1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_STACK 1024 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_PTR_UNPRIV 1UL 183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 184 POISON_POINTER_DELTA)) 185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 186 187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 188 { 189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 190 } 191 192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 193 { 194 return aux->map_state & BPF_MAP_PTR_UNPRIV; 195 } 196 197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 198 const struct bpf_map *map, bool unpriv) 199 { 200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 201 unpriv |= bpf_map_ptr_unpriv(aux); 202 aux->map_state = (unsigned long)map | 203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 204 } 205 206 struct bpf_call_arg_meta { 207 struct bpf_map *map_ptr; 208 bool raw_mode; 209 bool pkt_access; 210 int regno; 211 int access_size; 212 s64 msize_smax_value; 213 u64 msize_umax_value; 214 int ref_obj_id; 215 int func_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool type_is_sk_pointer(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_SOCKET || 336 type == PTR_TO_SOCK_COMMON || 337 type == PTR_TO_TCP_SOCK; 338 } 339 340 static bool reg_type_may_be_null(enum bpf_reg_type type) 341 { 342 return type == PTR_TO_MAP_VALUE_OR_NULL || 343 type == PTR_TO_SOCKET_OR_NULL || 344 type == PTR_TO_SOCK_COMMON_OR_NULL || 345 type == PTR_TO_TCP_SOCK_OR_NULL; 346 } 347 348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 349 { 350 return reg->type == PTR_TO_MAP_VALUE && 351 map_value_has_spin_lock(reg->map_ptr); 352 } 353 354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 355 { 356 return type == PTR_TO_SOCKET || 357 type == PTR_TO_SOCKET_OR_NULL || 358 type == PTR_TO_TCP_SOCK || 359 type == PTR_TO_TCP_SOCK_OR_NULL; 360 } 361 362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 363 { 364 return type == ARG_PTR_TO_SOCK_COMMON; 365 } 366 367 /* Determine whether the function releases some resources allocated by another 368 * function call. The first reference type argument will be assumed to be 369 * released by release_reference(). 370 */ 371 static bool is_release_function(enum bpf_func_id func_id) 372 { 373 return func_id == BPF_FUNC_sk_release; 374 } 375 376 static bool is_acquire_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_sk_lookup_tcp || 379 func_id == BPF_FUNC_sk_lookup_udp || 380 func_id == BPF_FUNC_skc_lookup_tcp; 381 } 382 383 static bool is_ptr_cast_function(enum bpf_func_id func_id) 384 { 385 return func_id == BPF_FUNC_tcp_sock || 386 func_id == BPF_FUNC_sk_fullsock; 387 } 388 389 /* string representation of 'enum bpf_reg_type' */ 390 static const char * const reg_type_str[] = { 391 [NOT_INIT] = "?", 392 [SCALAR_VALUE] = "inv", 393 [PTR_TO_CTX] = "ctx", 394 [CONST_PTR_TO_MAP] = "map_ptr", 395 [PTR_TO_MAP_VALUE] = "map_value", 396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 397 [PTR_TO_STACK] = "fp", 398 [PTR_TO_PACKET] = "pkt", 399 [PTR_TO_PACKET_META] = "pkt_meta", 400 [PTR_TO_PACKET_END] = "pkt_end", 401 [PTR_TO_FLOW_KEYS] = "flow_keys", 402 [PTR_TO_SOCKET] = "sock", 403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 404 [PTR_TO_SOCK_COMMON] = "sock_common", 405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 406 [PTR_TO_TCP_SOCK] = "tcp_sock", 407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 408 [PTR_TO_TP_BUFFER] = "tp_buffer", 409 }; 410 411 static char slot_type_char[] = { 412 [STACK_INVALID] = '?', 413 [STACK_SPILL] = 'r', 414 [STACK_MISC] = 'm', 415 [STACK_ZERO] = '0', 416 }; 417 418 static void print_liveness(struct bpf_verifier_env *env, 419 enum bpf_reg_liveness live) 420 { 421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 422 verbose(env, "_"); 423 if (live & REG_LIVE_READ) 424 verbose(env, "r"); 425 if (live & REG_LIVE_WRITTEN) 426 verbose(env, "w"); 427 if (live & REG_LIVE_DONE) 428 verbose(env, "D"); 429 } 430 431 static struct bpf_func_state *func(struct bpf_verifier_env *env, 432 const struct bpf_reg_state *reg) 433 { 434 struct bpf_verifier_state *cur = env->cur_state; 435 436 return cur->frame[reg->frameno]; 437 } 438 439 static void print_verifier_state(struct bpf_verifier_env *env, 440 const struct bpf_func_state *state) 441 { 442 const struct bpf_reg_state *reg; 443 enum bpf_reg_type t; 444 int i; 445 446 if (state->frameno) 447 verbose(env, " frame%d:", state->frameno); 448 for (i = 0; i < MAX_BPF_REG; i++) { 449 reg = &state->regs[i]; 450 t = reg->type; 451 if (t == NOT_INIT) 452 continue; 453 verbose(env, " R%d", i); 454 print_liveness(env, reg->live); 455 verbose(env, "=%s", reg_type_str[t]); 456 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 457 tnum_is_const(reg->var_off)) { 458 /* reg->off should be 0 for SCALAR_VALUE */ 459 verbose(env, "%lld", reg->var_off.value + reg->off); 460 if (t == PTR_TO_STACK) 461 verbose(env, ",call_%d", func(env, reg)->callsite); 462 } else { 463 verbose(env, "(id=%d", reg->id); 464 if (reg_type_may_be_refcounted_or_null(t)) 465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 466 if (t != SCALAR_VALUE) 467 verbose(env, ",off=%d", reg->off); 468 if (type_is_pkt_pointer(t)) 469 verbose(env, ",r=%d", reg->range); 470 else if (t == CONST_PTR_TO_MAP || 471 t == PTR_TO_MAP_VALUE || 472 t == PTR_TO_MAP_VALUE_OR_NULL) 473 verbose(env, ",ks=%d,vs=%d", 474 reg->map_ptr->key_size, 475 reg->map_ptr->value_size); 476 if (tnum_is_const(reg->var_off)) { 477 /* Typically an immediate SCALAR_VALUE, but 478 * could be a pointer whose offset is too big 479 * for reg->off 480 */ 481 verbose(env, ",imm=%llx", reg->var_off.value); 482 } else { 483 if (reg->smin_value != reg->umin_value && 484 reg->smin_value != S64_MIN) 485 verbose(env, ",smin_value=%lld", 486 (long long)reg->smin_value); 487 if (reg->smax_value != reg->umax_value && 488 reg->smax_value != S64_MAX) 489 verbose(env, ",smax_value=%lld", 490 (long long)reg->smax_value); 491 if (reg->umin_value != 0) 492 verbose(env, ",umin_value=%llu", 493 (unsigned long long)reg->umin_value); 494 if (reg->umax_value != U64_MAX) 495 verbose(env, ",umax_value=%llu", 496 (unsigned long long)reg->umax_value); 497 if (!tnum_is_unknown(reg->var_off)) { 498 char tn_buf[48]; 499 500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 501 verbose(env, ",var_off=%s", tn_buf); 502 } 503 } 504 verbose(env, ")"); 505 } 506 } 507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 508 char types_buf[BPF_REG_SIZE + 1]; 509 bool valid = false; 510 int j; 511 512 for (j = 0; j < BPF_REG_SIZE; j++) { 513 if (state->stack[i].slot_type[j] != STACK_INVALID) 514 valid = true; 515 types_buf[j] = slot_type_char[ 516 state->stack[i].slot_type[j]]; 517 } 518 types_buf[BPF_REG_SIZE] = 0; 519 if (!valid) 520 continue; 521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 522 print_liveness(env, state->stack[i].spilled_ptr.live); 523 if (state->stack[i].slot_type[0] == STACK_SPILL) 524 verbose(env, "=%s", 525 reg_type_str[state->stack[i].spilled_ptr.type]); 526 else 527 verbose(env, "=%s", types_buf); 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void free_verifier_state(struct bpf_verifier_state *state, 677 bool free_self) 678 { 679 int i; 680 681 for (i = 0; i <= state->curframe; i++) { 682 free_func_state(state->frame[i]); 683 state->frame[i] = NULL; 684 } 685 if (free_self) 686 kfree(state); 687 } 688 689 /* copy verifier state from src to dst growing dst stack space 690 * when necessary to accommodate larger src stack 691 */ 692 static int copy_func_state(struct bpf_func_state *dst, 693 const struct bpf_func_state *src) 694 { 695 int err; 696 697 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 698 false); 699 if (err) 700 return err; 701 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 702 err = copy_reference_state(dst, src); 703 if (err) 704 return err; 705 return copy_stack_state(dst, src); 706 } 707 708 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 709 const struct bpf_verifier_state *src) 710 { 711 struct bpf_func_state *dst; 712 int i, err; 713 714 /* if dst has more stack frames then src frame, free them */ 715 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 716 free_func_state(dst_state->frame[i]); 717 dst_state->frame[i] = NULL; 718 } 719 dst_state->speculative = src->speculative; 720 dst_state->curframe = src->curframe; 721 dst_state->active_spin_lock = src->active_spin_lock; 722 for (i = 0; i <= src->curframe; i++) { 723 dst = dst_state->frame[i]; 724 if (!dst) { 725 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 726 if (!dst) 727 return -ENOMEM; 728 dst_state->frame[i] = dst; 729 } 730 err = copy_func_state(dst, src->frame[i]); 731 if (err) 732 return err; 733 } 734 return 0; 735 } 736 737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 738 int *insn_idx) 739 { 740 struct bpf_verifier_state *cur = env->cur_state; 741 struct bpf_verifier_stack_elem *elem, *head = env->head; 742 int err; 743 744 if (env->head == NULL) 745 return -ENOENT; 746 747 if (cur) { 748 err = copy_verifier_state(cur, &head->st); 749 if (err) 750 return err; 751 } 752 if (insn_idx) 753 *insn_idx = head->insn_idx; 754 if (prev_insn_idx) 755 *prev_insn_idx = head->prev_insn_idx; 756 elem = head->next; 757 free_verifier_state(&head->st, false); 758 kfree(head); 759 env->head = elem; 760 env->stack_size--; 761 return 0; 762 } 763 764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 765 int insn_idx, int prev_insn_idx, 766 bool speculative) 767 { 768 struct bpf_verifier_state *cur = env->cur_state; 769 struct bpf_verifier_stack_elem *elem; 770 int err; 771 772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 773 if (!elem) 774 goto err; 775 776 elem->insn_idx = insn_idx; 777 elem->prev_insn_idx = prev_insn_idx; 778 elem->next = env->head; 779 env->head = elem; 780 env->stack_size++; 781 err = copy_verifier_state(&elem->st, cur); 782 if (err) 783 goto err; 784 elem->st.speculative |= speculative; 785 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 786 verbose(env, "BPF program is too complex\n"); 787 goto err; 788 } 789 return &elem->st; 790 err: 791 free_verifier_state(env->cur_state, true); 792 env->cur_state = NULL; 793 /* pop all elements and return */ 794 while (!pop_stack(env, NULL, NULL)); 795 return NULL; 796 } 797 798 #define CALLER_SAVED_REGS 6 799 static const int caller_saved[CALLER_SAVED_REGS] = { 800 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 801 }; 802 803 static void __mark_reg_not_init(struct bpf_reg_state *reg); 804 805 /* Mark the unknown part of a register (variable offset or scalar value) as 806 * known to have the value @imm. 807 */ 808 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 809 { 810 /* Clear id, off, and union(map_ptr, range) */ 811 memset(((u8 *)reg) + sizeof(reg->type), 0, 812 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 813 reg->var_off = tnum_const(imm); 814 reg->smin_value = (s64)imm; 815 reg->smax_value = (s64)imm; 816 reg->umin_value = imm; 817 reg->umax_value = imm; 818 } 819 820 /* Mark the 'variable offset' part of a register as zero. This should be 821 * used only on registers holding a pointer type. 822 */ 823 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 824 { 825 __mark_reg_known(reg, 0); 826 } 827 828 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 829 { 830 __mark_reg_known(reg, 0); 831 reg->type = SCALAR_VALUE; 832 } 833 834 static void mark_reg_known_zero(struct bpf_verifier_env *env, 835 struct bpf_reg_state *regs, u32 regno) 836 { 837 if (WARN_ON(regno >= MAX_BPF_REG)) { 838 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 839 /* Something bad happened, let's kill all regs */ 840 for (regno = 0; regno < MAX_BPF_REG; regno++) 841 __mark_reg_not_init(regs + regno); 842 return; 843 } 844 __mark_reg_known_zero(regs + regno); 845 } 846 847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 848 { 849 return type_is_pkt_pointer(reg->type); 850 } 851 852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 853 { 854 return reg_is_pkt_pointer(reg) || 855 reg->type == PTR_TO_PACKET_END; 856 } 857 858 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 859 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 860 enum bpf_reg_type which) 861 { 862 /* The register can already have a range from prior markings. 863 * This is fine as long as it hasn't been advanced from its 864 * origin. 865 */ 866 return reg->type == which && 867 reg->id == 0 && 868 reg->off == 0 && 869 tnum_equals_const(reg->var_off, 0); 870 } 871 872 /* Attempts to improve min/max values based on var_off information */ 873 static void __update_reg_bounds(struct bpf_reg_state *reg) 874 { 875 /* min signed is max(sign bit) | min(other bits) */ 876 reg->smin_value = max_t(s64, reg->smin_value, 877 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 878 /* max signed is min(sign bit) | max(other bits) */ 879 reg->smax_value = min_t(s64, reg->smax_value, 880 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 881 reg->umin_value = max(reg->umin_value, reg->var_off.value); 882 reg->umax_value = min(reg->umax_value, 883 reg->var_off.value | reg->var_off.mask); 884 } 885 886 /* Uses signed min/max values to inform unsigned, and vice-versa */ 887 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 888 { 889 /* Learn sign from signed bounds. 890 * If we cannot cross the sign boundary, then signed and unsigned bounds 891 * are the same, so combine. This works even in the negative case, e.g. 892 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 893 */ 894 if (reg->smin_value >= 0 || reg->smax_value < 0) { 895 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 896 reg->umin_value); 897 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 898 reg->umax_value); 899 return; 900 } 901 /* Learn sign from unsigned bounds. Signed bounds cross the sign 902 * boundary, so we must be careful. 903 */ 904 if ((s64)reg->umax_value >= 0) { 905 /* Positive. We can't learn anything from the smin, but smax 906 * is positive, hence safe. 907 */ 908 reg->smin_value = reg->umin_value; 909 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 910 reg->umax_value); 911 } else if ((s64)reg->umin_value < 0) { 912 /* Negative. We can't learn anything from the smax, but smin 913 * is negative, hence safe. 914 */ 915 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 916 reg->umin_value); 917 reg->smax_value = reg->umax_value; 918 } 919 } 920 921 /* Attempts to improve var_off based on unsigned min/max information */ 922 static void __reg_bound_offset(struct bpf_reg_state *reg) 923 { 924 reg->var_off = tnum_intersect(reg->var_off, 925 tnum_range(reg->umin_value, 926 reg->umax_value)); 927 } 928 929 /* Reset the min/max bounds of a register */ 930 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 931 { 932 reg->smin_value = S64_MIN; 933 reg->smax_value = S64_MAX; 934 reg->umin_value = 0; 935 reg->umax_value = U64_MAX; 936 } 937 938 /* Mark a register as having a completely unknown (scalar) value. */ 939 static void __mark_reg_unknown(struct bpf_reg_state *reg) 940 { 941 /* 942 * Clear type, id, off, and union(map_ptr, range) and 943 * padding between 'type' and union 944 */ 945 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 946 reg->type = SCALAR_VALUE; 947 reg->var_off = tnum_unknown; 948 reg->frameno = 0; 949 __mark_reg_unbounded(reg); 950 } 951 952 static void mark_reg_unknown(struct bpf_verifier_env *env, 953 struct bpf_reg_state *regs, u32 regno) 954 { 955 if (WARN_ON(regno >= MAX_BPF_REG)) { 956 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 957 /* Something bad happened, let's kill all regs except FP */ 958 for (regno = 0; regno < BPF_REG_FP; regno++) 959 __mark_reg_not_init(regs + regno); 960 return; 961 } 962 __mark_reg_unknown(regs + regno); 963 } 964 965 static void __mark_reg_not_init(struct bpf_reg_state *reg) 966 { 967 __mark_reg_unknown(reg); 968 reg->type = NOT_INIT; 969 } 970 971 static void mark_reg_not_init(struct bpf_verifier_env *env, 972 struct bpf_reg_state *regs, u32 regno) 973 { 974 if (WARN_ON(regno >= MAX_BPF_REG)) { 975 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 976 /* Something bad happened, let's kill all regs except FP */ 977 for (regno = 0; regno < BPF_REG_FP; regno++) 978 __mark_reg_not_init(regs + regno); 979 return; 980 } 981 __mark_reg_not_init(regs + regno); 982 } 983 984 static void init_reg_state(struct bpf_verifier_env *env, 985 struct bpf_func_state *state) 986 { 987 struct bpf_reg_state *regs = state->regs; 988 int i; 989 990 for (i = 0; i < MAX_BPF_REG; i++) { 991 mark_reg_not_init(env, regs, i); 992 regs[i].live = REG_LIVE_NONE; 993 regs[i].parent = NULL; 994 } 995 996 /* frame pointer */ 997 regs[BPF_REG_FP].type = PTR_TO_STACK; 998 mark_reg_known_zero(env, regs, BPF_REG_FP); 999 regs[BPF_REG_FP].frameno = state->frameno; 1000 1001 /* 1st arg to a function */ 1002 regs[BPF_REG_1].type = PTR_TO_CTX; 1003 mark_reg_known_zero(env, regs, BPF_REG_1); 1004 } 1005 1006 #define BPF_MAIN_FUNC (-1) 1007 static void init_func_state(struct bpf_verifier_env *env, 1008 struct bpf_func_state *state, 1009 int callsite, int frameno, int subprogno) 1010 { 1011 state->callsite = callsite; 1012 state->frameno = frameno; 1013 state->subprogno = subprogno; 1014 init_reg_state(env, state); 1015 } 1016 1017 enum reg_arg_type { 1018 SRC_OP, /* register is used as source operand */ 1019 DST_OP, /* register is used as destination operand */ 1020 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1021 }; 1022 1023 static int cmp_subprogs(const void *a, const void *b) 1024 { 1025 return ((struct bpf_subprog_info *)a)->start - 1026 ((struct bpf_subprog_info *)b)->start; 1027 } 1028 1029 static int find_subprog(struct bpf_verifier_env *env, int off) 1030 { 1031 struct bpf_subprog_info *p; 1032 1033 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1034 sizeof(env->subprog_info[0]), cmp_subprogs); 1035 if (!p) 1036 return -ENOENT; 1037 return p - env->subprog_info; 1038 1039 } 1040 1041 static int add_subprog(struct bpf_verifier_env *env, int off) 1042 { 1043 int insn_cnt = env->prog->len; 1044 int ret; 1045 1046 if (off >= insn_cnt || off < 0) { 1047 verbose(env, "call to invalid destination\n"); 1048 return -EINVAL; 1049 } 1050 ret = find_subprog(env, off); 1051 if (ret >= 0) 1052 return 0; 1053 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1054 verbose(env, "too many subprograms\n"); 1055 return -E2BIG; 1056 } 1057 env->subprog_info[env->subprog_cnt++].start = off; 1058 sort(env->subprog_info, env->subprog_cnt, 1059 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1060 return 0; 1061 } 1062 1063 static int check_subprogs(struct bpf_verifier_env *env) 1064 { 1065 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1066 struct bpf_subprog_info *subprog = env->subprog_info; 1067 struct bpf_insn *insn = env->prog->insnsi; 1068 int insn_cnt = env->prog->len; 1069 1070 /* Add entry function. */ 1071 ret = add_subprog(env, 0); 1072 if (ret < 0) 1073 return ret; 1074 1075 /* determine subprog starts. The end is one before the next starts */ 1076 for (i = 0; i < insn_cnt; i++) { 1077 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1078 continue; 1079 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1080 continue; 1081 if (!env->allow_ptr_leaks) { 1082 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1083 return -EPERM; 1084 } 1085 ret = add_subprog(env, i + insn[i].imm + 1); 1086 if (ret < 0) 1087 return ret; 1088 } 1089 1090 /* Add a fake 'exit' subprog which could simplify subprog iteration 1091 * logic. 'subprog_cnt' should not be increased. 1092 */ 1093 subprog[env->subprog_cnt].start = insn_cnt; 1094 1095 if (env->log.level & BPF_LOG_LEVEL2) 1096 for (i = 0; i < env->subprog_cnt; i++) 1097 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1098 1099 /* now check that all jumps are within the same subprog */ 1100 subprog_start = subprog[cur_subprog].start; 1101 subprog_end = subprog[cur_subprog + 1].start; 1102 for (i = 0; i < insn_cnt; i++) { 1103 u8 code = insn[i].code; 1104 1105 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1106 goto next; 1107 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1108 goto next; 1109 off = i + insn[i].off + 1; 1110 if (off < subprog_start || off >= subprog_end) { 1111 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1112 return -EINVAL; 1113 } 1114 next: 1115 if (i == subprog_end - 1) { 1116 /* to avoid fall-through from one subprog into another 1117 * the last insn of the subprog should be either exit 1118 * or unconditional jump back 1119 */ 1120 if (code != (BPF_JMP | BPF_EXIT) && 1121 code != (BPF_JMP | BPF_JA)) { 1122 verbose(env, "last insn is not an exit or jmp\n"); 1123 return -EINVAL; 1124 } 1125 subprog_start = subprog_end; 1126 cur_subprog++; 1127 if (cur_subprog < env->subprog_cnt) 1128 subprog_end = subprog[cur_subprog + 1].start; 1129 } 1130 } 1131 return 0; 1132 } 1133 1134 /* Parentage chain of this register (or stack slot) should take care of all 1135 * issues like callee-saved registers, stack slot allocation time, etc. 1136 */ 1137 static int mark_reg_read(struct bpf_verifier_env *env, 1138 const struct bpf_reg_state *state, 1139 struct bpf_reg_state *parent) 1140 { 1141 bool writes = parent == state->parent; /* Observe write marks */ 1142 int cnt = 0; 1143 1144 while (parent) { 1145 /* if read wasn't screened by an earlier write ... */ 1146 if (writes && state->live & REG_LIVE_WRITTEN) 1147 break; 1148 if (parent->live & REG_LIVE_DONE) { 1149 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1150 reg_type_str[parent->type], 1151 parent->var_off.value, parent->off); 1152 return -EFAULT; 1153 } 1154 if (parent->live & REG_LIVE_READ) 1155 /* The parentage chain never changes and 1156 * this parent was already marked as LIVE_READ. 1157 * There is no need to keep walking the chain again and 1158 * keep re-marking all parents as LIVE_READ. 1159 * This case happens when the same register is read 1160 * multiple times without writes into it in-between. 1161 */ 1162 break; 1163 /* ... then we depend on parent's value */ 1164 parent->live |= REG_LIVE_READ; 1165 state = parent; 1166 parent = state->parent; 1167 writes = true; 1168 cnt++; 1169 } 1170 1171 if (env->longest_mark_read_walk < cnt) 1172 env->longest_mark_read_walk = cnt; 1173 return 0; 1174 } 1175 1176 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1177 enum reg_arg_type t) 1178 { 1179 struct bpf_verifier_state *vstate = env->cur_state; 1180 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1181 struct bpf_reg_state *reg, *regs = state->regs; 1182 1183 if (regno >= MAX_BPF_REG) { 1184 verbose(env, "R%d is invalid\n", regno); 1185 return -EINVAL; 1186 } 1187 1188 reg = ®s[regno]; 1189 if (t == SRC_OP) { 1190 /* check whether register used as source operand can be read */ 1191 if (reg->type == NOT_INIT) { 1192 verbose(env, "R%d !read_ok\n", regno); 1193 return -EACCES; 1194 } 1195 /* We don't need to worry about FP liveness because it's read-only */ 1196 if (regno == BPF_REG_FP) 1197 return 0; 1198 1199 return mark_reg_read(env, reg, reg->parent); 1200 } else { 1201 /* check whether register used as dest operand can be written to */ 1202 if (regno == BPF_REG_FP) { 1203 verbose(env, "frame pointer is read only\n"); 1204 return -EACCES; 1205 } 1206 reg->live |= REG_LIVE_WRITTEN; 1207 if (t == DST_OP) 1208 mark_reg_unknown(env, regs, regno); 1209 } 1210 return 0; 1211 } 1212 1213 static bool is_spillable_regtype(enum bpf_reg_type type) 1214 { 1215 switch (type) { 1216 case PTR_TO_MAP_VALUE: 1217 case PTR_TO_MAP_VALUE_OR_NULL: 1218 case PTR_TO_STACK: 1219 case PTR_TO_CTX: 1220 case PTR_TO_PACKET: 1221 case PTR_TO_PACKET_META: 1222 case PTR_TO_PACKET_END: 1223 case PTR_TO_FLOW_KEYS: 1224 case CONST_PTR_TO_MAP: 1225 case PTR_TO_SOCKET: 1226 case PTR_TO_SOCKET_OR_NULL: 1227 case PTR_TO_SOCK_COMMON: 1228 case PTR_TO_SOCK_COMMON_OR_NULL: 1229 case PTR_TO_TCP_SOCK: 1230 case PTR_TO_TCP_SOCK_OR_NULL: 1231 return true; 1232 default: 1233 return false; 1234 } 1235 } 1236 1237 /* Does this register contain a constant zero? */ 1238 static bool register_is_null(struct bpf_reg_state *reg) 1239 { 1240 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1241 } 1242 1243 /* check_stack_read/write functions track spill/fill of registers, 1244 * stack boundary and alignment are checked in check_mem_access() 1245 */ 1246 static int check_stack_write(struct bpf_verifier_env *env, 1247 struct bpf_func_state *state, /* func where register points to */ 1248 int off, int size, int value_regno, int insn_idx) 1249 { 1250 struct bpf_func_state *cur; /* state of the current function */ 1251 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1252 enum bpf_reg_type type; 1253 1254 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1255 state->acquired_refs, true); 1256 if (err) 1257 return err; 1258 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1259 * so it's aligned access and [off, off + size) are within stack limits 1260 */ 1261 if (!env->allow_ptr_leaks && 1262 state->stack[spi].slot_type[0] == STACK_SPILL && 1263 size != BPF_REG_SIZE) { 1264 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1265 return -EACCES; 1266 } 1267 1268 cur = env->cur_state->frame[env->cur_state->curframe]; 1269 if (value_regno >= 0 && 1270 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1271 1272 /* register containing pointer is being spilled into stack */ 1273 if (size != BPF_REG_SIZE) { 1274 verbose(env, "invalid size of register spill\n"); 1275 return -EACCES; 1276 } 1277 1278 if (state != cur && type == PTR_TO_STACK) { 1279 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1280 return -EINVAL; 1281 } 1282 1283 /* save register state */ 1284 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1285 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1286 1287 for (i = 0; i < BPF_REG_SIZE; i++) { 1288 if (state->stack[spi].slot_type[i] == STACK_MISC && 1289 !env->allow_ptr_leaks) { 1290 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1291 int soff = (-spi - 1) * BPF_REG_SIZE; 1292 1293 /* detected reuse of integer stack slot with a pointer 1294 * which means either llvm is reusing stack slot or 1295 * an attacker is trying to exploit CVE-2018-3639 1296 * (speculative store bypass) 1297 * Have to sanitize that slot with preemptive 1298 * store of zero. 1299 */ 1300 if (*poff && *poff != soff) { 1301 /* disallow programs where single insn stores 1302 * into two different stack slots, since verifier 1303 * cannot sanitize them 1304 */ 1305 verbose(env, 1306 "insn %d cannot access two stack slots fp%d and fp%d", 1307 insn_idx, *poff, soff); 1308 return -EINVAL; 1309 } 1310 *poff = soff; 1311 } 1312 state->stack[spi].slot_type[i] = STACK_SPILL; 1313 } 1314 } else { 1315 u8 type = STACK_MISC; 1316 1317 /* regular write of data into stack destroys any spilled ptr */ 1318 state->stack[spi].spilled_ptr.type = NOT_INIT; 1319 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1320 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1321 for (i = 0; i < BPF_REG_SIZE; i++) 1322 state->stack[spi].slot_type[i] = STACK_MISC; 1323 1324 /* only mark the slot as written if all 8 bytes were written 1325 * otherwise read propagation may incorrectly stop too soon 1326 * when stack slots are partially written. 1327 * This heuristic means that read propagation will be 1328 * conservative, since it will add reg_live_read marks 1329 * to stack slots all the way to first state when programs 1330 * writes+reads less than 8 bytes 1331 */ 1332 if (size == BPF_REG_SIZE) 1333 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1334 1335 /* when we zero initialize stack slots mark them as such */ 1336 if (value_regno >= 0 && 1337 register_is_null(&cur->regs[value_regno])) 1338 type = STACK_ZERO; 1339 1340 /* Mark slots affected by this stack write. */ 1341 for (i = 0; i < size; i++) 1342 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1343 type; 1344 } 1345 return 0; 1346 } 1347 1348 static int check_stack_read(struct bpf_verifier_env *env, 1349 struct bpf_func_state *reg_state /* func where register points to */, 1350 int off, int size, int value_regno) 1351 { 1352 struct bpf_verifier_state *vstate = env->cur_state; 1353 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1354 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1355 u8 *stype; 1356 1357 if (reg_state->allocated_stack <= slot) { 1358 verbose(env, "invalid read from stack off %d+0 size %d\n", 1359 off, size); 1360 return -EACCES; 1361 } 1362 stype = reg_state->stack[spi].slot_type; 1363 1364 if (stype[0] == STACK_SPILL) { 1365 if (size != BPF_REG_SIZE) { 1366 verbose(env, "invalid size of register spill\n"); 1367 return -EACCES; 1368 } 1369 for (i = 1; i < BPF_REG_SIZE; i++) { 1370 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1371 verbose(env, "corrupted spill memory\n"); 1372 return -EACCES; 1373 } 1374 } 1375 1376 if (value_regno >= 0) { 1377 /* restore register state from stack */ 1378 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1379 /* mark reg as written since spilled pointer state likely 1380 * has its liveness marks cleared by is_state_visited() 1381 * which resets stack/reg liveness for state transitions 1382 */ 1383 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1384 } 1385 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1386 reg_state->stack[spi].spilled_ptr.parent); 1387 return 0; 1388 } else { 1389 int zeros = 0; 1390 1391 for (i = 0; i < size; i++) { 1392 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1393 continue; 1394 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1395 zeros++; 1396 continue; 1397 } 1398 verbose(env, "invalid read from stack off %d+%d size %d\n", 1399 off, i, size); 1400 return -EACCES; 1401 } 1402 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1403 reg_state->stack[spi].spilled_ptr.parent); 1404 if (value_regno >= 0) { 1405 if (zeros == size) { 1406 /* any size read into register is zero extended, 1407 * so the whole register == const_zero 1408 */ 1409 __mark_reg_const_zero(&state->regs[value_regno]); 1410 } else { 1411 /* have read misc data from the stack */ 1412 mark_reg_unknown(env, state->regs, value_regno); 1413 } 1414 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1415 } 1416 return 0; 1417 } 1418 } 1419 1420 static int check_stack_access(struct bpf_verifier_env *env, 1421 const struct bpf_reg_state *reg, 1422 int off, int size) 1423 { 1424 /* Stack accesses must be at a fixed offset, so that we 1425 * can determine what type of data were returned. See 1426 * check_stack_read(). 1427 */ 1428 if (!tnum_is_const(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 1433 tn_buf, off, size); 1434 return -EACCES; 1435 } 1436 1437 if (off >= 0 || off < -MAX_BPF_STACK) { 1438 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1439 return -EACCES; 1440 } 1441 1442 return 0; 1443 } 1444 1445 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 1446 int off, int size, enum bpf_access_type type) 1447 { 1448 struct bpf_reg_state *regs = cur_regs(env); 1449 struct bpf_map *map = regs[regno].map_ptr; 1450 u32 cap = bpf_map_flags_to_cap(map); 1451 1452 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 1453 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 1454 map->value_size, off, size); 1455 return -EACCES; 1456 } 1457 1458 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 1459 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 1460 map->value_size, off, size); 1461 return -EACCES; 1462 } 1463 1464 return 0; 1465 } 1466 1467 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1468 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1469 int size, bool zero_size_allowed) 1470 { 1471 struct bpf_reg_state *regs = cur_regs(env); 1472 struct bpf_map *map = regs[regno].map_ptr; 1473 1474 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1475 off + size > map->value_size) { 1476 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1477 map->value_size, off, size); 1478 return -EACCES; 1479 } 1480 return 0; 1481 } 1482 1483 /* check read/write into a map element with possible variable offset */ 1484 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1485 int off, int size, bool zero_size_allowed) 1486 { 1487 struct bpf_verifier_state *vstate = env->cur_state; 1488 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1489 struct bpf_reg_state *reg = &state->regs[regno]; 1490 int err; 1491 1492 /* We may have adjusted the register to this map value, so we 1493 * need to try adding each of min_value and max_value to off 1494 * to make sure our theoretical access will be safe. 1495 */ 1496 if (env->log.level & BPF_LOG_LEVEL) 1497 print_verifier_state(env, state); 1498 1499 /* The minimum value is only important with signed 1500 * comparisons where we can't assume the floor of a 1501 * value is 0. If we are using signed variables for our 1502 * index'es we need to make sure that whatever we use 1503 * will have a set floor within our range. 1504 */ 1505 if (reg->smin_value < 0 && 1506 (reg->smin_value == S64_MIN || 1507 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1508 reg->smin_value + off < 0)) { 1509 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1510 regno); 1511 return -EACCES; 1512 } 1513 err = __check_map_access(env, regno, reg->smin_value + off, size, 1514 zero_size_allowed); 1515 if (err) { 1516 verbose(env, "R%d min value is outside of the array range\n", 1517 regno); 1518 return err; 1519 } 1520 1521 /* If we haven't set a max value then we need to bail since we can't be 1522 * sure we won't do bad things. 1523 * If reg->umax_value + off could overflow, treat that as unbounded too. 1524 */ 1525 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1526 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1527 regno); 1528 return -EACCES; 1529 } 1530 err = __check_map_access(env, regno, reg->umax_value + off, size, 1531 zero_size_allowed); 1532 if (err) 1533 verbose(env, "R%d max value is outside of the array range\n", 1534 regno); 1535 1536 if (map_value_has_spin_lock(reg->map_ptr)) { 1537 u32 lock = reg->map_ptr->spin_lock_off; 1538 1539 /* if any part of struct bpf_spin_lock can be touched by 1540 * load/store reject this program. 1541 * To check that [x1, x2) overlaps with [y1, y2) 1542 * it is sufficient to check x1 < y2 && y1 < x2. 1543 */ 1544 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1545 lock < reg->umax_value + off + size) { 1546 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1547 return -EACCES; 1548 } 1549 } 1550 return err; 1551 } 1552 1553 #define MAX_PACKET_OFF 0xffff 1554 1555 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1556 const struct bpf_call_arg_meta *meta, 1557 enum bpf_access_type t) 1558 { 1559 switch (env->prog->type) { 1560 /* Program types only with direct read access go here! */ 1561 case BPF_PROG_TYPE_LWT_IN: 1562 case BPF_PROG_TYPE_LWT_OUT: 1563 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1564 case BPF_PROG_TYPE_SK_REUSEPORT: 1565 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1566 case BPF_PROG_TYPE_CGROUP_SKB: 1567 if (t == BPF_WRITE) 1568 return false; 1569 /* fallthrough */ 1570 1571 /* Program types with direct read + write access go here! */ 1572 case BPF_PROG_TYPE_SCHED_CLS: 1573 case BPF_PROG_TYPE_SCHED_ACT: 1574 case BPF_PROG_TYPE_XDP: 1575 case BPF_PROG_TYPE_LWT_XMIT: 1576 case BPF_PROG_TYPE_SK_SKB: 1577 case BPF_PROG_TYPE_SK_MSG: 1578 if (meta) 1579 return meta->pkt_access; 1580 1581 env->seen_direct_write = true; 1582 return true; 1583 default: 1584 return false; 1585 } 1586 } 1587 1588 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1589 int off, int size, bool zero_size_allowed) 1590 { 1591 struct bpf_reg_state *regs = cur_regs(env); 1592 struct bpf_reg_state *reg = ®s[regno]; 1593 1594 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1595 (u64)off + size > reg->range) { 1596 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1597 off, size, regno, reg->id, reg->off, reg->range); 1598 return -EACCES; 1599 } 1600 return 0; 1601 } 1602 1603 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1604 int size, bool zero_size_allowed) 1605 { 1606 struct bpf_reg_state *regs = cur_regs(env); 1607 struct bpf_reg_state *reg = ®s[regno]; 1608 int err; 1609 1610 /* We may have added a variable offset to the packet pointer; but any 1611 * reg->range we have comes after that. We are only checking the fixed 1612 * offset. 1613 */ 1614 1615 /* We don't allow negative numbers, because we aren't tracking enough 1616 * detail to prove they're safe. 1617 */ 1618 if (reg->smin_value < 0) { 1619 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1620 regno); 1621 return -EACCES; 1622 } 1623 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1624 if (err) { 1625 verbose(env, "R%d offset is outside of the packet\n", regno); 1626 return err; 1627 } 1628 1629 /* __check_packet_access has made sure "off + size - 1" is within u16. 1630 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1631 * otherwise find_good_pkt_pointers would have refused to set range info 1632 * that __check_packet_access would have rejected this pkt access. 1633 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1634 */ 1635 env->prog->aux->max_pkt_offset = 1636 max_t(u32, env->prog->aux->max_pkt_offset, 1637 off + reg->umax_value + size - 1); 1638 1639 return err; 1640 } 1641 1642 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1643 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1644 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1645 { 1646 struct bpf_insn_access_aux info = { 1647 .reg_type = *reg_type, 1648 }; 1649 1650 if (env->ops->is_valid_access && 1651 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1652 /* A non zero info.ctx_field_size indicates that this field is a 1653 * candidate for later verifier transformation to load the whole 1654 * field and then apply a mask when accessed with a narrower 1655 * access than actual ctx access size. A zero info.ctx_field_size 1656 * will only allow for whole field access and rejects any other 1657 * type of narrower access. 1658 */ 1659 *reg_type = info.reg_type; 1660 1661 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1662 /* remember the offset of last byte accessed in ctx */ 1663 if (env->prog->aux->max_ctx_offset < off + size) 1664 env->prog->aux->max_ctx_offset = off + size; 1665 return 0; 1666 } 1667 1668 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1669 return -EACCES; 1670 } 1671 1672 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1673 int size) 1674 { 1675 if (size < 0 || off < 0 || 1676 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1677 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1678 off, size); 1679 return -EACCES; 1680 } 1681 return 0; 1682 } 1683 1684 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1685 u32 regno, int off, int size, 1686 enum bpf_access_type t) 1687 { 1688 struct bpf_reg_state *regs = cur_regs(env); 1689 struct bpf_reg_state *reg = ®s[regno]; 1690 struct bpf_insn_access_aux info = {}; 1691 bool valid; 1692 1693 if (reg->smin_value < 0) { 1694 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1695 regno); 1696 return -EACCES; 1697 } 1698 1699 switch (reg->type) { 1700 case PTR_TO_SOCK_COMMON: 1701 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1702 break; 1703 case PTR_TO_SOCKET: 1704 valid = bpf_sock_is_valid_access(off, size, t, &info); 1705 break; 1706 case PTR_TO_TCP_SOCK: 1707 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1708 break; 1709 default: 1710 valid = false; 1711 } 1712 1713 1714 if (valid) { 1715 env->insn_aux_data[insn_idx].ctx_field_size = 1716 info.ctx_field_size; 1717 return 0; 1718 } 1719 1720 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1721 regno, reg_type_str[reg->type], off, size); 1722 1723 return -EACCES; 1724 } 1725 1726 static bool __is_pointer_value(bool allow_ptr_leaks, 1727 const struct bpf_reg_state *reg) 1728 { 1729 if (allow_ptr_leaks) 1730 return false; 1731 1732 return reg->type != SCALAR_VALUE; 1733 } 1734 1735 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1736 { 1737 return cur_regs(env) + regno; 1738 } 1739 1740 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1741 { 1742 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1743 } 1744 1745 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1746 { 1747 const struct bpf_reg_state *reg = reg_state(env, regno); 1748 1749 return reg->type == PTR_TO_CTX; 1750 } 1751 1752 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1753 { 1754 const struct bpf_reg_state *reg = reg_state(env, regno); 1755 1756 return type_is_sk_pointer(reg->type); 1757 } 1758 1759 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1760 { 1761 const struct bpf_reg_state *reg = reg_state(env, regno); 1762 1763 return type_is_pkt_pointer(reg->type); 1764 } 1765 1766 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1767 { 1768 const struct bpf_reg_state *reg = reg_state(env, regno); 1769 1770 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1771 return reg->type == PTR_TO_FLOW_KEYS; 1772 } 1773 1774 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1775 const struct bpf_reg_state *reg, 1776 int off, int size, bool strict) 1777 { 1778 struct tnum reg_off; 1779 int ip_align; 1780 1781 /* Byte size accesses are always allowed. */ 1782 if (!strict || size == 1) 1783 return 0; 1784 1785 /* For platforms that do not have a Kconfig enabling 1786 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1787 * NET_IP_ALIGN is universally set to '2'. And on platforms 1788 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1789 * to this code only in strict mode where we want to emulate 1790 * the NET_IP_ALIGN==2 checking. Therefore use an 1791 * unconditional IP align value of '2'. 1792 */ 1793 ip_align = 2; 1794 1795 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1796 if (!tnum_is_aligned(reg_off, size)) { 1797 char tn_buf[48]; 1798 1799 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1800 verbose(env, 1801 "misaligned packet access off %d+%s+%d+%d size %d\n", 1802 ip_align, tn_buf, reg->off, off, size); 1803 return -EACCES; 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1810 const struct bpf_reg_state *reg, 1811 const char *pointer_desc, 1812 int off, int size, bool strict) 1813 { 1814 struct tnum reg_off; 1815 1816 /* Byte size accesses are always allowed. */ 1817 if (!strict || size == 1) 1818 return 0; 1819 1820 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1821 if (!tnum_is_aligned(reg_off, size)) { 1822 char tn_buf[48]; 1823 1824 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1825 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1826 pointer_desc, tn_buf, reg->off, off, size); 1827 return -EACCES; 1828 } 1829 1830 return 0; 1831 } 1832 1833 static int check_ptr_alignment(struct bpf_verifier_env *env, 1834 const struct bpf_reg_state *reg, int off, 1835 int size, bool strict_alignment_once) 1836 { 1837 bool strict = env->strict_alignment || strict_alignment_once; 1838 const char *pointer_desc = ""; 1839 1840 switch (reg->type) { 1841 case PTR_TO_PACKET: 1842 case PTR_TO_PACKET_META: 1843 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1844 * right in front, treat it the very same way. 1845 */ 1846 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1847 case PTR_TO_FLOW_KEYS: 1848 pointer_desc = "flow keys "; 1849 break; 1850 case PTR_TO_MAP_VALUE: 1851 pointer_desc = "value "; 1852 break; 1853 case PTR_TO_CTX: 1854 pointer_desc = "context "; 1855 break; 1856 case PTR_TO_STACK: 1857 pointer_desc = "stack "; 1858 /* The stack spill tracking logic in check_stack_write() 1859 * and check_stack_read() relies on stack accesses being 1860 * aligned. 1861 */ 1862 strict = true; 1863 break; 1864 case PTR_TO_SOCKET: 1865 pointer_desc = "sock "; 1866 break; 1867 case PTR_TO_SOCK_COMMON: 1868 pointer_desc = "sock_common "; 1869 break; 1870 case PTR_TO_TCP_SOCK: 1871 pointer_desc = "tcp_sock "; 1872 break; 1873 default: 1874 break; 1875 } 1876 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1877 strict); 1878 } 1879 1880 static int update_stack_depth(struct bpf_verifier_env *env, 1881 const struct bpf_func_state *func, 1882 int off) 1883 { 1884 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1885 1886 if (stack >= -off) 1887 return 0; 1888 1889 /* update known max for given subprogram */ 1890 env->subprog_info[func->subprogno].stack_depth = -off; 1891 return 0; 1892 } 1893 1894 /* starting from main bpf function walk all instructions of the function 1895 * and recursively walk all callees that given function can call. 1896 * Ignore jump and exit insns. 1897 * Since recursion is prevented by check_cfg() this algorithm 1898 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1899 */ 1900 static int check_max_stack_depth(struct bpf_verifier_env *env) 1901 { 1902 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1903 struct bpf_subprog_info *subprog = env->subprog_info; 1904 struct bpf_insn *insn = env->prog->insnsi; 1905 int ret_insn[MAX_CALL_FRAMES]; 1906 int ret_prog[MAX_CALL_FRAMES]; 1907 1908 process_func: 1909 /* round up to 32-bytes, since this is granularity 1910 * of interpreter stack size 1911 */ 1912 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1913 if (depth > MAX_BPF_STACK) { 1914 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1915 frame + 1, depth); 1916 return -EACCES; 1917 } 1918 continue_func: 1919 subprog_end = subprog[idx + 1].start; 1920 for (; i < subprog_end; i++) { 1921 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1922 continue; 1923 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1924 continue; 1925 /* remember insn and function to return to */ 1926 ret_insn[frame] = i + 1; 1927 ret_prog[frame] = idx; 1928 1929 /* find the callee */ 1930 i = i + insn[i].imm + 1; 1931 idx = find_subprog(env, i); 1932 if (idx < 0) { 1933 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1934 i); 1935 return -EFAULT; 1936 } 1937 frame++; 1938 if (frame >= MAX_CALL_FRAMES) { 1939 verbose(env, "the call stack of %d frames is too deep !\n", 1940 frame); 1941 return -E2BIG; 1942 } 1943 goto process_func; 1944 } 1945 /* end of for() loop means the last insn of the 'subprog' 1946 * was reached. Doesn't matter whether it was JA or EXIT 1947 */ 1948 if (frame == 0) 1949 return 0; 1950 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1951 frame--; 1952 i = ret_insn[frame]; 1953 idx = ret_prog[frame]; 1954 goto continue_func; 1955 } 1956 1957 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1958 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1959 const struct bpf_insn *insn, int idx) 1960 { 1961 int start = idx + insn->imm + 1, subprog; 1962 1963 subprog = find_subprog(env, start); 1964 if (subprog < 0) { 1965 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1966 start); 1967 return -EFAULT; 1968 } 1969 return env->subprog_info[subprog].stack_depth; 1970 } 1971 #endif 1972 1973 static int check_ctx_reg(struct bpf_verifier_env *env, 1974 const struct bpf_reg_state *reg, int regno) 1975 { 1976 /* Access to ctx or passing it to a helper is only allowed in 1977 * its original, unmodified form. 1978 */ 1979 1980 if (reg->off) { 1981 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1982 regno, reg->off); 1983 return -EACCES; 1984 } 1985 1986 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1987 char tn_buf[48]; 1988 1989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1990 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1991 return -EACCES; 1992 } 1993 1994 return 0; 1995 } 1996 1997 static int check_tp_buffer_access(struct bpf_verifier_env *env, 1998 const struct bpf_reg_state *reg, 1999 int regno, int off, int size) 2000 { 2001 if (off < 0) { 2002 verbose(env, 2003 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2004 regno, off, size); 2005 return -EACCES; 2006 } 2007 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2008 char tn_buf[48]; 2009 2010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2011 verbose(env, 2012 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2013 regno, off, tn_buf); 2014 return -EACCES; 2015 } 2016 if (off + size > env->prog->aux->max_tp_access) 2017 env->prog->aux->max_tp_access = off + size; 2018 2019 return 0; 2020 } 2021 2022 2023 /* truncate register to smaller size (in bytes) 2024 * must be called with size < BPF_REG_SIZE 2025 */ 2026 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2027 { 2028 u64 mask; 2029 2030 /* clear high bits in bit representation */ 2031 reg->var_off = tnum_cast(reg->var_off, size); 2032 2033 /* fix arithmetic bounds */ 2034 mask = ((u64)1 << (size * 8)) - 1; 2035 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2036 reg->umin_value &= mask; 2037 reg->umax_value &= mask; 2038 } else { 2039 reg->umin_value = 0; 2040 reg->umax_value = mask; 2041 } 2042 reg->smin_value = reg->umin_value; 2043 reg->smax_value = reg->umax_value; 2044 } 2045 2046 /* check whether memory at (regno + off) is accessible for t = (read | write) 2047 * if t==write, value_regno is a register which value is stored into memory 2048 * if t==read, value_regno is a register which will receive the value from memory 2049 * if t==write && value_regno==-1, some unknown value is stored into memory 2050 * if t==read && value_regno==-1, don't care what we read from memory 2051 */ 2052 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2053 int off, int bpf_size, enum bpf_access_type t, 2054 int value_regno, bool strict_alignment_once) 2055 { 2056 struct bpf_reg_state *regs = cur_regs(env); 2057 struct bpf_reg_state *reg = regs + regno; 2058 struct bpf_func_state *state; 2059 int size, err = 0; 2060 2061 size = bpf_size_to_bytes(bpf_size); 2062 if (size < 0) 2063 return size; 2064 2065 /* alignment checks will add in reg->off themselves */ 2066 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2067 if (err) 2068 return err; 2069 2070 /* for access checks, reg->off is just part of off */ 2071 off += reg->off; 2072 2073 if (reg->type == PTR_TO_MAP_VALUE) { 2074 if (t == BPF_WRITE && value_regno >= 0 && 2075 is_pointer_value(env, value_regno)) { 2076 verbose(env, "R%d leaks addr into map\n", value_regno); 2077 return -EACCES; 2078 } 2079 err = check_map_access_type(env, regno, off, size, t); 2080 if (err) 2081 return err; 2082 err = check_map_access(env, regno, off, size, false); 2083 if (!err && t == BPF_READ && value_regno >= 0) 2084 mark_reg_unknown(env, regs, value_regno); 2085 2086 } else if (reg->type == PTR_TO_CTX) { 2087 enum bpf_reg_type reg_type = SCALAR_VALUE; 2088 2089 if (t == BPF_WRITE && value_regno >= 0 && 2090 is_pointer_value(env, value_regno)) { 2091 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2092 return -EACCES; 2093 } 2094 2095 err = check_ctx_reg(env, reg, regno); 2096 if (err < 0) 2097 return err; 2098 2099 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2100 if (!err && t == BPF_READ && value_regno >= 0) { 2101 /* ctx access returns either a scalar, or a 2102 * PTR_TO_PACKET[_META,_END]. In the latter 2103 * case, we know the offset is zero. 2104 */ 2105 if (reg_type == SCALAR_VALUE) { 2106 mark_reg_unknown(env, regs, value_regno); 2107 } else { 2108 mark_reg_known_zero(env, regs, 2109 value_regno); 2110 if (reg_type_may_be_null(reg_type)) 2111 regs[value_regno].id = ++env->id_gen; 2112 } 2113 regs[value_regno].type = reg_type; 2114 } 2115 2116 } else if (reg->type == PTR_TO_STACK) { 2117 off += reg->var_off.value; 2118 err = check_stack_access(env, reg, off, size); 2119 if (err) 2120 return err; 2121 2122 state = func(env, reg); 2123 err = update_stack_depth(env, state, off); 2124 if (err) 2125 return err; 2126 2127 if (t == BPF_WRITE) 2128 err = check_stack_write(env, state, off, size, 2129 value_regno, insn_idx); 2130 else 2131 err = check_stack_read(env, state, off, size, 2132 value_regno); 2133 } else if (reg_is_pkt_pointer(reg)) { 2134 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2135 verbose(env, "cannot write into packet\n"); 2136 return -EACCES; 2137 } 2138 if (t == BPF_WRITE && value_regno >= 0 && 2139 is_pointer_value(env, value_regno)) { 2140 verbose(env, "R%d leaks addr into packet\n", 2141 value_regno); 2142 return -EACCES; 2143 } 2144 err = check_packet_access(env, regno, off, size, false); 2145 if (!err && t == BPF_READ && value_regno >= 0) 2146 mark_reg_unknown(env, regs, value_regno); 2147 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2148 if (t == BPF_WRITE && value_regno >= 0 && 2149 is_pointer_value(env, value_regno)) { 2150 verbose(env, "R%d leaks addr into flow keys\n", 2151 value_regno); 2152 return -EACCES; 2153 } 2154 2155 err = check_flow_keys_access(env, off, size); 2156 if (!err && t == BPF_READ && value_regno >= 0) 2157 mark_reg_unknown(env, regs, value_regno); 2158 } else if (type_is_sk_pointer(reg->type)) { 2159 if (t == BPF_WRITE) { 2160 verbose(env, "R%d cannot write into %s\n", 2161 regno, reg_type_str[reg->type]); 2162 return -EACCES; 2163 } 2164 err = check_sock_access(env, insn_idx, regno, off, size, t); 2165 if (!err && value_regno >= 0) 2166 mark_reg_unknown(env, regs, value_regno); 2167 } else if (reg->type == PTR_TO_TP_BUFFER) { 2168 err = check_tp_buffer_access(env, reg, regno, off, size); 2169 if (!err && t == BPF_READ && value_regno >= 0) 2170 mark_reg_unknown(env, regs, value_regno); 2171 } else { 2172 verbose(env, "R%d invalid mem access '%s'\n", regno, 2173 reg_type_str[reg->type]); 2174 return -EACCES; 2175 } 2176 2177 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2178 regs[value_regno].type == SCALAR_VALUE) { 2179 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2180 coerce_reg_to_size(®s[value_regno], size); 2181 } 2182 return err; 2183 } 2184 2185 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2186 { 2187 int err; 2188 2189 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2190 insn->imm != 0) { 2191 verbose(env, "BPF_XADD uses reserved fields\n"); 2192 return -EINVAL; 2193 } 2194 2195 /* check src1 operand */ 2196 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2197 if (err) 2198 return err; 2199 2200 /* check src2 operand */ 2201 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2202 if (err) 2203 return err; 2204 2205 if (is_pointer_value(env, insn->src_reg)) { 2206 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2207 return -EACCES; 2208 } 2209 2210 if (is_ctx_reg(env, insn->dst_reg) || 2211 is_pkt_reg(env, insn->dst_reg) || 2212 is_flow_key_reg(env, insn->dst_reg) || 2213 is_sk_reg(env, insn->dst_reg)) { 2214 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2215 insn->dst_reg, 2216 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2217 return -EACCES; 2218 } 2219 2220 /* check whether atomic_add can read the memory */ 2221 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2222 BPF_SIZE(insn->code), BPF_READ, -1, true); 2223 if (err) 2224 return err; 2225 2226 /* check whether atomic_add can write into the same memory */ 2227 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2228 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2229 } 2230 2231 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2232 int off, int access_size, 2233 bool zero_size_allowed) 2234 { 2235 struct bpf_reg_state *reg = reg_state(env, regno); 2236 2237 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2238 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2239 if (tnum_is_const(reg->var_off)) { 2240 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2241 regno, off, access_size); 2242 } else { 2243 char tn_buf[48]; 2244 2245 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2246 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2247 regno, tn_buf, access_size); 2248 } 2249 return -EACCES; 2250 } 2251 return 0; 2252 } 2253 2254 /* when register 'regno' is passed into function that will read 'access_size' 2255 * bytes from that pointer, make sure that it's within stack boundary 2256 * and all elements of stack are initialized. 2257 * Unlike most pointer bounds-checking functions, this one doesn't take an 2258 * 'off' argument, so it has to add in reg->off itself. 2259 */ 2260 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2261 int access_size, bool zero_size_allowed, 2262 struct bpf_call_arg_meta *meta) 2263 { 2264 struct bpf_reg_state *reg = reg_state(env, regno); 2265 struct bpf_func_state *state = func(env, reg); 2266 int err, min_off, max_off, i, slot, spi; 2267 2268 if (reg->type != PTR_TO_STACK) { 2269 /* Allow zero-byte read from NULL, regardless of pointer type */ 2270 if (zero_size_allowed && access_size == 0 && 2271 register_is_null(reg)) 2272 return 0; 2273 2274 verbose(env, "R%d type=%s expected=%s\n", regno, 2275 reg_type_str[reg->type], 2276 reg_type_str[PTR_TO_STACK]); 2277 return -EACCES; 2278 } 2279 2280 if (tnum_is_const(reg->var_off)) { 2281 min_off = max_off = reg->var_off.value + reg->off; 2282 err = __check_stack_boundary(env, regno, min_off, access_size, 2283 zero_size_allowed); 2284 if (err) 2285 return err; 2286 } else { 2287 /* Variable offset is prohibited for unprivileged mode for 2288 * simplicity since it requires corresponding support in 2289 * Spectre masking for stack ALU. 2290 * See also retrieve_ptr_limit(). 2291 */ 2292 if (!env->allow_ptr_leaks) { 2293 char tn_buf[48]; 2294 2295 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2296 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2297 regno, tn_buf); 2298 return -EACCES; 2299 } 2300 /* Only initialized buffer on stack is allowed to be accessed 2301 * with variable offset. With uninitialized buffer it's hard to 2302 * guarantee that whole memory is marked as initialized on 2303 * helper return since specific bounds are unknown what may 2304 * cause uninitialized stack leaking. 2305 */ 2306 if (meta && meta->raw_mode) 2307 meta = NULL; 2308 2309 if (reg->smax_value >= BPF_MAX_VAR_OFF || 2310 reg->smax_value <= -BPF_MAX_VAR_OFF) { 2311 verbose(env, "R%d unbounded indirect variable offset stack access\n", 2312 regno); 2313 return -EACCES; 2314 } 2315 min_off = reg->smin_value + reg->off; 2316 max_off = reg->smax_value + reg->off; 2317 err = __check_stack_boundary(env, regno, min_off, access_size, 2318 zero_size_allowed); 2319 if (err) { 2320 verbose(env, "R%d min value is outside of stack bound\n", 2321 regno); 2322 return err; 2323 } 2324 err = __check_stack_boundary(env, regno, max_off, access_size, 2325 zero_size_allowed); 2326 if (err) { 2327 verbose(env, "R%d max value is outside of stack bound\n", 2328 regno); 2329 return err; 2330 } 2331 } 2332 2333 if (meta && meta->raw_mode) { 2334 meta->access_size = access_size; 2335 meta->regno = regno; 2336 return 0; 2337 } 2338 2339 for (i = min_off; i < max_off + access_size; i++) { 2340 u8 *stype; 2341 2342 slot = -i - 1; 2343 spi = slot / BPF_REG_SIZE; 2344 if (state->allocated_stack <= slot) 2345 goto err; 2346 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2347 if (*stype == STACK_MISC) 2348 goto mark; 2349 if (*stype == STACK_ZERO) { 2350 /* helper can write anything into the stack */ 2351 *stype = STACK_MISC; 2352 goto mark; 2353 } 2354 err: 2355 if (tnum_is_const(reg->var_off)) { 2356 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2357 min_off, i - min_off, access_size); 2358 } else { 2359 char tn_buf[48]; 2360 2361 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2362 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 2363 tn_buf, i - min_off, access_size); 2364 } 2365 return -EACCES; 2366 mark: 2367 /* reading any byte out of 8-byte 'spill_slot' will cause 2368 * the whole slot to be marked as 'read' 2369 */ 2370 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2371 state->stack[spi].spilled_ptr.parent); 2372 } 2373 return update_stack_depth(env, state, min_off); 2374 } 2375 2376 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2377 int access_size, bool zero_size_allowed, 2378 struct bpf_call_arg_meta *meta) 2379 { 2380 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2381 2382 switch (reg->type) { 2383 case PTR_TO_PACKET: 2384 case PTR_TO_PACKET_META: 2385 return check_packet_access(env, regno, reg->off, access_size, 2386 zero_size_allowed); 2387 case PTR_TO_MAP_VALUE: 2388 if (check_map_access_type(env, regno, reg->off, access_size, 2389 meta && meta->raw_mode ? BPF_WRITE : 2390 BPF_READ)) 2391 return -EACCES; 2392 return check_map_access(env, regno, reg->off, access_size, 2393 zero_size_allowed); 2394 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2395 return check_stack_boundary(env, regno, access_size, 2396 zero_size_allowed, meta); 2397 } 2398 } 2399 2400 /* Implementation details: 2401 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2402 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2403 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2404 * value_or_null->value transition, since the verifier only cares about 2405 * the range of access to valid map value pointer and doesn't care about actual 2406 * address of the map element. 2407 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2408 * reg->id > 0 after value_or_null->value transition. By doing so 2409 * two bpf_map_lookups will be considered two different pointers that 2410 * point to different bpf_spin_locks. 2411 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2412 * dead-locks. 2413 * Since only one bpf_spin_lock is allowed the checks are simpler than 2414 * reg_is_refcounted() logic. The verifier needs to remember only 2415 * one spin_lock instead of array of acquired_refs. 2416 * cur_state->active_spin_lock remembers which map value element got locked 2417 * and clears it after bpf_spin_unlock. 2418 */ 2419 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2420 bool is_lock) 2421 { 2422 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2423 struct bpf_verifier_state *cur = env->cur_state; 2424 bool is_const = tnum_is_const(reg->var_off); 2425 struct bpf_map *map = reg->map_ptr; 2426 u64 val = reg->var_off.value; 2427 2428 if (reg->type != PTR_TO_MAP_VALUE) { 2429 verbose(env, "R%d is not a pointer to map_value\n", regno); 2430 return -EINVAL; 2431 } 2432 if (!is_const) { 2433 verbose(env, 2434 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2435 regno); 2436 return -EINVAL; 2437 } 2438 if (!map->btf) { 2439 verbose(env, 2440 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2441 map->name); 2442 return -EINVAL; 2443 } 2444 if (!map_value_has_spin_lock(map)) { 2445 if (map->spin_lock_off == -E2BIG) 2446 verbose(env, 2447 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2448 map->name); 2449 else if (map->spin_lock_off == -ENOENT) 2450 verbose(env, 2451 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2452 map->name); 2453 else 2454 verbose(env, 2455 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2456 map->name); 2457 return -EINVAL; 2458 } 2459 if (map->spin_lock_off != val + reg->off) { 2460 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2461 val + reg->off); 2462 return -EINVAL; 2463 } 2464 if (is_lock) { 2465 if (cur->active_spin_lock) { 2466 verbose(env, 2467 "Locking two bpf_spin_locks are not allowed\n"); 2468 return -EINVAL; 2469 } 2470 cur->active_spin_lock = reg->id; 2471 } else { 2472 if (!cur->active_spin_lock) { 2473 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2474 return -EINVAL; 2475 } 2476 if (cur->active_spin_lock != reg->id) { 2477 verbose(env, "bpf_spin_unlock of different lock\n"); 2478 return -EINVAL; 2479 } 2480 cur->active_spin_lock = 0; 2481 } 2482 return 0; 2483 } 2484 2485 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2486 { 2487 return type == ARG_PTR_TO_MEM || 2488 type == ARG_PTR_TO_MEM_OR_NULL || 2489 type == ARG_PTR_TO_UNINIT_MEM; 2490 } 2491 2492 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2493 { 2494 return type == ARG_CONST_SIZE || 2495 type == ARG_CONST_SIZE_OR_ZERO; 2496 } 2497 2498 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 2499 { 2500 return type == ARG_PTR_TO_INT || 2501 type == ARG_PTR_TO_LONG; 2502 } 2503 2504 static int int_ptr_type_to_size(enum bpf_arg_type type) 2505 { 2506 if (type == ARG_PTR_TO_INT) 2507 return sizeof(u32); 2508 else if (type == ARG_PTR_TO_LONG) 2509 return sizeof(u64); 2510 2511 return -EINVAL; 2512 } 2513 2514 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2515 enum bpf_arg_type arg_type, 2516 struct bpf_call_arg_meta *meta) 2517 { 2518 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2519 enum bpf_reg_type expected_type, type = reg->type; 2520 int err = 0; 2521 2522 if (arg_type == ARG_DONTCARE) 2523 return 0; 2524 2525 err = check_reg_arg(env, regno, SRC_OP); 2526 if (err) 2527 return err; 2528 2529 if (arg_type == ARG_ANYTHING) { 2530 if (is_pointer_value(env, regno)) { 2531 verbose(env, "R%d leaks addr into helper function\n", 2532 regno); 2533 return -EACCES; 2534 } 2535 return 0; 2536 } 2537 2538 if (type_is_pkt_pointer(type) && 2539 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2540 verbose(env, "helper access to the packet is not allowed\n"); 2541 return -EACCES; 2542 } 2543 2544 if (arg_type == ARG_PTR_TO_MAP_KEY || 2545 arg_type == ARG_PTR_TO_MAP_VALUE || 2546 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 2547 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 2548 expected_type = PTR_TO_STACK; 2549 if (register_is_null(reg) && 2550 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 2551 /* final test in check_stack_boundary() */; 2552 else if (!type_is_pkt_pointer(type) && 2553 type != PTR_TO_MAP_VALUE && 2554 type != expected_type) 2555 goto err_type; 2556 } else if (arg_type == ARG_CONST_SIZE || 2557 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2558 expected_type = SCALAR_VALUE; 2559 if (type != expected_type) 2560 goto err_type; 2561 } else if (arg_type == ARG_CONST_MAP_PTR) { 2562 expected_type = CONST_PTR_TO_MAP; 2563 if (type != expected_type) 2564 goto err_type; 2565 } else if (arg_type == ARG_PTR_TO_CTX) { 2566 expected_type = PTR_TO_CTX; 2567 if (type != expected_type) 2568 goto err_type; 2569 err = check_ctx_reg(env, reg, regno); 2570 if (err < 0) 2571 return err; 2572 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2573 expected_type = PTR_TO_SOCK_COMMON; 2574 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2575 if (!type_is_sk_pointer(type)) 2576 goto err_type; 2577 if (reg->ref_obj_id) { 2578 if (meta->ref_obj_id) { 2579 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 2580 regno, reg->ref_obj_id, 2581 meta->ref_obj_id); 2582 return -EFAULT; 2583 } 2584 meta->ref_obj_id = reg->ref_obj_id; 2585 } 2586 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2587 expected_type = PTR_TO_SOCKET; 2588 if (type != expected_type) 2589 goto err_type; 2590 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2591 if (meta->func_id == BPF_FUNC_spin_lock) { 2592 if (process_spin_lock(env, regno, true)) 2593 return -EACCES; 2594 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2595 if (process_spin_lock(env, regno, false)) 2596 return -EACCES; 2597 } else { 2598 verbose(env, "verifier internal error\n"); 2599 return -EFAULT; 2600 } 2601 } else if (arg_type_is_mem_ptr(arg_type)) { 2602 expected_type = PTR_TO_STACK; 2603 /* One exception here. In case function allows for NULL to be 2604 * passed in as argument, it's a SCALAR_VALUE type. Final test 2605 * happens during stack boundary checking. 2606 */ 2607 if (register_is_null(reg) && 2608 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2609 /* final test in check_stack_boundary() */; 2610 else if (!type_is_pkt_pointer(type) && 2611 type != PTR_TO_MAP_VALUE && 2612 type != expected_type) 2613 goto err_type; 2614 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2615 } else if (arg_type_is_int_ptr(arg_type)) { 2616 expected_type = PTR_TO_STACK; 2617 if (!type_is_pkt_pointer(type) && 2618 type != PTR_TO_MAP_VALUE && 2619 type != expected_type) 2620 goto err_type; 2621 } else { 2622 verbose(env, "unsupported arg_type %d\n", arg_type); 2623 return -EFAULT; 2624 } 2625 2626 if (arg_type == ARG_CONST_MAP_PTR) { 2627 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2628 meta->map_ptr = reg->map_ptr; 2629 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2630 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2631 * check that [key, key + map->key_size) are within 2632 * stack limits and initialized 2633 */ 2634 if (!meta->map_ptr) { 2635 /* in function declaration map_ptr must come before 2636 * map_key, so that it's verified and known before 2637 * we have to check map_key here. Otherwise it means 2638 * that kernel subsystem misconfigured verifier 2639 */ 2640 verbose(env, "invalid map_ptr to access map->key\n"); 2641 return -EACCES; 2642 } 2643 err = check_helper_mem_access(env, regno, 2644 meta->map_ptr->key_size, false, 2645 NULL); 2646 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2647 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 2648 !register_is_null(reg)) || 2649 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2650 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2651 * check [value, value + map->value_size) validity 2652 */ 2653 if (!meta->map_ptr) { 2654 /* kernel subsystem misconfigured verifier */ 2655 verbose(env, "invalid map_ptr to access map->value\n"); 2656 return -EACCES; 2657 } 2658 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2659 err = check_helper_mem_access(env, regno, 2660 meta->map_ptr->value_size, false, 2661 meta); 2662 } else if (arg_type_is_mem_size(arg_type)) { 2663 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2664 2665 /* remember the mem_size which may be used later 2666 * to refine return values. 2667 */ 2668 meta->msize_smax_value = reg->smax_value; 2669 meta->msize_umax_value = reg->umax_value; 2670 2671 /* The register is SCALAR_VALUE; the access check 2672 * happens using its boundaries. 2673 */ 2674 if (!tnum_is_const(reg->var_off)) 2675 /* For unprivileged variable accesses, disable raw 2676 * mode so that the program is required to 2677 * initialize all the memory that the helper could 2678 * just partially fill up. 2679 */ 2680 meta = NULL; 2681 2682 if (reg->smin_value < 0) { 2683 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2684 regno); 2685 return -EACCES; 2686 } 2687 2688 if (reg->umin_value == 0) { 2689 err = check_helper_mem_access(env, regno - 1, 0, 2690 zero_size_allowed, 2691 meta); 2692 if (err) 2693 return err; 2694 } 2695 2696 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2697 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2698 regno); 2699 return -EACCES; 2700 } 2701 err = check_helper_mem_access(env, regno - 1, 2702 reg->umax_value, 2703 zero_size_allowed, meta); 2704 } else if (arg_type_is_int_ptr(arg_type)) { 2705 int size = int_ptr_type_to_size(arg_type); 2706 2707 err = check_helper_mem_access(env, regno, size, false, meta); 2708 if (err) 2709 return err; 2710 err = check_ptr_alignment(env, reg, 0, size, true); 2711 } 2712 2713 return err; 2714 err_type: 2715 verbose(env, "R%d type=%s expected=%s\n", regno, 2716 reg_type_str[type], reg_type_str[expected_type]); 2717 return -EACCES; 2718 } 2719 2720 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2721 struct bpf_map *map, int func_id) 2722 { 2723 if (!map) 2724 return 0; 2725 2726 /* We need a two way check, first is from map perspective ... */ 2727 switch (map->map_type) { 2728 case BPF_MAP_TYPE_PROG_ARRAY: 2729 if (func_id != BPF_FUNC_tail_call) 2730 goto error; 2731 break; 2732 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2733 if (func_id != BPF_FUNC_perf_event_read && 2734 func_id != BPF_FUNC_perf_event_output && 2735 func_id != BPF_FUNC_perf_event_read_value) 2736 goto error; 2737 break; 2738 case BPF_MAP_TYPE_STACK_TRACE: 2739 if (func_id != BPF_FUNC_get_stackid) 2740 goto error; 2741 break; 2742 case BPF_MAP_TYPE_CGROUP_ARRAY: 2743 if (func_id != BPF_FUNC_skb_under_cgroup && 2744 func_id != BPF_FUNC_current_task_under_cgroup) 2745 goto error; 2746 break; 2747 case BPF_MAP_TYPE_CGROUP_STORAGE: 2748 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2749 if (func_id != BPF_FUNC_get_local_storage) 2750 goto error; 2751 break; 2752 /* devmap returns a pointer to a live net_device ifindex that we cannot 2753 * allow to be modified from bpf side. So do not allow lookup elements 2754 * for now. 2755 */ 2756 case BPF_MAP_TYPE_DEVMAP: 2757 if (func_id != BPF_FUNC_redirect_map) 2758 goto error; 2759 break; 2760 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2761 * appear. 2762 */ 2763 case BPF_MAP_TYPE_CPUMAP: 2764 case BPF_MAP_TYPE_XSKMAP: 2765 if (func_id != BPF_FUNC_redirect_map) 2766 goto error; 2767 break; 2768 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2769 case BPF_MAP_TYPE_HASH_OF_MAPS: 2770 if (func_id != BPF_FUNC_map_lookup_elem) 2771 goto error; 2772 break; 2773 case BPF_MAP_TYPE_SOCKMAP: 2774 if (func_id != BPF_FUNC_sk_redirect_map && 2775 func_id != BPF_FUNC_sock_map_update && 2776 func_id != BPF_FUNC_map_delete_elem && 2777 func_id != BPF_FUNC_msg_redirect_map) 2778 goto error; 2779 break; 2780 case BPF_MAP_TYPE_SOCKHASH: 2781 if (func_id != BPF_FUNC_sk_redirect_hash && 2782 func_id != BPF_FUNC_sock_hash_update && 2783 func_id != BPF_FUNC_map_delete_elem && 2784 func_id != BPF_FUNC_msg_redirect_hash) 2785 goto error; 2786 break; 2787 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2788 if (func_id != BPF_FUNC_sk_select_reuseport) 2789 goto error; 2790 break; 2791 case BPF_MAP_TYPE_QUEUE: 2792 case BPF_MAP_TYPE_STACK: 2793 if (func_id != BPF_FUNC_map_peek_elem && 2794 func_id != BPF_FUNC_map_pop_elem && 2795 func_id != BPF_FUNC_map_push_elem) 2796 goto error; 2797 break; 2798 case BPF_MAP_TYPE_SK_STORAGE: 2799 if (func_id != BPF_FUNC_sk_storage_get && 2800 func_id != BPF_FUNC_sk_storage_delete) 2801 goto error; 2802 break; 2803 default: 2804 break; 2805 } 2806 2807 /* ... and second from the function itself. */ 2808 switch (func_id) { 2809 case BPF_FUNC_tail_call: 2810 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2811 goto error; 2812 if (env->subprog_cnt > 1) { 2813 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2814 return -EINVAL; 2815 } 2816 break; 2817 case BPF_FUNC_perf_event_read: 2818 case BPF_FUNC_perf_event_output: 2819 case BPF_FUNC_perf_event_read_value: 2820 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2821 goto error; 2822 break; 2823 case BPF_FUNC_get_stackid: 2824 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2825 goto error; 2826 break; 2827 case BPF_FUNC_current_task_under_cgroup: 2828 case BPF_FUNC_skb_under_cgroup: 2829 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2830 goto error; 2831 break; 2832 case BPF_FUNC_redirect_map: 2833 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2834 map->map_type != BPF_MAP_TYPE_CPUMAP && 2835 map->map_type != BPF_MAP_TYPE_XSKMAP) 2836 goto error; 2837 break; 2838 case BPF_FUNC_sk_redirect_map: 2839 case BPF_FUNC_msg_redirect_map: 2840 case BPF_FUNC_sock_map_update: 2841 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2842 goto error; 2843 break; 2844 case BPF_FUNC_sk_redirect_hash: 2845 case BPF_FUNC_msg_redirect_hash: 2846 case BPF_FUNC_sock_hash_update: 2847 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2848 goto error; 2849 break; 2850 case BPF_FUNC_get_local_storage: 2851 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2852 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2853 goto error; 2854 break; 2855 case BPF_FUNC_sk_select_reuseport: 2856 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2857 goto error; 2858 break; 2859 case BPF_FUNC_map_peek_elem: 2860 case BPF_FUNC_map_pop_elem: 2861 case BPF_FUNC_map_push_elem: 2862 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2863 map->map_type != BPF_MAP_TYPE_STACK) 2864 goto error; 2865 break; 2866 case BPF_FUNC_sk_storage_get: 2867 case BPF_FUNC_sk_storage_delete: 2868 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 2869 goto error; 2870 break; 2871 default: 2872 break; 2873 } 2874 2875 return 0; 2876 error: 2877 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2878 map->map_type, func_id_name(func_id), func_id); 2879 return -EINVAL; 2880 } 2881 2882 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2883 { 2884 int count = 0; 2885 2886 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2887 count++; 2888 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2889 count++; 2890 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2891 count++; 2892 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2893 count++; 2894 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2895 count++; 2896 2897 /* We only support one arg being in raw mode at the moment, 2898 * which is sufficient for the helper functions we have 2899 * right now. 2900 */ 2901 return count <= 1; 2902 } 2903 2904 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2905 enum bpf_arg_type arg_next) 2906 { 2907 return (arg_type_is_mem_ptr(arg_curr) && 2908 !arg_type_is_mem_size(arg_next)) || 2909 (!arg_type_is_mem_ptr(arg_curr) && 2910 arg_type_is_mem_size(arg_next)); 2911 } 2912 2913 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2914 { 2915 /* bpf_xxx(..., buf, len) call will access 'len' 2916 * bytes from memory 'buf'. Both arg types need 2917 * to be paired, so make sure there's no buggy 2918 * helper function specification. 2919 */ 2920 if (arg_type_is_mem_size(fn->arg1_type) || 2921 arg_type_is_mem_ptr(fn->arg5_type) || 2922 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2923 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2924 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2925 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2926 return false; 2927 2928 return true; 2929 } 2930 2931 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 2932 { 2933 int count = 0; 2934 2935 if (arg_type_may_be_refcounted(fn->arg1_type)) 2936 count++; 2937 if (arg_type_may_be_refcounted(fn->arg2_type)) 2938 count++; 2939 if (arg_type_may_be_refcounted(fn->arg3_type)) 2940 count++; 2941 if (arg_type_may_be_refcounted(fn->arg4_type)) 2942 count++; 2943 if (arg_type_may_be_refcounted(fn->arg5_type)) 2944 count++; 2945 2946 /* A reference acquiring function cannot acquire 2947 * another refcounted ptr. 2948 */ 2949 if (is_acquire_function(func_id) && count) 2950 return false; 2951 2952 /* We only support one arg being unreferenced at the moment, 2953 * which is sufficient for the helper functions we have right now. 2954 */ 2955 return count <= 1; 2956 } 2957 2958 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 2959 { 2960 return check_raw_mode_ok(fn) && 2961 check_arg_pair_ok(fn) && 2962 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 2963 } 2964 2965 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2966 * are now invalid, so turn them into unknown SCALAR_VALUE. 2967 */ 2968 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2969 struct bpf_func_state *state) 2970 { 2971 struct bpf_reg_state *regs = state->regs, *reg; 2972 int i; 2973 2974 for (i = 0; i < MAX_BPF_REG; i++) 2975 if (reg_is_pkt_pointer_any(®s[i])) 2976 mark_reg_unknown(env, regs, i); 2977 2978 bpf_for_each_spilled_reg(i, state, reg) { 2979 if (!reg) 2980 continue; 2981 if (reg_is_pkt_pointer_any(reg)) 2982 __mark_reg_unknown(reg); 2983 } 2984 } 2985 2986 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2987 { 2988 struct bpf_verifier_state *vstate = env->cur_state; 2989 int i; 2990 2991 for (i = 0; i <= vstate->curframe; i++) 2992 __clear_all_pkt_pointers(env, vstate->frame[i]); 2993 } 2994 2995 static void release_reg_references(struct bpf_verifier_env *env, 2996 struct bpf_func_state *state, 2997 int ref_obj_id) 2998 { 2999 struct bpf_reg_state *regs = state->regs, *reg; 3000 int i; 3001 3002 for (i = 0; i < MAX_BPF_REG; i++) 3003 if (regs[i].ref_obj_id == ref_obj_id) 3004 mark_reg_unknown(env, regs, i); 3005 3006 bpf_for_each_spilled_reg(i, state, reg) { 3007 if (!reg) 3008 continue; 3009 if (reg->ref_obj_id == ref_obj_id) 3010 __mark_reg_unknown(reg); 3011 } 3012 } 3013 3014 /* The pointer with the specified id has released its reference to kernel 3015 * resources. Identify all copies of the same pointer and clear the reference. 3016 */ 3017 static int release_reference(struct bpf_verifier_env *env, 3018 int ref_obj_id) 3019 { 3020 struct bpf_verifier_state *vstate = env->cur_state; 3021 int err; 3022 int i; 3023 3024 err = release_reference_state(cur_func(env), ref_obj_id); 3025 if (err) 3026 return err; 3027 3028 for (i = 0; i <= vstate->curframe; i++) 3029 release_reg_references(env, vstate->frame[i], ref_obj_id); 3030 3031 return 0; 3032 } 3033 3034 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3035 int *insn_idx) 3036 { 3037 struct bpf_verifier_state *state = env->cur_state; 3038 struct bpf_func_state *caller, *callee; 3039 int i, err, subprog, target_insn; 3040 3041 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3042 verbose(env, "the call stack of %d frames is too deep\n", 3043 state->curframe + 2); 3044 return -E2BIG; 3045 } 3046 3047 target_insn = *insn_idx + insn->imm; 3048 subprog = find_subprog(env, target_insn + 1); 3049 if (subprog < 0) { 3050 verbose(env, "verifier bug. No program starts at insn %d\n", 3051 target_insn + 1); 3052 return -EFAULT; 3053 } 3054 3055 caller = state->frame[state->curframe]; 3056 if (state->frame[state->curframe + 1]) { 3057 verbose(env, "verifier bug. Frame %d already allocated\n", 3058 state->curframe + 1); 3059 return -EFAULT; 3060 } 3061 3062 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3063 if (!callee) 3064 return -ENOMEM; 3065 state->frame[state->curframe + 1] = callee; 3066 3067 /* callee cannot access r0, r6 - r9 for reading and has to write 3068 * into its own stack before reading from it. 3069 * callee can read/write into caller's stack 3070 */ 3071 init_func_state(env, callee, 3072 /* remember the callsite, it will be used by bpf_exit */ 3073 *insn_idx /* callsite */, 3074 state->curframe + 1 /* frameno within this callchain */, 3075 subprog /* subprog number within this prog */); 3076 3077 /* Transfer references to the callee */ 3078 err = transfer_reference_state(callee, caller); 3079 if (err) 3080 return err; 3081 3082 /* copy r1 - r5 args that callee can access. The copy includes parent 3083 * pointers, which connects us up to the liveness chain 3084 */ 3085 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3086 callee->regs[i] = caller->regs[i]; 3087 3088 /* after the call registers r0 - r5 were scratched */ 3089 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3090 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3091 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3092 } 3093 3094 /* only increment it after check_reg_arg() finished */ 3095 state->curframe++; 3096 3097 /* and go analyze first insn of the callee */ 3098 *insn_idx = target_insn; 3099 3100 if (env->log.level & BPF_LOG_LEVEL) { 3101 verbose(env, "caller:\n"); 3102 print_verifier_state(env, caller); 3103 verbose(env, "callee:\n"); 3104 print_verifier_state(env, callee); 3105 } 3106 return 0; 3107 } 3108 3109 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3110 { 3111 struct bpf_verifier_state *state = env->cur_state; 3112 struct bpf_func_state *caller, *callee; 3113 struct bpf_reg_state *r0; 3114 int err; 3115 3116 callee = state->frame[state->curframe]; 3117 r0 = &callee->regs[BPF_REG_0]; 3118 if (r0->type == PTR_TO_STACK) { 3119 /* technically it's ok to return caller's stack pointer 3120 * (or caller's caller's pointer) back to the caller, 3121 * since these pointers are valid. Only current stack 3122 * pointer will be invalid as soon as function exits, 3123 * but let's be conservative 3124 */ 3125 verbose(env, "cannot return stack pointer to the caller\n"); 3126 return -EINVAL; 3127 } 3128 3129 state->curframe--; 3130 caller = state->frame[state->curframe]; 3131 /* return to the caller whatever r0 had in the callee */ 3132 caller->regs[BPF_REG_0] = *r0; 3133 3134 /* Transfer references to the caller */ 3135 err = transfer_reference_state(caller, callee); 3136 if (err) 3137 return err; 3138 3139 *insn_idx = callee->callsite + 1; 3140 if (env->log.level & BPF_LOG_LEVEL) { 3141 verbose(env, "returning from callee:\n"); 3142 print_verifier_state(env, callee); 3143 verbose(env, "to caller at %d:\n", *insn_idx); 3144 print_verifier_state(env, caller); 3145 } 3146 /* clear everything in the callee */ 3147 free_func_state(callee); 3148 state->frame[state->curframe + 1] = NULL; 3149 return 0; 3150 } 3151 3152 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3153 int func_id, 3154 struct bpf_call_arg_meta *meta) 3155 { 3156 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3157 3158 if (ret_type != RET_INTEGER || 3159 (func_id != BPF_FUNC_get_stack && 3160 func_id != BPF_FUNC_probe_read_str)) 3161 return; 3162 3163 ret_reg->smax_value = meta->msize_smax_value; 3164 ret_reg->umax_value = meta->msize_umax_value; 3165 __reg_deduce_bounds(ret_reg); 3166 __reg_bound_offset(ret_reg); 3167 } 3168 3169 static int 3170 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3171 int func_id, int insn_idx) 3172 { 3173 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3174 struct bpf_map *map = meta->map_ptr; 3175 3176 if (func_id != BPF_FUNC_tail_call && 3177 func_id != BPF_FUNC_map_lookup_elem && 3178 func_id != BPF_FUNC_map_update_elem && 3179 func_id != BPF_FUNC_map_delete_elem && 3180 func_id != BPF_FUNC_map_push_elem && 3181 func_id != BPF_FUNC_map_pop_elem && 3182 func_id != BPF_FUNC_map_peek_elem) 3183 return 0; 3184 3185 if (map == NULL) { 3186 verbose(env, "kernel subsystem misconfigured verifier\n"); 3187 return -EINVAL; 3188 } 3189 3190 /* In case of read-only, some additional restrictions 3191 * need to be applied in order to prevent altering the 3192 * state of the map from program side. 3193 */ 3194 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3195 (func_id == BPF_FUNC_map_delete_elem || 3196 func_id == BPF_FUNC_map_update_elem || 3197 func_id == BPF_FUNC_map_push_elem || 3198 func_id == BPF_FUNC_map_pop_elem)) { 3199 verbose(env, "write into map forbidden\n"); 3200 return -EACCES; 3201 } 3202 3203 if (!BPF_MAP_PTR(aux->map_state)) 3204 bpf_map_ptr_store(aux, meta->map_ptr, 3205 meta->map_ptr->unpriv_array); 3206 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3207 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3208 meta->map_ptr->unpriv_array); 3209 return 0; 3210 } 3211 3212 static int check_reference_leak(struct bpf_verifier_env *env) 3213 { 3214 struct bpf_func_state *state = cur_func(env); 3215 int i; 3216 3217 for (i = 0; i < state->acquired_refs; i++) { 3218 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3219 state->refs[i].id, state->refs[i].insn_idx); 3220 } 3221 return state->acquired_refs ? -EINVAL : 0; 3222 } 3223 3224 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3225 { 3226 const struct bpf_func_proto *fn = NULL; 3227 struct bpf_reg_state *regs; 3228 struct bpf_call_arg_meta meta; 3229 bool changes_data; 3230 int i, err; 3231 3232 /* find function prototype */ 3233 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3234 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3235 func_id); 3236 return -EINVAL; 3237 } 3238 3239 if (env->ops->get_func_proto) 3240 fn = env->ops->get_func_proto(func_id, env->prog); 3241 if (!fn) { 3242 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3243 func_id); 3244 return -EINVAL; 3245 } 3246 3247 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3248 if (!env->prog->gpl_compatible && fn->gpl_only) { 3249 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3250 return -EINVAL; 3251 } 3252 3253 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3254 changes_data = bpf_helper_changes_pkt_data(fn->func); 3255 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3256 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3257 func_id_name(func_id), func_id); 3258 return -EINVAL; 3259 } 3260 3261 memset(&meta, 0, sizeof(meta)); 3262 meta.pkt_access = fn->pkt_access; 3263 3264 err = check_func_proto(fn, func_id); 3265 if (err) { 3266 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3267 func_id_name(func_id), func_id); 3268 return err; 3269 } 3270 3271 meta.func_id = func_id; 3272 /* check args */ 3273 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3274 if (err) 3275 return err; 3276 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3277 if (err) 3278 return err; 3279 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3280 if (err) 3281 return err; 3282 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3283 if (err) 3284 return err; 3285 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3286 if (err) 3287 return err; 3288 3289 err = record_func_map(env, &meta, func_id, insn_idx); 3290 if (err) 3291 return err; 3292 3293 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3294 * is inferred from register state. 3295 */ 3296 for (i = 0; i < meta.access_size; i++) { 3297 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3298 BPF_WRITE, -1, false); 3299 if (err) 3300 return err; 3301 } 3302 3303 if (func_id == BPF_FUNC_tail_call) { 3304 err = check_reference_leak(env); 3305 if (err) { 3306 verbose(env, "tail_call would lead to reference leak\n"); 3307 return err; 3308 } 3309 } else if (is_release_function(func_id)) { 3310 err = release_reference(env, meta.ref_obj_id); 3311 if (err) { 3312 verbose(env, "func %s#%d reference has not been acquired before\n", 3313 func_id_name(func_id), func_id); 3314 return err; 3315 } 3316 } 3317 3318 regs = cur_regs(env); 3319 3320 /* check that flags argument in get_local_storage(map, flags) is 0, 3321 * this is required because get_local_storage() can't return an error. 3322 */ 3323 if (func_id == BPF_FUNC_get_local_storage && 3324 !register_is_null(®s[BPF_REG_2])) { 3325 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3326 return -EINVAL; 3327 } 3328 3329 /* reset caller saved regs */ 3330 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3331 mark_reg_not_init(env, regs, caller_saved[i]); 3332 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3333 } 3334 3335 /* update return register (already marked as written above) */ 3336 if (fn->ret_type == RET_INTEGER) { 3337 /* sets type to SCALAR_VALUE */ 3338 mark_reg_unknown(env, regs, BPF_REG_0); 3339 } else if (fn->ret_type == RET_VOID) { 3340 regs[BPF_REG_0].type = NOT_INIT; 3341 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3342 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3343 /* There is no offset yet applied, variable or fixed */ 3344 mark_reg_known_zero(env, regs, BPF_REG_0); 3345 /* remember map_ptr, so that check_map_access() 3346 * can check 'value_size' boundary of memory access 3347 * to map element returned from bpf_map_lookup_elem() 3348 */ 3349 if (meta.map_ptr == NULL) { 3350 verbose(env, 3351 "kernel subsystem misconfigured verifier\n"); 3352 return -EINVAL; 3353 } 3354 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3355 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3356 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3357 if (map_value_has_spin_lock(meta.map_ptr)) 3358 regs[BPF_REG_0].id = ++env->id_gen; 3359 } else { 3360 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3361 regs[BPF_REG_0].id = ++env->id_gen; 3362 } 3363 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3364 mark_reg_known_zero(env, regs, BPF_REG_0); 3365 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3366 regs[BPF_REG_0].id = ++env->id_gen; 3367 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 3368 mark_reg_known_zero(env, regs, BPF_REG_0); 3369 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 3370 regs[BPF_REG_0].id = ++env->id_gen; 3371 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3372 mark_reg_known_zero(env, regs, BPF_REG_0); 3373 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3374 regs[BPF_REG_0].id = ++env->id_gen; 3375 } else { 3376 verbose(env, "unknown return type %d of func %s#%d\n", 3377 fn->ret_type, func_id_name(func_id), func_id); 3378 return -EINVAL; 3379 } 3380 3381 if (is_ptr_cast_function(func_id)) { 3382 /* For release_reference() */ 3383 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 3384 } else if (is_acquire_function(func_id)) { 3385 int id = acquire_reference_state(env, insn_idx); 3386 3387 if (id < 0) 3388 return id; 3389 /* For mark_ptr_or_null_reg() */ 3390 regs[BPF_REG_0].id = id; 3391 /* For release_reference() */ 3392 regs[BPF_REG_0].ref_obj_id = id; 3393 } 3394 3395 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3396 3397 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3398 if (err) 3399 return err; 3400 3401 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3402 const char *err_str; 3403 3404 #ifdef CONFIG_PERF_EVENTS 3405 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3406 err_str = "cannot get callchain buffer for func %s#%d\n"; 3407 #else 3408 err = -ENOTSUPP; 3409 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3410 #endif 3411 if (err) { 3412 verbose(env, err_str, func_id_name(func_id), func_id); 3413 return err; 3414 } 3415 3416 env->prog->has_callchain_buf = true; 3417 } 3418 3419 if (changes_data) 3420 clear_all_pkt_pointers(env); 3421 return 0; 3422 } 3423 3424 static bool signed_add_overflows(s64 a, s64 b) 3425 { 3426 /* Do the add in u64, where overflow is well-defined */ 3427 s64 res = (s64)((u64)a + (u64)b); 3428 3429 if (b < 0) 3430 return res > a; 3431 return res < a; 3432 } 3433 3434 static bool signed_sub_overflows(s64 a, s64 b) 3435 { 3436 /* Do the sub in u64, where overflow is well-defined */ 3437 s64 res = (s64)((u64)a - (u64)b); 3438 3439 if (b < 0) 3440 return res < a; 3441 return res > a; 3442 } 3443 3444 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3445 const struct bpf_reg_state *reg, 3446 enum bpf_reg_type type) 3447 { 3448 bool known = tnum_is_const(reg->var_off); 3449 s64 val = reg->var_off.value; 3450 s64 smin = reg->smin_value; 3451 3452 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3453 verbose(env, "math between %s pointer and %lld is not allowed\n", 3454 reg_type_str[type], val); 3455 return false; 3456 } 3457 3458 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3459 verbose(env, "%s pointer offset %d is not allowed\n", 3460 reg_type_str[type], reg->off); 3461 return false; 3462 } 3463 3464 if (smin == S64_MIN) { 3465 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3466 reg_type_str[type]); 3467 return false; 3468 } 3469 3470 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3471 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3472 smin, reg_type_str[type]); 3473 return false; 3474 } 3475 3476 return true; 3477 } 3478 3479 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3480 { 3481 return &env->insn_aux_data[env->insn_idx]; 3482 } 3483 3484 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3485 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3486 { 3487 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3488 (opcode == BPF_SUB && !off_is_neg); 3489 u32 off; 3490 3491 switch (ptr_reg->type) { 3492 case PTR_TO_STACK: 3493 /* Indirect variable offset stack access is prohibited in 3494 * unprivileged mode so it's not handled here. 3495 */ 3496 off = ptr_reg->off + ptr_reg->var_off.value; 3497 if (mask_to_left) 3498 *ptr_limit = MAX_BPF_STACK + off; 3499 else 3500 *ptr_limit = -off; 3501 return 0; 3502 case PTR_TO_MAP_VALUE: 3503 if (mask_to_left) { 3504 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3505 } else { 3506 off = ptr_reg->smin_value + ptr_reg->off; 3507 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3508 } 3509 return 0; 3510 default: 3511 return -EINVAL; 3512 } 3513 } 3514 3515 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3516 const struct bpf_insn *insn) 3517 { 3518 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3519 } 3520 3521 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3522 u32 alu_state, u32 alu_limit) 3523 { 3524 /* If we arrived here from different branches with different 3525 * state or limits to sanitize, then this won't work. 3526 */ 3527 if (aux->alu_state && 3528 (aux->alu_state != alu_state || 3529 aux->alu_limit != alu_limit)) 3530 return -EACCES; 3531 3532 /* Corresponding fixup done in fixup_bpf_calls(). */ 3533 aux->alu_state = alu_state; 3534 aux->alu_limit = alu_limit; 3535 return 0; 3536 } 3537 3538 static int sanitize_val_alu(struct bpf_verifier_env *env, 3539 struct bpf_insn *insn) 3540 { 3541 struct bpf_insn_aux_data *aux = cur_aux(env); 3542 3543 if (can_skip_alu_sanitation(env, insn)) 3544 return 0; 3545 3546 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3547 } 3548 3549 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3550 struct bpf_insn *insn, 3551 const struct bpf_reg_state *ptr_reg, 3552 struct bpf_reg_state *dst_reg, 3553 bool off_is_neg) 3554 { 3555 struct bpf_verifier_state *vstate = env->cur_state; 3556 struct bpf_insn_aux_data *aux = cur_aux(env); 3557 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3558 u8 opcode = BPF_OP(insn->code); 3559 u32 alu_state, alu_limit; 3560 struct bpf_reg_state tmp; 3561 bool ret; 3562 3563 if (can_skip_alu_sanitation(env, insn)) 3564 return 0; 3565 3566 /* We already marked aux for masking from non-speculative 3567 * paths, thus we got here in the first place. We only care 3568 * to explore bad access from here. 3569 */ 3570 if (vstate->speculative) 3571 goto do_sim; 3572 3573 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3574 alu_state |= ptr_is_dst_reg ? 3575 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3576 3577 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3578 return 0; 3579 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3580 return -EACCES; 3581 do_sim: 3582 /* Simulate and find potential out-of-bounds access under 3583 * speculative execution from truncation as a result of 3584 * masking when off was not within expected range. If off 3585 * sits in dst, then we temporarily need to move ptr there 3586 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3587 * for cases where we use K-based arithmetic in one direction 3588 * and truncated reg-based in the other in order to explore 3589 * bad access. 3590 */ 3591 if (!ptr_is_dst_reg) { 3592 tmp = *dst_reg; 3593 *dst_reg = *ptr_reg; 3594 } 3595 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3596 if (!ptr_is_dst_reg && ret) 3597 *dst_reg = tmp; 3598 return !ret ? -EFAULT : 0; 3599 } 3600 3601 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3602 * Caller should also handle BPF_MOV case separately. 3603 * If we return -EACCES, caller may want to try again treating pointer as a 3604 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3605 */ 3606 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3607 struct bpf_insn *insn, 3608 const struct bpf_reg_state *ptr_reg, 3609 const struct bpf_reg_state *off_reg) 3610 { 3611 struct bpf_verifier_state *vstate = env->cur_state; 3612 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3613 struct bpf_reg_state *regs = state->regs, *dst_reg; 3614 bool known = tnum_is_const(off_reg->var_off); 3615 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3616 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3617 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3618 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3619 u32 dst = insn->dst_reg, src = insn->src_reg; 3620 u8 opcode = BPF_OP(insn->code); 3621 int ret; 3622 3623 dst_reg = ®s[dst]; 3624 3625 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3626 smin_val > smax_val || umin_val > umax_val) { 3627 /* Taint dst register if offset had invalid bounds derived from 3628 * e.g. dead branches. 3629 */ 3630 __mark_reg_unknown(dst_reg); 3631 return 0; 3632 } 3633 3634 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3635 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3636 verbose(env, 3637 "R%d 32-bit pointer arithmetic prohibited\n", 3638 dst); 3639 return -EACCES; 3640 } 3641 3642 switch (ptr_reg->type) { 3643 case PTR_TO_MAP_VALUE_OR_NULL: 3644 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3645 dst, reg_type_str[ptr_reg->type]); 3646 return -EACCES; 3647 case CONST_PTR_TO_MAP: 3648 case PTR_TO_PACKET_END: 3649 case PTR_TO_SOCKET: 3650 case PTR_TO_SOCKET_OR_NULL: 3651 case PTR_TO_SOCK_COMMON: 3652 case PTR_TO_SOCK_COMMON_OR_NULL: 3653 case PTR_TO_TCP_SOCK: 3654 case PTR_TO_TCP_SOCK_OR_NULL: 3655 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3656 dst, reg_type_str[ptr_reg->type]); 3657 return -EACCES; 3658 case PTR_TO_MAP_VALUE: 3659 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3660 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3661 off_reg == dst_reg ? dst : src); 3662 return -EACCES; 3663 } 3664 /* fall-through */ 3665 default: 3666 break; 3667 } 3668 3669 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3670 * The id may be overwritten later if we create a new variable offset. 3671 */ 3672 dst_reg->type = ptr_reg->type; 3673 dst_reg->id = ptr_reg->id; 3674 3675 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3676 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3677 return -EINVAL; 3678 3679 switch (opcode) { 3680 case BPF_ADD: 3681 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3682 if (ret < 0) { 3683 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3684 return ret; 3685 } 3686 /* We can take a fixed offset as long as it doesn't overflow 3687 * the s32 'off' field 3688 */ 3689 if (known && (ptr_reg->off + smin_val == 3690 (s64)(s32)(ptr_reg->off + smin_val))) { 3691 /* pointer += K. Accumulate it into fixed offset */ 3692 dst_reg->smin_value = smin_ptr; 3693 dst_reg->smax_value = smax_ptr; 3694 dst_reg->umin_value = umin_ptr; 3695 dst_reg->umax_value = umax_ptr; 3696 dst_reg->var_off = ptr_reg->var_off; 3697 dst_reg->off = ptr_reg->off + smin_val; 3698 dst_reg->raw = ptr_reg->raw; 3699 break; 3700 } 3701 /* A new variable offset is created. Note that off_reg->off 3702 * == 0, since it's a scalar. 3703 * dst_reg gets the pointer type and since some positive 3704 * integer value was added to the pointer, give it a new 'id' 3705 * if it's a PTR_TO_PACKET. 3706 * this creates a new 'base' pointer, off_reg (variable) gets 3707 * added into the variable offset, and we copy the fixed offset 3708 * from ptr_reg. 3709 */ 3710 if (signed_add_overflows(smin_ptr, smin_val) || 3711 signed_add_overflows(smax_ptr, smax_val)) { 3712 dst_reg->smin_value = S64_MIN; 3713 dst_reg->smax_value = S64_MAX; 3714 } else { 3715 dst_reg->smin_value = smin_ptr + smin_val; 3716 dst_reg->smax_value = smax_ptr + smax_val; 3717 } 3718 if (umin_ptr + umin_val < umin_ptr || 3719 umax_ptr + umax_val < umax_ptr) { 3720 dst_reg->umin_value = 0; 3721 dst_reg->umax_value = U64_MAX; 3722 } else { 3723 dst_reg->umin_value = umin_ptr + umin_val; 3724 dst_reg->umax_value = umax_ptr + umax_val; 3725 } 3726 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3727 dst_reg->off = ptr_reg->off; 3728 dst_reg->raw = ptr_reg->raw; 3729 if (reg_is_pkt_pointer(ptr_reg)) { 3730 dst_reg->id = ++env->id_gen; 3731 /* something was added to pkt_ptr, set range to zero */ 3732 dst_reg->raw = 0; 3733 } 3734 break; 3735 case BPF_SUB: 3736 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3737 if (ret < 0) { 3738 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3739 return ret; 3740 } 3741 if (dst_reg == off_reg) { 3742 /* scalar -= pointer. Creates an unknown scalar */ 3743 verbose(env, "R%d tried to subtract pointer from scalar\n", 3744 dst); 3745 return -EACCES; 3746 } 3747 /* We don't allow subtraction from FP, because (according to 3748 * test_verifier.c test "invalid fp arithmetic", JITs might not 3749 * be able to deal with it. 3750 */ 3751 if (ptr_reg->type == PTR_TO_STACK) { 3752 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3753 dst); 3754 return -EACCES; 3755 } 3756 if (known && (ptr_reg->off - smin_val == 3757 (s64)(s32)(ptr_reg->off - smin_val))) { 3758 /* pointer -= K. Subtract it from fixed offset */ 3759 dst_reg->smin_value = smin_ptr; 3760 dst_reg->smax_value = smax_ptr; 3761 dst_reg->umin_value = umin_ptr; 3762 dst_reg->umax_value = umax_ptr; 3763 dst_reg->var_off = ptr_reg->var_off; 3764 dst_reg->id = ptr_reg->id; 3765 dst_reg->off = ptr_reg->off - smin_val; 3766 dst_reg->raw = ptr_reg->raw; 3767 break; 3768 } 3769 /* A new variable offset is created. If the subtrahend is known 3770 * nonnegative, then any reg->range we had before is still good. 3771 */ 3772 if (signed_sub_overflows(smin_ptr, smax_val) || 3773 signed_sub_overflows(smax_ptr, smin_val)) { 3774 /* Overflow possible, we know nothing */ 3775 dst_reg->smin_value = S64_MIN; 3776 dst_reg->smax_value = S64_MAX; 3777 } else { 3778 dst_reg->smin_value = smin_ptr - smax_val; 3779 dst_reg->smax_value = smax_ptr - smin_val; 3780 } 3781 if (umin_ptr < umax_val) { 3782 /* Overflow possible, we know nothing */ 3783 dst_reg->umin_value = 0; 3784 dst_reg->umax_value = U64_MAX; 3785 } else { 3786 /* Cannot overflow (as long as bounds are consistent) */ 3787 dst_reg->umin_value = umin_ptr - umax_val; 3788 dst_reg->umax_value = umax_ptr - umin_val; 3789 } 3790 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3791 dst_reg->off = ptr_reg->off; 3792 dst_reg->raw = ptr_reg->raw; 3793 if (reg_is_pkt_pointer(ptr_reg)) { 3794 dst_reg->id = ++env->id_gen; 3795 /* something was added to pkt_ptr, set range to zero */ 3796 if (smin_val < 0) 3797 dst_reg->raw = 0; 3798 } 3799 break; 3800 case BPF_AND: 3801 case BPF_OR: 3802 case BPF_XOR: 3803 /* bitwise ops on pointers are troublesome, prohibit. */ 3804 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3805 dst, bpf_alu_string[opcode >> 4]); 3806 return -EACCES; 3807 default: 3808 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3809 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3810 dst, bpf_alu_string[opcode >> 4]); 3811 return -EACCES; 3812 } 3813 3814 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3815 return -EINVAL; 3816 3817 __update_reg_bounds(dst_reg); 3818 __reg_deduce_bounds(dst_reg); 3819 __reg_bound_offset(dst_reg); 3820 3821 /* For unprivileged we require that resulting offset must be in bounds 3822 * in order to be able to sanitize access later on. 3823 */ 3824 if (!env->allow_ptr_leaks) { 3825 if (dst_reg->type == PTR_TO_MAP_VALUE && 3826 check_map_access(env, dst, dst_reg->off, 1, false)) { 3827 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3828 "prohibited for !root\n", dst); 3829 return -EACCES; 3830 } else if (dst_reg->type == PTR_TO_STACK && 3831 check_stack_access(env, dst_reg, dst_reg->off + 3832 dst_reg->var_off.value, 1)) { 3833 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3834 "prohibited for !root\n", dst); 3835 return -EACCES; 3836 } 3837 } 3838 3839 return 0; 3840 } 3841 3842 /* WARNING: This function does calculations on 64-bit values, but the actual 3843 * execution may occur on 32-bit values. Therefore, things like bitshifts 3844 * need extra checks in the 32-bit case. 3845 */ 3846 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3847 struct bpf_insn *insn, 3848 struct bpf_reg_state *dst_reg, 3849 struct bpf_reg_state src_reg) 3850 { 3851 struct bpf_reg_state *regs = cur_regs(env); 3852 u8 opcode = BPF_OP(insn->code); 3853 bool src_known, dst_known; 3854 s64 smin_val, smax_val; 3855 u64 umin_val, umax_val; 3856 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3857 u32 dst = insn->dst_reg; 3858 int ret; 3859 3860 if (insn_bitness == 32) { 3861 /* Relevant for 32-bit RSH: Information can propagate towards 3862 * LSB, so it isn't sufficient to only truncate the output to 3863 * 32 bits. 3864 */ 3865 coerce_reg_to_size(dst_reg, 4); 3866 coerce_reg_to_size(&src_reg, 4); 3867 } 3868 3869 smin_val = src_reg.smin_value; 3870 smax_val = src_reg.smax_value; 3871 umin_val = src_reg.umin_value; 3872 umax_val = src_reg.umax_value; 3873 src_known = tnum_is_const(src_reg.var_off); 3874 dst_known = tnum_is_const(dst_reg->var_off); 3875 3876 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3877 smin_val > smax_val || umin_val > umax_val) { 3878 /* Taint dst register if offset had invalid bounds derived from 3879 * e.g. dead branches. 3880 */ 3881 __mark_reg_unknown(dst_reg); 3882 return 0; 3883 } 3884 3885 if (!src_known && 3886 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3887 __mark_reg_unknown(dst_reg); 3888 return 0; 3889 } 3890 3891 switch (opcode) { 3892 case BPF_ADD: 3893 ret = sanitize_val_alu(env, insn); 3894 if (ret < 0) { 3895 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3896 return ret; 3897 } 3898 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3899 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3900 dst_reg->smin_value = S64_MIN; 3901 dst_reg->smax_value = S64_MAX; 3902 } else { 3903 dst_reg->smin_value += smin_val; 3904 dst_reg->smax_value += smax_val; 3905 } 3906 if (dst_reg->umin_value + umin_val < umin_val || 3907 dst_reg->umax_value + umax_val < umax_val) { 3908 dst_reg->umin_value = 0; 3909 dst_reg->umax_value = U64_MAX; 3910 } else { 3911 dst_reg->umin_value += umin_val; 3912 dst_reg->umax_value += umax_val; 3913 } 3914 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3915 break; 3916 case BPF_SUB: 3917 ret = sanitize_val_alu(env, insn); 3918 if (ret < 0) { 3919 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3920 return ret; 3921 } 3922 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3923 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3924 /* Overflow possible, we know nothing */ 3925 dst_reg->smin_value = S64_MIN; 3926 dst_reg->smax_value = S64_MAX; 3927 } else { 3928 dst_reg->smin_value -= smax_val; 3929 dst_reg->smax_value -= smin_val; 3930 } 3931 if (dst_reg->umin_value < umax_val) { 3932 /* Overflow possible, we know nothing */ 3933 dst_reg->umin_value = 0; 3934 dst_reg->umax_value = U64_MAX; 3935 } else { 3936 /* Cannot overflow (as long as bounds are consistent) */ 3937 dst_reg->umin_value -= umax_val; 3938 dst_reg->umax_value -= umin_val; 3939 } 3940 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3941 break; 3942 case BPF_MUL: 3943 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3944 if (smin_val < 0 || dst_reg->smin_value < 0) { 3945 /* Ain't nobody got time to multiply that sign */ 3946 __mark_reg_unbounded(dst_reg); 3947 __update_reg_bounds(dst_reg); 3948 break; 3949 } 3950 /* Both values are positive, so we can work with unsigned and 3951 * copy the result to signed (unless it exceeds S64_MAX). 3952 */ 3953 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3954 /* Potential overflow, we know nothing */ 3955 __mark_reg_unbounded(dst_reg); 3956 /* (except what we can learn from the var_off) */ 3957 __update_reg_bounds(dst_reg); 3958 break; 3959 } 3960 dst_reg->umin_value *= umin_val; 3961 dst_reg->umax_value *= umax_val; 3962 if (dst_reg->umax_value > S64_MAX) { 3963 /* Overflow possible, we know nothing */ 3964 dst_reg->smin_value = S64_MIN; 3965 dst_reg->smax_value = S64_MAX; 3966 } else { 3967 dst_reg->smin_value = dst_reg->umin_value; 3968 dst_reg->smax_value = dst_reg->umax_value; 3969 } 3970 break; 3971 case BPF_AND: 3972 if (src_known && dst_known) { 3973 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3974 src_reg.var_off.value); 3975 break; 3976 } 3977 /* We get our minimum from the var_off, since that's inherently 3978 * bitwise. Our maximum is the minimum of the operands' maxima. 3979 */ 3980 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3981 dst_reg->umin_value = dst_reg->var_off.value; 3982 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3983 if (dst_reg->smin_value < 0 || smin_val < 0) { 3984 /* Lose signed bounds when ANDing negative numbers, 3985 * ain't nobody got time for that. 3986 */ 3987 dst_reg->smin_value = S64_MIN; 3988 dst_reg->smax_value = S64_MAX; 3989 } else { 3990 /* ANDing two positives gives a positive, so safe to 3991 * cast result into s64. 3992 */ 3993 dst_reg->smin_value = dst_reg->umin_value; 3994 dst_reg->smax_value = dst_reg->umax_value; 3995 } 3996 /* We may learn something more from the var_off */ 3997 __update_reg_bounds(dst_reg); 3998 break; 3999 case BPF_OR: 4000 if (src_known && dst_known) { 4001 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4002 src_reg.var_off.value); 4003 break; 4004 } 4005 /* We get our maximum from the var_off, and our minimum is the 4006 * maximum of the operands' minima 4007 */ 4008 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4009 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4010 dst_reg->umax_value = dst_reg->var_off.value | 4011 dst_reg->var_off.mask; 4012 if (dst_reg->smin_value < 0 || smin_val < 0) { 4013 /* Lose signed bounds when ORing negative numbers, 4014 * ain't nobody got time for that. 4015 */ 4016 dst_reg->smin_value = S64_MIN; 4017 dst_reg->smax_value = S64_MAX; 4018 } else { 4019 /* ORing two positives gives a positive, so safe to 4020 * cast result into s64. 4021 */ 4022 dst_reg->smin_value = dst_reg->umin_value; 4023 dst_reg->smax_value = dst_reg->umax_value; 4024 } 4025 /* We may learn something more from the var_off */ 4026 __update_reg_bounds(dst_reg); 4027 break; 4028 case BPF_LSH: 4029 if (umax_val >= insn_bitness) { 4030 /* Shifts greater than 31 or 63 are undefined. 4031 * This includes shifts by a negative number. 4032 */ 4033 mark_reg_unknown(env, regs, insn->dst_reg); 4034 break; 4035 } 4036 /* We lose all sign bit information (except what we can pick 4037 * up from var_off) 4038 */ 4039 dst_reg->smin_value = S64_MIN; 4040 dst_reg->smax_value = S64_MAX; 4041 /* If we might shift our top bit out, then we know nothing */ 4042 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4043 dst_reg->umin_value = 0; 4044 dst_reg->umax_value = U64_MAX; 4045 } else { 4046 dst_reg->umin_value <<= umin_val; 4047 dst_reg->umax_value <<= umax_val; 4048 } 4049 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4050 /* We may learn something more from the var_off */ 4051 __update_reg_bounds(dst_reg); 4052 break; 4053 case BPF_RSH: 4054 if (umax_val >= insn_bitness) { 4055 /* Shifts greater than 31 or 63 are undefined. 4056 * This includes shifts by a negative number. 4057 */ 4058 mark_reg_unknown(env, regs, insn->dst_reg); 4059 break; 4060 } 4061 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4062 * be negative, then either: 4063 * 1) src_reg might be zero, so the sign bit of the result is 4064 * unknown, so we lose our signed bounds 4065 * 2) it's known negative, thus the unsigned bounds capture the 4066 * signed bounds 4067 * 3) the signed bounds cross zero, so they tell us nothing 4068 * about the result 4069 * If the value in dst_reg is known nonnegative, then again the 4070 * unsigned bounts capture the signed bounds. 4071 * Thus, in all cases it suffices to blow away our signed bounds 4072 * and rely on inferring new ones from the unsigned bounds and 4073 * var_off of the result. 4074 */ 4075 dst_reg->smin_value = S64_MIN; 4076 dst_reg->smax_value = S64_MAX; 4077 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4078 dst_reg->umin_value >>= umax_val; 4079 dst_reg->umax_value >>= umin_val; 4080 /* We may learn something more from the var_off */ 4081 __update_reg_bounds(dst_reg); 4082 break; 4083 case BPF_ARSH: 4084 if (umax_val >= insn_bitness) { 4085 /* Shifts greater than 31 or 63 are undefined. 4086 * This includes shifts by a negative number. 4087 */ 4088 mark_reg_unknown(env, regs, insn->dst_reg); 4089 break; 4090 } 4091 4092 /* Upon reaching here, src_known is true and 4093 * umax_val is equal to umin_val. 4094 */ 4095 dst_reg->smin_value >>= umin_val; 4096 dst_reg->smax_value >>= umin_val; 4097 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4098 4099 /* blow away the dst_reg umin_value/umax_value and rely on 4100 * dst_reg var_off to refine the result. 4101 */ 4102 dst_reg->umin_value = 0; 4103 dst_reg->umax_value = U64_MAX; 4104 __update_reg_bounds(dst_reg); 4105 break; 4106 default: 4107 mark_reg_unknown(env, regs, insn->dst_reg); 4108 break; 4109 } 4110 4111 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4112 /* 32-bit ALU ops are (32,32)->32 */ 4113 coerce_reg_to_size(dst_reg, 4); 4114 } 4115 4116 __reg_deduce_bounds(dst_reg); 4117 __reg_bound_offset(dst_reg); 4118 return 0; 4119 } 4120 4121 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4122 * and var_off. 4123 */ 4124 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4125 struct bpf_insn *insn) 4126 { 4127 struct bpf_verifier_state *vstate = env->cur_state; 4128 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4129 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4130 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4131 u8 opcode = BPF_OP(insn->code); 4132 4133 dst_reg = ®s[insn->dst_reg]; 4134 src_reg = NULL; 4135 if (dst_reg->type != SCALAR_VALUE) 4136 ptr_reg = dst_reg; 4137 if (BPF_SRC(insn->code) == BPF_X) { 4138 src_reg = ®s[insn->src_reg]; 4139 if (src_reg->type != SCALAR_VALUE) { 4140 if (dst_reg->type != SCALAR_VALUE) { 4141 /* Combining two pointers by any ALU op yields 4142 * an arbitrary scalar. Disallow all math except 4143 * pointer subtraction 4144 */ 4145 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4146 mark_reg_unknown(env, regs, insn->dst_reg); 4147 return 0; 4148 } 4149 verbose(env, "R%d pointer %s pointer prohibited\n", 4150 insn->dst_reg, 4151 bpf_alu_string[opcode >> 4]); 4152 return -EACCES; 4153 } else { 4154 /* scalar += pointer 4155 * This is legal, but we have to reverse our 4156 * src/dest handling in computing the range 4157 */ 4158 return adjust_ptr_min_max_vals(env, insn, 4159 src_reg, dst_reg); 4160 } 4161 } else if (ptr_reg) { 4162 /* pointer += scalar */ 4163 return adjust_ptr_min_max_vals(env, insn, 4164 dst_reg, src_reg); 4165 } 4166 } else { 4167 /* Pretend the src is a reg with a known value, since we only 4168 * need to be able to read from this state. 4169 */ 4170 off_reg.type = SCALAR_VALUE; 4171 __mark_reg_known(&off_reg, insn->imm); 4172 src_reg = &off_reg; 4173 if (ptr_reg) /* pointer += K */ 4174 return adjust_ptr_min_max_vals(env, insn, 4175 ptr_reg, src_reg); 4176 } 4177 4178 /* Got here implies adding two SCALAR_VALUEs */ 4179 if (WARN_ON_ONCE(ptr_reg)) { 4180 print_verifier_state(env, state); 4181 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4182 return -EINVAL; 4183 } 4184 if (WARN_ON(!src_reg)) { 4185 print_verifier_state(env, state); 4186 verbose(env, "verifier internal error: no src_reg\n"); 4187 return -EINVAL; 4188 } 4189 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4190 } 4191 4192 /* check validity of 32-bit and 64-bit arithmetic operations */ 4193 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4194 { 4195 struct bpf_reg_state *regs = cur_regs(env); 4196 u8 opcode = BPF_OP(insn->code); 4197 int err; 4198 4199 if (opcode == BPF_END || opcode == BPF_NEG) { 4200 if (opcode == BPF_NEG) { 4201 if (BPF_SRC(insn->code) != 0 || 4202 insn->src_reg != BPF_REG_0 || 4203 insn->off != 0 || insn->imm != 0) { 4204 verbose(env, "BPF_NEG uses reserved fields\n"); 4205 return -EINVAL; 4206 } 4207 } else { 4208 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4209 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4210 BPF_CLASS(insn->code) == BPF_ALU64) { 4211 verbose(env, "BPF_END uses reserved fields\n"); 4212 return -EINVAL; 4213 } 4214 } 4215 4216 /* check src operand */ 4217 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4218 if (err) 4219 return err; 4220 4221 if (is_pointer_value(env, insn->dst_reg)) { 4222 verbose(env, "R%d pointer arithmetic prohibited\n", 4223 insn->dst_reg); 4224 return -EACCES; 4225 } 4226 4227 /* check dest operand */ 4228 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4229 if (err) 4230 return err; 4231 4232 } else if (opcode == BPF_MOV) { 4233 4234 if (BPF_SRC(insn->code) == BPF_X) { 4235 if (insn->imm != 0 || insn->off != 0) { 4236 verbose(env, "BPF_MOV uses reserved fields\n"); 4237 return -EINVAL; 4238 } 4239 4240 /* check src operand */ 4241 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4242 if (err) 4243 return err; 4244 } else { 4245 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4246 verbose(env, "BPF_MOV uses reserved fields\n"); 4247 return -EINVAL; 4248 } 4249 } 4250 4251 /* check dest operand, mark as required later */ 4252 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4253 if (err) 4254 return err; 4255 4256 if (BPF_SRC(insn->code) == BPF_X) { 4257 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4258 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4259 4260 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4261 /* case: R1 = R2 4262 * copy register state to dest reg 4263 */ 4264 *dst_reg = *src_reg; 4265 dst_reg->live |= REG_LIVE_WRITTEN; 4266 } else { 4267 /* R1 = (u32) R2 */ 4268 if (is_pointer_value(env, insn->src_reg)) { 4269 verbose(env, 4270 "R%d partial copy of pointer\n", 4271 insn->src_reg); 4272 return -EACCES; 4273 } else if (src_reg->type == SCALAR_VALUE) { 4274 *dst_reg = *src_reg; 4275 dst_reg->live |= REG_LIVE_WRITTEN; 4276 } else { 4277 mark_reg_unknown(env, regs, 4278 insn->dst_reg); 4279 } 4280 coerce_reg_to_size(dst_reg, 4); 4281 } 4282 } else { 4283 /* case: R = imm 4284 * remember the value we stored into this reg 4285 */ 4286 /* clear any state __mark_reg_known doesn't set */ 4287 mark_reg_unknown(env, regs, insn->dst_reg); 4288 regs[insn->dst_reg].type = SCALAR_VALUE; 4289 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4290 __mark_reg_known(regs + insn->dst_reg, 4291 insn->imm); 4292 } else { 4293 __mark_reg_known(regs + insn->dst_reg, 4294 (u32)insn->imm); 4295 } 4296 } 4297 4298 } else if (opcode > BPF_END) { 4299 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4300 return -EINVAL; 4301 4302 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4303 4304 if (BPF_SRC(insn->code) == BPF_X) { 4305 if (insn->imm != 0 || insn->off != 0) { 4306 verbose(env, "BPF_ALU uses reserved fields\n"); 4307 return -EINVAL; 4308 } 4309 /* check src1 operand */ 4310 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4311 if (err) 4312 return err; 4313 } else { 4314 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4315 verbose(env, "BPF_ALU uses reserved fields\n"); 4316 return -EINVAL; 4317 } 4318 } 4319 4320 /* check src2 operand */ 4321 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4322 if (err) 4323 return err; 4324 4325 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4326 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4327 verbose(env, "div by zero\n"); 4328 return -EINVAL; 4329 } 4330 4331 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4332 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4333 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4334 4335 if (insn->imm < 0 || insn->imm >= size) { 4336 verbose(env, "invalid shift %d\n", insn->imm); 4337 return -EINVAL; 4338 } 4339 } 4340 4341 /* check dest operand */ 4342 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4343 if (err) 4344 return err; 4345 4346 return adjust_reg_min_max_vals(env, insn); 4347 } 4348 4349 return 0; 4350 } 4351 4352 static void __find_good_pkt_pointers(struct bpf_func_state *state, 4353 struct bpf_reg_state *dst_reg, 4354 enum bpf_reg_type type, u16 new_range) 4355 { 4356 struct bpf_reg_state *reg; 4357 int i; 4358 4359 for (i = 0; i < MAX_BPF_REG; i++) { 4360 reg = &state->regs[i]; 4361 if (reg->type == type && reg->id == dst_reg->id) 4362 /* keep the maximum range already checked */ 4363 reg->range = max(reg->range, new_range); 4364 } 4365 4366 bpf_for_each_spilled_reg(i, state, reg) { 4367 if (!reg) 4368 continue; 4369 if (reg->type == type && reg->id == dst_reg->id) 4370 reg->range = max(reg->range, new_range); 4371 } 4372 } 4373 4374 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4375 struct bpf_reg_state *dst_reg, 4376 enum bpf_reg_type type, 4377 bool range_right_open) 4378 { 4379 u16 new_range; 4380 int i; 4381 4382 if (dst_reg->off < 0 || 4383 (dst_reg->off == 0 && range_right_open)) 4384 /* This doesn't give us any range */ 4385 return; 4386 4387 if (dst_reg->umax_value > MAX_PACKET_OFF || 4388 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4389 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4390 * than pkt_end, but that's because it's also less than pkt. 4391 */ 4392 return; 4393 4394 new_range = dst_reg->off; 4395 if (range_right_open) 4396 new_range--; 4397 4398 /* Examples for register markings: 4399 * 4400 * pkt_data in dst register: 4401 * 4402 * r2 = r3; 4403 * r2 += 8; 4404 * if (r2 > pkt_end) goto <handle exception> 4405 * <access okay> 4406 * 4407 * r2 = r3; 4408 * r2 += 8; 4409 * if (r2 < pkt_end) goto <access okay> 4410 * <handle exception> 4411 * 4412 * Where: 4413 * r2 == dst_reg, pkt_end == src_reg 4414 * r2=pkt(id=n,off=8,r=0) 4415 * r3=pkt(id=n,off=0,r=0) 4416 * 4417 * pkt_data in src register: 4418 * 4419 * r2 = r3; 4420 * r2 += 8; 4421 * if (pkt_end >= r2) goto <access okay> 4422 * <handle exception> 4423 * 4424 * r2 = r3; 4425 * r2 += 8; 4426 * if (pkt_end <= r2) goto <handle exception> 4427 * <access okay> 4428 * 4429 * Where: 4430 * pkt_end == dst_reg, r2 == src_reg 4431 * r2=pkt(id=n,off=8,r=0) 4432 * r3=pkt(id=n,off=0,r=0) 4433 * 4434 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4435 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4436 * and [r3, r3 + 8-1) respectively is safe to access depending on 4437 * the check. 4438 */ 4439 4440 /* If our ids match, then we must have the same max_value. And we 4441 * don't care about the other reg's fixed offset, since if it's too big 4442 * the range won't allow anything. 4443 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4444 */ 4445 for (i = 0; i <= vstate->curframe; i++) 4446 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 4447 new_range); 4448 } 4449 4450 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4451 * and return: 4452 * 1 - branch will be taken and "goto target" will be executed 4453 * 0 - branch will not be taken and fall-through to next insn 4454 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4455 */ 4456 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4457 bool is_jmp32) 4458 { 4459 struct bpf_reg_state reg_lo; 4460 s64 sval; 4461 4462 if (__is_pointer_value(false, reg)) 4463 return -1; 4464 4465 if (is_jmp32) { 4466 reg_lo = *reg; 4467 reg = ®_lo; 4468 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4469 * could truncate high bits and update umin/umax according to 4470 * information of low bits. 4471 */ 4472 coerce_reg_to_size(reg, 4); 4473 /* smin/smax need special handling. For example, after coerce, 4474 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4475 * used as operand to JMP32. It is a negative number from s32's 4476 * point of view, while it is a positive number when seen as 4477 * s64. The smin/smax are kept as s64, therefore, when used with 4478 * JMP32, they need to be transformed into s32, then sign 4479 * extended back to s64. 4480 * 4481 * Also, smin/smax were copied from umin/umax. If umin/umax has 4482 * different sign bit, then min/max relationship doesn't 4483 * maintain after casting into s32, for this case, set smin/smax 4484 * to safest range. 4485 */ 4486 if ((reg->umax_value ^ reg->umin_value) & 4487 (1ULL << 31)) { 4488 reg->smin_value = S32_MIN; 4489 reg->smax_value = S32_MAX; 4490 } 4491 reg->smin_value = (s64)(s32)reg->smin_value; 4492 reg->smax_value = (s64)(s32)reg->smax_value; 4493 4494 val = (u32)val; 4495 sval = (s64)(s32)val; 4496 } else { 4497 sval = (s64)val; 4498 } 4499 4500 switch (opcode) { 4501 case BPF_JEQ: 4502 if (tnum_is_const(reg->var_off)) 4503 return !!tnum_equals_const(reg->var_off, val); 4504 break; 4505 case BPF_JNE: 4506 if (tnum_is_const(reg->var_off)) 4507 return !tnum_equals_const(reg->var_off, val); 4508 break; 4509 case BPF_JSET: 4510 if ((~reg->var_off.mask & reg->var_off.value) & val) 4511 return 1; 4512 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4513 return 0; 4514 break; 4515 case BPF_JGT: 4516 if (reg->umin_value > val) 4517 return 1; 4518 else if (reg->umax_value <= val) 4519 return 0; 4520 break; 4521 case BPF_JSGT: 4522 if (reg->smin_value > sval) 4523 return 1; 4524 else if (reg->smax_value < sval) 4525 return 0; 4526 break; 4527 case BPF_JLT: 4528 if (reg->umax_value < val) 4529 return 1; 4530 else if (reg->umin_value >= val) 4531 return 0; 4532 break; 4533 case BPF_JSLT: 4534 if (reg->smax_value < sval) 4535 return 1; 4536 else if (reg->smin_value >= sval) 4537 return 0; 4538 break; 4539 case BPF_JGE: 4540 if (reg->umin_value >= val) 4541 return 1; 4542 else if (reg->umax_value < val) 4543 return 0; 4544 break; 4545 case BPF_JSGE: 4546 if (reg->smin_value >= sval) 4547 return 1; 4548 else if (reg->smax_value < sval) 4549 return 0; 4550 break; 4551 case BPF_JLE: 4552 if (reg->umax_value <= val) 4553 return 1; 4554 else if (reg->umin_value > val) 4555 return 0; 4556 break; 4557 case BPF_JSLE: 4558 if (reg->smax_value <= sval) 4559 return 1; 4560 else if (reg->smin_value > sval) 4561 return 0; 4562 break; 4563 } 4564 4565 return -1; 4566 } 4567 4568 /* Generate min value of the high 32-bit from TNUM info. */ 4569 static u64 gen_hi_min(struct tnum var) 4570 { 4571 return var.value & ~0xffffffffULL; 4572 } 4573 4574 /* Generate max value of the high 32-bit from TNUM info. */ 4575 static u64 gen_hi_max(struct tnum var) 4576 { 4577 return (var.value | var.mask) & ~0xffffffffULL; 4578 } 4579 4580 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4581 * are with the same signedness. 4582 */ 4583 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4584 { 4585 return ((s32)sval >= 0 && 4586 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4587 ((s32)sval < 0 && 4588 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4589 } 4590 4591 /* Adjusts the register min/max values in the case that the dst_reg is the 4592 * variable register that we are working on, and src_reg is a constant or we're 4593 * simply doing a BPF_K check. 4594 * In JEQ/JNE cases we also adjust the var_off values. 4595 */ 4596 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4597 struct bpf_reg_state *false_reg, u64 val, 4598 u8 opcode, bool is_jmp32) 4599 { 4600 s64 sval; 4601 4602 /* If the dst_reg is a pointer, we can't learn anything about its 4603 * variable offset from the compare (unless src_reg were a pointer into 4604 * the same object, but we don't bother with that. 4605 * Since false_reg and true_reg have the same type by construction, we 4606 * only need to check one of them for pointerness. 4607 */ 4608 if (__is_pointer_value(false, false_reg)) 4609 return; 4610 4611 val = is_jmp32 ? (u32)val : val; 4612 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4613 4614 switch (opcode) { 4615 case BPF_JEQ: 4616 case BPF_JNE: 4617 { 4618 struct bpf_reg_state *reg = 4619 opcode == BPF_JEQ ? true_reg : false_reg; 4620 4621 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4622 * if it is true we know the value for sure. Likewise for 4623 * BPF_JNE. 4624 */ 4625 if (is_jmp32) { 4626 u64 old_v = reg->var_off.value; 4627 u64 hi_mask = ~0xffffffffULL; 4628 4629 reg->var_off.value = (old_v & hi_mask) | val; 4630 reg->var_off.mask &= hi_mask; 4631 } else { 4632 __mark_reg_known(reg, val); 4633 } 4634 break; 4635 } 4636 case BPF_JSET: 4637 false_reg->var_off = tnum_and(false_reg->var_off, 4638 tnum_const(~val)); 4639 if (is_power_of_2(val)) 4640 true_reg->var_off = tnum_or(true_reg->var_off, 4641 tnum_const(val)); 4642 break; 4643 case BPF_JGE: 4644 case BPF_JGT: 4645 { 4646 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4647 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4648 4649 if (is_jmp32) { 4650 false_umax += gen_hi_max(false_reg->var_off); 4651 true_umin += gen_hi_min(true_reg->var_off); 4652 } 4653 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4654 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4655 break; 4656 } 4657 case BPF_JSGE: 4658 case BPF_JSGT: 4659 { 4660 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4661 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4662 4663 /* If the full s64 was not sign-extended from s32 then don't 4664 * deduct further info. 4665 */ 4666 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4667 break; 4668 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4669 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4670 break; 4671 } 4672 case BPF_JLE: 4673 case BPF_JLT: 4674 { 4675 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4676 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4677 4678 if (is_jmp32) { 4679 false_umin += gen_hi_min(false_reg->var_off); 4680 true_umax += gen_hi_max(true_reg->var_off); 4681 } 4682 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4683 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4684 break; 4685 } 4686 case BPF_JSLE: 4687 case BPF_JSLT: 4688 { 4689 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4690 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4691 4692 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4693 break; 4694 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4695 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4696 break; 4697 } 4698 default: 4699 break; 4700 } 4701 4702 __reg_deduce_bounds(false_reg); 4703 __reg_deduce_bounds(true_reg); 4704 /* We might have learned some bits from the bounds. */ 4705 __reg_bound_offset(false_reg); 4706 __reg_bound_offset(true_reg); 4707 /* Intersecting with the old var_off might have improved our bounds 4708 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4709 * then new var_off is (0; 0x7f...fc) which improves our umax. 4710 */ 4711 __update_reg_bounds(false_reg); 4712 __update_reg_bounds(true_reg); 4713 } 4714 4715 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4716 * the variable reg. 4717 */ 4718 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4719 struct bpf_reg_state *false_reg, u64 val, 4720 u8 opcode, bool is_jmp32) 4721 { 4722 s64 sval; 4723 4724 if (__is_pointer_value(false, false_reg)) 4725 return; 4726 4727 val = is_jmp32 ? (u32)val : val; 4728 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4729 4730 switch (opcode) { 4731 case BPF_JEQ: 4732 case BPF_JNE: 4733 { 4734 struct bpf_reg_state *reg = 4735 opcode == BPF_JEQ ? true_reg : false_reg; 4736 4737 if (is_jmp32) { 4738 u64 old_v = reg->var_off.value; 4739 u64 hi_mask = ~0xffffffffULL; 4740 4741 reg->var_off.value = (old_v & hi_mask) | val; 4742 reg->var_off.mask &= hi_mask; 4743 } else { 4744 __mark_reg_known(reg, val); 4745 } 4746 break; 4747 } 4748 case BPF_JSET: 4749 false_reg->var_off = tnum_and(false_reg->var_off, 4750 tnum_const(~val)); 4751 if (is_power_of_2(val)) 4752 true_reg->var_off = tnum_or(true_reg->var_off, 4753 tnum_const(val)); 4754 break; 4755 case BPF_JGE: 4756 case BPF_JGT: 4757 { 4758 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4759 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4760 4761 if (is_jmp32) { 4762 false_umin += gen_hi_min(false_reg->var_off); 4763 true_umax += gen_hi_max(true_reg->var_off); 4764 } 4765 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4766 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4767 break; 4768 } 4769 case BPF_JSGE: 4770 case BPF_JSGT: 4771 { 4772 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4773 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4774 4775 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4776 break; 4777 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4778 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4779 break; 4780 } 4781 case BPF_JLE: 4782 case BPF_JLT: 4783 { 4784 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4785 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4786 4787 if (is_jmp32) { 4788 false_umax += gen_hi_max(false_reg->var_off); 4789 true_umin += gen_hi_min(true_reg->var_off); 4790 } 4791 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4792 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4793 break; 4794 } 4795 case BPF_JSLE: 4796 case BPF_JSLT: 4797 { 4798 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4799 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4800 4801 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4802 break; 4803 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4804 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4805 break; 4806 } 4807 default: 4808 break; 4809 } 4810 4811 __reg_deduce_bounds(false_reg); 4812 __reg_deduce_bounds(true_reg); 4813 /* We might have learned some bits from the bounds. */ 4814 __reg_bound_offset(false_reg); 4815 __reg_bound_offset(true_reg); 4816 /* Intersecting with the old var_off might have improved our bounds 4817 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4818 * then new var_off is (0; 0x7f...fc) which improves our umax. 4819 */ 4820 __update_reg_bounds(false_reg); 4821 __update_reg_bounds(true_reg); 4822 } 4823 4824 /* Regs are known to be equal, so intersect their min/max/var_off */ 4825 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4826 struct bpf_reg_state *dst_reg) 4827 { 4828 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4829 dst_reg->umin_value); 4830 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4831 dst_reg->umax_value); 4832 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4833 dst_reg->smin_value); 4834 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4835 dst_reg->smax_value); 4836 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4837 dst_reg->var_off); 4838 /* We might have learned new bounds from the var_off. */ 4839 __update_reg_bounds(src_reg); 4840 __update_reg_bounds(dst_reg); 4841 /* We might have learned something about the sign bit. */ 4842 __reg_deduce_bounds(src_reg); 4843 __reg_deduce_bounds(dst_reg); 4844 /* We might have learned some bits from the bounds. */ 4845 __reg_bound_offset(src_reg); 4846 __reg_bound_offset(dst_reg); 4847 /* Intersecting with the old var_off might have improved our bounds 4848 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4849 * then new var_off is (0; 0x7f...fc) which improves our umax. 4850 */ 4851 __update_reg_bounds(src_reg); 4852 __update_reg_bounds(dst_reg); 4853 } 4854 4855 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4856 struct bpf_reg_state *true_dst, 4857 struct bpf_reg_state *false_src, 4858 struct bpf_reg_state *false_dst, 4859 u8 opcode) 4860 { 4861 switch (opcode) { 4862 case BPF_JEQ: 4863 __reg_combine_min_max(true_src, true_dst); 4864 break; 4865 case BPF_JNE: 4866 __reg_combine_min_max(false_src, false_dst); 4867 break; 4868 } 4869 } 4870 4871 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4872 struct bpf_reg_state *reg, u32 id, 4873 bool is_null) 4874 { 4875 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4876 /* Old offset (both fixed and variable parts) should 4877 * have been known-zero, because we don't allow pointer 4878 * arithmetic on pointers that might be NULL. 4879 */ 4880 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4881 !tnum_equals_const(reg->var_off, 0) || 4882 reg->off)) { 4883 __mark_reg_known_zero(reg); 4884 reg->off = 0; 4885 } 4886 if (is_null) { 4887 reg->type = SCALAR_VALUE; 4888 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4889 if (reg->map_ptr->inner_map_meta) { 4890 reg->type = CONST_PTR_TO_MAP; 4891 reg->map_ptr = reg->map_ptr->inner_map_meta; 4892 } else { 4893 reg->type = PTR_TO_MAP_VALUE; 4894 } 4895 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4896 reg->type = PTR_TO_SOCKET; 4897 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 4898 reg->type = PTR_TO_SOCK_COMMON; 4899 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 4900 reg->type = PTR_TO_TCP_SOCK; 4901 } 4902 if (is_null) { 4903 /* We don't need id and ref_obj_id from this point 4904 * onwards anymore, thus we should better reset it, 4905 * so that state pruning has chances to take effect. 4906 */ 4907 reg->id = 0; 4908 reg->ref_obj_id = 0; 4909 } else if (!reg_may_point_to_spin_lock(reg)) { 4910 /* For not-NULL ptr, reg->ref_obj_id will be reset 4911 * in release_reg_references(). 4912 * 4913 * reg->id is still used by spin_lock ptr. Other 4914 * than spin_lock ptr type, reg->id can be reset. 4915 */ 4916 reg->id = 0; 4917 } 4918 } 4919 } 4920 4921 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 4922 bool is_null) 4923 { 4924 struct bpf_reg_state *reg; 4925 int i; 4926 4927 for (i = 0; i < MAX_BPF_REG; i++) 4928 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 4929 4930 bpf_for_each_spilled_reg(i, state, reg) { 4931 if (!reg) 4932 continue; 4933 mark_ptr_or_null_reg(state, reg, id, is_null); 4934 } 4935 } 4936 4937 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4938 * be folded together at some point. 4939 */ 4940 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4941 bool is_null) 4942 { 4943 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4944 struct bpf_reg_state *regs = state->regs; 4945 u32 ref_obj_id = regs[regno].ref_obj_id; 4946 u32 id = regs[regno].id; 4947 int i; 4948 4949 if (ref_obj_id && ref_obj_id == id && is_null) 4950 /* regs[regno] is in the " == NULL" branch. 4951 * No one could have freed the reference state before 4952 * doing the NULL check. 4953 */ 4954 WARN_ON_ONCE(release_reference_state(state, id)); 4955 4956 for (i = 0; i <= vstate->curframe; i++) 4957 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 4958 } 4959 4960 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4961 struct bpf_reg_state *dst_reg, 4962 struct bpf_reg_state *src_reg, 4963 struct bpf_verifier_state *this_branch, 4964 struct bpf_verifier_state *other_branch) 4965 { 4966 if (BPF_SRC(insn->code) != BPF_X) 4967 return false; 4968 4969 /* Pointers are always 64-bit. */ 4970 if (BPF_CLASS(insn->code) == BPF_JMP32) 4971 return false; 4972 4973 switch (BPF_OP(insn->code)) { 4974 case BPF_JGT: 4975 if ((dst_reg->type == PTR_TO_PACKET && 4976 src_reg->type == PTR_TO_PACKET_END) || 4977 (dst_reg->type == PTR_TO_PACKET_META && 4978 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4979 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4980 find_good_pkt_pointers(this_branch, dst_reg, 4981 dst_reg->type, false); 4982 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4983 src_reg->type == PTR_TO_PACKET) || 4984 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4985 src_reg->type == PTR_TO_PACKET_META)) { 4986 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4987 find_good_pkt_pointers(other_branch, src_reg, 4988 src_reg->type, true); 4989 } else { 4990 return false; 4991 } 4992 break; 4993 case BPF_JLT: 4994 if ((dst_reg->type == PTR_TO_PACKET && 4995 src_reg->type == PTR_TO_PACKET_END) || 4996 (dst_reg->type == PTR_TO_PACKET_META && 4997 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4998 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4999 find_good_pkt_pointers(other_branch, dst_reg, 5000 dst_reg->type, true); 5001 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5002 src_reg->type == PTR_TO_PACKET) || 5003 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5004 src_reg->type == PTR_TO_PACKET_META)) { 5005 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5006 find_good_pkt_pointers(this_branch, src_reg, 5007 src_reg->type, false); 5008 } else { 5009 return false; 5010 } 5011 break; 5012 case BPF_JGE: 5013 if ((dst_reg->type == PTR_TO_PACKET && 5014 src_reg->type == PTR_TO_PACKET_END) || 5015 (dst_reg->type == PTR_TO_PACKET_META && 5016 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5017 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5018 find_good_pkt_pointers(this_branch, dst_reg, 5019 dst_reg->type, true); 5020 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5021 src_reg->type == PTR_TO_PACKET) || 5022 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5023 src_reg->type == PTR_TO_PACKET_META)) { 5024 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5025 find_good_pkt_pointers(other_branch, src_reg, 5026 src_reg->type, false); 5027 } else { 5028 return false; 5029 } 5030 break; 5031 case BPF_JLE: 5032 if ((dst_reg->type == PTR_TO_PACKET && 5033 src_reg->type == PTR_TO_PACKET_END) || 5034 (dst_reg->type == PTR_TO_PACKET_META && 5035 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5036 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5037 find_good_pkt_pointers(other_branch, dst_reg, 5038 dst_reg->type, false); 5039 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5040 src_reg->type == PTR_TO_PACKET) || 5041 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5042 src_reg->type == PTR_TO_PACKET_META)) { 5043 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5044 find_good_pkt_pointers(this_branch, src_reg, 5045 src_reg->type, true); 5046 } else { 5047 return false; 5048 } 5049 break; 5050 default: 5051 return false; 5052 } 5053 5054 return true; 5055 } 5056 5057 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5058 struct bpf_insn *insn, int *insn_idx) 5059 { 5060 struct bpf_verifier_state *this_branch = env->cur_state; 5061 struct bpf_verifier_state *other_branch; 5062 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5063 struct bpf_reg_state *dst_reg, *other_branch_regs; 5064 u8 opcode = BPF_OP(insn->code); 5065 bool is_jmp32; 5066 int err; 5067 5068 /* Only conditional jumps are expected to reach here. */ 5069 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5070 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5071 return -EINVAL; 5072 } 5073 5074 if (BPF_SRC(insn->code) == BPF_X) { 5075 if (insn->imm != 0) { 5076 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5077 return -EINVAL; 5078 } 5079 5080 /* check src1 operand */ 5081 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5082 if (err) 5083 return err; 5084 5085 if (is_pointer_value(env, insn->src_reg)) { 5086 verbose(env, "R%d pointer comparison prohibited\n", 5087 insn->src_reg); 5088 return -EACCES; 5089 } 5090 } else { 5091 if (insn->src_reg != BPF_REG_0) { 5092 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5093 return -EINVAL; 5094 } 5095 } 5096 5097 /* check src2 operand */ 5098 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5099 if (err) 5100 return err; 5101 5102 dst_reg = ®s[insn->dst_reg]; 5103 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5104 5105 if (BPF_SRC(insn->code) == BPF_K) { 5106 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 5107 is_jmp32); 5108 5109 if (pred == 1) { 5110 /* only follow the goto, ignore fall-through */ 5111 *insn_idx += insn->off; 5112 return 0; 5113 } else if (pred == 0) { 5114 /* only follow fall-through branch, since 5115 * that's where the program will go 5116 */ 5117 return 0; 5118 } 5119 } 5120 5121 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5122 false); 5123 if (!other_branch) 5124 return -EFAULT; 5125 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5126 5127 /* detect if we are comparing against a constant value so we can adjust 5128 * our min/max values for our dst register. 5129 * this is only legit if both are scalars (or pointers to the same 5130 * object, I suppose, but we don't support that right now), because 5131 * otherwise the different base pointers mean the offsets aren't 5132 * comparable. 5133 */ 5134 if (BPF_SRC(insn->code) == BPF_X) { 5135 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5136 struct bpf_reg_state lo_reg0 = *dst_reg; 5137 struct bpf_reg_state lo_reg1 = *src_reg; 5138 struct bpf_reg_state *src_lo, *dst_lo; 5139 5140 dst_lo = &lo_reg0; 5141 src_lo = &lo_reg1; 5142 coerce_reg_to_size(dst_lo, 4); 5143 coerce_reg_to_size(src_lo, 4); 5144 5145 if (dst_reg->type == SCALAR_VALUE && 5146 src_reg->type == SCALAR_VALUE) { 5147 if (tnum_is_const(src_reg->var_off) || 5148 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5149 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5150 dst_reg, 5151 is_jmp32 5152 ? src_lo->var_off.value 5153 : src_reg->var_off.value, 5154 opcode, is_jmp32); 5155 else if (tnum_is_const(dst_reg->var_off) || 5156 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5157 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5158 src_reg, 5159 is_jmp32 5160 ? dst_lo->var_off.value 5161 : dst_reg->var_off.value, 5162 opcode, is_jmp32); 5163 else if (!is_jmp32 && 5164 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5165 /* Comparing for equality, we can combine knowledge */ 5166 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5167 &other_branch_regs[insn->dst_reg], 5168 src_reg, dst_reg, opcode); 5169 } 5170 } else if (dst_reg->type == SCALAR_VALUE) { 5171 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5172 dst_reg, insn->imm, opcode, is_jmp32); 5173 } 5174 5175 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5176 * NOTE: these optimizations below are related with pointer comparison 5177 * which will never be JMP32. 5178 */ 5179 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5180 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5181 reg_type_may_be_null(dst_reg->type)) { 5182 /* Mark all identical registers in each branch as either 5183 * safe or unknown depending R == 0 or R != 0 conditional. 5184 */ 5185 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5186 opcode == BPF_JNE); 5187 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5188 opcode == BPF_JEQ); 5189 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5190 this_branch, other_branch) && 5191 is_pointer_value(env, insn->dst_reg)) { 5192 verbose(env, "R%d pointer comparison prohibited\n", 5193 insn->dst_reg); 5194 return -EACCES; 5195 } 5196 if (env->log.level & BPF_LOG_LEVEL) 5197 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5198 return 0; 5199 } 5200 5201 /* verify BPF_LD_IMM64 instruction */ 5202 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5203 { 5204 struct bpf_insn_aux_data *aux = cur_aux(env); 5205 struct bpf_reg_state *regs = cur_regs(env); 5206 struct bpf_map *map; 5207 int err; 5208 5209 if (BPF_SIZE(insn->code) != BPF_DW) { 5210 verbose(env, "invalid BPF_LD_IMM insn\n"); 5211 return -EINVAL; 5212 } 5213 if (insn->off != 0) { 5214 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5215 return -EINVAL; 5216 } 5217 5218 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5219 if (err) 5220 return err; 5221 5222 if (insn->src_reg == 0) { 5223 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5224 5225 regs[insn->dst_reg].type = SCALAR_VALUE; 5226 __mark_reg_known(®s[insn->dst_reg], imm); 5227 return 0; 5228 } 5229 5230 map = env->used_maps[aux->map_index]; 5231 mark_reg_known_zero(env, regs, insn->dst_reg); 5232 regs[insn->dst_reg].map_ptr = map; 5233 5234 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5235 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5236 regs[insn->dst_reg].off = aux->map_off; 5237 if (map_value_has_spin_lock(map)) 5238 regs[insn->dst_reg].id = ++env->id_gen; 5239 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5240 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5241 } else { 5242 verbose(env, "bpf verifier is misconfigured\n"); 5243 return -EINVAL; 5244 } 5245 5246 return 0; 5247 } 5248 5249 static bool may_access_skb(enum bpf_prog_type type) 5250 { 5251 switch (type) { 5252 case BPF_PROG_TYPE_SOCKET_FILTER: 5253 case BPF_PROG_TYPE_SCHED_CLS: 5254 case BPF_PROG_TYPE_SCHED_ACT: 5255 return true; 5256 default: 5257 return false; 5258 } 5259 } 5260 5261 /* verify safety of LD_ABS|LD_IND instructions: 5262 * - they can only appear in the programs where ctx == skb 5263 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5264 * preserve R6-R9, and store return value into R0 5265 * 5266 * Implicit input: 5267 * ctx == skb == R6 == CTX 5268 * 5269 * Explicit input: 5270 * SRC == any register 5271 * IMM == 32-bit immediate 5272 * 5273 * Output: 5274 * R0 - 8/16/32-bit skb data converted to cpu endianness 5275 */ 5276 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5277 { 5278 struct bpf_reg_state *regs = cur_regs(env); 5279 u8 mode = BPF_MODE(insn->code); 5280 int i, err; 5281 5282 if (!may_access_skb(env->prog->type)) { 5283 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5284 return -EINVAL; 5285 } 5286 5287 if (!env->ops->gen_ld_abs) { 5288 verbose(env, "bpf verifier is misconfigured\n"); 5289 return -EINVAL; 5290 } 5291 5292 if (env->subprog_cnt > 1) { 5293 /* when program has LD_ABS insn JITs and interpreter assume 5294 * that r1 == ctx == skb which is not the case for callees 5295 * that can have arbitrary arguments. It's problematic 5296 * for main prog as well since JITs would need to analyze 5297 * all functions in order to make proper register save/restore 5298 * decisions in the main prog. Hence disallow LD_ABS with calls 5299 */ 5300 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5301 return -EINVAL; 5302 } 5303 5304 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5305 BPF_SIZE(insn->code) == BPF_DW || 5306 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5307 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5308 return -EINVAL; 5309 } 5310 5311 /* check whether implicit source operand (register R6) is readable */ 5312 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5313 if (err) 5314 return err; 5315 5316 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5317 * gen_ld_abs() may terminate the program at runtime, leading to 5318 * reference leak. 5319 */ 5320 err = check_reference_leak(env); 5321 if (err) { 5322 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5323 return err; 5324 } 5325 5326 if (env->cur_state->active_spin_lock) { 5327 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5328 return -EINVAL; 5329 } 5330 5331 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5332 verbose(env, 5333 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5334 return -EINVAL; 5335 } 5336 5337 if (mode == BPF_IND) { 5338 /* check explicit source operand */ 5339 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5340 if (err) 5341 return err; 5342 } 5343 5344 /* reset caller saved regs to unreadable */ 5345 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5346 mark_reg_not_init(env, regs, caller_saved[i]); 5347 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5348 } 5349 5350 /* mark destination R0 register as readable, since it contains 5351 * the value fetched from the packet. 5352 * Already marked as written above. 5353 */ 5354 mark_reg_unknown(env, regs, BPF_REG_0); 5355 return 0; 5356 } 5357 5358 static int check_return_code(struct bpf_verifier_env *env) 5359 { 5360 struct bpf_reg_state *reg; 5361 struct tnum range = tnum_range(0, 1); 5362 5363 switch (env->prog->type) { 5364 case BPF_PROG_TYPE_CGROUP_SKB: 5365 case BPF_PROG_TYPE_CGROUP_SOCK: 5366 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5367 case BPF_PROG_TYPE_SOCK_OPS: 5368 case BPF_PROG_TYPE_CGROUP_DEVICE: 5369 case BPF_PROG_TYPE_CGROUP_SYSCTL: 5370 break; 5371 default: 5372 return 0; 5373 } 5374 5375 reg = cur_regs(env) + BPF_REG_0; 5376 if (reg->type != SCALAR_VALUE) { 5377 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5378 reg_type_str[reg->type]); 5379 return -EINVAL; 5380 } 5381 5382 if (!tnum_in(range, reg->var_off)) { 5383 verbose(env, "At program exit the register R0 "); 5384 if (!tnum_is_unknown(reg->var_off)) { 5385 char tn_buf[48]; 5386 5387 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5388 verbose(env, "has value %s", tn_buf); 5389 } else { 5390 verbose(env, "has unknown scalar value"); 5391 } 5392 verbose(env, " should have been 0 or 1\n"); 5393 return -EINVAL; 5394 } 5395 return 0; 5396 } 5397 5398 /* non-recursive DFS pseudo code 5399 * 1 procedure DFS-iterative(G,v): 5400 * 2 label v as discovered 5401 * 3 let S be a stack 5402 * 4 S.push(v) 5403 * 5 while S is not empty 5404 * 6 t <- S.pop() 5405 * 7 if t is what we're looking for: 5406 * 8 return t 5407 * 9 for all edges e in G.adjacentEdges(t) do 5408 * 10 if edge e is already labelled 5409 * 11 continue with the next edge 5410 * 12 w <- G.adjacentVertex(t,e) 5411 * 13 if vertex w is not discovered and not explored 5412 * 14 label e as tree-edge 5413 * 15 label w as discovered 5414 * 16 S.push(w) 5415 * 17 continue at 5 5416 * 18 else if vertex w is discovered 5417 * 19 label e as back-edge 5418 * 20 else 5419 * 21 // vertex w is explored 5420 * 22 label e as forward- or cross-edge 5421 * 23 label t as explored 5422 * 24 S.pop() 5423 * 5424 * convention: 5425 * 0x10 - discovered 5426 * 0x11 - discovered and fall-through edge labelled 5427 * 0x12 - discovered and fall-through and branch edges labelled 5428 * 0x20 - explored 5429 */ 5430 5431 enum { 5432 DISCOVERED = 0x10, 5433 EXPLORED = 0x20, 5434 FALLTHROUGH = 1, 5435 BRANCH = 2, 5436 }; 5437 5438 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 5439 5440 /* t, w, e - match pseudo-code above: 5441 * t - index of current instruction 5442 * w - next instruction 5443 * e - edge 5444 */ 5445 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5446 { 5447 int *insn_stack = env->cfg.insn_stack; 5448 int *insn_state = env->cfg.insn_state; 5449 5450 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5451 return 0; 5452 5453 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5454 return 0; 5455 5456 if (w < 0 || w >= env->prog->len) { 5457 verbose_linfo(env, t, "%d: ", t); 5458 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5459 return -EINVAL; 5460 } 5461 5462 if (e == BRANCH) 5463 /* mark branch target for state pruning */ 5464 env->explored_states[w] = STATE_LIST_MARK; 5465 5466 if (insn_state[w] == 0) { 5467 /* tree-edge */ 5468 insn_state[t] = DISCOVERED | e; 5469 insn_state[w] = DISCOVERED; 5470 if (env->cfg.cur_stack >= env->prog->len) 5471 return -E2BIG; 5472 insn_stack[env->cfg.cur_stack++] = w; 5473 return 1; 5474 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5475 verbose_linfo(env, t, "%d: ", t); 5476 verbose_linfo(env, w, "%d: ", w); 5477 verbose(env, "back-edge from insn %d to %d\n", t, w); 5478 return -EINVAL; 5479 } else if (insn_state[w] == EXPLORED) { 5480 /* forward- or cross-edge */ 5481 insn_state[t] = DISCOVERED | e; 5482 } else { 5483 verbose(env, "insn state internal bug\n"); 5484 return -EFAULT; 5485 } 5486 return 0; 5487 } 5488 5489 /* non-recursive depth-first-search to detect loops in BPF program 5490 * loop == back-edge in directed graph 5491 */ 5492 static int check_cfg(struct bpf_verifier_env *env) 5493 { 5494 struct bpf_insn *insns = env->prog->insnsi; 5495 int insn_cnt = env->prog->len; 5496 int *insn_stack, *insn_state; 5497 int ret = 0; 5498 int i, t; 5499 5500 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5501 if (!insn_state) 5502 return -ENOMEM; 5503 5504 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5505 if (!insn_stack) { 5506 kvfree(insn_state); 5507 return -ENOMEM; 5508 } 5509 5510 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5511 insn_stack[0] = 0; /* 0 is the first instruction */ 5512 env->cfg.cur_stack = 1; 5513 5514 peek_stack: 5515 if (env->cfg.cur_stack == 0) 5516 goto check_state; 5517 t = insn_stack[env->cfg.cur_stack - 1]; 5518 5519 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5520 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5521 u8 opcode = BPF_OP(insns[t].code); 5522 5523 if (opcode == BPF_EXIT) { 5524 goto mark_explored; 5525 } else if (opcode == BPF_CALL) { 5526 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5527 if (ret == 1) 5528 goto peek_stack; 5529 else if (ret < 0) 5530 goto err_free; 5531 if (t + 1 < insn_cnt) 5532 env->explored_states[t + 1] = STATE_LIST_MARK; 5533 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5534 env->explored_states[t] = STATE_LIST_MARK; 5535 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5536 if (ret == 1) 5537 goto peek_stack; 5538 else if (ret < 0) 5539 goto err_free; 5540 } 5541 } else if (opcode == BPF_JA) { 5542 if (BPF_SRC(insns[t].code) != BPF_K) { 5543 ret = -EINVAL; 5544 goto err_free; 5545 } 5546 /* unconditional jump with single edge */ 5547 ret = push_insn(t, t + insns[t].off + 1, 5548 FALLTHROUGH, env); 5549 if (ret == 1) 5550 goto peek_stack; 5551 else if (ret < 0) 5552 goto err_free; 5553 /* tell verifier to check for equivalent states 5554 * after every call and jump 5555 */ 5556 if (t + 1 < insn_cnt) 5557 env->explored_states[t + 1] = STATE_LIST_MARK; 5558 } else { 5559 /* conditional jump with two edges */ 5560 env->explored_states[t] = STATE_LIST_MARK; 5561 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5562 if (ret == 1) 5563 goto peek_stack; 5564 else if (ret < 0) 5565 goto err_free; 5566 5567 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5568 if (ret == 1) 5569 goto peek_stack; 5570 else if (ret < 0) 5571 goto err_free; 5572 } 5573 } else { 5574 /* all other non-branch instructions with single 5575 * fall-through edge 5576 */ 5577 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5578 if (ret == 1) 5579 goto peek_stack; 5580 else if (ret < 0) 5581 goto err_free; 5582 } 5583 5584 mark_explored: 5585 insn_state[t] = EXPLORED; 5586 if (env->cfg.cur_stack-- <= 0) { 5587 verbose(env, "pop stack internal bug\n"); 5588 ret = -EFAULT; 5589 goto err_free; 5590 } 5591 goto peek_stack; 5592 5593 check_state: 5594 for (i = 0; i < insn_cnt; i++) { 5595 if (insn_state[i] != EXPLORED) { 5596 verbose(env, "unreachable insn %d\n", i); 5597 ret = -EINVAL; 5598 goto err_free; 5599 } 5600 } 5601 ret = 0; /* cfg looks good */ 5602 5603 err_free: 5604 kvfree(insn_state); 5605 kvfree(insn_stack); 5606 env->cfg.insn_state = env->cfg.insn_stack = NULL; 5607 return ret; 5608 } 5609 5610 /* The minimum supported BTF func info size */ 5611 #define MIN_BPF_FUNCINFO_SIZE 8 5612 #define MAX_FUNCINFO_REC_SIZE 252 5613 5614 static int check_btf_func(struct bpf_verifier_env *env, 5615 const union bpf_attr *attr, 5616 union bpf_attr __user *uattr) 5617 { 5618 u32 i, nfuncs, urec_size, min_size; 5619 u32 krec_size = sizeof(struct bpf_func_info); 5620 struct bpf_func_info *krecord; 5621 const struct btf_type *type; 5622 struct bpf_prog *prog; 5623 const struct btf *btf; 5624 void __user *urecord; 5625 u32 prev_offset = 0; 5626 int ret = 0; 5627 5628 nfuncs = attr->func_info_cnt; 5629 if (!nfuncs) 5630 return 0; 5631 5632 if (nfuncs != env->subprog_cnt) { 5633 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5634 return -EINVAL; 5635 } 5636 5637 urec_size = attr->func_info_rec_size; 5638 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5639 urec_size > MAX_FUNCINFO_REC_SIZE || 5640 urec_size % sizeof(u32)) { 5641 verbose(env, "invalid func info rec size %u\n", urec_size); 5642 return -EINVAL; 5643 } 5644 5645 prog = env->prog; 5646 btf = prog->aux->btf; 5647 5648 urecord = u64_to_user_ptr(attr->func_info); 5649 min_size = min_t(u32, krec_size, urec_size); 5650 5651 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5652 if (!krecord) 5653 return -ENOMEM; 5654 5655 for (i = 0; i < nfuncs; i++) { 5656 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5657 if (ret) { 5658 if (ret == -E2BIG) { 5659 verbose(env, "nonzero tailing record in func info"); 5660 /* set the size kernel expects so loader can zero 5661 * out the rest of the record. 5662 */ 5663 if (put_user(min_size, &uattr->func_info_rec_size)) 5664 ret = -EFAULT; 5665 } 5666 goto err_free; 5667 } 5668 5669 if (copy_from_user(&krecord[i], urecord, min_size)) { 5670 ret = -EFAULT; 5671 goto err_free; 5672 } 5673 5674 /* check insn_off */ 5675 if (i == 0) { 5676 if (krecord[i].insn_off) { 5677 verbose(env, 5678 "nonzero insn_off %u for the first func info record", 5679 krecord[i].insn_off); 5680 ret = -EINVAL; 5681 goto err_free; 5682 } 5683 } else if (krecord[i].insn_off <= prev_offset) { 5684 verbose(env, 5685 "same or smaller insn offset (%u) than previous func info record (%u)", 5686 krecord[i].insn_off, prev_offset); 5687 ret = -EINVAL; 5688 goto err_free; 5689 } 5690 5691 if (env->subprog_info[i].start != krecord[i].insn_off) { 5692 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5693 ret = -EINVAL; 5694 goto err_free; 5695 } 5696 5697 /* check type_id */ 5698 type = btf_type_by_id(btf, krecord[i].type_id); 5699 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5700 verbose(env, "invalid type id %d in func info", 5701 krecord[i].type_id); 5702 ret = -EINVAL; 5703 goto err_free; 5704 } 5705 5706 prev_offset = krecord[i].insn_off; 5707 urecord += urec_size; 5708 } 5709 5710 prog->aux->func_info = krecord; 5711 prog->aux->func_info_cnt = nfuncs; 5712 return 0; 5713 5714 err_free: 5715 kvfree(krecord); 5716 return ret; 5717 } 5718 5719 static void adjust_btf_func(struct bpf_verifier_env *env) 5720 { 5721 int i; 5722 5723 if (!env->prog->aux->func_info) 5724 return; 5725 5726 for (i = 0; i < env->subprog_cnt; i++) 5727 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5728 } 5729 5730 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5731 sizeof(((struct bpf_line_info *)(0))->line_col)) 5732 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5733 5734 static int check_btf_line(struct bpf_verifier_env *env, 5735 const union bpf_attr *attr, 5736 union bpf_attr __user *uattr) 5737 { 5738 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5739 struct bpf_subprog_info *sub; 5740 struct bpf_line_info *linfo; 5741 struct bpf_prog *prog; 5742 const struct btf *btf; 5743 void __user *ulinfo; 5744 int err; 5745 5746 nr_linfo = attr->line_info_cnt; 5747 if (!nr_linfo) 5748 return 0; 5749 5750 rec_size = attr->line_info_rec_size; 5751 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5752 rec_size > MAX_LINEINFO_REC_SIZE || 5753 rec_size & (sizeof(u32) - 1)) 5754 return -EINVAL; 5755 5756 /* Need to zero it in case the userspace may 5757 * pass in a smaller bpf_line_info object. 5758 */ 5759 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5760 GFP_KERNEL | __GFP_NOWARN); 5761 if (!linfo) 5762 return -ENOMEM; 5763 5764 prog = env->prog; 5765 btf = prog->aux->btf; 5766 5767 s = 0; 5768 sub = env->subprog_info; 5769 ulinfo = u64_to_user_ptr(attr->line_info); 5770 expected_size = sizeof(struct bpf_line_info); 5771 ncopy = min_t(u32, expected_size, rec_size); 5772 for (i = 0; i < nr_linfo; i++) { 5773 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5774 if (err) { 5775 if (err == -E2BIG) { 5776 verbose(env, "nonzero tailing record in line_info"); 5777 if (put_user(expected_size, 5778 &uattr->line_info_rec_size)) 5779 err = -EFAULT; 5780 } 5781 goto err_free; 5782 } 5783 5784 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5785 err = -EFAULT; 5786 goto err_free; 5787 } 5788 5789 /* 5790 * Check insn_off to ensure 5791 * 1) strictly increasing AND 5792 * 2) bounded by prog->len 5793 * 5794 * The linfo[0].insn_off == 0 check logically falls into 5795 * the later "missing bpf_line_info for func..." case 5796 * because the first linfo[0].insn_off must be the 5797 * first sub also and the first sub must have 5798 * subprog_info[0].start == 0. 5799 */ 5800 if ((i && linfo[i].insn_off <= prev_offset) || 5801 linfo[i].insn_off >= prog->len) { 5802 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5803 i, linfo[i].insn_off, prev_offset, 5804 prog->len); 5805 err = -EINVAL; 5806 goto err_free; 5807 } 5808 5809 if (!prog->insnsi[linfo[i].insn_off].code) { 5810 verbose(env, 5811 "Invalid insn code at line_info[%u].insn_off\n", 5812 i); 5813 err = -EINVAL; 5814 goto err_free; 5815 } 5816 5817 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5818 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5819 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5820 err = -EINVAL; 5821 goto err_free; 5822 } 5823 5824 if (s != env->subprog_cnt) { 5825 if (linfo[i].insn_off == sub[s].start) { 5826 sub[s].linfo_idx = i; 5827 s++; 5828 } else if (sub[s].start < linfo[i].insn_off) { 5829 verbose(env, "missing bpf_line_info for func#%u\n", s); 5830 err = -EINVAL; 5831 goto err_free; 5832 } 5833 } 5834 5835 prev_offset = linfo[i].insn_off; 5836 ulinfo += rec_size; 5837 } 5838 5839 if (s != env->subprog_cnt) { 5840 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5841 env->subprog_cnt - s, s); 5842 err = -EINVAL; 5843 goto err_free; 5844 } 5845 5846 prog->aux->linfo = linfo; 5847 prog->aux->nr_linfo = nr_linfo; 5848 5849 return 0; 5850 5851 err_free: 5852 kvfree(linfo); 5853 return err; 5854 } 5855 5856 static int check_btf_info(struct bpf_verifier_env *env, 5857 const union bpf_attr *attr, 5858 union bpf_attr __user *uattr) 5859 { 5860 struct btf *btf; 5861 int err; 5862 5863 if (!attr->func_info_cnt && !attr->line_info_cnt) 5864 return 0; 5865 5866 btf = btf_get_by_fd(attr->prog_btf_fd); 5867 if (IS_ERR(btf)) 5868 return PTR_ERR(btf); 5869 env->prog->aux->btf = btf; 5870 5871 err = check_btf_func(env, attr, uattr); 5872 if (err) 5873 return err; 5874 5875 err = check_btf_line(env, attr, uattr); 5876 if (err) 5877 return err; 5878 5879 return 0; 5880 } 5881 5882 /* check %cur's range satisfies %old's */ 5883 static bool range_within(struct bpf_reg_state *old, 5884 struct bpf_reg_state *cur) 5885 { 5886 return old->umin_value <= cur->umin_value && 5887 old->umax_value >= cur->umax_value && 5888 old->smin_value <= cur->smin_value && 5889 old->smax_value >= cur->smax_value; 5890 } 5891 5892 /* Maximum number of register states that can exist at once */ 5893 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5894 struct idpair { 5895 u32 old; 5896 u32 cur; 5897 }; 5898 5899 /* If in the old state two registers had the same id, then they need to have 5900 * the same id in the new state as well. But that id could be different from 5901 * the old state, so we need to track the mapping from old to new ids. 5902 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5903 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5904 * regs with a different old id could still have new id 9, we don't care about 5905 * that. 5906 * So we look through our idmap to see if this old id has been seen before. If 5907 * so, we require the new id to match; otherwise, we add the id pair to the map. 5908 */ 5909 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5910 { 5911 unsigned int i; 5912 5913 for (i = 0; i < ID_MAP_SIZE; i++) { 5914 if (!idmap[i].old) { 5915 /* Reached an empty slot; haven't seen this id before */ 5916 idmap[i].old = old_id; 5917 idmap[i].cur = cur_id; 5918 return true; 5919 } 5920 if (idmap[i].old == old_id) 5921 return idmap[i].cur == cur_id; 5922 } 5923 /* We ran out of idmap slots, which should be impossible */ 5924 WARN_ON_ONCE(1); 5925 return false; 5926 } 5927 5928 static void clean_func_state(struct bpf_verifier_env *env, 5929 struct bpf_func_state *st) 5930 { 5931 enum bpf_reg_liveness live; 5932 int i, j; 5933 5934 for (i = 0; i < BPF_REG_FP; i++) { 5935 live = st->regs[i].live; 5936 /* liveness must not touch this register anymore */ 5937 st->regs[i].live |= REG_LIVE_DONE; 5938 if (!(live & REG_LIVE_READ)) 5939 /* since the register is unused, clear its state 5940 * to make further comparison simpler 5941 */ 5942 __mark_reg_not_init(&st->regs[i]); 5943 } 5944 5945 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5946 live = st->stack[i].spilled_ptr.live; 5947 /* liveness must not touch this stack slot anymore */ 5948 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5949 if (!(live & REG_LIVE_READ)) { 5950 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5951 for (j = 0; j < BPF_REG_SIZE; j++) 5952 st->stack[i].slot_type[j] = STACK_INVALID; 5953 } 5954 } 5955 } 5956 5957 static void clean_verifier_state(struct bpf_verifier_env *env, 5958 struct bpf_verifier_state *st) 5959 { 5960 int i; 5961 5962 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5963 /* all regs in this state in all frames were already marked */ 5964 return; 5965 5966 for (i = 0; i <= st->curframe; i++) 5967 clean_func_state(env, st->frame[i]); 5968 } 5969 5970 /* the parentage chains form a tree. 5971 * the verifier states are added to state lists at given insn and 5972 * pushed into state stack for future exploration. 5973 * when the verifier reaches bpf_exit insn some of the verifer states 5974 * stored in the state lists have their final liveness state already, 5975 * but a lot of states will get revised from liveness point of view when 5976 * the verifier explores other branches. 5977 * Example: 5978 * 1: r0 = 1 5979 * 2: if r1 == 100 goto pc+1 5980 * 3: r0 = 2 5981 * 4: exit 5982 * when the verifier reaches exit insn the register r0 in the state list of 5983 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5984 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5985 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5986 * 5987 * Since the verifier pushes the branch states as it sees them while exploring 5988 * the program the condition of walking the branch instruction for the second 5989 * time means that all states below this branch were already explored and 5990 * their final liveness markes are already propagated. 5991 * Hence when the verifier completes the search of state list in is_state_visited() 5992 * we can call this clean_live_states() function to mark all liveness states 5993 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5994 * will not be used. 5995 * This function also clears the registers and stack for states that !READ 5996 * to simplify state merging. 5997 * 5998 * Important note here that walking the same branch instruction in the callee 5999 * doesn't meant that the states are DONE. The verifier has to compare 6000 * the callsites 6001 */ 6002 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6003 struct bpf_verifier_state *cur) 6004 { 6005 struct bpf_verifier_state_list *sl; 6006 int i; 6007 6008 sl = env->explored_states[insn]; 6009 if (!sl) 6010 return; 6011 6012 while (sl != STATE_LIST_MARK) { 6013 if (sl->state.curframe != cur->curframe) 6014 goto next; 6015 for (i = 0; i <= cur->curframe; i++) 6016 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6017 goto next; 6018 clean_verifier_state(env, &sl->state); 6019 next: 6020 sl = sl->next; 6021 } 6022 } 6023 6024 /* Returns true if (rold safe implies rcur safe) */ 6025 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6026 struct idpair *idmap) 6027 { 6028 bool equal; 6029 6030 if (!(rold->live & REG_LIVE_READ)) 6031 /* explored state didn't use this */ 6032 return true; 6033 6034 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6035 6036 if (rold->type == PTR_TO_STACK) 6037 /* two stack pointers are equal only if they're pointing to 6038 * the same stack frame, since fp-8 in foo != fp-8 in bar 6039 */ 6040 return equal && rold->frameno == rcur->frameno; 6041 6042 if (equal) 6043 return true; 6044 6045 if (rold->type == NOT_INIT) 6046 /* explored state can't have used this */ 6047 return true; 6048 if (rcur->type == NOT_INIT) 6049 return false; 6050 switch (rold->type) { 6051 case SCALAR_VALUE: 6052 if (rcur->type == SCALAR_VALUE) { 6053 /* new val must satisfy old val knowledge */ 6054 return range_within(rold, rcur) && 6055 tnum_in(rold->var_off, rcur->var_off); 6056 } else { 6057 /* We're trying to use a pointer in place of a scalar. 6058 * Even if the scalar was unbounded, this could lead to 6059 * pointer leaks because scalars are allowed to leak 6060 * while pointers are not. We could make this safe in 6061 * special cases if root is calling us, but it's 6062 * probably not worth the hassle. 6063 */ 6064 return false; 6065 } 6066 case PTR_TO_MAP_VALUE: 6067 /* If the new min/max/var_off satisfy the old ones and 6068 * everything else matches, we are OK. 6069 * 'id' is not compared, since it's only used for maps with 6070 * bpf_spin_lock inside map element and in such cases if 6071 * the rest of the prog is valid for one map element then 6072 * it's valid for all map elements regardless of the key 6073 * used in bpf_map_lookup() 6074 */ 6075 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6076 range_within(rold, rcur) && 6077 tnum_in(rold->var_off, rcur->var_off); 6078 case PTR_TO_MAP_VALUE_OR_NULL: 6079 /* a PTR_TO_MAP_VALUE could be safe to use as a 6080 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6081 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6082 * checked, doing so could have affected others with the same 6083 * id, and we can't check for that because we lost the id when 6084 * we converted to a PTR_TO_MAP_VALUE. 6085 */ 6086 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6087 return false; 6088 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6089 return false; 6090 /* Check our ids match any regs they're supposed to */ 6091 return check_ids(rold->id, rcur->id, idmap); 6092 case PTR_TO_PACKET_META: 6093 case PTR_TO_PACKET: 6094 if (rcur->type != rold->type) 6095 return false; 6096 /* We must have at least as much range as the old ptr 6097 * did, so that any accesses which were safe before are 6098 * still safe. This is true even if old range < old off, 6099 * since someone could have accessed through (ptr - k), or 6100 * even done ptr -= k in a register, to get a safe access. 6101 */ 6102 if (rold->range > rcur->range) 6103 return false; 6104 /* If the offsets don't match, we can't trust our alignment; 6105 * nor can we be sure that we won't fall out of range. 6106 */ 6107 if (rold->off != rcur->off) 6108 return false; 6109 /* id relations must be preserved */ 6110 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6111 return false; 6112 /* new val must satisfy old val knowledge */ 6113 return range_within(rold, rcur) && 6114 tnum_in(rold->var_off, rcur->var_off); 6115 case PTR_TO_CTX: 6116 case CONST_PTR_TO_MAP: 6117 case PTR_TO_PACKET_END: 6118 case PTR_TO_FLOW_KEYS: 6119 case PTR_TO_SOCKET: 6120 case PTR_TO_SOCKET_OR_NULL: 6121 case PTR_TO_SOCK_COMMON: 6122 case PTR_TO_SOCK_COMMON_OR_NULL: 6123 case PTR_TO_TCP_SOCK: 6124 case PTR_TO_TCP_SOCK_OR_NULL: 6125 /* Only valid matches are exact, which memcmp() above 6126 * would have accepted 6127 */ 6128 default: 6129 /* Don't know what's going on, just say it's not safe */ 6130 return false; 6131 } 6132 6133 /* Shouldn't get here; if we do, say it's not safe */ 6134 WARN_ON_ONCE(1); 6135 return false; 6136 } 6137 6138 static bool stacksafe(struct bpf_func_state *old, 6139 struct bpf_func_state *cur, 6140 struct idpair *idmap) 6141 { 6142 int i, spi; 6143 6144 /* walk slots of the explored stack and ignore any additional 6145 * slots in the current stack, since explored(safe) state 6146 * didn't use them 6147 */ 6148 for (i = 0; i < old->allocated_stack; i++) { 6149 spi = i / BPF_REG_SIZE; 6150 6151 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6152 i += BPF_REG_SIZE - 1; 6153 /* explored state didn't use this */ 6154 continue; 6155 } 6156 6157 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6158 continue; 6159 6160 /* explored stack has more populated slots than current stack 6161 * and these slots were used 6162 */ 6163 if (i >= cur->allocated_stack) 6164 return false; 6165 6166 /* if old state was safe with misc data in the stack 6167 * it will be safe with zero-initialized stack. 6168 * The opposite is not true 6169 */ 6170 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6171 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6172 continue; 6173 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6174 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6175 /* Ex: old explored (safe) state has STACK_SPILL in 6176 * this stack slot, but current has has STACK_MISC -> 6177 * this verifier states are not equivalent, 6178 * return false to continue verification of this path 6179 */ 6180 return false; 6181 if (i % BPF_REG_SIZE) 6182 continue; 6183 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6184 continue; 6185 if (!regsafe(&old->stack[spi].spilled_ptr, 6186 &cur->stack[spi].spilled_ptr, 6187 idmap)) 6188 /* when explored and current stack slot are both storing 6189 * spilled registers, check that stored pointers types 6190 * are the same as well. 6191 * Ex: explored safe path could have stored 6192 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6193 * but current path has stored: 6194 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6195 * such verifier states are not equivalent. 6196 * return false to continue verification of this path 6197 */ 6198 return false; 6199 } 6200 return true; 6201 } 6202 6203 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6204 { 6205 if (old->acquired_refs != cur->acquired_refs) 6206 return false; 6207 return !memcmp(old->refs, cur->refs, 6208 sizeof(*old->refs) * old->acquired_refs); 6209 } 6210 6211 /* compare two verifier states 6212 * 6213 * all states stored in state_list are known to be valid, since 6214 * verifier reached 'bpf_exit' instruction through them 6215 * 6216 * this function is called when verifier exploring different branches of 6217 * execution popped from the state stack. If it sees an old state that has 6218 * more strict register state and more strict stack state then this execution 6219 * branch doesn't need to be explored further, since verifier already 6220 * concluded that more strict state leads to valid finish. 6221 * 6222 * Therefore two states are equivalent if register state is more conservative 6223 * and explored stack state is more conservative than the current one. 6224 * Example: 6225 * explored current 6226 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 6227 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 6228 * 6229 * In other words if current stack state (one being explored) has more 6230 * valid slots than old one that already passed validation, it means 6231 * the verifier can stop exploring and conclude that current state is valid too 6232 * 6233 * Similarly with registers. If explored state has register type as invalid 6234 * whereas register type in current state is meaningful, it means that 6235 * the current state will reach 'bpf_exit' instruction safely 6236 */ 6237 static bool func_states_equal(struct bpf_func_state *old, 6238 struct bpf_func_state *cur) 6239 { 6240 struct idpair *idmap; 6241 bool ret = false; 6242 int i; 6243 6244 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6245 /* If we failed to allocate the idmap, just say it's not safe */ 6246 if (!idmap) 6247 return false; 6248 6249 for (i = 0; i < MAX_BPF_REG; i++) { 6250 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6251 goto out_free; 6252 } 6253 6254 if (!stacksafe(old, cur, idmap)) 6255 goto out_free; 6256 6257 if (!refsafe(old, cur)) 6258 goto out_free; 6259 ret = true; 6260 out_free: 6261 kfree(idmap); 6262 return ret; 6263 } 6264 6265 static bool states_equal(struct bpf_verifier_env *env, 6266 struct bpf_verifier_state *old, 6267 struct bpf_verifier_state *cur) 6268 { 6269 int i; 6270 6271 if (old->curframe != cur->curframe) 6272 return false; 6273 6274 /* Verification state from speculative execution simulation 6275 * must never prune a non-speculative execution one. 6276 */ 6277 if (old->speculative && !cur->speculative) 6278 return false; 6279 6280 if (old->active_spin_lock != cur->active_spin_lock) 6281 return false; 6282 6283 /* for states to be equal callsites have to be the same 6284 * and all frame states need to be equivalent 6285 */ 6286 for (i = 0; i <= old->curframe; i++) { 6287 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6288 return false; 6289 if (!func_states_equal(old->frame[i], cur->frame[i])) 6290 return false; 6291 } 6292 return true; 6293 } 6294 6295 static int propagate_liveness_reg(struct bpf_verifier_env *env, 6296 struct bpf_reg_state *reg, 6297 struct bpf_reg_state *parent_reg) 6298 { 6299 int err; 6300 6301 if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ)) 6302 return 0; 6303 6304 err = mark_reg_read(env, reg, parent_reg); 6305 if (err) 6306 return err; 6307 6308 return 0; 6309 } 6310 6311 /* A write screens off any subsequent reads; but write marks come from the 6312 * straight-line code between a state and its parent. When we arrive at an 6313 * equivalent state (jump target or such) we didn't arrive by the straight-line 6314 * code, so read marks in the state must propagate to the parent regardless 6315 * of the state's write marks. That's what 'parent == state->parent' comparison 6316 * in mark_reg_read() is for. 6317 */ 6318 static int propagate_liveness(struct bpf_verifier_env *env, 6319 const struct bpf_verifier_state *vstate, 6320 struct bpf_verifier_state *vparent) 6321 { 6322 struct bpf_reg_state *state_reg, *parent_reg; 6323 struct bpf_func_state *state, *parent; 6324 int i, frame, err = 0; 6325 6326 if (vparent->curframe != vstate->curframe) { 6327 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6328 vparent->curframe, vstate->curframe); 6329 return -EFAULT; 6330 } 6331 /* Propagate read liveness of registers... */ 6332 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6333 for (frame = 0; frame <= vstate->curframe; frame++) { 6334 parent = vparent->frame[frame]; 6335 state = vstate->frame[frame]; 6336 parent_reg = parent->regs; 6337 state_reg = state->regs; 6338 /* We don't need to worry about FP liveness, it's read-only */ 6339 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 6340 err = propagate_liveness_reg(env, &state_reg[i], 6341 &parent_reg[i]); 6342 if (err) 6343 return err; 6344 } 6345 6346 /* Propagate stack slots. */ 6347 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6348 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6349 parent_reg = &parent->stack[i].spilled_ptr; 6350 state_reg = &state->stack[i].spilled_ptr; 6351 err = propagate_liveness_reg(env, state_reg, 6352 parent_reg); 6353 if (err) 6354 return err; 6355 } 6356 } 6357 return err; 6358 } 6359 6360 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6361 { 6362 struct bpf_verifier_state_list *new_sl; 6363 struct bpf_verifier_state_list *sl, **pprev; 6364 struct bpf_verifier_state *cur = env->cur_state, *new; 6365 int i, j, err, states_cnt = 0; 6366 6367 pprev = &env->explored_states[insn_idx]; 6368 sl = *pprev; 6369 6370 if (!sl) 6371 /* this 'insn_idx' instruction wasn't marked, so we will not 6372 * be doing state search here 6373 */ 6374 return 0; 6375 6376 clean_live_states(env, insn_idx, cur); 6377 6378 while (sl != STATE_LIST_MARK) { 6379 if (states_equal(env, &sl->state, cur)) { 6380 sl->hit_cnt++; 6381 /* reached equivalent register/stack state, 6382 * prune the search. 6383 * Registers read by the continuation are read by us. 6384 * If we have any write marks in env->cur_state, they 6385 * will prevent corresponding reads in the continuation 6386 * from reaching our parent (an explored_state). Our 6387 * own state will get the read marks recorded, but 6388 * they'll be immediately forgotten as we're pruning 6389 * this state and will pop a new one. 6390 */ 6391 err = propagate_liveness(env, &sl->state, cur); 6392 if (err) 6393 return err; 6394 return 1; 6395 } 6396 states_cnt++; 6397 sl->miss_cnt++; 6398 /* heuristic to determine whether this state is beneficial 6399 * to keep checking from state equivalence point of view. 6400 * Higher numbers increase max_states_per_insn and verification time, 6401 * but do not meaningfully decrease insn_processed. 6402 */ 6403 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 6404 /* the state is unlikely to be useful. Remove it to 6405 * speed up verification 6406 */ 6407 *pprev = sl->next; 6408 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 6409 free_verifier_state(&sl->state, false); 6410 kfree(sl); 6411 env->peak_states--; 6412 } else { 6413 /* cannot free this state, since parentage chain may 6414 * walk it later. Add it for free_list instead to 6415 * be freed at the end of verification 6416 */ 6417 sl->next = env->free_list; 6418 env->free_list = sl; 6419 } 6420 sl = *pprev; 6421 continue; 6422 } 6423 pprev = &sl->next; 6424 sl = *pprev; 6425 } 6426 6427 if (env->max_states_per_insn < states_cnt) 6428 env->max_states_per_insn = states_cnt; 6429 6430 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6431 return 0; 6432 6433 /* there were no equivalent states, remember current one. 6434 * technically the current state is not proven to be safe yet, 6435 * but it will either reach outer most bpf_exit (which means it's safe) 6436 * or it will be rejected. Since there are no loops, we won't be 6437 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6438 * again on the way to bpf_exit 6439 */ 6440 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6441 if (!new_sl) 6442 return -ENOMEM; 6443 env->total_states++; 6444 env->peak_states++; 6445 6446 /* add new state to the head of linked list */ 6447 new = &new_sl->state; 6448 err = copy_verifier_state(new, cur); 6449 if (err) { 6450 free_verifier_state(new, false); 6451 kfree(new_sl); 6452 return err; 6453 } 6454 new_sl->next = env->explored_states[insn_idx]; 6455 env->explored_states[insn_idx] = new_sl; 6456 /* connect new state to parentage chain. Current frame needs all 6457 * registers connected. Only r6 - r9 of the callers are alive (pushed 6458 * to the stack implicitly by JITs) so in callers' frames connect just 6459 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6460 * the state of the call instruction (with WRITTEN set), and r0 comes 6461 * from callee with its full parentage chain, anyway. 6462 */ 6463 for (j = 0; j <= cur->curframe; j++) 6464 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6465 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6466 /* clear write marks in current state: the writes we did are not writes 6467 * our child did, so they don't screen off its reads from us. 6468 * (There are no read marks in current state, because reads always mark 6469 * their parent and current state never has children yet. Only 6470 * explored_states can get read marks.) 6471 */ 6472 for (i = 0; i < BPF_REG_FP; i++) 6473 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6474 6475 /* all stack frames are accessible from callee, clear them all */ 6476 for (j = 0; j <= cur->curframe; j++) { 6477 struct bpf_func_state *frame = cur->frame[j]; 6478 struct bpf_func_state *newframe = new->frame[j]; 6479 6480 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6481 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6482 frame->stack[i].spilled_ptr.parent = 6483 &newframe->stack[i].spilled_ptr; 6484 } 6485 } 6486 return 0; 6487 } 6488 6489 /* Return true if it's OK to have the same insn return a different type. */ 6490 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6491 { 6492 switch (type) { 6493 case PTR_TO_CTX: 6494 case PTR_TO_SOCKET: 6495 case PTR_TO_SOCKET_OR_NULL: 6496 case PTR_TO_SOCK_COMMON: 6497 case PTR_TO_SOCK_COMMON_OR_NULL: 6498 case PTR_TO_TCP_SOCK: 6499 case PTR_TO_TCP_SOCK_OR_NULL: 6500 return false; 6501 default: 6502 return true; 6503 } 6504 } 6505 6506 /* If an instruction was previously used with particular pointer types, then we 6507 * need to be careful to avoid cases such as the below, where it may be ok 6508 * for one branch accessing the pointer, but not ok for the other branch: 6509 * 6510 * R1 = sock_ptr 6511 * goto X; 6512 * ... 6513 * R1 = some_other_valid_ptr; 6514 * goto X; 6515 * ... 6516 * R2 = *(u32 *)(R1 + 0); 6517 */ 6518 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6519 { 6520 return src != prev && (!reg_type_mismatch_ok(src) || 6521 !reg_type_mismatch_ok(prev)); 6522 } 6523 6524 static int do_check(struct bpf_verifier_env *env) 6525 { 6526 struct bpf_verifier_state *state; 6527 struct bpf_insn *insns = env->prog->insnsi; 6528 struct bpf_reg_state *regs; 6529 int insn_cnt = env->prog->len; 6530 bool do_print_state = false; 6531 6532 env->prev_linfo = NULL; 6533 6534 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6535 if (!state) 6536 return -ENOMEM; 6537 state->curframe = 0; 6538 state->speculative = false; 6539 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6540 if (!state->frame[0]) { 6541 kfree(state); 6542 return -ENOMEM; 6543 } 6544 env->cur_state = state; 6545 init_func_state(env, state->frame[0], 6546 BPF_MAIN_FUNC /* callsite */, 6547 0 /* frameno */, 6548 0 /* subprogno, zero == main subprog */); 6549 6550 for (;;) { 6551 struct bpf_insn *insn; 6552 u8 class; 6553 int err; 6554 6555 if (env->insn_idx >= insn_cnt) { 6556 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6557 env->insn_idx, insn_cnt); 6558 return -EFAULT; 6559 } 6560 6561 insn = &insns[env->insn_idx]; 6562 class = BPF_CLASS(insn->code); 6563 6564 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6565 verbose(env, 6566 "BPF program is too large. Processed %d insn\n", 6567 env->insn_processed); 6568 return -E2BIG; 6569 } 6570 6571 err = is_state_visited(env, env->insn_idx); 6572 if (err < 0) 6573 return err; 6574 if (err == 1) { 6575 /* found equivalent state, can prune the search */ 6576 if (env->log.level & BPF_LOG_LEVEL) { 6577 if (do_print_state) 6578 verbose(env, "\nfrom %d to %d%s: safe\n", 6579 env->prev_insn_idx, env->insn_idx, 6580 env->cur_state->speculative ? 6581 " (speculative execution)" : ""); 6582 else 6583 verbose(env, "%d: safe\n", env->insn_idx); 6584 } 6585 goto process_bpf_exit; 6586 } 6587 6588 if (signal_pending(current)) 6589 return -EAGAIN; 6590 6591 if (need_resched()) 6592 cond_resched(); 6593 6594 if (env->log.level & BPF_LOG_LEVEL2 || 6595 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 6596 if (env->log.level & BPF_LOG_LEVEL2) 6597 verbose(env, "%d:", env->insn_idx); 6598 else 6599 verbose(env, "\nfrom %d to %d%s:", 6600 env->prev_insn_idx, env->insn_idx, 6601 env->cur_state->speculative ? 6602 " (speculative execution)" : ""); 6603 print_verifier_state(env, state->frame[state->curframe]); 6604 do_print_state = false; 6605 } 6606 6607 if (env->log.level & BPF_LOG_LEVEL) { 6608 const struct bpf_insn_cbs cbs = { 6609 .cb_print = verbose, 6610 .private_data = env, 6611 }; 6612 6613 verbose_linfo(env, env->insn_idx, "; "); 6614 verbose(env, "%d: ", env->insn_idx); 6615 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6616 } 6617 6618 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6619 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6620 env->prev_insn_idx); 6621 if (err) 6622 return err; 6623 } 6624 6625 regs = cur_regs(env); 6626 env->insn_aux_data[env->insn_idx].seen = true; 6627 6628 if (class == BPF_ALU || class == BPF_ALU64) { 6629 err = check_alu_op(env, insn); 6630 if (err) 6631 return err; 6632 6633 } else if (class == BPF_LDX) { 6634 enum bpf_reg_type *prev_src_type, src_reg_type; 6635 6636 /* check for reserved fields is already done */ 6637 6638 /* check src operand */ 6639 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6640 if (err) 6641 return err; 6642 6643 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6644 if (err) 6645 return err; 6646 6647 src_reg_type = regs[insn->src_reg].type; 6648 6649 /* check that memory (src_reg + off) is readable, 6650 * the state of dst_reg will be updated by this func 6651 */ 6652 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6653 insn->off, BPF_SIZE(insn->code), 6654 BPF_READ, insn->dst_reg, false); 6655 if (err) 6656 return err; 6657 6658 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6659 6660 if (*prev_src_type == NOT_INIT) { 6661 /* saw a valid insn 6662 * dst_reg = *(u32 *)(src_reg + off) 6663 * save type to validate intersecting paths 6664 */ 6665 *prev_src_type = src_reg_type; 6666 6667 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6668 /* ABuser program is trying to use the same insn 6669 * dst_reg = *(u32*) (src_reg + off) 6670 * with different pointer types: 6671 * src_reg == ctx in one branch and 6672 * src_reg == stack|map in some other branch. 6673 * Reject it. 6674 */ 6675 verbose(env, "same insn cannot be used with different pointers\n"); 6676 return -EINVAL; 6677 } 6678 6679 } else if (class == BPF_STX) { 6680 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6681 6682 if (BPF_MODE(insn->code) == BPF_XADD) { 6683 err = check_xadd(env, env->insn_idx, insn); 6684 if (err) 6685 return err; 6686 env->insn_idx++; 6687 continue; 6688 } 6689 6690 /* check src1 operand */ 6691 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6692 if (err) 6693 return err; 6694 /* check src2 operand */ 6695 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6696 if (err) 6697 return err; 6698 6699 dst_reg_type = regs[insn->dst_reg].type; 6700 6701 /* check that memory (dst_reg + off) is writeable */ 6702 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6703 insn->off, BPF_SIZE(insn->code), 6704 BPF_WRITE, insn->src_reg, false); 6705 if (err) 6706 return err; 6707 6708 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6709 6710 if (*prev_dst_type == NOT_INIT) { 6711 *prev_dst_type = dst_reg_type; 6712 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6713 verbose(env, "same insn cannot be used with different pointers\n"); 6714 return -EINVAL; 6715 } 6716 6717 } else if (class == BPF_ST) { 6718 if (BPF_MODE(insn->code) != BPF_MEM || 6719 insn->src_reg != BPF_REG_0) { 6720 verbose(env, "BPF_ST uses reserved fields\n"); 6721 return -EINVAL; 6722 } 6723 /* check src operand */ 6724 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6725 if (err) 6726 return err; 6727 6728 if (is_ctx_reg(env, insn->dst_reg)) { 6729 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6730 insn->dst_reg, 6731 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6732 return -EACCES; 6733 } 6734 6735 /* check that memory (dst_reg + off) is writeable */ 6736 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6737 insn->off, BPF_SIZE(insn->code), 6738 BPF_WRITE, -1, false); 6739 if (err) 6740 return err; 6741 6742 } else if (class == BPF_JMP || class == BPF_JMP32) { 6743 u8 opcode = BPF_OP(insn->code); 6744 6745 if (opcode == BPF_CALL) { 6746 if (BPF_SRC(insn->code) != BPF_K || 6747 insn->off != 0 || 6748 (insn->src_reg != BPF_REG_0 && 6749 insn->src_reg != BPF_PSEUDO_CALL) || 6750 insn->dst_reg != BPF_REG_0 || 6751 class == BPF_JMP32) { 6752 verbose(env, "BPF_CALL uses reserved fields\n"); 6753 return -EINVAL; 6754 } 6755 6756 if (env->cur_state->active_spin_lock && 6757 (insn->src_reg == BPF_PSEUDO_CALL || 6758 insn->imm != BPF_FUNC_spin_unlock)) { 6759 verbose(env, "function calls are not allowed while holding a lock\n"); 6760 return -EINVAL; 6761 } 6762 if (insn->src_reg == BPF_PSEUDO_CALL) 6763 err = check_func_call(env, insn, &env->insn_idx); 6764 else 6765 err = check_helper_call(env, insn->imm, env->insn_idx); 6766 if (err) 6767 return err; 6768 6769 } else if (opcode == BPF_JA) { 6770 if (BPF_SRC(insn->code) != BPF_K || 6771 insn->imm != 0 || 6772 insn->src_reg != BPF_REG_0 || 6773 insn->dst_reg != BPF_REG_0 || 6774 class == BPF_JMP32) { 6775 verbose(env, "BPF_JA uses reserved fields\n"); 6776 return -EINVAL; 6777 } 6778 6779 env->insn_idx += insn->off + 1; 6780 continue; 6781 6782 } else if (opcode == BPF_EXIT) { 6783 if (BPF_SRC(insn->code) != BPF_K || 6784 insn->imm != 0 || 6785 insn->src_reg != BPF_REG_0 || 6786 insn->dst_reg != BPF_REG_0 || 6787 class == BPF_JMP32) { 6788 verbose(env, "BPF_EXIT uses reserved fields\n"); 6789 return -EINVAL; 6790 } 6791 6792 if (env->cur_state->active_spin_lock) { 6793 verbose(env, "bpf_spin_unlock is missing\n"); 6794 return -EINVAL; 6795 } 6796 6797 if (state->curframe) { 6798 /* exit from nested function */ 6799 env->prev_insn_idx = env->insn_idx; 6800 err = prepare_func_exit(env, &env->insn_idx); 6801 if (err) 6802 return err; 6803 do_print_state = true; 6804 continue; 6805 } 6806 6807 err = check_reference_leak(env); 6808 if (err) 6809 return err; 6810 6811 /* eBPF calling convetion is such that R0 is used 6812 * to return the value from eBPF program. 6813 * Make sure that it's readable at this time 6814 * of bpf_exit, which means that program wrote 6815 * something into it earlier 6816 */ 6817 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6818 if (err) 6819 return err; 6820 6821 if (is_pointer_value(env, BPF_REG_0)) { 6822 verbose(env, "R0 leaks addr as return value\n"); 6823 return -EACCES; 6824 } 6825 6826 err = check_return_code(env); 6827 if (err) 6828 return err; 6829 process_bpf_exit: 6830 err = pop_stack(env, &env->prev_insn_idx, 6831 &env->insn_idx); 6832 if (err < 0) { 6833 if (err != -ENOENT) 6834 return err; 6835 break; 6836 } else { 6837 do_print_state = true; 6838 continue; 6839 } 6840 } else { 6841 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6842 if (err) 6843 return err; 6844 } 6845 } else if (class == BPF_LD) { 6846 u8 mode = BPF_MODE(insn->code); 6847 6848 if (mode == BPF_ABS || mode == BPF_IND) { 6849 err = check_ld_abs(env, insn); 6850 if (err) 6851 return err; 6852 6853 } else if (mode == BPF_IMM) { 6854 err = check_ld_imm(env, insn); 6855 if (err) 6856 return err; 6857 6858 env->insn_idx++; 6859 env->insn_aux_data[env->insn_idx].seen = true; 6860 } else { 6861 verbose(env, "invalid BPF_LD mode\n"); 6862 return -EINVAL; 6863 } 6864 } else { 6865 verbose(env, "unknown insn class %d\n", class); 6866 return -EINVAL; 6867 } 6868 6869 env->insn_idx++; 6870 } 6871 6872 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6873 return 0; 6874 } 6875 6876 static int check_map_prealloc(struct bpf_map *map) 6877 { 6878 return (map->map_type != BPF_MAP_TYPE_HASH && 6879 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6880 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6881 !(map->map_flags & BPF_F_NO_PREALLOC); 6882 } 6883 6884 static bool is_tracing_prog_type(enum bpf_prog_type type) 6885 { 6886 switch (type) { 6887 case BPF_PROG_TYPE_KPROBE: 6888 case BPF_PROG_TYPE_TRACEPOINT: 6889 case BPF_PROG_TYPE_PERF_EVENT: 6890 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6891 return true; 6892 default: 6893 return false; 6894 } 6895 } 6896 6897 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6898 struct bpf_map *map, 6899 struct bpf_prog *prog) 6900 6901 { 6902 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6903 * preallocated hash maps, since doing memory allocation 6904 * in overflow_handler can crash depending on where nmi got 6905 * triggered. 6906 */ 6907 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6908 if (!check_map_prealloc(map)) { 6909 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6910 return -EINVAL; 6911 } 6912 if (map->inner_map_meta && 6913 !check_map_prealloc(map->inner_map_meta)) { 6914 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6915 return -EINVAL; 6916 } 6917 } 6918 6919 if ((is_tracing_prog_type(prog->type) || 6920 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 6921 map_value_has_spin_lock(map)) { 6922 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 6923 return -EINVAL; 6924 } 6925 6926 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6927 !bpf_offload_prog_map_match(prog, map)) { 6928 verbose(env, "offload device mismatch between prog and map\n"); 6929 return -EINVAL; 6930 } 6931 6932 return 0; 6933 } 6934 6935 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6936 { 6937 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6938 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6939 } 6940 6941 /* look for pseudo eBPF instructions that access map FDs and 6942 * replace them with actual map pointers 6943 */ 6944 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6945 { 6946 struct bpf_insn *insn = env->prog->insnsi; 6947 int insn_cnt = env->prog->len; 6948 int i, j, err; 6949 6950 err = bpf_prog_calc_tag(env->prog); 6951 if (err) 6952 return err; 6953 6954 for (i = 0; i < insn_cnt; i++, insn++) { 6955 if (BPF_CLASS(insn->code) == BPF_LDX && 6956 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6957 verbose(env, "BPF_LDX uses reserved fields\n"); 6958 return -EINVAL; 6959 } 6960 6961 if (BPF_CLASS(insn->code) == BPF_STX && 6962 ((BPF_MODE(insn->code) != BPF_MEM && 6963 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6964 verbose(env, "BPF_STX uses reserved fields\n"); 6965 return -EINVAL; 6966 } 6967 6968 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6969 struct bpf_insn_aux_data *aux; 6970 struct bpf_map *map; 6971 struct fd f; 6972 u64 addr; 6973 6974 if (i == insn_cnt - 1 || insn[1].code != 0 || 6975 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6976 insn[1].off != 0) { 6977 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6978 return -EINVAL; 6979 } 6980 6981 if (insn[0].src_reg == 0) 6982 /* valid generic load 64-bit imm */ 6983 goto next_insn; 6984 6985 /* In final convert_pseudo_ld_imm64() step, this is 6986 * converted into regular 64-bit imm load insn. 6987 */ 6988 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 6989 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 6990 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 6991 insn[1].imm != 0)) { 6992 verbose(env, 6993 "unrecognized bpf_ld_imm64 insn\n"); 6994 return -EINVAL; 6995 } 6996 6997 f = fdget(insn[0].imm); 6998 map = __bpf_map_get(f); 6999 if (IS_ERR(map)) { 7000 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7001 insn[0].imm); 7002 return PTR_ERR(map); 7003 } 7004 7005 err = check_map_prog_compatibility(env, map, env->prog); 7006 if (err) { 7007 fdput(f); 7008 return err; 7009 } 7010 7011 aux = &env->insn_aux_data[i]; 7012 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7013 addr = (unsigned long)map; 7014 } else { 7015 u32 off = insn[1].imm; 7016 7017 if (off >= BPF_MAX_VAR_OFF) { 7018 verbose(env, "direct value offset of %u is not allowed\n", off); 7019 fdput(f); 7020 return -EINVAL; 7021 } 7022 7023 if (!map->ops->map_direct_value_addr) { 7024 verbose(env, "no direct value access support for this map type\n"); 7025 fdput(f); 7026 return -EINVAL; 7027 } 7028 7029 err = map->ops->map_direct_value_addr(map, &addr, off); 7030 if (err) { 7031 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7032 map->value_size, off); 7033 fdput(f); 7034 return err; 7035 } 7036 7037 aux->map_off = off; 7038 addr += off; 7039 } 7040 7041 insn[0].imm = (u32)addr; 7042 insn[1].imm = addr >> 32; 7043 7044 /* check whether we recorded this map already */ 7045 for (j = 0; j < env->used_map_cnt; j++) { 7046 if (env->used_maps[j] == map) { 7047 aux->map_index = j; 7048 fdput(f); 7049 goto next_insn; 7050 } 7051 } 7052 7053 if (env->used_map_cnt >= MAX_USED_MAPS) { 7054 fdput(f); 7055 return -E2BIG; 7056 } 7057 7058 /* hold the map. If the program is rejected by verifier, 7059 * the map will be released by release_maps() or it 7060 * will be used by the valid program until it's unloaded 7061 * and all maps are released in free_used_maps() 7062 */ 7063 map = bpf_map_inc(map, false); 7064 if (IS_ERR(map)) { 7065 fdput(f); 7066 return PTR_ERR(map); 7067 } 7068 7069 aux->map_index = env->used_map_cnt; 7070 env->used_maps[env->used_map_cnt++] = map; 7071 7072 if (bpf_map_is_cgroup_storage(map) && 7073 bpf_cgroup_storage_assign(env->prog, map)) { 7074 verbose(env, "only one cgroup storage of each type is allowed\n"); 7075 fdput(f); 7076 return -EBUSY; 7077 } 7078 7079 fdput(f); 7080 next_insn: 7081 insn++; 7082 i++; 7083 continue; 7084 } 7085 7086 /* Basic sanity check before we invest more work here. */ 7087 if (!bpf_opcode_in_insntable(insn->code)) { 7088 verbose(env, "unknown opcode %02x\n", insn->code); 7089 return -EINVAL; 7090 } 7091 } 7092 7093 /* now all pseudo BPF_LD_IMM64 instructions load valid 7094 * 'struct bpf_map *' into a register instead of user map_fd. 7095 * These pointers will be used later by verifier to validate map access. 7096 */ 7097 return 0; 7098 } 7099 7100 /* drop refcnt of maps used by the rejected program */ 7101 static void release_maps(struct bpf_verifier_env *env) 7102 { 7103 enum bpf_cgroup_storage_type stype; 7104 int i; 7105 7106 for_each_cgroup_storage_type(stype) { 7107 if (!env->prog->aux->cgroup_storage[stype]) 7108 continue; 7109 bpf_cgroup_storage_release(env->prog, 7110 env->prog->aux->cgroup_storage[stype]); 7111 } 7112 7113 for (i = 0; i < env->used_map_cnt; i++) 7114 bpf_map_put(env->used_maps[i]); 7115 } 7116 7117 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 7118 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 7119 { 7120 struct bpf_insn *insn = env->prog->insnsi; 7121 int insn_cnt = env->prog->len; 7122 int i; 7123 7124 for (i = 0; i < insn_cnt; i++, insn++) 7125 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 7126 insn->src_reg = 0; 7127 } 7128 7129 /* single env->prog->insni[off] instruction was replaced with the range 7130 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 7131 * [0, off) and [off, end) to new locations, so the patched range stays zero 7132 */ 7133 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 7134 u32 off, u32 cnt) 7135 { 7136 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 7137 int i; 7138 7139 if (cnt == 1) 7140 return 0; 7141 new_data = vzalloc(array_size(prog_len, 7142 sizeof(struct bpf_insn_aux_data))); 7143 if (!new_data) 7144 return -ENOMEM; 7145 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 7146 memcpy(new_data + off + cnt - 1, old_data + off, 7147 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 7148 for (i = off; i < off + cnt - 1; i++) 7149 new_data[i].seen = true; 7150 env->insn_aux_data = new_data; 7151 vfree(old_data); 7152 return 0; 7153 } 7154 7155 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 7156 { 7157 int i; 7158 7159 if (len == 1) 7160 return; 7161 /* NOTE: fake 'exit' subprog should be updated as well. */ 7162 for (i = 0; i <= env->subprog_cnt; i++) { 7163 if (env->subprog_info[i].start <= off) 7164 continue; 7165 env->subprog_info[i].start += len - 1; 7166 } 7167 } 7168 7169 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 7170 const struct bpf_insn *patch, u32 len) 7171 { 7172 struct bpf_prog *new_prog; 7173 7174 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 7175 if (IS_ERR(new_prog)) { 7176 if (PTR_ERR(new_prog) == -ERANGE) 7177 verbose(env, 7178 "insn %d cannot be patched due to 16-bit range\n", 7179 env->insn_aux_data[off].orig_idx); 7180 return NULL; 7181 } 7182 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 7183 return NULL; 7184 adjust_subprog_starts(env, off, len); 7185 return new_prog; 7186 } 7187 7188 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 7189 u32 off, u32 cnt) 7190 { 7191 int i, j; 7192 7193 /* find first prog starting at or after off (first to remove) */ 7194 for (i = 0; i < env->subprog_cnt; i++) 7195 if (env->subprog_info[i].start >= off) 7196 break; 7197 /* find first prog starting at or after off + cnt (first to stay) */ 7198 for (j = i; j < env->subprog_cnt; j++) 7199 if (env->subprog_info[j].start >= off + cnt) 7200 break; 7201 /* if j doesn't start exactly at off + cnt, we are just removing 7202 * the front of previous prog 7203 */ 7204 if (env->subprog_info[j].start != off + cnt) 7205 j--; 7206 7207 if (j > i) { 7208 struct bpf_prog_aux *aux = env->prog->aux; 7209 int move; 7210 7211 /* move fake 'exit' subprog as well */ 7212 move = env->subprog_cnt + 1 - j; 7213 7214 memmove(env->subprog_info + i, 7215 env->subprog_info + j, 7216 sizeof(*env->subprog_info) * move); 7217 env->subprog_cnt -= j - i; 7218 7219 /* remove func_info */ 7220 if (aux->func_info) { 7221 move = aux->func_info_cnt - j; 7222 7223 memmove(aux->func_info + i, 7224 aux->func_info + j, 7225 sizeof(*aux->func_info) * move); 7226 aux->func_info_cnt -= j - i; 7227 /* func_info->insn_off is set after all code rewrites, 7228 * in adjust_btf_func() - no need to adjust 7229 */ 7230 } 7231 } else { 7232 /* convert i from "first prog to remove" to "first to adjust" */ 7233 if (env->subprog_info[i].start == off) 7234 i++; 7235 } 7236 7237 /* update fake 'exit' subprog as well */ 7238 for (; i <= env->subprog_cnt; i++) 7239 env->subprog_info[i].start -= cnt; 7240 7241 return 0; 7242 } 7243 7244 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 7245 u32 cnt) 7246 { 7247 struct bpf_prog *prog = env->prog; 7248 u32 i, l_off, l_cnt, nr_linfo; 7249 struct bpf_line_info *linfo; 7250 7251 nr_linfo = prog->aux->nr_linfo; 7252 if (!nr_linfo) 7253 return 0; 7254 7255 linfo = prog->aux->linfo; 7256 7257 /* find first line info to remove, count lines to be removed */ 7258 for (i = 0; i < nr_linfo; i++) 7259 if (linfo[i].insn_off >= off) 7260 break; 7261 7262 l_off = i; 7263 l_cnt = 0; 7264 for (; i < nr_linfo; i++) 7265 if (linfo[i].insn_off < off + cnt) 7266 l_cnt++; 7267 else 7268 break; 7269 7270 /* First live insn doesn't match first live linfo, it needs to "inherit" 7271 * last removed linfo. prog is already modified, so prog->len == off 7272 * means no live instructions after (tail of the program was removed). 7273 */ 7274 if (prog->len != off && l_cnt && 7275 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 7276 l_cnt--; 7277 linfo[--i].insn_off = off + cnt; 7278 } 7279 7280 /* remove the line info which refer to the removed instructions */ 7281 if (l_cnt) { 7282 memmove(linfo + l_off, linfo + i, 7283 sizeof(*linfo) * (nr_linfo - i)); 7284 7285 prog->aux->nr_linfo -= l_cnt; 7286 nr_linfo = prog->aux->nr_linfo; 7287 } 7288 7289 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 7290 for (i = l_off; i < nr_linfo; i++) 7291 linfo[i].insn_off -= cnt; 7292 7293 /* fix up all subprogs (incl. 'exit') which start >= off */ 7294 for (i = 0; i <= env->subprog_cnt; i++) 7295 if (env->subprog_info[i].linfo_idx > l_off) { 7296 /* program may have started in the removed region but 7297 * may not be fully removed 7298 */ 7299 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 7300 env->subprog_info[i].linfo_idx -= l_cnt; 7301 else 7302 env->subprog_info[i].linfo_idx = l_off; 7303 } 7304 7305 return 0; 7306 } 7307 7308 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 7309 { 7310 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7311 unsigned int orig_prog_len = env->prog->len; 7312 int err; 7313 7314 if (bpf_prog_is_dev_bound(env->prog->aux)) 7315 bpf_prog_offload_remove_insns(env, off, cnt); 7316 7317 err = bpf_remove_insns(env->prog, off, cnt); 7318 if (err) 7319 return err; 7320 7321 err = adjust_subprog_starts_after_remove(env, off, cnt); 7322 if (err) 7323 return err; 7324 7325 err = bpf_adj_linfo_after_remove(env, off, cnt); 7326 if (err) 7327 return err; 7328 7329 memmove(aux_data + off, aux_data + off + cnt, 7330 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 7331 7332 return 0; 7333 } 7334 7335 /* The verifier does more data flow analysis than llvm and will not 7336 * explore branches that are dead at run time. Malicious programs can 7337 * have dead code too. Therefore replace all dead at-run-time code 7338 * with 'ja -1'. 7339 * 7340 * Just nops are not optimal, e.g. if they would sit at the end of the 7341 * program and through another bug we would manage to jump there, then 7342 * we'd execute beyond program memory otherwise. Returning exception 7343 * code also wouldn't work since we can have subprogs where the dead 7344 * code could be located. 7345 */ 7346 static void sanitize_dead_code(struct bpf_verifier_env *env) 7347 { 7348 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7349 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7350 struct bpf_insn *insn = env->prog->insnsi; 7351 const int insn_cnt = env->prog->len; 7352 int i; 7353 7354 for (i = 0; i < insn_cnt; i++) { 7355 if (aux_data[i].seen) 7356 continue; 7357 memcpy(insn + i, &trap, sizeof(trap)); 7358 } 7359 } 7360 7361 static bool insn_is_cond_jump(u8 code) 7362 { 7363 u8 op; 7364 7365 if (BPF_CLASS(code) == BPF_JMP32) 7366 return true; 7367 7368 if (BPF_CLASS(code) != BPF_JMP) 7369 return false; 7370 7371 op = BPF_OP(code); 7372 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7373 } 7374 7375 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7376 { 7377 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7378 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7379 struct bpf_insn *insn = env->prog->insnsi; 7380 const int insn_cnt = env->prog->len; 7381 int i; 7382 7383 for (i = 0; i < insn_cnt; i++, insn++) { 7384 if (!insn_is_cond_jump(insn->code)) 7385 continue; 7386 7387 if (!aux_data[i + 1].seen) 7388 ja.off = insn->off; 7389 else if (!aux_data[i + 1 + insn->off].seen) 7390 ja.off = 0; 7391 else 7392 continue; 7393 7394 if (bpf_prog_is_dev_bound(env->prog->aux)) 7395 bpf_prog_offload_replace_insn(env, i, &ja); 7396 7397 memcpy(insn, &ja, sizeof(ja)); 7398 } 7399 } 7400 7401 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7402 { 7403 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7404 int insn_cnt = env->prog->len; 7405 int i, err; 7406 7407 for (i = 0; i < insn_cnt; i++) { 7408 int j; 7409 7410 j = 0; 7411 while (i + j < insn_cnt && !aux_data[i + j].seen) 7412 j++; 7413 if (!j) 7414 continue; 7415 7416 err = verifier_remove_insns(env, i, j); 7417 if (err) 7418 return err; 7419 insn_cnt = env->prog->len; 7420 } 7421 7422 return 0; 7423 } 7424 7425 static int opt_remove_nops(struct bpf_verifier_env *env) 7426 { 7427 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7428 struct bpf_insn *insn = env->prog->insnsi; 7429 int insn_cnt = env->prog->len; 7430 int i, err; 7431 7432 for (i = 0; i < insn_cnt; i++) { 7433 if (memcmp(&insn[i], &ja, sizeof(ja))) 7434 continue; 7435 7436 err = verifier_remove_insns(env, i, 1); 7437 if (err) 7438 return err; 7439 insn_cnt--; 7440 i--; 7441 } 7442 7443 return 0; 7444 } 7445 7446 /* convert load instructions that access fields of a context type into a 7447 * sequence of instructions that access fields of the underlying structure: 7448 * struct __sk_buff -> struct sk_buff 7449 * struct bpf_sock_ops -> struct sock 7450 */ 7451 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7452 { 7453 const struct bpf_verifier_ops *ops = env->ops; 7454 int i, cnt, size, ctx_field_size, delta = 0; 7455 const int insn_cnt = env->prog->len; 7456 struct bpf_insn insn_buf[16], *insn; 7457 u32 target_size, size_default, off; 7458 struct bpf_prog *new_prog; 7459 enum bpf_access_type type; 7460 bool is_narrower_load; 7461 7462 if (ops->gen_prologue || env->seen_direct_write) { 7463 if (!ops->gen_prologue) { 7464 verbose(env, "bpf verifier is misconfigured\n"); 7465 return -EINVAL; 7466 } 7467 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7468 env->prog); 7469 if (cnt >= ARRAY_SIZE(insn_buf)) { 7470 verbose(env, "bpf verifier is misconfigured\n"); 7471 return -EINVAL; 7472 } else if (cnt) { 7473 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7474 if (!new_prog) 7475 return -ENOMEM; 7476 7477 env->prog = new_prog; 7478 delta += cnt - 1; 7479 } 7480 } 7481 7482 if (bpf_prog_is_dev_bound(env->prog->aux)) 7483 return 0; 7484 7485 insn = env->prog->insnsi + delta; 7486 7487 for (i = 0; i < insn_cnt; i++, insn++) { 7488 bpf_convert_ctx_access_t convert_ctx_access; 7489 7490 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7491 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7492 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7493 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7494 type = BPF_READ; 7495 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7496 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7497 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7498 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7499 type = BPF_WRITE; 7500 else 7501 continue; 7502 7503 if (type == BPF_WRITE && 7504 env->insn_aux_data[i + delta].sanitize_stack_off) { 7505 struct bpf_insn patch[] = { 7506 /* Sanitize suspicious stack slot with zero. 7507 * There are no memory dependencies for this store, 7508 * since it's only using frame pointer and immediate 7509 * constant of zero 7510 */ 7511 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7512 env->insn_aux_data[i + delta].sanitize_stack_off, 7513 0), 7514 /* the original STX instruction will immediately 7515 * overwrite the same stack slot with appropriate value 7516 */ 7517 *insn, 7518 }; 7519 7520 cnt = ARRAY_SIZE(patch); 7521 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7522 if (!new_prog) 7523 return -ENOMEM; 7524 7525 delta += cnt - 1; 7526 env->prog = new_prog; 7527 insn = new_prog->insnsi + i + delta; 7528 continue; 7529 } 7530 7531 switch (env->insn_aux_data[i + delta].ptr_type) { 7532 case PTR_TO_CTX: 7533 if (!ops->convert_ctx_access) 7534 continue; 7535 convert_ctx_access = ops->convert_ctx_access; 7536 break; 7537 case PTR_TO_SOCKET: 7538 case PTR_TO_SOCK_COMMON: 7539 convert_ctx_access = bpf_sock_convert_ctx_access; 7540 break; 7541 case PTR_TO_TCP_SOCK: 7542 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7543 break; 7544 default: 7545 continue; 7546 } 7547 7548 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7549 size = BPF_LDST_BYTES(insn); 7550 7551 /* If the read access is a narrower load of the field, 7552 * convert to a 4/8-byte load, to minimum program type specific 7553 * convert_ctx_access changes. If conversion is successful, 7554 * we will apply proper mask to the result. 7555 */ 7556 is_narrower_load = size < ctx_field_size; 7557 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7558 off = insn->off; 7559 if (is_narrower_load) { 7560 u8 size_code; 7561 7562 if (type == BPF_WRITE) { 7563 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7564 return -EINVAL; 7565 } 7566 7567 size_code = BPF_H; 7568 if (ctx_field_size == 4) 7569 size_code = BPF_W; 7570 else if (ctx_field_size == 8) 7571 size_code = BPF_DW; 7572 7573 insn->off = off & ~(size_default - 1); 7574 insn->code = BPF_LDX | BPF_MEM | size_code; 7575 } 7576 7577 target_size = 0; 7578 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7579 &target_size); 7580 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7581 (ctx_field_size && !target_size)) { 7582 verbose(env, "bpf verifier is misconfigured\n"); 7583 return -EINVAL; 7584 } 7585 7586 if (is_narrower_load && size < target_size) { 7587 u8 shift = (off & (size_default - 1)) * 8; 7588 7589 if (ctx_field_size <= 4) { 7590 if (shift) 7591 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7592 insn->dst_reg, 7593 shift); 7594 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7595 (1 << size * 8) - 1); 7596 } else { 7597 if (shift) 7598 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7599 insn->dst_reg, 7600 shift); 7601 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7602 (1ULL << size * 8) - 1); 7603 } 7604 } 7605 7606 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7607 if (!new_prog) 7608 return -ENOMEM; 7609 7610 delta += cnt - 1; 7611 7612 /* keep walking new program and skip insns we just inserted */ 7613 env->prog = new_prog; 7614 insn = new_prog->insnsi + i + delta; 7615 } 7616 7617 return 0; 7618 } 7619 7620 static int jit_subprogs(struct bpf_verifier_env *env) 7621 { 7622 struct bpf_prog *prog = env->prog, **func, *tmp; 7623 int i, j, subprog_start, subprog_end = 0, len, subprog; 7624 struct bpf_insn *insn; 7625 void *old_bpf_func; 7626 int err; 7627 7628 if (env->subprog_cnt <= 1) 7629 return 0; 7630 7631 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7632 if (insn->code != (BPF_JMP | BPF_CALL) || 7633 insn->src_reg != BPF_PSEUDO_CALL) 7634 continue; 7635 /* Upon error here we cannot fall back to interpreter but 7636 * need a hard reject of the program. Thus -EFAULT is 7637 * propagated in any case. 7638 */ 7639 subprog = find_subprog(env, i + insn->imm + 1); 7640 if (subprog < 0) { 7641 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7642 i + insn->imm + 1); 7643 return -EFAULT; 7644 } 7645 /* temporarily remember subprog id inside insn instead of 7646 * aux_data, since next loop will split up all insns into funcs 7647 */ 7648 insn->off = subprog; 7649 /* remember original imm in case JIT fails and fallback 7650 * to interpreter will be needed 7651 */ 7652 env->insn_aux_data[i].call_imm = insn->imm; 7653 /* point imm to __bpf_call_base+1 from JITs point of view */ 7654 insn->imm = 1; 7655 } 7656 7657 err = bpf_prog_alloc_jited_linfo(prog); 7658 if (err) 7659 goto out_undo_insn; 7660 7661 err = -ENOMEM; 7662 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7663 if (!func) 7664 goto out_undo_insn; 7665 7666 for (i = 0; i < env->subprog_cnt; i++) { 7667 subprog_start = subprog_end; 7668 subprog_end = env->subprog_info[i + 1].start; 7669 7670 len = subprog_end - subprog_start; 7671 /* BPF_PROG_RUN doesn't call subprogs directly, 7672 * hence main prog stats include the runtime of subprogs. 7673 * subprogs don't have IDs and not reachable via prog_get_next_id 7674 * func[i]->aux->stats will never be accessed and stays NULL 7675 */ 7676 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7677 if (!func[i]) 7678 goto out_free; 7679 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7680 len * sizeof(struct bpf_insn)); 7681 func[i]->type = prog->type; 7682 func[i]->len = len; 7683 if (bpf_prog_calc_tag(func[i])) 7684 goto out_free; 7685 func[i]->is_func = 1; 7686 func[i]->aux->func_idx = i; 7687 /* the btf and func_info will be freed only at prog->aux */ 7688 func[i]->aux->btf = prog->aux->btf; 7689 func[i]->aux->func_info = prog->aux->func_info; 7690 7691 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7692 * Long term would need debug info to populate names 7693 */ 7694 func[i]->aux->name[0] = 'F'; 7695 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7696 func[i]->jit_requested = 1; 7697 func[i]->aux->linfo = prog->aux->linfo; 7698 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7699 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7700 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7701 func[i] = bpf_int_jit_compile(func[i]); 7702 if (!func[i]->jited) { 7703 err = -ENOTSUPP; 7704 goto out_free; 7705 } 7706 cond_resched(); 7707 } 7708 /* at this point all bpf functions were successfully JITed 7709 * now populate all bpf_calls with correct addresses and 7710 * run last pass of JIT 7711 */ 7712 for (i = 0; i < env->subprog_cnt; i++) { 7713 insn = func[i]->insnsi; 7714 for (j = 0; j < func[i]->len; j++, insn++) { 7715 if (insn->code != (BPF_JMP | BPF_CALL) || 7716 insn->src_reg != BPF_PSEUDO_CALL) 7717 continue; 7718 subprog = insn->off; 7719 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 7720 __bpf_call_base; 7721 } 7722 7723 /* we use the aux data to keep a list of the start addresses 7724 * of the JITed images for each function in the program 7725 * 7726 * for some architectures, such as powerpc64, the imm field 7727 * might not be large enough to hold the offset of the start 7728 * address of the callee's JITed image from __bpf_call_base 7729 * 7730 * in such cases, we can lookup the start address of a callee 7731 * by using its subprog id, available from the off field of 7732 * the call instruction, as an index for this list 7733 */ 7734 func[i]->aux->func = func; 7735 func[i]->aux->func_cnt = env->subprog_cnt; 7736 } 7737 for (i = 0; i < env->subprog_cnt; i++) { 7738 old_bpf_func = func[i]->bpf_func; 7739 tmp = bpf_int_jit_compile(func[i]); 7740 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 7741 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 7742 err = -ENOTSUPP; 7743 goto out_free; 7744 } 7745 cond_resched(); 7746 } 7747 7748 /* finally lock prog and jit images for all functions and 7749 * populate kallsysm 7750 */ 7751 for (i = 0; i < env->subprog_cnt; i++) { 7752 bpf_prog_lock_ro(func[i]); 7753 bpf_prog_kallsyms_add(func[i]); 7754 } 7755 7756 /* Last step: make now unused interpreter insns from main 7757 * prog consistent for later dump requests, so they can 7758 * later look the same as if they were interpreted only. 7759 */ 7760 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7761 if (insn->code != (BPF_JMP | BPF_CALL) || 7762 insn->src_reg != BPF_PSEUDO_CALL) 7763 continue; 7764 insn->off = env->insn_aux_data[i].call_imm; 7765 subprog = find_subprog(env, i + insn->off + 1); 7766 insn->imm = subprog; 7767 } 7768 7769 prog->jited = 1; 7770 prog->bpf_func = func[0]->bpf_func; 7771 prog->aux->func = func; 7772 prog->aux->func_cnt = env->subprog_cnt; 7773 bpf_prog_free_unused_jited_linfo(prog); 7774 return 0; 7775 out_free: 7776 for (i = 0; i < env->subprog_cnt; i++) 7777 if (func[i]) 7778 bpf_jit_free(func[i]); 7779 kfree(func); 7780 out_undo_insn: 7781 /* cleanup main prog to be interpreted */ 7782 prog->jit_requested = 0; 7783 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7784 if (insn->code != (BPF_JMP | BPF_CALL) || 7785 insn->src_reg != BPF_PSEUDO_CALL) 7786 continue; 7787 insn->off = 0; 7788 insn->imm = env->insn_aux_data[i].call_imm; 7789 } 7790 bpf_prog_free_jited_linfo(prog); 7791 return err; 7792 } 7793 7794 static int fixup_call_args(struct bpf_verifier_env *env) 7795 { 7796 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7797 struct bpf_prog *prog = env->prog; 7798 struct bpf_insn *insn = prog->insnsi; 7799 int i, depth; 7800 #endif 7801 int err = 0; 7802 7803 if (env->prog->jit_requested && 7804 !bpf_prog_is_dev_bound(env->prog->aux)) { 7805 err = jit_subprogs(env); 7806 if (err == 0) 7807 return 0; 7808 if (err == -EFAULT) 7809 return err; 7810 } 7811 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7812 for (i = 0; i < prog->len; i++, insn++) { 7813 if (insn->code != (BPF_JMP | BPF_CALL) || 7814 insn->src_reg != BPF_PSEUDO_CALL) 7815 continue; 7816 depth = get_callee_stack_depth(env, insn, i); 7817 if (depth < 0) 7818 return depth; 7819 bpf_patch_call_args(insn, depth); 7820 } 7821 err = 0; 7822 #endif 7823 return err; 7824 } 7825 7826 /* fixup insn->imm field of bpf_call instructions 7827 * and inline eligible helpers as explicit sequence of BPF instructions 7828 * 7829 * this function is called after eBPF program passed verification 7830 */ 7831 static int fixup_bpf_calls(struct bpf_verifier_env *env) 7832 { 7833 struct bpf_prog *prog = env->prog; 7834 struct bpf_insn *insn = prog->insnsi; 7835 const struct bpf_func_proto *fn; 7836 const int insn_cnt = prog->len; 7837 const struct bpf_map_ops *ops; 7838 struct bpf_insn_aux_data *aux; 7839 struct bpf_insn insn_buf[16]; 7840 struct bpf_prog *new_prog; 7841 struct bpf_map *map_ptr; 7842 int i, cnt, delta = 0; 7843 7844 for (i = 0; i < insn_cnt; i++, insn++) { 7845 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 7846 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7847 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 7848 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7849 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 7850 struct bpf_insn mask_and_div[] = { 7851 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7852 /* Rx div 0 -> 0 */ 7853 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 7854 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 7855 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 7856 *insn, 7857 }; 7858 struct bpf_insn mask_and_mod[] = { 7859 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7860 /* Rx mod 0 -> Rx */ 7861 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 7862 *insn, 7863 }; 7864 struct bpf_insn *patchlet; 7865 7866 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7867 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7868 patchlet = mask_and_div + (is64 ? 1 : 0); 7869 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 7870 } else { 7871 patchlet = mask_and_mod + (is64 ? 1 : 0); 7872 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 7873 } 7874 7875 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 7876 if (!new_prog) 7877 return -ENOMEM; 7878 7879 delta += cnt - 1; 7880 env->prog = prog = new_prog; 7881 insn = new_prog->insnsi + i + delta; 7882 continue; 7883 } 7884 7885 if (BPF_CLASS(insn->code) == BPF_LD && 7886 (BPF_MODE(insn->code) == BPF_ABS || 7887 BPF_MODE(insn->code) == BPF_IND)) { 7888 cnt = env->ops->gen_ld_abs(insn, insn_buf); 7889 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7890 verbose(env, "bpf verifier is misconfigured\n"); 7891 return -EINVAL; 7892 } 7893 7894 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7895 if (!new_prog) 7896 return -ENOMEM; 7897 7898 delta += cnt - 1; 7899 env->prog = prog = new_prog; 7900 insn = new_prog->insnsi + i + delta; 7901 continue; 7902 } 7903 7904 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 7905 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 7906 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 7907 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 7908 struct bpf_insn insn_buf[16]; 7909 struct bpf_insn *patch = &insn_buf[0]; 7910 bool issrc, isneg; 7911 u32 off_reg; 7912 7913 aux = &env->insn_aux_data[i + delta]; 7914 if (!aux->alu_state || 7915 aux->alu_state == BPF_ALU_NON_POINTER) 7916 continue; 7917 7918 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 7919 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 7920 BPF_ALU_SANITIZE_SRC; 7921 7922 off_reg = issrc ? insn->src_reg : insn->dst_reg; 7923 if (isneg) 7924 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7925 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 7926 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 7927 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 7928 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 7929 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 7930 if (issrc) { 7931 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 7932 off_reg); 7933 insn->src_reg = BPF_REG_AX; 7934 } else { 7935 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 7936 BPF_REG_AX); 7937 } 7938 if (isneg) 7939 insn->code = insn->code == code_add ? 7940 code_sub : code_add; 7941 *patch++ = *insn; 7942 if (issrc && isneg) 7943 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7944 cnt = patch - insn_buf; 7945 7946 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7947 if (!new_prog) 7948 return -ENOMEM; 7949 7950 delta += cnt - 1; 7951 env->prog = prog = new_prog; 7952 insn = new_prog->insnsi + i + delta; 7953 continue; 7954 } 7955 7956 if (insn->code != (BPF_JMP | BPF_CALL)) 7957 continue; 7958 if (insn->src_reg == BPF_PSEUDO_CALL) 7959 continue; 7960 7961 if (insn->imm == BPF_FUNC_get_route_realm) 7962 prog->dst_needed = 1; 7963 if (insn->imm == BPF_FUNC_get_prandom_u32) 7964 bpf_user_rnd_init_once(); 7965 if (insn->imm == BPF_FUNC_override_return) 7966 prog->kprobe_override = 1; 7967 if (insn->imm == BPF_FUNC_tail_call) { 7968 /* If we tail call into other programs, we 7969 * cannot make any assumptions since they can 7970 * be replaced dynamically during runtime in 7971 * the program array. 7972 */ 7973 prog->cb_access = 1; 7974 env->prog->aux->stack_depth = MAX_BPF_STACK; 7975 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 7976 7977 /* mark bpf_tail_call as different opcode to avoid 7978 * conditional branch in the interpeter for every normal 7979 * call and to prevent accidental JITing by JIT compiler 7980 * that doesn't support bpf_tail_call yet 7981 */ 7982 insn->imm = 0; 7983 insn->code = BPF_JMP | BPF_TAIL_CALL; 7984 7985 aux = &env->insn_aux_data[i + delta]; 7986 if (!bpf_map_ptr_unpriv(aux)) 7987 continue; 7988 7989 /* instead of changing every JIT dealing with tail_call 7990 * emit two extra insns: 7991 * if (index >= max_entries) goto out; 7992 * index &= array->index_mask; 7993 * to avoid out-of-bounds cpu speculation 7994 */ 7995 if (bpf_map_ptr_poisoned(aux)) { 7996 verbose(env, "tail_call abusing map_ptr\n"); 7997 return -EINVAL; 7998 } 7999 8000 map_ptr = BPF_MAP_PTR(aux->map_state); 8001 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 8002 map_ptr->max_entries, 2); 8003 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 8004 container_of(map_ptr, 8005 struct bpf_array, 8006 map)->index_mask); 8007 insn_buf[2] = *insn; 8008 cnt = 3; 8009 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8010 if (!new_prog) 8011 return -ENOMEM; 8012 8013 delta += cnt - 1; 8014 env->prog = prog = new_prog; 8015 insn = new_prog->insnsi + i + delta; 8016 continue; 8017 } 8018 8019 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 8020 * and other inlining handlers are currently limited to 64 bit 8021 * only. 8022 */ 8023 if (prog->jit_requested && BITS_PER_LONG == 64 && 8024 (insn->imm == BPF_FUNC_map_lookup_elem || 8025 insn->imm == BPF_FUNC_map_update_elem || 8026 insn->imm == BPF_FUNC_map_delete_elem || 8027 insn->imm == BPF_FUNC_map_push_elem || 8028 insn->imm == BPF_FUNC_map_pop_elem || 8029 insn->imm == BPF_FUNC_map_peek_elem)) { 8030 aux = &env->insn_aux_data[i + delta]; 8031 if (bpf_map_ptr_poisoned(aux)) 8032 goto patch_call_imm; 8033 8034 map_ptr = BPF_MAP_PTR(aux->map_state); 8035 ops = map_ptr->ops; 8036 if (insn->imm == BPF_FUNC_map_lookup_elem && 8037 ops->map_gen_lookup) { 8038 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 8039 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8040 verbose(env, "bpf verifier is misconfigured\n"); 8041 return -EINVAL; 8042 } 8043 8044 new_prog = bpf_patch_insn_data(env, i + delta, 8045 insn_buf, cnt); 8046 if (!new_prog) 8047 return -ENOMEM; 8048 8049 delta += cnt - 1; 8050 env->prog = prog = new_prog; 8051 insn = new_prog->insnsi + i + delta; 8052 continue; 8053 } 8054 8055 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 8056 (void *(*)(struct bpf_map *map, void *key))NULL)); 8057 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 8058 (int (*)(struct bpf_map *map, void *key))NULL)); 8059 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 8060 (int (*)(struct bpf_map *map, void *key, void *value, 8061 u64 flags))NULL)); 8062 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 8063 (int (*)(struct bpf_map *map, void *value, 8064 u64 flags))NULL)); 8065 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 8066 (int (*)(struct bpf_map *map, void *value))NULL)); 8067 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 8068 (int (*)(struct bpf_map *map, void *value))NULL)); 8069 8070 switch (insn->imm) { 8071 case BPF_FUNC_map_lookup_elem: 8072 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 8073 __bpf_call_base; 8074 continue; 8075 case BPF_FUNC_map_update_elem: 8076 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 8077 __bpf_call_base; 8078 continue; 8079 case BPF_FUNC_map_delete_elem: 8080 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 8081 __bpf_call_base; 8082 continue; 8083 case BPF_FUNC_map_push_elem: 8084 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 8085 __bpf_call_base; 8086 continue; 8087 case BPF_FUNC_map_pop_elem: 8088 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 8089 __bpf_call_base; 8090 continue; 8091 case BPF_FUNC_map_peek_elem: 8092 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 8093 __bpf_call_base; 8094 continue; 8095 } 8096 8097 goto patch_call_imm; 8098 } 8099 8100 patch_call_imm: 8101 fn = env->ops->get_func_proto(insn->imm, env->prog); 8102 /* all functions that have prototype and verifier allowed 8103 * programs to call them, must be real in-kernel functions 8104 */ 8105 if (!fn->func) { 8106 verbose(env, 8107 "kernel subsystem misconfigured func %s#%d\n", 8108 func_id_name(insn->imm), insn->imm); 8109 return -EFAULT; 8110 } 8111 insn->imm = fn->func - __bpf_call_base; 8112 } 8113 8114 return 0; 8115 } 8116 8117 static void free_states(struct bpf_verifier_env *env) 8118 { 8119 struct bpf_verifier_state_list *sl, *sln; 8120 int i; 8121 8122 sl = env->free_list; 8123 while (sl) { 8124 sln = sl->next; 8125 free_verifier_state(&sl->state, false); 8126 kfree(sl); 8127 sl = sln; 8128 } 8129 8130 if (!env->explored_states) 8131 return; 8132 8133 for (i = 0; i < env->prog->len; i++) { 8134 sl = env->explored_states[i]; 8135 8136 if (sl) 8137 while (sl != STATE_LIST_MARK) { 8138 sln = sl->next; 8139 free_verifier_state(&sl->state, false); 8140 kfree(sl); 8141 sl = sln; 8142 } 8143 } 8144 8145 kvfree(env->explored_states); 8146 } 8147 8148 static void print_verification_stats(struct bpf_verifier_env *env) 8149 { 8150 int i; 8151 8152 if (env->log.level & BPF_LOG_STATS) { 8153 verbose(env, "verification time %lld usec\n", 8154 div_u64(env->verification_time, 1000)); 8155 verbose(env, "stack depth "); 8156 for (i = 0; i < env->subprog_cnt; i++) { 8157 u32 depth = env->subprog_info[i].stack_depth; 8158 8159 verbose(env, "%d", depth); 8160 if (i + 1 < env->subprog_cnt) 8161 verbose(env, "+"); 8162 } 8163 verbose(env, "\n"); 8164 } 8165 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 8166 "total_states %d peak_states %d mark_read %d\n", 8167 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 8168 env->max_states_per_insn, env->total_states, 8169 env->peak_states, env->longest_mark_read_walk); 8170 } 8171 8172 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 8173 union bpf_attr __user *uattr) 8174 { 8175 u64 start_time = ktime_get_ns(); 8176 struct bpf_verifier_env *env; 8177 struct bpf_verifier_log *log; 8178 int i, len, ret = -EINVAL; 8179 bool is_priv; 8180 8181 /* no program is valid */ 8182 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 8183 return -EINVAL; 8184 8185 /* 'struct bpf_verifier_env' can be global, but since it's not small, 8186 * allocate/free it every time bpf_check() is called 8187 */ 8188 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 8189 if (!env) 8190 return -ENOMEM; 8191 log = &env->log; 8192 8193 len = (*prog)->len; 8194 env->insn_aux_data = 8195 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 8196 ret = -ENOMEM; 8197 if (!env->insn_aux_data) 8198 goto err_free_env; 8199 for (i = 0; i < len; i++) 8200 env->insn_aux_data[i].orig_idx = i; 8201 env->prog = *prog; 8202 env->ops = bpf_verifier_ops[env->prog->type]; 8203 is_priv = capable(CAP_SYS_ADMIN); 8204 8205 /* grab the mutex to protect few globals used by verifier */ 8206 if (!is_priv) 8207 mutex_lock(&bpf_verifier_lock); 8208 8209 if (attr->log_level || attr->log_buf || attr->log_size) { 8210 /* user requested verbose verifier output 8211 * and supplied buffer to store the verification trace 8212 */ 8213 log->level = attr->log_level; 8214 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 8215 log->len_total = attr->log_size; 8216 8217 ret = -EINVAL; 8218 /* log attributes have to be sane */ 8219 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 8220 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 8221 goto err_unlock; 8222 } 8223 8224 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 8225 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 8226 env->strict_alignment = true; 8227 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 8228 env->strict_alignment = false; 8229 8230 env->allow_ptr_leaks = is_priv; 8231 8232 ret = replace_map_fd_with_map_ptr(env); 8233 if (ret < 0) 8234 goto skip_full_check; 8235 8236 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8237 ret = bpf_prog_offload_verifier_prep(env->prog); 8238 if (ret) 8239 goto skip_full_check; 8240 } 8241 8242 env->explored_states = kvcalloc(env->prog->len, 8243 sizeof(struct bpf_verifier_state_list *), 8244 GFP_USER); 8245 ret = -ENOMEM; 8246 if (!env->explored_states) 8247 goto skip_full_check; 8248 8249 ret = check_subprogs(env); 8250 if (ret < 0) 8251 goto skip_full_check; 8252 8253 ret = check_btf_info(env, attr, uattr); 8254 if (ret < 0) 8255 goto skip_full_check; 8256 8257 ret = check_cfg(env); 8258 if (ret < 0) 8259 goto skip_full_check; 8260 8261 ret = do_check(env); 8262 if (env->cur_state) { 8263 free_verifier_state(env->cur_state, true); 8264 env->cur_state = NULL; 8265 } 8266 8267 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 8268 ret = bpf_prog_offload_finalize(env); 8269 8270 skip_full_check: 8271 while (!pop_stack(env, NULL, NULL)); 8272 free_states(env); 8273 8274 if (ret == 0) 8275 ret = check_max_stack_depth(env); 8276 8277 /* instruction rewrites happen after this point */ 8278 if (is_priv) { 8279 if (ret == 0) 8280 opt_hard_wire_dead_code_branches(env); 8281 if (ret == 0) 8282 ret = opt_remove_dead_code(env); 8283 if (ret == 0) 8284 ret = opt_remove_nops(env); 8285 } else { 8286 if (ret == 0) 8287 sanitize_dead_code(env); 8288 } 8289 8290 if (ret == 0) 8291 /* program is valid, convert *(u32*)(ctx + off) accesses */ 8292 ret = convert_ctx_accesses(env); 8293 8294 if (ret == 0) 8295 ret = fixup_bpf_calls(env); 8296 8297 if (ret == 0) 8298 ret = fixup_call_args(env); 8299 8300 env->verification_time = ktime_get_ns() - start_time; 8301 print_verification_stats(env); 8302 8303 if (log->level && bpf_verifier_log_full(log)) 8304 ret = -ENOSPC; 8305 if (log->level && !log->ubuf) { 8306 ret = -EFAULT; 8307 goto err_release_maps; 8308 } 8309 8310 if (ret == 0 && env->used_map_cnt) { 8311 /* if program passed verifier, update used_maps in bpf_prog_info */ 8312 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 8313 sizeof(env->used_maps[0]), 8314 GFP_KERNEL); 8315 8316 if (!env->prog->aux->used_maps) { 8317 ret = -ENOMEM; 8318 goto err_release_maps; 8319 } 8320 8321 memcpy(env->prog->aux->used_maps, env->used_maps, 8322 sizeof(env->used_maps[0]) * env->used_map_cnt); 8323 env->prog->aux->used_map_cnt = env->used_map_cnt; 8324 8325 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 8326 * bpf_ld_imm64 instructions 8327 */ 8328 convert_pseudo_ld_imm64(env); 8329 } 8330 8331 if (ret == 0) 8332 adjust_btf_func(env); 8333 8334 err_release_maps: 8335 if (!env->prog->aux->used_maps) 8336 /* if we didn't copy map pointers into bpf_prog_info, release 8337 * them now. Otherwise free_used_maps() will release them. 8338 */ 8339 release_maps(env); 8340 *prog = env->prog; 8341 err_unlock: 8342 if (!is_priv) 8343 mutex_unlock(&bpf_verifier_lock); 8344 vfree(env->insn_aux_data); 8345 err_free_env: 8346 kfree(env); 8347 return ret; 8348 } 8349