1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #include <linux/bpf_types.h> 32 #undef BPF_PROG_TYPE 33 #undef BPF_MAP_TYPE 34 }; 35 36 /* bpf_check() is a static code analyzer that walks eBPF program 37 * instruction by instruction and updates register/stack state. 38 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 39 * 40 * The first pass is depth-first-search to check that the program is a DAG. 41 * It rejects the following programs: 42 * - larger than BPF_MAXINSNS insns 43 * - if loop is present (detected via back-edge) 44 * - unreachable insns exist (shouldn't be a forest. program = one function) 45 * - out of bounds or malformed jumps 46 * The second pass is all possible path descent from the 1st insn. 47 * Since it's analyzing all pathes through the program, the length of the 48 * analysis is limited to 64k insn, which may be hit even if total number of 49 * insn is less then 4K, but there are too many branches that change stack/regs. 50 * Number of 'branches to be analyzed' is limited to 1k 51 * 52 * On entry to each instruction, each register has a type, and the instruction 53 * changes the types of the registers depending on instruction semantics. 54 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 55 * copied to R1. 56 * 57 * All registers are 64-bit. 58 * R0 - return register 59 * R1-R5 argument passing registers 60 * R6-R9 callee saved registers 61 * R10 - frame pointer read-only 62 * 63 * At the start of BPF program the register R1 contains a pointer to bpf_context 64 * and has type PTR_TO_CTX. 65 * 66 * Verifier tracks arithmetic operations on pointers in case: 67 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 68 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 69 * 1st insn copies R10 (which has FRAME_PTR) type into R1 70 * and 2nd arithmetic instruction is pattern matched to recognize 71 * that it wants to construct a pointer to some element within stack. 72 * So after 2nd insn, the register R1 has type PTR_TO_STACK 73 * (and -20 constant is saved for further stack bounds checking). 74 * Meaning that this reg is a pointer to stack plus known immediate constant. 75 * 76 * Most of the time the registers have SCALAR_VALUE type, which 77 * means the register has some value, but it's not a valid pointer. 78 * (like pointer plus pointer becomes SCALAR_VALUE type) 79 * 80 * When verifier sees load or store instructions the type of base register 81 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 82 * four pointer types recognized by check_mem_access() function. 83 * 84 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 85 * and the range of [ptr, ptr + map's value_size) is accessible. 86 * 87 * registers used to pass values to function calls are checked against 88 * function argument constraints. 89 * 90 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 91 * It means that the register type passed to this function must be 92 * PTR_TO_STACK and it will be used inside the function as 93 * 'pointer to map element key' 94 * 95 * For example the argument constraints for bpf_map_lookup_elem(): 96 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 97 * .arg1_type = ARG_CONST_MAP_PTR, 98 * .arg2_type = ARG_PTR_TO_MAP_KEY, 99 * 100 * ret_type says that this function returns 'pointer to map elem value or null' 101 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 102 * 2nd argument should be a pointer to stack, which will be used inside 103 * the helper function as a pointer to map element key. 104 * 105 * On the kernel side the helper function looks like: 106 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 107 * { 108 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 109 * void *key = (void *) (unsigned long) r2; 110 * void *value; 111 * 112 * here kernel can access 'key' and 'map' pointers safely, knowing that 113 * [key, key + map->key_size) bytes are valid and were initialized on 114 * the stack of eBPF program. 115 * } 116 * 117 * Corresponding eBPF program may look like: 118 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 119 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 120 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 121 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 122 * here verifier looks at prototype of map_lookup_elem() and sees: 123 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 124 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 125 * 126 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 127 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 128 * and were initialized prior to this call. 129 * If it's ok, then verifier allows this BPF_CALL insn and looks at 130 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 131 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 132 * returns ether pointer to map value or NULL. 133 * 134 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 135 * insn, the register holding that pointer in the true branch changes state to 136 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 137 * branch. See check_cond_jmp_op(). 138 * 139 * After the call R0 is set to return type of the function and registers R1-R5 140 * are set to NOT_INIT to indicate that they are no longer readable. 141 * 142 * The following reference types represent a potential reference to a kernel 143 * resource which, after first being allocated, must be checked and freed by 144 * the BPF program: 145 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 146 * 147 * When the verifier sees a helper call return a reference type, it allocates a 148 * pointer id for the reference and stores it in the current function state. 149 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 150 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 151 * passes through a NULL-check conditional. For the branch wherein the state is 152 * changed to CONST_IMM, the verifier releases the reference. 153 * 154 * For each helper function that allocates a reference, such as 155 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 156 * bpf_sk_release(). When a reference type passes into the release function, 157 * the verifier also releases the reference. If any unchecked or unreleased 158 * reference remains at the end of the program, the verifier rejects it. 159 */ 160 161 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 162 struct bpf_verifier_stack_elem { 163 /* verifer state is 'st' 164 * before processing instruction 'insn_idx' 165 * and after processing instruction 'prev_insn_idx' 166 */ 167 struct bpf_verifier_state st; 168 int insn_idx; 169 int prev_insn_idx; 170 struct bpf_verifier_stack_elem *next; 171 }; 172 173 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 174 #define BPF_COMPLEXITY_LIMIT_STATES 64 175 176 #define BPF_MAP_KEY_POISON (1ULL << 63) 177 #define BPF_MAP_KEY_SEEN (1ULL << 62) 178 179 #define BPF_MAP_PTR_UNPRIV 1UL 180 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 181 POISON_POINTER_DELTA)) 182 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 183 184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 185 { 186 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 187 } 188 189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 190 { 191 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 192 } 193 194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 195 const struct bpf_map *map, bool unpriv) 196 { 197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 198 unpriv |= bpf_map_ptr_unpriv(aux); 199 aux->map_ptr_state = (unsigned long)map | 200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 201 } 202 203 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_key_state & BPF_MAP_KEY_POISON; 206 } 207 208 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 209 { 210 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 211 } 212 213 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 216 } 217 218 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 219 { 220 bool poisoned = bpf_map_key_poisoned(aux); 221 222 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 223 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 224 } 225 226 struct bpf_call_arg_meta { 227 struct bpf_map *map_ptr; 228 bool raw_mode; 229 bool pkt_access; 230 int regno; 231 int access_size; 232 u64 msize_max_value; 233 int ref_obj_id; 234 int func_id; 235 u32 btf_id; 236 }; 237 238 struct btf *btf_vmlinux; 239 240 static DEFINE_MUTEX(bpf_verifier_lock); 241 242 static const struct bpf_line_info * 243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 244 { 245 const struct bpf_line_info *linfo; 246 const struct bpf_prog *prog; 247 u32 i, nr_linfo; 248 249 prog = env->prog; 250 nr_linfo = prog->aux->nr_linfo; 251 252 if (!nr_linfo || insn_off >= prog->len) 253 return NULL; 254 255 linfo = prog->aux->linfo; 256 for (i = 1; i < nr_linfo; i++) 257 if (insn_off < linfo[i].insn_off) 258 break; 259 260 return &linfo[i - 1]; 261 } 262 263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 264 va_list args) 265 { 266 unsigned int n; 267 268 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 269 270 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 271 "verifier log line truncated - local buffer too short\n"); 272 273 n = min(log->len_total - log->len_used - 1, n); 274 log->kbuf[n] = '\0'; 275 276 if (log->level == BPF_LOG_KERNEL) { 277 pr_err("BPF:%s\n", log->kbuf); 278 return; 279 } 280 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 281 log->len_used += n; 282 else 283 log->ubuf = NULL; 284 } 285 286 /* log_level controls verbosity level of eBPF verifier. 287 * bpf_verifier_log_write() is used to dump the verification trace to the log, 288 * so the user can figure out what's wrong with the program 289 */ 290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 291 const char *fmt, ...) 292 { 293 va_list args; 294 295 if (!bpf_verifier_log_needed(&env->log)) 296 return; 297 298 va_start(args, fmt); 299 bpf_verifier_vlog(&env->log, fmt, args); 300 va_end(args); 301 } 302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 303 304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 305 { 306 struct bpf_verifier_env *env = private_data; 307 va_list args; 308 309 if (!bpf_verifier_log_needed(&env->log)) 310 return; 311 312 va_start(args, fmt); 313 bpf_verifier_vlog(&env->log, fmt, args); 314 va_end(args); 315 } 316 317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 318 const char *fmt, ...) 319 { 320 va_list args; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 va_start(args, fmt); 326 bpf_verifier_vlog(log, fmt, args); 327 va_end(args); 328 } 329 330 static const char *ltrim(const char *s) 331 { 332 while (isspace(*s)) 333 s++; 334 335 return s; 336 } 337 338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 339 u32 insn_off, 340 const char *prefix_fmt, ...) 341 { 342 const struct bpf_line_info *linfo; 343 344 if (!bpf_verifier_log_needed(&env->log)) 345 return; 346 347 linfo = find_linfo(env, insn_off); 348 if (!linfo || linfo == env->prev_linfo) 349 return; 350 351 if (prefix_fmt) { 352 va_list args; 353 354 va_start(args, prefix_fmt); 355 bpf_verifier_vlog(&env->log, prefix_fmt, args); 356 va_end(args); 357 } 358 359 verbose(env, "%s\n", 360 ltrim(btf_name_by_offset(env->prog->aux->btf, 361 linfo->line_off))); 362 363 env->prev_linfo = linfo; 364 } 365 366 static bool type_is_pkt_pointer(enum bpf_reg_type type) 367 { 368 return type == PTR_TO_PACKET || 369 type == PTR_TO_PACKET_META; 370 } 371 372 static bool type_is_sk_pointer(enum bpf_reg_type type) 373 { 374 return type == PTR_TO_SOCKET || 375 type == PTR_TO_SOCK_COMMON || 376 type == PTR_TO_TCP_SOCK || 377 type == PTR_TO_XDP_SOCK; 378 } 379 380 static bool reg_type_may_be_null(enum bpf_reg_type type) 381 { 382 return type == PTR_TO_MAP_VALUE_OR_NULL || 383 type == PTR_TO_SOCKET_OR_NULL || 384 type == PTR_TO_SOCK_COMMON_OR_NULL || 385 type == PTR_TO_TCP_SOCK_OR_NULL; 386 } 387 388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 389 { 390 return reg->type == PTR_TO_MAP_VALUE && 391 map_value_has_spin_lock(reg->map_ptr); 392 } 393 394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 395 { 396 return type == PTR_TO_SOCKET || 397 type == PTR_TO_SOCKET_OR_NULL || 398 type == PTR_TO_TCP_SOCK || 399 type == PTR_TO_TCP_SOCK_OR_NULL; 400 } 401 402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 403 { 404 return type == ARG_PTR_TO_SOCK_COMMON; 405 } 406 407 /* Determine whether the function releases some resources allocated by another 408 * function call. The first reference type argument will be assumed to be 409 * released by release_reference(). 410 */ 411 static bool is_release_function(enum bpf_func_id func_id) 412 { 413 return func_id == BPF_FUNC_sk_release; 414 } 415 416 static bool is_acquire_function(enum bpf_func_id func_id) 417 { 418 return func_id == BPF_FUNC_sk_lookup_tcp || 419 func_id == BPF_FUNC_sk_lookup_udp || 420 func_id == BPF_FUNC_skc_lookup_tcp; 421 } 422 423 static bool is_ptr_cast_function(enum bpf_func_id func_id) 424 { 425 return func_id == BPF_FUNC_tcp_sock || 426 func_id == BPF_FUNC_sk_fullsock; 427 } 428 429 /* string representation of 'enum bpf_reg_type' */ 430 static const char * const reg_type_str[] = { 431 [NOT_INIT] = "?", 432 [SCALAR_VALUE] = "inv", 433 [PTR_TO_CTX] = "ctx", 434 [CONST_PTR_TO_MAP] = "map_ptr", 435 [PTR_TO_MAP_VALUE] = "map_value", 436 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 437 [PTR_TO_STACK] = "fp", 438 [PTR_TO_PACKET] = "pkt", 439 [PTR_TO_PACKET_META] = "pkt_meta", 440 [PTR_TO_PACKET_END] = "pkt_end", 441 [PTR_TO_FLOW_KEYS] = "flow_keys", 442 [PTR_TO_SOCKET] = "sock", 443 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 444 [PTR_TO_SOCK_COMMON] = "sock_common", 445 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 446 [PTR_TO_TCP_SOCK] = "tcp_sock", 447 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 448 [PTR_TO_TP_BUFFER] = "tp_buffer", 449 [PTR_TO_XDP_SOCK] = "xdp_sock", 450 [PTR_TO_BTF_ID] = "ptr_", 451 }; 452 453 static char slot_type_char[] = { 454 [STACK_INVALID] = '?', 455 [STACK_SPILL] = 'r', 456 [STACK_MISC] = 'm', 457 [STACK_ZERO] = '0', 458 }; 459 460 static void print_liveness(struct bpf_verifier_env *env, 461 enum bpf_reg_liveness live) 462 { 463 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 464 verbose(env, "_"); 465 if (live & REG_LIVE_READ) 466 verbose(env, "r"); 467 if (live & REG_LIVE_WRITTEN) 468 verbose(env, "w"); 469 if (live & REG_LIVE_DONE) 470 verbose(env, "D"); 471 } 472 473 static struct bpf_func_state *func(struct bpf_verifier_env *env, 474 const struct bpf_reg_state *reg) 475 { 476 struct bpf_verifier_state *cur = env->cur_state; 477 478 return cur->frame[reg->frameno]; 479 } 480 481 const char *kernel_type_name(u32 id) 482 { 483 return btf_name_by_offset(btf_vmlinux, 484 btf_type_by_id(btf_vmlinux, id)->name_off); 485 } 486 487 static void print_verifier_state(struct bpf_verifier_env *env, 488 const struct bpf_func_state *state) 489 { 490 const struct bpf_reg_state *reg; 491 enum bpf_reg_type t; 492 int i; 493 494 if (state->frameno) 495 verbose(env, " frame%d:", state->frameno); 496 for (i = 0; i < MAX_BPF_REG; i++) { 497 reg = &state->regs[i]; 498 t = reg->type; 499 if (t == NOT_INIT) 500 continue; 501 verbose(env, " R%d", i); 502 print_liveness(env, reg->live); 503 verbose(env, "=%s", reg_type_str[t]); 504 if (t == SCALAR_VALUE && reg->precise) 505 verbose(env, "P"); 506 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 507 tnum_is_const(reg->var_off)) { 508 /* reg->off should be 0 for SCALAR_VALUE */ 509 verbose(env, "%lld", reg->var_off.value + reg->off); 510 } else { 511 if (t == PTR_TO_BTF_ID) 512 verbose(env, "%s", kernel_type_name(reg->btf_id)); 513 verbose(env, "(id=%d", reg->id); 514 if (reg_type_may_be_refcounted_or_null(t)) 515 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 516 if (t != SCALAR_VALUE) 517 verbose(env, ",off=%d", reg->off); 518 if (type_is_pkt_pointer(t)) 519 verbose(env, ",r=%d", reg->range); 520 else if (t == CONST_PTR_TO_MAP || 521 t == PTR_TO_MAP_VALUE || 522 t == PTR_TO_MAP_VALUE_OR_NULL) 523 verbose(env, ",ks=%d,vs=%d", 524 reg->map_ptr->key_size, 525 reg->map_ptr->value_size); 526 if (tnum_is_const(reg->var_off)) { 527 /* Typically an immediate SCALAR_VALUE, but 528 * could be a pointer whose offset is too big 529 * for reg->off 530 */ 531 verbose(env, ",imm=%llx", reg->var_off.value); 532 } else { 533 if (reg->smin_value != reg->umin_value && 534 reg->smin_value != S64_MIN) 535 verbose(env, ",smin_value=%lld", 536 (long long)reg->smin_value); 537 if (reg->smax_value != reg->umax_value && 538 reg->smax_value != S64_MAX) 539 verbose(env, ",smax_value=%lld", 540 (long long)reg->smax_value); 541 if (reg->umin_value != 0) 542 verbose(env, ",umin_value=%llu", 543 (unsigned long long)reg->umin_value); 544 if (reg->umax_value != U64_MAX) 545 verbose(env, ",umax_value=%llu", 546 (unsigned long long)reg->umax_value); 547 if (!tnum_is_unknown(reg->var_off)) { 548 char tn_buf[48]; 549 550 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 551 verbose(env, ",var_off=%s", tn_buf); 552 } 553 if (reg->s32_min_value != reg->smin_value && 554 reg->s32_min_value != S32_MIN) 555 verbose(env, ",s32_min_value=%d", 556 (int)(reg->s32_min_value)); 557 if (reg->s32_max_value != reg->smax_value && 558 reg->s32_max_value != S32_MAX) 559 verbose(env, ",s32_max_value=%d", 560 (int)(reg->s32_max_value)); 561 if (reg->u32_min_value != reg->umin_value && 562 reg->u32_min_value != U32_MIN) 563 verbose(env, ",u32_min_value=%d", 564 (int)(reg->u32_min_value)); 565 if (reg->u32_max_value != reg->umax_value && 566 reg->u32_max_value != U32_MAX) 567 verbose(env, ",u32_max_value=%d", 568 (int)(reg->u32_max_value)); 569 } 570 verbose(env, ")"); 571 } 572 } 573 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 574 char types_buf[BPF_REG_SIZE + 1]; 575 bool valid = false; 576 int j; 577 578 for (j = 0; j < BPF_REG_SIZE; j++) { 579 if (state->stack[i].slot_type[j] != STACK_INVALID) 580 valid = true; 581 types_buf[j] = slot_type_char[ 582 state->stack[i].slot_type[j]]; 583 } 584 types_buf[BPF_REG_SIZE] = 0; 585 if (!valid) 586 continue; 587 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 588 print_liveness(env, state->stack[i].spilled_ptr.live); 589 if (state->stack[i].slot_type[0] == STACK_SPILL) { 590 reg = &state->stack[i].spilled_ptr; 591 t = reg->type; 592 verbose(env, "=%s", reg_type_str[t]); 593 if (t == SCALAR_VALUE && reg->precise) 594 verbose(env, "P"); 595 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 596 verbose(env, "%lld", reg->var_off.value + reg->off); 597 } else { 598 verbose(env, "=%s", types_buf); 599 } 600 } 601 if (state->acquired_refs && state->refs[0].id) { 602 verbose(env, " refs=%d", state->refs[0].id); 603 for (i = 1; i < state->acquired_refs; i++) 604 if (state->refs[i].id) 605 verbose(env, ",%d", state->refs[i].id); 606 } 607 verbose(env, "\n"); 608 } 609 610 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 611 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 612 const struct bpf_func_state *src) \ 613 { \ 614 if (!src->FIELD) \ 615 return 0; \ 616 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 617 /* internal bug, make state invalid to reject the program */ \ 618 memset(dst, 0, sizeof(*dst)); \ 619 return -EFAULT; \ 620 } \ 621 memcpy(dst->FIELD, src->FIELD, \ 622 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 623 return 0; \ 624 } 625 /* copy_reference_state() */ 626 COPY_STATE_FN(reference, acquired_refs, refs, 1) 627 /* copy_stack_state() */ 628 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 629 #undef COPY_STATE_FN 630 631 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 632 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 633 bool copy_old) \ 634 { \ 635 u32 old_size = state->COUNT; \ 636 struct bpf_##NAME##_state *new_##FIELD; \ 637 int slot = size / SIZE; \ 638 \ 639 if (size <= old_size || !size) { \ 640 if (copy_old) \ 641 return 0; \ 642 state->COUNT = slot * SIZE; \ 643 if (!size && old_size) { \ 644 kfree(state->FIELD); \ 645 state->FIELD = NULL; \ 646 } \ 647 return 0; \ 648 } \ 649 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 650 GFP_KERNEL); \ 651 if (!new_##FIELD) \ 652 return -ENOMEM; \ 653 if (copy_old) { \ 654 if (state->FIELD) \ 655 memcpy(new_##FIELD, state->FIELD, \ 656 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 657 memset(new_##FIELD + old_size / SIZE, 0, \ 658 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 659 } \ 660 state->COUNT = slot * SIZE; \ 661 kfree(state->FIELD); \ 662 state->FIELD = new_##FIELD; \ 663 return 0; \ 664 } 665 /* realloc_reference_state() */ 666 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 667 /* realloc_stack_state() */ 668 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 669 #undef REALLOC_STATE_FN 670 671 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 672 * make it consume minimal amount of memory. check_stack_write() access from 673 * the program calls into realloc_func_state() to grow the stack size. 674 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 675 * which realloc_stack_state() copies over. It points to previous 676 * bpf_verifier_state which is never reallocated. 677 */ 678 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 679 int refs_size, bool copy_old) 680 { 681 int err = realloc_reference_state(state, refs_size, copy_old); 682 if (err) 683 return err; 684 return realloc_stack_state(state, stack_size, copy_old); 685 } 686 687 /* Acquire a pointer id from the env and update the state->refs to include 688 * this new pointer reference. 689 * On success, returns a valid pointer id to associate with the register 690 * On failure, returns a negative errno. 691 */ 692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 693 { 694 struct bpf_func_state *state = cur_func(env); 695 int new_ofs = state->acquired_refs; 696 int id, err; 697 698 err = realloc_reference_state(state, state->acquired_refs + 1, true); 699 if (err) 700 return err; 701 id = ++env->id_gen; 702 state->refs[new_ofs].id = id; 703 state->refs[new_ofs].insn_idx = insn_idx; 704 705 return id; 706 } 707 708 /* release function corresponding to acquire_reference_state(). Idempotent. */ 709 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 710 { 711 int i, last_idx; 712 713 last_idx = state->acquired_refs - 1; 714 for (i = 0; i < state->acquired_refs; i++) { 715 if (state->refs[i].id == ptr_id) { 716 if (last_idx && i != last_idx) 717 memcpy(&state->refs[i], &state->refs[last_idx], 718 sizeof(*state->refs)); 719 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 720 state->acquired_refs--; 721 return 0; 722 } 723 } 724 return -EINVAL; 725 } 726 727 static int transfer_reference_state(struct bpf_func_state *dst, 728 struct bpf_func_state *src) 729 { 730 int err = realloc_reference_state(dst, src->acquired_refs, false); 731 if (err) 732 return err; 733 err = copy_reference_state(dst, src); 734 if (err) 735 return err; 736 return 0; 737 } 738 739 static void free_func_state(struct bpf_func_state *state) 740 { 741 if (!state) 742 return; 743 kfree(state->refs); 744 kfree(state->stack); 745 kfree(state); 746 } 747 748 static void clear_jmp_history(struct bpf_verifier_state *state) 749 { 750 kfree(state->jmp_history); 751 state->jmp_history = NULL; 752 state->jmp_history_cnt = 0; 753 } 754 755 static void free_verifier_state(struct bpf_verifier_state *state, 756 bool free_self) 757 { 758 int i; 759 760 for (i = 0; i <= state->curframe; i++) { 761 free_func_state(state->frame[i]); 762 state->frame[i] = NULL; 763 } 764 clear_jmp_history(state); 765 if (free_self) 766 kfree(state); 767 } 768 769 /* copy verifier state from src to dst growing dst stack space 770 * when necessary to accommodate larger src stack 771 */ 772 static int copy_func_state(struct bpf_func_state *dst, 773 const struct bpf_func_state *src) 774 { 775 int err; 776 777 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 778 false); 779 if (err) 780 return err; 781 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 782 err = copy_reference_state(dst, src); 783 if (err) 784 return err; 785 return copy_stack_state(dst, src); 786 } 787 788 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 789 const struct bpf_verifier_state *src) 790 { 791 struct bpf_func_state *dst; 792 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 793 int i, err; 794 795 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 796 kfree(dst_state->jmp_history); 797 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 798 if (!dst_state->jmp_history) 799 return -ENOMEM; 800 } 801 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 802 dst_state->jmp_history_cnt = src->jmp_history_cnt; 803 804 /* if dst has more stack frames then src frame, free them */ 805 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 806 free_func_state(dst_state->frame[i]); 807 dst_state->frame[i] = NULL; 808 } 809 dst_state->speculative = src->speculative; 810 dst_state->curframe = src->curframe; 811 dst_state->active_spin_lock = src->active_spin_lock; 812 dst_state->branches = src->branches; 813 dst_state->parent = src->parent; 814 dst_state->first_insn_idx = src->first_insn_idx; 815 dst_state->last_insn_idx = src->last_insn_idx; 816 for (i = 0; i <= src->curframe; i++) { 817 dst = dst_state->frame[i]; 818 if (!dst) { 819 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 820 if (!dst) 821 return -ENOMEM; 822 dst_state->frame[i] = dst; 823 } 824 err = copy_func_state(dst, src->frame[i]); 825 if (err) 826 return err; 827 } 828 return 0; 829 } 830 831 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 832 { 833 while (st) { 834 u32 br = --st->branches; 835 836 /* WARN_ON(br > 1) technically makes sense here, 837 * but see comment in push_stack(), hence: 838 */ 839 WARN_ONCE((int)br < 0, 840 "BUG update_branch_counts:branches_to_explore=%d\n", 841 br); 842 if (br) 843 break; 844 st = st->parent; 845 } 846 } 847 848 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 849 int *insn_idx) 850 { 851 struct bpf_verifier_state *cur = env->cur_state; 852 struct bpf_verifier_stack_elem *elem, *head = env->head; 853 int err; 854 855 if (env->head == NULL) 856 return -ENOENT; 857 858 if (cur) { 859 err = copy_verifier_state(cur, &head->st); 860 if (err) 861 return err; 862 } 863 if (insn_idx) 864 *insn_idx = head->insn_idx; 865 if (prev_insn_idx) 866 *prev_insn_idx = head->prev_insn_idx; 867 elem = head->next; 868 free_verifier_state(&head->st, false); 869 kfree(head); 870 env->head = elem; 871 env->stack_size--; 872 return 0; 873 } 874 875 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 876 int insn_idx, int prev_insn_idx, 877 bool speculative) 878 { 879 struct bpf_verifier_state *cur = env->cur_state; 880 struct bpf_verifier_stack_elem *elem; 881 int err; 882 883 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 884 if (!elem) 885 goto err; 886 887 elem->insn_idx = insn_idx; 888 elem->prev_insn_idx = prev_insn_idx; 889 elem->next = env->head; 890 env->head = elem; 891 env->stack_size++; 892 err = copy_verifier_state(&elem->st, cur); 893 if (err) 894 goto err; 895 elem->st.speculative |= speculative; 896 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 897 verbose(env, "The sequence of %d jumps is too complex.\n", 898 env->stack_size); 899 goto err; 900 } 901 if (elem->st.parent) { 902 ++elem->st.parent->branches; 903 /* WARN_ON(branches > 2) technically makes sense here, 904 * but 905 * 1. speculative states will bump 'branches' for non-branch 906 * instructions 907 * 2. is_state_visited() heuristics may decide not to create 908 * a new state for a sequence of branches and all such current 909 * and cloned states will be pointing to a single parent state 910 * which might have large 'branches' count. 911 */ 912 } 913 return &elem->st; 914 err: 915 free_verifier_state(env->cur_state, true); 916 env->cur_state = NULL; 917 /* pop all elements and return */ 918 while (!pop_stack(env, NULL, NULL)); 919 return NULL; 920 } 921 922 #define CALLER_SAVED_REGS 6 923 static const int caller_saved[CALLER_SAVED_REGS] = { 924 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 925 }; 926 927 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 928 struct bpf_reg_state *reg); 929 930 /* Mark the unknown part of a register (variable offset or scalar value) as 931 * known to have the value @imm. 932 */ 933 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 934 { 935 /* Clear id, off, and union(map_ptr, range) */ 936 memset(((u8 *)reg) + sizeof(reg->type), 0, 937 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 938 reg->var_off = tnum_const(imm); 939 reg->smin_value = (s64)imm; 940 reg->smax_value = (s64)imm; 941 reg->umin_value = imm; 942 reg->umax_value = imm; 943 944 reg->s32_min_value = (s32)imm; 945 reg->s32_max_value = (s32)imm; 946 reg->u32_min_value = (u32)imm; 947 reg->u32_max_value = (u32)imm; 948 } 949 950 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 951 { 952 reg->var_off = tnum_const_subreg(reg->var_off, imm); 953 reg->s32_min_value = (s32)imm; 954 reg->s32_max_value = (s32)imm; 955 reg->u32_min_value = (u32)imm; 956 reg->u32_max_value = (u32)imm; 957 } 958 959 /* Mark the 'variable offset' part of a register as zero. This should be 960 * used only on registers holding a pointer type. 961 */ 962 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 963 { 964 __mark_reg_known(reg, 0); 965 } 966 967 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 968 { 969 __mark_reg_known(reg, 0); 970 reg->type = SCALAR_VALUE; 971 } 972 973 static void mark_reg_known_zero(struct bpf_verifier_env *env, 974 struct bpf_reg_state *regs, u32 regno) 975 { 976 if (WARN_ON(regno >= MAX_BPF_REG)) { 977 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 978 /* Something bad happened, let's kill all regs */ 979 for (regno = 0; regno < MAX_BPF_REG; regno++) 980 __mark_reg_not_init(env, regs + regno); 981 return; 982 } 983 __mark_reg_known_zero(regs + regno); 984 } 985 986 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 987 { 988 return type_is_pkt_pointer(reg->type); 989 } 990 991 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 992 { 993 return reg_is_pkt_pointer(reg) || 994 reg->type == PTR_TO_PACKET_END; 995 } 996 997 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 998 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 999 enum bpf_reg_type which) 1000 { 1001 /* The register can already have a range from prior markings. 1002 * This is fine as long as it hasn't been advanced from its 1003 * origin. 1004 */ 1005 return reg->type == which && 1006 reg->id == 0 && 1007 reg->off == 0 && 1008 tnum_equals_const(reg->var_off, 0); 1009 } 1010 1011 /* Reset the min/max bounds of a register */ 1012 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1013 { 1014 reg->smin_value = S64_MIN; 1015 reg->smax_value = S64_MAX; 1016 reg->umin_value = 0; 1017 reg->umax_value = U64_MAX; 1018 1019 reg->s32_min_value = S32_MIN; 1020 reg->s32_max_value = S32_MAX; 1021 reg->u32_min_value = 0; 1022 reg->u32_max_value = U32_MAX; 1023 } 1024 1025 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1026 { 1027 reg->smin_value = S64_MIN; 1028 reg->smax_value = S64_MAX; 1029 reg->umin_value = 0; 1030 reg->umax_value = U64_MAX; 1031 } 1032 1033 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1034 { 1035 reg->s32_min_value = S32_MIN; 1036 reg->s32_max_value = S32_MAX; 1037 reg->u32_min_value = 0; 1038 reg->u32_max_value = U32_MAX; 1039 } 1040 1041 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1042 { 1043 struct tnum var32_off = tnum_subreg(reg->var_off); 1044 1045 /* min signed is max(sign bit) | min(other bits) */ 1046 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1047 var32_off.value | (var32_off.mask & S32_MIN)); 1048 /* max signed is min(sign bit) | max(other bits) */ 1049 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1050 var32_off.value | (var32_off.mask & S32_MAX)); 1051 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1052 reg->u32_max_value = min(reg->u32_max_value, 1053 (u32)(var32_off.value | var32_off.mask)); 1054 } 1055 1056 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1057 { 1058 /* min signed is max(sign bit) | min(other bits) */ 1059 reg->smin_value = max_t(s64, reg->smin_value, 1060 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1061 /* max signed is min(sign bit) | max(other bits) */ 1062 reg->smax_value = min_t(s64, reg->smax_value, 1063 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1064 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1065 reg->umax_value = min(reg->umax_value, 1066 reg->var_off.value | reg->var_off.mask); 1067 } 1068 1069 static void __update_reg_bounds(struct bpf_reg_state *reg) 1070 { 1071 __update_reg32_bounds(reg); 1072 __update_reg64_bounds(reg); 1073 } 1074 1075 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1076 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1077 { 1078 /* Learn sign from signed bounds. 1079 * If we cannot cross the sign boundary, then signed and unsigned bounds 1080 * are the same, so combine. This works even in the negative case, e.g. 1081 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1082 */ 1083 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1084 reg->s32_min_value = reg->u32_min_value = 1085 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1086 reg->s32_max_value = reg->u32_max_value = 1087 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1088 return; 1089 } 1090 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1091 * boundary, so we must be careful. 1092 */ 1093 if ((s32)reg->u32_max_value >= 0) { 1094 /* Positive. We can't learn anything from the smin, but smax 1095 * is positive, hence safe. 1096 */ 1097 reg->s32_min_value = reg->u32_min_value; 1098 reg->s32_max_value = reg->u32_max_value = 1099 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1100 } else if ((s32)reg->u32_min_value < 0) { 1101 /* Negative. We can't learn anything from the smax, but smin 1102 * is negative, hence safe. 1103 */ 1104 reg->s32_min_value = reg->u32_min_value = 1105 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1106 reg->s32_max_value = reg->u32_max_value; 1107 } 1108 } 1109 1110 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1111 { 1112 /* Learn sign from signed bounds. 1113 * If we cannot cross the sign boundary, then signed and unsigned bounds 1114 * are the same, so combine. This works even in the negative case, e.g. 1115 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1116 */ 1117 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1118 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1119 reg->umin_value); 1120 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1121 reg->umax_value); 1122 return; 1123 } 1124 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1125 * boundary, so we must be careful. 1126 */ 1127 if ((s64)reg->umax_value >= 0) { 1128 /* Positive. We can't learn anything from the smin, but smax 1129 * is positive, hence safe. 1130 */ 1131 reg->smin_value = reg->umin_value; 1132 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1133 reg->umax_value); 1134 } else if ((s64)reg->umin_value < 0) { 1135 /* Negative. We can't learn anything from the smax, but smin 1136 * is negative, hence safe. 1137 */ 1138 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1139 reg->umin_value); 1140 reg->smax_value = reg->umax_value; 1141 } 1142 } 1143 1144 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1145 { 1146 __reg32_deduce_bounds(reg); 1147 __reg64_deduce_bounds(reg); 1148 } 1149 1150 /* Attempts to improve var_off based on unsigned min/max information */ 1151 static void __reg_bound_offset(struct bpf_reg_state *reg) 1152 { 1153 struct tnum var64_off = tnum_intersect(reg->var_off, 1154 tnum_range(reg->umin_value, 1155 reg->umax_value)); 1156 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1157 tnum_range(reg->u32_min_value, 1158 reg->u32_max_value)); 1159 1160 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1161 } 1162 1163 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1164 { 1165 reg->umin_value = reg->u32_min_value; 1166 reg->umax_value = reg->u32_max_value; 1167 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1168 * but must be positive otherwise set to worse case bounds 1169 * and refine later from tnum. 1170 */ 1171 if (reg->s32_min_value > 0) 1172 reg->smin_value = reg->s32_min_value; 1173 else 1174 reg->smin_value = 0; 1175 if (reg->s32_max_value > 0) 1176 reg->smax_value = reg->s32_max_value; 1177 else 1178 reg->smax_value = U32_MAX; 1179 } 1180 1181 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1182 { 1183 /* special case when 64-bit register has upper 32-bit register 1184 * zeroed. Typically happens after zext or <<32, >>32 sequence 1185 * allowing us to use 32-bit bounds directly, 1186 */ 1187 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1188 __reg_assign_32_into_64(reg); 1189 } else { 1190 /* Otherwise the best we can do is push lower 32bit known and 1191 * unknown bits into register (var_off set from jmp logic) 1192 * then learn as much as possible from the 64-bit tnum 1193 * known and unknown bits. The previous smin/smax bounds are 1194 * invalid here because of jmp32 compare so mark them unknown 1195 * so they do not impact tnum bounds calculation. 1196 */ 1197 __mark_reg64_unbounded(reg); 1198 __update_reg_bounds(reg); 1199 } 1200 1201 /* Intersecting with the old var_off might have improved our bounds 1202 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1203 * then new var_off is (0; 0x7f...fc) which improves our umax. 1204 */ 1205 __reg_deduce_bounds(reg); 1206 __reg_bound_offset(reg); 1207 __update_reg_bounds(reg); 1208 } 1209 1210 static bool __reg64_bound_s32(s64 a) 1211 { 1212 if (a > S32_MIN && a < S32_MAX) 1213 return true; 1214 return false; 1215 } 1216 1217 static bool __reg64_bound_u32(u64 a) 1218 { 1219 if (a > U32_MIN && a < U32_MAX) 1220 return true; 1221 return false; 1222 } 1223 1224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1225 { 1226 __mark_reg32_unbounded(reg); 1227 1228 if (__reg64_bound_s32(reg->smin_value)) 1229 reg->s32_min_value = (s32)reg->smin_value; 1230 if (__reg64_bound_s32(reg->smax_value)) 1231 reg->s32_max_value = (s32)reg->smax_value; 1232 if (__reg64_bound_u32(reg->umin_value)) 1233 reg->u32_min_value = (u32)reg->umin_value; 1234 if (__reg64_bound_u32(reg->umax_value)) 1235 reg->u32_max_value = (u32)reg->umax_value; 1236 1237 /* Intersecting with the old var_off might have improved our bounds 1238 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1239 * then new var_off is (0; 0x7f...fc) which improves our umax. 1240 */ 1241 __reg_deduce_bounds(reg); 1242 __reg_bound_offset(reg); 1243 __update_reg_bounds(reg); 1244 } 1245 1246 /* Mark a register as having a completely unknown (scalar) value. */ 1247 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1248 struct bpf_reg_state *reg) 1249 { 1250 /* 1251 * Clear type, id, off, and union(map_ptr, range) and 1252 * padding between 'type' and union 1253 */ 1254 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1255 reg->type = SCALAR_VALUE; 1256 reg->var_off = tnum_unknown; 1257 reg->frameno = 0; 1258 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks; 1259 __mark_reg_unbounded(reg); 1260 } 1261 1262 static void mark_reg_unknown(struct bpf_verifier_env *env, 1263 struct bpf_reg_state *regs, u32 regno) 1264 { 1265 if (WARN_ON(regno >= MAX_BPF_REG)) { 1266 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1267 /* Something bad happened, let's kill all regs except FP */ 1268 for (regno = 0; regno < BPF_REG_FP; regno++) 1269 __mark_reg_not_init(env, regs + regno); 1270 return; 1271 } 1272 __mark_reg_unknown(env, regs + regno); 1273 } 1274 1275 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1276 struct bpf_reg_state *reg) 1277 { 1278 __mark_reg_unknown(env, reg); 1279 reg->type = NOT_INIT; 1280 } 1281 1282 static void mark_reg_not_init(struct bpf_verifier_env *env, 1283 struct bpf_reg_state *regs, u32 regno) 1284 { 1285 if (WARN_ON(regno >= MAX_BPF_REG)) { 1286 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1287 /* Something bad happened, let's kill all regs except FP */ 1288 for (regno = 0; regno < BPF_REG_FP; regno++) 1289 __mark_reg_not_init(env, regs + regno); 1290 return; 1291 } 1292 __mark_reg_not_init(env, regs + regno); 1293 } 1294 1295 #define DEF_NOT_SUBREG (0) 1296 static void init_reg_state(struct bpf_verifier_env *env, 1297 struct bpf_func_state *state) 1298 { 1299 struct bpf_reg_state *regs = state->regs; 1300 int i; 1301 1302 for (i = 0; i < MAX_BPF_REG; i++) { 1303 mark_reg_not_init(env, regs, i); 1304 regs[i].live = REG_LIVE_NONE; 1305 regs[i].parent = NULL; 1306 regs[i].subreg_def = DEF_NOT_SUBREG; 1307 } 1308 1309 /* frame pointer */ 1310 regs[BPF_REG_FP].type = PTR_TO_STACK; 1311 mark_reg_known_zero(env, regs, BPF_REG_FP); 1312 regs[BPF_REG_FP].frameno = state->frameno; 1313 } 1314 1315 #define BPF_MAIN_FUNC (-1) 1316 static void init_func_state(struct bpf_verifier_env *env, 1317 struct bpf_func_state *state, 1318 int callsite, int frameno, int subprogno) 1319 { 1320 state->callsite = callsite; 1321 state->frameno = frameno; 1322 state->subprogno = subprogno; 1323 init_reg_state(env, state); 1324 } 1325 1326 enum reg_arg_type { 1327 SRC_OP, /* register is used as source operand */ 1328 DST_OP, /* register is used as destination operand */ 1329 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1330 }; 1331 1332 static int cmp_subprogs(const void *a, const void *b) 1333 { 1334 return ((struct bpf_subprog_info *)a)->start - 1335 ((struct bpf_subprog_info *)b)->start; 1336 } 1337 1338 static int find_subprog(struct bpf_verifier_env *env, int off) 1339 { 1340 struct bpf_subprog_info *p; 1341 1342 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1343 sizeof(env->subprog_info[0]), cmp_subprogs); 1344 if (!p) 1345 return -ENOENT; 1346 return p - env->subprog_info; 1347 1348 } 1349 1350 static int add_subprog(struct bpf_verifier_env *env, int off) 1351 { 1352 int insn_cnt = env->prog->len; 1353 int ret; 1354 1355 if (off >= insn_cnt || off < 0) { 1356 verbose(env, "call to invalid destination\n"); 1357 return -EINVAL; 1358 } 1359 ret = find_subprog(env, off); 1360 if (ret >= 0) 1361 return 0; 1362 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1363 verbose(env, "too many subprograms\n"); 1364 return -E2BIG; 1365 } 1366 env->subprog_info[env->subprog_cnt++].start = off; 1367 sort(env->subprog_info, env->subprog_cnt, 1368 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1369 return 0; 1370 } 1371 1372 static int check_subprogs(struct bpf_verifier_env *env) 1373 { 1374 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1375 struct bpf_subprog_info *subprog = env->subprog_info; 1376 struct bpf_insn *insn = env->prog->insnsi; 1377 int insn_cnt = env->prog->len; 1378 1379 /* Add entry function. */ 1380 ret = add_subprog(env, 0); 1381 if (ret < 0) 1382 return ret; 1383 1384 /* determine subprog starts. The end is one before the next starts */ 1385 for (i = 0; i < insn_cnt; i++) { 1386 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1387 continue; 1388 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1389 continue; 1390 if (!env->allow_ptr_leaks) { 1391 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1392 return -EPERM; 1393 } 1394 ret = add_subprog(env, i + insn[i].imm + 1); 1395 if (ret < 0) 1396 return ret; 1397 } 1398 1399 /* Add a fake 'exit' subprog which could simplify subprog iteration 1400 * logic. 'subprog_cnt' should not be increased. 1401 */ 1402 subprog[env->subprog_cnt].start = insn_cnt; 1403 1404 if (env->log.level & BPF_LOG_LEVEL2) 1405 for (i = 0; i < env->subprog_cnt; i++) 1406 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1407 1408 /* now check that all jumps are within the same subprog */ 1409 subprog_start = subprog[cur_subprog].start; 1410 subprog_end = subprog[cur_subprog + 1].start; 1411 for (i = 0; i < insn_cnt; i++) { 1412 u8 code = insn[i].code; 1413 1414 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1415 goto next; 1416 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1417 goto next; 1418 off = i + insn[i].off + 1; 1419 if (off < subprog_start || off >= subprog_end) { 1420 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1421 return -EINVAL; 1422 } 1423 next: 1424 if (i == subprog_end - 1) { 1425 /* to avoid fall-through from one subprog into another 1426 * the last insn of the subprog should be either exit 1427 * or unconditional jump back 1428 */ 1429 if (code != (BPF_JMP | BPF_EXIT) && 1430 code != (BPF_JMP | BPF_JA)) { 1431 verbose(env, "last insn is not an exit or jmp\n"); 1432 return -EINVAL; 1433 } 1434 subprog_start = subprog_end; 1435 cur_subprog++; 1436 if (cur_subprog < env->subprog_cnt) 1437 subprog_end = subprog[cur_subprog + 1].start; 1438 } 1439 } 1440 return 0; 1441 } 1442 1443 /* Parentage chain of this register (or stack slot) should take care of all 1444 * issues like callee-saved registers, stack slot allocation time, etc. 1445 */ 1446 static int mark_reg_read(struct bpf_verifier_env *env, 1447 const struct bpf_reg_state *state, 1448 struct bpf_reg_state *parent, u8 flag) 1449 { 1450 bool writes = parent == state->parent; /* Observe write marks */ 1451 int cnt = 0; 1452 1453 while (parent) { 1454 /* if read wasn't screened by an earlier write ... */ 1455 if (writes && state->live & REG_LIVE_WRITTEN) 1456 break; 1457 if (parent->live & REG_LIVE_DONE) { 1458 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1459 reg_type_str[parent->type], 1460 parent->var_off.value, parent->off); 1461 return -EFAULT; 1462 } 1463 /* The first condition is more likely to be true than the 1464 * second, checked it first. 1465 */ 1466 if ((parent->live & REG_LIVE_READ) == flag || 1467 parent->live & REG_LIVE_READ64) 1468 /* The parentage chain never changes and 1469 * this parent was already marked as LIVE_READ. 1470 * There is no need to keep walking the chain again and 1471 * keep re-marking all parents as LIVE_READ. 1472 * This case happens when the same register is read 1473 * multiple times without writes into it in-between. 1474 * Also, if parent has the stronger REG_LIVE_READ64 set, 1475 * then no need to set the weak REG_LIVE_READ32. 1476 */ 1477 break; 1478 /* ... then we depend on parent's value */ 1479 parent->live |= flag; 1480 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1481 if (flag == REG_LIVE_READ64) 1482 parent->live &= ~REG_LIVE_READ32; 1483 state = parent; 1484 parent = state->parent; 1485 writes = true; 1486 cnt++; 1487 } 1488 1489 if (env->longest_mark_read_walk < cnt) 1490 env->longest_mark_read_walk = cnt; 1491 return 0; 1492 } 1493 1494 /* This function is supposed to be used by the following 32-bit optimization 1495 * code only. It returns TRUE if the source or destination register operates 1496 * on 64-bit, otherwise return FALSE. 1497 */ 1498 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1499 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1500 { 1501 u8 code, class, op; 1502 1503 code = insn->code; 1504 class = BPF_CLASS(code); 1505 op = BPF_OP(code); 1506 if (class == BPF_JMP) { 1507 /* BPF_EXIT for "main" will reach here. Return TRUE 1508 * conservatively. 1509 */ 1510 if (op == BPF_EXIT) 1511 return true; 1512 if (op == BPF_CALL) { 1513 /* BPF to BPF call will reach here because of marking 1514 * caller saved clobber with DST_OP_NO_MARK for which we 1515 * don't care the register def because they are anyway 1516 * marked as NOT_INIT already. 1517 */ 1518 if (insn->src_reg == BPF_PSEUDO_CALL) 1519 return false; 1520 /* Helper call will reach here because of arg type 1521 * check, conservatively return TRUE. 1522 */ 1523 if (t == SRC_OP) 1524 return true; 1525 1526 return false; 1527 } 1528 } 1529 1530 if (class == BPF_ALU64 || class == BPF_JMP || 1531 /* BPF_END always use BPF_ALU class. */ 1532 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1533 return true; 1534 1535 if (class == BPF_ALU || class == BPF_JMP32) 1536 return false; 1537 1538 if (class == BPF_LDX) { 1539 if (t != SRC_OP) 1540 return BPF_SIZE(code) == BPF_DW; 1541 /* LDX source must be ptr. */ 1542 return true; 1543 } 1544 1545 if (class == BPF_STX) { 1546 if (reg->type != SCALAR_VALUE) 1547 return true; 1548 return BPF_SIZE(code) == BPF_DW; 1549 } 1550 1551 if (class == BPF_LD) { 1552 u8 mode = BPF_MODE(code); 1553 1554 /* LD_IMM64 */ 1555 if (mode == BPF_IMM) 1556 return true; 1557 1558 /* Both LD_IND and LD_ABS return 32-bit data. */ 1559 if (t != SRC_OP) 1560 return false; 1561 1562 /* Implicit ctx ptr. */ 1563 if (regno == BPF_REG_6) 1564 return true; 1565 1566 /* Explicit source could be any width. */ 1567 return true; 1568 } 1569 1570 if (class == BPF_ST) 1571 /* The only source register for BPF_ST is a ptr. */ 1572 return true; 1573 1574 /* Conservatively return true at default. */ 1575 return true; 1576 } 1577 1578 /* Return TRUE if INSN doesn't have explicit value define. */ 1579 static bool insn_no_def(struct bpf_insn *insn) 1580 { 1581 u8 class = BPF_CLASS(insn->code); 1582 1583 return (class == BPF_JMP || class == BPF_JMP32 || 1584 class == BPF_STX || class == BPF_ST); 1585 } 1586 1587 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1588 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1589 { 1590 if (insn_no_def(insn)) 1591 return false; 1592 1593 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1594 } 1595 1596 static void mark_insn_zext(struct bpf_verifier_env *env, 1597 struct bpf_reg_state *reg) 1598 { 1599 s32 def_idx = reg->subreg_def; 1600 1601 if (def_idx == DEF_NOT_SUBREG) 1602 return; 1603 1604 env->insn_aux_data[def_idx - 1].zext_dst = true; 1605 /* The dst will be zero extended, so won't be sub-register anymore. */ 1606 reg->subreg_def = DEF_NOT_SUBREG; 1607 } 1608 1609 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1610 enum reg_arg_type t) 1611 { 1612 struct bpf_verifier_state *vstate = env->cur_state; 1613 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1614 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1615 struct bpf_reg_state *reg, *regs = state->regs; 1616 bool rw64; 1617 1618 if (regno >= MAX_BPF_REG) { 1619 verbose(env, "R%d is invalid\n", regno); 1620 return -EINVAL; 1621 } 1622 1623 reg = ®s[regno]; 1624 rw64 = is_reg64(env, insn, regno, reg, t); 1625 if (t == SRC_OP) { 1626 /* check whether register used as source operand can be read */ 1627 if (reg->type == NOT_INIT) { 1628 verbose(env, "R%d !read_ok\n", regno); 1629 return -EACCES; 1630 } 1631 /* We don't need to worry about FP liveness because it's read-only */ 1632 if (regno == BPF_REG_FP) 1633 return 0; 1634 1635 if (rw64) 1636 mark_insn_zext(env, reg); 1637 1638 return mark_reg_read(env, reg, reg->parent, 1639 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1640 } else { 1641 /* check whether register used as dest operand can be written to */ 1642 if (regno == BPF_REG_FP) { 1643 verbose(env, "frame pointer is read only\n"); 1644 return -EACCES; 1645 } 1646 reg->live |= REG_LIVE_WRITTEN; 1647 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1648 if (t == DST_OP) 1649 mark_reg_unknown(env, regs, regno); 1650 } 1651 return 0; 1652 } 1653 1654 /* for any branch, call, exit record the history of jmps in the given state */ 1655 static int push_jmp_history(struct bpf_verifier_env *env, 1656 struct bpf_verifier_state *cur) 1657 { 1658 u32 cnt = cur->jmp_history_cnt; 1659 struct bpf_idx_pair *p; 1660 1661 cnt++; 1662 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1663 if (!p) 1664 return -ENOMEM; 1665 p[cnt - 1].idx = env->insn_idx; 1666 p[cnt - 1].prev_idx = env->prev_insn_idx; 1667 cur->jmp_history = p; 1668 cur->jmp_history_cnt = cnt; 1669 return 0; 1670 } 1671 1672 /* Backtrack one insn at a time. If idx is not at the top of recorded 1673 * history then previous instruction came from straight line execution. 1674 */ 1675 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1676 u32 *history) 1677 { 1678 u32 cnt = *history; 1679 1680 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1681 i = st->jmp_history[cnt - 1].prev_idx; 1682 (*history)--; 1683 } else { 1684 i--; 1685 } 1686 return i; 1687 } 1688 1689 /* For given verifier state backtrack_insn() is called from the last insn to 1690 * the first insn. Its purpose is to compute a bitmask of registers and 1691 * stack slots that needs precision in the parent verifier state. 1692 */ 1693 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1694 u32 *reg_mask, u64 *stack_mask) 1695 { 1696 const struct bpf_insn_cbs cbs = { 1697 .cb_print = verbose, 1698 .private_data = env, 1699 }; 1700 struct bpf_insn *insn = env->prog->insnsi + idx; 1701 u8 class = BPF_CLASS(insn->code); 1702 u8 opcode = BPF_OP(insn->code); 1703 u8 mode = BPF_MODE(insn->code); 1704 u32 dreg = 1u << insn->dst_reg; 1705 u32 sreg = 1u << insn->src_reg; 1706 u32 spi; 1707 1708 if (insn->code == 0) 1709 return 0; 1710 if (env->log.level & BPF_LOG_LEVEL) { 1711 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1712 verbose(env, "%d: ", idx); 1713 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1714 } 1715 1716 if (class == BPF_ALU || class == BPF_ALU64) { 1717 if (!(*reg_mask & dreg)) 1718 return 0; 1719 if (opcode == BPF_MOV) { 1720 if (BPF_SRC(insn->code) == BPF_X) { 1721 /* dreg = sreg 1722 * dreg needs precision after this insn 1723 * sreg needs precision before this insn 1724 */ 1725 *reg_mask &= ~dreg; 1726 *reg_mask |= sreg; 1727 } else { 1728 /* dreg = K 1729 * dreg needs precision after this insn. 1730 * Corresponding register is already marked 1731 * as precise=true in this verifier state. 1732 * No further markings in parent are necessary 1733 */ 1734 *reg_mask &= ~dreg; 1735 } 1736 } else { 1737 if (BPF_SRC(insn->code) == BPF_X) { 1738 /* dreg += sreg 1739 * both dreg and sreg need precision 1740 * before this insn 1741 */ 1742 *reg_mask |= sreg; 1743 } /* else dreg += K 1744 * dreg still needs precision before this insn 1745 */ 1746 } 1747 } else if (class == BPF_LDX) { 1748 if (!(*reg_mask & dreg)) 1749 return 0; 1750 *reg_mask &= ~dreg; 1751 1752 /* scalars can only be spilled into stack w/o losing precision. 1753 * Load from any other memory can be zero extended. 1754 * The desire to keep that precision is already indicated 1755 * by 'precise' mark in corresponding register of this state. 1756 * No further tracking necessary. 1757 */ 1758 if (insn->src_reg != BPF_REG_FP) 1759 return 0; 1760 if (BPF_SIZE(insn->code) != BPF_DW) 1761 return 0; 1762 1763 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1764 * that [fp - off] slot contains scalar that needs to be 1765 * tracked with precision 1766 */ 1767 spi = (-insn->off - 1) / BPF_REG_SIZE; 1768 if (spi >= 64) { 1769 verbose(env, "BUG spi %d\n", spi); 1770 WARN_ONCE(1, "verifier backtracking bug"); 1771 return -EFAULT; 1772 } 1773 *stack_mask |= 1ull << spi; 1774 } else if (class == BPF_STX || class == BPF_ST) { 1775 if (*reg_mask & dreg) 1776 /* stx & st shouldn't be using _scalar_ dst_reg 1777 * to access memory. It means backtracking 1778 * encountered a case of pointer subtraction. 1779 */ 1780 return -ENOTSUPP; 1781 /* scalars can only be spilled into stack */ 1782 if (insn->dst_reg != BPF_REG_FP) 1783 return 0; 1784 if (BPF_SIZE(insn->code) != BPF_DW) 1785 return 0; 1786 spi = (-insn->off - 1) / BPF_REG_SIZE; 1787 if (spi >= 64) { 1788 verbose(env, "BUG spi %d\n", spi); 1789 WARN_ONCE(1, "verifier backtracking bug"); 1790 return -EFAULT; 1791 } 1792 if (!(*stack_mask & (1ull << spi))) 1793 return 0; 1794 *stack_mask &= ~(1ull << spi); 1795 if (class == BPF_STX) 1796 *reg_mask |= sreg; 1797 } else if (class == BPF_JMP || class == BPF_JMP32) { 1798 if (opcode == BPF_CALL) { 1799 if (insn->src_reg == BPF_PSEUDO_CALL) 1800 return -ENOTSUPP; 1801 /* regular helper call sets R0 */ 1802 *reg_mask &= ~1; 1803 if (*reg_mask & 0x3f) { 1804 /* if backtracing was looking for registers R1-R5 1805 * they should have been found already. 1806 */ 1807 verbose(env, "BUG regs %x\n", *reg_mask); 1808 WARN_ONCE(1, "verifier backtracking bug"); 1809 return -EFAULT; 1810 } 1811 } else if (opcode == BPF_EXIT) { 1812 return -ENOTSUPP; 1813 } 1814 } else if (class == BPF_LD) { 1815 if (!(*reg_mask & dreg)) 1816 return 0; 1817 *reg_mask &= ~dreg; 1818 /* It's ld_imm64 or ld_abs or ld_ind. 1819 * For ld_imm64 no further tracking of precision 1820 * into parent is necessary 1821 */ 1822 if (mode == BPF_IND || mode == BPF_ABS) 1823 /* to be analyzed */ 1824 return -ENOTSUPP; 1825 } 1826 return 0; 1827 } 1828 1829 /* the scalar precision tracking algorithm: 1830 * . at the start all registers have precise=false. 1831 * . scalar ranges are tracked as normal through alu and jmp insns. 1832 * . once precise value of the scalar register is used in: 1833 * . ptr + scalar alu 1834 * . if (scalar cond K|scalar) 1835 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1836 * backtrack through the verifier states and mark all registers and 1837 * stack slots with spilled constants that these scalar regisers 1838 * should be precise. 1839 * . during state pruning two registers (or spilled stack slots) 1840 * are equivalent if both are not precise. 1841 * 1842 * Note the verifier cannot simply walk register parentage chain, 1843 * since many different registers and stack slots could have been 1844 * used to compute single precise scalar. 1845 * 1846 * The approach of starting with precise=true for all registers and then 1847 * backtrack to mark a register as not precise when the verifier detects 1848 * that program doesn't care about specific value (e.g., when helper 1849 * takes register as ARG_ANYTHING parameter) is not safe. 1850 * 1851 * It's ok to walk single parentage chain of the verifier states. 1852 * It's possible that this backtracking will go all the way till 1st insn. 1853 * All other branches will be explored for needing precision later. 1854 * 1855 * The backtracking needs to deal with cases like: 1856 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1857 * r9 -= r8 1858 * r5 = r9 1859 * if r5 > 0x79f goto pc+7 1860 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1861 * r5 += 1 1862 * ... 1863 * call bpf_perf_event_output#25 1864 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1865 * 1866 * and this case: 1867 * r6 = 1 1868 * call foo // uses callee's r6 inside to compute r0 1869 * r0 += r6 1870 * if r0 == 0 goto 1871 * 1872 * to track above reg_mask/stack_mask needs to be independent for each frame. 1873 * 1874 * Also if parent's curframe > frame where backtracking started, 1875 * the verifier need to mark registers in both frames, otherwise callees 1876 * may incorrectly prune callers. This is similar to 1877 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1878 * 1879 * For now backtracking falls back into conservative marking. 1880 */ 1881 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1882 struct bpf_verifier_state *st) 1883 { 1884 struct bpf_func_state *func; 1885 struct bpf_reg_state *reg; 1886 int i, j; 1887 1888 /* big hammer: mark all scalars precise in this path. 1889 * pop_stack may still get !precise scalars. 1890 */ 1891 for (; st; st = st->parent) 1892 for (i = 0; i <= st->curframe; i++) { 1893 func = st->frame[i]; 1894 for (j = 0; j < BPF_REG_FP; j++) { 1895 reg = &func->regs[j]; 1896 if (reg->type != SCALAR_VALUE) 1897 continue; 1898 reg->precise = true; 1899 } 1900 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1901 if (func->stack[j].slot_type[0] != STACK_SPILL) 1902 continue; 1903 reg = &func->stack[j].spilled_ptr; 1904 if (reg->type != SCALAR_VALUE) 1905 continue; 1906 reg->precise = true; 1907 } 1908 } 1909 } 1910 1911 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1912 int spi) 1913 { 1914 struct bpf_verifier_state *st = env->cur_state; 1915 int first_idx = st->first_insn_idx; 1916 int last_idx = env->insn_idx; 1917 struct bpf_func_state *func; 1918 struct bpf_reg_state *reg; 1919 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1920 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1921 bool skip_first = true; 1922 bool new_marks = false; 1923 int i, err; 1924 1925 if (!env->allow_ptr_leaks) 1926 /* backtracking is root only for now */ 1927 return 0; 1928 1929 func = st->frame[st->curframe]; 1930 if (regno >= 0) { 1931 reg = &func->regs[regno]; 1932 if (reg->type != SCALAR_VALUE) { 1933 WARN_ONCE(1, "backtracing misuse"); 1934 return -EFAULT; 1935 } 1936 if (!reg->precise) 1937 new_marks = true; 1938 else 1939 reg_mask = 0; 1940 reg->precise = true; 1941 } 1942 1943 while (spi >= 0) { 1944 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1945 stack_mask = 0; 1946 break; 1947 } 1948 reg = &func->stack[spi].spilled_ptr; 1949 if (reg->type != SCALAR_VALUE) { 1950 stack_mask = 0; 1951 break; 1952 } 1953 if (!reg->precise) 1954 new_marks = true; 1955 else 1956 stack_mask = 0; 1957 reg->precise = true; 1958 break; 1959 } 1960 1961 if (!new_marks) 1962 return 0; 1963 if (!reg_mask && !stack_mask) 1964 return 0; 1965 for (;;) { 1966 DECLARE_BITMAP(mask, 64); 1967 u32 history = st->jmp_history_cnt; 1968 1969 if (env->log.level & BPF_LOG_LEVEL) 1970 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1971 for (i = last_idx;;) { 1972 if (skip_first) { 1973 err = 0; 1974 skip_first = false; 1975 } else { 1976 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1977 } 1978 if (err == -ENOTSUPP) { 1979 mark_all_scalars_precise(env, st); 1980 return 0; 1981 } else if (err) { 1982 return err; 1983 } 1984 if (!reg_mask && !stack_mask) 1985 /* Found assignment(s) into tracked register in this state. 1986 * Since this state is already marked, just return. 1987 * Nothing to be tracked further in the parent state. 1988 */ 1989 return 0; 1990 if (i == first_idx) 1991 break; 1992 i = get_prev_insn_idx(st, i, &history); 1993 if (i >= env->prog->len) { 1994 /* This can happen if backtracking reached insn 0 1995 * and there are still reg_mask or stack_mask 1996 * to backtrack. 1997 * It means the backtracking missed the spot where 1998 * particular register was initialized with a constant. 1999 */ 2000 verbose(env, "BUG backtracking idx %d\n", i); 2001 WARN_ONCE(1, "verifier backtracking bug"); 2002 return -EFAULT; 2003 } 2004 } 2005 st = st->parent; 2006 if (!st) 2007 break; 2008 2009 new_marks = false; 2010 func = st->frame[st->curframe]; 2011 bitmap_from_u64(mask, reg_mask); 2012 for_each_set_bit(i, mask, 32) { 2013 reg = &func->regs[i]; 2014 if (reg->type != SCALAR_VALUE) { 2015 reg_mask &= ~(1u << i); 2016 continue; 2017 } 2018 if (!reg->precise) 2019 new_marks = true; 2020 reg->precise = true; 2021 } 2022 2023 bitmap_from_u64(mask, stack_mask); 2024 for_each_set_bit(i, mask, 64) { 2025 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2026 /* the sequence of instructions: 2027 * 2: (bf) r3 = r10 2028 * 3: (7b) *(u64 *)(r3 -8) = r0 2029 * 4: (79) r4 = *(u64 *)(r10 -8) 2030 * doesn't contain jmps. It's backtracked 2031 * as a single block. 2032 * During backtracking insn 3 is not recognized as 2033 * stack access, so at the end of backtracking 2034 * stack slot fp-8 is still marked in stack_mask. 2035 * However the parent state may not have accessed 2036 * fp-8 and it's "unallocated" stack space. 2037 * In such case fallback to conservative. 2038 */ 2039 mark_all_scalars_precise(env, st); 2040 return 0; 2041 } 2042 2043 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2044 stack_mask &= ~(1ull << i); 2045 continue; 2046 } 2047 reg = &func->stack[i].spilled_ptr; 2048 if (reg->type != SCALAR_VALUE) { 2049 stack_mask &= ~(1ull << i); 2050 continue; 2051 } 2052 if (!reg->precise) 2053 new_marks = true; 2054 reg->precise = true; 2055 } 2056 if (env->log.level & BPF_LOG_LEVEL) { 2057 print_verifier_state(env, func); 2058 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2059 new_marks ? "didn't have" : "already had", 2060 reg_mask, stack_mask); 2061 } 2062 2063 if (!reg_mask && !stack_mask) 2064 break; 2065 if (!new_marks) 2066 break; 2067 2068 last_idx = st->last_insn_idx; 2069 first_idx = st->first_insn_idx; 2070 } 2071 return 0; 2072 } 2073 2074 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2075 { 2076 return __mark_chain_precision(env, regno, -1); 2077 } 2078 2079 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2080 { 2081 return __mark_chain_precision(env, -1, spi); 2082 } 2083 2084 static bool is_spillable_regtype(enum bpf_reg_type type) 2085 { 2086 switch (type) { 2087 case PTR_TO_MAP_VALUE: 2088 case PTR_TO_MAP_VALUE_OR_NULL: 2089 case PTR_TO_STACK: 2090 case PTR_TO_CTX: 2091 case PTR_TO_PACKET: 2092 case PTR_TO_PACKET_META: 2093 case PTR_TO_PACKET_END: 2094 case PTR_TO_FLOW_KEYS: 2095 case CONST_PTR_TO_MAP: 2096 case PTR_TO_SOCKET: 2097 case PTR_TO_SOCKET_OR_NULL: 2098 case PTR_TO_SOCK_COMMON: 2099 case PTR_TO_SOCK_COMMON_OR_NULL: 2100 case PTR_TO_TCP_SOCK: 2101 case PTR_TO_TCP_SOCK_OR_NULL: 2102 case PTR_TO_XDP_SOCK: 2103 case PTR_TO_BTF_ID: 2104 return true; 2105 default: 2106 return false; 2107 } 2108 } 2109 2110 /* Does this register contain a constant zero? */ 2111 static bool register_is_null(struct bpf_reg_state *reg) 2112 { 2113 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2114 } 2115 2116 static bool register_is_const(struct bpf_reg_state *reg) 2117 { 2118 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2119 } 2120 2121 static bool __is_pointer_value(bool allow_ptr_leaks, 2122 const struct bpf_reg_state *reg) 2123 { 2124 if (allow_ptr_leaks) 2125 return false; 2126 2127 return reg->type != SCALAR_VALUE; 2128 } 2129 2130 static void save_register_state(struct bpf_func_state *state, 2131 int spi, struct bpf_reg_state *reg) 2132 { 2133 int i; 2134 2135 state->stack[spi].spilled_ptr = *reg; 2136 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2137 2138 for (i = 0; i < BPF_REG_SIZE; i++) 2139 state->stack[spi].slot_type[i] = STACK_SPILL; 2140 } 2141 2142 /* check_stack_read/write functions track spill/fill of registers, 2143 * stack boundary and alignment are checked in check_mem_access() 2144 */ 2145 static int check_stack_write(struct bpf_verifier_env *env, 2146 struct bpf_func_state *state, /* func where register points to */ 2147 int off, int size, int value_regno, int insn_idx) 2148 { 2149 struct bpf_func_state *cur; /* state of the current function */ 2150 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2151 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2152 struct bpf_reg_state *reg = NULL; 2153 2154 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2155 state->acquired_refs, true); 2156 if (err) 2157 return err; 2158 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2159 * so it's aligned access and [off, off + size) are within stack limits 2160 */ 2161 if (!env->allow_ptr_leaks && 2162 state->stack[spi].slot_type[0] == STACK_SPILL && 2163 size != BPF_REG_SIZE) { 2164 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2165 return -EACCES; 2166 } 2167 2168 cur = env->cur_state->frame[env->cur_state->curframe]; 2169 if (value_regno >= 0) 2170 reg = &cur->regs[value_regno]; 2171 2172 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2173 !register_is_null(reg) && env->allow_ptr_leaks) { 2174 if (dst_reg != BPF_REG_FP) { 2175 /* The backtracking logic can only recognize explicit 2176 * stack slot address like [fp - 8]. Other spill of 2177 * scalar via different register has to be conervative. 2178 * Backtrack from here and mark all registers as precise 2179 * that contributed into 'reg' being a constant. 2180 */ 2181 err = mark_chain_precision(env, value_regno); 2182 if (err) 2183 return err; 2184 } 2185 save_register_state(state, spi, reg); 2186 } else if (reg && is_spillable_regtype(reg->type)) { 2187 /* register containing pointer is being spilled into stack */ 2188 if (size != BPF_REG_SIZE) { 2189 verbose_linfo(env, insn_idx, "; "); 2190 verbose(env, "invalid size of register spill\n"); 2191 return -EACCES; 2192 } 2193 2194 if (state != cur && reg->type == PTR_TO_STACK) { 2195 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2196 return -EINVAL; 2197 } 2198 2199 if (!env->allow_ptr_leaks) { 2200 bool sanitize = false; 2201 2202 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2203 register_is_const(&state->stack[spi].spilled_ptr)) 2204 sanitize = true; 2205 for (i = 0; i < BPF_REG_SIZE; i++) 2206 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2207 sanitize = true; 2208 break; 2209 } 2210 if (sanitize) { 2211 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2212 int soff = (-spi - 1) * BPF_REG_SIZE; 2213 2214 /* detected reuse of integer stack slot with a pointer 2215 * which means either llvm is reusing stack slot or 2216 * an attacker is trying to exploit CVE-2018-3639 2217 * (speculative store bypass) 2218 * Have to sanitize that slot with preemptive 2219 * store of zero. 2220 */ 2221 if (*poff && *poff != soff) { 2222 /* disallow programs where single insn stores 2223 * into two different stack slots, since verifier 2224 * cannot sanitize them 2225 */ 2226 verbose(env, 2227 "insn %d cannot access two stack slots fp%d and fp%d", 2228 insn_idx, *poff, soff); 2229 return -EINVAL; 2230 } 2231 *poff = soff; 2232 } 2233 } 2234 save_register_state(state, spi, reg); 2235 } else { 2236 u8 type = STACK_MISC; 2237 2238 /* regular write of data into stack destroys any spilled ptr */ 2239 state->stack[spi].spilled_ptr.type = NOT_INIT; 2240 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2241 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2242 for (i = 0; i < BPF_REG_SIZE; i++) 2243 state->stack[spi].slot_type[i] = STACK_MISC; 2244 2245 /* only mark the slot as written if all 8 bytes were written 2246 * otherwise read propagation may incorrectly stop too soon 2247 * when stack slots are partially written. 2248 * This heuristic means that read propagation will be 2249 * conservative, since it will add reg_live_read marks 2250 * to stack slots all the way to first state when programs 2251 * writes+reads less than 8 bytes 2252 */ 2253 if (size == BPF_REG_SIZE) 2254 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2255 2256 /* when we zero initialize stack slots mark them as such */ 2257 if (reg && register_is_null(reg)) { 2258 /* backtracking doesn't work for STACK_ZERO yet. */ 2259 err = mark_chain_precision(env, value_regno); 2260 if (err) 2261 return err; 2262 type = STACK_ZERO; 2263 } 2264 2265 /* Mark slots affected by this stack write. */ 2266 for (i = 0; i < size; i++) 2267 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2268 type; 2269 } 2270 return 0; 2271 } 2272 2273 static int check_stack_read(struct bpf_verifier_env *env, 2274 struct bpf_func_state *reg_state /* func where register points to */, 2275 int off, int size, int value_regno) 2276 { 2277 struct bpf_verifier_state *vstate = env->cur_state; 2278 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2279 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2280 struct bpf_reg_state *reg; 2281 u8 *stype; 2282 2283 if (reg_state->allocated_stack <= slot) { 2284 verbose(env, "invalid read from stack off %d+0 size %d\n", 2285 off, size); 2286 return -EACCES; 2287 } 2288 stype = reg_state->stack[spi].slot_type; 2289 reg = ®_state->stack[spi].spilled_ptr; 2290 2291 if (stype[0] == STACK_SPILL) { 2292 if (size != BPF_REG_SIZE) { 2293 if (reg->type != SCALAR_VALUE) { 2294 verbose_linfo(env, env->insn_idx, "; "); 2295 verbose(env, "invalid size of register fill\n"); 2296 return -EACCES; 2297 } 2298 if (value_regno >= 0) { 2299 mark_reg_unknown(env, state->regs, value_regno); 2300 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2301 } 2302 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2303 return 0; 2304 } 2305 for (i = 1; i < BPF_REG_SIZE; i++) { 2306 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2307 verbose(env, "corrupted spill memory\n"); 2308 return -EACCES; 2309 } 2310 } 2311 2312 if (value_regno >= 0) { 2313 /* restore register state from stack */ 2314 state->regs[value_regno] = *reg; 2315 /* mark reg as written since spilled pointer state likely 2316 * has its liveness marks cleared by is_state_visited() 2317 * which resets stack/reg liveness for state transitions 2318 */ 2319 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2320 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2321 /* If value_regno==-1, the caller is asking us whether 2322 * it is acceptable to use this value as a SCALAR_VALUE 2323 * (e.g. for XADD). 2324 * We must not allow unprivileged callers to do that 2325 * with spilled pointers. 2326 */ 2327 verbose(env, "leaking pointer from stack off %d\n", 2328 off); 2329 return -EACCES; 2330 } 2331 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2332 } else { 2333 int zeros = 0; 2334 2335 for (i = 0; i < size; i++) { 2336 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2337 continue; 2338 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2339 zeros++; 2340 continue; 2341 } 2342 verbose(env, "invalid read from stack off %d+%d size %d\n", 2343 off, i, size); 2344 return -EACCES; 2345 } 2346 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2347 if (value_regno >= 0) { 2348 if (zeros == size) { 2349 /* any size read into register is zero extended, 2350 * so the whole register == const_zero 2351 */ 2352 __mark_reg_const_zero(&state->regs[value_regno]); 2353 /* backtracking doesn't support STACK_ZERO yet, 2354 * so mark it precise here, so that later 2355 * backtracking can stop here. 2356 * Backtracking may not need this if this register 2357 * doesn't participate in pointer adjustment. 2358 * Forward propagation of precise flag is not 2359 * necessary either. This mark is only to stop 2360 * backtracking. Any register that contributed 2361 * to const 0 was marked precise before spill. 2362 */ 2363 state->regs[value_regno].precise = true; 2364 } else { 2365 /* have read misc data from the stack */ 2366 mark_reg_unknown(env, state->regs, value_regno); 2367 } 2368 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2369 } 2370 } 2371 return 0; 2372 } 2373 2374 static int check_stack_access(struct bpf_verifier_env *env, 2375 const struct bpf_reg_state *reg, 2376 int off, int size) 2377 { 2378 /* Stack accesses must be at a fixed offset, so that we 2379 * can determine what type of data were returned. See 2380 * check_stack_read(). 2381 */ 2382 if (!tnum_is_const(reg->var_off)) { 2383 char tn_buf[48]; 2384 2385 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2386 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2387 tn_buf, off, size); 2388 return -EACCES; 2389 } 2390 2391 if (off >= 0 || off < -MAX_BPF_STACK) { 2392 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2393 return -EACCES; 2394 } 2395 2396 return 0; 2397 } 2398 2399 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2400 int off, int size, enum bpf_access_type type) 2401 { 2402 struct bpf_reg_state *regs = cur_regs(env); 2403 struct bpf_map *map = regs[regno].map_ptr; 2404 u32 cap = bpf_map_flags_to_cap(map); 2405 2406 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2407 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2408 map->value_size, off, size); 2409 return -EACCES; 2410 } 2411 2412 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2413 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2414 map->value_size, off, size); 2415 return -EACCES; 2416 } 2417 2418 return 0; 2419 } 2420 2421 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2422 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2423 int size, bool zero_size_allowed) 2424 { 2425 struct bpf_reg_state *regs = cur_regs(env); 2426 struct bpf_map *map = regs[regno].map_ptr; 2427 2428 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2429 off + size > map->value_size) { 2430 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2431 map->value_size, off, size); 2432 return -EACCES; 2433 } 2434 return 0; 2435 } 2436 2437 /* check read/write into a map element with possible variable offset */ 2438 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2439 int off, int size, bool zero_size_allowed) 2440 { 2441 struct bpf_verifier_state *vstate = env->cur_state; 2442 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2443 struct bpf_reg_state *reg = &state->regs[regno]; 2444 int err; 2445 2446 /* We may have adjusted the register to this map value, so we 2447 * need to try adding each of min_value and max_value to off 2448 * to make sure our theoretical access will be safe. 2449 */ 2450 if (env->log.level & BPF_LOG_LEVEL) 2451 print_verifier_state(env, state); 2452 2453 /* The minimum value is only important with signed 2454 * comparisons where we can't assume the floor of a 2455 * value is 0. If we are using signed variables for our 2456 * index'es we need to make sure that whatever we use 2457 * will have a set floor within our range. 2458 */ 2459 if (reg->smin_value < 0 && 2460 (reg->smin_value == S64_MIN || 2461 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2462 reg->smin_value + off < 0)) { 2463 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2464 regno); 2465 return -EACCES; 2466 } 2467 err = __check_map_access(env, regno, reg->smin_value + off, size, 2468 zero_size_allowed); 2469 if (err) { 2470 verbose(env, "R%d min value is outside of the array range\n", 2471 regno); 2472 return err; 2473 } 2474 2475 /* If we haven't set a max value then we need to bail since we can't be 2476 * sure we won't do bad things. 2477 * If reg->umax_value + off could overflow, treat that as unbounded too. 2478 */ 2479 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2480 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2481 regno); 2482 return -EACCES; 2483 } 2484 err = __check_map_access(env, regno, reg->umax_value + off, size, 2485 zero_size_allowed); 2486 if (err) 2487 verbose(env, "R%d max value is outside of the array range\n", 2488 regno); 2489 2490 if (map_value_has_spin_lock(reg->map_ptr)) { 2491 u32 lock = reg->map_ptr->spin_lock_off; 2492 2493 /* if any part of struct bpf_spin_lock can be touched by 2494 * load/store reject this program. 2495 * To check that [x1, x2) overlaps with [y1, y2) 2496 * it is sufficient to check x1 < y2 && y1 < x2. 2497 */ 2498 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2499 lock < reg->umax_value + off + size) { 2500 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2501 return -EACCES; 2502 } 2503 } 2504 return err; 2505 } 2506 2507 #define MAX_PACKET_OFF 0xffff 2508 2509 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2510 const struct bpf_call_arg_meta *meta, 2511 enum bpf_access_type t) 2512 { 2513 switch (env->prog->type) { 2514 /* Program types only with direct read access go here! */ 2515 case BPF_PROG_TYPE_LWT_IN: 2516 case BPF_PROG_TYPE_LWT_OUT: 2517 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2518 case BPF_PROG_TYPE_SK_REUSEPORT: 2519 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2520 case BPF_PROG_TYPE_CGROUP_SKB: 2521 if (t == BPF_WRITE) 2522 return false; 2523 /* fallthrough */ 2524 2525 /* Program types with direct read + write access go here! */ 2526 case BPF_PROG_TYPE_SCHED_CLS: 2527 case BPF_PROG_TYPE_SCHED_ACT: 2528 case BPF_PROG_TYPE_XDP: 2529 case BPF_PROG_TYPE_LWT_XMIT: 2530 case BPF_PROG_TYPE_SK_SKB: 2531 case BPF_PROG_TYPE_SK_MSG: 2532 if (meta) 2533 return meta->pkt_access; 2534 2535 env->seen_direct_write = true; 2536 return true; 2537 2538 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2539 if (t == BPF_WRITE) 2540 env->seen_direct_write = true; 2541 2542 return true; 2543 2544 default: 2545 return false; 2546 } 2547 } 2548 2549 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2550 int off, int size, bool zero_size_allowed) 2551 { 2552 struct bpf_reg_state *regs = cur_regs(env); 2553 struct bpf_reg_state *reg = ®s[regno]; 2554 2555 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2556 (u64)off + size > reg->range) { 2557 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2558 off, size, regno, reg->id, reg->off, reg->range); 2559 return -EACCES; 2560 } 2561 return 0; 2562 } 2563 2564 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2565 int size, bool zero_size_allowed) 2566 { 2567 struct bpf_reg_state *regs = cur_regs(env); 2568 struct bpf_reg_state *reg = ®s[regno]; 2569 int err; 2570 2571 /* We may have added a variable offset to the packet pointer; but any 2572 * reg->range we have comes after that. We are only checking the fixed 2573 * offset. 2574 */ 2575 2576 /* We don't allow negative numbers, because we aren't tracking enough 2577 * detail to prove they're safe. 2578 */ 2579 if (reg->smin_value < 0) { 2580 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2581 regno); 2582 return -EACCES; 2583 } 2584 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2585 if (err) { 2586 verbose(env, "R%d offset is outside of the packet\n", regno); 2587 return err; 2588 } 2589 2590 /* __check_packet_access has made sure "off + size - 1" is within u16. 2591 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2592 * otherwise find_good_pkt_pointers would have refused to set range info 2593 * that __check_packet_access would have rejected this pkt access. 2594 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2595 */ 2596 env->prog->aux->max_pkt_offset = 2597 max_t(u32, env->prog->aux->max_pkt_offset, 2598 off + reg->umax_value + size - 1); 2599 2600 return err; 2601 } 2602 2603 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2604 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2605 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2606 u32 *btf_id) 2607 { 2608 struct bpf_insn_access_aux info = { 2609 .reg_type = *reg_type, 2610 .log = &env->log, 2611 }; 2612 2613 if (env->ops->is_valid_access && 2614 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2615 /* A non zero info.ctx_field_size indicates that this field is a 2616 * candidate for later verifier transformation to load the whole 2617 * field and then apply a mask when accessed with a narrower 2618 * access than actual ctx access size. A zero info.ctx_field_size 2619 * will only allow for whole field access and rejects any other 2620 * type of narrower access. 2621 */ 2622 *reg_type = info.reg_type; 2623 2624 if (*reg_type == PTR_TO_BTF_ID) 2625 *btf_id = info.btf_id; 2626 else 2627 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2628 /* remember the offset of last byte accessed in ctx */ 2629 if (env->prog->aux->max_ctx_offset < off + size) 2630 env->prog->aux->max_ctx_offset = off + size; 2631 return 0; 2632 } 2633 2634 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2635 return -EACCES; 2636 } 2637 2638 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2639 int size) 2640 { 2641 if (size < 0 || off < 0 || 2642 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2643 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2644 off, size); 2645 return -EACCES; 2646 } 2647 return 0; 2648 } 2649 2650 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2651 u32 regno, int off, int size, 2652 enum bpf_access_type t) 2653 { 2654 struct bpf_reg_state *regs = cur_regs(env); 2655 struct bpf_reg_state *reg = ®s[regno]; 2656 struct bpf_insn_access_aux info = {}; 2657 bool valid; 2658 2659 if (reg->smin_value < 0) { 2660 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2661 regno); 2662 return -EACCES; 2663 } 2664 2665 switch (reg->type) { 2666 case PTR_TO_SOCK_COMMON: 2667 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2668 break; 2669 case PTR_TO_SOCKET: 2670 valid = bpf_sock_is_valid_access(off, size, t, &info); 2671 break; 2672 case PTR_TO_TCP_SOCK: 2673 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2674 break; 2675 case PTR_TO_XDP_SOCK: 2676 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2677 break; 2678 default: 2679 valid = false; 2680 } 2681 2682 2683 if (valid) { 2684 env->insn_aux_data[insn_idx].ctx_field_size = 2685 info.ctx_field_size; 2686 return 0; 2687 } 2688 2689 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2690 regno, reg_type_str[reg->type], off, size); 2691 2692 return -EACCES; 2693 } 2694 2695 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2696 { 2697 return cur_regs(env) + regno; 2698 } 2699 2700 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2701 { 2702 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2703 } 2704 2705 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2706 { 2707 const struct bpf_reg_state *reg = reg_state(env, regno); 2708 2709 return reg->type == PTR_TO_CTX; 2710 } 2711 2712 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2713 { 2714 const struct bpf_reg_state *reg = reg_state(env, regno); 2715 2716 return type_is_sk_pointer(reg->type); 2717 } 2718 2719 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2720 { 2721 const struct bpf_reg_state *reg = reg_state(env, regno); 2722 2723 return type_is_pkt_pointer(reg->type); 2724 } 2725 2726 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2727 { 2728 const struct bpf_reg_state *reg = reg_state(env, regno); 2729 2730 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2731 return reg->type == PTR_TO_FLOW_KEYS; 2732 } 2733 2734 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2735 const struct bpf_reg_state *reg, 2736 int off, int size, bool strict) 2737 { 2738 struct tnum reg_off; 2739 int ip_align; 2740 2741 /* Byte size accesses are always allowed. */ 2742 if (!strict || size == 1) 2743 return 0; 2744 2745 /* For platforms that do not have a Kconfig enabling 2746 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2747 * NET_IP_ALIGN is universally set to '2'. And on platforms 2748 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2749 * to this code only in strict mode where we want to emulate 2750 * the NET_IP_ALIGN==2 checking. Therefore use an 2751 * unconditional IP align value of '2'. 2752 */ 2753 ip_align = 2; 2754 2755 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2756 if (!tnum_is_aligned(reg_off, size)) { 2757 char tn_buf[48]; 2758 2759 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2760 verbose(env, 2761 "misaligned packet access off %d+%s+%d+%d size %d\n", 2762 ip_align, tn_buf, reg->off, off, size); 2763 return -EACCES; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2770 const struct bpf_reg_state *reg, 2771 const char *pointer_desc, 2772 int off, int size, bool strict) 2773 { 2774 struct tnum reg_off; 2775 2776 /* Byte size accesses are always allowed. */ 2777 if (!strict || size == 1) 2778 return 0; 2779 2780 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2781 if (!tnum_is_aligned(reg_off, size)) { 2782 char tn_buf[48]; 2783 2784 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2785 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2786 pointer_desc, tn_buf, reg->off, off, size); 2787 return -EACCES; 2788 } 2789 2790 return 0; 2791 } 2792 2793 static int check_ptr_alignment(struct bpf_verifier_env *env, 2794 const struct bpf_reg_state *reg, int off, 2795 int size, bool strict_alignment_once) 2796 { 2797 bool strict = env->strict_alignment || strict_alignment_once; 2798 const char *pointer_desc = ""; 2799 2800 switch (reg->type) { 2801 case PTR_TO_PACKET: 2802 case PTR_TO_PACKET_META: 2803 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2804 * right in front, treat it the very same way. 2805 */ 2806 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2807 case PTR_TO_FLOW_KEYS: 2808 pointer_desc = "flow keys "; 2809 break; 2810 case PTR_TO_MAP_VALUE: 2811 pointer_desc = "value "; 2812 break; 2813 case PTR_TO_CTX: 2814 pointer_desc = "context "; 2815 break; 2816 case PTR_TO_STACK: 2817 pointer_desc = "stack "; 2818 /* The stack spill tracking logic in check_stack_write() 2819 * and check_stack_read() relies on stack accesses being 2820 * aligned. 2821 */ 2822 strict = true; 2823 break; 2824 case PTR_TO_SOCKET: 2825 pointer_desc = "sock "; 2826 break; 2827 case PTR_TO_SOCK_COMMON: 2828 pointer_desc = "sock_common "; 2829 break; 2830 case PTR_TO_TCP_SOCK: 2831 pointer_desc = "tcp_sock "; 2832 break; 2833 case PTR_TO_XDP_SOCK: 2834 pointer_desc = "xdp_sock "; 2835 break; 2836 default: 2837 break; 2838 } 2839 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2840 strict); 2841 } 2842 2843 static int update_stack_depth(struct bpf_verifier_env *env, 2844 const struct bpf_func_state *func, 2845 int off) 2846 { 2847 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2848 2849 if (stack >= -off) 2850 return 0; 2851 2852 /* update known max for given subprogram */ 2853 env->subprog_info[func->subprogno].stack_depth = -off; 2854 return 0; 2855 } 2856 2857 /* starting from main bpf function walk all instructions of the function 2858 * and recursively walk all callees that given function can call. 2859 * Ignore jump and exit insns. 2860 * Since recursion is prevented by check_cfg() this algorithm 2861 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2862 */ 2863 static int check_max_stack_depth(struct bpf_verifier_env *env) 2864 { 2865 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2866 struct bpf_subprog_info *subprog = env->subprog_info; 2867 struct bpf_insn *insn = env->prog->insnsi; 2868 int ret_insn[MAX_CALL_FRAMES]; 2869 int ret_prog[MAX_CALL_FRAMES]; 2870 2871 process_func: 2872 /* round up to 32-bytes, since this is granularity 2873 * of interpreter stack size 2874 */ 2875 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2876 if (depth > MAX_BPF_STACK) { 2877 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2878 frame + 1, depth); 2879 return -EACCES; 2880 } 2881 continue_func: 2882 subprog_end = subprog[idx + 1].start; 2883 for (; i < subprog_end; i++) { 2884 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2885 continue; 2886 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2887 continue; 2888 /* remember insn and function to return to */ 2889 ret_insn[frame] = i + 1; 2890 ret_prog[frame] = idx; 2891 2892 /* find the callee */ 2893 i = i + insn[i].imm + 1; 2894 idx = find_subprog(env, i); 2895 if (idx < 0) { 2896 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2897 i); 2898 return -EFAULT; 2899 } 2900 frame++; 2901 if (frame >= MAX_CALL_FRAMES) { 2902 verbose(env, "the call stack of %d frames is too deep !\n", 2903 frame); 2904 return -E2BIG; 2905 } 2906 goto process_func; 2907 } 2908 /* end of for() loop means the last insn of the 'subprog' 2909 * was reached. Doesn't matter whether it was JA or EXIT 2910 */ 2911 if (frame == 0) 2912 return 0; 2913 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2914 frame--; 2915 i = ret_insn[frame]; 2916 idx = ret_prog[frame]; 2917 goto continue_func; 2918 } 2919 2920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2921 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2922 const struct bpf_insn *insn, int idx) 2923 { 2924 int start = idx + insn->imm + 1, subprog; 2925 2926 subprog = find_subprog(env, start); 2927 if (subprog < 0) { 2928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2929 start); 2930 return -EFAULT; 2931 } 2932 return env->subprog_info[subprog].stack_depth; 2933 } 2934 #endif 2935 2936 int check_ctx_reg(struct bpf_verifier_env *env, 2937 const struct bpf_reg_state *reg, int regno) 2938 { 2939 /* Access to ctx or passing it to a helper is only allowed in 2940 * its original, unmodified form. 2941 */ 2942 2943 if (reg->off) { 2944 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2945 regno, reg->off); 2946 return -EACCES; 2947 } 2948 2949 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2950 char tn_buf[48]; 2951 2952 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2953 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2954 return -EACCES; 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2961 const struct bpf_reg_state *reg, 2962 int regno, int off, int size) 2963 { 2964 if (off < 0) { 2965 verbose(env, 2966 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2967 regno, off, size); 2968 return -EACCES; 2969 } 2970 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2971 char tn_buf[48]; 2972 2973 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2974 verbose(env, 2975 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2976 regno, off, tn_buf); 2977 return -EACCES; 2978 } 2979 if (off + size > env->prog->aux->max_tp_access) 2980 env->prog->aux->max_tp_access = off + size; 2981 2982 return 0; 2983 } 2984 2985 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 2986 static void zext_32_to_64(struct bpf_reg_state *reg) 2987 { 2988 reg->var_off = tnum_subreg(reg->var_off); 2989 __reg_assign_32_into_64(reg); 2990 } 2991 2992 /* truncate register to smaller size (in bytes) 2993 * must be called with size < BPF_REG_SIZE 2994 */ 2995 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2996 { 2997 u64 mask; 2998 2999 /* clear high bits in bit representation */ 3000 reg->var_off = tnum_cast(reg->var_off, size); 3001 3002 /* fix arithmetic bounds */ 3003 mask = ((u64)1 << (size * 8)) - 1; 3004 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3005 reg->umin_value &= mask; 3006 reg->umax_value &= mask; 3007 } else { 3008 reg->umin_value = 0; 3009 reg->umax_value = mask; 3010 } 3011 reg->smin_value = reg->umin_value; 3012 reg->smax_value = reg->umax_value; 3013 3014 /* If size is smaller than 32bit register the 32bit register 3015 * values are also truncated so we push 64-bit bounds into 3016 * 32-bit bounds. Above were truncated < 32-bits already. 3017 */ 3018 if (size >= 4) 3019 return; 3020 __reg_combine_64_into_32(reg); 3021 } 3022 3023 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3024 { 3025 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3026 } 3027 3028 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3029 { 3030 void *ptr; 3031 u64 addr; 3032 int err; 3033 3034 err = map->ops->map_direct_value_addr(map, &addr, off); 3035 if (err) 3036 return err; 3037 ptr = (void *)(long)addr + off; 3038 3039 switch (size) { 3040 case sizeof(u8): 3041 *val = (u64)*(u8 *)ptr; 3042 break; 3043 case sizeof(u16): 3044 *val = (u64)*(u16 *)ptr; 3045 break; 3046 case sizeof(u32): 3047 *val = (u64)*(u32 *)ptr; 3048 break; 3049 case sizeof(u64): 3050 *val = *(u64 *)ptr; 3051 break; 3052 default: 3053 return -EINVAL; 3054 } 3055 return 0; 3056 } 3057 3058 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3059 struct bpf_reg_state *regs, 3060 int regno, int off, int size, 3061 enum bpf_access_type atype, 3062 int value_regno) 3063 { 3064 struct bpf_reg_state *reg = regs + regno; 3065 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3066 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3067 u32 btf_id; 3068 int ret; 3069 3070 if (off < 0) { 3071 verbose(env, 3072 "R%d is ptr_%s invalid negative access: off=%d\n", 3073 regno, tname, off); 3074 return -EACCES; 3075 } 3076 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3077 char tn_buf[48]; 3078 3079 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3080 verbose(env, 3081 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3082 regno, tname, off, tn_buf); 3083 return -EACCES; 3084 } 3085 3086 if (env->ops->btf_struct_access) { 3087 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3088 atype, &btf_id); 3089 } else { 3090 if (atype != BPF_READ) { 3091 verbose(env, "only read is supported\n"); 3092 return -EACCES; 3093 } 3094 3095 ret = btf_struct_access(&env->log, t, off, size, atype, 3096 &btf_id); 3097 } 3098 3099 if (ret < 0) 3100 return ret; 3101 3102 if (atype == BPF_READ && value_regno >= 0) { 3103 if (ret == SCALAR_VALUE) { 3104 mark_reg_unknown(env, regs, value_regno); 3105 return 0; 3106 } 3107 mark_reg_known_zero(env, regs, value_regno); 3108 regs[value_regno].type = PTR_TO_BTF_ID; 3109 regs[value_regno].btf_id = btf_id; 3110 } 3111 3112 return 0; 3113 } 3114 3115 /* check whether memory at (regno + off) is accessible for t = (read | write) 3116 * if t==write, value_regno is a register which value is stored into memory 3117 * if t==read, value_regno is a register which will receive the value from memory 3118 * if t==write && value_regno==-1, some unknown value is stored into memory 3119 * if t==read && value_regno==-1, don't care what we read from memory 3120 */ 3121 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3122 int off, int bpf_size, enum bpf_access_type t, 3123 int value_regno, bool strict_alignment_once) 3124 { 3125 struct bpf_reg_state *regs = cur_regs(env); 3126 struct bpf_reg_state *reg = regs + regno; 3127 struct bpf_func_state *state; 3128 int size, err = 0; 3129 3130 size = bpf_size_to_bytes(bpf_size); 3131 if (size < 0) 3132 return size; 3133 3134 /* alignment checks will add in reg->off themselves */ 3135 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3136 if (err) 3137 return err; 3138 3139 /* for access checks, reg->off is just part of off */ 3140 off += reg->off; 3141 3142 if (reg->type == PTR_TO_MAP_VALUE) { 3143 if (t == BPF_WRITE && value_regno >= 0 && 3144 is_pointer_value(env, value_regno)) { 3145 verbose(env, "R%d leaks addr into map\n", value_regno); 3146 return -EACCES; 3147 } 3148 err = check_map_access_type(env, regno, off, size, t); 3149 if (err) 3150 return err; 3151 err = check_map_access(env, regno, off, size, false); 3152 if (!err && t == BPF_READ && value_regno >= 0) { 3153 struct bpf_map *map = reg->map_ptr; 3154 3155 /* if map is read-only, track its contents as scalars */ 3156 if (tnum_is_const(reg->var_off) && 3157 bpf_map_is_rdonly(map) && 3158 map->ops->map_direct_value_addr) { 3159 int map_off = off + reg->var_off.value; 3160 u64 val = 0; 3161 3162 err = bpf_map_direct_read(map, map_off, size, 3163 &val); 3164 if (err) 3165 return err; 3166 3167 regs[value_regno].type = SCALAR_VALUE; 3168 __mark_reg_known(®s[value_regno], val); 3169 } else { 3170 mark_reg_unknown(env, regs, value_regno); 3171 } 3172 } 3173 } else if (reg->type == PTR_TO_CTX) { 3174 enum bpf_reg_type reg_type = SCALAR_VALUE; 3175 u32 btf_id = 0; 3176 3177 if (t == BPF_WRITE && value_regno >= 0 && 3178 is_pointer_value(env, value_regno)) { 3179 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3180 return -EACCES; 3181 } 3182 3183 err = check_ctx_reg(env, reg, regno); 3184 if (err < 0) 3185 return err; 3186 3187 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3188 if (err) 3189 verbose_linfo(env, insn_idx, "; "); 3190 if (!err && t == BPF_READ && value_regno >= 0) { 3191 /* ctx access returns either a scalar, or a 3192 * PTR_TO_PACKET[_META,_END]. In the latter 3193 * case, we know the offset is zero. 3194 */ 3195 if (reg_type == SCALAR_VALUE) { 3196 mark_reg_unknown(env, regs, value_regno); 3197 } else { 3198 mark_reg_known_zero(env, regs, 3199 value_regno); 3200 if (reg_type_may_be_null(reg_type)) 3201 regs[value_regno].id = ++env->id_gen; 3202 /* A load of ctx field could have different 3203 * actual load size with the one encoded in the 3204 * insn. When the dst is PTR, it is for sure not 3205 * a sub-register. 3206 */ 3207 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3208 if (reg_type == PTR_TO_BTF_ID) 3209 regs[value_regno].btf_id = btf_id; 3210 } 3211 regs[value_regno].type = reg_type; 3212 } 3213 3214 } else if (reg->type == PTR_TO_STACK) { 3215 off += reg->var_off.value; 3216 err = check_stack_access(env, reg, off, size); 3217 if (err) 3218 return err; 3219 3220 state = func(env, reg); 3221 err = update_stack_depth(env, state, off); 3222 if (err) 3223 return err; 3224 3225 if (t == BPF_WRITE) 3226 err = check_stack_write(env, state, off, size, 3227 value_regno, insn_idx); 3228 else 3229 err = check_stack_read(env, state, off, size, 3230 value_regno); 3231 } else if (reg_is_pkt_pointer(reg)) { 3232 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3233 verbose(env, "cannot write into packet\n"); 3234 return -EACCES; 3235 } 3236 if (t == BPF_WRITE && value_regno >= 0 && 3237 is_pointer_value(env, value_regno)) { 3238 verbose(env, "R%d leaks addr into packet\n", 3239 value_regno); 3240 return -EACCES; 3241 } 3242 err = check_packet_access(env, regno, off, size, false); 3243 if (!err && t == BPF_READ && value_regno >= 0) 3244 mark_reg_unknown(env, regs, value_regno); 3245 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3246 if (t == BPF_WRITE && value_regno >= 0 && 3247 is_pointer_value(env, value_regno)) { 3248 verbose(env, "R%d leaks addr into flow keys\n", 3249 value_regno); 3250 return -EACCES; 3251 } 3252 3253 err = check_flow_keys_access(env, off, size); 3254 if (!err && t == BPF_READ && value_regno >= 0) 3255 mark_reg_unknown(env, regs, value_regno); 3256 } else if (type_is_sk_pointer(reg->type)) { 3257 if (t == BPF_WRITE) { 3258 verbose(env, "R%d cannot write into %s\n", 3259 regno, reg_type_str[reg->type]); 3260 return -EACCES; 3261 } 3262 err = check_sock_access(env, insn_idx, regno, off, size, t); 3263 if (!err && value_regno >= 0) 3264 mark_reg_unknown(env, regs, value_regno); 3265 } else if (reg->type == PTR_TO_TP_BUFFER) { 3266 err = check_tp_buffer_access(env, reg, regno, off, size); 3267 if (!err && t == BPF_READ && value_regno >= 0) 3268 mark_reg_unknown(env, regs, value_regno); 3269 } else if (reg->type == PTR_TO_BTF_ID) { 3270 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3271 value_regno); 3272 } else { 3273 verbose(env, "R%d invalid mem access '%s'\n", regno, 3274 reg_type_str[reg->type]); 3275 return -EACCES; 3276 } 3277 3278 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3279 regs[value_regno].type == SCALAR_VALUE) { 3280 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3281 coerce_reg_to_size(®s[value_regno], size); 3282 } 3283 return err; 3284 } 3285 3286 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3287 { 3288 int err; 3289 3290 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3291 insn->imm != 0) { 3292 verbose(env, "BPF_XADD uses reserved fields\n"); 3293 return -EINVAL; 3294 } 3295 3296 /* check src1 operand */ 3297 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3298 if (err) 3299 return err; 3300 3301 /* check src2 operand */ 3302 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3303 if (err) 3304 return err; 3305 3306 if (is_pointer_value(env, insn->src_reg)) { 3307 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3308 return -EACCES; 3309 } 3310 3311 if (is_ctx_reg(env, insn->dst_reg) || 3312 is_pkt_reg(env, insn->dst_reg) || 3313 is_flow_key_reg(env, insn->dst_reg) || 3314 is_sk_reg(env, insn->dst_reg)) { 3315 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3316 insn->dst_reg, 3317 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3318 return -EACCES; 3319 } 3320 3321 /* check whether atomic_add can read the memory */ 3322 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3323 BPF_SIZE(insn->code), BPF_READ, -1, true); 3324 if (err) 3325 return err; 3326 3327 /* check whether atomic_add can write into the same memory */ 3328 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3329 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3330 } 3331 3332 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3333 int off, int access_size, 3334 bool zero_size_allowed) 3335 { 3336 struct bpf_reg_state *reg = reg_state(env, regno); 3337 3338 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3339 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3340 if (tnum_is_const(reg->var_off)) { 3341 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3342 regno, off, access_size); 3343 } else { 3344 char tn_buf[48]; 3345 3346 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3347 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3348 regno, tn_buf, access_size); 3349 } 3350 return -EACCES; 3351 } 3352 return 0; 3353 } 3354 3355 /* when register 'regno' is passed into function that will read 'access_size' 3356 * bytes from that pointer, make sure that it's within stack boundary 3357 * and all elements of stack are initialized. 3358 * Unlike most pointer bounds-checking functions, this one doesn't take an 3359 * 'off' argument, so it has to add in reg->off itself. 3360 */ 3361 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3362 int access_size, bool zero_size_allowed, 3363 struct bpf_call_arg_meta *meta) 3364 { 3365 struct bpf_reg_state *reg = reg_state(env, regno); 3366 struct bpf_func_state *state = func(env, reg); 3367 int err, min_off, max_off, i, j, slot, spi; 3368 3369 if (reg->type != PTR_TO_STACK) { 3370 /* Allow zero-byte read from NULL, regardless of pointer type */ 3371 if (zero_size_allowed && access_size == 0 && 3372 register_is_null(reg)) 3373 return 0; 3374 3375 verbose(env, "R%d type=%s expected=%s\n", regno, 3376 reg_type_str[reg->type], 3377 reg_type_str[PTR_TO_STACK]); 3378 return -EACCES; 3379 } 3380 3381 if (tnum_is_const(reg->var_off)) { 3382 min_off = max_off = reg->var_off.value + reg->off; 3383 err = __check_stack_boundary(env, regno, min_off, access_size, 3384 zero_size_allowed); 3385 if (err) 3386 return err; 3387 } else { 3388 /* Variable offset is prohibited for unprivileged mode for 3389 * simplicity since it requires corresponding support in 3390 * Spectre masking for stack ALU. 3391 * See also retrieve_ptr_limit(). 3392 */ 3393 if (!env->allow_ptr_leaks) { 3394 char tn_buf[48]; 3395 3396 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3397 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3398 regno, tn_buf); 3399 return -EACCES; 3400 } 3401 /* Only initialized buffer on stack is allowed to be accessed 3402 * with variable offset. With uninitialized buffer it's hard to 3403 * guarantee that whole memory is marked as initialized on 3404 * helper return since specific bounds are unknown what may 3405 * cause uninitialized stack leaking. 3406 */ 3407 if (meta && meta->raw_mode) 3408 meta = NULL; 3409 3410 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3411 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3412 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3413 regno); 3414 return -EACCES; 3415 } 3416 min_off = reg->smin_value + reg->off; 3417 max_off = reg->smax_value + reg->off; 3418 err = __check_stack_boundary(env, regno, min_off, access_size, 3419 zero_size_allowed); 3420 if (err) { 3421 verbose(env, "R%d min value is outside of stack bound\n", 3422 regno); 3423 return err; 3424 } 3425 err = __check_stack_boundary(env, regno, max_off, access_size, 3426 zero_size_allowed); 3427 if (err) { 3428 verbose(env, "R%d max value is outside of stack bound\n", 3429 regno); 3430 return err; 3431 } 3432 } 3433 3434 if (meta && meta->raw_mode) { 3435 meta->access_size = access_size; 3436 meta->regno = regno; 3437 return 0; 3438 } 3439 3440 for (i = min_off; i < max_off + access_size; i++) { 3441 u8 *stype; 3442 3443 slot = -i - 1; 3444 spi = slot / BPF_REG_SIZE; 3445 if (state->allocated_stack <= slot) 3446 goto err; 3447 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3448 if (*stype == STACK_MISC) 3449 goto mark; 3450 if (*stype == STACK_ZERO) { 3451 /* helper can write anything into the stack */ 3452 *stype = STACK_MISC; 3453 goto mark; 3454 } 3455 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3456 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3457 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3458 for (j = 0; j < BPF_REG_SIZE; j++) 3459 state->stack[spi].slot_type[j] = STACK_MISC; 3460 goto mark; 3461 } 3462 3463 err: 3464 if (tnum_is_const(reg->var_off)) { 3465 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3466 min_off, i - min_off, access_size); 3467 } else { 3468 char tn_buf[48]; 3469 3470 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3471 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3472 tn_buf, i - min_off, access_size); 3473 } 3474 return -EACCES; 3475 mark: 3476 /* reading any byte out of 8-byte 'spill_slot' will cause 3477 * the whole slot to be marked as 'read' 3478 */ 3479 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3480 state->stack[spi].spilled_ptr.parent, 3481 REG_LIVE_READ64); 3482 } 3483 return update_stack_depth(env, state, min_off); 3484 } 3485 3486 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3487 int access_size, bool zero_size_allowed, 3488 struct bpf_call_arg_meta *meta) 3489 { 3490 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3491 3492 switch (reg->type) { 3493 case PTR_TO_PACKET: 3494 case PTR_TO_PACKET_META: 3495 return check_packet_access(env, regno, reg->off, access_size, 3496 zero_size_allowed); 3497 case PTR_TO_MAP_VALUE: 3498 if (check_map_access_type(env, regno, reg->off, access_size, 3499 meta && meta->raw_mode ? BPF_WRITE : 3500 BPF_READ)) 3501 return -EACCES; 3502 return check_map_access(env, regno, reg->off, access_size, 3503 zero_size_allowed); 3504 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3505 return check_stack_boundary(env, regno, access_size, 3506 zero_size_allowed, meta); 3507 } 3508 } 3509 3510 /* Implementation details: 3511 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3512 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3513 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3514 * value_or_null->value transition, since the verifier only cares about 3515 * the range of access to valid map value pointer and doesn't care about actual 3516 * address of the map element. 3517 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3518 * reg->id > 0 after value_or_null->value transition. By doing so 3519 * two bpf_map_lookups will be considered two different pointers that 3520 * point to different bpf_spin_locks. 3521 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3522 * dead-locks. 3523 * Since only one bpf_spin_lock is allowed the checks are simpler than 3524 * reg_is_refcounted() logic. The verifier needs to remember only 3525 * one spin_lock instead of array of acquired_refs. 3526 * cur_state->active_spin_lock remembers which map value element got locked 3527 * and clears it after bpf_spin_unlock. 3528 */ 3529 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3530 bool is_lock) 3531 { 3532 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3533 struct bpf_verifier_state *cur = env->cur_state; 3534 bool is_const = tnum_is_const(reg->var_off); 3535 struct bpf_map *map = reg->map_ptr; 3536 u64 val = reg->var_off.value; 3537 3538 if (reg->type != PTR_TO_MAP_VALUE) { 3539 verbose(env, "R%d is not a pointer to map_value\n", regno); 3540 return -EINVAL; 3541 } 3542 if (!is_const) { 3543 verbose(env, 3544 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3545 regno); 3546 return -EINVAL; 3547 } 3548 if (!map->btf) { 3549 verbose(env, 3550 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3551 map->name); 3552 return -EINVAL; 3553 } 3554 if (!map_value_has_spin_lock(map)) { 3555 if (map->spin_lock_off == -E2BIG) 3556 verbose(env, 3557 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3558 map->name); 3559 else if (map->spin_lock_off == -ENOENT) 3560 verbose(env, 3561 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3562 map->name); 3563 else 3564 verbose(env, 3565 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3566 map->name); 3567 return -EINVAL; 3568 } 3569 if (map->spin_lock_off != val + reg->off) { 3570 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3571 val + reg->off); 3572 return -EINVAL; 3573 } 3574 if (is_lock) { 3575 if (cur->active_spin_lock) { 3576 verbose(env, 3577 "Locking two bpf_spin_locks are not allowed\n"); 3578 return -EINVAL; 3579 } 3580 cur->active_spin_lock = reg->id; 3581 } else { 3582 if (!cur->active_spin_lock) { 3583 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3584 return -EINVAL; 3585 } 3586 if (cur->active_spin_lock != reg->id) { 3587 verbose(env, "bpf_spin_unlock of different lock\n"); 3588 return -EINVAL; 3589 } 3590 cur->active_spin_lock = 0; 3591 } 3592 return 0; 3593 } 3594 3595 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3596 { 3597 return type == ARG_PTR_TO_MEM || 3598 type == ARG_PTR_TO_MEM_OR_NULL || 3599 type == ARG_PTR_TO_UNINIT_MEM; 3600 } 3601 3602 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3603 { 3604 return type == ARG_CONST_SIZE || 3605 type == ARG_CONST_SIZE_OR_ZERO; 3606 } 3607 3608 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3609 { 3610 return type == ARG_PTR_TO_INT || 3611 type == ARG_PTR_TO_LONG; 3612 } 3613 3614 static int int_ptr_type_to_size(enum bpf_arg_type type) 3615 { 3616 if (type == ARG_PTR_TO_INT) 3617 return sizeof(u32); 3618 else if (type == ARG_PTR_TO_LONG) 3619 return sizeof(u64); 3620 3621 return -EINVAL; 3622 } 3623 3624 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3625 enum bpf_arg_type arg_type, 3626 struct bpf_call_arg_meta *meta) 3627 { 3628 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3629 enum bpf_reg_type expected_type, type = reg->type; 3630 int err = 0; 3631 3632 if (arg_type == ARG_DONTCARE) 3633 return 0; 3634 3635 err = check_reg_arg(env, regno, SRC_OP); 3636 if (err) 3637 return err; 3638 3639 if (arg_type == ARG_ANYTHING) { 3640 if (is_pointer_value(env, regno)) { 3641 verbose(env, "R%d leaks addr into helper function\n", 3642 regno); 3643 return -EACCES; 3644 } 3645 return 0; 3646 } 3647 3648 if (type_is_pkt_pointer(type) && 3649 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3650 verbose(env, "helper access to the packet is not allowed\n"); 3651 return -EACCES; 3652 } 3653 3654 if (arg_type == ARG_PTR_TO_MAP_KEY || 3655 arg_type == ARG_PTR_TO_MAP_VALUE || 3656 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3657 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3658 expected_type = PTR_TO_STACK; 3659 if (register_is_null(reg) && 3660 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3661 /* final test in check_stack_boundary() */; 3662 else if (!type_is_pkt_pointer(type) && 3663 type != PTR_TO_MAP_VALUE && 3664 type != expected_type) 3665 goto err_type; 3666 } else if (arg_type == ARG_CONST_SIZE || 3667 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3668 expected_type = SCALAR_VALUE; 3669 if (type != expected_type) 3670 goto err_type; 3671 } else if (arg_type == ARG_CONST_MAP_PTR) { 3672 expected_type = CONST_PTR_TO_MAP; 3673 if (type != expected_type) 3674 goto err_type; 3675 } else if (arg_type == ARG_PTR_TO_CTX || 3676 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3677 expected_type = PTR_TO_CTX; 3678 if (!(register_is_null(reg) && 3679 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3680 if (type != expected_type) 3681 goto err_type; 3682 err = check_ctx_reg(env, reg, regno); 3683 if (err < 0) 3684 return err; 3685 } 3686 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3687 expected_type = PTR_TO_SOCK_COMMON; 3688 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3689 if (!type_is_sk_pointer(type)) 3690 goto err_type; 3691 if (reg->ref_obj_id) { 3692 if (meta->ref_obj_id) { 3693 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3694 regno, reg->ref_obj_id, 3695 meta->ref_obj_id); 3696 return -EFAULT; 3697 } 3698 meta->ref_obj_id = reg->ref_obj_id; 3699 } 3700 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3701 expected_type = PTR_TO_SOCKET; 3702 if (type != expected_type) 3703 goto err_type; 3704 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3705 expected_type = PTR_TO_BTF_ID; 3706 if (type != expected_type) 3707 goto err_type; 3708 if (reg->btf_id != meta->btf_id) { 3709 verbose(env, "Helper has type %s got %s in R%d\n", 3710 kernel_type_name(meta->btf_id), 3711 kernel_type_name(reg->btf_id), regno); 3712 3713 return -EACCES; 3714 } 3715 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3716 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3717 regno); 3718 return -EACCES; 3719 } 3720 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3721 if (meta->func_id == BPF_FUNC_spin_lock) { 3722 if (process_spin_lock(env, regno, true)) 3723 return -EACCES; 3724 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3725 if (process_spin_lock(env, regno, false)) 3726 return -EACCES; 3727 } else { 3728 verbose(env, "verifier internal error\n"); 3729 return -EFAULT; 3730 } 3731 } else if (arg_type_is_mem_ptr(arg_type)) { 3732 expected_type = PTR_TO_STACK; 3733 /* One exception here. In case function allows for NULL to be 3734 * passed in as argument, it's a SCALAR_VALUE type. Final test 3735 * happens during stack boundary checking. 3736 */ 3737 if (register_is_null(reg) && 3738 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3739 /* final test in check_stack_boundary() */; 3740 else if (!type_is_pkt_pointer(type) && 3741 type != PTR_TO_MAP_VALUE && 3742 type != expected_type) 3743 goto err_type; 3744 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3745 } else if (arg_type_is_int_ptr(arg_type)) { 3746 expected_type = PTR_TO_STACK; 3747 if (!type_is_pkt_pointer(type) && 3748 type != PTR_TO_MAP_VALUE && 3749 type != expected_type) 3750 goto err_type; 3751 } else { 3752 verbose(env, "unsupported arg_type %d\n", arg_type); 3753 return -EFAULT; 3754 } 3755 3756 if (arg_type == ARG_CONST_MAP_PTR) { 3757 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3758 meta->map_ptr = reg->map_ptr; 3759 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3760 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3761 * check that [key, key + map->key_size) are within 3762 * stack limits and initialized 3763 */ 3764 if (!meta->map_ptr) { 3765 /* in function declaration map_ptr must come before 3766 * map_key, so that it's verified and known before 3767 * we have to check map_key here. Otherwise it means 3768 * that kernel subsystem misconfigured verifier 3769 */ 3770 verbose(env, "invalid map_ptr to access map->key\n"); 3771 return -EACCES; 3772 } 3773 err = check_helper_mem_access(env, regno, 3774 meta->map_ptr->key_size, false, 3775 NULL); 3776 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3777 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3778 !register_is_null(reg)) || 3779 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3780 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3781 * check [value, value + map->value_size) validity 3782 */ 3783 if (!meta->map_ptr) { 3784 /* kernel subsystem misconfigured verifier */ 3785 verbose(env, "invalid map_ptr to access map->value\n"); 3786 return -EACCES; 3787 } 3788 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3789 err = check_helper_mem_access(env, regno, 3790 meta->map_ptr->value_size, false, 3791 meta); 3792 } else if (arg_type_is_mem_size(arg_type)) { 3793 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3794 3795 /* This is used to refine r0 return value bounds for helpers 3796 * that enforce this value as an upper bound on return values. 3797 * See do_refine_retval_range() for helpers that can refine 3798 * the return value. C type of helper is u32 so we pull register 3799 * bound from umax_value however, if negative verifier errors 3800 * out. Only upper bounds can be learned because retval is an 3801 * int type and negative retvals are allowed. 3802 */ 3803 meta->msize_max_value = reg->umax_value; 3804 3805 /* The register is SCALAR_VALUE; the access check 3806 * happens using its boundaries. 3807 */ 3808 if (!tnum_is_const(reg->var_off)) 3809 /* For unprivileged variable accesses, disable raw 3810 * mode so that the program is required to 3811 * initialize all the memory that the helper could 3812 * just partially fill up. 3813 */ 3814 meta = NULL; 3815 3816 if (reg->smin_value < 0) { 3817 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3818 regno); 3819 return -EACCES; 3820 } 3821 3822 if (reg->umin_value == 0) { 3823 err = check_helper_mem_access(env, regno - 1, 0, 3824 zero_size_allowed, 3825 meta); 3826 if (err) 3827 return err; 3828 } 3829 3830 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3831 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3832 regno); 3833 return -EACCES; 3834 } 3835 err = check_helper_mem_access(env, regno - 1, 3836 reg->umax_value, 3837 zero_size_allowed, meta); 3838 if (!err) 3839 err = mark_chain_precision(env, regno); 3840 } else if (arg_type_is_int_ptr(arg_type)) { 3841 int size = int_ptr_type_to_size(arg_type); 3842 3843 err = check_helper_mem_access(env, regno, size, false, meta); 3844 if (err) 3845 return err; 3846 err = check_ptr_alignment(env, reg, 0, size, true); 3847 } 3848 3849 return err; 3850 err_type: 3851 verbose(env, "R%d type=%s expected=%s\n", regno, 3852 reg_type_str[type], reg_type_str[expected_type]); 3853 return -EACCES; 3854 } 3855 3856 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3857 struct bpf_map *map, int func_id) 3858 { 3859 if (!map) 3860 return 0; 3861 3862 /* We need a two way check, first is from map perspective ... */ 3863 switch (map->map_type) { 3864 case BPF_MAP_TYPE_PROG_ARRAY: 3865 if (func_id != BPF_FUNC_tail_call) 3866 goto error; 3867 break; 3868 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3869 if (func_id != BPF_FUNC_perf_event_read && 3870 func_id != BPF_FUNC_perf_event_output && 3871 func_id != BPF_FUNC_skb_output && 3872 func_id != BPF_FUNC_perf_event_read_value && 3873 func_id != BPF_FUNC_xdp_output) 3874 goto error; 3875 break; 3876 case BPF_MAP_TYPE_STACK_TRACE: 3877 if (func_id != BPF_FUNC_get_stackid) 3878 goto error; 3879 break; 3880 case BPF_MAP_TYPE_CGROUP_ARRAY: 3881 if (func_id != BPF_FUNC_skb_under_cgroup && 3882 func_id != BPF_FUNC_current_task_under_cgroup) 3883 goto error; 3884 break; 3885 case BPF_MAP_TYPE_CGROUP_STORAGE: 3886 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3887 if (func_id != BPF_FUNC_get_local_storage) 3888 goto error; 3889 break; 3890 case BPF_MAP_TYPE_DEVMAP: 3891 case BPF_MAP_TYPE_DEVMAP_HASH: 3892 if (func_id != BPF_FUNC_redirect_map && 3893 func_id != BPF_FUNC_map_lookup_elem) 3894 goto error; 3895 break; 3896 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3897 * appear. 3898 */ 3899 case BPF_MAP_TYPE_CPUMAP: 3900 if (func_id != BPF_FUNC_redirect_map) 3901 goto error; 3902 break; 3903 case BPF_MAP_TYPE_XSKMAP: 3904 if (func_id != BPF_FUNC_redirect_map && 3905 func_id != BPF_FUNC_map_lookup_elem) 3906 goto error; 3907 break; 3908 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3909 case BPF_MAP_TYPE_HASH_OF_MAPS: 3910 if (func_id != BPF_FUNC_map_lookup_elem) 3911 goto error; 3912 break; 3913 case BPF_MAP_TYPE_SOCKMAP: 3914 if (func_id != BPF_FUNC_sk_redirect_map && 3915 func_id != BPF_FUNC_sock_map_update && 3916 func_id != BPF_FUNC_map_delete_elem && 3917 func_id != BPF_FUNC_msg_redirect_map && 3918 func_id != BPF_FUNC_sk_select_reuseport) 3919 goto error; 3920 break; 3921 case BPF_MAP_TYPE_SOCKHASH: 3922 if (func_id != BPF_FUNC_sk_redirect_hash && 3923 func_id != BPF_FUNC_sock_hash_update && 3924 func_id != BPF_FUNC_map_delete_elem && 3925 func_id != BPF_FUNC_msg_redirect_hash && 3926 func_id != BPF_FUNC_sk_select_reuseport) 3927 goto error; 3928 break; 3929 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3930 if (func_id != BPF_FUNC_sk_select_reuseport) 3931 goto error; 3932 break; 3933 case BPF_MAP_TYPE_QUEUE: 3934 case BPF_MAP_TYPE_STACK: 3935 if (func_id != BPF_FUNC_map_peek_elem && 3936 func_id != BPF_FUNC_map_pop_elem && 3937 func_id != BPF_FUNC_map_push_elem) 3938 goto error; 3939 break; 3940 case BPF_MAP_TYPE_SK_STORAGE: 3941 if (func_id != BPF_FUNC_sk_storage_get && 3942 func_id != BPF_FUNC_sk_storage_delete) 3943 goto error; 3944 break; 3945 default: 3946 break; 3947 } 3948 3949 /* ... and second from the function itself. */ 3950 switch (func_id) { 3951 case BPF_FUNC_tail_call: 3952 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3953 goto error; 3954 if (env->subprog_cnt > 1) { 3955 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3956 return -EINVAL; 3957 } 3958 break; 3959 case BPF_FUNC_perf_event_read: 3960 case BPF_FUNC_perf_event_output: 3961 case BPF_FUNC_perf_event_read_value: 3962 case BPF_FUNC_skb_output: 3963 case BPF_FUNC_xdp_output: 3964 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3965 goto error; 3966 break; 3967 case BPF_FUNC_get_stackid: 3968 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3969 goto error; 3970 break; 3971 case BPF_FUNC_current_task_under_cgroup: 3972 case BPF_FUNC_skb_under_cgroup: 3973 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3974 goto error; 3975 break; 3976 case BPF_FUNC_redirect_map: 3977 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3978 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3979 map->map_type != BPF_MAP_TYPE_CPUMAP && 3980 map->map_type != BPF_MAP_TYPE_XSKMAP) 3981 goto error; 3982 break; 3983 case BPF_FUNC_sk_redirect_map: 3984 case BPF_FUNC_msg_redirect_map: 3985 case BPF_FUNC_sock_map_update: 3986 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3987 goto error; 3988 break; 3989 case BPF_FUNC_sk_redirect_hash: 3990 case BPF_FUNC_msg_redirect_hash: 3991 case BPF_FUNC_sock_hash_update: 3992 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3993 goto error; 3994 break; 3995 case BPF_FUNC_get_local_storage: 3996 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3997 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3998 goto error; 3999 break; 4000 case BPF_FUNC_sk_select_reuseport: 4001 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4002 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4003 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4004 goto error; 4005 break; 4006 case BPF_FUNC_map_peek_elem: 4007 case BPF_FUNC_map_pop_elem: 4008 case BPF_FUNC_map_push_elem: 4009 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4010 map->map_type != BPF_MAP_TYPE_STACK) 4011 goto error; 4012 break; 4013 case BPF_FUNC_sk_storage_get: 4014 case BPF_FUNC_sk_storage_delete: 4015 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4016 goto error; 4017 break; 4018 default: 4019 break; 4020 } 4021 4022 return 0; 4023 error: 4024 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4025 map->map_type, func_id_name(func_id), func_id); 4026 return -EINVAL; 4027 } 4028 4029 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4030 { 4031 int count = 0; 4032 4033 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4034 count++; 4035 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4036 count++; 4037 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4038 count++; 4039 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4040 count++; 4041 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4042 count++; 4043 4044 /* We only support one arg being in raw mode at the moment, 4045 * which is sufficient for the helper functions we have 4046 * right now. 4047 */ 4048 return count <= 1; 4049 } 4050 4051 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4052 enum bpf_arg_type arg_next) 4053 { 4054 return (arg_type_is_mem_ptr(arg_curr) && 4055 !arg_type_is_mem_size(arg_next)) || 4056 (!arg_type_is_mem_ptr(arg_curr) && 4057 arg_type_is_mem_size(arg_next)); 4058 } 4059 4060 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4061 { 4062 /* bpf_xxx(..., buf, len) call will access 'len' 4063 * bytes from memory 'buf'. Both arg types need 4064 * to be paired, so make sure there's no buggy 4065 * helper function specification. 4066 */ 4067 if (arg_type_is_mem_size(fn->arg1_type) || 4068 arg_type_is_mem_ptr(fn->arg5_type) || 4069 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4070 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4071 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4072 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4073 return false; 4074 4075 return true; 4076 } 4077 4078 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4079 { 4080 int count = 0; 4081 4082 if (arg_type_may_be_refcounted(fn->arg1_type)) 4083 count++; 4084 if (arg_type_may_be_refcounted(fn->arg2_type)) 4085 count++; 4086 if (arg_type_may_be_refcounted(fn->arg3_type)) 4087 count++; 4088 if (arg_type_may_be_refcounted(fn->arg4_type)) 4089 count++; 4090 if (arg_type_may_be_refcounted(fn->arg5_type)) 4091 count++; 4092 4093 /* A reference acquiring function cannot acquire 4094 * another refcounted ptr. 4095 */ 4096 if (is_acquire_function(func_id) && count) 4097 return false; 4098 4099 /* We only support one arg being unreferenced at the moment, 4100 * which is sufficient for the helper functions we have right now. 4101 */ 4102 return count <= 1; 4103 } 4104 4105 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4106 { 4107 return check_raw_mode_ok(fn) && 4108 check_arg_pair_ok(fn) && 4109 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4110 } 4111 4112 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4113 * are now invalid, so turn them into unknown SCALAR_VALUE. 4114 */ 4115 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4116 struct bpf_func_state *state) 4117 { 4118 struct bpf_reg_state *regs = state->regs, *reg; 4119 int i; 4120 4121 for (i = 0; i < MAX_BPF_REG; i++) 4122 if (reg_is_pkt_pointer_any(®s[i])) 4123 mark_reg_unknown(env, regs, i); 4124 4125 bpf_for_each_spilled_reg(i, state, reg) { 4126 if (!reg) 4127 continue; 4128 if (reg_is_pkt_pointer_any(reg)) 4129 __mark_reg_unknown(env, reg); 4130 } 4131 } 4132 4133 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4134 { 4135 struct bpf_verifier_state *vstate = env->cur_state; 4136 int i; 4137 4138 for (i = 0; i <= vstate->curframe; i++) 4139 __clear_all_pkt_pointers(env, vstate->frame[i]); 4140 } 4141 4142 static void release_reg_references(struct bpf_verifier_env *env, 4143 struct bpf_func_state *state, 4144 int ref_obj_id) 4145 { 4146 struct bpf_reg_state *regs = state->regs, *reg; 4147 int i; 4148 4149 for (i = 0; i < MAX_BPF_REG; i++) 4150 if (regs[i].ref_obj_id == ref_obj_id) 4151 mark_reg_unknown(env, regs, i); 4152 4153 bpf_for_each_spilled_reg(i, state, reg) { 4154 if (!reg) 4155 continue; 4156 if (reg->ref_obj_id == ref_obj_id) 4157 __mark_reg_unknown(env, reg); 4158 } 4159 } 4160 4161 /* The pointer with the specified id has released its reference to kernel 4162 * resources. Identify all copies of the same pointer and clear the reference. 4163 */ 4164 static int release_reference(struct bpf_verifier_env *env, 4165 int ref_obj_id) 4166 { 4167 struct bpf_verifier_state *vstate = env->cur_state; 4168 int err; 4169 int i; 4170 4171 err = release_reference_state(cur_func(env), ref_obj_id); 4172 if (err) 4173 return err; 4174 4175 for (i = 0; i <= vstate->curframe; i++) 4176 release_reg_references(env, vstate->frame[i], ref_obj_id); 4177 4178 return 0; 4179 } 4180 4181 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4182 struct bpf_reg_state *regs) 4183 { 4184 int i; 4185 4186 /* after the call registers r0 - r5 were scratched */ 4187 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4188 mark_reg_not_init(env, regs, caller_saved[i]); 4189 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4190 } 4191 } 4192 4193 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4194 int *insn_idx) 4195 { 4196 struct bpf_verifier_state *state = env->cur_state; 4197 struct bpf_func_info_aux *func_info_aux; 4198 struct bpf_func_state *caller, *callee; 4199 int i, err, subprog, target_insn; 4200 bool is_global = false; 4201 4202 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4203 verbose(env, "the call stack of %d frames is too deep\n", 4204 state->curframe + 2); 4205 return -E2BIG; 4206 } 4207 4208 target_insn = *insn_idx + insn->imm; 4209 subprog = find_subprog(env, target_insn + 1); 4210 if (subprog < 0) { 4211 verbose(env, "verifier bug. No program starts at insn %d\n", 4212 target_insn + 1); 4213 return -EFAULT; 4214 } 4215 4216 caller = state->frame[state->curframe]; 4217 if (state->frame[state->curframe + 1]) { 4218 verbose(env, "verifier bug. Frame %d already allocated\n", 4219 state->curframe + 1); 4220 return -EFAULT; 4221 } 4222 4223 func_info_aux = env->prog->aux->func_info_aux; 4224 if (func_info_aux) 4225 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4226 err = btf_check_func_arg_match(env, subprog, caller->regs); 4227 if (err == -EFAULT) 4228 return err; 4229 if (is_global) { 4230 if (err) { 4231 verbose(env, "Caller passes invalid args into func#%d\n", 4232 subprog); 4233 return err; 4234 } else { 4235 if (env->log.level & BPF_LOG_LEVEL) 4236 verbose(env, 4237 "Func#%d is global and valid. Skipping.\n", 4238 subprog); 4239 clear_caller_saved_regs(env, caller->regs); 4240 4241 /* All global functions return SCALAR_VALUE */ 4242 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4243 4244 /* continue with next insn after call */ 4245 return 0; 4246 } 4247 } 4248 4249 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4250 if (!callee) 4251 return -ENOMEM; 4252 state->frame[state->curframe + 1] = callee; 4253 4254 /* callee cannot access r0, r6 - r9 for reading and has to write 4255 * into its own stack before reading from it. 4256 * callee can read/write into caller's stack 4257 */ 4258 init_func_state(env, callee, 4259 /* remember the callsite, it will be used by bpf_exit */ 4260 *insn_idx /* callsite */, 4261 state->curframe + 1 /* frameno within this callchain */, 4262 subprog /* subprog number within this prog */); 4263 4264 /* Transfer references to the callee */ 4265 err = transfer_reference_state(callee, caller); 4266 if (err) 4267 return err; 4268 4269 /* copy r1 - r5 args that callee can access. The copy includes parent 4270 * pointers, which connects us up to the liveness chain 4271 */ 4272 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4273 callee->regs[i] = caller->regs[i]; 4274 4275 clear_caller_saved_regs(env, caller->regs); 4276 4277 /* only increment it after check_reg_arg() finished */ 4278 state->curframe++; 4279 4280 /* and go analyze first insn of the callee */ 4281 *insn_idx = target_insn; 4282 4283 if (env->log.level & BPF_LOG_LEVEL) { 4284 verbose(env, "caller:\n"); 4285 print_verifier_state(env, caller); 4286 verbose(env, "callee:\n"); 4287 print_verifier_state(env, callee); 4288 } 4289 return 0; 4290 } 4291 4292 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4293 { 4294 struct bpf_verifier_state *state = env->cur_state; 4295 struct bpf_func_state *caller, *callee; 4296 struct bpf_reg_state *r0; 4297 int err; 4298 4299 callee = state->frame[state->curframe]; 4300 r0 = &callee->regs[BPF_REG_0]; 4301 if (r0->type == PTR_TO_STACK) { 4302 /* technically it's ok to return caller's stack pointer 4303 * (or caller's caller's pointer) back to the caller, 4304 * since these pointers are valid. Only current stack 4305 * pointer will be invalid as soon as function exits, 4306 * but let's be conservative 4307 */ 4308 verbose(env, "cannot return stack pointer to the caller\n"); 4309 return -EINVAL; 4310 } 4311 4312 state->curframe--; 4313 caller = state->frame[state->curframe]; 4314 /* return to the caller whatever r0 had in the callee */ 4315 caller->regs[BPF_REG_0] = *r0; 4316 4317 /* Transfer references to the caller */ 4318 err = transfer_reference_state(caller, callee); 4319 if (err) 4320 return err; 4321 4322 *insn_idx = callee->callsite + 1; 4323 if (env->log.level & BPF_LOG_LEVEL) { 4324 verbose(env, "returning from callee:\n"); 4325 print_verifier_state(env, callee); 4326 verbose(env, "to caller at %d:\n", *insn_idx); 4327 print_verifier_state(env, caller); 4328 } 4329 /* clear everything in the callee */ 4330 free_func_state(callee); 4331 state->frame[state->curframe + 1] = NULL; 4332 return 0; 4333 } 4334 4335 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4336 int func_id, 4337 struct bpf_call_arg_meta *meta) 4338 { 4339 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4340 4341 if (ret_type != RET_INTEGER || 4342 (func_id != BPF_FUNC_get_stack && 4343 func_id != BPF_FUNC_probe_read_str)) 4344 return; 4345 4346 ret_reg->smax_value = meta->msize_max_value; 4347 ret_reg->s32_max_value = meta->msize_max_value; 4348 __reg_deduce_bounds(ret_reg); 4349 __reg_bound_offset(ret_reg); 4350 __update_reg_bounds(ret_reg); 4351 } 4352 4353 static int 4354 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4355 int func_id, int insn_idx) 4356 { 4357 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4358 struct bpf_map *map = meta->map_ptr; 4359 4360 if (func_id != BPF_FUNC_tail_call && 4361 func_id != BPF_FUNC_map_lookup_elem && 4362 func_id != BPF_FUNC_map_update_elem && 4363 func_id != BPF_FUNC_map_delete_elem && 4364 func_id != BPF_FUNC_map_push_elem && 4365 func_id != BPF_FUNC_map_pop_elem && 4366 func_id != BPF_FUNC_map_peek_elem) 4367 return 0; 4368 4369 if (map == NULL) { 4370 verbose(env, "kernel subsystem misconfigured verifier\n"); 4371 return -EINVAL; 4372 } 4373 4374 /* In case of read-only, some additional restrictions 4375 * need to be applied in order to prevent altering the 4376 * state of the map from program side. 4377 */ 4378 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4379 (func_id == BPF_FUNC_map_delete_elem || 4380 func_id == BPF_FUNC_map_update_elem || 4381 func_id == BPF_FUNC_map_push_elem || 4382 func_id == BPF_FUNC_map_pop_elem)) { 4383 verbose(env, "write into map forbidden\n"); 4384 return -EACCES; 4385 } 4386 4387 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4388 bpf_map_ptr_store(aux, meta->map_ptr, 4389 meta->map_ptr->unpriv_array); 4390 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4391 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4392 meta->map_ptr->unpriv_array); 4393 return 0; 4394 } 4395 4396 static int 4397 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4398 int func_id, int insn_idx) 4399 { 4400 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4401 struct bpf_reg_state *regs = cur_regs(env), *reg; 4402 struct bpf_map *map = meta->map_ptr; 4403 struct tnum range; 4404 u64 val; 4405 int err; 4406 4407 if (func_id != BPF_FUNC_tail_call) 4408 return 0; 4409 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4410 verbose(env, "kernel subsystem misconfigured verifier\n"); 4411 return -EINVAL; 4412 } 4413 4414 range = tnum_range(0, map->max_entries - 1); 4415 reg = ®s[BPF_REG_3]; 4416 4417 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4418 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4419 return 0; 4420 } 4421 4422 err = mark_chain_precision(env, BPF_REG_3); 4423 if (err) 4424 return err; 4425 4426 val = reg->var_off.value; 4427 if (bpf_map_key_unseen(aux)) 4428 bpf_map_key_store(aux, val); 4429 else if (!bpf_map_key_poisoned(aux) && 4430 bpf_map_key_immediate(aux) != val) 4431 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4432 return 0; 4433 } 4434 4435 static int check_reference_leak(struct bpf_verifier_env *env) 4436 { 4437 struct bpf_func_state *state = cur_func(env); 4438 int i; 4439 4440 for (i = 0; i < state->acquired_refs; i++) { 4441 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4442 state->refs[i].id, state->refs[i].insn_idx); 4443 } 4444 return state->acquired_refs ? -EINVAL : 0; 4445 } 4446 4447 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4448 { 4449 const struct bpf_func_proto *fn = NULL; 4450 struct bpf_reg_state *regs; 4451 struct bpf_call_arg_meta meta; 4452 bool changes_data; 4453 int i, err; 4454 4455 /* find function prototype */ 4456 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4457 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4458 func_id); 4459 return -EINVAL; 4460 } 4461 4462 if (env->ops->get_func_proto) 4463 fn = env->ops->get_func_proto(func_id, env->prog); 4464 if (!fn) { 4465 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4466 func_id); 4467 return -EINVAL; 4468 } 4469 4470 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4471 if (!env->prog->gpl_compatible && fn->gpl_only) { 4472 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4473 return -EINVAL; 4474 } 4475 4476 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4477 changes_data = bpf_helper_changes_pkt_data(fn->func); 4478 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4479 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4480 func_id_name(func_id), func_id); 4481 return -EINVAL; 4482 } 4483 4484 memset(&meta, 0, sizeof(meta)); 4485 meta.pkt_access = fn->pkt_access; 4486 4487 err = check_func_proto(fn, func_id); 4488 if (err) { 4489 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4490 func_id_name(func_id), func_id); 4491 return err; 4492 } 4493 4494 meta.func_id = func_id; 4495 /* check args */ 4496 for (i = 0; i < 5; i++) { 4497 err = btf_resolve_helper_id(&env->log, fn, i); 4498 if (err > 0) 4499 meta.btf_id = err; 4500 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4501 if (err) 4502 return err; 4503 } 4504 4505 err = record_func_map(env, &meta, func_id, insn_idx); 4506 if (err) 4507 return err; 4508 4509 err = record_func_key(env, &meta, func_id, insn_idx); 4510 if (err) 4511 return err; 4512 4513 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4514 * is inferred from register state. 4515 */ 4516 for (i = 0; i < meta.access_size; i++) { 4517 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4518 BPF_WRITE, -1, false); 4519 if (err) 4520 return err; 4521 } 4522 4523 if (func_id == BPF_FUNC_tail_call) { 4524 err = check_reference_leak(env); 4525 if (err) { 4526 verbose(env, "tail_call would lead to reference leak\n"); 4527 return err; 4528 } 4529 } else if (is_release_function(func_id)) { 4530 err = release_reference(env, meta.ref_obj_id); 4531 if (err) { 4532 verbose(env, "func %s#%d reference has not been acquired before\n", 4533 func_id_name(func_id), func_id); 4534 return err; 4535 } 4536 } 4537 4538 regs = cur_regs(env); 4539 4540 /* check that flags argument in get_local_storage(map, flags) is 0, 4541 * this is required because get_local_storage() can't return an error. 4542 */ 4543 if (func_id == BPF_FUNC_get_local_storage && 4544 !register_is_null(®s[BPF_REG_2])) { 4545 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4546 return -EINVAL; 4547 } 4548 4549 /* reset caller saved regs */ 4550 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4551 mark_reg_not_init(env, regs, caller_saved[i]); 4552 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4553 } 4554 4555 /* helper call returns 64-bit value. */ 4556 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4557 4558 /* update return register (already marked as written above) */ 4559 if (fn->ret_type == RET_INTEGER) { 4560 /* sets type to SCALAR_VALUE */ 4561 mark_reg_unknown(env, regs, BPF_REG_0); 4562 } else if (fn->ret_type == RET_VOID) { 4563 regs[BPF_REG_0].type = NOT_INIT; 4564 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4565 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4566 /* There is no offset yet applied, variable or fixed */ 4567 mark_reg_known_zero(env, regs, BPF_REG_0); 4568 /* remember map_ptr, so that check_map_access() 4569 * can check 'value_size' boundary of memory access 4570 * to map element returned from bpf_map_lookup_elem() 4571 */ 4572 if (meta.map_ptr == NULL) { 4573 verbose(env, 4574 "kernel subsystem misconfigured verifier\n"); 4575 return -EINVAL; 4576 } 4577 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4578 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4579 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4580 if (map_value_has_spin_lock(meta.map_ptr)) 4581 regs[BPF_REG_0].id = ++env->id_gen; 4582 } else { 4583 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4584 regs[BPF_REG_0].id = ++env->id_gen; 4585 } 4586 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4587 mark_reg_known_zero(env, regs, BPF_REG_0); 4588 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4589 regs[BPF_REG_0].id = ++env->id_gen; 4590 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4591 mark_reg_known_zero(env, regs, BPF_REG_0); 4592 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4593 regs[BPF_REG_0].id = ++env->id_gen; 4594 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4595 mark_reg_known_zero(env, regs, BPF_REG_0); 4596 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4597 regs[BPF_REG_0].id = ++env->id_gen; 4598 } else { 4599 verbose(env, "unknown return type %d of func %s#%d\n", 4600 fn->ret_type, func_id_name(func_id), func_id); 4601 return -EINVAL; 4602 } 4603 4604 if (is_ptr_cast_function(func_id)) { 4605 /* For release_reference() */ 4606 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4607 } else if (is_acquire_function(func_id)) { 4608 int id = acquire_reference_state(env, insn_idx); 4609 4610 if (id < 0) 4611 return id; 4612 /* For mark_ptr_or_null_reg() */ 4613 regs[BPF_REG_0].id = id; 4614 /* For release_reference() */ 4615 regs[BPF_REG_0].ref_obj_id = id; 4616 } 4617 4618 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4619 4620 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4621 if (err) 4622 return err; 4623 4624 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4625 const char *err_str; 4626 4627 #ifdef CONFIG_PERF_EVENTS 4628 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4629 err_str = "cannot get callchain buffer for func %s#%d\n"; 4630 #else 4631 err = -ENOTSUPP; 4632 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4633 #endif 4634 if (err) { 4635 verbose(env, err_str, func_id_name(func_id), func_id); 4636 return err; 4637 } 4638 4639 env->prog->has_callchain_buf = true; 4640 } 4641 4642 if (changes_data) 4643 clear_all_pkt_pointers(env); 4644 return 0; 4645 } 4646 4647 static bool signed_add_overflows(s64 a, s64 b) 4648 { 4649 /* Do the add in u64, where overflow is well-defined */ 4650 s64 res = (s64)((u64)a + (u64)b); 4651 4652 if (b < 0) 4653 return res > a; 4654 return res < a; 4655 } 4656 4657 static bool signed_add32_overflows(s64 a, s64 b) 4658 { 4659 /* Do the add in u32, where overflow is well-defined */ 4660 s32 res = (s32)((u32)a + (u32)b); 4661 4662 if (b < 0) 4663 return res > a; 4664 return res < a; 4665 } 4666 4667 static bool signed_sub_overflows(s32 a, s32 b) 4668 { 4669 /* Do the sub in u64, where overflow is well-defined */ 4670 s64 res = (s64)((u64)a - (u64)b); 4671 4672 if (b < 0) 4673 return res < a; 4674 return res > a; 4675 } 4676 4677 static bool signed_sub32_overflows(s32 a, s32 b) 4678 { 4679 /* Do the sub in u64, where overflow is well-defined */ 4680 s32 res = (s32)((u32)a - (u32)b); 4681 4682 if (b < 0) 4683 return res < a; 4684 return res > a; 4685 } 4686 4687 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4688 const struct bpf_reg_state *reg, 4689 enum bpf_reg_type type) 4690 { 4691 bool known = tnum_is_const(reg->var_off); 4692 s64 val = reg->var_off.value; 4693 s64 smin = reg->smin_value; 4694 4695 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4696 verbose(env, "math between %s pointer and %lld is not allowed\n", 4697 reg_type_str[type], val); 4698 return false; 4699 } 4700 4701 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4702 verbose(env, "%s pointer offset %d is not allowed\n", 4703 reg_type_str[type], reg->off); 4704 return false; 4705 } 4706 4707 if (smin == S64_MIN) { 4708 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4709 reg_type_str[type]); 4710 return false; 4711 } 4712 4713 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4714 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4715 smin, reg_type_str[type]); 4716 return false; 4717 } 4718 4719 return true; 4720 } 4721 4722 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4723 { 4724 return &env->insn_aux_data[env->insn_idx]; 4725 } 4726 4727 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4728 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4729 { 4730 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4731 (opcode == BPF_SUB && !off_is_neg); 4732 u32 off; 4733 4734 switch (ptr_reg->type) { 4735 case PTR_TO_STACK: 4736 /* Indirect variable offset stack access is prohibited in 4737 * unprivileged mode so it's not handled here. 4738 */ 4739 off = ptr_reg->off + ptr_reg->var_off.value; 4740 if (mask_to_left) 4741 *ptr_limit = MAX_BPF_STACK + off; 4742 else 4743 *ptr_limit = -off; 4744 return 0; 4745 case PTR_TO_MAP_VALUE: 4746 if (mask_to_left) { 4747 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4748 } else { 4749 off = ptr_reg->smin_value + ptr_reg->off; 4750 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4751 } 4752 return 0; 4753 default: 4754 return -EINVAL; 4755 } 4756 } 4757 4758 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4759 const struct bpf_insn *insn) 4760 { 4761 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4762 } 4763 4764 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4765 u32 alu_state, u32 alu_limit) 4766 { 4767 /* If we arrived here from different branches with different 4768 * state or limits to sanitize, then this won't work. 4769 */ 4770 if (aux->alu_state && 4771 (aux->alu_state != alu_state || 4772 aux->alu_limit != alu_limit)) 4773 return -EACCES; 4774 4775 /* Corresponding fixup done in fixup_bpf_calls(). */ 4776 aux->alu_state = alu_state; 4777 aux->alu_limit = alu_limit; 4778 return 0; 4779 } 4780 4781 static int sanitize_val_alu(struct bpf_verifier_env *env, 4782 struct bpf_insn *insn) 4783 { 4784 struct bpf_insn_aux_data *aux = cur_aux(env); 4785 4786 if (can_skip_alu_sanitation(env, insn)) 4787 return 0; 4788 4789 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4790 } 4791 4792 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4793 struct bpf_insn *insn, 4794 const struct bpf_reg_state *ptr_reg, 4795 struct bpf_reg_state *dst_reg, 4796 bool off_is_neg) 4797 { 4798 struct bpf_verifier_state *vstate = env->cur_state; 4799 struct bpf_insn_aux_data *aux = cur_aux(env); 4800 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4801 u8 opcode = BPF_OP(insn->code); 4802 u32 alu_state, alu_limit; 4803 struct bpf_reg_state tmp; 4804 bool ret; 4805 4806 if (can_skip_alu_sanitation(env, insn)) 4807 return 0; 4808 4809 /* We already marked aux for masking from non-speculative 4810 * paths, thus we got here in the first place. We only care 4811 * to explore bad access from here. 4812 */ 4813 if (vstate->speculative) 4814 goto do_sim; 4815 4816 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4817 alu_state |= ptr_is_dst_reg ? 4818 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4819 4820 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4821 return 0; 4822 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4823 return -EACCES; 4824 do_sim: 4825 /* Simulate and find potential out-of-bounds access under 4826 * speculative execution from truncation as a result of 4827 * masking when off was not within expected range. If off 4828 * sits in dst, then we temporarily need to move ptr there 4829 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4830 * for cases where we use K-based arithmetic in one direction 4831 * and truncated reg-based in the other in order to explore 4832 * bad access. 4833 */ 4834 if (!ptr_is_dst_reg) { 4835 tmp = *dst_reg; 4836 *dst_reg = *ptr_reg; 4837 } 4838 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4839 if (!ptr_is_dst_reg && ret) 4840 *dst_reg = tmp; 4841 return !ret ? -EFAULT : 0; 4842 } 4843 4844 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4845 * Caller should also handle BPF_MOV case separately. 4846 * If we return -EACCES, caller may want to try again treating pointer as a 4847 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4848 */ 4849 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4850 struct bpf_insn *insn, 4851 const struct bpf_reg_state *ptr_reg, 4852 const struct bpf_reg_state *off_reg) 4853 { 4854 struct bpf_verifier_state *vstate = env->cur_state; 4855 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4856 struct bpf_reg_state *regs = state->regs, *dst_reg; 4857 bool known = tnum_is_const(off_reg->var_off); 4858 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4859 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4860 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4861 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4862 u32 dst = insn->dst_reg, src = insn->src_reg; 4863 u8 opcode = BPF_OP(insn->code); 4864 int ret; 4865 4866 dst_reg = ®s[dst]; 4867 4868 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4869 smin_val > smax_val || umin_val > umax_val) { 4870 /* Taint dst register if offset had invalid bounds derived from 4871 * e.g. dead branches. 4872 */ 4873 __mark_reg_unknown(env, dst_reg); 4874 return 0; 4875 } 4876 4877 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4878 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4879 verbose(env, 4880 "R%d 32-bit pointer arithmetic prohibited\n", 4881 dst); 4882 return -EACCES; 4883 } 4884 4885 switch (ptr_reg->type) { 4886 case PTR_TO_MAP_VALUE_OR_NULL: 4887 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4888 dst, reg_type_str[ptr_reg->type]); 4889 return -EACCES; 4890 case CONST_PTR_TO_MAP: 4891 case PTR_TO_PACKET_END: 4892 case PTR_TO_SOCKET: 4893 case PTR_TO_SOCKET_OR_NULL: 4894 case PTR_TO_SOCK_COMMON: 4895 case PTR_TO_SOCK_COMMON_OR_NULL: 4896 case PTR_TO_TCP_SOCK: 4897 case PTR_TO_TCP_SOCK_OR_NULL: 4898 case PTR_TO_XDP_SOCK: 4899 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4900 dst, reg_type_str[ptr_reg->type]); 4901 return -EACCES; 4902 case PTR_TO_MAP_VALUE: 4903 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4904 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4905 off_reg == dst_reg ? dst : src); 4906 return -EACCES; 4907 } 4908 /* fall-through */ 4909 default: 4910 break; 4911 } 4912 4913 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4914 * The id may be overwritten later if we create a new variable offset. 4915 */ 4916 dst_reg->type = ptr_reg->type; 4917 dst_reg->id = ptr_reg->id; 4918 4919 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4920 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4921 return -EINVAL; 4922 4923 /* pointer types do not carry 32-bit bounds at the moment. */ 4924 __mark_reg32_unbounded(dst_reg); 4925 4926 switch (opcode) { 4927 case BPF_ADD: 4928 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4929 if (ret < 0) { 4930 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4931 return ret; 4932 } 4933 /* We can take a fixed offset as long as it doesn't overflow 4934 * the s32 'off' field 4935 */ 4936 if (known && (ptr_reg->off + smin_val == 4937 (s64)(s32)(ptr_reg->off + smin_val))) { 4938 /* pointer += K. Accumulate it into fixed offset */ 4939 dst_reg->smin_value = smin_ptr; 4940 dst_reg->smax_value = smax_ptr; 4941 dst_reg->umin_value = umin_ptr; 4942 dst_reg->umax_value = umax_ptr; 4943 dst_reg->var_off = ptr_reg->var_off; 4944 dst_reg->off = ptr_reg->off + smin_val; 4945 dst_reg->raw = ptr_reg->raw; 4946 break; 4947 } 4948 /* A new variable offset is created. Note that off_reg->off 4949 * == 0, since it's a scalar. 4950 * dst_reg gets the pointer type and since some positive 4951 * integer value was added to the pointer, give it a new 'id' 4952 * if it's a PTR_TO_PACKET. 4953 * this creates a new 'base' pointer, off_reg (variable) gets 4954 * added into the variable offset, and we copy the fixed offset 4955 * from ptr_reg. 4956 */ 4957 if (signed_add_overflows(smin_ptr, smin_val) || 4958 signed_add_overflows(smax_ptr, smax_val)) { 4959 dst_reg->smin_value = S64_MIN; 4960 dst_reg->smax_value = S64_MAX; 4961 } else { 4962 dst_reg->smin_value = smin_ptr + smin_val; 4963 dst_reg->smax_value = smax_ptr + smax_val; 4964 } 4965 if (umin_ptr + umin_val < umin_ptr || 4966 umax_ptr + umax_val < umax_ptr) { 4967 dst_reg->umin_value = 0; 4968 dst_reg->umax_value = U64_MAX; 4969 } else { 4970 dst_reg->umin_value = umin_ptr + umin_val; 4971 dst_reg->umax_value = umax_ptr + umax_val; 4972 } 4973 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4974 dst_reg->off = ptr_reg->off; 4975 dst_reg->raw = ptr_reg->raw; 4976 if (reg_is_pkt_pointer(ptr_reg)) { 4977 dst_reg->id = ++env->id_gen; 4978 /* something was added to pkt_ptr, set range to zero */ 4979 dst_reg->raw = 0; 4980 } 4981 break; 4982 case BPF_SUB: 4983 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4984 if (ret < 0) { 4985 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4986 return ret; 4987 } 4988 if (dst_reg == off_reg) { 4989 /* scalar -= pointer. Creates an unknown scalar */ 4990 verbose(env, "R%d tried to subtract pointer from scalar\n", 4991 dst); 4992 return -EACCES; 4993 } 4994 /* We don't allow subtraction from FP, because (according to 4995 * test_verifier.c test "invalid fp arithmetic", JITs might not 4996 * be able to deal with it. 4997 */ 4998 if (ptr_reg->type == PTR_TO_STACK) { 4999 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5000 dst); 5001 return -EACCES; 5002 } 5003 if (known && (ptr_reg->off - smin_val == 5004 (s64)(s32)(ptr_reg->off - smin_val))) { 5005 /* pointer -= K. Subtract it from fixed offset */ 5006 dst_reg->smin_value = smin_ptr; 5007 dst_reg->smax_value = smax_ptr; 5008 dst_reg->umin_value = umin_ptr; 5009 dst_reg->umax_value = umax_ptr; 5010 dst_reg->var_off = ptr_reg->var_off; 5011 dst_reg->id = ptr_reg->id; 5012 dst_reg->off = ptr_reg->off - smin_val; 5013 dst_reg->raw = ptr_reg->raw; 5014 break; 5015 } 5016 /* A new variable offset is created. If the subtrahend is known 5017 * nonnegative, then any reg->range we had before is still good. 5018 */ 5019 if (signed_sub_overflows(smin_ptr, smax_val) || 5020 signed_sub_overflows(smax_ptr, smin_val)) { 5021 /* Overflow possible, we know nothing */ 5022 dst_reg->smin_value = S64_MIN; 5023 dst_reg->smax_value = S64_MAX; 5024 } else { 5025 dst_reg->smin_value = smin_ptr - smax_val; 5026 dst_reg->smax_value = smax_ptr - smin_val; 5027 } 5028 if (umin_ptr < umax_val) { 5029 /* Overflow possible, we know nothing */ 5030 dst_reg->umin_value = 0; 5031 dst_reg->umax_value = U64_MAX; 5032 } else { 5033 /* Cannot overflow (as long as bounds are consistent) */ 5034 dst_reg->umin_value = umin_ptr - umax_val; 5035 dst_reg->umax_value = umax_ptr - umin_val; 5036 } 5037 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5038 dst_reg->off = ptr_reg->off; 5039 dst_reg->raw = ptr_reg->raw; 5040 if (reg_is_pkt_pointer(ptr_reg)) { 5041 dst_reg->id = ++env->id_gen; 5042 /* something was added to pkt_ptr, set range to zero */ 5043 if (smin_val < 0) 5044 dst_reg->raw = 0; 5045 } 5046 break; 5047 case BPF_AND: 5048 case BPF_OR: 5049 case BPF_XOR: 5050 /* bitwise ops on pointers are troublesome, prohibit. */ 5051 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5052 dst, bpf_alu_string[opcode >> 4]); 5053 return -EACCES; 5054 default: 5055 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5056 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5057 dst, bpf_alu_string[opcode >> 4]); 5058 return -EACCES; 5059 } 5060 5061 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5062 return -EINVAL; 5063 5064 __update_reg_bounds(dst_reg); 5065 __reg_deduce_bounds(dst_reg); 5066 __reg_bound_offset(dst_reg); 5067 5068 /* For unprivileged we require that resulting offset must be in bounds 5069 * in order to be able to sanitize access later on. 5070 */ 5071 if (!env->allow_ptr_leaks) { 5072 if (dst_reg->type == PTR_TO_MAP_VALUE && 5073 check_map_access(env, dst, dst_reg->off, 1, false)) { 5074 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5075 "prohibited for !root\n", dst); 5076 return -EACCES; 5077 } else if (dst_reg->type == PTR_TO_STACK && 5078 check_stack_access(env, dst_reg, dst_reg->off + 5079 dst_reg->var_off.value, 1)) { 5080 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5081 "prohibited for !root\n", dst); 5082 return -EACCES; 5083 } 5084 } 5085 5086 return 0; 5087 } 5088 5089 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5090 struct bpf_reg_state *src_reg) 5091 { 5092 s32 smin_val = src_reg->s32_min_value; 5093 s32 smax_val = src_reg->s32_max_value; 5094 u32 umin_val = src_reg->u32_min_value; 5095 u32 umax_val = src_reg->u32_max_value; 5096 5097 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5098 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5099 dst_reg->s32_min_value = S32_MIN; 5100 dst_reg->s32_max_value = S32_MAX; 5101 } else { 5102 dst_reg->s32_min_value += smin_val; 5103 dst_reg->s32_max_value += smax_val; 5104 } 5105 if (dst_reg->u32_min_value + umin_val < umin_val || 5106 dst_reg->u32_max_value + umax_val < umax_val) { 5107 dst_reg->u32_min_value = 0; 5108 dst_reg->u32_max_value = U32_MAX; 5109 } else { 5110 dst_reg->u32_min_value += umin_val; 5111 dst_reg->u32_max_value += umax_val; 5112 } 5113 } 5114 5115 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5116 struct bpf_reg_state *src_reg) 5117 { 5118 s64 smin_val = src_reg->smin_value; 5119 s64 smax_val = src_reg->smax_value; 5120 u64 umin_val = src_reg->umin_value; 5121 u64 umax_val = src_reg->umax_value; 5122 5123 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5124 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5125 dst_reg->smin_value = S64_MIN; 5126 dst_reg->smax_value = S64_MAX; 5127 } else { 5128 dst_reg->smin_value += smin_val; 5129 dst_reg->smax_value += smax_val; 5130 } 5131 if (dst_reg->umin_value + umin_val < umin_val || 5132 dst_reg->umax_value + umax_val < umax_val) { 5133 dst_reg->umin_value = 0; 5134 dst_reg->umax_value = U64_MAX; 5135 } else { 5136 dst_reg->umin_value += umin_val; 5137 dst_reg->umax_value += umax_val; 5138 } 5139 } 5140 5141 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5142 struct bpf_reg_state *src_reg) 5143 { 5144 s32 smin_val = src_reg->s32_min_value; 5145 s32 smax_val = src_reg->s32_max_value; 5146 u32 umin_val = src_reg->u32_min_value; 5147 u32 umax_val = src_reg->u32_max_value; 5148 5149 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5150 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5151 /* Overflow possible, we know nothing */ 5152 dst_reg->s32_min_value = S32_MIN; 5153 dst_reg->s32_max_value = S32_MAX; 5154 } else { 5155 dst_reg->s32_min_value -= smax_val; 5156 dst_reg->s32_max_value -= smin_val; 5157 } 5158 if (dst_reg->u32_min_value < umax_val) { 5159 /* Overflow possible, we know nothing */ 5160 dst_reg->u32_min_value = 0; 5161 dst_reg->u32_max_value = U32_MAX; 5162 } else { 5163 /* Cannot overflow (as long as bounds are consistent) */ 5164 dst_reg->u32_min_value -= umax_val; 5165 dst_reg->u32_max_value -= umin_val; 5166 } 5167 } 5168 5169 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5170 struct bpf_reg_state *src_reg) 5171 { 5172 s64 smin_val = src_reg->smin_value; 5173 s64 smax_val = src_reg->smax_value; 5174 u64 umin_val = src_reg->umin_value; 5175 u64 umax_val = src_reg->umax_value; 5176 5177 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5178 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5179 /* Overflow possible, we know nothing */ 5180 dst_reg->smin_value = S64_MIN; 5181 dst_reg->smax_value = S64_MAX; 5182 } else { 5183 dst_reg->smin_value -= smax_val; 5184 dst_reg->smax_value -= smin_val; 5185 } 5186 if (dst_reg->umin_value < umax_val) { 5187 /* Overflow possible, we know nothing */ 5188 dst_reg->umin_value = 0; 5189 dst_reg->umax_value = U64_MAX; 5190 } else { 5191 /* Cannot overflow (as long as bounds are consistent) */ 5192 dst_reg->umin_value -= umax_val; 5193 dst_reg->umax_value -= umin_val; 5194 } 5195 } 5196 5197 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5198 struct bpf_reg_state *src_reg) 5199 { 5200 s32 smin_val = src_reg->s32_min_value; 5201 u32 umin_val = src_reg->u32_min_value; 5202 u32 umax_val = src_reg->u32_max_value; 5203 5204 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5205 /* Ain't nobody got time to multiply that sign */ 5206 __mark_reg32_unbounded(dst_reg); 5207 return; 5208 } 5209 /* Both values are positive, so we can work with unsigned and 5210 * copy the result to signed (unless it exceeds S32_MAX). 5211 */ 5212 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5213 /* Potential overflow, we know nothing */ 5214 __mark_reg32_unbounded(dst_reg); 5215 return; 5216 } 5217 dst_reg->u32_min_value *= umin_val; 5218 dst_reg->u32_max_value *= umax_val; 5219 if (dst_reg->u32_max_value > S32_MAX) { 5220 /* Overflow possible, we know nothing */ 5221 dst_reg->s32_min_value = S32_MIN; 5222 dst_reg->s32_max_value = S32_MAX; 5223 } else { 5224 dst_reg->s32_min_value = dst_reg->u32_min_value; 5225 dst_reg->s32_max_value = dst_reg->u32_max_value; 5226 } 5227 } 5228 5229 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5230 struct bpf_reg_state *src_reg) 5231 { 5232 s64 smin_val = src_reg->smin_value; 5233 u64 umin_val = src_reg->umin_value; 5234 u64 umax_val = src_reg->umax_value; 5235 5236 if (smin_val < 0 || dst_reg->smin_value < 0) { 5237 /* Ain't nobody got time to multiply that sign */ 5238 __mark_reg64_unbounded(dst_reg); 5239 return; 5240 } 5241 /* Both values are positive, so we can work with unsigned and 5242 * copy the result to signed (unless it exceeds S64_MAX). 5243 */ 5244 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5245 /* Potential overflow, we know nothing */ 5246 __mark_reg64_unbounded(dst_reg); 5247 return; 5248 } 5249 dst_reg->umin_value *= umin_val; 5250 dst_reg->umax_value *= umax_val; 5251 if (dst_reg->umax_value > S64_MAX) { 5252 /* Overflow possible, we know nothing */ 5253 dst_reg->smin_value = S64_MIN; 5254 dst_reg->smax_value = S64_MAX; 5255 } else { 5256 dst_reg->smin_value = dst_reg->umin_value; 5257 dst_reg->smax_value = dst_reg->umax_value; 5258 } 5259 } 5260 5261 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5262 struct bpf_reg_state *src_reg) 5263 { 5264 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5265 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5266 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5267 s32 smin_val = src_reg->s32_min_value; 5268 u32 umax_val = src_reg->u32_max_value; 5269 5270 /* Assuming scalar64_min_max_and will be called so its safe 5271 * to skip updating register for known 32-bit case. 5272 */ 5273 if (src_known && dst_known) 5274 return; 5275 5276 /* We get our minimum from the var_off, since that's inherently 5277 * bitwise. Our maximum is the minimum of the operands' maxima. 5278 */ 5279 dst_reg->u32_min_value = var32_off.value; 5280 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5281 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5282 /* Lose signed bounds when ANDing negative numbers, 5283 * ain't nobody got time for that. 5284 */ 5285 dst_reg->s32_min_value = S32_MIN; 5286 dst_reg->s32_max_value = S32_MAX; 5287 } else { 5288 /* ANDing two positives gives a positive, so safe to 5289 * cast result into s64. 5290 */ 5291 dst_reg->s32_min_value = dst_reg->u32_min_value; 5292 dst_reg->s32_max_value = dst_reg->u32_max_value; 5293 } 5294 5295 } 5296 5297 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5298 struct bpf_reg_state *src_reg) 5299 { 5300 bool src_known = tnum_is_const(src_reg->var_off); 5301 bool dst_known = tnum_is_const(dst_reg->var_off); 5302 s64 smin_val = src_reg->smin_value; 5303 u64 umax_val = src_reg->umax_value; 5304 5305 if (src_known && dst_known) { 5306 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5307 src_reg->var_off.value); 5308 return; 5309 } 5310 5311 /* We get our minimum from the var_off, since that's inherently 5312 * bitwise. Our maximum is the minimum of the operands' maxima. 5313 */ 5314 dst_reg->umin_value = dst_reg->var_off.value; 5315 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5316 if (dst_reg->smin_value < 0 || smin_val < 0) { 5317 /* Lose signed bounds when ANDing negative numbers, 5318 * ain't nobody got time for that. 5319 */ 5320 dst_reg->smin_value = S64_MIN; 5321 dst_reg->smax_value = S64_MAX; 5322 } else { 5323 /* ANDing two positives gives a positive, so safe to 5324 * cast result into s64. 5325 */ 5326 dst_reg->smin_value = dst_reg->umin_value; 5327 dst_reg->smax_value = dst_reg->umax_value; 5328 } 5329 /* We may learn something more from the var_off */ 5330 __update_reg_bounds(dst_reg); 5331 } 5332 5333 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5334 struct bpf_reg_state *src_reg) 5335 { 5336 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5337 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5338 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5339 s32 smin_val = src_reg->smin_value; 5340 u32 umin_val = src_reg->umin_value; 5341 5342 /* Assuming scalar64_min_max_or will be called so it is safe 5343 * to skip updating register for known case. 5344 */ 5345 if (src_known && dst_known) 5346 return; 5347 5348 /* We get our maximum from the var_off, and our minimum is the 5349 * maximum of the operands' minima 5350 */ 5351 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5352 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5353 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5354 /* Lose signed bounds when ORing negative numbers, 5355 * ain't nobody got time for that. 5356 */ 5357 dst_reg->s32_min_value = S32_MIN; 5358 dst_reg->s32_max_value = S32_MAX; 5359 } else { 5360 /* ORing two positives gives a positive, so safe to 5361 * cast result into s64. 5362 */ 5363 dst_reg->s32_min_value = dst_reg->umin_value; 5364 dst_reg->s32_max_value = dst_reg->umax_value; 5365 } 5366 } 5367 5368 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5369 struct bpf_reg_state *src_reg) 5370 { 5371 bool src_known = tnum_is_const(src_reg->var_off); 5372 bool dst_known = tnum_is_const(dst_reg->var_off); 5373 s64 smin_val = src_reg->smin_value; 5374 u64 umin_val = src_reg->umin_value; 5375 5376 if (src_known && dst_known) { 5377 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5378 src_reg->var_off.value); 5379 return; 5380 } 5381 5382 /* We get our maximum from the var_off, and our minimum is the 5383 * maximum of the operands' minima 5384 */ 5385 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5386 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5387 if (dst_reg->smin_value < 0 || smin_val < 0) { 5388 /* Lose signed bounds when ORing negative numbers, 5389 * ain't nobody got time for that. 5390 */ 5391 dst_reg->smin_value = S64_MIN; 5392 dst_reg->smax_value = S64_MAX; 5393 } else { 5394 /* ORing two positives gives a positive, so safe to 5395 * cast result into s64. 5396 */ 5397 dst_reg->smin_value = dst_reg->umin_value; 5398 dst_reg->smax_value = dst_reg->umax_value; 5399 } 5400 /* We may learn something more from the var_off */ 5401 __update_reg_bounds(dst_reg); 5402 } 5403 5404 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5405 u64 umin_val, u64 umax_val) 5406 { 5407 /* We lose all sign bit information (except what we can pick 5408 * up from var_off) 5409 */ 5410 dst_reg->s32_min_value = S32_MIN; 5411 dst_reg->s32_max_value = S32_MAX; 5412 /* If we might shift our top bit out, then we know nothing */ 5413 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5414 dst_reg->u32_min_value = 0; 5415 dst_reg->u32_max_value = U32_MAX; 5416 } else { 5417 dst_reg->u32_min_value <<= umin_val; 5418 dst_reg->u32_max_value <<= umax_val; 5419 } 5420 } 5421 5422 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5423 struct bpf_reg_state *src_reg) 5424 { 5425 u32 umax_val = src_reg->u32_max_value; 5426 u32 umin_val = src_reg->u32_min_value; 5427 /* u32 alu operation will zext upper bits */ 5428 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5429 5430 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5431 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5432 /* Not required but being careful mark reg64 bounds as unknown so 5433 * that we are forced to pick them up from tnum and zext later and 5434 * if some path skips this step we are still safe. 5435 */ 5436 __mark_reg64_unbounded(dst_reg); 5437 __update_reg32_bounds(dst_reg); 5438 } 5439 5440 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5441 u64 umin_val, u64 umax_val) 5442 { 5443 /* Special case <<32 because it is a common compiler pattern to sign 5444 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5445 * positive we know this shift will also be positive so we can track 5446 * bounds correctly. Otherwise we lose all sign bit information except 5447 * what we can pick up from var_off. Perhaps we can generalize this 5448 * later to shifts of any length. 5449 */ 5450 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5451 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5452 else 5453 dst_reg->smax_value = S64_MAX; 5454 5455 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5456 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5457 else 5458 dst_reg->smin_value = S64_MIN; 5459 5460 /* If we might shift our top bit out, then we know nothing */ 5461 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5462 dst_reg->umin_value = 0; 5463 dst_reg->umax_value = U64_MAX; 5464 } else { 5465 dst_reg->umin_value <<= umin_val; 5466 dst_reg->umax_value <<= umax_val; 5467 } 5468 } 5469 5470 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5471 struct bpf_reg_state *src_reg) 5472 { 5473 u64 umax_val = src_reg->umax_value; 5474 u64 umin_val = src_reg->umin_value; 5475 5476 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5477 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5478 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5479 5480 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5481 /* We may learn something more from the var_off */ 5482 __update_reg_bounds(dst_reg); 5483 } 5484 5485 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5486 struct bpf_reg_state *src_reg) 5487 { 5488 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5489 u32 umax_val = src_reg->u32_max_value; 5490 u32 umin_val = src_reg->u32_min_value; 5491 5492 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5493 * be negative, then either: 5494 * 1) src_reg might be zero, so the sign bit of the result is 5495 * unknown, so we lose our signed bounds 5496 * 2) it's known negative, thus the unsigned bounds capture the 5497 * signed bounds 5498 * 3) the signed bounds cross zero, so they tell us nothing 5499 * about the result 5500 * If the value in dst_reg is known nonnegative, then again the 5501 * unsigned bounts capture the signed bounds. 5502 * Thus, in all cases it suffices to blow away our signed bounds 5503 * and rely on inferring new ones from the unsigned bounds and 5504 * var_off of the result. 5505 */ 5506 dst_reg->s32_min_value = S32_MIN; 5507 dst_reg->s32_max_value = S32_MAX; 5508 5509 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5510 dst_reg->u32_min_value >>= umax_val; 5511 dst_reg->u32_max_value >>= umin_val; 5512 5513 __mark_reg64_unbounded(dst_reg); 5514 __update_reg32_bounds(dst_reg); 5515 } 5516 5517 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5518 struct bpf_reg_state *src_reg) 5519 { 5520 u64 umax_val = src_reg->umax_value; 5521 u64 umin_val = src_reg->umin_value; 5522 5523 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5524 * be negative, then either: 5525 * 1) src_reg might be zero, so the sign bit of the result is 5526 * unknown, so we lose our signed bounds 5527 * 2) it's known negative, thus the unsigned bounds capture the 5528 * signed bounds 5529 * 3) the signed bounds cross zero, so they tell us nothing 5530 * about the result 5531 * If the value in dst_reg is known nonnegative, then again the 5532 * unsigned bounts capture the signed bounds. 5533 * Thus, in all cases it suffices to blow away our signed bounds 5534 * and rely on inferring new ones from the unsigned bounds and 5535 * var_off of the result. 5536 */ 5537 dst_reg->smin_value = S64_MIN; 5538 dst_reg->smax_value = S64_MAX; 5539 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5540 dst_reg->umin_value >>= umax_val; 5541 dst_reg->umax_value >>= umin_val; 5542 5543 /* Its not easy to operate on alu32 bounds here because it depends 5544 * on bits being shifted in. Take easy way out and mark unbounded 5545 * so we can recalculate later from tnum. 5546 */ 5547 __mark_reg32_unbounded(dst_reg); 5548 __update_reg_bounds(dst_reg); 5549 } 5550 5551 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5552 struct bpf_reg_state *src_reg) 5553 { 5554 u64 umin_val = src_reg->u32_min_value; 5555 5556 /* Upon reaching here, src_known is true and 5557 * umax_val is equal to umin_val. 5558 */ 5559 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5560 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5561 5562 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5563 5564 /* blow away the dst_reg umin_value/umax_value and rely on 5565 * dst_reg var_off to refine the result. 5566 */ 5567 dst_reg->u32_min_value = 0; 5568 dst_reg->u32_max_value = U32_MAX; 5569 5570 __mark_reg64_unbounded(dst_reg); 5571 __update_reg32_bounds(dst_reg); 5572 } 5573 5574 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5575 struct bpf_reg_state *src_reg) 5576 { 5577 u64 umin_val = src_reg->umin_value; 5578 5579 /* Upon reaching here, src_known is true and umax_val is equal 5580 * to umin_val. 5581 */ 5582 dst_reg->smin_value >>= umin_val; 5583 dst_reg->smax_value >>= umin_val; 5584 5585 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5586 5587 /* blow away the dst_reg umin_value/umax_value and rely on 5588 * dst_reg var_off to refine the result. 5589 */ 5590 dst_reg->umin_value = 0; 5591 dst_reg->umax_value = U64_MAX; 5592 5593 /* Its not easy to operate on alu32 bounds here because it depends 5594 * on bits being shifted in from upper 32-bits. Take easy way out 5595 * and mark unbounded so we can recalculate later from tnum. 5596 */ 5597 __mark_reg32_unbounded(dst_reg); 5598 __update_reg_bounds(dst_reg); 5599 } 5600 5601 /* WARNING: This function does calculations on 64-bit values, but the actual 5602 * execution may occur on 32-bit values. Therefore, things like bitshifts 5603 * need extra checks in the 32-bit case. 5604 */ 5605 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5606 struct bpf_insn *insn, 5607 struct bpf_reg_state *dst_reg, 5608 struct bpf_reg_state src_reg) 5609 { 5610 struct bpf_reg_state *regs = cur_regs(env); 5611 u8 opcode = BPF_OP(insn->code); 5612 bool src_known, dst_known; 5613 s64 smin_val, smax_val; 5614 u64 umin_val, umax_val; 5615 s32 s32_min_val, s32_max_val; 5616 u32 u32_min_val, u32_max_val; 5617 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5618 u32 dst = insn->dst_reg; 5619 int ret; 5620 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5621 5622 smin_val = src_reg.smin_value; 5623 smax_val = src_reg.smax_value; 5624 umin_val = src_reg.umin_value; 5625 umax_val = src_reg.umax_value; 5626 5627 s32_min_val = src_reg.s32_min_value; 5628 s32_max_val = src_reg.s32_max_value; 5629 u32_min_val = src_reg.u32_min_value; 5630 u32_max_val = src_reg.u32_max_value; 5631 5632 if (alu32) { 5633 src_known = tnum_subreg_is_const(src_reg.var_off); 5634 dst_known = tnum_subreg_is_const(dst_reg->var_off); 5635 if ((src_known && 5636 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5637 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5638 /* Taint dst register if offset had invalid bounds 5639 * derived from e.g. dead branches. 5640 */ 5641 __mark_reg_unknown(env, dst_reg); 5642 return 0; 5643 } 5644 } else { 5645 src_known = tnum_is_const(src_reg.var_off); 5646 dst_known = tnum_is_const(dst_reg->var_off); 5647 if ((src_known && 5648 (smin_val != smax_val || umin_val != umax_val)) || 5649 smin_val > smax_val || umin_val > umax_val) { 5650 /* Taint dst register if offset had invalid bounds 5651 * derived from e.g. dead branches. 5652 */ 5653 __mark_reg_unknown(env, dst_reg); 5654 return 0; 5655 } 5656 } 5657 5658 if (!src_known && 5659 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5660 __mark_reg_unknown(env, dst_reg); 5661 return 0; 5662 } 5663 5664 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5665 * There are two classes of instructions: The first class we track both 5666 * alu32 and alu64 sign/unsigned bounds independently this provides the 5667 * greatest amount of precision when alu operations are mixed with jmp32 5668 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5669 * and BPF_OR. This is possible because these ops have fairly easy to 5670 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5671 * See alu32 verifier tests for examples. The second class of 5672 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5673 * with regards to tracking sign/unsigned bounds because the bits may 5674 * cross subreg boundaries in the alu64 case. When this happens we mark 5675 * the reg unbounded in the subreg bound space and use the resulting 5676 * tnum to calculate an approximation of the sign/unsigned bounds. 5677 */ 5678 switch (opcode) { 5679 case BPF_ADD: 5680 ret = sanitize_val_alu(env, insn); 5681 if (ret < 0) { 5682 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5683 return ret; 5684 } 5685 scalar32_min_max_add(dst_reg, &src_reg); 5686 scalar_min_max_add(dst_reg, &src_reg); 5687 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5688 break; 5689 case BPF_SUB: 5690 ret = sanitize_val_alu(env, insn); 5691 if (ret < 0) { 5692 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5693 return ret; 5694 } 5695 scalar32_min_max_sub(dst_reg, &src_reg); 5696 scalar_min_max_sub(dst_reg, &src_reg); 5697 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5698 break; 5699 case BPF_MUL: 5700 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5701 scalar32_min_max_mul(dst_reg, &src_reg); 5702 scalar_min_max_mul(dst_reg, &src_reg); 5703 break; 5704 case BPF_AND: 5705 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5706 scalar32_min_max_and(dst_reg, &src_reg); 5707 scalar_min_max_and(dst_reg, &src_reg); 5708 break; 5709 case BPF_OR: 5710 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5711 scalar32_min_max_or(dst_reg, &src_reg); 5712 scalar_min_max_or(dst_reg, &src_reg); 5713 break; 5714 case BPF_LSH: 5715 if (umax_val >= insn_bitness) { 5716 /* Shifts greater than 31 or 63 are undefined. 5717 * This includes shifts by a negative number. 5718 */ 5719 mark_reg_unknown(env, regs, insn->dst_reg); 5720 break; 5721 } 5722 if (alu32) 5723 scalar32_min_max_lsh(dst_reg, &src_reg); 5724 else 5725 scalar_min_max_lsh(dst_reg, &src_reg); 5726 break; 5727 case BPF_RSH: 5728 if (umax_val >= insn_bitness) { 5729 /* Shifts greater than 31 or 63 are undefined. 5730 * This includes shifts by a negative number. 5731 */ 5732 mark_reg_unknown(env, regs, insn->dst_reg); 5733 break; 5734 } 5735 if (alu32) 5736 scalar32_min_max_rsh(dst_reg, &src_reg); 5737 else 5738 scalar_min_max_rsh(dst_reg, &src_reg); 5739 break; 5740 case BPF_ARSH: 5741 if (umax_val >= insn_bitness) { 5742 /* Shifts greater than 31 or 63 are undefined. 5743 * This includes shifts by a negative number. 5744 */ 5745 mark_reg_unknown(env, regs, insn->dst_reg); 5746 break; 5747 } 5748 if (alu32) 5749 scalar32_min_max_arsh(dst_reg, &src_reg); 5750 else 5751 scalar_min_max_arsh(dst_reg, &src_reg); 5752 break; 5753 default: 5754 mark_reg_unknown(env, regs, insn->dst_reg); 5755 break; 5756 } 5757 5758 /* ALU32 ops are zero extended into 64bit register */ 5759 if (alu32) 5760 zext_32_to_64(dst_reg); 5761 5762 __update_reg_bounds(dst_reg); 5763 __reg_deduce_bounds(dst_reg); 5764 __reg_bound_offset(dst_reg); 5765 return 0; 5766 } 5767 5768 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5769 * and var_off. 5770 */ 5771 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5772 struct bpf_insn *insn) 5773 { 5774 struct bpf_verifier_state *vstate = env->cur_state; 5775 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5776 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5777 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5778 u8 opcode = BPF_OP(insn->code); 5779 int err; 5780 5781 dst_reg = ®s[insn->dst_reg]; 5782 src_reg = NULL; 5783 if (dst_reg->type != SCALAR_VALUE) 5784 ptr_reg = dst_reg; 5785 if (BPF_SRC(insn->code) == BPF_X) { 5786 src_reg = ®s[insn->src_reg]; 5787 if (src_reg->type != SCALAR_VALUE) { 5788 if (dst_reg->type != SCALAR_VALUE) { 5789 /* Combining two pointers by any ALU op yields 5790 * an arbitrary scalar. Disallow all math except 5791 * pointer subtraction 5792 */ 5793 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5794 mark_reg_unknown(env, regs, insn->dst_reg); 5795 return 0; 5796 } 5797 verbose(env, "R%d pointer %s pointer prohibited\n", 5798 insn->dst_reg, 5799 bpf_alu_string[opcode >> 4]); 5800 return -EACCES; 5801 } else { 5802 /* scalar += pointer 5803 * This is legal, but we have to reverse our 5804 * src/dest handling in computing the range 5805 */ 5806 err = mark_chain_precision(env, insn->dst_reg); 5807 if (err) 5808 return err; 5809 return adjust_ptr_min_max_vals(env, insn, 5810 src_reg, dst_reg); 5811 } 5812 } else if (ptr_reg) { 5813 /* pointer += scalar */ 5814 err = mark_chain_precision(env, insn->src_reg); 5815 if (err) 5816 return err; 5817 return adjust_ptr_min_max_vals(env, insn, 5818 dst_reg, src_reg); 5819 } 5820 } else { 5821 /* Pretend the src is a reg with a known value, since we only 5822 * need to be able to read from this state. 5823 */ 5824 off_reg.type = SCALAR_VALUE; 5825 __mark_reg_known(&off_reg, insn->imm); 5826 src_reg = &off_reg; 5827 if (ptr_reg) /* pointer += K */ 5828 return adjust_ptr_min_max_vals(env, insn, 5829 ptr_reg, src_reg); 5830 } 5831 5832 /* Got here implies adding two SCALAR_VALUEs */ 5833 if (WARN_ON_ONCE(ptr_reg)) { 5834 print_verifier_state(env, state); 5835 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5836 return -EINVAL; 5837 } 5838 if (WARN_ON(!src_reg)) { 5839 print_verifier_state(env, state); 5840 verbose(env, "verifier internal error: no src_reg\n"); 5841 return -EINVAL; 5842 } 5843 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5844 } 5845 5846 /* check validity of 32-bit and 64-bit arithmetic operations */ 5847 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5848 { 5849 struct bpf_reg_state *regs = cur_regs(env); 5850 u8 opcode = BPF_OP(insn->code); 5851 int err; 5852 5853 if (opcode == BPF_END || opcode == BPF_NEG) { 5854 if (opcode == BPF_NEG) { 5855 if (BPF_SRC(insn->code) != 0 || 5856 insn->src_reg != BPF_REG_0 || 5857 insn->off != 0 || insn->imm != 0) { 5858 verbose(env, "BPF_NEG uses reserved fields\n"); 5859 return -EINVAL; 5860 } 5861 } else { 5862 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5863 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5864 BPF_CLASS(insn->code) == BPF_ALU64) { 5865 verbose(env, "BPF_END uses reserved fields\n"); 5866 return -EINVAL; 5867 } 5868 } 5869 5870 /* check src operand */ 5871 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5872 if (err) 5873 return err; 5874 5875 if (is_pointer_value(env, insn->dst_reg)) { 5876 verbose(env, "R%d pointer arithmetic prohibited\n", 5877 insn->dst_reg); 5878 return -EACCES; 5879 } 5880 5881 /* check dest operand */ 5882 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5883 if (err) 5884 return err; 5885 5886 } else if (opcode == BPF_MOV) { 5887 5888 if (BPF_SRC(insn->code) == BPF_X) { 5889 if (insn->imm != 0 || insn->off != 0) { 5890 verbose(env, "BPF_MOV uses reserved fields\n"); 5891 return -EINVAL; 5892 } 5893 5894 /* check src operand */ 5895 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5896 if (err) 5897 return err; 5898 } else { 5899 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5900 verbose(env, "BPF_MOV uses reserved fields\n"); 5901 return -EINVAL; 5902 } 5903 } 5904 5905 /* check dest operand, mark as required later */ 5906 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5907 if (err) 5908 return err; 5909 5910 if (BPF_SRC(insn->code) == BPF_X) { 5911 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5912 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5913 5914 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5915 /* case: R1 = R2 5916 * copy register state to dest reg 5917 */ 5918 *dst_reg = *src_reg; 5919 dst_reg->live |= REG_LIVE_WRITTEN; 5920 dst_reg->subreg_def = DEF_NOT_SUBREG; 5921 } else { 5922 /* R1 = (u32) R2 */ 5923 if (is_pointer_value(env, insn->src_reg)) { 5924 verbose(env, 5925 "R%d partial copy of pointer\n", 5926 insn->src_reg); 5927 return -EACCES; 5928 } else if (src_reg->type == SCALAR_VALUE) { 5929 *dst_reg = *src_reg; 5930 dst_reg->live |= REG_LIVE_WRITTEN; 5931 dst_reg->subreg_def = env->insn_idx + 1; 5932 } else { 5933 mark_reg_unknown(env, regs, 5934 insn->dst_reg); 5935 } 5936 zext_32_to_64(dst_reg); 5937 } 5938 } else { 5939 /* case: R = imm 5940 * remember the value we stored into this reg 5941 */ 5942 /* clear any state __mark_reg_known doesn't set */ 5943 mark_reg_unknown(env, regs, insn->dst_reg); 5944 regs[insn->dst_reg].type = SCALAR_VALUE; 5945 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5946 __mark_reg_known(regs + insn->dst_reg, 5947 insn->imm); 5948 } else { 5949 __mark_reg_known(regs + insn->dst_reg, 5950 (u32)insn->imm); 5951 } 5952 } 5953 5954 } else if (opcode > BPF_END) { 5955 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5956 return -EINVAL; 5957 5958 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5959 5960 if (BPF_SRC(insn->code) == BPF_X) { 5961 if (insn->imm != 0 || insn->off != 0) { 5962 verbose(env, "BPF_ALU uses reserved fields\n"); 5963 return -EINVAL; 5964 } 5965 /* check src1 operand */ 5966 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5967 if (err) 5968 return err; 5969 } else { 5970 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5971 verbose(env, "BPF_ALU uses reserved fields\n"); 5972 return -EINVAL; 5973 } 5974 } 5975 5976 /* check src2 operand */ 5977 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5978 if (err) 5979 return err; 5980 5981 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5982 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5983 verbose(env, "div by zero\n"); 5984 return -EINVAL; 5985 } 5986 5987 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5988 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5989 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5990 5991 if (insn->imm < 0 || insn->imm >= size) { 5992 verbose(env, "invalid shift %d\n", insn->imm); 5993 return -EINVAL; 5994 } 5995 } 5996 5997 /* check dest operand */ 5998 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5999 if (err) 6000 return err; 6001 6002 return adjust_reg_min_max_vals(env, insn); 6003 } 6004 6005 return 0; 6006 } 6007 6008 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6009 struct bpf_reg_state *dst_reg, 6010 enum bpf_reg_type type, u16 new_range) 6011 { 6012 struct bpf_reg_state *reg; 6013 int i; 6014 6015 for (i = 0; i < MAX_BPF_REG; i++) { 6016 reg = &state->regs[i]; 6017 if (reg->type == type && reg->id == dst_reg->id) 6018 /* keep the maximum range already checked */ 6019 reg->range = max(reg->range, new_range); 6020 } 6021 6022 bpf_for_each_spilled_reg(i, state, reg) { 6023 if (!reg) 6024 continue; 6025 if (reg->type == type && reg->id == dst_reg->id) 6026 reg->range = max(reg->range, new_range); 6027 } 6028 } 6029 6030 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6031 struct bpf_reg_state *dst_reg, 6032 enum bpf_reg_type type, 6033 bool range_right_open) 6034 { 6035 u16 new_range; 6036 int i; 6037 6038 if (dst_reg->off < 0 || 6039 (dst_reg->off == 0 && range_right_open)) 6040 /* This doesn't give us any range */ 6041 return; 6042 6043 if (dst_reg->umax_value > MAX_PACKET_OFF || 6044 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6045 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6046 * than pkt_end, but that's because it's also less than pkt. 6047 */ 6048 return; 6049 6050 new_range = dst_reg->off; 6051 if (range_right_open) 6052 new_range--; 6053 6054 /* Examples for register markings: 6055 * 6056 * pkt_data in dst register: 6057 * 6058 * r2 = r3; 6059 * r2 += 8; 6060 * if (r2 > pkt_end) goto <handle exception> 6061 * <access okay> 6062 * 6063 * r2 = r3; 6064 * r2 += 8; 6065 * if (r2 < pkt_end) goto <access okay> 6066 * <handle exception> 6067 * 6068 * Where: 6069 * r2 == dst_reg, pkt_end == src_reg 6070 * r2=pkt(id=n,off=8,r=0) 6071 * r3=pkt(id=n,off=0,r=0) 6072 * 6073 * pkt_data in src register: 6074 * 6075 * r2 = r3; 6076 * r2 += 8; 6077 * if (pkt_end >= r2) goto <access okay> 6078 * <handle exception> 6079 * 6080 * r2 = r3; 6081 * r2 += 8; 6082 * if (pkt_end <= r2) goto <handle exception> 6083 * <access okay> 6084 * 6085 * Where: 6086 * pkt_end == dst_reg, r2 == src_reg 6087 * r2=pkt(id=n,off=8,r=0) 6088 * r3=pkt(id=n,off=0,r=0) 6089 * 6090 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6091 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6092 * and [r3, r3 + 8-1) respectively is safe to access depending on 6093 * the check. 6094 */ 6095 6096 /* If our ids match, then we must have the same max_value. And we 6097 * don't care about the other reg's fixed offset, since if it's too big 6098 * the range won't allow anything. 6099 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6100 */ 6101 for (i = 0; i <= vstate->curframe; i++) 6102 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6103 new_range); 6104 } 6105 6106 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6107 { 6108 struct tnum subreg = tnum_subreg(reg->var_off); 6109 s32 sval = (s32)val; 6110 6111 switch (opcode) { 6112 case BPF_JEQ: 6113 if (tnum_is_const(subreg)) 6114 return !!tnum_equals_const(subreg, val); 6115 break; 6116 case BPF_JNE: 6117 if (tnum_is_const(subreg)) 6118 return !tnum_equals_const(subreg, val); 6119 break; 6120 case BPF_JSET: 6121 if ((~subreg.mask & subreg.value) & val) 6122 return 1; 6123 if (!((subreg.mask | subreg.value) & val)) 6124 return 0; 6125 break; 6126 case BPF_JGT: 6127 if (reg->u32_min_value > val) 6128 return 1; 6129 else if (reg->u32_max_value <= val) 6130 return 0; 6131 break; 6132 case BPF_JSGT: 6133 if (reg->s32_min_value > sval) 6134 return 1; 6135 else if (reg->s32_max_value < sval) 6136 return 0; 6137 break; 6138 case BPF_JLT: 6139 if (reg->u32_max_value < val) 6140 return 1; 6141 else if (reg->u32_min_value >= val) 6142 return 0; 6143 break; 6144 case BPF_JSLT: 6145 if (reg->s32_max_value < sval) 6146 return 1; 6147 else if (reg->s32_min_value >= sval) 6148 return 0; 6149 break; 6150 case BPF_JGE: 6151 if (reg->u32_min_value >= val) 6152 return 1; 6153 else if (reg->u32_max_value < val) 6154 return 0; 6155 break; 6156 case BPF_JSGE: 6157 if (reg->s32_min_value >= sval) 6158 return 1; 6159 else if (reg->s32_max_value < sval) 6160 return 0; 6161 break; 6162 case BPF_JLE: 6163 if (reg->u32_max_value <= val) 6164 return 1; 6165 else if (reg->u32_min_value > val) 6166 return 0; 6167 break; 6168 case BPF_JSLE: 6169 if (reg->s32_max_value <= sval) 6170 return 1; 6171 else if (reg->s32_min_value > sval) 6172 return 0; 6173 break; 6174 } 6175 6176 return -1; 6177 } 6178 6179 6180 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6181 { 6182 s64 sval = (s64)val; 6183 6184 switch (opcode) { 6185 case BPF_JEQ: 6186 if (tnum_is_const(reg->var_off)) 6187 return !!tnum_equals_const(reg->var_off, val); 6188 break; 6189 case BPF_JNE: 6190 if (tnum_is_const(reg->var_off)) 6191 return !tnum_equals_const(reg->var_off, val); 6192 break; 6193 case BPF_JSET: 6194 if ((~reg->var_off.mask & reg->var_off.value) & val) 6195 return 1; 6196 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6197 return 0; 6198 break; 6199 case BPF_JGT: 6200 if (reg->umin_value > val) 6201 return 1; 6202 else if (reg->umax_value <= val) 6203 return 0; 6204 break; 6205 case BPF_JSGT: 6206 if (reg->smin_value > sval) 6207 return 1; 6208 else if (reg->smax_value < sval) 6209 return 0; 6210 break; 6211 case BPF_JLT: 6212 if (reg->umax_value < val) 6213 return 1; 6214 else if (reg->umin_value >= val) 6215 return 0; 6216 break; 6217 case BPF_JSLT: 6218 if (reg->smax_value < sval) 6219 return 1; 6220 else if (reg->smin_value >= sval) 6221 return 0; 6222 break; 6223 case BPF_JGE: 6224 if (reg->umin_value >= val) 6225 return 1; 6226 else if (reg->umax_value < val) 6227 return 0; 6228 break; 6229 case BPF_JSGE: 6230 if (reg->smin_value >= sval) 6231 return 1; 6232 else if (reg->smax_value < sval) 6233 return 0; 6234 break; 6235 case BPF_JLE: 6236 if (reg->umax_value <= val) 6237 return 1; 6238 else if (reg->umin_value > val) 6239 return 0; 6240 break; 6241 case BPF_JSLE: 6242 if (reg->smax_value <= sval) 6243 return 1; 6244 else if (reg->smin_value > sval) 6245 return 0; 6246 break; 6247 } 6248 6249 return -1; 6250 } 6251 6252 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6253 * and return: 6254 * 1 - branch will be taken and "goto target" will be executed 6255 * 0 - branch will not be taken and fall-through to next insn 6256 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6257 * range [0,10] 6258 */ 6259 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6260 bool is_jmp32) 6261 { 6262 if (__is_pointer_value(false, reg)) 6263 return -1; 6264 6265 if (is_jmp32) 6266 return is_branch32_taken(reg, val, opcode); 6267 return is_branch64_taken(reg, val, opcode); 6268 } 6269 6270 /* Adjusts the register min/max values in the case that the dst_reg is the 6271 * variable register that we are working on, and src_reg is a constant or we're 6272 * simply doing a BPF_K check. 6273 * In JEQ/JNE cases we also adjust the var_off values. 6274 */ 6275 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6276 struct bpf_reg_state *false_reg, 6277 u64 val, u32 val32, 6278 u8 opcode, bool is_jmp32) 6279 { 6280 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6281 struct tnum false_64off = false_reg->var_off; 6282 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6283 struct tnum true_64off = true_reg->var_off; 6284 s64 sval = (s64)val; 6285 s32 sval32 = (s32)val32; 6286 6287 /* If the dst_reg is a pointer, we can't learn anything about its 6288 * variable offset from the compare (unless src_reg were a pointer into 6289 * the same object, but we don't bother with that. 6290 * Since false_reg and true_reg have the same type by construction, we 6291 * only need to check one of them for pointerness. 6292 */ 6293 if (__is_pointer_value(false, false_reg)) 6294 return; 6295 6296 switch (opcode) { 6297 case BPF_JEQ: 6298 case BPF_JNE: 6299 { 6300 struct bpf_reg_state *reg = 6301 opcode == BPF_JEQ ? true_reg : false_reg; 6302 6303 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6304 * if it is true we know the value for sure. Likewise for 6305 * BPF_JNE. 6306 */ 6307 if (is_jmp32) 6308 __mark_reg32_known(reg, val32); 6309 else 6310 __mark_reg_known(reg, val); 6311 break; 6312 } 6313 case BPF_JSET: 6314 if (is_jmp32) { 6315 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6316 if (is_power_of_2(val32)) 6317 true_32off = tnum_or(true_32off, 6318 tnum_const(val32)); 6319 } else { 6320 false_64off = tnum_and(false_64off, tnum_const(~val)); 6321 if (is_power_of_2(val)) 6322 true_64off = tnum_or(true_64off, 6323 tnum_const(val)); 6324 } 6325 break; 6326 case BPF_JGE: 6327 case BPF_JGT: 6328 { 6329 if (is_jmp32) { 6330 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6331 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6332 6333 false_reg->u32_max_value = min(false_reg->u32_max_value, 6334 false_umax); 6335 true_reg->u32_min_value = max(true_reg->u32_min_value, 6336 true_umin); 6337 } else { 6338 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6339 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6340 6341 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6342 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6343 } 6344 break; 6345 } 6346 case BPF_JSGE: 6347 case BPF_JSGT: 6348 { 6349 if (is_jmp32) { 6350 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6351 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6352 6353 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6354 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6355 } else { 6356 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6357 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6358 6359 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6360 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6361 } 6362 break; 6363 } 6364 case BPF_JLE: 6365 case BPF_JLT: 6366 { 6367 if (is_jmp32) { 6368 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6369 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6370 6371 false_reg->u32_min_value = max(false_reg->u32_min_value, 6372 false_umin); 6373 true_reg->u32_max_value = min(true_reg->u32_max_value, 6374 true_umax); 6375 } else { 6376 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6377 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6378 6379 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6380 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6381 } 6382 break; 6383 } 6384 case BPF_JSLE: 6385 case BPF_JSLT: 6386 { 6387 if (is_jmp32) { 6388 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6389 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6390 6391 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6392 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6393 } else { 6394 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6395 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6396 6397 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6398 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6399 } 6400 break; 6401 } 6402 default: 6403 return; 6404 } 6405 6406 if (is_jmp32) { 6407 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6408 tnum_subreg(false_32off)); 6409 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6410 tnum_subreg(true_32off)); 6411 __reg_combine_32_into_64(false_reg); 6412 __reg_combine_32_into_64(true_reg); 6413 } else { 6414 false_reg->var_off = false_64off; 6415 true_reg->var_off = true_64off; 6416 __reg_combine_64_into_32(false_reg); 6417 __reg_combine_64_into_32(true_reg); 6418 } 6419 } 6420 6421 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6422 * the variable reg. 6423 */ 6424 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6425 struct bpf_reg_state *false_reg, 6426 u64 val, u32 val32, 6427 u8 opcode, bool is_jmp32) 6428 { 6429 /* How can we transform "a <op> b" into "b <op> a"? */ 6430 static const u8 opcode_flip[16] = { 6431 /* these stay the same */ 6432 [BPF_JEQ >> 4] = BPF_JEQ, 6433 [BPF_JNE >> 4] = BPF_JNE, 6434 [BPF_JSET >> 4] = BPF_JSET, 6435 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6436 [BPF_JGE >> 4] = BPF_JLE, 6437 [BPF_JGT >> 4] = BPF_JLT, 6438 [BPF_JLE >> 4] = BPF_JGE, 6439 [BPF_JLT >> 4] = BPF_JGT, 6440 [BPF_JSGE >> 4] = BPF_JSLE, 6441 [BPF_JSGT >> 4] = BPF_JSLT, 6442 [BPF_JSLE >> 4] = BPF_JSGE, 6443 [BPF_JSLT >> 4] = BPF_JSGT 6444 }; 6445 opcode = opcode_flip[opcode >> 4]; 6446 /* This uses zero as "not present in table"; luckily the zero opcode, 6447 * BPF_JA, can't get here. 6448 */ 6449 if (opcode) 6450 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6451 } 6452 6453 /* Regs are known to be equal, so intersect their min/max/var_off */ 6454 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6455 struct bpf_reg_state *dst_reg) 6456 { 6457 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6458 dst_reg->umin_value); 6459 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6460 dst_reg->umax_value); 6461 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6462 dst_reg->smin_value); 6463 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6464 dst_reg->smax_value); 6465 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6466 dst_reg->var_off); 6467 /* We might have learned new bounds from the var_off. */ 6468 __update_reg_bounds(src_reg); 6469 __update_reg_bounds(dst_reg); 6470 /* We might have learned something about the sign bit. */ 6471 __reg_deduce_bounds(src_reg); 6472 __reg_deduce_bounds(dst_reg); 6473 /* We might have learned some bits from the bounds. */ 6474 __reg_bound_offset(src_reg); 6475 __reg_bound_offset(dst_reg); 6476 /* Intersecting with the old var_off might have improved our bounds 6477 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6478 * then new var_off is (0; 0x7f...fc) which improves our umax. 6479 */ 6480 __update_reg_bounds(src_reg); 6481 __update_reg_bounds(dst_reg); 6482 } 6483 6484 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6485 struct bpf_reg_state *true_dst, 6486 struct bpf_reg_state *false_src, 6487 struct bpf_reg_state *false_dst, 6488 u8 opcode) 6489 { 6490 switch (opcode) { 6491 case BPF_JEQ: 6492 __reg_combine_min_max(true_src, true_dst); 6493 break; 6494 case BPF_JNE: 6495 __reg_combine_min_max(false_src, false_dst); 6496 break; 6497 } 6498 } 6499 6500 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6501 struct bpf_reg_state *reg, u32 id, 6502 bool is_null) 6503 { 6504 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6505 /* Old offset (both fixed and variable parts) should 6506 * have been known-zero, because we don't allow pointer 6507 * arithmetic on pointers that might be NULL. 6508 */ 6509 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6510 !tnum_equals_const(reg->var_off, 0) || 6511 reg->off)) { 6512 __mark_reg_known_zero(reg); 6513 reg->off = 0; 6514 } 6515 if (is_null) { 6516 reg->type = SCALAR_VALUE; 6517 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6518 if (reg->map_ptr->inner_map_meta) { 6519 reg->type = CONST_PTR_TO_MAP; 6520 reg->map_ptr = reg->map_ptr->inner_map_meta; 6521 } else if (reg->map_ptr->map_type == 6522 BPF_MAP_TYPE_XSKMAP) { 6523 reg->type = PTR_TO_XDP_SOCK; 6524 } else { 6525 reg->type = PTR_TO_MAP_VALUE; 6526 } 6527 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6528 reg->type = PTR_TO_SOCKET; 6529 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6530 reg->type = PTR_TO_SOCK_COMMON; 6531 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6532 reg->type = PTR_TO_TCP_SOCK; 6533 } 6534 if (is_null) { 6535 /* We don't need id and ref_obj_id from this point 6536 * onwards anymore, thus we should better reset it, 6537 * so that state pruning has chances to take effect. 6538 */ 6539 reg->id = 0; 6540 reg->ref_obj_id = 0; 6541 } else if (!reg_may_point_to_spin_lock(reg)) { 6542 /* For not-NULL ptr, reg->ref_obj_id will be reset 6543 * in release_reg_references(). 6544 * 6545 * reg->id is still used by spin_lock ptr. Other 6546 * than spin_lock ptr type, reg->id can be reset. 6547 */ 6548 reg->id = 0; 6549 } 6550 } 6551 } 6552 6553 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6554 bool is_null) 6555 { 6556 struct bpf_reg_state *reg; 6557 int i; 6558 6559 for (i = 0; i < MAX_BPF_REG; i++) 6560 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6561 6562 bpf_for_each_spilled_reg(i, state, reg) { 6563 if (!reg) 6564 continue; 6565 mark_ptr_or_null_reg(state, reg, id, is_null); 6566 } 6567 } 6568 6569 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6570 * be folded together at some point. 6571 */ 6572 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6573 bool is_null) 6574 { 6575 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6576 struct bpf_reg_state *regs = state->regs; 6577 u32 ref_obj_id = regs[regno].ref_obj_id; 6578 u32 id = regs[regno].id; 6579 int i; 6580 6581 if (ref_obj_id && ref_obj_id == id && is_null) 6582 /* regs[regno] is in the " == NULL" branch. 6583 * No one could have freed the reference state before 6584 * doing the NULL check. 6585 */ 6586 WARN_ON_ONCE(release_reference_state(state, id)); 6587 6588 for (i = 0; i <= vstate->curframe; i++) 6589 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6590 } 6591 6592 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6593 struct bpf_reg_state *dst_reg, 6594 struct bpf_reg_state *src_reg, 6595 struct bpf_verifier_state *this_branch, 6596 struct bpf_verifier_state *other_branch) 6597 { 6598 if (BPF_SRC(insn->code) != BPF_X) 6599 return false; 6600 6601 /* Pointers are always 64-bit. */ 6602 if (BPF_CLASS(insn->code) == BPF_JMP32) 6603 return false; 6604 6605 switch (BPF_OP(insn->code)) { 6606 case BPF_JGT: 6607 if ((dst_reg->type == PTR_TO_PACKET && 6608 src_reg->type == PTR_TO_PACKET_END) || 6609 (dst_reg->type == PTR_TO_PACKET_META && 6610 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6611 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6612 find_good_pkt_pointers(this_branch, dst_reg, 6613 dst_reg->type, false); 6614 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6615 src_reg->type == PTR_TO_PACKET) || 6616 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6617 src_reg->type == PTR_TO_PACKET_META)) { 6618 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6619 find_good_pkt_pointers(other_branch, src_reg, 6620 src_reg->type, true); 6621 } else { 6622 return false; 6623 } 6624 break; 6625 case BPF_JLT: 6626 if ((dst_reg->type == PTR_TO_PACKET && 6627 src_reg->type == PTR_TO_PACKET_END) || 6628 (dst_reg->type == PTR_TO_PACKET_META && 6629 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6630 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6631 find_good_pkt_pointers(other_branch, dst_reg, 6632 dst_reg->type, true); 6633 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6634 src_reg->type == PTR_TO_PACKET) || 6635 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6636 src_reg->type == PTR_TO_PACKET_META)) { 6637 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6638 find_good_pkt_pointers(this_branch, src_reg, 6639 src_reg->type, false); 6640 } else { 6641 return false; 6642 } 6643 break; 6644 case BPF_JGE: 6645 if ((dst_reg->type == PTR_TO_PACKET && 6646 src_reg->type == PTR_TO_PACKET_END) || 6647 (dst_reg->type == PTR_TO_PACKET_META && 6648 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6649 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6650 find_good_pkt_pointers(this_branch, dst_reg, 6651 dst_reg->type, true); 6652 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6653 src_reg->type == PTR_TO_PACKET) || 6654 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6655 src_reg->type == PTR_TO_PACKET_META)) { 6656 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6657 find_good_pkt_pointers(other_branch, src_reg, 6658 src_reg->type, false); 6659 } else { 6660 return false; 6661 } 6662 break; 6663 case BPF_JLE: 6664 if ((dst_reg->type == PTR_TO_PACKET && 6665 src_reg->type == PTR_TO_PACKET_END) || 6666 (dst_reg->type == PTR_TO_PACKET_META && 6667 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6668 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6669 find_good_pkt_pointers(other_branch, dst_reg, 6670 dst_reg->type, false); 6671 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6672 src_reg->type == PTR_TO_PACKET) || 6673 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6674 src_reg->type == PTR_TO_PACKET_META)) { 6675 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6676 find_good_pkt_pointers(this_branch, src_reg, 6677 src_reg->type, true); 6678 } else { 6679 return false; 6680 } 6681 break; 6682 default: 6683 return false; 6684 } 6685 6686 return true; 6687 } 6688 6689 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6690 struct bpf_insn *insn, int *insn_idx) 6691 { 6692 struct bpf_verifier_state *this_branch = env->cur_state; 6693 struct bpf_verifier_state *other_branch; 6694 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6695 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6696 u8 opcode = BPF_OP(insn->code); 6697 bool is_jmp32; 6698 int pred = -1; 6699 int err; 6700 6701 /* Only conditional jumps are expected to reach here. */ 6702 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6703 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6704 return -EINVAL; 6705 } 6706 6707 if (BPF_SRC(insn->code) == BPF_X) { 6708 if (insn->imm != 0) { 6709 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6710 return -EINVAL; 6711 } 6712 6713 /* check src1 operand */ 6714 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6715 if (err) 6716 return err; 6717 6718 if (is_pointer_value(env, insn->src_reg)) { 6719 verbose(env, "R%d pointer comparison prohibited\n", 6720 insn->src_reg); 6721 return -EACCES; 6722 } 6723 src_reg = ®s[insn->src_reg]; 6724 } else { 6725 if (insn->src_reg != BPF_REG_0) { 6726 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6727 return -EINVAL; 6728 } 6729 } 6730 6731 /* check src2 operand */ 6732 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6733 if (err) 6734 return err; 6735 6736 dst_reg = ®s[insn->dst_reg]; 6737 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6738 6739 if (BPF_SRC(insn->code) == BPF_K) { 6740 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6741 } else if (src_reg->type == SCALAR_VALUE && 6742 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6743 pred = is_branch_taken(dst_reg, 6744 tnum_subreg(src_reg->var_off).value, 6745 opcode, 6746 is_jmp32); 6747 } else if (src_reg->type == SCALAR_VALUE && 6748 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6749 pred = is_branch_taken(dst_reg, 6750 src_reg->var_off.value, 6751 opcode, 6752 is_jmp32); 6753 } 6754 6755 if (pred >= 0) { 6756 err = mark_chain_precision(env, insn->dst_reg); 6757 if (BPF_SRC(insn->code) == BPF_X && !err) 6758 err = mark_chain_precision(env, insn->src_reg); 6759 if (err) 6760 return err; 6761 } 6762 if (pred == 1) { 6763 /* only follow the goto, ignore fall-through */ 6764 *insn_idx += insn->off; 6765 return 0; 6766 } else if (pred == 0) { 6767 /* only follow fall-through branch, since 6768 * that's where the program will go 6769 */ 6770 return 0; 6771 } 6772 6773 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6774 false); 6775 if (!other_branch) 6776 return -EFAULT; 6777 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6778 6779 /* detect if we are comparing against a constant value so we can adjust 6780 * our min/max values for our dst register. 6781 * this is only legit if both are scalars (or pointers to the same 6782 * object, I suppose, but we don't support that right now), because 6783 * otherwise the different base pointers mean the offsets aren't 6784 * comparable. 6785 */ 6786 if (BPF_SRC(insn->code) == BPF_X) { 6787 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6788 6789 if (dst_reg->type == SCALAR_VALUE && 6790 src_reg->type == SCALAR_VALUE) { 6791 if (tnum_is_const(src_reg->var_off) || 6792 (is_jmp32 && 6793 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6794 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6795 dst_reg, 6796 src_reg->var_off.value, 6797 tnum_subreg(src_reg->var_off).value, 6798 opcode, is_jmp32); 6799 else if (tnum_is_const(dst_reg->var_off) || 6800 (is_jmp32 && 6801 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6802 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6803 src_reg, 6804 dst_reg->var_off.value, 6805 tnum_subreg(dst_reg->var_off).value, 6806 opcode, is_jmp32); 6807 else if (!is_jmp32 && 6808 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6809 /* Comparing for equality, we can combine knowledge */ 6810 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6811 &other_branch_regs[insn->dst_reg], 6812 src_reg, dst_reg, opcode); 6813 } 6814 } else if (dst_reg->type == SCALAR_VALUE) { 6815 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6816 dst_reg, insn->imm, (u32)insn->imm, 6817 opcode, is_jmp32); 6818 } 6819 6820 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6821 * NOTE: these optimizations below are related with pointer comparison 6822 * which will never be JMP32. 6823 */ 6824 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6825 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6826 reg_type_may_be_null(dst_reg->type)) { 6827 /* Mark all identical registers in each branch as either 6828 * safe or unknown depending R == 0 or R != 0 conditional. 6829 */ 6830 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6831 opcode == BPF_JNE); 6832 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6833 opcode == BPF_JEQ); 6834 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6835 this_branch, other_branch) && 6836 is_pointer_value(env, insn->dst_reg)) { 6837 verbose(env, "R%d pointer comparison prohibited\n", 6838 insn->dst_reg); 6839 return -EACCES; 6840 } 6841 if (env->log.level & BPF_LOG_LEVEL) 6842 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6843 return 0; 6844 } 6845 6846 /* verify BPF_LD_IMM64 instruction */ 6847 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6848 { 6849 struct bpf_insn_aux_data *aux = cur_aux(env); 6850 struct bpf_reg_state *regs = cur_regs(env); 6851 struct bpf_map *map; 6852 int err; 6853 6854 if (BPF_SIZE(insn->code) != BPF_DW) { 6855 verbose(env, "invalid BPF_LD_IMM insn\n"); 6856 return -EINVAL; 6857 } 6858 if (insn->off != 0) { 6859 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6860 return -EINVAL; 6861 } 6862 6863 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6864 if (err) 6865 return err; 6866 6867 if (insn->src_reg == 0) { 6868 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6869 6870 regs[insn->dst_reg].type = SCALAR_VALUE; 6871 __mark_reg_known(®s[insn->dst_reg], imm); 6872 return 0; 6873 } 6874 6875 map = env->used_maps[aux->map_index]; 6876 mark_reg_known_zero(env, regs, insn->dst_reg); 6877 regs[insn->dst_reg].map_ptr = map; 6878 6879 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6880 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6881 regs[insn->dst_reg].off = aux->map_off; 6882 if (map_value_has_spin_lock(map)) 6883 regs[insn->dst_reg].id = ++env->id_gen; 6884 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6885 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6886 } else { 6887 verbose(env, "bpf verifier is misconfigured\n"); 6888 return -EINVAL; 6889 } 6890 6891 return 0; 6892 } 6893 6894 static bool may_access_skb(enum bpf_prog_type type) 6895 { 6896 switch (type) { 6897 case BPF_PROG_TYPE_SOCKET_FILTER: 6898 case BPF_PROG_TYPE_SCHED_CLS: 6899 case BPF_PROG_TYPE_SCHED_ACT: 6900 return true; 6901 default: 6902 return false; 6903 } 6904 } 6905 6906 /* verify safety of LD_ABS|LD_IND instructions: 6907 * - they can only appear in the programs where ctx == skb 6908 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6909 * preserve R6-R9, and store return value into R0 6910 * 6911 * Implicit input: 6912 * ctx == skb == R6 == CTX 6913 * 6914 * Explicit input: 6915 * SRC == any register 6916 * IMM == 32-bit immediate 6917 * 6918 * Output: 6919 * R0 - 8/16/32-bit skb data converted to cpu endianness 6920 */ 6921 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6922 { 6923 struct bpf_reg_state *regs = cur_regs(env); 6924 static const int ctx_reg = BPF_REG_6; 6925 u8 mode = BPF_MODE(insn->code); 6926 int i, err; 6927 6928 if (!may_access_skb(env->prog->type)) { 6929 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6930 return -EINVAL; 6931 } 6932 6933 if (!env->ops->gen_ld_abs) { 6934 verbose(env, "bpf verifier is misconfigured\n"); 6935 return -EINVAL; 6936 } 6937 6938 if (env->subprog_cnt > 1) { 6939 /* when program has LD_ABS insn JITs and interpreter assume 6940 * that r1 == ctx == skb which is not the case for callees 6941 * that can have arbitrary arguments. It's problematic 6942 * for main prog as well since JITs would need to analyze 6943 * all functions in order to make proper register save/restore 6944 * decisions in the main prog. Hence disallow LD_ABS with calls 6945 */ 6946 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6947 return -EINVAL; 6948 } 6949 6950 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6951 BPF_SIZE(insn->code) == BPF_DW || 6952 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6953 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6954 return -EINVAL; 6955 } 6956 6957 /* check whether implicit source operand (register R6) is readable */ 6958 err = check_reg_arg(env, ctx_reg, SRC_OP); 6959 if (err) 6960 return err; 6961 6962 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6963 * gen_ld_abs() may terminate the program at runtime, leading to 6964 * reference leak. 6965 */ 6966 err = check_reference_leak(env); 6967 if (err) { 6968 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6969 return err; 6970 } 6971 6972 if (env->cur_state->active_spin_lock) { 6973 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6974 return -EINVAL; 6975 } 6976 6977 if (regs[ctx_reg].type != PTR_TO_CTX) { 6978 verbose(env, 6979 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6980 return -EINVAL; 6981 } 6982 6983 if (mode == BPF_IND) { 6984 /* check explicit source operand */ 6985 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6986 if (err) 6987 return err; 6988 } 6989 6990 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 6991 if (err < 0) 6992 return err; 6993 6994 /* reset caller saved regs to unreadable */ 6995 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6996 mark_reg_not_init(env, regs, caller_saved[i]); 6997 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6998 } 6999 7000 /* mark destination R0 register as readable, since it contains 7001 * the value fetched from the packet. 7002 * Already marked as written above. 7003 */ 7004 mark_reg_unknown(env, regs, BPF_REG_0); 7005 /* ld_abs load up to 32-bit skb data. */ 7006 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7007 return 0; 7008 } 7009 7010 static int check_return_code(struct bpf_verifier_env *env) 7011 { 7012 struct tnum enforce_attach_type_range = tnum_unknown; 7013 const struct bpf_prog *prog = env->prog; 7014 struct bpf_reg_state *reg; 7015 struct tnum range = tnum_range(0, 1); 7016 int err; 7017 7018 /* LSM and struct_ops func-ptr's return type could be "void" */ 7019 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7020 env->prog->type == BPF_PROG_TYPE_LSM) && 7021 !prog->aux->attach_func_proto->type) 7022 return 0; 7023 7024 /* eBPF calling convetion is such that R0 is used 7025 * to return the value from eBPF program. 7026 * Make sure that it's readable at this time 7027 * of bpf_exit, which means that program wrote 7028 * something into it earlier 7029 */ 7030 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7031 if (err) 7032 return err; 7033 7034 if (is_pointer_value(env, BPF_REG_0)) { 7035 verbose(env, "R0 leaks addr as return value\n"); 7036 return -EACCES; 7037 } 7038 7039 switch (env->prog->type) { 7040 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7041 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7042 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 7043 range = tnum_range(1, 1); 7044 break; 7045 case BPF_PROG_TYPE_CGROUP_SKB: 7046 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7047 range = tnum_range(0, 3); 7048 enforce_attach_type_range = tnum_range(2, 3); 7049 } 7050 break; 7051 case BPF_PROG_TYPE_CGROUP_SOCK: 7052 case BPF_PROG_TYPE_SOCK_OPS: 7053 case BPF_PROG_TYPE_CGROUP_DEVICE: 7054 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7055 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7056 break; 7057 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7058 if (!env->prog->aux->attach_btf_id) 7059 return 0; 7060 range = tnum_const(0); 7061 break; 7062 default: 7063 return 0; 7064 } 7065 7066 reg = cur_regs(env) + BPF_REG_0; 7067 if (reg->type != SCALAR_VALUE) { 7068 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7069 reg_type_str[reg->type]); 7070 return -EINVAL; 7071 } 7072 7073 if (!tnum_in(range, reg->var_off)) { 7074 char tn_buf[48]; 7075 7076 verbose(env, "At program exit the register R0 "); 7077 if (!tnum_is_unknown(reg->var_off)) { 7078 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7079 verbose(env, "has value %s", tn_buf); 7080 } else { 7081 verbose(env, "has unknown scalar value"); 7082 } 7083 tnum_strn(tn_buf, sizeof(tn_buf), range); 7084 verbose(env, " should have been in %s\n", tn_buf); 7085 return -EINVAL; 7086 } 7087 7088 if (!tnum_is_unknown(enforce_attach_type_range) && 7089 tnum_in(enforce_attach_type_range, reg->var_off)) 7090 env->prog->enforce_expected_attach_type = 1; 7091 return 0; 7092 } 7093 7094 /* non-recursive DFS pseudo code 7095 * 1 procedure DFS-iterative(G,v): 7096 * 2 label v as discovered 7097 * 3 let S be a stack 7098 * 4 S.push(v) 7099 * 5 while S is not empty 7100 * 6 t <- S.pop() 7101 * 7 if t is what we're looking for: 7102 * 8 return t 7103 * 9 for all edges e in G.adjacentEdges(t) do 7104 * 10 if edge e is already labelled 7105 * 11 continue with the next edge 7106 * 12 w <- G.adjacentVertex(t,e) 7107 * 13 if vertex w is not discovered and not explored 7108 * 14 label e as tree-edge 7109 * 15 label w as discovered 7110 * 16 S.push(w) 7111 * 17 continue at 5 7112 * 18 else if vertex w is discovered 7113 * 19 label e as back-edge 7114 * 20 else 7115 * 21 // vertex w is explored 7116 * 22 label e as forward- or cross-edge 7117 * 23 label t as explored 7118 * 24 S.pop() 7119 * 7120 * convention: 7121 * 0x10 - discovered 7122 * 0x11 - discovered and fall-through edge labelled 7123 * 0x12 - discovered and fall-through and branch edges labelled 7124 * 0x20 - explored 7125 */ 7126 7127 enum { 7128 DISCOVERED = 0x10, 7129 EXPLORED = 0x20, 7130 FALLTHROUGH = 1, 7131 BRANCH = 2, 7132 }; 7133 7134 static u32 state_htab_size(struct bpf_verifier_env *env) 7135 { 7136 return env->prog->len; 7137 } 7138 7139 static struct bpf_verifier_state_list **explored_state( 7140 struct bpf_verifier_env *env, 7141 int idx) 7142 { 7143 struct bpf_verifier_state *cur = env->cur_state; 7144 struct bpf_func_state *state = cur->frame[cur->curframe]; 7145 7146 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7147 } 7148 7149 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7150 { 7151 env->insn_aux_data[idx].prune_point = true; 7152 } 7153 7154 /* t, w, e - match pseudo-code above: 7155 * t - index of current instruction 7156 * w - next instruction 7157 * e - edge 7158 */ 7159 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7160 bool loop_ok) 7161 { 7162 int *insn_stack = env->cfg.insn_stack; 7163 int *insn_state = env->cfg.insn_state; 7164 7165 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7166 return 0; 7167 7168 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7169 return 0; 7170 7171 if (w < 0 || w >= env->prog->len) { 7172 verbose_linfo(env, t, "%d: ", t); 7173 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7174 return -EINVAL; 7175 } 7176 7177 if (e == BRANCH) 7178 /* mark branch target for state pruning */ 7179 init_explored_state(env, w); 7180 7181 if (insn_state[w] == 0) { 7182 /* tree-edge */ 7183 insn_state[t] = DISCOVERED | e; 7184 insn_state[w] = DISCOVERED; 7185 if (env->cfg.cur_stack >= env->prog->len) 7186 return -E2BIG; 7187 insn_stack[env->cfg.cur_stack++] = w; 7188 return 1; 7189 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7190 if (loop_ok && env->allow_ptr_leaks) 7191 return 0; 7192 verbose_linfo(env, t, "%d: ", t); 7193 verbose_linfo(env, w, "%d: ", w); 7194 verbose(env, "back-edge from insn %d to %d\n", t, w); 7195 return -EINVAL; 7196 } else if (insn_state[w] == EXPLORED) { 7197 /* forward- or cross-edge */ 7198 insn_state[t] = DISCOVERED | e; 7199 } else { 7200 verbose(env, "insn state internal bug\n"); 7201 return -EFAULT; 7202 } 7203 return 0; 7204 } 7205 7206 /* non-recursive depth-first-search to detect loops in BPF program 7207 * loop == back-edge in directed graph 7208 */ 7209 static int check_cfg(struct bpf_verifier_env *env) 7210 { 7211 struct bpf_insn *insns = env->prog->insnsi; 7212 int insn_cnt = env->prog->len; 7213 int *insn_stack, *insn_state; 7214 int ret = 0; 7215 int i, t; 7216 7217 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7218 if (!insn_state) 7219 return -ENOMEM; 7220 7221 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7222 if (!insn_stack) { 7223 kvfree(insn_state); 7224 return -ENOMEM; 7225 } 7226 7227 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7228 insn_stack[0] = 0; /* 0 is the first instruction */ 7229 env->cfg.cur_stack = 1; 7230 7231 peek_stack: 7232 if (env->cfg.cur_stack == 0) 7233 goto check_state; 7234 t = insn_stack[env->cfg.cur_stack - 1]; 7235 7236 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7237 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7238 u8 opcode = BPF_OP(insns[t].code); 7239 7240 if (opcode == BPF_EXIT) { 7241 goto mark_explored; 7242 } else if (opcode == BPF_CALL) { 7243 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7244 if (ret == 1) 7245 goto peek_stack; 7246 else if (ret < 0) 7247 goto err_free; 7248 if (t + 1 < insn_cnt) 7249 init_explored_state(env, t + 1); 7250 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7251 init_explored_state(env, t); 7252 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7253 env, false); 7254 if (ret == 1) 7255 goto peek_stack; 7256 else if (ret < 0) 7257 goto err_free; 7258 } 7259 } else if (opcode == BPF_JA) { 7260 if (BPF_SRC(insns[t].code) != BPF_K) { 7261 ret = -EINVAL; 7262 goto err_free; 7263 } 7264 /* unconditional jump with single edge */ 7265 ret = push_insn(t, t + insns[t].off + 1, 7266 FALLTHROUGH, env, true); 7267 if (ret == 1) 7268 goto peek_stack; 7269 else if (ret < 0) 7270 goto err_free; 7271 /* unconditional jmp is not a good pruning point, 7272 * but it's marked, since backtracking needs 7273 * to record jmp history in is_state_visited(). 7274 */ 7275 init_explored_state(env, t + insns[t].off + 1); 7276 /* tell verifier to check for equivalent states 7277 * after every call and jump 7278 */ 7279 if (t + 1 < insn_cnt) 7280 init_explored_state(env, t + 1); 7281 } else { 7282 /* conditional jump with two edges */ 7283 init_explored_state(env, t); 7284 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7285 if (ret == 1) 7286 goto peek_stack; 7287 else if (ret < 0) 7288 goto err_free; 7289 7290 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7291 if (ret == 1) 7292 goto peek_stack; 7293 else if (ret < 0) 7294 goto err_free; 7295 } 7296 } else { 7297 /* all other non-branch instructions with single 7298 * fall-through edge 7299 */ 7300 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7301 if (ret == 1) 7302 goto peek_stack; 7303 else if (ret < 0) 7304 goto err_free; 7305 } 7306 7307 mark_explored: 7308 insn_state[t] = EXPLORED; 7309 if (env->cfg.cur_stack-- <= 0) { 7310 verbose(env, "pop stack internal bug\n"); 7311 ret = -EFAULT; 7312 goto err_free; 7313 } 7314 goto peek_stack; 7315 7316 check_state: 7317 for (i = 0; i < insn_cnt; i++) { 7318 if (insn_state[i] != EXPLORED) { 7319 verbose(env, "unreachable insn %d\n", i); 7320 ret = -EINVAL; 7321 goto err_free; 7322 } 7323 } 7324 ret = 0; /* cfg looks good */ 7325 7326 err_free: 7327 kvfree(insn_state); 7328 kvfree(insn_stack); 7329 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7330 return ret; 7331 } 7332 7333 /* The minimum supported BTF func info size */ 7334 #define MIN_BPF_FUNCINFO_SIZE 8 7335 #define MAX_FUNCINFO_REC_SIZE 252 7336 7337 static int check_btf_func(struct bpf_verifier_env *env, 7338 const union bpf_attr *attr, 7339 union bpf_attr __user *uattr) 7340 { 7341 u32 i, nfuncs, urec_size, min_size; 7342 u32 krec_size = sizeof(struct bpf_func_info); 7343 struct bpf_func_info *krecord; 7344 struct bpf_func_info_aux *info_aux = NULL; 7345 const struct btf_type *type; 7346 struct bpf_prog *prog; 7347 const struct btf *btf; 7348 void __user *urecord; 7349 u32 prev_offset = 0; 7350 int ret = 0; 7351 7352 nfuncs = attr->func_info_cnt; 7353 if (!nfuncs) 7354 return 0; 7355 7356 if (nfuncs != env->subprog_cnt) { 7357 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7358 return -EINVAL; 7359 } 7360 7361 urec_size = attr->func_info_rec_size; 7362 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7363 urec_size > MAX_FUNCINFO_REC_SIZE || 7364 urec_size % sizeof(u32)) { 7365 verbose(env, "invalid func info rec size %u\n", urec_size); 7366 return -EINVAL; 7367 } 7368 7369 prog = env->prog; 7370 btf = prog->aux->btf; 7371 7372 urecord = u64_to_user_ptr(attr->func_info); 7373 min_size = min_t(u32, krec_size, urec_size); 7374 7375 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7376 if (!krecord) 7377 return -ENOMEM; 7378 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7379 if (!info_aux) 7380 goto err_free; 7381 7382 for (i = 0; i < nfuncs; i++) { 7383 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7384 if (ret) { 7385 if (ret == -E2BIG) { 7386 verbose(env, "nonzero tailing record in func info"); 7387 /* set the size kernel expects so loader can zero 7388 * out the rest of the record. 7389 */ 7390 if (put_user(min_size, &uattr->func_info_rec_size)) 7391 ret = -EFAULT; 7392 } 7393 goto err_free; 7394 } 7395 7396 if (copy_from_user(&krecord[i], urecord, min_size)) { 7397 ret = -EFAULT; 7398 goto err_free; 7399 } 7400 7401 /* check insn_off */ 7402 if (i == 0) { 7403 if (krecord[i].insn_off) { 7404 verbose(env, 7405 "nonzero insn_off %u for the first func info record", 7406 krecord[i].insn_off); 7407 ret = -EINVAL; 7408 goto err_free; 7409 } 7410 } else if (krecord[i].insn_off <= prev_offset) { 7411 verbose(env, 7412 "same or smaller insn offset (%u) than previous func info record (%u)", 7413 krecord[i].insn_off, prev_offset); 7414 ret = -EINVAL; 7415 goto err_free; 7416 } 7417 7418 if (env->subprog_info[i].start != krecord[i].insn_off) { 7419 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7420 ret = -EINVAL; 7421 goto err_free; 7422 } 7423 7424 /* check type_id */ 7425 type = btf_type_by_id(btf, krecord[i].type_id); 7426 if (!type || !btf_type_is_func(type)) { 7427 verbose(env, "invalid type id %d in func info", 7428 krecord[i].type_id); 7429 ret = -EINVAL; 7430 goto err_free; 7431 } 7432 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7433 prev_offset = krecord[i].insn_off; 7434 urecord += urec_size; 7435 } 7436 7437 prog->aux->func_info = krecord; 7438 prog->aux->func_info_cnt = nfuncs; 7439 prog->aux->func_info_aux = info_aux; 7440 return 0; 7441 7442 err_free: 7443 kvfree(krecord); 7444 kfree(info_aux); 7445 return ret; 7446 } 7447 7448 static void adjust_btf_func(struct bpf_verifier_env *env) 7449 { 7450 struct bpf_prog_aux *aux = env->prog->aux; 7451 int i; 7452 7453 if (!aux->func_info) 7454 return; 7455 7456 for (i = 0; i < env->subprog_cnt; i++) 7457 aux->func_info[i].insn_off = env->subprog_info[i].start; 7458 } 7459 7460 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7461 sizeof(((struct bpf_line_info *)(0))->line_col)) 7462 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7463 7464 static int check_btf_line(struct bpf_verifier_env *env, 7465 const union bpf_attr *attr, 7466 union bpf_attr __user *uattr) 7467 { 7468 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7469 struct bpf_subprog_info *sub; 7470 struct bpf_line_info *linfo; 7471 struct bpf_prog *prog; 7472 const struct btf *btf; 7473 void __user *ulinfo; 7474 int err; 7475 7476 nr_linfo = attr->line_info_cnt; 7477 if (!nr_linfo) 7478 return 0; 7479 7480 rec_size = attr->line_info_rec_size; 7481 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7482 rec_size > MAX_LINEINFO_REC_SIZE || 7483 rec_size & (sizeof(u32) - 1)) 7484 return -EINVAL; 7485 7486 /* Need to zero it in case the userspace may 7487 * pass in a smaller bpf_line_info object. 7488 */ 7489 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7490 GFP_KERNEL | __GFP_NOWARN); 7491 if (!linfo) 7492 return -ENOMEM; 7493 7494 prog = env->prog; 7495 btf = prog->aux->btf; 7496 7497 s = 0; 7498 sub = env->subprog_info; 7499 ulinfo = u64_to_user_ptr(attr->line_info); 7500 expected_size = sizeof(struct bpf_line_info); 7501 ncopy = min_t(u32, expected_size, rec_size); 7502 for (i = 0; i < nr_linfo; i++) { 7503 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7504 if (err) { 7505 if (err == -E2BIG) { 7506 verbose(env, "nonzero tailing record in line_info"); 7507 if (put_user(expected_size, 7508 &uattr->line_info_rec_size)) 7509 err = -EFAULT; 7510 } 7511 goto err_free; 7512 } 7513 7514 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7515 err = -EFAULT; 7516 goto err_free; 7517 } 7518 7519 /* 7520 * Check insn_off to ensure 7521 * 1) strictly increasing AND 7522 * 2) bounded by prog->len 7523 * 7524 * The linfo[0].insn_off == 0 check logically falls into 7525 * the later "missing bpf_line_info for func..." case 7526 * because the first linfo[0].insn_off must be the 7527 * first sub also and the first sub must have 7528 * subprog_info[0].start == 0. 7529 */ 7530 if ((i && linfo[i].insn_off <= prev_offset) || 7531 linfo[i].insn_off >= prog->len) { 7532 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7533 i, linfo[i].insn_off, prev_offset, 7534 prog->len); 7535 err = -EINVAL; 7536 goto err_free; 7537 } 7538 7539 if (!prog->insnsi[linfo[i].insn_off].code) { 7540 verbose(env, 7541 "Invalid insn code at line_info[%u].insn_off\n", 7542 i); 7543 err = -EINVAL; 7544 goto err_free; 7545 } 7546 7547 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7548 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7549 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7550 err = -EINVAL; 7551 goto err_free; 7552 } 7553 7554 if (s != env->subprog_cnt) { 7555 if (linfo[i].insn_off == sub[s].start) { 7556 sub[s].linfo_idx = i; 7557 s++; 7558 } else if (sub[s].start < linfo[i].insn_off) { 7559 verbose(env, "missing bpf_line_info for func#%u\n", s); 7560 err = -EINVAL; 7561 goto err_free; 7562 } 7563 } 7564 7565 prev_offset = linfo[i].insn_off; 7566 ulinfo += rec_size; 7567 } 7568 7569 if (s != env->subprog_cnt) { 7570 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7571 env->subprog_cnt - s, s); 7572 err = -EINVAL; 7573 goto err_free; 7574 } 7575 7576 prog->aux->linfo = linfo; 7577 prog->aux->nr_linfo = nr_linfo; 7578 7579 return 0; 7580 7581 err_free: 7582 kvfree(linfo); 7583 return err; 7584 } 7585 7586 static int check_btf_info(struct bpf_verifier_env *env, 7587 const union bpf_attr *attr, 7588 union bpf_attr __user *uattr) 7589 { 7590 struct btf *btf; 7591 int err; 7592 7593 if (!attr->func_info_cnt && !attr->line_info_cnt) 7594 return 0; 7595 7596 btf = btf_get_by_fd(attr->prog_btf_fd); 7597 if (IS_ERR(btf)) 7598 return PTR_ERR(btf); 7599 env->prog->aux->btf = btf; 7600 7601 err = check_btf_func(env, attr, uattr); 7602 if (err) 7603 return err; 7604 7605 err = check_btf_line(env, attr, uattr); 7606 if (err) 7607 return err; 7608 7609 return 0; 7610 } 7611 7612 /* check %cur's range satisfies %old's */ 7613 static bool range_within(struct bpf_reg_state *old, 7614 struct bpf_reg_state *cur) 7615 { 7616 return old->umin_value <= cur->umin_value && 7617 old->umax_value >= cur->umax_value && 7618 old->smin_value <= cur->smin_value && 7619 old->smax_value >= cur->smax_value; 7620 } 7621 7622 /* Maximum number of register states that can exist at once */ 7623 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7624 struct idpair { 7625 u32 old; 7626 u32 cur; 7627 }; 7628 7629 /* If in the old state two registers had the same id, then they need to have 7630 * the same id in the new state as well. But that id could be different from 7631 * the old state, so we need to track the mapping from old to new ids. 7632 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7633 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7634 * regs with a different old id could still have new id 9, we don't care about 7635 * that. 7636 * So we look through our idmap to see if this old id has been seen before. If 7637 * so, we require the new id to match; otherwise, we add the id pair to the map. 7638 */ 7639 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7640 { 7641 unsigned int i; 7642 7643 for (i = 0; i < ID_MAP_SIZE; i++) { 7644 if (!idmap[i].old) { 7645 /* Reached an empty slot; haven't seen this id before */ 7646 idmap[i].old = old_id; 7647 idmap[i].cur = cur_id; 7648 return true; 7649 } 7650 if (idmap[i].old == old_id) 7651 return idmap[i].cur == cur_id; 7652 } 7653 /* We ran out of idmap slots, which should be impossible */ 7654 WARN_ON_ONCE(1); 7655 return false; 7656 } 7657 7658 static void clean_func_state(struct bpf_verifier_env *env, 7659 struct bpf_func_state *st) 7660 { 7661 enum bpf_reg_liveness live; 7662 int i, j; 7663 7664 for (i = 0; i < BPF_REG_FP; i++) { 7665 live = st->regs[i].live; 7666 /* liveness must not touch this register anymore */ 7667 st->regs[i].live |= REG_LIVE_DONE; 7668 if (!(live & REG_LIVE_READ)) 7669 /* since the register is unused, clear its state 7670 * to make further comparison simpler 7671 */ 7672 __mark_reg_not_init(env, &st->regs[i]); 7673 } 7674 7675 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7676 live = st->stack[i].spilled_ptr.live; 7677 /* liveness must not touch this stack slot anymore */ 7678 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7679 if (!(live & REG_LIVE_READ)) { 7680 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7681 for (j = 0; j < BPF_REG_SIZE; j++) 7682 st->stack[i].slot_type[j] = STACK_INVALID; 7683 } 7684 } 7685 } 7686 7687 static void clean_verifier_state(struct bpf_verifier_env *env, 7688 struct bpf_verifier_state *st) 7689 { 7690 int i; 7691 7692 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7693 /* all regs in this state in all frames were already marked */ 7694 return; 7695 7696 for (i = 0; i <= st->curframe; i++) 7697 clean_func_state(env, st->frame[i]); 7698 } 7699 7700 /* the parentage chains form a tree. 7701 * the verifier states are added to state lists at given insn and 7702 * pushed into state stack for future exploration. 7703 * when the verifier reaches bpf_exit insn some of the verifer states 7704 * stored in the state lists have their final liveness state already, 7705 * but a lot of states will get revised from liveness point of view when 7706 * the verifier explores other branches. 7707 * Example: 7708 * 1: r0 = 1 7709 * 2: if r1 == 100 goto pc+1 7710 * 3: r0 = 2 7711 * 4: exit 7712 * when the verifier reaches exit insn the register r0 in the state list of 7713 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7714 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7715 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7716 * 7717 * Since the verifier pushes the branch states as it sees them while exploring 7718 * the program the condition of walking the branch instruction for the second 7719 * time means that all states below this branch were already explored and 7720 * their final liveness markes are already propagated. 7721 * Hence when the verifier completes the search of state list in is_state_visited() 7722 * we can call this clean_live_states() function to mark all liveness states 7723 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7724 * will not be used. 7725 * This function also clears the registers and stack for states that !READ 7726 * to simplify state merging. 7727 * 7728 * Important note here that walking the same branch instruction in the callee 7729 * doesn't meant that the states are DONE. The verifier has to compare 7730 * the callsites 7731 */ 7732 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7733 struct bpf_verifier_state *cur) 7734 { 7735 struct bpf_verifier_state_list *sl; 7736 int i; 7737 7738 sl = *explored_state(env, insn); 7739 while (sl) { 7740 if (sl->state.branches) 7741 goto next; 7742 if (sl->state.insn_idx != insn || 7743 sl->state.curframe != cur->curframe) 7744 goto next; 7745 for (i = 0; i <= cur->curframe; i++) 7746 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7747 goto next; 7748 clean_verifier_state(env, &sl->state); 7749 next: 7750 sl = sl->next; 7751 } 7752 } 7753 7754 /* Returns true if (rold safe implies rcur safe) */ 7755 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7756 struct idpair *idmap) 7757 { 7758 bool equal; 7759 7760 if (!(rold->live & REG_LIVE_READ)) 7761 /* explored state didn't use this */ 7762 return true; 7763 7764 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7765 7766 if (rold->type == PTR_TO_STACK) 7767 /* two stack pointers are equal only if they're pointing to 7768 * the same stack frame, since fp-8 in foo != fp-8 in bar 7769 */ 7770 return equal && rold->frameno == rcur->frameno; 7771 7772 if (equal) 7773 return true; 7774 7775 if (rold->type == NOT_INIT) 7776 /* explored state can't have used this */ 7777 return true; 7778 if (rcur->type == NOT_INIT) 7779 return false; 7780 switch (rold->type) { 7781 case SCALAR_VALUE: 7782 if (rcur->type == SCALAR_VALUE) { 7783 if (!rold->precise && !rcur->precise) 7784 return true; 7785 /* new val must satisfy old val knowledge */ 7786 return range_within(rold, rcur) && 7787 tnum_in(rold->var_off, rcur->var_off); 7788 } else { 7789 /* We're trying to use a pointer in place of a scalar. 7790 * Even if the scalar was unbounded, this could lead to 7791 * pointer leaks because scalars are allowed to leak 7792 * while pointers are not. We could make this safe in 7793 * special cases if root is calling us, but it's 7794 * probably not worth the hassle. 7795 */ 7796 return false; 7797 } 7798 case PTR_TO_MAP_VALUE: 7799 /* If the new min/max/var_off satisfy the old ones and 7800 * everything else matches, we are OK. 7801 * 'id' is not compared, since it's only used for maps with 7802 * bpf_spin_lock inside map element and in such cases if 7803 * the rest of the prog is valid for one map element then 7804 * it's valid for all map elements regardless of the key 7805 * used in bpf_map_lookup() 7806 */ 7807 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7808 range_within(rold, rcur) && 7809 tnum_in(rold->var_off, rcur->var_off); 7810 case PTR_TO_MAP_VALUE_OR_NULL: 7811 /* a PTR_TO_MAP_VALUE could be safe to use as a 7812 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7813 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7814 * checked, doing so could have affected others with the same 7815 * id, and we can't check for that because we lost the id when 7816 * we converted to a PTR_TO_MAP_VALUE. 7817 */ 7818 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7819 return false; 7820 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7821 return false; 7822 /* Check our ids match any regs they're supposed to */ 7823 return check_ids(rold->id, rcur->id, idmap); 7824 case PTR_TO_PACKET_META: 7825 case PTR_TO_PACKET: 7826 if (rcur->type != rold->type) 7827 return false; 7828 /* We must have at least as much range as the old ptr 7829 * did, so that any accesses which were safe before are 7830 * still safe. This is true even if old range < old off, 7831 * since someone could have accessed through (ptr - k), or 7832 * even done ptr -= k in a register, to get a safe access. 7833 */ 7834 if (rold->range > rcur->range) 7835 return false; 7836 /* If the offsets don't match, we can't trust our alignment; 7837 * nor can we be sure that we won't fall out of range. 7838 */ 7839 if (rold->off != rcur->off) 7840 return false; 7841 /* id relations must be preserved */ 7842 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7843 return false; 7844 /* new val must satisfy old val knowledge */ 7845 return range_within(rold, rcur) && 7846 tnum_in(rold->var_off, rcur->var_off); 7847 case PTR_TO_CTX: 7848 case CONST_PTR_TO_MAP: 7849 case PTR_TO_PACKET_END: 7850 case PTR_TO_FLOW_KEYS: 7851 case PTR_TO_SOCKET: 7852 case PTR_TO_SOCKET_OR_NULL: 7853 case PTR_TO_SOCK_COMMON: 7854 case PTR_TO_SOCK_COMMON_OR_NULL: 7855 case PTR_TO_TCP_SOCK: 7856 case PTR_TO_TCP_SOCK_OR_NULL: 7857 case PTR_TO_XDP_SOCK: 7858 /* Only valid matches are exact, which memcmp() above 7859 * would have accepted 7860 */ 7861 default: 7862 /* Don't know what's going on, just say it's not safe */ 7863 return false; 7864 } 7865 7866 /* Shouldn't get here; if we do, say it's not safe */ 7867 WARN_ON_ONCE(1); 7868 return false; 7869 } 7870 7871 static bool stacksafe(struct bpf_func_state *old, 7872 struct bpf_func_state *cur, 7873 struct idpair *idmap) 7874 { 7875 int i, spi; 7876 7877 /* walk slots of the explored stack and ignore any additional 7878 * slots in the current stack, since explored(safe) state 7879 * didn't use them 7880 */ 7881 for (i = 0; i < old->allocated_stack; i++) { 7882 spi = i / BPF_REG_SIZE; 7883 7884 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7885 i += BPF_REG_SIZE - 1; 7886 /* explored state didn't use this */ 7887 continue; 7888 } 7889 7890 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7891 continue; 7892 7893 /* explored stack has more populated slots than current stack 7894 * and these slots were used 7895 */ 7896 if (i >= cur->allocated_stack) 7897 return false; 7898 7899 /* if old state was safe with misc data in the stack 7900 * it will be safe with zero-initialized stack. 7901 * The opposite is not true 7902 */ 7903 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7904 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7905 continue; 7906 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7907 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7908 /* Ex: old explored (safe) state has STACK_SPILL in 7909 * this stack slot, but current has has STACK_MISC -> 7910 * this verifier states are not equivalent, 7911 * return false to continue verification of this path 7912 */ 7913 return false; 7914 if (i % BPF_REG_SIZE) 7915 continue; 7916 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7917 continue; 7918 if (!regsafe(&old->stack[spi].spilled_ptr, 7919 &cur->stack[spi].spilled_ptr, 7920 idmap)) 7921 /* when explored and current stack slot are both storing 7922 * spilled registers, check that stored pointers types 7923 * are the same as well. 7924 * Ex: explored safe path could have stored 7925 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7926 * but current path has stored: 7927 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7928 * such verifier states are not equivalent. 7929 * return false to continue verification of this path 7930 */ 7931 return false; 7932 } 7933 return true; 7934 } 7935 7936 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7937 { 7938 if (old->acquired_refs != cur->acquired_refs) 7939 return false; 7940 return !memcmp(old->refs, cur->refs, 7941 sizeof(*old->refs) * old->acquired_refs); 7942 } 7943 7944 /* compare two verifier states 7945 * 7946 * all states stored in state_list are known to be valid, since 7947 * verifier reached 'bpf_exit' instruction through them 7948 * 7949 * this function is called when verifier exploring different branches of 7950 * execution popped from the state stack. If it sees an old state that has 7951 * more strict register state and more strict stack state then this execution 7952 * branch doesn't need to be explored further, since verifier already 7953 * concluded that more strict state leads to valid finish. 7954 * 7955 * Therefore two states are equivalent if register state is more conservative 7956 * and explored stack state is more conservative than the current one. 7957 * Example: 7958 * explored current 7959 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7960 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7961 * 7962 * In other words if current stack state (one being explored) has more 7963 * valid slots than old one that already passed validation, it means 7964 * the verifier can stop exploring and conclude that current state is valid too 7965 * 7966 * Similarly with registers. If explored state has register type as invalid 7967 * whereas register type in current state is meaningful, it means that 7968 * the current state will reach 'bpf_exit' instruction safely 7969 */ 7970 static bool func_states_equal(struct bpf_func_state *old, 7971 struct bpf_func_state *cur) 7972 { 7973 struct idpair *idmap; 7974 bool ret = false; 7975 int i; 7976 7977 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7978 /* If we failed to allocate the idmap, just say it's not safe */ 7979 if (!idmap) 7980 return false; 7981 7982 for (i = 0; i < MAX_BPF_REG; i++) { 7983 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7984 goto out_free; 7985 } 7986 7987 if (!stacksafe(old, cur, idmap)) 7988 goto out_free; 7989 7990 if (!refsafe(old, cur)) 7991 goto out_free; 7992 ret = true; 7993 out_free: 7994 kfree(idmap); 7995 return ret; 7996 } 7997 7998 static bool states_equal(struct bpf_verifier_env *env, 7999 struct bpf_verifier_state *old, 8000 struct bpf_verifier_state *cur) 8001 { 8002 int i; 8003 8004 if (old->curframe != cur->curframe) 8005 return false; 8006 8007 /* Verification state from speculative execution simulation 8008 * must never prune a non-speculative execution one. 8009 */ 8010 if (old->speculative && !cur->speculative) 8011 return false; 8012 8013 if (old->active_spin_lock != cur->active_spin_lock) 8014 return false; 8015 8016 /* for states to be equal callsites have to be the same 8017 * and all frame states need to be equivalent 8018 */ 8019 for (i = 0; i <= old->curframe; i++) { 8020 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8021 return false; 8022 if (!func_states_equal(old->frame[i], cur->frame[i])) 8023 return false; 8024 } 8025 return true; 8026 } 8027 8028 /* Return 0 if no propagation happened. Return negative error code if error 8029 * happened. Otherwise, return the propagated bit. 8030 */ 8031 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8032 struct bpf_reg_state *reg, 8033 struct bpf_reg_state *parent_reg) 8034 { 8035 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8036 u8 flag = reg->live & REG_LIVE_READ; 8037 int err; 8038 8039 /* When comes here, read flags of PARENT_REG or REG could be any of 8040 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8041 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8042 */ 8043 if (parent_flag == REG_LIVE_READ64 || 8044 /* Or if there is no read flag from REG. */ 8045 !flag || 8046 /* Or if the read flag from REG is the same as PARENT_REG. */ 8047 parent_flag == flag) 8048 return 0; 8049 8050 err = mark_reg_read(env, reg, parent_reg, flag); 8051 if (err) 8052 return err; 8053 8054 return flag; 8055 } 8056 8057 /* A write screens off any subsequent reads; but write marks come from the 8058 * straight-line code between a state and its parent. When we arrive at an 8059 * equivalent state (jump target or such) we didn't arrive by the straight-line 8060 * code, so read marks in the state must propagate to the parent regardless 8061 * of the state's write marks. That's what 'parent == state->parent' comparison 8062 * in mark_reg_read() is for. 8063 */ 8064 static int propagate_liveness(struct bpf_verifier_env *env, 8065 const struct bpf_verifier_state *vstate, 8066 struct bpf_verifier_state *vparent) 8067 { 8068 struct bpf_reg_state *state_reg, *parent_reg; 8069 struct bpf_func_state *state, *parent; 8070 int i, frame, err = 0; 8071 8072 if (vparent->curframe != vstate->curframe) { 8073 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8074 vparent->curframe, vstate->curframe); 8075 return -EFAULT; 8076 } 8077 /* Propagate read liveness of registers... */ 8078 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8079 for (frame = 0; frame <= vstate->curframe; frame++) { 8080 parent = vparent->frame[frame]; 8081 state = vstate->frame[frame]; 8082 parent_reg = parent->regs; 8083 state_reg = state->regs; 8084 /* We don't need to worry about FP liveness, it's read-only */ 8085 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8086 err = propagate_liveness_reg(env, &state_reg[i], 8087 &parent_reg[i]); 8088 if (err < 0) 8089 return err; 8090 if (err == REG_LIVE_READ64) 8091 mark_insn_zext(env, &parent_reg[i]); 8092 } 8093 8094 /* Propagate stack slots. */ 8095 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8096 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8097 parent_reg = &parent->stack[i].spilled_ptr; 8098 state_reg = &state->stack[i].spilled_ptr; 8099 err = propagate_liveness_reg(env, state_reg, 8100 parent_reg); 8101 if (err < 0) 8102 return err; 8103 } 8104 } 8105 return 0; 8106 } 8107 8108 /* find precise scalars in the previous equivalent state and 8109 * propagate them into the current state 8110 */ 8111 static int propagate_precision(struct bpf_verifier_env *env, 8112 const struct bpf_verifier_state *old) 8113 { 8114 struct bpf_reg_state *state_reg; 8115 struct bpf_func_state *state; 8116 int i, err = 0; 8117 8118 state = old->frame[old->curframe]; 8119 state_reg = state->regs; 8120 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8121 if (state_reg->type != SCALAR_VALUE || 8122 !state_reg->precise) 8123 continue; 8124 if (env->log.level & BPF_LOG_LEVEL2) 8125 verbose(env, "propagating r%d\n", i); 8126 err = mark_chain_precision(env, i); 8127 if (err < 0) 8128 return err; 8129 } 8130 8131 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8132 if (state->stack[i].slot_type[0] != STACK_SPILL) 8133 continue; 8134 state_reg = &state->stack[i].spilled_ptr; 8135 if (state_reg->type != SCALAR_VALUE || 8136 !state_reg->precise) 8137 continue; 8138 if (env->log.level & BPF_LOG_LEVEL2) 8139 verbose(env, "propagating fp%d\n", 8140 (-i - 1) * BPF_REG_SIZE); 8141 err = mark_chain_precision_stack(env, i); 8142 if (err < 0) 8143 return err; 8144 } 8145 return 0; 8146 } 8147 8148 static bool states_maybe_looping(struct bpf_verifier_state *old, 8149 struct bpf_verifier_state *cur) 8150 { 8151 struct bpf_func_state *fold, *fcur; 8152 int i, fr = cur->curframe; 8153 8154 if (old->curframe != fr) 8155 return false; 8156 8157 fold = old->frame[fr]; 8158 fcur = cur->frame[fr]; 8159 for (i = 0; i < MAX_BPF_REG; i++) 8160 if (memcmp(&fold->regs[i], &fcur->regs[i], 8161 offsetof(struct bpf_reg_state, parent))) 8162 return false; 8163 return true; 8164 } 8165 8166 8167 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8168 { 8169 struct bpf_verifier_state_list *new_sl; 8170 struct bpf_verifier_state_list *sl, **pprev; 8171 struct bpf_verifier_state *cur = env->cur_state, *new; 8172 int i, j, err, states_cnt = 0; 8173 bool add_new_state = env->test_state_freq ? true : false; 8174 8175 cur->last_insn_idx = env->prev_insn_idx; 8176 if (!env->insn_aux_data[insn_idx].prune_point) 8177 /* this 'insn_idx' instruction wasn't marked, so we will not 8178 * be doing state search here 8179 */ 8180 return 0; 8181 8182 /* bpf progs typically have pruning point every 4 instructions 8183 * http://vger.kernel.org/bpfconf2019.html#session-1 8184 * Do not add new state for future pruning if the verifier hasn't seen 8185 * at least 2 jumps and at least 8 instructions. 8186 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8187 * In tests that amounts to up to 50% reduction into total verifier 8188 * memory consumption and 20% verifier time speedup. 8189 */ 8190 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8191 env->insn_processed - env->prev_insn_processed >= 8) 8192 add_new_state = true; 8193 8194 pprev = explored_state(env, insn_idx); 8195 sl = *pprev; 8196 8197 clean_live_states(env, insn_idx, cur); 8198 8199 while (sl) { 8200 states_cnt++; 8201 if (sl->state.insn_idx != insn_idx) 8202 goto next; 8203 if (sl->state.branches) { 8204 if (states_maybe_looping(&sl->state, cur) && 8205 states_equal(env, &sl->state, cur)) { 8206 verbose_linfo(env, insn_idx, "; "); 8207 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8208 return -EINVAL; 8209 } 8210 /* if the verifier is processing a loop, avoid adding new state 8211 * too often, since different loop iterations have distinct 8212 * states and may not help future pruning. 8213 * This threshold shouldn't be too low to make sure that 8214 * a loop with large bound will be rejected quickly. 8215 * The most abusive loop will be: 8216 * r1 += 1 8217 * if r1 < 1000000 goto pc-2 8218 * 1M insn_procssed limit / 100 == 10k peak states. 8219 * This threshold shouldn't be too high either, since states 8220 * at the end of the loop are likely to be useful in pruning. 8221 */ 8222 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8223 env->insn_processed - env->prev_insn_processed < 100) 8224 add_new_state = false; 8225 goto miss; 8226 } 8227 if (states_equal(env, &sl->state, cur)) { 8228 sl->hit_cnt++; 8229 /* reached equivalent register/stack state, 8230 * prune the search. 8231 * Registers read by the continuation are read by us. 8232 * If we have any write marks in env->cur_state, they 8233 * will prevent corresponding reads in the continuation 8234 * from reaching our parent (an explored_state). Our 8235 * own state will get the read marks recorded, but 8236 * they'll be immediately forgotten as we're pruning 8237 * this state and will pop a new one. 8238 */ 8239 err = propagate_liveness(env, &sl->state, cur); 8240 8241 /* if previous state reached the exit with precision and 8242 * current state is equivalent to it (except precsion marks) 8243 * the precision needs to be propagated back in 8244 * the current state. 8245 */ 8246 err = err ? : push_jmp_history(env, cur); 8247 err = err ? : propagate_precision(env, &sl->state); 8248 if (err) 8249 return err; 8250 return 1; 8251 } 8252 miss: 8253 /* when new state is not going to be added do not increase miss count. 8254 * Otherwise several loop iterations will remove the state 8255 * recorded earlier. The goal of these heuristics is to have 8256 * states from some iterations of the loop (some in the beginning 8257 * and some at the end) to help pruning. 8258 */ 8259 if (add_new_state) 8260 sl->miss_cnt++; 8261 /* heuristic to determine whether this state is beneficial 8262 * to keep checking from state equivalence point of view. 8263 * Higher numbers increase max_states_per_insn and verification time, 8264 * but do not meaningfully decrease insn_processed. 8265 */ 8266 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8267 /* the state is unlikely to be useful. Remove it to 8268 * speed up verification 8269 */ 8270 *pprev = sl->next; 8271 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8272 u32 br = sl->state.branches; 8273 8274 WARN_ONCE(br, 8275 "BUG live_done but branches_to_explore %d\n", 8276 br); 8277 free_verifier_state(&sl->state, false); 8278 kfree(sl); 8279 env->peak_states--; 8280 } else { 8281 /* cannot free this state, since parentage chain may 8282 * walk it later. Add it for free_list instead to 8283 * be freed at the end of verification 8284 */ 8285 sl->next = env->free_list; 8286 env->free_list = sl; 8287 } 8288 sl = *pprev; 8289 continue; 8290 } 8291 next: 8292 pprev = &sl->next; 8293 sl = *pprev; 8294 } 8295 8296 if (env->max_states_per_insn < states_cnt) 8297 env->max_states_per_insn = states_cnt; 8298 8299 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8300 return push_jmp_history(env, cur); 8301 8302 if (!add_new_state) 8303 return push_jmp_history(env, cur); 8304 8305 /* There were no equivalent states, remember the current one. 8306 * Technically the current state is not proven to be safe yet, 8307 * but it will either reach outer most bpf_exit (which means it's safe) 8308 * or it will be rejected. When there are no loops the verifier won't be 8309 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8310 * again on the way to bpf_exit. 8311 * When looping the sl->state.branches will be > 0 and this state 8312 * will not be considered for equivalence until branches == 0. 8313 */ 8314 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8315 if (!new_sl) 8316 return -ENOMEM; 8317 env->total_states++; 8318 env->peak_states++; 8319 env->prev_jmps_processed = env->jmps_processed; 8320 env->prev_insn_processed = env->insn_processed; 8321 8322 /* add new state to the head of linked list */ 8323 new = &new_sl->state; 8324 err = copy_verifier_state(new, cur); 8325 if (err) { 8326 free_verifier_state(new, false); 8327 kfree(new_sl); 8328 return err; 8329 } 8330 new->insn_idx = insn_idx; 8331 WARN_ONCE(new->branches != 1, 8332 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8333 8334 cur->parent = new; 8335 cur->first_insn_idx = insn_idx; 8336 clear_jmp_history(cur); 8337 new_sl->next = *explored_state(env, insn_idx); 8338 *explored_state(env, insn_idx) = new_sl; 8339 /* connect new state to parentage chain. Current frame needs all 8340 * registers connected. Only r6 - r9 of the callers are alive (pushed 8341 * to the stack implicitly by JITs) so in callers' frames connect just 8342 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8343 * the state of the call instruction (with WRITTEN set), and r0 comes 8344 * from callee with its full parentage chain, anyway. 8345 */ 8346 /* clear write marks in current state: the writes we did are not writes 8347 * our child did, so they don't screen off its reads from us. 8348 * (There are no read marks in current state, because reads always mark 8349 * their parent and current state never has children yet. Only 8350 * explored_states can get read marks.) 8351 */ 8352 for (j = 0; j <= cur->curframe; j++) { 8353 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8354 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8355 for (i = 0; i < BPF_REG_FP; i++) 8356 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8357 } 8358 8359 /* all stack frames are accessible from callee, clear them all */ 8360 for (j = 0; j <= cur->curframe; j++) { 8361 struct bpf_func_state *frame = cur->frame[j]; 8362 struct bpf_func_state *newframe = new->frame[j]; 8363 8364 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8365 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8366 frame->stack[i].spilled_ptr.parent = 8367 &newframe->stack[i].spilled_ptr; 8368 } 8369 } 8370 return 0; 8371 } 8372 8373 /* Return true if it's OK to have the same insn return a different type. */ 8374 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8375 { 8376 switch (type) { 8377 case PTR_TO_CTX: 8378 case PTR_TO_SOCKET: 8379 case PTR_TO_SOCKET_OR_NULL: 8380 case PTR_TO_SOCK_COMMON: 8381 case PTR_TO_SOCK_COMMON_OR_NULL: 8382 case PTR_TO_TCP_SOCK: 8383 case PTR_TO_TCP_SOCK_OR_NULL: 8384 case PTR_TO_XDP_SOCK: 8385 case PTR_TO_BTF_ID: 8386 return false; 8387 default: 8388 return true; 8389 } 8390 } 8391 8392 /* If an instruction was previously used with particular pointer types, then we 8393 * need to be careful to avoid cases such as the below, where it may be ok 8394 * for one branch accessing the pointer, but not ok for the other branch: 8395 * 8396 * R1 = sock_ptr 8397 * goto X; 8398 * ... 8399 * R1 = some_other_valid_ptr; 8400 * goto X; 8401 * ... 8402 * R2 = *(u32 *)(R1 + 0); 8403 */ 8404 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8405 { 8406 return src != prev && (!reg_type_mismatch_ok(src) || 8407 !reg_type_mismatch_ok(prev)); 8408 } 8409 8410 static int do_check(struct bpf_verifier_env *env) 8411 { 8412 struct bpf_verifier_state *state = env->cur_state; 8413 struct bpf_insn *insns = env->prog->insnsi; 8414 struct bpf_reg_state *regs; 8415 int insn_cnt = env->prog->len; 8416 bool do_print_state = false; 8417 int prev_insn_idx = -1; 8418 8419 for (;;) { 8420 struct bpf_insn *insn; 8421 u8 class; 8422 int err; 8423 8424 env->prev_insn_idx = prev_insn_idx; 8425 if (env->insn_idx >= insn_cnt) { 8426 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8427 env->insn_idx, insn_cnt); 8428 return -EFAULT; 8429 } 8430 8431 insn = &insns[env->insn_idx]; 8432 class = BPF_CLASS(insn->code); 8433 8434 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8435 verbose(env, 8436 "BPF program is too large. Processed %d insn\n", 8437 env->insn_processed); 8438 return -E2BIG; 8439 } 8440 8441 err = is_state_visited(env, env->insn_idx); 8442 if (err < 0) 8443 return err; 8444 if (err == 1) { 8445 /* found equivalent state, can prune the search */ 8446 if (env->log.level & BPF_LOG_LEVEL) { 8447 if (do_print_state) 8448 verbose(env, "\nfrom %d to %d%s: safe\n", 8449 env->prev_insn_idx, env->insn_idx, 8450 env->cur_state->speculative ? 8451 " (speculative execution)" : ""); 8452 else 8453 verbose(env, "%d: safe\n", env->insn_idx); 8454 } 8455 goto process_bpf_exit; 8456 } 8457 8458 if (signal_pending(current)) 8459 return -EAGAIN; 8460 8461 if (need_resched()) 8462 cond_resched(); 8463 8464 if (env->log.level & BPF_LOG_LEVEL2 || 8465 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8466 if (env->log.level & BPF_LOG_LEVEL2) 8467 verbose(env, "%d:", env->insn_idx); 8468 else 8469 verbose(env, "\nfrom %d to %d%s:", 8470 env->prev_insn_idx, env->insn_idx, 8471 env->cur_state->speculative ? 8472 " (speculative execution)" : ""); 8473 print_verifier_state(env, state->frame[state->curframe]); 8474 do_print_state = false; 8475 } 8476 8477 if (env->log.level & BPF_LOG_LEVEL) { 8478 const struct bpf_insn_cbs cbs = { 8479 .cb_print = verbose, 8480 .private_data = env, 8481 }; 8482 8483 verbose_linfo(env, env->insn_idx, "; "); 8484 verbose(env, "%d: ", env->insn_idx); 8485 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8486 } 8487 8488 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8489 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8490 env->prev_insn_idx); 8491 if (err) 8492 return err; 8493 } 8494 8495 regs = cur_regs(env); 8496 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8497 prev_insn_idx = env->insn_idx; 8498 8499 if (class == BPF_ALU || class == BPF_ALU64) { 8500 err = check_alu_op(env, insn); 8501 if (err) 8502 return err; 8503 8504 } else if (class == BPF_LDX) { 8505 enum bpf_reg_type *prev_src_type, src_reg_type; 8506 8507 /* check for reserved fields is already done */ 8508 8509 /* check src operand */ 8510 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8511 if (err) 8512 return err; 8513 8514 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8515 if (err) 8516 return err; 8517 8518 src_reg_type = regs[insn->src_reg].type; 8519 8520 /* check that memory (src_reg + off) is readable, 8521 * the state of dst_reg will be updated by this func 8522 */ 8523 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8524 insn->off, BPF_SIZE(insn->code), 8525 BPF_READ, insn->dst_reg, false); 8526 if (err) 8527 return err; 8528 8529 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8530 8531 if (*prev_src_type == NOT_INIT) { 8532 /* saw a valid insn 8533 * dst_reg = *(u32 *)(src_reg + off) 8534 * save type to validate intersecting paths 8535 */ 8536 *prev_src_type = src_reg_type; 8537 8538 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8539 /* ABuser program is trying to use the same insn 8540 * dst_reg = *(u32*) (src_reg + off) 8541 * with different pointer types: 8542 * src_reg == ctx in one branch and 8543 * src_reg == stack|map in some other branch. 8544 * Reject it. 8545 */ 8546 verbose(env, "same insn cannot be used with different pointers\n"); 8547 return -EINVAL; 8548 } 8549 8550 } else if (class == BPF_STX) { 8551 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8552 8553 if (BPF_MODE(insn->code) == BPF_XADD) { 8554 err = check_xadd(env, env->insn_idx, insn); 8555 if (err) 8556 return err; 8557 env->insn_idx++; 8558 continue; 8559 } 8560 8561 /* check src1 operand */ 8562 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8563 if (err) 8564 return err; 8565 /* check src2 operand */ 8566 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8567 if (err) 8568 return err; 8569 8570 dst_reg_type = regs[insn->dst_reg].type; 8571 8572 /* check that memory (dst_reg + off) is writeable */ 8573 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8574 insn->off, BPF_SIZE(insn->code), 8575 BPF_WRITE, insn->src_reg, false); 8576 if (err) 8577 return err; 8578 8579 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8580 8581 if (*prev_dst_type == NOT_INIT) { 8582 *prev_dst_type = dst_reg_type; 8583 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8584 verbose(env, "same insn cannot be used with different pointers\n"); 8585 return -EINVAL; 8586 } 8587 8588 } else if (class == BPF_ST) { 8589 if (BPF_MODE(insn->code) != BPF_MEM || 8590 insn->src_reg != BPF_REG_0) { 8591 verbose(env, "BPF_ST uses reserved fields\n"); 8592 return -EINVAL; 8593 } 8594 /* check src operand */ 8595 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8596 if (err) 8597 return err; 8598 8599 if (is_ctx_reg(env, insn->dst_reg)) { 8600 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8601 insn->dst_reg, 8602 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8603 return -EACCES; 8604 } 8605 8606 /* check that memory (dst_reg + off) is writeable */ 8607 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8608 insn->off, BPF_SIZE(insn->code), 8609 BPF_WRITE, -1, false); 8610 if (err) 8611 return err; 8612 8613 } else if (class == BPF_JMP || class == BPF_JMP32) { 8614 u8 opcode = BPF_OP(insn->code); 8615 8616 env->jmps_processed++; 8617 if (opcode == BPF_CALL) { 8618 if (BPF_SRC(insn->code) != BPF_K || 8619 insn->off != 0 || 8620 (insn->src_reg != BPF_REG_0 && 8621 insn->src_reg != BPF_PSEUDO_CALL) || 8622 insn->dst_reg != BPF_REG_0 || 8623 class == BPF_JMP32) { 8624 verbose(env, "BPF_CALL uses reserved fields\n"); 8625 return -EINVAL; 8626 } 8627 8628 if (env->cur_state->active_spin_lock && 8629 (insn->src_reg == BPF_PSEUDO_CALL || 8630 insn->imm != BPF_FUNC_spin_unlock)) { 8631 verbose(env, "function calls are not allowed while holding a lock\n"); 8632 return -EINVAL; 8633 } 8634 if (insn->src_reg == BPF_PSEUDO_CALL) 8635 err = check_func_call(env, insn, &env->insn_idx); 8636 else 8637 err = check_helper_call(env, insn->imm, env->insn_idx); 8638 if (err) 8639 return err; 8640 8641 } else if (opcode == BPF_JA) { 8642 if (BPF_SRC(insn->code) != BPF_K || 8643 insn->imm != 0 || 8644 insn->src_reg != BPF_REG_0 || 8645 insn->dst_reg != BPF_REG_0 || 8646 class == BPF_JMP32) { 8647 verbose(env, "BPF_JA uses reserved fields\n"); 8648 return -EINVAL; 8649 } 8650 8651 env->insn_idx += insn->off + 1; 8652 continue; 8653 8654 } else if (opcode == BPF_EXIT) { 8655 if (BPF_SRC(insn->code) != BPF_K || 8656 insn->imm != 0 || 8657 insn->src_reg != BPF_REG_0 || 8658 insn->dst_reg != BPF_REG_0 || 8659 class == BPF_JMP32) { 8660 verbose(env, "BPF_EXIT uses reserved fields\n"); 8661 return -EINVAL; 8662 } 8663 8664 if (env->cur_state->active_spin_lock) { 8665 verbose(env, "bpf_spin_unlock is missing\n"); 8666 return -EINVAL; 8667 } 8668 8669 if (state->curframe) { 8670 /* exit from nested function */ 8671 err = prepare_func_exit(env, &env->insn_idx); 8672 if (err) 8673 return err; 8674 do_print_state = true; 8675 continue; 8676 } 8677 8678 err = check_reference_leak(env); 8679 if (err) 8680 return err; 8681 8682 err = check_return_code(env); 8683 if (err) 8684 return err; 8685 process_bpf_exit: 8686 update_branch_counts(env, env->cur_state); 8687 err = pop_stack(env, &prev_insn_idx, 8688 &env->insn_idx); 8689 if (err < 0) { 8690 if (err != -ENOENT) 8691 return err; 8692 break; 8693 } else { 8694 do_print_state = true; 8695 continue; 8696 } 8697 } else { 8698 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8699 if (err) 8700 return err; 8701 } 8702 } else if (class == BPF_LD) { 8703 u8 mode = BPF_MODE(insn->code); 8704 8705 if (mode == BPF_ABS || mode == BPF_IND) { 8706 err = check_ld_abs(env, insn); 8707 if (err) 8708 return err; 8709 8710 } else if (mode == BPF_IMM) { 8711 err = check_ld_imm(env, insn); 8712 if (err) 8713 return err; 8714 8715 env->insn_idx++; 8716 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8717 } else { 8718 verbose(env, "invalid BPF_LD mode\n"); 8719 return -EINVAL; 8720 } 8721 } else { 8722 verbose(env, "unknown insn class %d\n", class); 8723 return -EINVAL; 8724 } 8725 8726 env->insn_idx++; 8727 } 8728 8729 return 0; 8730 } 8731 8732 static int check_map_prealloc(struct bpf_map *map) 8733 { 8734 return (map->map_type != BPF_MAP_TYPE_HASH && 8735 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8736 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8737 !(map->map_flags & BPF_F_NO_PREALLOC); 8738 } 8739 8740 static bool is_tracing_prog_type(enum bpf_prog_type type) 8741 { 8742 switch (type) { 8743 case BPF_PROG_TYPE_KPROBE: 8744 case BPF_PROG_TYPE_TRACEPOINT: 8745 case BPF_PROG_TYPE_PERF_EVENT: 8746 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8747 return true; 8748 default: 8749 return false; 8750 } 8751 } 8752 8753 static bool is_preallocated_map(struct bpf_map *map) 8754 { 8755 if (!check_map_prealloc(map)) 8756 return false; 8757 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8758 return false; 8759 return true; 8760 } 8761 8762 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8763 struct bpf_map *map, 8764 struct bpf_prog *prog) 8765 8766 { 8767 /* 8768 * Validate that trace type programs use preallocated hash maps. 8769 * 8770 * For programs attached to PERF events this is mandatory as the 8771 * perf NMI can hit any arbitrary code sequence. 8772 * 8773 * All other trace types using preallocated hash maps are unsafe as 8774 * well because tracepoint or kprobes can be inside locked regions 8775 * of the memory allocator or at a place where a recursion into the 8776 * memory allocator would see inconsistent state. 8777 * 8778 * On RT enabled kernels run-time allocation of all trace type 8779 * programs is strictly prohibited due to lock type constraints. On 8780 * !RT kernels it is allowed for backwards compatibility reasons for 8781 * now, but warnings are emitted so developers are made aware of 8782 * the unsafety and can fix their programs before this is enforced. 8783 */ 8784 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8785 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8786 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8787 return -EINVAL; 8788 } 8789 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8790 verbose(env, "trace type programs can only use preallocated hash map\n"); 8791 return -EINVAL; 8792 } 8793 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8794 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8795 } 8796 8797 if ((is_tracing_prog_type(prog->type) || 8798 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8799 map_value_has_spin_lock(map)) { 8800 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8801 return -EINVAL; 8802 } 8803 8804 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8805 !bpf_offload_prog_map_match(prog, map)) { 8806 verbose(env, "offload device mismatch between prog and map\n"); 8807 return -EINVAL; 8808 } 8809 8810 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8811 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8812 return -EINVAL; 8813 } 8814 8815 return 0; 8816 } 8817 8818 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8819 { 8820 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8821 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8822 } 8823 8824 /* look for pseudo eBPF instructions that access map FDs and 8825 * replace them with actual map pointers 8826 */ 8827 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8828 { 8829 struct bpf_insn *insn = env->prog->insnsi; 8830 int insn_cnt = env->prog->len; 8831 int i, j, err; 8832 8833 err = bpf_prog_calc_tag(env->prog); 8834 if (err) 8835 return err; 8836 8837 for (i = 0; i < insn_cnt; i++, insn++) { 8838 if (BPF_CLASS(insn->code) == BPF_LDX && 8839 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8840 verbose(env, "BPF_LDX uses reserved fields\n"); 8841 return -EINVAL; 8842 } 8843 8844 if (BPF_CLASS(insn->code) == BPF_STX && 8845 ((BPF_MODE(insn->code) != BPF_MEM && 8846 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8847 verbose(env, "BPF_STX uses reserved fields\n"); 8848 return -EINVAL; 8849 } 8850 8851 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8852 struct bpf_insn_aux_data *aux; 8853 struct bpf_map *map; 8854 struct fd f; 8855 u64 addr; 8856 8857 if (i == insn_cnt - 1 || insn[1].code != 0 || 8858 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8859 insn[1].off != 0) { 8860 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8861 return -EINVAL; 8862 } 8863 8864 if (insn[0].src_reg == 0) 8865 /* valid generic load 64-bit imm */ 8866 goto next_insn; 8867 8868 /* In final convert_pseudo_ld_imm64() step, this is 8869 * converted into regular 64-bit imm load insn. 8870 */ 8871 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8872 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8873 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8874 insn[1].imm != 0)) { 8875 verbose(env, 8876 "unrecognized bpf_ld_imm64 insn\n"); 8877 return -EINVAL; 8878 } 8879 8880 f = fdget(insn[0].imm); 8881 map = __bpf_map_get(f); 8882 if (IS_ERR(map)) { 8883 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8884 insn[0].imm); 8885 return PTR_ERR(map); 8886 } 8887 8888 err = check_map_prog_compatibility(env, map, env->prog); 8889 if (err) { 8890 fdput(f); 8891 return err; 8892 } 8893 8894 aux = &env->insn_aux_data[i]; 8895 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8896 addr = (unsigned long)map; 8897 } else { 8898 u32 off = insn[1].imm; 8899 8900 if (off >= BPF_MAX_VAR_OFF) { 8901 verbose(env, "direct value offset of %u is not allowed\n", off); 8902 fdput(f); 8903 return -EINVAL; 8904 } 8905 8906 if (!map->ops->map_direct_value_addr) { 8907 verbose(env, "no direct value access support for this map type\n"); 8908 fdput(f); 8909 return -EINVAL; 8910 } 8911 8912 err = map->ops->map_direct_value_addr(map, &addr, off); 8913 if (err) { 8914 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8915 map->value_size, off); 8916 fdput(f); 8917 return err; 8918 } 8919 8920 aux->map_off = off; 8921 addr += off; 8922 } 8923 8924 insn[0].imm = (u32)addr; 8925 insn[1].imm = addr >> 32; 8926 8927 /* check whether we recorded this map already */ 8928 for (j = 0; j < env->used_map_cnt; j++) { 8929 if (env->used_maps[j] == map) { 8930 aux->map_index = j; 8931 fdput(f); 8932 goto next_insn; 8933 } 8934 } 8935 8936 if (env->used_map_cnt >= MAX_USED_MAPS) { 8937 fdput(f); 8938 return -E2BIG; 8939 } 8940 8941 /* hold the map. If the program is rejected by verifier, 8942 * the map will be released by release_maps() or it 8943 * will be used by the valid program until it's unloaded 8944 * and all maps are released in free_used_maps() 8945 */ 8946 bpf_map_inc(map); 8947 8948 aux->map_index = env->used_map_cnt; 8949 env->used_maps[env->used_map_cnt++] = map; 8950 8951 if (bpf_map_is_cgroup_storage(map) && 8952 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8953 verbose(env, "only one cgroup storage of each type is allowed\n"); 8954 fdput(f); 8955 return -EBUSY; 8956 } 8957 8958 fdput(f); 8959 next_insn: 8960 insn++; 8961 i++; 8962 continue; 8963 } 8964 8965 /* Basic sanity check before we invest more work here. */ 8966 if (!bpf_opcode_in_insntable(insn->code)) { 8967 verbose(env, "unknown opcode %02x\n", insn->code); 8968 return -EINVAL; 8969 } 8970 } 8971 8972 /* now all pseudo BPF_LD_IMM64 instructions load valid 8973 * 'struct bpf_map *' into a register instead of user map_fd. 8974 * These pointers will be used later by verifier to validate map access. 8975 */ 8976 return 0; 8977 } 8978 8979 /* drop refcnt of maps used by the rejected program */ 8980 static void release_maps(struct bpf_verifier_env *env) 8981 { 8982 __bpf_free_used_maps(env->prog->aux, env->used_maps, 8983 env->used_map_cnt); 8984 } 8985 8986 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8987 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8988 { 8989 struct bpf_insn *insn = env->prog->insnsi; 8990 int insn_cnt = env->prog->len; 8991 int i; 8992 8993 for (i = 0; i < insn_cnt; i++, insn++) 8994 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8995 insn->src_reg = 0; 8996 } 8997 8998 /* single env->prog->insni[off] instruction was replaced with the range 8999 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9000 * [0, off) and [off, end) to new locations, so the patched range stays zero 9001 */ 9002 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9003 struct bpf_prog *new_prog, u32 off, u32 cnt) 9004 { 9005 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9006 struct bpf_insn *insn = new_prog->insnsi; 9007 u32 prog_len; 9008 int i; 9009 9010 /* aux info at OFF always needs adjustment, no matter fast path 9011 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9012 * original insn at old prog. 9013 */ 9014 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9015 9016 if (cnt == 1) 9017 return 0; 9018 prog_len = new_prog->len; 9019 new_data = vzalloc(array_size(prog_len, 9020 sizeof(struct bpf_insn_aux_data))); 9021 if (!new_data) 9022 return -ENOMEM; 9023 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9024 memcpy(new_data + off + cnt - 1, old_data + off, 9025 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9026 for (i = off; i < off + cnt - 1; i++) { 9027 new_data[i].seen = env->pass_cnt; 9028 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9029 } 9030 env->insn_aux_data = new_data; 9031 vfree(old_data); 9032 return 0; 9033 } 9034 9035 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9036 { 9037 int i; 9038 9039 if (len == 1) 9040 return; 9041 /* NOTE: fake 'exit' subprog should be updated as well. */ 9042 for (i = 0; i <= env->subprog_cnt; i++) { 9043 if (env->subprog_info[i].start <= off) 9044 continue; 9045 env->subprog_info[i].start += len - 1; 9046 } 9047 } 9048 9049 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9050 const struct bpf_insn *patch, u32 len) 9051 { 9052 struct bpf_prog *new_prog; 9053 9054 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9055 if (IS_ERR(new_prog)) { 9056 if (PTR_ERR(new_prog) == -ERANGE) 9057 verbose(env, 9058 "insn %d cannot be patched due to 16-bit range\n", 9059 env->insn_aux_data[off].orig_idx); 9060 return NULL; 9061 } 9062 if (adjust_insn_aux_data(env, new_prog, off, len)) 9063 return NULL; 9064 adjust_subprog_starts(env, off, len); 9065 return new_prog; 9066 } 9067 9068 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9069 u32 off, u32 cnt) 9070 { 9071 int i, j; 9072 9073 /* find first prog starting at or after off (first to remove) */ 9074 for (i = 0; i < env->subprog_cnt; i++) 9075 if (env->subprog_info[i].start >= off) 9076 break; 9077 /* find first prog starting at or after off + cnt (first to stay) */ 9078 for (j = i; j < env->subprog_cnt; j++) 9079 if (env->subprog_info[j].start >= off + cnt) 9080 break; 9081 /* if j doesn't start exactly at off + cnt, we are just removing 9082 * the front of previous prog 9083 */ 9084 if (env->subprog_info[j].start != off + cnt) 9085 j--; 9086 9087 if (j > i) { 9088 struct bpf_prog_aux *aux = env->prog->aux; 9089 int move; 9090 9091 /* move fake 'exit' subprog as well */ 9092 move = env->subprog_cnt + 1 - j; 9093 9094 memmove(env->subprog_info + i, 9095 env->subprog_info + j, 9096 sizeof(*env->subprog_info) * move); 9097 env->subprog_cnt -= j - i; 9098 9099 /* remove func_info */ 9100 if (aux->func_info) { 9101 move = aux->func_info_cnt - j; 9102 9103 memmove(aux->func_info + i, 9104 aux->func_info + j, 9105 sizeof(*aux->func_info) * move); 9106 aux->func_info_cnt -= j - i; 9107 /* func_info->insn_off is set after all code rewrites, 9108 * in adjust_btf_func() - no need to adjust 9109 */ 9110 } 9111 } else { 9112 /* convert i from "first prog to remove" to "first to adjust" */ 9113 if (env->subprog_info[i].start == off) 9114 i++; 9115 } 9116 9117 /* update fake 'exit' subprog as well */ 9118 for (; i <= env->subprog_cnt; i++) 9119 env->subprog_info[i].start -= cnt; 9120 9121 return 0; 9122 } 9123 9124 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9125 u32 cnt) 9126 { 9127 struct bpf_prog *prog = env->prog; 9128 u32 i, l_off, l_cnt, nr_linfo; 9129 struct bpf_line_info *linfo; 9130 9131 nr_linfo = prog->aux->nr_linfo; 9132 if (!nr_linfo) 9133 return 0; 9134 9135 linfo = prog->aux->linfo; 9136 9137 /* find first line info to remove, count lines to be removed */ 9138 for (i = 0; i < nr_linfo; i++) 9139 if (linfo[i].insn_off >= off) 9140 break; 9141 9142 l_off = i; 9143 l_cnt = 0; 9144 for (; i < nr_linfo; i++) 9145 if (linfo[i].insn_off < off + cnt) 9146 l_cnt++; 9147 else 9148 break; 9149 9150 /* First live insn doesn't match first live linfo, it needs to "inherit" 9151 * last removed linfo. prog is already modified, so prog->len == off 9152 * means no live instructions after (tail of the program was removed). 9153 */ 9154 if (prog->len != off && l_cnt && 9155 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9156 l_cnt--; 9157 linfo[--i].insn_off = off + cnt; 9158 } 9159 9160 /* remove the line info which refer to the removed instructions */ 9161 if (l_cnt) { 9162 memmove(linfo + l_off, linfo + i, 9163 sizeof(*linfo) * (nr_linfo - i)); 9164 9165 prog->aux->nr_linfo -= l_cnt; 9166 nr_linfo = prog->aux->nr_linfo; 9167 } 9168 9169 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9170 for (i = l_off; i < nr_linfo; i++) 9171 linfo[i].insn_off -= cnt; 9172 9173 /* fix up all subprogs (incl. 'exit') which start >= off */ 9174 for (i = 0; i <= env->subprog_cnt; i++) 9175 if (env->subprog_info[i].linfo_idx > l_off) { 9176 /* program may have started in the removed region but 9177 * may not be fully removed 9178 */ 9179 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9180 env->subprog_info[i].linfo_idx -= l_cnt; 9181 else 9182 env->subprog_info[i].linfo_idx = l_off; 9183 } 9184 9185 return 0; 9186 } 9187 9188 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9189 { 9190 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9191 unsigned int orig_prog_len = env->prog->len; 9192 int err; 9193 9194 if (bpf_prog_is_dev_bound(env->prog->aux)) 9195 bpf_prog_offload_remove_insns(env, off, cnt); 9196 9197 err = bpf_remove_insns(env->prog, off, cnt); 9198 if (err) 9199 return err; 9200 9201 err = adjust_subprog_starts_after_remove(env, off, cnt); 9202 if (err) 9203 return err; 9204 9205 err = bpf_adj_linfo_after_remove(env, off, cnt); 9206 if (err) 9207 return err; 9208 9209 memmove(aux_data + off, aux_data + off + cnt, 9210 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9211 9212 return 0; 9213 } 9214 9215 /* The verifier does more data flow analysis than llvm and will not 9216 * explore branches that are dead at run time. Malicious programs can 9217 * have dead code too. Therefore replace all dead at-run-time code 9218 * with 'ja -1'. 9219 * 9220 * Just nops are not optimal, e.g. if they would sit at the end of the 9221 * program and through another bug we would manage to jump there, then 9222 * we'd execute beyond program memory otherwise. Returning exception 9223 * code also wouldn't work since we can have subprogs where the dead 9224 * code could be located. 9225 */ 9226 static void sanitize_dead_code(struct bpf_verifier_env *env) 9227 { 9228 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9229 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9230 struct bpf_insn *insn = env->prog->insnsi; 9231 const int insn_cnt = env->prog->len; 9232 int i; 9233 9234 for (i = 0; i < insn_cnt; i++) { 9235 if (aux_data[i].seen) 9236 continue; 9237 memcpy(insn + i, &trap, sizeof(trap)); 9238 } 9239 } 9240 9241 static bool insn_is_cond_jump(u8 code) 9242 { 9243 u8 op; 9244 9245 if (BPF_CLASS(code) == BPF_JMP32) 9246 return true; 9247 9248 if (BPF_CLASS(code) != BPF_JMP) 9249 return false; 9250 9251 op = BPF_OP(code); 9252 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9253 } 9254 9255 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9256 { 9257 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9258 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9259 struct bpf_insn *insn = env->prog->insnsi; 9260 const int insn_cnt = env->prog->len; 9261 int i; 9262 9263 for (i = 0; i < insn_cnt; i++, insn++) { 9264 if (!insn_is_cond_jump(insn->code)) 9265 continue; 9266 9267 if (!aux_data[i + 1].seen) 9268 ja.off = insn->off; 9269 else if (!aux_data[i + 1 + insn->off].seen) 9270 ja.off = 0; 9271 else 9272 continue; 9273 9274 if (bpf_prog_is_dev_bound(env->prog->aux)) 9275 bpf_prog_offload_replace_insn(env, i, &ja); 9276 9277 memcpy(insn, &ja, sizeof(ja)); 9278 } 9279 } 9280 9281 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9282 { 9283 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9284 int insn_cnt = env->prog->len; 9285 int i, err; 9286 9287 for (i = 0; i < insn_cnt; i++) { 9288 int j; 9289 9290 j = 0; 9291 while (i + j < insn_cnt && !aux_data[i + j].seen) 9292 j++; 9293 if (!j) 9294 continue; 9295 9296 err = verifier_remove_insns(env, i, j); 9297 if (err) 9298 return err; 9299 insn_cnt = env->prog->len; 9300 } 9301 9302 return 0; 9303 } 9304 9305 static int opt_remove_nops(struct bpf_verifier_env *env) 9306 { 9307 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9308 struct bpf_insn *insn = env->prog->insnsi; 9309 int insn_cnt = env->prog->len; 9310 int i, err; 9311 9312 for (i = 0; i < insn_cnt; i++) { 9313 if (memcmp(&insn[i], &ja, sizeof(ja))) 9314 continue; 9315 9316 err = verifier_remove_insns(env, i, 1); 9317 if (err) 9318 return err; 9319 insn_cnt--; 9320 i--; 9321 } 9322 9323 return 0; 9324 } 9325 9326 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9327 const union bpf_attr *attr) 9328 { 9329 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9330 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9331 int i, patch_len, delta = 0, len = env->prog->len; 9332 struct bpf_insn *insns = env->prog->insnsi; 9333 struct bpf_prog *new_prog; 9334 bool rnd_hi32; 9335 9336 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9337 zext_patch[1] = BPF_ZEXT_REG(0); 9338 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9339 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9340 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9341 for (i = 0; i < len; i++) { 9342 int adj_idx = i + delta; 9343 struct bpf_insn insn; 9344 9345 insn = insns[adj_idx]; 9346 if (!aux[adj_idx].zext_dst) { 9347 u8 code, class; 9348 u32 imm_rnd; 9349 9350 if (!rnd_hi32) 9351 continue; 9352 9353 code = insn.code; 9354 class = BPF_CLASS(code); 9355 if (insn_no_def(&insn)) 9356 continue; 9357 9358 /* NOTE: arg "reg" (the fourth one) is only used for 9359 * BPF_STX which has been ruled out in above 9360 * check, it is safe to pass NULL here. 9361 */ 9362 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9363 if (class == BPF_LD && 9364 BPF_MODE(code) == BPF_IMM) 9365 i++; 9366 continue; 9367 } 9368 9369 /* ctx load could be transformed into wider load. */ 9370 if (class == BPF_LDX && 9371 aux[adj_idx].ptr_type == PTR_TO_CTX) 9372 continue; 9373 9374 imm_rnd = get_random_int(); 9375 rnd_hi32_patch[0] = insn; 9376 rnd_hi32_patch[1].imm = imm_rnd; 9377 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9378 patch = rnd_hi32_patch; 9379 patch_len = 4; 9380 goto apply_patch_buffer; 9381 } 9382 9383 if (!bpf_jit_needs_zext()) 9384 continue; 9385 9386 zext_patch[0] = insn; 9387 zext_patch[1].dst_reg = insn.dst_reg; 9388 zext_patch[1].src_reg = insn.dst_reg; 9389 patch = zext_patch; 9390 patch_len = 2; 9391 apply_patch_buffer: 9392 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9393 if (!new_prog) 9394 return -ENOMEM; 9395 env->prog = new_prog; 9396 insns = new_prog->insnsi; 9397 aux = env->insn_aux_data; 9398 delta += patch_len - 1; 9399 } 9400 9401 return 0; 9402 } 9403 9404 /* convert load instructions that access fields of a context type into a 9405 * sequence of instructions that access fields of the underlying structure: 9406 * struct __sk_buff -> struct sk_buff 9407 * struct bpf_sock_ops -> struct sock 9408 */ 9409 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9410 { 9411 const struct bpf_verifier_ops *ops = env->ops; 9412 int i, cnt, size, ctx_field_size, delta = 0; 9413 const int insn_cnt = env->prog->len; 9414 struct bpf_insn insn_buf[16], *insn; 9415 u32 target_size, size_default, off; 9416 struct bpf_prog *new_prog; 9417 enum bpf_access_type type; 9418 bool is_narrower_load; 9419 9420 if (ops->gen_prologue || env->seen_direct_write) { 9421 if (!ops->gen_prologue) { 9422 verbose(env, "bpf verifier is misconfigured\n"); 9423 return -EINVAL; 9424 } 9425 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9426 env->prog); 9427 if (cnt >= ARRAY_SIZE(insn_buf)) { 9428 verbose(env, "bpf verifier is misconfigured\n"); 9429 return -EINVAL; 9430 } else if (cnt) { 9431 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9432 if (!new_prog) 9433 return -ENOMEM; 9434 9435 env->prog = new_prog; 9436 delta += cnt - 1; 9437 } 9438 } 9439 9440 if (bpf_prog_is_dev_bound(env->prog->aux)) 9441 return 0; 9442 9443 insn = env->prog->insnsi + delta; 9444 9445 for (i = 0; i < insn_cnt; i++, insn++) { 9446 bpf_convert_ctx_access_t convert_ctx_access; 9447 9448 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9449 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9450 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9451 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9452 type = BPF_READ; 9453 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9454 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9455 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9456 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9457 type = BPF_WRITE; 9458 else 9459 continue; 9460 9461 if (type == BPF_WRITE && 9462 env->insn_aux_data[i + delta].sanitize_stack_off) { 9463 struct bpf_insn patch[] = { 9464 /* Sanitize suspicious stack slot with zero. 9465 * There are no memory dependencies for this store, 9466 * since it's only using frame pointer and immediate 9467 * constant of zero 9468 */ 9469 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9470 env->insn_aux_data[i + delta].sanitize_stack_off, 9471 0), 9472 /* the original STX instruction will immediately 9473 * overwrite the same stack slot with appropriate value 9474 */ 9475 *insn, 9476 }; 9477 9478 cnt = ARRAY_SIZE(patch); 9479 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9480 if (!new_prog) 9481 return -ENOMEM; 9482 9483 delta += cnt - 1; 9484 env->prog = new_prog; 9485 insn = new_prog->insnsi + i + delta; 9486 continue; 9487 } 9488 9489 switch (env->insn_aux_data[i + delta].ptr_type) { 9490 case PTR_TO_CTX: 9491 if (!ops->convert_ctx_access) 9492 continue; 9493 convert_ctx_access = ops->convert_ctx_access; 9494 break; 9495 case PTR_TO_SOCKET: 9496 case PTR_TO_SOCK_COMMON: 9497 convert_ctx_access = bpf_sock_convert_ctx_access; 9498 break; 9499 case PTR_TO_TCP_SOCK: 9500 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9501 break; 9502 case PTR_TO_XDP_SOCK: 9503 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9504 break; 9505 case PTR_TO_BTF_ID: 9506 if (type == BPF_READ) { 9507 insn->code = BPF_LDX | BPF_PROBE_MEM | 9508 BPF_SIZE((insn)->code); 9509 env->prog->aux->num_exentries++; 9510 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9511 verbose(env, "Writes through BTF pointers are not allowed\n"); 9512 return -EINVAL; 9513 } 9514 continue; 9515 default: 9516 continue; 9517 } 9518 9519 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9520 size = BPF_LDST_BYTES(insn); 9521 9522 /* If the read access is a narrower load of the field, 9523 * convert to a 4/8-byte load, to minimum program type specific 9524 * convert_ctx_access changes. If conversion is successful, 9525 * we will apply proper mask to the result. 9526 */ 9527 is_narrower_load = size < ctx_field_size; 9528 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9529 off = insn->off; 9530 if (is_narrower_load) { 9531 u8 size_code; 9532 9533 if (type == BPF_WRITE) { 9534 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9535 return -EINVAL; 9536 } 9537 9538 size_code = BPF_H; 9539 if (ctx_field_size == 4) 9540 size_code = BPF_W; 9541 else if (ctx_field_size == 8) 9542 size_code = BPF_DW; 9543 9544 insn->off = off & ~(size_default - 1); 9545 insn->code = BPF_LDX | BPF_MEM | size_code; 9546 } 9547 9548 target_size = 0; 9549 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9550 &target_size); 9551 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9552 (ctx_field_size && !target_size)) { 9553 verbose(env, "bpf verifier is misconfigured\n"); 9554 return -EINVAL; 9555 } 9556 9557 if (is_narrower_load && size < target_size) { 9558 u8 shift = bpf_ctx_narrow_access_offset( 9559 off, size, size_default) * 8; 9560 if (ctx_field_size <= 4) { 9561 if (shift) 9562 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9563 insn->dst_reg, 9564 shift); 9565 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9566 (1 << size * 8) - 1); 9567 } else { 9568 if (shift) 9569 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9570 insn->dst_reg, 9571 shift); 9572 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9573 (1ULL << size * 8) - 1); 9574 } 9575 } 9576 9577 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9578 if (!new_prog) 9579 return -ENOMEM; 9580 9581 delta += cnt - 1; 9582 9583 /* keep walking new program and skip insns we just inserted */ 9584 env->prog = new_prog; 9585 insn = new_prog->insnsi + i + delta; 9586 } 9587 9588 return 0; 9589 } 9590 9591 static int jit_subprogs(struct bpf_verifier_env *env) 9592 { 9593 struct bpf_prog *prog = env->prog, **func, *tmp; 9594 int i, j, subprog_start, subprog_end = 0, len, subprog; 9595 struct bpf_insn *insn; 9596 void *old_bpf_func; 9597 int err; 9598 9599 if (env->subprog_cnt <= 1) 9600 return 0; 9601 9602 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9603 if (insn->code != (BPF_JMP | BPF_CALL) || 9604 insn->src_reg != BPF_PSEUDO_CALL) 9605 continue; 9606 /* Upon error here we cannot fall back to interpreter but 9607 * need a hard reject of the program. Thus -EFAULT is 9608 * propagated in any case. 9609 */ 9610 subprog = find_subprog(env, i + insn->imm + 1); 9611 if (subprog < 0) { 9612 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9613 i + insn->imm + 1); 9614 return -EFAULT; 9615 } 9616 /* temporarily remember subprog id inside insn instead of 9617 * aux_data, since next loop will split up all insns into funcs 9618 */ 9619 insn->off = subprog; 9620 /* remember original imm in case JIT fails and fallback 9621 * to interpreter will be needed 9622 */ 9623 env->insn_aux_data[i].call_imm = insn->imm; 9624 /* point imm to __bpf_call_base+1 from JITs point of view */ 9625 insn->imm = 1; 9626 } 9627 9628 err = bpf_prog_alloc_jited_linfo(prog); 9629 if (err) 9630 goto out_undo_insn; 9631 9632 err = -ENOMEM; 9633 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9634 if (!func) 9635 goto out_undo_insn; 9636 9637 for (i = 0; i < env->subprog_cnt; i++) { 9638 subprog_start = subprog_end; 9639 subprog_end = env->subprog_info[i + 1].start; 9640 9641 len = subprog_end - subprog_start; 9642 /* BPF_PROG_RUN doesn't call subprogs directly, 9643 * hence main prog stats include the runtime of subprogs. 9644 * subprogs don't have IDs and not reachable via prog_get_next_id 9645 * func[i]->aux->stats will never be accessed and stays NULL 9646 */ 9647 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9648 if (!func[i]) 9649 goto out_free; 9650 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9651 len * sizeof(struct bpf_insn)); 9652 func[i]->type = prog->type; 9653 func[i]->len = len; 9654 if (bpf_prog_calc_tag(func[i])) 9655 goto out_free; 9656 func[i]->is_func = 1; 9657 func[i]->aux->func_idx = i; 9658 /* the btf and func_info will be freed only at prog->aux */ 9659 func[i]->aux->btf = prog->aux->btf; 9660 func[i]->aux->func_info = prog->aux->func_info; 9661 9662 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9663 * Long term would need debug info to populate names 9664 */ 9665 func[i]->aux->name[0] = 'F'; 9666 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9667 func[i]->jit_requested = 1; 9668 func[i]->aux->linfo = prog->aux->linfo; 9669 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9670 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9671 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9672 func[i] = bpf_int_jit_compile(func[i]); 9673 if (!func[i]->jited) { 9674 err = -ENOTSUPP; 9675 goto out_free; 9676 } 9677 cond_resched(); 9678 } 9679 /* at this point all bpf functions were successfully JITed 9680 * now populate all bpf_calls with correct addresses and 9681 * run last pass of JIT 9682 */ 9683 for (i = 0; i < env->subprog_cnt; i++) { 9684 insn = func[i]->insnsi; 9685 for (j = 0; j < func[i]->len; j++, insn++) { 9686 if (insn->code != (BPF_JMP | BPF_CALL) || 9687 insn->src_reg != BPF_PSEUDO_CALL) 9688 continue; 9689 subprog = insn->off; 9690 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9691 __bpf_call_base; 9692 } 9693 9694 /* we use the aux data to keep a list of the start addresses 9695 * of the JITed images for each function in the program 9696 * 9697 * for some architectures, such as powerpc64, the imm field 9698 * might not be large enough to hold the offset of the start 9699 * address of the callee's JITed image from __bpf_call_base 9700 * 9701 * in such cases, we can lookup the start address of a callee 9702 * by using its subprog id, available from the off field of 9703 * the call instruction, as an index for this list 9704 */ 9705 func[i]->aux->func = func; 9706 func[i]->aux->func_cnt = env->subprog_cnt; 9707 } 9708 for (i = 0; i < env->subprog_cnt; i++) { 9709 old_bpf_func = func[i]->bpf_func; 9710 tmp = bpf_int_jit_compile(func[i]); 9711 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9712 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9713 err = -ENOTSUPP; 9714 goto out_free; 9715 } 9716 cond_resched(); 9717 } 9718 9719 /* finally lock prog and jit images for all functions and 9720 * populate kallsysm 9721 */ 9722 for (i = 0; i < env->subprog_cnt; i++) { 9723 bpf_prog_lock_ro(func[i]); 9724 bpf_prog_kallsyms_add(func[i]); 9725 } 9726 9727 /* Last step: make now unused interpreter insns from main 9728 * prog consistent for later dump requests, so they can 9729 * later look the same as if they were interpreted only. 9730 */ 9731 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9732 if (insn->code != (BPF_JMP | BPF_CALL) || 9733 insn->src_reg != BPF_PSEUDO_CALL) 9734 continue; 9735 insn->off = env->insn_aux_data[i].call_imm; 9736 subprog = find_subprog(env, i + insn->off + 1); 9737 insn->imm = subprog; 9738 } 9739 9740 prog->jited = 1; 9741 prog->bpf_func = func[0]->bpf_func; 9742 prog->aux->func = func; 9743 prog->aux->func_cnt = env->subprog_cnt; 9744 bpf_prog_free_unused_jited_linfo(prog); 9745 return 0; 9746 out_free: 9747 for (i = 0; i < env->subprog_cnt; i++) 9748 if (func[i]) 9749 bpf_jit_free(func[i]); 9750 kfree(func); 9751 out_undo_insn: 9752 /* cleanup main prog to be interpreted */ 9753 prog->jit_requested = 0; 9754 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9755 if (insn->code != (BPF_JMP | BPF_CALL) || 9756 insn->src_reg != BPF_PSEUDO_CALL) 9757 continue; 9758 insn->off = 0; 9759 insn->imm = env->insn_aux_data[i].call_imm; 9760 } 9761 bpf_prog_free_jited_linfo(prog); 9762 return err; 9763 } 9764 9765 static int fixup_call_args(struct bpf_verifier_env *env) 9766 { 9767 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9768 struct bpf_prog *prog = env->prog; 9769 struct bpf_insn *insn = prog->insnsi; 9770 int i, depth; 9771 #endif 9772 int err = 0; 9773 9774 if (env->prog->jit_requested && 9775 !bpf_prog_is_dev_bound(env->prog->aux)) { 9776 err = jit_subprogs(env); 9777 if (err == 0) 9778 return 0; 9779 if (err == -EFAULT) 9780 return err; 9781 } 9782 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9783 for (i = 0; i < prog->len; i++, insn++) { 9784 if (insn->code != (BPF_JMP | BPF_CALL) || 9785 insn->src_reg != BPF_PSEUDO_CALL) 9786 continue; 9787 depth = get_callee_stack_depth(env, insn, i); 9788 if (depth < 0) 9789 return depth; 9790 bpf_patch_call_args(insn, depth); 9791 } 9792 err = 0; 9793 #endif 9794 return err; 9795 } 9796 9797 /* fixup insn->imm field of bpf_call instructions 9798 * and inline eligible helpers as explicit sequence of BPF instructions 9799 * 9800 * this function is called after eBPF program passed verification 9801 */ 9802 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9803 { 9804 struct bpf_prog *prog = env->prog; 9805 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9806 struct bpf_insn *insn = prog->insnsi; 9807 const struct bpf_func_proto *fn; 9808 const int insn_cnt = prog->len; 9809 const struct bpf_map_ops *ops; 9810 struct bpf_insn_aux_data *aux; 9811 struct bpf_insn insn_buf[16]; 9812 struct bpf_prog *new_prog; 9813 struct bpf_map *map_ptr; 9814 int i, ret, cnt, delta = 0; 9815 9816 for (i = 0; i < insn_cnt; i++, insn++) { 9817 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9818 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9819 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9820 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9821 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9822 struct bpf_insn mask_and_div[] = { 9823 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9824 /* Rx div 0 -> 0 */ 9825 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9826 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9827 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9828 *insn, 9829 }; 9830 struct bpf_insn mask_and_mod[] = { 9831 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9832 /* Rx mod 0 -> Rx */ 9833 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9834 *insn, 9835 }; 9836 struct bpf_insn *patchlet; 9837 9838 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9839 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9840 patchlet = mask_and_div + (is64 ? 1 : 0); 9841 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9842 } else { 9843 patchlet = mask_and_mod + (is64 ? 1 : 0); 9844 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9845 } 9846 9847 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9848 if (!new_prog) 9849 return -ENOMEM; 9850 9851 delta += cnt - 1; 9852 env->prog = prog = new_prog; 9853 insn = new_prog->insnsi + i + delta; 9854 continue; 9855 } 9856 9857 if (BPF_CLASS(insn->code) == BPF_LD && 9858 (BPF_MODE(insn->code) == BPF_ABS || 9859 BPF_MODE(insn->code) == BPF_IND)) { 9860 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9861 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9862 verbose(env, "bpf verifier is misconfigured\n"); 9863 return -EINVAL; 9864 } 9865 9866 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9867 if (!new_prog) 9868 return -ENOMEM; 9869 9870 delta += cnt - 1; 9871 env->prog = prog = new_prog; 9872 insn = new_prog->insnsi + i + delta; 9873 continue; 9874 } 9875 9876 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9877 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9878 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9879 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9880 struct bpf_insn insn_buf[16]; 9881 struct bpf_insn *patch = &insn_buf[0]; 9882 bool issrc, isneg; 9883 u32 off_reg; 9884 9885 aux = &env->insn_aux_data[i + delta]; 9886 if (!aux->alu_state || 9887 aux->alu_state == BPF_ALU_NON_POINTER) 9888 continue; 9889 9890 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9891 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9892 BPF_ALU_SANITIZE_SRC; 9893 9894 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9895 if (isneg) 9896 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9897 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9898 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9899 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9900 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9901 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9902 if (issrc) { 9903 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9904 off_reg); 9905 insn->src_reg = BPF_REG_AX; 9906 } else { 9907 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9908 BPF_REG_AX); 9909 } 9910 if (isneg) 9911 insn->code = insn->code == code_add ? 9912 code_sub : code_add; 9913 *patch++ = *insn; 9914 if (issrc && isneg) 9915 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9916 cnt = patch - insn_buf; 9917 9918 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9919 if (!new_prog) 9920 return -ENOMEM; 9921 9922 delta += cnt - 1; 9923 env->prog = prog = new_prog; 9924 insn = new_prog->insnsi + i + delta; 9925 continue; 9926 } 9927 9928 if (insn->code != (BPF_JMP | BPF_CALL)) 9929 continue; 9930 if (insn->src_reg == BPF_PSEUDO_CALL) 9931 continue; 9932 9933 if (insn->imm == BPF_FUNC_get_route_realm) 9934 prog->dst_needed = 1; 9935 if (insn->imm == BPF_FUNC_get_prandom_u32) 9936 bpf_user_rnd_init_once(); 9937 if (insn->imm == BPF_FUNC_override_return) 9938 prog->kprobe_override = 1; 9939 if (insn->imm == BPF_FUNC_tail_call) { 9940 /* If we tail call into other programs, we 9941 * cannot make any assumptions since they can 9942 * be replaced dynamically during runtime in 9943 * the program array. 9944 */ 9945 prog->cb_access = 1; 9946 env->prog->aux->stack_depth = MAX_BPF_STACK; 9947 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9948 9949 /* mark bpf_tail_call as different opcode to avoid 9950 * conditional branch in the interpeter for every normal 9951 * call and to prevent accidental JITing by JIT compiler 9952 * that doesn't support bpf_tail_call yet 9953 */ 9954 insn->imm = 0; 9955 insn->code = BPF_JMP | BPF_TAIL_CALL; 9956 9957 aux = &env->insn_aux_data[i + delta]; 9958 if (env->allow_ptr_leaks && !expect_blinding && 9959 prog->jit_requested && 9960 !bpf_map_key_poisoned(aux) && 9961 !bpf_map_ptr_poisoned(aux) && 9962 !bpf_map_ptr_unpriv(aux)) { 9963 struct bpf_jit_poke_descriptor desc = { 9964 .reason = BPF_POKE_REASON_TAIL_CALL, 9965 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9966 .tail_call.key = bpf_map_key_immediate(aux), 9967 }; 9968 9969 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9970 if (ret < 0) { 9971 verbose(env, "adding tail call poke descriptor failed\n"); 9972 return ret; 9973 } 9974 9975 insn->imm = ret + 1; 9976 continue; 9977 } 9978 9979 if (!bpf_map_ptr_unpriv(aux)) 9980 continue; 9981 9982 /* instead of changing every JIT dealing with tail_call 9983 * emit two extra insns: 9984 * if (index >= max_entries) goto out; 9985 * index &= array->index_mask; 9986 * to avoid out-of-bounds cpu speculation 9987 */ 9988 if (bpf_map_ptr_poisoned(aux)) { 9989 verbose(env, "tail_call abusing map_ptr\n"); 9990 return -EINVAL; 9991 } 9992 9993 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9994 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9995 map_ptr->max_entries, 2); 9996 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9997 container_of(map_ptr, 9998 struct bpf_array, 9999 map)->index_mask); 10000 insn_buf[2] = *insn; 10001 cnt = 3; 10002 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10003 if (!new_prog) 10004 return -ENOMEM; 10005 10006 delta += cnt - 1; 10007 env->prog = prog = new_prog; 10008 insn = new_prog->insnsi + i + delta; 10009 continue; 10010 } 10011 10012 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10013 * and other inlining handlers are currently limited to 64 bit 10014 * only. 10015 */ 10016 if (prog->jit_requested && BITS_PER_LONG == 64 && 10017 (insn->imm == BPF_FUNC_map_lookup_elem || 10018 insn->imm == BPF_FUNC_map_update_elem || 10019 insn->imm == BPF_FUNC_map_delete_elem || 10020 insn->imm == BPF_FUNC_map_push_elem || 10021 insn->imm == BPF_FUNC_map_pop_elem || 10022 insn->imm == BPF_FUNC_map_peek_elem)) { 10023 aux = &env->insn_aux_data[i + delta]; 10024 if (bpf_map_ptr_poisoned(aux)) 10025 goto patch_call_imm; 10026 10027 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10028 ops = map_ptr->ops; 10029 if (insn->imm == BPF_FUNC_map_lookup_elem && 10030 ops->map_gen_lookup) { 10031 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10032 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10033 verbose(env, "bpf verifier is misconfigured\n"); 10034 return -EINVAL; 10035 } 10036 10037 new_prog = bpf_patch_insn_data(env, i + delta, 10038 insn_buf, cnt); 10039 if (!new_prog) 10040 return -ENOMEM; 10041 10042 delta += cnt - 1; 10043 env->prog = prog = new_prog; 10044 insn = new_prog->insnsi + i + delta; 10045 continue; 10046 } 10047 10048 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10049 (void *(*)(struct bpf_map *map, void *key))NULL)); 10050 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10051 (int (*)(struct bpf_map *map, void *key))NULL)); 10052 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10053 (int (*)(struct bpf_map *map, void *key, void *value, 10054 u64 flags))NULL)); 10055 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10056 (int (*)(struct bpf_map *map, void *value, 10057 u64 flags))NULL)); 10058 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10059 (int (*)(struct bpf_map *map, void *value))NULL)); 10060 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10061 (int (*)(struct bpf_map *map, void *value))NULL)); 10062 10063 switch (insn->imm) { 10064 case BPF_FUNC_map_lookup_elem: 10065 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10066 __bpf_call_base; 10067 continue; 10068 case BPF_FUNC_map_update_elem: 10069 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10070 __bpf_call_base; 10071 continue; 10072 case BPF_FUNC_map_delete_elem: 10073 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10074 __bpf_call_base; 10075 continue; 10076 case BPF_FUNC_map_push_elem: 10077 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10078 __bpf_call_base; 10079 continue; 10080 case BPF_FUNC_map_pop_elem: 10081 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10082 __bpf_call_base; 10083 continue; 10084 case BPF_FUNC_map_peek_elem: 10085 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10086 __bpf_call_base; 10087 continue; 10088 } 10089 10090 goto patch_call_imm; 10091 } 10092 10093 if (prog->jit_requested && BITS_PER_LONG == 64 && 10094 insn->imm == BPF_FUNC_jiffies64) { 10095 struct bpf_insn ld_jiffies_addr[2] = { 10096 BPF_LD_IMM64(BPF_REG_0, 10097 (unsigned long)&jiffies), 10098 }; 10099 10100 insn_buf[0] = ld_jiffies_addr[0]; 10101 insn_buf[1] = ld_jiffies_addr[1]; 10102 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10103 BPF_REG_0, 0); 10104 cnt = 3; 10105 10106 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10107 cnt); 10108 if (!new_prog) 10109 return -ENOMEM; 10110 10111 delta += cnt - 1; 10112 env->prog = prog = new_prog; 10113 insn = new_prog->insnsi + i + delta; 10114 continue; 10115 } 10116 10117 patch_call_imm: 10118 fn = env->ops->get_func_proto(insn->imm, env->prog); 10119 /* all functions that have prototype and verifier allowed 10120 * programs to call them, must be real in-kernel functions 10121 */ 10122 if (!fn->func) { 10123 verbose(env, 10124 "kernel subsystem misconfigured func %s#%d\n", 10125 func_id_name(insn->imm), insn->imm); 10126 return -EFAULT; 10127 } 10128 insn->imm = fn->func - __bpf_call_base; 10129 } 10130 10131 /* Since poke tab is now finalized, publish aux to tracker. */ 10132 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10133 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10134 if (!map_ptr->ops->map_poke_track || 10135 !map_ptr->ops->map_poke_untrack || 10136 !map_ptr->ops->map_poke_run) { 10137 verbose(env, "bpf verifier is misconfigured\n"); 10138 return -EINVAL; 10139 } 10140 10141 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10142 if (ret < 0) { 10143 verbose(env, "tracking tail call prog failed\n"); 10144 return ret; 10145 } 10146 } 10147 10148 return 0; 10149 } 10150 10151 static void free_states(struct bpf_verifier_env *env) 10152 { 10153 struct bpf_verifier_state_list *sl, *sln; 10154 int i; 10155 10156 sl = env->free_list; 10157 while (sl) { 10158 sln = sl->next; 10159 free_verifier_state(&sl->state, false); 10160 kfree(sl); 10161 sl = sln; 10162 } 10163 env->free_list = NULL; 10164 10165 if (!env->explored_states) 10166 return; 10167 10168 for (i = 0; i < state_htab_size(env); i++) { 10169 sl = env->explored_states[i]; 10170 10171 while (sl) { 10172 sln = sl->next; 10173 free_verifier_state(&sl->state, false); 10174 kfree(sl); 10175 sl = sln; 10176 } 10177 env->explored_states[i] = NULL; 10178 } 10179 } 10180 10181 /* The verifier is using insn_aux_data[] to store temporary data during 10182 * verification and to store information for passes that run after the 10183 * verification like dead code sanitization. do_check_common() for subprogram N 10184 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10185 * temporary data after do_check_common() finds that subprogram N cannot be 10186 * verified independently. pass_cnt counts the number of times 10187 * do_check_common() was run and insn->aux->seen tells the pass number 10188 * insn_aux_data was touched. These variables are compared to clear temporary 10189 * data from failed pass. For testing and experiments do_check_common() can be 10190 * run multiple times even when prior attempt to verify is unsuccessful. 10191 */ 10192 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10193 { 10194 struct bpf_insn *insn = env->prog->insnsi; 10195 struct bpf_insn_aux_data *aux; 10196 int i, class; 10197 10198 for (i = 0; i < env->prog->len; i++) { 10199 class = BPF_CLASS(insn[i].code); 10200 if (class != BPF_LDX && class != BPF_STX) 10201 continue; 10202 aux = &env->insn_aux_data[i]; 10203 if (aux->seen != env->pass_cnt) 10204 continue; 10205 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10206 } 10207 } 10208 10209 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10210 { 10211 struct bpf_verifier_state *state; 10212 struct bpf_reg_state *regs; 10213 int ret, i; 10214 10215 env->prev_linfo = NULL; 10216 env->pass_cnt++; 10217 10218 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10219 if (!state) 10220 return -ENOMEM; 10221 state->curframe = 0; 10222 state->speculative = false; 10223 state->branches = 1; 10224 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10225 if (!state->frame[0]) { 10226 kfree(state); 10227 return -ENOMEM; 10228 } 10229 env->cur_state = state; 10230 init_func_state(env, state->frame[0], 10231 BPF_MAIN_FUNC /* callsite */, 10232 0 /* frameno */, 10233 subprog); 10234 10235 regs = state->frame[state->curframe]->regs; 10236 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10237 ret = btf_prepare_func_args(env, subprog, regs); 10238 if (ret) 10239 goto out; 10240 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10241 if (regs[i].type == PTR_TO_CTX) 10242 mark_reg_known_zero(env, regs, i); 10243 else if (regs[i].type == SCALAR_VALUE) 10244 mark_reg_unknown(env, regs, i); 10245 } 10246 } else { 10247 /* 1st arg to a function */ 10248 regs[BPF_REG_1].type = PTR_TO_CTX; 10249 mark_reg_known_zero(env, regs, BPF_REG_1); 10250 ret = btf_check_func_arg_match(env, subprog, regs); 10251 if (ret == -EFAULT) 10252 /* unlikely verifier bug. abort. 10253 * ret == 0 and ret < 0 are sadly acceptable for 10254 * main() function due to backward compatibility. 10255 * Like socket filter program may be written as: 10256 * int bpf_prog(struct pt_regs *ctx) 10257 * and never dereference that ctx in the program. 10258 * 'struct pt_regs' is a type mismatch for socket 10259 * filter that should be using 'struct __sk_buff'. 10260 */ 10261 goto out; 10262 } 10263 10264 ret = do_check(env); 10265 out: 10266 /* check for NULL is necessary, since cur_state can be freed inside 10267 * do_check() under memory pressure. 10268 */ 10269 if (env->cur_state) { 10270 free_verifier_state(env->cur_state, true); 10271 env->cur_state = NULL; 10272 } 10273 while (!pop_stack(env, NULL, NULL)); 10274 free_states(env); 10275 if (ret) 10276 /* clean aux data in case subprog was rejected */ 10277 sanitize_insn_aux_data(env); 10278 return ret; 10279 } 10280 10281 /* Verify all global functions in a BPF program one by one based on their BTF. 10282 * All global functions must pass verification. Otherwise the whole program is rejected. 10283 * Consider: 10284 * int bar(int); 10285 * int foo(int f) 10286 * { 10287 * return bar(f); 10288 * } 10289 * int bar(int b) 10290 * { 10291 * ... 10292 * } 10293 * foo() will be verified first for R1=any_scalar_value. During verification it 10294 * will be assumed that bar() already verified successfully and call to bar() 10295 * from foo() will be checked for type match only. Later bar() will be verified 10296 * independently to check that it's safe for R1=any_scalar_value. 10297 */ 10298 static int do_check_subprogs(struct bpf_verifier_env *env) 10299 { 10300 struct bpf_prog_aux *aux = env->prog->aux; 10301 int i, ret; 10302 10303 if (!aux->func_info) 10304 return 0; 10305 10306 for (i = 1; i < env->subprog_cnt; i++) { 10307 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10308 continue; 10309 env->insn_idx = env->subprog_info[i].start; 10310 WARN_ON_ONCE(env->insn_idx == 0); 10311 ret = do_check_common(env, i); 10312 if (ret) { 10313 return ret; 10314 } else if (env->log.level & BPF_LOG_LEVEL) { 10315 verbose(env, 10316 "Func#%d is safe for any args that match its prototype\n", 10317 i); 10318 } 10319 } 10320 return 0; 10321 } 10322 10323 static int do_check_main(struct bpf_verifier_env *env) 10324 { 10325 int ret; 10326 10327 env->insn_idx = 0; 10328 ret = do_check_common(env, 0); 10329 if (!ret) 10330 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10331 return ret; 10332 } 10333 10334 10335 static void print_verification_stats(struct bpf_verifier_env *env) 10336 { 10337 int i; 10338 10339 if (env->log.level & BPF_LOG_STATS) { 10340 verbose(env, "verification time %lld usec\n", 10341 div_u64(env->verification_time, 1000)); 10342 verbose(env, "stack depth "); 10343 for (i = 0; i < env->subprog_cnt; i++) { 10344 u32 depth = env->subprog_info[i].stack_depth; 10345 10346 verbose(env, "%d", depth); 10347 if (i + 1 < env->subprog_cnt) 10348 verbose(env, "+"); 10349 } 10350 verbose(env, "\n"); 10351 } 10352 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10353 "total_states %d peak_states %d mark_read %d\n", 10354 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10355 env->max_states_per_insn, env->total_states, 10356 env->peak_states, env->longest_mark_read_walk); 10357 } 10358 10359 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10360 { 10361 const struct btf_type *t, *func_proto; 10362 const struct bpf_struct_ops *st_ops; 10363 const struct btf_member *member; 10364 struct bpf_prog *prog = env->prog; 10365 u32 btf_id, member_idx; 10366 const char *mname; 10367 10368 btf_id = prog->aux->attach_btf_id; 10369 st_ops = bpf_struct_ops_find(btf_id); 10370 if (!st_ops) { 10371 verbose(env, "attach_btf_id %u is not a supported struct\n", 10372 btf_id); 10373 return -ENOTSUPP; 10374 } 10375 10376 t = st_ops->type; 10377 member_idx = prog->expected_attach_type; 10378 if (member_idx >= btf_type_vlen(t)) { 10379 verbose(env, "attach to invalid member idx %u of struct %s\n", 10380 member_idx, st_ops->name); 10381 return -EINVAL; 10382 } 10383 10384 member = &btf_type_member(t)[member_idx]; 10385 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10386 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10387 NULL); 10388 if (!func_proto) { 10389 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10390 mname, member_idx, st_ops->name); 10391 return -EINVAL; 10392 } 10393 10394 if (st_ops->check_member) { 10395 int err = st_ops->check_member(t, member); 10396 10397 if (err) { 10398 verbose(env, "attach to unsupported member %s of struct %s\n", 10399 mname, st_ops->name); 10400 return err; 10401 } 10402 } 10403 10404 prog->aux->attach_func_proto = func_proto; 10405 prog->aux->attach_func_name = mname; 10406 env->ops = st_ops->verifier_ops; 10407 10408 return 0; 10409 } 10410 #define SECURITY_PREFIX "security_" 10411 10412 static int check_attach_modify_return(struct bpf_verifier_env *env) 10413 { 10414 struct bpf_prog *prog = env->prog; 10415 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 10416 10417 /* This is expected to be cleaned up in the future with the KRSI effort 10418 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 10419 */ 10420 if (within_error_injection_list(addr) || 10421 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10422 sizeof(SECURITY_PREFIX) - 1)) 10423 return 0; 10424 10425 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 10426 prog->aux->attach_btf_id, prog->aux->attach_func_name); 10427 10428 return -EINVAL; 10429 } 10430 10431 static int check_attach_btf_id(struct bpf_verifier_env *env) 10432 { 10433 struct bpf_prog *prog = env->prog; 10434 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10435 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10436 u32 btf_id = prog->aux->attach_btf_id; 10437 const char prefix[] = "btf_trace_"; 10438 int ret = 0, subprog = -1, i; 10439 struct bpf_trampoline *tr; 10440 const struct btf_type *t; 10441 bool conservative = true; 10442 const char *tname; 10443 struct btf *btf; 10444 long addr; 10445 u64 key; 10446 10447 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10448 return check_struct_ops_btf_id(env); 10449 10450 if (prog->type != BPF_PROG_TYPE_TRACING && 10451 prog->type != BPF_PROG_TYPE_LSM && 10452 !prog_extension) 10453 return 0; 10454 10455 if (!btf_id) { 10456 verbose(env, "Tracing programs must provide btf_id\n"); 10457 return -EINVAL; 10458 } 10459 btf = bpf_prog_get_target_btf(prog); 10460 if (!btf) { 10461 verbose(env, 10462 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10463 return -EINVAL; 10464 } 10465 t = btf_type_by_id(btf, btf_id); 10466 if (!t) { 10467 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10468 return -EINVAL; 10469 } 10470 tname = btf_name_by_offset(btf, t->name_off); 10471 if (!tname) { 10472 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10473 return -EINVAL; 10474 } 10475 if (tgt_prog) { 10476 struct bpf_prog_aux *aux = tgt_prog->aux; 10477 10478 for (i = 0; i < aux->func_info_cnt; i++) 10479 if (aux->func_info[i].type_id == btf_id) { 10480 subprog = i; 10481 break; 10482 } 10483 if (subprog == -1) { 10484 verbose(env, "Subprog %s doesn't exist\n", tname); 10485 return -EINVAL; 10486 } 10487 conservative = aux->func_info_aux[subprog].unreliable; 10488 if (prog_extension) { 10489 if (conservative) { 10490 verbose(env, 10491 "Cannot replace static functions\n"); 10492 return -EINVAL; 10493 } 10494 if (!prog->jit_requested) { 10495 verbose(env, 10496 "Extension programs should be JITed\n"); 10497 return -EINVAL; 10498 } 10499 env->ops = bpf_verifier_ops[tgt_prog->type]; 10500 prog->expected_attach_type = tgt_prog->expected_attach_type; 10501 } 10502 if (!tgt_prog->jited) { 10503 verbose(env, "Can attach to only JITed progs\n"); 10504 return -EINVAL; 10505 } 10506 if (tgt_prog->type == prog->type) { 10507 /* Cannot fentry/fexit another fentry/fexit program. 10508 * Cannot attach program extension to another extension. 10509 * It's ok to attach fentry/fexit to extension program. 10510 */ 10511 verbose(env, "Cannot recursively attach\n"); 10512 return -EINVAL; 10513 } 10514 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10515 prog_extension && 10516 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10517 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10518 /* Program extensions can extend all program types 10519 * except fentry/fexit. The reason is the following. 10520 * The fentry/fexit programs are used for performance 10521 * analysis, stats and can be attached to any program 10522 * type except themselves. When extension program is 10523 * replacing XDP function it is necessary to allow 10524 * performance analysis of all functions. Both original 10525 * XDP program and its program extension. Hence 10526 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10527 * allowed. If extending of fentry/fexit was allowed it 10528 * would be possible to create long call chain 10529 * fentry->extension->fentry->extension beyond 10530 * reasonable stack size. Hence extending fentry is not 10531 * allowed. 10532 */ 10533 verbose(env, "Cannot extend fentry/fexit\n"); 10534 return -EINVAL; 10535 } 10536 key = ((u64)aux->id) << 32 | btf_id; 10537 } else { 10538 if (prog_extension) { 10539 verbose(env, "Cannot replace kernel functions\n"); 10540 return -EINVAL; 10541 } 10542 key = btf_id; 10543 } 10544 10545 switch (prog->expected_attach_type) { 10546 case BPF_TRACE_RAW_TP: 10547 if (tgt_prog) { 10548 verbose(env, 10549 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10550 return -EINVAL; 10551 } 10552 if (!btf_type_is_typedef(t)) { 10553 verbose(env, "attach_btf_id %u is not a typedef\n", 10554 btf_id); 10555 return -EINVAL; 10556 } 10557 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10558 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10559 btf_id, tname); 10560 return -EINVAL; 10561 } 10562 tname += sizeof(prefix) - 1; 10563 t = btf_type_by_id(btf, t->type); 10564 if (!btf_type_is_ptr(t)) 10565 /* should never happen in valid vmlinux build */ 10566 return -EINVAL; 10567 t = btf_type_by_id(btf, t->type); 10568 if (!btf_type_is_func_proto(t)) 10569 /* should never happen in valid vmlinux build */ 10570 return -EINVAL; 10571 10572 /* remember two read only pointers that are valid for 10573 * the life time of the kernel 10574 */ 10575 prog->aux->attach_func_name = tname; 10576 prog->aux->attach_func_proto = t; 10577 prog->aux->attach_btf_trace = true; 10578 return 0; 10579 default: 10580 if (!prog_extension) 10581 return -EINVAL; 10582 /* fallthrough */ 10583 case BPF_MODIFY_RETURN: 10584 case BPF_LSM_MAC: 10585 case BPF_TRACE_FENTRY: 10586 case BPF_TRACE_FEXIT: 10587 prog->aux->attach_func_name = tname; 10588 if (prog->type == BPF_PROG_TYPE_LSM) { 10589 ret = bpf_lsm_verify_prog(&env->log, prog); 10590 if (ret < 0) 10591 return ret; 10592 } 10593 10594 if (!btf_type_is_func(t)) { 10595 verbose(env, "attach_btf_id %u is not a function\n", 10596 btf_id); 10597 return -EINVAL; 10598 } 10599 if (prog_extension && 10600 btf_check_type_match(env, prog, btf, t)) 10601 return -EINVAL; 10602 t = btf_type_by_id(btf, t->type); 10603 if (!btf_type_is_func_proto(t)) 10604 return -EINVAL; 10605 tr = bpf_trampoline_lookup(key); 10606 if (!tr) 10607 return -ENOMEM; 10608 /* t is either vmlinux type or another program's type */ 10609 prog->aux->attach_func_proto = t; 10610 mutex_lock(&tr->mutex); 10611 if (tr->func.addr) { 10612 prog->aux->trampoline = tr; 10613 goto out; 10614 } 10615 if (tgt_prog && conservative) { 10616 prog->aux->attach_func_proto = NULL; 10617 t = NULL; 10618 } 10619 ret = btf_distill_func_proto(&env->log, btf, t, 10620 tname, &tr->func.model); 10621 if (ret < 0) 10622 goto out; 10623 if (tgt_prog) { 10624 if (subprog == 0) 10625 addr = (long) tgt_prog->bpf_func; 10626 else 10627 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10628 } else { 10629 addr = kallsyms_lookup_name(tname); 10630 if (!addr) { 10631 verbose(env, 10632 "The address of function %s cannot be found\n", 10633 tname); 10634 ret = -ENOENT; 10635 goto out; 10636 } 10637 } 10638 tr->func.addr = (void *)addr; 10639 prog->aux->trampoline = tr; 10640 10641 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10642 ret = check_attach_modify_return(env); 10643 out: 10644 mutex_unlock(&tr->mutex); 10645 if (ret) 10646 bpf_trampoline_put(tr); 10647 return ret; 10648 } 10649 } 10650 10651 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10652 union bpf_attr __user *uattr) 10653 { 10654 u64 start_time = ktime_get_ns(); 10655 struct bpf_verifier_env *env; 10656 struct bpf_verifier_log *log; 10657 int i, len, ret = -EINVAL; 10658 bool is_priv; 10659 10660 /* no program is valid */ 10661 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10662 return -EINVAL; 10663 10664 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10665 * allocate/free it every time bpf_check() is called 10666 */ 10667 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10668 if (!env) 10669 return -ENOMEM; 10670 log = &env->log; 10671 10672 len = (*prog)->len; 10673 env->insn_aux_data = 10674 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10675 ret = -ENOMEM; 10676 if (!env->insn_aux_data) 10677 goto err_free_env; 10678 for (i = 0; i < len; i++) 10679 env->insn_aux_data[i].orig_idx = i; 10680 env->prog = *prog; 10681 env->ops = bpf_verifier_ops[env->prog->type]; 10682 is_priv = capable(CAP_SYS_ADMIN); 10683 10684 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10685 mutex_lock(&bpf_verifier_lock); 10686 if (!btf_vmlinux) 10687 btf_vmlinux = btf_parse_vmlinux(); 10688 mutex_unlock(&bpf_verifier_lock); 10689 } 10690 10691 /* grab the mutex to protect few globals used by verifier */ 10692 if (!is_priv) 10693 mutex_lock(&bpf_verifier_lock); 10694 10695 if (attr->log_level || attr->log_buf || attr->log_size) { 10696 /* user requested verbose verifier output 10697 * and supplied buffer to store the verification trace 10698 */ 10699 log->level = attr->log_level; 10700 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10701 log->len_total = attr->log_size; 10702 10703 ret = -EINVAL; 10704 /* log attributes have to be sane */ 10705 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10706 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10707 goto err_unlock; 10708 } 10709 10710 if (IS_ERR(btf_vmlinux)) { 10711 /* Either gcc or pahole or kernel are broken. */ 10712 verbose(env, "in-kernel BTF is malformed\n"); 10713 ret = PTR_ERR(btf_vmlinux); 10714 goto skip_full_check; 10715 } 10716 10717 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10718 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10719 env->strict_alignment = true; 10720 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10721 env->strict_alignment = false; 10722 10723 env->allow_ptr_leaks = is_priv; 10724 10725 if (is_priv) 10726 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10727 10728 ret = replace_map_fd_with_map_ptr(env); 10729 if (ret < 0) 10730 goto skip_full_check; 10731 10732 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10733 ret = bpf_prog_offload_verifier_prep(env->prog); 10734 if (ret) 10735 goto skip_full_check; 10736 } 10737 10738 env->explored_states = kvcalloc(state_htab_size(env), 10739 sizeof(struct bpf_verifier_state_list *), 10740 GFP_USER); 10741 ret = -ENOMEM; 10742 if (!env->explored_states) 10743 goto skip_full_check; 10744 10745 ret = check_subprogs(env); 10746 if (ret < 0) 10747 goto skip_full_check; 10748 10749 ret = check_btf_info(env, attr, uattr); 10750 if (ret < 0) 10751 goto skip_full_check; 10752 10753 ret = check_attach_btf_id(env); 10754 if (ret) 10755 goto skip_full_check; 10756 10757 ret = check_cfg(env); 10758 if (ret < 0) 10759 goto skip_full_check; 10760 10761 ret = do_check_subprogs(env); 10762 ret = ret ?: do_check_main(env); 10763 10764 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10765 ret = bpf_prog_offload_finalize(env); 10766 10767 skip_full_check: 10768 kvfree(env->explored_states); 10769 10770 if (ret == 0) 10771 ret = check_max_stack_depth(env); 10772 10773 /* instruction rewrites happen after this point */ 10774 if (is_priv) { 10775 if (ret == 0) 10776 opt_hard_wire_dead_code_branches(env); 10777 if (ret == 0) 10778 ret = opt_remove_dead_code(env); 10779 if (ret == 0) 10780 ret = opt_remove_nops(env); 10781 } else { 10782 if (ret == 0) 10783 sanitize_dead_code(env); 10784 } 10785 10786 if (ret == 0) 10787 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10788 ret = convert_ctx_accesses(env); 10789 10790 if (ret == 0) 10791 ret = fixup_bpf_calls(env); 10792 10793 /* do 32-bit optimization after insn patching has done so those patched 10794 * insns could be handled correctly. 10795 */ 10796 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10797 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10798 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10799 : false; 10800 } 10801 10802 if (ret == 0) 10803 ret = fixup_call_args(env); 10804 10805 env->verification_time = ktime_get_ns() - start_time; 10806 print_verification_stats(env); 10807 10808 if (log->level && bpf_verifier_log_full(log)) 10809 ret = -ENOSPC; 10810 if (log->level && !log->ubuf) { 10811 ret = -EFAULT; 10812 goto err_release_maps; 10813 } 10814 10815 if (ret == 0 && env->used_map_cnt) { 10816 /* if program passed verifier, update used_maps in bpf_prog_info */ 10817 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10818 sizeof(env->used_maps[0]), 10819 GFP_KERNEL); 10820 10821 if (!env->prog->aux->used_maps) { 10822 ret = -ENOMEM; 10823 goto err_release_maps; 10824 } 10825 10826 memcpy(env->prog->aux->used_maps, env->used_maps, 10827 sizeof(env->used_maps[0]) * env->used_map_cnt); 10828 env->prog->aux->used_map_cnt = env->used_map_cnt; 10829 10830 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10831 * bpf_ld_imm64 instructions 10832 */ 10833 convert_pseudo_ld_imm64(env); 10834 } 10835 10836 if (ret == 0) 10837 adjust_btf_func(env); 10838 10839 err_release_maps: 10840 if (!env->prog->aux->used_maps) 10841 /* if we didn't copy map pointers into bpf_prog_info, release 10842 * them now. Otherwise free_used_maps() will release them. 10843 */ 10844 release_maps(env); 10845 10846 /* extension progs temporarily inherit the attach_type of their targets 10847 for verification purposes, so set it back to zero before returning 10848 */ 10849 if (env->prog->type == BPF_PROG_TYPE_EXT) 10850 env->prog->expected_attach_type = 0; 10851 10852 *prog = env->prog; 10853 err_unlock: 10854 if (!is_priv) 10855 mutex_unlock(&bpf_verifier_lock); 10856 vfree(env->insn_aux_data); 10857 err_free_env: 10858 kfree(env); 10859 return ret; 10860 } 10861