xref: /openbmc/linux/kernel/bpf/verifier.c (revision b03afaa8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #define BPF_LINK_TYPE(_id, _name)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
35 #undef BPF_LINK_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84  * four pointer types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  *
144  * The following reference types represent a potential reference to a kernel
145  * resource which, after first being allocated, must be checked and freed by
146  * the BPF program:
147  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148  *
149  * When the verifier sees a helper call return a reference type, it allocates a
150  * pointer id for the reference and stores it in the current function state.
151  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153  * passes through a NULL-check conditional. For the branch wherein the state is
154  * changed to CONST_IMM, the verifier releases the reference.
155  *
156  * For each helper function that allocates a reference, such as
157  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158  * bpf_sk_release(). When a reference type passes into the release function,
159  * the verifier also releases the reference. If any unchecked or unreleased
160  * reference remains at the end of the program, the verifier rejects it.
161  */
162 
163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
164 struct bpf_verifier_stack_elem {
165 	/* verifer state is 'st'
166 	 * before processing instruction 'insn_idx'
167 	 * and after processing instruction 'prev_insn_idx'
168 	 */
169 	struct bpf_verifier_state st;
170 	int insn_idx;
171 	int prev_insn_idx;
172 	struct bpf_verifier_stack_elem *next;
173 	/* length of verifier log at the time this state was pushed on stack */
174 	u32 log_pos;
175 };
176 
177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
178 #define BPF_COMPLEXITY_LIMIT_STATES	64
179 
180 #define BPF_MAP_KEY_POISON	(1ULL << 63)
181 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_ptr_state = (unsigned long)map |
204 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_key_state & BPF_MAP_KEY_POISON;
210 }
211 
212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213 {
214 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215 }
216 
217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218 {
219 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220 }
221 
222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223 {
224 	bool poisoned = bpf_map_key_poisoned(aux);
225 
226 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
228 }
229 
230 struct bpf_call_arg_meta {
231 	struct bpf_map *map_ptr;
232 	bool raw_mode;
233 	bool pkt_access;
234 	int regno;
235 	int access_size;
236 	int mem_size;
237 	u64 msize_max_value;
238 	int ref_obj_id;
239 	int func_id;
240 	u32 btf_id;
241 };
242 
243 struct btf *btf_vmlinux;
244 
245 static DEFINE_MUTEX(bpf_verifier_lock);
246 
247 static const struct bpf_line_info *
248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249 {
250 	const struct bpf_line_info *linfo;
251 	const struct bpf_prog *prog;
252 	u32 i, nr_linfo;
253 
254 	prog = env->prog;
255 	nr_linfo = prog->aux->nr_linfo;
256 
257 	if (!nr_linfo || insn_off >= prog->len)
258 		return NULL;
259 
260 	linfo = prog->aux->linfo;
261 	for (i = 1; i < nr_linfo; i++)
262 		if (insn_off < linfo[i].insn_off)
263 			break;
264 
265 	return &linfo[i - 1];
266 }
267 
268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 		       va_list args)
270 {
271 	unsigned int n;
272 
273 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
274 
275 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 		  "verifier log line truncated - local buffer too short\n");
277 
278 	n = min(log->len_total - log->len_used - 1, n);
279 	log->kbuf[n] = '\0';
280 
281 	if (log->level == BPF_LOG_KERNEL) {
282 		pr_err("BPF:%s\n", log->kbuf);
283 		return;
284 	}
285 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 		log->len_used += n;
287 	else
288 		log->ubuf = NULL;
289 }
290 
291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292 {
293 	char zero = 0;
294 
295 	if (!bpf_verifier_log_needed(log))
296 		return;
297 
298 	log->len_used = new_pos;
299 	if (put_user(zero, log->ubuf + new_pos))
300 		log->ubuf = NULL;
301 }
302 
303 /* log_level controls verbosity level of eBPF verifier.
304  * bpf_verifier_log_write() is used to dump the verification trace to the log,
305  * so the user can figure out what's wrong with the program
306  */
307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 					   const char *fmt, ...)
309 {
310 	va_list args;
311 
312 	if (!bpf_verifier_log_needed(&env->log))
313 		return;
314 
315 	va_start(args, fmt);
316 	bpf_verifier_vlog(&env->log, fmt, args);
317 	va_end(args);
318 }
319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320 
321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322 {
323 	struct bpf_verifier_env *env = private_data;
324 	va_list args;
325 
326 	if (!bpf_verifier_log_needed(&env->log))
327 		return;
328 
329 	va_start(args, fmt);
330 	bpf_verifier_vlog(&env->log, fmt, args);
331 	va_end(args);
332 }
333 
334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 			    const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(log, fmt, args);
344 	va_end(args);
345 }
346 
347 static const char *ltrim(const char *s)
348 {
349 	while (isspace(*s))
350 		s++;
351 
352 	return s;
353 }
354 
355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 					 u32 insn_off,
357 					 const char *prefix_fmt, ...)
358 {
359 	const struct bpf_line_info *linfo;
360 
361 	if (!bpf_verifier_log_needed(&env->log))
362 		return;
363 
364 	linfo = find_linfo(env, insn_off);
365 	if (!linfo || linfo == env->prev_linfo)
366 		return;
367 
368 	if (prefix_fmt) {
369 		va_list args;
370 
371 		va_start(args, prefix_fmt);
372 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 		va_end(args);
374 	}
375 
376 	verbose(env, "%s\n",
377 		ltrim(btf_name_by_offset(env->prog->aux->btf,
378 					 linfo->line_off)));
379 
380 	env->prev_linfo = linfo;
381 }
382 
383 static bool type_is_pkt_pointer(enum bpf_reg_type type)
384 {
385 	return type == PTR_TO_PACKET ||
386 	       type == PTR_TO_PACKET_META;
387 }
388 
389 static bool type_is_sk_pointer(enum bpf_reg_type type)
390 {
391 	return type == PTR_TO_SOCKET ||
392 		type == PTR_TO_SOCK_COMMON ||
393 		type == PTR_TO_TCP_SOCK ||
394 		type == PTR_TO_XDP_SOCK;
395 }
396 
397 static bool reg_type_not_null(enum bpf_reg_type type)
398 {
399 	return type == PTR_TO_SOCKET ||
400 		type == PTR_TO_TCP_SOCK ||
401 		type == PTR_TO_MAP_VALUE ||
402 		type == PTR_TO_SOCK_COMMON;
403 }
404 
405 static bool reg_type_may_be_null(enum bpf_reg_type type)
406 {
407 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
408 	       type == PTR_TO_SOCKET_OR_NULL ||
409 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
410 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
411 	       type == PTR_TO_BTF_ID_OR_NULL ||
412 	       type == PTR_TO_MEM_OR_NULL;
413 }
414 
415 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
416 {
417 	return reg->type == PTR_TO_MAP_VALUE &&
418 		map_value_has_spin_lock(reg->map_ptr);
419 }
420 
421 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
422 {
423 	return type == PTR_TO_SOCKET ||
424 		type == PTR_TO_SOCKET_OR_NULL ||
425 		type == PTR_TO_TCP_SOCK ||
426 		type == PTR_TO_TCP_SOCK_OR_NULL ||
427 		type == PTR_TO_MEM ||
428 		type == PTR_TO_MEM_OR_NULL;
429 }
430 
431 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
432 {
433 	return type == ARG_PTR_TO_SOCK_COMMON;
434 }
435 
436 /* Determine whether the function releases some resources allocated by another
437  * function call. The first reference type argument will be assumed to be
438  * released by release_reference().
439  */
440 static bool is_release_function(enum bpf_func_id func_id)
441 {
442 	return func_id == BPF_FUNC_sk_release ||
443 	       func_id == BPF_FUNC_ringbuf_submit ||
444 	       func_id == BPF_FUNC_ringbuf_discard;
445 }
446 
447 static bool may_be_acquire_function(enum bpf_func_id func_id)
448 {
449 	return func_id == BPF_FUNC_sk_lookup_tcp ||
450 		func_id == BPF_FUNC_sk_lookup_udp ||
451 		func_id == BPF_FUNC_skc_lookup_tcp ||
452 		func_id == BPF_FUNC_map_lookup_elem ||
453 	        func_id == BPF_FUNC_ringbuf_reserve;
454 }
455 
456 static bool is_acquire_function(enum bpf_func_id func_id,
457 				const struct bpf_map *map)
458 {
459 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
460 
461 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
462 	    func_id == BPF_FUNC_sk_lookup_udp ||
463 	    func_id == BPF_FUNC_skc_lookup_tcp ||
464 	    func_id == BPF_FUNC_ringbuf_reserve)
465 		return true;
466 
467 	if (func_id == BPF_FUNC_map_lookup_elem &&
468 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
469 	     map_type == BPF_MAP_TYPE_SOCKHASH))
470 		return true;
471 
472 	return false;
473 }
474 
475 static bool is_ptr_cast_function(enum bpf_func_id func_id)
476 {
477 	return func_id == BPF_FUNC_tcp_sock ||
478 		func_id == BPF_FUNC_sk_fullsock;
479 }
480 
481 /* string representation of 'enum bpf_reg_type' */
482 static const char * const reg_type_str[] = {
483 	[NOT_INIT]		= "?",
484 	[SCALAR_VALUE]		= "inv",
485 	[PTR_TO_CTX]		= "ctx",
486 	[CONST_PTR_TO_MAP]	= "map_ptr",
487 	[PTR_TO_MAP_VALUE]	= "map_value",
488 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
489 	[PTR_TO_STACK]		= "fp",
490 	[PTR_TO_PACKET]		= "pkt",
491 	[PTR_TO_PACKET_META]	= "pkt_meta",
492 	[PTR_TO_PACKET_END]	= "pkt_end",
493 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
494 	[PTR_TO_SOCKET]		= "sock",
495 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
496 	[PTR_TO_SOCK_COMMON]	= "sock_common",
497 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
498 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
499 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
500 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
501 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
502 	[PTR_TO_BTF_ID]		= "ptr_",
503 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
504 	[PTR_TO_MEM]		= "mem",
505 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
506 };
507 
508 static char slot_type_char[] = {
509 	[STACK_INVALID]	= '?',
510 	[STACK_SPILL]	= 'r',
511 	[STACK_MISC]	= 'm',
512 	[STACK_ZERO]	= '0',
513 };
514 
515 static void print_liveness(struct bpf_verifier_env *env,
516 			   enum bpf_reg_liveness live)
517 {
518 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
519 	    verbose(env, "_");
520 	if (live & REG_LIVE_READ)
521 		verbose(env, "r");
522 	if (live & REG_LIVE_WRITTEN)
523 		verbose(env, "w");
524 	if (live & REG_LIVE_DONE)
525 		verbose(env, "D");
526 }
527 
528 static struct bpf_func_state *func(struct bpf_verifier_env *env,
529 				   const struct bpf_reg_state *reg)
530 {
531 	struct bpf_verifier_state *cur = env->cur_state;
532 
533 	return cur->frame[reg->frameno];
534 }
535 
536 const char *kernel_type_name(u32 id)
537 {
538 	return btf_name_by_offset(btf_vmlinux,
539 				  btf_type_by_id(btf_vmlinux, id)->name_off);
540 }
541 
542 static void print_verifier_state(struct bpf_verifier_env *env,
543 				 const struct bpf_func_state *state)
544 {
545 	const struct bpf_reg_state *reg;
546 	enum bpf_reg_type t;
547 	int i;
548 
549 	if (state->frameno)
550 		verbose(env, " frame%d:", state->frameno);
551 	for (i = 0; i < MAX_BPF_REG; i++) {
552 		reg = &state->regs[i];
553 		t = reg->type;
554 		if (t == NOT_INIT)
555 			continue;
556 		verbose(env, " R%d", i);
557 		print_liveness(env, reg->live);
558 		verbose(env, "=%s", reg_type_str[t]);
559 		if (t == SCALAR_VALUE && reg->precise)
560 			verbose(env, "P");
561 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
562 		    tnum_is_const(reg->var_off)) {
563 			/* reg->off should be 0 for SCALAR_VALUE */
564 			verbose(env, "%lld", reg->var_off.value + reg->off);
565 		} else {
566 			if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
567 				verbose(env, "%s", kernel_type_name(reg->btf_id));
568 			verbose(env, "(id=%d", reg->id);
569 			if (reg_type_may_be_refcounted_or_null(t))
570 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
571 			if (t != SCALAR_VALUE)
572 				verbose(env, ",off=%d", reg->off);
573 			if (type_is_pkt_pointer(t))
574 				verbose(env, ",r=%d", reg->range);
575 			else if (t == CONST_PTR_TO_MAP ||
576 				 t == PTR_TO_MAP_VALUE ||
577 				 t == PTR_TO_MAP_VALUE_OR_NULL)
578 				verbose(env, ",ks=%d,vs=%d",
579 					reg->map_ptr->key_size,
580 					reg->map_ptr->value_size);
581 			if (tnum_is_const(reg->var_off)) {
582 				/* Typically an immediate SCALAR_VALUE, but
583 				 * could be a pointer whose offset is too big
584 				 * for reg->off
585 				 */
586 				verbose(env, ",imm=%llx", reg->var_off.value);
587 			} else {
588 				if (reg->smin_value != reg->umin_value &&
589 				    reg->smin_value != S64_MIN)
590 					verbose(env, ",smin_value=%lld",
591 						(long long)reg->smin_value);
592 				if (reg->smax_value != reg->umax_value &&
593 				    reg->smax_value != S64_MAX)
594 					verbose(env, ",smax_value=%lld",
595 						(long long)reg->smax_value);
596 				if (reg->umin_value != 0)
597 					verbose(env, ",umin_value=%llu",
598 						(unsigned long long)reg->umin_value);
599 				if (reg->umax_value != U64_MAX)
600 					verbose(env, ",umax_value=%llu",
601 						(unsigned long long)reg->umax_value);
602 				if (!tnum_is_unknown(reg->var_off)) {
603 					char tn_buf[48];
604 
605 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
606 					verbose(env, ",var_off=%s", tn_buf);
607 				}
608 				if (reg->s32_min_value != reg->smin_value &&
609 				    reg->s32_min_value != S32_MIN)
610 					verbose(env, ",s32_min_value=%d",
611 						(int)(reg->s32_min_value));
612 				if (reg->s32_max_value != reg->smax_value &&
613 				    reg->s32_max_value != S32_MAX)
614 					verbose(env, ",s32_max_value=%d",
615 						(int)(reg->s32_max_value));
616 				if (reg->u32_min_value != reg->umin_value &&
617 				    reg->u32_min_value != U32_MIN)
618 					verbose(env, ",u32_min_value=%d",
619 						(int)(reg->u32_min_value));
620 				if (reg->u32_max_value != reg->umax_value &&
621 				    reg->u32_max_value != U32_MAX)
622 					verbose(env, ",u32_max_value=%d",
623 						(int)(reg->u32_max_value));
624 			}
625 			verbose(env, ")");
626 		}
627 	}
628 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
629 		char types_buf[BPF_REG_SIZE + 1];
630 		bool valid = false;
631 		int j;
632 
633 		for (j = 0; j < BPF_REG_SIZE; j++) {
634 			if (state->stack[i].slot_type[j] != STACK_INVALID)
635 				valid = true;
636 			types_buf[j] = slot_type_char[
637 					state->stack[i].slot_type[j]];
638 		}
639 		types_buf[BPF_REG_SIZE] = 0;
640 		if (!valid)
641 			continue;
642 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
643 		print_liveness(env, state->stack[i].spilled_ptr.live);
644 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
645 			reg = &state->stack[i].spilled_ptr;
646 			t = reg->type;
647 			verbose(env, "=%s", reg_type_str[t]);
648 			if (t == SCALAR_VALUE && reg->precise)
649 				verbose(env, "P");
650 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
651 				verbose(env, "%lld", reg->var_off.value + reg->off);
652 		} else {
653 			verbose(env, "=%s", types_buf);
654 		}
655 	}
656 	if (state->acquired_refs && state->refs[0].id) {
657 		verbose(env, " refs=%d", state->refs[0].id);
658 		for (i = 1; i < state->acquired_refs; i++)
659 			if (state->refs[i].id)
660 				verbose(env, ",%d", state->refs[i].id);
661 	}
662 	verbose(env, "\n");
663 }
664 
665 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
666 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
667 			       const struct bpf_func_state *src)	\
668 {									\
669 	if (!src->FIELD)						\
670 		return 0;						\
671 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
672 		/* internal bug, make state invalid to reject the program */ \
673 		memset(dst, 0, sizeof(*dst));				\
674 		return -EFAULT;						\
675 	}								\
676 	memcpy(dst->FIELD, src->FIELD,					\
677 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
678 	return 0;							\
679 }
680 /* copy_reference_state() */
681 COPY_STATE_FN(reference, acquired_refs, refs, 1)
682 /* copy_stack_state() */
683 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
684 #undef COPY_STATE_FN
685 
686 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
687 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
688 				  bool copy_old)			\
689 {									\
690 	u32 old_size = state->COUNT;					\
691 	struct bpf_##NAME##_state *new_##FIELD;				\
692 	int slot = size / SIZE;						\
693 									\
694 	if (size <= old_size || !size) {				\
695 		if (copy_old)						\
696 			return 0;					\
697 		state->COUNT = slot * SIZE;				\
698 		if (!size && old_size) {				\
699 			kfree(state->FIELD);				\
700 			state->FIELD = NULL;				\
701 		}							\
702 		return 0;						\
703 	}								\
704 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
705 				    GFP_KERNEL);			\
706 	if (!new_##FIELD)						\
707 		return -ENOMEM;						\
708 	if (copy_old) {							\
709 		if (state->FIELD)					\
710 			memcpy(new_##FIELD, state->FIELD,		\
711 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
712 		memset(new_##FIELD + old_size / SIZE, 0,		\
713 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
714 	}								\
715 	state->COUNT = slot * SIZE;					\
716 	kfree(state->FIELD);						\
717 	state->FIELD = new_##FIELD;					\
718 	return 0;							\
719 }
720 /* realloc_reference_state() */
721 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
722 /* realloc_stack_state() */
723 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
724 #undef REALLOC_STATE_FN
725 
726 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
727  * make it consume minimal amount of memory. check_stack_write() access from
728  * the program calls into realloc_func_state() to grow the stack size.
729  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
730  * which realloc_stack_state() copies over. It points to previous
731  * bpf_verifier_state which is never reallocated.
732  */
733 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
734 			      int refs_size, bool copy_old)
735 {
736 	int err = realloc_reference_state(state, refs_size, copy_old);
737 	if (err)
738 		return err;
739 	return realloc_stack_state(state, stack_size, copy_old);
740 }
741 
742 /* Acquire a pointer id from the env and update the state->refs to include
743  * this new pointer reference.
744  * On success, returns a valid pointer id to associate with the register
745  * On failure, returns a negative errno.
746  */
747 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
748 {
749 	struct bpf_func_state *state = cur_func(env);
750 	int new_ofs = state->acquired_refs;
751 	int id, err;
752 
753 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
754 	if (err)
755 		return err;
756 	id = ++env->id_gen;
757 	state->refs[new_ofs].id = id;
758 	state->refs[new_ofs].insn_idx = insn_idx;
759 
760 	return id;
761 }
762 
763 /* release function corresponding to acquire_reference_state(). Idempotent. */
764 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
765 {
766 	int i, last_idx;
767 
768 	last_idx = state->acquired_refs - 1;
769 	for (i = 0; i < state->acquired_refs; i++) {
770 		if (state->refs[i].id == ptr_id) {
771 			if (last_idx && i != last_idx)
772 				memcpy(&state->refs[i], &state->refs[last_idx],
773 				       sizeof(*state->refs));
774 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
775 			state->acquired_refs--;
776 			return 0;
777 		}
778 	}
779 	return -EINVAL;
780 }
781 
782 static int transfer_reference_state(struct bpf_func_state *dst,
783 				    struct bpf_func_state *src)
784 {
785 	int err = realloc_reference_state(dst, src->acquired_refs, false);
786 	if (err)
787 		return err;
788 	err = copy_reference_state(dst, src);
789 	if (err)
790 		return err;
791 	return 0;
792 }
793 
794 static void free_func_state(struct bpf_func_state *state)
795 {
796 	if (!state)
797 		return;
798 	kfree(state->refs);
799 	kfree(state->stack);
800 	kfree(state);
801 }
802 
803 static void clear_jmp_history(struct bpf_verifier_state *state)
804 {
805 	kfree(state->jmp_history);
806 	state->jmp_history = NULL;
807 	state->jmp_history_cnt = 0;
808 }
809 
810 static void free_verifier_state(struct bpf_verifier_state *state,
811 				bool free_self)
812 {
813 	int i;
814 
815 	for (i = 0; i <= state->curframe; i++) {
816 		free_func_state(state->frame[i]);
817 		state->frame[i] = NULL;
818 	}
819 	clear_jmp_history(state);
820 	if (free_self)
821 		kfree(state);
822 }
823 
824 /* copy verifier state from src to dst growing dst stack space
825  * when necessary to accommodate larger src stack
826  */
827 static int copy_func_state(struct bpf_func_state *dst,
828 			   const struct bpf_func_state *src)
829 {
830 	int err;
831 
832 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
833 				 false);
834 	if (err)
835 		return err;
836 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
837 	err = copy_reference_state(dst, src);
838 	if (err)
839 		return err;
840 	return copy_stack_state(dst, src);
841 }
842 
843 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
844 			       const struct bpf_verifier_state *src)
845 {
846 	struct bpf_func_state *dst;
847 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
848 	int i, err;
849 
850 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
851 		kfree(dst_state->jmp_history);
852 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
853 		if (!dst_state->jmp_history)
854 			return -ENOMEM;
855 	}
856 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
857 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
858 
859 	/* if dst has more stack frames then src frame, free them */
860 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
861 		free_func_state(dst_state->frame[i]);
862 		dst_state->frame[i] = NULL;
863 	}
864 	dst_state->speculative = src->speculative;
865 	dst_state->curframe = src->curframe;
866 	dst_state->active_spin_lock = src->active_spin_lock;
867 	dst_state->branches = src->branches;
868 	dst_state->parent = src->parent;
869 	dst_state->first_insn_idx = src->first_insn_idx;
870 	dst_state->last_insn_idx = src->last_insn_idx;
871 	for (i = 0; i <= src->curframe; i++) {
872 		dst = dst_state->frame[i];
873 		if (!dst) {
874 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
875 			if (!dst)
876 				return -ENOMEM;
877 			dst_state->frame[i] = dst;
878 		}
879 		err = copy_func_state(dst, src->frame[i]);
880 		if (err)
881 			return err;
882 	}
883 	return 0;
884 }
885 
886 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
887 {
888 	while (st) {
889 		u32 br = --st->branches;
890 
891 		/* WARN_ON(br > 1) technically makes sense here,
892 		 * but see comment in push_stack(), hence:
893 		 */
894 		WARN_ONCE((int)br < 0,
895 			  "BUG update_branch_counts:branches_to_explore=%d\n",
896 			  br);
897 		if (br)
898 			break;
899 		st = st->parent;
900 	}
901 }
902 
903 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
904 		     int *insn_idx, bool pop_log)
905 {
906 	struct bpf_verifier_state *cur = env->cur_state;
907 	struct bpf_verifier_stack_elem *elem, *head = env->head;
908 	int err;
909 
910 	if (env->head == NULL)
911 		return -ENOENT;
912 
913 	if (cur) {
914 		err = copy_verifier_state(cur, &head->st);
915 		if (err)
916 			return err;
917 	}
918 	if (pop_log)
919 		bpf_vlog_reset(&env->log, head->log_pos);
920 	if (insn_idx)
921 		*insn_idx = head->insn_idx;
922 	if (prev_insn_idx)
923 		*prev_insn_idx = head->prev_insn_idx;
924 	elem = head->next;
925 	free_verifier_state(&head->st, false);
926 	kfree(head);
927 	env->head = elem;
928 	env->stack_size--;
929 	return 0;
930 }
931 
932 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
933 					     int insn_idx, int prev_insn_idx,
934 					     bool speculative)
935 {
936 	struct bpf_verifier_state *cur = env->cur_state;
937 	struct bpf_verifier_stack_elem *elem;
938 	int err;
939 
940 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
941 	if (!elem)
942 		goto err;
943 
944 	elem->insn_idx = insn_idx;
945 	elem->prev_insn_idx = prev_insn_idx;
946 	elem->next = env->head;
947 	elem->log_pos = env->log.len_used;
948 	env->head = elem;
949 	env->stack_size++;
950 	err = copy_verifier_state(&elem->st, cur);
951 	if (err)
952 		goto err;
953 	elem->st.speculative |= speculative;
954 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
955 		verbose(env, "The sequence of %d jumps is too complex.\n",
956 			env->stack_size);
957 		goto err;
958 	}
959 	if (elem->st.parent) {
960 		++elem->st.parent->branches;
961 		/* WARN_ON(branches > 2) technically makes sense here,
962 		 * but
963 		 * 1. speculative states will bump 'branches' for non-branch
964 		 * instructions
965 		 * 2. is_state_visited() heuristics may decide not to create
966 		 * a new state for a sequence of branches and all such current
967 		 * and cloned states will be pointing to a single parent state
968 		 * which might have large 'branches' count.
969 		 */
970 	}
971 	return &elem->st;
972 err:
973 	free_verifier_state(env->cur_state, true);
974 	env->cur_state = NULL;
975 	/* pop all elements and return */
976 	while (!pop_stack(env, NULL, NULL, false));
977 	return NULL;
978 }
979 
980 #define CALLER_SAVED_REGS 6
981 static const int caller_saved[CALLER_SAVED_REGS] = {
982 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
983 };
984 
985 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
986 				struct bpf_reg_state *reg);
987 
988 /* Mark the unknown part of a register (variable offset or scalar value) as
989  * known to have the value @imm.
990  */
991 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
992 {
993 	/* Clear id, off, and union(map_ptr, range) */
994 	memset(((u8 *)reg) + sizeof(reg->type), 0,
995 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
996 	reg->var_off = tnum_const(imm);
997 	reg->smin_value = (s64)imm;
998 	reg->smax_value = (s64)imm;
999 	reg->umin_value = imm;
1000 	reg->umax_value = imm;
1001 
1002 	reg->s32_min_value = (s32)imm;
1003 	reg->s32_max_value = (s32)imm;
1004 	reg->u32_min_value = (u32)imm;
1005 	reg->u32_max_value = (u32)imm;
1006 }
1007 
1008 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1009 {
1010 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1011 	reg->s32_min_value = (s32)imm;
1012 	reg->s32_max_value = (s32)imm;
1013 	reg->u32_min_value = (u32)imm;
1014 	reg->u32_max_value = (u32)imm;
1015 }
1016 
1017 /* Mark the 'variable offset' part of a register as zero.  This should be
1018  * used only on registers holding a pointer type.
1019  */
1020 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1021 {
1022 	__mark_reg_known(reg, 0);
1023 }
1024 
1025 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1026 {
1027 	__mark_reg_known(reg, 0);
1028 	reg->type = SCALAR_VALUE;
1029 }
1030 
1031 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1032 				struct bpf_reg_state *regs, u32 regno)
1033 {
1034 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1035 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1036 		/* Something bad happened, let's kill all regs */
1037 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1038 			__mark_reg_not_init(env, regs + regno);
1039 		return;
1040 	}
1041 	__mark_reg_known_zero(regs + regno);
1042 }
1043 
1044 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1045 {
1046 	return type_is_pkt_pointer(reg->type);
1047 }
1048 
1049 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1050 {
1051 	return reg_is_pkt_pointer(reg) ||
1052 	       reg->type == PTR_TO_PACKET_END;
1053 }
1054 
1055 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1056 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1057 				    enum bpf_reg_type which)
1058 {
1059 	/* The register can already have a range from prior markings.
1060 	 * This is fine as long as it hasn't been advanced from its
1061 	 * origin.
1062 	 */
1063 	return reg->type == which &&
1064 	       reg->id == 0 &&
1065 	       reg->off == 0 &&
1066 	       tnum_equals_const(reg->var_off, 0);
1067 }
1068 
1069 /* Reset the min/max bounds of a register */
1070 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1071 {
1072 	reg->smin_value = S64_MIN;
1073 	reg->smax_value = S64_MAX;
1074 	reg->umin_value = 0;
1075 	reg->umax_value = U64_MAX;
1076 
1077 	reg->s32_min_value = S32_MIN;
1078 	reg->s32_max_value = S32_MAX;
1079 	reg->u32_min_value = 0;
1080 	reg->u32_max_value = U32_MAX;
1081 }
1082 
1083 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1084 {
1085 	reg->smin_value = S64_MIN;
1086 	reg->smax_value = S64_MAX;
1087 	reg->umin_value = 0;
1088 	reg->umax_value = U64_MAX;
1089 }
1090 
1091 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1092 {
1093 	reg->s32_min_value = S32_MIN;
1094 	reg->s32_max_value = S32_MAX;
1095 	reg->u32_min_value = 0;
1096 	reg->u32_max_value = U32_MAX;
1097 }
1098 
1099 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1100 {
1101 	struct tnum var32_off = tnum_subreg(reg->var_off);
1102 
1103 	/* min signed is max(sign bit) | min(other bits) */
1104 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1105 			var32_off.value | (var32_off.mask & S32_MIN));
1106 	/* max signed is min(sign bit) | max(other bits) */
1107 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1108 			var32_off.value | (var32_off.mask & S32_MAX));
1109 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1110 	reg->u32_max_value = min(reg->u32_max_value,
1111 				 (u32)(var32_off.value | var32_off.mask));
1112 }
1113 
1114 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1115 {
1116 	/* min signed is max(sign bit) | min(other bits) */
1117 	reg->smin_value = max_t(s64, reg->smin_value,
1118 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1119 	/* max signed is min(sign bit) | max(other bits) */
1120 	reg->smax_value = min_t(s64, reg->smax_value,
1121 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1122 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1123 	reg->umax_value = min(reg->umax_value,
1124 			      reg->var_off.value | reg->var_off.mask);
1125 }
1126 
1127 static void __update_reg_bounds(struct bpf_reg_state *reg)
1128 {
1129 	__update_reg32_bounds(reg);
1130 	__update_reg64_bounds(reg);
1131 }
1132 
1133 /* Uses signed min/max values to inform unsigned, and vice-versa */
1134 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1135 {
1136 	/* Learn sign from signed bounds.
1137 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1138 	 * are the same, so combine.  This works even in the negative case, e.g.
1139 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1140 	 */
1141 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1142 		reg->s32_min_value = reg->u32_min_value =
1143 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1144 		reg->s32_max_value = reg->u32_max_value =
1145 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1146 		return;
1147 	}
1148 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1149 	 * boundary, so we must be careful.
1150 	 */
1151 	if ((s32)reg->u32_max_value >= 0) {
1152 		/* Positive.  We can't learn anything from the smin, but smax
1153 		 * is positive, hence safe.
1154 		 */
1155 		reg->s32_min_value = reg->u32_min_value;
1156 		reg->s32_max_value = reg->u32_max_value =
1157 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1158 	} else if ((s32)reg->u32_min_value < 0) {
1159 		/* Negative.  We can't learn anything from the smax, but smin
1160 		 * is negative, hence safe.
1161 		 */
1162 		reg->s32_min_value = reg->u32_min_value =
1163 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1164 		reg->s32_max_value = reg->u32_max_value;
1165 	}
1166 }
1167 
1168 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1169 {
1170 	/* Learn sign from signed bounds.
1171 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1172 	 * are the same, so combine.  This works even in the negative case, e.g.
1173 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1174 	 */
1175 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1176 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1177 							  reg->umin_value);
1178 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1179 							  reg->umax_value);
1180 		return;
1181 	}
1182 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1183 	 * boundary, so we must be careful.
1184 	 */
1185 	if ((s64)reg->umax_value >= 0) {
1186 		/* Positive.  We can't learn anything from the smin, but smax
1187 		 * is positive, hence safe.
1188 		 */
1189 		reg->smin_value = reg->umin_value;
1190 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1191 							  reg->umax_value);
1192 	} else if ((s64)reg->umin_value < 0) {
1193 		/* Negative.  We can't learn anything from the smax, but smin
1194 		 * is negative, hence safe.
1195 		 */
1196 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1197 							  reg->umin_value);
1198 		reg->smax_value = reg->umax_value;
1199 	}
1200 }
1201 
1202 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1203 {
1204 	__reg32_deduce_bounds(reg);
1205 	__reg64_deduce_bounds(reg);
1206 }
1207 
1208 /* Attempts to improve var_off based on unsigned min/max information */
1209 static void __reg_bound_offset(struct bpf_reg_state *reg)
1210 {
1211 	struct tnum var64_off = tnum_intersect(reg->var_off,
1212 					       tnum_range(reg->umin_value,
1213 							  reg->umax_value));
1214 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1215 						tnum_range(reg->u32_min_value,
1216 							   reg->u32_max_value));
1217 
1218 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1219 }
1220 
1221 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1222 {
1223 	reg->umin_value = reg->u32_min_value;
1224 	reg->umax_value = reg->u32_max_value;
1225 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1226 	 * but must be positive otherwise set to worse case bounds
1227 	 * and refine later from tnum.
1228 	 */
1229 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1230 		reg->smax_value = reg->s32_max_value;
1231 	else
1232 		reg->smax_value = U32_MAX;
1233 	if (reg->s32_min_value >= 0)
1234 		reg->smin_value = reg->s32_min_value;
1235 	else
1236 		reg->smin_value = 0;
1237 }
1238 
1239 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1240 {
1241 	/* special case when 64-bit register has upper 32-bit register
1242 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1243 	 * allowing us to use 32-bit bounds directly,
1244 	 */
1245 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1246 		__reg_assign_32_into_64(reg);
1247 	} else {
1248 		/* Otherwise the best we can do is push lower 32bit known and
1249 		 * unknown bits into register (var_off set from jmp logic)
1250 		 * then learn as much as possible from the 64-bit tnum
1251 		 * known and unknown bits. The previous smin/smax bounds are
1252 		 * invalid here because of jmp32 compare so mark them unknown
1253 		 * so they do not impact tnum bounds calculation.
1254 		 */
1255 		__mark_reg64_unbounded(reg);
1256 		__update_reg_bounds(reg);
1257 	}
1258 
1259 	/* Intersecting with the old var_off might have improved our bounds
1260 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1261 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1262 	 */
1263 	__reg_deduce_bounds(reg);
1264 	__reg_bound_offset(reg);
1265 	__update_reg_bounds(reg);
1266 }
1267 
1268 static bool __reg64_bound_s32(s64 a)
1269 {
1270 	if (a > S32_MIN && a < S32_MAX)
1271 		return true;
1272 	return false;
1273 }
1274 
1275 static bool __reg64_bound_u32(u64 a)
1276 {
1277 	if (a > U32_MIN && a < U32_MAX)
1278 		return true;
1279 	return false;
1280 }
1281 
1282 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1283 {
1284 	__mark_reg32_unbounded(reg);
1285 
1286 	if (__reg64_bound_s32(reg->smin_value))
1287 		reg->s32_min_value = (s32)reg->smin_value;
1288 	if (__reg64_bound_s32(reg->smax_value))
1289 		reg->s32_max_value = (s32)reg->smax_value;
1290 	if (__reg64_bound_u32(reg->umin_value))
1291 		reg->u32_min_value = (u32)reg->umin_value;
1292 	if (__reg64_bound_u32(reg->umax_value))
1293 		reg->u32_max_value = (u32)reg->umax_value;
1294 
1295 	/* Intersecting with the old var_off might have improved our bounds
1296 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1297 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1298 	 */
1299 	__reg_deduce_bounds(reg);
1300 	__reg_bound_offset(reg);
1301 	__update_reg_bounds(reg);
1302 }
1303 
1304 /* Mark a register as having a completely unknown (scalar) value. */
1305 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1306 			       struct bpf_reg_state *reg)
1307 {
1308 	/*
1309 	 * Clear type, id, off, and union(map_ptr, range) and
1310 	 * padding between 'type' and union
1311 	 */
1312 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1313 	reg->type = SCALAR_VALUE;
1314 	reg->var_off = tnum_unknown;
1315 	reg->frameno = 0;
1316 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1317 	__mark_reg_unbounded(reg);
1318 }
1319 
1320 static void mark_reg_unknown(struct bpf_verifier_env *env,
1321 			     struct bpf_reg_state *regs, u32 regno)
1322 {
1323 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1324 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1325 		/* Something bad happened, let's kill all regs except FP */
1326 		for (regno = 0; regno < BPF_REG_FP; regno++)
1327 			__mark_reg_not_init(env, regs + regno);
1328 		return;
1329 	}
1330 	__mark_reg_unknown(env, regs + regno);
1331 }
1332 
1333 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1334 				struct bpf_reg_state *reg)
1335 {
1336 	__mark_reg_unknown(env, reg);
1337 	reg->type = NOT_INIT;
1338 }
1339 
1340 static void mark_reg_not_init(struct bpf_verifier_env *env,
1341 			      struct bpf_reg_state *regs, u32 regno)
1342 {
1343 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1344 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1345 		/* Something bad happened, let's kill all regs except FP */
1346 		for (regno = 0; regno < BPF_REG_FP; regno++)
1347 			__mark_reg_not_init(env, regs + regno);
1348 		return;
1349 	}
1350 	__mark_reg_not_init(env, regs + regno);
1351 }
1352 
1353 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1354 			    struct bpf_reg_state *regs, u32 regno,
1355 			    enum bpf_reg_type reg_type, u32 btf_id)
1356 {
1357 	if (reg_type == SCALAR_VALUE) {
1358 		mark_reg_unknown(env, regs, regno);
1359 		return;
1360 	}
1361 	mark_reg_known_zero(env, regs, regno);
1362 	regs[regno].type = PTR_TO_BTF_ID;
1363 	regs[regno].btf_id = btf_id;
1364 }
1365 
1366 #define DEF_NOT_SUBREG	(0)
1367 static void init_reg_state(struct bpf_verifier_env *env,
1368 			   struct bpf_func_state *state)
1369 {
1370 	struct bpf_reg_state *regs = state->regs;
1371 	int i;
1372 
1373 	for (i = 0; i < MAX_BPF_REG; i++) {
1374 		mark_reg_not_init(env, regs, i);
1375 		regs[i].live = REG_LIVE_NONE;
1376 		regs[i].parent = NULL;
1377 		regs[i].subreg_def = DEF_NOT_SUBREG;
1378 	}
1379 
1380 	/* frame pointer */
1381 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1382 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1383 	regs[BPF_REG_FP].frameno = state->frameno;
1384 }
1385 
1386 #define BPF_MAIN_FUNC (-1)
1387 static void init_func_state(struct bpf_verifier_env *env,
1388 			    struct bpf_func_state *state,
1389 			    int callsite, int frameno, int subprogno)
1390 {
1391 	state->callsite = callsite;
1392 	state->frameno = frameno;
1393 	state->subprogno = subprogno;
1394 	init_reg_state(env, state);
1395 }
1396 
1397 enum reg_arg_type {
1398 	SRC_OP,		/* register is used as source operand */
1399 	DST_OP,		/* register is used as destination operand */
1400 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1401 };
1402 
1403 static int cmp_subprogs(const void *a, const void *b)
1404 {
1405 	return ((struct bpf_subprog_info *)a)->start -
1406 	       ((struct bpf_subprog_info *)b)->start;
1407 }
1408 
1409 static int find_subprog(struct bpf_verifier_env *env, int off)
1410 {
1411 	struct bpf_subprog_info *p;
1412 
1413 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1414 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1415 	if (!p)
1416 		return -ENOENT;
1417 	return p - env->subprog_info;
1418 
1419 }
1420 
1421 static int add_subprog(struct bpf_verifier_env *env, int off)
1422 {
1423 	int insn_cnt = env->prog->len;
1424 	int ret;
1425 
1426 	if (off >= insn_cnt || off < 0) {
1427 		verbose(env, "call to invalid destination\n");
1428 		return -EINVAL;
1429 	}
1430 	ret = find_subprog(env, off);
1431 	if (ret >= 0)
1432 		return 0;
1433 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1434 		verbose(env, "too many subprograms\n");
1435 		return -E2BIG;
1436 	}
1437 	env->subprog_info[env->subprog_cnt++].start = off;
1438 	sort(env->subprog_info, env->subprog_cnt,
1439 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1440 	return 0;
1441 }
1442 
1443 static int check_subprogs(struct bpf_verifier_env *env)
1444 {
1445 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1446 	struct bpf_subprog_info *subprog = env->subprog_info;
1447 	struct bpf_insn *insn = env->prog->insnsi;
1448 	int insn_cnt = env->prog->len;
1449 
1450 	/* Add entry function. */
1451 	ret = add_subprog(env, 0);
1452 	if (ret < 0)
1453 		return ret;
1454 
1455 	/* determine subprog starts. The end is one before the next starts */
1456 	for (i = 0; i < insn_cnt; i++) {
1457 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1458 			continue;
1459 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1460 			continue;
1461 		if (!env->bpf_capable) {
1462 			verbose(env,
1463 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1464 			return -EPERM;
1465 		}
1466 		ret = add_subprog(env, i + insn[i].imm + 1);
1467 		if (ret < 0)
1468 			return ret;
1469 	}
1470 
1471 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1472 	 * logic. 'subprog_cnt' should not be increased.
1473 	 */
1474 	subprog[env->subprog_cnt].start = insn_cnt;
1475 
1476 	if (env->log.level & BPF_LOG_LEVEL2)
1477 		for (i = 0; i < env->subprog_cnt; i++)
1478 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1479 
1480 	/* now check that all jumps are within the same subprog */
1481 	subprog_start = subprog[cur_subprog].start;
1482 	subprog_end = subprog[cur_subprog + 1].start;
1483 	for (i = 0; i < insn_cnt; i++) {
1484 		u8 code = insn[i].code;
1485 
1486 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1487 			goto next;
1488 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1489 			goto next;
1490 		off = i + insn[i].off + 1;
1491 		if (off < subprog_start || off >= subprog_end) {
1492 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1493 			return -EINVAL;
1494 		}
1495 next:
1496 		if (i == subprog_end - 1) {
1497 			/* to avoid fall-through from one subprog into another
1498 			 * the last insn of the subprog should be either exit
1499 			 * or unconditional jump back
1500 			 */
1501 			if (code != (BPF_JMP | BPF_EXIT) &&
1502 			    code != (BPF_JMP | BPF_JA)) {
1503 				verbose(env, "last insn is not an exit or jmp\n");
1504 				return -EINVAL;
1505 			}
1506 			subprog_start = subprog_end;
1507 			cur_subprog++;
1508 			if (cur_subprog < env->subprog_cnt)
1509 				subprog_end = subprog[cur_subprog + 1].start;
1510 		}
1511 	}
1512 	return 0;
1513 }
1514 
1515 /* Parentage chain of this register (or stack slot) should take care of all
1516  * issues like callee-saved registers, stack slot allocation time, etc.
1517  */
1518 static int mark_reg_read(struct bpf_verifier_env *env,
1519 			 const struct bpf_reg_state *state,
1520 			 struct bpf_reg_state *parent, u8 flag)
1521 {
1522 	bool writes = parent == state->parent; /* Observe write marks */
1523 	int cnt = 0;
1524 
1525 	while (parent) {
1526 		/* if read wasn't screened by an earlier write ... */
1527 		if (writes && state->live & REG_LIVE_WRITTEN)
1528 			break;
1529 		if (parent->live & REG_LIVE_DONE) {
1530 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1531 				reg_type_str[parent->type],
1532 				parent->var_off.value, parent->off);
1533 			return -EFAULT;
1534 		}
1535 		/* The first condition is more likely to be true than the
1536 		 * second, checked it first.
1537 		 */
1538 		if ((parent->live & REG_LIVE_READ) == flag ||
1539 		    parent->live & REG_LIVE_READ64)
1540 			/* The parentage chain never changes and
1541 			 * this parent was already marked as LIVE_READ.
1542 			 * There is no need to keep walking the chain again and
1543 			 * keep re-marking all parents as LIVE_READ.
1544 			 * This case happens when the same register is read
1545 			 * multiple times without writes into it in-between.
1546 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1547 			 * then no need to set the weak REG_LIVE_READ32.
1548 			 */
1549 			break;
1550 		/* ... then we depend on parent's value */
1551 		parent->live |= flag;
1552 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1553 		if (flag == REG_LIVE_READ64)
1554 			parent->live &= ~REG_LIVE_READ32;
1555 		state = parent;
1556 		parent = state->parent;
1557 		writes = true;
1558 		cnt++;
1559 	}
1560 
1561 	if (env->longest_mark_read_walk < cnt)
1562 		env->longest_mark_read_walk = cnt;
1563 	return 0;
1564 }
1565 
1566 /* This function is supposed to be used by the following 32-bit optimization
1567  * code only. It returns TRUE if the source or destination register operates
1568  * on 64-bit, otherwise return FALSE.
1569  */
1570 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1571 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1572 {
1573 	u8 code, class, op;
1574 
1575 	code = insn->code;
1576 	class = BPF_CLASS(code);
1577 	op = BPF_OP(code);
1578 	if (class == BPF_JMP) {
1579 		/* BPF_EXIT for "main" will reach here. Return TRUE
1580 		 * conservatively.
1581 		 */
1582 		if (op == BPF_EXIT)
1583 			return true;
1584 		if (op == BPF_CALL) {
1585 			/* BPF to BPF call will reach here because of marking
1586 			 * caller saved clobber with DST_OP_NO_MARK for which we
1587 			 * don't care the register def because they are anyway
1588 			 * marked as NOT_INIT already.
1589 			 */
1590 			if (insn->src_reg == BPF_PSEUDO_CALL)
1591 				return false;
1592 			/* Helper call will reach here because of arg type
1593 			 * check, conservatively return TRUE.
1594 			 */
1595 			if (t == SRC_OP)
1596 				return true;
1597 
1598 			return false;
1599 		}
1600 	}
1601 
1602 	if (class == BPF_ALU64 || class == BPF_JMP ||
1603 	    /* BPF_END always use BPF_ALU class. */
1604 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1605 		return true;
1606 
1607 	if (class == BPF_ALU || class == BPF_JMP32)
1608 		return false;
1609 
1610 	if (class == BPF_LDX) {
1611 		if (t != SRC_OP)
1612 			return BPF_SIZE(code) == BPF_DW;
1613 		/* LDX source must be ptr. */
1614 		return true;
1615 	}
1616 
1617 	if (class == BPF_STX) {
1618 		if (reg->type != SCALAR_VALUE)
1619 			return true;
1620 		return BPF_SIZE(code) == BPF_DW;
1621 	}
1622 
1623 	if (class == BPF_LD) {
1624 		u8 mode = BPF_MODE(code);
1625 
1626 		/* LD_IMM64 */
1627 		if (mode == BPF_IMM)
1628 			return true;
1629 
1630 		/* Both LD_IND and LD_ABS return 32-bit data. */
1631 		if (t != SRC_OP)
1632 			return  false;
1633 
1634 		/* Implicit ctx ptr. */
1635 		if (regno == BPF_REG_6)
1636 			return true;
1637 
1638 		/* Explicit source could be any width. */
1639 		return true;
1640 	}
1641 
1642 	if (class == BPF_ST)
1643 		/* The only source register for BPF_ST is a ptr. */
1644 		return true;
1645 
1646 	/* Conservatively return true at default. */
1647 	return true;
1648 }
1649 
1650 /* Return TRUE if INSN doesn't have explicit value define. */
1651 static bool insn_no_def(struct bpf_insn *insn)
1652 {
1653 	u8 class = BPF_CLASS(insn->code);
1654 
1655 	return (class == BPF_JMP || class == BPF_JMP32 ||
1656 		class == BPF_STX || class == BPF_ST);
1657 }
1658 
1659 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1660 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1661 {
1662 	if (insn_no_def(insn))
1663 		return false;
1664 
1665 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1666 }
1667 
1668 static void mark_insn_zext(struct bpf_verifier_env *env,
1669 			   struct bpf_reg_state *reg)
1670 {
1671 	s32 def_idx = reg->subreg_def;
1672 
1673 	if (def_idx == DEF_NOT_SUBREG)
1674 		return;
1675 
1676 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1677 	/* The dst will be zero extended, so won't be sub-register anymore. */
1678 	reg->subreg_def = DEF_NOT_SUBREG;
1679 }
1680 
1681 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1682 			 enum reg_arg_type t)
1683 {
1684 	struct bpf_verifier_state *vstate = env->cur_state;
1685 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1686 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1687 	struct bpf_reg_state *reg, *regs = state->regs;
1688 	bool rw64;
1689 
1690 	if (regno >= MAX_BPF_REG) {
1691 		verbose(env, "R%d is invalid\n", regno);
1692 		return -EINVAL;
1693 	}
1694 
1695 	reg = &regs[regno];
1696 	rw64 = is_reg64(env, insn, regno, reg, t);
1697 	if (t == SRC_OP) {
1698 		/* check whether register used as source operand can be read */
1699 		if (reg->type == NOT_INIT) {
1700 			verbose(env, "R%d !read_ok\n", regno);
1701 			return -EACCES;
1702 		}
1703 		/* We don't need to worry about FP liveness because it's read-only */
1704 		if (regno == BPF_REG_FP)
1705 			return 0;
1706 
1707 		if (rw64)
1708 			mark_insn_zext(env, reg);
1709 
1710 		return mark_reg_read(env, reg, reg->parent,
1711 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1712 	} else {
1713 		/* check whether register used as dest operand can be written to */
1714 		if (regno == BPF_REG_FP) {
1715 			verbose(env, "frame pointer is read only\n");
1716 			return -EACCES;
1717 		}
1718 		reg->live |= REG_LIVE_WRITTEN;
1719 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1720 		if (t == DST_OP)
1721 			mark_reg_unknown(env, regs, regno);
1722 	}
1723 	return 0;
1724 }
1725 
1726 /* for any branch, call, exit record the history of jmps in the given state */
1727 static int push_jmp_history(struct bpf_verifier_env *env,
1728 			    struct bpf_verifier_state *cur)
1729 {
1730 	u32 cnt = cur->jmp_history_cnt;
1731 	struct bpf_idx_pair *p;
1732 
1733 	cnt++;
1734 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1735 	if (!p)
1736 		return -ENOMEM;
1737 	p[cnt - 1].idx = env->insn_idx;
1738 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1739 	cur->jmp_history = p;
1740 	cur->jmp_history_cnt = cnt;
1741 	return 0;
1742 }
1743 
1744 /* Backtrack one insn at a time. If idx is not at the top of recorded
1745  * history then previous instruction came from straight line execution.
1746  */
1747 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1748 			     u32 *history)
1749 {
1750 	u32 cnt = *history;
1751 
1752 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1753 		i = st->jmp_history[cnt - 1].prev_idx;
1754 		(*history)--;
1755 	} else {
1756 		i--;
1757 	}
1758 	return i;
1759 }
1760 
1761 /* For given verifier state backtrack_insn() is called from the last insn to
1762  * the first insn. Its purpose is to compute a bitmask of registers and
1763  * stack slots that needs precision in the parent verifier state.
1764  */
1765 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1766 			  u32 *reg_mask, u64 *stack_mask)
1767 {
1768 	const struct bpf_insn_cbs cbs = {
1769 		.cb_print	= verbose,
1770 		.private_data	= env,
1771 	};
1772 	struct bpf_insn *insn = env->prog->insnsi + idx;
1773 	u8 class = BPF_CLASS(insn->code);
1774 	u8 opcode = BPF_OP(insn->code);
1775 	u8 mode = BPF_MODE(insn->code);
1776 	u32 dreg = 1u << insn->dst_reg;
1777 	u32 sreg = 1u << insn->src_reg;
1778 	u32 spi;
1779 
1780 	if (insn->code == 0)
1781 		return 0;
1782 	if (env->log.level & BPF_LOG_LEVEL) {
1783 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1784 		verbose(env, "%d: ", idx);
1785 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1786 	}
1787 
1788 	if (class == BPF_ALU || class == BPF_ALU64) {
1789 		if (!(*reg_mask & dreg))
1790 			return 0;
1791 		if (opcode == BPF_MOV) {
1792 			if (BPF_SRC(insn->code) == BPF_X) {
1793 				/* dreg = sreg
1794 				 * dreg needs precision after this insn
1795 				 * sreg needs precision before this insn
1796 				 */
1797 				*reg_mask &= ~dreg;
1798 				*reg_mask |= sreg;
1799 			} else {
1800 				/* dreg = K
1801 				 * dreg needs precision after this insn.
1802 				 * Corresponding register is already marked
1803 				 * as precise=true in this verifier state.
1804 				 * No further markings in parent are necessary
1805 				 */
1806 				*reg_mask &= ~dreg;
1807 			}
1808 		} else {
1809 			if (BPF_SRC(insn->code) == BPF_X) {
1810 				/* dreg += sreg
1811 				 * both dreg and sreg need precision
1812 				 * before this insn
1813 				 */
1814 				*reg_mask |= sreg;
1815 			} /* else dreg += K
1816 			   * dreg still needs precision before this insn
1817 			   */
1818 		}
1819 	} else if (class == BPF_LDX) {
1820 		if (!(*reg_mask & dreg))
1821 			return 0;
1822 		*reg_mask &= ~dreg;
1823 
1824 		/* scalars can only be spilled into stack w/o losing precision.
1825 		 * Load from any other memory can be zero extended.
1826 		 * The desire to keep that precision is already indicated
1827 		 * by 'precise' mark in corresponding register of this state.
1828 		 * No further tracking necessary.
1829 		 */
1830 		if (insn->src_reg != BPF_REG_FP)
1831 			return 0;
1832 		if (BPF_SIZE(insn->code) != BPF_DW)
1833 			return 0;
1834 
1835 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1836 		 * that [fp - off] slot contains scalar that needs to be
1837 		 * tracked with precision
1838 		 */
1839 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1840 		if (spi >= 64) {
1841 			verbose(env, "BUG spi %d\n", spi);
1842 			WARN_ONCE(1, "verifier backtracking bug");
1843 			return -EFAULT;
1844 		}
1845 		*stack_mask |= 1ull << spi;
1846 	} else if (class == BPF_STX || class == BPF_ST) {
1847 		if (*reg_mask & dreg)
1848 			/* stx & st shouldn't be using _scalar_ dst_reg
1849 			 * to access memory. It means backtracking
1850 			 * encountered a case of pointer subtraction.
1851 			 */
1852 			return -ENOTSUPP;
1853 		/* scalars can only be spilled into stack */
1854 		if (insn->dst_reg != BPF_REG_FP)
1855 			return 0;
1856 		if (BPF_SIZE(insn->code) != BPF_DW)
1857 			return 0;
1858 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1859 		if (spi >= 64) {
1860 			verbose(env, "BUG spi %d\n", spi);
1861 			WARN_ONCE(1, "verifier backtracking bug");
1862 			return -EFAULT;
1863 		}
1864 		if (!(*stack_mask & (1ull << spi)))
1865 			return 0;
1866 		*stack_mask &= ~(1ull << spi);
1867 		if (class == BPF_STX)
1868 			*reg_mask |= sreg;
1869 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1870 		if (opcode == BPF_CALL) {
1871 			if (insn->src_reg == BPF_PSEUDO_CALL)
1872 				return -ENOTSUPP;
1873 			/* regular helper call sets R0 */
1874 			*reg_mask &= ~1;
1875 			if (*reg_mask & 0x3f) {
1876 				/* if backtracing was looking for registers R1-R5
1877 				 * they should have been found already.
1878 				 */
1879 				verbose(env, "BUG regs %x\n", *reg_mask);
1880 				WARN_ONCE(1, "verifier backtracking bug");
1881 				return -EFAULT;
1882 			}
1883 		} else if (opcode == BPF_EXIT) {
1884 			return -ENOTSUPP;
1885 		}
1886 	} else if (class == BPF_LD) {
1887 		if (!(*reg_mask & dreg))
1888 			return 0;
1889 		*reg_mask &= ~dreg;
1890 		/* It's ld_imm64 or ld_abs or ld_ind.
1891 		 * For ld_imm64 no further tracking of precision
1892 		 * into parent is necessary
1893 		 */
1894 		if (mode == BPF_IND || mode == BPF_ABS)
1895 			/* to be analyzed */
1896 			return -ENOTSUPP;
1897 	}
1898 	return 0;
1899 }
1900 
1901 /* the scalar precision tracking algorithm:
1902  * . at the start all registers have precise=false.
1903  * . scalar ranges are tracked as normal through alu and jmp insns.
1904  * . once precise value of the scalar register is used in:
1905  *   .  ptr + scalar alu
1906  *   . if (scalar cond K|scalar)
1907  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1908  *   backtrack through the verifier states and mark all registers and
1909  *   stack slots with spilled constants that these scalar regisers
1910  *   should be precise.
1911  * . during state pruning two registers (or spilled stack slots)
1912  *   are equivalent if both are not precise.
1913  *
1914  * Note the verifier cannot simply walk register parentage chain,
1915  * since many different registers and stack slots could have been
1916  * used to compute single precise scalar.
1917  *
1918  * The approach of starting with precise=true for all registers and then
1919  * backtrack to mark a register as not precise when the verifier detects
1920  * that program doesn't care about specific value (e.g., when helper
1921  * takes register as ARG_ANYTHING parameter) is not safe.
1922  *
1923  * It's ok to walk single parentage chain of the verifier states.
1924  * It's possible that this backtracking will go all the way till 1st insn.
1925  * All other branches will be explored for needing precision later.
1926  *
1927  * The backtracking needs to deal with cases like:
1928  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1929  * r9 -= r8
1930  * r5 = r9
1931  * if r5 > 0x79f goto pc+7
1932  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1933  * r5 += 1
1934  * ...
1935  * call bpf_perf_event_output#25
1936  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1937  *
1938  * and this case:
1939  * r6 = 1
1940  * call foo // uses callee's r6 inside to compute r0
1941  * r0 += r6
1942  * if r0 == 0 goto
1943  *
1944  * to track above reg_mask/stack_mask needs to be independent for each frame.
1945  *
1946  * Also if parent's curframe > frame where backtracking started,
1947  * the verifier need to mark registers in both frames, otherwise callees
1948  * may incorrectly prune callers. This is similar to
1949  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1950  *
1951  * For now backtracking falls back into conservative marking.
1952  */
1953 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1954 				     struct bpf_verifier_state *st)
1955 {
1956 	struct bpf_func_state *func;
1957 	struct bpf_reg_state *reg;
1958 	int i, j;
1959 
1960 	/* big hammer: mark all scalars precise in this path.
1961 	 * pop_stack may still get !precise scalars.
1962 	 */
1963 	for (; st; st = st->parent)
1964 		for (i = 0; i <= st->curframe; i++) {
1965 			func = st->frame[i];
1966 			for (j = 0; j < BPF_REG_FP; j++) {
1967 				reg = &func->regs[j];
1968 				if (reg->type != SCALAR_VALUE)
1969 					continue;
1970 				reg->precise = true;
1971 			}
1972 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1973 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1974 					continue;
1975 				reg = &func->stack[j].spilled_ptr;
1976 				if (reg->type != SCALAR_VALUE)
1977 					continue;
1978 				reg->precise = true;
1979 			}
1980 		}
1981 }
1982 
1983 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1984 				  int spi)
1985 {
1986 	struct bpf_verifier_state *st = env->cur_state;
1987 	int first_idx = st->first_insn_idx;
1988 	int last_idx = env->insn_idx;
1989 	struct bpf_func_state *func;
1990 	struct bpf_reg_state *reg;
1991 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1992 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1993 	bool skip_first = true;
1994 	bool new_marks = false;
1995 	int i, err;
1996 
1997 	if (!env->bpf_capable)
1998 		return 0;
1999 
2000 	func = st->frame[st->curframe];
2001 	if (regno >= 0) {
2002 		reg = &func->regs[regno];
2003 		if (reg->type != SCALAR_VALUE) {
2004 			WARN_ONCE(1, "backtracing misuse");
2005 			return -EFAULT;
2006 		}
2007 		if (!reg->precise)
2008 			new_marks = true;
2009 		else
2010 			reg_mask = 0;
2011 		reg->precise = true;
2012 	}
2013 
2014 	while (spi >= 0) {
2015 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2016 			stack_mask = 0;
2017 			break;
2018 		}
2019 		reg = &func->stack[spi].spilled_ptr;
2020 		if (reg->type != SCALAR_VALUE) {
2021 			stack_mask = 0;
2022 			break;
2023 		}
2024 		if (!reg->precise)
2025 			new_marks = true;
2026 		else
2027 			stack_mask = 0;
2028 		reg->precise = true;
2029 		break;
2030 	}
2031 
2032 	if (!new_marks)
2033 		return 0;
2034 	if (!reg_mask && !stack_mask)
2035 		return 0;
2036 	for (;;) {
2037 		DECLARE_BITMAP(mask, 64);
2038 		u32 history = st->jmp_history_cnt;
2039 
2040 		if (env->log.level & BPF_LOG_LEVEL)
2041 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2042 		for (i = last_idx;;) {
2043 			if (skip_first) {
2044 				err = 0;
2045 				skip_first = false;
2046 			} else {
2047 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2048 			}
2049 			if (err == -ENOTSUPP) {
2050 				mark_all_scalars_precise(env, st);
2051 				return 0;
2052 			} else if (err) {
2053 				return err;
2054 			}
2055 			if (!reg_mask && !stack_mask)
2056 				/* Found assignment(s) into tracked register in this state.
2057 				 * Since this state is already marked, just return.
2058 				 * Nothing to be tracked further in the parent state.
2059 				 */
2060 				return 0;
2061 			if (i == first_idx)
2062 				break;
2063 			i = get_prev_insn_idx(st, i, &history);
2064 			if (i >= env->prog->len) {
2065 				/* This can happen if backtracking reached insn 0
2066 				 * and there are still reg_mask or stack_mask
2067 				 * to backtrack.
2068 				 * It means the backtracking missed the spot where
2069 				 * particular register was initialized with a constant.
2070 				 */
2071 				verbose(env, "BUG backtracking idx %d\n", i);
2072 				WARN_ONCE(1, "verifier backtracking bug");
2073 				return -EFAULT;
2074 			}
2075 		}
2076 		st = st->parent;
2077 		if (!st)
2078 			break;
2079 
2080 		new_marks = false;
2081 		func = st->frame[st->curframe];
2082 		bitmap_from_u64(mask, reg_mask);
2083 		for_each_set_bit(i, mask, 32) {
2084 			reg = &func->regs[i];
2085 			if (reg->type != SCALAR_VALUE) {
2086 				reg_mask &= ~(1u << i);
2087 				continue;
2088 			}
2089 			if (!reg->precise)
2090 				new_marks = true;
2091 			reg->precise = true;
2092 		}
2093 
2094 		bitmap_from_u64(mask, stack_mask);
2095 		for_each_set_bit(i, mask, 64) {
2096 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2097 				/* the sequence of instructions:
2098 				 * 2: (bf) r3 = r10
2099 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2100 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2101 				 * doesn't contain jmps. It's backtracked
2102 				 * as a single block.
2103 				 * During backtracking insn 3 is not recognized as
2104 				 * stack access, so at the end of backtracking
2105 				 * stack slot fp-8 is still marked in stack_mask.
2106 				 * However the parent state may not have accessed
2107 				 * fp-8 and it's "unallocated" stack space.
2108 				 * In such case fallback to conservative.
2109 				 */
2110 				mark_all_scalars_precise(env, st);
2111 				return 0;
2112 			}
2113 
2114 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2115 				stack_mask &= ~(1ull << i);
2116 				continue;
2117 			}
2118 			reg = &func->stack[i].spilled_ptr;
2119 			if (reg->type != SCALAR_VALUE) {
2120 				stack_mask &= ~(1ull << i);
2121 				continue;
2122 			}
2123 			if (!reg->precise)
2124 				new_marks = true;
2125 			reg->precise = true;
2126 		}
2127 		if (env->log.level & BPF_LOG_LEVEL) {
2128 			print_verifier_state(env, func);
2129 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2130 				new_marks ? "didn't have" : "already had",
2131 				reg_mask, stack_mask);
2132 		}
2133 
2134 		if (!reg_mask && !stack_mask)
2135 			break;
2136 		if (!new_marks)
2137 			break;
2138 
2139 		last_idx = st->last_insn_idx;
2140 		first_idx = st->first_insn_idx;
2141 	}
2142 	return 0;
2143 }
2144 
2145 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2146 {
2147 	return __mark_chain_precision(env, regno, -1);
2148 }
2149 
2150 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2151 {
2152 	return __mark_chain_precision(env, -1, spi);
2153 }
2154 
2155 static bool is_spillable_regtype(enum bpf_reg_type type)
2156 {
2157 	switch (type) {
2158 	case PTR_TO_MAP_VALUE:
2159 	case PTR_TO_MAP_VALUE_OR_NULL:
2160 	case PTR_TO_STACK:
2161 	case PTR_TO_CTX:
2162 	case PTR_TO_PACKET:
2163 	case PTR_TO_PACKET_META:
2164 	case PTR_TO_PACKET_END:
2165 	case PTR_TO_FLOW_KEYS:
2166 	case CONST_PTR_TO_MAP:
2167 	case PTR_TO_SOCKET:
2168 	case PTR_TO_SOCKET_OR_NULL:
2169 	case PTR_TO_SOCK_COMMON:
2170 	case PTR_TO_SOCK_COMMON_OR_NULL:
2171 	case PTR_TO_TCP_SOCK:
2172 	case PTR_TO_TCP_SOCK_OR_NULL:
2173 	case PTR_TO_XDP_SOCK:
2174 	case PTR_TO_BTF_ID:
2175 	case PTR_TO_BTF_ID_OR_NULL:
2176 		return true;
2177 	default:
2178 		return false;
2179 	}
2180 }
2181 
2182 /* Does this register contain a constant zero? */
2183 static bool register_is_null(struct bpf_reg_state *reg)
2184 {
2185 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2186 }
2187 
2188 static bool register_is_const(struct bpf_reg_state *reg)
2189 {
2190 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2191 }
2192 
2193 static bool __is_pointer_value(bool allow_ptr_leaks,
2194 			       const struct bpf_reg_state *reg)
2195 {
2196 	if (allow_ptr_leaks)
2197 		return false;
2198 
2199 	return reg->type != SCALAR_VALUE;
2200 }
2201 
2202 static void save_register_state(struct bpf_func_state *state,
2203 				int spi, struct bpf_reg_state *reg)
2204 {
2205 	int i;
2206 
2207 	state->stack[spi].spilled_ptr = *reg;
2208 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2209 
2210 	for (i = 0; i < BPF_REG_SIZE; i++)
2211 		state->stack[spi].slot_type[i] = STACK_SPILL;
2212 }
2213 
2214 /* check_stack_read/write functions track spill/fill of registers,
2215  * stack boundary and alignment are checked in check_mem_access()
2216  */
2217 static int check_stack_write(struct bpf_verifier_env *env,
2218 			     struct bpf_func_state *state, /* func where register points to */
2219 			     int off, int size, int value_regno, int insn_idx)
2220 {
2221 	struct bpf_func_state *cur; /* state of the current function */
2222 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2223 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2224 	struct bpf_reg_state *reg = NULL;
2225 
2226 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2227 				 state->acquired_refs, true);
2228 	if (err)
2229 		return err;
2230 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2231 	 * so it's aligned access and [off, off + size) are within stack limits
2232 	 */
2233 	if (!env->allow_ptr_leaks &&
2234 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2235 	    size != BPF_REG_SIZE) {
2236 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2237 		return -EACCES;
2238 	}
2239 
2240 	cur = env->cur_state->frame[env->cur_state->curframe];
2241 	if (value_regno >= 0)
2242 		reg = &cur->regs[value_regno];
2243 
2244 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2245 	    !register_is_null(reg) && env->bpf_capable) {
2246 		if (dst_reg != BPF_REG_FP) {
2247 			/* The backtracking logic can only recognize explicit
2248 			 * stack slot address like [fp - 8]. Other spill of
2249 			 * scalar via different register has to be conervative.
2250 			 * Backtrack from here and mark all registers as precise
2251 			 * that contributed into 'reg' being a constant.
2252 			 */
2253 			err = mark_chain_precision(env, value_regno);
2254 			if (err)
2255 				return err;
2256 		}
2257 		save_register_state(state, spi, reg);
2258 	} else if (reg && is_spillable_regtype(reg->type)) {
2259 		/* register containing pointer is being spilled into stack */
2260 		if (size != BPF_REG_SIZE) {
2261 			verbose_linfo(env, insn_idx, "; ");
2262 			verbose(env, "invalid size of register spill\n");
2263 			return -EACCES;
2264 		}
2265 
2266 		if (state != cur && reg->type == PTR_TO_STACK) {
2267 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2268 			return -EINVAL;
2269 		}
2270 
2271 		if (!env->bypass_spec_v4) {
2272 			bool sanitize = false;
2273 
2274 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2275 			    register_is_const(&state->stack[spi].spilled_ptr))
2276 				sanitize = true;
2277 			for (i = 0; i < BPF_REG_SIZE; i++)
2278 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2279 					sanitize = true;
2280 					break;
2281 				}
2282 			if (sanitize) {
2283 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2284 				int soff = (-spi - 1) * BPF_REG_SIZE;
2285 
2286 				/* detected reuse of integer stack slot with a pointer
2287 				 * which means either llvm is reusing stack slot or
2288 				 * an attacker is trying to exploit CVE-2018-3639
2289 				 * (speculative store bypass)
2290 				 * Have to sanitize that slot with preemptive
2291 				 * store of zero.
2292 				 */
2293 				if (*poff && *poff != soff) {
2294 					/* disallow programs where single insn stores
2295 					 * into two different stack slots, since verifier
2296 					 * cannot sanitize them
2297 					 */
2298 					verbose(env,
2299 						"insn %d cannot access two stack slots fp%d and fp%d",
2300 						insn_idx, *poff, soff);
2301 					return -EINVAL;
2302 				}
2303 				*poff = soff;
2304 			}
2305 		}
2306 		save_register_state(state, spi, reg);
2307 	} else {
2308 		u8 type = STACK_MISC;
2309 
2310 		/* regular write of data into stack destroys any spilled ptr */
2311 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2312 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2313 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2314 			for (i = 0; i < BPF_REG_SIZE; i++)
2315 				state->stack[spi].slot_type[i] = STACK_MISC;
2316 
2317 		/* only mark the slot as written if all 8 bytes were written
2318 		 * otherwise read propagation may incorrectly stop too soon
2319 		 * when stack slots are partially written.
2320 		 * This heuristic means that read propagation will be
2321 		 * conservative, since it will add reg_live_read marks
2322 		 * to stack slots all the way to first state when programs
2323 		 * writes+reads less than 8 bytes
2324 		 */
2325 		if (size == BPF_REG_SIZE)
2326 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2327 
2328 		/* when we zero initialize stack slots mark them as such */
2329 		if (reg && register_is_null(reg)) {
2330 			/* backtracking doesn't work for STACK_ZERO yet. */
2331 			err = mark_chain_precision(env, value_regno);
2332 			if (err)
2333 				return err;
2334 			type = STACK_ZERO;
2335 		}
2336 
2337 		/* Mark slots affected by this stack write. */
2338 		for (i = 0; i < size; i++)
2339 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2340 				type;
2341 	}
2342 	return 0;
2343 }
2344 
2345 static int check_stack_read(struct bpf_verifier_env *env,
2346 			    struct bpf_func_state *reg_state /* func where register points to */,
2347 			    int off, int size, int value_regno)
2348 {
2349 	struct bpf_verifier_state *vstate = env->cur_state;
2350 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2351 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2352 	struct bpf_reg_state *reg;
2353 	u8 *stype;
2354 
2355 	if (reg_state->allocated_stack <= slot) {
2356 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2357 			off, size);
2358 		return -EACCES;
2359 	}
2360 	stype = reg_state->stack[spi].slot_type;
2361 	reg = &reg_state->stack[spi].spilled_ptr;
2362 
2363 	if (stype[0] == STACK_SPILL) {
2364 		if (size != BPF_REG_SIZE) {
2365 			if (reg->type != SCALAR_VALUE) {
2366 				verbose_linfo(env, env->insn_idx, "; ");
2367 				verbose(env, "invalid size of register fill\n");
2368 				return -EACCES;
2369 			}
2370 			if (value_regno >= 0) {
2371 				mark_reg_unknown(env, state->regs, value_regno);
2372 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2373 			}
2374 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2375 			return 0;
2376 		}
2377 		for (i = 1; i < BPF_REG_SIZE; i++) {
2378 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2379 				verbose(env, "corrupted spill memory\n");
2380 				return -EACCES;
2381 			}
2382 		}
2383 
2384 		if (value_regno >= 0) {
2385 			/* restore register state from stack */
2386 			state->regs[value_regno] = *reg;
2387 			/* mark reg as written since spilled pointer state likely
2388 			 * has its liveness marks cleared by is_state_visited()
2389 			 * which resets stack/reg liveness for state transitions
2390 			 */
2391 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2392 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2393 			/* If value_regno==-1, the caller is asking us whether
2394 			 * it is acceptable to use this value as a SCALAR_VALUE
2395 			 * (e.g. for XADD).
2396 			 * We must not allow unprivileged callers to do that
2397 			 * with spilled pointers.
2398 			 */
2399 			verbose(env, "leaking pointer from stack off %d\n",
2400 				off);
2401 			return -EACCES;
2402 		}
2403 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2404 	} else {
2405 		int zeros = 0;
2406 
2407 		for (i = 0; i < size; i++) {
2408 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2409 				continue;
2410 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2411 				zeros++;
2412 				continue;
2413 			}
2414 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2415 				off, i, size);
2416 			return -EACCES;
2417 		}
2418 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2419 		if (value_regno >= 0) {
2420 			if (zeros == size) {
2421 				/* any size read into register is zero extended,
2422 				 * so the whole register == const_zero
2423 				 */
2424 				__mark_reg_const_zero(&state->regs[value_regno]);
2425 				/* backtracking doesn't support STACK_ZERO yet,
2426 				 * so mark it precise here, so that later
2427 				 * backtracking can stop here.
2428 				 * Backtracking may not need this if this register
2429 				 * doesn't participate in pointer adjustment.
2430 				 * Forward propagation of precise flag is not
2431 				 * necessary either. This mark is only to stop
2432 				 * backtracking. Any register that contributed
2433 				 * to const 0 was marked precise before spill.
2434 				 */
2435 				state->regs[value_regno].precise = true;
2436 			} else {
2437 				/* have read misc data from the stack */
2438 				mark_reg_unknown(env, state->regs, value_regno);
2439 			}
2440 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2441 		}
2442 	}
2443 	return 0;
2444 }
2445 
2446 static int check_stack_access(struct bpf_verifier_env *env,
2447 			      const struct bpf_reg_state *reg,
2448 			      int off, int size)
2449 {
2450 	/* Stack accesses must be at a fixed offset, so that we
2451 	 * can determine what type of data were returned. See
2452 	 * check_stack_read().
2453 	 */
2454 	if (!tnum_is_const(reg->var_off)) {
2455 		char tn_buf[48];
2456 
2457 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2458 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2459 			tn_buf, off, size);
2460 		return -EACCES;
2461 	}
2462 
2463 	if (off >= 0 || off < -MAX_BPF_STACK) {
2464 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2465 		return -EACCES;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2472 				 int off, int size, enum bpf_access_type type)
2473 {
2474 	struct bpf_reg_state *regs = cur_regs(env);
2475 	struct bpf_map *map = regs[regno].map_ptr;
2476 	u32 cap = bpf_map_flags_to_cap(map);
2477 
2478 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2479 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2480 			map->value_size, off, size);
2481 		return -EACCES;
2482 	}
2483 
2484 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2485 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2486 			map->value_size, off, size);
2487 		return -EACCES;
2488 	}
2489 
2490 	return 0;
2491 }
2492 
2493 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2494 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2495 			      int off, int size, u32 mem_size,
2496 			      bool zero_size_allowed)
2497 {
2498 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2499 	struct bpf_reg_state *reg;
2500 
2501 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2502 		return 0;
2503 
2504 	reg = &cur_regs(env)[regno];
2505 	switch (reg->type) {
2506 	case PTR_TO_MAP_VALUE:
2507 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2508 			mem_size, off, size);
2509 		break;
2510 	case PTR_TO_PACKET:
2511 	case PTR_TO_PACKET_META:
2512 	case PTR_TO_PACKET_END:
2513 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2514 			off, size, regno, reg->id, off, mem_size);
2515 		break;
2516 	case PTR_TO_MEM:
2517 	default:
2518 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2519 			mem_size, off, size);
2520 	}
2521 
2522 	return -EACCES;
2523 }
2524 
2525 /* check read/write into a memory region with possible variable offset */
2526 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2527 				   int off, int size, u32 mem_size,
2528 				   bool zero_size_allowed)
2529 {
2530 	struct bpf_verifier_state *vstate = env->cur_state;
2531 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2532 	struct bpf_reg_state *reg = &state->regs[regno];
2533 	int err;
2534 
2535 	/* We may have adjusted the register pointing to memory region, so we
2536 	 * need to try adding each of min_value and max_value to off
2537 	 * to make sure our theoretical access will be safe.
2538 	 */
2539 	if (env->log.level & BPF_LOG_LEVEL)
2540 		print_verifier_state(env, state);
2541 
2542 	/* The minimum value is only important with signed
2543 	 * comparisons where we can't assume the floor of a
2544 	 * value is 0.  If we are using signed variables for our
2545 	 * index'es we need to make sure that whatever we use
2546 	 * will have a set floor within our range.
2547 	 */
2548 	if (reg->smin_value < 0 &&
2549 	    (reg->smin_value == S64_MIN ||
2550 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2551 	      reg->smin_value + off < 0)) {
2552 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2553 			regno);
2554 		return -EACCES;
2555 	}
2556 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2557 				 mem_size, zero_size_allowed);
2558 	if (err) {
2559 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2560 			regno);
2561 		return err;
2562 	}
2563 
2564 	/* If we haven't set a max value then we need to bail since we can't be
2565 	 * sure we won't do bad things.
2566 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2567 	 */
2568 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2569 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2570 			regno);
2571 		return -EACCES;
2572 	}
2573 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2574 				 mem_size, zero_size_allowed);
2575 	if (err) {
2576 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2577 			regno);
2578 		return err;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 /* check read/write into a map element with possible variable offset */
2585 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2586 			    int off, int size, bool zero_size_allowed)
2587 {
2588 	struct bpf_verifier_state *vstate = env->cur_state;
2589 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2590 	struct bpf_reg_state *reg = &state->regs[regno];
2591 	struct bpf_map *map = reg->map_ptr;
2592 	int err;
2593 
2594 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2595 				      zero_size_allowed);
2596 	if (err)
2597 		return err;
2598 
2599 	if (map_value_has_spin_lock(map)) {
2600 		u32 lock = map->spin_lock_off;
2601 
2602 		/* if any part of struct bpf_spin_lock can be touched by
2603 		 * load/store reject this program.
2604 		 * To check that [x1, x2) overlaps with [y1, y2)
2605 		 * it is sufficient to check x1 < y2 && y1 < x2.
2606 		 */
2607 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2608 		     lock < reg->umax_value + off + size) {
2609 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2610 			return -EACCES;
2611 		}
2612 	}
2613 	return err;
2614 }
2615 
2616 #define MAX_PACKET_OFF 0xffff
2617 
2618 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2619 				       const struct bpf_call_arg_meta *meta,
2620 				       enum bpf_access_type t)
2621 {
2622 	switch (env->prog->type) {
2623 	/* Program types only with direct read access go here! */
2624 	case BPF_PROG_TYPE_LWT_IN:
2625 	case BPF_PROG_TYPE_LWT_OUT:
2626 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2627 	case BPF_PROG_TYPE_SK_REUSEPORT:
2628 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2629 	case BPF_PROG_TYPE_CGROUP_SKB:
2630 		if (t == BPF_WRITE)
2631 			return false;
2632 		/* fallthrough */
2633 
2634 	/* Program types with direct read + write access go here! */
2635 	case BPF_PROG_TYPE_SCHED_CLS:
2636 	case BPF_PROG_TYPE_SCHED_ACT:
2637 	case BPF_PROG_TYPE_XDP:
2638 	case BPF_PROG_TYPE_LWT_XMIT:
2639 	case BPF_PROG_TYPE_SK_SKB:
2640 	case BPF_PROG_TYPE_SK_MSG:
2641 		if (meta)
2642 			return meta->pkt_access;
2643 
2644 		env->seen_direct_write = true;
2645 		return true;
2646 
2647 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2648 		if (t == BPF_WRITE)
2649 			env->seen_direct_write = true;
2650 
2651 		return true;
2652 
2653 	default:
2654 		return false;
2655 	}
2656 }
2657 
2658 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2659 			       int size, bool zero_size_allowed)
2660 {
2661 	struct bpf_reg_state *regs = cur_regs(env);
2662 	struct bpf_reg_state *reg = &regs[regno];
2663 	int err;
2664 
2665 	/* We may have added a variable offset to the packet pointer; but any
2666 	 * reg->range we have comes after that.  We are only checking the fixed
2667 	 * offset.
2668 	 */
2669 
2670 	/* We don't allow negative numbers, because we aren't tracking enough
2671 	 * detail to prove they're safe.
2672 	 */
2673 	if (reg->smin_value < 0) {
2674 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2675 			regno);
2676 		return -EACCES;
2677 	}
2678 	err = __check_mem_access(env, regno, off, size, reg->range,
2679 				 zero_size_allowed);
2680 	if (err) {
2681 		verbose(env, "R%d offset is outside of the packet\n", regno);
2682 		return err;
2683 	}
2684 
2685 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2686 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2687 	 * otherwise find_good_pkt_pointers would have refused to set range info
2688 	 * that __check_mem_access would have rejected this pkt access.
2689 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2690 	 */
2691 	env->prog->aux->max_pkt_offset =
2692 		max_t(u32, env->prog->aux->max_pkt_offset,
2693 		      off + reg->umax_value + size - 1);
2694 
2695 	return err;
2696 }
2697 
2698 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2699 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2700 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2701 			    u32 *btf_id)
2702 {
2703 	struct bpf_insn_access_aux info = {
2704 		.reg_type = *reg_type,
2705 		.log = &env->log,
2706 	};
2707 
2708 	if (env->ops->is_valid_access &&
2709 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2710 		/* A non zero info.ctx_field_size indicates that this field is a
2711 		 * candidate for later verifier transformation to load the whole
2712 		 * field and then apply a mask when accessed with a narrower
2713 		 * access than actual ctx access size. A zero info.ctx_field_size
2714 		 * will only allow for whole field access and rejects any other
2715 		 * type of narrower access.
2716 		 */
2717 		*reg_type = info.reg_type;
2718 
2719 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2720 			*btf_id = info.btf_id;
2721 		else
2722 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2723 		/* remember the offset of last byte accessed in ctx */
2724 		if (env->prog->aux->max_ctx_offset < off + size)
2725 			env->prog->aux->max_ctx_offset = off + size;
2726 		return 0;
2727 	}
2728 
2729 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2730 	return -EACCES;
2731 }
2732 
2733 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2734 				  int size)
2735 {
2736 	if (size < 0 || off < 0 ||
2737 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2738 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2739 			off, size);
2740 		return -EACCES;
2741 	}
2742 	return 0;
2743 }
2744 
2745 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2746 			     u32 regno, int off, int size,
2747 			     enum bpf_access_type t)
2748 {
2749 	struct bpf_reg_state *regs = cur_regs(env);
2750 	struct bpf_reg_state *reg = &regs[regno];
2751 	struct bpf_insn_access_aux info = {};
2752 	bool valid;
2753 
2754 	if (reg->smin_value < 0) {
2755 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2756 			regno);
2757 		return -EACCES;
2758 	}
2759 
2760 	switch (reg->type) {
2761 	case PTR_TO_SOCK_COMMON:
2762 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2763 		break;
2764 	case PTR_TO_SOCKET:
2765 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2766 		break;
2767 	case PTR_TO_TCP_SOCK:
2768 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2769 		break;
2770 	case PTR_TO_XDP_SOCK:
2771 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2772 		break;
2773 	default:
2774 		valid = false;
2775 	}
2776 
2777 
2778 	if (valid) {
2779 		env->insn_aux_data[insn_idx].ctx_field_size =
2780 			info.ctx_field_size;
2781 		return 0;
2782 	}
2783 
2784 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2785 		regno, reg_type_str[reg->type], off, size);
2786 
2787 	return -EACCES;
2788 }
2789 
2790 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2791 {
2792 	return cur_regs(env) + regno;
2793 }
2794 
2795 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2796 {
2797 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2798 }
2799 
2800 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2801 {
2802 	const struct bpf_reg_state *reg = reg_state(env, regno);
2803 
2804 	return reg->type == PTR_TO_CTX;
2805 }
2806 
2807 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2808 {
2809 	const struct bpf_reg_state *reg = reg_state(env, regno);
2810 
2811 	return type_is_sk_pointer(reg->type);
2812 }
2813 
2814 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2815 {
2816 	const struct bpf_reg_state *reg = reg_state(env, regno);
2817 
2818 	return type_is_pkt_pointer(reg->type);
2819 }
2820 
2821 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2822 {
2823 	const struct bpf_reg_state *reg = reg_state(env, regno);
2824 
2825 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2826 	return reg->type == PTR_TO_FLOW_KEYS;
2827 }
2828 
2829 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2830 				   const struct bpf_reg_state *reg,
2831 				   int off, int size, bool strict)
2832 {
2833 	struct tnum reg_off;
2834 	int ip_align;
2835 
2836 	/* Byte size accesses are always allowed. */
2837 	if (!strict || size == 1)
2838 		return 0;
2839 
2840 	/* For platforms that do not have a Kconfig enabling
2841 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2842 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2843 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2844 	 * to this code only in strict mode where we want to emulate
2845 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2846 	 * unconditional IP align value of '2'.
2847 	 */
2848 	ip_align = 2;
2849 
2850 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2851 	if (!tnum_is_aligned(reg_off, size)) {
2852 		char tn_buf[48];
2853 
2854 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2855 		verbose(env,
2856 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2857 			ip_align, tn_buf, reg->off, off, size);
2858 		return -EACCES;
2859 	}
2860 
2861 	return 0;
2862 }
2863 
2864 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2865 				       const struct bpf_reg_state *reg,
2866 				       const char *pointer_desc,
2867 				       int off, int size, bool strict)
2868 {
2869 	struct tnum reg_off;
2870 
2871 	/* Byte size accesses are always allowed. */
2872 	if (!strict || size == 1)
2873 		return 0;
2874 
2875 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2876 	if (!tnum_is_aligned(reg_off, size)) {
2877 		char tn_buf[48];
2878 
2879 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2880 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2881 			pointer_desc, tn_buf, reg->off, off, size);
2882 		return -EACCES;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 static int check_ptr_alignment(struct bpf_verifier_env *env,
2889 			       const struct bpf_reg_state *reg, int off,
2890 			       int size, bool strict_alignment_once)
2891 {
2892 	bool strict = env->strict_alignment || strict_alignment_once;
2893 	const char *pointer_desc = "";
2894 
2895 	switch (reg->type) {
2896 	case PTR_TO_PACKET:
2897 	case PTR_TO_PACKET_META:
2898 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2899 		 * right in front, treat it the very same way.
2900 		 */
2901 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2902 	case PTR_TO_FLOW_KEYS:
2903 		pointer_desc = "flow keys ";
2904 		break;
2905 	case PTR_TO_MAP_VALUE:
2906 		pointer_desc = "value ";
2907 		break;
2908 	case PTR_TO_CTX:
2909 		pointer_desc = "context ";
2910 		break;
2911 	case PTR_TO_STACK:
2912 		pointer_desc = "stack ";
2913 		/* The stack spill tracking logic in check_stack_write()
2914 		 * and check_stack_read() relies on stack accesses being
2915 		 * aligned.
2916 		 */
2917 		strict = true;
2918 		break;
2919 	case PTR_TO_SOCKET:
2920 		pointer_desc = "sock ";
2921 		break;
2922 	case PTR_TO_SOCK_COMMON:
2923 		pointer_desc = "sock_common ";
2924 		break;
2925 	case PTR_TO_TCP_SOCK:
2926 		pointer_desc = "tcp_sock ";
2927 		break;
2928 	case PTR_TO_XDP_SOCK:
2929 		pointer_desc = "xdp_sock ";
2930 		break;
2931 	default:
2932 		break;
2933 	}
2934 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2935 					   strict);
2936 }
2937 
2938 static int update_stack_depth(struct bpf_verifier_env *env,
2939 			      const struct bpf_func_state *func,
2940 			      int off)
2941 {
2942 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2943 
2944 	if (stack >= -off)
2945 		return 0;
2946 
2947 	/* update known max for given subprogram */
2948 	env->subprog_info[func->subprogno].stack_depth = -off;
2949 	return 0;
2950 }
2951 
2952 /* starting from main bpf function walk all instructions of the function
2953  * and recursively walk all callees that given function can call.
2954  * Ignore jump and exit insns.
2955  * Since recursion is prevented by check_cfg() this algorithm
2956  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2957  */
2958 static int check_max_stack_depth(struct bpf_verifier_env *env)
2959 {
2960 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2961 	struct bpf_subprog_info *subprog = env->subprog_info;
2962 	struct bpf_insn *insn = env->prog->insnsi;
2963 	int ret_insn[MAX_CALL_FRAMES];
2964 	int ret_prog[MAX_CALL_FRAMES];
2965 
2966 process_func:
2967 	/* round up to 32-bytes, since this is granularity
2968 	 * of interpreter stack size
2969 	 */
2970 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2971 	if (depth > MAX_BPF_STACK) {
2972 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2973 			frame + 1, depth);
2974 		return -EACCES;
2975 	}
2976 continue_func:
2977 	subprog_end = subprog[idx + 1].start;
2978 	for (; i < subprog_end; i++) {
2979 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2980 			continue;
2981 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2982 			continue;
2983 		/* remember insn and function to return to */
2984 		ret_insn[frame] = i + 1;
2985 		ret_prog[frame] = idx;
2986 
2987 		/* find the callee */
2988 		i = i + insn[i].imm + 1;
2989 		idx = find_subprog(env, i);
2990 		if (idx < 0) {
2991 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2992 				  i);
2993 			return -EFAULT;
2994 		}
2995 		frame++;
2996 		if (frame >= MAX_CALL_FRAMES) {
2997 			verbose(env, "the call stack of %d frames is too deep !\n",
2998 				frame);
2999 			return -E2BIG;
3000 		}
3001 		goto process_func;
3002 	}
3003 	/* end of for() loop means the last insn of the 'subprog'
3004 	 * was reached. Doesn't matter whether it was JA or EXIT
3005 	 */
3006 	if (frame == 0)
3007 		return 0;
3008 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3009 	frame--;
3010 	i = ret_insn[frame];
3011 	idx = ret_prog[frame];
3012 	goto continue_func;
3013 }
3014 
3015 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3016 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3017 				  const struct bpf_insn *insn, int idx)
3018 {
3019 	int start = idx + insn->imm + 1, subprog;
3020 
3021 	subprog = find_subprog(env, start);
3022 	if (subprog < 0) {
3023 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3024 			  start);
3025 		return -EFAULT;
3026 	}
3027 	return env->subprog_info[subprog].stack_depth;
3028 }
3029 #endif
3030 
3031 int check_ctx_reg(struct bpf_verifier_env *env,
3032 		  const struct bpf_reg_state *reg, int regno)
3033 {
3034 	/* Access to ctx or passing it to a helper is only allowed in
3035 	 * its original, unmodified form.
3036 	 */
3037 
3038 	if (reg->off) {
3039 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3040 			regno, reg->off);
3041 		return -EACCES;
3042 	}
3043 
3044 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3045 		char tn_buf[48];
3046 
3047 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3048 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3049 		return -EACCES;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3056 				  const struct bpf_reg_state *reg,
3057 				  int regno, int off, int size)
3058 {
3059 	if (off < 0) {
3060 		verbose(env,
3061 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
3062 			regno, off, size);
3063 		return -EACCES;
3064 	}
3065 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3066 		char tn_buf[48];
3067 
3068 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3069 		verbose(env,
3070 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
3071 			regno, off, tn_buf);
3072 		return -EACCES;
3073 	}
3074 	if (off + size > env->prog->aux->max_tp_access)
3075 		env->prog->aux->max_tp_access = off + size;
3076 
3077 	return 0;
3078 }
3079 
3080 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3081 static void zext_32_to_64(struct bpf_reg_state *reg)
3082 {
3083 	reg->var_off = tnum_subreg(reg->var_off);
3084 	__reg_assign_32_into_64(reg);
3085 }
3086 
3087 /* truncate register to smaller size (in bytes)
3088  * must be called with size < BPF_REG_SIZE
3089  */
3090 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3091 {
3092 	u64 mask;
3093 
3094 	/* clear high bits in bit representation */
3095 	reg->var_off = tnum_cast(reg->var_off, size);
3096 
3097 	/* fix arithmetic bounds */
3098 	mask = ((u64)1 << (size * 8)) - 1;
3099 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3100 		reg->umin_value &= mask;
3101 		reg->umax_value &= mask;
3102 	} else {
3103 		reg->umin_value = 0;
3104 		reg->umax_value = mask;
3105 	}
3106 	reg->smin_value = reg->umin_value;
3107 	reg->smax_value = reg->umax_value;
3108 
3109 	/* If size is smaller than 32bit register the 32bit register
3110 	 * values are also truncated so we push 64-bit bounds into
3111 	 * 32-bit bounds. Above were truncated < 32-bits already.
3112 	 */
3113 	if (size >= 4)
3114 		return;
3115 	__reg_combine_64_into_32(reg);
3116 }
3117 
3118 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3119 {
3120 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3121 }
3122 
3123 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3124 {
3125 	void *ptr;
3126 	u64 addr;
3127 	int err;
3128 
3129 	err = map->ops->map_direct_value_addr(map, &addr, off);
3130 	if (err)
3131 		return err;
3132 	ptr = (void *)(long)addr + off;
3133 
3134 	switch (size) {
3135 	case sizeof(u8):
3136 		*val = (u64)*(u8 *)ptr;
3137 		break;
3138 	case sizeof(u16):
3139 		*val = (u64)*(u16 *)ptr;
3140 		break;
3141 	case sizeof(u32):
3142 		*val = (u64)*(u32 *)ptr;
3143 		break;
3144 	case sizeof(u64):
3145 		*val = *(u64 *)ptr;
3146 		break;
3147 	default:
3148 		return -EINVAL;
3149 	}
3150 	return 0;
3151 }
3152 
3153 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3154 				   struct bpf_reg_state *regs,
3155 				   int regno, int off, int size,
3156 				   enum bpf_access_type atype,
3157 				   int value_regno)
3158 {
3159 	struct bpf_reg_state *reg = regs + regno;
3160 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3161 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3162 	u32 btf_id;
3163 	int ret;
3164 
3165 	if (off < 0) {
3166 		verbose(env,
3167 			"R%d is ptr_%s invalid negative access: off=%d\n",
3168 			regno, tname, off);
3169 		return -EACCES;
3170 	}
3171 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3172 		char tn_buf[48];
3173 
3174 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3175 		verbose(env,
3176 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3177 			regno, tname, off, tn_buf);
3178 		return -EACCES;
3179 	}
3180 
3181 	if (env->ops->btf_struct_access) {
3182 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3183 						  atype, &btf_id);
3184 	} else {
3185 		if (atype != BPF_READ) {
3186 			verbose(env, "only read is supported\n");
3187 			return -EACCES;
3188 		}
3189 
3190 		ret = btf_struct_access(&env->log, t, off, size, atype,
3191 					&btf_id);
3192 	}
3193 
3194 	if (ret < 0)
3195 		return ret;
3196 
3197 	if (atype == BPF_READ && value_regno >= 0)
3198 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3199 
3200 	return 0;
3201 }
3202 
3203 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3204 				   struct bpf_reg_state *regs,
3205 				   int regno, int off, int size,
3206 				   enum bpf_access_type atype,
3207 				   int value_regno)
3208 {
3209 	struct bpf_reg_state *reg = regs + regno;
3210 	struct bpf_map *map = reg->map_ptr;
3211 	const struct btf_type *t;
3212 	const char *tname;
3213 	u32 btf_id;
3214 	int ret;
3215 
3216 	if (!btf_vmlinux) {
3217 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3218 		return -ENOTSUPP;
3219 	}
3220 
3221 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3222 		verbose(env, "map_ptr access not supported for map type %d\n",
3223 			map->map_type);
3224 		return -ENOTSUPP;
3225 	}
3226 
3227 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3228 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3229 
3230 	if (!env->allow_ptr_to_map_access) {
3231 		verbose(env,
3232 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3233 			tname);
3234 		return -EPERM;
3235 	}
3236 
3237 	if (off < 0) {
3238 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3239 			regno, tname, off);
3240 		return -EACCES;
3241 	}
3242 
3243 	if (atype != BPF_READ) {
3244 		verbose(env, "only read from %s is supported\n", tname);
3245 		return -EACCES;
3246 	}
3247 
3248 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3249 	if (ret < 0)
3250 		return ret;
3251 
3252 	if (value_regno >= 0)
3253 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3254 
3255 	return 0;
3256 }
3257 
3258 
3259 /* check whether memory at (regno + off) is accessible for t = (read | write)
3260  * if t==write, value_regno is a register which value is stored into memory
3261  * if t==read, value_regno is a register which will receive the value from memory
3262  * if t==write && value_regno==-1, some unknown value is stored into memory
3263  * if t==read && value_regno==-1, don't care what we read from memory
3264  */
3265 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3266 			    int off, int bpf_size, enum bpf_access_type t,
3267 			    int value_regno, bool strict_alignment_once)
3268 {
3269 	struct bpf_reg_state *regs = cur_regs(env);
3270 	struct bpf_reg_state *reg = regs + regno;
3271 	struct bpf_func_state *state;
3272 	int size, err = 0;
3273 
3274 	size = bpf_size_to_bytes(bpf_size);
3275 	if (size < 0)
3276 		return size;
3277 
3278 	/* alignment checks will add in reg->off themselves */
3279 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3280 	if (err)
3281 		return err;
3282 
3283 	/* for access checks, reg->off is just part of off */
3284 	off += reg->off;
3285 
3286 	if (reg->type == PTR_TO_MAP_VALUE) {
3287 		if (t == BPF_WRITE && value_regno >= 0 &&
3288 		    is_pointer_value(env, value_regno)) {
3289 			verbose(env, "R%d leaks addr into map\n", value_regno);
3290 			return -EACCES;
3291 		}
3292 		err = check_map_access_type(env, regno, off, size, t);
3293 		if (err)
3294 			return err;
3295 		err = check_map_access(env, regno, off, size, false);
3296 		if (!err && t == BPF_READ && value_regno >= 0) {
3297 			struct bpf_map *map = reg->map_ptr;
3298 
3299 			/* if map is read-only, track its contents as scalars */
3300 			if (tnum_is_const(reg->var_off) &&
3301 			    bpf_map_is_rdonly(map) &&
3302 			    map->ops->map_direct_value_addr) {
3303 				int map_off = off + reg->var_off.value;
3304 				u64 val = 0;
3305 
3306 				err = bpf_map_direct_read(map, map_off, size,
3307 							  &val);
3308 				if (err)
3309 					return err;
3310 
3311 				regs[value_regno].type = SCALAR_VALUE;
3312 				__mark_reg_known(&regs[value_regno], val);
3313 			} else {
3314 				mark_reg_unknown(env, regs, value_regno);
3315 			}
3316 		}
3317 	} else if (reg->type == PTR_TO_MEM) {
3318 		if (t == BPF_WRITE && value_regno >= 0 &&
3319 		    is_pointer_value(env, value_regno)) {
3320 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3321 			return -EACCES;
3322 		}
3323 		err = check_mem_region_access(env, regno, off, size,
3324 					      reg->mem_size, false);
3325 		if (!err && t == BPF_READ && value_regno >= 0)
3326 			mark_reg_unknown(env, regs, value_regno);
3327 	} else if (reg->type == PTR_TO_CTX) {
3328 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3329 		u32 btf_id = 0;
3330 
3331 		if (t == BPF_WRITE && value_regno >= 0 &&
3332 		    is_pointer_value(env, value_regno)) {
3333 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3334 			return -EACCES;
3335 		}
3336 
3337 		err = check_ctx_reg(env, reg, regno);
3338 		if (err < 0)
3339 			return err;
3340 
3341 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3342 		if (err)
3343 			verbose_linfo(env, insn_idx, "; ");
3344 		if (!err && t == BPF_READ && value_regno >= 0) {
3345 			/* ctx access returns either a scalar, or a
3346 			 * PTR_TO_PACKET[_META,_END]. In the latter
3347 			 * case, we know the offset is zero.
3348 			 */
3349 			if (reg_type == SCALAR_VALUE) {
3350 				mark_reg_unknown(env, regs, value_regno);
3351 			} else {
3352 				mark_reg_known_zero(env, regs,
3353 						    value_regno);
3354 				if (reg_type_may_be_null(reg_type))
3355 					regs[value_regno].id = ++env->id_gen;
3356 				/* A load of ctx field could have different
3357 				 * actual load size with the one encoded in the
3358 				 * insn. When the dst is PTR, it is for sure not
3359 				 * a sub-register.
3360 				 */
3361 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3362 				if (reg_type == PTR_TO_BTF_ID ||
3363 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
3364 					regs[value_regno].btf_id = btf_id;
3365 			}
3366 			regs[value_regno].type = reg_type;
3367 		}
3368 
3369 	} else if (reg->type == PTR_TO_STACK) {
3370 		off += reg->var_off.value;
3371 		err = check_stack_access(env, reg, off, size);
3372 		if (err)
3373 			return err;
3374 
3375 		state = func(env, reg);
3376 		err = update_stack_depth(env, state, off);
3377 		if (err)
3378 			return err;
3379 
3380 		if (t == BPF_WRITE)
3381 			err = check_stack_write(env, state, off, size,
3382 						value_regno, insn_idx);
3383 		else
3384 			err = check_stack_read(env, state, off, size,
3385 					       value_regno);
3386 	} else if (reg_is_pkt_pointer(reg)) {
3387 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3388 			verbose(env, "cannot write into packet\n");
3389 			return -EACCES;
3390 		}
3391 		if (t == BPF_WRITE && value_regno >= 0 &&
3392 		    is_pointer_value(env, value_regno)) {
3393 			verbose(env, "R%d leaks addr into packet\n",
3394 				value_regno);
3395 			return -EACCES;
3396 		}
3397 		err = check_packet_access(env, regno, off, size, false);
3398 		if (!err && t == BPF_READ && value_regno >= 0)
3399 			mark_reg_unknown(env, regs, value_regno);
3400 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3401 		if (t == BPF_WRITE && value_regno >= 0 &&
3402 		    is_pointer_value(env, value_regno)) {
3403 			verbose(env, "R%d leaks addr into flow keys\n",
3404 				value_regno);
3405 			return -EACCES;
3406 		}
3407 
3408 		err = check_flow_keys_access(env, off, size);
3409 		if (!err && t == BPF_READ && value_regno >= 0)
3410 			mark_reg_unknown(env, regs, value_regno);
3411 	} else if (type_is_sk_pointer(reg->type)) {
3412 		if (t == BPF_WRITE) {
3413 			verbose(env, "R%d cannot write into %s\n",
3414 				regno, reg_type_str[reg->type]);
3415 			return -EACCES;
3416 		}
3417 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3418 		if (!err && value_regno >= 0)
3419 			mark_reg_unknown(env, regs, value_regno);
3420 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3421 		err = check_tp_buffer_access(env, reg, regno, off, size);
3422 		if (!err && t == BPF_READ && value_regno >= 0)
3423 			mark_reg_unknown(env, regs, value_regno);
3424 	} else if (reg->type == PTR_TO_BTF_ID) {
3425 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3426 					      value_regno);
3427 	} else if (reg->type == CONST_PTR_TO_MAP) {
3428 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3429 					      value_regno);
3430 	} else {
3431 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3432 			reg_type_str[reg->type]);
3433 		return -EACCES;
3434 	}
3435 
3436 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3437 	    regs[value_regno].type == SCALAR_VALUE) {
3438 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3439 		coerce_reg_to_size(&regs[value_regno], size);
3440 	}
3441 	return err;
3442 }
3443 
3444 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3445 {
3446 	int err;
3447 
3448 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3449 	    insn->imm != 0) {
3450 		verbose(env, "BPF_XADD uses reserved fields\n");
3451 		return -EINVAL;
3452 	}
3453 
3454 	/* check src1 operand */
3455 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3456 	if (err)
3457 		return err;
3458 
3459 	/* check src2 operand */
3460 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3461 	if (err)
3462 		return err;
3463 
3464 	if (is_pointer_value(env, insn->src_reg)) {
3465 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3466 		return -EACCES;
3467 	}
3468 
3469 	if (is_ctx_reg(env, insn->dst_reg) ||
3470 	    is_pkt_reg(env, insn->dst_reg) ||
3471 	    is_flow_key_reg(env, insn->dst_reg) ||
3472 	    is_sk_reg(env, insn->dst_reg)) {
3473 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3474 			insn->dst_reg,
3475 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3476 		return -EACCES;
3477 	}
3478 
3479 	/* check whether atomic_add can read the memory */
3480 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3481 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3482 	if (err)
3483 		return err;
3484 
3485 	/* check whether atomic_add can write into the same memory */
3486 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3487 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3488 }
3489 
3490 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3491 				  int off, int access_size,
3492 				  bool zero_size_allowed)
3493 {
3494 	struct bpf_reg_state *reg = reg_state(env, regno);
3495 
3496 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3497 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3498 		if (tnum_is_const(reg->var_off)) {
3499 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3500 				regno, off, access_size);
3501 		} else {
3502 			char tn_buf[48];
3503 
3504 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3505 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3506 				regno, tn_buf, access_size);
3507 		}
3508 		return -EACCES;
3509 	}
3510 	return 0;
3511 }
3512 
3513 /* when register 'regno' is passed into function that will read 'access_size'
3514  * bytes from that pointer, make sure that it's within stack boundary
3515  * and all elements of stack are initialized.
3516  * Unlike most pointer bounds-checking functions, this one doesn't take an
3517  * 'off' argument, so it has to add in reg->off itself.
3518  */
3519 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3520 				int access_size, bool zero_size_allowed,
3521 				struct bpf_call_arg_meta *meta)
3522 {
3523 	struct bpf_reg_state *reg = reg_state(env, regno);
3524 	struct bpf_func_state *state = func(env, reg);
3525 	int err, min_off, max_off, i, j, slot, spi;
3526 
3527 	if (reg->type != PTR_TO_STACK) {
3528 		/* Allow zero-byte read from NULL, regardless of pointer type */
3529 		if (zero_size_allowed && access_size == 0 &&
3530 		    register_is_null(reg))
3531 			return 0;
3532 
3533 		verbose(env, "R%d type=%s expected=%s\n", regno,
3534 			reg_type_str[reg->type],
3535 			reg_type_str[PTR_TO_STACK]);
3536 		return -EACCES;
3537 	}
3538 
3539 	if (tnum_is_const(reg->var_off)) {
3540 		min_off = max_off = reg->var_off.value + reg->off;
3541 		err = __check_stack_boundary(env, regno, min_off, access_size,
3542 					     zero_size_allowed);
3543 		if (err)
3544 			return err;
3545 	} else {
3546 		/* Variable offset is prohibited for unprivileged mode for
3547 		 * simplicity since it requires corresponding support in
3548 		 * Spectre masking for stack ALU.
3549 		 * See also retrieve_ptr_limit().
3550 		 */
3551 		if (!env->bypass_spec_v1) {
3552 			char tn_buf[48];
3553 
3554 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3555 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3556 				regno, tn_buf);
3557 			return -EACCES;
3558 		}
3559 		/* Only initialized buffer on stack is allowed to be accessed
3560 		 * with variable offset. With uninitialized buffer it's hard to
3561 		 * guarantee that whole memory is marked as initialized on
3562 		 * helper return since specific bounds are unknown what may
3563 		 * cause uninitialized stack leaking.
3564 		 */
3565 		if (meta && meta->raw_mode)
3566 			meta = NULL;
3567 
3568 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3569 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3570 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3571 				regno);
3572 			return -EACCES;
3573 		}
3574 		min_off = reg->smin_value + reg->off;
3575 		max_off = reg->smax_value + reg->off;
3576 		err = __check_stack_boundary(env, regno, min_off, access_size,
3577 					     zero_size_allowed);
3578 		if (err) {
3579 			verbose(env, "R%d min value is outside of stack bound\n",
3580 				regno);
3581 			return err;
3582 		}
3583 		err = __check_stack_boundary(env, regno, max_off, access_size,
3584 					     zero_size_allowed);
3585 		if (err) {
3586 			verbose(env, "R%d max value is outside of stack bound\n",
3587 				regno);
3588 			return err;
3589 		}
3590 	}
3591 
3592 	if (meta && meta->raw_mode) {
3593 		meta->access_size = access_size;
3594 		meta->regno = regno;
3595 		return 0;
3596 	}
3597 
3598 	for (i = min_off; i < max_off + access_size; i++) {
3599 		u8 *stype;
3600 
3601 		slot = -i - 1;
3602 		spi = slot / BPF_REG_SIZE;
3603 		if (state->allocated_stack <= slot)
3604 			goto err;
3605 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3606 		if (*stype == STACK_MISC)
3607 			goto mark;
3608 		if (*stype == STACK_ZERO) {
3609 			/* helper can write anything into the stack */
3610 			*stype = STACK_MISC;
3611 			goto mark;
3612 		}
3613 
3614 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3615 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3616 			goto mark;
3617 
3618 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3619 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3620 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3621 			for (j = 0; j < BPF_REG_SIZE; j++)
3622 				state->stack[spi].slot_type[j] = STACK_MISC;
3623 			goto mark;
3624 		}
3625 
3626 err:
3627 		if (tnum_is_const(reg->var_off)) {
3628 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3629 				min_off, i - min_off, access_size);
3630 		} else {
3631 			char tn_buf[48];
3632 
3633 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3634 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3635 				tn_buf, i - min_off, access_size);
3636 		}
3637 		return -EACCES;
3638 mark:
3639 		/* reading any byte out of 8-byte 'spill_slot' will cause
3640 		 * the whole slot to be marked as 'read'
3641 		 */
3642 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3643 			      state->stack[spi].spilled_ptr.parent,
3644 			      REG_LIVE_READ64);
3645 	}
3646 	return update_stack_depth(env, state, min_off);
3647 }
3648 
3649 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3650 				   int access_size, bool zero_size_allowed,
3651 				   struct bpf_call_arg_meta *meta)
3652 {
3653 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3654 
3655 	switch (reg->type) {
3656 	case PTR_TO_PACKET:
3657 	case PTR_TO_PACKET_META:
3658 		return check_packet_access(env, regno, reg->off, access_size,
3659 					   zero_size_allowed);
3660 	case PTR_TO_MAP_VALUE:
3661 		if (check_map_access_type(env, regno, reg->off, access_size,
3662 					  meta && meta->raw_mode ? BPF_WRITE :
3663 					  BPF_READ))
3664 			return -EACCES;
3665 		return check_map_access(env, regno, reg->off, access_size,
3666 					zero_size_allowed);
3667 	case PTR_TO_MEM:
3668 		return check_mem_region_access(env, regno, reg->off,
3669 					       access_size, reg->mem_size,
3670 					       zero_size_allowed);
3671 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3672 		return check_stack_boundary(env, regno, access_size,
3673 					    zero_size_allowed, meta);
3674 	}
3675 }
3676 
3677 /* Implementation details:
3678  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3679  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3680  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3681  * value_or_null->value transition, since the verifier only cares about
3682  * the range of access to valid map value pointer and doesn't care about actual
3683  * address of the map element.
3684  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3685  * reg->id > 0 after value_or_null->value transition. By doing so
3686  * two bpf_map_lookups will be considered two different pointers that
3687  * point to different bpf_spin_locks.
3688  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3689  * dead-locks.
3690  * Since only one bpf_spin_lock is allowed the checks are simpler than
3691  * reg_is_refcounted() logic. The verifier needs to remember only
3692  * one spin_lock instead of array of acquired_refs.
3693  * cur_state->active_spin_lock remembers which map value element got locked
3694  * and clears it after bpf_spin_unlock.
3695  */
3696 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3697 			     bool is_lock)
3698 {
3699 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3700 	struct bpf_verifier_state *cur = env->cur_state;
3701 	bool is_const = tnum_is_const(reg->var_off);
3702 	struct bpf_map *map = reg->map_ptr;
3703 	u64 val = reg->var_off.value;
3704 
3705 	if (reg->type != PTR_TO_MAP_VALUE) {
3706 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3707 		return -EINVAL;
3708 	}
3709 	if (!is_const) {
3710 		verbose(env,
3711 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3712 			regno);
3713 		return -EINVAL;
3714 	}
3715 	if (!map->btf) {
3716 		verbose(env,
3717 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3718 			map->name);
3719 		return -EINVAL;
3720 	}
3721 	if (!map_value_has_spin_lock(map)) {
3722 		if (map->spin_lock_off == -E2BIG)
3723 			verbose(env,
3724 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3725 				map->name);
3726 		else if (map->spin_lock_off == -ENOENT)
3727 			verbose(env,
3728 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3729 				map->name);
3730 		else
3731 			verbose(env,
3732 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3733 				map->name);
3734 		return -EINVAL;
3735 	}
3736 	if (map->spin_lock_off != val + reg->off) {
3737 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3738 			val + reg->off);
3739 		return -EINVAL;
3740 	}
3741 	if (is_lock) {
3742 		if (cur->active_spin_lock) {
3743 			verbose(env,
3744 				"Locking two bpf_spin_locks are not allowed\n");
3745 			return -EINVAL;
3746 		}
3747 		cur->active_spin_lock = reg->id;
3748 	} else {
3749 		if (!cur->active_spin_lock) {
3750 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3751 			return -EINVAL;
3752 		}
3753 		if (cur->active_spin_lock != reg->id) {
3754 			verbose(env, "bpf_spin_unlock of different lock\n");
3755 			return -EINVAL;
3756 		}
3757 		cur->active_spin_lock = 0;
3758 	}
3759 	return 0;
3760 }
3761 
3762 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3763 {
3764 	return type == ARG_PTR_TO_MEM ||
3765 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3766 	       type == ARG_PTR_TO_UNINIT_MEM;
3767 }
3768 
3769 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3770 {
3771 	return type == ARG_CONST_SIZE ||
3772 	       type == ARG_CONST_SIZE_OR_ZERO;
3773 }
3774 
3775 static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3776 {
3777 	return type == ARG_PTR_TO_ALLOC_MEM ||
3778 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3779 }
3780 
3781 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3782 {
3783 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3784 }
3785 
3786 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3787 {
3788 	return type == ARG_PTR_TO_INT ||
3789 	       type == ARG_PTR_TO_LONG;
3790 }
3791 
3792 static int int_ptr_type_to_size(enum bpf_arg_type type)
3793 {
3794 	if (type == ARG_PTR_TO_INT)
3795 		return sizeof(u32);
3796 	else if (type == ARG_PTR_TO_LONG)
3797 		return sizeof(u64);
3798 
3799 	return -EINVAL;
3800 }
3801 
3802 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
3803 			  struct bpf_call_arg_meta *meta,
3804 			  const struct bpf_func_proto *fn)
3805 {
3806 	u32 regno = BPF_REG_1 + arg;
3807 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3808 	enum bpf_reg_type expected_type, type = reg->type;
3809 	enum bpf_arg_type arg_type = fn->arg_type[arg];
3810 	int err = 0;
3811 
3812 	if (arg_type == ARG_DONTCARE)
3813 		return 0;
3814 
3815 	err = check_reg_arg(env, regno, SRC_OP);
3816 	if (err)
3817 		return err;
3818 
3819 	if (arg_type == ARG_ANYTHING) {
3820 		if (is_pointer_value(env, regno)) {
3821 			verbose(env, "R%d leaks addr into helper function\n",
3822 				regno);
3823 			return -EACCES;
3824 		}
3825 		return 0;
3826 	}
3827 
3828 	if (type_is_pkt_pointer(type) &&
3829 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3830 		verbose(env, "helper access to the packet is not allowed\n");
3831 		return -EACCES;
3832 	}
3833 
3834 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3835 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3836 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3837 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3838 		expected_type = PTR_TO_STACK;
3839 		if (register_is_null(reg) &&
3840 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3841 			/* final test in check_stack_boundary() */;
3842 		else if (!type_is_pkt_pointer(type) &&
3843 			 type != PTR_TO_MAP_VALUE &&
3844 			 type != expected_type)
3845 			goto err_type;
3846 	} else if (arg_type == ARG_CONST_SIZE ||
3847 		   arg_type == ARG_CONST_SIZE_OR_ZERO ||
3848 		   arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
3849 		expected_type = SCALAR_VALUE;
3850 		if (type != expected_type)
3851 			goto err_type;
3852 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3853 		expected_type = CONST_PTR_TO_MAP;
3854 		if (type != expected_type)
3855 			goto err_type;
3856 	} else if (arg_type == ARG_PTR_TO_CTX ||
3857 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3858 		expected_type = PTR_TO_CTX;
3859 		if (!(register_is_null(reg) &&
3860 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3861 			if (type != expected_type)
3862 				goto err_type;
3863 			err = check_ctx_reg(env, reg, regno);
3864 			if (err < 0)
3865 				return err;
3866 		}
3867 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3868 		expected_type = PTR_TO_SOCK_COMMON;
3869 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3870 		if (!type_is_sk_pointer(type))
3871 			goto err_type;
3872 		if (reg->ref_obj_id) {
3873 			if (meta->ref_obj_id) {
3874 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3875 					regno, reg->ref_obj_id,
3876 					meta->ref_obj_id);
3877 				return -EFAULT;
3878 			}
3879 			meta->ref_obj_id = reg->ref_obj_id;
3880 		}
3881 	} else if (arg_type == ARG_PTR_TO_SOCKET ||
3882 		   arg_type == ARG_PTR_TO_SOCKET_OR_NULL) {
3883 		expected_type = PTR_TO_SOCKET;
3884 		if (!(register_is_null(reg) &&
3885 		      arg_type == ARG_PTR_TO_SOCKET_OR_NULL)) {
3886 			if (type != expected_type)
3887 				goto err_type;
3888 		}
3889 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3890 		expected_type = PTR_TO_BTF_ID;
3891 		if (type != expected_type)
3892 			goto err_type;
3893 		if (!fn->check_btf_id) {
3894 			if (reg->btf_id != meta->btf_id) {
3895 				verbose(env, "Helper has type %s got %s in R%d\n",
3896 					kernel_type_name(meta->btf_id),
3897 					kernel_type_name(reg->btf_id), regno);
3898 
3899 				return -EACCES;
3900 			}
3901 		} else if (!fn->check_btf_id(reg->btf_id, arg)) {
3902 			verbose(env, "Helper does not support %s in R%d\n",
3903 				kernel_type_name(reg->btf_id), regno);
3904 
3905 			return -EACCES;
3906 		}
3907 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3908 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3909 				regno);
3910 			return -EACCES;
3911 		}
3912 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3913 		if (meta->func_id == BPF_FUNC_spin_lock) {
3914 			if (process_spin_lock(env, regno, true))
3915 				return -EACCES;
3916 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3917 			if (process_spin_lock(env, regno, false))
3918 				return -EACCES;
3919 		} else {
3920 			verbose(env, "verifier internal error\n");
3921 			return -EFAULT;
3922 		}
3923 	} else if (arg_type_is_mem_ptr(arg_type)) {
3924 		expected_type = PTR_TO_STACK;
3925 		/* One exception here. In case function allows for NULL to be
3926 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3927 		 * happens during stack boundary checking.
3928 		 */
3929 		if (register_is_null(reg) &&
3930 		    (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
3931 		     arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
3932 			/* final test in check_stack_boundary() */;
3933 		else if (!type_is_pkt_pointer(type) &&
3934 			 type != PTR_TO_MAP_VALUE &&
3935 			 type != PTR_TO_MEM &&
3936 			 type != expected_type)
3937 			goto err_type;
3938 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3939 	} else if (arg_type_is_alloc_mem_ptr(arg_type)) {
3940 		expected_type = PTR_TO_MEM;
3941 		if (register_is_null(reg) &&
3942 		    arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
3943 			/* final test in check_stack_boundary() */;
3944 		else if (type != expected_type)
3945 			goto err_type;
3946 		if (meta->ref_obj_id) {
3947 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3948 				regno, reg->ref_obj_id,
3949 				meta->ref_obj_id);
3950 			return -EFAULT;
3951 		}
3952 		meta->ref_obj_id = reg->ref_obj_id;
3953 	} else if (arg_type_is_int_ptr(arg_type)) {
3954 		expected_type = PTR_TO_STACK;
3955 		if (!type_is_pkt_pointer(type) &&
3956 		    type != PTR_TO_MAP_VALUE &&
3957 		    type != expected_type)
3958 			goto err_type;
3959 	} else {
3960 		verbose(env, "unsupported arg_type %d\n", arg_type);
3961 		return -EFAULT;
3962 	}
3963 
3964 	if (arg_type == ARG_CONST_MAP_PTR) {
3965 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3966 		meta->map_ptr = reg->map_ptr;
3967 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3968 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3969 		 * check that [key, key + map->key_size) are within
3970 		 * stack limits and initialized
3971 		 */
3972 		if (!meta->map_ptr) {
3973 			/* in function declaration map_ptr must come before
3974 			 * map_key, so that it's verified and known before
3975 			 * we have to check map_key here. Otherwise it means
3976 			 * that kernel subsystem misconfigured verifier
3977 			 */
3978 			verbose(env, "invalid map_ptr to access map->key\n");
3979 			return -EACCES;
3980 		}
3981 		err = check_helper_mem_access(env, regno,
3982 					      meta->map_ptr->key_size, false,
3983 					      NULL);
3984 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3985 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3986 		    !register_is_null(reg)) ||
3987 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3988 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3989 		 * check [value, value + map->value_size) validity
3990 		 */
3991 		if (!meta->map_ptr) {
3992 			/* kernel subsystem misconfigured verifier */
3993 			verbose(env, "invalid map_ptr to access map->value\n");
3994 			return -EACCES;
3995 		}
3996 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3997 		err = check_helper_mem_access(env, regno,
3998 					      meta->map_ptr->value_size, false,
3999 					      meta);
4000 	} else if (arg_type_is_mem_size(arg_type)) {
4001 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4002 
4003 		/* This is used to refine r0 return value bounds for helpers
4004 		 * that enforce this value as an upper bound on return values.
4005 		 * See do_refine_retval_range() for helpers that can refine
4006 		 * the return value. C type of helper is u32 so we pull register
4007 		 * bound from umax_value however, if negative verifier errors
4008 		 * out. Only upper bounds can be learned because retval is an
4009 		 * int type and negative retvals are allowed.
4010 		 */
4011 		meta->msize_max_value = reg->umax_value;
4012 
4013 		/* The register is SCALAR_VALUE; the access check
4014 		 * happens using its boundaries.
4015 		 */
4016 		if (!tnum_is_const(reg->var_off))
4017 			/* For unprivileged variable accesses, disable raw
4018 			 * mode so that the program is required to
4019 			 * initialize all the memory that the helper could
4020 			 * just partially fill up.
4021 			 */
4022 			meta = NULL;
4023 
4024 		if (reg->smin_value < 0) {
4025 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4026 				regno);
4027 			return -EACCES;
4028 		}
4029 
4030 		if (reg->umin_value == 0) {
4031 			err = check_helper_mem_access(env, regno - 1, 0,
4032 						      zero_size_allowed,
4033 						      meta);
4034 			if (err)
4035 				return err;
4036 		}
4037 
4038 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4039 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4040 				regno);
4041 			return -EACCES;
4042 		}
4043 		err = check_helper_mem_access(env, regno - 1,
4044 					      reg->umax_value,
4045 					      zero_size_allowed, meta);
4046 		if (!err)
4047 			err = mark_chain_precision(env, regno);
4048 	} else if (arg_type_is_alloc_size(arg_type)) {
4049 		if (!tnum_is_const(reg->var_off)) {
4050 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4051 				regno);
4052 			return -EACCES;
4053 		}
4054 		meta->mem_size = reg->var_off.value;
4055 	} else if (arg_type_is_int_ptr(arg_type)) {
4056 		int size = int_ptr_type_to_size(arg_type);
4057 
4058 		err = check_helper_mem_access(env, regno, size, false, meta);
4059 		if (err)
4060 			return err;
4061 		err = check_ptr_alignment(env, reg, 0, size, true);
4062 	}
4063 
4064 	return err;
4065 err_type:
4066 	verbose(env, "R%d type=%s expected=%s\n", regno,
4067 		reg_type_str[type], reg_type_str[expected_type]);
4068 	return -EACCES;
4069 }
4070 
4071 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4072 					struct bpf_map *map, int func_id)
4073 {
4074 	if (!map)
4075 		return 0;
4076 
4077 	/* We need a two way check, first is from map perspective ... */
4078 	switch (map->map_type) {
4079 	case BPF_MAP_TYPE_PROG_ARRAY:
4080 		if (func_id != BPF_FUNC_tail_call)
4081 			goto error;
4082 		break;
4083 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4084 		if (func_id != BPF_FUNC_perf_event_read &&
4085 		    func_id != BPF_FUNC_perf_event_output &&
4086 		    func_id != BPF_FUNC_skb_output &&
4087 		    func_id != BPF_FUNC_perf_event_read_value &&
4088 		    func_id != BPF_FUNC_xdp_output)
4089 			goto error;
4090 		break;
4091 	case BPF_MAP_TYPE_RINGBUF:
4092 		if (func_id != BPF_FUNC_ringbuf_output &&
4093 		    func_id != BPF_FUNC_ringbuf_reserve &&
4094 		    func_id != BPF_FUNC_ringbuf_submit &&
4095 		    func_id != BPF_FUNC_ringbuf_discard &&
4096 		    func_id != BPF_FUNC_ringbuf_query)
4097 			goto error;
4098 		break;
4099 	case BPF_MAP_TYPE_STACK_TRACE:
4100 		if (func_id != BPF_FUNC_get_stackid)
4101 			goto error;
4102 		break;
4103 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4104 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4105 		    func_id != BPF_FUNC_current_task_under_cgroup)
4106 			goto error;
4107 		break;
4108 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4109 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4110 		if (func_id != BPF_FUNC_get_local_storage)
4111 			goto error;
4112 		break;
4113 	case BPF_MAP_TYPE_DEVMAP:
4114 	case BPF_MAP_TYPE_DEVMAP_HASH:
4115 		if (func_id != BPF_FUNC_redirect_map &&
4116 		    func_id != BPF_FUNC_map_lookup_elem)
4117 			goto error;
4118 		break;
4119 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4120 	 * appear.
4121 	 */
4122 	case BPF_MAP_TYPE_CPUMAP:
4123 		if (func_id != BPF_FUNC_redirect_map)
4124 			goto error;
4125 		break;
4126 	case BPF_MAP_TYPE_XSKMAP:
4127 		if (func_id != BPF_FUNC_redirect_map &&
4128 		    func_id != BPF_FUNC_map_lookup_elem)
4129 			goto error;
4130 		break;
4131 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4132 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4133 		if (func_id != BPF_FUNC_map_lookup_elem)
4134 			goto error;
4135 		break;
4136 	case BPF_MAP_TYPE_SOCKMAP:
4137 		if (func_id != BPF_FUNC_sk_redirect_map &&
4138 		    func_id != BPF_FUNC_sock_map_update &&
4139 		    func_id != BPF_FUNC_map_delete_elem &&
4140 		    func_id != BPF_FUNC_msg_redirect_map &&
4141 		    func_id != BPF_FUNC_sk_select_reuseport &&
4142 		    func_id != BPF_FUNC_map_lookup_elem)
4143 			goto error;
4144 		break;
4145 	case BPF_MAP_TYPE_SOCKHASH:
4146 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4147 		    func_id != BPF_FUNC_sock_hash_update &&
4148 		    func_id != BPF_FUNC_map_delete_elem &&
4149 		    func_id != BPF_FUNC_msg_redirect_hash &&
4150 		    func_id != BPF_FUNC_sk_select_reuseport &&
4151 		    func_id != BPF_FUNC_map_lookup_elem)
4152 			goto error;
4153 		break;
4154 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4155 		if (func_id != BPF_FUNC_sk_select_reuseport)
4156 			goto error;
4157 		break;
4158 	case BPF_MAP_TYPE_QUEUE:
4159 	case BPF_MAP_TYPE_STACK:
4160 		if (func_id != BPF_FUNC_map_peek_elem &&
4161 		    func_id != BPF_FUNC_map_pop_elem &&
4162 		    func_id != BPF_FUNC_map_push_elem)
4163 			goto error;
4164 		break;
4165 	case BPF_MAP_TYPE_SK_STORAGE:
4166 		if (func_id != BPF_FUNC_sk_storage_get &&
4167 		    func_id != BPF_FUNC_sk_storage_delete)
4168 			goto error;
4169 		break;
4170 	default:
4171 		break;
4172 	}
4173 
4174 	/* ... and second from the function itself. */
4175 	switch (func_id) {
4176 	case BPF_FUNC_tail_call:
4177 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4178 			goto error;
4179 		if (env->subprog_cnt > 1) {
4180 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4181 			return -EINVAL;
4182 		}
4183 		break;
4184 	case BPF_FUNC_perf_event_read:
4185 	case BPF_FUNC_perf_event_output:
4186 	case BPF_FUNC_perf_event_read_value:
4187 	case BPF_FUNC_skb_output:
4188 	case BPF_FUNC_xdp_output:
4189 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4190 			goto error;
4191 		break;
4192 	case BPF_FUNC_get_stackid:
4193 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4194 			goto error;
4195 		break;
4196 	case BPF_FUNC_current_task_under_cgroup:
4197 	case BPF_FUNC_skb_under_cgroup:
4198 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4199 			goto error;
4200 		break;
4201 	case BPF_FUNC_redirect_map:
4202 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4203 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4204 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4205 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4206 			goto error;
4207 		break;
4208 	case BPF_FUNC_sk_redirect_map:
4209 	case BPF_FUNC_msg_redirect_map:
4210 	case BPF_FUNC_sock_map_update:
4211 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4212 			goto error;
4213 		break;
4214 	case BPF_FUNC_sk_redirect_hash:
4215 	case BPF_FUNC_msg_redirect_hash:
4216 	case BPF_FUNC_sock_hash_update:
4217 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4218 			goto error;
4219 		break;
4220 	case BPF_FUNC_get_local_storage:
4221 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4222 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4223 			goto error;
4224 		break;
4225 	case BPF_FUNC_sk_select_reuseport:
4226 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4227 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4228 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4229 			goto error;
4230 		break;
4231 	case BPF_FUNC_map_peek_elem:
4232 	case BPF_FUNC_map_pop_elem:
4233 	case BPF_FUNC_map_push_elem:
4234 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4235 		    map->map_type != BPF_MAP_TYPE_STACK)
4236 			goto error;
4237 		break;
4238 	case BPF_FUNC_sk_storage_get:
4239 	case BPF_FUNC_sk_storage_delete:
4240 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4241 			goto error;
4242 		break;
4243 	default:
4244 		break;
4245 	}
4246 
4247 	return 0;
4248 error:
4249 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4250 		map->map_type, func_id_name(func_id), func_id);
4251 	return -EINVAL;
4252 }
4253 
4254 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4255 {
4256 	int count = 0;
4257 
4258 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4259 		count++;
4260 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4261 		count++;
4262 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4263 		count++;
4264 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4265 		count++;
4266 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4267 		count++;
4268 
4269 	/* We only support one arg being in raw mode at the moment,
4270 	 * which is sufficient for the helper functions we have
4271 	 * right now.
4272 	 */
4273 	return count <= 1;
4274 }
4275 
4276 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4277 				    enum bpf_arg_type arg_next)
4278 {
4279 	return (arg_type_is_mem_ptr(arg_curr) &&
4280 	        !arg_type_is_mem_size(arg_next)) ||
4281 	       (!arg_type_is_mem_ptr(arg_curr) &&
4282 		arg_type_is_mem_size(arg_next));
4283 }
4284 
4285 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4286 {
4287 	/* bpf_xxx(..., buf, len) call will access 'len'
4288 	 * bytes from memory 'buf'. Both arg types need
4289 	 * to be paired, so make sure there's no buggy
4290 	 * helper function specification.
4291 	 */
4292 	if (arg_type_is_mem_size(fn->arg1_type) ||
4293 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4294 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4295 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4296 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4297 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4298 		return false;
4299 
4300 	return true;
4301 }
4302 
4303 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4304 {
4305 	int count = 0;
4306 
4307 	if (arg_type_may_be_refcounted(fn->arg1_type))
4308 		count++;
4309 	if (arg_type_may_be_refcounted(fn->arg2_type))
4310 		count++;
4311 	if (arg_type_may_be_refcounted(fn->arg3_type))
4312 		count++;
4313 	if (arg_type_may_be_refcounted(fn->arg4_type))
4314 		count++;
4315 	if (arg_type_may_be_refcounted(fn->arg5_type))
4316 		count++;
4317 
4318 	/* A reference acquiring function cannot acquire
4319 	 * another refcounted ptr.
4320 	 */
4321 	if (may_be_acquire_function(func_id) && count)
4322 		return false;
4323 
4324 	/* We only support one arg being unreferenced at the moment,
4325 	 * which is sufficient for the helper functions we have right now.
4326 	 */
4327 	return count <= 1;
4328 }
4329 
4330 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4331 {
4332 	return check_raw_mode_ok(fn) &&
4333 	       check_arg_pair_ok(fn) &&
4334 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4335 }
4336 
4337 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4338  * are now invalid, so turn them into unknown SCALAR_VALUE.
4339  */
4340 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4341 				     struct bpf_func_state *state)
4342 {
4343 	struct bpf_reg_state *regs = state->regs, *reg;
4344 	int i;
4345 
4346 	for (i = 0; i < MAX_BPF_REG; i++)
4347 		if (reg_is_pkt_pointer_any(&regs[i]))
4348 			mark_reg_unknown(env, regs, i);
4349 
4350 	bpf_for_each_spilled_reg(i, state, reg) {
4351 		if (!reg)
4352 			continue;
4353 		if (reg_is_pkt_pointer_any(reg))
4354 			__mark_reg_unknown(env, reg);
4355 	}
4356 }
4357 
4358 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4359 {
4360 	struct bpf_verifier_state *vstate = env->cur_state;
4361 	int i;
4362 
4363 	for (i = 0; i <= vstate->curframe; i++)
4364 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4365 }
4366 
4367 static void release_reg_references(struct bpf_verifier_env *env,
4368 				   struct bpf_func_state *state,
4369 				   int ref_obj_id)
4370 {
4371 	struct bpf_reg_state *regs = state->regs, *reg;
4372 	int i;
4373 
4374 	for (i = 0; i < MAX_BPF_REG; i++)
4375 		if (regs[i].ref_obj_id == ref_obj_id)
4376 			mark_reg_unknown(env, regs, i);
4377 
4378 	bpf_for_each_spilled_reg(i, state, reg) {
4379 		if (!reg)
4380 			continue;
4381 		if (reg->ref_obj_id == ref_obj_id)
4382 			__mark_reg_unknown(env, reg);
4383 	}
4384 }
4385 
4386 /* The pointer with the specified id has released its reference to kernel
4387  * resources. Identify all copies of the same pointer and clear the reference.
4388  */
4389 static int release_reference(struct bpf_verifier_env *env,
4390 			     int ref_obj_id)
4391 {
4392 	struct bpf_verifier_state *vstate = env->cur_state;
4393 	int err;
4394 	int i;
4395 
4396 	err = release_reference_state(cur_func(env), ref_obj_id);
4397 	if (err)
4398 		return err;
4399 
4400 	for (i = 0; i <= vstate->curframe; i++)
4401 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4402 
4403 	return 0;
4404 }
4405 
4406 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4407 				    struct bpf_reg_state *regs)
4408 {
4409 	int i;
4410 
4411 	/* after the call registers r0 - r5 were scratched */
4412 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4413 		mark_reg_not_init(env, regs, caller_saved[i]);
4414 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4415 	}
4416 }
4417 
4418 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4419 			   int *insn_idx)
4420 {
4421 	struct bpf_verifier_state *state = env->cur_state;
4422 	struct bpf_func_info_aux *func_info_aux;
4423 	struct bpf_func_state *caller, *callee;
4424 	int i, err, subprog, target_insn;
4425 	bool is_global = false;
4426 
4427 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4428 		verbose(env, "the call stack of %d frames is too deep\n",
4429 			state->curframe + 2);
4430 		return -E2BIG;
4431 	}
4432 
4433 	target_insn = *insn_idx + insn->imm;
4434 	subprog = find_subprog(env, target_insn + 1);
4435 	if (subprog < 0) {
4436 		verbose(env, "verifier bug. No program starts at insn %d\n",
4437 			target_insn + 1);
4438 		return -EFAULT;
4439 	}
4440 
4441 	caller = state->frame[state->curframe];
4442 	if (state->frame[state->curframe + 1]) {
4443 		verbose(env, "verifier bug. Frame %d already allocated\n",
4444 			state->curframe + 1);
4445 		return -EFAULT;
4446 	}
4447 
4448 	func_info_aux = env->prog->aux->func_info_aux;
4449 	if (func_info_aux)
4450 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4451 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4452 	if (err == -EFAULT)
4453 		return err;
4454 	if (is_global) {
4455 		if (err) {
4456 			verbose(env, "Caller passes invalid args into func#%d\n",
4457 				subprog);
4458 			return err;
4459 		} else {
4460 			if (env->log.level & BPF_LOG_LEVEL)
4461 				verbose(env,
4462 					"Func#%d is global and valid. Skipping.\n",
4463 					subprog);
4464 			clear_caller_saved_regs(env, caller->regs);
4465 
4466 			/* All global functions return SCALAR_VALUE */
4467 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4468 
4469 			/* continue with next insn after call */
4470 			return 0;
4471 		}
4472 	}
4473 
4474 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4475 	if (!callee)
4476 		return -ENOMEM;
4477 	state->frame[state->curframe + 1] = callee;
4478 
4479 	/* callee cannot access r0, r6 - r9 for reading and has to write
4480 	 * into its own stack before reading from it.
4481 	 * callee can read/write into caller's stack
4482 	 */
4483 	init_func_state(env, callee,
4484 			/* remember the callsite, it will be used by bpf_exit */
4485 			*insn_idx /* callsite */,
4486 			state->curframe + 1 /* frameno within this callchain */,
4487 			subprog /* subprog number within this prog */);
4488 
4489 	/* Transfer references to the callee */
4490 	err = transfer_reference_state(callee, caller);
4491 	if (err)
4492 		return err;
4493 
4494 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4495 	 * pointers, which connects us up to the liveness chain
4496 	 */
4497 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4498 		callee->regs[i] = caller->regs[i];
4499 
4500 	clear_caller_saved_regs(env, caller->regs);
4501 
4502 	/* only increment it after check_reg_arg() finished */
4503 	state->curframe++;
4504 
4505 	/* and go analyze first insn of the callee */
4506 	*insn_idx = target_insn;
4507 
4508 	if (env->log.level & BPF_LOG_LEVEL) {
4509 		verbose(env, "caller:\n");
4510 		print_verifier_state(env, caller);
4511 		verbose(env, "callee:\n");
4512 		print_verifier_state(env, callee);
4513 	}
4514 	return 0;
4515 }
4516 
4517 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4518 {
4519 	struct bpf_verifier_state *state = env->cur_state;
4520 	struct bpf_func_state *caller, *callee;
4521 	struct bpf_reg_state *r0;
4522 	int err;
4523 
4524 	callee = state->frame[state->curframe];
4525 	r0 = &callee->regs[BPF_REG_0];
4526 	if (r0->type == PTR_TO_STACK) {
4527 		/* technically it's ok to return caller's stack pointer
4528 		 * (or caller's caller's pointer) back to the caller,
4529 		 * since these pointers are valid. Only current stack
4530 		 * pointer will be invalid as soon as function exits,
4531 		 * but let's be conservative
4532 		 */
4533 		verbose(env, "cannot return stack pointer to the caller\n");
4534 		return -EINVAL;
4535 	}
4536 
4537 	state->curframe--;
4538 	caller = state->frame[state->curframe];
4539 	/* return to the caller whatever r0 had in the callee */
4540 	caller->regs[BPF_REG_0] = *r0;
4541 
4542 	/* Transfer references to the caller */
4543 	err = transfer_reference_state(caller, callee);
4544 	if (err)
4545 		return err;
4546 
4547 	*insn_idx = callee->callsite + 1;
4548 	if (env->log.level & BPF_LOG_LEVEL) {
4549 		verbose(env, "returning from callee:\n");
4550 		print_verifier_state(env, callee);
4551 		verbose(env, "to caller at %d:\n", *insn_idx);
4552 		print_verifier_state(env, caller);
4553 	}
4554 	/* clear everything in the callee */
4555 	free_func_state(callee);
4556 	state->frame[state->curframe + 1] = NULL;
4557 	return 0;
4558 }
4559 
4560 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4561 				   int func_id,
4562 				   struct bpf_call_arg_meta *meta)
4563 {
4564 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4565 
4566 	if (ret_type != RET_INTEGER ||
4567 	    (func_id != BPF_FUNC_get_stack &&
4568 	     func_id != BPF_FUNC_probe_read_str &&
4569 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4570 	     func_id != BPF_FUNC_probe_read_user_str))
4571 		return;
4572 
4573 	ret_reg->smax_value = meta->msize_max_value;
4574 	ret_reg->s32_max_value = meta->msize_max_value;
4575 	__reg_deduce_bounds(ret_reg);
4576 	__reg_bound_offset(ret_reg);
4577 	__update_reg_bounds(ret_reg);
4578 }
4579 
4580 static int
4581 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4582 		int func_id, int insn_idx)
4583 {
4584 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4585 	struct bpf_map *map = meta->map_ptr;
4586 
4587 	if (func_id != BPF_FUNC_tail_call &&
4588 	    func_id != BPF_FUNC_map_lookup_elem &&
4589 	    func_id != BPF_FUNC_map_update_elem &&
4590 	    func_id != BPF_FUNC_map_delete_elem &&
4591 	    func_id != BPF_FUNC_map_push_elem &&
4592 	    func_id != BPF_FUNC_map_pop_elem &&
4593 	    func_id != BPF_FUNC_map_peek_elem)
4594 		return 0;
4595 
4596 	if (map == NULL) {
4597 		verbose(env, "kernel subsystem misconfigured verifier\n");
4598 		return -EINVAL;
4599 	}
4600 
4601 	/* In case of read-only, some additional restrictions
4602 	 * need to be applied in order to prevent altering the
4603 	 * state of the map from program side.
4604 	 */
4605 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4606 	    (func_id == BPF_FUNC_map_delete_elem ||
4607 	     func_id == BPF_FUNC_map_update_elem ||
4608 	     func_id == BPF_FUNC_map_push_elem ||
4609 	     func_id == BPF_FUNC_map_pop_elem)) {
4610 		verbose(env, "write into map forbidden\n");
4611 		return -EACCES;
4612 	}
4613 
4614 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4615 		bpf_map_ptr_store(aux, meta->map_ptr,
4616 				  !meta->map_ptr->bypass_spec_v1);
4617 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4618 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4619 				  !meta->map_ptr->bypass_spec_v1);
4620 	return 0;
4621 }
4622 
4623 static int
4624 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4625 		int func_id, int insn_idx)
4626 {
4627 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4628 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4629 	struct bpf_map *map = meta->map_ptr;
4630 	struct tnum range;
4631 	u64 val;
4632 	int err;
4633 
4634 	if (func_id != BPF_FUNC_tail_call)
4635 		return 0;
4636 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4637 		verbose(env, "kernel subsystem misconfigured verifier\n");
4638 		return -EINVAL;
4639 	}
4640 
4641 	range = tnum_range(0, map->max_entries - 1);
4642 	reg = &regs[BPF_REG_3];
4643 
4644 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4645 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4646 		return 0;
4647 	}
4648 
4649 	err = mark_chain_precision(env, BPF_REG_3);
4650 	if (err)
4651 		return err;
4652 
4653 	val = reg->var_off.value;
4654 	if (bpf_map_key_unseen(aux))
4655 		bpf_map_key_store(aux, val);
4656 	else if (!bpf_map_key_poisoned(aux) &&
4657 		  bpf_map_key_immediate(aux) != val)
4658 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4659 	return 0;
4660 }
4661 
4662 static int check_reference_leak(struct bpf_verifier_env *env)
4663 {
4664 	struct bpf_func_state *state = cur_func(env);
4665 	int i;
4666 
4667 	for (i = 0; i < state->acquired_refs; i++) {
4668 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4669 			state->refs[i].id, state->refs[i].insn_idx);
4670 	}
4671 	return state->acquired_refs ? -EINVAL : 0;
4672 }
4673 
4674 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4675 {
4676 	const struct bpf_func_proto *fn = NULL;
4677 	struct bpf_reg_state *regs;
4678 	struct bpf_call_arg_meta meta;
4679 	bool changes_data;
4680 	int i, err;
4681 
4682 	/* find function prototype */
4683 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4684 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4685 			func_id);
4686 		return -EINVAL;
4687 	}
4688 
4689 	if (env->ops->get_func_proto)
4690 		fn = env->ops->get_func_proto(func_id, env->prog);
4691 	if (!fn) {
4692 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4693 			func_id);
4694 		return -EINVAL;
4695 	}
4696 
4697 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4698 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4699 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4700 		return -EINVAL;
4701 	}
4702 
4703 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4704 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4705 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4706 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4707 			func_id_name(func_id), func_id);
4708 		return -EINVAL;
4709 	}
4710 
4711 	memset(&meta, 0, sizeof(meta));
4712 	meta.pkt_access = fn->pkt_access;
4713 
4714 	err = check_func_proto(fn, func_id);
4715 	if (err) {
4716 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4717 			func_id_name(func_id), func_id);
4718 		return err;
4719 	}
4720 
4721 	meta.func_id = func_id;
4722 	/* check args */
4723 	for (i = 0; i < 5; i++) {
4724 		if (!fn->check_btf_id) {
4725 			err = btf_resolve_helper_id(&env->log, fn, i);
4726 			if (err > 0)
4727 				meta.btf_id = err;
4728 		}
4729 		err = check_func_arg(env, i, &meta, fn);
4730 		if (err)
4731 			return err;
4732 	}
4733 
4734 	err = record_func_map(env, &meta, func_id, insn_idx);
4735 	if (err)
4736 		return err;
4737 
4738 	err = record_func_key(env, &meta, func_id, insn_idx);
4739 	if (err)
4740 		return err;
4741 
4742 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4743 	 * is inferred from register state.
4744 	 */
4745 	for (i = 0; i < meta.access_size; i++) {
4746 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4747 				       BPF_WRITE, -1, false);
4748 		if (err)
4749 			return err;
4750 	}
4751 
4752 	if (func_id == BPF_FUNC_tail_call) {
4753 		err = check_reference_leak(env);
4754 		if (err) {
4755 			verbose(env, "tail_call would lead to reference leak\n");
4756 			return err;
4757 		}
4758 	} else if (is_release_function(func_id)) {
4759 		err = release_reference(env, meta.ref_obj_id);
4760 		if (err) {
4761 			verbose(env, "func %s#%d reference has not been acquired before\n",
4762 				func_id_name(func_id), func_id);
4763 			return err;
4764 		}
4765 	}
4766 
4767 	regs = cur_regs(env);
4768 
4769 	/* check that flags argument in get_local_storage(map, flags) is 0,
4770 	 * this is required because get_local_storage() can't return an error.
4771 	 */
4772 	if (func_id == BPF_FUNC_get_local_storage &&
4773 	    !register_is_null(&regs[BPF_REG_2])) {
4774 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4775 		return -EINVAL;
4776 	}
4777 
4778 	/* reset caller saved regs */
4779 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4780 		mark_reg_not_init(env, regs, caller_saved[i]);
4781 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4782 	}
4783 
4784 	/* helper call returns 64-bit value. */
4785 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4786 
4787 	/* update return register (already marked as written above) */
4788 	if (fn->ret_type == RET_INTEGER) {
4789 		/* sets type to SCALAR_VALUE */
4790 		mark_reg_unknown(env, regs, BPF_REG_0);
4791 	} else if (fn->ret_type == RET_VOID) {
4792 		regs[BPF_REG_0].type = NOT_INIT;
4793 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4794 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4795 		/* There is no offset yet applied, variable or fixed */
4796 		mark_reg_known_zero(env, regs, BPF_REG_0);
4797 		/* remember map_ptr, so that check_map_access()
4798 		 * can check 'value_size' boundary of memory access
4799 		 * to map element returned from bpf_map_lookup_elem()
4800 		 */
4801 		if (meta.map_ptr == NULL) {
4802 			verbose(env,
4803 				"kernel subsystem misconfigured verifier\n");
4804 			return -EINVAL;
4805 		}
4806 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4807 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4808 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4809 			if (map_value_has_spin_lock(meta.map_ptr))
4810 				regs[BPF_REG_0].id = ++env->id_gen;
4811 		} else {
4812 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4813 			regs[BPF_REG_0].id = ++env->id_gen;
4814 		}
4815 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4816 		mark_reg_known_zero(env, regs, BPF_REG_0);
4817 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4818 		regs[BPF_REG_0].id = ++env->id_gen;
4819 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4820 		mark_reg_known_zero(env, regs, BPF_REG_0);
4821 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4822 		regs[BPF_REG_0].id = ++env->id_gen;
4823 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4824 		mark_reg_known_zero(env, regs, BPF_REG_0);
4825 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4826 		regs[BPF_REG_0].id = ++env->id_gen;
4827 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
4828 		mark_reg_known_zero(env, regs, BPF_REG_0);
4829 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
4830 		regs[BPF_REG_0].id = ++env->id_gen;
4831 		regs[BPF_REG_0].mem_size = meta.mem_size;
4832 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
4833 		int ret_btf_id;
4834 
4835 		mark_reg_known_zero(env, regs, BPF_REG_0);
4836 		regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
4837 		ret_btf_id = *fn->ret_btf_id;
4838 		if (ret_btf_id == 0) {
4839 			verbose(env, "invalid return type %d of func %s#%d\n",
4840 				fn->ret_type, func_id_name(func_id), func_id);
4841 			return -EINVAL;
4842 		}
4843 		regs[BPF_REG_0].btf_id = ret_btf_id;
4844 	} else {
4845 		verbose(env, "unknown return type %d of func %s#%d\n",
4846 			fn->ret_type, func_id_name(func_id), func_id);
4847 		return -EINVAL;
4848 	}
4849 
4850 	if (is_ptr_cast_function(func_id)) {
4851 		/* For release_reference() */
4852 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4853 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
4854 		int id = acquire_reference_state(env, insn_idx);
4855 
4856 		if (id < 0)
4857 			return id;
4858 		/* For mark_ptr_or_null_reg() */
4859 		regs[BPF_REG_0].id = id;
4860 		/* For release_reference() */
4861 		regs[BPF_REG_0].ref_obj_id = id;
4862 	}
4863 
4864 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4865 
4866 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4867 	if (err)
4868 		return err;
4869 
4870 	if ((func_id == BPF_FUNC_get_stack ||
4871 	     func_id == BPF_FUNC_get_task_stack) &&
4872 	    !env->prog->has_callchain_buf) {
4873 		const char *err_str;
4874 
4875 #ifdef CONFIG_PERF_EVENTS
4876 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4877 		err_str = "cannot get callchain buffer for func %s#%d\n";
4878 #else
4879 		err = -ENOTSUPP;
4880 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4881 #endif
4882 		if (err) {
4883 			verbose(env, err_str, func_id_name(func_id), func_id);
4884 			return err;
4885 		}
4886 
4887 		env->prog->has_callchain_buf = true;
4888 	}
4889 
4890 	if (changes_data)
4891 		clear_all_pkt_pointers(env);
4892 	return 0;
4893 }
4894 
4895 static bool signed_add_overflows(s64 a, s64 b)
4896 {
4897 	/* Do the add in u64, where overflow is well-defined */
4898 	s64 res = (s64)((u64)a + (u64)b);
4899 
4900 	if (b < 0)
4901 		return res > a;
4902 	return res < a;
4903 }
4904 
4905 static bool signed_add32_overflows(s64 a, s64 b)
4906 {
4907 	/* Do the add in u32, where overflow is well-defined */
4908 	s32 res = (s32)((u32)a + (u32)b);
4909 
4910 	if (b < 0)
4911 		return res > a;
4912 	return res < a;
4913 }
4914 
4915 static bool signed_sub_overflows(s32 a, s32 b)
4916 {
4917 	/* Do the sub in u64, where overflow is well-defined */
4918 	s64 res = (s64)((u64)a - (u64)b);
4919 
4920 	if (b < 0)
4921 		return res < a;
4922 	return res > a;
4923 }
4924 
4925 static bool signed_sub32_overflows(s32 a, s32 b)
4926 {
4927 	/* Do the sub in u64, where overflow is well-defined */
4928 	s32 res = (s32)((u32)a - (u32)b);
4929 
4930 	if (b < 0)
4931 		return res < a;
4932 	return res > a;
4933 }
4934 
4935 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4936 				  const struct bpf_reg_state *reg,
4937 				  enum bpf_reg_type type)
4938 {
4939 	bool known = tnum_is_const(reg->var_off);
4940 	s64 val = reg->var_off.value;
4941 	s64 smin = reg->smin_value;
4942 
4943 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4944 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4945 			reg_type_str[type], val);
4946 		return false;
4947 	}
4948 
4949 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4950 		verbose(env, "%s pointer offset %d is not allowed\n",
4951 			reg_type_str[type], reg->off);
4952 		return false;
4953 	}
4954 
4955 	if (smin == S64_MIN) {
4956 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4957 			reg_type_str[type]);
4958 		return false;
4959 	}
4960 
4961 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4962 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4963 			smin, reg_type_str[type]);
4964 		return false;
4965 	}
4966 
4967 	return true;
4968 }
4969 
4970 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4971 {
4972 	return &env->insn_aux_data[env->insn_idx];
4973 }
4974 
4975 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4976 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4977 {
4978 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4979 			    (opcode == BPF_SUB && !off_is_neg);
4980 	u32 off;
4981 
4982 	switch (ptr_reg->type) {
4983 	case PTR_TO_STACK:
4984 		/* Indirect variable offset stack access is prohibited in
4985 		 * unprivileged mode so it's not handled here.
4986 		 */
4987 		off = ptr_reg->off + ptr_reg->var_off.value;
4988 		if (mask_to_left)
4989 			*ptr_limit = MAX_BPF_STACK + off;
4990 		else
4991 			*ptr_limit = -off;
4992 		return 0;
4993 	case PTR_TO_MAP_VALUE:
4994 		if (mask_to_left) {
4995 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4996 		} else {
4997 			off = ptr_reg->smin_value + ptr_reg->off;
4998 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4999 		}
5000 		return 0;
5001 	default:
5002 		return -EINVAL;
5003 	}
5004 }
5005 
5006 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5007 				    const struct bpf_insn *insn)
5008 {
5009 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5010 }
5011 
5012 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5013 				       u32 alu_state, u32 alu_limit)
5014 {
5015 	/* If we arrived here from different branches with different
5016 	 * state or limits to sanitize, then this won't work.
5017 	 */
5018 	if (aux->alu_state &&
5019 	    (aux->alu_state != alu_state ||
5020 	     aux->alu_limit != alu_limit))
5021 		return -EACCES;
5022 
5023 	/* Corresponding fixup done in fixup_bpf_calls(). */
5024 	aux->alu_state = alu_state;
5025 	aux->alu_limit = alu_limit;
5026 	return 0;
5027 }
5028 
5029 static int sanitize_val_alu(struct bpf_verifier_env *env,
5030 			    struct bpf_insn *insn)
5031 {
5032 	struct bpf_insn_aux_data *aux = cur_aux(env);
5033 
5034 	if (can_skip_alu_sanitation(env, insn))
5035 		return 0;
5036 
5037 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5038 }
5039 
5040 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5041 			    struct bpf_insn *insn,
5042 			    const struct bpf_reg_state *ptr_reg,
5043 			    struct bpf_reg_state *dst_reg,
5044 			    bool off_is_neg)
5045 {
5046 	struct bpf_verifier_state *vstate = env->cur_state;
5047 	struct bpf_insn_aux_data *aux = cur_aux(env);
5048 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5049 	u8 opcode = BPF_OP(insn->code);
5050 	u32 alu_state, alu_limit;
5051 	struct bpf_reg_state tmp;
5052 	bool ret;
5053 
5054 	if (can_skip_alu_sanitation(env, insn))
5055 		return 0;
5056 
5057 	/* We already marked aux for masking from non-speculative
5058 	 * paths, thus we got here in the first place. We only care
5059 	 * to explore bad access from here.
5060 	 */
5061 	if (vstate->speculative)
5062 		goto do_sim;
5063 
5064 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5065 	alu_state |= ptr_is_dst_reg ?
5066 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5067 
5068 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5069 		return 0;
5070 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5071 		return -EACCES;
5072 do_sim:
5073 	/* Simulate and find potential out-of-bounds access under
5074 	 * speculative execution from truncation as a result of
5075 	 * masking when off was not within expected range. If off
5076 	 * sits in dst, then we temporarily need to move ptr there
5077 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5078 	 * for cases where we use K-based arithmetic in one direction
5079 	 * and truncated reg-based in the other in order to explore
5080 	 * bad access.
5081 	 */
5082 	if (!ptr_is_dst_reg) {
5083 		tmp = *dst_reg;
5084 		*dst_reg = *ptr_reg;
5085 	}
5086 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5087 	if (!ptr_is_dst_reg && ret)
5088 		*dst_reg = tmp;
5089 	return !ret ? -EFAULT : 0;
5090 }
5091 
5092 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5093  * Caller should also handle BPF_MOV case separately.
5094  * If we return -EACCES, caller may want to try again treating pointer as a
5095  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5096  */
5097 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5098 				   struct bpf_insn *insn,
5099 				   const struct bpf_reg_state *ptr_reg,
5100 				   const struct bpf_reg_state *off_reg)
5101 {
5102 	struct bpf_verifier_state *vstate = env->cur_state;
5103 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5104 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5105 	bool known = tnum_is_const(off_reg->var_off);
5106 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5107 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5108 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5109 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5110 	u32 dst = insn->dst_reg, src = insn->src_reg;
5111 	u8 opcode = BPF_OP(insn->code);
5112 	int ret;
5113 
5114 	dst_reg = &regs[dst];
5115 
5116 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5117 	    smin_val > smax_val || umin_val > umax_val) {
5118 		/* Taint dst register if offset had invalid bounds derived from
5119 		 * e.g. dead branches.
5120 		 */
5121 		__mark_reg_unknown(env, dst_reg);
5122 		return 0;
5123 	}
5124 
5125 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5126 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5127 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5128 			__mark_reg_unknown(env, dst_reg);
5129 			return 0;
5130 		}
5131 
5132 		verbose(env,
5133 			"R%d 32-bit pointer arithmetic prohibited\n",
5134 			dst);
5135 		return -EACCES;
5136 	}
5137 
5138 	switch (ptr_reg->type) {
5139 	case PTR_TO_MAP_VALUE_OR_NULL:
5140 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5141 			dst, reg_type_str[ptr_reg->type]);
5142 		return -EACCES;
5143 	case CONST_PTR_TO_MAP:
5144 	case PTR_TO_PACKET_END:
5145 	case PTR_TO_SOCKET:
5146 	case PTR_TO_SOCKET_OR_NULL:
5147 	case PTR_TO_SOCK_COMMON:
5148 	case PTR_TO_SOCK_COMMON_OR_NULL:
5149 	case PTR_TO_TCP_SOCK:
5150 	case PTR_TO_TCP_SOCK_OR_NULL:
5151 	case PTR_TO_XDP_SOCK:
5152 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5153 			dst, reg_type_str[ptr_reg->type]);
5154 		return -EACCES;
5155 	case PTR_TO_MAP_VALUE:
5156 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5157 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5158 				off_reg == dst_reg ? dst : src);
5159 			return -EACCES;
5160 		}
5161 		/* fall-through */
5162 	default:
5163 		break;
5164 	}
5165 
5166 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5167 	 * The id may be overwritten later if we create a new variable offset.
5168 	 */
5169 	dst_reg->type = ptr_reg->type;
5170 	dst_reg->id = ptr_reg->id;
5171 
5172 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5173 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5174 		return -EINVAL;
5175 
5176 	/* pointer types do not carry 32-bit bounds at the moment. */
5177 	__mark_reg32_unbounded(dst_reg);
5178 
5179 	switch (opcode) {
5180 	case BPF_ADD:
5181 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5182 		if (ret < 0) {
5183 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5184 			return ret;
5185 		}
5186 		/* We can take a fixed offset as long as it doesn't overflow
5187 		 * the s32 'off' field
5188 		 */
5189 		if (known && (ptr_reg->off + smin_val ==
5190 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5191 			/* pointer += K.  Accumulate it into fixed offset */
5192 			dst_reg->smin_value = smin_ptr;
5193 			dst_reg->smax_value = smax_ptr;
5194 			dst_reg->umin_value = umin_ptr;
5195 			dst_reg->umax_value = umax_ptr;
5196 			dst_reg->var_off = ptr_reg->var_off;
5197 			dst_reg->off = ptr_reg->off + smin_val;
5198 			dst_reg->raw = ptr_reg->raw;
5199 			break;
5200 		}
5201 		/* A new variable offset is created.  Note that off_reg->off
5202 		 * == 0, since it's a scalar.
5203 		 * dst_reg gets the pointer type and since some positive
5204 		 * integer value was added to the pointer, give it a new 'id'
5205 		 * if it's a PTR_TO_PACKET.
5206 		 * this creates a new 'base' pointer, off_reg (variable) gets
5207 		 * added into the variable offset, and we copy the fixed offset
5208 		 * from ptr_reg.
5209 		 */
5210 		if (signed_add_overflows(smin_ptr, smin_val) ||
5211 		    signed_add_overflows(smax_ptr, smax_val)) {
5212 			dst_reg->smin_value = S64_MIN;
5213 			dst_reg->smax_value = S64_MAX;
5214 		} else {
5215 			dst_reg->smin_value = smin_ptr + smin_val;
5216 			dst_reg->smax_value = smax_ptr + smax_val;
5217 		}
5218 		if (umin_ptr + umin_val < umin_ptr ||
5219 		    umax_ptr + umax_val < umax_ptr) {
5220 			dst_reg->umin_value = 0;
5221 			dst_reg->umax_value = U64_MAX;
5222 		} else {
5223 			dst_reg->umin_value = umin_ptr + umin_val;
5224 			dst_reg->umax_value = umax_ptr + umax_val;
5225 		}
5226 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5227 		dst_reg->off = ptr_reg->off;
5228 		dst_reg->raw = ptr_reg->raw;
5229 		if (reg_is_pkt_pointer(ptr_reg)) {
5230 			dst_reg->id = ++env->id_gen;
5231 			/* something was added to pkt_ptr, set range to zero */
5232 			dst_reg->raw = 0;
5233 		}
5234 		break;
5235 	case BPF_SUB:
5236 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5237 		if (ret < 0) {
5238 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5239 			return ret;
5240 		}
5241 		if (dst_reg == off_reg) {
5242 			/* scalar -= pointer.  Creates an unknown scalar */
5243 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5244 				dst);
5245 			return -EACCES;
5246 		}
5247 		/* We don't allow subtraction from FP, because (according to
5248 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5249 		 * be able to deal with it.
5250 		 */
5251 		if (ptr_reg->type == PTR_TO_STACK) {
5252 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5253 				dst);
5254 			return -EACCES;
5255 		}
5256 		if (known && (ptr_reg->off - smin_val ==
5257 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5258 			/* pointer -= K.  Subtract it from fixed offset */
5259 			dst_reg->smin_value = smin_ptr;
5260 			dst_reg->smax_value = smax_ptr;
5261 			dst_reg->umin_value = umin_ptr;
5262 			dst_reg->umax_value = umax_ptr;
5263 			dst_reg->var_off = ptr_reg->var_off;
5264 			dst_reg->id = ptr_reg->id;
5265 			dst_reg->off = ptr_reg->off - smin_val;
5266 			dst_reg->raw = ptr_reg->raw;
5267 			break;
5268 		}
5269 		/* A new variable offset is created.  If the subtrahend is known
5270 		 * nonnegative, then any reg->range we had before is still good.
5271 		 */
5272 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5273 		    signed_sub_overflows(smax_ptr, smin_val)) {
5274 			/* Overflow possible, we know nothing */
5275 			dst_reg->smin_value = S64_MIN;
5276 			dst_reg->smax_value = S64_MAX;
5277 		} else {
5278 			dst_reg->smin_value = smin_ptr - smax_val;
5279 			dst_reg->smax_value = smax_ptr - smin_val;
5280 		}
5281 		if (umin_ptr < umax_val) {
5282 			/* Overflow possible, we know nothing */
5283 			dst_reg->umin_value = 0;
5284 			dst_reg->umax_value = U64_MAX;
5285 		} else {
5286 			/* Cannot overflow (as long as bounds are consistent) */
5287 			dst_reg->umin_value = umin_ptr - umax_val;
5288 			dst_reg->umax_value = umax_ptr - umin_val;
5289 		}
5290 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5291 		dst_reg->off = ptr_reg->off;
5292 		dst_reg->raw = ptr_reg->raw;
5293 		if (reg_is_pkt_pointer(ptr_reg)) {
5294 			dst_reg->id = ++env->id_gen;
5295 			/* something was added to pkt_ptr, set range to zero */
5296 			if (smin_val < 0)
5297 				dst_reg->raw = 0;
5298 		}
5299 		break;
5300 	case BPF_AND:
5301 	case BPF_OR:
5302 	case BPF_XOR:
5303 		/* bitwise ops on pointers are troublesome, prohibit. */
5304 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5305 			dst, bpf_alu_string[opcode >> 4]);
5306 		return -EACCES;
5307 	default:
5308 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5309 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5310 			dst, bpf_alu_string[opcode >> 4]);
5311 		return -EACCES;
5312 	}
5313 
5314 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5315 		return -EINVAL;
5316 
5317 	__update_reg_bounds(dst_reg);
5318 	__reg_deduce_bounds(dst_reg);
5319 	__reg_bound_offset(dst_reg);
5320 
5321 	/* For unprivileged we require that resulting offset must be in bounds
5322 	 * in order to be able to sanitize access later on.
5323 	 */
5324 	if (!env->bypass_spec_v1) {
5325 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5326 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5327 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5328 				"prohibited for !root\n", dst);
5329 			return -EACCES;
5330 		} else if (dst_reg->type == PTR_TO_STACK &&
5331 			   check_stack_access(env, dst_reg, dst_reg->off +
5332 					      dst_reg->var_off.value, 1)) {
5333 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5334 				"prohibited for !root\n", dst);
5335 			return -EACCES;
5336 		}
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5343 				 struct bpf_reg_state *src_reg)
5344 {
5345 	s32 smin_val = src_reg->s32_min_value;
5346 	s32 smax_val = src_reg->s32_max_value;
5347 	u32 umin_val = src_reg->u32_min_value;
5348 	u32 umax_val = src_reg->u32_max_value;
5349 
5350 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5351 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5352 		dst_reg->s32_min_value = S32_MIN;
5353 		dst_reg->s32_max_value = S32_MAX;
5354 	} else {
5355 		dst_reg->s32_min_value += smin_val;
5356 		dst_reg->s32_max_value += smax_val;
5357 	}
5358 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5359 	    dst_reg->u32_max_value + umax_val < umax_val) {
5360 		dst_reg->u32_min_value = 0;
5361 		dst_reg->u32_max_value = U32_MAX;
5362 	} else {
5363 		dst_reg->u32_min_value += umin_val;
5364 		dst_reg->u32_max_value += umax_val;
5365 	}
5366 }
5367 
5368 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5369 			       struct bpf_reg_state *src_reg)
5370 {
5371 	s64 smin_val = src_reg->smin_value;
5372 	s64 smax_val = src_reg->smax_value;
5373 	u64 umin_val = src_reg->umin_value;
5374 	u64 umax_val = src_reg->umax_value;
5375 
5376 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5377 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5378 		dst_reg->smin_value = S64_MIN;
5379 		dst_reg->smax_value = S64_MAX;
5380 	} else {
5381 		dst_reg->smin_value += smin_val;
5382 		dst_reg->smax_value += smax_val;
5383 	}
5384 	if (dst_reg->umin_value + umin_val < umin_val ||
5385 	    dst_reg->umax_value + umax_val < umax_val) {
5386 		dst_reg->umin_value = 0;
5387 		dst_reg->umax_value = U64_MAX;
5388 	} else {
5389 		dst_reg->umin_value += umin_val;
5390 		dst_reg->umax_value += umax_val;
5391 	}
5392 }
5393 
5394 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5395 				 struct bpf_reg_state *src_reg)
5396 {
5397 	s32 smin_val = src_reg->s32_min_value;
5398 	s32 smax_val = src_reg->s32_max_value;
5399 	u32 umin_val = src_reg->u32_min_value;
5400 	u32 umax_val = src_reg->u32_max_value;
5401 
5402 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5403 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5404 		/* Overflow possible, we know nothing */
5405 		dst_reg->s32_min_value = S32_MIN;
5406 		dst_reg->s32_max_value = S32_MAX;
5407 	} else {
5408 		dst_reg->s32_min_value -= smax_val;
5409 		dst_reg->s32_max_value -= smin_val;
5410 	}
5411 	if (dst_reg->u32_min_value < umax_val) {
5412 		/* Overflow possible, we know nothing */
5413 		dst_reg->u32_min_value = 0;
5414 		dst_reg->u32_max_value = U32_MAX;
5415 	} else {
5416 		/* Cannot overflow (as long as bounds are consistent) */
5417 		dst_reg->u32_min_value -= umax_val;
5418 		dst_reg->u32_max_value -= umin_val;
5419 	}
5420 }
5421 
5422 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5423 			       struct bpf_reg_state *src_reg)
5424 {
5425 	s64 smin_val = src_reg->smin_value;
5426 	s64 smax_val = src_reg->smax_value;
5427 	u64 umin_val = src_reg->umin_value;
5428 	u64 umax_val = src_reg->umax_value;
5429 
5430 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5431 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5432 		/* Overflow possible, we know nothing */
5433 		dst_reg->smin_value = S64_MIN;
5434 		dst_reg->smax_value = S64_MAX;
5435 	} else {
5436 		dst_reg->smin_value -= smax_val;
5437 		dst_reg->smax_value -= smin_val;
5438 	}
5439 	if (dst_reg->umin_value < umax_val) {
5440 		/* Overflow possible, we know nothing */
5441 		dst_reg->umin_value = 0;
5442 		dst_reg->umax_value = U64_MAX;
5443 	} else {
5444 		/* Cannot overflow (as long as bounds are consistent) */
5445 		dst_reg->umin_value -= umax_val;
5446 		dst_reg->umax_value -= umin_val;
5447 	}
5448 }
5449 
5450 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5451 				 struct bpf_reg_state *src_reg)
5452 {
5453 	s32 smin_val = src_reg->s32_min_value;
5454 	u32 umin_val = src_reg->u32_min_value;
5455 	u32 umax_val = src_reg->u32_max_value;
5456 
5457 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5458 		/* Ain't nobody got time to multiply that sign */
5459 		__mark_reg32_unbounded(dst_reg);
5460 		return;
5461 	}
5462 	/* Both values are positive, so we can work with unsigned and
5463 	 * copy the result to signed (unless it exceeds S32_MAX).
5464 	 */
5465 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5466 		/* Potential overflow, we know nothing */
5467 		__mark_reg32_unbounded(dst_reg);
5468 		return;
5469 	}
5470 	dst_reg->u32_min_value *= umin_val;
5471 	dst_reg->u32_max_value *= umax_val;
5472 	if (dst_reg->u32_max_value > S32_MAX) {
5473 		/* Overflow possible, we know nothing */
5474 		dst_reg->s32_min_value = S32_MIN;
5475 		dst_reg->s32_max_value = S32_MAX;
5476 	} else {
5477 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5478 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5479 	}
5480 }
5481 
5482 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5483 			       struct bpf_reg_state *src_reg)
5484 {
5485 	s64 smin_val = src_reg->smin_value;
5486 	u64 umin_val = src_reg->umin_value;
5487 	u64 umax_val = src_reg->umax_value;
5488 
5489 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5490 		/* Ain't nobody got time to multiply that sign */
5491 		__mark_reg64_unbounded(dst_reg);
5492 		return;
5493 	}
5494 	/* Both values are positive, so we can work with unsigned and
5495 	 * copy the result to signed (unless it exceeds S64_MAX).
5496 	 */
5497 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5498 		/* Potential overflow, we know nothing */
5499 		__mark_reg64_unbounded(dst_reg);
5500 		return;
5501 	}
5502 	dst_reg->umin_value *= umin_val;
5503 	dst_reg->umax_value *= umax_val;
5504 	if (dst_reg->umax_value > S64_MAX) {
5505 		/* Overflow possible, we know nothing */
5506 		dst_reg->smin_value = S64_MIN;
5507 		dst_reg->smax_value = S64_MAX;
5508 	} else {
5509 		dst_reg->smin_value = dst_reg->umin_value;
5510 		dst_reg->smax_value = dst_reg->umax_value;
5511 	}
5512 }
5513 
5514 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5515 				 struct bpf_reg_state *src_reg)
5516 {
5517 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5518 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5519 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5520 	s32 smin_val = src_reg->s32_min_value;
5521 	u32 umax_val = src_reg->u32_max_value;
5522 
5523 	/* Assuming scalar64_min_max_and will be called so its safe
5524 	 * to skip updating register for known 32-bit case.
5525 	 */
5526 	if (src_known && dst_known)
5527 		return;
5528 
5529 	/* We get our minimum from the var_off, since that's inherently
5530 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5531 	 */
5532 	dst_reg->u32_min_value = var32_off.value;
5533 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5534 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5535 		/* Lose signed bounds when ANDing negative numbers,
5536 		 * ain't nobody got time for that.
5537 		 */
5538 		dst_reg->s32_min_value = S32_MIN;
5539 		dst_reg->s32_max_value = S32_MAX;
5540 	} else {
5541 		/* ANDing two positives gives a positive, so safe to
5542 		 * cast result into s64.
5543 		 */
5544 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5545 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5546 	}
5547 
5548 }
5549 
5550 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5551 			       struct bpf_reg_state *src_reg)
5552 {
5553 	bool src_known = tnum_is_const(src_reg->var_off);
5554 	bool dst_known = tnum_is_const(dst_reg->var_off);
5555 	s64 smin_val = src_reg->smin_value;
5556 	u64 umax_val = src_reg->umax_value;
5557 
5558 	if (src_known && dst_known) {
5559 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5560 					  src_reg->var_off.value);
5561 		return;
5562 	}
5563 
5564 	/* We get our minimum from the var_off, since that's inherently
5565 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5566 	 */
5567 	dst_reg->umin_value = dst_reg->var_off.value;
5568 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5569 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5570 		/* Lose signed bounds when ANDing negative numbers,
5571 		 * ain't nobody got time for that.
5572 		 */
5573 		dst_reg->smin_value = S64_MIN;
5574 		dst_reg->smax_value = S64_MAX;
5575 	} else {
5576 		/* ANDing two positives gives a positive, so safe to
5577 		 * cast result into s64.
5578 		 */
5579 		dst_reg->smin_value = dst_reg->umin_value;
5580 		dst_reg->smax_value = dst_reg->umax_value;
5581 	}
5582 	/* We may learn something more from the var_off */
5583 	__update_reg_bounds(dst_reg);
5584 }
5585 
5586 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5587 				struct bpf_reg_state *src_reg)
5588 {
5589 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5590 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5591 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5592 	s32 smin_val = src_reg->smin_value;
5593 	u32 umin_val = src_reg->umin_value;
5594 
5595 	/* Assuming scalar64_min_max_or will be called so it is safe
5596 	 * to skip updating register for known case.
5597 	 */
5598 	if (src_known && dst_known)
5599 		return;
5600 
5601 	/* We get our maximum from the var_off, and our minimum is the
5602 	 * maximum of the operands' minima
5603 	 */
5604 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5605 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5606 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5607 		/* Lose signed bounds when ORing negative numbers,
5608 		 * ain't nobody got time for that.
5609 		 */
5610 		dst_reg->s32_min_value = S32_MIN;
5611 		dst_reg->s32_max_value = S32_MAX;
5612 	} else {
5613 		/* ORing two positives gives a positive, so safe to
5614 		 * cast result into s64.
5615 		 */
5616 		dst_reg->s32_min_value = dst_reg->umin_value;
5617 		dst_reg->s32_max_value = dst_reg->umax_value;
5618 	}
5619 }
5620 
5621 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5622 			      struct bpf_reg_state *src_reg)
5623 {
5624 	bool src_known = tnum_is_const(src_reg->var_off);
5625 	bool dst_known = tnum_is_const(dst_reg->var_off);
5626 	s64 smin_val = src_reg->smin_value;
5627 	u64 umin_val = src_reg->umin_value;
5628 
5629 	if (src_known && dst_known) {
5630 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5631 					  src_reg->var_off.value);
5632 		return;
5633 	}
5634 
5635 	/* We get our maximum from the var_off, and our minimum is the
5636 	 * maximum of the operands' minima
5637 	 */
5638 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5639 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5640 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5641 		/* Lose signed bounds when ORing negative numbers,
5642 		 * ain't nobody got time for that.
5643 		 */
5644 		dst_reg->smin_value = S64_MIN;
5645 		dst_reg->smax_value = S64_MAX;
5646 	} else {
5647 		/* ORing two positives gives a positive, so safe to
5648 		 * cast result into s64.
5649 		 */
5650 		dst_reg->smin_value = dst_reg->umin_value;
5651 		dst_reg->smax_value = dst_reg->umax_value;
5652 	}
5653 	/* We may learn something more from the var_off */
5654 	__update_reg_bounds(dst_reg);
5655 }
5656 
5657 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5658 				   u64 umin_val, u64 umax_val)
5659 {
5660 	/* We lose all sign bit information (except what we can pick
5661 	 * up from var_off)
5662 	 */
5663 	dst_reg->s32_min_value = S32_MIN;
5664 	dst_reg->s32_max_value = S32_MAX;
5665 	/* If we might shift our top bit out, then we know nothing */
5666 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5667 		dst_reg->u32_min_value = 0;
5668 		dst_reg->u32_max_value = U32_MAX;
5669 	} else {
5670 		dst_reg->u32_min_value <<= umin_val;
5671 		dst_reg->u32_max_value <<= umax_val;
5672 	}
5673 }
5674 
5675 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5676 				 struct bpf_reg_state *src_reg)
5677 {
5678 	u32 umax_val = src_reg->u32_max_value;
5679 	u32 umin_val = src_reg->u32_min_value;
5680 	/* u32 alu operation will zext upper bits */
5681 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5682 
5683 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5684 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5685 	/* Not required but being careful mark reg64 bounds as unknown so
5686 	 * that we are forced to pick them up from tnum and zext later and
5687 	 * if some path skips this step we are still safe.
5688 	 */
5689 	__mark_reg64_unbounded(dst_reg);
5690 	__update_reg32_bounds(dst_reg);
5691 }
5692 
5693 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5694 				   u64 umin_val, u64 umax_val)
5695 {
5696 	/* Special case <<32 because it is a common compiler pattern to sign
5697 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5698 	 * positive we know this shift will also be positive so we can track
5699 	 * bounds correctly. Otherwise we lose all sign bit information except
5700 	 * what we can pick up from var_off. Perhaps we can generalize this
5701 	 * later to shifts of any length.
5702 	 */
5703 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5704 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5705 	else
5706 		dst_reg->smax_value = S64_MAX;
5707 
5708 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5709 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5710 	else
5711 		dst_reg->smin_value = S64_MIN;
5712 
5713 	/* If we might shift our top bit out, then we know nothing */
5714 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5715 		dst_reg->umin_value = 0;
5716 		dst_reg->umax_value = U64_MAX;
5717 	} else {
5718 		dst_reg->umin_value <<= umin_val;
5719 		dst_reg->umax_value <<= umax_val;
5720 	}
5721 }
5722 
5723 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5724 			       struct bpf_reg_state *src_reg)
5725 {
5726 	u64 umax_val = src_reg->umax_value;
5727 	u64 umin_val = src_reg->umin_value;
5728 
5729 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5730 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5731 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5732 
5733 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5734 	/* We may learn something more from the var_off */
5735 	__update_reg_bounds(dst_reg);
5736 }
5737 
5738 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5739 				 struct bpf_reg_state *src_reg)
5740 {
5741 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5742 	u32 umax_val = src_reg->u32_max_value;
5743 	u32 umin_val = src_reg->u32_min_value;
5744 
5745 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5746 	 * be negative, then either:
5747 	 * 1) src_reg might be zero, so the sign bit of the result is
5748 	 *    unknown, so we lose our signed bounds
5749 	 * 2) it's known negative, thus the unsigned bounds capture the
5750 	 *    signed bounds
5751 	 * 3) the signed bounds cross zero, so they tell us nothing
5752 	 *    about the result
5753 	 * If the value in dst_reg is known nonnegative, then again the
5754 	 * unsigned bounts capture the signed bounds.
5755 	 * Thus, in all cases it suffices to blow away our signed bounds
5756 	 * and rely on inferring new ones from the unsigned bounds and
5757 	 * var_off of the result.
5758 	 */
5759 	dst_reg->s32_min_value = S32_MIN;
5760 	dst_reg->s32_max_value = S32_MAX;
5761 
5762 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5763 	dst_reg->u32_min_value >>= umax_val;
5764 	dst_reg->u32_max_value >>= umin_val;
5765 
5766 	__mark_reg64_unbounded(dst_reg);
5767 	__update_reg32_bounds(dst_reg);
5768 }
5769 
5770 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5771 			       struct bpf_reg_state *src_reg)
5772 {
5773 	u64 umax_val = src_reg->umax_value;
5774 	u64 umin_val = src_reg->umin_value;
5775 
5776 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5777 	 * be negative, then either:
5778 	 * 1) src_reg might be zero, so the sign bit of the result is
5779 	 *    unknown, so we lose our signed bounds
5780 	 * 2) it's known negative, thus the unsigned bounds capture the
5781 	 *    signed bounds
5782 	 * 3) the signed bounds cross zero, so they tell us nothing
5783 	 *    about the result
5784 	 * If the value in dst_reg is known nonnegative, then again the
5785 	 * unsigned bounts capture the signed bounds.
5786 	 * Thus, in all cases it suffices to blow away our signed bounds
5787 	 * and rely on inferring new ones from the unsigned bounds and
5788 	 * var_off of the result.
5789 	 */
5790 	dst_reg->smin_value = S64_MIN;
5791 	dst_reg->smax_value = S64_MAX;
5792 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5793 	dst_reg->umin_value >>= umax_val;
5794 	dst_reg->umax_value >>= umin_val;
5795 
5796 	/* Its not easy to operate on alu32 bounds here because it depends
5797 	 * on bits being shifted in. Take easy way out and mark unbounded
5798 	 * so we can recalculate later from tnum.
5799 	 */
5800 	__mark_reg32_unbounded(dst_reg);
5801 	__update_reg_bounds(dst_reg);
5802 }
5803 
5804 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5805 				  struct bpf_reg_state *src_reg)
5806 {
5807 	u64 umin_val = src_reg->u32_min_value;
5808 
5809 	/* Upon reaching here, src_known is true and
5810 	 * umax_val is equal to umin_val.
5811 	 */
5812 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5813 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5814 
5815 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5816 
5817 	/* blow away the dst_reg umin_value/umax_value and rely on
5818 	 * dst_reg var_off to refine the result.
5819 	 */
5820 	dst_reg->u32_min_value = 0;
5821 	dst_reg->u32_max_value = U32_MAX;
5822 
5823 	__mark_reg64_unbounded(dst_reg);
5824 	__update_reg32_bounds(dst_reg);
5825 }
5826 
5827 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5828 				struct bpf_reg_state *src_reg)
5829 {
5830 	u64 umin_val = src_reg->umin_value;
5831 
5832 	/* Upon reaching here, src_known is true and umax_val is equal
5833 	 * to umin_val.
5834 	 */
5835 	dst_reg->smin_value >>= umin_val;
5836 	dst_reg->smax_value >>= umin_val;
5837 
5838 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5839 
5840 	/* blow away the dst_reg umin_value/umax_value and rely on
5841 	 * dst_reg var_off to refine the result.
5842 	 */
5843 	dst_reg->umin_value = 0;
5844 	dst_reg->umax_value = U64_MAX;
5845 
5846 	/* Its not easy to operate on alu32 bounds here because it depends
5847 	 * on bits being shifted in from upper 32-bits. Take easy way out
5848 	 * and mark unbounded so we can recalculate later from tnum.
5849 	 */
5850 	__mark_reg32_unbounded(dst_reg);
5851 	__update_reg_bounds(dst_reg);
5852 }
5853 
5854 /* WARNING: This function does calculations on 64-bit values, but the actual
5855  * execution may occur on 32-bit values. Therefore, things like bitshifts
5856  * need extra checks in the 32-bit case.
5857  */
5858 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5859 				      struct bpf_insn *insn,
5860 				      struct bpf_reg_state *dst_reg,
5861 				      struct bpf_reg_state src_reg)
5862 {
5863 	struct bpf_reg_state *regs = cur_regs(env);
5864 	u8 opcode = BPF_OP(insn->code);
5865 	bool src_known;
5866 	s64 smin_val, smax_val;
5867 	u64 umin_val, umax_val;
5868 	s32 s32_min_val, s32_max_val;
5869 	u32 u32_min_val, u32_max_val;
5870 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5871 	u32 dst = insn->dst_reg;
5872 	int ret;
5873 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5874 
5875 	smin_val = src_reg.smin_value;
5876 	smax_val = src_reg.smax_value;
5877 	umin_val = src_reg.umin_value;
5878 	umax_val = src_reg.umax_value;
5879 
5880 	s32_min_val = src_reg.s32_min_value;
5881 	s32_max_val = src_reg.s32_max_value;
5882 	u32_min_val = src_reg.u32_min_value;
5883 	u32_max_val = src_reg.u32_max_value;
5884 
5885 	if (alu32) {
5886 		src_known = tnum_subreg_is_const(src_reg.var_off);
5887 		if ((src_known &&
5888 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5889 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5890 			/* Taint dst register if offset had invalid bounds
5891 			 * derived from e.g. dead branches.
5892 			 */
5893 			__mark_reg_unknown(env, dst_reg);
5894 			return 0;
5895 		}
5896 	} else {
5897 		src_known = tnum_is_const(src_reg.var_off);
5898 		if ((src_known &&
5899 		     (smin_val != smax_val || umin_val != umax_val)) ||
5900 		    smin_val > smax_val || umin_val > umax_val) {
5901 			/* Taint dst register if offset had invalid bounds
5902 			 * derived from e.g. dead branches.
5903 			 */
5904 			__mark_reg_unknown(env, dst_reg);
5905 			return 0;
5906 		}
5907 	}
5908 
5909 	if (!src_known &&
5910 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5911 		__mark_reg_unknown(env, dst_reg);
5912 		return 0;
5913 	}
5914 
5915 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5916 	 * There are two classes of instructions: The first class we track both
5917 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5918 	 * greatest amount of precision when alu operations are mixed with jmp32
5919 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5920 	 * and BPF_OR. This is possible because these ops have fairly easy to
5921 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5922 	 * See alu32 verifier tests for examples. The second class of
5923 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5924 	 * with regards to tracking sign/unsigned bounds because the bits may
5925 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5926 	 * the reg unbounded in the subreg bound space and use the resulting
5927 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5928 	 */
5929 	switch (opcode) {
5930 	case BPF_ADD:
5931 		ret = sanitize_val_alu(env, insn);
5932 		if (ret < 0) {
5933 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5934 			return ret;
5935 		}
5936 		scalar32_min_max_add(dst_reg, &src_reg);
5937 		scalar_min_max_add(dst_reg, &src_reg);
5938 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5939 		break;
5940 	case BPF_SUB:
5941 		ret = sanitize_val_alu(env, insn);
5942 		if (ret < 0) {
5943 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5944 			return ret;
5945 		}
5946 		scalar32_min_max_sub(dst_reg, &src_reg);
5947 		scalar_min_max_sub(dst_reg, &src_reg);
5948 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5949 		break;
5950 	case BPF_MUL:
5951 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5952 		scalar32_min_max_mul(dst_reg, &src_reg);
5953 		scalar_min_max_mul(dst_reg, &src_reg);
5954 		break;
5955 	case BPF_AND:
5956 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5957 		scalar32_min_max_and(dst_reg, &src_reg);
5958 		scalar_min_max_and(dst_reg, &src_reg);
5959 		break;
5960 	case BPF_OR:
5961 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5962 		scalar32_min_max_or(dst_reg, &src_reg);
5963 		scalar_min_max_or(dst_reg, &src_reg);
5964 		break;
5965 	case BPF_LSH:
5966 		if (umax_val >= insn_bitness) {
5967 			/* Shifts greater than 31 or 63 are undefined.
5968 			 * This includes shifts by a negative number.
5969 			 */
5970 			mark_reg_unknown(env, regs, insn->dst_reg);
5971 			break;
5972 		}
5973 		if (alu32)
5974 			scalar32_min_max_lsh(dst_reg, &src_reg);
5975 		else
5976 			scalar_min_max_lsh(dst_reg, &src_reg);
5977 		break;
5978 	case BPF_RSH:
5979 		if (umax_val >= insn_bitness) {
5980 			/* Shifts greater than 31 or 63 are undefined.
5981 			 * This includes shifts by a negative number.
5982 			 */
5983 			mark_reg_unknown(env, regs, insn->dst_reg);
5984 			break;
5985 		}
5986 		if (alu32)
5987 			scalar32_min_max_rsh(dst_reg, &src_reg);
5988 		else
5989 			scalar_min_max_rsh(dst_reg, &src_reg);
5990 		break;
5991 	case BPF_ARSH:
5992 		if (umax_val >= insn_bitness) {
5993 			/* Shifts greater than 31 or 63 are undefined.
5994 			 * This includes shifts by a negative number.
5995 			 */
5996 			mark_reg_unknown(env, regs, insn->dst_reg);
5997 			break;
5998 		}
5999 		if (alu32)
6000 			scalar32_min_max_arsh(dst_reg, &src_reg);
6001 		else
6002 			scalar_min_max_arsh(dst_reg, &src_reg);
6003 		break;
6004 	default:
6005 		mark_reg_unknown(env, regs, insn->dst_reg);
6006 		break;
6007 	}
6008 
6009 	/* ALU32 ops are zero extended into 64bit register */
6010 	if (alu32)
6011 		zext_32_to_64(dst_reg);
6012 
6013 	__update_reg_bounds(dst_reg);
6014 	__reg_deduce_bounds(dst_reg);
6015 	__reg_bound_offset(dst_reg);
6016 	return 0;
6017 }
6018 
6019 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6020  * and var_off.
6021  */
6022 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6023 				   struct bpf_insn *insn)
6024 {
6025 	struct bpf_verifier_state *vstate = env->cur_state;
6026 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6027 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6028 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6029 	u8 opcode = BPF_OP(insn->code);
6030 	int err;
6031 
6032 	dst_reg = &regs[insn->dst_reg];
6033 	src_reg = NULL;
6034 	if (dst_reg->type != SCALAR_VALUE)
6035 		ptr_reg = dst_reg;
6036 	if (BPF_SRC(insn->code) == BPF_X) {
6037 		src_reg = &regs[insn->src_reg];
6038 		if (src_reg->type != SCALAR_VALUE) {
6039 			if (dst_reg->type != SCALAR_VALUE) {
6040 				/* Combining two pointers by any ALU op yields
6041 				 * an arbitrary scalar. Disallow all math except
6042 				 * pointer subtraction
6043 				 */
6044 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6045 					mark_reg_unknown(env, regs, insn->dst_reg);
6046 					return 0;
6047 				}
6048 				verbose(env, "R%d pointer %s pointer prohibited\n",
6049 					insn->dst_reg,
6050 					bpf_alu_string[opcode >> 4]);
6051 				return -EACCES;
6052 			} else {
6053 				/* scalar += pointer
6054 				 * This is legal, but we have to reverse our
6055 				 * src/dest handling in computing the range
6056 				 */
6057 				err = mark_chain_precision(env, insn->dst_reg);
6058 				if (err)
6059 					return err;
6060 				return adjust_ptr_min_max_vals(env, insn,
6061 							       src_reg, dst_reg);
6062 			}
6063 		} else if (ptr_reg) {
6064 			/* pointer += scalar */
6065 			err = mark_chain_precision(env, insn->src_reg);
6066 			if (err)
6067 				return err;
6068 			return adjust_ptr_min_max_vals(env, insn,
6069 						       dst_reg, src_reg);
6070 		}
6071 	} else {
6072 		/* Pretend the src is a reg with a known value, since we only
6073 		 * need to be able to read from this state.
6074 		 */
6075 		off_reg.type = SCALAR_VALUE;
6076 		__mark_reg_known(&off_reg, insn->imm);
6077 		src_reg = &off_reg;
6078 		if (ptr_reg) /* pointer += K */
6079 			return adjust_ptr_min_max_vals(env, insn,
6080 						       ptr_reg, src_reg);
6081 	}
6082 
6083 	/* Got here implies adding two SCALAR_VALUEs */
6084 	if (WARN_ON_ONCE(ptr_reg)) {
6085 		print_verifier_state(env, state);
6086 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6087 		return -EINVAL;
6088 	}
6089 	if (WARN_ON(!src_reg)) {
6090 		print_verifier_state(env, state);
6091 		verbose(env, "verifier internal error: no src_reg\n");
6092 		return -EINVAL;
6093 	}
6094 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6095 }
6096 
6097 /* check validity of 32-bit and 64-bit arithmetic operations */
6098 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6099 {
6100 	struct bpf_reg_state *regs = cur_regs(env);
6101 	u8 opcode = BPF_OP(insn->code);
6102 	int err;
6103 
6104 	if (opcode == BPF_END || opcode == BPF_NEG) {
6105 		if (opcode == BPF_NEG) {
6106 			if (BPF_SRC(insn->code) != 0 ||
6107 			    insn->src_reg != BPF_REG_0 ||
6108 			    insn->off != 0 || insn->imm != 0) {
6109 				verbose(env, "BPF_NEG uses reserved fields\n");
6110 				return -EINVAL;
6111 			}
6112 		} else {
6113 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6114 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6115 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6116 				verbose(env, "BPF_END uses reserved fields\n");
6117 				return -EINVAL;
6118 			}
6119 		}
6120 
6121 		/* check src operand */
6122 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6123 		if (err)
6124 			return err;
6125 
6126 		if (is_pointer_value(env, insn->dst_reg)) {
6127 			verbose(env, "R%d pointer arithmetic prohibited\n",
6128 				insn->dst_reg);
6129 			return -EACCES;
6130 		}
6131 
6132 		/* check dest operand */
6133 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6134 		if (err)
6135 			return err;
6136 
6137 	} else if (opcode == BPF_MOV) {
6138 
6139 		if (BPF_SRC(insn->code) == BPF_X) {
6140 			if (insn->imm != 0 || insn->off != 0) {
6141 				verbose(env, "BPF_MOV uses reserved fields\n");
6142 				return -EINVAL;
6143 			}
6144 
6145 			/* check src operand */
6146 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6147 			if (err)
6148 				return err;
6149 		} else {
6150 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6151 				verbose(env, "BPF_MOV uses reserved fields\n");
6152 				return -EINVAL;
6153 			}
6154 		}
6155 
6156 		/* check dest operand, mark as required later */
6157 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6158 		if (err)
6159 			return err;
6160 
6161 		if (BPF_SRC(insn->code) == BPF_X) {
6162 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6163 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6164 
6165 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6166 				/* case: R1 = R2
6167 				 * copy register state to dest reg
6168 				 */
6169 				*dst_reg = *src_reg;
6170 				dst_reg->live |= REG_LIVE_WRITTEN;
6171 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6172 			} else {
6173 				/* R1 = (u32) R2 */
6174 				if (is_pointer_value(env, insn->src_reg)) {
6175 					verbose(env,
6176 						"R%d partial copy of pointer\n",
6177 						insn->src_reg);
6178 					return -EACCES;
6179 				} else if (src_reg->type == SCALAR_VALUE) {
6180 					*dst_reg = *src_reg;
6181 					dst_reg->live |= REG_LIVE_WRITTEN;
6182 					dst_reg->subreg_def = env->insn_idx + 1;
6183 				} else {
6184 					mark_reg_unknown(env, regs,
6185 							 insn->dst_reg);
6186 				}
6187 				zext_32_to_64(dst_reg);
6188 			}
6189 		} else {
6190 			/* case: R = imm
6191 			 * remember the value we stored into this reg
6192 			 */
6193 			/* clear any state __mark_reg_known doesn't set */
6194 			mark_reg_unknown(env, regs, insn->dst_reg);
6195 			regs[insn->dst_reg].type = SCALAR_VALUE;
6196 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6197 				__mark_reg_known(regs + insn->dst_reg,
6198 						 insn->imm);
6199 			} else {
6200 				__mark_reg_known(regs + insn->dst_reg,
6201 						 (u32)insn->imm);
6202 			}
6203 		}
6204 
6205 	} else if (opcode > BPF_END) {
6206 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6207 		return -EINVAL;
6208 
6209 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6210 
6211 		if (BPF_SRC(insn->code) == BPF_X) {
6212 			if (insn->imm != 0 || insn->off != 0) {
6213 				verbose(env, "BPF_ALU uses reserved fields\n");
6214 				return -EINVAL;
6215 			}
6216 			/* check src1 operand */
6217 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6218 			if (err)
6219 				return err;
6220 		} else {
6221 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6222 				verbose(env, "BPF_ALU uses reserved fields\n");
6223 				return -EINVAL;
6224 			}
6225 		}
6226 
6227 		/* check src2 operand */
6228 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6229 		if (err)
6230 			return err;
6231 
6232 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6233 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6234 			verbose(env, "div by zero\n");
6235 			return -EINVAL;
6236 		}
6237 
6238 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6239 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6240 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6241 
6242 			if (insn->imm < 0 || insn->imm >= size) {
6243 				verbose(env, "invalid shift %d\n", insn->imm);
6244 				return -EINVAL;
6245 			}
6246 		}
6247 
6248 		/* check dest operand */
6249 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6250 		if (err)
6251 			return err;
6252 
6253 		return adjust_reg_min_max_vals(env, insn);
6254 	}
6255 
6256 	return 0;
6257 }
6258 
6259 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6260 				     struct bpf_reg_state *dst_reg,
6261 				     enum bpf_reg_type type, u16 new_range)
6262 {
6263 	struct bpf_reg_state *reg;
6264 	int i;
6265 
6266 	for (i = 0; i < MAX_BPF_REG; i++) {
6267 		reg = &state->regs[i];
6268 		if (reg->type == type && reg->id == dst_reg->id)
6269 			/* keep the maximum range already checked */
6270 			reg->range = max(reg->range, new_range);
6271 	}
6272 
6273 	bpf_for_each_spilled_reg(i, state, reg) {
6274 		if (!reg)
6275 			continue;
6276 		if (reg->type == type && reg->id == dst_reg->id)
6277 			reg->range = max(reg->range, new_range);
6278 	}
6279 }
6280 
6281 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6282 				   struct bpf_reg_state *dst_reg,
6283 				   enum bpf_reg_type type,
6284 				   bool range_right_open)
6285 {
6286 	u16 new_range;
6287 	int i;
6288 
6289 	if (dst_reg->off < 0 ||
6290 	    (dst_reg->off == 0 && range_right_open))
6291 		/* This doesn't give us any range */
6292 		return;
6293 
6294 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6295 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6296 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6297 		 * than pkt_end, but that's because it's also less than pkt.
6298 		 */
6299 		return;
6300 
6301 	new_range = dst_reg->off;
6302 	if (range_right_open)
6303 		new_range--;
6304 
6305 	/* Examples for register markings:
6306 	 *
6307 	 * pkt_data in dst register:
6308 	 *
6309 	 *   r2 = r3;
6310 	 *   r2 += 8;
6311 	 *   if (r2 > pkt_end) goto <handle exception>
6312 	 *   <access okay>
6313 	 *
6314 	 *   r2 = r3;
6315 	 *   r2 += 8;
6316 	 *   if (r2 < pkt_end) goto <access okay>
6317 	 *   <handle exception>
6318 	 *
6319 	 *   Where:
6320 	 *     r2 == dst_reg, pkt_end == src_reg
6321 	 *     r2=pkt(id=n,off=8,r=0)
6322 	 *     r3=pkt(id=n,off=0,r=0)
6323 	 *
6324 	 * pkt_data in src register:
6325 	 *
6326 	 *   r2 = r3;
6327 	 *   r2 += 8;
6328 	 *   if (pkt_end >= r2) goto <access okay>
6329 	 *   <handle exception>
6330 	 *
6331 	 *   r2 = r3;
6332 	 *   r2 += 8;
6333 	 *   if (pkt_end <= r2) goto <handle exception>
6334 	 *   <access okay>
6335 	 *
6336 	 *   Where:
6337 	 *     pkt_end == dst_reg, r2 == src_reg
6338 	 *     r2=pkt(id=n,off=8,r=0)
6339 	 *     r3=pkt(id=n,off=0,r=0)
6340 	 *
6341 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6342 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6343 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6344 	 * the check.
6345 	 */
6346 
6347 	/* If our ids match, then we must have the same max_value.  And we
6348 	 * don't care about the other reg's fixed offset, since if it's too big
6349 	 * the range won't allow anything.
6350 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6351 	 */
6352 	for (i = 0; i <= vstate->curframe; i++)
6353 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6354 					 new_range);
6355 }
6356 
6357 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6358 {
6359 	struct tnum subreg = tnum_subreg(reg->var_off);
6360 	s32 sval = (s32)val;
6361 
6362 	switch (opcode) {
6363 	case BPF_JEQ:
6364 		if (tnum_is_const(subreg))
6365 			return !!tnum_equals_const(subreg, val);
6366 		break;
6367 	case BPF_JNE:
6368 		if (tnum_is_const(subreg))
6369 			return !tnum_equals_const(subreg, val);
6370 		break;
6371 	case BPF_JSET:
6372 		if ((~subreg.mask & subreg.value) & val)
6373 			return 1;
6374 		if (!((subreg.mask | subreg.value) & val))
6375 			return 0;
6376 		break;
6377 	case BPF_JGT:
6378 		if (reg->u32_min_value > val)
6379 			return 1;
6380 		else if (reg->u32_max_value <= val)
6381 			return 0;
6382 		break;
6383 	case BPF_JSGT:
6384 		if (reg->s32_min_value > sval)
6385 			return 1;
6386 		else if (reg->s32_max_value < sval)
6387 			return 0;
6388 		break;
6389 	case BPF_JLT:
6390 		if (reg->u32_max_value < val)
6391 			return 1;
6392 		else if (reg->u32_min_value >= val)
6393 			return 0;
6394 		break;
6395 	case BPF_JSLT:
6396 		if (reg->s32_max_value < sval)
6397 			return 1;
6398 		else if (reg->s32_min_value >= sval)
6399 			return 0;
6400 		break;
6401 	case BPF_JGE:
6402 		if (reg->u32_min_value >= val)
6403 			return 1;
6404 		else if (reg->u32_max_value < val)
6405 			return 0;
6406 		break;
6407 	case BPF_JSGE:
6408 		if (reg->s32_min_value >= sval)
6409 			return 1;
6410 		else if (reg->s32_max_value < sval)
6411 			return 0;
6412 		break;
6413 	case BPF_JLE:
6414 		if (reg->u32_max_value <= val)
6415 			return 1;
6416 		else if (reg->u32_min_value > val)
6417 			return 0;
6418 		break;
6419 	case BPF_JSLE:
6420 		if (reg->s32_max_value <= sval)
6421 			return 1;
6422 		else if (reg->s32_min_value > sval)
6423 			return 0;
6424 		break;
6425 	}
6426 
6427 	return -1;
6428 }
6429 
6430 
6431 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6432 {
6433 	s64 sval = (s64)val;
6434 
6435 	switch (opcode) {
6436 	case BPF_JEQ:
6437 		if (tnum_is_const(reg->var_off))
6438 			return !!tnum_equals_const(reg->var_off, val);
6439 		break;
6440 	case BPF_JNE:
6441 		if (tnum_is_const(reg->var_off))
6442 			return !tnum_equals_const(reg->var_off, val);
6443 		break;
6444 	case BPF_JSET:
6445 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6446 			return 1;
6447 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6448 			return 0;
6449 		break;
6450 	case BPF_JGT:
6451 		if (reg->umin_value > val)
6452 			return 1;
6453 		else if (reg->umax_value <= val)
6454 			return 0;
6455 		break;
6456 	case BPF_JSGT:
6457 		if (reg->smin_value > sval)
6458 			return 1;
6459 		else if (reg->smax_value < sval)
6460 			return 0;
6461 		break;
6462 	case BPF_JLT:
6463 		if (reg->umax_value < val)
6464 			return 1;
6465 		else if (reg->umin_value >= val)
6466 			return 0;
6467 		break;
6468 	case BPF_JSLT:
6469 		if (reg->smax_value < sval)
6470 			return 1;
6471 		else if (reg->smin_value >= sval)
6472 			return 0;
6473 		break;
6474 	case BPF_JGE:
6475 		if (reg->umin_value >= val)
6476 			return 1;
6477 		else if (reg->umax_value < val)
6478 			return 0;
6479 		break;
6480 	case BPF_JSGE:
6481 		if (reg->smin_value >= sval)
6482 			return 1;
6483 		else if (reg->smax_value < sval)
6484 			return 0;
6485 		break;
6486 	case BPF_JLE:
6487 		if (reg->umax_value <= val)
6488 			return 1;
6489 		else if (reg->umin_value > val)
6490 			return 0;
6491 		break;
6492 	case BPF_JSLE:
6493 		if (reg->smax_value <= sval)
6494 			return 1;
6495 		else if (reg->smin_value > sval)
6496 			return 0;
6497 		break;
6498 	}
6499 
6500 	return -1;
6501 }
6502 
6503 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6504  * and return:
6505  *  1 - branch will be taken and "goto target" will be executed
6506  *  0 - branch will not be taken and fall-through to next insn
6507  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6508  *      range [0,10]
6509  */
6510 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6511 			   bool is_jmp32)
6512 {
6513 	if (__is_pointer_value(false, reg)) {
6514 		if (!reg_type_not_null(reg->type))
6515 			return -1;
6516 
6517 		/* If pointer is valid tests against zero will fail so we can
6518 		 * use this to direct branch taken.
6519 		 */
6520 		if (val != 0)
6521 			return -1;
6522 
6523 		switch (opcode) {
6524 		case BPF_JEQ:
6525 			return 0;
6526 		case BPF_JNE:
6527 			return 1;
6528 		default:
6529 			return -1;
6530 		}
6531 	}
6532 
6533 	if (is_jmp32)
6534 		return is_branch32_taken(reg, val, opcode);
6535 	return is_branch64_taken(reg, val, opcode);
6536 }
6537 
6538 /* Adjusts the register min/max values in the case that the dst_reg is the
6539  * variable register that we are working on, and src_reg is a constant or we're
6540  * simply doing a BPF_K check.
6541  * In JEQ/JNE cases we also adjust the var_off values.
6542  */
6543 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6544 			    struct bpf_reg_state *false_reg,
6545 			    u64 val, u32 val32,
6546 			    u8 opcode, bool is_jmp32)
6547 {
6548 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6549 	struct tnum false_64off = false_reg->var_off;
6550 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6551 	struct tnum true_64off = true_reg->var_off;
6552 	s64 sval = (s64)val;
6553 	s32 sval32 = (s32)val32;
6554 
6555 	/* If the dst_reg is a pointer, we can't learn anything about its
6556 	 * variable offset from the compare (unless src_reg were a pointer into
6557 	 * the same object, but we don't bother with that.
6558 	 * Since false_reg and true_reg have the same type by construction, we
6559 	 * only need to check one of them for pointerness.
6560 	 */
6561 	if (__is_pointer_value(false, false_reg))
6562 		return;
6563 
6564 	switch (opcode) {
6565 	case BPF_JEQ:
6566 	case BPF_JNE:
6567 	{
6568 		struct bpf_reg_state *reg =
6569 			opcode == BPF_JEQ ? true_reg : false_reg;
6570 
6571 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6572 		 * if it is true we know the value for sure. Likewise for
6573 		 * BPF_JNE.
6574 		 */
6575 		if (is_jmp32)
6576 			__mark_reg32_known(reg, val32);
6577 		else
6578 			__mark_reg_known(reg, val);
6579 		break;
6580 	}
6581 	case BPF_JSET:
6582 		if (is_jmp32) {
6583 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6584 			if (is_power_of_2(val32))
6585 				true_32off = tnum_or(true_32off,
6586 						     tnum_const(val32));
6587 		} else {
6588 			false_64off = tnum_and(false_64off, tnum_const(~val));
6589 			if (is_power_of_2(val))
6590 				true_64off = tnum_or(true_64off,
6591 						     tnum_const(val));
6592 		}
6593 		break;
6594 	case BPF_JGE:
6595 	case BPF_JGT:
6596 	{
6597 		if (is_jmp32) {
6598 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6599 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6600 
6601 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6602 						       false_umax);
6603 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6604 						      true_umin);
6605 		} else {
6606 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6607 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6608 
6609 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6610 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6611 		}
6612 		break;
6613 	}
6614 	case BPF_JSGE:
6615 	case BPF_JSGT:
6616 	{
6617 		if (is_jmp32) {
6618 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6619 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6620 
6621 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6622 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6623 		} else {
6624 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6625 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6626 
6627 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6628 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6629 		}
6630 		break;
6631 	}
6632 	case BPF_JLE:
6633 	case BPF_JLT:
6634 	{
6635 		if (is_jmp32) {
6636 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6637 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6638 
6639 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6640 						       false_umin);
6641 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6642 						      true_umax);
6643 		} else {
6644 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6645 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6646 
6647 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6648 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6649 		}
6650 		break;
6651 	}
6652 	case BPF_JSLE:
6653 	case BPF_JSLT:
6654 	{
6655 		if (is_jmp32) {
6656 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6657 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6658 
6659 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6660 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6661 		} else {
6662 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6663 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6664 
6665 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6666 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6667 		}
6668 		break;
6669 	}
6670 	default:
6671 		return;
6672 	}
6673 
6674 	if (is_jmp32) {
6675 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6676 					     tnum_subreg(false_32off));
6677 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6678 					    tnum_subreg(true_32off));
6679 		__reg_combine_32_into_64(false_reg);
6680 		__reg_combine_32_into_64(true_reg);
6681 	} else {
6682 		false_reg->var_off = false_64off;
6683 		true_reg->var_off = true_64off;
6684 		__reg_combine_64_into_32(false_reg);
6685 		__reg_combine_64_into_32(true_reg);
6686 	}
6687 }
6688 
6689 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6690  * the variable reg.
6691  */
6692 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6693 				struct bpf_reg_state *false_reg,
6694 				u64 val, u32 val32,
6695 				u8 opcode, bool is_jmp32)
6696 {
6697 	/* How can we transform "a <op> b" into "b <op> a"? */
6698 	static const u8 opcode_flip[16] = {
6699 		/* these stay the same */
6700 		[BPF_JEQ  >> 4] = BPF_JEQ,
6701 		[BPF_JNE  >> 4] = BPF_JNE,
6702 		[BPF_JSET >> 4] = BPF_JSET,
6703 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6704 		[BPF_JGE  >> 4] = BPF_JLE,
6705 		[BPF_JGT  >> 4] = BPF_JLT,
6706 		[BPF_JLE  >> 4] = BPF_JGE,
6707 		[BPF_JLT  >> 4] = BPF_JGT,
6708 		[BPF_JSGE >> 4] = BPF_JSLE,
6709 		[BPF_JSGT >> 4] = BPF_JSLT,
6710 		[BPF_JSLE >> 4] = BPF_JSGE,
6711 		[BPF_JSLT >> 4] = BPF_JSGT
6712 	};
6713 	opcode = opcode_flip[opcode >> 4];
6714 	/* This uses zero as "not present in table"; luckily the zero opcode,
6715 	 * BPF_JA, can't get here.
6716 	 */
6717 	if (opcode)
6718 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6719 }
6720 
6721 /* Regs are known to be equal, so intersect their min/max/var_off */
6722 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6723 				  struct bpf_reg_state *dst_reg)
6724 {
6725 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6726 							dst_reg->umin_value);
6727 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6728 							dst_reg->umax_value);
6729 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6730 							dst_reg->smin_value);
6731 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6732 							dst_reg->smax_value);
6733 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6734 							     dst_reg->var_off);
6735 	/* We might have learned new bounds from the var_off. */
6736 	__update_reg_bounds(src_reg);
6737 	__update_reg_bounds(dst_reg);
6738 	/* We might have learned something about the sign bit. */
6739 	__reg_deduce_bounds(src_reg);
6740 	__reg_deduce_bounds(dst_reg);
6741 	/* We might have learned some bits from the bounds. */
6742 	__reg_bound_offset(src_reg);
6743 	__reg_bound_offset(dst_reg);
6744 	/* Intersecting with the old var_off might have improved our bounds
6745 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6746 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6747 	 */
6748 	__update_reg_bounds(src_reg);
6749 	__update_reg_bounds(dst_reg);
6750 }
6751 
6752 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6753 				struct bpf_reg_state *true_dst,
6754 				struct bpf_reg_state *false_src,
6755 				struct bpf_reg_state *false_dst,
6756 				u8 opcode)
6757 {
6758 	switch (opcode) {
6759 	case BPF_JEQ:
6760 		__reg_combine_min_max(true_src, true_dst);
6761 		break;
6762 	case BPF_JNE:
6763 		__reg_combine_min_max(false_src, false_dst);
6764 		break;
6765 	}
6766 }
6767 
6768 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6769 				 struct bpf_reg_state *reg, u32 id,
6770 				 bool is_null)
6771 {
6772 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6773 		/* Old offset (both fixed and variable parts) should
6774 		 * have been known-zero, because we don't allow pointer
6775 		 * arithmetic on pointers that might be NULL.
6776 		 */
6777 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6778 				 !tnum_equals_const(reg->var_off, 0) ||
6779 				 reg->off)) {
6780 			__mark_reg_known_zero(reg);
6781 			reg->off = 0;
6782 		}
6783 		if (is_null) {
6784 			reg->type = SCALAR_VALUE;
6785 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6786 			const struct bpf_map *map = reg->map_ptr;
6787 
6788 			if (map->inner_map_meta) {
6789 				reg->type = CONST_PTR_TO_MAP;
6790 				reg->map_ptr = map->inner_map_meta;
6791 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
6792 				reg->type = PTR_TO_XDP_SOCK;
6793 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6794 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6795 				reg->type = PTR_TO_SOCKET;
6796 			} else {
6797 				reg->type = PTR_TO_MAP_VALUE;
6798 			}
6799 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6800 			reg->type = PTR_TO_SOCKET;
6801 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6802 			reg->type = PTR_TO_SOCK_COMMON;
6803 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6804 			reg->type = PTR_TO_TCP_SOCK;
6805 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
6806 			reg->type = PTR_TO_BTF_ID;
6807 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
6808 			reg->type = PTR_TO_MEM;
6809 		}
6810 		if (is_null) {
6811 			/* We don't need id and ref_obj_id from this point
6812 			 * onwards anymore, thus we should better reset it,
6813 			 * so that state pruning has chances to take effect.
6814 			 */
6815 			reg->id = 0;
6816 			reg->ref_obj_id = 0;
6817 		} else if (!reg_may_point_to_spin_lock(reg)) {
6818 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6819 			 * in release_reg_references().
6820 			 *
6821 			 * reg->id is still used by spin_lock ptr. Other
6822 			 * than spin_lock ptr type, reg->id can be reset.
6823 			 */
6824 			reg->id = 0;
6825 		}
6826 	}
6827 }
6828 
6829 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6830 				    bool is_null)
6831 {
6832 	struct bpf_reg_state *reg;
6833 	int i;
6834 
6835 	for (i = 0; i < MAX_BPF_REG; i++)
6836 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6837 
6838 	bpf_for_each_spilled_reg(i, state, reg) {
6839 		if (!reg)
6840 			continue;
6841 		mark_ptr_or_null_reg(state, reg, id, is_null);
6842 	}
6843 }
6844 
6845 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6846  * be folded together at some point.
6847  */
6848 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6849 				  bool is_null)
6850 {
6851 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6852 	struct bpf_reg_state *regs = state->regs;
6853 	u32 ref_obj_id = regs[regno].ref_obj_id;
6854 	u32 id = regs[regno].id;
6855 	int i;
6856 
6857 	if (ref_obj_id && ref_obj_id == id && is_null)
6858 		/* regs[regno] is in the " == NULL" branch.
6859 		 * No one could have freed the reference state before
6860 		 * doing the NULL check.
6861 		 */
6862 		WARN_ON_ONCE(release_reference_state(state, id));
6863 
6864 	for (i = 0; i <= vstate->curframe; i++)
6865 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6866 }
6867 
6868 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6869 				   struct bpf_reg_state *dst_reg,
6870 				   struct bpf_reg_state *src_reg,
6871 				   struct bpf_verifier_state *this_branch,
6872 				   struct bpf_verifier_state *other_branch)
6873 {
6874 	if (BPF_SRC(insn->code) != BPF_X)
6875 		return false;
6876 
6877 	/* Pointers are always 64-bit. */
6878 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6879 		return false;
6880 
6881 	switch (BPF_OP(insn->code)) {
6882 	case BPF_JGT:
6883 		if ((dst_reg->type == PTR_TO_PACKET &&
6884 		     src_reg->type == PTR_TO_PACKET_END) ||
6885 		    (dst_reg->type == PTR_TO_PACKET_META &&
6886 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6887 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6888 			find_good_pkt_pointers(this_branch, dst_reg,
6889 					       dst_reg->type, false);
6890 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6891 			    src_reg->type == PTR_TO_PACKET) ||
6892 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6893 			    src_reg->type == PTR_TO_PACKET_META)) {
6894 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6895 			find_good_pkt_pointers(other_branch, src_reg,
6896 					       src_reg->type, true);
6897 		} else {
6898 			return false;
6899 		}
6900 		break;
6901 	case BPF_JLT:
6902 		if ((dst_reg->type == PTR_TO_PACKET &&
6903 		     src_reg->type == PTR_TO_PACKET_END) ||
6904 		    (dst_reg->type == PTR_TO_PACKET_META &&
6905 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6906 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6907 			find_good_pkt_pointers(other_branch, dst_reg,
6908 					       dst_reg->type, true);
6909 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6910 			    src_reg->type == PTR_TO_PACKET) ||
6911 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6912 			    src_reg->type == PTR_TO_PACKET_META)) {
6913 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6914 			find_good_pkt_pointers(this_branch, src_reg,
6915 					       src_reg->type, false);
6916 		} else {
6917 			return false;
6918 		}
6919 		break;
6920 	case BPF_JGE:
6921 		if ((dst_reg->type == PTR_TO_PACKET &&
6922 		     src_reg->type == PTR_TO_PACKET_END) ||
6923 		    (dst_reg->type == PTR_TO_PACKET_META &&
6924 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6925 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6926 			find_good_pkt_pointers(this_branch, dst_reg,
6927 					       dst_reg->type, true);
6928 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6929 			    src_reg->type == PTR_TO_PACKET) ||
6930 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6931 			    src_reg->type == PTR_TO_PACKET_META)) {
6932 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6933 			find_good_pkt_pointers(other_branch, src_reg,
6934 					       src_reg->type, false);
6935 		} else {
6936 			return false;
6937 		}
6938 		break;
6939 	case BPF_JLE:
6940 		if ((dst_reg->type == PTR_TO_PACKET &&
6941 		     src_reg->type == PTR_TO_PACKET_END) ||
6942 		    (dst_reg->type == PTR_TO_PACKET_META &&
6943 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6944 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6945 			find_good_pkt_pointers(other_branch, dst_reg,
6946 					       dst_reg->type, false);
6947 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6948 			    src_reg->type == PTR_TO_PACKET) ||
6949 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6950 			    src_reg->type == PTR_TO_PACKET_META)) {
6951 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6952 			find_good_pkt_pointers(this_branch, src_reg,
6953 					       src_reg->type, true);
6954 		} else {
6955 			return false;
6956 		}
6957 		break;
6958 	default:
6959 		return false;
6960 	}
6961 
6962 	return true;
6963 }
6964 
6965 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6966 			     struct bpf_insn *insn, int *insn_idx)
6967 {
6968 	struct bpf_verifier_state *this_branch = env->cur_state;
6969 	struct bpf_verifier_state *other_branch;
6970 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6971 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6972 	u8 opcode = BPF_OP(insn->code);
6973 	bool is_jmp32;
6974 	int pred = -1;
6975 	int err;
6976 
6977 	/* Only conditional jumps are expected to reach here. */
6978 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6979 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6980 		return -EINVAL;
6981 	}
6982 
6983 	if (BPF_SRC(insn->code) == BPF_X) {
6984 		if (insn->imm != 0) {
6985 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6986 			return -EINVAL;
6987 		}
6988 
6989 		/* check src1 operand */
6990 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6991 		if (err)
6992 			return err;
6993 
6994 		if (is_pointer_value(env, insn->src_reg)) {
6995 			verbose(env, "R%d pointer comparison prohibited\n",
6996 				insn->src_reg);
6997 			return -EACCES;
6998 		}
6999 		src_reg = &regs[insn->src_reg];
7000 	} else {
7001 		if (insn->src_reg != BPF_REG_0) {
7002 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7003 			return -EINVAL;
7004 		}
7005 	}
7006 
7007 	/* check src2 operand */
7008 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7009 	if (err)
7010 		return err;
7011 
7012 	dst_reg = &regs[insn->dst_reg];
7013 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7014 
7015 	if (BPF_SRC(insn->code) == BPF_K) {
7016 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7017 	} else if (src_reg->type == SCALAR_VALUE &&
7018 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7019 		pred = is_branch_taken(dst_reg,
7020 				       tnum_subreg(src_reg->var_off).value,
7021 				       opcode,
7022 				       is_jmp32);
7023 	} else if (src_reg->type == SCALAR_VALUE &&
7024 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7025 		pred = is_branch_taken(dst_reg,
7026 				       src_reg->var_off.value,
7027 				       opcode,
7028 				       is_jmp32);
7029 	}
7030 
7031 	if (pred >= 0) {
7032 		/* If we get here with a dst_reg pointer type it is because
7033 		 * above is_branch_taken() special cased the 0 comparison.
7034 		 */
7035 		if (!__is_pointer_value(false, dst_reg))
7036 			err = mark_chain_precision(env, insn->dst_reg);
7037 		if (BPF_SRC(insn->code) == BPF_X && !err)
7038 			err = mark_chain_precision(env, insn->src_reg);
7039 		if (err)
7040 			return err;
7041 	}
7042 	if (pred == 1) {
7043 		/* only follow the goto, ignore fall-through */
7044 		*insn_idx += insn->off;
7045 		return 0;
7046 	} else if (pred == 0) {
7047 		/* only follow fall-through branch, since
7048 		 * that's where the program will go
7049 		 */
7050 		return 0;
7051 	}
7052 
7053 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7054 				  false);
7055 	if (!other_branch)
7056 		return -EFAULT;
7057 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7058 
7059 	/* detect if we are comparing against a constant value so we can adjust
7060 	 * our min/max values for our dst register.
7061 	 * this is only legit if both are scalars (or pointers to the same
7062 	 * object, I suppose, but we don't support that right now), because
7063 	 * otherwise the different base pointers mean the offsets aren't
7064 	 * comparable.
7065 	 */
7066 	if (BPF_SRC(insn->code) == BPF_X) {
7067 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7068 
7069 		if (dst_reg->type == SCALAR_VALUE &&
7070 		    src_reg->type == SCALAR_VALUE) {
7071 			if (tnum_is_const(src_reg->var_off) ||
7072 			    (is_jmp32 &&
7073 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7074 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7075 						dst_reg,
7076 						src_reg->var_off.value,
7077 						tnum_subreg(src_reg->var_off).value,
7078 						opcode, is_jmp32);
7079 			else if (tnum_is_const(dst_reg->var_off) ||
7080 				 (is_jmp32 &&
7081 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7082 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7083 						    src_reg,
7084 						    dst_reg->var_off.value,
7085 						    tnum_subreg(dst_reg->var_off).value,
7086 						    opcode, is_jmp32);
7087 			else if (!is_jmp32 &&
7088 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7089 				/* Comparing for equality, we can combine knowledge */
7090 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7091 						    &other_branch_regs[insn->dst_reg],
7092 						    src_reg, dst_reg, opcode);
7093 		}
7094 	} else if (dst_reg->type == SCALAR_VALUE) {
7095 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7096 					dst_reg, insn->imm, (u32)insn->imm,
7097 					opcode, is_jmp32);
7098 	}
7099 
7100 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7101 	 * NOTE: these optimizations below are related with pointer comparison
7102 	 *       which will never be JMP32.
7103 	 */
7104 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7105 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7106 	    reg_type_may_be_null(dst_reg->type)) {
7107 		/* Mark all identical registers in each branch as either
7108 		 * safe or unknown depending R == 0 or R != 0 conditional.
7109 		 */
7110 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7111 				      opcode == BPF_JNE);
7112 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7113 				      opcode == BPF_JEQ);
7114 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7115 					   this_branch, other_branch) &&
7116 		   is_pointer_value(env, insn->dst_reg)) {
7117 		verbose(env, "R%d pointer comparison prohibited\n",
7118 			insn->dst_reg);
7119 		return -EACCES;
7120 	}
7121 	if (env->log.level & BPF_LOG_LEVEL)
7122 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7123 	return 0;
7124 }
7125 
7126 /* verify BPF_LD_IMM64 instruction */
7127 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7128 {
7129 	struct bpf_insn_aux_data *aux = cur_aux(env);
7130 	struct bpf_reg_state *regs = cur_regs(env);
7131 	struct bpf_map *map;
7132 	int err;
7133 
7134 	if (BPF_SIZE(insn->code) != BPF_DW) {
7135 		verbose(env, "invalid BPF_LD_IMM insn\n");
7136 		return -EINVAL;
7137 	}
7138 	if (insn->off != 0) {
7139 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7140 		return -EINVAL;
7141 	}
7142 
7143 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7144 	if (err)
7145 		return err;
7146 
7147 	if (insn->src_reg == 0) {
7148 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7149 
7150 		regs[insn->dst_reg].type = SCALAR_VALUE;
7151 		__mark_reg_known(&regs[insn->dst_reg], imm);
7152 		return 0;
7153 	}
7154 
7155 	map = env->used_maps[aux->map_index];
7156 	mark_reg_known_zero(env, regs, insn->dst_reg);
7157 	regs[insn->dst_reg].map_ptr = map;
7158 
7159 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7160 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7161 		regs[insn->dst_reg].off = aux->map_off;
7162 		if (map_value_has_spin_lock(map))
7163 			regs[insn->dst_reg].id = ++env->id_gen;
7164 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7165 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7166 	} else {
7167 		verbose(env, "bpf verifier is misconfigured\n");
7168 		return -EINVAL;
7169 	}
7170 
7171 	return 0;
7172 }
7173 
7174 static bool may_access_skb(enum bpf_prog_type type)
7175 {
7176 	switch (type) {
7177 	case BPF_PROG_TYPE_SOCKET_FILTER:
7178 	case BPF_PROG_TYPE_SCHED_CLS:
7179 	case BPF_PROG_TYPE_SCHED_ACT:
7180 		return true;
7181 	default:
7182 		return false;
7183 	}
7184 }
7185 
7186 /* verify safety of LD_ABS|LD_IND instructions:
7187  * - they can only appear in the programs where ctx == skb
7188  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7189  *   preserve R6-R9, and store return value into R0
7190  *
7191  * Implicit input:
7192  *   ctx == skb == R6 == CTX
7193  *
7194  * Explicit input:
7195  *   SRC == any register
7196  *   IMM == 32-bit immediate
7197  *
7198  * Output:
7199  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7200  */
7201 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7202 {
7203 	struct bpf_reg_state *regs = cur_regs(env);
7204 	static const int ctx_reg = BPF_REG_6;
7205 	u8 mode = BPF_MODE(insn->code);
7206 	int i, err;
7207 
7208 	if (!may_access_skb(env->prog->type)) {
7209 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7210 		return -EINVAL;
7211 	}
7212 
7213 	if (!env->ops->gen_ld_abs) {
7214 		verbose(env, "bpf verifier is misconfigured\n");
7215 		return -EINVAL;
7216 	}
7217 
7218 	if (env->subprog_cnt > 1) {
7219 		/* when program has LD_ABS insn JITs and interpreter assume
7220 		 * that r1 == ctx == skb which is not the case for callees
7221 		 * that can have arbitrary arguments. It's problematic
7222 		 * for main prog as well since JITs would need to analyze
7223 		 * all functions in order to make proper register save/restore
7224 		 * decisions in the main prog. Hence disallow LD_ABS with calls
7225 		 */
7226 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7227 		return -EINVAL;
7228 	}
7229 
7230 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7231 	    BPF_SIZE(insn->code) == BPF_DW ||
7232 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7233 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7234 		return -EINVAL;
7235 	}
7236 
7237 	/* check whether implicit source operand (register R6) is readable */
7238 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7239 	if (err)
7240 		return err;
7241 
7242 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7243 	 * gen_ld_abs() may terminate the program at runtime, leading to
7244 	 * reference leak.
7245 	 */
7246 	err = check_reference_leak(env);
7247 	if (err) {
7248 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7249 		return err;
7250 	}
7251 
7252 	if (env->cur_state->active_spin_lock) {
7253 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7254 		return -EINVAL;
7255 	}
7256 
7257 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7258 		verbose(env,
7259 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7260 		return -EINVAL;
7261 	}
7262 
7263 	if (mode == BPF_IND) {
7264 		/* check explicit source operand */
7265 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7266 		if (err)
7267 			return err;
7268 	}
7269 
7270 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7271 	if (err < 0)
7272 		return err;
7273 
7274 	/* reset caller saved regs to unreadable */
7275 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7276 		mark_reg_not_init(env, regs, caller_saved[i]);
7277 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7278 	}
7279 
7280 	/* mark destination R0 register as readable, since it contains
7281 	 * the value fetched from the packet.
7282 	 * Already marked as written above.
7283 	 */
7284 	mark_reg_unknown(env, regs, BPF_REG_0);
7285 	/* ld_abs load up to 32-bit skb data. */
7286 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7287 	return 0;
7288 }
7289 
7290 static int check_return_code(struct bpf_verifier_env *env)
7291 {
7292 	struct tnum enforce_attach_type_range = tnum_unknown;
7293 	const struct bpf_prog *prog = env->prog;
7294 	struct bpf_reg_state *reg;
7295 	struct tnum range = tnum_range(0, 1);
7296 	int err;
7297 
7298 	/* LSM and struct_ops func-ptr's return type could be "void" */
7299 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7300 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7301 	    !prog->aux->attach_func_proto->type)
7302 		return 0;
7303 
7304 	/* eBPF calling convetion is such that R0 is used
7305 	 * to return the value from eBPF program.
7306 	 * Make sure that it's readable at this time
7307 	 * of bpf_exit, which means that program wrote
7308 	 * something into it earlier
7309 	 */
7310 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7311 	if (err)
7312 		return err;
7313 
7314 	if (is_pointer_value(env, BPF_REG_0)) {
7315 		verbose(env, "R0 leaks addr as return value\n");
7316 		return -EACCES;
7317 	}
7318 
7319 	switch (env->prog->type) {
7320 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7321 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7322 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7323 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7324 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7325 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7326 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7327 			range = tnum_range(1, 1);
7328 		break;
7329 	case BPF_PROG_TYPE_CGROUP_SKB:
7330 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7331 			range = tnum_range(0, 3);
7332 			enforce_attach_type_range = tnum_range(2, 3);
7333 		}
7334 		break;
7335 	case BPF_PROG_TYPE_CGROUP_SOCK:
7336 	case BPF_PROG_TYPE_SOCK_OPS:
7337 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7338 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7339 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7340 		break;
7341 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7342 		if (!env->prog->aux->attach_btf_id)
7343 			return 0;
7344 		range = tnum_const(0);
7345 		break;
7346 	case BPF_PROG_TYPE_TRACING:
7347 		switch (env->prog->expected_attach_type) {
7348 		case BPF_TRACE_FENTRY:
7349 		case BPF_TRACE_FEXIT:
7350 			range = tnum_const(0);
7351 			break;
7352 		case BPF_TRACE_RAW_TP:
7353 		case BPF_MODIFY_RETURN:
7354 			return 0;
7355 		case BPF_TRACE_ITER:
7356 			break;
7357 		default:
7358 			return -ENOTSUPP;
7359 		}
7360 		break;
7361 	case BPF_PROG_TYPE_SK_LOOKUP:
7362 		range = tnum_range(SK_DROP, SK_PASS);
7363 		break;
7364 	case BPF_PROG_TYPE_EXT:
7365 		/* freplace program can return anything as its return value
7366 		 * depends on the to-be-replaced kernel func or bpf program.
7367 		 */
7368 	default:
7369 		return 0;
7370 	}
7371 
7372 	reg = cur_regs(env) + BPF_REG_0;
7373 	if (reg->type != SCALAR_VALUE) {
7374 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7375 			reg_type_str[reg->type]);
7376 		return -EINVAL;
7377 	}
7378 
7379 	if (!tnum_in(range, reg->var_off)) {
7380 		char tn_buf[48];
7381 
7382 		verbose(env, "At program exit the register R0 ");
7383 		if (!tnum_is_unknown(reg->var_off)) {
7384 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7385 			verbose(env, "has value %s", tn_buf);
7386 		} else {
7387 			verbose(env, "has unknown scalar value");
7388 		}
7389 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7390 		verbose(env, " should have been in %s\n", tn_buf);
7391 		return -EINVAL;
7392 	}
7393 
7394 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7395 	    tnum_in(enforce_attach_type_range, reg->var_off))
7396 		env->prog->enforce_expected_attach_type = 1;
7397 	return 0;
7398 }
7399 
7400 /* non-recursive DFS pseudo code
7401  * 1  procedure DFS-iterative(G,v):
7402  * 2      label v as discovered
7403  * 3      let S be a stack
7404  * 4      S.push(v)
7405  * 5      while S is not empty
7406  * 6            t <- S.pop()
7407  * 7            if t is what we're looking for:
7408  * 8                return t
7409  * 9            for all edges e in G.adjacentEdges(t) do
7410  * 10               if edge e is already labelled
7411  * 11                   continue with the next edge
7412  * 12               w <- G.adjacentVertex(t,e)
7413  * 13               if vertex w is not discovered and not explored
7414  * 14                   label e as tree-edge
7415  * 15                   label w as discovered
7416  * 16                   S.push(w)
7417  * 17                   continue at 5
7418  * 18               else if vertex w is discovered
7419  * 19                   label e as back-edge
7420  * 20               else
7421  * 21                   // vertex w is explored
7422  * 22                   label e as forward- or cross-edge
7423  * 23           label t as explored
7424  * 24           S.pop()
7425  *
7426  * convention:
7427  * 0x10 - discovered
7428  * 0x11 - discovered and fall-through edge labelled
7429  * 0x12 - discovered and fall-through and branch edges labelled
7430  * 0x20 - explored
7431  */
7432 
7433 enum {
7434 	DISCOVERED = 0x10,
7435 	EXPLORED = 0x20,
7436 	FALLTHROUGH = 1,
7437 	BRANCH = 2,
7438 };
7439 
7440 static u32 state_htab_size(struct bpf_verifier_env *env)
7441 {
7442 	return env->prog->len;
7443 }
7444 
7445 static struct bpf_verifier_state_list **explored_state(
7446 					struct bpf_verifier_env *env,
7447 					int idx)
7448 {
7449 	struct bpf_verifier_state *cur = env->cur_state;
7450 	struct bpf_func_state *state = cur->frame[cur->curframe];
7451 
7452 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7453 }
7454 
7455 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7456 {
7457 	env->insn_aux_data[idx].prune_point = true;
7458 }
7459 
7460 /* t, w, e - match pseudo-code above:
7461  * t - index of current instruction
7462  * w - next instruction
7463  * e - edge
7464  */
7465 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7466 		     bool loop_ok)
7467 {
7468 	int *insn_stack = env->cfg.insn_stack;
7469 	int *insn_state = env->cfg.insn_state;
7470 
7471 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7472 		return 0;
7473 
7474 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7475 		return 0;
7476 
7477 	if (w < 0 || w >= env->prog->len) {
7478 		verbose_linfo(env, t, "%d: ", t);
7479 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7480 		return -EINVAL;
7481 	}
7482 
7483 	if (e == BRANCH)
7484 		/* mark branch target for state pruning */
7485 		init_explored_state(env, w);
7486 
7487 	if (insn_state[w] == 0) {
7488 		/* tree-edge */
7489 		insn_state[t] = DISCOVERED | e;
7490 		insn_state[w] = DISCOVERED;
7491 		if (env->cfg.cur_stack >= env->prog->len)
7492 			return -E2BIG;
7493 		insn_stack[env->cfg.cur_stack++] = w;
7494 		return 1;
7495 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7496 		if (loop_ok && env->bpf_capable)
7497 			return 0;
7498 		verbose_linfo(env, t, "%d: ", t);
7499 		verbose_linfo(env, w, "%d: ", w);
7500 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7501 		return -EINVAL;
7502 	} else if (insn_state[w] == EXPLORED) {
7503 		/* forward- or cross-edge */
7504 		insn_state[t] = DISCOVERED | e;
7505 	} else {
7506 		verbose(env, "insn state internal bug\n");
7507 		return -EFAULT;
7508 	}
7509 	return 0;
7510 }
7511 
7512 /* non-recursive depth-first-search to detect loops in BPF program
7513  * loop == back-edge in directed graph
7514  */
7515 static int check_cfg(struct bpf_verifier_env *env)
7516 {
7517 	struct bpf_insn *insns = env->prog->insnsi;
7518 	int insn_cnt = env->prog->len;
7519 	int *insn_stack, *insn_state;
7520 	int ret = 0;
7521 	int i, t;
7522 
7523 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7524 	if (!insn_state)
7525 		return -ENOMEM;
7526 
7527 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7528 	if (!insn_stack) {
7529 		kvfree(insn_state);
7530 		return -ENOMEM;
7531 	}
7532 
7533 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7534 	insn_stack[0] = 0; /* 0 is the first instruction */
7535 	env->cfg.cur_stack = 1;
7536 
7537 peek_stack:
7538 	if (env->cfg.cur_stack == 0)
7539 		goto check_state;
7540 	t = insn_stack[env->cfg.cur_stack - 1];
7541 
7542 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7543 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7544 		u8 opcode = BPF_OP(insns[t].code);
7545 
7546 		if (opcode == BPF_EXIT) {
7547 			goto mark_explored;
7548 		} else if (opcode == BPF_CALL) {
7549 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7550 			if (ret == 1)
7551 				goto peek_stack;
7552 			else if (ret < 0)
7553 				goto err_free;
7554 			if (t + 1 < insn_cnt)
7555 				init_explored_state(env, t + 1);
7556 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7557 				init_explored_state(env, t);
7558 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7559 						env, false);
7560 				if (ret == 1)
7561 					goto peek_stack;
7562 				else if (ret < 0)
7563 					goto err_free;
7564 			}
7565 		} else if (opcode == BPF_JA) {
7566 			if (BPF_SRC(insns[t].code) != BPF_K) {
7567 				ret = -EINVAL;
7568 				goto err_free;
7569 			}
7570 			/* unconditional jump with single edge */
7571 			ret = push_insn(t, t + insns[t].off + 1,
7572 					FALLTHROUGH, env, true);
7573 			if (ret == 1)
7574 				goto peek_stack;
7575 			else if (ret < 0)
7576 				goto err_free;
7577 			/* unconditional jmp is not a good pruning point,
7578 			 * but it's marked, since backtracking needs
7579 			 * to record jmp history in is_state_visited().
7580 			 */
7581 			init_explored_state(env, t + insns[t].off + 1);
7582 			/* tell verifier to check for equivalent states
7583 			 * after every call and jump
7584 			 */
7585 			if (t + 1 < insn_cnt)
7586 				init_explored_state(env, t + 1);
7587 		} else {
7588 			/* conditional jump with two edges */
7589 			init_explored_state(env, t);
7590 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7591 			if (ret == 1)
7592 				goto peek_stack;
7593 			else if (ret < 0)
7594 				goto err_free;
7595 
7596 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7597 			if (ret == 1)
7598 				goto peek_stack;
7599 			else if (ret < 0)
7600 				goto err_free;
7601 		}
7602 	} else {
7603 		/* all other non-branch instructions with single
7604 		 * fall-through edge
7605 		 */
7606 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7607 		if (ret == 1)
7608 			goto peek_stack;
7609 		else if (ret < 0)
7610 			goto err_free;
7611 	}
7612 
7613 mark_explored:
7614 	insn_state[t] = EXPLORED;
7615 	if (env->cfg.cur_stack-- <= 0) {
7616 		verbose(env, "pop stack internal bug\n");
7617 		ret = -EFAULT;
7618 		goto err_free;
7619 	}
7620 	goto peek_stack;
7621 
7622 check_state:
7623 	for (i = 0; i < insn_cnt; i++) {
7624 		if (insn_state[i] != EXPLORED) {
7625 			verbose(env, "unreachable insn %d\n", i);
7626 			ret = -EINVAL;
7627 			goto err_free;
7628 		}
7629 	}
7630 	ret = 0; /* cfg looks good */
7631 
7632 err_free:
7633 	kvfree(insn_state);
7634 	kvfree(insn_stack);
7635 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7636 	return ret;
7637 }
7638 
7639 /* The minimum supported BTF func info size */
7640 #define MIN_BPF_FUNCINFO_SIZE	8
7641 #define MAX_FUNCINFO_REC_SIZE	252
7642 
7643 static int check_btf_func(struct bpf_verifier_env *env,
7644 			  const union bpf_attr *attr,
7645 			  union bpf_attr __user *uattr)
7646 {
7647 	u32 i, nfuncs, urec_size, min_size;
7648 	u32 krec_size = sizeof(struct bpf_func_info);
7649 	struct bpf_func_info *krecord;
7650 	struct bpf_func_info_aux *info_aux = NULL;
7651 	const struct btf_type *type;
7652 	struct bpf_prog *prog;
7653 	const struct btf *btf;
7654 	void __user *urecord;
7655 	u32 prev_offset = 0;
7656 	int ret = -ENOMEM;
7657 
7658 	nfuncs = attr->func_info_cnt;
7659 	if (!nfuncs)
7660 		return 0;
7661 
7662 	if (nfuncs != env->subprog_cnt) {
7663 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7664 		return -EINVAL;
7665 	}
7666 
7667 	urec_size = attr->func_info_rec_size;
7668 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7669 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7670 	    urec_size % sizeof(u32)) {
7671 		verbose(env, "invalid func info rec size %u\n", urec_size);
7672 		return -EINVAL;
7673 	}
7674 
7675 	prog = env->prog;
7676 	btf = prog->aux->btf;
7677 
7678 	urecord = u64_to_user_ptr(attr->func_info);
7679 	min_size = min_t(u32, krec_size, urec_size);
7680 
7681 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7682 	if (!krecord)
7683 		return -ENOMEM;
7684 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7685 	if (!info_aux)
7686 		goto err_free;
7687 
7688 	for (i = 0; i < nfuncs; i++) {
7689 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7690 		if (ret) {
7691 			if (ret == -E2BIG) {
7692 				verbose(env, "nonzero tailing record in func info");
7693 				/* set the size kernel expects so loader can zero
7694 				 * out the rest of the record.
7695 				 */
7696 				if (put_user(min_size, &uattr->func_info_rec_size))
7697 					ret = -EFAULT;
7698 			}
7699 			goto err_free;
7700 		}
7701 
7702 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7703 			ret = -EFAULT;
7704 			goto err_free;
7705 		}
7706 
7707 		/* check insn_off */
7708 		if (i == 0) {
7709 			if (krecord[i].insn_off) {
7710 				verbose(env,
7711 					"nonzero insn_off %u for the first func info record",
7712 					krecord[i].insn_off);
7713 				ret = -EINVAL;
7714 				goto err_free;
7715 			}
7716 		} else if (krecord[i].insn_off <= prev_offset) {
7717 			verbose(env,
7718 				"same or smaller insn offset (%u) than previous func info record (%u)",
7719 				krecord[i].insn_off, prev_offset);
7720 			ret = -EINVAL;
7721 			goto err_free;
7722 		}
7723 
7724 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7725 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7726 			ret = -EINVAL;
7727 			goto err_free;
7728 		}
7729 
7730 		/* check type_id */
7731 		type = btf_type_by_id(btf, krecord[i].type_id);
7732 		if (!type || !btf_type_is_func(type)) {
7733 			verbose(env, "invalid type id %d in func info",
7734 				krecord[i].type_id);
7735 			ret = -EINVAL;
7736 			goto err_free;
7737 		}
7738 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7739 		prev_offset = krecord[i].insn_off;
7740 		urecord += urec_size;
7741 	}
7742 
7743 	prog->aux->func_info = krecord;
7744 	prog->aux->func_info_cnt = nfuncs;
7745 	prog->aux->func_info_aux = info_aux;
7746 	return 0;
7747 
7748 err_free:
7749 	kvfree(krecord);
7750 	kfree(info_aux);
7751 	return ret;
7752 }
7753 
7754 static void adjust_btf_func(struct bpf_verifier_env *env)
7755 {
7756 	struct bpf_prog_aux *aux = env->prog->aux;
7757 	int i;
7758 
7759 	if (!aux->func_info)
7760 		return;
7761 
7762 	for (i = 0; i < env->subprog_cnt; i++)
7763 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7764 }
7765 
7766 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7767 		sizeof(((struct bpf_line_info *)(0))->line_col))
7768 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7769 
7770 static int check_btf_line(struct bpf_verifier_env *env,
7771 			  const union bpf_attr *attr,
7772 			  union bpf_attr __user *uattr)
7773 {
7774 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7775 	struct bpf_subprog_info *sub;
7776 	struct bpf_line_info *linfo;
7777 	struct bpf_prog *prog;
7778 	const struct btf *btf;
7779 	void __user *ulinfo;
7780 	int err;
7781 
7782 	nr_linfo = attr->line_info_cnt;
7783 	if (!nr_linfo)
7784 		return 0;
7785 
7786 	rec_size = attr->line_info_rec_size;
7787 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7788 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7789 	    rec_size & (sizeof(u32) - 1))
7790 		return -EINVAL;
7791 
7792 	/* Need to zero it in case the userspace may
7793 	 * pass in a smaller bpf_line_info object.
7794 	 */
7795 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7796 			 GFP_KERNEL | __GFP_NOWARN);
7797 	if (!linfo)
7798 		return -ENOMEM;
7799 
7800 	prog = env->prog;
7801 	btf = prog->aux->btf;
7802 
7803 	s = 0;
7804 	sub = env->subprog_info;
7805 	ulinfo = u64_to_user_ptr(attr->line_info);
7806 	expected_size = sizeof(struct bpf_line_info);
7807 	ncopy = min_t(u32, expected_size, rec_size);
7808 	for (i = 0; i < nr_linfo; i++) {
7809 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7810 		if (err) {
7811 			if (err == -E2BIG) {
7812 				verbose(env, "nonzero tailing record in line_info");
7813 				if (put_user(expected_size,
7814 					     &uattr->line_info_rec_size))
7815 					err = -EFAULT;
7816 			}
7817 			goto err_free;
7818 		}
7819 
7820 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7821 			err = -EFAULT;
7822 			goto err_free;
7823 		}
7824 
7825 		/*
7826 		 * Check insn_off to ensure
7827 		 * 1) strictly increasing AND
7828 		 * 2) bounded by prog->len
7829 		 *
7830 		 * The linfo[0].insn_off == 0 check logically falls into
7831 		 * the later "missing bpf_line_info for func..." case
7832 		 * because the first linfo[0].insn_off must be the
7833 		 * first sub also and the first sub must have
7834 		 * subprog_info[0].start == 0.
7835 		 */
7836 		if ((i && linfo[i].insn_off <= prev_offset) ||
7837 		    linfo[i].insn_off >= prog->len) {
7838 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7839 				i, linfo[i].insn_off, prev_offset,
7840 				prog->len);
7841 			err = -EINVAL;
7842 			goto err_free;
7843 		}
7844 
7845 		if (!prog->insnsi[linfo[i].insn_off].code) {
7846 			verbose(env,
7847 				"Invalid insn code at line_info[%u].insn_off\n",
7848 				i);
7849 			err = -EINVAL;
7850 			goto err_free;
7851 		}
7852 
7853 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7854 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7855 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7856 			err = -EINVAL;
7857 			goto err_free;
7858 		}
7859 
7860 		if (s != env->subprog_cnt) {
7861 			if (linfo[i].insn_off == sub[s].start) {
7862 				sub[s].linfo_idx = i;
7863 				s++;
7864 			} else if (sub[s].start < linfo[i].insn_off) {
7865 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7866 				err = -EINVAL;
7867 				goto err_free;
7868 			}
7869 		}
7870 
7871 		prev_offset = linfo[i].insn_off;
7872 		ulinfo += rec_size;
7873 	}
7874 
7875 	if (s != env->subprog_cnt) {
7876 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7877 			env->subprog_cnt - s, s);
7878 		err = -EINVAL;
7879 		goto err_free;
7880 	}
7881 
7882 	prog->aux->linfo = linfo;
7883 	prog->aux->nr_linfo = nr_linfo;
7884 
7885 	return 0;
7886 
7887 err_free:
7888 	kvfree(linfo);
7889 	return err;
7890 }
7891 
7892 static int check_btf_info(struct bpf_verifier_env *env,
7893 			  const union bpf_attr *attr,
7894 			  union bpf_attr __user *uattr)
7895 {
7896 	struct btf *btf;
7897 	int err;
7898 
7899 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7900 		return 0;
7901 
7902 	btf = btf_get_by_fd(attr->prog_btf_fd);
7903 	if (IS_ERR(btf))
7904 		return PTR_ERR(btf);
7905 	env->prog->aux->btf = btf;
7906 
7907 	err = check_btf_func(env, attr, uattr);
7908 	if (err)
7909 		return err;
7910 
7911 	err = check_btf_line(env, attr, uattr);
7912 	if (err)
7913 		return err;
7914 
7915 	return 0;
7916 }
7917 
7918 /* check %cur's range satisfies %old's */
7919 static bool range_within(struct bpf_reg_state *old,
7920 			 struct bpf_reg_state *cur)
7921 {
7922 	return old->umin_value <= cur->umin_value &&
7923 	       old->umax_value >= cur->umax_value &&
7924 	       old->smin_value <= cur->smin_value &&
7925 	       old->smax_value >= cur->smax_value;
7926 }
7927 
7928 /* Maximum number of register states that can exist at once */
7929 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7930 struct idpair {
7931 	u32 old;
7932 	u32 cur;
7933 };
7934 
7935 /* If in the old state two registers had the same id, then they need to have
7936  * the same id in the new state as well.  But that id could be different from
7937  * the old state, so we need to track the mapping from old to new ids.
7938  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7939  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7940  * regs with a different old id could still have new id 9, we don't care about
7941  * that.
7942  * So we look through our idmap to see if this old id has been seen before.  If
7943  * so, we require the new id to match; otherwise, we add the id pair to the map.
7944  */
7945 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7946 {
7947 	unsigned int i;
7948 
7949 	for (i = 0; i < ID_MAP_SIZE; i++) {
7950 		if (!idmap[i].old) {
7951 			/* Reached an empty slot; haven't seen this id before */
7952 			idmap[i].old = old_id;
7953 			idmap[i].cur = cur_id;
7954 			return true;
7955 		}
7956 		if (idmap[i].old == old_id)
7957 			return idmap[i].cur == cur_id;
7958 	}
7959 	/* We ran out of idmap slots, which should be impossible */
7960 	WARN_ON_ONCE(1);
7961 	return false;
7962 }
7963 
7964 static void clean_func_state(struct bpf_verifier_env *env,
7965 			     struct bpf_func_state *st)
7966 {
7967 	enum bpf_reg_liveness live;
7968 	int i, j;
7969 
7970 	for (i = 0; i < BPF_REG_FP; i++) {
7971 		live = st->regs[i].live;
7972 		/* liveness must not touch this register anymore */
7973 		st->regs[i].live |= REG_LIVE_DONE;
7974 		if (!(live & REG_LIVE_READ))
7975 			/* since the register is unused, clear its state
7976 			 * to make further comparison simpler
7977 			 */
7978 			__mark_reg_not_init(env, &st->regs[i]);
7979 	}
7980 
7981 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7982 		live = st->stack[i].spilled_ptr.live;
7983 		/* liveness must not touch this stack slot anymore */
7984 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7985 		if (!(live & REG_LIVE_READ)) {
7986 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7987 			for (j = 0; j < BPF_REG_SIZE; j++)
7988 				st->stack[i].slot_type[j] = STACK_INVALID;
7989 		}
7990 	}
7991 }
7992 
7993 static void clean_verifier_state(struct bpf_verifier_env *env,
7994 				 struct bpf_verifier_state *st)
7995 {
7996 	int i;
7997 
7998 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7999 		/* all regs in this state in all frames were already marked */
8000 		return;
8001 
8002 	for (i = 0; i <= st->curframe; i++)
8003 		clean_func_state(env, st->frame[i]);
8004 }
8005 
8006 /* the parentage chains form a tree.
8007  * the verifier states are added to state lists at given insn and
8008  * pushed into state stack for future exploration.
8009  * when the verifier reaches bpf_exit insn some of the verifer states
8010  * stored in the state lists have their final liveness state already,
8011  * but a lot of states will get revised from liveness point of view when
8012  * the verifier explores other branches.
8013  * Example:
8014  * 1: r0 = 1
8015  * 2: if r1 == 100 goto pc+1
8016  * 3: r0 = 2
8017  * 4: exit
8018  * when the verifier reaches exit insn the register r0 in the state list of
8019  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8020  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8021  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8022  *
8023  * Since the verifier pushes the branch states as it sees them while exploring
8024  * the program the condition of walking the branch instruction for the second
8025  * time means that all states below this branch were already explored and
8026  * their final liveness markes are already propagated.
8027  * Hence when the verifier completes the search of state list in is_state_visited()
8028  * we can call this clean_live_states() function to mark all liveness states
8029  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8030  * will not be used.
8031  * This function also clears the registers and stack for states that !READ
8032  * to simplify state merging.
8033  *
8034  * Important note here that walking the same branch instruction in the callee
8035  * doesn't meant that the states are DONE. The verifier has to compare
8036  * the callsites
8037  */
8038 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8039 			      struct bpf_verifier_state *cur)
8040 {
8041 	struct bpf_verifier_state_list *sl;
8042 	int i;
8043 
8044 	sl = *explored_state(env, insn);
8045 	while (sl) {
8046 		if (sl->state.branches)
8047 			goto next;
8048 		if (sl->state.insn_idx != insn ||
8049 		    sl->state.curframe != cur->curframe)
8050 			goto next;
8051 		for (i = 0; i <= cur->curframe; i++)
8052 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8053 				goto next;
8054 		clean_verifier_state(env, &sl->state);
8055 next:
8056 		sl = sl->next;
8057 	}
8058 }
8059 
8060 /* Returns true if (rold safe implies rcur safe) */
8061 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8062 		    struct idpair *idmap)
8063 {
8064 	bool equal;
8065 
8066 	if (!(rold->live & REG_LIVE_READ))
8067 		/* explored state didn't use this */
8068 		return true;
8069 
8070 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8071 
8072 	if (rold->type == PTR_TO_STACK)
8073 		/* two stack pointers are equal only if they're pointing to
8074 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8075 		 */
8076 		return equal && rold->frameno == rcur->frameno;
8077 
8078 	if (equal)
8079 		return true;
8080 
8081 	if (rold->type == NOT_INIT)
8082 		/* explored state can't have used this */
8083 		return true;
8084 	if (rcur->type == NOT_INIT)
8085 		return false;
8086 	switch (rold->type) {
8087 	case SCALAR_VALUE:
8088 		if (rcur->type == SCALAR_VALUE) {
8089 			if (!rold->precise && !rcur->precise)
8090 				return true;
8091 			/* new val must satisfy old val knowledge */
8092 			return range_within(rold, rcur) &&
8093 			       tnum_in(rold->var_off, rcur->var_off);
8094 		} else {
8095 			/* We're trying to use a pointer in place of a scalar.
8096 			 * Even if the scalar was unbounded, this could lead to
8097 			 * pointer leaks because scalars are allowed to leak
8098 			 * while pointers are not. We could make this safe in
8099 			 * special cases if root is calling us, but it's
8100 			 * probably not worth the hassle.
8101 			 */
8102 			return false;
8103 		}
8104 	case PTR_TO_MAP_VALUE:
8105 		/* If the new min/max/var_off satisfy the old ones and
8106 		 * everything else matches, we are OK.
8107 		 * 'id' is not compared, since it's only used for maps with
8108 		 * bpf_spin_lock inside map element and in such cases if
8109 		 * the rest of the prog is valid for one map element then
8110 		 * it's valid for all map elements regardless of the key
8111 		 * used in bpf_map_lookup()
8112 		 */
8113 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8114 		       range_within(rold, rcur) &&
8115 		       tnum_in(rold->var_off, rcur->var_off);
8116 	case PTR_TO_MAP_VALUE_OR_NULL:
8117 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8118 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8119 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8120 		 * checked, doing so could have affected others with the same
8121 		 * id, and we can't check for that because we lost the id when
8122 		 * we converted to a PTR_TO_MAP_VALUE.
8123 		 */
8124 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8125 			return false;
8126 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8127 			return false;
8128 		/* Check our ids match any regs they're supposed to */
8129 		return check_ids(rold->id, rcur->id, idmap);
8130 	case PTR_TO_PACKET_META:
8131 	case PTR_TO_PACKET:
8132 		if (rcur->type != rold->type)
8133 			return false;
8134 		/* We must have at least as much range as the old ptr
8135 		 * did, so that any accesses which were safe before are
8136 		 * still safe.  This is true even if old range < old off,
8137 		 * since someone could have accessed through (ptr - k), or
8138 		 * even done ptr -= k in a register, to get a safe access.
8139 		 */
8140 		if (rold->range > rcur->range)
8141 			return false;
8142 		/* If the offsets don't match, we can't trust our alignment;
8143 		 * nor can we be sure that we won't fall out of range.
8144 		 */
8145 		if (rold->off != rcur->off)
8146 			return false;
8147 		/* id relations must be preserved */
8148 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8149 			return false;
8150 		/* new val must satisfy old val knowledge */
8151 		return range_within(rold, rcur) &&
8152 		       tnum_in(rold->var_off, rcur->var_off);
8153 	case PTR_TO_CTX:
8154 	case CONST_PTR_TO_MAP:
8155 	case PTR_TO_PACKET_END:
8156 	case PTR_TO_FLOW_KEYS:
8157 	case PTR_TO_SOCKET:
8158 	case PTR_TO_SOCKET_OR_NULL:
8159 	case PTR_TO_SOCK_COMMON:
8160 	case PTR_TO_SOCK_COMMON_OR_NULL:
8161 	case PTR_TO_TCP_SOCK:
8162 	case PTR_TO_TCP_SOCK_OR_NULL:
8163 	case PTR_TO_XDP_SOCK:
8164 		/* Only valid matches are exact, which memcmp() above
8165 		 * would have accepted
8166 		 */
8167 	default:
8168 		/* Don't know what's going on, just say it's not safe */
8169 		return false;
8170 	}
8171 
8172 	/* Shouldn't get here; if we do, say it's not safe */
8173 	WARN_ON_ONCE(1);
8174 	return false;
8175 }
8176 
8177 static bool stacksafe(struct bpf_func_state *old,
8178 		      struct bpf_func_state *cur,
8179 		      struct idpair *idmap)
8180 {
8181 	int i, spi;
8182 
8183 	/* walk slots of the explored stack and ignore any additional
8184 	 * slots in the current stack, since explored(safe) state
8185 	 * didn't use them
8186 	 */
8187 	for (i = 0; i < old->allocated_stack; i++) {
8188 		spi = i / BPF_REG_SIZE;
8189 
8190 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8191 			i += BPF_REG_SIZE - 1;
8192 			/* explored state didn't use this */
8193 			continue;
8194 		}
8195 
8196 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8197 			continue;
8198 
8199 		/* explored stack has more populated slots than current stack
8200 		 * and these slots were used
8201 		 */
8202 		if (i >= cur->allocated_stack)
8203 			return false;
8204 
8205 		/* if old state was safe with misc data in the stack
8206 		 * it will be safe with zero-initialized stack.
8207 		 * The opposite is not true
8208 		 */
8209 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8210 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8211 			continue;
8212 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8213 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8214 			/* Ex: old explored (safe) state has STACK_SPILL in
8215 			 * this stack slot, but current has has STACK_MISC ->
8216 			 * this verifier states are not equivalent,
8217 			 * return false to continue verification of this path
8218 			 */
8219 			return false;
8220 		if (i % BPF_REG_SIZE)
8221 			continue;
8222 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8223 			continue;
8224 		if (!regsafe(&old->stack[spi].spilled_ptr,
8225 			     &cur->stack[spi].spilled_ptr,
8226 			     idmap))
8227 			/* when explored and current stack slot are both storing
8228 			 * spilled registers, check that stored pointers types
8229 			 * are the same as well.
8230 			 * Ex: explored safe path could have stored
8231 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8232 			 * but current path has stored:
8233 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8234 			 * such verifier states are not equivalent.
8235 			 * return false to continue verification of this path
8236 			 */
8237 			return false;
8238 	}
8239 	return true;
8240 }
8241 
8242 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8243 {
8244 	if (old->acquired_refs != cur->acquired_refs)
8245 		return false;
8246 	return !memcmp(old->refs, cur->refs,
8247 		       sizeof(*old->refs) * old->acquired_refs);
8248 }
8249 
8250 /* compare two verifier states
8251  *
8252  * all states stored in state_list are known to be valid, since
8253  * verifier reached 'bpf_exit' instruction through them
8254  *
8255  * this function is called when verifier exploring different branches of
8256  * execution popped from the state stack. If it sees an old state that has
8257  * more strict register state and more strict stack state then this execution
8258  * branch doesn't need to be explored further, since verifier already
8259  * concluded that more strict state leads to valid finish.
8260  *
8261  * Therefore two states are equivalent if register state is more conservative
8262  * and explored stack state is more conservative than the current one.
8263  * Example:
8264  *       explored                   current
8265  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8266  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8267  *
8268  * In other words if current stack state (one being explored) has more
8269  * valid slots than old one that already passed validation, it means
8270  * the verifier can stop exploring and conclude that current state is valid too
8271  *
8272  * Similarly with registers. If explored state has register type as invalid
8273  * whereas register type in current state is meaningful, it means that
8274  * the current state will reach 'bpf_exit' instruction safely
8275  */
8276 static bool func_states_equal(struct bpf_func_state *old,
8277 			      struct bpf_func_state *cur)
8278 {
8279 	struct idpair *idmap;
8280 	bool ret = false;
8281 	int i;
8282 
8283 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8284 	/* If we failed to allocate the idmap, just say it's not safe */
8285 	if (!idmap)
8286 		return false;
8287 
8288 	for (i = 0; i < MAX_BPF_REG; i++) {
8289 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8290 			goto out_free;
8291 	}
8292 
8293 	if (!stacksafe(old, cur, idmap))
8294 		goto out_free;
8295 
8296 	if (!refsafe(old, cur))
8297 		goto out_free;
8298 	ret = true;
8299 out_free:
8300 	kfree(idmap);
8301 	return ret;
8302 }
8303 
8304 static bool states_equal(struct bpf_verifier_env *env,
8305 			 struct bpf_verifier_state *old,
8306 			 struct bpf_verifier_state *cur)
8307 {
8308 	int i;
8309 
8310 	if (old->curframe != cur->curframe)
8311 		return false;
8312 
8313 	/* Verification state from speculative execution simulation
8314 	 * must never prune a non-speculative execution one.
8315 	 */
8316 	if (old->speculative && !cur->speculative)
8317 		return false;
8318 
8319 	if (old->active_spin_lock != cur->active_spin_lock)
8320 		return false;
8321 
8322 	/* for states to be equal callsites have to be the same
8323 	 * and all frame states need to be equivalent
8324 	 */
8325 	for (i = 0; i <= old->curframe; i++) {
8326 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8327 			return false;
8328 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8329 			return false;
8330 	}
8331 	return true;
8332 }
8333 
8334 /* Return 0 if no propagation happened. Return negative error code if error
8335  * happened. Otherwise, return the propagated bit.
8336  */
8337 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8338 				  struct bpf_reg_state *reg,
8339 				  struct bpf_reg_state *parent_reg)
8340 {
8341 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8342 	u8 flag = reg->live & REG_LIVE_READ;
8343 	int err;
8344 
8345 	/* When comes here, read flags of PARENT_REG or REG could be any of
8346 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8347 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8348 	 */
8349 	if (parent_flag == REG_LIVE_READ64 ||
8350 	    /* Or if there is no read flag from REG. */
8351 	    !flag ||
8352 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8353 	    parent_flag == flag)
8354 		return 0;
8355 
8356 	err = mark_reg_read(env, reg, parent_reg, flag);
8357 	if (err)
8358 		return err;
8359 
8360 	return flag;
8361 }
8362 
8363 /* A write screens off any subsequent reads; but write marks come from the
8364  * straight-line code between a state and its parent.  When we arrive at an
8365  * equivalent state (jump target or such) we didn't arrive by the straight-line
8366  * code, so read marks in the state must propagate to the parent regardless
8367  * of the state's write marks. That's what 'parent == state->parent' comparison
8368  * in mark_reg_read() is for.
8369  */
8370 static int propagate_liveness(struct bpf_verifier_env *env,
8371 			      const struct bpf_verifier_state *vstate,
8372 			      struct bpf_verifier_state *vparent)
8373 {
8374 	struct bpf_reg_state *state_reg, *parent_reg;
8375 	struct bpf_func_state *state, *parent;
8376 	int i, frame, err = 0;
8377 
8378 	if (vparent->curframe != vstate->curframe) {
8379 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8380 		     vparent->curframe, vstate->curframe);
8381 		return -EFAULT;
8382 	}
8383 	/* Propagate read liveness of registers... */
8384 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8385 	for (frame = 0; frame <= vstate->curframe; frame++) {
8386 		parent = vparent->frame[frame];
8387 		state = vstate->frame[frame];
8388 		parent_reg = parent->regs;
8389 		state_reg = state->regs;
8390 		/* We don't need to worry about FP liveness, it's read-only */
8391 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8392 			err = propagate_liveness_reg(env, &state_reg[i],
8393 						     &parent_reg[i]);
8394 			if (err < 0)
8395 				return err;
8396 			if (err == REG_LIVE_READ64)
8397 				mark_insn_zext(env, &parent_reg[i]);
8398 		}
8399 
8400 		/* Propagate stack slots. */
8401 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8402 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8403 			parent_reg = &parent->stack[i].spilled_ptr;
8404 			state_reg = &state->stack[i].spilled_ptr;
8405 			err = propagate_liveness_reg(env, state_reg,
8406 						     parent_reg);
8407 			if (err < 0)
8408 				return err;
8409 		}
8410 	}
8411 	return 0;
8412 }
8413 
8414 /* find precise scalars in the previous equivalent state and
8415  * propagate them into the current state
8416  */
8417 static int propagate_precision(struct bpf_verifier_env *env,
8418 			       const struct bpf_verifier_state *old)
8419 {
8420 	struct bpf_reg_state *state_reg;
8421 	struct bpf_func_state *state;
8422 	int i, err = 0;
8423 
8424 	state = old->frame[old->curframe];
8425 	state_reg = state->regs;
8426 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8427 		if (state_reg->type != SCALAR_VALUE ||
8428 		    !state_reg->precise)
8429 			continue;
8430 		if (env->log.level & BPF_LOG_LEVEL2)
8431 			verbose(env, "propagating r%d\n", i);
8432 		err = mark_chain_precision(env, i);
8433 		if (err < 0)
8434 			return err;
8435 	}
8436 
8437 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8438 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8439 			continue;
8440 		state_reg = &state->stack[i].spilled_ptr;
8441 		if (state_reg->type != SCALAR_VALUE ||
8442 		    !state_reg->precise)
8443 			continue;
8444 		if (env->log.level & BPF_LOG_LEVEL2)
8445 			verbose(env, "propagating fp%d\n",
8446 				(-i - 1) * BPF_REG_SIZE);
8447 		err = mark_chain_precision_stack(env, i);
8448 		if (err < 0)
8449 			return err;
8450 	}
8451 	return 0;
8452 }
8453 
8454 static bool states_maybe_looping(struct bpf_verifier_state *old,
8455 				 struct bpf_verifier_state *cur)
8456 {
8457 	struct bpf_func_state *fold, *fcur;
8458 	int i, fr = cur->curframe;
8459 
8460 	if (old->curframe != fr)
8461 		return false;
8462 
8463 	fold = old->frame[fr];
8464 	fcur = cur->frame[fr];
8465 	for (i = 0; i < MAX_BPF_REG; i++)
8466 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8467 			   offsetof(struct bpf_reg_state, parent)))
8468 			return false;
8469 	return true;
8470 }
8471 
8472 
8473 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8474 {
8475 	struct bpf_verifier_state_list *new_sl;
8476 	struct bpf_verifier_state_list *sl, **pprev;
8477 	struct bpf_verifier_state *cur = env->cur_state, *new;
8478 	int i, j, err, states_cnt = 0;
8479 	bool add_new_state = env->test_state_freq ? true : false;
8480 
8481 	cur->last_insn_idx = env->prev_insn_idx;
8482 	if (!env->insn_aux_data[insn_idx].prune_point)
8483 		/* this 'insn_idx' instruction wasn't marked, so we will not
8484 		 * be doing state search here
8485 		 */
8486 		return 0;
8487 
8488 	/* bpf progs typically have pruning point every 4 instructions
8489 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8490 	 * Do not add new state for future pruning if the verifier hasn't seen
8491 	 * at least 2 jumps and at least 8 instructions.
8492 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8493 	 * In tests that amounts to up to 50% reduction into total verifier
8494 	 * memory consumption and 20% verifier time speedup.
8495 	 */
8496 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8497 	    env->insn_processed - env->prev_insn_processed >= 8)
8498 		add_new_state = true;
8499 
8500 	pprev = explored_state(env, insn_idx);
8501 	sl = *pprev;
8502 
8503 	clean_live_states(env, insn_idx, cur);
8504 
8505 	while (sl) {
8506 		states_cnt++;
8507 		if (sl->state.insn_idx != insn_idx)
8508 			goto next;
8509 		if (sl->state.branches) {
8510 			if (states_maybe_looping(&sl->state, cur) &&
8511 			    states_equal(env, &sl->state, cur)) {
8512 				verbose_linfo(env, insn_idx, "; ");
8513 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8514 				return -EINVAL;
8515 			}
8516 			/* if the verifier is processing a loop, avoid adding new state
8517 			 * too often, since different loop iterations have distinct
8518 			 * states and may not help future pruning.
8519 			 * This threshold shouldn't be too low to make sure that
8520 			 * a loop with large bound will be rejected quickly.
8521 			 * The most abusive loop will be:
8522 			 * r1 += 1
8523 			 * if r1 < 1000000 goto pc-2
8524 			 * 1M insn_procssed limit / 100 == 10k peak states.
8525 			 * This threshold shouldn't be too high either, since states
8526 			 * at the end of the loop are likely to be useful in pruning.
8527 			 */
8528 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8529 			    env->insn_processed - env->prev_insn_processed < 100)
8530 				add_new_state = false;
8531 			goto miss;
8532 		}
8533 		if (states_equal(env, &sl->state, cur)) {
8534 			sl->hit_cnt++;
8535 			/* reached equivalent register/stack state,
8536 			 * prune the search.
8537 			 * Registers read by the continuation are read by us.
8538 			 * If we have any write marks in env->cur_state, they
8539 			 * will prevent corresponding reads in the continuation
8540 			 * from reaching our parent (an explored_state).  Our
8541 			 * own state will get the read marks recorded, but
8542 			 * they'll be immediately forgotten as we're pruning
8543 			 * this state and will pop a new one.
8544 			 */
8545 			err = propagate_liveness(env, &sl->state, cur);
8546 
8547 			/* if previous state reached the exit with precision and
8548 			 * current state is equivalent to it (except precsion marks)
8549 			 * the precision needs to be propagated back in
8550 			 * the current state.
8551 			 */
8552 			err = err ? : push_jmp_history(env, cur);
8553 			err = err ? : propagate_precision(env, &sl->state);
8554 			if (err)
8555 				return err;
8556 			return 1;
8557 		}
8558 miss:
8559 		/* when new state is not going to be added do not increase miss count.
8560 		 * Otherwise several loop iterations will remove the state
8561 		 * recorded earlier. The goal of these heuristics is to have
8562 		 * states from some iterations of the loop (some in the beginning
8563 		 * and some at the end) to help pruning.
8564 		 */
8565 		if (add_new_state)
8566 			sl->miss_cnt++;
8567 		/* heuristic to determine whether this state is beneficial
8568 		 * to keep checking from state equivalence point of view.
8569 		 * Higher numbers increase max_states_per_insn and verification time,
8570 		 * but do not meaningfully decrease insn_processed.
8571 		 */
8572 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8573 			/* the state is unlikely to be useful. Remove it to
8574 			 * speed up verification
8575 			 */
8576 			*pprev = sl->next;
8577 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8578 				u32 br = sl->state.branches;
8579 
8580 				WARN_ONCE(br,
8581 					  "BUG live_done but branches_to_explore %d\n",
8582 					  br);
8583 				free_verifier_state(&sl->state, false);
8584 				kfree(sl);
8585 				env->peak_states--;
8586 			} else {
8587 				/* cannot free this state, since parentage chain may
8588 				 * walk it later. Add it for free_list instead to
8589 				 * be freed at the end of verification
8590 				 */
8591 				sl->next = env->free_list;
8592 				env->free_list = sl;
8593 			}
8594 			sl = *pprev;
8595 			continue;
8596 		}
8597 next:
8598 		pprev = &sl->next;
8599 		sl = *pprev;
8600 	}
8601 
8602 	if (env->max_states_per_insn < states_cnt)
8603 		env->max_states_per_insn = states_cnt;
8604 
8605 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8606 		return push_jmp_history(env, cur);
8607 
8608 	if (!add_new_state)
8609 		return push_jmp_history(env, cur);
8610 
8611 	/* There were no equivalent states, remember the current one.
8612 	 * Technically the current state is not proven to be safe yet,
8613 	 * but it will either reach outer most bpf_exit (which means it's safe)
8614 	 * or it will be rejected. When there are no loops the verifier won't be
8615 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8616 	 * again on the way to bpf_exit.
8617 	 * When looping the sl->state.branches will be > 0 and this state
8618 	 * will not be considered for equivalence until branches == 0.
8619 	 */
8620 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8621 	if (!new_sl)
8622 		return -ENOMEM;
8623 	env->total_states++;
8624 	env->peak_states++;
8625 	env->prev_jmps_processed = env->jmps_processed;
8626 	env->prev_insn_processed = env->insn_processed;
8627 
8628 	/* add new state to the head of linked list */
8629 	new = &new_sl->state;
8630 	err = copy_verifier_state(new, cur);
8631 	if (err) {
8632 		free_verifier_state(new, false);
8633 		kfree(new_sl);
8634 		return err;
8635 	}
8636 	new->insn_idx = insn_idx;
8637 	WARN_ONCE(new->branches != 1,
8638 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8639 
8640 	cur->parent = new;
8641 	cur->first_insn_idx = insn_idx;
8642 	clear_jmp_history(cur);
8643 	new_sl->next = *explored_state(env, insn_idx);
8644 	*explored_state(env, insn_idx) = new_sl;
8645 	/* connect new state to parentage chain. Current frame needs all
8646 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8647 	 * to the stack implicitly by JITs) so in callers' frames connect just
8648 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8649 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8650 	 * from callee with its full parentage chain, anyway.
8651 	 */
8652 	/* clear write marks in current state: the writes we did are not writes
8653 	 * our child did, so they don't screen off its reads from us.
8654 	 * (There are no read marks in current state, because reads always mark
8655 	 * their parent and current state never has children yet.  Only
8656 	 * explored_states can get read marks.)
8657 	 */
8658 	for (j = 0; j <= cur->curframe; j++) {
8659 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8660 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8661 		for (i = 0; i < BPF_REG_FP; i++)
8662 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8663 	}
8664 
8665 	/* all stack frames are accessible from callee, clear them all */
8666 	for (j = 0; j <= cur->curframe; j++) {
8667 		struct bpf_func_state *frame = cur->frame[j];
8668 		struct bpf_func_state *newframe = new->frame[j];
8669 
8670 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8671 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8672 			frame->stack[i].spilled_ptr.parent =
8673 						&newframe->stack[i].spilled_ptr;
8674 		}
8675 	}
8676 	return 0;
8677 }
8678 
8679 /* Return true if it's OK to have the same insn return a different type. */
8680 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8681 {
8682 	switch (type) {
8683 	case PTR_TO_CTX:
8684 	case PTR_TO_SOCKET:
8685 	case PTR_TO_SOCKET_OR_NULL:
8686 	case PTR_TO_SOCK_COMMON:
8687 	case PTR_TO_SOCK_COMMON_OR_NULL:
8688 	case PTR_TO_TCP_SOCK:
8689 	case PTR_TO_TCP_SOCK_OR_NULL:
8690 	case PTR_TO_XDP_SOCK:
8691 	case PTR_TO_BTF_ID:
8692 	case PTR_TO_BTF_ID_OR_NULL:
8693 		return false;
8694 	default:
8695 		return true;
8696 	}
8697 }
8698 
8699 /* If an instruction was previously used with particular pointer types, then we
8700  * need to be careful to avoid cases such as the below, where it may be ok
8701  * for one branch accessing the pointer, but not ok for the other branch:
8702  *
8703  * R1 = sock_ptr
8704  * goto X;
8705  * ...
8706  * R1 = some_other_valid_ptr;
8707  * goto X;
8708  * ...
8709  * R2 = *(u32 *)(R1 + 0);
8710  */
8711 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8712 {
8713 	return src != prev && (!reg_type_mismatch_ok(src) ||
8714 			       !reg_type_mismatch_ok(prev));
8715 }
8716 
8717 static int do_check(struct bpf_verifier_env *env)
8718 {
8719 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
8720 	struct bpf_verifier_state *state = env->cur_state;
8721 	struct bpf_insn *insns = env->prog->insnsi;
8722 	struct bpf_reg_state *regs;
8723 	int insn_cnt = env->prog->len;
8724 	bool do_print_state = false;
8725 	int prev_insn_idx = -1;
8726 
8727 	for (;;) {
8728 		struct bpf_insn *insn;
8729 		u8 class;
8730 		int err;
8731 
8732 		env->prev_insn_idx = prev_insn_idx;
8733 		if (env->insn_idx >= insn_cnt) {
8734 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8735 				env->insn_idx, insn_cnt);
8736 			return -EFAULT;
8737 		}
8738 
8739 		insn = &insns[env->insn_idx];
8740 		class = BPF_CLASS(insn->code);
8741 
8742 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8743 			verbose(env,
8744 				"BPF program is too large. Processed %d insn\n",
8745 				env->insn_processed);
8746 			return -E2BIG;
8747 		}
8748 
8749 		err = is_state_visited(env, env->insn_idx);
8750 		if (err < 0)
8751 			return err;
8752 		if (err == 1) {
8753 			/* found equivalent state, can prune the search */
8754 			if (env->log.level & BPF_LOG_LEVEL) {
8755 				if (do_print_state)
8756 					verbose(env, "\nfrom %d to %d%s: safe\n",
8757 						env->prev_insn_idx, env->insn_idx,
8758 						env->cur_state->speculative ?
8759 						" (speculative execution)" : "");
8760 				else
8761 					verbose(env, "%d: safe\n", env->insn_idx);
8762 			}
8763 			goto process_bpf_exit;
8764 		}
8765 
8766 		if (signal_pending(current))
8767 			return -EAGAIN;
8768 
8769 		if (need_resched())
8770 			cond_resched();
8771 
8772 		if (env->log.level & BPF_LOG_LEVEL2 ||
8773 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8774 			if (env->log.level & BPF_LOG_LEVEL2)
8775 				verbose(env, "%d:", env->insn_idx);
8776 			else
8777 				verbose(env, "\nfrom %d to %d%s:",
8778 					env->prev_insn_idx, env->insn_idx,
8779 					env->cur_state->speculative ?
8780 					" (speculative execution)" : "");
8781 			print_verifier_state(env, state->frame[state->curframe]);
8782 			do_print_state = false;
8783 		}
8784 
8785 		if (env->log.level & BPF_LOG_LEVEL) {
8786 			const struct bpf_insn_cbs cbs = {
8787 				.cb_print	= verbose,
8788 				.private_data	= env,
8789 			};
8790 
8791 			verbose_linfo(env, env->insn_idx, "; ");
8792 			verbose(env, "%d: ", env->insn_idx);
8793 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8794 		}
8795 
8796 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8797 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8798 							   env->prev_insn_idx);
8799 			if (err)
8800 				return err;
8801 		}
8802 
8803 		regs = cur_regs(env);
8804 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8805 		prev_insn_idx = env->insn_idx;
8806 
8807 		if (class == BPF_ALU || class == BPF_ALU64) {
8808 			err = check_alu_op(env, insn);
8809 			if (err)
8810 				return err;
8811 
8812 		} else if (class == BPF_LDX) {
8813 			enum bpf_reg_type *prev_src_type, src_reg_type;
8814 
8815 			/* check for reserved fields is already done */
8816 
8817 			/* check src operand */
8818 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8819 			if (err)
8820 				return err;
8821 
8822 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8823 			if (err)
8824 				return err;
8825 
8826 			src_reg_type = regs[insn->src_reg].type;
8827 
8828 			/* check that memory (src_reg + off) is readable,
8829 			 * the state of dst_reg will be updated by this func
8830 			 */
8831 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8832 					       insn->off, BPF_SIZE(insn->code),
8833 					       BPF_READ, insn->dst_reg, false);
8834 			if (err)
8835 				return err;
8836 
8837 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8838 
8839 			if (*prev_src_type == NOT_INIT) {
8840 				/* saw a valid insn
8841 				 * dst_reg = *(u32 *)(src_reg + off)
8842 				 * save type to validate intersecting paths
8843 				 */
8844 				*prev_src_type = src_reg_type;
8845 
8846 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8847 				/* ABuser program is trying to use the same insn
8848 				 * dst_reg = *(u32*) (src_reg + off)
8849 				 * with different pointer types:
8850 				 * src_reg == ctx in one branch and
8851 				 * src_reg == stack|map in some other branch.
8852 				 * Reject it.
8853 				 */
8854 				verbose(env, "same insn cannot be used with different pointers\n");
8855 				return -EINVAL;
8856 			}
8857 
8858 		} else if (class == BPF_STX) {
8859 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8860 
8861 			if (BPF_MODE(insn->code) == BPF_XADD) {
8862 				err = check_xadd(env, env->insn_idx, insn);
8863 				if (err)
8864 					return err;
8865 				env->insn_idx++;
8866 				continue;
8867 			}
8868 
8869 			/* check src1 operand */
8870 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8871 			if (err)
8872 				return err;
8873 			/* check src2 operand */
8874 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8875 			if (err)
8876 				return err;
8877 
8878 			dst_reg_type = regs[insn->dst_reg].type;
8879 
8880 			/* check that memory (dst_reg + off) is writeable */
8881 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8882 					       insn->off, BPF_SIZE(insn->code),
8883 					       BPF_WRITE, insn->src_reg, false);
8884 			if (err)
8885 				return err;
8886 
8887 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8888 
8889 			if (*prev_dst_type == NOT_INIT) {
8890 				*prev_dst_type = dst_reg_type;
8891 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8892 				verbose(env, "same insn cannot be used with different pointers\n");
8893 				return -EINVAL;
8894 			}
8895 
8896 		} else if (class == BPF_ST) {
8897 			if (BPF_MODE(insn->code) != BPF_MEM ||
8898 			    insn->src_reg != BPF_REG_0) {
8899 				verbose(env, "BPF_ST uses reserved fields\n");
8900 				return -EINVAL;
8901 			}
8902 			/* check src operand */
8903 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8904 			if (err)
8905 				return err;
8906 
8907 			if (is_ctx_reg(env, insn->dst_reg)) {
8908 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8909 					insn->dst_reg,
8910 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8911 				return -EACCES;
8912 			}
8913 
8914 			/* check that memory (dst_reg + off) is writeable */
8915 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8916 					       insn->off, BPF_SIZE(insn->code),
8917 					       BPF_WRITE, -1, false);
8918 			if (err)
8919 				return err;
8920 
8921 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8922 			u8 opcode = BPF_OP(insn->code);
8923 
8924 			env->jmps_processed++;
8925 			if (opcode == BPF_CALL) {
8926 				if (BPF_SRC(insn->code) != BPF_K ||
8927 				    insn->off != 0 ||
8928 				    (insn->src_reg != BPF_REG_0 &&
8929 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8930 				    insn->dst_reg != BPF_REG_0 ||
8931 				    class == BPF_JMP32) {
8932 					verbose(env, "BPF_CALL uses reserved fields\n");
8933 					return -EINVAL;
8934 				}
8935 
8936 				if (env->cur_state->active_spin_lock &&
8937 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8938 				     insn->imm != BPF_FUNC_spin_unlock)) {
8939 					verbose(env, "function calls are not allowed while holding a lock\n");
8940 					return -EINVAL;
8941 				}
8942 				if (insn->src_reg == BPF_PSEUDO_CALL)
8943 					err = check_func_call(env, insn, &env->insn_idx);
8944 				else
8945 					err = check_helper_call(env, insn->imm, env->insn_idx);
8946 				if (err)
8947 					return err;
8948 
8949 			} else if (opcode == BPF_JA) {
8950 				if (BPF_SRC(insn->code) != BPF_K ||
8951 				    insn->imm != 0 ||
8952 				    insn->src_reg != BPF_REG_0 ||
8953 				    insn->dst_reg != BPF_REG_0 ||
8954 				    class == BPF_JMP32) {
8955 					verbose(env, "BPF_JA uses reserved fields\n");
8956 					return -EINVAL;
8957 				}
8958 
8959 				env->insn_idx += insn->off + 1;
8960 				continue;
8961 
8962 			} else if (opcode == BPF_EXIT) {
8963 				if (BPF_SRC(insn->code) != BPF_K ||
8964 				    insn->imm != 0 ||
8965 				    insn->src_reg != BPF_REG_0 ||
8966 				    insn->dst_reg != BPF_REG_0 ||
8967 				    class == BPF_JMP32) {
8968 					verbose(env, "BPF_EXIT uses reserved fields\n");
8969 					return -EINVAL;
8970 				}
8971 
8972 				if (env->cur_state->active_spin_lock) {
8973 					verbose(env, "bpf_spin_unlock is missing\n");
8974 					return -EINVAL;
8975 				}
8976 
8977 				if (state->curframe) {
8978 					/* exit from nested function */
8979 					err = prepare_func_exit(env, &env->insn_idx);
8980 					if (err)
8981 						return err;
8982 					do_print_state = true;
8983 					continue;
8984 				}
8985 
8986 				err = check_reference_leak(env);
8987 				if (err)
8988 					return err;
8989 
8990 				err = check_return_code(env);
8991 				if (err)
8992 					return err;
8993 process_bpf_exit:
8994 				update_branch_counts(env, env->cur_state);
8995 				err = pop_stack(env, &prev_insn_idx,
8996 						&env->insn_idx, pop_log);
8997 				if (err < 0) {
8998 					if (err != -ENOENT)
8999 						return err;
9000 					break;
9001 				} else {
9002 					do_print_state = true;
9003 					continue;
9004 				}
9005 			} else {
9006 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9007 				if (err)
9008 					return err;
9009 			}
9010 		} else if (class == BPF_LD) {
9011 			u8 mode = BPF_MODE(insn->code);
9012 
9013 			if (mode == BPF_ABS || mode == BPF_IND) {
9014 				err = check_ld_abs(env, insn);
9015 				if (err)
9016 					return err;
9017 
9018 			} else if (mode == BPF_IMM) {
9019 				err = check_ld_imm(env, insn);
9020 				if (err)
9021 					return err;
9022 
9023 				env->insn_idx++;
9024 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9025 			} else {
9026 				verbose(env, "invalid BPF_LD mode\n");
9027 				return -EINVAL;
9028 			}
9029 		} else {
9030 			verbose(env, "unknown insn class %d\n", class);
9031 			return -EINVAL;
9032 		}
9033 
9034 		env->insn_idx++;
9035 	}
9036 
9037 	return 0;
9038 }
9039 
9040 static int check_map_prealloc(struct bpf_map *map)
9041 {
9042 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9043 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9044 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9045 		!(map->map_flags & BPF_F_NO_PREALLOC);
9046 }
9047 
9048 static bool is_tracing_prog_type(enum bpf_prog_type type)
9049 {
9050 	switch (type) {
9051 	case BPF_PROG_TYPE_KPROBE:
9052 	case BPF_PROG_TYPE_TRACEPOINT:
9053 	case BPF_PROG_TYPE_PERF_EVENT:
9054 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9055 		return true;
9056 	default:
9057 		return false;
9058 	}
9059 }
9060 
9061 static bool is_preallocated_map(struct bpf_map *map)
9062 {
9063 	if (!check_map_prealloc(map))
9064 		return false;
9065 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9066 		return false;
9067 	return true;
9068 }
9069 
9070 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9071 					struct bpf_map *map,
9072 					struct bpf_prog *prog)
9073 
9074 {
9075 	/*
9076 	 * Validate that trace type programs use preallocated hash maps.
9077 	 *
9078 	 * For programs attached to PERF events this is mandatory as the
9079 	 * perf NMI can hit any arbitrary code sequence.
9080 	 *
9081 	 * All other trace types using preallocated hash maps are unsafe as
9082 	 * well because tracepoint or kprobes can be inside locked regions
9083 	 * of the memory allocator or at a place where a recursion into the
9084 	 * memory allocator would see inconsistent state.
9085 	 *
9086 	 * On RT enabled kernels run-time allocation of all trace type
9087 	 * programs is strictly prohibited due to lock type constraints. On
9088 	 * !RT kernels it is allowed for backwards compatibility reasons for
9089 	 * now, but warnings are emitted so developers are made aware of
9090 	 * the unsafety and can fix their programs before this is enforced.
9091 	 */
9092 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
9093 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
9094 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9095 			return -EINVAL;
9096 		}
9097 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9098 			verbose(env, "trace type programs can only use preallocated hash map\n");
9099 			return -EINVAL;
9100 		}
9101 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9102 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9103 	}
9104 
9105 	if ((is_tracing_prog_type(prog->type) ||
9106 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9107 	    map_value_has_spin_lock(map)) {
9108 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9109 		return -EINVAL;
9110 	}
9111 
9112 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9113 	    !bpf_offload_prog_map_match(prog, map)) {
9114 		verbose(env, "offload device mismatch between prog and map\n");
9115 		return -EINVAL;
9116 	}
9117 
9118 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9119 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9120 		return -EINVAL;
9121 	}
9122 
9123 	return 0;
9124 }
9125 
9126 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9127 {
9128 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9129 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9130 }
9131 
9132 /* look for pseudo eBPF instructions that access map FDs and
9133  * replace them with actual map pointers
9134  */
9135 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
9136 {
9137 	struct bpf_insn *insn = env->prog->insnsi;
9138 	int insn_cnt = env->prog->len;
9139 	int i, j, err;
9140 
9141 	err = bpf_prog_calc_tag(env->prog);
9142 	if (err)
9143 		return err;
9144 
9145 	for (i = 0; i < insn_cnt; i++, insn++) {
9146 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9147 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9148 			verbose(env, "BPF_LDX uses reserved fields\n");
9149 			return -EINVAL;
9150 		}
9151 
9152 		if (BPF_CLASS(insn->code) == BPF_STX &&
9153 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9154 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9155 			verbose(env, "BPF_STX uses reserved fields\n");
9156 			return -EINVAL;
9157 		}
9158 
9159 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9160 			struct bpf_insn_aux_data *aux;
9161 			struct bpf_map *map;
9162 			struct fd f;
9163 			u64 addr;
9164 
9165 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9166 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9167 			    insn[1].off != 0) {
9168 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9169 				return -EINVAL;
9170 			}
9171 
9172 			if (insn[0].src_reg == 0)
9173 				/* valid generic load 64-bit imm */
9174 				goto next_insn;
9175 
9176 			/* In final convert_pseudo_ld_imm64() step, this is
9177 			 * converted into regular 64-bit imm load insn.
9178 			 */
9179 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9180 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9181 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9182 			     insn[1].imm != 0)) {
9183 				verbose(env,
9184 					"unrecognized bpf_ld_imm64 insn\n");
9185 				return -EINVAL;
9186 			}
9187 
9188 			f = fdget(insn[0].imm);
9189 			map = __bpf_map_get(f);
9190 			if (IS_ERR(map)) {
9191 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9192 					insn[0].imm);
9193 				return PTR_ERR(map);
9194 			}
9195 
9196 			err = check_map_prog_compatibility(env, map, env->prog);
9197 			if (err) {
9198 				fdput(f);
9199 				return err;
9200 			}
9201 
9202 			aux = &env->insn_aux_data[i];
9203 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9204 				addr = (unsigned long)map;
9205 			} else {
9206 				u32 off = insn[1].imm;
9207 
9208 				if (off >= BPF_MAX_VAR_OFF) {
9209 					verbose(env, "direct value offset of %u is not allowed\n", off);
9210 					fdput(f);
9211 					return -EINVAL;
9212 				}
9213 
9214 				if (!map->ops->map_direct_value_addr) {
9215 					verbose(env, "no direct value access support for this map type\n");
9216 					fdput(f);
9217 					return -EINVAL;
9218 				}
9219 
9220 				err = map->ops->map_direct_value_addr(map, &addr, off);
9221 				if (err) {
9222 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9223 						map->value_size, off);
9224 					fdput(f);
9225 					return err;
9226 				}
9227 
9228 				aux->map_off = off;
9229 				addr += off;
9230 			}
9231 
9232 			insn[0].imm = (u32)addr;
9233 			insn[1].imm = addr >> 32;
9234 
9235 			/* check whether we recorded this map already */
9236 			for (j = 0; j < env->used_map_cnt; j++) {
9237 				if (env->used_maps[j] == map) {
9238 					aux->map_index = j;
9239 					fdput(f);
9240 					goto next_insn;
9241 				}
9242 			}
9243 
9244 			if (env->used_map_cnt >= MAX_USED_MAPS) {
9245 				fdput(f);
9246 				return -E2BIG;
9247 			}
9248 
9249 			/* hold the map. If the program is rejected by verifier,
9250 			 * the map will be released by release_maps() or it
9251 			 * will be used by the valid program until it's unloaded
9252 			 * and all maps are released in free_used_maps()
9253 			 */
9254 			bpf_map_inc(map);
9255 
9256 			aux->map_index = env->used_map_cnt;
9257 			env->used_maps[env->used_map_cnt++] = map;
9258 
9259 			if (bpf_map_is_cgroup_storage(map) &&
9260 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
9261 				verbose(env, "only one cgroup storage of each type is allowed\n");
9262 				fdput(f);
9263 				return -EBUSY;
9264 			}
9265 
9266 			fdput(f);
9267 next_insn:
9268 			insn++;
9269 			i++;
9270 			continue;
9271 		}
9272 
9273 		/* Basic sanity check before we invest more work here. */
9274 		if (!bpf_opcode_in_insntable(insn->code)) {
9275 			verbose(env, "unknown opcode %02x\n", insn->code);
9276 			return -EINVAL;
9277 		}
9278 	}
9279 
9280 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9281 	 * 'struct bpf_map *' into a register instead of user map_fd.
9282 	 * These pointers will be used later by verifier to validate map access.
9283 	 */
9284 	return 0;
9285 }
9286 
9287 /* drop refcnt of maps used by the rejected program */
9288 static void release_maps(struct bpf_verifier_env *env)
9289 {
9290 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9291 			     env->used_map_cnt);
9292 }
9293 
9294 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9295 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9296 {
9297 	struct bpf_insn *insn = env->prog->insnsi;
9298 	int insn_cnt = env->prog->len;
9299 	int i;
9300 
9301 	for (i = 0; i < insn_cnt; i++, insn++)
9302 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9303 			insn->src_reg = 0;
9304 }
9305 
9306 /* single env->prog->insni[off] instruction was replaced with the range
9307  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9308  * [0, off) and [off, end) to new locations, so the patched range stays zero
9309  */
9310 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9311 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9312 {
9313 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9314 	struct bpf_insn *insn = new_prog->insnsi;
9315 	u32 prog_len;
9316 	int i;
9317 
9318 	/* aux info at OFF always needs adjustment, no matter fast path
9319 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9320 	 * original insn at old prog.
9321 	 */
9322 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9323 
9324 	if (cnt == 1)
9325 		return 0;
9326 	prog_len = new_prog->len;
9327 	new_data = vzalloc(array_size(prog_len,
9328 				      sizeof(struct bpf_insn_aux_data)));
9329 	if (!new_data)
9330 		return -ENOMEM;
9331 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9332 	memcpy(new_data + off + cnt - 1, old_data + off,
9333 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9334 	for (i = off; i < off + cnt - 1; i++) {
9335 		new_data[i].seen = env->pass_cnt;
9336 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9337 	}
9338 	env->insn_aux_data = new_data;
9339 	vfree(old_data);
9340 	return 0;
9341 }
9342 
9343 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9344 {
9345 	int i;
9346 
9347 	if (len == 1)
9348 		return;
9349 	/* NOTE: fake 'exit' subprog should be updated as well. */
9350 	for (i = 0; i <= env->subprog_cnt; i++) {
9351 		if (env->subprog_info[i].start <= off)
9352 			continue;
9353 		env->subprog_info[i].start += len - 1;
9354 	}
9355 }
9356 
9357 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9358 					    const struct bpf_insn *patch, u32 len)
9359 {
9360 	struct bpf_prog *new_prog;
9361 
9362 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9363 	if (IS_ERR(new_prog)) {
9364 		if (PTR_ERR(new_prog) == -ERANGE)
9365 			verbose(env,
9366 				"insn %d cannot be patched due to 16-bit range\n",
9367 				env->insn_aux_data[off].orig_idx);
9368 		return NULL;
9369 	}
9370 	if (adjust_insn_aux_data(env, new_prog, off, len))
9371 		return NULL;
9372 	adjust_subprog_starts(env, off, len);
9373 	return new_prog;
9374 }
9375 
9376 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9377 					      u32 off, u32 cnt)
9378 {
9379 	int i, j;
9380 
9381 	/* find first prog starting at or after off (first to remove) */
9382 	for (i = 0; i < env->subprog_cnt; i++)
9383 		if (env->subprog_info[i].start >= off)
9384 			break;
9385 	/* find first prog starting at or after off + cnt (first to stay) */
9386 	for (j = i; j < env->subprog_cnt; j++)
9387 		if (env->subprog_info[j].start >= off + cnt)
9388 			break;
9389 	/* if j doesn't start exactly at off + cnt, we are just removing
9390 	 * the front of previous prog
9391 	 */
9392 	if (env->subprog_info[j].start != off + cnt)
9393 		j--;
9394 
9395 	if (j > i) {
9396 		struct bpf_prog_aux *aux = env->prog->aux;
9397 		int move;
9398 
9399 		/* move fake 'exit' subprog as well */
9400 		move = env->subprog_cnt + 1 - j;
9401 
9402 		memmove(env->subprog_info + i,
9403 			env->subprog_info + j,
9404 			sizeof(*env->subprog_info) * move);
9405 		env->subprog_cnt -= j - i;
9406 
9407 		/* remove func_info */
9408 		if (aux->func_info) {
9409 			move = aux->func_info_cnt - j;
9410 
9411 			memmove(aux->func_info + i,
9412 				aux->func_info + j,
9413 				sizeof(*aux->func_info) * move);
9414 			aux->func_info_cnt -= j - i;
9415 			/* func_info->insn_off is set after all code rewrites,
9416 			 * in adjust_btf_func() - no need to adjust
9417 			 */
9418 		}
9419 	} else {
9420 		/* convert i from "first prog to remove" to "first to adjust" */
9421 		if (env->subprog_info[i].start == off)
9422 			i++;
9423 	}
9424 
9425 	/* update fake 'exit' subprog as well */
9426 	for (; i <= env->subprog_cnt; i++)
9427 		env->subprog_info[i].start -= cnt;
9428 
9429 	return 0;
9430 }
9431 
9432 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9433 				      u32 cnt)
9434 {
9435 	struct bpf_prog *prog = env->prog;
9436 	u32 i, l_off, l_cnt, nr_linfo;
9437 	struct bpf_line_info *linfo;
9438 
9439 	nr_linfo = prog->aux->nr_linfo;
9440 	if (!nr_linfo)
9441 		return 0;
9442 
9443 	linfo = prog->aux->linfo;
9444 
9445 	/* find first line info to remove, count lines to be removed */
9446 	for (i = 0; i < nr_linfo; i++)
9447 		if (linfo[i].insn_off >= off)
9448 			break;
9449 
9450 	l_off = i;
9451 	l_cnt = 0;
9452 	for (; i < nr_linfo; i++)
9453 		if (linfo[i].insn_off < off + cnt)
9454 			l_cnt++;
9455 		else
9456 			break;
9457 
9458 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9459 	 * last removed linfo.  prog is already modified, so prog->len == off
9460 	 * means no live instructions after (tail of the program was removed).
9461 	 */
9462 	if (prog->len != off && l_cnt &&
9463 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9464 		l_cnt--;
9465 		linfo[--i].insn_off = off + cnt;
9466 	}
9467 
9468 	/* remove the line info which refer to the removed instructions */
9469 	if (l_cnt) {
9470 		memmove(linfo + l_off, linfo + i,
9471 			sizeof(*linfo) * (nr_linfo - i));
9472 
9473 		prog->aux->nr_linfo -= l_cnt;
9474 		nr_linfo = prog->aux->nr_linfo;
9475 	}
9476 
9477 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9478 	for (i = l_off; i < nr_linfo; i++)
9479 		linfo[i].insn_off -= cnt;
9480 
9481 	/* fix up all subprogs (incl. 'exit') which start >= off */
9482 	for (i = 0; i <= env->subprog_cnt; i++)
9483 		if (env->subprog_info[i].linfo_idx > l_off) {
9484 			/* program may have started in the removed region but
9485 			 * may not be fully removed
9486 			 */
9487 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9488 				env->subprog_info[i].linfo_idx -= l_cnt;
9489 			else
9490 				env->subprog_info[i].linfo_idx = l_off;
9491 		}
9492 
9493 	return 0;
9494 }
9495 
9496 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9497 {
9498 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9499 	unsigned int orig_prog_len = env->prog->len;
9500 	int err;
9501 
9502 	if (bpf_prog_is_dev_bound(env->prog->aux))
9503 		bpf_prog_offload_remove_insns(env, off, cnt);
9504 
9505 	err = bpf_remove_insns(env->prog, off, cnt);
9506 	if (err)
9507 		return err;
9508 
9509 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9510 	if (err)
9511 		return err;
9512 
9513 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9514 	if (err)
9515 		return err;
9516 
9517 	memmove(aux_data + off,	aux_data + off + cnt,
9518 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9519 
9520 	return 0;
9521 }
9522 
9523 /* The verifier does more data flow analysis than llvm and will not
9524  * explore branches that are dead at run time. Malicious programs can
9525  * have dead code too. Therefore replace all dead at-run-time code
9526  * with 'ja -1'.
9527  *
9528  * Just nops are not optimal, e.g. if they would sit at the end of the
9529  * program and through another bug we would manage to jump there, then
9530  * we'd execute beyond program memory otherwise. Returning exception
9531  * code also wouldn't work since we can have subprogs where the dead
9532  * code could be located.
9533  */
9534 static void sanitize_dead_code(struct bpf_verifier_env *env)
9535 {
9536 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9537 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9538 	struct bpf_insn *insn = env->prog->insnsi;
9539 	const int insn_cnt = env->prog->len;
9540 	int i;
9541 
9542 	for (i = 0; i < insn_cnt; i++) {
9543 		if (aux_data[i].seen)
9544 			continue;
9545 		memcpy(insn + i, &trap, sizeof(trap));
9546 	}
9547 }
9548 
9549 static bool insn_is_cond_jump(u8 code)
9550 {
9551 	u8 op;
9552 
9553 	if (BPF_CLASS(code) == BPF_JMP32)
9554 		return true;
9555 
9556 	if (BPF_CLASS(code) != BPF_JMP)
9557 		return false;
9558 
9559 	op = BPF_OP(code);
9560 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9561 }
9562 
9563 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9564 {
9565 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9566 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9567 	struct bpf_insn *insn = env->prog->insnsi;
9568 	const int insn_cnt = env->prog->len;
9569 	int i;
9570 
9571 	for (i = 0; i < insn_cnt; i++, insn++) {
9572 		if (!insn_is_cond_jump(insn->code))
9573 			continue;
9574 
9575 		if (!aux_data[i + 1].seen)
9576 			ja.off = insn->off;
9577 		else if (!aux_data[i + 1 + insn->off].seen)
9578 			ja.off = 0;
9579 		else
9580 			continue;
9581 
9582 		if (bpf_prog_is_dev_bound(env->prog->aux))
9583 			bpf_prog_offload_replace_insn(env, i, &ja);
9584 
9585 		memcpy(insn, &ja, sizeof(ja));
9586 	}
9587 }
9588 
9589 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9590 {
9591 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9592 	int insn_cnt = env->prog->len;
9593 	int i, err;
9594 
9595 	for (i = 0; i < insn_cnt; i++) {
9596 		int j;
9597 
9598 		j = 0;
9599 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9600 			j++;
9601 		if (!j)
9602 			continue;
9603 
9604 		err = verifier_remove_insns(env, i, j);
9605 		if (err)
9606 			return err;
9607 		insn_cnt = env->prog->len;
9608 	}
9609 
9610 	return 0;
9611 }
9612 
9613 static int opt_remove_nops(struct bpf_verifier_env *env)
9614 {
9615 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9616 	struct bpf_insn *insn = env->prog->insnsi;
9617 	int insn_cnt = env->prog->len;
9618 	int i, err;
9619 
9620 	for (i = 0; i < insn_cnt; i++) {
9621 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9622 			continue;
9623 
9624 		err = verifier_remove_insns(env, i, 1);
9625 		if (err)
9626 			return err;
9627 		insn_cnt--;
9628 		i--;
9629 	}
9630 
9631 	return 0;
9632 }
9633 
9634 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9635 					 const union bpf_attr *attr)
9636 {
9637 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9638 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9639 	int i, patch_len, delta = 0, len = env->prog->len;
9640 	struct bpf_insn *insns = env->prog->insnsi;
9641 	struct bpf_prog *new_prog;
9642 	bool rnd_hi32;
9643 
9644 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9645 	zext_patch[1] = BPF_ZEXT_REG(0);
9646 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9647 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9648 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9649 	for (i = 0; i < len; i++) {
9650 		int adj_idx = i + delta;
9651 		struct bpf_insn insn;
9652 
9653 		insn = insns[adj_idx];
9654 		if (!aux[adj_idx].zext_dst) {
9655 			u8 code, class;
9656 			u32 imm_rnd;
9657 
9658 			if (!rnd_hi32)
9659 				continue;
9660 
9661 			code = insn.code;
9662 			class = BPF_CLASS(code);
9663 			if (insn_no_def(&insn))
9664 				continue;
9665 
9666 			/* NOTE: arg "reg" (the fourth one) is only used for
9667 			 *       BPF_STX which has been ruled out in above
9668 			 *       check, it is safe to pass NULL here.
9669 			 */
9670 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9671 				if (class == BPF_LD &&
9672 				    BPF_MODE(code) == BPF_IMM)
9673 					i++;
9674 				continue;
9675 			}
9676 
9677 			/* ctx load could be transformed into wider load. */
9678 			if (class == BPF_LDX &&
9679 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9680 				continue;
9681 
9682 			imm_rnd = get_random_int();
9683 			rnd_hi32_patch[0] = insn;
9684 			rnd_hi32_patch[1].imm = imm_rnd;
9685 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9686 			patch = rnd_hi32_patch;
9687 			patch_len = 4;
9688 			goto apply_patch_buffer;
9689 		}
9690 
9691 		if (!bpf_jit_needs_zext())
9692 			continue;
9693 
9694 		zext_patch[0] = insn;
9695 		zext_patch[1].dst_reg = insn.dst_reg;
9696 		zext_patch[1].src_reg = insn.dst_reg;
9697 		patch = zext_patch;
9698 		patch_len = 2;
9699 apply_patch_buffer:
9700 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9701 		if (!new_prog)
9702 			return -ENOMEM;
9703 		env->prog = new_prog;
9704 		insns = new_prog->insnsi;
9705 		aux = env->insn_aux_data;
9706 		delta += patch_len - 1;
9707 	}
9708 
9709 	return 0;
9710 }
9711 
9712 /* convert load instructions that access fields of a context type into a
9713  * sequence of instructions that access fields of the underlying structure:
9714  *     struct __sk_buff    -> struct sk_buff
9715  *     struct bpf_sock_ops -> struct sock
9716  */
9717 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9718 {
9719 	const struct bpf_verifier_ops *ops = env->ops;
9720 	int i, cnt, size, ctx_field_size, delta = 0;
9721 	const int insn_cnt = env->prog->len;
9722 	struct bpf_insn insn_buf[16], *insn;
9723 	u32 target_size, size_default, off;
9724 	struct bpf_prog *new_prog;
9725 	enum bpf_access_type type;
9726 	bool is_narrower_load;
9727 
9728 	if (ops->gen_prologue || env->seen_direct_write) {
9729 		if (!ops->gen_prologue) {
9730 			verbose(env, "bpf verifier is misconfigured\n");
9731 			return -EINVAL;
9732 		}
9733 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9734 					env->prog);
9735 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9736 			verbose(env, "bpf verifier is misconfigured\n");
9737 			return -EINVAL;
9738 		} else if (cnt) {
9739 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9740 			if (!new_prog)
9741 				return -ENOMEM;
9742 
9743 			env->prog = new_prog;
9744 			delta += cnt - 1;
9745 		}
9746 	}
9747 
9748 	if (bpf_prog_is_dev_bound(env->prog->aux))
9749 		return 0;
9750 
9751 	insn = env->prog->insnsi + delta;
9752 
9753 	for (i = 0; i < insn_cnt; i++, insn++) {
9754 		bpf_convert_ctx_access_t convert_ctx_access;
9755 
9756 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9757 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9758 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9759 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9760 			type = BPF_READ;
9761 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9762 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9763 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9764 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9765 			type = BPF_WRITE;
9766 		else
9767 			continue;
9768 
9769 		if (type == BPF_WRITE &&
9770 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9771 			struct bpf_insn patch[] = {
9772 				/* Sanitize suspicious stack slot with zero.
9773 				 * There are no memory dependencies for this store,
9774 				 * since it's only using frame pointer and immediate
9775 				 * constant of zero
9776 				 */
9777 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9778 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9779 					   0),
9780 				/* the original STX instruction will immediately
9781 				 * overwrite the same stack slot with appropriate value
9782 				 */
9783 				*insn,
9784 			};
9785 
9786 			cnt = ARRAY_SIZE(patch);
9787 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9788 			if (!new_prog)
9789 				return -ENOMEM;
9790 
9791 			delta    += cnt - 1;
9792 			env->prog = new_prog;
9793 			insn      = new_prog->insnsi + i + delta;
9794 			continue;
9795 		}
9796 
9797 		switch (env->insn_aux_data[i + delta].ptr_type) {
9798 		case PTR_TO_CTX:
9799 			if (!ops->convert_ctx_access)
9800 				continue;
9801 			convert_ctx_access = ops->convert_ctx_access;
9802 			break;
9803 		case PTR_TO_SOCKET:
9804 		case PTR_TO_SOCK_COMMON:
9805 			convert_ctx_access = bpf_sock_convert_ctx_access;
9806 			break;
9807 		case PTR_TO_TCP_SOCK:
9808 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9809 			break;
9810 		case PTR_TO_XDP_SOCK:
9811 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9812 			break;
9813 		case PTR_TO_BTF_ID:
9814 			if (type == BPF_READ) {
9815 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9816 					BPF_SIZE((insn)->code);
9817 				env->prog->aux->num_exentries++;
9818 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9819 				verbose(env, "Writes through BTF pointers are not allowed\n");
9820 				return -EINVAL;
9821 			}
9822 			continue;
9823 		default:
9824 			continue;
9825 		}
9826 
9827 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9828 		size = BPF_LDST_BYTES(insn);
9829 
9830 		/* If the read access is a narrower load of the field,
9831 		 * convert to a 4/8-byte load, to minimum program type specific
9832 		 * convert_ctx_access changes. If conversion is successful,
9833 		 * we will apply proper mask to the result.
9834 		 */
9835 		is_narrower_load = size < ctx_field_size;
9836 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9837 		off = insn->off;
9838 		if (is_narrower_load) {
9839 			u8 size_code;
9840 
9841 			if (type == BPF_WRITE) {
9842 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9843 				return -EINVAL;
9844 			}
9845 
9846 			size_code = BPF_H;
9847 			if (ctx_field_size == 4)
9848 				size_code = BPF_W;
9849 			else if (ctx_field_size == 8)
9850 				size_code = BPF_DW;
9851 
9852 			insn->off = off & ~(size_default - 1);
9853 			insn->code = BPF_LDX | BPF_MEM | size_code;
9854 		}
9855 
9856 		target_size = 0;
9857 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9858 					 &target_size);
9859 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9860 		    (ctx_field_size && !target_size)) {
9861 			verbose(env, "bpf verifier is misconfigured\n");
9862 			return -EINVAL;
9863 		}
9864 
9865 		if (is_narrower_load && size < target_size) {
9866 			u8 shift = bpf_ctx_narrow_access_offset(
9867 				off, size, size_default) * 8;
9868 			if (ctx_field_size <= 4) {
9869 				if (shift)
9870 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9871 									insn->dst_reg,
9872 									shift);
9873 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9874 								(1 << size * 8) - 1);
9875 			} else {
9876 				if (shift)
9877 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9878 									insn->dst_reg,
9879 									shift);
9880 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9881 								(1ULL << size * 8) - 1);
9882 			}
9883 		}
9884 
9885 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9886 		if (!new_prog)
9887 			return -ENOMEM;
9888 
9889 		delta += cnt - 1;
9890 
9891 		/* keep walking new program and skip insns we just inserted */
9892 		env->prog = new_prog;
9893 		insn      = new_prog->insnsi + i + delta;
9894 	}
9895 
9896 	return 0;
9897 }
9898 
9899 static int jit_subprogs(struct bpf_verifier_env *env)
9900 {
9901 	struct bpf_prog *prog = env->prog, **func, *tmp;
9902 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9903 	struct bpf_insn *insn;
9904 	void *old_bpf_func;
9905 	int err, num_exentries;
9906 
9907 	if (env->subprog_cnt <= 1)
9908 		return 0;
9909 
9910 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9911 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9912 		    insn->src_reg != BPF_PSEUDO_CALL)
9913 			continue;
9914 		/* Upon error here we cannot fall back to interpreter but
9915 		 * need a hard reject of the program. Thus -EFAULT is
9916 		 * propagated in any case.
9917 		 */
9918 		subprog = find_subprog(env, i + insn->imm + 1);
9919 		if (subprog < 0) {
9920 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9921 				  i + insn->imm + 1);
9922 			return -EFAULT;
9923 		}
9924 		/* temporarily remember subprog id inside insn instead of
9925 		 * aux_data, since next loop will split up all insns into funcs
9926 		 */
9927 		insn->off = subprog;
9928 		/* remember original imm in case JIT fails and fallback
9929 		 * to interpreter will be needed
9930 		 */
9931 		env->insn_aux_data[i].call_imm = insn->imm;
9932 		/* point imm to __bpf_call_base+1 from JITs point of view */
9933 		insn->imm = 1;
9934 	}
9935 
9936 	err = bpf_prog_alloc_jited_linfo(prog);
9937 	if (err)
9938 		goto out_undo_insn;
9939 
9940 	err = -ENOMEM;
9941 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9942 	if (!func)
9943 		goto out_undo_insn;
9944 
9945 	for (i = 0; i < env->subprog_cnt; i++) {
9946 		subprog_start = subprog_end;
9947 		subprog_end = env->subprog_info[i + 1].start;
9948 
9949 		len = subprog_end - subprog_start;
9950 		/* BPF_PROG_RUN doesn't call subprogs directly,
9951 		 * hence main prog stats include the runtime of subprogs.
9952 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9953 		 * func[i]->aux->stats will never be accessed and stays NULL
9954 		 */
9955 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9956 		if (!func[i])
9957 			goto out_free;
9958 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9959 		       len * sizeof(struct bpf_insn));
9960 		func[i]->type = prog->type;
9961 		func[i]->len = len;
9962 		if (bpf_prog_calc_tag(func[i]))
9963 			goto out_free;
9964 		func[i]->is_func = 1;
9965 		func[i]->aux->func_idx = i;
9966 		/* the btf and func_info will be freed only at prog->aux */
9967 		func[i]->aux->btf = prog->aux->btf;
9968 		func[i]->aux->func_info = prog->aux->func_info;
9969 
9970 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9971 		 * Long term would need debug info to populate names
9972 		 */
9973 		func[i]->aux->name[0] = 'F';
9974 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9975 		func[i]->jit_requested = 1;
9976 		func[i]->aux->linfo = prog->aux->linfo;
9977 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9978 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9979 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9980 		num_exentries = 0;
9981 		insn = func[i]->insnsi;
9982 		for (j = 0; j < func[i]->len; j++, insn++) {
9983 			if (BPF_CLASS(insn->code) == BPF_LDX &&
9984 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
9985 				num_exentries++;
9986 		}
9987 		func[i]->aux->num_exentries = num_exentries;
9988 		func[i] = bpf_int_jit_compile(func[i]);
9989 		if (!func[i]->jited) {
9990 			err = -ENOTSUPP;
9991 			goto out_free;
9992 		}
9993 		cond_resched();
9994 	}
9995 	/* at this point all bpf functions were successfully JITed
9996 	 * now populate all bpf_calls with correct addresses and
9997 	 * run last pass of JIT
9998 	 */
9999 	for (i = 0; i < env->subprog_cnt; i++) {
10000 		insn = func[i]->insnsi;
10001 		for (j = 0; j < func[i]->len; j++, insn++) {
10002 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10003 			    insn->src_reg != BPF_PSEUDO_CALL)
10004 				continue;
10005 			subprog = insn->off;
10006 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10007 				    __bpf_call_base;
10008 		}
10009 
10010 		/* we use the aux data to keep a list of the start addresses
10011 		 * of the JITed images for each function in the program
10012 		 *
10013 		 * for some architectures, such as powerpc64, the imm field
10014 		 * might not be large enough to hold the offset of the start
10015 		 * address of the callee's JITed image from __bpf_call_base
10016 		 *
10017 		 * in such cases, we can lookup the start address of a callee
10018 		 * by using its subprog id, available from the off field of
10019 		 * the call instruction, as an index for this list
10020 		 */
10021 		func[i]->aux->func = func;
10022 		func[i]->aux->func_cnt = env->subprog_cnt;
10023 	}
10024 	for (i = 0; i < env->subprog_cnt; i++) {
10025 		old_bpf_func = func[i]->bpf_func;
10026 		tmp = bpf_int_jit_compile(func[i]);
10027 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10028 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10029 			err = -ENOTSUPP;
10030 			goto out_free;
10031 		}
10032 		cond_resched();
10033 	}
10034 
10035 	/* finally lock prog and jit images for all functions and
10036 	 * populate kallsysm
10037 	 */
10038 	for (i = 0; i < env->subprog_cnt; i++) {
10039 		bpf_prog_lock_ro(func[i]);
10040 		bpf_prog_kallsyms_add(func[i]);
10041 	}
10042 
10043 	/* Last step: make now unused interpreter insns from main
10044 	 * prog consistent for later dump requests, so they can
10045 	 * later look the same as if they were interpreted only.
10046 	 */
10047 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10048 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10049 		    insn->src_reg != BPF_PSEUDO_CALL)
10050 			continue;
10051 		insn->off = env->insn_aux_data[i].call_imm;
10052 		subprog = find_subprog(env, i + insn->off + 1);
10053 		insn->imm = subprog;
10054 	}
10055 
10056 	prog->jited = 1;
10057 	prog->bpf_func = func[0]->bpf_func;
10058 	prog->aux->func = func;
10059 	prog->aux->func_cnt = env->subprog_cnt;
10060 	bpf_prog_free_unused_jited_linfo(prog);
10061 	return 0;
10062 out_free:
10063 	for (i = 0; i < env->subprog_cnt; i++)
10064 		if (func[i])
10065 			bpf_jit_free(func[i]);
10066 	kfree(func);
10067 out_undo_insn:
10068 	/* cleanup main prog to be interpreted */
10069 	prog->jit_requested = 0;
10070 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10071 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10072 		    insn->src_reg != BPF_PSEUDO_CALL)
10073 			continue;
10074 		insn->off = 0;
10075 		insn->imm = env->insn_aux_data[i].call_imm;
10076 	}
10077 	bpf_prog_free_jited_linfo(prog);
10078 	return err;
10079 }
10080 
10081 static int fixup_call_args(struct bpf_verifier_env *env)
10082 {
10083 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10084 	struct bpf_prog *prog = env->prog;
10085 	struct bpf_insn *insn = prog->insnsi;
10086 	int i, depth;
10087 #endif
10088 	int err = 0;
10089 
10090 	if (env->prog->jit_requested &&
10091 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
10092 		err = jit_subprogs(env);
10093 		if (err == 0)
10094 			return 0;
10095 		if (err == -EFAULT)
10096 			return err;
10097 	}
10098 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10099 	for (i = 0; i < prog->len; i++, insn++) {
10100 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10101 		    insn->src_reg != BPF_PSEUDO_CALL)
10102 			continue;
10103 		depth = get_callee_stack_depth(env, insn, i);
10104 		if (depth < 0)
10105 			return depth;
10106 		bpf_patch_call_args(insn, depth);
10107 	}
10108 	err = 0;
10109 #endif
10110 	return err;
10111 }
10112 
10113 /* fixup insn->imm field of bpf_call instructions
10114  * and inline eligible helpers as explicit sequence of BPF instructions
10115  *
10116  * this function is called after eBPF program passed verification
10117  */
10118 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10119 {
10120 	struct bpf_prog *prog = env->prog;
10121 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10122 	struct bpf_insn *insn = prog->insnsi;
10123 	const struct bpf_func_proto *fn;
10124 	const int insn_cnt = prog->len;
10125 	const struct bpf_map_ops *ops;
10126 	struct bpf_insn_aux_data *aux;
10127 	struct bpf_insn insn_buf[16];
10128 	struct bpf_prog *new_prog;
10129 	struct bpf_map *map_ptr;
10130 	int i, ret, cnt, delta = 0;
10131 
10132 	for (i = 0; i < insn_cnt; i++, insn++) {
10133 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10134 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10135 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10136 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10137 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10138 			struct bpf_insn mask_and_div[] = {
10139 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10140 				/* Rx div 0 -> 0 */
10141 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10142 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10143 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10144 				*insn,
10145 			};
10146 			struct bpf_insn mask_and_mod[] = {
10147 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10148 				/* Rx mod 0 -> Rx */
10149 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10150 				*insn,
10151 			};
10152 			struct bpf_insn *patchlet;
10153 
10154 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10155 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10156 				patchlet = mask_and_div + (is64 ? 1 : 0);
10157 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10158 			} else {
10159 				patchlet = mask_and_mod + (is64 ? 1 : 0);
10160 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10161 			}
10162 
10163 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10164 			if (!new_prog)
10165 				return -ENOMEM;
10166 
10167 			delta    += cnt - 1;
10168 			env->prog = prog = new_prog;
10169 			insn      = new_prog->insnsi + i + delta;
10170 			continue;
10171 		}
10172 
10173 		if (BPF_CLASS(insn->code) == BPF_LD &&
10174 		    (BPF_MODE(insn->code) == BPF_ABS ||
10175 		     BPF_MODE(insn->code) == BPF_IND)) {
10176 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
10177 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10178 				verbose(env, "bpf verifier is misconfigured\n");
10179 				return -EINVAL;
10180 			}
10181 
10182 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10183 			if (!new_prog)
10184 				return -ENOMEM;
10185 
10186 			delta    += cnt - 1;
10187 			env->prog = prog = new_prog;
10188 			insn      = new_prog->insnsi + i + delta;
10189 			continue;
10190 		}
10191 
10192 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10193 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10194 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10195 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10196 			struct bpf_insn insn_buf[16];
10197 			struct bpf_insn *patch = &insn_buf[0];
10198 			bool issrc, isneg;
10199 			u32 off_reg;
10200 
10201 			aux = &env->insn_aux_data[i + delta];
10202 			if (!aux->alu_state ||
10203 			    aux->alu_state == BPF_ALU_NON_POINTER)
10204 				continue;
10205 
10206 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10207 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10208 				BPF_ALU_SANITIZE_SRC;
10209 
10210 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
10211 			if (isneg)
10212 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10213 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10214 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10215 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10216 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10217 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10218 			if (issrc) {
10219 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10220 							 off_reg);
10221 				insn->src_reg = BPF_REG_AX;
10222 			} else {
10223 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10224 							 BPF_REG_AX);
10225 			}
10226 			if (isneg)
10227 				insn->code = insn->code == code_add ?
10228 					     code_sub : code_add;
10229 			*patch++ = *insn;
10230 			if (issrc && isneg)
10231 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10232 			cnt = patch - insn_buf;
10233 
10234 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10235 			if (!new_prog)
10236 				return -ENOMEM;
10237 
10238 			delta    += cnt - 1;
10239 			env->prog = prog = new_prog;
10240 			insn      = new_prog->insnsi + i + delta;
10241 			continue;
10242 		}
10243 
10244 		if (insn->code != (BPF_JMP | BPF_CALL))
10245 			continue;
10246 		if (insn->src_reg == BPF_PSEUDO_CALL)
10247 			continue;
10248 
10249 		if (insn->imm == BPF_FUNC_get_route_realm)
10250 			prog->dst_needed = 1;
10251 		if (insn->imm == BPF_FUNC_get_prandom_u32)
10252 			bpf_user_rnd_init_once();
10253 		if (insn->imm == BPF_FUNC_override_return)
10254 			prog->kprobe_override = 1;
10255 		if (insn->imm == BPF_FUNC_tail_call) {
10256 			/* If we tail call into other programs, we
10257 			 * cannot make any assumptions since they can
10258 			 * be replaced dynamically during runtime in
10259 			 * the program array.
10260 			 */
10261 			prog->cb_access = 1;
10262 			env->prog->aux->stack_depth = MAX_BPF_STACK;
10263 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10264 
10265 			/* mark bpf_tail_call as different opcode to avoid
10266 			 * conditional branch in the interpeter for every normal
10267 			 * call and to prevent accidental JITing by JIT compiler
10268 			 * that doesn't support bpf_tail_call yet
10269 			 */
10270 			insn->imm = 0;
10271 			insn->code = BPF_JMP | BPF_TAIL_CALL;
10272 
10273 			aux = &env->insn_aux_data[i + delta];
10274 			if (env->bpf_capable && !expect_blinding &&
10275 			    prog->jit_requested &&
10276 			    !bpf_map_key_poisoned(aux) &&
10277 			    !bpf_map_ptr_poisoned(aux) &&
10278 			    !bpf_map_ptr_unpriv(aux)) {
10279 				struct bpf_jit_poke_descriptor desc = {
10280 					.reason = BPF_POKE_REASON_TAIL_CALL,
10281 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10282 					.tail_call.key = bpf_map_key_immediate(aux),
10283 				};
10284 
10285 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
10286 				if (ret < 0) {
10287 					verbose(env, "adding tail call poke descriptor failed\n");
10288 					return ret;
10289 				}
10290 
10291 				insn->imm = ret + 1;
10292 				continue;
10293 			}
10294 
10295 			if (!bpf_map_ptr_unpriv(aux))
10296 				continue;
10297 
10298 			/* instead of changing every JIT dealing with tail_call
10299 			 * emit two extra insns:
10300 			 * if (index >= max_entries) goto out;
10301 			 * index &= array->index_mask;
10302 			 * to avoid out-of-bounds cpu speculation
10303 			 */
10304 			if (bpf_map_ptr_poisoned(aux)) {
10305 				verbose(env, "tail_call abusing map_ptr\n");
10306 				return -EINVAL;
10307 			}
10308 
10309 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10310 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10311 						  map_ptr->max_entries, 2);
10312 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10313 						    container_of(map_ptr,
10314 								 struct bpf_array,
10315 								 map)->index_mask);
10316 			insn_buf[2] = *insn;
10317 			cnt = 3;
10318 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10319 			if (!new_prog)
10320 				return -ENOMEM;
10321 
10322 			delta    += cnt - 1;
10323 			env->prog = prog = new_prog;
10324 			insn      = new_prog->insnsi + i + delta;
10325 			continue;
10326 		}
10327 
10328 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10329 		 * and other inlining handlers are currently limited to 64 bit
10330 		 * only.
10331 		 */
10332 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10333 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10334 		     insn->imm == BPF_FUNC_map_update_elem ||
10335 		     insn->imm == BPF_FUNC_map_delete_elem ||
10336 		     insn->imm == BPF_FUNC_map_push_elem   ||
10337 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10338 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10339 			aux = &env->insn_aux_data[i + delta];
10340 			if (bpf_map_ptr_poisoned(aux))
10341 				goto patch_call_imm;
10342 
10343 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10344 			ops = map_ptr->ops;
10345 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10346 			    ops->map_gen_lookup) {
10347 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10348 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10349 					verbose(env, "bpf verifier is misconfigured\n");
10350 					return -EINVAL;
10351 				}
10352 
10353 				new_prog = bpf_patch_insn_data(env, i + delta,
10354 							       insn_buf, cnt);
10355 				if (!new_prog)
10356 					return -ENOMEM;
10357 
10358 				delta    += cnt - 1;
10359 				env->prog = prog = new_prog;
10360 				insn      = new_prog->insnsi + i + delta;
10361 				continue;
10362 			}
10363 
10364 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10365 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10366 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10367 				     (int (*)(struct bpf_map *map, void *key))NULL));
10368 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10369 				     (int (*)(struct bpf_map *map, void *key, void *value,
10370 					      u64 flags))NULL));
10371 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10372 				     (int (*)(struct bpf_map *map, void *value,
10373 					      u64 flags))NULL));
10374 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10375 				     (int (*)(struct bpf_map *map, void *value))NULL));
10376 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10377 				     (int (*)(struct bpf_map *map, void *value))NULL));
10378 
10379 			switch (insn->imm) {
10380 			case BPF_FUNC_map_lookup_elem:
10381 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10382 					    __bpf_call_base;
10383 				continue;
10384 			case BPF_FUNC_map_update_elem:
10385 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10386 					    __bpf_call_base;
10387 				continue;
10388 			case BPF_FUNC_map_delete_elem:
10389 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10390 					    __bpf_call_base;
10391 				continue;
10392 			case BPF_FUNC_map_push_elem:
10393 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10394 					    __bpf_call_base;
10395 				continue;
10396 			case BPF_FUNC_map_pop_elem:
10397 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10398 					    __bpf_call_base;
10399 				continue;
10400 			case BPF_FUNC_map_peek_elem:
10401 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10402 					    __bpf_call_base;
10403 				continue;
10404 			}
10405 
10406 			goto patch_call_imm;
10407 		}
10408 
10409 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10410 		    insn->imm == BPF_FUNC_jiffies64) {
10411 			struct bpf_insn ld_jiffies_addr[2] = {
10412 				BPF_LD_IMM64(BPF_REG_0,
10413 					     (unsigned long)&jiffies),
10414 			};
10415 
10416 			insn_buf[0] = ld_jiffies_addr[0];
10417 			insn_buf[1] = ld_jiffies_addr[1];
10418 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10419 						  BPF_REG_0, 0);
10420 			cnt = 3;
10421 
10422 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10423 						       cnt);
10424 			if (!new_prog)
10425 				return -ENOMEM;
10426 
10427 			delta    += cnt - 1;
10428 			env->prog = prog = new_prog;
10429 			insn      = new_prog->insnsi + i + delta;
10430 			continue;
10431 		}
10432 
10433 patch_call_imm:
10434 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10435 		/* all functions that have prototype and verifier allowed
10436 		 * programs to call them, must be real in-kernel functions
10437 		 */
10438 		if (!fn->func) {
10439 			verbose(env,
10440 				"kernel subsystem misconfigured func %s#%d\n",
10441 				func_id_name(insn->imm), insn->imm);
10442 			return -EFAULT;
10443 		}
10444 		insn->imm = fn->func - __bpf_call_base;
10445 	}
10446 
10447 	/* Since poke tab is now finalized, publish aux to tracker. */
10448 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10449 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10450 		if (!map_ptr->ops->map_poke_track ||
10451 		    !map_ptr->ops->map_poke_untrack ||
10452 		    !map_ptr->ops->map_poke_run) {
10453 			verbose(env, "bpf verifier is misconfigured\n");
10454 			return -EINVAL;
10455 		}
10456 
10457 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10458 		if (ret < 0) {
10459 			verbose(env, "tracking tail call prog failed\n");
10460 			return ret;
10461 		}
10462 	}
10463 
10464 	return 0;
10465 }
10466 
10467 static void free_states(struct bpf_verifier_env *env)
10468 {
10469 	struct bpf_verifier_state_list *sl, *sln;
10470 	int i;
10471 
10472 	sl = env->free_list;
10473 	while (sl) {
10474 		sln = sl->next;
10475 		free_verifier_state(&sl->state, false);
10476 		kfree(sl);
10477 		sl = sln;
10478 	}
10479 	env->free_list = NULL;
10480 
10481 	if (!env->explored_states)
10482 		return;
10483 
10484 	for (i = 0; i < state_htab_size(env); i++) {
10485 		sl = env->explored_states[i];
10486 
10487 		while (sl) {
10488 			sln = sl->next;
10489 			free_verifier_state(&sl->state, false);
10490 			kfree(sl);
10491 			sl = sln;
10492 		}
10493 		env->explored_states[i] = NULL;
10494 	}
10495 }
10496 
10497 /* The verifier is using insn_aux_data[] to store temporary data during
10498  * verification and to store information for passes that run after the
10499  * verification like dead code sanitization. do_check_common() for subprogram N
10500  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10501  * temporary data after do_check_common() finds that subprogram N cannot be
10502  * verified independently. pass_cnt counts the number of times
10503  * do_check_common() was run and insn->aux->seen tells the pass number
10504  * insn_aux_data was touched. These variables are compared to clear temporary
10505  * data from failed pass. For testing and experiments do_check_common() can be
10506  * run multiple times even when prior attempt to verify is unsuccessful.
10507  */
10508 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10509 {
10510 	struct bpf_insn *insn = env->prog->insnsi;
10511 	struct bpf_insn_aux_data *aux;
10512 	int i, class;
10513 
10514 	for (i = 0; i < env->prog->len; i++) {
10515 		class = BPF_CLASS(insn[i].code);
10516 		if (class != BPF_LDX && class != BPF_STX)
10517 			continue;
10518 		aux = &env->insn_aux_data[i];
10519 		if (aux->seen != env->pass_cnt)
10520 			continue;
10521 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10522 	}
10523 }
10524 
10525 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10526 {
10527 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10528 	struct bpf_verifier_state *state;
10529 	struct bpf_reg_state *regs;
10530 	int ret, i;
10531 
10532 	env->prev_linfo = NULL;
10533 	env->pass_cnt++;
10534 
10535 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10536 	if (!state)
10537 		return -ENOMEM;
10538 	state->curframe = 0;
10539 	state->speculative = false;
10540 	state->branches = 1;
10541 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10542 	if (!state->frame[0]) {
10543 		kfree(state);
10544 		return -ENOMEM;
10545 	}
10546 	env->cur_state = state;
10547 	init_func_state(env, state->frame[0],
10548 			BPF_MAIN_FUNC /* callsite */,
10549 			0 /* frameno */,
10550 			subprog);
10551 
10552 	regs = state->frame[state->curframe]->regs;
10553 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10554 		ret = btf_prepare_func_args(env, subprog, regs);
10555 		if (ret)
10556 			goto out;
10557 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10558 			if (regs[i].type == PTR_TO_CTX)
10559 				mark_reg_known_zero(env, regs, i);
10560 			else if (regs[i].type == SCALAR_VALUE)
10561 				mark_reg_unknown(env, regs, i);
10562 		}
10563 	} else {
10564 		/* 1st arg to a function */
10565 		regs[BPF_REG_1].type = PTR_TO_CTX;
10566 		mark_reg_known_zero(env, regs, BPF_REG_1);
10567 		ret = btf_check_func_arg_match(env, subprog, regs);
10568 		if (ret == -EFAULT)
10569 			/* unlikely verifier bug. abort.
10570 			 * ret == 0 and ret < 0 are sadly acceptable for
10571 			 * main() function due to backward compatibility.
10572 			 * Like socket filter program may be written as:
10573 			 * int bpf_prog(struct pt_regs *ctx)
10574 			 * and never dereference that ctx in the program.
10575 			 * 'struct pt_regs' is a type mismatch for socket
10576 			 * filter that should be using 'struct __sk_buff'.
10577 			 */
10578 			goto out;
10579 	}
10580 
10581 	ret = do_check(env);
10582 out:
10583 	/* check for NULL is necessary, since cur_state can be freed inside
10584 	 * do_check() under memory pressure.
10585 	 */
10586 	if (env->cur_state) {
10587 		free_verifier_state(env->cur_state, true);
10588 		env->cur_state = NULL;
10589 	}
10590 	while (!pop_stack(env, NULL, NULL, false));
10591 	if (!ret && pop_log)
10592 		bpf_vlog_reset(&env->log, 0);
10593 	free_states(env);
10594 	if (ret)
10595 		/* clean aux data in case subprog was rejected */
10596 		sanitize_insn_aux_data(env);
10597 	return ret;
10598 }
10599 
10600 /* Verify all global functions in a BPF program one by one based on their BTF.
10601  * All global functions must pass verification. Otherwise the whole program is rejected.
10602  * Consider:
10603  * int bar(int);
10604  * int foo(int f)
10605  * {
10606  *    return bar(f);
10607  * }
10608  * int bar(int b)
10609  * {
10610  *    ...
10611  * }
10612  * foo() will be verified first for R1=any_scalar_value. During verification it
10613  * will be assumed that bar() already verified successfully and call to bar()
10614  * from foo() will be checked for type match only. Later bar() will be verified
10615  * independently to check that it's safe for R1=any_scalar_value.
10616  */
10617 static int do_check_subprogs(struct bpf_verifier_env *env)
10618 {
10619 	struct bpf_prog_aux *aux = env->prog->aux;
10620 	int i, ret;
10621 
10622 	if (!aux->func_info)
10623 		return 0;
10624 
10625 	for (i = 1; i < env->subprog_cnt; i++) {
10626 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10627 			continue;
10628 		env->insn_idx = env->subprog_info[i].start;
10629 		WARN_ON_ONCE(env->insn_idx == 0);
10630 		ret = do_check_common(env, i);
10631 		if (ret) {
10632 			return ret;
10633 		} else if (env->log.level & BPF_LOG_LEVEL) {
10634 			verbose(env,
10635 				"Func#%d is safe for any args that match its prototype\n",
10636 				i);
10637 		}
10638 	}
10639 	return 0;
10640 }
10641 
10642 static int do_check_main(struct bpf_verifier_env *env)
10643 {
10644 	int ret;
10645 
10646 	env->insn_idx = 0;
10647 	ret = do_check_common(env, 0);
10648 	if (!ret)
10649 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10650 	return ret;
10651 }
10652 
10653 
10654 static void print_verification_stats(struct bpf_verifier_env *env)
10655 {
10656 	int i;
10657 
10658 	if (env->log.level & BPF_LOG_STATS) {
10659 		verbose(env, "verification time %lld usec\n",
10660 			div_u64(env->verification_time, 1000));
10661 		verbose(env, "stack depth ");
10662 		for (i = 0; i < env->subprog_cnt; i++) {
10663 			u32 depth = env->subprog_info[i].stack_depth;
10664 
10665 			verbose(env, "%d", depth);
10666 			if (i + 1 < env->subprog_cnt)
10667 				verbose(env, "+");
10668 		}
10669 		verbose(env, "\n");
10670 	}
10671 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10672 		"total_states %d peak_states %d mark_read %d\n",
10673 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10674 		env->max_states_per_insn, env->total_states,
10675 		env->peak_states, env->longest_mark_read_walk);
10676 }
10677 
10678 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10679 {
10680 	const struct btf_type *t, *func_proto;
10681 	const struct bpf_struct_ops *st_ops;
10682 	const struct btf_member *member;
10683 	struct bpf_prog *prog = env->prog;
10684 	u32 btf_id, member_idx;
10685 	const char *mname;
10686 
10687 	btf_id = prog->aux->attach_btf_id;
10688 	st_ops = bpf_struct_ops_find(btf_id);
10689 	if (!st_ops) {
10690 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10691 			btf_id);
10692 		return -ENOTSUPP;
10693 	}
10694 
10695 	t = st_ops->type;
10696 	member_idx = prog->expected_attach_type;
10697 	if (member_idx >= btf_type_vlen(t)) {
10698 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10699 			member_idx, st_ops->name);
10700 		return -EINVAL;
10701 	}
10702 
10703 	member = &btf_type_member(t)[member_idx];
10704 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10705 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10706 					       NULL);
10707 	if (!func_proto) {
10708 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10709 			mname, member_idx, st_ops->name);
10710 		return -EINVAL;
10711 	}
10712 
10713 	if (st_ops->check_member) {
10714 		int err = st_ops->check_member(t, member);
10715 
10716 		if (err) {
10717 			verbose(env, "attach to unsupported member %s of struct %s\n",
10718 				mname, st_ops->name);
10719 			return err;
10720 		}
10721 	}
10722 
10723 	prog->aux->attach_func_proto = func_proto;
10724 	prog->aux->attach_func_name = mname;
10725 	env->ops = st_ops->verifier_ops;
10726 
10727 	return 0;
10728 }
10729 #define SECURITY_PREFIX "security_"
10730 
10731 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
10732 {
10733 	if (within_error_injection_list(addr) ||
10734 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10735 		     sizeof(SECURITY_PREFIX) - 1))
10736 		return 0;
10737 
10738 	return -EINVAL;
10739 }
10740 
10741 static int check_attach_btf_id(struct bpf_verifier_env *env)
10742 {
10743 	struct bpf_prog *prog = env->prog;
10744 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10745 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10746 	u32 btf_id = prog->aux->attach_btf_id;
10747 	const char prefix[] = "btf_trace_";
10748 	struct btf_func_model fmodel;
10749 	int ret = 0, subprog = -1, i;
10750 	struct bpf_trampoline *tr;
10751 	const struct btf_type *t;
10752 	bool conservative = true;
10753 	const char *tname;
10754 	struct btf *btf;
10755 	long addr;
10756 	u64 key;
10757 
10758 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10759 		return check_struct_ops_btf_id(env);
10760 
10761 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10762 	    prog->type != BPF_PROG_TYPE_LSM &&
10763 	    !prog_extension)
10764 		return 0;
10765 
10766 	if (!btf_id) {
10767 		verbose(env, "Tracing programs must provide btf_id\n");
10768 		return -EINVAL;
10769 	}
10770 	btf = bpf_prog_get_target_btf(prog);
10771 	if (!btf) {
10772 		verbose(env,
10773 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10774 		return -EINVAL;
10775 	}
10776 	t = btf_type_by_id(btf, btf_id);
10777 	if (!t) {
10778 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10779 		return -EINVAL;
10780 	}
10781 	tname = btf_name_by_offset(btf, t->name_off);
10782 	if (!tname) {
10783 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10784 		return -EINVAL;
10785 	}
10786 	if (tgt_prog) {
10787 		struct bpf_prog_aux *aux = tgt_prog->aux;
10788 
10789 		for (i = 0; i < aux->func_info_cnt; i++)
10790 			if (aux->func_info[i].type_id == btf_id) {
10791 				subprog = i;
10792 				break;
10793 			}
10794 		if (subprog == -1) {
10795 			verbose(env, "Subprog %s doesn't exist\n", tname);
10796 			return -EINVAL;
10797 		}
10798 		conservative = aux->func_info_aux[subprog].unreliable;
10799 		if (prog_extension) {
10800 			if (conservative) {
10801 				verbose(env,
10802 					"Cannot replace static functions\n");
10803 				return -EINVAL;
10804 			}
10805 			if (!prog->jit_requested) {
10806 				verbose(env,
10807 					"Extension programs should be JITed\n");
10808 				return -EINVAL;
10809 			}
10810 			env->ops = bpf_verifier_ops[tgt_prog->type];
10811 			prog->expected_attach_type = tgt_prog->expected_attach_type;
10812 		}
10813 		if (!tgt_prog->jited) {
10814 			verbose(env, "Can attach to only JITed progs\n");
10815 			return -EINVAL;
10816 		}
10817 		if (tgt_prog->type == prog->type) {
10818 			/* Cannot fentry/fexit another fentry/fexit program.
10819 			 * Cannot attach program extension to another extension.
10820 			 * It's ok to attach fentry/fexit to extension program.
10821 			 */
10822 			verbose(env, "Cannot recursively attach\n");
10823 			return -EINVAL;
10824 		}
10825 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10826 		    prog_extension &&
10827 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10828 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10829 			/* Program extensions can extend all program types
10830 			 * except fentry/fexit. The reason is the following.
10831 			 * The fentry/fexit programs are used for performance
10832 			 * analysis, stats and can be attached to any program
10833 			 * type except themselves. When extension program is
10834 			 * replacing XDP function it is necessary to allow
10835 			 * performance analysis of all functions. Both original
10836 			 * XDP program and its program extension. Hence
10837 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10838 			 * allowed. If extending of fentry/fexit was allowed it
10839 			 * would be possible to create long call chain
10840 			 * fentry->extension->fentry->extension beyond
10841 			 * reasonable stack size. Hence extending fentry is not
10842 			 * allowed.
10843 			 */
10844 			verbose(env, "Cannot extend fentry/fexit\n");
10845 			return -EINVAL;
10846 		}
10847 		key = ((u64)aux->id) << 32 | btf_id;
10848 	} else {
10849 		if (prog_extension) {
10850 			verbose(env, "Cannot replace kernel functions\n");
10851 			return -EINVAL;
10852 		}
10853 		key = btf_id;
10854 	}
10855 
10856 	switch (prog->expected_attach_type) {
10857 	case BPF_TRACE_RAW_TP:
10858 		if (tgt_prog) {
10859 			verbose(env,
10860 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10861 			return -EINVAL;
10862 		}
10863 		if (!btf_type_is_typedef(t)) {
10864 			verbose(env, "attach_btf_id %u is not a typedef\n",
10865 				btf_id);
10866 			return -EINVAL;
10867 		}
10868 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10869 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10870 				btf_id, tname);
10871 			return -EINVAL;
10872 		}
10873 		tname += sizeof(prefix) - 1;
10874 		t = btf_type_by_id(btf, t->type);
10875 		if (!btf_type_is_ptr(t))
10876 			/* should never happen in valid vmlinux build */
10877 			return -EINVAL;
10878 		t = btf_type_by_id(btf, t->type);
10879 		if (!btf_type_is_func_proto(t))
10880 			/* should never happen in valid vmlinux build */
10881 			return -EINVAL;
10882 
10883 		/* remember two read only pointers that are valid for
10884 		 * the life time of the kernel
10885 		 */
10886 		prog->aux->attach_func_name = tname;
10887 		prog->aux->attach_func_proto = t;
10888 		prog->aux->attach_btf_trace = true;
10889 		return 0;
10890 	case BPF_TRACE_ITER:
10891 		if (!btf_type_is_func(t)) {
10892 			verbose(env, "attach_btf_id %u is not a function\n",
10893 				btf_id);
10894 			return -EINVAL;
10895 		}
10896 		t = btf_type_by_id(btf, t->type);
10897 		if (!btf_type_is_func_proto(t))
10898 			return -EINVAL;
10899 		prog->aux->attach_func_name = tname;
10900 		prog->aux->attach_func_proto = t;
10901 		if (!bpf_iter_prog_supported(prog))
10902 			return -EINVAL;
10903 		ret = btf_distill_func_proto(&env->log, btf, t,
10904 					     tname, &fmodel);
10905 		return ret;
10906 	default:
10907 		if (!prog_extension)
10908 			return -EINVAL;
10909 		/* fallthrough */
10910 	case BPF_MODIFY_RETURN:
10911 	case BPF_LSM_MAC:
10912 	case BPF_TRACE_FENTRY:
10913 	case BPF_TRACE_FEXIT:
10914 		prog->aux->attach_func_name = tname;
10915 		if (prog->type == BPF_PROG_TYPE_LSM) {
10916 			ret = bpf_lsm_verify_prog(&env->log, prog);
10917 			if (ret < 0)
10918 				return ret;
10919 		}
10920 
10921 		if (!btf_type_is_func(t)) {
10922 			verbose(env, "attach_btf_id %u is not a function\n",
10923 				btf_id);
10924 			return -EINVAL;
10925 		}
10926 		if (prog_extension &&
10927 		    btf_check_type_match(env, prog, btf, t))
10928 			return -EINVAL;
10929 		t = btf_type_by_id(btf, t->type);
10930 		if (!btf_type_is_func_proto(t))
10931 			return -EINVAL;
10932 		tr = bpf_trampoline_lookup(key);
10933 		if (!tr)
10934 			return -ENOMEM;
10935 		/* t is either vmlinux type or another program's type */
10936 		prog->aux->attach_func_proto = t;
10937 		mutex_lock(&tr->mutex);
10938 		if (tr->func.addr) {
10939 			prog->aux->trampoline = tr;
10940 			goto out;
10941 		}
10942 		if (tgt_prog && conservative) {
10943 			prog->aux->attach_func_proto = NULL;
10944 			t = NULL;
10945 		}
10946 		ret = btf_distill_func_proto(&env->log, btf, t,
10947 					     tname, &tr->func.model);
10948 		if (ret < 0)
10949 			goto out;
10950 		if (tgt_prog) {
10951 			if (subprog == 0)
10952 				addr = (long) tgt_prog->bpf_func;
10953 			else
10954 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10955 		} else {
10956 			addr = kallsyms_lookup_name(tname);
10957 			if (!addr) {
10958 				verbose(env,
10959 					"The address of function %s cannot be found\n",
10960 					tname);
10961 				ret = -ENOENT;
10962 				goto out;
10963 			}
10964 		}
10965 
10966 		if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
10967 			ret = check_attach_modify_return(prog, addr);
10968 			if (ret)
10969 				verbose(env, "%s() is not modifiable\n",
10970 					prog->aux->attach_func_name);
10971 		}
10972 
10973 		if (ret)
10974 			goto out;
10975 		tr->func.addr = (void *)addr;
10976 		prog->aux->trampoline = tr;
10977 out:
10978 		mutex_unlock(&tr->mutex);
10979 		if (ret)
10980 			bpf_trampoline_put(tr);
10981 		return ret;
10982 	}
10983 }
10984 
10985 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10986 	      union bpf_attr __user *uattr)
10987 {
10988 	u64 start_time = ktime_get_ns();
10989 	struct bpf_verifier_env *env;
10990 	struct bpf_verifier_log *log;
10991 	int i, len, ret = -EINVAL;
10992 	bool is_priv;
10993 
10994 	/* no program is valid */
10995 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10996 		return -EINVAL;
10997 
10998 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10999 	 * allocate/free it every time bpf_check() is called
11000 	 */
11001 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11002 	if (!env)
11003 		return -ENOMEM;
11004 	log = &env->log;
11005 
11006 	len = (*prog)->len;
11007 	env->insn_aux_data =
11008 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11009 	ret = -ENOMEM;
11010 	if (!env->insn_aux_data)
11011 		goto err_free_env;
11012 	for (i = 0; i < len; i++)
11013 		env->insn_aux_data[i].orig_idx = i;
11014 	env->prog = *prog;
11015 	env->ops = bpf_verifier_ops[env->prog->type];
11016 	is_priv = bpf_capable();
11017 
11018 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11019 		mutex_lock(&bpf_verifier_lock);
11020 		if (!btf_vmlinux)
11021 			btf_vmlinux = btf_parse_vmlinux();
11022 		mutex_unlock(&bpf_verifier_lock);
11023 	}
11024 
11025 	/* grab the mutex to protect few globals used by verifier */
11026 	if (!is_priv)
11027 		mutex_lock(&bpf_verifier_lock);
11028 
11029 	if (attr->log_level || attr->log_buf || attr->log_size) {
11030 		/* user requested verbose verifier output
11031 		 * and supplied buffer to store the verification trace
11032 		 */
11033 		log->level = attr->log_level;
11034 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11035 		log->len_total = attr->log_size;
11036 
11037 		ret = -EINVAL;
11038 		/* log attributes have to be sane */
11039 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11040 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11041 			goto err_unlock;
11042 	}
11043 
11044 	if (IS_ERR(btf_vmlinux)) {
11045 		/* Either gcc or pahole or kernel are broken. */
11046 		verbose(env, "in-kernel BTF is malformed\n");
11047 		ret = PTR_ERR(btf_vmlinux);
11048 		goto skip_full_check;
11049 	}
11050 
11051 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11052 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
11053 		env->strict_alignment = true;
11054 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11055 		env->strict_alignment = false;
11056 
11057 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
11058 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
11059 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
11060 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
11061 	env->bpf_capable = bpf_capable();
11062 
11063 	if (is_priv)
11064 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11065 
11066 	ret = replace_map_fd_with_map_ptr(env);
11067 	if (ret < 0)
11068 		goto skip_full_check;
11069 
11070 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
11071 		ret = bpf_prog_offload_verifier_prep(env->prog);
11072 		if (ret)
11073 			goto skip_full_check;
11074 	}
11075 
11076 	env->explored_states = kvcalloc(state_htab_size(env),
11077 				       sizeof(struct bpf_verifier_state_list *),
11078 				       GFP_USER);
11079 	ret = -ENOMEM;
11080 	if (!env->explored_states)
11081 		goto skip_full_check;
11082 
11083 	ret = check_subprogs(env);
11084 	if (ret < 0)
11085 		goto skip_full_check;
11086 
11087 	ret = check_btf_info(env, attr, uattr);
11088 	if (ret < 0)
11089 		goto skip_full_check;
11090 
11091 	ret = check_attach_btf_id(env);
11092 	if (ret)
11093 		goto skip_full_check;
11094 
11095 	ret = check_cfg(env);
11096 	if (ret < 0)
11097 		goto skip_full_check;
11098 
11099 	ret = do_check_subprogs(env);
11100 	ret = ret ?: do_check_main(env);
11101 
11102 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11103 		ret = bpf_prog_offload_finalize(env);
11104 
11105 skip_full_check:
11106 	kvfree(env->explored_states);
11107 
11108 	if (ret == 0)
11109 		ret = check_max_stack_depth(env);
11110 
11111 	/* instruction rewrites happen after this point */
11112 	if (is_priv) {
11113 		if (ret == 0)
11114 			opt_hard_wire_dead_code_branches(env);
11115 		if (ret == 0)
11116 			ret = opt_remove_dead_code(env);
11117 		if (ret == 0)
11118 			ret = opt_remove_nops(env);
11119 	} else {
11120 		if (ret == 0)
11121 			sanitize_dead_code(env);
11122 	}
11123 
11124 	if (ret == 0)
11125 		/* program is valid, convert *(u32*)(ctx + off) accesses */
11126 		ret = convert_ctx_accesses(env);
11127 
11128 	if (ret == 0)
11129 		ret = fixup_bpf_calls(env);
11130 
11131 	/* do 32-bit optimization after insn patching has done so those patched
11132 	 * insns could be handled correctly.
11133 	 */
11134 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11135 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11136 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11137 								     : false;
11138 	}
11139 
11140 	if (ret == 0)
11141 		ret = fixup_call_args(env);
11142 
11143 	env->verification_time = ktime_get_ns() - start_time;
11144 	print_verification_stats(env);
11145 
11146 	if (log->level && bpf_verifier_log_full(log))
11147 		ret = -ENOSPC;
11148 	if (log->level && !log->ubuf) {
11149 		ret = -EFAULT;
11150 		goto err_release_maps;
11151 	}
11152 
11153 	if (ret == 0 && env->used_map_cnt) {
11154 		/* if program passed verifier, update used_maps in bpf_prog_info */
11155 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11156 							  sizeof(env->used_maps[0]),
11157 							  GFP_KERNEL);
11158 
11159 		if (!env->prog->aux->used_maps) {
11160 			ret = -ENOMEM;
11161 			goto err_release_maps;
11162 		}
11163 
11164 		memcpy(env->prog->aux->used_maps, env->used_maps,
11165 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
11166 		env->prog->aux->used_map_cnt = env->used_map_cnt;
11167 
11168 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
11169 		 * bpf_ld_imm64 instructions
11170 		 */
11171 		convert_pseudo_ld_imm64(env);
11172 	}
11173 
11174 	if (ret == 0)
11175 		adjust_btf_func(env);
11176 
11177 err_release_maps:
11178 	if (!env->prog->aux->used_maps)
11179 		/* if we didn't copy map pointers into bpf_prog_info, release
11180 		 * them now. Otherwise free_used_maps() will release them.
11181 		 */
11182 		release_maps(env);
11183 
11184 	/* extension progs temporarily inherit the attach_type of their targets
11185 	   for verification purposes, so set it back to zero before returning
11186 	 */
11187 	if (env->prog->type == BPF_PROG_TYPE_EXT)
11188 		env->prog->expected_attach_type = 0;
11189 
11190 	*prog = env->prog;
11191 err_unlock:
11192 	if (!is_priv)
11193 		mutex_unlock(&bpf_verifier_lock);
11194 	vfree(env->insn_aux_data);
11195 err_free_env:
11196 	kfree(env);
11197 	return ret;
11198 }
11199