF_F_RDONLY_PROG) && 5832 READ_ONCE(map->frozen) && 5833 !bpf_map_write_active(map); 5834 } 5835 5836 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5837 { 5838 void *ptr; 5839 u64 addr; 5840 int err; 5841 5842 err = map->ops->map_direct_value_addr(map, &addr, off); 5843 if (err) 5844 return err; 5845 ptr = (void *)(long)addr + off; 5846 5847 switch (size) { 5848 case sizeof(u8): 5849 *val = (u64)*(u8 *)ptr; 5850 break; 5851 case sizeof(u16): 5852 *val = (u64)*(u16 *)ptr; 5853 break; 5854 case sizeof(u32): 5855 *val = (u64)*(u32 *)ptr; 5856 break; 5857 case sizeof(u64): 5858 *val = *(u64 *)ptr; 5859 break; 5860 default: 5861 return -EINVAL; 5862 } 5863 return 0; 5864 } 5865 5866 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5867 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 5868 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5869 5870 /* 5871 * Allow list few fields as RCU trusted or full trusted. 5872 * This logic doesn't allow mix tagging and will be removed once GCC supports 5873 * btf_type_tag. 5874 */ 5875 5876 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5877 BTF_TYPE_SAFE_RCU(struct task_struct) { 5878 const cpumask_t *cpus_ptr; 5879 struct css_set __rcu *cgroups; 5880 struct task_struct __rcu *real_parent; 5881 struct task_struct *group_leader; 5882 }; 5883 5884 BTF_TYPE_SAFE_RCU(struct cgroup) { 5885 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 5886 struct kernfs_node *kn; 5887 }; 5888 5889 BTF_TYPE_SAFE_RCU(struct css_set) { 5890 struct cgroup *dfl_cgrp; 5891 }; 5892 5893 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 5894 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 5895 struct file __rcu *exe_file; 5896 }; 5897 5898 /* skb->sk, req->sk are not RCU protected, but we mark them as such 5899 * because bpf prog accessible sockets are SOCK_RCU_FREE. 5900 */ 5901 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 5902 struct sock *sk; 5903 }; 5904 5905 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 5906 struct sock *sk; 5907 }; 5908 5909 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5910 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5911 struct seq_file *seq; 5912 }; 5913 5914 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5915 struct bpf_iter_meta *meta; 5916 struct task_struct *task; 5917 }; 5918 5919 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5920 struct file *file; 5921 }; 5922 5923 BTF_TYPE_SAFE_TRUSTED(struct file) { 5924 struct inode *f_inode; 5925 }; 5926 5927 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5928 /* no negative dentry-s in places where bpf can see it */ 5929 struct inode *d_inode; 5930 }; 5931 5932 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5933 struct sock *sk; 5934 }; 5935 5936 static bool type_is_rcu(struct bpf_verifier_env *env, 5937 struct bpf_reg_state *reg, 5938 const char *field_name, u32 btf_id) 5939 { 5940 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5941 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 5942 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5943 5944 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 5945 } 5946 5947 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 5948 struct bpf_reg_state *reg, 5949 const char *field_name, u32 btf_id) 5950 { 5951 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 5952 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 5953 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 5954 5955 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 5956 } 5957 5958 static bool type_is_trusted(struct bpf_verifier_env *env, 5959 struct bpf_reg_state *reg, 5960 const char *field_name, u32 btf_id) 5961 { 5962 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5963 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5964 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5965 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5966 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5967 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5968 5969 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 5970 } 5971 5972 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5973 struct bpf_reg_state *regs, 5974 int regno, int off, int size, 5975 enum bpf_access_type atype, 5976 int value_regno) 5977 { 5978 struct bpf_reg_state *reg = regs + regno; 5979 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5980 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5981 const char *field_name = NULL; 5982 enum bpf_type_flag flag = 0; 5983 u32 btf_id = 0; 5984 int ret; 5985 5986 if (!env->allow_ptr_leaks) { 5987 verbose(env, 5988 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5989 tname); 5990 return -EPERM; 5991 } 5992 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5993 verbose(env, 5994 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5995 tname); 5996 return -EINVAL; 5997 } 5998 if (off < 0) { 5999 verbose(env, 6000 "R%d is ptr_%s invalid negative access: off=%d\n", 6001 regno, tname, off); 6002 return -EACCES; 6003 } 6004 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6005 char tn_buf[48]; 6006 6007 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6008 verbose(env, 6009 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6010 regno, tname, off, tn_buf); 6011 return -EACCES; 6012 } 6013 6014 if (reg->type & MEM_USER) { 6015 verbose(env, 6016 "R%d is ptr_%s access user memory: off=%d\n", 6017 regno, tname, off); 6018 return -EACCES; 6019 } 6020 6021 if (reg->type & MEM_PERCPU) { 6022 verbose(env, 6023 "R%d is ptr_%s access percpu memory: off=%d\n", 6024 regno, tname, off); 6025 return -EACCES; 6026 } 6027 6028 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6029 if (!btf_is_kernel(reg->btf)) { 6030 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6031 return -EFAULT; 6032 } 6033 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6034 } else { 6035 /* Writes are permitted with default btf_struct_access for 6036 * program allocated objects (which always have ref_obj_id > 0), 6037 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6038 */ 6039 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6040 verbose(env, "only read is supported\n"); 6041 return -EACCES; 6042 } 6043 6044 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6045 !reg->ref_obj_id) { 6046 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6047 return -EFAULT; 6048 } 6049 6050 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6051 } 6052 6053 if (ret < 0) 6054 return ret; 6055 6056 if (ret != PTR_TO_BTF_ID) { 6057 /* just mark; */ 6058 6059 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6060 /* If this is an untrusted pointer, all pointers formed by walking it 6061 * also inherit the untrusted flag. 6062 */ 6063 flag = PTR_UNTRUSTED; 6064 6065 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6066 /* By default any pointer obtained from walking a trusted pointer is no 6067 * longer trusted, unless the field being accessed has explicitly been 6068 * marked as inheriting its parent's state of trust (either full or RCU). 6069 * For example: 6070 * 'cgroups' pointer is untrusted if task->cgroups dereference 6071 * happened in a sleepable program outside of bpf_rcu_read_lock() 6072 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6073 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6074 * 6075 * A regular RCU-protected pointer with __rcu tag can also be deemed 6076 * trusted if we are in an RCU CS. Such pointer can be NULL. 6077 */ 6078 if (type_is_trusted(env, reg, field_name, btf_id)) { 6079 flag |= PTR_TRUSTED; 6080 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6081 if (type_is_rcu(env, reg, field_name, btf_id)) { 6082 /* ignore __rcu tag and mark it MEM_RCU */ 6083 flag |= MEM_RCU; 6084 } else if (flag & MEM_RCU || 6085 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6086 /* __rcu tagged pointers can be NULL */ 6087 flag |= MEM_RCU | PTR_MAYBE_NULL; 6088 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6089 /* keep as-is */ 6090 } else { 6091 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6092 clear_trusted_flags(&flag); 6093 } 6094 } else { 6095 /* 6096 * If not in RCU CS or MEM_RCU pointer can be NULL then 6097 * aggressively mark as untrusted otherwise such 6098 * pointers will be plain PTR_TO_BTF_ID without flags 6099 * and will be allowed to be passed into helpers for 6100 * compat reasons. 6101 */ 6102 flag = PTR_UNTRUSTED; 6103 } 6104 } else { 6105 /* Old compat. Deprecated */ 6106 clear_trusted_flags(&flag); 6107 } 6108 6109 if (atype == BPF_READ && value_regno >= 0) 6110 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6111 6112 return 0; 6113 } 6114 6115 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6116 struct bpf_reg_state *regs, 6117 int regno, int off, int size, 6118 enum bpf_access_type atype, 6119 int value_regno) 6120 { 6121 struct bpf_reg_state *reg = regs + regno; 6122 struct bpf_map *map = reg->map_ptr; 6123 struct bpf_reg_state map_reg; 6124 enum bpf_type_flag flag = 0; 6125 const struct btf_type *t; 6126 const char *tname; 6127 u32 btf_id; 6128 int ret; 6129 6130 if (!btf_vmlinux) { 6131 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6132 return -ENOTSUPP; 6133 } 6134 6135 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6136 verbose(env, "map_ptr access not supported for map type %d\n", 6137 map->map_type); 6138 return -ENOTSUPP; 6139 } 6140 6141 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6142 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6143 6144 if (!env->allow_ptr_leaks) { 6145 verbose(env, 6146 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6147 tname); 6148 return -EPERM; 6149 } 6150 6151 if (off < 0) { 6152 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6153 regno, tname, off); 6154 return -EACCES; 6155 } 6156 6157 if (atype != BPF_READ) { 6158 verbose(env, "only read from %s is supported\n", tname); 6159 return -EACCES; 6160 } 6161 6162 /* Simulate access to a PTR_TO_BTF_ID */ 6163 memset(&map_reg, 0, sizeof(map_reg)); 6164 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6165 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6166 if (ret < 0) 6167 return ret; 6168 6169 if (value_regno >= 0) 6170 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6171 6172 return 0; 6173 } 6174 6175 /* Check that the stack access at the given offset is within bounds. The 6176 * maximum valid offset is -1. 6177 * 6178 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6179 * -state->allocated_stack for reads. 6180 */ 6181 static int check_stack_slot_within_bounds(int off, 6182 struct bpf_func_state *state, 6183 enum bpf_access_type t) 6184 { 6185 int min_valid_off; 6186 6187 if (t == BPF_WRITE) 6188 min_valid_off = -MAX_BPF_STACK; 6189 else 6190 min_valid_off = -state->allocated_stack; 6191 6192 if (off < min_valid_off || off > -1) 6193 return -EACCES; 6194 return 0; 6195 } 6196 6197 /* Check that the stack access at 'regno + off' falls within the maximum stack 6198 * bounds. 6199 * 6200 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6201 */ 6202 static int check_stack_access_within_bounds( 6203 struct bpf_verifier_env *env, 6204 int regno, int off, int access_size, 6205 enum bpf_access_src src, enum bpf_access_type type) 6206 { 6207 struct bpf_reg_state *regs = cur_regs(env); 6208 struct bpf_reg_state *reg = regs + regno; 6209 struct bpf_func_state *state = func(env, reg); 6210 int min_off, max_off; 6211 int err; 6212 char *err_extra; 6213 6214 if (src == ACCESS_HELPER) 6215 /* We don't know if helpers are reading or writing (or both). */ 6216 err_extra = " indirect access to"; 6217 else if (type == BPF_READ) 6218 err_extra = " read from"; 6219 else 6220 err_extra = " write to"; 6221 6222 if (tnum_is_const(reg->var_off)) { 6223 min_off = reg->var_off.value + off; 6224 if (access_size > 0) 6225 max_off = min_off + access_size - 1; 6226 else 6227 max_off = min_off; 6228 } else { 6229 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6230 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6231 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6232 err_extra, regno); 6233 return -EACCES; 6234 } 6235 min_off = reg->smin_value + off; 6236 if (access_size > 0) 6237 max_off = reg->smax_value + off + access_size - 1; 6238 else 6239 max_off = min_off; 6240 } 6241 6242 err = check_stack_slot_within_bounds(min_off, state, type); 6243 if (!err) 6244 err = check_stack_slot_within_bounds(max_off, state, type); 6245 6246 if (err) { 6247 if (tnum_is_const(reg->var_off)) { 6248 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6249 err_extra, regno, off, access_size); 6250 } else { 6251 char tn_buf[48]; 6252 6253 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6254 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6255 err_extra, regno, tn_buf, access_size); 6256 } 6257 } 6258 return err; 6259 } 6260 6261 /* check whether memory at (regno + off) is accessible for t = (read | write) 6262 * if t==write, value_regno is a register which value is stored into memory 6263 * if t==read, value_regno is a register which will receive the value from memory 6264 * if t==write && value_regno==-1, some unknown value is stored into memory 6265 * if t==read && value_regno==-1, don't care what we read from memory 6266 */ 6267 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6268 int off, int bpf_size, enum bpf_access_type t, 6269 int value_regno, bool strict_alignment_once) 6270 { 6271 struct bpf_reg_state *regs = cur_regs(env); 6272 struct bpf_reg_state *reg = regs + regno; 6273 struct bpf_func_state *state; 6274 int size, err = 0; 6275 6276 size = bpf_size_to_bytes(bpf_size); 6277 if (size < 0) 6278 return size; 6279 6280 /* alignment checks will add in reg->off themselves */ 6281 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6282 if (err) 6283 return err; 6284 6285 /* for access checks, reg->off is just part of off */ 6286 off += reg->off; 6287 6288 if (reg->type == PTR_TO_MAP_KEY) { 6289 if (t == BPF_WRITE) { 6290 verbose(env, "write to change key R%d not allowed\n", regno); 6291 return -EACCES; 6292 } 6293 6294 err = check_mem_region_access(env, regno, off, size, 6295 reg->map_ptr->key_size, false); 6296 if (err) 6297 return err; 6298 if (value_regno >= 0) 6299 mark_reg_unknown(env, regs, value_regno); 6300 } else if (reg->type == PTR_TO_MAP_VALUE) { 6301 struct btf_field *kptr_field = NULL; 6302 6303 if (t == BPF_WRITE && value_regno >= 0 && 6304 is_pointer_value(env, value_regno)) { 6305 verbose(env, "R%d leaks addr into map\n", value_regno); 6306 return -EACCES; 6307 } 6308 err = check_map_access_type(env, regno, off, size, t); 6309 if (err) 6310 return err; 6311 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6312 if (err) 6313 return err; 6314 if (tnum_is_const(reg->var_off)) 6315 kptr_field = btf_record_find(reg->map_ptr->record, 6316 off + reg->var_off.value, BPF_KPTR); 6317 if (kptr_field) { 6318 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6319 } else if (t == BPF_READ && value_regno >= 0) { 6320 struct bpf_map *map = reg->map_ptr; 6321 6322 /* if map is read-only, track its contents as scalars */ 6323 if (tnum_is_const(reg->var_off) && 6324 bpf_map_is_rdonly(map) && 6325 map->ops->map_direct_value_addr) { 6326 int map_off = off + reg->var_off.value; 6327 u64 val = 0; 6328 6329 err = bpf_map_direct_read(map, map_off, size, 6330 &val); 6331 if (err) 6332 return err; 6333 6334 regs[value_regno].type = SCALAR_VALUE; 6335 __mark_reg_known(®s[value_regno], val); 6336 } else { 6337 mark_reg_unknown(env, regs, value_regno); 6338 } 6339 } 6340 } else if (base_type(reg->type) == PTR_TO_MEM) { 6341 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6342 6343 if (type_may_be_null(reg->type)) { 6344 verbose(env, "R%d invalid mem access '%s'\n", regno, 6345 reg_type_str(env, reg->type)); 6346 return -EACCES; 6347 } 6348 6349 if (t == BPF_WRITE && rdonly_mem) { 6350 verbose(env, "R%d cannot write into %s\n", 6351 regno, reg_type_str(env, reg->type)); 6352 return -EACCES; 6353 } 6354 6355 if (t == BPF_WRITE && value_regno >= 0 && 6356 is_pointer_value(env, value_regno)) { 6357 verbose(env, "R%d leaks addr into mem\n", value_regno); 6358 return -EACCES; 6359 } 6360 6361 err = check_mem_region_access(env, regno, off, size, 6362 reg->mem_size, false); 6363 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6364 mark_reg_unknown(env, regs, value_regno); 6365 } else if (reg->type == PTR_TO_CTX) { 6366 enum bpf_reg_type reg_type = SCALAR_VALUE; 6367 struct btf *btf = NULL; 6368 u32 btf_id = 0; 6369 6370 if (t == BPF_WRITE && value_regno >= 0 && 6371 is_pointer_value(env, value_regno)) { 6372 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6373 return -EACCES; 6374 } 6375 6376 err = check_ptr_off_reg(env, reg, regno); 6377 if (err < 0) 6378 return err; 6379 6380 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6381 &btf_id); 6382 if (err) 6383 verbose_linfo(env, insn_idx, "; "); 6384 if (!err && t == BPF_READ && value_regno >= 0) { 6385 /* ctx access returns either a scalar, or a 6386 * PTR_TO_PACKET[_META,_END]. In the latter 6387 * case, we know the offset is zero. 6388 */ 6389 if (reg_type == SCALAR_VALUE) { 6390 mark_reg_unknown(env, regs, value_regno); 6391 } else { 6392 mark_reg_known_zero(env, regs, 6393 value_regno); 6394 if (type_may_be_null(reg_type)) 6395 regs[value_regno].id = ++env->id_gen; 6396 /* A load of ctx field could have different 6397 * actual load size with the one encoded in the 6398 * insn. When the dst is PTR, it is for sure not 6399 * a sub-register. 6400 */ 6401 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6402 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6403 regs[value_regno].btf = btf; 6404 regs[value_regno].btf_id = btf_id; 6405 } 6406 } 6407 regs[value_regno].type = reg_type; 6408 } 6409 6410 } else if (reg->type == PTR_TO_STACK) { 6411 /* Basic bounds checks. */ 6412 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6413 if (err) 6414 return err; 6415 6416 state = func(env, reg); 6417 err = update_stack_depth(env, state, off); 6418 if (err) 6419 return err; 6420 6421 if (t == BPF_READ) 6422 err = check_stack_read(env, regno, off, size, 6423 value_regno); 6424 else 6425 err = check_stack_write(env, regno, off, size, 6426 value_regno, insn_idx); 6427 } else if (reg_is_pkt_pointer(reg)) { 6428 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6429 verbose(env, "cannot write into packet\n"); 6430 return -EACCES; 6431 } 6432 if (t == BPF_WRITE && value_regno >= 0 && 6433 is_pointer_value(env, value_regno)) { 6434 verbose(env, "R%d leaks addr into packet\n", 6435 value_regno); 6436 return -EACCES; 6437 } 6438 err = check_packet_access(env, regno, off, size, false); 6439 if (!err && t == BPF_READ && value_regno >= 0) 6440 mark_reg_unknown(env, regs, value_regno); 6441 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6442 if (t == BPF_WRITE && value_regno >= 0 && 6443 is_pointer_value(env, value_regno)) { 6444 verbose(env, "R%d leaks addr into flow keys\n", 6445 value_regno); 6446 return -EACCES; 6447 } 6448 6449 err = check_flow_keys_access(env, off, size); 6450 if (!err && t == BPF_READ && value_regno >= 0) 6451 mark_reg_unknown(env, regs, value_regno); 6452 } else if (type_is_sk_pointer(reg->type)) { 6453 if (t == BPF_WRITE) { 6454 verbose(env, "R%d cannot write into %s\n", 6455 regno, reg_type_str(env, reg->type)); 6456 return -EACCES; 6457 } 6458 err = check_sock_access(env, insn_idx, regno, off, size, t); 6459 if (!err && value_regno >= 0) 6460 mark_reg_unknown(env, regs, value_regno); 6461 } else if (reg->type == PTR_TO_TP_BUFFER) { 6462 err = check_tp_buffer_access(env, reg, regno, off, size); 6463 if (!err && t == BPF_READ && value_regno >= 0) 6464 mark_reg_unknown(env, regs, value_regno); 6465 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6466 !type_may_be_null(reg->type)) { 6467 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6468 value_regno); 6469 } else if (reg->type == CONST_PTR_TO_MAP) { 6470 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6471 value_regno); 6472 } else if (base_type(reg->type) == PTR_TO_BUF) { 6473 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6474 u32 *max_access; 6475 6476 if (rdonly_mem) { 6477 if (t == BPF_WRITE) { 6478 verbose(env, "R%d cannot write into %s\n", 6479 regno, reg_type_str(env, reg->type)); 6480 return -EACCES; 6481 } 6482 max_access = &env->prog->aux->max_rdonly_access; 6483 } else { 6484 max_access = &env->prog->aux->max_rdwr_access; 6485 } 6486 6487 err = check_buffer_access(env, reg, regno, off, size, false, 6488 max_access); 6489 6490 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6491 mark_reg_unknown(env, regs, value_regno); 6492 } else { 6493 verbose(env, "R%d invalid mem access '%s'\n", regno, 6494 reg_type_str(env, reg->type)); 6495 return -EACCES; 6496 } 6497 6498 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6499 regs[value_regno].type == SCALAR_VALUE) { 6500 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6501 coerce_reg_to_size(®s[value_regno], size); 6502 } 6503 return err; 6504 } 6505 6506 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6507 { 6508 int load_reg; 6509 int err; 6510 6511 switch (insn->imm) { 6512 case BPF_ADD: 6513 case BPF_ADD | BPF_FETCH: 6514 case BPF_AND: 6515 case BPF_AND | BPF_FETCH: 6516 case BPF_OR: 6517 case BPF_OR | BPF_FETCH: 6518 case BPF_XOR: 6519 case BPF_XOR | BPF_FETCH: 6520 case BPF_XCHG: 6521 case BPF_CMPXCHG: 6522 break; 6523 default: 6524 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6525 return -EINVAL; 6526 } 6527 6528 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6529 verbose(env, "invalid atomic operand size\n"); 6530 return -EINVAL; 6531 } 6532 6533 /* check src1 operand */ 6534 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6535 if (err) 6536 return err; 6537 6538 /* check src2 operand */ 6539 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6540 if (err) 6541 return err; 6542 6543 if (insn->imm == BPF_CMPXCHG) { 6544 /* Check comparison of R0 with memory location */ 6545 const u32 aux_reg = BPF_REG_0; 6546 6547 err = check_reg_arg(env, aux_reg, SRC_OP); 6548 if (err) 6549 return err; 6550 6551 if (is_pointer_value(env, aux_reg)) { 6552 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6553 return -EACCES; 6554 } 6555 } 6556 6557 if (is_pointer_value(env, insn->src_reg)) { 6558 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6559 return -EACCES; 6560 } 6561 6562 if (is_ctx_reg(env, insn->dst_reg) || 6563 is_pkt_reg(env, insn->dst_reg) || 6564 is_flow_key_reg(env, insn->dst_reg) || 6565 is_sk_reg(env, insn->dst_reg)) { 6566 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6567 insn->dst_reg, 6568 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6569 return -EACCES; 6570 } 6571 6572 if (insn->imm & BPF_FETCH) { 6573 if (insn->imm == BPF_CMPXCHG) 6574 load_reg = BPF_REG_0; 6575 else 6576 load_reg = insn->src_reg; 6577 6578 /* check and record load of old value */ 6579 err = check_reg_arg(env, load_reg, DST_OP); 6580 if (err) 6581 return err; 6582 } else { 6583 /* This instruction accesses a memory location but doesn't 6584 * actually load it into a register. 6585 */ 6586 load_reg = -1; 6587 } 6588 6589 /* Check whether we can read the memory, with second call for fetch 6590 * case to simulate the register fill. 6591 */ 6592 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6593 BPF_SIZE(insn->code), BPF_READ, -1, true); 6594 if (!err && load_reg >= 0) 6595 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6596 BPF_SIZE(insn->code), BPF_READ, load_reg, 6597 true); 6598 if (err) 6599 return err; 6600 6601 /* Check whether we can write into the same memory. */ 6602 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6603 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 6604 if (err) 6605 return err; 6606 6607 return 0; 6608 } 6609 6610 /* When register 'regno' is used to read the stack (either directly or through 6611 * a helper function) make sure that it's within stack boundary and, depending 6612 * on the access type, that all elements of the stack are initialized. 6613 * 6614 * 'off' includes 'regno->off', but not its dynamic part (if any). 6615 * 6616 * All registers that have been spilled on the stack in the slots within the 6617 * read offsets are marked as read. 6618 */ 6619 static int check_stack_range_initialized( 6620 struct bpf_verifier_env *env, int regno, int off, 6621 int access_size, bool zero_size_allowed, 6622 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6623 { 6624 struct bpf_reg_state *reg = reg_state(env, regno); 6625 struct bpf_func_state *state = func(env, reg); 6626 int err, min_off, max_off, i, j, slot, spi; 6627 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6628 enum bpf_access_type bounds_check_type; 6629 /* Some accesses can write anything into the stack, others are 6630 * read-only. 6631 */ 6632 bool clobber = false; 6633 6634 if (access_size == 0 && !zero_size_allowed) { 6635 verbose(env, "invalid zero-sized read\n"); 6636 return -EACCES; 6637 } 6638 6639 if (type == ACCESS_HELPER) { 6640 /* The bounds checks for writes are more permissive than for 6641 * reads. However, if raw_mode is not set, we'll do extra 6642 * checks below. 6643 */ 6644 bounds_check_type = BPF_WRITE; 6645 clobber = true; 6646 } else { 6647 bounds_check_type = BPF_READ; 6648 } 6649 err = check_stack_access_within_bounds(env, regno, off, access_size, 6650 type, bounds_check_type); 6651 if (err) 6652 return err; 6653 6654 6655 if (tnum_is_const(reg->var_off)) { 6656 min_off = max_off = reg->var_off.value + off; 6657 } else { 6658 /* Variable offset is prohibited for unprivileged mode for 6659 * simplicity since it requires corresponding support in 6660 * Spectre masking for stack ALU. 6661 * See also retrieve_ptr_limit(). 6662 */ 6663 if (!env->bypass_spec_v1) { 6664 char tn_buf[48]; 6665 6666 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6667 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6668 regno, err_extra, tn_buf); 6669 return -EACCES; 6670 } 6671 /* Only initialized buffer on stack is allowed to be accessed 6672 * with variable offset. With uninitialized buffer it's hard to 6673 * guarantee that whole memory is marked as initialized on 6674 * helper return since specific bounds are unknown what may 6675 * cause uninitialized stack leaking. 6676 */ 6677 if (meta && meta->raw_mode) 6678 meta = NULL; 6679 6680 min_off = reg->smin_value + off; 6681 max_off = reg->smax_value + off; 6682 } 6683 6684 if (meta && meta->raw_mode) { 6685 /* Ensure we won't be overwriting dynptrs when simulating byte 6686 * by byte access in check_helper_call using meta.access_size. 6687 * This would be a problem if we have a helper in the future 6688 * which takes: 6689 * 6690 * helper(uninit_mem, len, dynptr) 6691 * 6692 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6693 * may end up writing to dynptr itself when touching memory from 6694 * arg 1. This can be relaxed on a case by case basis for known 6695 * safe cases, but reject due to the possibilitiy of aliasing by 6696 * default. 6697 */ 6698 for (i = min_off; i < max_off + access_size; i++) { 6699 int stack_off = -i - 1; 6700 6701 spi = __get_spi(i); 6702 /* raw_mode may write past allocated_stack */ 6703 if (state->allocated_stack <= stack_off) 6704 continue; 6705 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6706 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6707 return -EACCES; 6708 } 6709 } 6710 meta->access_size = access_size; 6711 meta->regno = regno; 6712 return 0; 6713 } 6714 6715 for (i = min_off; i < max_off + access_size; i++) { 6716 u8 *stype; 6717 6718 slot = -i - 1; 6719 spi = slot / BPF_REG_SIZE; 6720 if (state->allocated_stack <= slot) 6721 goto err; 6722 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6723 if (*stype == STACK_MISC) 6724 goto mark; 6725 if ((*stype == STACK_ZERO) || 6726 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6727 if (clobber) { 6728 /* helper can write anything into the stack */ 6729 *stype = STACK_MISC; 6730 } 6731 goto mark; 6732 } 6733 6734 if (is_spilled_reg(&state->stack[spi]) && 6735 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6736 env->allow_ptr_leaks)) { 6737 if (clobber) { 6738 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6739 for (j = 0; j < BPF_REG_SIZE; j++) 6740 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6741 } 6742 goto mark; 6743 } 6744 6745 err: 6746 if (tnum_is_const(reg->var_off)) { 6747 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6748 err_extra, regno, min_off, i - min_off, access_size); 6749 } else { 6750 char tn_buf[48]; 6751 6752 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6753 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6754 err_extra, regno, tn_buf, i - min_off, access_size); 6755 } 6756 return -EACCES; 6757 mark: 6758 /* reading any byte out of 8-byte 'spill_slot' will cause 6759 * the whole slot to be marked as 'read' 6760 */ 6761 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6762 state->stack[spi].spilled_ptr.parent, 6763 REG_LIVE_READ64); 6764 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6765 * be sure that whether stack slot is written to or not. Hence, 6766 * we must still conservatively propagate reads upwards even if 6767 * helper may write to the entire memory range. 6768 */ 6769 } 6770 return update_stack_depth(env, state, min_off); 6771 } 6772 6773 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6774 int access_size, bool zero_size_allowed, 6775 struct bpf_call_arg_meta *meta) 6776 { 6777 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6778 u32 *max_access; 6779 6780 switch (base_type(reg->type)) { 6781 case PTR_TO_PACKET: 6782 case PTR_TO_PACKET_META: 6783 return check_packet_access(env, regno, reg->off, access_size, 6784 zero_size_allowed); 6785 case PTR_TO_MAP_KEY: 6786 if (meta && meta->raw_mode) { 6787 verbose(env, "R%d cannot write into %s\n", regno, 6788 reg_type_str(env, reg->type)); 6789 return -EACCES; 6790 } 6791 return check_mem_region_access(env, regno, reg->off, access_size, 6792 reg->map_ptr->key_size, false); 6793 case PTR_TO_MAP_VALUE: 6794 if (check_map_access_type(env, regno, reg->off, access_size, 6795 meta && meta->raw_mode ? BPF_WRITE : 6796 BPF_READ)) 6797 return -EACCES; 6798 return check_map_access(env, regno, reg->off, access_size, 6799 zero_size_allowed, ACCESS_HELPER); 6800 case PTR_TO_MEM: 6801 if (type_is_rdonly_mem(reg->type)) { 6802 if (meta && meta->raw_mode) { 6803 verbose(env, "R%d cannot write into %s\n", regno, 6804 reg_type_str(env, reg->type)); 6805 return -EACCES; 6806 } 6807 } 6808 return check_mem_region_access(env, regno, reg->off, 6809 access_size, reg->mem_size, 6810 zero_size_allowed); 6811 case PTR_TO_BUF: 6812 if (type_is_rdonly_mem(reg->type)) { 6813 if (meta && meta->raw_mode) { 6814 verbose(env, "R%d cannot write into %s\n", regno, 6815 reg_type_str(env, reg->type)); 6816 return -EACCES; 6817 } 6818 6819 max_access = &env->prog->aux->max_rdonly_access; 6820 } else { 6821 max_access = &env->prog->aux->max_rdwr_access; 6822 } 6823 return check_buffer_access(env, reg, regno, reg->off, 6824 access_size, zero_size_allowed, 6825 max_access); 6826 case PTR_TO_STACK: 6827 return check_stack_range_initialized( 6828 env, 6829 regno, reg->off, access_size, 6830 zero_size_allowed, ACCESS_HELPER, meta); 6831 case PTR_TO_BTF_ID: 6832 return check_ptr_to_btf_access(env, regs, regno, reg->off, 6833 access_size, BPF_READ, -1); 6834 case PTR_TO_CTX: 6835 /* in case the function doesn't know how to access the context, 6836 * (because we are in a program of type SYSCALL for example), we 6837 * can not statically check its size. 6838 * Dynamically check it now. 6839 */ 6840 if (!env->ops->convert_ctx_access) { 6841 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6842 int offset = access_size - 1; 6843 6844 /* Allow zero-byte read from PTR_TO_CTX */ 6845 if (access_size == 0) 6846 return zero_size_allowed ? 0 : -EACCES; 6847 6848 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6849 atype, -1, false); 6850 } 6851 6852 fallthrough; 6853 default: /* scalar_value or invalid ptr */ 6854 /* Allow zero-byte read from NULL, regardless of pointer type */ 6855 if (zero_size_allowed && access_size == 0 && 6856 register_is_null(reg)) 6857 return 0; 6858 6859 verbose(env, "R%d type=%s ", regno, 6860 reg_type_str(env, reg->type)); 6861 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6862 return -EACCES; 6863 } 6864 } 6865 6866 static int check_mem_size_reg(struct bpf_verifier_env *env, 6867 struct bpf_reg_state *reg, u32 regno, 6868 bool zero_size_allowed, 6869 struct bpf_call_arg_meta *meta) 6870 { 6871 int err; 6872 6873 /* This is used to refine r0 return value bounds for helpers 6874 * that enforce this value as an upper bound on return values. 6875 * See do_refine_retval_range() for helpers that can refine 6876 * the return value. C type of helper is u32 so we pull register 6877 * bound from umax_value however, if negative verifier errors 6878 * out. Only upper bounds can be learned because retval is an 6879 * int type and negative retvals are allowed. 6880 */ 6881 meta->msize_max_value = reg->umax_value; 6882 6883 /* The register is SCALAR_VALUE; the access check 6884 * happens using its boundaries. 6885 */ 6886 if (!tnum_is_const(reg->var_off)) 6887 /* For unprivileged variable accesses, disable raw 6888 * mode so that the program is required to 6889 * initialize all the memory that the helper could 6890 * just partially fill up. 6891 */ 6892 meta = NULL; 6893 6894 if (reg->smin_value < 0) { 6895 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6896 regno); 6897 return -EACCES; 6898 } 6899 6900 if (reg->umin_value == 0) { 6901 err = check_helper_mem_access(env, regno - 1, 0, 6902 zero_size_allowed, 6903 meta); 6904 if (err) 6905 return err; 6906 } 6907 6908 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6909 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6910 regno); 6911 return -EACCES; 6912 } 6913 err = check_helper_mem_access(env, regno - 1, 6914 reg->umax_value, 6915 zero_size_allowed, meta); 6916 if (!err) 6917 err = mark_chain_precision(env, regno); 6918 return err; 6919 } 6920 6921 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6922 u32 regno, u32 mem_size) 6923 { 6924 bool may_be_null = type_may_be_null(reg->type); 6925 struct bpf_reg_state saved_reg; 6926 struct bpf_call_arg_meta meta; 6927 int err; 6928 6929 if (register_is_null(reg)) 6930 return 0; 6931 6932 memset(&meta, 0, sizeof(meta)); 6933 /* Assuming that the register contains a value check if the memory 6934 * access is safe. Temporarily save and restore the register's state as 6935 * the conversion shouldn't be visible to a caller. 6936 */ 6937 if (may_be_null) { 6938 saved_reg = *reg; 6939 mark_ptr_not_null_reg(reg); 6940 } 6941 6942 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6943 /* Check access for BPF_WRITE */ 6944 meta.raw_mode = true; 6945 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6946 6947 if (may_be_null) 6948 *reg = saved_reg; 6949 6950 return err; 6951 } 6952 6953 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6954 u32 regno) 6955 { 6956 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6957 bool may_be_null = type_may_be_null(mem_reg->type); 6958 struct bpf_reg_state saved_reg; 6959 struct bpf_call_arg_meta meta; 6960 int err; 6961 6962 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6963 6964 memset(&meta, 0, sizeof(meta)); 6965 6966 if (may_be_null) { 6967 saved_reg = *mem_reg; 6968 mark_ptr_not_null_reg(mem_reg); 6969 } 6970 6971 err = check_mem_size_reg(env, reg, regno, true, &meta); 6972 /* Check access for BPF_WRITE */ 6973 meta.raw_mode = true; 6974 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6975 6976 if (may_be_null) 6977 *mem_reg = saved_reg; 6978 return err; 6979 } 6980 6981 /* Implementation details: 6982 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6983 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6984 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6985 * Two separate bpf_obj_new will also have different reg->id. 6986 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6987 * clears reg->id after value_or_null->value transition, since the verifier only 6988 * cares about the range of access to valid map value pointer and doesn't care 6989 * about actual address of the map element. 6990 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6991 * reg->id > 0 after value_or_null->value transition. By doing so 6992 * two bpf_map_lookups will be considered two different pointers that 6993 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6994 * returned from bpf_obj_new. 6995 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6996 * dead-locks. 6997 * Since only one bpf_spin_lock is allowed the checks are simpler than 6998 * reg_is_refcounted() logic. The verifier needs to remember only 6999 * one spin_lock instead of array of acquired_refs. 7000 * cur_state->active_lock remembers which map value element or allocated 7001 * object got locked and clears it after bpf_spin_unlock. 7002 */ 7003 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7004 bool is_lock) 7005 { 7006 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7007 struct bpf_verifier_state *cur = env->cur_state; 7008 bool is_const = tnum_is_const(reg->var_off); 7009 u64 val = reg->var_off.value; 7010 struct bpf_map *map = NULL; 7011 struct btf *btf = NULL; 7012 struct btf_record *rec; 7013 7014 if (!is_const) { 7015 verbose(env, 7016 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7017 regno); 7018 return -EINVAL; 7019 } 7020 if (reg->type == PTR_TO_MAP_VALUE) { 7021 map = reg->map_ptr; 7022 if (!map->btf) { 7023 verbose(env, 7024 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7025 map->name); 7026 return -EINVAL; 7027 } 7028 } else { 7029 btf = reg->btf; 7030 } 7031 7032 rec = reg_btf_record(reg); 7033 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7034 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7035 map ? map->name : "kptr"); 7036 return -EINVAL; 7037 } 7038 if (rec->spin_lock_off != val + reg->off) { 7039 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7040 val + reg->off, rec->spin_lock_off); 7041 return -EINVAL; 7042 } 7043 if (is_lock) { 7044 if (cur->active_lock.ptr) { 7045 verbose(env, 7046 "Locking two bpf_spin_locks are not allowed\n"); 7047 return -EINVAL; 7048 } 7049 if (map) 7050 cur->active_lock.ptr = map; 7051 else 7052 cur->active_lock.ptr = btf; 7053 cur->active_lock.id = reg->id; 7054 } else { 7055 void *ptr; 7056 7057 if (map) 7058 ptr = map; 7059 else 7060 ptr = btf; 7061 7062 if (!cur->active_lock.ptr) { 7063 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7064 return -EINVAL; 7065 } 7066 if (cur->active_lock.ptr != ptr || 7067 cur->active_lock.id != reg->id) { 7068 verbose(env, "bpf_spin_unlock of different lock\n"); 7069 return -EINVAL; 7070 } 7071 7072 invalidate_non_owning_refs(env); 7073 7074 cur->active_lock.ptr = NULL; 7075 cur->active_lock.id = 0; 7076 } 7077 return 0; 7078 } 7079 7080 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7081 struct bpf_call_arg_meta *meta) 7082 { 7083 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7084 bool is_const = tnum_is_const(reg->var_off); 7085 struct bpf_map *map = reg->map_ptr; 7086 u64 val = reg->var_off.value; 7087 7088 if (!is_const) { 7089 verbose(env, 7090 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7091 regno); 7092 return -EINVAL; 7093 } 7094 if (!map->btf) { 7095 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7096 map->name); 7097 return -EINVAL; 7098 } 7099 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7100 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7101 return -EINVAL; 7102 } 7103 if (map->record->timer_off != val + reg->off) { 7104 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7105 val + reg->off, map->record->timer_off); 7106 return -EINVAL; 7107 } 7108 if (meta->map_ptr) { 7109 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7110 return -EFAULT; 7111 } 7112 meta->map_uid = reg->map_uid; 7113 meta->map_ptr = map; 7114 return 0; 7115 } 7116 7117 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7118 struct bpf_call_arg_meta *meta) 7119 { 7120 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7121 struct bpf_map *map_ptr = reg->map_ptr; 7122 struct btf_field *kptr_field; 7123 u32 kptr_off; 7124 7125 if (!tnum_is_const(reg->var_off)) { 7126 verbose(env, 7127 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7128 regno); 7129 return -EINVAL; 7130 } 7131 if (!map_ptr->btf) { 7132 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7133 map_ptr->name); 7134 return -EINVAL; 7135 } 7136 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7137 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7138 return -EINVAL; 7139 } 7140 7141 meta->map_ptr = map_ptr; 7142 kptr_off = reg->off + reg->var_off.value; 7143 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7144 if (!kptr_field) { 7145 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7146 return -EACCES; 7147 } 7148 if (kptr_field->type != BPF_KPTR_REF) { 7149 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7150 return -EACCES; 7151 } 7152 meta->kptr_field = kptr_field; 7153 return 0; 7154 } 7155 7156 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7157 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7158 * 7159 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7160 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7161 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7162 * 7163 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7164 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7165 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7166 * mutate the view of the dynptr and also possibly destroy it. In the latter 7167 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7168 * memory that dynptr points to. 7169 * 7170 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7171 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7172 * readonly dynptr view yet, hence only the first case is tracked and checked. 7173 * 7174 * This is consistent with how C applies the const modifier to a struct object, 7175 * where the pointer itself inside bpf_dynptr becomes const but not what it 7176 * points to. 7177 * 7178 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7179 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7180 */ 7181 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7182 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7183 { 7184 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7185 int err; 7186 7187 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7188 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7189 */ 7190 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7191 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7192 return -EFAULT; 7193 } 7194 7195 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7196 * constructing a mutable bpf_dynptr object. 7197 * 7198 * Currently, this is only possible with PTR_TO_STACK 7199 * pointing to a region of at least 16 bytes which doesn't 7200 * contain an existing bpf_dynptr. 7201 * 7202 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7203 * mutated or destroyed. However, the memory it points to 7204 * may be mutated. 7205 * 7206 * None - Points to a initialized dynptr that can be mutated and 7207 * destroyed, including mutation of the memory it points 7208 * to. 7209 */ 7210 if (arg_type & MEM_UNINIT) { 7211 int i; 7212 7213 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7214 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7215 return -EINVAL; 7216 } 7217 7218 /* we write BPF_DW bits (8 bytes) at a time */ 7219 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7220 err = check_mem_access(env, insn_idx, regno, 7221 i, BPF_DW, BPF_WRITE, -1, false); 7222 if (err) 7223 return err; 7224 } 7225 7226 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7227 } else /* MEM_RDONLY and None case from above */ { 7228 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7229 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7230 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7231 return -EINVAL; 7232 } 7233 7234 if (!is_dynptr_reg_valid_init(env, reg)) { 7235 verbose(env, 7236 "Expected an initialized dynptr as arg #%d\n", 7237 regno); 7238 return -EINVAL; 7239 } 7240 7241 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7242 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7243 verbose(env, 7244 "Expected a dynptr of type %s as arg #%d\n", 7245 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7246 return -EINVAL; 7247 } 7248 7249 err = mark_dynptr_read(env, reg); 7250 } 7251 return err; 7252 } 7253 7254 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7255 { 7256 struct bpf_func_state *state = func(env, reg); 7257 7258 return state->stack[spi].spilled_ptr.ref_obj_id; 7259 } 7260 7261 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7262 { 7263 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7264 } 7265 7266 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7267 { 7268 return meta->kfunc_flags & KF_ITER_NEW; 7269 } 7270 7271 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7272 { 7273 return meta->kfunc_flags & KF_ITER_NEXT; 7274 } 7275 7276 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7277 { 7278 return meta->kfunc_flags & KF_ITER_DESTROY; 7279 } 7280 7281 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7282 { 7283 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7284 * kfunc is iter state pointer 7285 */ 7286 return arg == 0 && is_iter_kfunc(meta); 7287 } 7288 7289 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7290 struct bpf_kfunc_call_arg_meta *meta) 7291 { 7292 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7293 const struct btf_type *t; 7294 const struct btf_param *arg; 7295 int spi, err, i, nr_slots; 7296 u32 btf_id; 7297 7298 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7299 arg = &btf_params(meta->func_proto)[0]; 7300 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7301 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7302 nr_slots = t->size / BPF_REG_SIZE; 7303 7304 if (is_iter_new_kfunc(meta)) { 7305 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7306 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7307 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7308 iter_type_str(meta->btf, btf_id), regno); 7309 return -EINVAL; 7310 } 7311 7312 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7313 err = check_mem_access(env, insn_idx, regno, 7314 i, BPF_DW, BPF_WRITE, -1, false); 7315 if (err) 7316 return err; 7317 } 7318 7319 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7320 if (err) 7321 return err; 7322 } else { 7323 /* iter_next() or iter_destroy() expect initialized iter state*/ 7324 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7325 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7326 iter_type_str(meta->btf, btf_id), regno); 7327 return -EINVAL; 7328 } 7329 7330 spi = iter_get_spi(env, reg, nr_slots); 7331 if (spi < 0) 7332 return spi; 7333 7334 err = mark_iter_read(env, reg, spi, nr_slots); 7335 if (err) 7336 return err; 7337 7338 /* remember meta->iter info for process_iter_next_call() */ 7339 meta->iter.spi = spi; 7340 meta->iter.frameno = reg->frameno; 7341 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7342 7343 if (is_iter_destroy_kfunc(meta)) { 7344 err = unmark_stack_slots_iter(env, reg, nr_slots); 7345 if (err) 7346 return err; 7347 } 7348 } 7349 7350 return 0; 7351 } 7352 7353 /* process_iter_next_call() is called when verifier gets to iterator's next 7354 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7355 * to it as just "iter_next()" in comments below. 7356 * 7357 * BPF verifier relies on a crucial contract for any iter_next() 7358 * implementation: it should *eventually* return NULL, and once that happens 7359 * it should keep returning NULL. That is, once iterator exhausts elements to 7360 * iterate, it should never reset or spuriously return new elements. 7361 * 7362 * With the assumption of such contract, process_iter_next_call() simulates 7363 * a fork in the verifier state to validate loop logic correctness and safety 7364 * without having to simulate infinite amount of iterations. 7365 * 7366 * In current state, we first assume that iter_next() returned NULL and 7367 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7368 * conditions we should not form an infinite loop and should eventually reach 7369 * exit. 7370 * 7371 * Besides that, we also fork current state and enqueue it for later 7372 * verification. In a forked state we keep iterator state as ACTIVE 7373 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7374 * also bump iteration depth to prevent erroneous infinite loop detection 7375 * later on (see iter_active_depths_differ() comment for details). In this 7376 * state we assume that we'll eventually loop back to another iter_next() 7377 * calls (it could be in exactly same location or in some other instruction, 7378 * it doesn't matter, we don't make any unnecessary assumptions about this, 7379 * everything revolves around iterator state in a stack slot, not which 7380 * instruction is calling iter_next()). When that happens, we either will come 7381 * to iter_next() with equivalent state and can conclude that next iteration 7382 * will proceed in exactly the same way as we just verified, so it's safe to 7383 * assume that loop converges. If not, we'll go on another iteration 7384 * simulation with a different input state, until all possible starting states 7385 * are validated or we reach maximum number of instructions limit. 7386 * 7387 * This way, we will either exhaustively discover all possible input states 7388 * that iterator loop can start with and eventually will converge, or we'll 7389 * effectively regress into bounded loop simulation logic and either reach 7390 * maximum number of instructions if loop is not provably convergent, or there 7391 * is some statically known limit on number of iterations (e.g., if there is 7392 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7393 * 7394 * One very subtle but very important aspect is that we *always* simulate NULL 7395 * condition first (as the current state) before we simulate non-NULL case. 7396 * This has to do with intricacies of scalar precision tracking. By simulating 7397 * "exit condition" of iter_next() returning NULL first, we make sure all the 7398 * relevant precision marks *that will be set **after** we exit iterator loop* 7399 * are propagated backwards to common parent state of NULL and non-NULL 7400 * branches. Thanks to that, state equivalence checks done later in forked 7401 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7402 * precision marks are finalized and won't change. Because simulating another 7403 * ACTIVE iterator iteration won't change them (because given same input 7404 * states we'll end up with exactly same output states which we are currently 7405 * comparing; and verification after the loop already propagated back what 7406 * needs to be **additionally** tracked as precise). It's subtle, grok 7407 * precision tracking for more intuitive understanding. 7408 */ 7409 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7410 struct bpf_kfunc_call_arg_meta *meta) 7411 { 7412 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7413 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7414 struct bpf_reg_state *cur_iter, *queued_iter; 7415 int iter_frameno = meta->iter.frameno; 7416 int iter_spi = meta->iter.spi; 7417 7418 BTF_TYPE_EMIT(struct bpf_iter); 7419 7420 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7421 7422 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7423 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7424 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7425 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7426 return -EFAULT; 7427 } 7428 7429 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7430 /* branch out active iter state */ 7431 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7432 if (!queued_st) 7433 return -ENOMEM; 7434 7435 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7436 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7437 queued_iter->iter.depth++; 7438 7439 queued_fr = queued_st->frame[queued_st->curframe]; 7440 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7441 } 7442 7443 /* switch to DRAINED state, but keep the depth unchanged */ 7444 /* mark current iter state as drained and assume returned NULL */ 7445 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7446 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7447 7448 return 0; 7449 } 7450 7451 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7452 { 7453 return type == ARG_CONST_SIZE || 7454 type == ARG_CONST_SIZE_OR_ZERO; 7455 } 7456 7457 static bool arg_type_is_release(enum bpf_arg_type type) 7458 { 7459 return type & OBJ_RELEASE; 7460 } 7461 7462 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7463 { 7464 return base_type(type) == ARG_PTR_TO_DYNPTR; 7465 } 7466 7467 static int int_ptr_type_to_size(enum bpf_arg_type type) 7468 { 7469 if (type == ARG_PTR_TO_INT) 7470 return sizeof(u32); 7471 else if (type == ARG_PTR_TO_LONG) 7472 return sizeof(u64); 7473 7474 return -EINVAL; 7475 } 7476 7477 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7478 const struct bpf_call_arg_meta *meta, 7479 enum bpf_arg_type *arg_type) 7480 { 7481 if (!meta->map_ptr) { 7482 /* kernel subsystem misconfigured verifier */ 7483 verbose(env, "invalid map_ptr to access map->type\n"); 7484 return -EACCES; 7485 } 7486 7487 switch (meta->map_ptr->map_type) { 7488 case BPF_MAP_TYPE_SOCKMAP: 7489 case BPF_MAP_TYPE_SOCKHASH: 7490 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7491 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7492 } else { 7493 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7494 return -EINVAL; 7495 } 7496 break; 7497 case BPF_MAP_TYPE_BLOOM_FILTER: 7498 if (meta->func_id == BPF_FUNC_map_peek_elem) 7499 *arg_type = ARG_PTR_TO_MAP_VALUE; 7500 break; 7501 default: 7502 break; 7503 } 7504 return 0; 7505 } 7506 7507 struct bpf_reg_types { 7508 const enum bpf_reg_type types[10]; 7509 u32 *btf_id; 7510 }; 7511 7512 static const struct bpf_reg_types sock_types = { 7513 .types = { 7514 PTR_TO_SOCK_COMMON, 7515 PTR_TO_SOCKET, 7516 PTR_TO_TCP_SOCK, 7517 PTR_TO_XDP_SOCK, 7518 }, 7519 }; 7520 7521 #ifdef CONFIG_NET 7522 static const struct bpf_reg_types btf_id_sock_common_types = { 7523 .types = { 7524 PTR_TO_SOCK_COMMON, 7525 PTR_TO_SOCKET, 7526 PTR_TO_TCP_SOCK, 7527 PTR_TO_XDP_SOCK, 7528 PTR_TO_BTF_ID, 7529 PTR_TO_BTF_ID | PTR_TRUSTED, 7530 }, 7531 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7532 }; 7533 #endif 7534 7535 static const struct bpf_reg_types mem_types = { 7536 .types = { 7537 PTR_TO_STACK, 7538 PTR_TO_PACKET, 7539 PTR_TO_PACKET_META, 7540 PTR_TO_MAP_KEY, 7541 PTR_TO_MAP_VALUE, 7542 PTR_TO_MEM, 7543 PTR_TO_MEM | MEM_RINGBUF, 7544 PTR_TO_BUF, 7545 PTR_TO_BTF_ID | PTR_TRUSTED, 7546 }, 7547 }; 7548 7549 static const struct bpf_reg_types int_ptr_types = { 7550 .types = { 7551 PTR_TO_STACK, 7552 PTR_TO_PACKET, 7553 PTR_TO_PACKET_META, 7554 PTR_TO_MAP_KEY, 7555 PTR_TO_MAP_VALUE, 7556 }, 7557 }; 7558 7559 static const struct bpf_reg_types spin_lock_types = { 7560 .types = { 7561 PTR_TO_MAP_VALUE, 7562 PTR_TO_BTF_ID | MEM_ALLOC, 7563 } 7564 }; 7565 7566 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7567 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7568 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7569 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7570 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7571 static const struct bpf_reg_types btf_ptr_types = { 7572 .types = { 7573 PTR_TO_BTF_ID, 7574 PTR_TO_BTF_ID | PTR_TRUSTED, 7575 PTR_TO_BTF_ID | MEM_RCU, 7576 }, 7577 }; 7578 static const struct bpf_reg_types percpu_btf_ptr_types = { 7579 .types = { 7580 PTR_TO_BTF_ID | MEM_PERCPU, 7581 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7582 } 7583 }; 7584 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7585 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7586 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7587 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7588 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7589 static const struct bpf_reg_types dynptr_types = { 7590 .types = { 7591 PTR_TO_STACK, 7592 CONST_PTR_TO_DYNPTR, 7593 } 7594 }; 7595 7596 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7597 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7598 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7599 [ARG_CONST_SIZE] = &scalar_types, 7600 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7601 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7602 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7603 [ARG_PTR_TO_CTX] = &context_types, 7604 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7605 #ifdef CONFIG_NET 7606 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7607 #endif 7608 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7609 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7610 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7611 [ARG_PTR_TO_MEM] = &mem_types, 7612 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7613 [ARG_PTR_TO_INT] = &int_ptr_types, 7614 [ARG_PTR_TO_LONG] = &int_ptr_types, 7615 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7616 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7617 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7618 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7619 [ARG_PTR_TO_TIMER] = &timer_types, 7620 [ARG_PTR_TO_KPTR] = &kptr_types, 7621 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7622 }; 7623 7624 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7625 enum bpf_arg_type arg_type, 7626 const u32 *arg_btf_id, 7627 struct bpf_call_arg_meta *meta) 7628 { 7629 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7630 enum bpf_reg_type expected, type = reg->type; 7631 const struct bpf_reg_types *compatible; 7632 int i, j; 7633 7634 compatible = compatible_reg_types[base_type(arg_type)]; 7635 if (!compatible) { 7636 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7637 return -EFAULT; 7638 } 7639 7640 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7641 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7642 * 7643 * Same for MAYBE_NULL: 7644 * 7645 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7646 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7647 * 7648 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7649 * 7650 * Therefore we fold these flags depending on the arg_type before comparison. 7651 */ 7652 if (arg_type & MEM_RDONLY) 7653 type &= ~MEM_RDONLY; 7654 if (arg_type & PTR_MAYBE_NULL) 7655 type &= ~PTR_MAYBE_NULL; 7656 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7657 type &= ~DYNPTR_TYPE_FLAG_MASK; 7658 7659 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7660 type &= ~MEM_ALLOC; 7661 7662 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7663 expected = compatible->types[i]; 7664 if (expected == NOT_INIT) 7665 break; 7666 7667 if (type == expected) 7668 goto found; 7669 } 7670 7671 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7672 for (j = 0; j + 1 < i; j++) 7673 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7674 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7675 return -EACCES; 7676 7677 found: 7678 if (base_type(reg->type) != PTR_TO_BTF_ID) 7679 return 0; 7680 7681 if (compatible == &mem_types) { 7682 if (!(arg_type & MEM_RDONLY)) { 7683 verbose(env, 7684 "%s() may write into memory pointed by R%d type=%s\n", 7685 func_id_name(meta->func_id), 7686 regno, reg_type_str(env, reg->type)); 7687 return -EACCES; 7688 } 7689 return 0; 7690 } 7691 7692 switch ((int)reg->type) { 7693 case PTR_TO_BTF_ID: 7694 case PTR_TO_BTF_ID | PTR_TRUSTED: 7695 case PTR_TO_BTF_ID | MEM_RCU: 7696 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7697 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7698 { 7699 /* For bpf_sk_release, it needs to match against first member 7700 * 'struct sock_common', hence make an exception for it. This 7701 * allows bpf_sk_release to work for multiple socket types. 7702 */ 7703 bool strict_type_match = arg_type_is_release(arg_type) && 7704 meta->func_id != BPF_FUNC_sk_release; 7705 7706 if (type_may_be_null(reg->type) && 7707 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7708 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7709 return -EACCES; 7710 } 7711 7712 if (!arg_btf_id) { 7713 if (!compatible->btf_id) { 7714 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7715 return -EFAULT; 7716 } 7717 arg_btf_id = compatible->btf_id; 7718 } 7719 7720 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7721 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7722 return -EACCES; 7723 } else { 7724 if (arg_btf_id == BPF_PTR_POISON) { 7725 verbose(env, "verifier internal error:"); 7726 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7727 regno); 7728 return -EACCES; 7729 } 7730 7731 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7732 btf_vmlinux, *arg_btf_id, 7733 strict_type_match)) { 7734 verbose(env, "R%d is of type %s but %s is expected\n", 7735 regno, btf_type_name(reg->btf, reg->btf_id), 7736 btf_type_name(btf_vmlinux, *arg_btf_id)); 7737 return -EACCES; 7738 } 7739 } 7740 break; 7741 } 7742 case PTR_TO_BTF_ID | MEM_ALLOC: 7743 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7744 meta->func_id != BPF_FUNC_kptr_xchg) { 7745 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7746 return -EFAULT; 7747 } 7748 /* Handled by helper specific checks */ 7749 break; 7750 case PTR_TO_BTF_ID | MEM_PERCPU: 7751 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7752 /* Handled by helper specific checks */ 7753 break; 7754 default: 7755 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7756 return -EFAULT; 7757 } 7758 return 0; 7759 } 7760 7761 static struct btf_field * 7762 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7763 { 7764 struct btf_field *field; 7765 struct btf_record *rec; 7766 7767 rec = reg_btf_record(reg); 7768 if (!rec) 7769 return NULL; 7770 7771 field = btf_record_find(rec, off, fields); 7772 if (!field) 7773 return NULL; 7774 7775 return field; 7776 } 7777 7778 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7779 const struct bpf_reg_state *reg, int regno, 7780 enum bpf_arg_type arg_type) 7781 { 7782 u32 type = reg->type; 7783 7784 /* When referenced register is passed to release function, its fixed 7785 * offset must be 0. 7786 * 7787 * We will check arg_type_is_release reg has ref_obj_id when storing 7788 * meta->release_regno. 7789 */ 7790 if (arg_type_is_release(arg_type)) { 7791 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7792 * may not directly point to the object being released, but to 7793 * dynptr pointing to such object, which might be at some offset 7794 * on the stack. In that case, we simply to fallback to the 7795 * default handling. 7796 */ 7797 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7798 return 0; 7799 7800 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7801 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7802 return __check_ptr_off_reg(env, reg, regno, true); 7803 7804 verbose(env, "R%d must have zero offset when passed to release func\n", 7805 regno); 7806 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7807 btf_type_name(reg->btf, reg->btf_id), reg->off); 7808 return -EINVAL; 7809 } 7810 7811 /* Doing check_ptr_off_reg check for the offset will catch this 7812 * because fixed_off_ok is false, but checking here allows us 7813 * to give the user a better error message. 7814 */ 7815 if (reg->off) { 7816 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7817 regno); 7818 return -EINVAL; 7819 } 7820 return __check_ptr_off_reg(env, reg, regno, false); 7821 } 7822 7823 switch (type) { 7824 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7825 case PTR_TO_STACK: 7826 case PTR_TO_PACKET: 7827 case PTR_TO_PACKET_META: 7828 case PTR_TO_MAP_KEY: 7829 case PTR_TO_MAP_VALUE: 7830 case PTR_TO_MEM: 7831 case PTR_TO_MEM | MEM_RDONLY: 7832 case PTR_TO_MEM | MEM_RINGBUF: 7833 case PTR_TO_BUF: 7834 case PTR_TO_BUF | MEM_RDONLY: 7835 case SCALAR_VALUE: 7836 return 0; 7837 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 7838 * fixed offset. 7839 */ 7840 case PTR_TO_BTF_ID: 7841 case PTR_TO_BTF_ID | MEM_ALLOC: 7842 case PTR_TO_BTF_ID | PTR_TRUSTED: 7843 case PTR_TO_BTF_ID | MEM_RCU: 7844 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 7845 /* When referenced PTR_TO_BTF_ID is passed to release function, 7846 * its fixed offset must be 0. In the other cases, fixed offset 7847 * can be non-zero. This was already checked above. So pass 7848 * fixed_off_ok as true to allow fixed offset for all other 7849 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 7850 * still need to do checks instead of returning. 7851 */ 7852 return __check_ptr_off_reg(env, reg, regno, true); 7853 default: 7854 return __check_ptr_off_reg(env, reg, regno, false); 7855 } 7856 } 7857 7858 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 7859 const struct bpf_func_proto *fn, 7860 struct bpf_reg_state *regs) 7861 { 7862 struct bpf_reg_state *state = NULL; 7863 int i; 7864 7865 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 7866 if (arg_type_is_dynptr(fn->arg_type[i])) { 7867 if (state) { 7868 verbose(env, "verifier internal error: multiple dynptr args\n"); 7869 return NULL; 7870 } 7871 state = ®s[BPF_REG_1 + i]; 7872 } 7873 7874 if (!state) 7875 verbose(env, "verifier internal error: no dynptr arg found\n"); 7876 7877 return state; 7878 } 7879 7880 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7881 { 7882 struct bpf_func_state *state = func(env, reg); 7883 int spi; 7884 7885 if (reg->type == CONST_PTR_TO_DYNPTR) 7886 return reg->id; 7887 spi = dynptr_get_spi(env, reg); 7888 if (spi < 0) 7889 return spi; 7890 return state->stack[spi].spilled_ptr.id; 7891 } 7892 7893 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7894 { 7895 struct bpf_func_state *state = func(env, reg); 7896 int spi; 7897 7898 if (reg->type == CONST_PTR_TO_DYNPTR) 7899 return reg->ref_obj_id; 7900 spi = dynptr_get_spi(env, reg); 7901 if (spi < 0) 7902 return spi; 7903 return state->stack[spi].spilled_ptr.ref_obj_id; 7904 } 7905 7906 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 7907 struct bpf_reg_state *reg) 7908 { 7909 struct bpf_func_state *state = func(env, reg); 7910 int spi; 7911 7912 if (reg->type == CONST_PTR_TO_DYNPTR) 7913 return reg->dynptr.type; 7914 7915 spi = __get_spi(reg->off); 7916 if (spi < 0) { 7917 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 7918 return BPF_DYNPTR_TYPE_INVALID; 7919 } 7920 7921 return state->stack[spi].spilled_ptr.dynptr.type; 7922 } 7923 7924 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 7925 struct bpf_call_arg_meta *meta, 7926 const struct bpf_func_proto *fn, 7927 int insn_idx) 7928 { 7929 u32 regno = BPF_REG_1 + arg; 7930 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7931 enum bpf_arg_type arg_type = fn->arg_type[arg]; 7932 enum bpf_reg_type type = reg->type; 7933 u32 *arg_btf_id = NULL; 7934 int err = 0; 7935 7936 if (arg_type == ARG_DONTCARE) 7937 return 0; 7938 7939 err = check_reg_arg(env, regno, SRC_OP); 7940 if (err) 7941 return err; 7942 7943 if (arg_type == ARG_ANYTHING) { 7944 if (is_pointer_value(env, regno)) { 7945 verbose(env, "R%d leaks addr into helper function\n", 7946 regno); 7947 return -EACCES; 7948 } 7949 return 0; 7950 } 7951 7952 if (type_is_pkt_pointer(type) && 7953 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 7954 verbose(env, "helper access to the packet is not allowed\n"); 7955 return -EACCES; 7956 } 7957 7958 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 7959 err = resolve_map_arg_type(env, meta, &arg_type); 7960 if (err) 7961 return err; 7962 } 7963 7964 if (register_is_null(reg) && type_may_be_null(arg_type)) 7965 /* A NULL register has a SCALAR_VALUE type, so skip 7966 * type checking. 7967 */ 7968 goto skip_type_check; 7969 7970 /* arg_btf_id and arg_size are in a union. */ 7971 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7972 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7973 arg_btf_id = fn->arg_btf_id[arg]; 7974 7975 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7976 if (err) 7977 return err; 7978 7979 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7980 if (err) 7981 return err; 7982 7983 skip_type_check: 7984 if (arg_type_is_release(arg_type)) { 7985 if (arg_type_is_dynptr(arg_type)) { 7986 struct bpf_func_state *state = func(env, reg); 7987 int spi; 7988 7989 /* Only dynptr created on stack can be released, thus 7990 * the get_spi and stack state checks for spilled_ptr 7991 * should only be done before process_dynptr_func for 7992 * PTR_TO_STACK. 7993 */ 7994 if (reg->type == PTR_TO_STACK) { 7995 spi = dynptr_get_spi(env, reg); 7996 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 7997 verbose(env, "arg %d is an unacquired reference\n", regno); 7998 return -EINVAL; 7999 } 8000 } else { 8001 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8002 return -EINVAL; 8003 } 8004 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8005 verbose(env, "R%d must be referenced when passed to release function\n", 8006 regno); 8007 return -EINVAL; 8008 } 8009 if (meta->release_regno) { 8010 verbose(env, "verifier internal error: more than one release argument\n"); 8011 return -EFAULT; 8012 } 8013 meta->release_regno = regno; 8014 } 8015 8016 if (reg->ref_obj_id) { 8017 if (meta->ref_obj_id) { 8018 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8019 regno, reg->ref_obj_id, 8020 meta->ref_obj_id); 8021 return -EFAULT; 8022 } 8023 meta->ref_obj_id = reg->ref_obj_id; 8024 } 8025 8026 switch (base_type(arg_type)) { 8027 case ARG_CONST_MAP_PTR: 8028 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8029 if (meta->map_ptr) { 8030 /* Use map_uid (which is unique id of inner map) to reject: 8031 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8032 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8033 * if (inner_map1 && inner_map2) { 8034 * timer = bpf_map_lookup_elem(inner_map1); 8035 * if (timer) 8036 * // mismatch would have been allowed 8037 * bpf_timer_init(timer, inner_map2); 8038 * } 8039 * 8040 * Comparing map_ptr is enough to distinguish normal and outer maps. 8041 */ 8042 if (meta->map_ptr != reg->map_ptr || 8043 meta->map_uid != reg->map_uid) { 8044 verbose(env, 8045 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8046 meta->map_uid, reg->map_uid); 8047 return -EINVAL; 8048 } 8049 } 8050 meta->map_ptr = reg->map_ptr; 8051 meta->map_uid = reg->map_uid; 8052 break; 8053 case ARG_PTR_TO_MAP_KEY: 8054 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8055 * check that [key, key + map->key_size) are within 8056 * stack limits and initialized 8057 */ 8058 if (!meta->map_ptr) { 8059 /* in function declaration map_ptr must come before 8060 * map_key, so that it's verified and known before 8061 * we have to check map_key here. Otherwise it means 8062 * that kernel subsystem misconfigured verifier 8063 */ 8064 verbose(env, "invalid map_ptr to access map->key\n"); 8065 return -EACCES; 8066 } 8067 err = check_helper_mem_access(env, regno, 8068 meta->map_ptr->key_size, false, 8069 NULL); 8070 break; 8071 case ARG_PTR_TO_MAP_VALUE: 8072 if (type_may_be_null(arg_type) && register_is_null(reg)) 8073 return 0; 8074 8075 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8076 * check [value, value + map->value_size) validity 8077 */ 8078 if (!meta->map_ptr) { 8079 /* kernel subsystem misconfigured verifier */ 8080 verbose(env, "invalid map_ptr to access map->value\n"); 8081 return -EACCES; 8082 } 8083 meta->raw_mode = arg_type & MEM_UNINIT; 8084 err = check_helper_mem_access(env, regno, 8085 meta->map_ptr->value_size, false, 8086 meta); 8087 break; 8088 case ARG_PTR_TO_PERCPU_BTF_ID: 8089 if (!reg->btf_id) { 8090 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8091 return -EACCES; 8092 } 8093 meta->ret_btf = reg->btf; 8094 meta->ret_btf_id = reg->btf_id; 8095 break; 8096 case ARG_PTR_TO_SPIN_LOCK: 8097 if (in_rbtree_lock_required_cb(env)) { 8098 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8099 return -EACCES; 8100 } 8101 if (meta->func_id == BPF_FUNC_spin_lock) { 8102 err = process_spin_lock(env, regno, true); 8103 if (err) 8104 return err; 8105 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8106 err = process_spin_lock(env, regno, false); 8107 if (err) 8108 return err; 8109 } else { 8110 verbose(env, "verifier internal error\n"); 8111 return -EFAULT; 8112 } 8113 break; 8114 case ARG_PTR_TO_TIMER: 8115 err = process_timer_func(env, regno, meta); 8116 if (err) 8117 return err; 8118 break; 8119 case ARG_PTR_TO_FUNC: 8120 meta->subprogno = reg->subprogno; 8121 break; 8122 case ARG_PTR_TO_MEM: 8123 /* The access to this pointer is only checked when we hit the 8124 * next is_mem_size argument below. 8125 */ 8126 meta->raw_mode = arg_type & MEM_UNINIT; 8127 if (arg_type & MEM_FIXED_SIZE) { 8128 err = check_helper_mem_access(env, regno, 8129 fn->arg_size[arg], false, 8130 meta); 8131 } 8132 break; 8133 case ARG_CONST_SIZE: 8134 err = check_mem_size_reg(env, reg, regno, false, meta); 8135 break; 8136 case ARG_CONST_SIZE_OR_ZERO: 8137 err = check_mem_size_reg(env, reg, regno, true, meta); 8138 break; 8139 case ARG_PTR_TO_DYNPTR: 8140 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8141 if (err) 8142 return err; 8143 break; 8144 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8145 if (!tnum_is_const(reg->var_off)) { 8146 verbose(env, "R%d is not a known constant'\n", 8147 regno); 8148 return -EACCES; 8149 } 8150 meta->mem_size = reg->var_off.value; 8151 err = mark_chain_precision(env, regno); 8152 if (err) 8153 return err; 8154 break; 8155 case ARG_PTR_TO_INT: 8156 case ARG_PTR_TO_LONG: 8157 { 8158 int size = int_ptr_type_to_size(arg_type); 8159 8160 err = check_helper_mem_access(env, regno, size, false, meta); 8161 if (err) 8162 return err; 8163 err = check_ptr_alignment(env, reg, 0, size, true); 8164 break; 8165 } 8166 case ARG_PTR_TO_CONST_STR: 8167 { 8168 struct bpf_map *map = reg->map_ptr; 8169 int map_off; 8170 u64 map_addr; 8171 char *str_ptr; 8172 8173 if (!bpf_map_is_rdonly(map)) { 8174 verbose(env, "R%d does not point to a readonly map'\n", regno); 8175 return -EACCES; 8176 } 8177 8178 if (!tnum_is_const(reg->var_off)) { 8179 verbose(env, "R%d is not a constant address'\n", regno); 8180 return -EACCES; 8181 } 8182 8183 if (!map->ops->map_direct_value_addr) { 8184 verbose(env, "no direct value access support for this map type\n"); 8185 return -EACCES; 8186 } 8187 8188 err = check_map_access(env, regno, reg->off, 8189 map->value_size - reg->off, false, 8190 ACCESS_HELPER); 8191 if (err) 8192 return err; 8193 8194 map_off = reg->off + reg->var_off.value; 8195 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8196 if (err) { 8197 verbose(env, "direct value access on string failed\n"); 8198 return err; 8199 } 8200 8201 str_ptr = (char *)(long)(map_addr); 8202 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8203 verbose(env, "string is not zero-terminated\n"); 8204 return -EINVAL; 8205 } 8206 break; 8207 } 8208 case ARG_PTR_TO_KPTR: 8209 err = process_kptr_func(env, regno, meta); 8210 if (err) 8211 return err; 8212 break; 8213 } 8214 8215 return err; 8216 } 8217 8218 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8219 { 8220 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8221 enum bpf_prog_type type = resolve_prog_type(env->prog); 8222 8223 if (func_id != BPF_FUNC_map_update_elem) 8224 return false; 8225 8226 /* It's not possible to get access to a locked struct sock in these 8227 * contexts, so updating is safe. 8228 */ 8229 switch (type) { 8230 case BPF_PROG_TYPE_TRACING: 8231 if (eatype == BPF_TRACE_ITER) 8232 return true; 8233 break; 8234 case BPF_PROG_TYPE_SOCKET_FILTER: 8235 case BPF_PROG_TYPE_SCHED_CLS: 8236 case BPF_PROG_TYPE_SCHED_ACT: 8237 case BPF_PROG_TYPE_XDP: 8238 case BPF_PROG_TYPE_SK_REUSEPORT: 8239 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8240 case BPF_PROG_TYPE_SK_LOOKUP: 8241 return true; 8242 default: 8243 break; 8244 } 8245 8246 verbose(env, "cannot update sockmap in this context\n"); 8247 return false; 8248 } 8249 8250 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8251 { 8252 return env->prog->jit_requested && 8253 bpf_jit_supports_subprog_tailcalls(); 8254 } 8255 8256 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8257 struct bpf_map *map, int func_id) 8258 { 8259 if (!map) 8260 return 0; 8261 8262 /* We need a two way check, first is from map perspective ... */ 8263 switch (map->map_type) { 8264 case BPF_MAP_TYPE_PROG_ARRAY: 8265 if (func_id != BPF_FUNC_tail_call) 8266 goto error; 8267 break; 8268 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8269 if (func_id != BPF_FUNC_perf_event_read && 8270 func_id != BPF_FUNC_perf_event_output && 8271 func_id != BPF_FUNC_skb_output && 8272 func_id != BPF_FUNC_perf_event_read_value && 8273 func_id != BPF_FUNC_xdp_output) 8274 goto error; 8275 break; 8276 case BPF_MAP_TYPE_RINGBUF: 8277 if (func_id != BPF_FUNC_ringbuf_output && 8278 func_id != BPF_FUNC_ringbuf_reserve && 8279 func_id != BPF_FUNC_ringbuf_query && 8280 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8281 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8282 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8283 goto error; 8284 break; 8285 case BPF_MAP_TYPE_USER_RINGBUF: 8286 if (func_id != BPF_FUNC_user_ringbuf_drain) 8287 goto error; 8288 break; 8289 case BPF_MAP_TYPE_STACK_TRACE: 8290 if (func_id != BPF_FUNC_get_stackid) 8291 goto error; 8292 break; 8293 case BPF_MAP_TYPE_CGROUP_ARRAY: 8294 if (func_id != BPF_FUNC_skb_under_cgroup && 8295 func_id != BPF_FUNC_current_task_under_cgroup) 8296 goto error; 8297 break; 8298 case BPF_MAP_TYPE_CGROUP_STORAGE: 8299 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8300 if (func_id != BPF_FUNC_get_local_storage) 8301 goto error; 8302 break; 8303 case BPF_MAP_TYPE_DEVMAP: 8304 case BPF_MAP_TYPE_DEVMAP_HASH: 8305 if (func_id != BPF_FUNC_redirect_map && 8306 func_id != BPF_FUNC_map_lookup_elem) 8307 goto error; 8308 break; 8309 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8310 * appear. 8311 */ 8312 case BPF_MAP_TYPE_CPUMAP: 8313 if (func_id != BPF_FUNC_redirect_map) 8314 goto error; 8315 break; 8316 case BPF_MAP_TYPE_XSKMAP: 8317 if (func_id != BPF_FUNC_redirect_map && 8318 func_id != BPF_FUNC_map_lookup_elem) 8319 goto error; 8320 break; 8321 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8322 case BPF_MAP_TYPE_HASH_OF_MAPS: 8323 if (func_id != BPF_FUNC_map_lookup_elem) 8324 goto error; 8325 break; 8326 case BPF_MAP_TYPE_SOCKMAP: 8327 if (func_id != BPF_FUNC_sk_redirect_map && 8328 func_id != BPF_FUNC_sock_map_update && 8329 func_id != BPF_FUNC_map_delete_elem && 8330 func_id != BPF_FUNC_msg_redirect_map && 8331 func_id != BPF_FUNC_sk_select_reuseport && 8332 func_id != BPF_FUNC_map_lookup_elem && 8333 !may_update_sockmap(env, func_id)) 8334 goto error; 8335 break; 8336 case BPF_MAP_TYPE_SOCKHASH: 8337 if (func_id != BPF_FUNC_sk_redirect_hash && 8338 func_id != BPF_FUNC_sock_hash_update && 8339 func_id != BPF_FUNC_map_delete_elem && 8340 func_id != BPF_FUNC_msg_redirect_hash && 8341 func_id != BPF_FUNC_sk_select_reuseport && 8342 func_id != BPF_FUNC_map_lookup_elem && 8343 !may_update_sockmap(env, func_id)) 8344 goto error; 8345 break; 8346 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8347 if (func_id != BPF_FUNC_sk_select_reuseport) 8348 goto error; 8349 break; 8350 case BPF_MAP_TYPE_QUEUE: 8351 case BPF_MAP_TYPE_STACK: 8352 if (func_id != BPF_FUNC_map_peek_elem && 8353 func_id != BPF_FUNC_map_pop_elem && 8354 func_id != BPF_FUNC_map_push_elem) 8355 goto error; 8356 break; 8357 case BPF_MAP_TYPE_SK_STORAGE: 8358 if (func_id != BPF_FUNC_sk_storage_get && 8359 func_id != BPF_FUNC_sk_storage_delete && 8360 func_id != BPF_FUNC_kptr_xchg) 8361 goto error; 8362 break; 8363 case BPF_MAP_TYPE_INODE_STORAGE: 8364 if (func_id != BPF_FUNC_inode_storage_get && 8365 func_id != BPF_FUNC_inode_storage_delete && 8366 func_id != BPF_FUNC_kptr_xchg) 8367 goto error; 8368 break; 8369 case BPF_MAP_TYPE_TASK_STORAGE: 8370 if (func_id != BPF_FUNC_task_storage_get && 8371 func_id != BPF_FUNC_task_storage_delete && 8372 func_id != BPF_FUNC_kptr_xchg) 8373 goto error; 8374 break; 8375 case BPF_MAP_TYPE_CGRP_STORAGE: 8376 if (func_id != BPF_FUNC_cgrp_storage_get && 8377 func_id != BPF_FUNC_cgrp_storage_delete && 8378 func_id != BPF_FUNC_kptr_xchg) 8379 goto error; 8380 break; 8381 case BPF_MAP_TYPE_BLOOM_FILTER: 8382 if (func_id != BPF_FUNC_map_peek_elem && 8383 func_id != BPF_FUNC_map_push_elem) 8384 goto error; 8385 break; 8386 default: 8387 break; 8388 } 8389 8390 /* ... and second from the function itself. */ 8391 switch (func_id) { 8392 case BPF_FUNC_tail_call: 8393 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8394 goto error; 8395 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8396 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8397 return -EINVAL; 8398 } 8399 break; 8400 case BPF_FUNC_perf_event_read: 8401 case BPF_FUNC_perf_event_output: 8402 case BPF_FUNC_perf_event_read_value: 8403 case BPF_FUNC_skb_output: 8404 case BPF_FUNC_xdp_output: 8405 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8406 goto error; 8407 break; 8408 case BPF_FUNC_ringbuf_output: 8409 case BPF_FUNC_ringbuf_reserve: 8410 case BPF_FUNC_ringbuf_query: 8411 case BPF_FUNC_ringbuf_reserve_dynptr: 8412 case BPF_FUNC_ringbuf_submit_dynptr: 8413 case BPF_FUNC_ringbuf_discard_dynptr: 8414 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8415 goto error; 8416 break; 8417 case BPF_FUNC_user_ringbuf_drain: 8418 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8419 goto error; 8420 break; 8421 case BPF_FUNC_get_stackid: 8422 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8423 goto error; 8424 break; 8425 case BPF_FUNC_current_task_under_cgroup: 8426 case BPF_FUNC_skb_under_cgroup: 8427 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8428 goto error; 8429 break; 8430 case BPF_FUNC_redirect_map: 8431 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8432 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8433 map->map_type != BPF_MAP_TYPE_CPUMAP && 8434 map->map_type != BPF_MAP_TYPE_XSKMAP) 8435 goto error; 8436 break; 8437 case BPF_FUNC_sk_redirect_map: 8438 case BPF_FUNC_msg_redirect_map: 8439 case BPF_FUNC_sock_map_update: 8440 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8441 goto error; 8442 break; 8443 case BPF_FUNC_sk_redirect_hash: 8444 case BPF_FUNC_msg_redirect_hash: 8445 case BPF_FUNC_sock_hash_update: 8446 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8447 goto error; 8448 break; 8449 case BPF_FUNC_get_local_storage: 8450 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8451 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8452 goto error; 8453 break; 8454 case BPF_FUNC_sk_select_reuseport: 8455 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8456 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8457 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8458 goto error; 8459 break; 8460 case BPF_FUNC_map_pop_elem: 8461 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8462 map->map_type != BPF_MAP_TYPE_STACK) 8463 goto error; 8464 break; 8465 case BPF_FUNC_map_peek_elem: 8466 case BPF_FUNC_map_push_elem: 8467 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8468 map->map_type != BPF_MAP_TYPE_STACK && 8469 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8470 goto error; 8471 break; 8472 case BPF_FUNC_map_lookup_percpu_elem: 8473 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8474 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8475 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8476 goto error; 8477 break; 8478 case BPF_FUNC_sk_storage_get: 8479 case BPF_FUNC_sk_storage_delete: 8480 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8481 goto error; 8482 break; 8483 case BPF_FUNC_inode_storage_get: 8484 case BPF_FUNC_inode_storage_delete: 8485 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8486 goto error; 8487 break; 8488 case BPF_FUNC_task_storage_get: 8489 case BPF_FUNC_task_storage_delete: 8490 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8491 goto error; 8492 break; 8493 case BPF_FUNC_cgrp_storage_get: 8494 case BPF_FUNC_cgrp_storage_delete: 8495 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8496 goto error; 8497 break; 8498 default: 8499 break; 8500 } 8501 8502 return 0; 8503 error: 8504 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8505 map->map_type, func_id_name(func_id), func_id); 8506 return -EINVAL; 8507 } 8508 8509 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8510 { 8511 int count = 0; 8512 8513 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8514 count++; 8515 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8516 count++; 8517 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8518 count++; 8519 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8520 count++; 8521 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8522 count++; 8523 8524 /* We only support one arg being in raw mode at the moment, 8525 * which is sufficient for the helper functions we have 8526 * right now. 8527 */ 8528 return count <= 1; 8529 } 8530 8531 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8532 { 8533 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8534 bool has_size = fn->arg_size[arg] != 0; 8535 bool is_next_size = false; 8536 8537 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8538 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8539 8540 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8541 return is_next_size; 8542 8543 return has_size == is_next_size || is_next_size == is_fixed; 8544 } 8545 8546 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8547 { 8548 /* bpf_xxx(..., buf, len) call will access 'len' 8549 * bytes from memory 'buf'. Both arg types need 8550 * to be paired, so make sure there's no buggy 8551 * helper function specification. 8552 */ 8553 if (arg_type_is_mem_size(fn->arg1_type) || 8554 check_args_pair_invalid(fn, 0) || 8555 check_args_pair_invalid(fn, 1) || 8556 check_args_pair_invalid(fn, 2) || 8557 check_args_pair_invalid(fn, 3) || 8558 check_args_pair_invalid(fn, 4)) 8559 return false; 8560 8561 return true; 8562 } 8563 8564 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8565 { 8566 int i; 8567 8568 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8569 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8570 return !!fn->arg_btf_id[i]; 8571 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8572 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8573 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8574 /* arg_btf_id and arg_size are in a union. */ 8575 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8576 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8577 return false; 8578 } 8579 8580 return true; 8581 } 8582 8583 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8584 { 8585 return check_raw_mode_ok(fn) && 8586 check_arg_pair_ok(fn) && 8587 check_btf_id_ok(fn) ? 0 : -EINVAL; 8588 } 8589 8590 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8591 * are now invalid, so turn them into unknown SCALAR_VALUE. 8592 * 8593 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8594 * since these slices point to packet data. 8595 */ 8596 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8597 { 8598 struct bpf_func_state *state; 8599 struct bpf_reg_state *reg; 8600 8601 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8602 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8603 mark_reg_invalid(env, reg); 8604 })); 8605 } 8606 8607 enum { 8608 AT_PKT_END = -1, 8609 BEYOND_PKT_END = -2, 8610 }; 8611 8612 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8613 { 8614 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8615 struct bpf_reg_state *reg = &state->regs[regn]; 8616 8617 if (reg->type != PTR_TO_PACKET) 8618 /* PTR_TO_PACKET_META is not supported yet */ 8619 return; 8620 8621 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8622 * How far beyond pkt_end it goes is unknown. 8623 * if (!range_open) it's the case of pkt >= pkt_end 8624 * if (range_open) it's the case of pkt > pkt_end 8625 * hence this pointer is at least 1 byte bigger than pkt_end 8626 */ 8627 if (range_open) 8628 reg->range = BEYOND_PKT_END; 8629 else 8630 reg->range = AT_PKT_END; 8631 } 8632 8633 /* The pointer with the specified id has released its reference to kernel 8634 * resources. Identify all copies of the same pointer and clear the reference. 8635 */ 8636 static int release_reference(struct bpf_verifier_env *env, 8637 int ref_obj_id) 8638 { 8639 struct bpf_func_state *state; 8640 struct bpf_reg_state *reg; 8641 int err; 8642 8643 err = release_reference_state(cur_func(env), ref_obj_id); 8644 if (err) 8645 return err; 8646 8647 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8648 if (reg->ref_obj_id == ref_obj_id) 8649 mark_reg_invalid(env, reg); 8650 })); 8651 8652 return 0; 8653 } 8654 8655 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8656 { 8657 struct bpf_func_state *unused; 8658 struct bpf_reg_state *reg; 8659 8660 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8661 if (type_is_non_owning_ref(reg->type)) 8662 mark_reg_invalid(env, reg); 8663 })); 8664 } 8665 8666 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8667 struct bpf_reg_state *regs) 8668 { 8669 int i; 8670 8671 /* after the call registers r0 - r5 were scratched */ 8672 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8673 mark_reg_not_init(env, regs, caller_saved[i]); 8674 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8675 } 8676 } 8677 8678 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8679 struct bpf_func_state *caller, 8680 struct bpf_func_state *callee, 8681 int insn_idx); 8682 8683 static int set_callee_state(struct bpf_verifier_env *env, 8684 struct bpf_func_state *caller, 8685 struct bpf_func_state *callee, int insn_idx); 8686 8687 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8688 int *insn_idx, int subprog, 8689 set_callee_state_fn set_callee_state_cb) 8690 { 8691 struct bpf_verifier_state *state = env->cur_state; 8692 struct bpf_func_state *caller, *callee; 8693 int err; 8694 8695 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8696 verbose(env, "the call stack of %d frames is too deep\n", 8697 state->curframe + 2); 8698 return -E2BIG; 8699 } 8700 8701 caller = state->frame[state->curframe]; 8702 if (state->frame[state->curframe + 1]) { 8703 verbose(env, "verifier bug. Frame %d already allocated\n", 8704 state->curframe + 1); 8705 return -EFAULT; 8706 } 8707 8708 err = btf_check_subprog_call(env, subprog, caller->regs); 8709 if (err == -EFAULT) 8710 return err; 8711 if (subprog_is_global(env, subprog)) { 8712 if (err) { 8713 verbose(env, "Caller passes invalid args into func#%d\n", 8714 subprog); 8715 return err; 8716 } else { 8717 if (env->log.level & BPF_LOG_LEVEL) 8718 verbose(env, 8719 "Func#%d is global and valid. Skipping.\n", 8720 subprog); 8721 clear_caller_saved_regs(env, caller->regs); 8722 8723 /* All global functions return a 64-bit SCALAR_VALUE */ 8724 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8725 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8726 8727 /* continue with next insn after call */ 8728 return 0; 8729 } 8730 } 8731 8732 /* set_callee_state is used for direct subprog calls, but we are 8733 * interested in validating only BPF helpers that can call subprogs as 8734 * callbacks 8735 */ 8736 if (set_callee_state_cb != set_callee_state) { 8737 if (bpf_pseudo_kfunc_call(insn) && 8738 !is_callback_calling_kfunc(insn->imm)) { 8739 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8740 func_id_name(insn->imm), insn->imm); 8741 return -EFAULT; 8742 } else if (!bpf_pseudo_kfunc_call(insn) && 8743 !is_callback_calling_function(insn->imm)) { /* helper */ 8744 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8745 func_id_name(insn->imm), insn->imm); 8746 return -EFAULT; 8747 } 8748 } 8749 8750 if (insn->code == (BPF_JMP | BPF_CALL) && 8751 insn->src_reg == 0 && 8752 insn->imm == BPF_FUNC_timer_set_callback) { 8753 struct bpf_verifier_state *async_cb; 8754 8755 /* there is no real recursion here. timer callbacks are async */ 8756 env->subprog_info[subprog].is_async_cb = true; 8757 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8758 *insn_idx, subprog); 8759 if (!async_cb) 8760 return -EFAULT; 8761 callee = async_cb->frame[0]; 8762 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8763 8764 /* Convert bpf_timer_set_callback() args into timer callback args */ 8765 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8766 if (err) 8767 return err; 8768 8769 clear_caller_saved_regs(env, caller->regs); 8770 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8771 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8772 /* continue with next insn after call */ 8773 return 0; 8774 } 8775 8776 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8777 if (!callee) 8778 return -ENOMEM; 8779 state->frame[state->curframe + 1] = callee; 8780 8781 /* callee cannot access r0, r6 - r9 for reading and has to write 8782 * into its own stack before reading from it. 8783 * callee can read/write into caller's stack 8784 */ 8785 init_func_state(env, callee, 8786 /* remember the callsite, it will be used by bpf_exit */ 8787 *insn_idx /* callsite */, 8788 state->curframe + 1 /* frameno within this callchain */, 8789 subprog /* subprog number within this prog */); 8790 8791 /* Transfer references to the callee */ 8792 err = copy_reference_state(callee, caller); 8793 if (err) 8794 goto err_out; 8795 8796 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8797 if (err) 8798 goto err_out; 8799 8800 clear_caller_saved_regs(env, caller->regs); 8801 8802 /* only increment it after check_reg_arg() finished */ 8803 state->curframe++; 8804 8805 /* and go analyze first insn of the callee */ 8806 *insn_idx = env->subprog_info[subprog].start - 1; 8807 8808 if (env->log.level & BPF_LOG_LEVEL) { 8809 verbose(env, "caller:\n"); 8810 print_verifier_state(env, caller, true); 8811 verbose(env, "callee:\n"); 8812 print_verifier_state(env, callee, true); 8813 } 8814 return 0; 8815 8816 err_out: 8817 free_func_state(callee); 8818 state->frame[state->curframe + 1] = NULL; 8819 return err; 8820 } 8821 8822 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8823 struct bpf_func_state *caller, 8824 struct bpf_func_state *callee) 8825 { 8826 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8827 * void *callback_ctx, u64 flags); 8828 * callback_fn(struct bpf_map *map, void *key, void *value, 8829 * void *callback_ctx); 8830 */ 8831 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8832 8833 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8834 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8835 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8836 8837 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8838 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8839 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8840 8841 /* pointer to stack or null */ 8842 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 8843 8844 /* unused */ 8845 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8846 return 0; 8847 } 8848 8849 static int set_callee_state(struct bpf_verifier_env *env, 8850 struct bpf_func_state *caller, 8851 struct bpf_func_state *callee, int insn_idx) 8852 { 8853 int i; 8854 8855 /* copy r1 - r5 args that callee can access. The copy includes parent 8856 * pointers, which connects us up to the liveness chain 8857 */ 8858 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 8859 callee->regs[i] = caller->regs[i]; 8860 return 0; 8861 } 8862 8863 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8864 int *insn_idx) 8865 { 8866 int subprog, target_insn; 8867 8868 target_insn = *insn_idx + insn->imm + 1; 8869 subprog = find_subprog(env, target_insn); 8870 if (subprog < 0) { 8871 verbose(env, "verifier bug. No program starts at insn %d\n", 8872 target_insn); 8873 return -EFAULT; 8874 } 8875 8876 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 8877 } 8878 8879 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 8880 struct bpf_func_state *caller, 8881 struct bpf_func_state *callee, 8882 int insn_idx) 8883 { 8884 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 8885 struct bpf_map *map; 8886 int err; 8887 8888 if (bpf_map_ptr_poisoned(insn_aux)) { 8889 verbose(env, "tail_call abusing map_ptr\n"); 8890 return -EINVAL; 8891 } 8892 8893 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 8894 if (!map->ops->map_set_for_each_callback_args || 8895 !map->ops->map_for_each_callback) { 8896 verbose(env, "callback function not allowed for map\n"); 8897 return -ENOTSUPP; 8898 } 8899 8900 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 8901 if (err) 8902 return err; 8903 8904 callee->in_callback_fn = true; 8905 callee->callback_ret_range = tnum_range(0, 1); 8906 return 0; 8907 } 8908 8909 static int set_loop_callback_state(struct bpf_verifier_env *env, 8910 struct bpf_func_state *caller, 8911 struct bpf_func_state *callee, 8912 int insn_idx) 8913 { 8914 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 8915 * u64 flags); 8916 * callback_fn(u32 index, void *callback_ctx); 8917 */ 8918 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 8919 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8920 8921 /* unused */ 8922 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8923 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8924 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8925 8926 callee->in_callback_fn = true; 8927 callee->callback_ret_range = tnum_range(0, 1); 8928 return 0; 8929 } 8930 8931 static int set_timer_callback_state(struct bpf_verifier_env *env, 8932 struct bpf_func_state *caller, 8933 struct bpf_func_state *callee, 8934 int insn_idx) 8935 { 8936 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 8937 8938 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 8939 * callback_fn(struct bpf_map *map, void *key, void *value); 8940 */ 8941 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 8942 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 8943 callee->regs[BPF_REG_1].map_ptr = map_ptr; 8944 8945 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8946 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8947 callee->regs[BPF_REG_2].map_ptr = map_ptr; 8948 8949 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8950 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8951 callee->regs[BPF_REG_3].map_ptr = map_ptr; 8952 8953 /* unused */ 8954 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8955 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8956 callee->in_async_callback_fn = true; 8957 callee->callback_ret_range = tnum_range(0, 1); 8958 return 0; 8959 } 8960 8961 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 8962 struct bpf_func_state *caller, 8963 struct bpf_func_state *callee, 8964 int insn_idx) 8965 { 8966 /* bpf_find_vma(struct task_struct *task, u64 addr, 8967 * void *callback_fn, void *callback_ctx, u64 flags) 8968 * (callback_fn)(struct task_struct *task, 8969 * struct vm_area_struct *vma, void *callback_ctx); 8970 */ 8971 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8972 8973 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8974 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8975 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8976 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8977 8978 /* pointer to stack or null */ 8979 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8980 8981 /* unused */ 8982 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8983 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8984 callee->in_callback_fn = true; 8985 callee->callback_ret_range = tnum_range(0, 1); 8986 return 0; 8987 } 8988 8989 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 8990 struct bpf_func_state *caller, 8991 struct bpf_func_state *callee, 8992 int insn_idx) 8993 { 8994 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 8995 * callback_ctx, u64 flags); 8996 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 8997 */ 8998 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 8999 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9000 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9001 9002 /* unused */ 9003 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9004 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9005 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9006 9007 callee->in_callback_fn = true; 9008 callee->callback_ret_range = tnum_range(0, 1); 9009 return 0; 9010 } 9011 9012 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9013 struct bpf_func_state *caller, 9014 struct bpf_func_state *callee, 9015 int insn_idx) 9016 { 9017 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9018 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9019 * 9020 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9021 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9022 * by this point, so look at 'root' 9023 */ 9024 struct btf_field *field; 9025 9026 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9027 BPF_RB_ROOT); 9028 if (!field || !field->graph_root.value_btf_id) 9029 return -EFAULT; 9030 9031 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9032 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9033 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9034 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9035 9036 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9037 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9038 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9039 callee->in_callback_fn = true; 9040 callee->callback_ret_range = tnum_range(0, 1); 9041 return 0; 9042 } 9043 9044 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9045 9046 /* Are we currently verifying the callback for a rbtree helper that must 9047 * be called with lock held? If so, no need to complain about unreleased 9048 * lock 9049 */ 9050 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9051 { 9052 struct bpf_verifier_state *state = env->cur_state; 9053 struct bpf_insn *insn = env->prog->insnsi; 9054 struct bpf_func_state *callee; 9055 int kfunc_btf_id; 9056 9057 if (!state->curframe) 9058 return false; 9059 9060 callee = state->frame[state->curframe]; 9061 9062 if (!callee->in_callback_fn) 9063 return false; 9064 9065 kfunc_btf_id = insn[callee->callsite].imm; 9066 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9067 } 9068 9069 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9070 { 9071 struct bpf_verifier_state *state = env->cur_state; 9072 struct bpf_func_state *caller, *callee; 9073 struct bpf_reg_state *r0; 9074 int err; 9075 9076 callee = state->frame[state->curframe]; 9077 r0 = &callee->regs[BPF_REG_0]; 9078 if (r0->type == PTR_TO_STACK) { 9079 /* technically it's ok to return caller's stack pointer 9080 * (or caller's caller's pointer) back to the caller, 9081 * since these pointers are valid. Only current stack 9082 * pointer will be invalid as soon as function exits, 9083 * but let's be conservative 9084 */ 9085 verbose(env, "cannot return stack pointer to the caller\n"); 9086 return -EINVAL; 9087 } 9088 9089 caller = state->frame[state->curframe - 1]; 9090 if (callee->in_callback_fn) { 9091 /* enforce R0 return value range [0, 1]. */ 9092 struct tnum range = callee->callback_ret_range; 9093 9094 if (r0->type != SCALAR_VALUE) { 9095 verbose(env, "R0 not a scalar value\n"); 9096 return -EACCES; 9097 } 9098 if (!tnum_in(range, r0->var_off)) { 9099 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9100 return -EINVAL; 9101 } 9102 } else { 9103 /* return to the caller whatever r0 had in the callee */ 9104 caller->regs[BPF_REG_0] = *r0; 9105 } 9106 9107 /* callback_fn frame should have released its own additions to parent's 9108 * reference state at this point, or check_reference_leak would 9109 * complain, hence it must be the same as the caller. There is no need 9110 * to copy it back. 9111 */ 9112 if (!callee->in_callback_fn) { 9113 /* Transfer references to the caller */ 9114 err = copy_reference_state(caller, callee); 9115 if (err) 9116 return err; 9117 } 9118 9119 *insn_idx = callee->callsite + 1; 9120 if (env->log.level & BPF_LOG_LEVEL) { 9121 verbose(env, "returning from callee:\n"); 9122 print_verifier_state(env, callee, true); 9123 verbose(env, "to caller at %d:\n", *insn_idx); 9124 print_verifier_state(env, caller, true); 9125 } 9126 /* clear everything in the callee */ 9127 free_func_state(callee); 9128 state->frame[state->curframe--] = NULL; 9129 return 0; 9130 } 9131 9132 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9133 int func_id, 9134 struct bpf_call_arg_meta *meta) 9135 { 9136 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9137 9138 if (ret_type != RET_INTEGER || 9139 (func_id != BPF_FUNC_get_stack && 9140 func_id != BPF_FUNC_get_task_stack && 9141 func_id != BPF_FUNC_probe_read_str && 9142 func_id != BPF_FUNC_probe_read_kernel_str && 9143 func_id != BPF_FUNC_probe_read_user_str)) 9144 return; 9145 9146 ret_reg->smax_value = meta->msize_max_value; 9147 ret_reg->s32_max_value = meta->msize_max_value; 9148 ret_reg->smin_value = -MAX_ERRNO; 9149 ret_reg->s32_min_value = -MAX_ERRNO; 9150 reg_bounds_sync(ret_reg); 9151 } 9152 9153 static int 9154 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9155 int func_id, int insn_idx) 9156 { 9157 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9158 struct bpf_map *map = meta->map_ptr; 9159 9160 if (func_id != BPF_FUNC_tail_call && 9161 func_id != BPF_FUNC_map_lookup_elem && 9162 func_id != BPF_FUNC_map_update_elem && 9163 func_id != BPF_FUNC_map_delete_elem && 9164 func_id != BPF_FUNC_map_push_elem && 9165 func_id != BPF_FUNC_map_pop_elem && 9166 func_id != BPF_FUNC_map_peek_elem && 9167 func_id != BPF_FUNC_for_each_map_elem && 9168 func_id != BPF_FUNC_redirect_map && 9169 func_id != BPF_FUNC_map_lookup_percpu_elem) 9170 return 0; 9171 9172 if (map == NULL) { 9173 verbose(env, "kernel subsystem misconfigured verifier\n"); 9174 return -EINVAL; 9175 } 9176 9177 /* In case of read-only, some additional restrictions 9178 * need to be applied in order to prevent altering the 9179 * state of the map from program side. 9180 */ 9181 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9182 (func_id == BPF_FUNC_map_delete_elem || 9183 func_id == BPF_FUNC_map_update_elem || 9184 func_id == BPF_FUNC_map_push_elem || 9185 func_id == BPF_FUNC_map_pop_elem)) { 9186 verbose(env, "write into map forbidden\n"); 9187 return -EACCES; 9188 } 9189 9190 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9191 bpf_map_ptr_store(aux, meta->map_ptr, 9192 !meta->map_ptr->bypass_spec_v1); 9193 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9194 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9195 !meta->map_ptr->bypass_spec_v1); 9196 return 0; 9197 } 9198 9199 static int 9200 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9201 int func_id, int insn_idx) 9202 { 9203 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9204 struct bpf_reg_state *regs = cur_regs(env), *reg; 9205 struct bpf_map *map = meta->map_ptr; 9206 u64 val, max; 9207 int err; 9208 9209 if (func_id != BPF_FUNC_tail_call) 9210 return 0; 9211 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9212 verbose(env, "kernel subsystem misconfigured verifier\n"); 9213 return -EINVAL; 9214 } 9215 9216 reg = ®s[BPF_REG_3]; 9217 val = reg->var_off.value; 9218 max = map->max_entries; 9219 9220 if (!(register_is_const(reg) && val < max)) { 9221 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9222 return 0; 9223 } 9224 9225 err = mark_chain_precision(env, BPF_REG_3); 9226 if (err) 9227 return err; 9228 if (bpf_map_key_unseen(aux)) 9229 bpf_map_key_store(aux, val); 9230 else if (!bpf_map_key_poisoned(aux) && 9231 bpf_map_key_immediate(aux) != val) 9232 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9233 return 0; 9234 } 9235 9236 static int check_reference_leak(struct bpf_verifier_env *env) 9237 { 9238 struct bpf_func_state *state = cur_func(env); 9239 bool refs_lingering = false; 9240 int i; 9241 9242 if (state->frameno && !state->in_callback_fn) 9243 return 0; 9244 9245 for (i = 0; i < state->acquired_refs; i++) { 9246 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9247 continue; 9248 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9249 state->refs[i].id, state->refs[i].insn_idx); 9250 refs_lingering = true; 9251 } 9252 return refs_lingering ? -EINVAL : 0; 9253 } 9254 9255 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9256 struct bpf_reg_state *regs) 9257 { 9258 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9259 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9260 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9261 struct bpf_bprintf_data data = {}; 9262 int err, fmt_map_off, num_args; 9263 u64 fmt_addr; 9264 char *fmt; 9265 9266 /* data must be an array of u64 */ 9267 if (data_len_reg->var_off.value % 8) 9268 return -EINVAL; 9269 num_args = data_len_reg->var_off.value / 8; 9270 9271 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9272 * and map_direct_value_addr is set. 9273 */ 9274 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9275 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9276 fmt_map_off); 9277 if (err) { 9278 verbose(env, "verifier bug\n"); 9279 return -EFAULT; 9280 } 9281 fmt = (char *)(long)fmt_addr + fmt_map_off; 9282 9283 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9284 * can focus on validating the format specifiers. 9285 */ 9286 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9287 if (err < 0) 9288 verbose(env, "Invalid format string\n"); 9289 9290 return err; 9291 } 9292 9293 static int check_get_func_ip(struct bpf_verifier_env *env) 9294 { 9295 enum bpf_prog_type type = resolve_prog_type(env->prog); 9296 int func_id = BPF_FUNC_get_func_ip; 9297 9298 if (type == BPF_PROG_TYPE_TRACING) { 9299 if (!bpf_prog_has_trampoline(env->prog)) { 9300 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9301 func_id_name(func_id), func_id); 9302 return -ENOTSUPP; 9303 } 9304 return 0; 9305 } else if (type == BPF_PROG_TYPE_KPROBE) { 9306 return 0; 9307 } 9308 9309 verbose(env, "func %s#%d not supported for program type %d\n", 9310 func_id_name(func_id), func_id, type); 9311 return -ENOTSUPP; 9312 } 9313 9314 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9315 { 9316 return &env->insn_aux_data[env->insn_idx]; 9317 } 9318 9319 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9320 { 9321 struct bpf_reg_state *regs = cur_regs(env); 9322 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9323 bool reg_is_null = register_is_null(reg); 9324 9325 if (reg_is_null) 9326 mark_chain_precision(env, BPF_REG_4); 9327 9328 return reg_is_null; 9329 } 9330 9331 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9332 { 9333 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9334 9335 if (!state->initialized) { 9336 state->initialized = 1; 9337 state->fit_for_inline = loop_flag_is_zero(env); 9338 state->callback_subprogno = subprogno; 9339 return; 9340 } 9341 9342 if (!state->fit_for_inline) 9343 return; 9344 9345 state->fit_for_inline = (loop_flag_is_zero(env) && 9346 state->callback_subprogno == subprogno); 9347 } 9348 9349 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9350 int *insn_idx_p) 9351 { 9352 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9353 const struct bpf_func_proto *fn = NULL; 9354 enum bpf_return_type ret_type; 9355 enum bpf_type_flag ret_flag; 9356 struct bpf_reg_state *regs; 9357 struct bpf_call_arg_meta meta; 9358 int insn_idx = *insn_idx_p; 9359 bool changes_data; 9360 int i, err, func_id; 9361 9362 /* find function prototype */ 9363 func_id = insn->imm; 9364 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9365 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9366 func_id); 9367 return -EINVAL; 9368 } 9369 9370 if (env->ops->get_func_proto) 9371 fn = env->ops->get_func_proto(func_id, env->prog); 9372 if (!fn) { 9373 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9374 func_id); 9375 return -EINVAL; 9376 } 9377 9378 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9379 if (!env->prog->gpl_compatible && fn->gpl_only) { 9380 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9381 return -EINVAL; 9382 } 9383 9384 if (fn->allowed && !fn->allowed(env->prog)) { 9385 verbose(env, "helper call is not allowed in probe\n"); 9386 return -EINVAL; 9387 } 9388 9389 if (!env->prog->aux->sleepable && fn->might_sleep) { 9390 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9391 return -EINVAL; 9392 } 9393 9394 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9395 changes_data = bpf_helper_changes_pkt_data(fn->func); 9396 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9397 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9398 func_id_name(func_id), func_id); 9399 return -EINVAL; 9400 } 9401 9402 memset(&meta, 0, sizeof(meta)); 9403 meta.pkt_access = fn->pkt_access; 9404 9405 err = check_func_proto(fn, func_id); 9406 if (err) { 9407 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9408 func_id_name(func_id), func_id); 9409 return err; 9410 } 9411 9412 if (env->cur_state->active_rcu_lock) { 9413 if (fn->might_sleep) { 9414 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9415 func_id_name(func_id), func_id); 9416 return -EINVAL; 9417 } 9418 9419 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9420 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9421 } 9422 9423 meta.func_id = func_id; 9424 /* check args */ 9425 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9426 err = check_func_arg(env, i, &meta, fn, insn_idx); 9427 if (err) 9428 return err; 9429 } 9430 9431 err = record_func_map(env, &meta, func_id, insn_idx); 9432 if (err) 9433 return err; 9434 9435 err = record_func_key(env, &meta, func_id, insn_idx); 9436 if (err) 9437 return err; 9438 9439 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9440 * is inferred from register state. 9441 */ 9442 for (i = 0; i < meta.access_size; i++) { 9443 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9444 BPF_WRITE, -1, false); 9445 if (err) 9446 return err; 9447 } 9448 9449 regs = cur_regs(env); 9450 9451 if (meta.release_regno) { 9452 err = -EINVAL; 9453 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9454 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9455 * is safe to do directly. 9456 */ 9457 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9458 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9459 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9460 return -EFAULT; 9461 } 9462 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9463 } else if (meta.ref_obj_id) { 9464 err = release_reference(env, meta.ref_obj_id); 9465 } else if (register_is_null(®s[meta.release_regno])) { 9466 /* meta.ref_obj_id can only be 0 if register that is meant to be 9467 * released is NULL, which must be > R0. 9468 */ 9469 err = 0; 9470 } 9471 if (err) { 9472 verbose(env, "func %s#%d reference has not been acquired before\n", 9473 func_id_name(func_id), func_id); 9474 return err; 9475 } 9476 } 9477 9478 switch (func_id) { 9479 case BPF_FUNC_tail_call: 9480 err = check_reference_leak(env); 9481 if (err) { 9482 verbose(env, "tail_call would lead to reference leak\n"); 9483 return err; 9484 } 9485 break; 9486 case BPF_FUNC_get_local_storage: 9487 /* check that flags argument in get_local_storage(map, flags) is 0, 9488 * this is required because get_local_storage() can't return an error. 9489 */ 9490 if (!register_is_null(®s[BPF_REG_2])) { 9491 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9492 return -EINVAL; 9493 } 9494 break; 9495 case BPF_FUNC_for_each_map_elem: 9496 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9497 set_map_elem_callback_state); 9498 break; 9499 case BPF_FUNC_timer_set_callback: 9500 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9501 set_timer_callback_state); 9502 break; 9503 case BPF_FUNC_find_vma: 9504 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9505 set_find_vma_callback_state); 9506 break; 9507 case BPF_FUNC_snprintf: 9508 err = check_bpf_snprintf_call(env, regs); 9509 break; 9510 case BPF_FUNC_loop: 9511 update_loop_inline_state(env, meta.subprogno); 9512 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9513 set_loop_callback_state); 9514 break; 9515 case BPF_FUNC_dynptr_from_mem: 9516 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9517 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9518 reg_type_str(env, regs[BPF_REG_1].type)); 9519 return -EACCES; 9520 } 9521 break; 9522 case BPF_FUNC_set_retval: 9523 if (prog_type == BPF_PROG_TYPE_LSM && 9524 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9525 if (!env->prog->aux->attach_func_proto->type) { 9526 /* Make sure programs that attach to void 9527 * hooks don't try to modify return value. 9528 */ 9529 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9530 return -EINVAL; 9531 } 9532 } 9533 break; 9534 case BPF_FUNC_dynptr_data: 9535 { 9536 struct bpf_reg_state *reg; 9537 int id, ref_obj_id; 9538 9539 reg = get_dynptr_arg_reg(env, fn, regs); 9540 if (!reg) 9541 return -EFAULT; 9542 9543 9544 if (meta.dynptr_id) { 9545 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9546 return -EFAULT; 9547 } 9548 if (meta.ref_obj_id) { 9549 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9550 return -EFAULT; 9551 } 9552 9553 id = dynptr_id(env, reg); 9554 if (id < 0) { 9555 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9556 return id; 9557 } 9558 9559 ref_obj_id = dynptr_ref_obj_id(env, reg); 9560 if (ref_obj_id < 0) { 9561 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9562 return ref_obj_id; 9563 } 9564 9565 meta.dynptr_id = id; 9566 meta.ref_obj_id = ref_obj_id; 9567 9568 break; 9569 } 9570 case BPF_FUNC_dynptr_write: 9571 { 9572 enum bpf_dynptr_type dynptr_type; 9573 struct bpf_reg_state *reg; 9574 9575 reg = get_dynptr_arg_reg(env, fn, regs); 9576 if (!reg) 9577 return -EFAULT; 9578 9579 dynptr_type = dynptr_get_type(env, reg); 9580 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9581 return -EFAULT; 9582 9583 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9584 /* this will trigger clear_all_pkt_pointers(), which will 9585 * invalidate all dynptr slices associated with the skb 9586 */ 9587 changes_data = true; 9588 9589 break; 9590 } 9591 case BPF_FUNC_user_ringbuf_drain: 9592 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9593 set_user_ringbuf_callback_state); 9594 break; 9595 } 9596 9597 if (err) 9598 return err; 9599 9600 /* reset caller saved regs */ 9601 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9602 mark_reg_not_init(env, regs, caller_saved[i]); 9603 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9604 } 9605 9606 /* helper call returns 64-bit value. */ 9607 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9608 9609 /* update return register (already marked as written above) */ 9610 ret_type = fn->ret_type; 9611 ret_flag = type_flag(ret_type); 9612 9613 switch (base_type(ret_type)) { 9614 case RET_INTEGER: 9615 /* sets type to SCALAR_VALUE */ 9616 mark_reg_unknown(env, regs, BPF_REG_0); 9617 break; 9618 case RET_VOID: 9619 regs[BPF_REG_0].type = NOT_INIT; 9620 break; 9621 case RET_PTR_TO_MAP_VALUE: 9622 /* There is no offset yet applied, variable or fixed */ 9623 mark_reg_known_zero(env, regs, BPF_REG_0); 9624 /* remember map_ptr, so that check_map_access() 9625 * can check 'value_size' boundary of memory access 9626 * to map element returned from bpf_map_lookup_elem() 9627 */ 9628 if (meta.map_ptr == NULL) { 9629 verbose(env, 9630 "kernel subsystem misconfigured verifier\n"); 9631 return -EINVAL; 9632 } 9633 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9634 regs[BPF_REG_0].map_uid = meta.map_uid; 9635 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9636 if (!type_may_be_null(ret_type) && 9637 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9638 regs[BPF_REG_0].id = ++env->id_gen; 9639 } 9640 break; 9641 case RET_PTR_TO_SOCKET: 9642 mark_reg_known_zero(env, regs, BPF_REG_0); 9643 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9644 break; 9645 case RET_PTR_TO_SOCK_COMMON: 9646 mark_reg_known_zero(env, regs, BPF_REG_0); 9647 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9648 break; 9649 case RET_PTR_TO_TCP_SOCK: 9650 mark_reg_known_zero(env, regs, BPF_REG_0); 9651 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9652 break; 9653 case RET_PTR_TO_MEM: 9654 mark_reg_known_zero(env, regs, BPF_REG_0); 9655 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9656 regs[BPF_REG_0].mem_size = meta.mem_size; 9657 break; 9658 case RET_PTR_TO_MEM_OR_BTF_ID: 9659 { 9660 const struct btf_type *t; 9661 9662 mark_reg_known_zero(env, regs, BPF_REG_0); 9663 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9664 if (!btf_type_is_struct(t)) { 9665 u32 tsize; 9666 const struct btf_type *ret; 9667 const char *tname; 9668 9669 /* resolve the type size of ksym. */ 9670 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9671 if (IS_ERR(ret)) { 9672 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9673 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9674 tname, PTR_ERR(ret)); 9675 return -EINVAL; 9676 } 9677 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9678 regs[BPF_REG_0].mem_size = tsize; 9679 } else { 9680 /* MEM_RDONLY may be carried from ret_flag, but it 9681 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9682 * it will confuse the check of PTR_TO_BTF_ID in 9683 * check_mem_access(). 9684 */ 9685 ret_flag &= ~MEM_RDONLY; 9686 9687 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9688 regs[BPF_REG_0].btf = meta.ret_btf; 9689 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9690 } 9691 break; 9692 } 9693 case RET_PTR_TO_BTF_ID: 9694 { 9695 struct btf *ret_btf; 9696 int ret_btf_id; 9697 9698 mark_reg_known_zero(env, regs, BPF_REG_0); 9699 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9700 if (func_id == BPF_FUNC_kptr_xchg) { 9701 ret_btf = meta.kptr_field->kptr.btf; 9702 ret_btf_id = meta.kptr_field->kptr.btf_id; 9703 if (!btf_is_kernel(ret_btf)) 9704 regs[BPF_REG_0].type |= MEM_ALLOC; 9705 } else { 9706 if (fn->ret_btf_id == BPF_PTR_POISON) { 9707 verbose(env, "verifier internal error:"); 9708 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9709 func_id_name(func_id)); 9710 return -EINVAL; 9711 } 9712 ret_btf = btf_vmlinux; 9713 ret_btf_id = *fn->ret_btf_id; 9714 } 9715 if (ret_btf_id == 0) { 9716 verbose(env, "invalid return type %u of func %s#%d\n", 9717 base_type(ret_type), func_id_name(func_id), 9718 func_id); 9719 return -EINVAL; 9720 } 9721 regs[BPF_REG_0].btf = ret_btf; 9722 regs[BPF_REG_0].btf_id = ret_btf_id; 9723 break; 9724 } 9725 default: 9726 verbose(env, "unknown return type %u of func %s#%d\n", 9727 base_type(ret_type), func_id_name(func_id), func_id); 9728 return -EINVAL; 9729 } 9730 9731 if (type_may_be_null(regs[BPF_REG_0].type)) 9732 regs[BPF_REG_0].id = ++env->id_gen; 9733 9734 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9735 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9736 func_id_name(func_id), func_id); 9737 return -EFAULT; 9738 } 9739 9740 if (is_dynptr_ref_function(func_id)) 9741 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9742 9743 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9744 /* For release_reference() */ 9745 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9746 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9747 int id = acquire_reference_state(env, insn_idx); 9748 9749 if (id < 0) 9750 return id; 9751 /* For mark_ptr_or_null_reg() */ 9752 regs[BPF_REG_0].id = id; 9753 /* For release_reference() */ 9754 regs[BPF_REG_0].ref_obj_id = id; 9755 } 9756 9757 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9758 9759 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9760 if (err) 9761 return err; 9762 9763 if ((func_id == BPF_FUNC_get_stack || 9764 func_id == BPF_FUNC_get_task_stack) && 9765 !env->prog->has_callchain_buf) { 9766 const char *err_str; 9767 9768 #ifdef CONFIG_PERF_EVENTS 9769 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9770 err_str = "cannot get callchain buffer for func %s#%d\n"; 9771 #else 9772 err = -ENOTSUPP; 9773 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9774 #endif 9775 if (err) { 9776 verbose(env, err_str, func_id_name(func_id), func_id); 9777 return err; 9778 } 9779 9780 env->prog->has_callchain_buf = true; 9781 } 9782 9783 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9784 env->prog->call_get_stack = true; 9785 9786 if (func_id == BPF_FUNC_get_func_ip) { 9787 if (check_get_func_ip(env)) 9788 return -ENOTSUPP; 9789 env->prog->call_get_func_ip = true; 9790 } 9791 9792 if (changes_data) 9793 clear_all_pkt_pointers(env); 9794 return 0; 9795 } 9796 9797 /* mark_btf_func_reg_size() is used when the reg size is determined by 9798 * the BTF func_proto's return value size and argument. 9799 */ 9800 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9801 size_t reg_size) 9802 { 9803 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9804 9805 if (regno == BPF_REG_0) { 9806 /* Function return value */ 9807 reg->live |= REG_LIVE_WRITTEN; 9808 reg->subreg_def = reg_size == sizeof(u64) ? 9809 DEF_NOT_SUBREG : env->insn_idx + 1; 9810 } else { 9811 /* Function argument */ 9812 if (reg_size == sizeof(u64)) { 9813 mark_insn_zext(env, reg); 9814 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9815 } else { 9816 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9817 } 9818 } 9819 } 9820 9821 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 9822 { 9823 return meta->kfunc_flags & KF_ACQUIRE; 9824 } 9825 9826 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 9827 { 9828 return meta->kfunc_flags & KF_RELEASE; 9829 } 9830 9831 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 9832 { 9833 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 9834 } 9835 9836 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 9837 { 9838 return meta->kfunc_flags & KF_SLEEPABLE; 9839 } 9840 9841 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 9842 { 9843 return meta->kfunc_flags & KF_DESTRUCTIVE; 9844 } 9845 9846 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 9847 { 9848 return meta->kfunc_flags & KF_RCU; 9849 } 9850 9851 static bool __kfunc_param_match_suffix(const struct btf *btf, 9852 const struct btf_param *arg, 9853 const char *suffix) 9854 { 9855 int suffix_len = strlen(suffix), len; 9856 const char *param_name; 9857 9858 /* In the future, this can be ported to use BTF tagging */ 9859 param_name = btf_name_by_offset(btf, arg->name_off); 9860 if (str_is_empty(param_name)) 9861 return false; 9862 len = strlen(param_name); 9863 if (len < suffix_len) 9864 return false; 9865 param_name += len - suffix_len; 9866 return !strncmp(param_name, suffix, suffix_len); 9867 } 9868 9869 static bool is_kfunc_arg_mem_size(const struct btf *btf, 9870 const struct btf_param *arg, 9871 const struct bpf_reg_state *reg) 9872 { 9873 const struct btf_type *t; 9874 9875 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9876 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9877 return false; 9878 9879 return __kfunc_param_match_suffix(btf, arg, "__sz"); 9880 } 9881 9882 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 9883 const struct btf_param *arg, 9884 const struct bpf_reg_state *reg) 9885 { 9886 const struct btf_type *t; 9887 9888 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9889 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9890 return false; 9891 9892 return __kfunc_param_match_suffix(btf, arg, "__szk"); 9893 } 9894 9895 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 9896 { 9897 return __kfunc_param_match_suffix(btf, arg, "__opt"); 9898 } 9899 9900 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 9901 { 9902 return __kfunc_param_match_suffix(btf, arg, "__k"); 9903 } 9904 9905 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 9906 { 9907 return __kfunc_param_match_suffix(btf, arg, "__ign"); 9908 } 9909 9910 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 9911 { 9912 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 9913 } 9914 9915 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 9916 { 9917 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 9918 } 9919 9920 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 9921 { 9922 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 9923 } 9924 9925 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 9926 const struct btf_param *arg, 9927 const char *name) 9928 { 9929 int len, target_len = strlen(name); 9930 const char *param_name; 9931 9932 param_name = btf_name_by_offset(btf, arg->name_off); 9933 if (str_is_empty(param_name)) 9934 return false; 9935 len = strlen(param_name); 9936 if (len != target_len) 9937 return false; 9938 if (strcmp(param_name, name)) 9939 return false; 9940 9941 return true; 9942 } 9943 9944 enum { 9945 KF_ARG_DYNPTR_ID, 9946 KF_ARG_LIST_HEAD_ID, 9947 KF_ARG_LIST_NODE_ID, 9948 KF_ARG_RB_ROOT_ID, 9949 KF_ARG_RB_NODE_ID, 9950 }; 9951 9952 BTF_ID_LIST(kf_arg_btf_ids) 9953 BTF_ID(struct, bpf_dynptr_kern) 9954 BTF_ID(struct, bpf_list_head) 9955 BTF_ID(struct, bpf_list_node) 9956 BTF_ID(struct, bpf_rb_root) 9957 BTF_ID(struct, bpf_rb_node) 9958 9959 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 9960 const struct btf_param *arg, int type) 9961 { 9962 const struct btf_type *t; 9963 u32 res_id; 9964 9965 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9966 if (!t) 9967 return false; 9968 if (!btf_type_is_ptr(t)) 9969 return false; 9970 t = btf_type_skip_modifiers(btf, t->type, &res_id); 9971 if (!t) 9972 return false; 9973 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 9974 } 9975 9976 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 9977 { 9978 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 9979 } 9980 9981 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 9982 { 9983 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 9984 } 9985 9986 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 9987 { 9988 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 9989 } 9990 9991 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 9992 { 9993 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 9994 } 9995 9996 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 9997 { 9998 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 9999 } 10000 10001 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10002 const struct btf_param *arg) 10003 { 10004 const struct btf_type *t; 10005 10006 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10007 if (!t) 10008 return false; 10009 10010 return true; 10011 } 10012 10013 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10014 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10015 const struct btf *btf, 10016 const struct btf_type *t, int rec) 10017 { 10018 const struct btf_type *member_type; 10019 const struct btf_member *member; 10020 u32 i; 10021 10022 if (!btf_type_is_struct(t)) 10023 return false; 10024 10025 for_each_member(i, t, member) { 10026 const struct btf_array *array; 10027 10028 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10029 if (btf_type_is_struct(member_type)) { 10030 if (rec >= 3) { 10031 verbose(env, "max struct nesting depth exceeded\n"); 10032 return false; 10033 } 10034 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10035 return false; 10036 continue; 10037 } 10038 if (btf_type_is_array(member_type)) { 10039 array = btf_array(member_type); 10040 if (!array->nelems) 10041 return false; 10042 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10043 if (!btf_type_is_scalar(member_type)) 10044 return false; 10045 continue; 10046 } 10047 if (!btf_type_is_scalar(member_type)) 10048 return false; 10049 } 10050 return true; 10051 } 10052 10053 10054 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 10055 #ifdef CONFIG_NET 10056 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 10057 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 10058 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 10059 #endif 10060 }; 10061 10062 enum kfunc_ptr_arg_type { 10063 KF_ARG_PTR_TO_CTX, 10064 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10065 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10066 KF_ARG_PTR_TO_DYNPTR, 10067 KF_ARG_PTR_TO_ITER, 10068 KF_ARG_PTR_TO_LIST_HEAD, 10069 KF_ARG_PTR_TO_LIST_NODE, 10070 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10071 KF_ARG_PTR_TO_MEM, 10072 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10073 KF_ARG_PTR_TO_CALLBACK, 10074 KF_ARG_PTR_TO_RB_ROOT, 10075 KF_ARG_PTR_TO_RB_NODE, 10076 }; 10077 10078 enum special_kfunc_type { 10079 KF_bpf_obj_new_impl, 10080 KF_bpf_obj_drop_impl, 10081 KF_bpf_refcount_acquire_impl, 10082 KF_bpf_list_push_front_impl, 10083 KF_bpf_list_push_back_impl, 10084 KF_bpf_list_pop_front, 10085 KF_bpf_list_pop_back, 10086 KF_bpf_cast_to_kern_ctx, 10087 KF_bpf_rdonly_cast, 10088 KF_bpf_rcu_read_lock, 10089 KF_bpf_rcu_read_unlock, 10090 KF_bpf_rbtree_remove, 10091 KF_bpf_rbtree_add_impl, 10092 KF_bpf_rbtree_first, 10093 KF_bpf_dynptr_from_skb, 10094 KF_bpf_dynptr_from_xdp, 10095 KF_bpf_dynptr_slice, 10096 KF_bpf_dynptr_slice_rdwr, 10097 KF_bpf_dynptr_clone, 10098 }; 10099 10100 BTF_SET_START(special_kfunc_set) 10101 BTF_ID(func, bpf_obj_new_impl) 10102 BTF_ID(func, bpf_obj_drop_impl) 10103 BTF_ID(func, bpf_refcount_acquire_impl) 10104 BTF_ID(func, bpf_list_push_front_impl) 10105 BTF_ID(func, bpf_list_push_back_impl) 10106 BTF_ID(func, bpf_list_pop_front) 10107 BTF_ID(func, bpf_list_pop_back) 10108 BTF_ID(func, bpf_cast_to_kern_ctx) 10109 BTF_ID(func, bpf_rdonly_cast) 10110 BTF_ID(func, bpf_rbtree_remove) 10111 BTF_ID(func, bpf_rbtree_add_impl) 10112 BTF_ID(func, bpf_rbtree_first) 10113 BTF_ID(func, bpf_dynptr_from_skb) 10114 BTF_ID(func, bpf_dynptr_from_xdp) 10115 BTF_ID(func, bpf_dynptr_slice) 10116 BTF_ID(func, bpf_dynptr_slice_rdwr) 10117 BTF_ID(func, bpf_dynptr_clone) 10118 BTF_SET_END(special_kfunc_set) 10119 10120 BTF_ID_LIST(special_kfunc_list) 10121 BTF_ID(func, bpf_obj_new_impl) 10122 BTF_ID(func, bpf_obj_drop_impl) 10123 BTF_ID(func, bpf_refcount_acquire_impl) 10124 BTF_ID(func, bpf_list_push_front_impl) 10125 BTF_ID(func, bpf_list_push_back_impl) 10126 BTF_ID(func, bpf_list_pop_front) 10127 BTF_ID(func, bpf_list_pop_back) 10128 BTF_ID(func, bpf_cast_to_kern_ctx) 10129 BTF_ID(func, bpf_rdonly_cast) 10130 BTF_ID(func, bpf_rcu_read_lock) 10131 BTF_ID(func, bpf_rcu_read_unlock) 10132 BTF_ID(func, bpf_rbtree_remove) 10133 BTF_ID(func, bpf_rbtree_add_impl) 10134 BTF_ID(func, bpf_rbtree_first) 10135 BTF_ID(func, bpf_dynptr_from_skb) 10136 BTF_ID(func, bpf_dynptr_from_xdp) 10137 BTF_ID(func, bpf_dynptr_slice) 10138 BTF_ID(func, bpf_dynptr_slice_rdwr) 10139 BTF_ID(func, bpf_dynptr_clone) 10140 10141 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10142 { 10143 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10144 meta->arg_owning_ref) { 10145 return false; 10146 } 10147 10148 return meta->kfunc_flags & KF_RET_NULL; 10149 } 10150 10151 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10152 { 10153 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10154 } 10155 10156 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10157 { 10158 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10159 } 10160 10161 static enum kfunc_ptr_arg_type 10162 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10163 struct bpf_kfunc_call_arg_meta *meta, 10164 const struct btf_type *t, const struct btf_type *ref_t, 10165 const char *ref_tname, const struct btf_param *args, 10166 int argno, int nargs) 10167 { 10168 u32 regno = argno + 1; 10169 struct bpf_reg_state *regs = cur_regs(env); 10170 struct bpf_reg_state *reg = ®s[regno]; 10171 bool arg_mem_size = false; 10172 10173 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10174 return KF_ARG_PTR_TO_CTX; 10175 10176 /* In this function, we verify the kfunc's BTF as per the argument type, 10177 * leaving the rest of the verification with respect to the register 10178 * type to our caller. When a set of conditions hold in the BTF type of 10179 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10180 */ 10181 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10182 return KF_ARG_PTR_TO_CTX; 10183 10184 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10185 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10186 10187 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10188 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10189 10190 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10191 return KF_ARG_PTR_TO_DYNPTR; 10192 10193 if (is_kfunc_arg_iter(meta, argno)) 10194 return KF_ARG_PTR_TO_ITER; 10195 10196 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10197 return KF_ARG_PTR_TO_LIST_HEAD; 10198 10199 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10200 return KF_ARG_PTR_TO_LIST_NODE; 10201 10202 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10203 return KF_ARG_PTR_TO_RB_ROOT; 10204 10205 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10206 return KF_ARG_PTR_TO_RB_NODE; 10207 10208 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10209 if (!btf_type_is_struct(ref_t)) { 10210 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10211 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10212 return -EINVAL; 10213 } 10214 return KF_ARG_PTR_TO_BTF_ID; 10215 } 10216 10217 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10218 return KF_ARG_PTR_TO_CALLBACK; 10219 10220 10221 if (argno + 1 < nargs && 10222 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10223 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10224 arg_mem_size = true; 10225 10226 /* This is the catch all argument type of register types supported by 10227 * check_helper_mem_access. However, we only allow when argument type is 10228 * pointer to scalar, or struct composed (recursively) of scalars. When 10229 * arg_mem_size is true, the pointer can be void *. 10230 */ 10231 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10232 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10233 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10234 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10235 return -EINVAL; 10236 } 10237 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10238 } 10239 10240 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10241 struct bpf_reg_state *reg, 10242 const struct btf_type *ref_t, 10243 const char *ref_tname, u32 ref_id, 10244 struct bpf_kfunc_call_arg_meta *meta, 10245 int argno) 10246 { 10247 const struct btf_type *reg_ref_t; 10248 bool strict_type_match = false; 10249 const struct btf *reg_btf; 10250 const char *reg_ref_tname; 10251 u32 reg_ref_id; 10252 10253 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10254 reg_btf = reg->btf; 10255 reg_ref_id = reg->btf_id; 10256 } else { 10257 reg_btf = btf_vmlinux; 10258 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10259 } 10260 10261 /* Enforce strict type matching for calls to kfuncs that are acquiring 10262 * or releasing a reference, or are no-cast aliases. We do _not_ 10263 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10264 * as we want to enable BPF programs to pass types that are bitwise 10265 * equivalent without forcing them to explicitly cast with something 10266 * like bpf_cast_to_kern_ctx(). 10267 * 10268 * For example, say we had a type like the following: 10269 * 10270 * struct bpf_cpumask { 10271 * cpumask_t cpumask; 10272 * refcount_t usage; 10273 * }; 10274 * 10275 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10276 * to a struct cpumask, so it would be safe to pass a struct 10277 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10278 * 10279 * The philosophy here is similar to how we allow scalars of different 10280 * types to be passed to kfuncs as long as the size is the same. The 10281 * only difference here is that we're simply allowing 10282 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10283 * resolve types. 10284 */ 10285 if (is_kfunc_acquire(meta) || 10286 (is_kfunc_release(meta) && reg->ref_obj_id) || 10287 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10288 strict_type_match = true; 10289 10290 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10291 10292 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10293 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10294 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10295 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10296 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10297 btf_type_str(reg_ref_t), reg_ref_tname); 10298 return -EINVAL; 10299 } 10300 return 0; 10301 } 10302 10303 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10304 { 10305 struct bpf_verifier_state *state = env->cur_state; 10306 10307 if (!state->active_lock.ptr) { 10308 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10309 return -EFAULT; 10310 } 10311 10312 if (type_flag(reg->type) & NON_OWN_REF) { 10313 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10314 return -EFAULT; 10315 } 10316 10317 reg->type |= NON_OWN_REF; 10318 return 0; 10319 } 10320 10321 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10322 { 10323 struct bpf_func_state *state, *unused; 10324 struct bpf_reg_state *reg; 10325 int i; 10326 10327 state = cur_func(env); 10328 10329 if (!ref_obj_id) { 10330 verbose(env, "verifier internal error: ref_obj_id is zero for " 10331 "owning -> non-owning conversion\n"); 10332 return -EFAULT; 10333 } 10334 10335 for (i = 0; i < state->acquired_refs; i++) { 10336 if (state->refs[i].id != ref_obj_id) 10337 continue; 10338 10339 /* Clear ref_obj_id here so release_reference doesn't clobber 10340 * the whole reg 10341 */ 10342 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10343 if (reg->ref_obj_id == ref_obj_id) { 10344 reg->ref_obj_id = 0; 10345 ref_set_non_owning(env, reg); 10346 } 10347 })); 10348 return 0; 10349 } 10350 10351 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10352 return -EFAULT; 10353 } 10354 10355 /* Implementation details: 10356 * 10357 * Each register points to some region of memory, which we define as an 10358 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10359 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10360 * allocation. The lock and the data it protects are colocated in the same 10361 * memory region. 10362 * 10363 * Hence, everytime a register holds a pointer value pointing to such 10364 * allocation, the verifier preserves a unique reg->id for it. 10365 * 10366 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10367 * bpf_spin_lock is called. 10368 * 10369 * To enable this, lock state in the verifier captures two values: 10370 * active_lock.ptr = Register's type specific pointer 10371 * active_lock.id = A unique ID for each register pointer value 10372 * 10373 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10374 * supported register types. 10375 * 10376 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10377 * allocated objects is the reg->btf pointer. 10378 * 10379 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10380 * can establish the provenance of the map value statically for each distinct 10381 * lookup into such maps. They always contain a single map value hence unique 10382 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10383 * 10384 * So, in case of global variables, they use array maps with max_entries = 1, 10385 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10386 * into the same map value as max_entries is 1, as described above). 10387 * 10388 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10389 * outer map pointer (in verifier context), but each lookup into an inner map 10390 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10391 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10392 * will get different reg->id assigned to each lookup, hence different 10393 * active_lock.id. 10394 * 10395 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10396 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10397 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10398 */ 10399 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10400 { 10401 void *ptr; 10402 u32 id; 10403 10404 switch ((int)reg->type) { 10405 case PTR_TO_MAP_VALUE: 10406 ptr = reg->map_ptr; 10407 break; 10408 case PTR_TO_BTF_ID | MEM_ALLOC: 10409 ptr = reg->btf; 10410 break; 10411 default: 10412 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10413 return -EFAULT; 10414 } 10415 id = reg->id; 10416 10417 if (!env->cur_state->active_lock.ptr) 10418 return -EINVAL; 10419 if (env->cur_state->active_lock.ptr != ptr || 10420 env->cur_state->active_lock.id != id) { 10421 verbose(env, "held lock and object are not in the same allocation\n"); 10422 return -EINVAL; 10423 } 10424 return 0; 10425 } 10426 10427 static bool is_bpf_list_api_kfunc(u32 btf_id) 10428 { 10429 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10430 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10431 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10432 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10433 } 10434 10435 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10436 { 10437 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10438 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10439 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10440 } 10441 10442 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10443 { 10444 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10445 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10446 } 10447 10448 static bool is_callback_calling_kfunc(u32 btf_id) 10449 { 10450 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10451 } 10452 10453 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10454 { 10455 return is_bpf_rbtree_api_kfunc(btf_id); 10456 } 10457 10458 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10459 enum btf_field_type head_field_type, 10460 u32 kfunc_btf_id) 10461 { 10462 bool ret; 10463 10464 switch (head_field_type) { 10465 case BPF_LIST_HEAD: 10466 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10467 break; 10468 case BPF_RB_ROOT: 10469 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10470 break; 10471 default: 10472 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10473 btf_field_type_name(head_field_type)); 10474 return false; 10475 } 10476 10477 if (!ret) 10478 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10479 btf_field_type_name(head_field_type)); 10480 return ret; 10481 } 10482 10483 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10484 enum btf_field_type node_field_type, 10485 u32 kfunc_btf_id) 10486 { 10487 bool ret; 10488 10489 switch (node_field_type) { 10490 case BPF_LIST_NODE: 10491 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10492 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10493 break; 10494 case BPF_RB_NODE: 10495 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10496 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10497 break; 10498 default: 10499 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10500 btf_field_type_name(node_field_type)); 10501 return false; 10502 } 10503 10504 if (!ret) 10505 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10506 btf_field_type_name(node_field_type)); 10507 return ret; 10508 } 10509 10510 static int 10511 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10512 struct bpf_reg_state *reg, u32 regno, 10513 struct bpf_kfunc_call_arg_meta *meta, 10514 enum btf_field_type head_field_type, 10515 struct btf_field **head_field) 10516 { 10517 const char *head_type_name; 10518 struct btf_field *field; 10519 struct btf_record *rec; 10520 u32 head_off; 10521 10522 if (meta->btf != btf_vmlinux) { 10523 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10524 return -EFAULT; 10525 } 10526 10527 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10528 return -EFAULT; 10529 10530 head_type_name = btf_field_type_name(head_field_type); 10531 if (!tnum_is_const(reg->var_off)) { 10532 verbose(env, 10533 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10534 regno, head_type_name); 10535 return -EINVAL; 10536 } 10537 10538 rec = reg_btf_record(reg); 10539 head_off = reg->off + reg->var_off.value; 10540 field = btf_record_find(rec, head_off, head_field_type); 10541 if (!field) { 10542 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10543 return -EINVAL; 10544 } 10545 10546 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10547 if (check_reg_allocation_locked(env, reg)) { 10548 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10549 rec->spin_lock_off, head_type_name); 10550 return -EINVAL; 10551 } 10552 10553 if (*head_field) { 10554 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10555 return -EFAULT; 10556 } 10557 *head_field = field; 10558 return 0; 10559 } 10560 10561 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10562 struct bpf_reg_state *reg, u32 regno, 10563 struct bpf_kfunc_call_arg_meta *meta) 10564 { 10565 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10566 &meta->arg_list_head.field); 10567 } 10568 10569 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10570 struct bpf_reg_state *reg, u32 regno, 10571 struct bpf_kfunc_call_arg_meta *meta) 10572 { 10573 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10574 &meta->arg_rbtree_root.field); 10575 } 10576 10577 static int 10578 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10579 struct bpf_reg_state *reg, u32 regno, 10580 struct bpf_kfunc_call_arg_meta *meta, 10581 enum btf_field_type head_field_type, 10582 enum btf_field_type node_field_type, 10583 struct btf_field **node_field) 10584 { 10585 const char *node_type_name; 10586 const struct btf_type *et, *t; 10587 struct btf_field *field; 10588 u32 node_off; 10589 10590 if (meta->btf != btf_vmlinux) { 10591 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10592 return -EFAULT; 10593 } 10594 10595 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10596 return -EFAULT; 10597 10598 node_type_name = btf_field_type_name(node_field_type); 10599 if (!tnum_is_const(reg->var_off)) { 10600 verbose(env, 10601 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10602 regno, node_type_name); 10603 return -EINVAL; 10604 } 10605 10606 node_off = reg->off + reg->var_off.value; 10607 field = reg_find_field_offset(reg, node_off, node_field_type); 10608 if (!field || field->offset != node_off) { 10609 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10610 return -EINVAL; 10611 } 10612 10613 field = *node_field; 10614 10615 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10616 t = btf_type_by_id(reg->btf, reg->btf_id); 10617 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10618 field->graph_root.value_btf_id, true)) { 10619 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10620 "in struct %s, but arg is at offset=%d in struct %s\n", 10621 btf_field_type_name(head_field_type), 10622 btf_field_type_name(node_field_type), 10623 field->graph_root.node_offset, 10624 btf_name_by_offset(field->graph_root.btf, et->name_off), 10625 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10626 return -EINVAL; 10627 } 10628 meta->arg_btf = reg->btf; 10629 meta->arg_btf_id = reg->btf_id; 10630 10631 if (node_off != field->graph_root.node_offset) { 10632 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10633 node_off, btf_field_type_name(node_field_type), 10634 field->graph_root.node_offset, 10635 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10636 return -EINVAL; 10637 } 10638 10639 return 0; 10640 } 10641 10642 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10643 struct bpf_reg_state *reg, u32 regno, 10644 struct bpf_kfunc_call_arg_meta *meta) 10645 { 10646 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10647 BPF_LIST_HEAD, BPF_LIST_NODE, 10648 &meta->arg_list_head.field); 10649 } 10650 10651 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10652 struct bpf_reg_state *reg, u32 regno, 10653 struct bpf_kfunc_call_arg_meta *meta) 10654 { 10655 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10656 BPF_RB_ROOT, BPF_RB_NODE, 10657 &meta->arg_rbtree_root.field); 10658 } 10659 10660 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10661 int insn_idx) 10662 { 10663 const char *func_name = meta->func_name, *ref_tname; 10664 const struct btf *btf = meta->btf; 10665 const struct btf_param *args; 10666 struct btf_record *rec; 10667 u32 i, nargs; 10668 int ret; 10669 10670 args = (const struct btf_param *)(meta->func_proto + 1); 10671 nargs = btf_type_vlen(meta->func_proto); 10672 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10673 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10674 MAX_BPF_FUNC_REG_ARGS); 10675 return -EINVAL; 10676 } 10677 10678 /* Check that BTF function arguments match actual types that the 10679 * verifier sees. 10680 */ 10681 for (i = 0; i < nargs; i++) { 10682 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10683 const struct btf_type *t, *ref_t, *resolve_ret; 10684 enum bpf_arg_type arg_type = ARG_DONTCARE; 10685 u32 regno = i + 1, ref_id, type_size; 10686 bool is_ret_buf_sz = false; 10687 int kf_arg_type; 10688 10689 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10690 10691 if (is_kfunc_arg_ignore(btf, &args[i])) 10692 continue; 10693 10694 if (btf_type_is_scalar(t)) { 10695 if (reg->type != SCALAR_VALUE) { 10696 verbose(env, "R%d is not a scalar\n", regno); 10697 return -EINVAL; 10698 } 10699 10700 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10701 if (meta->arg_constant.found) { 10702 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10703 return -EFAULT; 10704 } 10705 if (!tnum_is_const(reg->var_off)) { 10706 verbose(env, "R%d must be a known constant\n", regno); 10707 return -EINVAL; 10708 } 10709 ret = mark_chain_precision(env, regno); 10710 if (ret < 0) 10711 return ret; 10712 meta->arg_constant.found = true; 10713 meta->arg_constant.value = reg->var_off.value; 10714 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10715 meta->r0_rdonly = true; 10716 is_ret_buf_sz = true; 10717 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10718 is_ret_buf_sz = true; 10719 } 10720 10721 if (is_ret_buf_sz) { 10722 if (meta->r0_size) { 10723 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10724 return -EINVAL; 10725 } 10726 10727 if (!tnum_is_const(reg->var_off)) { 10728 verbose(env, "R%d is not a const\n", regno); 10729 return -EINVAL; 10730 } 10731 10732 meta->r0_size = reg->var_off.value; 10733 ret = mark_chain_precision(env, regno); 10734 if (ret) 10735 return ret; 10736 } 10737 continue; 10738 } 10739 10740 if (!btf_type_is_ptr(t)) { 10741 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10742 return -EINVAL; 10743 } 10744 10745 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10746 (register_is_null(reg) || type_may_be_null(reg->type))) { 10747 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10748 return -EACCES; 10749 } 10750 10751 if (reg->ref_obj_id) { 10752 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10753 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10754 regno, reg->ref_obj_id, 10755 meta->ref_obj_id); 10756 return -EFAULT; 10757 } 10758 meta->ref_obj_id = reg->ref_obj_id; 10759 if (is_kfunc_release(meta)) 10760 meta->release_regno = regno; 10761 } 10762 10763 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10764 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10765 10766 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10767 if (kf_arg_type < 0) 10768 return kf_arg_type; 10769 10770 switch (kf_arg_type) { 10771 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10772 case KF_ARG_PTR_TO_BTF_ID: 10773 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10774 break; 10775 10776 if (!is_trusted_reg(reg)) { 10777 if (!is_kfunc_rcu(meta)) { 10778 verbose(env, "R%d must be referenced or trusted\n", regno); 10779 return -EINVAL; 10780 } 10781 if (!is_rcu_reg(reg)) { 10782 verbose(env, "R%d must be a rcu pointer\n", regno); 10783 return -EINVAL; 10784 } 10785 } 10786 10787 fallthrough; 10788 case KF_ARG_PTR_TO_CTX: 10789 /* Trusted arguments have the same offset checks as release arguments */ 10790 arg_type |= OBJ_RELEASE; 10791 break; 10792 case KF_ARG_PTR_TO_DYNPTR: 10793 case KF_ARG_PTR_TO_ITER: 10794 case KF_ARG_PTR_TO_LIST_HEAD: 10795 case KF_ARG_PTR_TO_LIST_NODE: 10796 case KF_ARG_PTR_TO_RB_ROOT: 10797 case KF_ARG_PTR_TO_RB_NODE: 10798 case KF_ARG_PTR_TO_MEM: 10799 case KF_ARG_PTR_TO_MEM_SIZE: 10800 case KF_ARG_PTR_TO_CALLBACK: 10801 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10802 /* Trusted by default */ 10803 break; 10804 default: 10805 WARN_ON_ONCE(1); 10806 return -EFAULT; 10807 } 10808 10809 if (is_kfunc_release(meta) && reg->ref_obj_id) 10810 arg_type |= OBJ_RELEASE; 10811 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10812 if (ret < 0) 10813 return ret; 10814 10815 switch (kf_arg_type) { 10816 case KF_ARG_PTR_TO_CTX: 10817 if (reg->type != PTR_TO_CTX) { 10818 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10819 return -EINVAL; 10820 } 10821 10822 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10823 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10824 if (ret < 0) 10825 return -EINVAL; 10826 meta->ret_btf_id = ret; 10827 } 10828 break; 10829 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10830 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10831 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10832 return -EINVAL; 10833 } 10834 if (!reg->ref_obj_id) { 10835 verbose(env, "allocated object must be referenced\n"); 10836 return -EINVAL; 10837 } 10838 if (meta->btf == btf_vmlinux && 10839 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10840 meta->arg_btf = reg->btf; 10841 meta->arg_btf_id = reg->btf_id; 10842 } 10843 break; 10844 case KF_ARG_PTR_TO_DYNPTR: 10845 { 10846 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 10847 int clone_ref_obj_id = 0; 10848 10849 if (reg->type != PTR_TO_STACK && 10850 reg->type != CONST_PTR_TO_DYNPTR) { 10851 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 10852 return -EINVAL; 10853 } 10854 10855 if (reg->type == CONST_PTR_TO_DYNPTR) 10856 dynptr_arg_type |= MEM_RDONLY; 10857 10858 if (is_kfunc_arg_uninit(btf, &args[i])) 10859 dynptr_arg_type |= MEM_UNINIT; 10860 10861 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 10862 dynptr_arg_type |= DYNPTR_TYPE_SKB; 10863 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 10864 dynptr_arg_type |= DYNPTR_TYPE_XDP; 10865 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 10866 (dynptr_arg_type & MEM_UNINIT)) { 10867 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 10868 10869 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 10870 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 10871 return -EFAULT; 10872 } 10873 10874 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 10875 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 10876 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 10877 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 10878 return -EFAULT; 10879 } 10880 } 10881 10882 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 10883 if (ret < 0) 10884 return ret; 10885 10886 if (!(dynptr_arg_type & MEM_UNINIT)) { 10887 int id = dynptr_id(env, reg); 10888 10889 if (id < 0) { 10890 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10891 return id; 10892 } 10893 meta->initialized_dynptr.id = id; 10894 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 10895 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 10896 } 10897 10898 break; 10899 } 10900 case KF_ARG_PTR_TO_ITER: 10901 ret = process_iter_arg(env, regno, insn_idx, meta); 10902 if (ret < 0) 10903 return ret; 10904 break; 10905 case KF_ARG_PTR_TO_LIST_HEAD: 10906 if (reg->type != PTR_TO_MAP_VALUE && 10907 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10908 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10909 return -EINVAL; 10910 } 10911 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10912 verbose(env, "allocated object must be referenced\n"); 10913 return -EINVAL; 10914 } 10915 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 10916 if (ret < 0) 10917 return ret; 10918 break; 10919 case KF_ARG_PTR_TO_RB_ROOT: 10920 if (reg->type != PTR_TO_MAP_VALUE && 10921 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10922 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10923 return -EINVAL; 10924 } 10925 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10926 verbose(env, "allocated object must be referenced\n"); 10927 return -EINVAL; 10928 } 10929 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 10930 if (ret < 0) 10931 return ret; 10932 break; 10933 case KF_ARG_PTR_TO_LIST_NODE: 10934 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10935 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10936 return -EINVAL; 10937 } 10938 if (!reg->ref_obj_id) { 10939 verbose(env, "allocated object must be referenced\n"); 10940 return -EINVAL; 10941 } 10942 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 10943 if (ret < 0) 10944 return ret; 10945 break; 10946 case KF_ARG_PTR_TO_RB_NODE: 10947 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 10948 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 10949 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 10950 return -EINVAL; 10951 } 10952 if (in_rbtree_lock_required_cb(env)) { 10953 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 10954 return -EINVAL; 10955 } 10956 } else { 10957 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10958 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10959 return -EINVAL; 10960 } 10961 if (!reg->ref_obj_id) { 10962 verbose(env, "allocated object must be referenced\n"); 10963 return -EINVAL; 10964 } 10965 } 10966 10967 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10968 if (ret < 0) 10969 return ret; 10970 break; 10971 case KF_ARG_PTR_TO_BTF_ID: 10972 /* Only base_type is checked, further checks are done here */ 10973 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10974 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10975 !reg2btf_ids[base_type(reg->type)]) { 10976 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 10977 verbose(env, "expected %s or socket\n", 10978 reg_type_str(env, base_type(reg->type) | 10979 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 10980 return -EINVAL; 10981 } 10982 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 10983 if (ret < 0) 10984 return ret; 10985 break; 10986 case KF_ARG_PTR_TO_MEM: 10987 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 10988 if (IS_ERR(resolve_ret)) { 10989 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 10990 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 10991 return -EINVAL; 10992 } 10993 ret = check_mem_reg(env, reg, regno, type_size); 10994 if (ret < 0) 10995 return ret; 10996 break; 10997 case KF_ARG_PTR_TO_MEM_SIZE: 10998 { 10999 struct bpf_reg_state *buff_reg = ®s[regno]; 11000 const struct btf_param *buff_arg = &args[i]; 11001 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11002 const struct btf_param *size_arg = &args[i + 1]; 11003 11004 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11005 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11006 if (ret < 0) { 11007 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11008 return ret; 11009 } 11010 } 11011 11012 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11013 if (meta->arg_constant.found) { 11014 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11015 return -EFAULT; 11016 } 11017 if (!tnum_is_const(size_reg->var_off)) { 11018 verbose(env, "R%d must be a known constant\n", regno + 1); 11019 return -EINVAL; 11020 } 11021 meta->arg_constant.found = true; 11022 meta->arg_constant.value = size_reg->var_off.value; 11023 } 11024 11025 /* Skip next '__sz' or '__szk' argument */ 11026 i++; 11027 break; 11028 } 11029 case KF_ARG_PTR_TO_CALLBACK: 11030 meta->subprogno = reg->subprogno; 11031 break; 11032 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11033 if (!type_is_ptr_alloc_obj(reg->type)) { 11034 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11035 return -EINVAL; 11036 } 11037 if (!type_is_non_owning_ref(reg->type)) 11038 meta->arg_owning_ref = true; 11039 11040 rec = reg_btf_record(reg); 11041 if (!rec) { 11042 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11043 return -EFAULT; 11044 } 11045 11046 if (rec->refcount_off < 0) { 11047 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11048 return -EINVAL; 11049 } 11050 if (rec->refcount_off >= 0) { 11051 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 11052 return -EINVAL; 11053 } 11054 meta->arg_btf = reg->btf; 11055 meta->arg_btf_id = reg->btf_id; 11056 break; 11057 } 11058 } 11059 11060 if (is_kfunc_release(meta) && !meta->release_regno) { 11061 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11062 func_name); 11063 return -EINVAL; 11064 } 11065 11066 return 0; 11067 } 11068 11069 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11070 struct bpf_insn *insn, 11071 struct bpf_kfunc_call_arg_meta *meta, 11072 const char **kfunc_name) 11073 { 11074 const struct btf_type *func, *func_proto; 11075 u32 func_id, *kfunc_flags; 11076 const char *func_name; 11077 struct btf *desc_btf; 11078 11079 if (kfunc_name) 11080 *kfunc_name = NULL; 11081 11082 if (!insn->imm) 11083 return -EINVAL; 11084 11085 desc_btf = find_kfunc_desc_btf(env, insn->off); 11086 if (IS_ERR(desc_btf)) 11087 return PTR_ERR(desc_btf); 11088 11089 func_id = insn->imm; 11090 func = btf_type_by_id(desc_btf, func_id); 11091 func_name = btf_name_by_offset(desc_btf, func->name_off); 11092 if (kfunc_name) 11093 *kfunc_name = func_name; 11094 func_proto = btf_type_by_id(desc_btf, func->type); 11095 11096 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11097 if (!kfunc_flags) { 11098 return -EACCES; 11099 } 11100 11101 memset(meta, 0, sizeof(*meta)); 11102 meta->btf = desc_btf; 11103 meta->func_id = func_id; 11104 meta->kfunc_flags = *kfunc_flags; 11105 meta->func_proto = func_proto; 11106 meta->func_name = func_name; 11107 11108 return 0; 11109 } 11110 11111 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11112 int *insn_idx_p) 11113 { 11114 const struct btf_type *t, *ptr_type; 11115 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11116 struct bpf_reg_state *regs = cur_regs(env); 11117 const char *func_name, *ptr_type_name; 11118 bool sleepable, rcu_lock, rcu_unlock; 11119 struct bpf_kfunc_call_arg_meta meta; 11120 struct bpf_insn_aux_data *insn_aux; 11121 int err, insn_idx = *insn_idx_p; 11122 const struct btf_param *args; 11123 const struct btf_type *ret_t; 11124 struct btf *desc_btf; 11125 11126 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11127 if (!insn->imm) 11128 return 0; 11129 11130 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11131 if (err == -EACCES && func_name) 11132 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11133 if (err) 11134 return err; 11135 desc_btf = meta.btf; 11136 insn_aux = &env->insn_aux_data[insn_idx]; 11137 11138 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11139 11140 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11141 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11142 return -EACCES; 11143 } 11144 11145 sleepable = is_kfunc_sleepable(&meta); 11146 if (sleepable && !env->prog->aux->sleepable) { 11147 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11148 return -EACCES; 11149 } 11150 11151 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11152 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11153 11154 if (env->cur_state->active_rcu_lock) { 11155 struct bpf_func_state *state; 11156 struct bpf_reg_state *reg; 11157 11158 if (rcu_lock) { 11159 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11160 return -EINVAL; 11161 } else if (rcu_unlock) { 11162 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11163 if (reg->type & MEM_RCU) { 11164 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11165 reg->type |= PTR_UNTRUSTED; 11166 } 11167 })); 11168 env->cur_state->active_rcu_lock = false; 11169 } else if (sleepable) { 11170 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11171 return -EACCES; 11172 } 11173 } else if (rcu_lock) { 11174 env->cur_state->active_rcu_lock = true; 11175 } else if (rcu_unlock) { 11176 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11177 return -EINVAL; 11178 } 11179 11180 /* Check the arguments */ 11181 err = check_kfunc_args(env, &meta, insn_idx); 11182 if (err < 0) 11183 return err; 11184 /* In case of release function, we get register number of refcounted 11185 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11186 */ 11187 if (meta.release_regno) { 11188 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11189 if (err) { 11190 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11191 func_name, meta.func_id); 11192 return err; 11193 } 11194 } 11195 11196 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11197 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11198 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11199 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11200 insn_aux->insert_off = regs[BPF_REG_2].off; 11201 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11202 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11203 if (err) { 11204 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11205 func_name, meta.func_id); 11206 return err; 11207 } 11208 11209 err = release_reference(env, release_ref_obj_id); 11210 if (err) { 11211 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11212 func_name, meta.func_id); 11213 return err; 11214 } 11215 } 11216 11217 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11218 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11219 set_rbtree_add_callback_state); 11220 if (err) { 11221 verbose(env, "kfunc %s#%d failed callback verification\n", 11222 func_name, meta.func_id); 11223 return err; 11224 } 11225 } 11226 11227 for (i = 0; i < CALLER_SAVED_REGS; i++) 11228 mark_reg_not_init(env, regs, caller_saved[i]); 11229 11230 /* Check return type */ 11231 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11232 11233 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11234 /* Only exception is bpf_obj_new_impl */ 11235 if (meta.btf != btf_vmlinux || 11236 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11237 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11238 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11239 return -EINVAL; 11240 } 11241 } 11242 11243 if (btf_type_is_scalar(t)) { 11244 mark_reg_unknown(env, regs, BPF_REG_0); 11245 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11246 } else if (btf_type_is_ptr(t)) { 11247 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11248 11249 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11250 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11251 struct btf *ret_btf; 11252 u32 ret_btf_id; 11253 11254 if (unlikely(!bpf_global_ma_set)) 11255 return -ENOMEM; 11256 11257 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11258 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11259 return -EINVAL; 11260 } 11261 11262 ret_btf = env->prog->aux->btf; 11263 ret_btf_id = meta.arg_constant.value; 11264 11265 /* This may be NULL due to user not supplying a BTF */ 11266 if (!ret_btf) { 11267 verbose(env, "bpf_obj_new requires prog BTF\n"); 11268 return -EINVAL; 11269 } 11270 11271 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11272 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11273 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11274 return -EINVAL; 11275 } 11276 11277 mark_reg_known_zero(env, regs, BPF_REG_0); 11278 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11279 regs[BPF_REG_0].btf = ret_btf; 11280 regs[BPF_REG_0].btf_id = ret_btf_id; 11281 11282 insn_aux->obj_new_size = ret_t->size; 11283 insn_aux->kptr_struct_meta = 11284 btf_find_struct_meta(ret_btf, ret_btf_id); 11285 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11286 mark_reg_known_zero(env, regs, BPF_REG_0); 11287 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11288 regs[BPF_REG_0].btf = meta.arg_btf; 11289 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11290 11291 insn_aux->kptr_struct_meta = 11292 btf_find_struct_meta(meta.arg_btf, 11293 meta.arg_btf_id); 11294 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11295 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11296 struct btf_field *field = meta.arg_list_head.field; 11297 11298 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11299 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11300 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11301 struct btf_field *field = meta.arg_rbtree_root.field; 11302 11303 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11304 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11305 mark_reg_known_zero(env, regs, BPF_REG_0); 11306 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11307 regs[BPF_REG_0].btf = desc_btf; 11308 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11309 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11310 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11311 if (!ret_t || !btf_type_is_struct(ret_t)) { 11312 verbose(env, 11313 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11314 return -EINVAL; 11315 } 11316 11317 mark_reg_known_zero(env, regs, BPF_REG_0); 11318 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11319 regs[BPF_REG_0].btf = desc_btf; 11320 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11321 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11322 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11323 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11324 11325 mark_reg_known_zero(env, regs, BPF_REG_0); 11326 11327 if (!meta.arg_constant.found) { 11328 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11329 return -EFAULT; 11330 } 11331 11332 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11333 11334 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11335 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11336 11337 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11338 regs[BPF_REG_0].type |= MEM_RDONLY; 11339 } else { 11340 /* this will set env->seen_direct_write to true */ 11341 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11342 verbose(env, "the prog does not allow writes to packet data\n"); 11343 return -EINVAL; 11344 } 11345 } 11346 11347 if (!meta.initialized_dynptr.id) { 11348 verbose(env, "verifier internal error: no dynptr id\n"); 11349 return -EFAULT; 11350 } 11351 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11352 11353 /* we don't need to set BPF_REG_0's ref obj id 11354 * because packet slices are not refcounted (see 11355 * dynptr_type_refcounted) 11356 */ 11357 } else { 11358 verbose(env, "kernel function %s unhandled dynamic return type\n", 11359 meta.func_name); 11360 return -EFAULT; 11361 } 11362 } else if (!__btf_type_is_struct(ptr_type)) { 11363 if (!meta.r0_size) { 11364 __u32 sz; 11365 11366 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11367 meta.r0_size = sz; 11368 meta.r0_rdonly = true; 11369 } 11370 } 11371 if (!meta.r0_size) { 11372 ptr_type_name = btf_name_by_offset(desc_btf, 11373 ptr_type->name_off); 11374 verbose(env, 11375 "kernel function %s returns pointer type %s %s is not supported\n", 11376 func_name, 11377 btf_type_str(ptr_type), 11378 ptr_type_name); 11379 return -EINVAL; 11380 } 11381 11382 mark_reg_known_zero(env, regs, BPF_REG_0); 11383 regs[BPF_REG_0].type = PTR_TO_MEM; 11384 regs[BPF_REG_0].mem_size = meta.r0_size; 11385 11386 if (meta.r0_rdonly) 11387 regs[BPF_REG_0].type |= MEM_RDONLY; 11388 11389 /* Ensures we don't access the memory after a release_reference() */ 11390 if (meta.ref_obj_id) 11391 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11392 } else { 11393 mark_reg_known_zero(env, regs, BPF_REG_0); 11394 regs[BPF_REG_0].btf = desc_btf; 11395 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11396 regs[BPF_REG_0].btf_id = ptr_type_id; 11397 } 11398 11399 if (is_kfunc_ret_null(&meta)) { 11400 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11401 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11402 regs[BPF_REG_0].id = ++env->id_gen; 11403 } 11404 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11405 if (is_kfunc_acquire(&meta)) { 11406 int id = acquire_reference_state(env, insn_idx); 11407 11408 if (id < 0) 11409 return id; 11410 if (is_kfunc_ret_null(&meta)) 11411 regs[BPF_REG_0].id = id; 11412 regs[BPF_REG_0].ref_obj_id = id; 11413 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11414 ref_set_non_owning(env, ®s[BPF_REG_0]); 11415 } 11416 11417 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11418 regs[BPF_REG_0].id = ++env->id_gen; 11419 } else if (btf_type_is_void(t)) { 11420 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11421 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11422 insn_aux->kptr_struct_meta = 11423 btf_find_struct_meta(meta.arg_btf, 11424 meta.arg_btf_id); 11425 } 11426 } 11427 } 11428 11429 nargs = btf_type_vlen(meta.func_proto); 11430 args = (const struct btf_param *)(meta.func_proto + 1); 11431 for (i = 0; i < nargs; i++) { 11432 u32 regno = i + 1; 11433 11434 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11435 if (btf_type_is_ptr(t)) 11436 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11437 else 11438 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11439 mark_btf_func_reg_size(env, regno, t->size); 11440 } 11441 11442 if (is_iter_next_kfunc(&meta)) { 11443 err = process_iter_next_call(env, insn_idx, &meta); 11444 if (err) 11445 return err; 11446 } 11447 11448 return 0; 11449 } 11450 11451 static bool signed_add_overflows(s64 a, s64 b) 11452 { 11453 /* Do the add in u64, where overflow is well-defined */ 11454 s64 res = (s64)((u64)a + (u64)b); 11455 11456 if (b < 0) 11457 return res > a; 11458 return res < a; 11459 } 11460 11461 static bool signed_add32_overflows(s32 a, s32 b) 11462 { 11463 /* Do the add in u32, where overflow is well-defined */ 11464 s32 res = (s32)((u32)a + (u32)b); 11465 11466 if (b < 0) 11467 return res > a; 11468 return res < a; 11469 } 11470 11471 static bool signed_sub_overflows(s64 a, s64 b) 11472 { 11473 /* Do the sub in u64, where overflow is well-defined */ 11474 s64 res = (s64)((u64)a - (u64)b); 11475 11476 if (b < 0) 11477 return res < a; 11478 return res > a; 11479 } 11480 11481 static bool signed_sub32_overflows(s32 a, s32 b) 11482 { 11483 /* Do the sub in u32, where overflow is well-defined */ 11484 s32 res = (s32)((u32)a - (u32)b); 11485 11486 if (b < 0) 11487 return res < a; 11488 return res > a; 11489 } 11490 11491 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11492 const struct bpf_reg_state *reg, 11493 enum bpf_reg_type type) 11494 { 11495 bool known = tnum_is_const(reg->var_off); 11496 s64 val = reg->var_off.value; 11497 s64 smin = reg->smin_value; 11498 11499 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11500 verbose(env, "math between %s pointer and %lld is not allowed\n", 11501 reg_type_str(env, type), val); 11502 return false; 11503 } 11504 11505 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11506 verbose(env, "%s pointer offset %d is not allowed\n", 11507 reg_type_str(env, type), reg->off); 11508 return false; 11509 } 11510 11511 if (smin == S64_MIN) { 11512 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11513 reg_type_str(env, type)); 11514 return false; 11515 } 11516 11517 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11518 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11519 smin, reg_type_str(env, type)); 11520 return false; 11521 } 11522 11523 return true; 11524 } 11525 11526 enum { 11527 REASON_BOUNDS = -1, 11528 REASON_TYPE = -2, 11529 REASON_PATHS = -3, 11530 REASON_LIMIT = -4, 11531 REASON_STACK = -5, 11532 }; 11533 11534 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11535 u32 *alu_limit, bool mask_to_left) 11536 { 11537 u32 max = 0, ptr_limit = 0; 11538 11539 switch (ptr_reg->type) { 11540 case PTR_TO_STACK: 11541 /* Offset 0 is out-of-bounds, but acceptable start for the 11542 * left direction, see BPF_REG_FP. Also, unknown scalar 11543 * offset where we would need to deal with min/max bounds is 11544 * currently prohibited for unprivileged. 11545 */ 11546 max = MAX_BPF_STACK + mask_to_left; 11547 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11548 break; 11549 case PTR_TO_MAP_VALUE: 11550 max = ptr_reg->map_ptr->value_size; 11551 ptr_limit = (mask_to_left ? 11552 ptr_reg->smin_value : 11553 ptr_reg->umax_value) + ptr_reg->off; 11554 break; 11555 default: 11556 return REASON_TYPE; 11557 } 11558 11559 if (ptr_limit >= max) 11560 return REASON_LIMIT; 11561 *alu_limit = ptr_limit; 11562 return 0; 11563 } 11564 11565 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11566 const struct bpf_insn *insn) 11567 { 11568 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11569 } 11570 11571 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11572 u32 alu_state, u32 alu_limit) 11573 { 11574 /* If we arrived here from different branches with different 11575 * state or limits to sanitize, then this won't work. 11576 */ 11577 if (aux->alu_state && 11578 (aux->alu_state != alu_state || 11579 aux->alu_limit != alu_limit)) 11580 return REASON_PATHS; 11581 11582 /* Corresponding fixup done in do_misc_fixups(). */ 11583 aux->alu_state = alu_state; 11584 aux->alu_limit = alu_limit; 11585 return 0; 11586 } 11587 11588 static int sanitize_val_alu(struct bpf_verifier_env *env, 11589 struct bpf_insn *insn) 11590 { 11591 struct bpf_insn_aux_data *aux = cur_aux(env); 11592 11593 if (can_skip_alu_sanitation(env, insn)) 11594 return 0; 11595 11596 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11597 } 11598 11599 static bool sanitize_needed(u8 opcode) 11600 { 11601 return opcode == BPF_ADD || opcode == BPF_SUB; 11602 } 11603 11604 struct bpf_sanitize_info { 11605 struct bpf_insn_aux_data aux; 11606 bool mask_to_left; 11607 }; 11608 11609 static struct bpf_verifier_state * 11610 sanitize_speculative_path(struct bpf_verifier_env *env, 11611 const struct bpf_insn *insn, 11612 u32 next_idx, u32 curr_idx) 11613 { 11614 struct bpf_verifier_state *branch; 11615 struct bpf_reg_state *regs; 11616 11617 branch = push_stack(env, next_idx, curr_idx, true); 11618 if (branch && insn) { 11619 regs = branch->frame[branch->curframe]->regs; 11620 if (BPF_SRC(insn->code) == BPF_K) { 11621 mark_reg_unknown(env, regs, insn->dst_reg); 11622 } else if (BPF_SRC(insn->code) == BPF_X) { 11623 mark_reg_unknown(env, regs, insn->dst_reg); 11624 mark_reg_unknown(env, regs, insn->src_reg); 11625 } 11626 } 11627 return branch; 11628 } 11629 11630 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11631 struct bpf_insn *insn, 11632 const struct bpf_reg_state *ptr_reg, 11633 const struct bpf_reg_state *off_reg, 11634 struct bpf_reg_state *dst_reg, 11635 struct bpf_sanitize_info *info, 11636 const bool commit_window) 11637 { 11638 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11639 struct bpf_verifier_state *vstate = env->cur_state; 11640 bool off_is_imm = tnum_is_const(off_reg->var_off); 11641 bool off_is_neg = off_reg->smin_value < 0; 11642 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11643 u8 opcode = BPF_OP(insn->code); 11644 u32 alu_state, alu_limit; 11645 struct bpf_reg_state tmp; 11646 bool ret; 11647 int err; 11648 11649 if (can_skip_alu_sanitation(env, insn)) 11650 return 0; 11651 11652 /* We already marked aux for masking from non-speculative 11653 * paths, thus we got here in the first place. We only care 11654 * to explore bad access from here. 11655 */ 11656 if (vstate->speculative) 11657 goto do_sim; 11658 11659 if (!commit_window) { 11660 if (!tnum_is_const(off_reg->var_off) && 11661 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11662 return REASON_BOUNDS; 11663 11664 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11665 (opcode == BPF_SUB && !off_is_neg); 11666 } 11667 11668 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11669 if (err < 0) 11670 return err; 11671 11672 if (commit_window) { 11673 /* In commit phase we narrow the masking window based on 11674 * the observed pointer move after the simulated operation. 11675 */ 11676 alu_state = info->aux.alu_state; 11677 alu_limit = abs(info->aux.alu_limit - alu_limit); 11678 } else { 11679 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11680 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11681 alu_state |= ptr_is_dst_reg ? 11682 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11683 11684 /* Limit pruning on unknown scalars to enable deep search for 11685 * potential masking differences from other program paths. 11686 */ 11687 if (!off_is_imm) 11688 env->explore_alu_limits = true; 11689 } 11690 11691 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11692 if (err < 0) 11693 return err; 11694 do_sim: 11695 /* If we're in commit phase, we're done here given we already 11696 * pushed the truncated dst_reg into the speculative verification 11697 * stack. 11698 * 11699 * Also, when register is a known constant, we rewrite register-based 11700 * operation to immediate-based, and thus do not need masking (and as 11701 * a consequence, do not need to simulate the zero-truncation either). 11702 */ 11703 if (commit_window || off_is_imm) 11704 return 0; 11705 11706 /* Simulate and find potential out-of-bounds access under 11707 * speculative execution from truncation as a result of 11708 * masking when off was not within expected range. If off 11709 * sits in dst, then we temporarily need to move ptr there 11710 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11711 * for cases where we use K-based arithmetic in one direction 11712 * and truncated reg-based in the other in order to explore 11713 * bad access. 11714 */ 11715 if (!ptr_is_dst_reg) { 11716 tmp = *dst_reg; 11717 copy_register_state(dst_reg, ptr_reg); 11718 } 11719 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11720 env->insn_idx); 11721 if (!ptr_is_dst_reg && ret) 11722 *dst_reg = tmp; 11723 return !ret ? REASON_STACK : 0; 11724 } 11725 11726 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11727 { 11728 struct bpf_verifier_state *vstate = env->cur_state; 11729 11730 /* If we simulate paths under speculation, we don't update the 11731 * insn as 'seen' such that when we verify unreachable paths in 11732 * the non-speculative domain, sanitize_dead_code() can still 11733 * rewrite/sanitize them. 11734 */ 11735 if (!vstate->speculative) 11736 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11737 } 11738 11739 static int sanitize_err(struct bpf_verifier_env *env, 11740 const struct bpf_insn *insn, int reason, 11741 const struct bpf_reg_state *off_reg, 11742 const struct bpf_reg_state *dst_reg) 11743 { 11744 static const char *err = "pointer arithmetic with it prohibited for !root"; 11745 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11746 u32 dst = insn->dst_reg, src = insn->src_reg; 11747 11748 switch (reason) { 11749 case REASON_BOUNDS: 11750 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11751 off_reg == dst_reg ? dst : src, err); 11752 break; 11753 case REASON_TYPE: 11754 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11755 off_reg == dst_reg ? src : dst, err); 11756 break; 11757 case REASON_PATHS: 11758 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11759 dst, op, err); 11760 break; 11761 case REASON_LIMIT: 11762 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11763 dst, op, err); 11764 break; 11765 case REASON_STACK: 11766 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11767 dst, err); 11768 break; 11769 default: 11770 verbose(env, "verifier internal error: unknown reason (%d)\n", 11771 reason); 11772 break; 11773 } 11774 11775 return -EACCES; 11776 } 11777 11778 /* check that stack access falls within stack limits and that 'reg' doesn't 11779 * have a variable offset. 11780 * 11781 * Variable offset is prohibited for unprivileged mode for simplicity since it 11782 * requires corresponding support in Spectre masking for stack ALU. See also 11783 * retrieve_ptr_limit(). 11784 * 11785 * 11786 * 'off' includes 'reg->off'. 11787 */ 11788 static int check_stack_access_for_ptr_arithmetic( 11789 struct bpf_verifier_env *env, 11790 int regno, 11791 const struct bpf_reg_state *reg, 11792 int off) 11793 { 11794 if (!tnum_is_const(reg->var_off)) { 11795 char tn_buf[48]; 11796 11797 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11798 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11799 regno, tn_buf, off); 11800 return -EACCES; 11801 } 11802 11803 if (off >= 0 || off < -MAX_BPF_STACK) { 11804 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11805 "prohibited for !root; off=%d\n", regno, off); 11806 return -EACCES; 11807 } 11808 11809 return 0; 11810 } 11811 11812 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11813 const struct bpf_insn *insn, 11814 const struct bpf_reg_state *dst_reg) 11815 { 11816 u32 dst = insn->dst_reg; 11817 11818 /* For unprivileged we require that resulting offset must be in bounds 11819 * in order to be able to sanitize access later on. 11820 */ 11821 if (env->bypass_spec_v1) 11822 return 0; 11823 11824 switch (dst_reg->type) { 11825 case PTR_TO_STACK: 11826 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 11827 dst_reg->off + dst_reg->var_off.value)) 11828 return -EACCES; 11829 break; 11830 case PTR_TO_MAP_VALUE: 11831 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 11832 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 11833 "prohibited for !root\n", dst); 11834 return -EACCES; 11835 } 11836 break; 11837 default: 11838 break; 11839 } 11840 11841 return 0; 11842 } 11843 11844 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 11845 * Caller should also handle BPF_MOV case separately. 11846 * If we return -EACCES, caller may want to try again treating pointer as a 11847 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 11848 */ 11849 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 11850 struct bpf_insn *insn, 11851 const struct bpf_reg_state *ptr_reg, 11852 const struct bpf_reg_state *off_reg) 11853 { 11854 struct bpf_verifier_state *vstate = env->cur_state; 11855 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11856 struct bpf_reg_state *regs = state->regs, *dst_reg; 11857 bool known = tnum_is_const(off_reg->var_off); 11858 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 11859 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 11860 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 11861 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 11862 struct bpf_sanitize_info info = {}; 11863 u8 opcode = BPF_OP(insn->code); 11864 u32 dst = insn->dst_reg; 11865 int ret; 11866 11867 dst_reg = ®s[dst]; 11868 11869 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 11870 smin_val > smax_val || umin_val > umax_val) { 11871 /* Taint dst register if offset had invalid bounds derived from 11872 * e.g. dead branches. 11873 */ 11874 __mark_reg_unknown(env, dst_reg); 11875 return 0; 11876 } 11877 11878 if (BPF_CLASS(insn->code) != BPF_ALU64) { 11879 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 11880 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11881 __mark_reg_unknown(env, dst_reg); 11882 return 0; 11883 } 11884 11885 verbose(env, 11886 "R%d 32-bit pointer arithmetic prohibited\n", 11887 dst); 11888 return -EACCES; 11889 } 11890 11891 if (ptr_reg->type & PTR_MAYBE_NULL) { 11892 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 11893 dst, reg_type_str(env, ptr_reg->type)); 11894 return -EACCES; 11895 } 11896 11897 switch (base_type(ptr_reg->type)) { 11898 case CONST_PTR_TO_MAP: 11899 /* smin_val represents the known value */ 11900 if (known && smin_val == 0 && opcode == BPF_ADD) 11901 break; 11902 fallthrough; 11903 case PTR_TO_PACKET_END: 11904 case PTR_TO_SOCKET: 11905 case PTR_TO_SOCK_COMMON: 11906 case PTR_TO_TCP_SOCK: 11907 case PTR_TO_XDP_SOCK: 11908 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 11909 dst, reg_type_str(env, ptr_reg->type)); 11910 return -EACCES; 11911 default: 11912 break; 11913 } 11914 11915 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 11916 * The id may be overwritten later if we create a new variable offset. 11917 */ 11918 dst_reg->type = ptr_reg->type; 11919 dst_reg->id = ptr_reg->id; 11920 11921 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 11922 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 11923 return -EINVAL; 11924 11925 /* pointer types do not carry 32-bit bounds at the moment. */ 11926 __mark_reg32_unbounded(dst_reg); 11927 11928 if (sanitize_needed(opcode)) { 11929 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 11930 &info, false); 11931 if (ret < 0) 11932 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11933 } 11934 11935 switch (opcode) { 11936 case BPF_ADD: 11937 /* We can take a fixed offset as long as it doesn't overflow 11938 * the s32 'off' field 11939 */ 11940 if (known && (ptr_reg->off + smin_val == 11941 (s64)(s32)(ptr_reg->off + smin_val))) { 11942 /* pointer += K. Accumulate it into fixed offset */ 11943 dst_reg->smin_value = smin_ptr; 11944 dst_reg->smax_value = smax_ptr; 11945 dst_reg->umin_value = umin_ptr; 11946 dst_reg->umax_value = umax_ptr; 11947 dst_reg->var_off = ptr_reg->var_off; 11948 dst_reg->off = ptr_reg->off + smin_val; 11949 dst_reg->raw = ptr_reg->raw; 11950 break; 11951 } 11952 /* A new variable offset is created. Note that off_reg->off 11953 * == 0, since it's a scalar. 11954 * dst_reg gets the pointer type and since some positive 11955 * integer value was added to the pointer, give it a new 'id' 11956 * if it's a PTR_TO_PACKET. 11957 * this creates a new 'base' pointer, off_reg (variable) gets 11958 * added into the variable offset, and we copy the fixed offset 11959 * from ptr_reg. 11960 */ 11961 if (signed_add_overflows(smin_ptr, smin_val) || 11962 signed_add_overflows(smax_ptr, smax_val)) { 11963 dst_reg->smin_value = S64_MIN; 11964 dst_reg->smax_value = S64_MAX; 11965 } else { 11966 dst_reg->smin_value = smin_ptr + smin_val; 11967 dst_reg->smax_value = smax_ptr + smax_val; 11968 } 11969 if (umin_ptr + umin_val < umin_ptr || 11970 umax_ptr + umax_val < umax_ptr) { 11971 dst_reg->umin_value = 0; 11972 dst_reg->umax_value = U64_MAX; 11973 } else { 11974 dst_reg->umin_value = umin_ptr + umin_val; 11975 dst_reg->umax_value = umax_ptr + umax_val; 11976 } 11977 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 11978 dst_reg->off = ptr_reg->off; 11979 dst_reg->raw = ptr_reg->raw; 11980 if (reg_is_pkt_pointer(ptr_reg)) { 11981 dst_reg->id = ++env->id_gen; 11982 /* something was added to pkt_ptr, set range to zero */ 11983 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11984 } 11985 break; 11986 case BPF_SUB: 11987 if (dst_reg == off_reg) { 11988 /* scalar -= pointer. Creates an unknown scalar */ 11989 verbose(env, "R%d tried to subtract pointer from scalar\n", 11990 dst); 11991 return -EACCES; 11992 } 11993 /* We don't allow subtraction from FP, because (according to 11994 * test_verifier.c test "invalid fp arithmetic", JITs might not 11995 * be able to deal with it. 11996 */ 11997 if (ptr_reg->type == PTR_TO_STACK) { 11998 verbose(env, "R%d subtraction from stack pointer prohibited\n", 11999 dst); 12000 return -EACCES; 12001 } 12002 if (known && (ptr_reg->off - smin_val == 12003 (s64)(s32)(ptr_reg->off - smin_val))) { 12004 /* pointer -= K. Subtract it from fixed offset */ 12005 dst_reg->smin_value = smin_ptr; 12006 dst_reg->smax_value = smax_ptr; 12007 dst_reg->umin_value = umin_ptr; 12008 dst_reg->umax_value = umax_ptr; 12009 dst_reg->var_off = ptr_reg->var_off; 12010 dst_reg->id = ptr_reg->id; 12011 dst_reg->off = ptr_reg->off - smin_val; 12012 dst_reg->raw = ptr_reg->raw; 12013 break; 12014 } 12015 /* A new variable offset is created. If the subtrahend is known 12016 * nonnegative, then any reg->range we had before is still good. 12017 */ 12018 if (signed_sub_overflows(smin_ptr, smax_val) || 12019 signed_sub_overflows(smax_ptr, smin_val)) { 12020 /* Overflow possible, we know nothing */ 12021 dst_reg->smin_value = S64_MIN; 12022 dst_reg->smax_value = S64_MAX; 12023 } else { 12024 dst_reg->smin_value = smin_ptr - smax_val; 12025 dst_reg->smax_value = smax_ptr - smin_val; 12026 } 12027 if (umin_ptr < umax_val) { 12028 /* Overflow possible, we know nothing */ 12029 dst_reg->umin_value = 0; 12030 dst_reg->umax_value = U64_MAX; 12031 } else { 12032 /* Cannot overflow (as long as bounds are consistent) */ 12033 dst_reg->umin_value = umin_ptr - umax_val; 12034 dst_reg->umax_value = umax_ptr - umin_val; 12035 } 12036 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12037 dst_reg->off = ptr_reg->off; 12038 dst_reg->raw = ptr_reg->raw; 12039 if (reg_is_pkt_pointer(ptr_reg)) { 12040 dst_reg->id = ++env->id_gen; 12041 /* something was added to pkt_ptr, set range to zero */ 12042 if (smin_val < 0) 12043 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12044 } 12045 break; 12046 case BPF_AND: 12047 case BPF_OR: 12048 case BPF_XOR: 12049 /* bitwise ops on pointers are troublesome, prohibit. */ 12050 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12051 dst, bpf_alu_string[opcode >> 4]); 12052 return -EACCES; 12053 default: 12054 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12055 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12056 dst, bpf_alu_string[opcode >> 4]); 12057 return -EACCES; 12058 } 12059 12060 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12061 return -EINVAL; 12062 reg_bounds_sync(dst_reg); 12063 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12064 return -EACCES; 12065 if (sanitize_needed(opcode)) { 12066 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12067 &info, true); 12068 if (ret < 0) 12069 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12070 } 12071 12072 return 0; 12073 } 12074 12075 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12076 struct bpf_reg_state *src_reg) 12077 { 12078 s32 smin_val = src_reg->s32_min_value; 12079 s32 smax_val = src_reg->s32_max_value; 12080 u32 umin_val = src_reg->u32_min_value; 12081 u32 umax_val = src_reg->u32_max_value; 12082 12083 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12084 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12085 dst_reg->s32_min_value = S32_MIN; 12086 dst_reg->s32_max_value = S32_MAX; 12087 } else { 12088 dst_reg->s32_min_value += smin_val; 12089 dst_reg->s32_max_value += smax_val; 12090 } 12091 if (dst_reg->u32_min_value + umin_val < umin_val || 12092 dst_reg->u32_max_value + umax_val < umax_val) { 12093 dst_reg->u32_min_value = 0; 12094 dst_reg->u32_max_value = U32_MAX; 12095 } else { 12096 dst_reg->u32_min_value += umin_val; 12097 dst_reg->u32_max_value += umax_val; 12098 } 12099 } 12100 12101 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12102 struct bpf_reg_state *src_reg) 12103 { 12104 s64 smin_val = src_reg->smin_value; 12105 s64 smax_val = src_reg->smax_value; 12106 u64 umin_val = src_reg->umin_value; 12107 u64 umax_val = src_reg->umax_value; 12108 12109 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12110 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12111 dst_reg->smin_value = S64_MIN; 12112 dst_reg->smax_value = S64_MAX; 12113 } else { 12114 dst_reg->smin_value += smin_val; 12115 dst_reg->smax_value += smax_val; 12116 } 12117 if (dst_reg->umin_value + umin_val < umin_val || 12118 dst_reg->umax_value + umax_val < umax_val) { 12119 dst_reg->umin_value = 0; 12120 dst_reg->umax_value = U64_MAX; 12121 } else { 12122 dst_reg->umin_value += umin_val; 12123 dst_reg->umax_value += umax_val; 12124 } 12125 } 12126 12127 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12128 struct bpf_reg_state *src_reg) 12129 { 12130 s32 smin_val = src_reg->s32_min_value; 12131 s32 smax_val = src_reg->s32_max_value; 12132 u32 umin_val = src_reg->u32_min_value; 12133 u32 umax_val = src_reg->u32_max_value; 12134 12135 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12136 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12137 /* Overflow possible, we know nothing */ 12138 dst_reg->s32_min_value = S32_MIN; 12139 dst_reg->s32_max_value = S32_MAX; 12140 } else { 12141 dst_reg->s32_min_value -= smax_val; 12142 dst_reg->s32_max_value -= smin_val; 12143 } 12144 if (dst_reg->u32_min_value < umax_val) { 12145 /* Overflow possible, we know nothing */ 12146 dst_reg->u32_min_value = 0; 12147 dst_reg->u32_max_value = U32_MAX; 12148 } else { 12149 /* Cannot overflow (as long as bounds are consistent) */ 12150 dst_reg->u32_min_value -= umax_val; 12151 dst_reg->u32_max_value -= umin_val; 12152 } 12153 } 12154 12155 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12156 struct bpf_reg_state *src_reg) 12157 { 12158 s64 smin_val = src_reg->smin_value; 12159 s64 smax_val = src_reg->smax_value; 12160 u64 umin_val = src_reg->umin_value; 12161 u64 umax_val = src_reg->umax_value; 12162 12163 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12164 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12165 /* Overflow possible, we know nothing */ 12166 dst_reg->smin_value = S64_MIN; 12167 dst_reg->smax_value = S64_MAX; 12168 } else { 12169 dst_reg->smin_value -= smax_val; 12170 dst_reg->smax_value -= smin_val; 12171 } 12172 if (dst_reg->umin_value < umax_val) { 12173 /* Overflow possible, we know nothing */ 12174 dst_reg->umin_value = 0; 12175 dst_reg->umax_value = U64_MAX; 12176 } else { 12177 /* Cannot overflow (as long as bounds are consistent) */ 12178 dst_reg->umin_value -= umax_val; 12179 dst_reg->umax_value -= umin_val; 12180 } 12181 } 12182 12183 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12184 struct bpf_reg_state *src_reg) 12185 { 12186 s32 smin_val = src_reg->s32_min_value; 12187 u32 umin_val = src_reg->u32_min_value; 12188 u32 umax_val = src_reg->u32_max_value; 12189 12190 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12191 /* Ain't nobody got time to multiply that sign */ 12192 __mark_reg32_unbounded(dst_reg); 12193 return; 12194 } 12195 /* Both values are positive, so we can work with unsigned and 12196 * copy the result to signed (unless it exceeds S32_MAX). 12197 */ 12198 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12199 /* Potential overflow, we know nothing */ 12200 __mark_reg32_unbounded(dst_reg); 12201 return; 12202 } 12203 dst_reg->u32_min_value *= umin_val; 12204 dst_reg->u32_max_value *= umax_val; 12205 if (dst_reg->u32_max_value > S32_MAX) { 12206 /* Overflow possible, we know nothing */ 12207 dst_reg->s32_min_value = S32_MIN; 12208 dst_reg->s32_max_value = S32_MAX; 12209 } else { 12210 dst_reg->s32_min_value = dst_reg->u32_min_value; 12211 dst_reg->s32_max_value = dst_reg->u32_max_value; 12212 } 12213 } 12214 12215 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12216 struct bpf_reg_state *src_reg) 12217 { 12218 s64 smin_val = src_reg->smin_value; 12219 u64 umin_val = src_reg->umin_value; 12220 u64 umax_val = src_reg->umax_value; 12221 12222 if (smin_val < 0 || dst_reg->smin_value < 0) { 12223 /* Ain't nobody got time to multiply that sign */ 12224 __mark_reg64_unbounded(dst_reg); 12225 return; 12226 } 12227 /* Both values are positive, so we can work with unsigned and 12228 * copy the result to signed (unless it exceeds S64_MAX). 12229 */ 12230 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12231 /* Potential overflow, we know nothing */ 12232 __mark_reg64_unbounded(dst_reg); 12233 return; 12234 } 12235 dst_reg->umin_value *= umin_val; 12236 dst_reg->umax_value *= umax_val; 12237 if (dst_reg->umax_value > S64_MAX) { 12238 /* Overflow possible, we know nothing */ 12239 dst_reg->smin_value = S64_MIN; 12240 dst_reg->smax_value = S64_MAX; 12241 } else { 12242 dst_reg->smin_value = dst_reg->umin_value; 12243 dst_reg->smax_value = dst_reg->umax_value; 12244 } 12245 } 12246 12247 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12248 struct bpf_reg_state *src_reg) 12249 { 12250 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12251 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12252 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12253 s32 smin_val = src_reg->s32_min_value; 12254 u32 umax_val = src_reg->u32_max_value; 12255 12256 if (src_known && dst_known) { 12257 __mark_reg32_known(dst_reg, var32_off.value); 12258 return; 12259 } 12260 12261 /* We get our minimum from the var_off, since that's inherently 12262 * bitwise. Our maximum is the minimum of the operands' maxima. 12263 */ 12264 dst_reg->u32_min_value = var32_off.value; 12265 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12266 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12267 /* Lose signed bounds when ANDing negative numbers, 12268 * ain't nobody got time for that. 12269 */ 12270 dst_reg->s32_min_value = S32_MIN; 12271 dst_reg->s32_max_value = S32_MAX; 12272 } else { 12273 /* ANDing two positives gives a positive, so safe to 12274 * cast result into s64. 12275 */ 12276 dst_reg->s32_min_value = dst_reg->u32_min_value; 12277 dst_reg->s32_max_value = dst_reg->u32_max_value; 12278 } 12279 } 12280 12281 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12282 struct bpf_reg_state *src_reg) 12283 { 12284 bool src_known = tnum_is_const(src_reg->var_off); 12285 bool dst_known = tnum_is_const(dst_reg->var_off); 12286 s64 smin_val = src_reg->smin_value; 12287 u64 umax_val = src_reg->umax_value; 12288 12289 if (src_known && dst_known) { 12290 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12291 return; 12292 } 12293 12294 /* We get our minimum from the var_off, since that's inherently 12295 * bitwise. Our maximum is the minimum of the operands' maxima. 12296 */ 12297 dst_reg->umin_value = dst_reg->var_off.value; 12298 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12299 if (dst_reg->smin_value < 0 || smin_val < 0) { 12300 /* Lose signed bounds when ANDing negative numbers, 12301 * ain't nobody got time for that. 12302 */ 12303 dst_reg->smin_value = S64_MIN; 12304 dst_reg->smax_value = S64_MAX; 12305 } else { 12306 /* ANDing two positives gives a positive, so safe to 12307 * cast result into s64. 12308 */ 12309 dst_reg->smin_value = dst_reg->umin_value; 12310 dst_reg->smax_value = dst_reg->umax_value; 12311 } 12312 /* We may learn something more from the var_off */ 12313 __update_reg_bounds(dst_reg); 12314 } 12315 12316 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12317 struct bpf_reg_state *src_reg) 12318 { 12319 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12320 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12321 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12322 s32 smin_val = src_reg->s32_min_value; 12323 u32 umin_val = src_reg->u32_min_value; 12324 12325 if (src_known && dst_known) { 12326 __mark_reg32_known(dst_reg, var32_off.value); 12327 return; 12328 } 12329 12330 /* We get our maximum from the var_off, and our minimum is the 12331 * maximum of the operands' minima 12332 */ 12333 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12334 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12335 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12336 /* Lose signed bounds when ORing negative numbers, 12337 * ain't nobody got time for that. 12338 */ 12339 dst_reg->s32_min_value = S32_MIN; 12340 dst_reg->s32_max_value = S32_MAX; 12341 } else { 12342 /* ORing two positives gives a positive, so safe to 12343 * cast result into s64. 12344 */ 12345 dst_reg->s32_min_value = dst_reg->u32_min_value; 12346 dst_reg->s32_max_value = dst_reg->u32_max_value; 12347 } 12348 } 12349 12350 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12351 struct bpf_reg_state *src_reg) 12352 { 12353 bool src_known = tnum_is_const(src_reg->var_off); 12354 bool dst_known = tnum_is_const(dst_reg->var_off); 12355 s64 smin_val = src_reg->smin_value; 12356 u64 umin_val = src_reg->umin_value; 12357 12358 if (src_known && dst_known) { 12359 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12360 return; 12361 } 12362 12363 /* We get our maximum from the var_off, and our minimum is the 12364 * maximum of the operands' minima 12365 */ 12366 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12367 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12368 if (dst_reg->smin_value < 0 || smin_val < 0) { 12369 /* Lose signed bounds when ORing negative numbers, 12370 * ain't nobody got time for that. 12371 */ 12372 dst_reg->smin_value = S64_MIN; 12373 dst_reg->smax_value = S64_MAX; 12374 } else { 12375 /* ORing two positives gives a positive, so safe to 12376 * cast result into s64. 12377 */ 12378 dst_reg->smin_value = dst_reg->umin_value; 12379 dst_reg->smax_value = dst_reg->umax_value; 12380 } 12381 /* We may learn something more from the var_off */ 12382 __update_reg_bounds(dst_reg); 12383 } 12384 12385 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12386 struct bpf_reg_state *src_reg) 12387 { 12388 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12389 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12390 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12391 s32 smin_val = src_reg->s32_min_value; 12392 12393 if (src_known && dst_known) { 12394 __mark_reg32_known(dst_reg, var32_off.value); 12395 return; 12396 } 12397 12398 /* We get both minimum and maximum from the var32_off. */ 12399 dst_reg->u32_min_value = var32_off.value; 12400 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12401 12402 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12403 /* XORing two positive sign numbers gives a positive, 12404 * so safe to cast u32 result into s32. 12405 */ 12406 dst_reg->s32_min_value = dst_reg->u32_min_value; 12407 dst_reg->s32_max_value = dst_reg->u32_max_value; 12408 } else { 12409 dst_reg->s32_min_value = S32_MIN; 12410 dst_reg->s32_max_value = S32_MAX; 12411 } 12412 } 12413 12414 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12415 struct bpf_reg_state *src_reg) 12416 { 12417 bool src_known = tnum_is_const(src_reg->var_off); 12418 bool dst_known = tnum_is_const(dst_reg->var_off); 12419 s64 smin_val = src_reg->smin_value; 12420 12421 if (src_known && dst_known) { 12422 /* dst_reg->var_off.value has been updated earlier */ 12423 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12424 return; 12425 } 12426 12427 /* We get both minimum and maximum from the var_off. */ 12428 dst_reg->umin_value = dst_reg->var_off.value; 12429 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12430 12431 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12432 /* XORing two positive sign numbers gives a positive, 12433 * so safe to cast u64 result into s64. 12434 */ 12435 dst_reg->smin_value = dst_reg->umin_value; 12436 dst_reg->smax_value = dst_reg->umax_value; 12437 } else { 12438 dst_reg->smin_value = S64_MIN; 12439 dst_reg->smax_value = S64_MAX; 12440 } 12441 12442 __update_reg_bounds(dst_reg); 12443 } 12444 12445 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12446 u64 umin_val, u64 umax_val) 12447 { 12448 /* We lose all sign bit information (except what we can pick 12449 * up from var_off) 12450 */ 12451 dst_reg->s32_min_value = S32_MIN; 12452 dst_reg->s32_max_value = S32_MAX; 12453 /* If we might shift our top bit out, then we know nothing */ 12454 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12455 dst_reg->u32_min_value = 0; 12456 dst_reg->u32_max_value = U32_MAX; 12457 } else { 12458 dst_reg->u32_min_value <<= umin_val; 12459 dst_reg->u32_max_value <<= umax_val; 12460 } 12461 } 12462 12463 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12464 struct bpf_reg_state *src_reg) 12465 { 12466 u32 umax_val = src_reg->u32_max_value; 12467 u32 umin_val = src_reg->u32_min_value; 12468 /* u32 alu operation will zext upper bits */ 12469 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12470 12471 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12472 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12473 /* Not required but being careful mark reg64 bounds as unknown so 12474 * that we are forced to pick them up from tnum and zext later and 12475 * if some path skips this step we are still safe. 12476 */ 12477 __mark_reg64_unbounded(dst_reg); 12478 __update_reg32_bounds(dst_reg); 12479 } 12480 12481 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12482 u64 umin_val, u64 umax_val) 12483 { 12484 /* Special case <<32 because it is a common compiler pattern to sign 12485 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12486 * positive we know this shift will also be positive so we can track 12487 * bounds correctly. Otherwise we lose all sign bit information except 12488 * what we can pick up from var_off. Perhaps we can generalize this 12489 * later to shifts of any length. 12490 */ 12491 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12492 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12493 else 12494 dst_reg->smax_value = S64_MAX; 12495 12496 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12497 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12498 else 12499 dst_reg->smin_value = S64_MIN; 12500 12501 /* If we might shift our top bit out, then we know nothing */ 12502 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12503 dst_reg->umin_value = 0; 12504 dst_reg->umax_value = U64_MAX; 12505 } else { 12506 dst_reg->umin_value <<= umin_val; 12507 dst_reg->umax_value <<= umax_val; 12508 } 12509 } 12510 12511 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12512 struct bpf_reg_state *src_reg) 12513 { 12514 u64 umax_val = src_reg->umax_value; 12515 u64 umin_val = src_reg->umin_value; 12516 12517 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12518 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12519 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12520 12521 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12522 /* We may learn something more from the var_off */ 12523 __update_reg_bounds(dst_reg); 12524 } 12525 12526 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12527 struct bpf_reg_state *src_reg) 12528 { 12529 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12530 u32 umax_val = src_reg->u32_max_value; 12531 u32 umin_val = src_reg->u32_min_value; 12532 12533 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12534 * be negative, then either: 12535 * 1) src_reg might be zero, so the sign bit of the result is 12536 * unknown, so we lose our signed bounds 12537 * 2) it's known negative, thus the unsigned bounds capture the 12538 * signed bounds 12539 * 3) the signed bounds cross zero, so they tell us nothing 12540 * about the result 12541 * If the value in dst_reg is known nonnegative, then again the 12542 * unsigned bounds capture the signed bounds. 12543 * Thus, in all cases it suffices to blow away our signed bounds 12544 * and rely on inferring new ones from the unsigned bounds and 12545 * var_off of the result. 12546 */ 12547 dst_reg->s32_min_value = S32_MIN; 12548 dst_reg->s32_max_value = S32_MAX; 12549 12550 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12551 dst_reg->u32_min_value >>= umax_val; 12552 dst_reg->u32_max_value >>= umin_val; 12553 12554 __mark_reg64_unbounded(dst_reg); 12555 __update_reg32_bounds(dst_reg); 12556 } 12557 12558 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12559 struct bpf_reg_state *src_reg) 12560 { 12561 u64 umax_val = src_reg->umax_value; 12562 u64 umin_val = src_reg->umin_value; 12563 12564 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12565 * be negative, then either: 12566 * 1) src_reg might be zero, so the sign bit of the result is 12567 * unknown, so we lose our signed bounds 12568 * 2) it's known negative, thus the unsigned bounds capture the 12569 * signed bounds 12570 * 3) the signed bounds cross zero, so they tell us nothing 12571 * about the result 12572 * If the value in dst_reg is known nonnegative, then again the 12573 * unsigned bounds capture the signed bounds. 12574 * Thus, in all cases it suffices to blow away our signed bounds 12575 * and rely on inferring new ones from the unsigned bounds and 12576 * var_off of the result. 12577 */ 12578 dst_reg->smin_value = S64_MIN; 12579 dst_reg->smax_value = S64_MAX; 12580 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12581 dst_reg->umin_value >>= umax_val; 12582 dst_reg->umax_value >>= umin_val; 12583 12584 /* Its not easy to operate on alu32 bounds here because it depends 12585 * on bits being shifted in. Take easy way out and mark unbounded 12586 * so we can recalculate later from tnum. 12587 */ 12588 __mark_reg32_unbounded(dst_reg); 12589 __update_reg_bounds(dst_reg); 12590 } 12591 12592 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12593 struct bpf_reg_state *src_reg) 12594 { 12595 u64 umin_val = src_reg->u32_min_value; 12596 12597 /* Upon reaching here, src_known is true and 12598 * umax_val is equal to umin_val. 12599 */ 12600 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12601 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12602 12603 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12604 12605 /* blow away the dst_reg umin_value/umax_value and rely on 12606 * dst_reg var_off to refine the result. 12607 */ 12608 dst_reg->u32_min_value = 0; 12609 dst_reg->u32_max_value = U32_MAX; 12610 12611 __mark_reg64_unbounded(dst_reg); 12612 __update_reg32_bounds(dst_reg); 12613 } 12614 12615 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12616 struct bpf_reg_state *src_reg) 12617 { 12618 u64 umin_val = src_reg->umin_value; 12619 12620 /* Upon reaching here, src_known is true and umax_val is equal 12621 * to umin_val. 12622 */ 12623 dst_reg->smin_value >>= umin_val; 12624 dst_reg->smax_value >>= umin_val; 12625 12626 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12627 12628 /* blow away the dst_reg umin_value/umax_value and rely on 12629 * dst_reg var_off to refine the result. 12630 */ 12631 dst_reg->umin_value = 0; 12632 dst_reg->umax_value = U64_MAX; 12633 12634 /* Its not easy to operate on alu32 bounds here because it depends 12635 * on bits being shifted in from upper 32-bits. Take easy way out 12636 * and mark unbounded so we can recalculate later from tnum. 12637 */ 12638 __mark_reg32_unbounded(dst_reg); 12639 __update_reg_bounds(dst_reg); 12640 } 12641 12642 /* WARNING: This function does calculations on 64-bit values, but the actual 12643 * execution may occur on 32-bit values. Therefore, things like bitshifts 12644 * need extra checks in the 32-bit case. 12645 */ 12646 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12647 struct bpf_insn *insn, 12648 struct bpf_reg_state *dst_reg, 12649 struct bpf_reg_state src_reg) 12650 { 12651 struct bpf_reg_state *regs = cur_regs(env); 12652 u8 opcode = BPF_OP(insn->code); 12653 bool src_known; 12654 s64 smin_val, smax_val; 12655 u64 umin_val, umax_val; 12656 s32 s32_min_val, s32_max_val; 12657 u32 u32_min_val, u32_max_val; 12658 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12659 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12660 int ret; 12661 12662 smin_val = src_reg.smin_value; 12663 smax_val = src_reg.smax_value; 12664 umin_val = src_reg.umin_value; 12665 umax_val = src_reg.umax_value; 12666 12667 s32_min_val = src_reg.s32_min_value; 12668 s32_max_val = src_reg.s32_max_value; 12669 u32_min_val = src_reg.u32_min_value; 12670 u32_max_val = src_reg.u32_max_value; 12671 12672 if (alu32) { 12673 src_known = tnum_subreg_is_const(src_reg.var_off); 12674 if ((src_known && 12675 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12676 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12677 /* Taint dst register if offset had invalid bounds 12678 * derived from e.g. dead branches. 12679 */ 12680 __mark_reg_unknown(env, dst_reg); 12681 return 0; 12682 } 12683 } else { 12684 src_known = tnum_is_const(src_reg.var_off); 12685 if ((src_known && 12686 (smin_val != smax_val || umin_val != umax_val)) || 12687 smin_val > smax_val || umin_val > umax_val) { 12688 /* Taint dst register if offset had invalid bounds 12689 * derived from e.g. dead branches. 12690 */ 12691 __mark_reg_unknown(env, dst_reg); 12692 return 0; 12693 } 12694 } 12695 12696 if (!src_known && 12697 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12698 __mark_reg_unknown(env, dst_reg); 12699 return 0; 12700 } 12701 12702 if (sanitize_needed(opcode)) { 12703 ret = sanitize_val_alu(env, insn); 12704 if (ret < 0) 12705 return sanitize_err(env, insn, ret, NULL, NULL); 12706 } 12707 12708 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12709 * There are two classes of instructions: The first class we track both 12710 * alu32 and alu64 sign/unsigned bounds independently this provides the 12711 * greatest amount of precision when alu operations are mixed with jmp32 12712 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12713 * and BPF_OR. This is possible because these ops have fairly easy to 12714 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12715 * See alu32 verifier tests for examples. The second class of 12716 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12717 * with regards to tracking sign/unsigned bounds because the bits may 12718 * cross subreg boundaries in the alu64 case. When this happens we mark 12719 * the reg unbounded in the subreg bound space and use the resulting 12720 * tnum to calculate an approximation of the sign/unsigned bounds. 12721 */ 12722 switch (opcode) { 12723 case BPF_ADD: 12724 scalar32_min_max_add(dst_reg, &src_reg); 12725 scalar_min_max_add(dst_reg, &src_reg); 12726 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12727 break; 12728 case BPF_SUB: 12729 scalar32_min_max_sub(dst_reg, &src_reg); 12730 scalar_min_max_sub(dst_reg, &src_reg); 12731 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12732 break; 12733 case BPF_MUL: 12734 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12735 scalar32_min_max_mul(dst_reg, &src_reg); 12736 scalar_min_max_mul(dst_reg, &src_reg); 12737 break; 12738 case BPF_AND: 12739 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12740 scalar32_min_max_and(dst_reg, &src_reg); 12741 scalar_min_max_and(dst_reg, &src_reg); 12742 break; 12743 case BPF_OR: 12744 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12745 scalar32_min_max_or(dst_reg, &src_reg); 12746 scalar_min_max_or(dst_reg, &src_reg); 12747 break; 12748 case BPF_XOR: 12749 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12750 scalar32_min_max_xor(dst_reg, &src_reg); 12751 scalar_min_max_xor(dst_reg, &src_reg); 12752 break; 12753 case BPF_LSH: 12754 if (umax_val >= insn_bitness) { 12755 /* Shifts greater than 31 or 63 are undefined. 12756 * This includes shifts by a negative number. 12757 */ 12758 mark_reg_unknown(env, regs, insn->dst_reg); 12759 break; 12760 } 12761 if (alu32) 12762 scalar32_min_max_lsh(dst_reg, &src_reg); 12763 else 12764 scalar_min_max_lsh(dst_reg, &src_reg); 12765 break; 12766 case BPF_RSH: 12767 if (umax_val >= insn_bitness) { 12768 /* Shifts greater than 31 or 63 are undefined. 12769 * This includes shifts by a negative number. 12770 */ 12771 mark_reg_unknown(env, regs, insn->dst_reg); 12772 break; 12773 } 12774 if (alu32) 12775 scalar32_min_max_rsh(dst_reg, &src_reg); 12776 else 12777 scalar_min_max_rsh(dst_reg, &src_reg); 12778 break; 12779 case BPF_ARSH: 12780 if (umax_val >= insn_bitness) { 12781 /* Shifts greater than 31 or 63 are undefined. 12782 * This includes shifts by a negative number. 12783 */ 12784 mark_reg_unknown(env, regs, insn->dst_reg); 12785 break; 12786 } 12787 if (alu32) 12788 scalar32_min_max_arsh(dst_reg, &src_reg); 12789 else 12790 scalar_min_max_arsh(dst_reg, &src_reg); 12791 break; 12792 default: 12793 mark_reg_unknown(env, regs, insn->dst_reg); 12794 break; 12795 } 12796 12797 /* ALU32 ops are zero extended into 64bit register */ 12798 if (alu32) 12799 zext_32_to_64(dst_reg); 12800 reg_bounds_sync(dst_reg); 12801 return 0; 12802 } 12803 12804 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12805 * and var_off. 12806 */ 12807 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12808 struct bpf_insn *insn) 12809 { 12810 struct bpf_verifier_state *vstate = env->cur_state; 12811 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12812 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12813 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12814 u8 opcode = BPF_OP(insn->code); 12815 int err; 12816 12817 dst_reg = ®s[insn->dst_reg]; 12818 src_reg = NULL; 12819 if (dst_reg->type != SCALAR_VALUE) 12820 ptr_reg = dst_reg; 12821 else 12822 /* Make sure ID is cleared otherwise dst_reg min/max could be 12823 * incorrectly propagated into other registers by find_equal_scalars() 12824 */ 12825 dst_reg->id = 0; 12826 if (BPF_SRC(insn->code) == BPF_X) { 12827 src_reg = ®s[insn->src_reg]; 12828 if (src_reg->type != SCALAR_VALUE) { 12829 if (dst_reg->type != SCALAR_VALUE) { 12830 /* Combining two pointers by any ALU op yields 12831 * an arbitrary scalar. Disallow all math except 12832 * pointer subtraction 12833 */ 12834 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12835 mark_reg_unknown(env, regs, insn->dst_reg); 12836 return 0; 12837 } 12838 verbose(env, "R%d pointer %s pointer prohibited\n", 12839 insn->dst_reg, 12840 bpf_alu_string[opcode >> 4]); 12841 return -EACCES; 12842 } else { 12843 /* scalar += pointer 12844 * This is legal, but we have to reverse our 12845 * src/dest handling in computing the range 12846 */ 12847 err = mark_chain_precision(env, insn->dst_reg); 12848 if (err) 12849 return err; 12850 return adjust_ptr_min_max_vals(env, insn, 12851 src_reg, dst_reg); 12852 } 12853 } else if (ptr_reg) { 12854 /* pointer += scalar */ 12855 err = mark_chain_precision(env, insn->src_reg); 12856 if (err) 12857 return err; 12858 return adjust_ptr_min_max_vals(env, insn, 12859 dst_reg, src_reg); 12860 } else if (dst_reg->precise) { 12861 /* if dst_reg is precise, src_reg should be precise as well */ 12862 err = mark_chain_precision(env, insn->src_reg); 12863 if (err) 12864 return err; 12865 } 12866 } else { 12867 /* Pretend the src is a reg with a known value, since we only 12868 * need to be able to read from this state. 12869 */ 12870 off_reg.type = SCALAR_VALUE; 12871 __mark_reg_known(&off_reg, insn->imm); 12872 src_reg = &off_reg; 12873 if (ptr_reg) /* pointer += K */ 12874 return adjust_ptr_min_max_vals(env, insn, 12875 ptr_reg, src_reg); 12876 } 12877 12878 /* Got here implies adding two SCALAR_VALUEs */ 12879 if (WARN_ON_ONCE(ptr_reg)) { 12880 print_verifier_state(env, state, true); 12881 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 12882 return -EINVAL; 12883 } 12884 if (WARN_ON(!src_reg)) { 12885 print_verifier_state(env, state, true); 12886 verbose(env, "verifier internal error: no src_reg\n"); 12887 return -EINVAL; 12888 } 12889 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 12890 } 12891 12892 /* check validity of 32-bit and 64-bit arithmetic operations */ 12893 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 12894 { 12895 struct bpf_reg_state *regs = cur_regs(env); 12896 u8 opcode = BPF_OP(insn->code); 12897 int err; 12898 12899 if (opcode == BPF_END || opcode == BPF_NEG) { 12900 if (opcode == BPF_NEG) { 12901 if (BPF_SRC(insn->code) != BPF_K || 12902 insn->src_reg != BPF_REG_0 || 12903 insn->off != 0 || insn->imm != 0) { 12904 verbose(env, "BPF_NEG uses reserved fields\n"); 12905 return -EINVAL; 12906 } 12907 } else { 12908 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 12909 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 12910 BPF_CLASS(insn->code) == BPF_ALU64) { 12911 verbose(env, "BPF_END uses reserved fields\n"); 12912 return -EINVAL; 12913 } 12914 } 12915 12916 /* check src operand */ 12917 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12918 if (err) 12919 return err; 12920 12921 if (is_pointer_value(env, insn->dst_reg)) { 12922 verbose(env, "R%d pointer arithmetic prohibited\n", 12923 insn->dst_reg); 12924 return -EACCES; 12925 } 12926 12927 /* check dest operand */ 12928 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12929 if (err) 12930 return err; 12931 12932 } else if (opcode == BPF_MOV) { 12933 12934 if (BPF_SRC(insn->code) == BPF_X) { 12935 if (insn->imm != 0 || insn->off != 0) { 12936 verbose(env, "BPF_MOV uses reserved fields\n"); 12937 return -EINVAL; 12938 } 12939 12940 /* check src operand */ 12941 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12942 if (err) 12943 return err; 12944 } else { 12945 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12946 verbose(env, "BPF_MOV uses reserved fields\n"); 12947 return -EINVAL; 12948 } 12949 } 12950 12951 /* check dest operand, mark as required later */ 12952 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12953 if (err) 12954 return err; 12955 12956 if (BPF_SRC(insn->code) == BPF_X) { 12957 struct bpf_reg_state *src_reg = regs + insn->src_reg; 12958 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 12959 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 12960 !tnum_is_const(src_reg->var_off); 12961 12962 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12963 /* case: R1 = R2 12964 * copy register state to dest reg 12965 */ 12966 if (need_id) 12967 /* Assign src and dst registers the same ID 12968 * that will be used by find_equal_scalars() 12969 * to propagate min/max range. 12970 */ 12971 src_reg->id = ++env->id_gen; 12972 copy_register_state(dst_reg, src_reg); 12973 dst_reg->live |= REG_LIVE_WRITTEN; 12974 dst_reg->subreg_def = DEF_NOT_SUBREG; 12975 } else { 12976 /* R1 = (u32) R2 */ 12977 if (is_pointer_value(env, insn->src_reg)) { 12978 verbose(env, 12979 "R%d partial copy of pointer\n", 12980 insn->src_reg); 12981 return -EACCES; 12982 } else if (src_reg->type == SCALAR_VALUE) { 12983 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 12984 12985 if (is_src_reg_u32 && need_id) 12986 src_reg->id = ++env->id_gen; 12987 copy_register_state(dst_reg, src_reg); 12988 /* Make sure ID is cleared if src_reg is not in u32 range otherwise 12989 * dst_reg min/max could be incorrectly 12990 * propagated into src_reg by find_equal_scalars() 12991 */ 12992 if (!is_src_reg_u32) 12993 dst_reg->id = 0; 12994 dst_reg->live |= REG_LIVE_WRITTEN; 12995 dst_reg->subreg_def = env->insn_idx + 1; 12996 } else { 12997 mark_reg_unknown(env, regs, 12998 insn->dst_reg); 12999 } 13000 zext_32_to_64(dst_reg); 13001 reg_bounds_sync(dst_reg); 13002 } 13003 } else { 13004 /* case: R = imm 13005 * remember the value we stored into this reg 13006 */ 13007 /* clear any state __mark_reg_known doesn't set */ 13008 mark_reg_unknown(env, regs, insn->dst_reg); 13009 regs[insn->dst_reg].type = SCALAR_VALUE; 13010 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13011 __mark_reg_known(regs + insn->dst_reg, 13012 insn->imm); 13013 } else { 13014 __mark_reg_known(regs + insn->dst_reg, 13015 (u32)insn->imm); 13016 } 13017 } 13018 13019 } else if (opcode > BPF_END) { 13020 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13021 return -EINVAL; 13022 13023 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13024 13025 if (BPF_SRC(insn->code) == BPF_X) { 13026 if (insn->imm != 0 || insn->off != 0) { 13027 verbose(env, "BPF_ALU uses reserved fields\n"); 13028 return -EINVAL; 13029 } 13030 /* check src1 operand */ 13031 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13032 if (err) 13033 return err; 13034 } else { 13035 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13036 verbose(env, "BPF_ALU uses reserved fields\n"); 13037 return -EINVAL; 13038 } 13039 } 13040 13041 /* check src2 operand */ 13042 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13043 if (err) 13044 return err; 13045 13046 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13047 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13048 verbose(env, "div by zero\n"); 13049 return -EINVAL; 13050 } 13051 13052 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13053 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13054 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13055 13056 if (insn->imm < 0 || insn->imm >= size) { 13057 verbose(env, "invalid shift %d\n", insn->imm); 13058 return -EINVAL; 13059 } 13060 } 13061 13062 /* check dest operand */ 13063 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13064 if (err) 13065 return err; 13066 13067 return adjust_reg_min_max_vals(env, insn); 13068 } 13069 13070 return 0; 13071 } 13072 13073 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13074 struct bpf_reg_state *dst_reg, 13075 enum bpf_reg_type type, 13076 bool range_right_open) 13077 { 13078 struct bpf_func_state *state; 13079 struct bpf_reg_state *reg; 13080 int new_range; 13081 13082 if (dst_reg->off < 0 || 13083 (dst_reg->off == 0 && range_right_open)) 13084 /* This doesn't give us any range */ 13085 return; 13086 13087 if (dst_reg->umax_value > MAX_PACKET_OFF || 13088 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13089 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13090 * than pkt_end, but that's because it's also less than pkt. 13091 */ 13092 return; 13093 13094 new_range = dst_reg->off; 13095 if (range_right_open) 13096 new_range++; 13097 13098 /* Examples for register markings: 13099 * 13100 * pkt_data in dst register: 13101 * 13102 * r2 = r3; 13103 * r2 += 8; 13104 * if (r2 > pkt_end) goto <handle exception> 13105 * <access okay> 13106 * 13107 * r2 = r3; 13108 * r2 += 8; 13109 * if (r2 < pkt_end) goto <access okay> 13110 * <handle exception> 13111 * 13112 * Where: 13113 * r2 == dst_reg, pkt_end == src_reg 13114 * r2=pkt(id=n,off=8,r=0) 13115 * r3=pkt(id=n,off=0,r=0) 13116 * 13117 * pkt_data in src register: 13118 * 13119 * r2 = r3; 13120 * r2 += 8; 13121 * if (pkt_end >= r2) goto <access okay> 13122 * <handle exception> 13123 * 13124 * r2 = r3; 13125 * r2 += 8; 13126 * if (pkt_end <= r2) goto <handle exception> 13127 * <access okay> 13128 * 13129 * Where: 13130 * pkt_end == dst_reg, r2 == src_reg 13131 * r2=pkt(id=n,off=8,r=0) 13132 * r3=pkt(id=n,off=0,r=0) 13133 * 13134 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13135 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13136 * and [r3, r3 + 8-1) respectively is safe to access depending on 13137 * the check. 13138 */ 13139 13140 /* If our ids match, then we must have the same max_value. And we 13141 * don't care about the other reg's fixed offset, since if it's too big 13142 * the range won't allow anything. 13143 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13144 */ 13145 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13146 if (reg->type == type && reg->id == dst_reg->id) 13147 /* keep the maximum range already checked */ 13148 reg->range = max(reg->range, new_range); 13149 })); 13150 } 13151 13152 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13153 { 13154 struct tnum subreg = tnum_subreg(reg->var_off); 13155 s32 sval = (s32)val; 13156 13157 switch (opcode) { 13158 case BPF_JEQ: 13159 if (tnum_is_const(subreg)) 13160 return !!tnum_equals_const(subreg, val); 13161 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13162 return 0; 13163 break; 13164 case BPF_JNE: 13165 if (tnum_is_const(subreg)) 13166 return !tnum_equals_const(subreg, val); 13167 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13168 return 1; 13169 break; 13170 case BPF_JSET: 13171 if ((~subreg.mask & subreg.value) & val) 13172 return 1; 13173 if (!((subreg.mask | subreg.value) & val)) 13174 return 0; 13175 break; 13176 case BPF_JGT: 13177 if (reg->u32_min_value > val) 13178 return 1; 13179 else if (reg->u32_max_value <= val) 13180 return 0; 13181 break; 13182 case BPF_JSGT: 13183 if (reg->s32_min_value > sval) 13184 return 1; 13185 else if (reg->s32_max_value <= sval) 13186 return 0; 13187 break; 13188 case BPF_JLT: 13189 if (reg->u32_max_value < val) 13190 return 1; 13191 else if (reg->u32_min_value >= val) 13192 return 0; 13193 break; 13194 case BPF_JSLT: 13195 if (reg->s32_max_value < sval) 13196 return 1; 13197 else if (reg->s32_min_value >= sval) 13198 return 0; 13199 break; 13200 case BPF_JGE: 13201 if (reg->u32_min_value >= val) 13202 return 1; 13203 else if (reg->u32_max_value < val) 13204 return 0; 13205 break; 13206 case BPF_JSGE: 13207 if (reg->s32_min_value >= sval) 13208 return 1; 13209 else if (reg->s32_max_value < sval) 13210 return 0; 13211 break; 13212 case BPF_JLE: 13213 if (reg->u32_max_value <= val) 13214 return 1; 13215 else if (reg->u32_min_value > val) 13216 return 0; 13217 break; 13218 case BPF_JSLE: 13219 if (reg->s32_max_value <= sval) 13220 return 1; 13221 else if (reg->s32_min_value > sval) 13222 return 0; 13223 break; 13224 } 13225 13226 return -1; 13227 } 13228 13229 13230 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13231 { 13232 s64 sval = (s64)val; 13233 13234 switch (opcode) { 13235 case BPF_JEQ: 13236 if (tnum_is_const(reg->var_off)) 13237 return !!tnum_equals_const(reg->var_off, val); 13238 else if (val < reg->umin_value || val > reg->umax_value) 13239 return 0; 13240 break; 13241 case BPF_JNE: 13242 if (tnum_is_const(reg->var_off)) 13243 return !tnum_equals_const(reg->var_off, val); 13244 else if (val < reg->umin_value || val > reg->umax_value) 13245 return 1; 13246 break; 13247 case BPF_JSET: 13248 if ((~reg->var_off.mask & reg->var_off.value) & val) 13249 return 1; 13250 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13251 return 0; 13252 break; 13253 case BPF_JGT: 13254 if (reg->umin_value > val) 13255 return 1; 13256 else if (reg->umax_value <= val) 13257 return 0; 13258 break; 13259 case BPF_JSGT: 13260 if (reg->smin_value > sval) 13261 return 1; 13262 else if (reg->smax_value <= sval) 13263 return 0; 13264 break; 13265 case BPF_JLT: 13266 if (reg->umax_value < val) 13267 return 1; 13268 else if (reg->umin_value >= val) 13269 return 0; 13270 break; 13271 case BPF_JSLT: 13272 if (reg->smax_value < sval) 13273 return 1; 13274 else if (reg->smin_value >= sval) 13275 return 0; 13276 break; 13277 case BPF_JGE: 13278 if (reg->umin_value >= val) 13279 return 1; 13280 else if (reg->umax_value < val) 13281 return 0; 13282 break; 13283 case BPF_JSGE: 13284 if (reg->smin_value >= sval) 13285 return 1; 13286 else if (reg->smax_value < sval) 13287 return 0; 13288 break; 13289 case BPF_JLE: 13290 if (reg->umax_value <= val) 13291 return 1; 13292 else if (reg->umin_value > val) 13293 return 0; 13294 break; 13295 case BPF_JSLE: 13296 if (reg->smax_value <= sval) 13297 return 1; 13298 else if (reg->smin_value > sval) 13299 return 0; 13300 break; 13301 } 13302 13303 return -1; 13304 } 13305 13306 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13307 * and return: 13308 * 1 - branch will be taken and "goto target" will be executed 13309 * 0 - branch will not be taken and fall-through to next insn 13310 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13311 * range [0,10] 13312 */ 13313 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13314 bool is_jmp32) 13315 { 13316 if (__is_pointer_value(false, reg)) { 13317 if (!reg_not_null(reg)) 13318 return -1; 13319 13320 /* If pointer is valid tests against zero will fail so we can 13321 * use this to direct branch taken. 13322 */ 13323 if (val != 0) 13324 return -1; 13325 13326 switch (opcode) { 13327 case BPF_JEQ: 13328 return 0; 13329 case BPF_JNE: 13330 return 1; 13331 default: 13332 return -1; 13333 } 13334 } 13335 13336 if (is_jmp32) 13337 return is_branch32_taken(reg, val, opcode); 13338 return is_branch64_taken(reg, val, opcode); 13339 } 13340 13341 static int flip_opcode(u32 opcode) 13342 { 13343 /* How can we transform "a <op> b" into "b <op> a"? */ 13344 static const u8 opcode_flip[16] = { 13345 /* these stay the same */ 13346 [BPF_JEQ >> 4] = BPF_JEQ, 13347 [BPF_JNE >> 4] = BPF_JNE, 13348 [BPF_JSET >> 4] = BPF_JSET, 13349 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13350 [BPF_JGE >> 4] = BPF_JLE, 13351 [BPF_JGT >> 4] = BPF_JLT, 13352 [BPF_JLE >> 4] = BPF_JGE, 13353 [BPF_JLT >> 4] = BPF_JGT, 13354 [BPF_JSGE >> 4] = BPF_JSLE, 13355 [BPF_JSGT >> 4] = BPF_JSLT, 13356 [BPF_JSLE >> 4] = BPF_JSGE, 13357 [BPF_JSLT >> 4] = BPF_JSGT 13358 }; 13359 return opcode_flip[opcode >> 4]; 13360 } 13361 13362 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13363 struct bpf_reg_state *src_reg, 13364 u8 opcode) 13365 { 13366 struct bpf_reg_state *pkt; 13367 13368 if (src_reg->type == PTR_TO_PACKET_END) { 13369 pkt = dst_reg; 13370 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13371 pkt = src_reg; 13372 opcode = flip_opcode(opcode); 13373 } else { 13374 return -1; 13375 } 13376 13377 if (pkt->range >= 0) 13378 return -1; 13379 13380 switch (opcode) { 13381 case BPF_JLE: 13382 /* pkt <= pkt_end */ 13383 fallthrough; 13384 case BPF_JGT: 13385 /* pkt > pkt_end */ 13386 if (pkt->range == BEYOND_PKT_END) 13387 /* pkt has at last one extra byte beyond pkt_end */ 13388 return opcode == BPF_JGT; 13389 break; 13390 case BPF_JLT: 13391 /* pkt < pkt_end */ 13392 fallthrough; 13393 case BPF_JGE: 13394 /* pkt >= pkt_end */ 13395 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13396 return opcode == BPF_JGE; 13397 break; 13398 } 13399 return -1; 13400 } 13401 13402 /* Adjusts the register min/max values in the case that the dst_reg is the 13403 * variable register that we are working on, and src_reg is a constant or we're 13404 * simply doing a BPF_K check. 13405 * In JEQ/JNE cases we also adjust the var_off values. 13406 */ 13407 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13408 struct bpf_reg_state *false_reg, 13409 u64 val, u32 val32, 13410 u8 opcode, bool is_jmp32) 13411 { 13412 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13413 struct tnum false_64off = false_reg->var_off; 13414 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13415 struct tnum true_64off = true_reg->var_off; 13416 s64 sval = (s64)val; 13417 s32 sval32 = (s32)val32; 13418 13419 /* If the dst_reg is a pointer, we can't learn anything about its 13420 * variable offset from the compare (unless src_reg were a pointer into 13421 * the same object, but we don't bother with that. 13422 * Since false_reg and true_reg have the same type by construction, we 13423 * only need to check one of them for pointerness. 13424 */ 13425 if (__is_pointer_value(false, false_reg)) 13426 return; 13427 13428 switch (opcode) { 13429 /* JEQ/JNE comparison doesn't change the register equivalence. 13430 * 13431 * r1 = r2; 13432 * if (r1 == 42) goto label; 13433 * ... 13434 * label: // here both r1 and r2 are known to be 42. 13435 * 13436 * Hence when marking register as known preserve it's ID. 13437 */ 13438 case BPF_JEQ: 13439 if (is_jmp32) { 13440 __mark_reg32_known(true_reg, val32); 13441 true_32off = tnum_subreg(true_reg->var_off); 13442 } else { 13443 ___mark_reg_known(true_reg, val); 13444 true_64off = true_reg->var_off; 13445 } 13446 break; 13447 case BPF_JNE: 13448 if (is_jmp32) { 13449 __mark_reg32_known(false_reg, val32); 13450 false_32off = tnum_subreg(false_reg->var_off); 13451 } else { 13452 ___mark_reg_known(false_reg, val); 13453 false_64off = false_reg->var_off; 13454 } 13455 break; 13456 case BPF_JSET: 13457 if (is_jmp32) { 13458 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13459 if (is_power_of_2(val32)) 13460 true_32off = tnum_or(true_32off, 13461 tnum_const(val32)); 13462 } else { 13463 false_64off = tnum_and(false_64off, tnum_const(~val)); 13464 if (is_power_of_2(val)) 13465 true_64off = tnum_or(true_64off, 13466 tnum_const(val)); 13467 } 13468 break; 13469 case BPF_JGE: 13470 case BPF_JGT: 13471 { 13472 if (is_jmp32) { 13473 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13474 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13475 13476 false_reg->u32_max_value = min(false_reg->u32_max_value, 13477 false_umax); 13478 true_reg->u32_min_value = max(true_reg->u32_min_value, 13479 true_umin); 13480 } else { 13481 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13482 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13483 13484 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13485 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13486 } 13487 break; 13488 } 13489 case BPF_JSGE: 13490 case BPF_JSGT: 13491 { 13492 if (is_jmp32) { 13493 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13494 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13495 13496 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13497 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13498 } else { 13499 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13500 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13501 13502 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13503 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13504 } 13505 break; 13506 } 13507 case BPF_JLE: 13508 case BPF_JLT: 13509 { 13510 if (is_jmp32) { 13511 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13512 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13513 13514 false_reg->u32_min_value = max(false_reg->u32_min_value, 13515 false_umin); 13516 true_reg->u32_max_value = min(true_reg->u32_max_value, 13517 true_umax); 13518 } else { 13519 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13520 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13521 13522 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13523 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13524 } 13525 break; 13526 } 13527 case BPF_JSLE: 13528 case BPF_JSLT: 13529 { 13530 if (is_jmp32) { 13531 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13532 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13533 13534 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13535 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13536 } else { 13537 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13538 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13539 13540 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13541 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13542 } 13543 break; 13544 } 13545 default: 13546 return; 13547 } 13548 13549 if (is_jmp32) { 13550 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13551 tnum_subreg(false_32off)); 13552 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13553 tnum_subreg(true_32off)); 13554 __reg_combine_32_into_64(false_reg); 13555 __reg_combine_32_into_64(true_reg); 13556 } else { 13557 false_reg->var_off = false_64off; 13558 true_reg->var_off = true_64off; 13559 __reg_combine_64_into_32(false_reg); 13560 __reg_combine_64_into_32(true_reg); 13561 } 13562 } 13563 13564 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13565 * the variable reg. 13566 */ 13567 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13568 struct bpf_reg_state *false_reg, 13569 u64 val, u32 val32, 13570 u8 opcode, bool is_jmp32) 13571 { 13572 opcode = flip_opcode(opcode); 13573 /* This uses zero as "not present in table"; luckily the zero opcode, 13574 * BPF_JA, can't get here. 13575 */ 13576 if (opcode) 13577 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13578 } 13579 13580 /* Regs are known to be equal, so intersect their min/max/var_off */ 13581 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13582 struct bpf_reg_state *dst_reg) 13583 { 13584 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13585 dst_reg->umin_value); 13586 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13587 dst_reg->umax_value); 13588 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13589 dst_reg->smin_value); 13590 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13591 dst_reg->smax_value); 13592 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13593 dst_reg->var_off); 13594 reg_bounds_sync(src_reg); 13595 reg_bounds_sync(dst_reg); 13596 } 13597 13598 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13599 struct bpf_reg_state *true_dst, 13600 struct bpf_reg_state *false_src, 13601 struct bpf_reg_state *false_dst, 13602 u8 opcode) 13603 { 13604 switch (opcode) { 13605 case BPF_JEQ: 13606 __reg_combine_min_max(true_src, true_dst); 13607 break; 13608 case BPF_JNE: 13609 __reg_combine_min_max(false_src, false_dst); 13610 break; 13611 } 13612 } 13613 13614 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13615 struct bpf_reg_state *reg, u32 id, 13616 bool is_null) 13617 { 13618 if (type_may_be_null(reg->type) && reg->id == id && 13619 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13620 /* Old offset (both fixed and variable parts) should have been 13621 * known-zero, because we don't allow pointer arithmetic on 13622 * pointers that might be NULL. If we see this happening, don't 13623 * convert the register. 13624 * 13625 * But in some cases, some helpers that return local kptrs 13626 * advance offset for the returned pointer. In those cases, it 13627 * is fine to expect to see reg->off. 13628 */ 13629 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13630 return; 13631 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13632 WARN_ON_ONCE(reg->off)) 13633 return; 13634 13635 if (is_null) { 13636 reg->type = SCALAR_VALUE; 13637 /* We don't need id and ref_obj_id from this point 13638 * onwards anymore, thus we should better reset it, 13639 * so that state pruning has chances to take effect. 13640 */ 13641 reg->id = 0; 13642 reg->ref_obj_id = 0; 13643 13644 return; 13645 } 13646 13647 mark_ptr_not_null_reg(reg); 13648 13649 if (!reg_may_point_to_spin_lock(reg)) { 13650 /* For not-NULL ptr, reg->ref_obj_id will be reset 13651 * in release_reference(). 13652 * 13653 * reg->id is still used by spin_lock ptr. Other 13654 * than spin_lock ptr type, reg->id can be reset. 13655 */ 13656 reg->id = 0; 13657 } 13658 } 13659 } 13660 13661 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13662 * be folded together at some point. 13663 */ 13664 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13665 bool is_null) 13666 { 13667 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13668 struct bpf_reg_state *regs = state->regs, *reg; 13669 u32 ref_obj_id = regs[regno].ref_obj_id; 13670 u32 id = regs[regno].id; 13671 13672 if (ref_obj_id && ref_obj_id == id && is_null) 13673 /* regs[regno] is in the " == NULL" branch. 13674 * No one could have freed the reference state before 13675 * doing the NULL check. 13676 */ 13677 WARN_ON_ONCE(release_reference_state(state, id)); 13678 13679 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13680 mark_ptr_or_null_reg(state, reg, id, is_null); 13681 })); 13682 } 13683 13684 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13685 struct bpf_reg_state *dst_reg, 13686 struct bpf_reg_state *src_reg, 13687 struct bpf_verifier_state *this_branch, 13688 struct bpf_verifier_state *other_branch) 13689 { 13690 if (BPF_SRC(insn->code) != BPF_X) 13691 return false; 13692 13693 /* Pointers are always 64-bit. */ 13694 if (BPF_CLASS(insn->code) == BPF_JMP32) 13695 return false; 13696 13697 switch (BPF_OP(insn->code)) { 13698 case BPF_JGT: 13699 if ((dst_reg->type == PTR_TO_PACKET && 13700 src_reg->type == PTR_TO_PACKET_END) || 13701 (dst_reg->type == PTR_TO_PACKET_META && 13702 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13703 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13704 find_good_pkt_pointers(this_branch, dst_reg, 13705 dst_reg->type, false); 13706 mark_pkt_end(other_branch, insn->dst_reg, true); 13707 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13708 src_reg->type == PTR_TO_PACKET) || 13709 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13710 src_reg->type == PTR_TO_PACKET_META)) { 13711 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13712 find_good_pkt_pointers(other_branch, src_reg, 13713 src_reg->type, true); 13714 mark_pkt_end(this_branch, insn->src_reg, false); 13715 } else { 13716 return false; 13717 } 13718 break; 13719 case BPF_JLT: 13720 if ((dst_reg->type == PTR_TO_PACKET && 13721 src_reg->type == PTR_TO_PACKET_END) || 13722 (dst_reg->type == PTR_TO_PACKET_META && 13723 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13724 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13725 find_good_pkt_pointers(other_branch, dst_reg, 13726 dst_reg->type, true); 13727 mark_pkt_end(this_branch, insn->dst_reg, false); 13728 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13729 src_reg->type == PTR_TO_PACKET) || 13730 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13731 src_reg->type == PTR_TO_PACKET_META)) { 13732 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13733 find_good_pkt_pointers(this_branch, src_reg, 13734 src_reg->type, false); 13735 mark_pkt_end(other_branch, insn->src_reg, true); 13736 } else { 13737 return false; 13738 } 13739 break; 13740 case BPF_JGE: 13741 if ((dst_reg->type == PTR_TO_PACKET && 13742 src_reg->type == PTR_TO_PACKET_END) || 13743 (dst_reg->type == PTR_TO_PACKET_META && 13744 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13745 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13746 find_good_pkt_pointers(this_branch, dst_reg, 13747 dst_reg->type, true); 13748 mark_pkt_end(other_branch, insn->dst_reg, false); 13749 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13750 src_reg->type == PTR_TO_PACKET) || 13751 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13752 src_reg->type == PTR_TO_PACKET_META)) { 13753 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13754 find_good_pkt_pointers(other_branch, src_reg, 13755 src_reg->type, false); 13756 mark_pkt_end(this_branch, insn->src_reg, true); 13757 } else { 13758 return false; 13759 } 13760 break; 13761 case BPF_JLE: 13762 if ((dst_reg->type == PTR_TO_PACKET && 13763 src_reg->type == PTR_TO_PACKET_END) || 13764 (dst_reg->type == PTR_TO_PACKET_META && 13765 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13766 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13767 find_good_pkt_pointers(other_branch, dst_reg, 13768 dst_reg->type, false); 13769 mark_pkt_end(this_branch, insn->dst_reg, true); 13770 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13771 src_reg->type == PTR_TO_PACKET) || 13772 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13773 src_reg->type == PTR_TO_PACKET_META)) { 13774 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13775 find_good_pkt_pointers(this_branch, src_reg, 13776 src_reg->type, true); 13777 mark_pkt_end(other_branch, insn->src_reg, false); 13778 } else { 13779 return false; 13780 } 13781 break; 13782 default: 13783 return false; 13784 } 13785 13786 return true; 13787 } 13788 13789 static void find_equal_scalars(struct bpf_verifier_state *vstate, 13790 struct bpf_reg_state *known_reg) 13791 { 13792 struct bpf_func_state *state; 13793 struct bpf_reg_state *reg; 13794 13795 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13796 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 13797 copy_register_state(reg, known_reg); 13798 })); 13799 } 13800 13801 static int check_cond_jmp_op(struct bpf_verifier_env *env, 13802 struct bpf_insn *insn, int *insn_idx) 13803 { 13804 struct bpf_verifier_state *this_branch = env->cur_state; 13805 struct bpf_verifier_state *other_branch; 13806 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 13807 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 13808 struct bpf_reg_state *eq_branch_regs; 13809 u8 opcode = BPF_OP(insn->code); 13810 bool is_jmp32; 13811 int pred = -1; 13812 int err; 13813 13814 /* Only conditional jumps are expected to reach here. */ 13815 if (opcode == BPF_JA || opcode > BPF_JSLE) { 13816 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 13817 return -EINVAL; 13818 } 13819 13820 if (BPF_SRC(insn->code) == BPF_X) { 13821 if (insn->imm != 0) { 13822 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13823 return -EINVAL; 13824 } 13825 13826 /* check src1 operand */ 13827 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13828 if (err) 13829 return err; 13830 13831 if (is_pointer_value(env, insn->src_reg)) { 13832 verbose(env, "R%d pointer comparison prohibited\n", 13833 insn->src_reg); 13834 return -EACCES; 13835 } 13836 src_reg = ®s[insn->src_reg]; 13837 } else { 13838 if (insn->src_reg != BPF_REG_0) { 13839 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13840 return -EINVAL; 13841 } 13842 } 13843 13844 /* check src2 operand */ 13845 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13846 if (err) 13847 return err; 13848 13849 dst_reg = ®s[insn->dst_reg]; 13850 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 13851 13852 if (BPF_SRC(insn->code) == BPF_K) { 13853 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 13854 } else if (src_reg->type == SCALAR_VALUE && 13855 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 13856 pred = is_branch_taken(dst_reg, 13857 tnum_subreg(src_reg->var_off).value, 13858 opcode, 13859 is_jmp32); 13860 } else if (src_reg->type == SCALAR_VALUE && 13861 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 13862 pred = is_branch_taken(dst_reg, 13863 src_reg->var_off.value, 13864 opcode, 13865 is_jmp32); 13866 } else if (dst_reg->type == SCALAR_VALUE && 13867 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 13868 pred = is_branch_taken(src_reg, 13869 tnum_subreg(dst_reg->var_off).value, 13870 flip_opcode(opcode), 13871 is_jmp32); 13872 } else if (dst_reg->type == SCALAR_VALUE && 13873 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 13874 pred = is_branch_taken(src_reg, 13875 dst_reg->var_off.value, 13876 flip_opcode(opcode), 13877 is_jmp32); 13878 } else if (reg_is_pkt_pointer_any(dst_reg) && 13879 reg_is_pkt_pointer_any(src_reg) && 13880 !is_jmp32) { 13881 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 13882 } 13883 13884 if (pred >= 0) { 13885 /* If we get here with a dst_reg pointer type it is because 13886 * above is_branch_taken() special cased the 0 comparison. 13887 */ 13888 if (!__is_pointer_value(false, dst_reg)) 13889 err = mark_chain_precision(env, insn->dst_reg); 13890 if (BPF_SRC(insn->code) == BPF_X && !err && 13891 !__is_pointer_value(false, src_reg)) 13892 err = mark_chain_precision(env, insn->src_reg); 13893 if (err) 13894 return err; 13895 } 13896 13897 if (pred == 1) { 13898 /* Only follow the goto, ignore fall-through. If needed, push 13899 * the fall-through branch for simulation under speculative 13900 * execution. 13901 */ 13902 if (!env->bypass_spec_v1 && 13903 !sanitize_speculative_path(env, insn, *insn_idx + 1, 13904 *insn_idx)) 13905 return -EFAULT; 13906 *insn_idx += insn->off; 13907 return 0; 13908 } else if (pred == 0) { 13909 /* Only follow the fall-through branch, since that's where the 13910 * program will go. If needed, push the goto branch for 13911 * simulation under speculative execution. 13912 */ 13913 if (!env->bypass_spec_v1 && 13914 !sanitize_speculative_path(env, insn, 13915 *insn_idx + insn->off + 1, 13916 *insn_idx)) 13917 return -EFAULT; 13918 return 0; 13919 } 13920 13921 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 13922 false); 13923 if (!other_branch) 13924 return -EFAULT; 13925 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 13926 13927 /* detect if we are comparing against a constant value so we can adjust 13928 * our min/max values for our dst register. 13929 * this is only legit if both are scalars (or pointers to the same 13930 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 13931 * because otherwise the different base pointers mean the offsets aren't 13932 * comparable. 13933 */ 13934 if (BPF_SRC(insn->code) == BPF_X) { 13935 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 13936 13937 if (dst_reg->type == SCALAR_VALUE && 13938 src_reg->type == SCALAR_VALUE) { 13939 if (tnum_is_const(src_reg->var_off) || 13940 (is_jmp32 && 13941 tnum_is_const(tnum_subreg(src_reg->var_off)))) 13942 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13943 dst_reg, 13944 src_reg->var_off.value, 13945 tnum_subreg(src_reg->var_off).value, 13946 opcode, is_jmp32); 13947 else if (tnum_is_const(dst_reg->var_off) || 13948 (is_jmp32 && 13949 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 13950 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 13951 src_reg, 13952 dst_reg->var_off.value, 13953 tnum_subreg(dst_reg->var_off).value, 13954 opcode, is_jmp32); 13955 else if (!is_jmp32 && 13956 (opcode == BPF_JEQ || opcode == BPF_JNE)) 13957 /* Comparing for equality, we can combine knowledge */ 13958 reg_combine_min_max(&other_branch_regs[insn->src_reg], 13959 &other_branch_regs[insn->dst_reg], 13960 src_reg, dst_reg, opcode); 13961 if (src_reg->id && 13962 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 13963 find_equal_scalars(this_branch, src_reg); 13964 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 13965 } 13966 13967 } 13968 } else if (dst_reg->type == SCALAR_VALUE) { 13969 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13970 dst_reg, insn->imm, (u32)insn->imm, 13971 opcode, is_jmp32); 13972 } 13973 13974 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 13975 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 13976 find_equal_scalars(this_branch, dst_reg); 13977 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 13978 } 13979 13980 /* if one pointer register is compared to another pointer 13981 * register check if PTR_MAYBE_NULL could be lifted. 13982 * E.g. register A - maybe null 13983 * register B - not null 13984 * for JNE A, B, ... - A is not null in the false branch; 13985 * for JEQ A, B, ... - A is not null in the true branch. 13986 * 13987 * Since PTR_TO_BTF_ID points to a kernel struct that does 13988 * not need to be null checked by the BPF program, i.e., 13989 * could be null even without PTR_MAYBE_NULL marking, so 13990 * only propagate nullness when neither reg is that type. 13991 */ 13992 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 13993 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 13994 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 13995 base_type(src_reg->type) != PTR_TO_BTF_ID && 13996 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 13997 eq_branch_regs = NULL; 13998 switch (opcode) { 13999 case BPF_JEQ: 14000 eq_branch_regs = other_branch_regs; 14001 break; 14002 case BPF_JNE: 14003 eq_branch_regs = regs; 14004 break; 14005 default: 14006 /* do nothing */ 14007 break; 14008 } 14009 if (eq_branch_regs) { 14010 if (type_may_be_null(src_reg->type)) 14011 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14012 else 14013 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14014 } 14015 } 14016 14017 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14018 * NOTE: these optimizations below are related with pointer comparison 14019 * which will never be JMP32. 14020 */ 14021 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14022 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14023 type_may_be_null(dst_reg->type)) { 14024 /* Mark all identical registers in each branch as either 14025 * safe or unknown depending R == 0 or R != 0 conditional. 14026 */ 14027 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14028 opcode == BPF_JNE); 14029 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14030 opcode == BPF_JEQ); 14031 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14032 this_branch, other_branch) && 14033 is_pointer_value(env, insn->dst_reg)) { 14034 verbose(env, "R%d pointer comparison prohibited\n", 14035 insn->dst_reg); 14036 return -EACCES; 14037 } 14038 if (env->log.level & BPF_LOG_LEVEL) 14039 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14040 return 0; 14041 } 14042 14043 /* verify BPF_LD_IMM64 instruction */ 14044 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14045 { 14046 struct bpf_insn_aux_data *aux = cur_aux(env); 14047 struct bpf_reg_state *regs = cur_regs(env); 14048 struct bpf_reg_state *dst_reg; 14049 struct bpf_map *map; 14050 int err; 14051 14052 if (BPF_SIZE(insn->code) != BPF_DW) { 14053 verbose(env, "invalid BPF_LD_IMM insn\n"); 14054 return -EINVAL; 14055 } 14056 if (insn->off != 0) { 14057 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14058 return -EINVAL; 14059 } 14060 14061 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14062 if (err) 14063 return err; 14064 14065 dst_reg = ®s[insn->dst_reg]; 14066 if (insn->src_reg == 0) { 14067 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14068 14069 dst_reg->type = SCALAR_VALUE; 14070 __mark_reg_known(®s[insn->dst_reg], imm); 14071 return 0; 14072 } 14073 14074 /* All special src_reg cases are listed below. From this point onwards 14075 * we either succeed and assign a corresponding dst_reg->type after 14076 * zeroing the offset, or fail and reject the program. 14077 */ 14078 mark_reg_known_zero(env, regs, insn->dst_reg); 14079 14080 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14081 dst_reg->type = aux->btf_var.reg_type; 14082 switch (base_type(dst_reg->type)) { 14083 case PTR_TO_MEM: 14084 dst_reg->mem_size = aux->btf_var.mem_size; 14085 break; 14086 case PTR_TO_BTF_ID: 14087 dst_reg->btf = aux->btf_var.btf; 14088 dst_reg->btf_id = aux->btf_var.btf_id; 14089 break; 14090 default: 14091 verbose(env, "bpf verifier is misconfigured\n"); 14092 return -EFAULT; 14093 } 14094 return 0; 14095 } 14096 14097 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14098 struct bpf_prog_aux *aux = env->prog->aux; 14099 u32 subprogno = find_subprog(env, 14100 env->insn_idx + insn->imm + 1); 14101 14102 if (!aux->func_info) { 14103 verbose(env, "missing btf func_info\n"); 14104 return -EINVAL; 14105 } 14106 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14107 verbose(env, "callback function not static\n"); 14108 return -EINVAL; 14109 } 14110 14111 dst_reg->type = PTR_TO_FUNC; 14112 dst_reg->subprogno = subprogno; 14113 return 0; 14114 } 14115 14116 map = env->used_maps[aux->map_index]; 14117 dst_reg->map_ptr = map; 14118 14119 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14120 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14121 dst_reg->type = PTR_TO_MAP_VALUE; 14122 dst_reg->off = aux->map_off; 14123 WARN_ON_ONCE(map->max_entries != 1); 14124 /* We want reg->id to be same (0) as map_value is not distinct */ 14125 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14126 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14127 dst_reg->type = CONST_PTR_TO_MAP; 14128 } else { 14129 verbose(env, "bpf verifier is misconfigured\n"); 14130 return -EINVAL; 14131 } 14132 14133 return 0; 14134 } 14135 14136 static bool may_access_skb(enum bpf_prog_type type) 14137 { 14138 switch (type) { 14139 case BPF_PROG_TYPE_SOCKET_FILTER: 14140 case BPF_PROG_TYPE_SCHED_CLS: 14141 case BPF_PROG_TYPE_SCHED_ACT: 14142 return true; 14143 default: 14144 return false; 14145 } 14146 } 14147 14148 /* verify safety of LD_ABS|LD_IND instructions: 14149 * - they can only appear in the programs where ctx == skb 14150 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14151 * preserve R6-R9, and store return value into R0 14152 * 14153 * Implicit input: 14154 * ctx == skb == R6 == CTX 14155 * 14156 * Explicit input: 14157 * SRC == any register 14158 * IMM == 32-bit immediate 14159 * 14160 * Output: 14161 * R0 - 8/16/32-bit skb data converted to cpu endianness 14162 */ 14163 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14164 { 14165 struct bpf_reg_state *regs = cur_regs(env); 14166 static const int ctx_reg = BPF_REG_6; 14167 u8 mode = BPF_MODE(insn->code); 14168 int i, err; 14169 14170 if (!may_access_skb(resolve_prog_type(env->prog))) { 14171 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14172 return -EINVAL; 14173 } 14174 14175 if (!env->ops->gen_ld_abs) { 14176 verbose(env, "bpf verifier is misconfigured\n"); 14177 return -EINVAL; 14178 } 14179 14180 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14181 BPF_SIZE(insn->code) == BPF_DW || 14182 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14183 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14184 return -EINVAL; 14185 } 14186 14187 /* check whether implicit source operand (register R6) is readable */ 14188 err = check_reg_arg(env, ctx_reg, SRC_OP); 14189 if (err) 14190 return err; 14191 14192 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14193 * gen_ld_abs() may terminate the program at runtime, leading to 14194 * reference leak. 14195 */ 14196 err = check_reference_leak(env); 14197 if (err) { 14198 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14199 return err; 14200 } 14201 14202 if (env->cur_state->active_lock.ptr) { 14203 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14204 return -EINVAL; 14205 } 14206 14207 if (env->cur_state->active_rcu_lock) { 14208 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14209 return -EINVAL; 14210 } 14211 14212 if (regs[ctx_reg].type != PTR_TO_CTX) { 14213 verbose(env, 14214 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14215 return -EINVAL; 14216 } 14217 14218 if (mode == BPF_IND) { 14219 /* check explicit source operand */ 14220 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14221 if (err) 14222 return err; 14223 } 14224 14225 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14226 if (err < 0) 14227 return err; 14228 14229 /* reset caller saved regs to unreadable */ 14230 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14231 mark_reg_not_init(env, regs, caller_saved[i]); 14232 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14233 } 14234 14235 /* mark destination R0 register as readable, since it contains 14236 * the value fetched from the packet. 14237 * Already marked as written above. 14238 */ 14239 mark_reg_unknown(env, regs, BPF_REG_0); 14240 /* ld_abs load up to 32-bit skb data. */ 14241 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14242 return 0; 14243 } 14244 14245 static int check_return_code(struct bpf_verifier_env *env) 14246 { 14247 struct tnum enforce_attach_type_range = tnum_unknown; 14248 const struct bpf_prog *prog = env->prog; 14249 struct bpf_reg_state *reg; 14250 struct tnum range = tnum_range(0, 1); 14251 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14252 int err; 14253 struct bpf_func_state *frame = env->cur_state->frame[0]; 14254 const bool is_subprog = frame->subprogno; 14255 14256 /* LSM and struct_ops func-ptr's return type could be "void" */ 14257 if (!is_subprog) { 14258 switch (prog_type) { 14259 case BPF_PROG_TYPE_LSM: 14260 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14261 /* See below, can be 0 or 0-1 depending on hook. */ 14262 break; 14263 fallthrough; 14264 case BPF_PROG_TYPE_STRUCT_OPS: 14265 if (!prog->aux->attach_func_proto->type) 14266 return 0; 14267 break; 14268 default: 14269 break; 14270 } 14271 } 14272 14273 /* eBPF calling convention is such that R0 is used 14274 * to return the value from eBPF program. 14275 * Make sure that it's readable at this time 14276 * of bpf_exit, which means that program wrote 14277 * something into it earlier 14278 */ 14279 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14280 if (err) 14281 return err; 14282 14283 if (is_pointer_value(env, BPF_REG_0)) { 14284 verbose(env, "R0 leaks addr as return value\n"); 14285 return -EACCES; 14286 } 14287 14288 reg = cur_regs(env) + BPF_REG_0; 14289 14290 if (frame->in_async_callback_fn) { 14291 /* enforce return zero from async callbacks like timer */ 14292 if (reg->type != SCALAR_VALUE) { 14293 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14294 reg_type_str(env, reg->type)); 14295 return -EINVAL; 14296 } 14297 14298 if (!tnum_in(tnum_const(0), reg->var_off)) { 14299 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14300 return -EINVAL; 14301 } 14302 return 0; 14303 } 14304 14305 if (is_subprog) { 14306 if (reg->type != SCALAR_VALUE) { 14307 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14308 reg_type_str(env, reg->type)); 14309 return -EINVAL; 14310 } 14311 return 0; 14312 } 14313 14314 switch (prog_type) { 14315 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14316 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14317 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14318 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14319 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14320 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14321 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14322 range = tnum_range(1, 1); 14323 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14324 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14325 range = tnum_range(0, 3); 14326 break; 14327 case BPF_PROG_TYPE_CGROUP_SKB: 14328 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14329 range = tnum_range(0, 3); 14330 enforce_attach_type_range = tnum_range(2, 3); 14331 } 14332 break; 14333 case BPF_PROG_TYPE_CGROUP_SOCK: 14334 case BPF_PROG_TYPE_SOCK_OPS: 14335 case BPF_PROG_TYPE_CGROUP_DEVICE: 14336 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14337 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14338 break; 14339 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14340 if (!env->prog->aux->attach_btf_id) 14341 return 0; 14342 range = tnum_const(0); 14343 break; 14344 case BPF_PROG_TYPE_TRACING: 14345 switch (env->prog->expected_attach_type) { 14346 case BPF_TRACE_FENTRY: 14347 case BPF_TRACE_FEXIT: 14348 range = tnum_const(0); 14349 break; 14350 case BPF_TRACE_RAW_TP: 14351 case BPF_MODIFY_RETURN: 14352 return 0; 14353 case BPF_TRACE_ITER: 14354 break; 14355 default: 14356 return -ENOTSUPP; 14357 } 14358 break; 14359 case BPF_PROG_TYPE_SK_LOOKUP: 14360 range = tnum_range(SK_DROP, SK_PASS); 14361 break; 14362 14363 case BPF_PROG_TYPE_LSM: 14364 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14365 /* Regular BPF_PROG_TYPE_LSM programs can return 14366 * any value. 14367 */ 14368 return 0; 14369 } 14370 if (!env->prog->aux->attach_func_proto->type) { 14371 /* Make sure programs that attach to void 14372 * hooks don't try to modify return value. 14373 */ 14374 range = tnum_range(1, 1); 14375 } 14376 break; 14377 14378 case BPF_PROG_TYPE_NETFILTER: 14379 range = tnum_range(NF_DROP, NF_ACCEPT); 14380 break; 14381 case BPF_PROG_TYPE_EXT: 14382 /* freplace program can return anything as its return value 14383 * depends on the to-be-replaced kernel func or bpf program. 14384 */ 14385 default: 14386 return 0; 14387 } 14388 14389 if (reg->type != SCALAR_VALUE) { 14390 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14391 reg_type_str(env, reg->type)); 14392 return -EINVAL; 14393 } 14394 14395 if (!tnum_in(range, reg->var_off)) { 14396 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14397 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14398 prog_type == BPF_PROG_TYPE_LSM && 14399 !prog->aux->attach_func_proto->type) 14400 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14401 return -EINVAL; 14402 } 14403 14404 if (!tnum_is_unknown(enforce_attach_type_range) && 14405 tnum_in(enforce_attach_type_range, reg->var_off)) 14406 env->prog->enforce_expected_attach_type = 1; 14407 return 0; 14408 } 14409 14410 /* non-recursive DFS pseudo code 14411 * 1 procedure DFS-iterative(G,v): 14412 * 2 label v as discovered 14413 * 3 let S be a stack 14414 * 4 S.push(v) 14415 * 5 while S is not empty 14416 * 6 t <- S.peek() 14417 * 7 if t is what we're looking for: 14418 * 8 return t 14419 * 9 for all edges e in G.adjacentEdges(t) do 14420 * 10 if edge e is already labelled 14421 * 11 continue with the next edge 14422 * 12 w <- G.adjacentVertex(t,e) 14423 * 13 if vertex w is not discovered and not explored 14424 * 14 label e as tree-edge 14425 * 15 label w as discovered 14426 * 16 S.push(w) 14427 * 17 continue at 5 14428 * 18 else if vertex w is discovered 14429 * 19 label e as back-edge 14430 * 20 else 14431 * 21 // vertex w is explored 14432 * 22 label e as forward- or cross-edge 14433 * 23 label t as explored 14434 * 24 S.pop() 14435 * 14436 * convention: 14437 * 0x10 - discovered 14438 * 0x11 - discovered and fall-through edge labelled 14439 * 0x12 - discovered and fall-through and branch edges labelled 14440 * 0x20 - explored 14441 */ 14442 14443 enum { 14444 DISCOVERED = 0x10, 14445 EXPLORED = 0x20, 14446 FALLTHROUGH = 1, 14447 BRANCH = 2, 14448 }; 14449 14450 static u32 state_htab_size(struct bpf_verifier_env *env) 14451 { 14452 return env->prog->len; 14453 } 14454 14455 static struct bpf_verifier_state_list **explored_state( 14456 struct bpf_verifier_env *env, 14457 int idx) 14458 { 14459 struct bpf_verifier_state *cur = env->cur_state; 14460 struct bpf_func_state *state = cur->frame[cur->curframe]; 14461 14462 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14463 } 14464 14465 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14466 { 14467 env->insn_aux_data[idx].prune_point = true; 14468 } 14469 14470 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14471 { 14472 return env->insn_aux_data[insn_idx].prune_point; 14473 } 14474 14475 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14476 { 14477 env->insn_aux_data[idx].force_checkpoint = true; 14478 } 14479 14480 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14481 { 14482 return env->insn_aux_data[insn_idx].force_checkpoint; 14483 } 14484 14485 14486 enum { 14487 DONE_EXPLORING = 0, 14488 KEEP_EXPLORING = 1, 14489 }; 14490 14491 /* t, w, e - match pseudo-code above: 14492 * t - index of current instruction 14493 * w - next instruction 14494 * e - edge 14495 */ 14496 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14497 bool loop_ok) 14498 { 14499 int *insn_stack = env->cfg.insn_stack; 14500 int *insn_state = env->cfg.insn_state; 14501 14502 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14503 return DONE_EXPLORING; 14504 14505 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14506 return DONE_EXPLORING; 14507 14508 if (w < 0 || w >= env->prog->len) { 14509 verbose_linfo(env, t, "%d: ", t); 14510 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14511 return -EINVAL; 14512 } 14513 14514 if (e == BRANCH) { 14515 /* mark branch target for state pruning */ 14516 mark_prune_point(env, w); 14517 mark_jmp_point(env, w); 14518 } 14519 14520 if (insn_state[w] == 0) { 14521 /* tree-edge */ 14522 insn_state[t] = DISCOVERED | e; 14523 insn_state[w] = DISCOVERED; 14524 if (env->cfg.cur_stack >= env->prog->len) 14525 return -E2BIG; 14526 insn_stack[env->cfg.cur_stack++] = w; 14527 return KEEP_EXPLORING; 14528 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14529 if (loop_ok && env->bpf_capable) 14530 return DONE_EXPLORING; 14531 verbose_linfo(env, t, "%d: ", t); 14532 verbose_linfo(env, w, "%d: ", w); 14533 verbose(env, "back-edge from insn %d to %d\n", t, w); 14534 return -EINVAL; 14535 } else if (insn_state[w] == EXPLORED) { 14536 /* forward- or cross-edge */ 14537 insn_state[t] = DISCOVERED | e; 14538 } else { 14539 verbose(env, "insn state internal bug\n"); 14540 return -EFAULT; 14541 } 14542 return DONE_EXPLORING; 14543 } 14544 14545 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14546 struct bpf_verifier_env *env, 14547 bool visit_callee) 14548 { 14549 int ret; 14550 14551 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14552 if (ret) 14553 return ret; 14554 14555 mark_prune_point(env, t + 1); 14556 /* when we exit from subprog, we need to record non-linear history */ 14557 mark_jmp_point(env, t + 1); 14558 14559 if (visit_callee) { 14560 mark_prune_point(env, t); 14561 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14562 /* It's ok to allow recursion from CFG point of 14563 * view. __check_func_call() will do the actual 14564 * check. 14565 */ 14566 bpf_pseudo_func(insns + t)); 14567 } 14568 return ret; 14569 } 14570 14571 /* Visits the instruction at index t and returns one of the following: 14572 * < 0 - an error occurred 14573 * DONE_EXPLORING - the instruction was fully explored 14574 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14575 */ 14576 static int visit_insn(int t, struct bpf_verifier_env *env) 14577 { 14578 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14579 int ret; 14580 14581 if (bpf_pseudo_func(insn)) 14582 return visit_func_call_insn(t, insns, env, true); 14583 14584 /* All non-branch instructions have a single fall-through edge. */ 14585 if (BPF_CLASS(insn->code) != BPF_JMP && 14586 BPF_CLASS(insn->code) != BPF_JMP32) 14587 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14588 14589 switch (BPF_OP(insn->code)) { 14590 case BPF_EXIT: 14591 return DONE_EXPLORING; 14592 14593 case BPF_CALL: 14594 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14595 /* Mark this call insn as a prune point to trigger 14596 * is_state_visited() check before call itself is 14597 * processed by __check_func_call(). Otherwise new 14598 * async state will be pushed for further exploration. 14599 */ 14600 mark_prune_point(env, t); 14601 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14602 struct bpf_kfunc_call_arg_meta meta; 14603 14604 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14605 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14606 mark_prune_point(env, t); 14607 /* Checking and saving state checkpoints at iter_next() call 14608 * is crucial for fast convergence of open-coded iterator loop 14609 * logic, so we need to force it. If we don't do that, 14610 * is_state_visited() might skip saving a checkpoint, causing 14611 * unnecessarily long sequence of not checkpointed 14612 * instructions and jumps, leading to exhaustion of jump 14613 * history buffer, and potentially other undesired outcomes. 14614 * It is expected that with correct open-coded iterators 14615 * convergence will happen quickly, so we don't run a risk of 14616 * exhausting memory. 14617 */ 14618 mark_force_checkpoint(env, t); 14619 } 14620 } 14621 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14622 14623 case BPF_JA: 14624 if (BPF_SRC(insn->code) != BPF_K) 14625 return -EINVAL; 14626 14627 /* unconditional jump with single edge */ 14628 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 14629 true); 14630 if (ret) 14631 return ret; 14632 14633 mark_prune_point(env, t + insn->off + 1); 14634 mark_jmp_point(env, t + insn->off + 1); 14635 14636 return ret; 14637 14638 default: 14639 /* conditional jump with two edges */ 14640 mark_prune_point(env, t); 14641 14642 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14643 if (ret) 14644 return ret; 14645 14646 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14647 } 14648 } 14649 14650 /* non-recursive depth-first-search to detect loops in BPF program 14651 * loop == back-edge in directed graph 14652 */ 14653 static int check_cfg(struct bpf_verifier_env *env) 14654 { 14655 int insn_cnt = env->prog->len; 14656 int *insn_stack, *insn_state; 14657 int ret = 0; 14658 int i; 14659 14660 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14661 if (!insn_state) 14662 return -ENOMEM; 14663 14664 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14665 if (!insn_stack) { 14666 kvfree(insn_state); 14667 return -ENOMEM; 14668 } 14669 14670 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14671 insn_stack[0] = 0; /* 0 is the first instruction */ 14672 env->cfg.cur_stack = 1; 14673 14674 while (env->cfg.cur_stack > 0) { 14675 int t = insn_stack[env->cfg.cur_stack - 1]; 14676 14677 ret = visit_insn(t, env); 14678 switch (ret) { 14679 case DONE_EXPLORING: 14680 insn_state[t] = EXPLORED; 14681 env->cfg.cur_stack--; 14682 break; 14683 case KEEP_EXPLORING: 14684 break; 14685 default: 14686 if (ret > 0) { 14687 verbose(env, "visit_insn internal bug\n"); 14688 ret = -EFAULT; 14689 } 14690 goto err_free; 14691 } 14692 } 14693 14694 if (env->cfg.cur_stack < 0) { 14695 verbose(env, "pop stack internal bug\n"); 14696 ret = -EFAULT; 14697 goto err_free; 14698 } 14699 14700 for (i = 0; i < insn_cnt; i++) { 14701 if (insn_state[i] != EXPLORED) { 14702 verbose(env, "unreachable insn %d\n", i); 14703 ret = -EINVAL; 14704 goto err_free; 14705 } 14706 } 14707 ret = 0; /* cfg looks good */ 14708 14709 err_free: 14710 kvfree(insn_state); 14711 kvfree(insn_stack); 14712 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14713 return ret; 14714 } 14715 14716 static int check_abnormal_return(struct bpf_verifier_env *env) 14717 { 14718 int i; 14719 14720 for (i = 1; i < env->subprog_cnt; i++) { 14721 if (env->subprog_info[i].has_ld_abs) { 14722 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14723 return -EINVAL; 14724 } 14725 if (env->subprog_info[i].has_tail_call) { 14726 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14727 return -EINVAL; 14728 } 14729 } 14730 return 0; 14731 } 14732 14733 /* The minimum supported BTF func info size */ 14734 #define MIN_BPF_FUNCINFO_SIZE 8 14735 #define MAX_FUNCINFO_REC_SIZE 252 14736 14737 static int check_btf_func(struct bpf_verifier_env *env, 14738 const union bpf_attr *attr, 14739 bpfptr_t uattr) 14740 { 14741 const struct btf_type *type, *func_proto, *ret_type; 14742 u32 i, nfuncs, urec_size, min_size; 14743 u32 krec_size = sizeof(struct bpf_func_info); 14744 struct bpf_func_info *krecord; 14745 struct bpf_func_info_aux *info_aux = NULL; 14746 struct bpf_prog *prog; 14747 const struct btf *btf; 14748 bpfptr_t urecord; 14749 u32 prev_offset = 0; 14750 bool scalar_return; 14751 int ret = -ENOMEM; 14752 14753 nfuncs = attr->func_info_cnt; 14754 if (!nfuncs) { 14755 if (check_abnormal_return(env)) 14756 return -EINVAL; 14757 return 0; 14758 } 14759 14760 if (nfuncs != env->subprog_cnt) { 14761 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14762 return -EINVAL; 14763 } 14764 14765 urec_size = attr->func_info_rec_size; 14766 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14767 urec_size > MAX_FUNCINFO_REC_SIZE || 14768 urec_size % sizeof(u32)) { 14769 verbose(env, "invalid func info rec size %u\n", urec_size); 14770 return -EINVAL; 14771 } 14772 14773 prog = env->prog; 14774 btf = prog->aux->btf; 14775 14776 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 14777 min_size = min_t(u32, krec_size, urec_size); 14778 14779 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 14780 if (!krecord) 14781 return -ENOMEM; 14782 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 14783 if (!info_aux) 14784 goto err_free; 14785 14786 for (i = 0; i < nfuncs; i++) { 14787 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 14788 if (ret) { 14789 if (ret == -E2BIG) { 14790 verbose(env, "nonzero tailing record in func info"); 14791 /* set the size kernel expects so loader can zero 14792 * out the rest of the record. 14793 */ 14794 if (copy_to_bpfptr_offset(uattr, 14795 offsetof(union bpf_attr, func_info_rec_size), 14796 &min_size, sizeof(min_size))) 14797 ret = -EFAULT; 14798 } 14799 goto err_free; 14800 } 14801 14802 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 14803 ret = -EFAULT; 14804 goto err_free; 14805 } 14806 14807 /* check insn_off */ 14808 ret = -EINVAL; 14809 if (i == 0) { 14810 if (krecord[i].insn_off) { 14811 verbose(env, 14812 "nonzero insn_off %u for the first func info record", 14813 krecord[i].insn_off); 14814 goto err_free; 14815 } 14816 } else if (krecord[i].insn_off <= prev_offset) { 14817 verbose(env, 14818 "same or smaller insn offset (%u) than previous func info record (%u)", 14819 krecord[i].insn_off, prev_offset); 14820 goto err_free; 14821 } 14822 14823 if (env->subprog_info[i].start != krecord[i].insn_off) { 14824 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 14825 goto err_free; 14826 } 14827 14828 /* check type_id */ 14829 type = btf_type_by_id(btf, krecord[i].type_id); 14830 if (!type || !btf_type_is_func(type)) { 14831 verbose(env, "invalid type id %d in func info", 14832 krecord[i].type_id); 14833 goto err_free; 14834 } 14835 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 14836 14837 func_proto = btf_type_by_id(btf, type->type); 14838 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 14839 /* btf_func_check() already verified it during BTF load */ 14840 goto err_free; 14841 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 14842 scalar_return = 14843 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 14844 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 14845 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 14846 goto err_free; 14847 } 14848 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 14849 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 14850 goto err_free; 14851 } 14852 14853 prev_offset = krecord[i].insn_off; 14854 bpfptr_add(&urecord, urec_size); 14855 } 14856 14857 prog->aux->func_info = krecord; 14858 prog->aux->func_info_cnt = nfuncs; 14859 prog->aux->func_info_aux = info_aux; 14860 return 0; 14861 14862 err_free: 14863 kvfree(krecord); 14864 kfree(info_aux); 14865 return ret; 14866 } 14867 14868 static void adjust_btf_func(struct bpf_verifier_env *env) 14869 { 14870 struct bpf_prog_aux *aux = env->prog->aux; 14871 int i; 14872 14873 if (!aux->func_info) 14874 return; 14875 14876 for (i = 0; i < env->subprog_cnt; i++) 14877 aux->func_info[i].insn_off = env->subprog_info[i].start; 14878 } 14879 14880 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 14881 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 14882 14883 static int check_btf_line(struct bpf_verifier_env *env, 14884 const union bpf_attr *attr, 14885 bpfptr_t uattr) 14886 { 14887 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 14888 struct bpf_subprog_info *sub; 14889 struct bpf_line_info *linfo; 14890 struct bpf_prog *prog; 14891 const struct btf *btf; 14892 bpfptr_t ulinfo; 14893 int err; 14894 14895 nr_linfo = attr->line_info_cnt; 14896 if (!nr_linfo) 14897 return 0; 14898 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 14899 return -EINVAL; 14900 14901 rec_size = attr->line_info_rec_size; 14902 if (rec_size < MIN_BPF_LINEINFO_SIZE || 14903 rec_size > MAX_LINEINFO_REC_SIZE || 14904 rec_size & (sizeof(u32) - 1)) 14905 return -EINVAL; 14906 14907 /* Need to zero it in case the userspace may 14908 * pass in a smaller bpf_line_info object. 14909 */ 14910 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 14911 GFP_KERNEL | __GFP_NOWARN); 14912 if (!linfo) 14913 return -ENOMEM; 14914 14915 prog = env->prog; 14916 btf = prog->aux->btf; 14917 14918 s = 0; 14919 sub = env->subprog_info; 14920 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 14921 expected_size = sizeof(struct bpf_line_info); 14922 ncopy = min_t(u32, expected_size, rec_size); 14923 for (i = 0; i < nr_linfo; i++) { 14924 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 14925 if (err) { 14926 if (err == -E2BIG) { 14927 verbose(env, "nonzero tailing record in line_info"); 14928 if (copy_to_bpfptr_offset(uattr, 14929 offsetof(union bpf_attr, line_info_rec_size), 14930 &expected_size, sizeof(expected_size))) 14931 err = -EFAULT; 14932 } 14933 goto err_free; 14934 } 14935 14936 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 14937 err = -EFAULT; 14938 goto err_free; 14939 } 14940 14941 /* 14942 * Check insn_off to ensure 14943 * 1) strictly increasing AND 14944 * 2) bounded by prog->len 14945 * 14946 * The linfo[0].insn_off == 0 check logically falls into 14947 * the later "missing bpf_line_info for func..." case 14948 * because the first linfo[0].insn_off must be the 14949 * first sub also and the first sub must have 14950 * subprog_info[0].start == 0. 14951 */ 14952 if ((i && linfo[i].insn_off <= prev_offset) || 14953 linfo[i].insn_off >= prog->len) { 14954 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 14955 i, linfo[i].insn_off, prev_offset, 14956 prog->len); 14957 err = -EINVAL; 14958 goto err_free; 14959 } 14960 14961 if (!prog->insnsi[linfo[i].insn_off].code) { 14962 verbose(env, 14963 "Invalid insn code at line_info[%u].insn_off\n", 14964 i); 14965 err = -EINVAL; 14966 goto err_free; 14967 } 14968 14969 if (!btf_name_by_offset(btf, linfo[i].line_off) || 14970 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 14971 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 14972 err = -EINVAL; 14973 goto err_free; 14974 } 14975 14976 if (s != env->subprog_cnt) { 14977 if (linfo[i].insn_off == sub[s].start) { 14978 sub[s].linfo_idx = i; 14979 s++; 14980 } else if (sub[s].start < linfo[i].insn_off) { 14981 verbose(env, "missing bpf_line_info for func#%u\n", s); 14982 err = -EINVAL; 14983 goto err_free; 14984 } 14985 } 14986 14987 prev_offset = linfo[i].insn_off; 14988 bpfptr_add(&ulinfo, rec_size); 14989 } 14990 14991 if (s != env->subprog_cnt) { 14992 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 14993 env->subprog_cnt - s, s); 14994 err = -EINVAL; 14995 goto err_free; 14996 } 14997 14998 prog->aux->linfo = linfo; 14999 prog->aux->nr_linfo = nr_linfo; 15000 15001 return 0; 15002 15003 err_free: 15004 kvfree(linfo); 15005 return err; 15006 } 15007 15008 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15009 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15010 15011 static int check_core_relo(struct bpf_verifier_env *env, 15012 const union bpf_attr *attr, 15013 bpfptr_t uattr) 15014 { 15015 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15016 struct bpf_core_relo core_relo = {}; 15017 struct bpf_prog *prog = env->prog; 15018 const struct btf *btf = prog->aux->btf; 15019 struct bpf_core_ctx ctx = { 15020 .log = &env->log, 15021 .btf = btf, 15022 }; 15023 bpfptr_t u_core_relo; 15024 int err; 15025 15026 nr_core_relo = attr->core_relo_cnt; 15027 if (!nr_core_relo) 15028 return 0; 15029 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15030 return -EINVAL; 15031 15032 rec_size = attr->core_relo_rec_size; 15033 if (rec_size < MIN_CORE_RELO_SIZE || 15034 rec_size > MAX_CORE_RELO_SIZE || 15035 rec_size % sizeof(u32)) 15036 return -EINVAL; 15037 15038 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15039 expected_size = sizeof(struct bpf_core_relo); 15040 ncopy = min_t(u32, expected_size, rec_size); 15041 15042 /* Unlike func_info and line_info, copy and apply each CO-RE 15043 * relocation record one at a time. 15044 */ 15045 for (i = 0; i < nr_core_relo; i++) { 15046 /* future proofing when sizeof(bpf_core_relo) changes */ 15047 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15048 if (err) { 15049 if (err == -E2BIG) { 15050 verbose(env, "nonzero tailing record in core_relo"); 15051 if (copy_to_bpfptr_offset(uattr, 15052 offsetof(union bpf_attr, core_relo_rec_size), 15053 &expected_size, sizeof(expected_size))) 15054 err = -EFAULT; 15055 } 15056 break; 15057 } 15058 15059 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15060 err = -EFAULT; 15061 break; 15062 } 15063 15064 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15065 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15066 i, core_relo.insn_off, prog->len); 15067 err = -EINVAL; 15068 break; 15069 } 15070 15071 err = bpf_core_apply(&ctx, &core_relo, i, 15072 &prog->insnsi[core_relo.insn_off / 8]); 15073 if (err) 15074 break; 15075 bpfptr_add(&u_core_relo, rec_size); 15076 } 15077 return err; 15078 } 15079 15080 static int check_btf_info(struct bpf_verifier_env *env, 15081 const union bpf_attr *attr, 15082 bpfptr_t uattr) 15083 { 15084 struct btf *btf; 15085 int err; 15086 15087 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15088 if (check_abnormal_return(env)) 15089 return -EINVAL; 15090 return 0; 15091 } 15092 15093 btf = btf_get_by_fd(attr->prog_btf_fd); 15094 if (IS_ERR(btf)) 15095 return PTR_ERR(btf); 15096 if (btf_is_kernel(btf)) { 15097 btf_put(btf); 15098 return -EACCES; 15099 } 15100 env->prog->aux->btf = btf; 15101 15102 err = check_btf_func(env, attr, uattr); 15103 if (err) 15104 return err; 15105 15106 err = check_btf_line(env, attr, uattr); 15107 if (err) 15108 return err; 15109 15110 err = check_core_relo(env, attr, uattr); 15111 if (err) 15112 return err; 15113 15114 return 0; 15115 } 15116 15117 /* check %cur's range satisfies %old's */ 15118 static bool range_within(struct bpf_reg_state *old, 15119 struct bpf_reg_state *cur) 15120 { 15121 return old->umin_value <= cur->umin_value && 15122 old->umax_value >= cur->umax_value && 15123 old->smin_value <= cur->smin_value && 15124 old->smax_value >= cur->smax_value && 15125 old->u32_min_value <= cur->u32_min_value && 15126 old->u32_max_value >= cur->u32_max_value && 15127 old->s32_min_value <= cur->s32_min_value && 15128 old->s32_max_value >= cur->s32_max_value; 15129 } 15130 15131 /* If in the old state two registers had the same id, then they need to have 15132 * the same id in the new state as well. But that id could be different from 15133 * the old state, so we need to track the mapping from old to new ids. 15134 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15135 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15136 * regs with a different old id could still have new id 9, we don't care about 15137 * that. 15138 * So we look through our idmap to see if this old id has been seen before. If 15139 * so, we require the new id to match; otherwise, we add the id pair to the map. 15140 */ 15141 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15142 { 15143 struct bpf_id_pair *map = idmap->map; 15144 unsigned int i; 15145 15146 /* either both IDs should be set or both should be zero */ 15147 if (!!old_id != !!cur_id) 15148 return false; 15149 15150 if (old_id == 0) /* cur_id == 0 as well */ 15151 return true; 15152 15153 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15154 if (!map[i].old) { 15155 /* Reached an empty slot; haven't seen this id before */ 15156 map[i].old = old_id; 15157 map[i].cur = cur_id; 15158 return true; 15159 } 15160 if (map[i].old == old_id) 15161 return map[i].cur == cur_id; 15162 if (map[i].cur == cur_id) 15163 return false; 15164 } 15165 /* We ran out of idmap slots, which should be impossible */ 15166 WARN_ON_ONCE(1); 15167 return false; 15168 } 15169 15170 /* Similar to check_ids(), but allocate a unique temporary ID 15171 * for 'old_id' or 'cur_id' of zero. 15172 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15173 */ 15174 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15175 { 15176 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15177 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15178 15179 return check_ids(old_id, cur_id, idmap); 15180 } 15181 15182 static void clean_func_state(struct bpf_verifier_env *env, 15183 struct bpf_func_state *st) 15184 { 15185 enum bpf_reg_liveness live; 15186 int i, j; 15187 15188 for (i = 0; i < BPF_REG_FP; i++) { 15189 live = st->regs[i].live; 15190 /* liveness must not touch this register anymore */ 15191 st->regs[i].live |= REG_LIVE_DONE; 15192 if (!(live & REG_LIVE_READ)) 15193 /* since the register is unused, clear its state 15194 * to make further comparison simpler 15195 */ 15196 __mark_reg_not_init(env, &st->regs[i]); 15197 } 15198 15199 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15200 live = st->stack[i].spilled_ptr.live; 15201 /* liveness must not touch this stack slot anymore */ 15202 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15203 if (!(live & REG_LIVE_READ)) { 15204 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15205 for (j = 0; j < BPF_REG_SIZE; j++) 15206 st->stack[i].slot_type[j] = STACK_INVALID; 15207 } 15208 } 15209 } 15210 15211 static void clean_verifier_state(struct bpf_verifier_env *env, 15212 struct bpf_verifier_state *st) 15213 { 15214 int i; 15215 15216 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15217 /* all regs in this state in all frames were already marked */ 15218 return; 15219 15220 for (i = 0; i <= st->curframe; i++) 15221 clean_func_state(env, st->frame[i]); 15222 } 15223 15224 /* the parentage chains form a tree. 15225 * the verifier states are added to state lists at given insn and 15226 * pushed into state stack for future exploration. 15227 * when the verifier reaches bpf_exit insn some of the verifer states 15228 * stored in the state lists have their final liveness state already, 15229 * but a lot of states will get revised from liveness point of view when 15230 * the verifier explores other branches. 15231 * Example: 15232 * 1: r0 = 1 15233 * 2: if r1 == 100 goto pc+1 15234 * 3: r0 = 2 15235 * 4: exit 15236 * when the verifier reaches exit insn the register r0 in the state list of 15237 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15238 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15239 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15240 * 15241 * Since the verifier pushes the branch states as it sees them while exploring 15242 * the program the condition of walking the branch instruction for the second 15243 * time means that all states below this branch were already explored and 15244 * their final liveness marks are already propagated. 15245 * Hence when the verifier completes the search of state list in is_state_visited() 15246 * we can call this clean_live_states() function to mark all liveness states 15247 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15248 * will not be used. 15249 * This function also clears the registers and stack for states that !READ 15250 * to simplify state merging. 15251 * 15252 * Important note here that walking the same branch instruction in the callee 15253 * doesn't meant that the states are DONE. The verifier has to compare 15254 * the callsites 15255 */ 15256 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15257 struct bpf_verifier_state *cur) 15258 { 15259 struct bpf_verifier_state_list *sl; 15260 int i; 15261 15262 sl = *explored_state(env, insn); 15263 while (sl) { 15264 if (sl->state.branches) 15265 goto next; 15266 if (sl->state.insn_idx != insn || 15267 sl->state.curframe != cur->curframe) 15268 goto next; 15269 for (i = 0; i <= cur->curframe; i++) 15270 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15271 goto next; 15272 clean_verifier_state(env, &sl->state); 15273 next: 15274 sl = sl->next; 15275 } 15276 } 15277 15278 static bool regs_exact(const struct bpf_reg_state *rold, 15279 const struct bpf_reg_state *rcur, 15280 struct bpf_idmap *idmap) 15281 { 15282 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15283 check_ids(rold->id, rcur->id, idmap) && 15284 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15285 } 15286 15287 /* Returns true if (rold safe implies rcur safe) */ 15288 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15289 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15290 { 15291 if (!(rold->live & REG_LIVE_READ)) 15292 /* explored state didn't use this */ 15293 return true; 15294 if (rold->type == NOT_INIT) 15295 /* explored state can't have used this */ 15296 return true; 15297 if (rcur->type == NOT_INIT) 15298 return false; 15299 15300 /* Enforce that register types have to match exactly, including their 15301 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15302 * rule. 15303 * 15304 * One can make a point that using a pointer register as unbounded 15305 * SCALAR would be technically acceptable, but this could lead to 15306 * pointer leaks because scalars are allowed to leak while pointers 15307 * are not. We could make this safe in special cases if root is 15308 * calling us, but it's probably not worth the hassle. 15309 * 15310 * Also, register types that are *not* MAYBE_NULL could technically be 15311 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15312 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15313 * to the same map). 15314 * However, if the old MAYBE_NULL register then got NULL checked, 15315 * doing so could have affected others with the same id, and we can't 15316 * check for that because we lost the id when we converted to 15317 * a non-MAYBE_NULL variant. 15318 * So, as a general rule we don't allow mixing MAYBE_NULL and 15319 * non-MAYBE_NULL registers as well. 15320 */ 15321 if (rold->type != rcur->type) 15322 return false; 15323 15324 switch (base_type(rold->type)) { 15325 case SCALAR_VALUE: 15326 if (env->explore_alu_limits) { 15327 /* explore_alu_limits disables tnum_in() and range_within() 15328 * logic and requires everything to be strict 15329 */ 15330 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15331 check_scalar_ids(rold->id, rcur->id, idmap); 15332 } 15333 if (!rold->precise) 15334 return true; 15335 /* Why check_ids() for scalar registers? 15336 * 15337 * Consider the following BPF code: 15338 * 1: r6 = ... unbound scalar, ID=a ... 15339 * 2: r7 = ... unbound scalar, ID=b ... 15340 * 3: if (r6 > r7) goto +1 15341 * 4: r6 = r7 15342 * 5: if (r6 > X) goto ... 15343 * 6: ... memory operation using r7 ... 15344 * 15345 * First verification path is [1-6]: 15346 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15347 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15348 * r7 <= X, because r6 and r7 share same id. 15349 * Next verification path is [1-4, 6]. 15350 * 15351 * Instruction (6) would be reached in two states: 15352 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15353 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15354 * 15355 * Use check_ids() to distinguish these states. 15356 * --- 15357 * Also verify that new value satisfies old value range knowledge. 15358 */ 15359 return range_within(rold, rcur) && 15360 tnum_in(rold->var_off, rcur->var_off) && 15361 check_scalar_ids(rold->id, rcur->id, idmap); 15362 case PTR_TO_MAP_KEY: 15363 case PTR_TO_MAP_VALUE: 15364 case PTR_TO_MEM: 15365 case PTR_TO_BUF: 15366 case PTR_TO_TP_BUFFER: 15367 /* If the new min/max/var_off satisfy the old ones and 15368 * everything else matches, we are OK. 15369 */ 15370 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15371 range_within(rold, rcur) && 15372 tnum_in(rold->var_off, rcur->var_off) && 15373 check_ids(rold->id, rcur->id, idmap) && 15374 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15375 case PTR_TO_PACKET_META: 15376 case PTR_TO_PACKET: 15377 /* We must have at least as much range as the old ptr 15378 * did, so that any accesses which were safe before are 15379 * still safe. This is true even if old range < old off, 15380 * since someone could have accessed through (ptr - k), or 15381 * even done ptr -= k in a register, to get a safe access. 15382 */ 15383 if (rold->range > rcur->range) 15384 return false; 15385 /* If the offsets don't match, we can't trust our alignment; 15386 * nor can we be sure that we won't fall out of range. 15387 */ 15388 if (rold->off != rcur->off) 15389 return false; 15390 /* id relations must be preserved */ 15391 if (!check_ids(rold->id, rcur->id, idmap)) 15392 return false; 15393 /* new val must satisfy old val knowledge */ 15394 return range_within(rold, rcur) && 15395 tnum_in(rold->var_off, rcur->var_off); 15396 case PTR_TO_STACK: 15397 /* two stack pointers are equal only if they're pointing to 15398 * the same stack frame, since fp-8 in foo != fp-8 in bar 15399 */ 15400 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15401 default: 15402 return regs_exact(rold, rcur, idmap); 15403 } 15404 } 15405 15406 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15407 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15408 { 15409 int i, spi; 15410 15411 /* walk slots of the explored stack and ignore any additional 15412 * slots in the current stack, since explored(safe) state 15413 * didn't use them 15414 */ 15415 for (i = 0; i < old->allocated_stack; i++) { 15416 struct bpf_reg_state *old_reg, *cur_reg; 15417 15418 spi = i / BPF_REG_SIZE; 15419 15420 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15421 i += BPF_REG_SIZE - 1; 15422 /* explored state didn't use this */ 15423 continue; 15424 } 15425 15426 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15427 continue; 15428 15429 if (env->allow_uninit_stack && 15430 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15431 continue; 15432 15433 /* explored stack has more populated slots than current stack 15434 * and these slots were used 15435 */ 15436 if (i >= cur->allocated_stack) 15437 return false; 15438 15439 /* if old state was safe with misc data in the stack 15440 * it will be safe with zero-initialized stack. 15441 * The opposite is not true 15442 */ 15443 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15444 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15445 continue; 15446 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15447 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15448 /* Ex: old explored (safe) state has STACK_SPILL in 15449 * this stack slot, but current has STACK_MISC -> 15450 * this verifier states are not equivalent, 15451 * return false to continue verification of this path 15452 */ 15453 return false; 15454 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15455 continue; 15456 /* Both old and cur are having same slot_type */ 15457 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15458 case STACK_SPILL: 15459 /* when explored and current stack slot are both storing 15460 * spilled registers, check that stored pointers types 15461 * are the same as well. 15462 * Ex: explored safe path could have stored 15463 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15464 * but current path has stored: 15465 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15466 * such verifier states are not equivalent. 15467 * return false to continue verification of this path 15468 */ 15469 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15470 &cur->stack[spi].spilled_ptr, idmap)) 15471 return false; 15472 break; 15473 case STACK_DYNPTR: 15474 old_reg = &old->stack[spi].spilled_ptr; 15475 cur_reg = &cur->stack[spi].spilled_ptr; 15476 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15477 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15478 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15479 return false; 15480 break; 15481 case STACK_ITER: 15482 old_reg = &old->stack[spi].spilled_ptr; 15483 cur_reg = &cur->stack[spi].spilled_ptr; 15484 /* iter.depth is not compared between states as it 15485 * doesn't matter for correctness and would otherwise 15486 * prevent convergence; we maintain it only to prevent 15487 * infinite loop check triggering, see 15488 * iter_active_depths_differ() 15489 */ 15490 if (old_reg->iter.btf != cur_reg->iter.btf || 15491 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15492 old_reg->iter.state != cur_reg->iter.state || 15493 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15494 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15495 return false; 15496 break; 15497 case STACK_MISC: 15498 case STACK_ZERO: 15499 case STACK_INVALID: 15500 continue; 15501 /* Ensure that new unhandled slot types return false by default */ 15502 default: 15503 return false; 15504 } 15505 } 15506 return true; 15507 } 15508 15509 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15510 struct bpf_idmap *idmap) 15511 { 15512 int i; 15513 15514 if (old->acquired_refs != cur->acquired_refs) 15515 return false; 15516 15517 for (i = 0; i < old->acquired_refs; i++) { 15518 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15519 return false; 15520 } 15521 15522 return true; 15523 } 15524 15525 /* compare two verifier states 15526 * 15527 * all states stored in state_list are known to be valid, since 15528 * verifier reached 'bpf_exit' instruction through them 15529 * 15530 * this function is called when verifier exploring different branches of 15531 * execution popped from the state stack. If it sees an old state that has 15532 * more strict register state and more strict stack state then this execution 15533 * branch doesn't need to be explored further, since verifier already 15534 * concluded that more strict state leads to valid finish. 15535 * 15536 * Therefore two states are equivalent if register state is more conservative 15537 * and explored stack state is more conservative than the current one. 15538 * Example: 15539 * explored current 15540 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15541 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15542 * 15543 * In other words if current stack state (one being explored) has more 15544 * valid slots than old one that already passed validation, it means 15545 * the verifier can stop exploring and conclude that current state is valid too 15546 * 15547 * Similarly with registers. If explored state has register type as invalid 15548 * whereas register type in current state is meaningful, it means that 15549 * the current state will reach 'bpf_exit' instruction safely 15550 */ 15551 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15552 struct bpf_func_state *cur) 15553 { 15554 int i; 15555 15556 for (i = 0; i < MAX_BPF_REG; i++) 15557 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15558 &env->idmap_scratch)) 15559 return false; 15560 15561 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15562 return false; 15563 15564 if (!refsafe(old, cur, &env->idmap_scratch)) 15565 return false; 15566 15567 return true; 15568 } 15569 15570 static bool states_equal(struct bpf_verifier_env *env, 15571 struct bpf_verifier_state *old, 15572 struct bpf_verifier_state *cur) 15573 { 15574 int i; 15575 15576 if (old->curframe != cur->curframe) 15577 return false; 15578 15579 env->idmap_scratch.tmp_id_gen = env->id_gen; 15580 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15581 15582 /* Verification state from speculative execution simulation 15583 * must never prune a non-speculative execution one. 15584 */ 15585 if (old->speculative && !cur->speculative) 15586 return false; 15587 15588 if (old->active_lock.ptr != cur->active_lock.ptr) 15589 return false; 15590 15591 /* Old and cur active_lock's have to be either both present 15592 * or both absent. 15593 */ 15594 if (!!old->active_lock.id != !!cur->active_lock.id) 15595 return false; 15596 15597 if (old->active_lock.id && 15598 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15599 return false; 15600 15601 if (old->active_rcu_lock != cur->active_rcu_lock) 15602 return false; 15603 15604 /* for states to be equal callsites have to be the same 15605 * and all frame states need to be equivalent 15606 */ 15607 for (i = 0; i <= old->curframe; i++) { 15608 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15609 return false; 15610 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15611 return false; 15612 } 15613 return true; 15614 } 15615 15616 /* Return 0 if no propagation happened. Return negative error code if error 15617 * happened. Otherwise, return the propagated bit. 15618 */ 15619 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15620 struct bpf_reg_state *reg, 15621 struct bpf_reg_state *parent_reg) 15622 { 15623 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15624 u8 flag = reg->live & REG_LIVE_READ; 15625 int err; 15626 15627 /* When comes here, read flags of PARENT_REG or REG could be any of 15628 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15629 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15630 */ 15631 if (parent_flag == REG_LIVE_READ64 || 15632 /* Or if there is no read flag from REG. */ 15633 !flag || 15634 /* Or if the read flag from REG is the same as PARENT_REG. */ 15635 parent_flag == flag) 15636 return 0; 15637 15638 err = mark_reg_read(env, reg, parent_reg, flag); 15639 if (err) 15640 return err; 15641 15642 return flag; 15643 } 15644 15645 /* A write screens off any subsequent reads; but write marks come from the 15646 * straight-line code between a state and its parent. When we arrive at an 15647 * equivalent state (jump target or such) we didn't arrive by the straight-line 15648 * code, so read marks in the state must propagate to the parent regardless 15649 * of the state's write marks. That's what 'parent == state->parent' comparison 15650 * in mark_reg_read() is for. 15651 */ 15652 static int propagate_liveness(struct bpf_verifier_env *env, 15653 const struct bpf_verifier_state *vstate, 15654 struct bpf_verifier_state *vparent) 15655 { 15656 struct bpf_reg_state *state_reg, *parent_reg; 15657 struct bpf_func_state *state, *parent; 15658 int i, frame, err = 0; 15659 15660 if (vparent->curframe != vstate->curframe) { 15661 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15662 vparent->curframe, vstate->curframe); 15663 return -EFAULT; 15664 } 15665 /* Propagate read liveness of registers... */ 15666 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15667 for (frame = 0; frame <= vstate->curframe; frame++) { 15668 parent = vparent->frame[frame]; 15669 state = vstate->frame[frame]; 15670 parent_reg = parent->regs; 15671 state_reg = state->regs; 15672 /* We don't need to worry about FP liveness, it's read-only */ 15673 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15674 err = propagate_liveness_reg(env, &state_reg[i], 15675 &parent_reg[i]); 15676 if (err < 0) 15677 return err; 15678 if (err == REG_LIVE_READ64) 15679 mark_insn_zext(env, &parent_reg[i]); 15680 } 15681 15682 /* Propagate stack slots. */ 15683 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15684 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15685 parent_reg = &parent->stack[i].spilled_ptr; 15686 state_reg = &state->stack[i].spilled_ptr; 15687 err = propagate_liveness_reg(env, state_reg, 15688 parent_reg); 15689 if (err < 0) 15690 return err; 15691 } 15692 } 15693 return 0; 15694 } 15695 15696 /* find precise scalars in the previous equivalent state and 15697 * propagate them into the current state 15698 */ 15699 static int propagate_precision(struct bpf_verifier_env *env, 15700 const struct bpf_verifier_state *old) 15701 { 15702 struct bpf_reg_state *state_reg; 15703 struct bpf_func_state *state; 15704 int i, err = 0, fr; 15705 bool first; 15706 15707 for (fr = old->curframe; fr >= 0; fr--) { 15708 state = old->frame[fr]; 15709 state_reg = state->regs; 15710 first = true; 15711 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15712 if (state_reg->type != SCALAR_VALUE || 15713 !state_reg->precise || 15714 !(state_reg->live & REG_LIVE_READ)) 15715 continue; 15716 if (env->log.level & BPF_LOG_LEVEL2) { 15717 if (first) 15718 verbose(env, "frame %d: propagating r%d", fr, i); 15719 else 15720 verbose(env, ",r%d", i); 15721 } 15722 bt_set_frame_reg(&env->bt, fr, i); 15723 first = false; 15724 } 15725 15726 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15727 if (!is_spilled_reg(&state->stack[i])) 15728 continue; 15729 state_reg = &state->stack[i].spilled_ptr; 15730 if (state_reg->type != SCALAR_VALUE || 15731 !state_reg->precise || 15732 !(state_reg->live & REG_LIVE_READ)) 15733 continue; 15734 if (env->log.level & BPF_LOG_LEVEL2) { 15735 if (first) 15736 verbose(env, "frame %d: propagating fp%d", 15737 fr, (-i - 1) * BPF_REG_SIZE); 15738 else 15739 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15740 } 15741 bt_set_frame_slot(&env->bt, fr, i); 15742 first = false; 15743 } 15744 if (!first) 15745 verbose(env, "\n"); 15746 } 15747 15748 err = mark_chain_precision_batch(env); 15749 if (err < 0) 15750 return err; 15751 15752 return 0; 15753 } 15754 15755 static bool states_maybe_looping(struct bpf_verifier_state *old, 15756 struct bpf_verifier_state *cur) 15757 { 15758 struct bpf_func_state *fold, *fcur; 15759 int i, fr = cur->curframe; 15760 15761 if (old->curframe != fr) 15762 return false; 15763 15764 fold = old->frame[fr]; 15765 fcur = cur->frame[fr]; 15766 for (i = 0; i < MAX_BPF_REG; i++) 15767 if (memcmp(&fold->regs[i], &fcur->regs[i], 15768 offsetof(struct bpf_reg_state, parent))) 15769 return false; 15770 return true; 15771 } 15772 15773 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 15774 { 15775 return env->insn_aux_data[insn_idx].is_iter_next; 15776 } 15777 15778 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 15779 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 15780 * states to match, which otherwise would look like an infinite loop. So while 15781 * iter_next() calls are taken care of, we still need to be careful and 15782 * prevent erroneous and too eager declaration of "ininite loop", when 15783 * iterators are involved. 15784 * 15785 * Here's a situation in pseudo-BPF assembly form: 15786 * 15787 * 0: again: ; set up iter_next() call args 15788 * 1: r1 = &it ; <CHECKPOINT HERE> 15789 * 2: call bpf_iter_num_next ; this is iter_next() call 15790 * 3: if r0 == 0 goto done 15791 * 4: ... something useful here ... 15792 * 5: goto again ; another iteration 15793 * 6: done: 15794 * 7: r1 = &it 15795 * 8: call bpf_iter_num_destroy ; clean up iter state 15796 * 9: exit 15797 * 15798 * This is a typical loop. Let's assume that we have a prune point at 1:, 15799 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 15800 * again`, assuming other heuristics don't get in a way). 15801 * 15802 * When we first time come to 1:, let's say we have some state X. We proceed 15803 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 15804 * Now we come back to validate that forked ACTIVE state. We proceed through 15805 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 15806 * are converging. But the problem is that we don't know that yet, as this 15807 * convergence has to happen at iter_next() call site only. So if nothing is 15808 * done, at 1: verifier will use bounded loop logic and declare infinite 15809 * looping (and would be *technically* correct, if not for iterator's 15810 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 15811 * don't want that. So what we do in process_iter_next_call() when we go on 15812 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 15813 * a different iteration. So when we suspect an infinite loop, we additionally 15814 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 15815 * pretend we are not looping and wait for next iter_next() call. 15816 * 15817 * This only applies to ACTIVE state. In DRAINED state we don't expect to 15818 * loop, because that would actually mean infinite loop, as DRAINED state is 15819 * "sticky", and so we'll keep returning into the same instruction with the 15820 * same state (at least in one of possible code paths). 15821 * 15822 * This approach allows to keep infinite loop heuristic even in the face of 15823 * active iterator. E.g., C snippet below is and will be detected as 15824 * inifintely looping: 15825 * 15826 * struct bpf_iter_num it; 15827 * int *p, x; 15828 * 15829 * bpf_iter_num_new(&it, 0, 10); 15830 * while ((p = bpf_iter_num_next(&t))) { 15831 * x = p; 15832 * while (x--) {} // <<-- infinite loop here 15833 * } 15834 * 15835 */ 15836 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 15837 { 15838 struct bpf_reg_state *slot, *cur_slot; 15839 struct bpf_func_state *state; 15840 int i, fr; 15841 15842 for (fr = old->curframe; fr >= 0; fr--) { 15843 state = old->frame[fr]; 15844 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15845 if (state->stack[i].slot_type[0] != STACK_ITER) 15846 continue; 15847 15848 slot = &state->stack[i].spilled_ptr; 15849 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 15850 continue; 15851 15852 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 15853 if (cur_slot->iter.depth != slot->iter.depth) 15854 return true; 15855 } 15856 } 15857 return false; 15858 } 15859 15860 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 15861 { 15862 struct bpf_verifier_state_list *new_sl; 15863 struct bpf_verifier_state_list *sl, **pprev; 15864 struct bpf_verifier_state *cur = env->cur_state, *new; 15865 int i, j, err, states_cnt = 0; 15866 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 15867 bool add_new_state = force_new_state; 15868 15869 /* bpf progs typically have pruning point every 4 instructions 15870 * http://vger.kernel.org/bpfconf2019.html#session-1 15871 * Do not add new state for future pruning if the verifier hasn't seen 15872 * at least 2 jumps and at least 8 instructions. 15873 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 15874 * In tests that amounts to up to 50% reduction into total verifier 15875 * memory consumption and 20% verifier time speedup. 15876 */ 15877 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 15878 env->insn_processed - env->prev_insn_processed >= 8) 15879 add_new_state = true; 15880 15881 pprev = explored_state(env, insn_idx); 15882 sl = *pprev; 15883 15884 clean_live_states(env, insn_idx, cur); 15885 15886 while (sl) { 15887 states_cnt++; 15888 if (sl->state.insn_idx != insn_idx) 15889 goto next; 15890 15891 if (sl->state.branches) { 15892 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 15893 15894 if (frame->in_async_callback_fn && 15895 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 15896 /* Different async_entry_cnt means that the verifier is 15897 * processing another entry into async callback. 15898 * Seeing the same state is not an indication of infinite 15899 * loop or infinite recursion. 15900 * But finding the same state doesn't mean that it's safe 15901 * to stop processing the current state. The previous state 15902 * hasn't yet reached bpf_exit, since state.branches > 0. 15903 * Checking in_async_callback_fn alone is not enough either. 15904 * Since the verifier still needs to catch infinite loops 15905 * inside async callbacks. 15906 */ 15907 goto skip_inf_loop_check; 15908 } 15909 /* BPF open-coded iterators loop detection is special. 15910 * states_maybe_looping() logic is too simplistic in detecting 15911 * states that *might* be equivalent, because it doesn't know 15912 * about ID remapping, so don't even perform it. 15913 * See process_iter_next_call() and iter_active_depths_differ() 15914 * for overview of the logic. When current and one of parent 15915 * states are detected as equivalent, it's a good thing: we prove 15916 * convergence and can stop simulating further iterations. 15917 * It's safe to assume that iterator loop will finish, taking into 15918 * account iter_next() contract of eventually returning 15919 * sticky NULL result. 15920 */ 15921 if (is_iter_next_insn(env, insn_idx)) { 15922 if (states_equal(env, &sl->state, cur)) { 15923 struct bpf_func_state *cur_frame; 15924 struct bpf_reg_state *iter_state, *iter_reg; 15925 int spi; 15926 15927 cur_frame = cur->frame[cur->curframe]; 15928 /* btf_check_iter_kfuncs() enforces that 15929 * iter state pointer is always the first arg 15930 */ 15931 iter_reg = &cur_frame->regs[BPF_REG_1]; 15932 /* current state is valid due to states_equal(), 15933 * so we can assume valid iter and reg state, 15934 * no need for extra (re-)validations 15935 */ 15936 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 15937 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 15938 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 15939 goto hit; 15940 } 15941 goto skip_inf_loop_check; 15942 } 15943 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 15944 if (states_maybe_looping(&sl->state, cur) && 15945 states_equal(env, &sl->state, cur) && 15946 !iter_active_depths_differ(&sl->state, cur)) { 15947 verbose_linfo(env, insn_idx, "; "); 15948 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 15949 return -EINVAL; 15950 } 15951 /* if the verifier is processing a loop, avoid adding new state 15952 * too often, since different loop iterations have distinct 15953 * states and may not help future pruning. 15954 * This threshold shouldn't be too low to make sure that 15955 * a loop with large bound will be rejected quickly. 15956 * The most abusive loop will be: 15957 * r1 += 1 15958 * if r1 < 1000000 goto pc-2 15959 * 1M insn_procssed limit / 100 == 10k peak states. 15960 * This threshold shouldn't be too high either, since states 15961 * at the end of the loop are likely to be useful in pruning. 15962 */ 15963 skip_inf_loop_check: 15964 if (!force_new_state && 15965 env->jmps_processed - env->prev_jmps_processed < 20 && 15966 env->insn_processed - env->prev_insn_processed < 100) 15967 add_new_state = false; 15968 goto miss; 15969 } 15970 if (states_equal(env, &sl->state, cur)) { 15971 hit: 15972 sl->hit_cnt++; 15973 /* reached equivalent register/stack state, 15974 * prune the search. 15975 * Registers read by the continuation are read by us. 15976 * If we have any write marks in env->cur_state, they 15977 * will prevent corresponding reads in the continuation 15978 * from reaching our parent (an explored_state). Our 15979 * own state will get the read marks recorded, but 15980 * they'll be immediately forgotten as we're pruning 15981 * this state and will pop a new one. 15982 */ 15983 err = propagate_liveness(env, &sl->state, cur); 15984 15985 /* if previous state reached the exit with precision and 15986 * current state is equivalent to it (except precsion marks) 15987 * the precision needs to be propagated back in 15988 * the current state. 15989 */ 15990 err = err ? : push_jmp_history(env, cur); 15991 err = err ? : propagate_precision(env, &sl->state); 15992 if (err) 15993 return err; 15994 return 1; 15995 } 15996 miss: 15997 /* when new state is not going to be added do not increase miss count. 15998 * Otherwise several loop iterations will remove the state 15999 * recorded earlier. The goal of these heuristics is to have 16000 * states from some iterations of the loop (some in the beginning 16001 * and some at the end) to help pruning. 16002 */ 16003 if (add_new_state) 16004 sl->miss_cnt++; 16005 /* heuristic to determine whether this state is beneficial 16006 * to keep checking from state equivalence point of view. 16007 * Higher numbers increase max_states_per_insn and verification time, 16008 * but do not meaningfully decrease insn_processed. 16009 */ 16010 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16011 /* the state is unlikely to be useful. Remove it to 16012 * speed up verification 16013 */ 16014 *pprev = sl->next; 16015 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16016 u32 br = sl->state.branches; 16017 16018 WARN_ONCE(br, 16019 "BUG live_done but branches_to_explore %d\n", 16020 br); 16021 free_verifier_state(&sl->state, false); 16022 kfree(sl); 16023 env->peak_states--; 16024 } else { 16025 /* cannot free this state, since parentage chain may 16026 * walk it later. Add it for free_list instead to 16027 * be freed at the end of verification 16028 */ 16029 sl->next = env->free_list; 16030 env->free_list = sl; 16031 } 16032 sl = *pprev; 16033 continue; 16034 } 16035 next: 16036 pprev = &sl->next; 16037 sl = *pprev; 16038 } 16039 16040 if (env->max_states_per_insn < states_cnt) 16041 env->max_states_per_insn = states_cnt; 16042 16043 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16044 return 0; 16045 16046 if (!add_new_state) 16047 return 0; 16048 16049 /* There were no equivalent states, remember the current one. 16050 * Technically the current state is not proven to be safe yet, 16051 * but it will either reach outer most bpf_exit (which means it's safe) 16052 * or it will be rejected. When there are no loops the verifier won't be 16053 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16054 * again on the way to bpf_exit. 16055 * When looping the sl->state.branches will be > 0 and this state 16056 * will not be considered for equivalence until branches == 0. 16057 */ 16058 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16059 if (!new_sl) 16060 return -ENOMEM; 16061 env->total_states++; 16062 env->peak_states++; 16063 env->prev_jmps_processed = env->jmps_processed; 16064 env->prev_insn_processed = env->insn_processed; 16065 16066 /* forget precise markings we inherited, see __mark_chain_precision */ 16067 if (env->bpf_capable) 16068 mark_all_scalars_imprecise(env, cur); 16069 16070 /* add new state to the head of linked list */ 16071 new = &new_sl->state; 16072 err = copy_verifier_state(new, cur); 16073 if (err) { 16074 free_verifier_state(new, false); 16075 kfree(new_sl); 16076 return err; 16077 } 16078 new->insn_idx = insn_idx; 16079 WARN_ONCE(new->branches != 1, 16080 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16081 16082 cur->parent = new; 16083 cur->first_insn_idx = insn_idx; 16084 clear_jmp_history(cur); 16085 new_sl->next = *explored_state(env, insn_idx); 16086 *explored_state(env, insn_idx) = new_sl; 16087 /* connect new state to parentage chain. Current frame needs all 16088 * registers connected. Only r6 - r9 of the callers are alive (pushed 16089 * to the stack implicitly by JITs) so in callers' frames connect just 16090 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16091 * the state of the call instruction (with WRITTEN set), and r0 comes 16092 * from callee with its full parentage chain, anyway. 16093 */ 16094 /* clear write marks in current state: the writes we did are not writes 16095 * our child did, so they don't screen off its reads from us. 16096 * (There are no read marks in current state, because reads always mark 16097 * their parent and current state never has children yet. Only 16098 * explored_states can get read marks.) 16099 */ 16100 for (j = 0; j <= cur->curframe; j++) { 16101 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16102 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16103 for (i = 0; i < BPF_REG_FP; i++) 16104 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16105 } 16106 16107 /* all stack frames are accessible from callee, clear them all */ 16108 for (j = 0; j <= cur->curframe; j++) { 16109 struct bpf_func_state *frame = cur->frame[j]; 16110 struct bpf_func_state *newframe = new->frame[j]; 16111 16112 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16113 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16114 frame->stack[i].spilled_ptr.parent = 16115 &newframe->stack[i].spilled_ptr; 16116 } 16117 } 16118 return 0; 16119 } 16120 16121 /* Return true if it's OK to have the same insn return a different type. */ 16122 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16123 { 16124 switch (base_type(type)) { 16125 case PTR_TO_CTX: 16126 case PTR_TO_SOCKET: 16127 case PTR_TO_SOCK_COMMON: 16128 case PTR_TO_TCP_SOCK: 16129 case PTR_TO_XDP_SOCK: 16130 case PTR_TO_BTF_ID: 16131 return false; 16132 default: 16133 return true; 16134 } 16135 } 16136 16137 /* If an instruction was previously used with particular pointer types, then we 16138 * need to be careful to avoid cases such as the below, where it may be ok 16139 * for one branch accessing the pointer, but not ok for the other branch: 16140 * 16141 * R1 = sock_ptr 16142 * goto X; 16143 * ... 16144 * R1 = some_other_valid_ptr; 16145 * goto X; 16146 * ... 16147 * R2 = *(u32 *)(R1 + 0); 16148 */ 16149 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16150 { 16151 return src != prev && (!reg_type_mismatch_ok(src) || 16152 !reg_type_mismatch_ok(prev)); 16153 } 16154 16155 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16156 bool allow_trust_missmatch) 16157 { 16158 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16159 16160 if (*prev_type == NOT_INIT) { 16161 /* Saw a valid insn 16162 * dst_reg = *(u32 *)(src_reg + off) 16163 * save type to validate intersecting paths 16164 */ 16165 *prev_type = type; 16166 } else if (reg_type_mismatch(type, *prev_type)) { 16167 /* Abuser program is trying to use the same insn 16168 * dst_reg = *(u32*) (src_reg + off) 16169 * with different pointer types: 16170 * src_reg == ctx in one branch and 16171 * src_reg == stack|map in some other branch. 16172 * Reject it. 16173 */ 16174 if (allow_trust_missmatch && 16175 base_type(type) == PTR_TO_BTF_ID && 16176 base_type(*prev_type) == PTR_TO_BTF_ID) { 16177 /* 16178 * Have to support a use case when one path through 16179 * the program yields TRUSTED pointer while another 16180 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16181 * BPF_PROBE_MEM. 16182 */ 16183 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16184 } else { 16185 verbose(env, "same insn cannot be used with different pointers\n"); 16186 return -EINVAL; 16187 } 16188 } 16189 16190 return 0; 16191 } 16192 16193 static int do_check(struct bpf_verifier_env *env) 16194 { 16195 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16196 struct bpf_verifier_state *state = env->cur_state; 16197 struct bpf_insn *insns = env->prog->insnsi; 16198 struct bpf_reg_state *regs; 16199 int insn_cnt = env->prog->len; 16200 bool do_print_state = false; 16201 int prev_insn_idx = -1; 16202 16203 for (;;) { 16204 struct bpf_insn *insn; 16205 u8 class; 16206 int err; 16207 16208 env->prev_insn_idx = prev_insn_idx; 16209 if (env->insn_idx >= insn_cnt) { 16210 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16211 env->insn_idx, insn_cnt); 16212 return -EFAULT; 16213 } 16214 16215 insn = &insns[env->insn_idx]; 16216 class = BPF_CLASS(insn->code); 16217 16218 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16219 verbose(env, 16220 "BPF program is too large. Processed %d insn\n", 16221 env->insn_processed); 16222 return -E2BIG; 16223 } 16224 16225 state->last_insn_idx = env->prev_insn_idx; 16226 16227 if (is_prune_point(env, env->insn_idx)) { 16228 err = is_state_visited(env, env->insn_idx); 16229 if (err < 0) 16230 return err; 16231 if (err == 1) { 16232 /* found equivalent state, can prune the search */ 16233 if (env->log.level & BPF_LOG_LEVEL) { 16234 if (do_print_state) 16235 verbose(env, "\nfrom %d to %d%s: safe\n", 16236 env->prev_insn_idx, env->insn_idx, 16237 env->cur_state->speculative ? 16238 " (speculative execution)" : ""); 16239 else 16240 verbose(env, "%d: safe\n", env->insn_idx); 16241 } 16242 goto process_bpf_exit; 16243 } 16244 } 16245 16246 if (is_jmp_point(env, env->insn_idx)) { 16247 err = push_jmp_history(env, state); 16248 if (err) 16249 return err; 16250 } 16251 16252 if (signal_pending(current)) 16253 return -EAGAIN; 16254 16255 if (need_resched()) 16256 cond_resched(); 16257 16258 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16259 verbose(env, "\nfrom %d to %d%s:", 16260 env->prev_insn_idx, env->insn_idx, 16261 env->cur_state->speculative ? 16262 " (speculative execution)" : ""); 16263 print_verifier_state(env, state->frame[state->curframe], true); 16264 do_print_state = false; 16265 } 16266 16267 if (env->log.level & BPF_LOG_LEVEL) { 16268 const struct bpf_insn_cbs cbs = { 16269 .cb_call = disasm_kfunc_name, 16270 .cb_print = verbose, 16271 .private_data = env, 16272 }; 16273 16274 if (verifier_state_scratched(env)) 16275 print_insn_state(env, state->frame[state->curframe]); 16276 16277 verbose_linfo(env, env->insn_idx, "; "); 16278 env->prev_log_pos = env->log.end_pos; 16279 verbose(env, "%d: ", env->insn_idx); 16280 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16281 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16282 env->prev_log_pos = env->log.end_pos; 16283 } 16284 16285 if (bpf_prog_is_offloaded(env->prog->aux)) { 16286 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16287 env->prev_insn_idx); 16288 if (err) 16289 return err; 16290 } 16291 16292 regs = cur_regs(env); 16293 sanitize_mark_insn_seen(env); 16294 prev_insn_idx = env->insn_idx; 16295 16296 if (class == BPF_ALU || class == BPF_ALU64) { 16297 err = check_alu_op(env, insn); 16298 if (err) 16299 return err; 16300 16301 } else if (class == BPF_LDX) { 16302 enum bpf_reg_type src_reg_type; 16303 16304 /* check for reserved fields is already done */ 16305 16306 /* check src operand */ 16307 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16308 if (err) 16309 return err; 16310 16311 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16312 if (err) 16313 return err; 16314 16315 src_reg_type = regs[insn->src_reg].type; 16316 16317 /* check that memory (src_reg + off) is readable, 16318 * the state of dst_reg will be updated by this func 16319 */ 16320 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16321 insn->off, BPF_SIZE(insn->code), 16322 BPF_READ, insn->dst_reg, false); 16323 if (err) 16324 return err; 16325 16326 err = save_aux_ptr_type(env, src_reg_type, true); 16327 if (err) 16328 return err; 16329 } else if (class == BPF_STX) { 16330 enum bpf_reg_type dst_reg_type; 16331 16332 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16333 err = check_atomic(env, env->insn_idx, insn); 16334 if (err) 16335 return err; 16336 env->insn_idx++; 16337 continue; 16338 } 16339 16340 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16341 verbose(env, "BPF_STX uses reserved fields\n"); 16342 return -EINVAL; 16343 } 16344 16345 /* check src1 operand */ 16346 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16347 if (err) 16348 return err; 16349 /* check src2 operand */ 16350 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16351 if (err) 16352 return err; 16353 16354 dst_reg_type = regs[insn->dst_reg].type; 16355 16356 /* check that memory (dst_reg + off) is writeable */ 16357 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16358 insn->off, BPF_SIZE(insn->code), 16359 BPF_WRITE, insn->src_reg, false); 16360 if (err) 16361 return err; 16362 16363 err = save_aux_ptr_type(env, dst_reg_type, false); 16364 if (err) 16365 return err; 16366 } else if (class == BPF_ST) { 16367 enum bpf_reg_type dst_reg_type; 16368 16369 if (BPF_MODE(insn->code) != BPF_MEM || 16370 insn->src_reg != BPF_REG_0) { 16371 verbose(env, "BPF_ST uses reserved fields\n"); 16372 return -EINVAL; 16373 } 16374 /* check src operand */ 16375 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16376 if (err) 16377 return err; 16378 16379 dst_reg_type = regs[insn->dst_reg].type; 16380 16381 /* check that memory (dst_reg + off) is writeable */ 16382 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16383 insn->off, BPF_SIZE(insn->code), 16384 BPF_WRITE, -1, false); 16385 if (err) 16386 return err; 16387 16388 err = save_aux_ptr_type(env, dst_reg_type, false); 16389 if (err) 16390 return err; 16391 } else if (class == BPF_JMP || class == BPF_JMP32) { 16392 u8 opcode = BPF_OP(insn->code); 16393 16394 env->jmps_processed++; 16395 if (opcode == BPF_CALL) { 16396 if (BPF_SRC(insn->code) != BPF_K || 16397 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16398 && insn->off != 0) || 16399 (insn->src_reg != BPF_REG_0 && 16400 insn->src_reg != BPF_PSEUDO_CALL && 16401 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16402 insn->dst_reg != BPF_REG_0 || 16403 class == BPF_JMP32) { 16404 verbose(env, "BPF_CALL uses reserved fields\n"); 16405 return -EINVAL; 16406 } 16407 16408 if (env->cur_state->active_lock.ptr) { 16409 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16410 (insn->src_reg == BPF_PSEUDO_CALL) || 16411 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16412 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16413 verbose(env, "function calls are not allowed while holding a lock\n"); 16414 return -EINVAL; 16415 } 16416 } 16417 if (insn->src_reg == BPF_PSEUDO_CALL) 16418 err = check_func_call(env, insn, &env->insn_idx); 16419 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16420 err = check_kfunc_call(env, insn, &env->insn_idx); 16421 else 16422 err = check_helper_call(env, insn, &env->insn_idx); 16423 if (err) 16424 return err; 16425 16426 mark_reg_scratched(env, BPF_REG_0); 16427 } else if (opcode == BPF_JA) { 16428 if (BPF_SRC(insn->code) != BPF_K || 16429 insn->imm != 0 || 16430 insn->src_reg != BPF_REG_0 || 16431 insn->dst_reg != BPF_REG_0 || 16432 class == BPF_JMP32) { 16433 verbose(env, "BPF_JA uses reserved fields\n"); 16434 return -EINVAL; 16435 } 16436 16437 env->insn_idx += insn->off + 1; 16438 continue; 16439 16440 } else if (opcode == BPF_EXIT) { 16441 if (BPF_SRC(insn->code) != BPF_K || 16442 insn->imm != 0 || 16443 insn->src_reg != BPF_REG_0 || 16444 insn->dst_reg != BPF_REG_0 || 16445 class == BPF_JMP32) { 16446 verbose(env, "BPF_EXIT uses reserved fields\n"); 16447 return -EINVAL; 16448 } 16449 16450 if (env->cur_state->active_lock.ptr && 16451 !in_rbtree_lock_required_cb(env)) { 16452 verbose(env, "bpf_spin_unlock is missing\n"); 16453 return -EINVAL; 16454 } 16455 16456 if (env->cur_state->active_rcu_lock) { 16457 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16458 return -EINVAL; 16459 } 16460 16461 /* We must do check_reference_leak here before 16462 * prepare_func_exit to handle the case when 16463 * state->curframe > 0, it may be a callback 16464 * function, for which reference_state must 16465 * match caller reference state when it exits. 16466 */ 16467 err = check_reference_leak(env); 16468 if (err) 16469 return err; 16470 16471 if (state->curframe) { 16472 /* exit from nested function */ 16473 err = prepare_func_exit(env, &env->insn_idx); 16474 if (err) 16475 return err; 16476 do_print_state = true; 16477 continue; 16478 } 16479 16480 err = check_return_code(env); 16481 if (err) 16482 return err; 16483 process_bpf_exit: 16484 mark_verifier_state_scratched(env); 16485 update_branch_counts(env, env->cur_state); 16486 err = pop_stack(env, &prev_insn_idx, 16487 &env->insn_idx, pop_log); 16488 if (err < 0) { 16489 if (err != -ENOENT) 16490 return err; 16491 break; 16492 } else { 16493 do_print_state = true; 16494 continue; 16495 } 16496 } else { 16497 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16498 if (err) 16499 return err; 16500 } 16501 } else if (class == BPF_LD) { 16502 u8 mode = BPF_MODE(insn->code); 16503 16504 if (mode == BPF_ABS || mode == BPF_IND) { 16505 err = check_ld_abs(env, insn); 16506 if (err) 16507 return err; 16508 16509 } else if (mode == BPF_IMM) { 16510 err = check_ld_imm(env, insn); 16511 if (err) 16512 return err; 16513 16514 env->insn_idx++; 16515 sanitize_mark_insn_seen(env); 16516 } else { 16517 verbose(env, "invalid BPF_LD mode\n"); 16518 return -EINVAL; 16519 } 16520 } else { 16521 verbose(env, "unknown insn class %d\n", class); 16522 return -EINVAL; 16523 } 16524 16525 env->insn_idx++; 16526 } 16527 16528 return 0; 16529 } 16530 16531 static int find_btf_percpu_datasec(struct btf *btf) 16532 { 16533 const struct btf_type *t; 16534 const char *tname; 16535 int i, n; 16536 16537 /* 16538 * Both vmlinux and module each have their own ".data..percpu" 16539 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16540 * types to look at only module's own BTF types. 16541 */ 16542 n = btf_nr_types(btf); 16543 if (btf_is_module(btf)) 16544 i = btf_nr_types(btf_vmlinux); 16545 else 16546 i = 1; 16547 16548 for(; i < n; i++) { 16549 t = btf_type_by_id(btf, i); 16550 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16551 continue; 16552 16553 tname = btf_name_by_offset(btf, t->name_off); 16554 if (!strcmp(tname, ".data..percpu")) 16555 return i; 16556 } 16557 16558 return -ENOENT; 16559 } 16560 16561 /* replace pseudo btf_id with kernel symbol address */ 16562 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16563 struct bpf_insn *insn, 16564 struct bpf_insn_aux_data *aux) 16565 { 16566 const struct btf_var_secinfo *vsi; 16567 const struct btf_type *datasec; 16568 struct btf_mod_pair *btf_mod; 16569 const struct btf_type *t; 16570 const char *sym_name; 16571 bool percpu = false; 16572 u32 type, id = insn->imm; 16573 struct btf *btf; 16574 s32 datasec_id; 16575 u64 addr; 16576 int i, btf_fd, err; 16577 16578 btf_fd = insn[1].imm; 16579 if (btf_fd) { 16580 btf = btf_get_by_fd(btf_fd); 16581 if (IS_ERR(btf)) { 16582 verbose(env, "invalid module BTF object FD specified.\n"); 16583 return -EINVAL; 16584 } 16585 } else { 16586 if (!btf_vmlinux) { 16587 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16588 return -EINVAL; 16589 } 16590 btf = btf_vmlinux; 16591 btf_get(btf); 16592 } 16593 16594 t = btf_type_by_id(btf, id); 16595 if (!t) { 16596 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16597 err = -ENOENT; 16598 goto err_put; 16599 } 16600 16601 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16602 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16603 err = -EINVAL; 16604 goto err_put; 16605 } 16606 16607 sym_name = btf_name_by_offset(btf, t->name_off); 16608 addr = kallsyms_lookup_name(sym_name); 16609 if (!addr) { 16610 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16611 sym_name); 16612 err = -ENOENT; 16613 goto err_put; 16614 } 16615 insn[0].imm = (u32)addr; 16616 insn[1].imm = addr >> 32; 16617 16618 if (btf_type_is_func(t)) { 16619 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16620 aux->btf_var.mem_size = 0; 16621 goto check_btf; 16622 } 16623 16624 datasec_id = find_btf_percpu_datasec(btf); 16625 if (datasec_id > 0) { 16626 datasec = btf_type_by_id(btf, datasec_id); 16627 for_each_vsi(i, datasec, vsi) { 16628 if (vsi->type == id) { 16629 percpu = true; 16630 break; 16631 } 16632 } 16633 } 16634 16635 type = t->type; 16636 t = btf_type_skip_modifiers(btf, type, NULL); 16637 if (percpu) { 16638 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16639 aux->btf_var.btf = btf; 16640 aux->btf_var.btf_id = type; 16641 } else if (!btf_type_is_struct(t)) { 16642 const struct btf_type *ret; 16643 const char *tname; 16644 u32 tsize; 16645 16646 /* resolve the type size of ksym. */ 16647 ret = btf_resolve_size(btf, t, &tsize); 16648 if (IS_ERR(ret)) { 16649 tname = btf_name_by_offset(btf, t->name_off); 16650 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16651 tname, PTR_ERR(ret)); 16652 err = -EINVAL; 16653 goto err_put; 16654 } 16655 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16656 aux->btf_var.mem_size = tsize; 16657 } else { 16658 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16659 aux->btf_var.btf = btf; 16660 aux->btf_var.btf_id = type; 16661 } 16662 check_btf: 16663 /* check whether we recorded this BTF (and maybe module) already */ 16664 for (i = 0; i < env->used_btf_cnt; i++) { 16665 if (env->used_btfs[i].btf == btf) { 16666 btf_put(btf); 16667 return 0; 16668 } 16669 } 16670 16671 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16672 err = -E2BIG; 16673 goto err_put; 16674 } 16675 16676 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16677 btf_mod->btf = btf; 16678 btf_mod->module = NULL; 16679 16680 /* if we reference variables from kernel module, bump its refcount */ 16681 if (btf_is_module(btf)) { 16682 btf_mod->module = btf_try_get_module(btf); 16683 if (!btf_mod->module) { 16684 err = -ENXIO; 16685 goto err_put; 16686 } 16687 } 16688 16689 env->used_btf_cnt++; 16690 16691 return 0; 16692 err_put: 16693 btf_put(btf); 16694 return err; 16695 } 16696 16697 static bool is_tracing_prog_type(enum bpf_prog_type type) 16698 { 16699 switch (type) { 16700 case BPF_PROG_TYPE_KPROBE: 16701 case BPF_PROG_TYPE_TRACEPOINT: 16702 case BPF_PROG_TYPE_PERF_EVENT: 16703 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16704 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16705 return true; 16706 default: 16707 return false; 16708 } 16709 } 16710 16711 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16712 struct bpf_map *map, 16713 struct bpf_prog *prog) 16714 16715 { 16716 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16717 16718 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16719 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16720 if (is_tracing_prog_type(prog_type)) { 16721 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16722 return -EINVAL; 16723 } 16724 } 16725 16726 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16727 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16728 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16729 return -EINVAL; 16730 } 16731 16732 if (is_tracing_prog_type(prog_type)) { 16733 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16734 return -EINVAL; 16735 } 16736 16737 if (prog->aux->sleepable) { 16738 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16739 return -EINVAL; 16740 } 16741 } 16742 16743 if (btf_record_has_field(map->record, BPF_TIMER)) { 16744 if (is_tracing_prog_type(prog_type)) { 16745 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16746 return -EINVAL; 16747 } 16748 } 16749 16750 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16751 !bpf_offload_prog_map_match(prog, map)) { 16752 verbose(env, "offload device mismatch between prog and map\n"); 16753 return -EINVAL; 16754 } 16755 16756 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16757 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16758 return -EINVAL; 16759 } 16760 16761 if (prog->aux->sleepable) 16762 switch (map->map_type) { 16763 case BPF_MAP_TYPE_HASH: 16764 case BPF_MAP_TYPE_LRU_HASH: 16765 case BPF_MAP_TYPE_ARRAY: 16766 case BPF_MAP_TYPE_PERCPU_HASH: 16767 case BPF_MAP_TYPE_PERCPU_ARRAY: 16768 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16769 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 16770 case BPF_MAP_TYPE_HASH_OF_MAPS: 16771 case BPF_MAP_TYPE_RINGBUF: 16772 case BPF_MAP_TYPE_USER_RINGBUF: 16773 case BPF_MAP_TYPE_INODE_STORAGE: 16774 case BPF_MAP_TYPE_SK_STORAGE: 16775 case BPF_MAP_TYPE_TASK_STORAGE: 16776 case BPF_MAP_TYPE_CGRP_STORAGE: 16777 break; 16778 default: 16779 verbose(env, 16780 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 16781 return -EINVAL; 16782 } 16783 16784 return 0; 16785 } 16786 16787 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 16788 { 16789 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 16790 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 16791 } 16792 16793 /* find and rewrite pseudo imm in ld_imm64 instructions: 16794 * 16795 * 1. if it accesses map FD, replace it with actual map pointer. 16796 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 16797 * 16798 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 16799 */ 16800 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 16801 { 16802 struct bpf_insn *insn = env->prog->insnsi; 16803 int insn_cnt = env->prog->len; 16804 int i, j, err; 16805 16806 err = bpf_prog_calc_tag(env->prog); 16807 if (err) 16808 return err; 16809 16810 for (i = 0; i < insn_cnt; i++, insn++) { 16811 if (BPF_CLASS(insn->code) == BPF_LDX && 16812 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 16813 verbose(env, "BPF_LDX uses reserved fields\n"); 16814 return -EINVAL; 16815 } 16816 16817 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 16818 struct bpf_insn_aux_data *aux; 16819 struct bpf_map *map; 16820 struct fd f; 16821 u64 addr; 16822 u32 fd; 16823 16824 if (i == insn_cnt - 1 || insn[1].code != 0 || 16825 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 16826 insn[1].off != 0) { 16827 verbose(env, "invalid bpf_ld_imm64 insn\n"); 16828 return -EINVAL; 16829 } 16830 16831 if (insn[0].src_reg == 0) 16832 /* valid generic load 64-bit imm */ 16833 goto next_insn; 16834 16835 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 16836 aux = &env->insn_aux_data[i]; 16837 err = check_pseudo_btf_id(env, insn, aux); 16838 if (err) 16839 return err; 16840 goto next_insn; 16841 } 16842 16843 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 16844 aux = &env->insn_aux_data[i]; 16845 aux->ptr_type = PTR_TO_FUNC; 16846 goto next_insn; 16847 } 16848 16849 /* In final convert_pseudo_ld_imm64() step, this is 16850 * converted into regular 64-bit imm load insn. 16851 */ 16852 switch (insn[0].src_reg) { 16853 case BPF_PSEUDO_MAP_VALUE: 16854 case BPF_PSEUDO_MAP_IDX_VALUE: 16855 break; 16856 case BPF_PSEUDO_MAP_FD: 16857 case BPF_PSEUDO_MAP_IDX: 16858 if (insn[1].imm == 0) 16859 break; 16860 fallthrough; 16861 default: 16862 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 16863 return -EINVAL; 16864 } 16865 16866 switch (insn[0].src_reg) { 16867 case BPF_PSEUDO_MAP_IDX_VALUE: 16868 case BPF_PSEUDO_MAP_IDX: 16869 if (bpfptr_is_null(env->fd_array)) { 16870 verbose(env, "fd_idx without fd_array is invalid\n"); 16871 return -EPROTO; 16872 } 16873 if (copy_from_bpfptr_offset(&fd, env->fd_array, 16874 insn[0].imm * sizeof(fd), 16875 sizeof(fd))) 16876 return -EFAULT; 16877 break; 16878 default: 16879 fd = insn[0].imm; 16880 break; 16881 } 16882 16883 f = fdget(fd); 16884 map = __bpf_map_get(f); 16885 if (IS_ERR(map)) { 16886 verbose(env, "fd %d is not pointing to valid bpf_map\n", 16887 insn[0].imm); 16888 return PTR_ERR(map); 16889 } 16890 16891 err = check_map_prog_compatibility(env, map, env->prog); 16892 if (err) { 16893 fdput(f); 16894 return err; 16895 } 16896 16897 aux = &env->insn_aux_data[i]; 16898 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 16899 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 16900 addr = (unsigned long)map; 16901 } else { 16902 u32 off = insn[1].imm; 16903 16904 if (off >= BPF_MAX_VAR_OFF) { 16905 verbose(env, "direct value offset of %u is not allowed\n", off); 16906 fdput(f); 16907 return -EINVAL; 16908 } 16909 16910 if (!map->ops->map_direct_value_addr) { 16911 verbose(env, "no direct value access support for this map type\n"); 16912 fdput(f); 16913 return -EINVAL; 16914 } 16915 16916 err = map->ops->map_direct_value_addr(map, &addr, off); 16917 if (err) { 16918 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 16919 map->value_size, off); 16920 fdput(f); 16921 return err; 16922 } 16923 16924 aux->map_off = off; 16925 addr += off; 16926 } 16927 16928 insn[0].imm = (u32)addr; 16929 insn[1].imm = addr >> 32; 16930 16931 /* check whether we recorded this map already */ 16932 for (j = 0; j < env->used_map_cnt; j++) { 16933 if (env->used_maps[j] == map) { 16934 aux->map_index = j; 16935 fdput(f); 16936 goto next_insn; 16937 } 16938 } 16939 16940 if (env->used_map_cnt >= MAX_USED_MAPS) { 16941 fdput(f); 16942 return -E2BIG; 16943 } 16944 16945 /* hold the map. If the program is rejected by verifier, 16946 * the map will be released by release_maps() or it 16947 * will be used by the valid program until it's unloaded 16948 * and all maps are released in free_used_maps() 16949 */ 16950 bpf_map_inc(map); 16951 16952 aux->map_index = env->used_map_cnt; 16953 env->used_maps[env->used_map_cnt++] = map; 16954 16955 if (bpf_map_is_cgroup_storage(map) && 16956 bpf_cgroup_storage_assign(env->prog->aux, map)) { 16957 verbose(env, "only one cgroup storage of each type is allowed\n"); 16958 fdput(f); 16959 return -EBUSY; 16960 } 16961 16962 fdput(f); 16963 next_insn: 16964 insn++; 16965 i++; 16966 continue; 16967 } 16968 16969 /* Basic sanity check before we invest more work here. */ 16970 if (!bpf_opcode_in_insntable(insn->code)) { 16971 verbose(env, "unknown opcode %02x\n", insn->code); 16972 return -EINVAL; 16973 } 16974 } 16975 16976 /* now all pseudo BPF_LD_IMM64 instructions load valid 16977 * 'struct bpf_map *' into a register instead of user map_fd. 16978 * These pointers will be used later by verifier to validate map access. 16979 */ 16980 return 0; 16981 } 16982 16983 /* drop refcnt of maps used by the rejected program */ 16984 static void release_maps(struct bpf_verifier_env *env) 16985 { 16986 __bpf_free_used_maps(env->prog->aux, env->used_maps, 16987 env->used_map_cnt); 16988 } 16989 16990 /* drop refcnt of maps used by the rejected program */ 16991 static void release_btfs(struct bpf_verifier_env *env) 16992 { 16993 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 16994 env->used_btf_cnt); 16995 } 16996 16997 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 16998 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 16999 { 17000 struct bpf_insn *insn = env->prog->insnsi; 17001 int insn_cnt = env->prog->len; 17002 int i; 17003 17004 for (i = 0; i < insn_cnt; i++, insn++) { 17005 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17006 continue; 17007 if (insn->src_reg == BPF_PSEUDO_FUNC) 17008 continue; 17009 insn->src_reg = 0; 17010 } 17011 } 17012 17013 /* single env->prog->insni[off] instruction was replaced with the range 17014 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17015 * [0, off) and [off, end) to new locations, so the patched range stays zero 17016 */ 17017 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17018 struct bpf_insn_aux_data *new_data, 17019 struct bpf_prog *new_prog, u32 off, u32 cnt) 17020 { 17021 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17022 struct bpf_insn *insn = new_prog->insnsi; 17023 u32 old_seen = old_data[off].seen; 17024 u32 prog_len; 17025 int i; 17026 17027 /* aux info at OFF always needs adjustment, no matter fast path 17028 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17029 * original insn at old prog. 17030 */ 17031 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17032 17033 if (cnt == 1) 17034 return; 17035 prog_len = new_prog->len; 17036 17037 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17038 memcpy(new_data + off + cnt - 1, old_data + off, 17039 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17040 for (i = off; i < off + cnt - 1; i++) { 17041 /* Expand insni[off]'s seen count to the patched range. */ 17042 new_data[i].seen = old_seen; 17043 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17044 } 17045 env->insn_aux_data = new_data; 17046 vfree(old_data); 17047 } 17048 17049 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17050 { 17051 int i; 17052 17053 if (len == 1) 17054 return; 17055 /* NOTE: fake 'exit' subprog should be updated as well. */ 17056 for (i = 0; i <= env->subprog_cnt; i++) { 17057 if (env->subprog_info[i].start <= off) 17058 continue; 17059 env->subprog_info[i].start += len - 1; 17060 } 17061 } 17062 17063 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17064 { 17065 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17066 int i, sz = prog->aux->size_poke_tab; 17067 struct bpf_jit_poke_descriptor *desc; 17068 17069 for (i = 0; i < sz; i++) { 17070 desc = &tab[i]; 17071 if (desc->insn_idx <= off) 17072 continue; 17073 desc->insn_idx += len - 1; 17074 } 17075 } 17076 17077 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17078 const struct bpf_insn *patch, u32 len) 17079 { 17080 struct bpf_prog *new_prog; 17081 struct bpf_insn_aux_data *new_data = NULL; 17082 17083 if (len > 1) { 17084 new_data = vzalloc(array_size(env->prog->len + len - 1, 17085 sizeof(struct bpf_insn_aux_data))); 17086 if (!new_data) 17087 return NULL; 17088 } 17089 17090 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17091 if (IS_ERR(new_prog)) { 17092 if (PTR_ERR(new_prog) == -ERANGE) 17093 verbose(env, 17094 "insn %d cannot be patched due to 16-bit range\n", 17095 env->insn_aux_data[off].orig_idx); 17096 vfree(new_data); 17097 return NULL; 17098 } 17099 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17100 adjust_subprog_starts(env, off, len); 17101 adjust_poke_descs(new_prog, off, len); 17102 return new_prog; 17103 } 17104 17105 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17106 u32 off, u32 cnt) 17107 { 17108 int i, j; 17109 17110 /* find first prog starting at or after off (first to remove) */ 17111 for (i = 0; i < env->subprog_cnt; i++) 17112 if (env->subprog_info[i].start >= off) 17113 break; 17114 /* find first prog starting at or after off + cnt (first to stay) */ 17115 for (j = i; j < env->subprog_cnt; j++) 17116 if (env->subprog_info[j].start >= off + cnt) 17117 break; 17118 /* if j doesn't start exactly at off + cnt, we are just removing 17119 * the front of previous prog 17120 */ 17121 if (env->subprog_info[j].start != off + cnt) 17122 j--; 17123 17124 if (j > i) { 17125 struct bpf_prog_aux *aux = env->prog->aux; 17126 int move; 17127 17128 /* move fake 'exit' subprog as well */ 17129 move = env->subprog_cnt + 1 - j; 17130 17131 memmove(env->subprog_info + i, 17132 env->subprog_info + j, 17133 sizeof(*env->subprog_info) * move); 17134 env->subprog_cnt -= j - i; 17135 17136 /* remove func_info */ 17137 if (aux->func_info) { 17138 move = aux->func_info_cnt - j; 17139 17140 memmove(aux->func_info + i, 17141 aux->func_info + j, 17142 sizeof(*aux->func_info) * move); 17143 aux->func_info_cnt -= j - i; 17144 /* func_info->insn_off is set after all code rewrites, 17145 * in adjust_btf_func() - no need to adjust 17146 */ 17147 } 17148 } else { 17149 /* convert i from "first prog to remove" to "first to adjust" */ 17150 if (env->subprog_info[i].start == off) 17151 i++; 17152 } 17153 17154 /* update fake 'exit' subprog as well */ 17155 for (; i <= env->subprog_cnt; i++) 17156 env->subprog_info[i].start -= cnt; 17157 17158 return 0; 17159 } 17160 17161 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17162 u32 cnt) 17163 { 17164 struct bpf_prog *prog = env->prog; 17165 u32 i, l_off, l_cnt, nr_linfo; 17166 struct bpf_line_info *linfo; 17167 17168 nr_linfo = prog->aux->nr_linfo; 17169 if (!nr_linfo) 17170 return 0; 17171 17172 linfo = prog->aux->linfo; 17173 17174 /* find first line info to remove, count lines to be removed */ 17175 for (i = 0; i < nr_linfo; i++) 17176 if (linfo[i].insn_off >= off) 17177 break; 17178 17179 l_off = i; 17180 l_cnt = 0; 17181 for (; i < nr_linfo; i++) 17182 if (linfo[i].insn_off < off + cnt) 17183 l_cnt++; 17184 else 17185 break; 17186 17187 /* First live insn doesn't match first live linfo, it needs to "inherit" 17188 * last removed linfo. prog is already modified, so prog->len == off 17189 * means no live instructions after (tail of the program was removed). 17190 */ 17191 if (prog->len != off && l_cnt && 17192 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17193 l_cnt--; 17194 linfo[--i].insn_off = off + cnt; 17195 } 17196 17197 /* remove the line info which refer to the removed instructions */ 17198 if (l_cnt) { 17199 memmove(linfo + l_off, linfo + i, 17200 sizeof(*linfo) * (nr_linfo - i)); 17201 17202 prog->aux->nr_linfo -= l_cnt; 17203 nr_linfo = prog->aux->nr_linfo; 17204 } 17205 17206 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17207 for (i = l_off; i < nr_linfo; i++) 17208 linfo[i].insn_off -= cnt; 17209 17210 /* fix up all subprogs (incl. 'exit') which start >= off */ 17211 for (i = 0; i <= env->subprog_cnt; i++) 17212 if (env->subprog_info[i].linfo_idx > l_off) { 17213 /* program may have started in the removed region but 17214 * may not be fully removed 17215 */ 17216 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17217 env->subprog_info[i].linfo_idx -= l_cnt; 17218 else 17219 env->subprog_info[i].linfo_idx = l_off; 17220 } 17221 17222 return 0; 17223 } 17224 17225 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17226 { 17227 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17228 unsigned int orig_prog_len = env->prog->len; 17229 int err; 17230 17231 if (bpf_prog_is_offloaded(env->prog->aux)) 17232 bpf_prog_offload_remove_insns(env, off, cnt); 17233 17234 err = bpf_remove_insns(env->prog, off, cnt); 17235 if (err) 17236 return err; 17237 17238 err = adjust_subprog_starts_after_remove(env, off, cnt); 17239 if (err) 17240 return err; 17241 17242 err = bpf_adj_linfo_after_remove(env, off, cnt); 17243 if (err) 17244 return err; 17245 17246 memmove(aux_data + off, aux_data + off + cnt, 17247 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17248 17249 return 0; 17250 } 17251 17252 /* The verifier does more data flow analysis than llvm and will not 17253 * explore branches that are dead at run time. Malicious programs can 17254 * have dead code too. Therefore replace all dead at-run-time code 17255 * with 'ja -1'. 17256 * 17257 * Just nops are not optimal, e.g. if they would sit at the end of the 17258 * program and through another bug we would manage to jump there, then 17259 * we'd execute beyond program memory otherwise. Returning exception 17260 * code also wouldn't work since we can have subprogs where the dead 17261 * code could be located. 17262 */ 17263 static void sanitize_dead_code(struct bpf_verifier_env *env) 17264 { 17265 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17266 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17267 struct bpf_insn *insn = env->prog->insnsi; 17268 const int insn_cnt = env->prog->len; 17269 int i; 17270 17271 for (i = 0; i < insn_cnt; i++) { 17272 if (aux_data[i].seen) 17273 continue; 17274 memcpy(insn + i, &trap, sizeof(trap)); 17275 aux_data[i].zext_dst = false; 17276 } 17277 } 17278 17279 static bool insn_is_cond_jump(u8 code) 17280 { 17281 u8 op; 17282 17283 if (BPF_CLASS(code) == BPF_JMP32) 17284 return true; 17285 17286 if (BPF_CLASS(code) != BPF_JMP) 17287 return false; 17288 17289 op = BPF_OP(code); 17290 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17291 } 17292 17293 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17294 { 17295 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17296 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17297 struct bpf_insn *insn = env->prog->insnsi; 17298 const int insn_cnt = env->prog->len; 17299 int i; 17300 17301 for (i = 0; i < insn_cnt; i++, insn++) { 17302 if (!insn_is_cond_jump(insn->code)) 17303 continue; 17304 17305 if (!aux_data[i + 1].seen) 17306 ja.off = insn->off; 17307 else if (!aux_data[i + 1 + insn->off].seen) 17308 ja.off = 0; 17309 else 17310 continue; 17311 17312 if (bpf_prog_is_offloaded(env->prog->aux)) 17313 bpf_prog_offload_replace_insn(env, i, &ja); 17314 17315 memcpy(insn, &ja, sizeof(ja)); 17316 } 17317 } 17318 17319 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17320 { 17321 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17322 int insn_cnt = env->prog->len; 17323 int i, err; 17324 17325 for (i = 0; i < insn_cnt; i++) { 17326 int j; 17327 17328 j = 0; 17329 while (i + j < insn_cnt && !aux_data[i + j].seen) 17330 j++; 17331 if (!j) 17332 continue; 17333 17334 err = verifier_remove_insns(env, i, j); 17335 if (err) 17336 return err; 17337 insn_cnt = env->prog->len; 17338 } 17339 17340 return 0; 17341 } 17342 17343 static int opt_remove_nops(struct bpf_verifier_env *env) 17344 { 17345 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17346 struct bpf_insn *insn = env->prog->insnsi; 17347 int insn_cnt = env->prog->len; 17348 int i, err; 17349 17350 for (i = 0; i < insn_cnt; i++) { 17351 if (memcmp(&insn[i], &ja, sizeof(ja))) 17352 continue; 17353 17354 err = verifier_remove_insns(env, i, 1); 17355 if (err) 17356 return err; 17357 insn_cnt--; 17358 i--; 17359 } 17360 17361 return 0; 17362 } 17363 17364 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17365 const union bpf_attr *attr) 17366 { 17367 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17368 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17369 int i, patch_len, delta = 0, len = env->prog->len; 17370 struct bpf_insn *insns = env->prog->insnsi; 17371 struct bpf_prog *new_prog; 17372 bool rnd_hi32; 17373 17374 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17375 zext_patch[1] = BPF_ZEXT_REG(0); 17376 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17377 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17378 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17379 for (i = 0; i < len; i++) { 17380 int adj_idx = i + delta; 17381 struct bpf_insn insn; 17382 int load_reg; 17383 17384 insn = insns[adj_idx]; 17385 load_reg = insn_def_regno(&insn); 17386 if (!aux[adj_idx].zext_dst) { 17387 u8 code, class; 17388 u32 imm_rnd; 17389 17390 if (!rnd_hi32) 17391 continue; 17392 17393 code = insn.code; 17394 class = BPF_CLASS(code); 17395 if (load_reg == -1) 17396 continue; 17397 17398 /* NOTE: arg "reg" (the fourth one) is only used for 17399 * BPF_STX + SRC_OP, so it is safe to pass NULL 17400 * here. 17401 */ 17402 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17403 if (class == BPF_LD && 17404 BPF_MODE(code) == BPF_IMM) 17405 i++; 17406 continue; 17407 } 17408 17409 /* ctx load could be transformed into wider load. */ 17410 if (class == BPF_LDX && 17411 aux[adj_idx].ptr_type == PTR_TO_CTX) 17412 continue; 17413 17414 imm_rnd = get_random_u32(); 17415 rnd_hi32_patch[0] = insn; 17416 rnd_hi32_patch[1].imm = imm_rnd; 17417 rnd_hi32_patch[3].dst_reg = load_reg; 17418 patch = rnd_hi32_patch; 17419 patch_len = 4; 17420 goto apply_patch_buffer; 17421 } 17422 17423 /* Add in an zero-extend instruction if a) the JIT has requested 17424 * it or b) it's a CMPXCHG. 17425 * 17426 * The latter is because: BPF_CMPXCHG always loads a value into 17427 * R0, therefore always zero-extends. However some archs' 17428 * equivalent instruction only does this load when the 17429 * comparison is successful. This detail of CMPXCHG is 17430 * orthogonal to the general zero-extension behaviour of the 17431 * CPU, so it's treated independently of bpf_jit_needs_zext. 17432 */ 17433 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17434 continue; 17435 17436 /* Zero-extension is done by the caller. */ 17437 if (bpf_pseudo_kfunc_call(&insn)) 17438 continue; 17439 17440 if (WARN_ON(load_reg == -1)) { 17441 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17442 return -EFAULT; 17443 } 17444 17445 zext_patch[0] = insn; 17446 zext_patch[1].dst_reg = load_reg; 17447 zext_patch[1].src_reg = load_reg; 17448 patch = zext_patch; 17449 patch_len = 2; 17450 apply_patch_buffer: 17451 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17452 if (!new_prog) 17453 return -ENOMEM; 17454 env->prog = new_prog; 17455 insns = new_prog->insnsi; 17456 aux = env->insn_aux_data; 17457 delta += patch_len - 1; 17458 } 17459 17460 return 0; 17461 } 17462 17463 /* convert load instructions that access fields of a context type into a 17464 * sequence of instructions that access fields of the underlying structure: 17465 * struct __sk_buff -> struct sk_buff 17466 * struct bpf_sock_ops -> struct sock 17467 */ 17468 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17469 { 17470 const struct bpf_verifier_ops *ops = env->ops; 17471 int i, cnt, size, ctx_field_size, delta = 0; 17472 const int insn_cnt = env->prog->len; 17473 struct bpf_insn insn_buf[16], *insn; 17474 u32 target_size, size_default, off; 17475 struct bpf_prog *new_prog; 17476 enum bpf_access_type type; 17477 bool is_narrower_load; 17478 17479 if (ops->gen_prologue || env->seen_direct_write) { 17480 if (!ops->gen_prologue) { 17481 verbose(env, "bpf verifier is misconfigured\n"); 17482 return -EINVAL; 17483 } 17484 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17485 env->prog); 17486 if (cnt >= ARRAY_SIZE(insn_buf)) { 17487 verbose(env, "bpf verifier is misconfigured\n"); 17488 return -EINVAL; 17489 } else if (cnt) { 17490 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17491 if (!new_prog) 17492 return -ENOMEM; 17493 17494 env->prog = new_prog; 17495 delta += cnt - 1; 17496 } 17497 } 17498 17499 if (bpf_prog_is_offloaded(env->prog->aux)) 17500 return 0; 17501 17502 insn = env->prog->insnsi + delta; 17503 17504 for (i = 0; i < insn_cnt; i++, insn++) { 17505 bpf_convert_ctx_access_t convert_ctx_access; 17506 17507 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17508 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17509 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17510 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 17511 type = BPF_READ; 17512 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17513 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17514 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17515 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17516 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17517 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17518 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17519 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17520 type = BPF_WRITE; 17521 } else { 17522 continue; 17523 } 17524 17525 if (type == BPF_WRITE && 17526 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17527 struct bpf_insn patch[] = { 17528 *insn, 17529 BPF_ST_NOSPEC(), 17530 }; 17531 17532 cnt = ARRAY_SIZE(patch); 17533 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17534 if (!new_prog) 17535 return -ENOMEM; 17536 17537 delta += cnt - 1; 17538 env->prog = new_prog; 17539 insn = new_prog->insnsi + i + delta; 17540 continue; 17541 } 17542 17543 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17544 case PTR_TO_CTX: 17545 if (!ops->convert_ctx_access) 17546 continue; 17547 convert_ctx_access = ops->convert_ctx_access; 17548 break; 17549 case PTR_TO_SOCKET: 17550 case PTR_TO_SOCK_COMMON: 17551 convert_ctx_access = bpf_sock_convert_ctx_access; 17552 break; 17553 case PTR_TO_TCP_SOCK: 17554 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17555 break; 17556 case PTR_TO_XDP_SOCK: 17557 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17558 break; 17559 case PTR_TO_BTF_ID: 17560 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17561 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17562 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17563 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17564 * any faults for loads into such types. BPF_WRITE is disallowed 17565 * for this case. 17566 */ 17567 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17568 if (type == BPF_READ) { 17569 insn->code = BPF_LDX | BPF_PROBE_MEM | 17570 BPF_SIZE((insn)->code); 17571 env->prog->aux->num_exentries++; 17572 } 17573 continue; 17574 default: 17575 continue; 17576 } 17577 17578 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17579 size = BPF_LDST_BYTES(insn); 17580 17581 /* If the read access is a narrower load of the field, 17582 * convert to a 4/8-byte load, to minimum program type specific 17583 * convert_ctx_access changes. If conversion is successful, 17584 * we will apply proper mask to the result. 17585 */ 17586 is_narrower_load = size < ctx_field_size; 17587 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17588 off = insn->off; 17589 if (is_narrower_load) { 17590 u8 size_code; 17591 17592 if (type == BPF_WRITE) { 17593 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17594 return -EINVAL; 17595 } 17596 17597 size_code = BPF_H; 17598 if (ctx_field_size == 4) 17599 size_code = BPF_W; 17600 else if (ctx_field_size == 8) 17601 size_code = BPF_DW; 17602 17603 insn->off = off & ~(size_default - 1); 17604 insn->code = BPF_LDX | BPF_MEM | size_code; 17605 } 17606 17607 target_size = 0; 17608 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17609 &target_size); 17610 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17611 (ctx_field_size && !target_size)) { 17612 verbose(env, "bpf verifier is misconfigured\n"); 17613 return -EINVAL; 17614 } 17615 17616 if (is_narrower_load && size < target_size) { 17617 u8 shift = bpf_ctx_narrow_access_offset( 17618 off, size, size_default) * 8; 17619 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17620 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17621 return -EINVAL; 17622 } 17623 if (ctx_field_size <= 4) { 17624 if (shift) 17625 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17626 insn->dst_reg, 17627 shift); 17628 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17629 (1 << size * 8) - 1); 17630 } else { 17631 if (shift) 17632 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17633 insn->dst_reg, 17634 shift); 17635 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17636 (1ULL << size * 8) - 1); 17637 } 17638 } 17639 17640 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17641 if (!new_prog) 17642 return -ENOMEM; 17643 17644 delta += cnt - 1; 17645 17646 /* keep walking new program and skip insns we just inserted */ 17647 env->prog = new_prog; 17648 insn = new_prog->insnsi + i + delta; 17649 } 17650 17651 return 0; 17652 } 17653 17654 static int jit_subprogs(struct bpf_verifier_env *env) 17655 { 17656 struct bpf_prog *prog = env->prog, **func, *tmp; 17657 int i, j, subprog_start, subprog_end = 0, len, subprog; 17658 struct bpf_map *map_ptr; 17659 struct bpf_insn *insn; 17660 void *old_bpf_func; 17661 int err, num_exentries; 17662 17663 if (env->subprog_cnt <= 1) 17664 return 0; 17665 17666 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17667 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17668 continue; 17669 17670 /* Upon error here we cannot fall back to interpreter but 17671 * need a hard reject of the program. Thus -EFAULT is 17672 * propagated in any case. 17673 */ 17674 subprog = find_subprog(env, i + insn->imm + 1); 17675 if (subprog < 0) { 17676 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17677 i + insn->imm + 1); 17678 return -EFAULT; 17679 } 17680 /* temporarily remember subprog id inside insn instead of 17681 * aux_data, since next loop will split up all insns into funcs 17682 */ 17683 insn->off = subprog; 17684 /* remember original imm in case JIT fails and fallback 17685 * to interpreter will be needed 17686 */ 17687 env->insn_aux_data[i].call_imm = insn->imm; 17688 /* point imm to __bpf_call_base+1 from JITs point of view */ 17689 insn->imm = 1; 17690 if (bpf_pseudo_func(insn)) 17691 /* jit (e.g. x86_64) may emit fewer instructions 17692 * if it learns a u32 imm is the same as a u64 imm. 17693 * Force a non zero here. 17694 */ 17695 insn[1].imm = 1; 17696 } 17697 17698 err = bpf_prog_alloc_jited_linfo(prog); 17699 if (err) 17700 goto out_undo_insn; 17701 17702 err = -ENOMEM; 17703 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17704 if (!func) 17705 goto out_undo_insn; 17706 17707 for (i = 0; i < env->subprog_cnt; i++) { 17708 subprog_start = subprog_end; 17709 subprog_end = env->subprog_info[i + 1].start; 17710 17711 len = subprog_end - subprog_start; 17712 /* bpf_prog_run() doesn't call subprogs directly, 17713 * hence main prog stats include the runtime of subprogs. 17714 * subprogs don't have IDs and not reachable via prog_get_next_id 17715 * func[i]->stats will never be accessed and stays NULL 17716 */ 17717 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17718 if (!func[i]) 17719 goto out_free; 17720 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17721 len * sizeof(struct bpf_insn)); 17722 func[i]->type = prog->type; 17723 func[i]->len = len; 17724 if (bpf_prog_calc_tag(func[i])) 17725 goto out_free; 17726 func[i]->is_func = 1; 17727 func[i]->aux->func_idx = i; 17728 /* Below members will be freed only at prog->aux */ 17729 func[i]->aux->btf = prog->aux->btf; 17730 func[i]->aux->func_info = prog->aux->func_info; 17731 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17732 func[i]->aux->poke_tab = prog->aux->poke_tab; 17733 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17734 17735 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17736 struct bpf_jit_poke_descriptor *poke; 17737 17738 poke = &prog->aux->poke_tab[j]; 17739 if (poke->insn_idx < subprog_end && 17740 poke->insn_idx >= subprog_start) 17741 poke->aux = func[i]->aux; 17742 } 17743 17744 func[i]->aux->name[0] = 'F'; 17745 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17746 func[i]->jit_requested = 1; 17747 func[i]->blinding_requested = prog->blinding_requested; 17748 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17749 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17750 func[i]->aux->linfo = prog->aux->linfo; 17751 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17752 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17753 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17754 num_exentries = 0; 17755 insn = func[i]->insnsi; 17756 for (j = 0; j < func[i]->len; j++, insn++) { 17757 if (BPF_CLASS(insn->code) == BPF_LDX && 17758 BPF_MODE(insn->code) == BPF_PROBE_MEM) 17759 num_exentries++; 17760 } 17761 func[i]->aux->num_exentries = num_exentries; 17762 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 17763 func[i] = bpf_int_jit_compile(func[i]); 17764 if (!func[i]->jited) { 17765 err = -ENOTSUPP; 17766 goto out_free; 17767 } 17768 cond_resched(); 17769 } 17770 17771 /* at this point all bpf functions were successfully JITed 17772 * now populate all bpf_calls with correct addresses and 17773 * run last pass of JIT 17774 */ 17775 for (i = 0; i < env->subprog_cnt; i++) { 17776 insn = func[i]->insnsi; 17777 for (j = 0; j < func[i]->len; j++, insn++) { 17778 if (bpf_pseudo_func(insn)) { 17779 subprog = insn->off; 17780 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 17781 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 17782 continue; 17783 } 17784 if (!bpf_pseudo_call(insn)) 17785 continue; 17786 subprog = insn->off; 17787 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 17788 } 17789 17790 /* we use the aux data to keep a list of the start addresses 17791 * of the JITed images for each function in the program 17792 * 17793 * for some architectures, such as powerpc64, the imm field 17794 * might not be large enough to hold the offset of the start 17795 * address of the callee's JITed image from __bpf_call_base 17796 * 17797 * in such cases, we can lookup the start address of a callee 17798 * by using its subprog id, available from the off field of 17799 * the call instruction, as an index for this list 17800 */ 17801 func[i]->aux->func = func; 17802 func[i]->aux->func_cnt = env->subprog_cnt; 17803 } 17804 for (i = 0; i < env->subprog_cnt; i++) { 17805 old_bpf_func = func[i]->bpf_func; 17806 tmp = bpf_int_jit_compile(func[i]); 17807 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 17808 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 17809 err = -ENOTSUPP; 17810 goto out_free; 17811 } 17812 cond_resched(); 17813 } 17814 17815 /* finally lock prog and jit images for all functions and 17816 * populate kallsysm. Begin at the first subprogram, since 17817 * bpf_prog_load will add the kallsyms for the main program. 17818 */ 17819 for (i = 1; i < env->subprog_cnt; i++) { 17820 bpf_prog_lock_ro(func[i]); 17821 bpf_prog_kallsyms_add(func[i]); 17822 } 17823 17824 /* Last step: make now unused interpreter insns from main 17825 * prog consistent for later dump requests, so they can 17826 * later look the same as if they were interpreted only. 17827 */ 17828 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17829 if (bpf_pseudo_func(insn)) { 17830 insn[0].imm = env->insn_aux_data[i].call_imm; 17831 insn[1].imm = insn->off; 17832 insn->off = 0; 17833 continue; 17834 } 17835 if (!bpf_pseudo_call(insn)) 17836 continue; 17837 insn->off = env->insn_aux_data[i].call_imm; 17838 subprog = find_subprog(env, i + insn->off + 1); 17839 insn->imm = subprog; 17840 } 17841 17842 prog->jited = 1; 17843 prog->bpf_func = func[0]->bpf_func; 17844 prog->jited_len = func[0]->jited_len; 17845 prog->aux->extable = func[0]->aux->extable; 17846 prog->aux->num_exentries = func[0]->aux->num_exentries; 17847 prog->aux->func = func; 17848 prog->aux->func_cnt = env->subprog_cnt; 17849 bpf_prog_jit_attempt_done(prog); 17850 return 0; 17851 out_free: 17852 /* We failed JIT'ing, so at this point we need to unregister poke 17853 * descriptors from subprogs, so that kernel is not attempting to 17854 * patch it anymore as we're freeing the subprog JIT memory. 17855 */ 17856 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17857 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17858 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 17859 } 17860 /* At this point we're guaranteed that poke descriptors are not 17861 * live anymore. We can just unlink its descriptor table as it's 17862 * released with the main prog. 17863 */ 17864 for (i = 0; i < env->subprog_cnt; i++) { 17865 if (!func[i]) 17866 continue; 17867 func[i]->aux->poke_tab = NULL; 17868 bpf_jit_free(func[i]); 17869 } 17870 kfree(func); 17871 out_undo_insn: 17872 /* cleanup main prog to be interpreted */ 17873 prog->jit_requested = 0; 17874 prog->blinding_requested = 0; 17875 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17876 if (!bpf_pseudo_call(insn)) 17877 continue; 17878 insn->off = 0; 17879 insn->imm = env->insn_aux_data[i].call_imm; 17880 } 17881 bpf_prog_jit_attempt_done(prog); 17882 return err; 17883 } 17884 17885 static int fixup_call_args(struct bpf_verifier_env *env) 17886 { 17887 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17888 struct bpf_prog *prog = env->prog; 17889 struct bpf_insn *insn = prog->insnsi; 17890 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 17891 int i, depth; 17892 #endif 17893 int err = 0; 17894 17895 if (env->prog->jit_requested && 17896 !bpf_prog_is_offloaded(env->prog->aux)) { 17897 err = jit_subprogs(env); 17898 if (err == 0) 17899 return 0; 17900 if (err == -EFAULT) 17901 return err; 17902 } 17903 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17904 if (has_kfunc_call) { 17905 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 17906 return -EINVAL; 17907 } 17908 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 17909 /* When JIT fails the progs with bpf2bpf calls and tail_calls 17910 * have to be rejected, since interpreter doesn't support them yet. 17911 */ 17912 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 17913 return -EINVAL; 17914 } 17915 for (i = 0; i < prog->len; i++, insn++) { 17916 if (bpf_pseudo_func(insn)) { 17917 /* When JIT fails the progs with callback calls 17918 * have to be rejected, since interpreter doesn't support them yet. 17919 */ 17920 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 17921 return -EINVAL; 17922 } 17923 17924 if (!bpf_pseudo_call(insn)) 17925 continue; 17926 depth = get_callee_stack_depth(env, insn, i); 17927 if (depth < 0) 17928 return depth; 17929 bpf_patch_call_args(insn, depth); 17930 } 17931 err = 0; 17932 #endif 17933 return err; 17934 } 17935 17936 /* replace a generic kfunc with a specialized version if necessary */ 17937 static void specialize_kfunc(struct bpf_verifier_env *env, 17938 u32 func_id, u16 offset, unsigned long *addr) 17939 { 17940 struct bpf_prog *prog = env->prog; 17941 bool seen_direct_write; 17942 void *xdp_kfunc; 17943 bool is_rdonly; 17944 17945 if (bpf_dev_bound_kfunc_id(func_id)) { 17946 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 17947 if (xdp_kfunc) { 17948 *addr = (unsigned long)xdp_kfunc; 17949 return; 17950 } 17951 /* fallback to default kfunc when not supported by netdev */ 17952 } 17953 17954 if (offset) 17955 return; 17956 17957 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 17958 seen_direct_write = env->seen_direct_write; 17959 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 17960 17961 if (is_rdonly) 17962 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 17963 17964 /* restore env->seen_direct_write to its original value, since 17965 * may_access_direct_pkt_data mutates it 17966 */ 17967 env->seen_direct_write = seen_direct_write; 17968 } 17969 } 17970 17971 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 17972 u16 struct_meta_reg, 17973 u16 node_offset_reg, 17974 struct bpf_insn *insn, 17975 struct bpf_insn *insn_buf, 17976 int *cnt) 17977 { 17978 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 17979 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 17980 17981 insn_buf[0] = addr[0]; 17982 insn_buf[1] = addr[1]; 17983 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 17984 insn_buf[3] = *insn; 17985 *cnt = 4; 17986 } 17987 17988 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 17989 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 17990 { 17991 const struct bpf_kfunc_desc *desc; 17992 17993 if (!insn->imm) { 17994 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 17995 return -EINVAL; 17996 } 17997 17998 *cnt = 0; 17999 18000 /* insn->imm has the btf func_id. Replace it with an offset relative to 18001 * __bpf_call_base, unless the JIT needs to call functions that are 18002 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18003 */ 18004 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18005 if (!desc) { 18006 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18007 insn->imm); 18008 return -EFAULT; 18009 } 18010 18011 if (!bpf_jit_supports_far_kfunc_call()) 18012 insn->imm = BPF_CALL_IMM(desc->addr); 18013 if (insn->off) 18014 return 0; 18015 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18016 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18017 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18018 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18019 18020 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18021 insn_buf[1] = addr[0]; 18022 insn_buf[2] = addr[1]; 18023 insn_buf[3] = *insn; 18024 *cnt = 4; 18025 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18026 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18027 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18028 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18029 18030 insn_buf[0] = addr[0]; 18031 insn_buf[1] = addr[1]; 18032 insn_buf[2] = *insn; 18033 *cnt = 3; 18034 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18035 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18036 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18037 int struct_meta_reg = BPF_REG_3; 18038 int node_offset_reg = BPF_REG_4; 18039 18040 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18041 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18042 struct_meta_reg = BPF_REG_4; 18043 node_offset_reg = BPF_REG_5; 18044 } 18045 18046 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18047 node_offset_reg, insn, insn_buf, cnt); 18048 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18049 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18050 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18051 *cnt = 1; 18052 } 18053 return 0; 18054 } 18055 18056 /* Do various post-verification rewrites in a single program pass. 18057 * These rewrites simplify JIT and interpreter implementations. 18058 */ 18059 static int do_misc_fixups(struct bpf_verifier_env *env) 18060 { 18061 struct bpf_prog *prog = env->prog; 18062 enum bpf_attach_type eatype = prog->expected_attach_type; 18063 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18064 struct bpf_insn *insn = prog->insnsi; 18065 const struct bpf_func_proto *fn; 18066 const int insn_cnt = prog->len; 18067 const struct bpf_map_ops *ops; 18068 struct bpf_insn_aux_data *aux; 18069 struct bpf_insn insn_buf[16]; 18070 struct bpf_prog *new_prog; 18071 struct bpf_map *map_ptr; 18072 int i, ret, cnt, delta = 0; 18073 18074 for (i = 0; i < insn_cnt; i++, insn++) { 18075 /* Make divide-by-zero exceptions impossible. */ 18076 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18077 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18078 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18079 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18080 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18081 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18082 struct bpf_insn *patchlet; 18083 struct bpf_insn chk_and_div[] = { 18084 /* [R,W]x div 0 -> 0 */ 18085 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18086 BPF_JNE | BPF_K, insn->src_reg, 18087 0, 2, 0), 18088 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18089 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18090 *insn, 18091 }; 18092 struct bpf_insn chk_and_mod[] = { 18093 /* [R,W]x mod 0 -> [R,W]x */ 18094 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18095 BPF_JEQ | BPF_K, insn->src_reg, 18096 0, 1 + (is64 ? 0 : 1), 0), 18097 *insn, 18098 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18099 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18100 }; 18101 18102 patchlet = isdiv ? chk_and_div : chk_and_mod; 18103 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18104 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18105 18106 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18107 if (!new_prog) 18108 return -ENOMEM; 18109 18110 delta += cnt - 1; 18111 env->prog = prog = new_prog; 18112 insn = new_prog->insnsi + i + delta; 18113 continue; 18114 } 18115 18116 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18117 if (BPF_CLASS(insn->code) == BPF_LD && 18118 (BPF_MODE(insn->code) == BPF_ABS || 18119 BPF_MODE(insn->code) == BPF_IND)) { 18120 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18121 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18122 verbose(env, "bpf verifier is misconfigured\n"); 18123 return -EINVAL; 18124 } 18125 18126 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18127 if (!new_prog) 18128 return -ENOMEM; 18129 18130 delta += cnt - 1; 18131 env->prog = prog = new_prog; 18132 insn = new_prog->insnsi + i + delta; 18133 continue; 18134 } 18135 18136 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18137 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18138 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18139 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18140 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18141 struct bpf_insn *patch = &insn_buf[0]; 18142 bool issrc, isneg, isimm; 18143 u32 off_reg; 18144 18145 aux = &env->insn_aux_data[i + delta]; 18146 if (!aux->alu_state || 18147 aux->alu_state == BPF_ALU_NON_POINTER) 18148 continue; 18149 18150 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18151 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18152 BPF_ALU_SANITIZE_SRC; 18153 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18154 18155 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18156 if (isimm) { 18157 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18158 } else { 18159 if (isneg) 18160 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18161 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18162 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18163 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18164 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18165 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18166 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18167 } 18168 if (!issrc) 18169 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18170 insn->src_reg = BPF_REG_AX; 18171 if (isneg) 18172 insn->code = insn->code == code_add ? 18173 code_sub : code_add; 18174 *patch++ = *insn; 18175 if (issrc && isneg && !isimm) 18176 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18177 cnt = patch - insn_buf; 18178 18179 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18180 if (!new_prog) 18181 return -ENOMEM; 18182 18183 delta += cnt - 1; 18184 env->prog = prog = new_prog; 18185 insn = new_prog->insnsi + i + delta; 18186 continue; 18187 } 18188 18189 if (insn->code != (BPF_JMP | BPF_CALL)) 18190 continue; 18191 if (insn->src_reg == BPF_PSEUDO_CALL) 18192 continue; 18193 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18194 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18195 if (ret) 18196 return ret; 18197 if (cnt == 0) 18198 continue; 18199 18200 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18201 if (!new_prog) 18202 return -ENOMEM; 18203 18204 delta += cnt - 1; 18205 env->prog = prog = new_prog; 18206 insn = new_prog->insnsi + i + delta; 18207 continue; 18208 } 18209 18210 if (insn->imm == BPF_FUNC_get_route_realm) 18211 prog->dst_needed = 1; 18212 if (insn->imm == BPF_FUNC_get_prandom_u32) 18213 bpf_user_rnd_init_once(); 18214 if (insn->imm == BPF_FUNC_override_return) 18215 prog->kprobe_override = 1; 18216 if (insn->imm == BPF_FUNC_tail_call) { 18217 /* If we tail call into other programs, we 18218 * cannot make any assumptions since they can 18219 * be replaced dynamically during runtime in 18220 * the program array. 18221 */ 18222 prog->cb_access = 1; 18223 if (!allow_tail_call_in_subprogs(env)) 18224 prog->aux->stack_depth = MAX_BPF_STACK; 18225 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18226 18227 /* mark bpf_tail_call as different opcode to avoid 18228 * conditional branch in the interpreter for every normal 18229 * call and to prevent accidental JITing by JIT compiler 18230 * that doesn't support bpf_tail_call yet 18231 */ 18232 insn->imm = 0; 18233 insn->code = BPF_JMP | BPF_TAIL_CALL; 18234 18235 aux = &env->insn_aux_data[i + delta]; 18236 if (env->bpf_capable && !prog->blinding_requested && 18237 prog->jit_requested && 18238 !bpf_map_key_poisoned(aux) && 18239 !bpf_map_ptr_poisoned(aux) && 18240 !bpf_map_ptr_unpriv(aux)) { 18241 struct bpf_jit_poke_descriptor desc = { 18242 .reason = BPF_POKE_REASON_TAIL_CALL, 18243 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18244 .tail_call.key = bpf_map_key_immediate(aux), 18245 .insn_idx = i + delta, 18246 }; 18247 18248 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18249 if (ret < 0) { 18250 verbose(env, "adding tail call poke descriptor failed\n"); 18251 return ret; 18252 } 18253 18254 insn->imm = ret + 1; 18255 continue; 18256 } 18257 18258 if (!bpf_map_ptr_unpriv(aux)) 18259 continue; 18260 18261 /* instead of changing every JIT dealing with tail_call 18262 * emit two extra insns: 18263 * if (index >= max_entries) goto out; 18264 * index &= array->index_mask; 18265 * to avoid out-of-bounds cpu speculation 18266 */ 18267 if (bpf_map_ptr_poisoned(aux)) { 18268 verbose(env, "tail_call abusing map_ptr\n"); 18269 return -EINVAL; 18270 } 18271 18272 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18273 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18274 map_ptr->max_entries, 2); 18275 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18276 container_of(map_ptr, 18277 struct bpf_array, 18278 map)->index_mask); 18279 insn_buf[2] = *insn; 18280 cnt = 3; 18281 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18282 if (!new_prog) 18283 return -ENOMEM; 18284 18285 delta += cnt - 1; 18286 env->prog = prog = new_prog; 18287 insn = new_prog->insnsi + i + delta; 18288 continue; 18289 } 18290 18291 if (insn->imm == BPF_FUNC_timer_set_callback) { 18292 /* The verifier will process callback_fn as many times as necessary 18293 * with different maps and the register states prepared by 18294 * set_timer_callback_state will be accurate. 18295 * 18296 * The following use case is valid: 18297 * map1 is shared by prog1, prog2, prog3. 18298 * prog1 calls bpf_timer_init for some map1 elements 18299 * prog2 calls bpf_timer_set_callback for some map1 elements. 18300 * Those that were not bpf_timer_init-ed will return -EINVAL. 18301 * prog3 calls bpf_timer_start for some map1 elements. 18302 * Those that were not both bpf_timer_init-ed and 18303 * bpf_timer_set_callback-ed will return -EINVAL. 18304 */ 18305 struct bpf_insn ld_addrs[2] = { 18306 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18307 }; 18308 18309 insn_buf[0] = ld_addrs[0]; 18310 insn_buf[1] = ld_addrs[1]; 18311 insn_buf[2] = *insn; 18312 cnt = 3; 18313 18314 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18315 if (!new_prog) 18316 return -ENOMEM; 18317 18318 delta += cnt - 1; 18319 env->prog = prog = new_prog; 18320 insn = new_prog->insnsi + i + delta; 18321 goto patch_call_imm; 18322 } 18323 18324 if (is_storage_get_function(insn->imm)) { 18325 if (!env->prog->aux->sleepable || 18326 env->insn_aux_data[i + delta].storage_get_func_atomic) 18327 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18328 else 18329 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18330 insn_buf[1] = *insn; 18331 cnt = 2; 18332 18333 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18334 if (!new_prog) 18335 return -ENOMEM; 18336 18337 delta += cnt - 1; 18338 env->prog = prog = new_prog; 18339 insn = new_prog->insnsi + i + delta; 18340 goto patch_call_imm; 18341 } 18342 18343 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18344 * and other inlining handlers are currently limited to 64 bit 18345 * only. 18346 */ 18347 if (prog->jit_requested && BITS_PER_LONG == 64 && 18348 (insn->imm == BPF_FUNC_map_lookup_elem || 18349 insn->imm == BPF_FUNC_map_update_elem || 18350 insn->imm == BPF_FUNC_map_delete_elem || 18351 insn->imm == BPF_FUNC_map_push_elem || 18352 insn->imm == BPF_FUNC_map_pop_elem || 18353 insn->imm == BPF_FUNC_map_peek_elem || 18354 insn->imm == BPF_FUNC_redirect_map || 18355 insn->imm == BPF_FUNC_for_each_map_elem || 18356 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18357 aux = &env->insn_aux_data[i + delta]; 18358 if (bpf_map_ptr_poisoned(aux)) 18359 goto patch_call_imm; 18360 18361 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18362 ops = map_ptr->ops; 18363 if (insn->imm == BPF_FUNC_map_lookup_elem && 18364 ops->map_gen_lookup) { 18365 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18366 if (cnt == -EOPNOTSUPP) 18367 goto patch_map_ops_generic; 18368 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18369 verbose(env, "bpf verifier is misconfigured\n"); 18370 return -EINVAL; 18371 } 18372 18373 new_prog = bpf_patch_insn_data(env, i + delta, 18374 insn_buf, cnt); 18375 if (!new_prog) 18376 return -ENOMEM; 18377 18378 delta += cnt - 1; 18379 env->prog = prog = new_prog; 18380 insn = new_prog->insnsi + i + delta; 18381 continue; 18382 } 18383 18384 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18385 (void *(*)(struct bpf_map *map, void *key))NULL)); 18386 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18387 (long (*)(struct bpf_map *map, void *key))NULL)); 18388 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18389 (long (*)(struct bpf_map *map, void *key, void *value, 18390 u64 flags))NULL)); 18391 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18392 (long (*)(struct bpf_map *map, void *value, 18393 u64 flags))NULL)); 18394 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18395 (long (*)(struct bpf_map *map, void *value))NULL)); 18396 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18397 (long (*)(struct bpf_map *map, void *value))NULL)); 18398 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18399 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18400 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18401 (long (*)(struct bpf_map *map, 18402 bpf_callback_t callback_fn, 18403 void *callback_ctx, 18404 u64 flags))NULL)); 18405 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18406 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18407 18408 patch_map_ops_generic: 18409 switch (insn->imm) { 18410 case BPF_FUNC_map_lookup_elem: 18411 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18412 continue; 18413 case BPF_FUNC_map_update_elem: 18414 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18415 continue; 18416 case BPF_FUNC_map_delete_elem: 18417 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18418 continue; 18419 case BPF_FUNC_map_push_elem: 18420 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18421 continue; 18422 case BPF_FUNC_map_pop_elem: 18423 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18424 continue; 18425 case BPF_FUNC_map_peek_elem: 18426 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18427 continue; 18428 case BPF_FUNC_redirect_map: 18429 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18430 continue; 18431 case BPF_FUNC_for_each_map_elem: 18432 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18433 continue; 18434 case BPF_FUNC_map_lookup_percpu_elem: 18435 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18436 continue; 18437 } 18438 18439 goto patch_call_imm; 18440 } 18441 18442 /* Implement bpf_jiffies64 inline. */ 18443 if (prog->jit_requested && BITS_PER_LONG == 64 && 18444 insn->imm == BPF_FUNC_jiffies64) { 18445 struct bpf_insn ld_jiffies_addr[2] = { 18446 BPF_LD_IMM64(BPF_REG_0, 18447 (unsigned long)&jiffies), 18448 }; 18449 18450 insn_buf[0] = ld_jiffies_addr[0]; 18451 insn_buf[1] = ld_jiffies_addr[1]; 18452 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18453 BPF_REG_0, 0); 18454 cnt = 3; 18455 18456 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18457 cnt); 18458 if (!new_prog) 18459 return -ENOMEM; 18460 18461 delta += cnt - 1; 18462 env->prog = prog = new_prog; 18463 insn = new_prog->insnsi + i + delta; 18464 continue; 18465 } 18466 18467 /* Implement bpf_get_func_arg inline. */ 18468 if (prog_type == BPF_PROG_TYPE_TRACING && 18469 insn->imm == BPF_FUNC_get_func_arg) { 18470 /* Load nr_args from ctx - 8 */ 18471 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18472 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18473 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18474 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18475 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18476 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18477 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18478 insn_buf[7] = BPF_JMP_A(1); 18479 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18480 cnt = 9; 18481 18482 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18483 if (!new_prog) 18484 return -ENOMEM; 18485 18486 delta += cnt - 1; 18487 env->prog = prog = new_prog; 18488 insn = new_prog->insnsi + i + delta; 18489 continue; 18490 } 18491 18492 /* Implement bpf_get_func_ret inline. */ 18493 if (prog_type == BPF_PROG_TYPE_TRACING && 18494 insn->imm == BPF_FUNC_get_func_ret) { 18495 if (eatype == BPF_TRACE_FEXIT || 18496 eatype == BPF_MODIFY_RETURN) { 18497 /* Load nr_args from ctx - 8 */ 18498 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18499 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18500 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18501 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18502 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18503 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18504 cnt = 6; 18505 } else { 18506 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18507 cnt = 1; 18508 } 18509 18510 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18511 if (!new_prog) 18512 return -ENOMEM; 18513 18514 delta += cnt - 1; 18515 env->prog = prog = new_prog; 18516 insn = new_prog->insnsi + i + delta; 18517 continue; 18518 } 18519 18520 /* Implement get_func_arg_cnt inline. */ 18521 if (prog_type == BPF_PROG_TYPE_TRACING && 18522 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18523 /* Load nr_args from ctx - 8 */ 18524 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18525 18526 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18527 if (!new_prog) 18528 return -ENOMEM; 18529 18530 env->prog = prog = new_prog; 18531 insn = new_prog->insnsi + i + delta; 18532 continue; 18533 } 18534 18535 /* Implement bpf_get_func_ip inline. */ 18536 if (prog_type == BPF_PROG_TYPE_TRACING && 18537 insn->imm == BPF_FUNC_get_func_ip) { 18538 /* Load IP address from ctx - 16 */ 18539 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18540 18541 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18542 if (!new_prog) 18543 return -ENOMEM; 18544 18545 env->prog = prog = new_prog; 18546 insn = new_prog->insnsi + i + delta; 18547 continue; 18548 } 18549 18550 patch_call_imm: 18551 fn = env->ops->get_func_proto(insn->imm, env->prog); 18552 /* all functions that have prototype and verifier allowed 18553 * programs to call them, must be real in-kernel functions 18554 */ 18555 if (!fn->func) { 18556 verbose(env, 18557 "kernel subsystem misconfigured func %s#%d\n", 18558 func_id_name(insn->imm), insn->imm); 18559 return -EFAULT; 18560 } 18561 insn->imm = fn->func - __bpf_call_base; 18562 } 18563 18564 /* Since poke tab is now finalized, publish aux to tracker. */ 18565 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18566 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18567 if (!map_ptr->ops->map_poke_track || 18568 !map_ptr->ops->map_poke_untrack || 18569 !map_ptr->ops->map_poke_run) { 18570 verbose(env, "bpf verifier is misconfigured\n"); 18571 return -EINVAL; 18572 } 18573 18574 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18575 if (ret < 0) { 18576 verbose(env, "tracking tail call prog failed\n"); 18577 return ret; 18578 } 18579 } 18580 18581 sort_kfunc_descs_by_imm_off(env->prog); 18582 18583 return 0; 18584 } 18585 18586 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18587 int position, 18588 s32 stack_base, 18589 u32 callback_subprogno, 18590 u32 *cnt) 18591 { 18592 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18593 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18594 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18595 int reg_loop_max = BPF_REG_6; 18596 int reg_loop_cnt = BPF_REG_7; 18597 int reg_loop_ctx = BPF_REG_8; 18598 18599 struct bpf_prog *new_prog; 18600 u32 callback_start; 18601 u32 call_insn_offset; 18602 s32 callback_offset; 18603 18604 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18605 * be careful to modify this code in sync. 18606 */ 18607 struct bpf_insn insn_buf[] = { 18608 /* Return error and jump to the end of the patch if 18609 * expected number of iterations is too big. 18610 */ 18611 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18612 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18613 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18614 /* spill R6, R7, R8 to use these as loop vars */ 18615 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18616 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18617 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18618 /* initialize loop vars */ 18619 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18620 BPF_MOV32_IMM(reg_loop_cnt, 0), 18621 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18622 /* loop header, 18623 * if reg_loop_cnt >= reg_loop_max skip the loop body 18624 */ 18625 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18626 /* callback call, 18627 * correct callback offset would be set after patching 18628 */ 18629 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18630 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18631 BPF_CALL_REL(0), 18632 /* increment loop counter */ 18633 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18634 /* jump to loop header if callback returned 0 */ 18635 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18636 /* return value of bpf_loop, 18637 * set R0 to the number of iterations 18638 */ 18639 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18640 /* restore original values of R6, R7, R8 */ 18641 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18642 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18643 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18644 }; 18645 18646 *cnt = ARRAY_SIZE(insn_buf); 18647 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18648 if (!new_prog) 18649 return new_prog; 18650 18651 /* callback start is known only after patching */ 18652 callback_start = env->subprog_info[callback_subprogno].start; 18653 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18654 call_insn_offset = position + 12; 18655 callback_offset = callback_start - call_insn_offset - 1; 18656 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18657 18658 return new_prog; 18659 } 18660 18661 static bool is_bpf_loop_call(struct bpf_insn *insn) 18662 { 18663 return insn->code == (BPF_JMP | BPF_CALL) && 18664 insn->src_reg == 0 && 18665 insn->imm == BPF_FUNC_loop; 18666 } 18667 18668 /* For all sub-programs in the program (including main) check 18669 * insn_aux_data to see if there are bpf_loop calls that require 18670 * inlining. If such calls are found the calls are replaced with a 18671 * sequence of instructions produced by `inline_bpf_loop` function and 18672 * subprog stack_depth is increased by the size of 3 registers. 18673 * This stack space is used to spill values of the R6, R7, R8. These 18674 * registers are used to store the loop bound, counter and context 18675 * variables. 18676 */ 18677 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18678 { 18679 struct bpf_subprog_info *subprogs = env->subprog_info; 18680 int i, cur_subprog = 0, cnt, delta = 0; 18681 struct bpf_insn *insn = env->prog->insnsi; 18682 int insn_cnt = env->prog->len; 18683 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18684 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18685 u16 stack_depth_extra = 0; 18686 18687 for (i = 0; i < insn_cnt; i++, insn++) { 18688 struct bpf_loop_inline_state *inline_state = 18689 &env->insn_aux_data[i + delta].loop_inline_state; 18690 18691 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18692 struct bpf_prog *new_prog; 18693 18694 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18695 new_prog = inline_bpf_loop(env, 18696 i + delta, 18697 -(stack_depth + stack_depth_extra), 18698 inline_state->callback_subprogno, 18699 &cnt); 18700 if (!new_prog) 18701 return -ENOMEM; 18702 18703 delta += cnt - 1; 18704 env->prog = new_prog; 18705 insn = new_prog->insnsi + i + delta; 18706 } 18707 18708 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18709 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18710 cur_subprog++; 18711 stack_depth = subprogs[cur_subprog].stack_depth; 18712 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18713 stack_depth_extra = 0; 18714 } 18715 } 18716 18717 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18718 18719 return 0; 18720 } 18721 18722 static void free_states(struct bpf_verifier_env *env) 18723 { 18724 struct bpf_verifier_state_list *sl, *sln; 18725 int i; 18726 18727 sl = env->free_list; 18728 while (sl) { 18729 sln = sl->next; 18730 free_verifier_state(&sl->state, false); 18731 kfree(sl); 18732 sl = sln; 18733 } 18734 env->free_list = NULL; 18735 18736 if (!env->explored_states) 18737 return; 18738 18739 for (i = 0; i < state_htab_size(env); i++) { 18740 sl = env->explored_states[i]; 18741 18742 while (sl) { 18743 sln = sl->next; 18744 free_verifier_state(&sl->state, false); 18745 kfree(sl); 18746 sl = sln; 18747 } 18748 env->explored_states[i] = NULL; 18749 } 18750 } 18751 18752 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18753 { 18754 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18755 struct bpf_verifier_state *state; 18756 struct bpf_reg_state *regs; 18757 int ret, i; 18758 18759 env->prev_linfo = NULL; 18760 env->pass_cnt++; 18761 18762 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 18763 if (!state) 18764 return -ENOMEM; 18765 state->curframe = 0; 18766 state->speculative = false; 18767 state->branches = 1; 18768 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 18769 if (!state->frame[0]) { 18770 kfree(state); 18771 return -ENOMEM; 18772 } 18773 env->cur_state = state; 18774 init_func_state(env, state->frame[0], 18775 BPF_MAIN_FUNC /* callsite */, 18776 0 /* frameno */, 18777 subprog); 18778 state->first_insn_idx = env->subprog_info[subprog].start; 18779 state->last_insn_idx = -1; 18780 18781 regs = state->frame[state->curframe]->regs; 18782 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 18783 ret = btf_prepare_func_args(env, subprog, regs); 18784 if (ret) 18785 goto out; 18786 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 18787 if (regs[i].type == PTR_TO_CTX) 18788 mark_reg_known_zero(env, regs, i); 18789 else if (regs[i].type == SCALAR_VALUE) 18790 mark_reg_unknown(env, regs, i); 18791 else if (base_type(regs[i].type) == PTR_TO_MEM) { 18792 const u32 mem_size = regs[i].mem_size; 18793 18794 mark_reg_known_zero(env, regs, i); 18795 regs[i].mem_size = mem_size; 18796 regs[i].id = ++env->id_gen; 18797 } 18798 } 18799 } else { 18800 /* 1st arg to a function */ 18801 regs[BPF_REG_1].type = PTR_TO_CTX; 18802 mark_reg_known_zero(env, regs, BPF_REG_1); 18803 ret = btf_check_subprog_arg_match(env, subprog, regs); 18804 if (ret == -EFAULT) 18805 /* unlikely verifier bug. abort. 18806 * ret == 0 and ret < 0 are sadly acceptable for 18807 * main() function due to backward compatibility. 18808 * Like socket filter program may be written as: 18809 * int bpf_prog(struct pt_regs *ctx) 18810 * and never dereference that ctx in the program. 18811 * 'struct pt_regs' is a type mismatch for socket 18812 * filter that should be using 'struct __sk_buff'. 18813 */ 18814 goto out; 18815 } 18816 18817 ret = do_check(env); 18818 out: 18819 /* check for NULL is necessary, since cur_state can be freed inside 18820 * do_check() under memory pressure. 18821 */ 18822 if (env->cur_state) { 18823 free_verifier_state(env->cur_state, true); 18824 env->cur_state = NULL; 18825 } 18826 while (!pop_stack(env, NULL, NULL, false)); 18827 if (!ret && pop_log) 18828 bpf_vlog_reset(&env->log, 0); 18829 free_states(env); 18830 return ret; 18831 } 18832 18833 /* Verify all global functions in a BPF program one by one based on their BTF. 18834 * All global functions must pass verification. Otherwise the whole program is rejected. 18835 * Consider: 18836 * int bar(int); 18837 * int foo(int f) 18838 * { 18839 * return bar(f); 18840 * } 18841 * int bar(int b) 18842 * { 18843 * ... 18844 * } 18845 * foo() will be verified first for R1=any_scalar_value. During verification it 18846 * will be assumed that bar() already verified successfully and call to bar() 18847 * from foo() will be checked for type match only. Later bar() will be verified 18848 * independently to check that it's safe for R1=any_scalar_value. 18849 */ 18850 static int do_check_subprogs(struct bpf_verifier_env *env) 18851 { 18852 struct bpf_prog_aux *aux = env->prog->aux; 18853 int i, ret; 18854 18855 if (!aux->func_info) 18856 return 0; 18857 18858 for (i = 1; i < env->subprog_cnt; i++) { 18859 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 18860 continue; 18861 env->insn_idx = env->subprog_info[i].start; 18862 WARN_ON_ONCE(env->insn_idx == 0); 18863 ret = do_check_common(env, i); 18864 if (ret) { 18865 return ret; 18866 } else if (env->log.level & BPF_LOG_LEVEL) { 18867 verbose(env, 18868 "Func#%d is safe for any args that match its prototype\n", 18869 i); 18870 } 18871 } 18872 return 0; 18873 } 18874 18875 static int do_check_main(struct bpf_verifier_env *env) 18876 { 18877 int ret; 18878 18879 env->insn_idx = 0; 18880 ret = do_check_common(env, 0); 18881 if (!ret) 18882 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18883 return ret; 18884 } 18885 18886 18887 static void print_verification_stats(struct bpf_verifier_env *env) 18888 { 18889 int i; 18890 18891 if (env->log.level & BPF_LOG_STATS) { 18892 verbose(env, "verification time %lld usec\n", 18893 div_u64(env->verification_time, 1000)); 18894 verbose(env, "stack depth "); 18895 for (i = 0; i < env->subprog_cnt; i++) { 18896 u32 depth = env->subprog_info[i].stack_depth; 18897 18898 verbose(env, "%d", depth); 18899 if (i + 1 < env->subprog_cnt) 18900 verbose(env, "+"); 18901 } 18902 verbose(env, "\n"); 18903 } 18904 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 18905 "total_states %d peak_states %d mark_read %d\n", 18906 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 18907 env->max_states_per_insn, env->total_states, 18908 env->peak_states, env->longest_mark_read_walk); 18909 } 18910 18911 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 18912 { 18913 const struct btf_type *t, *func_proto; 18914 const struct bpf_struct_ops *st_ops; 18915 const struct btf_member *member; 18916 struct bpf_prog *prog = env->prog; 18917 u32 btf_id, member_idx; 18918 const char *mname; 18919 18920 if (!prog->gpl_compatible) { 18921 verbose(env, "struct ops programs must have a GPL compatible license\n"); 18922 return -EINVAL; 18923 } 18924 18925 btf_id = prog->aux->attach_btf_id; 18926 st_ops = bpf_struct_ops_find(btf_id); 18927 if (!st_ops) { 18928 verbose(env, "attach_btf_id %u is not a supported struct\n", 18929 btf_id); 18930 return -ENOTSUPP; 18931 } 18932 18933 t = st_ops->type; 18934 member_idx = prog->expected_attach_type; 18935 if (member_idx >= btf_type_vlen(t)) { 18936 verbose(env, "attach to invalid member idx %u of struct %s\n", 18937 member_idx, st_ops->name); 18938 return -EINVAL; 18939 } 18940 18941 member = &btf_type_member(t)[member_idx]; 18942 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 18943 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 18944 NULL); 18945 if (!func_proto) { 18946 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 18947 mname, member_idx, st_ops->name); 18948 return -EINVAL; 18949 } 18950 18951 if (st_ops->check_member) { 18952 int err = st_ops->check_member(t, member, prog); 18953 18954 if (err) { 18955 verbose(env, "attach to unsupported member %s of struct %s\n", 18956 mname, st_ops->name); 18957 return err; 18958 } 18959 } 18960 18961 prog->aux->attach_func_proto = func_proto; 18962 prog->aux->attach_func_name = mname; 18963 env->ops = st_ops->verifier_ops; 18964 18965 return 0; 18966 } 18967 #define SECURITY_PREFIX "security_" 18968 18969 static int check_attach_modify_return(unsigned long addr, const char *func_name) 18970 { 18971 if (within_error_injection_list(addr) || 18972 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 18973 return 0; 18974 18975 return -EINVAL; 18976 } 18977 18978 /* list of non-sleepable functions that are otherwise on 18979 * ALLOW_ERROR_INJECTION list 18980 */ 18981 BTF_SET_START(btf_non_sleepable_error_inject) 18982 /* Three functions below can be called from sleepable and non-sleepable context. 18983 * Assume non-sleepable from bpf safety point of view. 18984 */ 18985 BTF_ID(func, __filemap_add_folio) 18986 BTF_ID(func, should_fail_alloc_page) 18987 BTF_ID(func, should_failslab) 18988 BTF_SET_END(btf_non_sleepable_error_inject) 18989 18990 static int check_non_sleepable_error_inject(u32 btf_id) 18991 { 18992 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 18993 } 18994 18995 int bpf_check_attach_target(struct bpf_verifier_log *log, 18996 const struct bpf_prog *prog, 18997 const struct bpf_prog *tgt_prog, 18998 u32 btf_id, 18999 struct bpf_attach_target_info *tgt_info) 19000 { 19001 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19002 const char prefix[] = "btf_trace_"; 19003 int ret = 0, subprog = -1, i; 19004 const struct btf_type *t; 19005 bool conservative = true; 19006 const char *tname; 19007 struct btf *btf; 19008 long addr = 0; 19009 struct module *mod = NULL; 19010 19011 if (!btf_id) { 19012 bpf_log(log, "Tracing programs must provide btf_id\n"); 19013 return -EINVAL; 19014 } 19015 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19016 if (!btf) { 19017 bpf_log(log, 19018 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19019 return -EINVAL; 19020 } 19021 t = btf_type_by_id(btf, btf_id); 19022 if (!t) { 19023 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19024 return -EINVAL; 19025 } 19026 tname = btf_name_by_offset(btf, t->name_off); 19027 if (!tname) { 19028 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19029 return -EINVAL; 19030 } 19031 if (tgt_prog) { 19032 struct bpf_prog_aux *aux = tgt_prog->aux; 19033 19034 if (bpf_prog_is_dev_bound(prog->aux) && 19035 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19036 bpf_log(log, "Target program bound device mismatch"); 19037 return -EINVAL; 19038 } 19039 19040 for (i = 0; i < aux->func_info_cnt; i++) 19041 if (aux->func_info[i].type_id == btf_id) { 19042 subprog = i; 19043 break; 19044 } 19045 if (subprog == -1) { 19046 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19047 return -EINVAL; 19048 } 19049 conservative = aux->func_info_aux[subprog].unreliable; 19050 if (prog_extension) { 19051 if (conservative) { 19052 bpf_log(log, 19053 "Cannot replace static functions\n"); 19054 return -EINVAL; 19055 } 19056 if (!prog->jit_requested) { 19057 bpf_log(log, 19058 "Extension programs should be JITed\n"); 19059 return -EINVAL; 19060 } 19061 } 19062 if (!tgt_prog->jited) { 19063 bpf_log(log, "Can attach to only JITed progs\n"); 19064 return -EINVAL; 19065 } 19066 if (tgt_prog->type == prog->type) { 19067 /* Cannot fentry/fexit another fentry/fexit program. 19068 * Cannot attach program extension to another extension. 19069 * It's ok to attach fentry/fexit to extension program. 19070 */ 19071 bpf_log(log, "Cannot recursively attach\n"); 19072 return -EINVAL; 19073 } 19074 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19075 prog_extension && 19076 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19077 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19078 /* Program extensions can extend all program types 19079 * except fentry/fexit. The reason is the following. 19080 * The fentry/fexit programs are used for performance 19081 * analysis, stats and can be attached to any program 19082 * type except themselves. When extension program is 19083 * replacing XDP function it is necessary to allow 19084 * performance analysis of all functions. Both original 19085 * XDP program and its program extension. Hence 19086 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19087 * allowed. If extending of fentry/fexit was allowed it 19088 * would be possible to create long call chain 19089 * fentry->extension->fentry->extension beyond 19090 * reasonable stack size. Hence extending fentry is not 19091 * allowed. 19092 */ 19093 bpf_log(log, "Cannot extend fentry/fexit\n"); 19094 return -EINVAL; 19095 } 19096 } else { 19097 if (prog_extension) { 19098 bpf_log(log, "Cannot replace kernel functions\n"); 19099 return -EINVAL; 19100 } 19101 } 19102 19103 switch (prog->expected_attach_type) { 19104 case BPF_TRACE_RAW_TP: 19105 if (tgt_prog) { 19106 bpf_log(log, 19107 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19108 return -EINVAL; 19109 } 19110 if (!btf_type_is_typedef(t)) { 19111 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19112 btf_id); 19113 return -EINVAL; 19114 } 19115 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19116 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19117 btf_id, tname); 19118 return -EINVAL; 19119 } 19120 tname += sizeof(prefix) - 1; 19121 t = btf_type_by_id(btf, t->type); 19122 if (!btf_type_is_ptr(t)) 19123 /* should never happen in valid vmlinux build */ 19124 return -EINVAL; 19125 t = btf_type_by_id(btf, t->type); 19126 if (!btf_type_is_func_proto(t)) 19127 /* should never happen in valid vmlinux build */ 19128 return -EINVAL; 19129 19130 break; 19131 case BPF_TRACE_ITER: 19132 if (!btf_type_is_func(t)) { 19133 bpf_log(log, "attach_btf_id %u is not a function\n", 19134 btf_id); 19135 return -EINVAL; 19136 } 19137 t = btf_type_by_id(btf, t->type); 19138 if (!btf_type_is_func_proto(t)) 19139 return -EINVAL; 19140 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19141 if (ret) 19142 return ret; 19143 break; 19144 default: 19145 if (!prog_extension) 19146 return -EINVAL; 19147 fallthrough; 19148 case BPF_MODIFY_RETURN: 19149 case BPF_LSM_MAC: 19150 case BPF_LSM_CGROUP: 19151 case BPF_TRACE_FENTRY: 19152 case BPF_TRACE_FEXIT: 19153 if (!btf_type_is_func(t)) { 19154 bpf_log(log, "attach_btf_id %u is not a function\n", 19155 btf_id); 19156 return -EINVAL; 19157 } 19158 if (prog_extension && 19159 btf_check_type_match(log, prog, btf, t)) 19160 return -EINVAL; 19161 t = btf_type_by_id(btf, t->type); 19162 if (!btf_type_is_func_proto(t)) 19163 return -EINVAL; 19164 19165 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19166 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19167 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19168 return -EINVAL; 19169 19170 if (tgt_prog && conservative) 19171 t = NULL; 19172 19173 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19174 if (ret < 0) 19175 return ret; 19176 19177 if (tgt_prog) { 19178 if (subprog == 0) 19179 addr = (long) tgt_prog->bpf_func; 19180 else 19181 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19182 } else { 19183 if (btf_is_module(btf)) { 19184 mod = btf_try_get_module(btf); 19185 if (mod) 19186 addr = find_kallsyms_symbol_value(mod, tname); 19187 else 19188 addr = 0; 19189 } else { 19190 addr = kallsyms_lookup_name(tname); 19191 } 19192 if (!addr) { 19193 module_put(mod); 19194 bpf_log(log, 19195 "The address of function %s cannot be found\n", 19196 tname); 19197 return -ENOENT; 19198 } 19199 } 19200 19201 if (prog->aux->sleepable) { 19202 ret = -EINVAL; 19203 switch (prog->type) { 19204 case BPF_PROG_TYPE_TRACING: 19205 19206 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19207 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19208 */ 19209 if (!check_non_sleepable_error_inject(btf_id) && 19210 within_error_injection_list(addr)) 19211 ret = 0; 19212 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19213 * in the fmodret id set with the KF_SLEEPABLE flag. 19214 */ 19215 else { 19216 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19217 prog); 19218 19219 if (flags && (*flags & KF_SLEEPABLE)) 19220 ret = 0; 19221 } 19222 break; 19223 case BPF_PROG_TYPE_LSM: 19224 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19225 * Only some of them are sleepable. 19226 */ 19227 if (bpf_lsm_is_sleepable_hook(btf_id)) 19228 ret = 0; 19229 break; 19230 default: 19231 break; 19232 } 19233 if (ret) { 19234 module_put(mod); 19235 bpf_log(log, "%s is not sleepable\n", tname); 19236 return ret; 19237 } 19238 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19239 if (tgt_prog) { 19240 module_put(mod); 19241 bpf_log(log, "can't modify return codes of BPF programs\n"); 19242 return -EINVAL; 19243 } 19244 ret = -EINVAL; 19245 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19246 !check_attach_modify_return(addr, tname)) 19247 ret = 0; 19248 if (ret) { 19249 module_put(mod); 19250 bpf_log(log, "%s() is not modifiable\n", tname); 19251 return ret; 19252 } 19253 } 19254 19255 break; 19256 } 19257 tgt_info->tgt_addr = addr; 19258 tgt_info->tgt_name = tname; 19259 tgt_info->tgt_type = t; 19260 tgt_info->tgt_mod = mod; 19261 return 0; 19262 } 19263 19264 BTF_SET_START(btf_id_deny) 19265 BTF_ID_UNUSED 19266 #ifdef CONFIG_SMP 19267 BTF_ID(func, migrate_disable) 19268 BTF_ID(func, migrate_enable) 19269 #endif 19270 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19271 BTF_ID(func, rcu_read_unlock_strict) 19272 #endif 19273 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19274 BTF_ID(func, preempt_count_add) 19275 BTF_ID(func, preempt_count_sub) 19276 #endif 19277 #ifdef CONFIG_PREEMPT_RCU 19278 BTF_ID(func, __rcu_read_lock) 19279 BTF_ID(func, __rcu_read_unlock) 19280 #endif 19281 BTF_SET_END(btf_id_deny) 19282 19283 static bool can_be_sleepable(struct bpf_prog *prog) 19284 { 19285 if (prog->type == BPF_PROG_TYPE_TRACING) { 19286 switch (prog->expected_attach_type) { 19287 case BPF_TRACE_FENTRY: 19288 case BPF_TRACE_FEXIT: 19289 case BPF_MODIFY_RETURN: 19290 case BPF_TRACE_ITER: 19291 return true; 19292 default: 19293 return false; 19294 } 19295 } 19296 return prog->type == BPF_PROG_TYPE_LSM || 19297 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19298 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19299 } 19300 19301 static int check_attach_btf_id(struct bpf_verifier_env *env) 19302 { 19303 struct bpf_prog *prog = env->prog; 19304 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19305 struct bpf_attach_target_info tgt_info = {}; 19306 u32 btf_id = prog->aux->attach_btf_id; 19307 struct bpf_trampoline *tr; 19308 int ret; 19309 u64 key; 19310 19311 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19312 if (prog->aux->sleepable) 19313 /* attach_btf_id checked to be zero already */ 19314 return 0; 19315 verbose(env, "Syscall programs can only be sleepable\n"); 19316 return -EINVAL; 19317 } 19318 19319 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19320 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19321 return -EINVAL; 19322 } 19323 19324 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19325 return check_struct_ops_btf_id(env); 19326 19327 if (prog->type != BPF_PROG_TYPE_TRACING && 19328 prog->type != BPF_PROG_TYPE_LSM && 19329 prog->type != BPF_PROG_TYPE_EXT) 19330 return 0; 19331 19332 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19333 if (ret) 19334 return ret; 19335 19336 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19337 /* to make freplace equivalent to their targets, they need to 19338 * inherit env->ops and expected_attach_type for the rest of the 19339 * verification 19340 */ 19341 env->ops = bpf_verifier_ops[tgt_prog->type]; 19342 prog->expected_attach_type = tgt_prog->expected_attach_type; 19343 } 19344 19345 /* store info about the attachment target that will be used later */ 19346 prog->aux->attach_func_proto = tgt_info.tgt_type; 19347 prog->aux->attach_func_name = tgt_info.tgt_name; 19348 prog->aux->mod = tgt_info.tgt_mod; 19349 19350 if (tgt_prog) { 19351 prog->aux->saved_dst_prog_type = tgt_prog->type; 19352 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19353 } 19354 19355 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19356 prog->aux->attach_btf_trace = true; 19357 return 0; 19358 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19359 if (!bpf_iter_prog_supported(prog)) 19360 return -EINVAL; 19361 return 0; 19362 } 19363 19364 if (prog->type == BPF_PROG_TYPE_LSM) { 19365 ret = bpf_lsm_verify_prog(&env->log, prog); 19366 if (ret < 0) 19367 return ret; 19368 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19369 btf_id_set_contains(&btf_id_deny, btf_id)) { 19370 return -EINVAL; 19371 } 19372 19373 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19374 tr = bpf_trampoline_get(key, &tgt_info); 19375 if (!tr) 19376 return -ENOMEM; 19377 19378 prog->aux->dst_trampoline = tr; 19379 return 0; 19380 } 19381 19382 struct btf *bpf_get_btf_vmlinux(void) 19383 { 19384 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19385 mutex_lock(&bpf_verifier_lock); 19386 if (!btf_vmlinux) 19387 btf_vmlinux = btf_parse_vmlinux(); 19388 mutex_unlock(&bpf_verifier_lock); 19389 } 19390 return btf_vmlinux; 19391 } 19392 19393 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19394 { 19395 u64 start_time = ktime_get_ns(); 19396 struct bpf_verifier_env *env; 19397 int i, len, ret = -EINVAL, err; 19398 u32 log_true_size; 19399 bool is_priv; 19400 19401 /* no program is valid */ 19402 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19403 return -EINVAL; 19404 19405 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19406 * allocate/free it every time bpf_check() is called 19407 */ 19408 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19409 if (!env) 19410 return -ENOMEM; 19411 19412 env->bt.env = env; 19413 19414 len = (*prog)->len; 19415 env->insn_aux_data = 19416 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19417 ret = -ENOMEM; 19418 if (!env->insn_aux_data) 19419 goto err_free_env; 19420 for (i = 0; i < len; i++) 19421 env->insn_aux_data[i].orig_idx = i; 19422 env->prog = *prog; 19423 env->ops = bpf_verifier_ops[env->prog->type]; 19424 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19425 is_priv = bpf_capable(); 19426 19427 bpf_get_btf_vmlinux(); 19428 19429 /* grab the mutex to protect few globals used by verifier */ 19430 if (!is_priv) 19431 mutex_lock(&bpf_verifier_lock); 19432 19433 /* user could have requested verbose verifier output 19434 * and supplied buffer to store the verification trace 19435 */ 19436 ret = bpf_vlog_init(&env->log, attr->log_level, 19437 (char __user *) (unsigned long) attr->log_buf, 19438 attr->log_size); 19439 if (ret) 19440 goto err_unlock; 19441 19442 mark_verifier_state_clean(env); 19443 19444 if (IS_ERR(btf_vmlinux)) { 19445 /* Either gcc or pahole or kernel are broken. */ 19446 verbose(env, "in-kernel BTF is malformed\n"); 19447 ret = PTR_ERR(btf_vmlinux); 19448 goto skip_full_check; 19449 } 19450 19451 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19452 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19453 env->strict_alignment = true; 19454 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19455 env->strict_alignment = false; 19456 19457 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19458 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19459 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19460 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19461 env->bpf_capable = bpf_capable(); 19462 19463 if (is_priv) 19464 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19465 19466 env->explored_states = kvcalloc(state_htab_size(env), 19467 sizeof(struct bpf_verifier_state_list *), 19468 GFP_USER); 19469 ret = -ENOMEM; 19470 if (!env->explored_states) 19471 goto skip_full_check; 19472 19473 ret = add_subprog_and_kfunc(env); 19474 if (ret < 0) 19475 goto skip_full_check; 19476 19477 ret = check_subprogs(env); 19478 if (ret < 0) 19479 goto skip_full_check; 19480 19481 ret = check_btf_info(env, attr, uattr); 19482 if (ret < 0) 19483 goto skip_full_check; 19484 19485 ret = check_attach_btf_id(env); 19486 if (ret) 19487 goto skip_full_check; 19488 19489 ret = resolve_pseudo_ldimm64(env); 19490 if (ret < 0) 19491 goto skip_full_check; 19492 19493 if (bpf_prog_is_offloaded(env->prog->aux)) { 19494 ret = bpf_prog_offload_verifier_prep(env->prog); 19495 if (ret) 19496 goto skip_full_check; 19497 } 19498 19499 ret = check_cfg(env); 19500 if (ret < 0) 19501 goto skip_full_check; 19502 19503 ret = do_check_subprogs(env); 19504 ret = ret ?: do_check_main(env); 19505 19506 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19507 ret = bpf_prog_offload_finalize(env); 19508 19509 skip_full_check: 19510 kvfree(env->explored_states); 19511 19512 if (ret == 0) 19513 ret = check_max_stack_depth(env); 19514 19515 /* instruction rewrites happen after this point */ 19516 if (ret == 0) 19517 ret = optimize_bpf_loop(env); 19518 19519 if (is_priv) { 19520 if (ret == 0) 19521 opt_hard_wire_dead_code_branches(env); 19522 if (ret == 0) 19523 ret = opt_remove_dead_code(env); 19524 if (ret == 0) 19525 ret = opt_remove_nops(env); 19526 } else { 19527 if (ret == 0) 19528 sanitize_dead_code(env); 19529 } 19530 19531 if (ret == 0) 19532 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19533 ret = convert_ctx_accesses(env); 19534 19535 if (ret == 0) 19536 ret = do_misc_fixups(env); 19537 19538 /* do 32-bit optimization after insn patching has done so those patched 19539 * insns could be handled correctly. 19540 */ 19541 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19542 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19543 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19544 : false; 19545 } 19546 19547 if (ret == 0) 19548 ret = fixup_call_args(env); 19549 19550 env->verification_time = ktime_get_ns() - start_time; 19551 print_verification_stats(env); 19552 env->prog->aux->verified_insns = env->insn_processed; 19553 19554 /* preserve original error even if log finalization is successful */ 19555 err = bpf_vlog_finalize(&env->log, &log_true_size); 19556 if (err) 19557 ret = err; 19558 19559 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19560 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19561 &log_true_size, sizeof(log_true_size))) { 19562 ret = -EFAULT; 19563 goto err_release_maps; 19564 } 19565 19566 if (ret) 19567 goto err_release_maps; 19568 19569 if (env->used_map_cnt) { 19570 /* if program passed verifier, update used_maps in bpf_prog_info */ 19571 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19572 sizeof(env->used_maps[0]), 19573 GFP_KERNEL); 19574 19575 if (!env->prog->aux->used_maps) { 19576 ret = -ENOMEM; 19577 goto err_release_maps; 19578 } 19579 19580 memcpy(env->prog->aux->used_maps, env->used_maps, 19581 sizeof(env->used_maps[0]) * env->used_map_cnt); 19582 env->prog->aux->used_map_cnt = env->used_map_cnt; 19583 } 19584 if (env->used_btf_cnt) { 19585 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19586 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19587 sizeof(env->used_btfs[0]), 19588 GFP_KERNEL); 19589 if (!env->prog->aux->used_btfs) { 19590 ret = -ENOMEM; 19591 goto err_release_maps; 19592 } 19593 19594 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19595 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19596 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19597 } 19598 if (env->used_map_cnt || env->used_btf_cnt) { 19599 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19600 * bpf_ld_imm64 instructions 19601 */ 19602 convert_pseudo_ld_imm64(env); 19603 } 19604 19605 adjust_btf_func(env); 19606 19607 err_release_maps: 19608 if (!env->prog->aux->used_maps) 19609 /* if we didn't copy map pointers into bpf_prog_info, release 19610 * them now. Otherwise free_used_maps() will release them. 19611 */ 19612 release_maps(env); 19613 if (!env->prog->aux->used_btfs) 19614 release_btfs(env); 19615 19616 /* extension progs temporarily inherit the attach_type of their targets 19617 for verification purposes, so set it back to zero before returning 19618 */ 19619 if (env->prog->type == BPF_PROG_TYPE_EXT) 19620 env->prog->expected_attach_type = 0; 19621 19622 *prog = env->prog; 19623 err_unlock: 19624 if (!is_priv) 19625 mutex_unlock(&bpf_verifier_lock); 19626 vfree(env->insn_aux_data); 19627 err_free_env: 19628 kfree(env); 19629 return ret; 19630 } 19631