xref: /openbmc/linux/kernel/bpf/verifier.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 };
265 
266 struct btf *btf_vmlinux;
267 
268 static DEFINE_MUTEX(bpf_verifier_lock);
269 
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 	const struct bpf_line_info *linfo;
274 	const struct bpf_prog *prog;
275 	u32 i, nr_linfo;
276 
277 	prog = env->prog;
278 	nr_linfo = prog->aux->nr_linfo;
279 
280 	if (!nr_linfo || insn_off >= prog->len)
281 		return NULL;
282 
283 	linfo = prog->aux->linfo;
284 	for (i = 1; i < nr_linfo; i++)
285 		if (insn_off < linfo[i].insn_off)
286 			break;
287 
288 	return &linfo[i - 1];
289 }
290 
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 		       va_list args)
293 {
294 	unsigned int n;
295 
296 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297 
298 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 		  "verifier log line truncated - local buffer too short\n");
300 
301 	n = min(log->len_total - log->len_used - 1, n);
302 	log->kbuf[n] = '\0';
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		pr_err("BPF:%s\n", log->kbuf);
306 		return;
307 	}
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 	       type == PTR_TO_SOCKET_OR_NULL ||
451 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
453 	       type == PTR_TO_BTF_ID_OR_NULL ||
454 	       type == PTR_TO_MEM_OR_NULL ||
455 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 	       type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458 
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 	return reg->type == PTR_TO_MAP_VALUE &&
462 		map_value_has_spin_lock(reg->map_ptr);
463 }
464 
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 	return type == PTR_TO_SOCKET ||
468 		type == PTR_TO_SOCKET_OR_NULL ||
469 		type == PTR_TO_TCP_SOCK ||
470 		type == PTR_TO_TCP_SOCK_OR_NULL ||
471 		type == PTR_TO_MEM ||
472 		type == PTR_TO_MEM_OR_NULL;
473 }
474 
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479 
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 	       type == ARG_PTR_TO_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_CTX_OR_NULL ||
485 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 	       type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489 
490 /* Determine whether the function releases some resources allocated by another
491  * function call. The first reference type argument will be assumed to be
492  * released by release_reference().
493  */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_sk_release ||
497 	       func_id == BPF_FUNC_ringbuf_submit ||
498 	       func_id == BPF_FUNC_ringbuf_discard;
499 }
500 
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 	return func_id == BPF_FUNC_sk_lookup_tcp ||
504 		func_id == BPF_FUNC_sk_lookup_udp ||
505 		func_id == BPF_FUNC_skc_lookup_tcp ||
506 		func_id == BPF_FUNC_map_lookup_elem ||
507 	        func_id == BPF_FUNC_ringbuf_reserve;
508 }
509 
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 				const struct bpf_map *map)
512 {
513 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514 
515 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 	    func_id == BPF_FUNC_sk_lookup_udp ||
517 	    func_id == BPF_FUNC_skc_lookup_tcp ||
518 	    func_id == BPF_FUNC_ringbuf_reserve)
519 		return true;
520 
521 	if (func_id == BPF_FUNC_map_lookup_elem &&
522 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 	     map_type == BPF_MAP_TYPE_SOCKHASH))
524 		return true;
525 
526 	return false;
527 }
528 
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 	return func_id == BPF_FUNC_tcp_sock ||
532 		func_id == BPF_FUNC_sk_fullsock ||
533 		func_id == BPF_FUNC_skc_to_tcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 		func_id == BPF_FUNC_skc_to_udp6_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 	return BPF_CLASS(insn->code) == BPF_STX &&
543 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
544 	       insn->imm == BPF_CMPXCHG;
545 }
546 
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 	[NOT_INIT]		= "?",
550 	[SCALAR_VALUE]		= "inv",
551 	[PTR_TO_CTX]		= "ctx",
552 	[CONST_PTR_TO_MAP]	= "map_ptr",
553 	[PTR_TO_MAP_VALUE]	= "map_value",
554 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 	[PTR_TO_STACK]		= "fp",
556 	[PTR_TO_PACKET]		= "pkt",
557 	[PTR_TO_PACKET_META]	= "pkt_meta",
558 	[PTR_TO_PACKET_END]	= "pkt_end",
559 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
560 	[PTR_TO_SOCKET]		= "sock",
561 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 	[PTR_TO_SOCK_COMMON]	= "sock_common",
563 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
565 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
567 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
568 	[PTR_TO_BTF_ID]		= "ptr_",
569 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
570 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
571 	[PTR_TO_MEM]		= "mem",
572 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
573 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
574 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
576 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 	[PTR_TO_FUNC]		= "func",
578 	[PTR_TO_MAP_KEY]	= "map_key",
579 };
580 
581 static char slot_type_char[] = {
582 	[STACK_INVALID]	= '?',
583 	[STACK_SPILL]	= 'r',
584 	[STACK_MISC]	= 'm',
585 	[STACK_ZERO]	= '0',
586 };
587 
588 static void print_liveness(struct bpf_verifier_env *env,
589 			   enum bpf_reg_liveness live)
590 {
591 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 	    verbose(env, "_");
593 	if (live & REG_LIVE_READ)
594 		verbose(env, "r");
595 	if (live & REG_LIVE_WRITTEN)
596 		verbose(env, "w");
597 	if (live & REG_LIVE_DONE)
598 		verbose(env, "D");
599 }
600 
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 				   const struct bpf_reg_state *reg)
603 {
604 	struct bpf_verifier_state *cur = env->cur_state;
605 
606 	return cur->frame[reg->frameno];
607 }
608 
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613 
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 				 const struct bpf_func_state *state)
616 {
617 	const struct bpf_reg_state *reg;
618 	enum bpf_reg_type t;
619 	int i;
620 
621 	if (state->frameno)
622 		verbose(env, " frame%d:", state->frameno);
623 	for (i = 0; i < MAX_BPF_REG; i++) {
624 		reg = &state->regs[i];
625 		t = reg->type;
626 		if (t == NOT_INIT)
627 			continue;
628 		verbose(env, " R%d", i);
629 		print_liveness(env, reg->live);
630 		verbose(env, "=%s", reg_type_str[t]);
631 		if (t == SCALAR_VALUE && reg->precise)
632 			verbose(env, "P");
633 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 		    tnum_is_const(reg->var_off)) {
635 			/* reg->off should be 0 for SCALAR_VALUE */
636 			verbose(env, "%lld", reg->var_off.value + reg->off);
637 		} else {
638 			if (t == PTR_TO_BTF_ID ||
639 			    t == PTR_TO_BTF_ID_OR_NULL ||
640 			    t == PTR_TO_PERCPU_BTF_ID)
641 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 			verbose(env, "(id=%d", reg->id);
643 			if (reg_type_may_be_refcounted_or_null(t))
644 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 			if (t != SCALAR_VALUE)
646 				verbose(env, ",off=%d", reg->off);
647 			if (type_is_pkt_pointer(t))
648 				verbose(env, ",r=%d", reg->range);
649 			else if (t == CONST_PTR_TO_MAP ||
650 				 t == PTR_TO_MAP_KEY ||
651 				 t == PTR_TO_MAP_VALUE ||
652 				 t == PTR_TO_MAP_VALUE_OR_NULL)
653 				verbose(env, ",ks=%d,vs=%d",
654 					reg->map_ptr->key_size,
655 					reg->map_ptr->value_size);
656 			if (tnum_is_const(reg->var_off)) {
657 				/* Typically an immediate SCALAR_VALUE, but
658 				 * could be a pointer whose offset is too big
659 				 * for reg->off
660 				 */
661 				verbose(env, ",imm=%llx", reg->var_off.value);
662 			} else {
663 				if (reg->smin_value != reg->umin_value &&
664 				    reg->smin_value != S64_MIN)
665 					verbose(env, ",smin_value=%lld",
666 						(long long)reg->smin_value);
667 				if (reg->smax_value != reg->umax_value &&
668 				    reg->smax_value != S64_MAX)
669 					verbose(env, ",smax_value=%lld",
670 						(long long)reg->smax_value);
671 				if (reg->umin_value != 0)
672 					verbose(env, ",umin_value=%llu",
673 						(unsigned long long)reg->umin_value);
674 				if (reg->umax_value != U64_MAX)
675 					verbose(env, ",umax_value=%llu",
676 						(unsigned long long)reg->umax_value);
677 				if (!tnum_is_unknown(reg->var_off)) {
678 					char tn_buf[48];
679 
680 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 					verbose(env, ",var_off=%s", tn_buf);
682 				}
683 				if (reg->s32_min_value != reg->smin_value &&
684 				    reg->s32_min_value != S32_MIN)
685 					verbose(env, ",s32_min_value=%d",
686 						(int)(reg->s32_min_value));
687 				if (reg->s32_max_value != reg->smax_value &&
688 				    reg->s32_max_value != S32_MAX)
689 					verbose(env, ",s32_max_value=%d",
690 						(int)(reg->s32_max_value));
691 				if (reg->u32_min_value != reg->umin_value &&
692 				    reg->u32_min_value != U32_MIN)
693 					verbose(env, ",u32_min_value=%d",
694 						(int)(reg->u32_min_value));
695 				if (reg->u32_max_value != reg->umax_value &&
696 				    reg->u32_max_value != U32_MAX)
697 					verbose(env, ",u32_max_value=%d",
698 						(int)(reg->u32_max_value));
699 			}
700 			verbose(env, ")");
701 		}
702 	}
703 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 		char types_buf[BPF_REG_SIZE + 1];
705 		bool valid = false;
706 		int j;
707 
708 		for (j = 0; j < BPF_REG_SIZE; j++) {
709 			if (state->stack[i].slot_type[j] != STACK_INVALID)
710 				valid = true;
711 			types_buf[j] = slot_type_char[
712 					state->stack[i].slot_type[j]];
713 		}
714 		types_buf[BPF_REG_SIZE] = 0;
715 		if (!valid)
716 			continue;
717 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 		print_liveness(env, state->stack[i].spilled_ptr.live);
719 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 			reg = &state->stack[i].spilled_ptr;
721 			t = reg->type;
722 			verbose(env, "=%s", reg_type_str[t]);
723 			if (t == SCALAR_VALUE && reg->precise)
724 				verbose(env, "P");
725 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 				verbose(env, "%lld", reg->var_off.value + reg->off);
727 		} else {
728 			verbose(env, "=%s", types_buf);
729 		}
730 	}
731 	if (state->acquired_refs && state->refs[0].id) {
732 		verbose(env, " refs=%d", state->refs[0].id);
733 		for (i = 1; i < state->acquired_refs; i++)
734 			if (state->refs[i].id)
735 				verbose(env, ",%d", state->refs[i].id);
736 	}
737 	verbose(env, "\n");
738 }
739 
740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741  * small to hold src. This is different from krealloc since we don't want to preserve
742  * the contents of dst.
743  *
744  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745  * not be allocated.
746  */
747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
748 {
749 	size_t bytes;
750 
751 	if (ZERO_OR_NULL_PTR(src))
752 		goto out;
753 
754 	if (unlikely(check_mul_overflow(n, size, &bytes)))
755 		return NULL;
756 
757 	if (ksize(dst) < bytes) {
758 		kfree(dst);
759 		dst = kmalloc_track_caller(bytes, flags);
760 		if (!dst)
761 			return NULL;
762 	}
763 
764 	memcpy(dst, src, bytes);
765 out:
766 	return dst ? dst : ZERO_SIZE_PTR;
767 }
768 
769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
770  * small to hold new_n items. new items are zeroed out if the array grows.
771  *
772  * Contrary to krealloc_array, does not free arr if new_n is zero.
773  */
774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775 {
776 	if (!new_n || old_n == new_n)
777 		goto out;
778 
779 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 	if (!arr)
781 		return NULL;
782 
783 	if (new_n > old_n)
784 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
785 
786 out:
787 	return arr ? arr : ZERO_SIZE_PTR;
788 }
789 
790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791 {
792 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
794 	if (!dst->refs)
795 		return -ENOMEM;
796 
797 	dst->acquired_refs = src->acquired_refs;
798 	return 0;
799 }
800 
801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802 {
803 	size_t n = src->allocated_stack / BPF_REG_SIZE;
804 
805 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 				GFP_KERNEL);
807 	if (!dst->stack)
808 		return -ENOMEM;
809 
810 	dst->allocated_stack = src->allocated_stack;
811 	return 0;
812 }
813 
814 static int resize_reference_state(struct bpf_func_state *state, size_t n)
815 {
816 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 				    sizeof(struct bpf_reference_state));
818 	if (!state->refs)
819 		return -ENOMEM;
820 
821 	state->acquired_refs = n;
822 	return 0;
823 }
824 
825 static int grow_stack_state(struct bpf_func_state *state, int size)
826 {
827 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828 
829 	if (old_n >= n)
830 		return 0;
831 
832 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 	if (!state->stack)
834 		return -ENOMEM;
835 
836 	state->allocated_stack = size;
837 	return 0;
838 }
839 
840 /* Acquire a pointer id from the env and update the state->refs to include
841  * this new pointer reference.
842  * On success, returns a valid pointer id to associate with the register
843  * On failure, returns a negative errno.
844  */
845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
846 {
847 	struct bpf_func_state *state = cur_func(env);
848 	int new_ofs = state->acquired_refs;
849 	int id, err;
850 
851 	err = resize_reference_state(state, state->acquired_refs + 1);
852 	if (err)
853 		return err;
854 	id = ++env->id_gen;
855 	state->refs[new_ofs].id = id;
856 	state->refs[new_ofs].insn_idx = insn_idx;
857 
858 	return id;
859 }
860 
861 /* release function corresponding to acquire_reference_state(). Idempotent. */
862 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
863 {
864 	int i, last_idx;
865 
866 	last_idx = state->acquired_refs - 1;
867 	for (i = 0; i < state->acquired_refs; i++) {
868 		if (state->refs[i].id == ptr_id) {
869 			if (last_idx && i != last_idx)
870 				memcpy(&state->refs[i], &state->refs[last_idx],
871 				       sizeof(*state->refs));
872 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 			state->acquired_refs--;
874 			return 0;
875 		}
876 	}
877 	return -EINVAL;
878 }
879 
880 static void free_func_state(struct bpf_func_state *state)
881 {
882 	if (!state)
883 		return;
884 	kfree(state->refs);
885 	kfree(state->stack);
886 	kfree(state);
887 }
888 
889 static void clear_jmp_history(struct bpf_verifier_state *state)
890 {
891 	kfree(state->jmp_history);
892 	state->jmp_history = NULL;
893 	state->jmp_history_cnt = 0;
894 }
895 
896 static void free_verifier_state(struct bpf_verifier_state *state,
897 				bool free_self)
898 {
899 	int i;
900 
901 	for (i = 0; i <= state->curframe; i++) {
902 		free_func_state(state->frame[i]);
903 		state->frame[i] = NULL;
904 	}
905 	clear_jmp_history(state);
906 	if (free_self)
907 		kfree(state);
908 }
909 
910 /* copy verifier state from src to dst growing dst stack space
911  * when necessary to accommodate larger src stack
912  */
913 static int copy_func_state(struct bpf_func_state *dst,
914 			   const struct bpf_func_state *src)
915 {
916 	int err;
917 
918 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 	err = copy_reference_state(dst, src);
920 	if (err)
921 		return err;
922 	return copy_stack_state(dst, src);
923 }
924 
925 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 			       const struct bpf_verifier_state *src)
927 {
928 	struct bpf_func_state *dst;
929 	int i, err;
930 
931 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 					    GFP_USER);
934 	if (!dst_state->jmp_history)
935 		return -ENOMEM;
936 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
937 
938 	/* if dst has more stack frames then src frame, free them */
939 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 		free_func_state(dst_state->frame[i]);
941 		dst_state->frame[i] = NULL;
942 	}
943 	dst_state->speculative = src->speculative;
944 	dst_state->curframe = src->curframe;
945 	dst_state->active_spin_lock = src->active_spin_lock;
946 	dst_state->branches = src->branches;
947 	dst_state->parent = src->parent;
948 	dst_state->first_insn_idx = src->first_insn_idx;
949 	dst_state->last_insn_idx = src->last_insn_idx;
950 	for (i = 0; i <= src->curframe; i++) {
951 		dst = dst_state->frame[i];
952 		if (!dst) {
953 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 			if (!dst)
955 				return -ENOMEM;
956 			dst_state->frame[i] = dst;
957 		}
958 		err = copy_func_state(dst, src->frame[i]);
959 		if (err)
960 			return err;
961 	}
962 	return 0;
963 }
964 
965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966 {
967 	while (st) {
968 		u32 br = --st->branches;
969 
970 		/* WARN_ON(br > 1) technically makes sense here,
971 		 * but see comment in push_stack(), hence:
972 		 */
973 		WARN_ONCE((int)br < 0,
974 			  "BUG update_branch_counts:branches_to_explore=%d\n",
975 			  br);
976 		if (br)
977 			break;
978 		st = st->parent;
979 	}
980 }
981 
982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
983 		     int *insn_idx, bool pop_log)
984 {
985 	struct bpf_verifier_state *cur = env->cur_state;
986 	struct bpf_verifier_stack_elem *elem, *head = env->head;
987 	int err;
988 
989 	if (env->head == NULL)
990 		return -ENOENT;
991 
992 	if (cur) {
993 		err = copy_verifier_state(cur, &head->st);
994 		if (err)
995 			return err;
996 	}
997 	if (pop_log)
998 		bpf_vlog_reset(&env->log, head->log_pos);
999 	if (insn_idx)
1000 		*insn_idx = head->insn_idx;
1001 	if (prev_insn_idx)
1002 		*prev_insn_idx = head->prev_insn_idx;
1003 	elem = head->next;
1004 	free_verifier_state(&head->st, false);
1005 	kfree(head);
1006 	env->head = elem;
1007 	env->stack_size--;
1008 	return 0;
1009 }
1010 
1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012 					     int insn_idx, int prev_insn_idx,
1013 					     bool speculative)
1014 {
1015 	struct bpf_verifier_state *cur = env->cur_state;
1016 	struct bpf_verifier_stack_elem *elem;
1017 	int err;
1018 
1019 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020 	if (!elem)
1021 		goto err;
1022 
1023 	elem->insn_idx = insn_idx;
1024 	elem->prev_insn_idx = prev_insn_idx;
1025 	elem->next = env->head;
1026 	elem->log_pos = env->log.len_used;
1027 	env->head = elem;
1028 	env->stack_size++;
1029 	err = copy_verifier_state(&elem->st, cur);
1030 	if (err)
1031 		goto err;
1032 	elem->st.speculative |= speculative;
1033 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 		verbose(env, "The sequence of %d jumps is too complex.\n",
1035 			env->stack_size);
1036 		goto err;
1037 	}
1038 	if (elem->st.parent) {
1039 		++elem->st.parent->branches;
1040 		/* WARN_ON(branches > 2) technically makes sense here,
1041 		 * but
1042 		 * 1. speculative states will bump 'branches' for non-branch
1043 		 * instructions
1044 		 * 2. is_state_visited() heuristics may decide not to create
1045 		 * a new state for a sequence of branches and all such current
1046 		 * and cloned states will be pointing to a single parent state
1047 		 * which might have large 'branches' count.
1048 		 */
1049 	}
1050 	return &elem->st;
1051 err:
1052 	free_verifier_state(env->cur_state, true);
1053 	env->cur_state = NULL;
1054 	/* pop all elements and return */
1055 	while (!pop_stack(env, NULL, NULL, false));
1056 	return NULL;
1057 }
1058 
1059 #define CALLER_SAVED_REGS 6
1060 static const int caller_saved[CALLER_SAVED_REGS] = {
1061 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062 };
1063 
1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 				struct bpf_reg_state *reg);
1066 
1067 /* This helper doesn't clear reg->id */
1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069 {
1070 	reg->var_off = tnum_const(imm);
1071 	reg->smin_value = (s64)imm;
1072 	reg->smax_value = (s64)imm;
1073 	reg->umin_value = imm;
1074 	reg->umax_value = imm;
1075 
1076 	reg->s32_min_value = (s32)imm;
1077 	reg->s32_max_value = (s32)imm;
1078 	reg->u32_min_value = (u32)imm;
1079 	reg->u32_max_value = (u32)imm;
1080 }
1081 
1082 /* Mark the unknown part of a register (variable offset or scalar value) as
1083  * known to have the value @imm.
1084  */
1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086 {
1087 	/* Clear id, off, and union(map_ptr, range) */
1088 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 	___mark_reg_known(reg, imm);
1091 }
1092 
1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094 {
1095 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 	reg->s32_min_value = (s32)imm;
1097 	reg->s32_max_value = (s32)imm;
1098 	reg->u32_min_value = (u32)imm;
1099 	reg->u32_max_value = (u32)imm;
1100 }
1101 
1102 /* Mark the 'variable offset' part of a register as zero.  This should be
1103  * used only on registers holding a pointer type.
1104  */
1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106 {
1107 	__mark_reg_known(reg, 0);
1108 }
1109 
1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 	reg->type = SCALAR_VALUE;
1114 }
1115 
1116 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 				struct bpf_reg_state *regs, u32 regno)
1118 {
1119 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1120 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121 		/* Something bad happened, let's kill all regs */
1122 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1123 			__mark_reg_not_init(env, regs + regno);
1124 		return;
1125 	}
1126 	__mark_reg_known_zero(regs + regno);
1127 }
1128 
1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130 {
1131 	switch (reg->type) {
1132 	case PTR_TO_MAP_VALUE_OR_NULL: {
1133 		const struct bpf_map *map = reg->map_ptr;
1134 
1135 		if (map->inner_map_meta) {
1136 			reg->type = CONST_PTR_TO_MAP;
1137 			reg->map_ptr = map->inner_map_meta;
1138 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 			reg->type = PTR_TO_XDP_SOCK;
1140 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 			reg->type = PTR_TO_SOCKET;
1143 		} else {
1144 			reg->type = PTR_TO_MAP_VALUE;
1145 		}
1146 		break;
1147 	}
1148 	case PTR_TO_SOCKET_OR_NULL:
1149 		reg->type = PTR_TO_SOCKET;
1150 		break;
1151 	case PTR_TO_SOCK_COMMON_OR_NULL:
1152 		reg->type = PTR_TO_SOCK_COMMON;
1153 		break;
1154 	case PTR_TO_TCP_SOCK_OR_NULL:
1155 		reg->type = PTR_TO_TCP_SOCK;
1156 		break;
1157 	case PTR_TO_BTF_ID_OR_NULL:
1158 		reg->type = PTR_TO_BTF_ID;
1159 		break;
1160 	case PTR_TO_MEM_OR_NULL:
1161 		reg->type = PTR_TO_MEM;
1162 		break;
1163 	case PTR_TO_RDONLY_BUF_OR_NULL:
1164 		reg->type = PTR_TO_RDONLY_BUF;
1165 		break;
1166 	case PTR_TO_RDWR_BUF_OR_NULL:
1167 		reg->type = PTR_TO_RDWR_BUF;
1168 		break;
1169 	default:
1170 		WARN_ONCE(1, "unknown nullable register type");
1171 	}
1172 }
1173 
1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175 {
1176 	return type_is_pkt_pointer(reg->type);
1177 }
1178 
1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180 {
1181 	return reg_is_pkt_pointer(reg) ||
1182 	       reg->type == PTR_TO_PACKET_END;
1183 }
1184 
1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 				    enum bpf_reg_type which)
1188 {
1189 	/* The register can already have a range from prior markings.
1190 	 * This is fine as long as it hasn't been advanced from its
1191 	 * origin.
1192 	 */
1193 	return reg->type == which &&
1194 	       reg->id == 0 &&
1195 	       reg->off == 0 &&
1196 	       tnum_equals_const(reg->var_off, 0);
1197 }
1198 
1199 /* Reset the min/max bounds of a register */
1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201 {
1202 	reg->smin_value = S64_MIN;
1203 	reg->smax_value = S64_MAX;
1204 	reg->umin_value = 0;
1205 	reg->umax_value = U64_MAX;
1206 
1207 	reg->s32_min_value = S32_MIN;
1208 	reg->s32_max_value = S32_MAX;
1209 	reg->u32_min_value = 0;
1210 	reg->u32_max_value = U32_MAX;
1211 }
1212 
1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214 {
1215 	reg->smin_value = S64_MIN;
1216 	reg->smax_value = S64_MAX;
1217 	reg->umin_value = 0;
1218 	reg->umax_value = U64_MAX;
1219 }
1220 
1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222 {
1223 	reg->s32_min_value = S32_MIN;
1224 	reg->s32_max_value = S32_MAX;
1225 	reg->u32_min_value = 0;
1226 	reg->u32_max_value = U32_MAX;
1227 }
1228 
1229 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230 {
1231 	struct tnum var32_off = tnum_subreg(reg->var_off);
1232 
1233 	/* min signed is max(sign bit) | min(other bits) */
1234 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 			var32_off.value | (var32_off.mask & S32_MIN));
1236 	/* max signed is min(sign bit) | max(other bits) */
1237 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 			var32_off.value | (var32_off.mask & S32_MAX));
1239 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 	reg->u32_max_value = min(reg->u32_max_value,
1241 				 (u32)(var32_off.value | var32_off.mask));
1242 }
1243 
1244 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245 {
1246 	/* min signed is max(sign bit) | min(other bits) */
1247 	reg->smin_value = max_t(s64, reg->smin_value,
1248 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 	/* max signed is min(sign bit) | max(other bits) */
1250 	reg->smax_value = min_t(s64, reg->smax_value,
1251 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 	reg->umax_value = min(reg->umax_value,
1254 			      reg->var_off.value | reg->var_off.mask);
1255 }
1256 
1257 static void __update_reg_bounds(struct bpf_reg_state *reg)
1258 {
1259 	__update_reg32_bounds(reg);
1260 	__update_reg64_bounds(reg);
1261 }
1262 
1263 /* Uses signed min/max values to inform unsigned, and vice-versa */
1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265 {
1266 	/* Learn sign from signed bounds.
1267 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 	 * are the same, so combine.  This works even in the negative case, e.g.
1269 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 	 */
1271 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 		reg->s32_min_value = reg->u32_min_value =
1273 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 		reg->s32_max_value = reg->u32_max_value =
1275 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 		return;
1277 	}
1278 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1279 	 * boundary, so we must be careful.
1280 	 */
1281 	if ((s32)reg->u32_max_value >= 0) {
1282 		/* Positive.  We can't learn anything from the smin, but smax
1283 		 * is positive, hence safe.
1284 		 */
1285 		reg->s32_min_value = reg->u32_min_value;
1286 		reg->s32_max_value = reg->u32_max_value =
1287 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 	} else if ((s32)reg->u32_min_value < 0) {
1289 		/* Negative.  We can't learn anything from the smax, but smin
1290 		 * is negative, hence safe.
1291 		 */
1292 		reg->s32_min_value = reg->u32_min_value =
1293 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 		reg->s32_max_value = reg->u32_max_value;
1295 	}
1296 }
1297 
1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299 {
1300 	/* Learn sign from signed bounds.
1301 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 	 * are the same, so combine.  This works even in the negative case, e.g.
1303 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 	 */
1305 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 							  reg->umin_value);
1308 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 							  reg->umax_value);
1310 		return;
1311 	}
1312 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1313 	 * boundary, so we must be careful.
1314 	 */
1315 	if ((s64)reg->umax_value >= 0) {
1316 		/* Positive.  We can't learn anything from the smin, but smax
1317 		 * is positive, hence safe.
1318 		 */
1319 		reg->smin_value = reg->umin_value;
1320 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 							  reg->umax_value);
1322 	} else if ((s64)reg->umin_value < 0) {
1323 		/* Negative.  We can't learn anything from the smax, but smin
1324 		 * is negative, hence safe.
1325 		 */
1326 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 							  reg->umin_value);
1328 		reg->smax_value = reg->umax_value;
1329 	}
1330 }
1331 
1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333 {
1334 	__reg32_deduce_bounds(reg);
1335 	__reg64_deduce_bounds(reg);
1336 }
1337 
1338 /* Attempts to improve var_off based on unsigned min/max information */
1339 static void __reg_bound_offset(struct bpf_reg_state *reg)
1340 {
1341 	struct tnum var64_off = tnum_intersect(reg->var_off,
1342 					       tnum_range(reg->umin_value,
1343 							  reg->umax_value));
1344 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 						tnum_range(reg->u32_min_value,
1346 							   reg->u32_max_value));
1347 
1348 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349 }
1350 
1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352 {
1353 	reg->umin_value = reg->u32_min_value;
1354 	reg->umax_value = reg->u32_max_value;
1355 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 	 * but must be positive otherwise set to worse case bounds
1357 	 * and refine later from tnum.
1358 	 */
1359 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360 		reg->smax_value = reg->s32_max_value;
1361 	else
1362 		reg->smax_value = U32_MAX;
1363 	if (reg->s32_min_value >= 0)
1364 		reg->smin_value = reg->s32_min_value;
1365 	else
1366 		reg->smin_value = 0;
1367 }
1368 
1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	/* special case when 64-bit register has upper 32-bit register
1372 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 	 * allowing us to use 32-bit bounds directly,
1374 	 */
1375 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 		__reg_assign_32_into_64(reg);
1377 	} else {
1378 		/* Otherwise the best we can do is push lower 32bit known and
1379 		 * unknown bits into register (var_off set from jmp logic)
1380 		 * then learn as much as possible from the 64-bit tnum
1381 		 * known and unknown bits. The previous smin/smax bounds are
1382 		 * invalid here because of jmp32 compare so mark them unknown
1383 		 * so they do not impact tnum bounds calculation.
1384 		 */
1385 		__mark_reg64_unbounded(reg);
1386 		__update_reg_bounds(reg);
1387 	}
1388 
1389 	/* Intersecting with the old var_off might have improved our bounds
1390 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 	 */
1393 	__reg_deduce_bounds(reg);
1394 	__reg_bound_offset(reg);
1395 	__update_reg_bounds(reg);
1396 }
1397 
1398 static bool __reg64_bound_s32(s64 a)
1399 {
1400 	return a > S32_MIN && a < S32_MAX;
1401 }
1402 
1403 static bool __reg64_bound_u32(u64 a)
1404 {
1405 	return a > U32_MIN && a < U32_MAX;
1406 }
1407 
1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409 {
1410 	__mark_reg32_unbounded(reg);
1411 
1412 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413 		reg->s32_min_value = (s32)reg->smin_value;
1414 		reg->s32_max_value = (s32)reg->smax_value;
1415 	}
1416 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417 		reg->u32_min_value = (u32)reg->umin_value;
1418 		reg->u32_max_value = (u32)reg->umax_value;
1419 	}
1420 
1421 	/* Intersecting with the old var_off might have improved our bounds
1422 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 	 */
1425 	__reg_deduce_bounds(reg);
1426 	__reg_bound_offset(reg);
1427 	__update_reg_bounds(reg);
1428 }
1429 
1430 /* Mark a register as having a completely unknown (scalar) value. */
1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 			       struct bpf_reg_state *reg)
1433 {
1434 	/*
1435 	 * Clear type, id, off, and union(map_ptr, range) and
1436 	 * padding between 'type' and union
1437 	 */
1438 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439 	reg->type = SCALAR_VALUE;
1440 	reg->var_off = tnum_unknown;
1441 	reg->frameno = 0;
1442 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443 	__mark_reg_unbounded(reg);
1444 }
1445 
1446 static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 			     struct bpf_reg_state *regs, u32 regno)
1448 {
1449 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1450 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451 		/* Something bad happened, let's kill all regs except FP */
1452 		for (regno = 0; regno < BPF_REG_FP; regno++)
1453 			__mark_reg_not_init(env, regs + regno);
1454 		return;
1455 	}
1456 	__mark_reg_unknown(env, regs + regno);
1457 }
1458 
1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 				struct bpf_reg_state *reg)
1461 {
1462 	__mark_reg_unknown(env, reg);
1463 	reg->type = NOT_INIT;
1464 }
1465 
1466 static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 			      struct bpf_reg_state *regs, u32 regno)
1468 {
1469 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471 		/* Something bad happened, let's kill all regs except FP */
1472 		for (regno = 0; regno < BPF_REG_FP; regno++)
1473 			__mark_reg_not_init(env, regs + regno);
1474 		return;
1475 	}
1476 	__mark_reg_not_init(env, regs + regno);
1477 }
1478 
1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 			    struct bpf_reg_state *regs, u32 regno,
1481 			    enum bpf_reg_type reg_type,
1482 			    struct btf *btf, u32 btf_id)
1483 {
1484 	if (reg_type == SCALAR_VALUE) {
1485 		mark_reg_unknown(env, regs, regno);
1486 		return;
1487 	}
1488 	mark_reg_known_zero(env, regs, regno);
1489 	regs[regno].type = PTR_TO_BTF_ID;
1490 	regs[regno].btf = btf;
1491 	regs[regno].btf_id = btf_id;
1492 }
1493 
1494 #define DEF_NOT_SUBREG	(0)
1495 static void init_reg_state(struct bpf_verifier_env *env,
1496 			   struct bpf_func_state *state)
1497 {
1498 	struct bpf_reg_state *regs = state->regs;
1499 	int i;
1500 
1501 	for (i = 0; i < MAX_BPF_REG; i++) {
1502 		mark_reg_not_init(env, regs, i);
1503 		regs[i].live = REG_LIVE_NONE;
1504 		regs[i].parent = NULL;
1505 		regs[i].subreg_def = DEF_NOT_SUBREG;
1506 	}
1507 
1508 	/* frame pointer */
1509 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1510 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1511 	regs[BPF_REG_FP].frameno = state->frameno;
1512 }
1513 
1514 #define BPF_MAIN_FUNC (-1)
1515 static void init_func_state(struct bpf_verifier_env *env,
1516 			    struct bpf_func_state *state,
1517 			    int callsite, int frameno, int subprogno)
1518 {
1519 	state->callsite = callsite;
1520 	state->frameno = frameno;
1521 	state->subprogno = subprogno;
1522 	init_reg_state(env, state);
1523 }
1524 
1525 enum reg_arg_type {
1526 	SRC_OP,		/* register is used as source operand */
1527 	DST_OP,		/* register is used as destination operand */
1528 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1529 };
1530 
1531 static int cmp_subprogs(const void *a, const void *b)
1532 {
1533 	return ((struct bpf_subprog_info *)a)->start -
1534 	       ((struct bpf_subprog_info *)b)->start;
1535 }
1536 
1537 static int find_subprog(struct bpf_verifier_env *env, int off)
1538 {
1539 	struct bpf_subprog_info *p;
1540 
1541 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1543 	if (!p)
1544 		return -ENOENT;
1545 	return p - env->subprog_info;
1546 
1547 }
1548 
1549 static int add_subprog(struct bpf_verifier_env *env, int off)
1550 {
1551 	int insn_cnt = env->prog->len;
1552 	int ret;
1553 
1554 	if (off >= insn_cnt || off < 0) {
1555 		verbose(env, "call to invalid destination\n");
1556 		return -EINVAL;
1557 	}
1558 	ret = find_subprog(env, off);
1559 	if (ret >= 0)
1560 		return ret;
1561 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562 		verbose(env, "too many subprograms\n");
1563 		return -E2BIG;
1564 	}
1565 	/* determine subprog starts. The end is one before the next starts */
1566 	env->subprog_info[env->subprog_cnt++].start = off;
1567 	sort(env->subprog_info, env->subprog_cnt,
1568 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569 	return env->subprog_cnt - 1;
1570 }
1571 
1572 struct bpf_kfunc_desc {
1573 	struct btf_func_model func_model;
1574 	u32 func_id;
1575 	s32 imm;
1576 };
1577 
1578 #define MAX_KFUNC_DESCS 256
1579 struct bpf_kfunc_desc_tab {
1580 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 	u32 nr_descs;
1582 };
1583 
1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585 {
1586 	const struct bpf_kfunc_desc *d0 = a;
1587 	const struct bpf_kfunc_desc *d1 = b;
1588 
1589 	/* func_id is not greater than BTF_MAX_TYPE */
1590 	return d0->func_id - d1->func_id;
1591 }
1592 
1593 static const struct bpf_kfunc_desc *
1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595 {
1596 	struct bpf_kfunc_desc desc = {
1597 		.func_id = func_id,
1598 	};
1599 	struct bpf_kfunc_desc_tab *tab;
1600 
1601 	tab = prog->aux->kfunc_tab;
1602 	return bsearch(&desc, tab->descs, tab->nr_descs,
1603 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604 }
1605 
1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607 {
1608 	const struct btf_type *func, *func_proto;
1609 	struct bpf_kfunc_desc_tab *tab;
1610 	struct bpf_prog_aux *prog_aux;
1611 	struct bpf_kfunc_desc *desc;
1612 	const char *func_name;
1613 	unsigned long addr;
1614 	int err;
1615 
1616 	prog_aux = env->prog->aux;
1617 	tab = prog_aux->kfunc_tab;
1618 	if (!tab) {
1619 		if (!btf_vmlinux) {
1620 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 			return -ENOTSUPP;
1622 		}
1623 
1624 		if (!env->prog->jit_requested) {
1625 			verbose(env, "JIT is required for calling kernel function\n");
1626 			return -ENOTSUPP;
1627 		}
1628 
1629 		if (!bpf_jit_supports_kfunc_call()) {
1630 			verbose(env, "JIT does not support calling kernel function\n");
1631 			return -ENOTSUPP;
1632 		}
1633 
1634 		if (!env->prog->gpl_compatible) {
1635 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 			return -EINVAL;
1637 		}
1638 
1639 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 		if (!tab)
1641 			return -ENOMEM;
1642 		prog_aux->kfunc_tab = tab;
1643 	}
1644 
1645 	if (find_kfunc_desc(env->prog, func_id))
1646 		return 0;
1647 
1648 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 		verbose(env, "too many different kernel function calls\n");
1650 		return -E2BIG;
1651 	}
1652 
1653 	func = btf_type_by_id(btf_vmlinux, func_id);
1654 	if (!func || !btf_type_is_func(func)) {
1655 		verbose(env, "kernel btf_id %u is not a function\n",
1656 			func_id);
1657 		return -EINVAL;
1658 	}
1659 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 			func_id);
1663 		return -EINVAL;
1664 	}
1665 
1666 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 	addr = kallsyms_lookup_name(func_name);
1668 	if (!addr) {
1669 		verbose(env, "cannot find address for kernel function %s\n",
1670 			func_name);
1671 		return -EINVAL;
1672 	}
1673 
1674 	desc = &tab->descs[tab->nr_descs++];
1675 	desc->func_id = func_id;
1676 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 				     func_proto, func_name,
1679 				     &desc->func_model);
1680 	if (!err)
1681 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 		     kfunc_desc_cmp_by_id, NULL);
1683 	return err;
1684 }
1685 
1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687 {
1688 	const struct bpf_kfunc_desc *d0 = a;
1689 	const struct bpf_kfunc_desc *d1 = b;
1690 
1691 	if (d0->imm > d1->imm)
1692 		return 1;
1693 	else if (d0->imm < d1->imm)
1694 		return -1;
1695 	return 0;
1696 }
1697 
1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699 {
1700 	struct bpf_kfunc_desc_tab *tab;
1701 
1702 	tab = prog->aux->kfunc_tab;
1703 	if (!tab)
1704 		return;
1705 
1706 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 	     kfunc_desc_cmp_by_imm, NULL);
1708 }
1709 
1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711 {
1712 	return !!prog->aux->kfunc_tab;
1713 }
1714 
1715 const struct btf_func_model *
1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 			 const struct bpf_insn *insn)
1718 {
1719 	const struct bpf_kfunc_desc desc = {
1720 		.imm = insn->imm,
1721 	};
1722 	const struct bpf_kfunc_desc *res;
1723 	struct bpf_kfunc_desc_tab *tab;
1724 
1725 	tab = prog->aux->kfunc_tab;
1726 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728 
1729 	return res ? &res->func_model : NULL;
1730 }
1731 
1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733 {
1734 	struct bpf_subprog_info *subprog = env->subprog_info;
1735 	struct bpf_insn *insn = env->prog->insnsi;
1736 	int i, ret, insn_cnt = env->prog->len;
1737 
1738 	/* Add entry function. */
1739 	ret = add_subprog(env, 0);
1740 	if (ret)
1741 		return ret;
1742 
1743 	for (i = 0; i < insn_cnt; i++, insn++) {
1744 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 		    !bpf_pseudo_kfunc_call(insn))
1746 			continue;
1747 
1748 		if (!env->bpf_capable) {
1749 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750 			return -EPERM;
1751 		}
1752 
1753 		if (bpf_pseudo_func(insn)) {
1754 			ret = add_subprog(env, i + insn->imm + 1);
1755 			if (ret >= 0)
1756 				/* remember subprog */
1757 				insn[1].imm = ret;
1758 		} else if (bpf_pseudo_call(insn)) {
1759 			ret = add_subprog(env, i + insn->imm + 1);
1760 		} else {
1761 			ret = add_kfunc_call(env, insn->imm);
1762 		}
1763 
1764 		if (ret < 0)
1765 			return ret;
1766 	}
1767 
1768 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1769 	 * logic. 'subprog_cnt' should not be increased.
1770 	 */
1771 	subprog[env->subprog_cnt].start = insn_cnt;
1772 
1773 	if (env->log.level & BPF_LOG_LEVEL2)
1774 		for (i = 0; i < env->subprog_cnt; i++)
1775 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776 
1777 	return 0;
1778 }
1779 
1780 static int check_subprogs(struct bpf_verifier_env *env)
1781 {
1782 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 	struct bpf_subprog_info *subprog = env->subprog_info;
1784 	struct bpf_insn *insn = env->prog->insnsi;
1785 	int insn_cnt = env->prog->len;
1786 
1787 	/* now check that all jumps are within the same subprog */
1788 	subprog_start = subprog[cur_subprog].start;
1789 	subprog_end = subprog[cur_subprog + 1].start;
1790 	for (i = 0; i < insn_cnt; i++) {
1791 		u8 code = insn[i].code;
1792 
1793 		if (code == (BPF_JMP | BPF_CALL) &&
1794 		    insn[i].imm == BPF_FUNC_tail_call &&
1795 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1796 			subprog[cur_subprog].has_tail_call = true;
1797 		if (BPF_CLASS(code) == BPF_LD &&
1798 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 			subprog[cur_subprog].has_ld_abs = true;
1800 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801 			goto next;
1802 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 			goto next;
1804 		off = i + insn[i].off + 1;
1805 		if (off < subprog_start || off >= subprog_end) {
1806 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 			return -EINVAL;
1808 		}
1809 next:
1810 		if (i == subprog_end - 1) {
1811 			/* to avoid fall-through from one subprog into another
1812 			 * the last insn of the subprog should be either exit
1813 			 * or unconditional jump back
1814 			 */
1815 			if (code != (BPF_JMP | BPF_EXIT) &&
1816 			    code != (BPF_JMP | BPF_JA)) {
1817 				verbose(env, "last insn is not an exit or jmp\n");
1818 				return -EINVAL;
1819 			}
1820 			subprog_start = subprog_end;
1821 			cur_subprog++;
1822 			if (cur_subprog < env->subprog_cnt)
1823 				subprog_end = subprog[cur_subprog + 1].start;
1824 		}
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* Parentage chain of this register (or stack slot) should take care of all
1830  * issues like callee-saved registers, stack slot allocation time, etc.
1831  */
1832 static int mark_reg_read(struct bpf_verifier_env *env,
1833 			 const struct bpf_reg_state *state,
1834 			 struct bpf_reg_state *parent, u8 flag)
1835 {
1836 	bool writes = parent == state->parent; /* Observe write marks */
1837 	int cnt = 0;
1838 
1839 	while (parent) {
1840 		/* if read wasn't screened by an earlier write ... */
1841 		if (writes && state->live & REG_LIVE_WRITTEN)
1842 			break;
1843 		if (parent->live & REG_LIVE_DONE) {
1844 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 				reg_type_str[parent->type],
1846 				parent->var_off.value, parent->off);
1847 			return -EFAULT;
1848 		}
1849 		/* The first condition is more likely to be true than the
1850 		 * second, checked it first.
1851 		 */
1852 		if ((parent->live & REG_LIVE_READ) == flag ||
1853 		    parent->live & REG_LIVE_READ64)
1854 			/* The parentage chain never changes and
1855 			 * this parent was already marked as LIVE_READ.
1856 			 * There is no need to keep walking the chain again and
1857 			 * keep re-marking all parents as LIVE_READ.
1858 			 * This case happens when the same register is read
1859 			 * multiple times without writes into it in-between.
1860 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 			 * then no need to set the weak REG_LIVE_READ32.
1862 			 */
1863 			break;
1864 		/* ... then we depend on parent's value */
1865 		parent->live |= flag;
1866 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 		if (flag == REG_LIVE_READ64)
1868 			parent->live &= ~REG_LIVE_READ32;
1869 		state = parent;
1870 		parent = state->parent;
1871 		writes = true;
1872 		cnt++;
1873 	}
1874 
1875 	if (env->longest_mark_read_walk < cnt)
1876 		env->longest_mark_read_walk = cnt;
1877 	return 0;
1878 }
1879 
1880 /* This function is supposed to be used by the following 32-bit optimization
1881  * code only. It returns TRUE if the source or destination register operates
1882  * on 64-bit, otherwise return FALSE.
1883  */
1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886 {
1887 	u8 code, class, op;
1888 
1889 	code = insn->code;
1890 	class = BPF_CLASS(code);
1891 	op = BPF_OP(code);
1892 	if (class == BPF_JMP) {
1893 		/* BPF_EXIT for "main" will reach here. Return TRUE
1894 		 * conservatively.
1895 		 */
1896 		if (op == BPF_EXIT)
1897 			return true;
1898 		if (op == BPF_CALL) {
1899 			/* BPF to BPF call will reach here because of marking
1900 			 * caller saved clobber with DST_OP_NO_MARK for which we
1901 			 * don't care the register def because they are anyway
1902 			 * marked as NOT_INIT already.
1903 			 */
1904 			if (insn->src_reg == BPF_PSEUDO_CALL)
1905 				return false;
1906 			/* Helper call will reach here because of arg type
1907 			 * check, conservatively return TRUE.
1908 			 */
1909 			if (t == SRC_OP)
1910 				return true;
1911 
1912 			return false;
1913 		}
1914 	}
1915 
1916 	if (class == BPF_ALU64 || class == BPF_JMP ||
1917 	    /* BPF_END always use BPF_ALU class. */
1918 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 		return true;
1920 
1921 	if (class == BPF_ALU || class == BPF_JMP32)
1922 		return false;
1923 
1924 	if (class == BPF_LDX) {
1925 		if (t != SRC_OP)
1926 			return BPF_SIZE(code) == BPF_DW;
1927 		/* LDX source must be ptr. */
1928 		return true;
1929 	}
1930 
1931 	if (class == BPF_STX) {
1932 		/* BPF_STX (including atomic variants) has multiple source
1933 		 * operands, one of which is a ptr. Check whether the caller is
1934 		 * asking about it.
1935 		 */
1936 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937 			return true;
1938 		return BPF_SIZE(code) == BPF_DW;
1939 	}
1940 
1941 	if (class == BPF_LD) {
1942 		u8 mode = BPF_MODE(code);
1943 
1944 		/* LD_IMM64 */
1945 		if (mode == BPF_IMM)
1946 			return true;
1947 
1948 		/* Both LD_IND and LD_ABS return 32-bit data. */
1949 		if (t != SRC_OP)
1950 			return  false;
1951 
1952 		/* Implicit ctx ptr. */
1953 		if (regno == BPF_REG_6)
1954 			return true;
1955 
1956 		/* Explicit source could be any width. */
1957 		return true;
1958 	}
1959 
1960 	if (class == BPF_ST)
1961 		/* The only source register for BPF_ST is a ptr. */
1962 		return true;
1963 
1964 	/* Conservatively return true at default. */
1965 	return true;
1966 }
1967 
1968 /* Return the regno defined by the insn, or -1. */
1969 static int insn_def_regno(const struct bpf_insn *insn)
1970 {
1971 	switch (BPF_CLASS(insn->code)) {
1972 	case BPF_JMP:
1973 	case BPF_JMP32:
1974 	case BPF_ST:
1975 		return -1;
1976 	case BPF_STX:
1977 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 		    (insn->imm & BPF_FETCH)) {
1979 			if (insn->imm == BPF_CMPXCHG)
1980 				return BPF_REG_0;
1981 			else
1982 				return insn->src_reg;
1983 		} else {
1984 			return -1;
1985 		}
1986 	default:
1987 		return insn->dst_reg;
1988 	}
1989 }
1990 
1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993 {
1994 	int dst_reg = insn_def_regno(insn);
1995 
1996 	if (dst_reg == -1)
1997 		return false;
1998 
1999 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000 }
2001 
2002 static void mark_insn_zext(struct bpf_verifier_env *env,
2003 			   struct bpf_reg_state *reg)
2004 {
2005 	s32 def_idx = reg->subreg_def;
2006 
2007 	if (def_idx == DEF_NOT_SUBREG)
2008 		return;
2009 
2010 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 	/* The dst will be zero extended, so won't be sub-register anymore. */
2012 	reg->subreg_def = DEF_NOT_SUBREG;
2013 }
2014 
2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016 			 enum reg_arg_type t)
2017 {
2018 	struct bpf_verifier_state *vstate = env->cur_state;
2019 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021 	struct bpf_reg_state *reg, *regs = state->regs;
2022 	bool rw64;
2023 
2024 	if (regno >= MAX_BPF_REG) {
2025 		verbose(env, "R%d is invalid\n", regno);
2026 		return -EINVAL;
2027 	}
2028 
2029 	reg = &regs[regno];
2030 	rw64 = is_reg64(env, insn, regno, reg, t);
2031 	if (t == SRC_OP) {
2032 		/* check whether register used as source operand can be read */
2033 		if (reg->type == NOT_INIT) {
2034 			verbose(env, "R%d !read_ok\n", regno);
2035 			return -EACCES;
2036 		}
2037 		/* We don't need to worry about FP liveness because it's read-only */
2038 		if (regno == BPF_REG_FP)
2039 			return 0;
2040 
2041 		if (rw64)
2042 			mark_insn_zext(env, reg);
2043 
2044 		return mark_reg_read(env, reg, reg->parent,
2045 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046 	} else {
2047 		/* check whether register used as dest operand can be written to */
2048 		if (regno == BPF_REG_FP) {
2049 			verbose(env, "frame pointer is read only\n");
2050 			return -EACCES;
2051 		}
2052 		reg->live |= REG_LIVE_WRITTEN;
2053 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054 		if (t == DST_OP)
2055 			mark_reg_unknown(env, regs, regno);
2056 	}
2057 	return 0;
2058 }
2059 
2060 /* for any branch, call, exit record the history of jmps in the given state */
2061 static int push_jmp_history(struct bpf_verifier_env *env,
2062 			    struct bpf_verifier_state *cur)
2063 {
2064 	u32 cnt = cur->jmp_history_cnt;
2065 	struct bpf_idx_pair *p;
2066 
2067 	cnt++;
2068 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 	if (!p)
2070 		return -ENOMEM;
2071 	p[cnt - 1].idx = env->insn_idx;
2072 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 	cur->jmp_history = p;
2074 	cur->jmp_history_cnt = cnt;
2075 	return 0;
2076 }
2077 
2078 /* Backtrack one insn at a time. If idx is not at the top of recorded
2079  * history then previous instruction came from straight line execution.
2080  */
2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 			     u32 *history)
2083 {
2084 	u32 cnt = *history;
2085 
2086 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 		i = st->jmp_history[cnt - 1].prev_idx;
2088 		(*history)--;
2089 	} else {
2090 		i--;
2091 	}
2092 	return i;
2093 }
2094 
2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096 {
2097 	const struct btf_type *func;
2098 
2099 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 		return NULL;
2101 
2102 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2104 }
2105 
2106 /* For given verifier state backtrack_insn() is called from the last insn to
2107  * the first insn. Its purpose is to compute a bitmask of registers and
2108  * stack slots that needs precision in the parent verifier state.
2109  */
2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 			  u32 *reg_mask, u64 *stack_mask)
2112 {
2113 	const struct bpf_insn_cbs cbs = {
2114 		.cb_call	= disasm_kfunc_name,
2115 		.cb_print	= verbose,
2116 		.private_data	= env,
2117 	};
2118 	struct bpf_insn *insn = env->prog->insnsi + idx;
2119 	u8 class = BPF_CLASS(insn->code);
2120 	u8 opcode = BPF_OP(insn->code);
2121 	u8 mode = BPF_MODE(insn->code);
2122 	u32 dreg = 1u << insn->dst_reg;
2123 	u32 sreg = 1u << insn->src_reg;
2124 	u32 spi;
2125 
2126 	if (insn->code == 0)
2127 		return 0;
2128 	if (env->log.level & BPF_LOG_LEVEL) {
2129 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 		verbose(env, "%d: ", idx);
2131 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 	}
2133 
2134 	if (class == BPF_ALU || class == BPF_ALU64) {
2135 		if (!(*reg_mask & dreg))
2136 			return 0;
2137 		if (opcode == BPF_MOV) {
2138 			if (BPF_SRC(insn->code) == BPF_X) {
2139 				/* dreg = sreg
2140 				 * dreg needs precision after this insn
2141 				 * sreg needs precision before this insn
2142 				 */
2143 				*reg_mask &= ~dreg;
2144 				*reg_mask |= sreg;
2145 			} else {
2146 				/* dreg = K
2147 				 * dreg needs precision after this insn.
2148 				 * Corresponding register is already marked
2149 				 * as precise=true in this verifier state.
2150 				 * No further markings in parent are necessary
2151 				 */
2152 				*reg_mask &= ~dreg;
2153 			}
2154 		} else {
2155 			if (BPF_SRC(insn->code) == BPF_X) {
2156 				/* dreg += sreg
2157 				 * both dreg and sreg need precision
2158 				 * before this insn
2159 				 */
2160 				*reg_mask |= sreg;
2161 			} /* else dreg += K
2162 			   * dreg still needs precision before this insn
2163 			   */
2164 		}
2165 	} else if (class == BPF_LDX) {
2166 		if (!(*reg_mask & dreg))
2167 			return 0;
2168 		*reg_mask &= ~dreg;
2169 
2170 		/* scalars can only be spilled into stack w/o losing precision.
2171 		 * Load from any other memory can be zero extended.
2172 		 * The desire to keep that precision is already indicated
2173 		 * by 'precise' mark in corresponding register of this state.
2174 		 * No further tracking necessary.
2175 		 */
2176 		if (insn->src_reg != BPF_REG_FP)
2177 			return 0;
2178 		if (BPF_SIZE(insn->code) != BPF_DW)
2179 			return 0;
2180 
2181 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 		 * that [fp - off] slot contains scalar that needs to be
2183 		 * tracked with precision
2184 		 */
2185 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 		if (spi >= 64) {
2187 			verbose(env, "BUG spi %d\n", spi);
2188 			WARN_ONCE(1, "verifier backtracking bug");
2189 			return -EFAULT;
2190 		}
2191 		*stack_mask |= 1ull << spi;
2192 	} else if (class == BPF_STX || class == BPF_ST) {
2193 		if (*reg_mask & dreg)
2194 			/* stx & st shouldn't be using _scalar_ dst_reg
2195 			 * to access memory. It means backtracking
2196 			 * encountered a case of pointer subtraction.
2197 			 */
2198 			return -ENOTSUPP;
2199 		/* scalars can only be spilled into stack */
2200 		if (insn->dst_reg != BPF_REG_FP)
2201 			return 0;
2202 		if (BPF_SIZE(insn->code) != BPF_DW)
2203 			return 0;
2204 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 		if (spi >= 64) {
2206 			verbose(env, "BUG spi %d\n", spi);
2207 			WARN_ONCE(1, "verifier backtracking bug");
2208 			return -EFAULT;
2209 		}
2210 		if (!(*stack_mask & (1ull << spi)))
2211 			return 0;
2212 		*stack_mask &= ~(1ull << spi);
2213 		if (class == BPF_STX)
2214 			*reg_mask |= sreg;
2215 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2216 		if (opcode == BPF_CALL) {
2217 			if (insn->src_reg == BPF_PSEUDO_CALL)
2218 				return -ENOTSUPP;
2219 			/* regular helper call sets R0 */
2220 			*reg_mask &= ~1;
2221 			if (*reg_mask & 0x3f) {
2222 				/* if backtracing was looking for registers R1-R5
2223 				 * they should have been found already.
2224 				 */
2225 				verbose(env, "BUG regs %x\n", *reg_mask);
2226 				WARN_ONCE(1, "verifier backtracking bug");
2227 				return -EFAULT;
2228 			}
2229 		} else if (opcode == BPF_EXIT) {
2230 			return -ENOTSUPP;
2231 		}
2232 	} else if (class == BPF_LD) {
2233 		if (!(*reg_mask & dreg))
2234 			return 0;
2235 		*reg_mask &= ~dreg;
2236 		/* It's ld_imm64 or ld_abs or ld_ind.
2237 		 * For ld_imm64 no further tracking of precision
2238 		 * into parent is necessary
2239 		 */
2240 		if (mode == BPF_IND || mode == BPF_ABS)
2241 			/* to be analyzed */
2242 			return -ENOTSUPP;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /* the scalar precision tracking algorithm:
2248  * . at the start all registers have precise=false.
2249  * . scalar ranges are tracked as normal through alu and jmp insns.
2250  * . once precise value of the scalar register is used in:
2251  *   .  ptr + scalar alu
2252  *   . if (scalar cond K|scalar)
2253  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2254  *   backtrack through the verifier states and mark all registers and
2255  *   stack slots with spilled constants that these scalar regisers
2256  *   should be precise.
2257  * . during state pruning two registers (or spilled stack slots)
2258  *   are equivalent if both are not precise.
2259  *
2260  * Note the verifier cannot simply walk register parentage chain,
2261  * since many different registers and stack slots could have been
2262  * used to compute single precise scalar.
2263  *
2264  * The approach of starting with precise=true for all registers and then
2265  * backtrack to mark a register as not precise when the verifier detects
2266  * that program doesn't care about specific value (e.g., when helper
2267  * takes register as ARG_ANYTHING parameter) is not safe.
2268  *
2269  * It's ok to walk single parentage chain of the verifier states.
2270  * It's possible that this backtracking will go all the way till 1st insn.
2271  * All other branches will be explored for needing precision later.
2272  *
2273  * The backtracking needs to deal with cases like:
2274  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275  * r9 -= r8
2276  * r5 = r9
2277  * if r5 > 0x79f goto pc+7
2278  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279  * r5 += 1
2280  * ...
2281  * call bpf_perf_event_output#25
2282  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283  *
2284  * and this case:
2285  * r6 = 1
2286  * call foo // uses callee's r6 inside to compute r0
2287  * r0 += r6
2288  * if r0 == 0 goto
2289  *
2290  * to track above reg_mask/stack_mask needs to be independent for each frame.
2291  *
2292  * Also if parent's curframe > frame where backtracking started,
2293  * the verifier need to mark registers in both frames, otherwise callees
2294  * may incorrectly prune callers. This is similar to
2295  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296  *
2297  * For now backtracking falls back into conservative marking.
2298  */
2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 				     struct bpf_verifier_state *st)
2301 {
2302 	struct bpf_func_state *func;
2303 	struct bpf_reg_state *reg;
2304 	int i, j;
2305 
2306 	/* big hammer: mark all scalars precise in this path.
2307 	 * pop_stack may still get !precise scalars.
2308 	 */
2309 	for (; st; st = st->parent)
2310 		for (i = 0; i <= st->curframe; i++) {
2311 			func = st->frame[i];
2312 			for (j = 0; j < BPF_REG_FP; j++) {
2313 				reg = &func->regs[j];
2314 				if (reg->type != SCALAR_VALUE)
2315 					continue;
2316 				reg->precise = true;
2317 			}
2318 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 					continue;
2321 				reg = &func->stack[j].spilled_ptr;
2322 				if (reg->type != SCALAR_VALUE)
2323 					continue;
2324 				reg->precise = true;
2325 			}
2326 		}
2327 }
2328 
2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 				  int spi)
2331 {
2332 	struct bpf_verifier_state *st = env->cur_state;
2333 	int first_idx = st->first_insn_idx;
2334 	int last_idx = env->insn_idx;
2335 	struct bpf_func_state *func;
2336 	struct bpf_reg_state *reg;
2337 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339 	bool skip_first = true;
2340 	bool new_marks = false;
2341 	int i, err;
2342 
2343 	if (!env->bpf_capable)
2344 		return 0;
2345 
2346 	func = st->frame[st->curframe];
2347 	if (regno >= 0) {
2348 		reg = &func->regs[regno];
2349 		if (reg->type != SCALAR_VALUE) {
2350 			WARN_ONCE(1, "backtracing misuse");
2351 			return -EFAULT;
2352 		}
2353 		if (!reg->precise)
2354 			new_marks = true;
2355 		else
2356 			reg_mask = 0;
2357 		reg->precise = true;
2358 	}
2359 
2360 	while (spi >= 0) {
2361 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 			stack_mask = 0;
2363 			break;
2364 		}
2365 		reg = &func->stack[spi].spilled_ptr;
2366 		if (reg->type != SCALAR_VALUE) {
2367 			stack_mask = 0;
2368 			break;
2369 		}
2370 		if (!reg->precise)
2371 			new_marks = true;
2372 		else
2373 			stack_mask = 0;
2374 		reg->precise = true;
2375 		break;
2376 	}
2377 
2378 	if (!new_marks)
2379 		return 0;
2380 	if (!reg_mask && !stack_mask)
2381 		return 0;
2382 	for (;;) {
2383 		DECLARE_BITMAP(mask, 64);
2384 		u32 history = st->jmp_history_cnt;
2385 
2386 		if (env->log.level & BPF_LOG_LEVEL)
2387 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 		for (i = last_idx;;) {
2389 			if (skip_first) {
2390 				err = 0;
2391 				skip_first = false;
2392 			} else {
2393 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394 			}
2395 			if (err == -ENOTSUPP) {
2396 				mark_all_scalars_precise(env, st);
2397 				return 0;
2398 			} else if (err) {
2399 				return err;
2400 			}
2401 			if (!reg_mask && !stack_mask)
2402 				/* Found assignment(s) into tracked register in this state.
2403 				 * Since this state is already marked, just return.
2404 				 * Nothing to be tracked further in the parent state.
2405 				 */
2406 				return 0;
2407 			if (i == first_idx)
2408 				break;
2409 			i = get_prev_insn_idx(st, i, &history);
2410 			if (i >= env->prog->len) {
2411 				/* This can happen if backtracking reached insn 0
2412 				 * and there are still reg_mask or stack_mask
2413 				 * to backtrack.
2414 				 * It means the backtracking missed the spot where
2415 				 * particular register was initialized with a constant.
2416 				 */
2417 				verbose(env, "BUG backtracking idx %d\n", i);
2418 				WARN_ONCE(1, "verifier backtracking bug");
2419 				return -EFAULT;
2420 			}
2421 		}
2422 		st = st->parent;
2423 		if (!st)
2424 			break;
2425 
2426 		new_marks = false;
2427 		func = st->frame[st->curframe];
2428 		bitmap_from_u64(mask, reg_mask);
2429 		for_each_set_bit(i, mask, 32) {
2430 			reg = &func->regs[i];
2431 			if (reg->type != SCALAR_VALUE) {
2432 				reg_mask &= ~(1u << i);
2433 				continue;
2434 			}
2435 			if (!reg->precise)
2436 				new_marks = true;
2437 			reg->precise = true;
2438 		}
2439 
2440 		bitmap_from_u64(mask, stack_mask);
2441 		for_each_set_bit(i, mask, 64) {
2442 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443 				/* the sequence of instructions:
2444 				 * 2: (bf) r3 = r10
2445 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 				 * doesn't contain jmps. It's backtracked
2448 				 * as a single block.
2449 				 * During backtracking insn 3 is not recognized as
2450 				 * stack access, so at the end of backtracking
2451 				 * stack slot fp-8 is still marked in stack_mask.
2452 				 * However the parent state may not have accessed
2453 				 * fp-8 and it's "unallocated" stack space.
2454 				 * In such case fallback to conservative.
2455 				 */
2456 				mark_all_scalars_precise(env, st);
2457 				return 0;
2458 			}
2459 
2460 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 				stack_mask &= ~(1ull << i);
2462 				continue;
2463 			}
2464 			reg = &func->stack[i].spilled_ptr;
2465 			if (reg->type != SCALAR_VALUE) {
2466 				stack_mask &= ~(1ull << i);
2467 				continue;
2468 			}
2469 			if (!reg->precise)
2470 				new_marks = true;
2471 			reg->precise = true;
2472 		}
2473 		if (env->log.level & BPF_LOG_LEVEL) {
2474 			print_verifier_state(env, func);
2475 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 				new_marks ? "didn't have" : "already had",
2477 				reg_mask, stack_mask);
2478 		}
2479 
2480 		if (!reg_mask && !stack_mask)
2481 			break;
2482 		if (!new_marks)
2483 			break;
2484 
2485 		last_idx = st->last_insn_idx;
2486 		first_idx = st->first_insn_idx;
2487 	}
2488 	return 0;
2489 }
2490 
2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492 {
2493 	return __mark_chain_precision(env, regno, -1);
2494 }
2495 
2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497 {
2498 	return __mark_chain_precision(env, -1, spi);
2499 }
2500 
2501 static bool is_spillable_regtype(enum bpf_reg_type type)
2502 {
2503 	switch (type) {
2504 	case PTR_TO_MAP_VALUE:
2505 	case PTR_TO_MAP_VALUE_OR_NULL:
2506 	case PTR_TO_STACK:
2507 	case PTR_TO_CTX:
2508 	case PTR_TO_PACKET:
2509 	case PTR_TO_PACKET_META:
2510 	case PTR_TO_PACKET_END:
2511 	case PTR_TO_FLOW_KEYS:
2512 	case CONST_PTR_TO_MAP:
2513 	case PTR_TO_SOCKET:
2514 	case PTR_TO_SOCKET_OR_NULL:
2515 	case PTR_TO_SOCK_COMMON:
2516 	case PTR_TO_SOCK_COMMON_OR_NULL:
2517 	case PTR_TO_TCP_SOCK:
2518 	case PTR_TO_TCP_SOCK_OR_NULL:
2519 	case PTR_TO_XDP_SOCK:
2520 	case PTR_TO_BTF_ID:
2521 	case PTR_TO_BTF_ID_OR_NULL:
2522 	case PTR_TO_RDONLY_BUF:
2523 	case PTR_TO_RDONLY_BUF_OR_NULL:
2524 	case PTR_TO_RDWR_BUF:
2525 	case PTR_TO_RDWR_BUF_OR_NULL:
2526 	case PTR_TO_PERCPU_BTF_ID:
2527 	case PTR_TO_MEM:
2528 	case PTR_TO_MEM_OR_NULL:
2529 	case PTR_TO_FUNC:
2530 	case PTR_TO_MAP_KEY:
2531 		return true;
2532 	default:
2533 		return false;
2534 	}
2535 }
2536 
2537 /* Does this register contain a constant zero? */
2538 static bool register_is_null(struct bpf_reg_state *reg)
2539 {
2540 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541 }
2542 
2543 static bool register_is_const(struct bpf_reg_state *reg)
2544 {
2545 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546 }
2547 
2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549 {
2550 	return tnum_is_unknown(reg->var_off) &&
2551 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555 }
2556 
2557 static bool register_is_bounded(struct bpf_reg_state *reg)
2558 {
2559 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560 }
2561 
2562 static bool __is_pointer_value(bool allow_ptr_leaks,
2563 			       const struct bpf_reg_state *reg)
2564 {
2565 	if (allow_ptr_leaks)
2566 		return false;
2567 
2568 	return reg->type != SCALAR_VALUE;
2569 }
2570 
2571 static void save_register_state(struct bpf_func_state *state,
2572 				int spi, struct bpf_reg_state *reg)
2573 {
2574 	int i;
2575 
2576 	state->stack[spi].spilled_ptr = *reg;
2577 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578 
2579 	for (i = 0; i < BPF_REG_SIZE; i++)
2580 		state->stack[spi].slot_type[i] = STACK_SPILL;
2581 }
2582 
2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584  * stack boundary and alignment are checked in check_mem_access()
2585  */
2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 				       /* stack frame we're writing to */
2588 				       struct bpf_func_state *state,
2589 				       int off, int size, int value_regno,
2590 				       int insn_idx)
2591 {
2592 	struct bpf_func_state *cur; /* state of the current function */
2593 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595 	struct bpf_reg_state *reg = NULL;
2596 
2597 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598 	if (err)
2599 		return err;
2600 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 	 * so it's aligned access and [off, off + size) are within stack limits
2602 	 */
2603 	if (!env->allow_ptr_leaks &&
2604 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 	    size != BPF_REG_SIZE) {
2606 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 		return -EACCES;
2608 	}
2609 
2610 	cur = env->cur_state->frame[env->cur_state->curframe];
2611 	if (value_regno >= 0)
2612 		reg = &cur->regs[value_regno];
2613 
2614 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2615 	    !register_is_null(reg) && env->bpf_capable) {
2616 		if (dst_reg != BPF_REG_FP) {
2617 			/* The backtracking logic can only recognize explicit
2618 			 * stack slot address like [fp - 8]. Other spill of
2619 			 * scalar via different register has to be conservative.
2620 			 * Backtrack from here and mark all registers as precise
2621 			 * that contributed into 'reg' being a constant.
2622 			 */
2623 			err = mark_chain_precision(env, value_regno);
2624 			if (err)
2625 				return err;
2626 		}
2627 		save_register_state(state, spi, reg);
2628 	} else if (reg && is_spillable_regtype(reg->type)) {
2629 		/* register containing pointer is being spilled into stack */
2630 		if (size != BPF_REG_SIZE) {
2631 			verbose_linfo(env, insn_idx, "; ");
2632 			verbose(env, "invalid size of register spill\n");
2633 			return -EACCES;
2634 		}
2635 
2636 		if (state != cur && reg->type == PTR_TO_STACK) {
2637 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2638 			return -EINVAL;
2639 		}
2640 
2641 		if (!env->bypass_spec_v4) {
2642 			bool sanitize = false;
2643 
2644 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2645 			    register_is_const(&state->stack[spi].spilled_ptr))
2646 				sanitize = true;
2647 			for (i = 0; i < BPF_REG_SIZE; i++)
2648 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2649 					sanitize = true;
2650 					break;
2651 				}
2652 			if (sanitize) {
2653 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2654 				int soff = (-spi - 1) * BPF_REG_SIZE;
2655 
2656 				/* detected reuse of integer stack slot with a pointer
2657 				 * which means either llvm is reusing stack slot or
2658 				 * an attacker is trying to exploit CVE-2018-3639
2659 				 * (speculative store bypass)
2660 				 * Have to sanitize that slot with preemptive
2661 				 * store of zero.
2662 				 */
2663 				if (*poff && *poff != soff) {
2664 					/* disallow programs where single insn stores
2665 					 * into two different stack slots, since verifier
2666 					 * cannot sanitize them
2667 					 */
2668 					verbose(env,
2669 						"insn %d cannot access two stack slots fp%d and fp%d",
2670 						insn_idx, *poff, soff);
2671 					return -EINVAL;
2672 				}
2673 				*poff = soff;
2674 			}
2675 		}
2676 		save_register_state(state, spi, reg);
2677 	} else {
2678 		u8 type = STACK_MISC;
2679 
2680 		/* regular write of data into stack destroys any spilled ptr */
2681 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2682 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2683 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2684 			for (i = 0; i < BPF_REG_SIZE; i++)
2685 				state->stack[spi].slot_type[i] = STACK_MISC;
2686 
2687 		/* only mark the slot as written if all 8 bytes were written
2688 		 * otherwise read propagation may incorrectly stop too soon
2689 		 * when stack slots are partially written.
2690 		 * This heuristic means that read propagation will be
2691 		 * conservative, since it will add reg_live_read marks
2692 		 * to stack slots all the way to first state when programs
2693 		 * writes+reads less than 8 bytes
2694 		 */
2695 		if (size == BPF_REG_SIZE)
2696 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2697 
2698 		/* when we zero initialize stack slots mark them as such */
2699 		if (reg && register_is_null(reg)) {
2700 			/* backtracking doesn't work for STACK_ZERO yet. */
2701 			err = mark_chain_precision(env, value_regno);
2702 			if (err)
2703 				return err;
2704 			type = STACK_ZERO;
2705 		}
2706 
2707 		/* Mark slots affected by this stack write. */
2708 		for (i = 0; i < size; i++)
2709 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2710 				type;
2711 	}
2712 	return 0;
2713 }
2714 
2715 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2716  * known to contain a variable offset.
2717  * This function checks whether the write is permitted and conservatively
2718  * tracks the effects of the write, considering that each stack slot in the
2719  * dynamic range is potentially written to.
2720  *
2721  * 'off' includes 'regno->off'.
2722  * 'value_regno' can be -1, meaning that an unknown value is being written to
2723  * the stack.
2724  *
2725  * Spilled pointers in range are not marked as written because we don't know
2726  * what's going to be actually written. This means that read propagation for
2727  * future reads cannot be terminated by this write.
2728  *
2729  * For privileged programs, uninitialized stack slots are considered
2730  * initialized by this write (even though we don't know exactly what offsets
2731  * are going to be written to). The idea is that we don't want the verifier to
2732  * reject future reads that access slots written to through variable offsets.
2733  */
2734 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2735 				     /* func where register points to */
2736 				     struct bpf_func_state *state,
2737 				     int ptr_regno, int off, int size,
2738 				     int value_regno, int insn_idx)
2739 {
2740 	struct bpf_func_state *cur; /* state of the current function */
2741 	int min_off, max_off;
2742 	int i, err;
2743 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2744 	bool writing_zero = false;
2745 	/* set if the fact that we're writing a zero is used to let any
2746 	 * stack slots remain STACK_ZERO
2747 	 */
2748 	bool zero_used = false;
2749 
2750 	cur = env->cur_state->frame[env->cur_state->curframe];
2751 	ptr_reg = &cur->regs[ptr_regno];
2752 	min_off = ptr_reg->smin_value + off;
2753 	max_off = ptr_reg->smax_value + off + size;
2754 	if (value_regno >= 0)
2755 		value_reg = &cur->regs[value_regno];
2756 	if (value_reg && register_is_null(value_reg))
2757 		writing_zero = true;
2758 
2759 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2760 	if (err)
2761 		return err;
2762 
2763 
2764 	/* Variable offset writes destroy any spilled pointers in range. */
2765 	for (i = min_off; i < max_off; i++) {
2766 		u8 new_type, *stype;
2767 		int slot, spi;
2768 
2769 		slot = -i - 1;
2770 		spi = slot / BPF_REG_SIZE;
2771 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2772 
2773 		if (!env->allow_ptr_leaks
2774 				&& *stype != NOT_INIT
2775 				&& *stype != SCALAR_VALUE) {
2776 			/* Reject the write if there's are spilled pointers in
2777 			 * range. If we didn't reject here, the ptr status
2778 			 * would be erased below (even though not all slots are
2779 			 * actually overwritten), possibly opening the door to
2780 			 * leaks.
2781 			 */
2782 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2783 				insn_idx, i);
2784 			return -EINVAL;
2785 		}
2786 
2787 		/* Erase all spilled pointers. */
2788 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2789 
2790 		/* Update the slot type. */
2791 		new_type = STACK_MISC;
2792 		if (writing_zero && *stype == STACK_ZERO) {
2793 			new_type = STACK_ZERO;
2794 			zero_used = true;
2795 		}
2796 		/* If the slot is STACK_INVALID, we check whether it's OK to
2797 		 * pretend that it will be initialized by this write. The slot
2798 		 * might not actually be written to, and so if we mark it as
2799 		 * initialized future reads might leak uninitialized memory.
2800 		 * For privileged programs, we will accept such reads to slots
2801 		 * that may or may not be written because, if we're reject
2802 		 * them, the error would be too confusing.
2803 		 */
2804 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2805 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2806 					insn_idx, i);
2807 			return -EINVAL;
2808 		}
2809 		*stype = new_type;
2810 	}
2811 	if (zero_used) {
2812 		/* backtracking doesn't work for STACK_ZERO yet. */
2813 		err = mark_chain_precision(env, value_regno);
2814 		if (err)
2815 			return err;
2816 	}
2817 	return 0;
2818 }
2819 
2820 /* When register 'dst_regno' is assigned some values from stack[min_off,
2821  * max_off), we set the register's type according to the types of the
2822  * respective stack slots. If all the stack values are known to be zeros, then
2823  * so is the destination reg. Otherwise, the register is considered to be
2824  * SCALAR. This function does not deal with register filling; the caller must
2825  * ensure that all spilled registers in the stack range have been marked as
2826  * read.
2827  */
2828 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2829 				/* func where src register points to */
2830 				struct bpf_func_state *ptr_state,
2831 				int min_off, int max_off, int dst_regno)
2832 {
2833 	struct bpf_verifier_state *vstate = env->cur_state;
2834 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2835 	int i, slot, spi;
2836 	u8 *stype;
2837 	int zeros = 0;
2838 
2839 	for (i = min_off; i < max_off; i++) {
2840 		slot = -i - 1;
2841 		spi = slot / BPF_REG_SIZE;
2842 		stype = ptr_state->stack[spi].slot_type;
2843 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2844 			break;
2845 		zeros++;
2846 	}
2847 	if (zeros == max_off - min_off) {
2848 		/* any access_size read into register is zero extended,
2849 		 * so the whole register == const_zero
2850 		 */
2851 		__mark_reg_const_zero(&state->regs[dst_regno]);
2852 		/* backtracking doesn't support STACK_ZERO yet,
2853 		 * so mark it precise here, so that later
2854 		 * backtracking can stop here.
2855 		 * Backtracking may not need this if this register
2856 		 * doesn't participate in pointer adjustment.
2857 		 * Forward propagation of precise flag is not
2858 		 * necessary either. This mark is only to stop
2859 		 * backtracking. Any register that contributed
2860 		 * to const 0 was marked precise before spill.
2861 		 */
2862 		state->regs[dst_regno].precise = true;
2863 	} else {
2864 		/* have read misc data from the stack */
2865 		mark_reg_unknown(env, state->regs, dst_regno);
2866 	}
2867 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2868 }
2869 
2870 /* Read the stack at 'off' and put the results into the register indicated by
2871  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2872  * spilled reg.
2873  *
2874  * 'dst_regno' can be -1, meaning that the read value is not going to a
2875  * register.
2876  *
2877  * The access is assumed to be within the current stack bounds.
2878  */
2879 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2880 				      /* func where src register points to */
2881 				      struct bpf_func_state *reg_state,
2882 				      int off, int size, int dst_regno)
2883 {
2884 	struct bpf_verifier_state *vstate = env->cur_state;
2885 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2886 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2887 	struct bpf_reg_state *reg;
2888 	u8 *stype;
2889 
2890 	stype = reg_state->stack[spi].slot_type;
2891 	reg = &reg_state->stack[spi].spilled_ptr;
2892 
2893 	if (stype[0] == STACK_SPILL) {
2894 		if (size != BPF_REG_SIZE) {
2895 			if (reg->type != SCALAR_VALUE) {
2896 				verbose_linfo(env, env->insn_idx, "; ");
2897 				verbose(env, "invalid size of register fill\n");
2898 				return -EACCES;
2899 			}
2900 			if (dst_regno >= 0) {
2901 				mark_reg_unknown(env, state->regs, dst_regno);
2902 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2903 			}
2904 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2905 			return 0;
2906 		}
2907 		for (i = 1; i < BPF_REG_SIZE; i++) {
2908 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2909 				verbose(env, "corrupted spill memory\n");
2910 				return -EACCES;
2911 			}
2912 		}
2913 
2914 		if (dst_regno >= 0) {
2915 			/* restore register state from stack */
2916 			state->regs[dst_regno] = *reg;
2917 			/* mark reg as written since spilled pointer state likely
2918 			 * has its liveness marks cleared by is_state_visited()
2919 			 * which resets stack/reg liveness for state transitions
2920 			 */
2921 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2922 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2923 			/* If dst_regno==-1, the caller is asking us whether
2924 			 * it is acceptable to use this value as a SCALAR_VALUE
2925 			 * (e.g. for XADD).
2926 			 * We must not allow unprivileged callers to do that
2927 			 * with spilled pointers.
2928 			 */
2929 			verbose(env, "leaking pointer from stack off %d\n",
2930 				off);
2931 			return -EACCES;
2932 		}
2933 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2934 	} else {
2935 		u8 type;
2936 
2937 		for (i = 0; i < size; i++) {
2938 			type = stype[(slot - i) % BPF_REG_SIZE];
2939 			if (type == STACK_MISC)
2940 				continue;
2941 			if (type == STACK_ZERO)
2942 				continue;
2943 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2944 				off, i, size);
2945 			return -EACCES;
2946 		}
2947 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2948 		if (dst_regno >= 0)
2949 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2950 	}
2951 	return 0;
2952 }
2953 
2954 enum stack_access_src {
2955 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2956 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2957 };
2958 
2959 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2960 					 int regno, int off, int access_size,
2961 					 bool zero_size_allowed,
2962 					 enum stack_access_src type,
2963 					 struct bpf_call_arg_meta *meta);
2964 
2965 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2966 {
2967 	return cur_regs(env) + regno;
2968 }
2969 
2970 /* Read the stack at 'ptr_regno + off' and put the result into the register
2971  * 'dst_regno'.
2972  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2973  * but not its variable offset.
2974  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2975  *
2976  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2977  * filling registers (i.e. reads of spilled register cannot be detected when
2978  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2979  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2980  * offset; for a fixed offset check_stack_read_fixed_off should be used
2981  * instead.
2982  */
2983 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2984 				    int ptr_regno, int off, int size, int dst_regno)
2985 {
2986 	/* The state of the source register. */
2987 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2988 	struct bpf_func_state *ptr_state = func(env, reg);
2989 	int err;
2990 	int min_off, max_off;
2991 
2992 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2993 	 */
2994 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2995 					    false, ACCESS_DIRECT, NULL);
2996 	if (err)
2997 		return err;
2998 
2999 	min_off = reg->smin_value + off;
3000 	max_off = reg->smax_value + off;
3001 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3002 	return 0;
3003 }
3004 
3005 /* check_stack_read dispatches to check_stack_read_fixed_off or
3006  * check_stack_read_var_off.
3007  *
3008  * The caller must ensure that the offset falls within the allocated stack
3009  * bounds.
3010  *
3011  * 'dst_regno' is a register which will receive the value from the stack. It
3012  * can be -1, meaning that the read value is not going to a register.
3013  */
3014 static int check_stack_read(struct bpf_verifier_env *env,
3015 			    int ptr_regno, int off, int size,
3016 			    int dst_regno)
3017 {
3018 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3019 	struct bpf_func_state *state = func(env, reg);
3020 	int err;
3021 	/* Some accesses are only permitted with a static offset. */
3022 	bool var_off = !tnum_is_const(reg->var_off);
3023 
3024 	/* The offset is required to be static when reads don't go to a
3025 	 * register, in order to not leak pointers (see
3026 	 * check_stack_read_fixed_off).
3027 	 */
3028 	if (dst_regno < 0 && var_off) {
3029 		char tn_buf[48];
3030 
3031 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3032 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3033 			tn_buf, off, size);
3034 		return -EACCES;
3035 	}
3036 	/* Variable offset is prohibited for unprivileged mode for simplicity
3037 	 * since it requires corresponding support in Spectre masking for stack
3038 	 * ALU. See also retrieve_ptr_limit().
3039 	 */
3040 	if (!env->bypass_spec_v1 && var_off) {
3041 		char tn_buf[48];
3042 
3043 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3044 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3045 				ptr_regno, tn_buf);
3046 		return -EACCES;
3047 	}
3048 
3049 	if (!var_off) {
3050 		off += reg->var_off.value;
3051 		err = check_stack_read_fixed_off(env, state, off, size,
3052 						 dst_regno);
3053 	} else {
3054 		/* Variable offset stack reads need more conservative handling
3055 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3056 		 * branch.
3057 		 */
3058 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3059 					       dst_regno);
3060 	}
3061 	return err;
3062 }
3063 
3064 
3065 /* check_stack_write dispatches to check_stack_write_fixed_off or
3066  * check_stack_write_var_off.
3067  *
3068  * 'ptr_regno' is the register used as a pointer into the stack.
3069  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3070  * 'value_regno' is the register whose value we're writing to the stack. It can
3071  * be -1, meaning that we're not writing from a register.
3072  *
3073  * The caller must ensure that the offset falls within the maximum stack size.
3074  */
3075 static int check_stack_write(struct bpf_verifier_env *env,
3076 			     int ptr_regno, int off, int size,
3077 			     int value_regno, int insn_idx)
3078 {
3079 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3080 	struct bpf_func_state *state = func(env, reg);
3081 	int err;
3082 
3083 	if (tnum_is_const(reg->var_off)) {
3084 		off += reg->var_off.value;
3085 		err = check_stack_write_fixed_off(env, state, off, size,
3086 						  value_regno, insn_idx);
3087 	} else {
3088 		/* Variable offset stack reads need more conservative handling
3089 		 * than fixed offset ones.
3090 		 */
3091 		err = check_stack_write_var_off(env, state,
3092 						ptr_regno, off, size,
3093 						value_regno, insn_idx);
3094 	}
3095 	return err;
3096 }
3097 
3098 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3099 				 int off, int size, enum bpf_access_type type)
3100 {
3101 	struct bpf_reg_state *regs = cur_regs(env);
3102 	struct bpf_map *map = regs[regno].map_ptr;
3103 	u32 cap = bpf_map_flags_to_cap(map);
3104 
3105 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3106 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3107 			map->value_size, off, size);
3108 		return -EACCES;
3109 	}
3110 
3111 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3112 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3113 			map->value_size, off, size);
3114 		return -EACCES;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3121 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3122 			      int off, int size, u32 mem_size,
3123 			      bool zero_size_allowed)
3124 {
3125 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3126 	struct bpf_reg_state *reg;
3127 
3128 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3129 		return 0;
3130 
3131 	reg = &cur_regs(env)[regno];
3132 	switch (reg->type) {
3133 	case PTR_TO_MAP_KEY:
3134 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3135 			mem_size, off, size);
3136 		break;
3137 	case PTR_TO_MAP_VALUE:
3138 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3139 			mem_size, off, size);
3140 		break;
3141 	case PTR_TO_PACKET:
3142 	case PTR_TO_PACKET_META:
3143 	case PTR_TO_PACKET_END:
3144 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3145 			off, size, regno, reg->id, off, mem_size);
3146 		break;
3147 	case PTR_TO_MEM:
3148 	default:
3149 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3150 			mem_size, off, size);
3151 	}
3152 
3153 	return -EACCES;
3154 }
3155 
3156 /* check read/write into a memory region with possible variable offset */
3157 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3158 				   int off, int size, u32 mem_size,
3159 				   bool zero_size_allowed)
3160 {
3161 	struct bpf_verifier_state *vstate = env->cur_state;
3162 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3163 	struct bpf_reg_state *reg = &state->regs[regno];
3164 	int err;
3165 
3166 	/* We may have adjusted the register pointing to memory region, so we
3167 	 * need to try adding each of min_value and max_value to off
3168 	 * to make sure our theoretical access will be safe.
3169 	 */
3170 	if (env->log.level & BPF_LOG_LEVEL)
3171 		print_verifier_state(env, state);
3172 
3173 	/* The minimum value is only important with signed
3174 	 * comparisons where we can't assume the floor of a
3175 	 * value is 0.  If we are using signed variables for our
3176 	 * index'es we need to make sure that whatever we use
3177 	 * will have a set floor within our range.
3178 	 */
3179 	if (reg->smin_value < 0 &&
3180 	    (reg->smin_value == S64_MIN ||
3181 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3182 	      reg->smin_value + off < 0)) {
3183 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3184 			regno);
3185 		return -EACCES;
3186 	}
3187 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3188 				 mem_size, zero_size_allowed);
3189 	if (err) {
3190 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3191 			regno);
3192 		return err;
3193 	}
3194 
3195 	/* If we haven't set a max value then we need to bail since we can't be
3196 	 * sure we won't do bad things.
3197 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3198 	 */
3199 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3200 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3201 			regno);
3202 		return -EACCES;
3203 	}
3204 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3205 				 mem_size, zero_size_allowed);
3206 	if (err) {
3207 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3208 			regno);
3209 		return err;
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 /* check read/write into a map element with possible variable offset */
3216 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3217 			    int off, int size, bool zero_size_allowed)
3218 {
3219 	struct bpf_verifier_state *vstate = env->cur_state;
3220 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3221 	struct bpf_reg_state *reg = &state->regs[regno];
3222 	struct bpf_map *map = reg->map_ptr;
3223 	int err;
3224 
3225 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3226 				      zero_size_allowed);
3227 	if (err)
3228 		return err;
3229 
3230 	if (map_value_has_spin_lock(map)) {
3231 		u32 lock = map->spin_lock_off;
3232 
3233 		/* if any part of struct bpf_spin_lock can be touched by
3234 		 * load/store reject this program.
3235 		 * To check that [x1, x2) overlaps with [y1, y2)
3236 		 * it is sufficient to check x1 < y2 && y1 < x2.
3237 		 */
3238 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3239 		     lock < reg->umax_value + off + size) {
3240 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3241 			return -EACCES;
3242 		}
3243 	}
3244 	return err;
3245 }
3246 
3247 #define MAX_PACKET_OFF 0xffff
3248 
3249 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3250 {
3251 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3252 }
3253 
3254 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3255 				       const struct bpf_call_arg_meta *meta,
3256 				       enum bpf_access_type t)
3257 {
3258 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3259 
3260 	switch (prog_type) {
3261 	/* Program types only with direct read access go here! */
3262 	case BPF_PROG_TYPE_LWT_IN:
3263 	case BPF_PROG_TYPE_LWT_OUT:
3264 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3265 	case BPF_PROG_TYPE_SK_REUSEPORT:
3266 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3267 	case BPF_PROG_TYPE_CGROUP_SKB:
3268 		if (t == BPF_WRITE)
3269 			return false;
3270 		fallthrough;
3271 
3272 	/* Program types with direct read + write access go here! */
3273 	case BPF_PROG_TYPE_SCHED_CLS:
3274 	case BPF_PROG_TYPE_SCHED_ACT:
3275 	case BPF_PROG_TYPE_XDP:
3276 	case BPF_PROG_TYPE_LWT_XMIT:
3277 	case BPF_PROG_TYPE_SK_SKB:
3278 	case BPF_PROG_TYPE_SK_MSG:
3279 		if (meta)
3280 			return meta->pkt_access;
3281 
3282 		env->seen_direct_write = true;
3283 		return true;
3284 
3285 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3286 		if (t == BPF_WRITE)
3287 			env->seen_direct_write = true;
3288 
3289 		return true;
3290 
3291 	default:
3292 		return false;
3293 	}
3294 }
3295 
3296 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3297 			       int size, bool zero_size_allowed)
3298 {
3299 	struct bpf_reg_state *regs = cur_regs(env);
3300 	struct bpf_reg_state *reg = &regs[regno];
3301 	int err;
3302 
3303 	/* We may have added a variable offset to the packet pointer; but any
3304 	 * reg->range we have comes after that.  We are only checking the fixed
3305 	 * offset.
3306 	 */
3307 
3308 	/* We don't allow negative numbers, because we aren't tracking enough
3309 	 * detail to prove they're safe.
3310 	 */
3311 	if (reg->smin_value < 0) {
3312 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3313 			regno);
3314 		return -EACCES;
3315 	}
3316 
3317 	err = reg->range < 0 ? -EINVAL :
3318 	      __check_mem_access(env, regno, off, size, reg->range,
3319 				 zero_size_allowed);
3320 	if (err) {
3321 		verbose(env, "R%d offset is outside of the packet\n", regno);
3322 		return err;
3323 	}
3324 
3325 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3326 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3327 	 * otherwise find_good_pkt_pointers would have refused to set range info
3328 	 * that __check_mem_access would have rejected this pkt access.
3329 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3330 	 */
3331 	env->prog->aux->max_pkt_offset =
3332 		max_t(u32, env->prog->aux->max_pkt_offset,
3333 		      off + reg->umax_value + size - 1);
3334 
3335 	return err;
3336 }
3337 
3338 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3339 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3340 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3341 			    struct btf **btf, u32 *btf_id)
3342 {
3343 	struct bpf_insn_access_aux info = {
3344 		.reg_type = *reg_type,
3345 		.log = &env->log,
3346 	};
3347 
3348 	if (env->ops->is_valid_access &&
3349 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3350 		/* A non zero info.ctx_field_size indicates that this field is a
3351 		 * candidate for later verifier transformation to load the whole
3352 		 * field and then apply a mask when accessed with a narrower
3353 		 * access than actual ctx access size. A zero info.ctx_field_size
3354 		 * will only allow for whole field access and rejects any other
3355 		 * type of narrower access.
3356 		 */
3357 		*reg_type = info.reg_type;
3358 
3359 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3360 			*btf = info.btf;
3361 			*btf_id = info.btf_id;
3362 		} else {
3363 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3364 		}
3365 		/* remember the offset of last byte accessed in ctx */
3366 		if (env->prog->aux->max_ctx_offset < off + size)
3367 			env->prog->aux->max_ctx_offset = off + size;
3368 		return 0;
3369 	}
3370 
3371 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3372 	return -EACCES;
3373 }
3374 
3375 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3376 				  int size)
3377 {
3378 	if (size < 0 || off < 0 ||
3379 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3380 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3381 			off, size);
3382 		return -EACCES;
3383 	}
3384 	return 0;
3385 }
3386 
3387 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3388 			     u32 regno, int off, int size,
3389 			     enum bpf_access_type t)
3390 {
3391 	struct bpf_reg_state *regs = cur_regs(env);
3392 	struct bpf_reg_state *reg = &regs[regno];
3393 	struct bpf_insn_access_aux info = {};
3394 	bool valid;
3395 
3396 	if (reg->smin_value < 0) {
3397 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3398 			regno);
3399 		return -EACCES;
3400 	}
3401 
3402 	switch (reg->type) {
3403 	case PTR_TO_SOCK_COMMON:
3404 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3405 		break;
3406 	case PTR_TO_SOCKET:
3407 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3408 		break;
3409 	case PTR_TO_TCP_SOCK:
3410 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3411 		break;
3412 	case PTR_TO_XDP_SOCK:
3413 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3414 		break;
3415 	default:
3416 		valid = false;
3417 	}
3418 
3419 
3420 	if (valid) {
3421 		env->insn_aux_data[insn_idx].ctx_field_size =
3422 			info.ctx_field_size;
3423 		return 0;
3424 	}
3425 
3426 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3427 		regno, reg_type_str[reg->type], off, size);
3428 
3429 	return -EACCES;
3430 }
3431 
3432 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3433 {
3434 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3435 }
3436 
3437 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3438 {
3439 	const struct bpf_reg_state *reg = reg_state(env, regno);
3440 
3441 	return reg->type == PTR_TO_CTX;
3442 }
3443 
3444 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3445 {
3446 	const struct bpf_reg_state *reg = reg_state(env, regno);
3447 
3448 	return type_is_sk_pointer(reg->type);
3449 }
3450 
3451 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3452 {
3453 	const struct bpf_reg_state *reg = reg_state(env, regno);
3454 
3455 	return type_is_pkt_pointer(reg->type);
3456 }
3457 
3458 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3459 {
3460 	const struct bpf_reg_state *reg = reg_state(env, regno);
3461 
3462 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3463 	return reg->type == PTR_TO_FLOW_KEYS;
3464 }
3465 
3466 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3467 				   const struct bpf_reg_state *reg,
3468 				   int off, int size, bool strict)
3469 {
3470 	struct tnum reg_off;
3471 	int ip_align;
3472 
3473 	/* Byte size accesses are always allowed. */
3474 	if (!strict || size == 1)
3475 		return 0;
3476 
3477 	/* For platforms that do not have a Kconfig enabling
3478 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3479 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3480 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3481 	 * to this code only in strict mode where we want to emulate
3482 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3483 	 * unconditional IP align value of '2'.
3484 	 */
3485 	ip_align = 2;
3486 
3487 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3488 	if (!tnum_is_aligned(reg_off, size)) {
3489 		char tn_buf[48];
3490 
3491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3492 		verbose(env,
3493 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3494 			ip_align, tn_buf, reg->off, off, size);
3495 		return -EACCES;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3502 				       const struct bpf_reg_state *reg,
3503 				       const char *pointer_desc,
3504 				       int off, int size, bool strict)
3505 {
3506 	struct tnum reg_off;
3507 
3508 	/* Byte size accesses are always allowed. */
3509 	if (!strict || size == 1)
3510 		return 0;
3511 
3512 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3513 	if (!tnum_is_aligned(reg_off, size)) {
3514 		char tn_buf[48];
3515 
3516 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3517 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3518 			pointer_desc, tn_buf, reg->off, off, size);
3519 		return -EACCES;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int check_ptr_alignment(struct bpf_verifier_env *env,
3526 			       const struct bpf_reg_state *reg, int off,
3527 			       int size, bool strict_alignment_once)
3528 {
3529 	bool strict = env->strict_alignment || strict_alignment_once;
3530 	const char *pointer_desc = "";
3531 
3532 	switch (reg->type) {
3533 	case PTR_TO_PACKET:
3534 	case PTR_TO_PACKET_META:
3535 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3536 		 * right in front, treat it the very same way.
3537 		 */
3538 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3539 	case PTR_TO_FLOW_KEYS:
3540 		pointer_desc = "flow keys ";
3541 		break;
3542 	case PTR_TO_MAP_KEY:
3543 		pointer_desc = "key ";
3544 		break;
3545 	case PTR_TO_MAP_VALUE:
3546 		pointer_desc = "value ";
3547 		break;
3548 	case PTR_TO_CTX:
3549 		pointer_desc = "context ";
3550 		break;
3551 	case PTR_TO_STACK:
3552 		pointer_desc = "stack ";
3553 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3554 		 * and check_stack_read_fixed_off() relies on stack accesses being
3555 		 * aligned.
3556 		 */
3557 		strict = true;
3558 		break;
3559 	case PTR_TO_SOCKET:
3560 		pointer_desc = "sock ";
3561 		break;
3562 	case PTR_TO_SOCK_COMMON:
3563 		pointer_desc = "sock_common ";
3564 		break;
3565 	case PTR_TO_TCP_SOCK:
3566 		pointer_desc = "tcp_sock ";
3567 		break;
3568 	case PTR_TO_XDP_SOCK:
3569 		pointer_desc = "xdp_sock ";
3570 		break;
3571 	default:
3572 		break;
3573 	}
3574 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3575 					   strict);
3576 }
3577 
3578 static int update_stack_depth(struct bpf_verifier_env *env,
3579 			      const struct bpf_func_state *func,
3580 			      int off)
3581 {
3582 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3583 
3584 	if (stack >= -off)
3585 		return 0;
3586 
3587 	/* update known max for given subprogram */
3588 	env->subprog_info[func->subprogno].stack_depth = -off;
3589 	return 0;
3590 }
3591 
3592 /* starting from main bpf function walk all instructions of the function
3593  * and recursively walk all callees that given function can call.
3594  * Ignore jump and exit insns.
3595  * Since recursion is prevented by check_cfg() this algorithm
3596  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3597  */
3598 static int check_max_stack_depth(struct bpf_verifier_env *env)
3599 {
3600 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3601 	struct bpf_subprog_info *subprog = env->subprog_info;
3602 	struct bpf_insn *insn = env->prog->insnsi;
3603 	bool tail_call_reachable = false;
3604 	int ret_insn[MAX_CALL_FRAMES];
3605 	int ret_prog[MAX_CALL_FRAMES];
3606 	int j;
3607 
3608 process_func:
3609 	/* protect against potential stack overflow that might happen when
3610 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3611 	 * depth for such case down to 256 so that the worst case scenario
3612 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3613 	 * 8k).
3614 	 *
3615 	 * To get the idea what might happen, see an example:
3616 	 * func1 -> sub rsp, 128
3617 	 *  subfunc1 -> sub rsp, 256
3618 	 *  tailcall1 -> add rsp, 256
3619 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3620 	 *   subfunc2 -> sub rsp, 64
3621 	 *   subfunc22 -> sub rsp, 128
3622 	 *   tailcall2 -> add rsp, 128
3623 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3624 	 *
3625 	 * tailcall will unwind the current stack frame but it will not get rid
3626 	 * of caller's stack as shown on the example above.
3627 	 */
3628 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3629 		verbose(env,
3630 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3631 			depth);
3632 		return -EACCES;
3633 	}
3634 	/* round up to 32-bytes, since this is granularity
3635 	 * of interpreter stack size
3636 	 */
3637 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3638 	if (depth > MAX_BPF_STACK) {
3639 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3640 			frame + 1, depth);
3641 		return -EACCES;
3642 	}
3643 continue_func:
3644 	subprog_end = subprog[idx + 1].start;
3645 	for (; i < subprog_end; i++) {
3646 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3647 			continue;
3648 		/* remember insn and function to return to */
3649 		ret_insn[frame] = i + 1;
3650 		ret_prog[frame] = idx;
3651 
3652 		/* find the callee */
3653 		i = i + insn[i].imm + 1;
3654 		idx = find_subprog(env, i);
3655 		if (idx < 0) {
3656 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3657 				  i);
3658 			return -EFAULT;
3659 		}
3660 
3661 		if (subprog[idx].has_tail_call)
3662 			tail_call_reachable = true;
3663 
3664 		frame++;
3665 		if (frame >= MAX_CALL_FRAMES) {
3666 			verbose(env, "the call stack of %d frames is too deep !\n",
3667 				frame);
3668 			return -E2BIG;
3669 		}
3670 		goto process_func;
3671 	}
3672 	/* if tail call got detected across bpf2bpf calls then mark each of the
3673 	 * currently present subprog frames as tail call reachable subprogs;
3674 	 * this info will be utilized by JIT so that we will be preserving the
3675 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3676 	 */
3677 	if (tail_call_reachable)
3678 		for (j = 0; j < frame; j++)
3679 			subprog[ret_prog[j]].tail_call_reachable = true;
3680 
3681 	/* end of for() loop means the last insn of the 'subprog'
3682 	 * was reached. Doesn't matter whether it was JA or EXIT
3683 	 */
3684 	if (frame == 0)
3685 		return 0;
3686 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3687 	frame--;
3688 	i = ret_insn[frame];
3689 	idx = ret_prog[frame];
3690 	goto continue_func;
3691 }
3692 
3693 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3694 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3695 				  const struct bpf_insn *insn, int idx)
3696 {
3697 	int start = idx + insn->imm + 1, subprog;
3698 
3699 	subprog = find_subprog(env, start);
3700 	if (subprog < 0) {
3701 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3702 			  start);
3703 		return -EFAULT;
3704 	}
3705 	return env->subprog_info[subprog].stack_depth;
3706 }
3707 #endif
3708 
3709 int check_ctx_reg(struct bpf_verifier_env *env,
3710 		  const struct bpf_reg_state *reg, int regno)
3711 {
3712 	/* Access to ctx or passing it to a helper is only allowed in
3713 	 * its original, unmodified form.
3714 	 */
3715 
3716 	if (reg->off) {
3717 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3718 			regno, reg->off);
3719 		return -EACCES;
3720 	}
3721 
3722 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 		char tn_buf[48];
3724 
3725 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3727 		return -EACCES;
3728 	}
3729 
3730 	return 0;
3731 }
3732 
3733 static int __check_buffer_access(struct bpf_verifier_env *env,
3734 				 const char *buf_info,
3735 				 const struct bpf_reg_state *reg,
3736 				 int regno, int off, int size)
3737 {
3738 	if (off < 0) {
3739 		verbose(env,
3740 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3741 			regno, buf_info, off, size);
3742 		return -EACCES;
3743 	}
3744 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3745 		char tn_buf[48];
3746 
3747 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3748 		verbose(env,
3749 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3750 			regno, off, tn_buf);
3751 		return -EACCES;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3758 				  const struct bpf_reg_state *reg,
3759 				  int regno, int off, int size)
3760 {
3761 	int err;
3762 
3763 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3764 	if (err)
3765 		return err;
3766 
3767 	if (off + size > env->prog->aux->max_tp_access)
3768 		env->prog->aux->max_tp_access = off + size;
3769 
3770 	return 0;
3771 }
3772 
3773 static int check_buffer_access(struct bpf_verifier_env *env,
3774 			       const struct bpf_reg_state *reg,
3775 			       int regno, int off, int size,
3776 			       bool zero_size_allowed,
3777 			       const char *buf_info,
3778 			       u32 *max_access)
3779 {
3780 	int err;
3781 
3782 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3783 	if (err)
3784 		return err;
3785 
3786 	if (off + size > *max_access)
3787 		*max_access = off + size;
3788 
3789 	return 0;
3790 }
3791 
3792 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3793 static void zext_32_to_64(struct bpf_reg_state *reg)
3794 {
3795 	reg->var_off = tnum_subreg(reg->var_off);
3796 	__reg_assign_32_into_64(reg);
3797 }
3798 
3799 /* truncate register to smaller size (in bytes)
3800  * must be called with size < BPF_REG_SIZE
3801  */
3802 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3803 {
3804 	u64 mask;
3805 
3806 	/* clear high bits in bit representation */
3807 	reg->var_off = tnum_cast(reg->var_off, size);
3808 
3809 	/* fix arithmetic bounds */
3810 	mask = ((u64)1 << (size * 8)) - 1;
3811 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3812 		reg->umin_value &= mask;
3813 		reg->umax_value &= mask;
3814 	} else {
3815 		reg->umin_value = 0;
3816 		reg->umax_value = mask;
3817 	}
3818 	reg->smin_value = reg->umin_value;
3819 	reg->smax_value = reg->umax_value;
3820 
3821 	/* If size is smaller than 32bit register the 32bit register
3822 	 * values are also truncated so we push 64-bit bounds into
3823 	 * 32-bit bounds. Above were truncated < 32-bits already.
3824 	 */
3825 	if (size >= 4)
3826 		return;
3827 	__reg_combine_64_into_32(reg);
3828 }
3829 
3830 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3831 {
3832 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3833 }
3834 
3835 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3836 {
3837 	void *ptr;
3838 	u64 addr;
3839 	int err;
3840 
3841 	err = map->ops->map_direct_value_addr(map, &addr, off);
3842 	if (err)
3843 		return err;
3844 	ptr = (void *)(long)addr + off;
3845 
3846 	switch (size) {
3847 	case sizeof(u8):
3848 		*val = (u64)*(u8 *)ptr;
3849 		break;
3850 	case sizeof(u16):
3851 		*val = (u64)*(u16 *)ptr;
3852 		break;
3853 	case sizeof(u32):
3854 		*val = (u64)*(u32 *)ptr;
3855 		break;
3856 	case sizeof(u64):
3857 		*val = *(u64 *)ptr;
3858 		break;
3859 	default:
3860 		return -EINVAL;
3861 	}
3862 	return 0;
3863 }
3864 
3865 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3866 				   struct bpf_reg_state *regs,
3867 				   int regno, int off, int size,
3868 				   enum bpf_access_type atype,
3869 				   int value_regno)
3870 {
3871 	struct bpf_reg_state *reg = regs + regno;
3872 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3873 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3874 	u32 btf_id;
3875 	int ret;
3876 
3877 	if (off < 0) {
3878 		verbose(env,
3879 			"R%d is ptr_%s invalid negative access: off=%d\n",
3880 			regno, tname, off);
3881 		return -EACCES;
3882 	}
3883 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3884 		char tn_buf[48];
3885 
3886 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3887 		verbose(env,
3888 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3889 			regno, tname, off, tn_buf);
3890 		return -EACCES;
3891 	}
3892 
3893 	if (env->ops->btf_struct_access) {
3894 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3895 						  off, size, atype, &btf_id);
3896 	} else {
3897 		if (atype != BPF_READ) {
3898 			verbose(env, "only read is supported\n");
3899 			return -EACCES;
3900 		}
3901 
3902 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3903 					atype, &btf_id);
3904 	}
3905 
3906 	if (ret < 0)
3907 		return ret;
3908 
3909 	if (atype == BPF_READ && value_regno >= 0)
3910 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3911 
3912 	return 0;
3913 }
3914 
3915 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3916 				   struct bpf_reg_state *regs,
3917 				   int regno, int off, int size,
3918 				   enum bpf_access_type atype,
3919 				   int value_regno)
3920 {
3921 	struct bpf_reg_state *reg = regs + regno;
3922 	struct bpf_map *map = reg->map_ptr;
3923 	const struct btf_type *t;
3924 	const char *tname;
3925 	u32 btf_id;
3926 	int ret;
3927 
3928 	if (!btf_vmlinux) {
3929 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3930 		return -ENOTSUPP;
3931 	}
3932 
3933 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3934 		verbose(env, "map_ptr access not supported for map type %d\n",
3935 			map->map_type);
3936 		return -ENOTSUPP;
3937 	}
3938 
3939 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3940 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3941 
3942 	if (!env->allow_ptr_to_map_access) {
3943 		verbose(env,
3944 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3945 			tname);
3946 		return -EPERM;
3947 	}
3948 
3949 	if (off < 0) {
3950 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3951 			regno, tname, off);
3952 		return -EACCES;
3953 	}
3954 
3955 	if (atype != BPF_READ) {
3956 		verbose(env, "only read from %s is supported\n", tname);
3957 		return -EACCES;
3958 	}
3959 
3960 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3961 	if (ret < 0)
3962 		return ret;
3963 
3964 	if (value_regno >= 0)
3965 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3966 
3967 	return 0;
3968 }
3969 
3970 /* Check that the stack access at the given offset is within bounds. The
3971  * maximum valid offset is -1.
3972  *
3973  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3974  * -state->allocated_stack for reads.
3975  */
3976 static int check_stack_slot_within_bounds(int off,
3977 					  struct bpf_func_state *state,
3978 					  enum bpf_access_type t)
3979 {
3980 	int min_valid_off;
3981 
3982 	if (t == BPF_WRITE)
3983 		min_valid_off = -MAX_BPF_STACK;
3984 	else
3985 		min_valid_off = -state->allocated_stack;
3986 
3987 	if (off < min_valid_off || off > -1)
3988 		return -EACCES;
3989 	return 0;
3990 }
3991 
3992 /* Check that the stack access at 'regno + off' falls within the maximum stack
3993  * bounds.
3994  *
3995  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3996  */
3997 static int check_stack_access_within_bounds(
3998 		struct bpf_verifier_env *env,
3999 		int regno, int off, int access_size,
4000 		enum stack_access_src src, enum bpf_access_type type)
4001 {
4002 	struct bpf_reg_state *regs = cur_regs(env);
4003 	struct bpf_reg_state *reg = regs + regno;
4004 	struct bpf_func_state *state = func(env, reg);
4005 	int min_off, max_off;
4006 	int err;
4007 	char *err_extra;
4008 
4009 	if (src == ACCESS_HELPER)
4010 		/* We don't know if helpers are reading or writing (or both). */
4011 		err_extra = " indirect access to";
4012 	else if (type == BPF_READ)
4013 		err_extra = " read from";
4014 	else
4015 		err_extra = " write to";
4016 
4017 	if (tnum_is_const(reg->var_off)) {
4018 		min_off = reg->var_off.value + off;
4019 		if (access_size > 0)
4020 			max_off = min_off + access_size - 1;
4021 		else
4022 			max_off = min_off;
4023 	} else {
4024 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4025 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4026 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4027 				err_extra, regno);
4028 			return -EACCES;
4029 		}
4030 		min_off = reg->smin_value + off;
4031 		if (access_size > 0)
4032 			max_off = reg->smax_value + off + access_size - 1;
4033 		else
4034 			max_off = min_off;
4035 	}
4036 
4037 	err = check_stack_slot_within_bounds(min_off, state, type);
4038 	if (!err)
4039 		err = check_stack_slot_within_bounds(max_off, state, type);
4040 
4041 	if (err) {
4042 		if (tnum_is_const(reg->var_off)) {
4043 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4044 				err_extra, regno, off, access_size);
4045 		} else {
4046 			char tn_buf[48];
4047 
4048 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4049 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4050 				err_extra, regno, tn_buf, access_size);
4051 		}
4052 	}
4053 	return err;
4054 }
4055 
4056 /* check whether memory at (regno + off) is accessible for t = (read | write)
4057  * if t==write, value_regno is a register which value is stored into memory
4058  * if t==read, value_regno is a register which will receive the value from memory
4059  * if t==write && value_regno==-1, some unknown value is stored into memory
4060  * if t==read && value_regno==-1, don't care what we read from memory
4061  */
4062 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4063 			    int off, int bpf_size, enum bpf_access_type t,
4064 			    int value_regno, bool strict_alignment_once)
4065 {
4066 	struct bpf_reg_state *regs = cur_regs(env);
4067 	struct bpf_reg_state *reg = regs + regno;
4068 	struct bpf_func_state *state;
4069 	int size, err = 0;
4070 
4071 	size = bpf_size_to_bytes(bpf_size);
4072 	if (size < 0)
4073 		return size;
4074 
4075 	/* alignment checks will add in reg->off themselves */
4076 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4077 	if (err)
4078 		return err;
4079 
4080 	/* for access checks, reg->off is just part of off */
4081 	off += reg->off;
4082 
4083 	if (reg->type == PTR_TO_MAP_KEY) {
4084 		if (t == BPF_WRITE) {
4085 			verbose(env, "write to change key R%d not allowed\n", regno);
4086 			return -EACCES;
4087 		}
4088 
4089 		err = check_mem_region_access(env, regno, off, size,
4090 					      reg->map_ptr->key_size, false);
4091 		if (err)
4092 			return err;
4093 		if (value_regno >= 0)
4094 			mark_reg_unknown(env, regs, value_regno);
4095 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4096 		if (t == BPF_WRITE && value_regno >= 0 &&
4097 		    is_pointer_value(env, value_regno)) {
4098 			verbose(env, "R%d leaks addr into map\n", value_regno);
4099 			return -EACCES;
4100 		}
4101 		err = check_map_access_type(env, regno, off, size, t);
4102 		if (err)
4103 			return err;
4104 		err = check_map_access(env, regno, off, size, false);
4105 		if (!err && t == BPF_READ && value_regno >= 0) {
4106 			struct bpf_map *map = reg->map_ptr;
4107 
4108 			/* if map is read-only, track its contents as scalars */
4109 			if (tnum_is_const(reg->var_off) &&
4110 			    bpf_map_is_rdonly(map) &&
4111 			    map->ops->map_direct_value_addr) {
4112 				int map_off = off + reg->var_off.value;
4113 				u64 val = 0;
4114 
4115 				err = bpf_map_direct_read(map, map_off, size,
4116 							  &val);
4117 				if (err)
4118 					return err;
4119 
4120 				regs[value_regno].type = SCALAR_VALUE;
4121 				__mark_reg_known(&regs[value_regno], val);
4122 			} else {
4123 				mark_reg_unknown(env, regs, value_regno);
4124 			}
4125 		}
4126 	} else if (reg->type == PTR_TO_MEM) {
4127 		if (t == BPF_WRITE && value_regno >= 0 &&
4128 		    is_pointer_value(env, value_regno)) {
4129 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4130 			return -EACCES;
4131 		}
4132 		err = check_mem_region_access(env, regno, off, size,
4133 					      reg->mem_size, false);
4134 		if (!err && t == BPF_READ && value_regno >= 0)
4135 			mark_reg_unknown(env, regs, value_regno);
4136 	} else if (reg->type == PTR_TO_CTX) {
4137 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4138 		struct btf *btf = NULL;
4139 		u32 btf_id = 0;
4140 
4141 		if (t == BPF_WRITE && value_regno >= 0 &&
4142 		    is_pointer_value(env, value_regno)) {
4143 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4144 			return -EACCES;
4145 		}
4146 
4147 		err = check_ctx_reg(env, reg, regno);
4148 		if (err < 0)
4149 			return err;
4150 
4151 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4152 		if (err)
4153 			verbose_linfo(env, insn_idx, "; ");
4154 		if (!err && t == BPF_READ && value_regno >= 0) {
4155 			/* ctx access returns either a scalar, or a
4156 			 * PTR_TO_PACKET[_META,_END]. In the latter
4157 			 * case, we know the offset is zero.
4158 			 */
4159 			if (reg_type == SCALAR_VALUE) {
4160 				mark_reg_unknown(env, regs, value_regno);
4161 			} else {
4162 				mark_reg_known_zero(env, regs,
4163 						    value_regno);
4164 				if (reg_type_may_be_null(reg_type))
4165 					regs[value_regno].id = ++env->id_gen;
4166 				/* A load of ctx field could have different
4167 				 * actual load size with the one encoded in the
4168 				 * insn. When the dst is PTR, it is for sure not
4169 				 * a sub-register.
4170 				 */
4171 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4172 				if (reg_type == PTR_TO_BTF_ID ||
4173 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4174 					regs[value_regno].btf = btf;
4175 					regs[value_regno].btf_id = btf_id;
4176 				}
4177 			}
4178 			regs[value_regno].type = reg_type;
4179 		}
4180 
4181 	} else if (reg->type == PTR_TO_STACK) {
4182 		/* Basic bounds checks. */
4183 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4184 		if (err)
4185 			return err;
4186 
4187 		state = func(env, reg);
4188 		err = update_stack_depth(env, state, off);
4189 		if (err)
4190 			return err;
4191 
4192 		if (t == BPF_READ)
4193 			err = check_stack_read(env, regno, off, size,
4194 					       value_regno);
4195 		else
4196 			err = check_stack_write(env, regno, off, size,
4197 						value_regno, insn_idx);
4198 	} else if (reg_is_pkt_pointer(reg)) {
4199 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4200 			verbose(env, "cannot write into packet\n");
4201 			return -EACCES;
4202 		}
4203 		if (t == BPF_WRITE && value_regno >= 0 &&
4204 		    is_pointer_value(env, value_regno)) {
4205 			verbose(env, "R%d leaks addr into packet\n",
4206 				value_regno);
4207 			return -EACCES;
4208 		}
4209 		err = check_packet_access(env, regno, off, size, false);
4210 		if (!err && t == BPF_READ && value_regno >= 0)
4211 			mark_reg_unknown(env, regs, value_regno);
4212 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4213 		if (t == BPF_WRITE && value_regno >= 0 &&
4214 		    is_pointer_value(env, value_regno)) {
4215 			verbose(env, "R%d leaks addr into flow keys\n",
4216 				value_regno);
4217 			return -EACCES;
4218 		}
4219 
4220 		err = check_flow_keys_access(env, off, size);
4221 		if (!err && t == BPF_READ && value_regno >= 0)
4222 			mark_reg_unknown(env, regs, value_regno);
4223 	} else if (type_is_sk_pointer(reg->type)) {
4224 		if (t == BPF_WRITE) {
4225 			verbose(env, "R%d cannot write into %s\n",
4226 				regno, reg_type_str[reg->type]);
4227 			return -EACCES;
4228 		}
4229 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4230 		if (!err && value_regno >= 0)
4231 			mark_reg_unknown(env, regs, value_regno);
4232 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4233 		err = check_tp_buffer_access(env, reg, regno, off, size);
4234 		if (!err && t == BPF_READ && value_regno >= 0)
4235 			mark_reg_unknown(env, regs, value_regno);
4236 	} else if (reg->type == PTR_TO_BTF_ID) {
4237 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4238 					      value_regno);
4239 	} else if (reg->type == CONST_PTR_TO_MAP) {
4240 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4241 					      value_regno);
4242 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4243 		if (t == BPF_WRITE) {
4244 			verbose(env, "R%d cannot write into %s\n",
4245 				regno, reg_type_str[reg->type]);
4246 			return -EACCES;
4247 		}
4248 		err = check_buffer_access(env, reg, regno, off, size, false,
4249 					  "rdonly",
4250 					  &env->prog->aux->max_rdonly_access);
4251 		if (!err && value_regno >= 0)
4252 			mark_reg_unknown(env, regs, value_regno);
4253 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4254 		err = check_buffer_access(env, reg, regno, off, size, false,
4255 					  "rdwr",
4256 					  &env->prog->aux->max_rdwr_access);
4257 		if (!err && t == BPF_READ && value_regno >= 0)
4258 			mark_reg_unknown(env, regs, value_regno);
4259 	} else {
4260 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4261 			reg_type_str[reg->type]);
4262 		return -EACCES;
4263 	}
4264 
4265 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4266 	    regs[value_regno].type == SCALAR_VALUE) {
4267 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4268 		coerce_reg_to_size(&regs[value_regno], size);
4269 	}
4270 	return err;
4271 }
4272 
4273 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4274 {
4275 	int load_reg;
4276 	int err;
4277 
4278 	switch (insn->imm) {
4279 	case BPF_ADD:
4280 	case BPF_ADD | BPF_FETCH:
4281 	case BPF_AND:
4282 	case BPF_AND | BPF_FETCH:
4283 	case BPF_OR:
4284 	case BPF_OR | BPF_FETCH:
4285 	case BPF_XOR:
4286 	case BPF_XOR | BPF_FETCH:
4287 	case BPF_XCHG:
4288 	case BPF_CMPXCHG:
4289 		break;
4290 	default:
4291 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4292 		return -EINVAL;
4293 	}
4294 
4295 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4296 		verbose(env, "invalid atomic operand size\n");
4297 		return -EINVAL;
4298 	}
4299 
4300 	/* check src1 operand */
4301 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4302 	if (err)
4303 		return err;
4304 
4305 	/* check src2 operand */
4306 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4307 	if (err)
4308 		return err;
4309 
4310 	if (insn->imm == BPF_CMPXCHG) {
4311 		/* Check comparison of R0 with memory location */
4312 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4313 		if (err)
4314 			return err;
4315 	}
4316 
4317 	if (is_pointer_value(env, insn->src_reg)) {
4318 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4319 		return -EACCES;
4320 	}
4321 
4322 	if (is_ctx_reg(env, insn->dst_reg) ||
4323 	    is_pkt_reg(env, insn->dst_reg) ||
4324 	    is_flow_key_reg(env, insn->dst_reg) ||
4325 	    is_sk_reg(env, insn->dst_reg)) {
4326 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4327 			insn->dst_reg,
4328 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4329 		return -EACCES;
4330 	}
4331 
4332 	if (insn->imm & BPF_FETCH) {
4333 		if (insn->imm == BPF_CMPXCHG)
4334 			load_reg = BPF_REG_0;
4335 		else
4336 			load_reg = insn->src_reg;
4337 
4338 		/* check and record load of old value */
4339 		err = check_reg_arg(env, load_reg, DST_OP);
4340 		if (err)
4341 			return err;
4342 	} else {
4343 		/* This instruction accesses a memory location but doesn't
4344 		 * actually load it into a register.
4345 		 */
4346 		load_reg = -1;
4347 	}
4348 
4349 	/* check whether we can read the memory */
4350 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4351 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4352 	if (err)
4353 		return err;
4354 
4355 	/* check whether we can write into the same memory */
4356 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4357 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4358 	if (err)
4359 		return err;
4360 
4361 	return 0;
4362 }
4363 
4364 /* When register 'regno' is used to read the stack (either directly or through
4365  * a helper function) make sure that it's within stack boundary and, depending
4366  * on the access type, that all elements of the stack are initialized.
4367  *
4368  * 'off' includes 'regno->off', but not its dynamic part (if any).
4369  *
4370  * All registers that have been spilled on the stack in the slots within the
4371  * read offsets are marked as read.
4372  */
4373 static int check_stack_range_initialized(
4374 		struct bpf_verifier_env *env, int regno, int off,
4375 		int access_size, bool zero_size_allowed,
4376 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4377 {
4378 	struct bpf_reg_state *reg = reg_state(env, regno);
4379 	struct bpf_func_state *state = func(env, reg);
4380 	int err, min_off, max_off, i, j, slot, spi;
4381 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4382 	enum bpf_access_type bounds_check_type;
4383 	/* Some accesses can write anything into the stack, others are
4384 	 * read-only.
4385 	 */
4386 	bool clobber = false;
4387 
4388 	if (access_size == 0 && !zero_size_allowed) {
4389 		verbose(env, "invalid zero-sized read\n");
4390 		return -EACCES;
4391 	}
4392 
4393 	if (type == ACCESS_HELPER) {
4394 		/* The bounds checks for writes are more permissive than for
4395 		 * reads. However, if raw_mode is not set, we'll do extra
4396 		 * checks below.
4397 		 */
4398 		bounds_check_type = BPF_WRITE;
4399 		clobber = true;
4400 	} else {
4401 		bounds_check_type = BPF_READ;
4402 	}
4403 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4404 					       type, bounds_check_type);
4405 	if (err)
4406 		return err;
4407 
4408 
4409 	if (tnum_is_const(reg->var_off)) {
4410 		min_off = max_off = reg->var_off.value + off;
4411 	} else {
4412 		/* Variable offset is prohibited for unprivileged mode for
4413 		 * simplicity since it requires corresponding support in
4414 		 * Spectre masking for stack ALU.
4415 		 * See also retrieve_ptr_limit().
4416 		 */
4417 		if (!env->bypass_spec_v1) {
4418 			char tn_buf[48];
4419 
4420 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4421 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4422 				regno, err_extra, tn_buf);
4423 			return -EACCES;
4424 		}
4425 		/* Only initialized buffer on stack is allowed to be accessed
4426 		 * with variable offset. With uninitialized buffer it's hard to
4427 		 * guarantee that whole memory is marked as initialized on
4428 		 * helper return since specific bounds are unknown what may
4429 		 * cause uninitialized stack leaking.
4430 		 */
4431 		if (meta && meta->raw_mode)
4432 			meta = NULL;
4433 
4434 		min_off = reg->smin_value + off;
4435 		max_off = reg->smax_value + off;
4436 	}
4437 
4438 	if (meta && meta->raw_mode) {
4439 		meta->access_size = access_size;
4440 		meta->regno = regno;
4441 		return 0;
4442 	}
4443 
4444 	for (i = min_off; i < max_off + access_size; i++) {
4445 		u8 *stype;
4446 
4447 		slot = -i - 1;
4448 		spi = slot / BPF_REG_SIZE;
4449 		if (state->allocated_stack <= slot)
4450 			goto err;
4451 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4452 		if (*stype == STACK_MISC)
4453 			goto mark;
4454 		if (*stype == STACK_ZERO) {
4455 			if (clobber) {
4456 				/* helper can write anything into the stack */
4457 				*stype = STACK_MISC;
4458 			}
4459 			goto mark;
4460 		}
4461 
4462 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4463 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4464 			goto mark;
4465 
4466 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4467 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4468 		     env->allow_ptr_leaks)) {
4469 			if (clobber) {
4470 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4471 				for (j = 0; j < BPF_REG_SIZE; j++)
4472 					state->stack[spi].slot_type[j] = STACK_MISC;
4473 			}
4474 			goto mark;
4475 		}
4476 
4477 err:
4478 		if (tnum_is_const(reg->var_off)) {
4479 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4480 				err_extra, regno, min_off, i - min_off, access_size);
4481 		} else {
4482 			char tn_buf[48];
4483 
4484 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4485 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4486 				err_extra, regno, tn_buf, i - min_off, access_size);
4487 		}
4488 		return -EACCES;
4489 mark:
4490 		/* reading any byte out of 8-byte 'spill_slot' will cause
4491 		 * the whole slot to be marked as 'read'
4492 		 */
4493 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4494 			      state->stack[spi].spilled_ptr.parent,
4495 			      REG_LIVE_READ64);
4496 	}
4497 	return update_stack_depth(env, state, min_off);
4498 }
4499 
4500 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4501 				   int access_size, bool zero_size_allowed,
4502 				   struct bpf_call_arg_meta *meta)
4503 {
4504 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4505 
4506 	switch (reg->type) {
4507 	case PTR_TO_PACKET:
4508 	case PTR_TO_PACKET_META:
4509 		return check_packet_access(env, regno, reg->off, access_size,
4510 					   zero_size_allowed);
4511 	case PTR_TO_MAP_KEY:
4512 		return check_mem_region_access(env, regno, reg->off, access_size,
4513 					       reg->map_ptr->key_size, false);
4514 	case PTR_TO_MAP_VALUE:
4515 		if (check_map_access_type(env, regno, reg->off, access_size,
4516 					  meta && meta->raw_mode ? BPF_WRITE :
4517 					  BPF_READ))
4518 			return -EACCES;
4519 		return check_map_access(env, regno, reg->off, access_size,
4520 					zero_size_allowed);
4521 	case PTR_TO_MEM:
4522 		return check_mem_region_access(env, regno, reg->off,
4523 					       access_size, reg->mem_size,
4524 					       zero_size_allowed);
4525 	case PTR_TO_RDONLY_BUF:
4526 		if (meta && meta->raw_mode)
4527 			return -EACCES;
4528 		return check_buffer_access(env, reg, regno, reg->off,
4529 					   access_size, zero_size_allowed,
4530 					   "rdonly",
4531 					   &env->prog->aux->max_rdonly_access);
4532 	case PTR_TO_RDWR_BUF:
4533 		return check_buffer_access(env, reg, regno, reg->off,
4534 					   access_size, zero_size_allowed,
4535 					   "rdwr",
4536 					   &env->prog->aux->max_rdwr_access);
4537 	case PTR_TO_STACK:
4538 		return check_stack_range_initialized(
4539 				env,
4540 				regno, reg->off, access_size,
4541 				zero_size_allowed, ACCESS_HELPER, meta);
4542 	default: /* scalar_value or invalid ptr */
4543 		/* Allow zero-byte read from NULL, regardless of pointer type */
4544 		if (zero_size_allowed && access_size == 0 &&
4545 		    register_is_null(reg))
4546 			return 0;
4547 
4548 		verbose(env, "R%d type=%s expected=%s\n", regno,
4549 			reg_type_str[reg->type],
4550 			reg_type_str[PTR_TO_STACK]);
4551 		return -EACCES;
4552 	}
4553 }
4554 
4555 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4556 		   u32 regno, u32 mem_size)
4557 {
4558 	if (register_is_null(reg))
4559 		return 0;
4560 
4561 	if (reg_type_may_be_null(reg->type)) {
4562 		/* Assuming that the register contains a value check if the memory
4563 		 * access is safe. Temporarily save and restore the register's state as
4564 		 * the conversion shouldn't be visible to a caller.
4565 		 */
4566 		const struct bpf_reg_state saved_reg = *reg;
4567 		int rv;
4568 
4569 		mark_ptr_not_null_reg(reg);
4570 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4571 		*reg = saved_reg;
4572 		return rv;
4573 	}
4574 
4575 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4576 }
4577 
4578 /* Implementation details:
4579  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4580  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4581  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4582  * value_or_null->value transition, since the verifier only cares about
4583  * the range of access to valid map value pointer and doesn't care about actual
4584  * address of the map element.
4585  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4586  * reg->id > 0 after value_or_null->value transition. By doing so
4587  * two bpf_map_lookups will be considered two different pointers that
4588  * point to different bpf_spin_locks.
4589  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4590  * dead-locks.
4591  * Since only one bpf_spin_lock is allowed the checks are simpler than
4592  * reg_is_refcounted() logic. The verifier needs to remember only
4593  * one spin_lock instead of array of acquired_refs.
4594  * cur_state->active_spin_lock remembers which map value element got locked
4595  * and clears it after bpf_spin_unlock.
4596  */
4597 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4598 			     bool is_lock)
4599 {
4600 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4601 	struct bpf_verifier_state *cur = env->cur_state;
4602 	bool is_const = tnum_is_const(reg->var_off);
4603 	struct bpf_map *map = reg->map_ptr;
4604 	u64 val = reg->var_off.value;
4605 
4606 	if (!is_const) {
4607 		verbose(env,
4608 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4609 			regno);
4610 		return -EINVAL;
4611 	}
4612 	if (!map->btf) {
4613 		verbose(env,
4614 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4615 			map->name);
4616 		return -EINVAL;
4617 	}
4618 	if (!map_value_has_spin_lock(map)) {
4619 		if (map->spin_lock_off == -E2BIG)
4620 			verbose(env,
4621 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4622 				map->name);
4623 		else if (map->spin_lock_off == -ENOENT)
4624 			verbose(env,
4625 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4626 				map->name);
4627 		else
4628 			verbose(env,
4629 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4630 				map->name);
4631 		return -EINVAL;
4632 	}
4633 	if (map->spin_lock_off != val + reg->off) {
4634 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4635 			val + reg->off);
4636 		return -EINVAL;
4637 	}
4638 	if (is_lock) {
4639 		if (cur->active_spin_lock) {
4640 			verbose(env,
4641 				"Locking two bpf_spin_locks are not allowed\n");
4642 			return -EINVAL;
4643 		}
4644 		cur->active_spin_lock = reg->id;
4645 	} else {
4646 		if (!cur->active_spin_lock) {
4647 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4648 			return -EINVAL;
4649 		}
4650 		if (cur->active_spin_lock != reg->id) {
4651 			verbose(env, "bpf_spin_unlock of different lock\n");
4652 			return -EINVAL;
4653 		}
4654 		cur->active_spin_lock = 0;
4655 	}
4656 	return 0;
4657 }
4658 
4659 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4660 {
4661 	return type == ARG_PTR_TO_MEM ||
4662 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4663 	       type == ARG_PTR_TO_UNINIT_MEM;
4664 }
4665 
4666 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4667 {
4668 	return type == ARG_CONST_SIZE ||
4669 	       type == ARG_CONST_SIZE_OR_ZERO;
4670 }
4671 
4672 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4673 {
4674 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4675 }
4676 
4677 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4678 {
4679 	return type == ARG_PTR_TO_INT ||
4680 	       type == ARG_PTR_TO_LONG;
4681 }
4682 
4683 static int int_ptr_type_to_size(enum bpf_arg_type type)
4684 {
4685 	if (type == ARG_PTR_TO_INT)
4686 		return sizeof(u32);
4687 	else if (type == ARG_PTR_TO_LONG)
4688 		return sizeof(u64);
4689 
4690 	return -EINVAL;
4691 }
4692 
4693 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4694 				 const struct bpf_call_arg_meta *meta,
4695 				 enum bpf_arg_type *arg_type)
4696 {
4697 	if (!meta->map_ptr) {
4698 		/* kernel subsystem misconfigured verifier */
4699 		verbose(env, "invalid map_ptr to access map->type\n");
4700 		return -EACCES;
4701 	}
4702 
4703 	switch (meta->map_ptr->map_type) {
4704 	case BPF_MAP_TYPE_SOCKMAP:
4705 	case BPF_MAP_TYPE_SOCKHASH:
4706 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4707 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4708 		} else {
4709 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4710 			return -EINVAL;
4711 		}
4712 		break;
4713 
4714 	default:
4715 		break;
4716 	}
4717 	return 0;
4718 }
4719 
4720 struct bpf_reg_types {
4721 	const enum bpf_reg_type types[10];
4722 	u32 *btf_id;
4723 };
4724 
4725 static const struct bpf_reg_types map_key_value_types = {
4726 	.types = {
4727 		PTR_TO_STACK,
4728 		PTR_TO_PACKET,
4729 		PTR_TO_PACKET_META,
4730 		PTR_TO_MAP_KEY,
4731 		PTR_TO_MAP_VALUE,
4732 	},
4733 };
4734 
4735 static const struct bpf_reg_types sock_types = {
4736 	.types = {
4737 		PTR_TO_SOCK_COMMON,
4738 		PTR_TO_SOCKET,
4739 		PTR_TO_TCP_SOCK,
4740 		PTR_TO_XDP_SOCK,
4741 	},
4742 };
4743 
4744 #ifdef CONFIG_NET
4745 static const struct bpf_reg_types btf_id_sock_common_types = {
4746 	.types = {
4747 		PTR_TO_SOCK_COMMON,
4748 		PTR_TO_SOCKET,
4749 		PTR_TO_TCP_SOCK,
4750 		PTR_TO_XDP_SOCK,
4751 		PTR_TO_BTF_ID,
4752 	},
4753 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4754 };
4755 #endif
4756 
4757 static const struct bpf_reg_types mem_types = {
4758 	.types = {
4759 		PTR_TO_STACK,
4760 		PTR_TO_PACKET,
4761 		PTR_TO_PACKET_META,
4762 		PTR_TO_MAP_KEY,
4763 		PTR_TO_MAP_VALUE,
4764 		PTR_TO_MEM,
4765 		PTR_TO_RDONLY_BUF,
4766 		PTR_TO_RDWR_BUF,
4767 	},
4768 };
4769 
4770 static const struct bpf_reg_types int_ptr_types = {
4771 	.types = {
4772 		PTR_TO_STACK,
4773 		PTR_TO_PACKET,
4774 		PTR_TO_PACKET_META,
4775 		PTR_TO_MAP_KEY,
4776 		PTR_TO_MAP_VALUE,
4777 	},
4778 };
4779 
4780 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4781 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4782 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4783 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4784 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4785 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4786 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4787 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4788 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4789 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4790 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4791 
4792 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4793 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4794 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4795 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4796 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4797 	[ARG_CONST_SIZE]		= &scalar_types,
4798 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4799 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4800 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4801 	[ARG_PTR_TO_CTX]		= &context_types,
4802 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4803 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4804 #ifdef CONFIG_NET
4805 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4806 #endif
4807 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4808 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4809 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4810 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4811 	[ARG_PTR_TO_MEM]		= &mem_types,
4812 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4813 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4814 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4815 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4816 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4817 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4818 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4819 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4820 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4821 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4822 };
4823 
4824 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4825 			  enum bpf_arg_type arg_type,
4826 			  const u32 *arg_btf_id)
4827 {
4828 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4829 	enum bpf_reg_type expected, type = reg->type;
4830 	const struct bpf_reg_types *compatible;
4831 	int i, j;
4832 
4833 	compatible = compatible_reg_types[arg_type];
4834 	if (!compatible) {
4835 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4836 		return -EFAULT;
4837 	}
4838 
4839 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4840 		expected = compatible->types[i];
4841 		if (expected == NOT_INIT)
4842 			break;
4843 
4844 		if (type == expected)
4845 			goto found;
4846 	}
4847 
4848 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4849 	for (j = 0; j + 1 < i; j++)
4850 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4851 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4852 	return -EACCES;
4853 
4854 found:
4855 	if (type == PTR_TO_BTF_ID) {
4856 		if (!arg_btf_id) {
4857 			if (!compatible->btf_id) {
4858 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4859 				return -EFAULT;
4860 			}
4861 			arg_btf_id = compatible->btf_id;
4862 		}
4863 
4864 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4865 					  btf_vmlinux, *arg_btf_id)) {
4866 			verbose(env, "R%d is of type %s but %s is expected\n",
4867 				regno, kernel_type_name(reg->btf, reg->btf_id),
4868 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4869 			return -EACCES;
4870 		}
4871 
4872 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4873 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4874 				regno);
4875 			return -EACCES;
4876 		}
4877 	}
4878 
4879 	return 0;
4880 }
4881 
4882 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4883 			  struct bpf_call_arg_meta *meta,
4884 			  const struct bpf_func_proto *fn)
4885 {
4886 	u32 regno = BPF_REG_1 + arg;
4887 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4888 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4889 	enum bpf_reg_type type = reg->type;
4890 	int err = 0;
4891 
4892 	if (arg_type == ARG_DONTCARE)
4893 		return 0;
4894 
4895 	err = check_reg_arg(env, regno, SRC_OP);
4896 	if (err)
4897 		return err;
4898 
4899 	if (arg_type == ARG_ANYTHING) {
4900 		if (is_pointer_value(env, regno)) {
4901 			verbose(env, "R%d leaks addr into helper function\n",
4902 				regno);
4903 			return -EACCES;
4904 		}
4905 		return 0;
4906 	}
4907 
4908 	if (type_is_pkt_pointer(type) &&
4909 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4910 		verbose(env, "helper access to the packet is not allowed\n");
4911 		return -EACCES;
4912 	}
4913 
4914 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4915 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4916 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4917 		err = resolve_map_arg_type(env, meta, &arg_type);
4918 		if (err)
4919 			return err;
4920 	}
4921 
4922 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4923 		/* A NULL register has a SCALAR_VALUE type, so skip
4924 		 * type checking.
4925 		 */
4926 		goto skip_type_check;
4927 
4928 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4929 	if (err)
4930 		return err;
4931 
4932 	if (type == PTR_TO_CTX) {
4933 		err = check_ctx_reg(env, reg, regno);
4934 		if (err < 0)
4935 			return err;
4936 	}
4937 
4938 skip_type_check:
4939 	if (reg->ref_obj_id) {
4940 		if (meta->ref_obj_id) {
4941 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4942 				regno, reg->ref_obj_id,
4943 				meta->ref_obj_id);
4944 			return -EFAULT;
4945 		}
4946 		meta->ref_obj_id = reg->ref_obj_id;
4947 	}
4948 
4949 	if (arg_type == ARG_CONST_MAP_PTR) {
4950 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4951 		meta->map_ptr = reg->map_ptr;
4952 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4953 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4954 		 * check that [key, key + map->key_size) are within
4955 		 * stack limits and initialized
4956 		 */
4957 		if (!meta->map_ptr) {
4958 			/* in function declaration map_ptr must come before
4959 			 * map_key, so that it's verified and known before
4960 			 * we have to check map_key here. Otherwise it means
4961 			 * that kernel subsystem misconfigured verifier
4962 			 */
4963 			verbose(env, "invalid map_ptr to access map->key\n");
4964 			return -EACCES;
4965 		}
4966 		err = check_helper_mem_access(env, regno,
4967 					      meta->map_ptr->key_size, false,
4968 					      NULL);
4969 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4970 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4971 		    !register_is_null(reg)) ||
4972 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4973 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4974 		 * check [value, value + map->value_size) validity
4975 		 */
4976 		if (!meta->map_ptr) {
4977 			/* kernel subsystem misconfigured verifier */
4978 			verbose(env, "invalid map_ptr to access map->value\n");
4979 			return -EACCES;
4980 		}
4981 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4982 		err = check_helper_mem_access(env, regno,
4983 					      meta->map_ptr->value_size, false,
4984 					      meta);
4985 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4986 		if (!reg->btf_id) {
4987 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4988 			return -EACCES;
4989 		}
4990 		meta->ret_btf = reg->btf;
4991 		meta->ret_btf_id = reg->btf_id;
4992 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4993 		if (meta->func_id == BPF_FUNC_spin_lock) {
4994 			if (process_spin_lock(env, regno, true))
4995 				return -EACCES;
4996 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4997 			if (process_spin_lock(env, regno, false))
4998 				return -EACCES;
4999 		} else {
5000 			verbose(env, "verifier internal error\n");
5001 			return -EFAULT;
5002 		}
5003 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5004 		meta->subprogno = reg->subprogno;
5005 	} else if (arg_type_is_mem_ptr(arg_type)) {
5006 		/* The access to this pointer is only checked when we hit the
5007 		 * next is_mem_size argument below.
5008 		 */
5009 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5010 	} else if (arg_type_is_mem_size(arg_type)) {
5011 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5012 
5013 		/* This is used to refine r0 return value bounds for helpers
5014 		 * that enforce this value as an upper bound on return values.
5015 		 * See do_refine_retval_range() for helpers that can refine
5016 		 * the return value. C type of helper is u32 so we pull register
5017 		 * bound from umax_value however, if negative verifier errors
5018 		 * out. Only upper bounds can be learned because retval is an
5019 		 * int type and negative retvals are allowed.
5020 		 */
5021 		meta->msize_max_value = reg->umax_value;
5022 
5023 		/* The register is SCALAR_VALUE; the access check
5024 		 * happens using its boundaries.
5025 		 */
5026 		if (!tnum_is_const(reg->var_off))
5027 			/* For unprivileged variable accesses, disable raw
5028 			 * mode so that the program is required to
5029 			 * initialize all the memory that the helper could
5030 			 * just partially fill up.
5031 			 */
5032 			meta = NULL;
5033 
5034 		if (reg->smin_value < 0) {
5035 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5036 				regno);
5037 			return -EACCES;
5038 		}
5039 
5040 		if (reg->umin_value == 0) {
5041 			err = check_helper_mem_access(env, regno - 1, 0,
5042 						      zero_size_allowed,
5043 						      meta);
5044 			if (err)
5045 				return err;
5046 		}
5047 
5048 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5049 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5050 				regno);
5051 			return -EACCES;
5052 		}
5053 		err = check_helper_mem_access(env, regno - 1,
5054 					      reg->umax_value,
5055 					      zero_size_allowed, meta);
5056 		if (!err)
5057 			err = mark_chain_precision(env, regno);
5058 	} else if (arg_type_is_alloc_size(arg_type)) {
5059 		if (!tnum_is_const(reg->var_off)) {
5060 			verbose(env, "R%d is not a known constant'\n",
5061 				regno);
5062 			return -EACCES;
5063 		}
5064 		meta->mem_size = reg->var_off.value;
5065 	} else if (arg_type_is_int_ptr(arg_type)) {
5066 		int size = int_ptr_type_to_size(arg_type);
5067 
5068 		err = check_helper_mem_access(env, regno, size, false, meta);
5069 		if (err)
5070 			return err;
5071 		err = check_ptr_alignment(env, reg, 0, size, true);
5072 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5073 		struct bpf_map *map = reg->map_ptr;
5074 		int map_off;
5075 		u64 map_addr;
5076 		char *str_ptr;
5077 
5078 		if (!bpf_map_is_rdonly(map)) {
5079 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5080 			return -EACCES;
5081 		}
5082 
5083 		if (!tnum_is_const(reg->var_off)) {
5084 			verbose(env, "R%d is not a constant address'\n", regno);
5085 			return -EACCES;
5086 		}
5087 
5088 		if (!map->ops->map_direct_value_addr) {
5089 			verbose(env, "no direct value access support for this map type\n");
5090 			return -EACCES;
5091 		}
5092 
5093 		err = check_map_access(env, regno, reg->off,
5094 				       map->value_size - reg->off, false);
5095 		if (err)
5096 			return err;
5097 
5098 		map_off = reg->off + reg->var_off.value;
5099 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5100 		if (err) {
5101 			verbose(env, "direct value access on string failed\n");
5102 			return err;
5103 		}
5104 
5105 		str_ptr = (char *)(long)(map_addr);
5106 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5107 			verbose(env, "string is not zero-terminated\n");
5108 			return -EINVAL;
5109 		}
5110 	}
5111 
5112 	return err;
5113 }
5114 
5115 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5116 {
5117 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5118 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5119 
5120 	if (func_id != BPF_FUNC_map_update_elem)
5121 		return false;
5122 
5123 	/* It's not possible to get access to a locked struct sock in these
5124 	 * contexts, so updating is safe.
5125 	 */
5126 	switch (type) {
5127 	case BPF_PROG_TYPE_TRACING:
5128 		if (eatype == BPF_TRACE_ITER)
5129 			return true;
5130 		break;
5131 	case BPF_PROG_TYPE_SOCKET_FILTER:
5132 	case BPF_PROG_TYPE_SCHED_CLS:
5133 	case BPF_PROG_TYPE_SCHED_ACT:
5134 	case BPF_PROG_TYPE_XDP:
5135 	case BPF_PROG_TYPE_SK_REUSEPORT:
5136 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5137 	case BPF_PROG_TYPE_SK_LOOKUP:
5138 		return true;
5139 	default:
5140 		break;
5141 	}
5142 
5143 	verbose(env, "cannot update sockmap in this context\n");
5144 	return false;
5145 }
5146 
5147 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5148 {
5149 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5150 }
5151 
5152 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5153 					struct bpf_map *map, int func_id)
5154 {
5155 	if (!map)
5156 		return 0;
5157 
5158 	/* We need a two way check, first is from map perspective ... */
5159 	switch (map->map_type) {
5160 	case BPF_MAP_TYPE_PROG_ARRAY:
5161 		if (func_id != BPF_FUNC_tail_call)
5162 			goto error;
5163 		break;
5164 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5165 		if (func_id != BPF_FUNC_perf_event_read &&
5166 		    func_id != BPF_FUNC_perf_event_output &&
5167 		    func_id != BPF_FUNC_skb_output &&
5168 		    func_id != BPF_FUNC_perf_event_read_value &&
5169 		    func_id != BPF_FUNC_xdp_output)
5170 			goto error;
5171 		break;
5172 	case BPF_MAP_TYPE_RINGBUF:
5173 		if (func_id != BPF_FUNC_ringbuf_output &&
5174 		    func_id != BPF_FUNC_ringbuf_reserve &&
5175 		    func_id != BPF_FUNC_ringbuf_submit &&
5176 		    func_id != BPF_FUNC_ringbuf_discard &&
5177 		    func_id != BPF_FUNC_ringbuf_query)
5178 			goto error;
5179 		break;
5180 	case BPF_MAP_TYPE_STACK_TRACE:
5181 		if (func_id != BPF_FUNC_get_stackid)
5182 			goto error;
5183 		break;
5184 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5185 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5186 		    func_id != BPF_FUNC_current_task_under_cgroup)
5187 			goto error;
5188 		break;
5189 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5190 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5191 		if (func_id != BPF_FUNC_get_local_storage)
5192 			goto error;
5193 		break;
5194 	case BPF_MAP_TYPE_DEVMAP:
5195 	case BPF_MAP_TYPE_DEVMAP_HASH:
5196 		if (func_id != BPF_FUNC_redirect_map &&
5197 		    func_id != BPF_FUNC_map_lookup_elem)
5198 			goto error;
5199 		break;
5200 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5201 	 * appear.
5202 	 */
5203 	case BPF_MAP_TYPE_CPUMAP:
5204 		if (func_id != BPF_FUNC_redirect_map)
5205 			goto error;
5206 		break;
5207 	case BPF_MAP_TYPE_XSKMAP:
5208 		if (func_id != BPF_FUNC_redirect_map &&
5209 		    func_id != BPF_FUNC_map_lookup_elem)
5210 			goto error;
5211 		break;
5212 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5213 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5214 		if (func_id != BPF_FUNC_map_lookup_elem)
5215 			goto error;
5216 		break;
5217 	case BPF_MAP_TYPE_SOCKMAP:
5218 		if (func_id != BPF_FUNC_sk_redirect_map &&
5219 		    func_id != BPF_FUNC_sock_map_update &&
5220 		    func_id != BPF_FUNC_map_delete_elem &&
5221 		    func_id != BPF_FUNC_msg_redirect_map &&
5222 		    func_id != BPF_FUNC_sk_select_reuseport &&
5223 		    func_id != BPF_FUNC_map_lookup_elem &&
5224 		    !may_update_sockmap(env, func_id))
5225 			goto error;
5226 		break;
5227 	case BPF_MAP_TYPE_SOCKHASH:
5228 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5229 		    func_id != BPF_FUNC_sock_hash_update &&
5230 		    func_id != BPF_FUNC_map_delete_elem &&
5231 		    func_id != BPF_FUNC_msg_redirect_hash &&
5232 		    func_id != BPF_FUNC_sk_select_reuseport &&
5233 		    func_id != BPF_FUNC_map_lookup_elem &&
5234 		    !may_update_sockmap(env, func_id))
5235 			goto error;
5236 		break;
5237 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5238 		if (func_id != BPF_FUNC_sk_select_reuseport)
5239 			goto error;
5240 		break;
5241 	case BPF_MAP_TYPE_QUEUE:
5242 	case BPF_MAP_TYPE_STACK:
5243 		if (func_id != BPF_FUNC_map_peek_elem &&
5244 		    func_id != BPF_FUNC_map_pop_elem &&
5245 		    func_id != BPF_FUNC_map_push_elem)
5246 			goto error;
5247 		break;
5248 	case BPF_MAP_TYPE_SK_STORAGE:
5249 		if (func_id != BPF_FUNC_sk_storage_get &&
5250 		    func_id != BPF_FUNC_sk_storage_delete)
5251 			goto error;
5252 		break;
5253 	case BPF_MAP_TYPE_INODE_STORAGE:
5254 		if (func_id != BPF_FUNC_inode_storage_get &&
5255 		    func_id != BPF_FUNC_inode_storage_delete)
5256 			goto error;
5257 		break;
5258 	case BPF_MAP_TYPE_TASK_STORAGE:
5259 		if (func_id != BPF_FUNC_task_storage_get &&
5260 		    func_id != BPF_FUNC_task_storage_delete)
5261 			goto error;
5262 		break;
5263 	default:
5264 		break;
5265 	}
5266 
5267 	/* ... and second from the function itself. */
5268 	switch (func_id) {
5269 	case BPF_FUNC_tail_call:
5270 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5271 			goto error;
5272 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5273 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5274 			return -EINVAL;
5275 		}
5276 		break;
5277 	case BPF_FUNC_perf_event_read:
5278 	case BPF_FUNC_perf_event_output:
5279 	case BPF_FUNC_perf_event_read_value:
5280 	case BPF_FUNC_skb_output:
5281 	case BPF_FUNC_xdp_output:
5282 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5283 			goto error;
5284 		break;
5285 	case BPF_FUNC_get_stackid:
5286 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5287 			goto error;
5288 		break;
5289 	case BPF_FUNC_current_task_under_cgroup:
5290 	case BPF_FUNC_skb_under_cgroup:
5291 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5292 			goto error;
5293 		break;
5294 	case BPF_FUNC_redirect_map:
5295 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5296 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5297 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5298 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5299 			goto error;
5300 		break;
5301 	case BPF_FUNC_sk_redirect_map:
5302 	case BPF_FUNC_msg_redirect_map:
5303 	case BPF_FUNC_sock_map_update:
5304 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5305 			goto error;
5306 		break;
5307 	case BPF_FUNC_sk_redirect_hash:
5308 	case BPF_FUNC_msg_redirect_hash:
5309 	case BPF_FUNC_sock_hash_update:
5310 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5311 			goto error;
5312 		break;
5313 	case BPF_FUNC_get_local_storage:
5314 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5315 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5316 			goto error;
5317 		break;
5318 	case BPF_FUNC_sk_select_reuseport:
5319 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5320 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5321 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5322 			goto error;
5323 		break;
5324 	case BPF_FUNC_map_peek_elem:
5325 	case BPF_FUNC_map_pop_elem:
5326 	case BPF_FUNC_map_push_elem:
5327 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5328 		    map->map_type != BPF_MAP_TYPE_STACK)
5329 			goto error;
5330 		break;
5331 	case BPF_FUNC_sk_storage_get:
5332 	case BPF_FUNC_sk_storage_delete:
5333 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5334 			goto error;
5335 		break;
5336 	case BPF_FUNC_inode_storage_get:
5337 	case BPF_FUNC_inode_storage_delete:
5338 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5339 			goto error;
5340 		break;
5341 	case BPF_FUNC_task_storage_get:
5342 	case BPF_FUNC_task_storage_delete:
5343 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5344 			goto error;
5345 		break;
5346 	default:
5347 		break;
5348 	}
5349 
5350 	return 0;
5351 error:
5352 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5353 		map->map_type, func_id_name(func_id), func_id);
5354 	return -EINVAL;
5355 }
5356 
5357 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5358 {
5359 	int count = 0;
5360 
5361 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5362 		count++;
5363 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5364 		count++;
5365 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5366 		count++;
5367 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5368 		count++;
5369 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5370 		count++;
5371 
5372 	/* We only support one arg being in raw mode at the moment,
5373 	 * which is sufficient for the helper functions we have
5374 	 * right now.
5375 	 */
5376 	return count <= 1;
5377 }
5378 
5379 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5380 				    enum bpf_arg_type arg_next)
5381 {
5382 	return (arg_type_is_mem_ptr(arg_curr) &&
5383 	        !arg_type_is_mem_size(arg_next)) ||
5384 	       (!arg_type_is_mem_ptr(arg_curr) &&
5385 		arg_type_is_mem_size(arg_next));
5386 }
5387 
5388 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5389 {
5390 	/* bpf_xxx(..., buf, len) call will access 'len'
5391 	 * bytes from memory 'buf'. Both arg types need
5392 	 * to be paired, so make sure there's no buggy
5393 	 * helper function specification.
5394 	 */
5395 	if (arg_type_is_mem_size(fn->arg1_type) ||
5396 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5397 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5398 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5399 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5400 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5401 		return false;
5402 
5403 	return true;
5404 }
5405 
5406 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5407 {
5408 	int count = 0;
5409 
5410 	if (arg_type_may_be_refcounted(fn->arg1_type))
5411 		count++;
5412 	if (arg_type_may_be_refcounted(fn->arg2_type))
5413 		count++;
5414 	if (arg_type_may_be_refcounted(fn->arg3_type))
5415 		count++;
5416 	if (arg_type_may_be_refcounted(fn->arg4_type))
5417 		count++;
5418 	if (arg_type_may_be_refcounted(fn->arg5_type))
5419 		count++;
5420 
5421 	/* A reference acquiring function cannot acquire
5422 	 * another refcounted ptr.
5423 	 */
5424 	if (may_be_acquire_function(func_id) && count)
5425 		return false;
5426 
5427 	/* We only support one arg being unreferenced at the moment,
5428 	 * which is sufficient for the helper functions we have right now.
5429 	 */
5430 	return count <= 1;
5431 }
5432 
5433 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5434 {
5435 	int i;
5436 
5437 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5438 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5439 			return false;
5440 
5441 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5442 			return false;
5443 	}
5444 
5445 	return true;
5446 }
5447 
5448 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5449 {
5450 	return check_raw_mode_ok(fn) &&
5451 	       check_arg_pair_ok(fn) &&
5452 	       check_btf_id_ok(fn) &&
5453 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5454 }
5455 
5456 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5457  * are now invalid, so turn them into unknown SCALAR_VALUE.
5458  */
5459 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5460 				     struct bpf_func_state *state)
5461 {
5462 	struct bpf_reg_state *regs = state->regs, *reg;
5463 	int i;
5464 
5465 	for (i = 0; i < MAX_BPF_REG; i++)
5466 		if (reg_is_pkt_pointer_any(&regs[i]))
5467 			mark_reg_unknown(env, regs, i);
5468 
5469 	bpf_for_each_spilled_reg(i, state, reg) {
5470 		if (!reg)
5471 			continue;
5472 		if (reg_is_pkt_pointer_any(reg))
5473 			__mark_reg_unknown(env, reg);
5474 	}
5475 }
5476 
5477 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5478 {
5479 	struct bpf_verifier_state *vstate = env->cur_state;
5480 	int i;
5481 
5482 	for (i = 0; i <= vstate->curframe; i++)
5483 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5484 }
5485 
5486 enum {
5487 	AT_PKT_END = -1,
5488 	BEYOND_PKT_END = -2,
5489 };
5490 
5491 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5492 {
5493 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5494 	struct bpf_reg_state *reg = &state->regs[regn];
5495 
5496 	if (reg->type != PTR_TO_PACKET)
5497 		/* PTR_TO_PACKET_META is not supported yet */
5498 		return;
5499 
5500 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5501 	 * How far beyond pkt_end it goes is unknown.
5502 	 * if (!range_open) it's the case of pkt >= pkt_end
5503 	 * if (range_open) it's the case of pkt > pkt_end
5504 	 * hence this pointer is at least 1 byte bigger than pkt_end
5505 	 */
5506 	if (range_open)
5507 		reg->range = BEYOND_PKT_END;
5508 	else
5509 		reg->range = AT_PKT_END;
5510 }
5511 
5512 static void release_reg_references(struct bpf_verifier_env *env,
5513 				   struct bpf_func_state *state,
5514 				   int ref_obj_id)
5515 {
5516 	struct bpf_reg_state *regs = state->regs, *reg;
5517 	int i;
5518 
5519 	for (i = 0; i < MAX_BPF_REG; i++)
5520 		if (regs[i].ref_obj_id == ref_obj_id)
5521 			mark_reg_unknown(env, regs, i);
5522 
5523 	bpf_for_each_spilled_reg(i, state, reg) {
5524 		if (!reg)
5525 			continue;
5526 		if (reg->ref_obj_id == ref_obj_id)
5527 			__mark_reg_unknown(env, reg);
5528 	}
5529 }
5530 
5531 /* The pointer with the specified id has released its reference to kernel
5532  * resources. Identify all copies of the same pointer and clear the reference.
5533  */
5534 static int release_reference(struct bpf_verifier_env *env,
5535 			     int ref_obj_id)
5536 {
5537 	struct bpf_verifier_state *vstate = env->cur_state;
5538 	int err;
5539 	int i;
5540 
5541 	err = release_reference_state(cur_func(env), ref_obj_id);
5542 	if (err)
5543 		return err;
5544 
5545 	for (i = 0; i <= vstate->curframe; i++)
5546 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5547 
5548 	return 0;
5549 }
5550 
5551 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5552 				    struct bpf_reg_state *regs)
5553 {
5554 	int i;
5555 
5556 	/* after the call registers r0 - r5 were scratched */
5557 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5558 		mark_reg_not_init(env, regs, caller_saved[i]);
5559 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5560 	}
5561 }
5562 
5563 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5564 				   struct bpf_func_state *caller,
5565 				   struct bpf_func_state *callee,
5566 				   int insn_idx);
5567 
5568 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5569 			     int *insn_idx, int subprog,
5570 			     set_callee_state_fn set_callee_state_cb)
5571 {
5572 	struct bpf_verifier_state *state = env->cur_state;
5573 	struct bpf_func_info_aux *func_info_aux;
5574 	struct bpf_func_state *caller, *callee;
5575 	int err;
5576 	bool is_global = false;
5577 
5578 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5579 		verbose(env, "the call stack of %d frames is too deep\n",
5580 			state->curframe + 2);
5581 		return -E2BIG;
5582 	}
5583 
5584 	caller = state->frame[state->curframe];
5585 	if (state->frame[state->curframe + 1]) {
5586 		verbose(env, "verifier bug. Frame %d already allocated\n",
5587 			state->curframe + 1);
5588 		return -EFAULT;
5589 	}
5590 
5591 	func_info_aux = env->prog->aux->func_info_aux;
5592 	if (func_info_aux)
5593 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5594 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5595 	if (err == -EFAULT)
5596 		return err;
5597 	if (is_global) {
5598 		if (err) {
5599 			verbose(env, "Caller passes invalid args into func#%d\n",
5600 				subprog);
5601 			return err;
5602 		} else {
5603 			if (env->log.level & BPF_LOG_LEVEL)
5604 				verbose(env,
5605 					"Func#%d is global and valid. Skipping.\n",
5606 					subprog);
5607 			clear_caller_saved_regs(env, caller->regs);
5608 
5609 			/* All global functions return a 64-bit SCALAR_VALUE */
5610 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5611 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5612 
5613 			/* continue with next insn after call */
5614 			return 0;
5615 		}
5616 	}
5617 
5618 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5619 	if (!callee)
5620 		return -ENOMEM;
5621 	state->frame[state->curframe + 1] = callee;
5622 
5623 	/* callee cannot access r0, r6 - r9 for reading and has to write
5624 	 * into its own stack before reading from it.
5625 	 * callee can read/write into caller's stack
5626 	 */
5627 	init_func_state(env, callee,
5628 			/* remember the callsite, it will be used by bpf_exit */
5629 			*insn_idx /* callsite */,
5630 			state->curframe + 1 /* frameno within this callchain */,
5631 			subprog /* subprog number within this prog */);
5632 
5633 	/* Transfer references to the callee */
5634 	err = copy_reference_state(callee, caller);
5635 	if (err)
5636 		return err;
5637 
5638 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5639 	if (err)
5640 		return err;
5641 
5642 	clear_caller_saved_regs(env, caller->regs);
5643 
5644 	/* only increment it after check_reg_arg() finished */
5645 	state->curframe++;
5646 
5647 	/* and go analyze first insn of the callee */
5648 	*insn_idx = env->subprog_info[subprog].start - 1;
5649 
5650 	if (env->log.level & BPF_LOG_LEVEL) {
5651 		verbose(env, "caller:\n");
5652 		print_verifier_state(env, caller);
5653 		verbose(env, "callee:\n");
5654 		print_verifier_state(env, callee);
5655 	}
5656 	return 0;
5657 }
5658 
5659 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5660 				   struct bpf_func_state *caller,
5661 				   struct bpf_func_state *callee)
5662 {
5663 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5664 	 *      void *callback_ctx, u64 flags);
5665 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5666 	 *      void *callback_ctx);
5667 	 */
5668 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5669 
5670 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5671 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5672 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5673 
5674 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5675 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5676 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5677 
5678 	/* pointer to stack or null */
5679 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5680 
5681 	/* unused */
5682 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5683 	return 0;
5684 }
5685 
5686 static int set_callee_state(struct bpf_verifier_env *env,
5687 			    struct bpf_func_state *caller,
5688 			    struct bpf_func_state *callee, int insn_idx)
5689 {
5690 	int i;
5691 
5692 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5693 	 * pointers, which connects us up to the liveness chain
5694 	 */
5695 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5696 		callee->regs[i] = caller->regs[i];
5697 	return 0;
5698 }
5699 
5700 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5701 			   int *insn_idx)
5702 {
5703 	int subprog, target_insn;
5704 
5705 	target_insn = *insn_idx + insn->imm + 1;
5706 	subprog = find_subprog(env, target_insn);
5707 	if (subprog < 0) {
5708 		verbose(env, "verifier bug. No program starts at insn %d\n",
5709 			target_insn);
5710 		return -EFAULT;
5711 	}
5712 
5713 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5714 }
5715 
5716 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5717 				       struct bpf_func_state *caller,
5718 				       struct bpf_func_state *callee,
5719 				       int insn_idx)
5720 {
5721 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5722 	struct bpf_map *map;
5723 	int err;
5724 
5725 	if (bpf_map_ptr_poisoned(insn_aux)) {
5726 		verbose(env, "tail_call abusing map_ptr\n");
5727 		return -EINVAL;
5728 	}
5729 
5730 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5731 	if (!map->ops->map_set_for_each_callback_args ||
5732 	    !map->ops->map_for_each_callback) {
5733 		verbose(env, "callback function not allowed for map\n");
5734 		return -ENOTSUPP;
5735 	}
5736 
5737 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5738 	if (err)
5739 		return err;
5740 
5741 	callee->in_callback_fn = true;
5742 	return 0;
5743 }
5744 
5745 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5746 {
5747 	struct bpf_verifier_state *state = env->cur_state;
5748 	struct bpf_func_state *caller, *callee;
5749 	struct bpf_reg_state *r0;
5750 	int err;
5751 
5752 	callee = state->frame[state->curframe];
5753 	r0 = &callee->regs[BPF_REG_0];
5754 	if (r0->type == PTR_TO_STACK) {
5755 		/* technically it's ok to return caller's stack pointer
5756 		 * (or caller's caller's pointer) back to the caller,
5757 		 * since these pointers are valid. Only current stack
5758 		 * pointer will be invalid as soon as function exits,
5759 		 * but let's be conservative
5760 		 */
5761 		verbose(env, "cannot return stack pointer to the caller\n");
5762 		return -EINVAL;
5763 	}
5764 
5765 	state->curframe--;
5766 	caller = state->frame[state->curframe];
5767 	if (callee->in_callback_fn) {
5768 		/* enforce R0 return value range [0, 1]. */
5769 		struct tnum range = tnum_range(0, 1);
5770 
5771 		if (r0->type != SCALAR_VALUE) {
5772 			verbose(env, "R0 not a scalar value\n");
5773 			return -EACCES;
5774 		}
5775 		if (!tnum_in(range, r0->var_off)) {
5776 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5777 			return -EINVAL;
5778 		}
5779 	} else {
5780 		/* return to the caller whatever r0 had in the callee */
5781 		caller->regs[BPF_REG_0] = *r0;
5782 	}
5783 
5784 	/* Transfer references to the caller */
5785 	err = copy_reference_state(caller, callee);
5786 	if (err)
5787 		return err;
5788 
5789 	*insn_idx = callee->callsite + 1;
5790 	if (env->log.level & BPF_LOG_LEVEL) {
5791 		verbose(env, "returning from callee:\n");
5792 		print_verifier_state(env, callee);
5793 		verbose(env, "to caller at %d:\n", *insn_idx);
5794 		print_verifier_state(env, caller);
5795 	}
5796 	/* clear everything in the callee */
5797 	free_func_state(callee);
5798 	state->frame[state->curframe + 1] = NULL;
5799 	return 0;
5800 }
5801 
5802 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5803 				   int func_id,
5804 				   struct bpf_call_arg_meta *meta)
5805 {
5806 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5807 
5808 	if (ret_type != RET_INTEGER ||
5809 	    (func_id != BPF_FUNC_get_stack &&
5810 	     func_id != BPF_FUNC_get_task_stack &&
5811 	     func_id != BPF_FUNC_probe_read_str &&
5812 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5813 	     func_id != BPF_FUNC_probe_read_user_str))
5814 		return;
5815 
5816 	ret_reg->smax_value = meta->msize_max_value;
5817 	ret_reg->s32_max_value = meta->msize_max_value;
5818 	ret_reg->smin_value = -MAX_ERRNO;
5819 	ret_reg->s32_min_value = -MAX_ERRNO;
5820 	__reg_deduce_bounds(ret_reg);
5821 	__reg_bound_offset(ret_reg);
5822 	__update_reg_bounds(ret_reg);
5823 }
5824 
5825 static int
5826 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5827 		int func_id, int insn_idx)
5828 {
5829 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5830 	struct bpf_map *map = meta->map_ptr;
5831 
5832 	if (func_id != BPF_FUNC_tail_call &&
5833 	    func_id != BPF_FUNC_map_lookup_elem &&
5834 	    func_id != BPF_FUNC_map_update_elem &&
5835 	    func_id != BPF_FUNC_map_delete_elem &&
5836 	    func_id != BPF_FUNC_map_push_elem &&
5837 	    func_id != BPF_FUNC_map_pop_elem &&
5838 	    func_id != BPF_FUNC_map_peek_elem &&
5839 	    func_id != BPF_FUNC_for_each_map_elem &&
5840 	    func_id != BPF_FUNC_redirect_map)
5841 		return 0;
5842 
5843 	if (map == NULL) {
5844 		verbose(env, "kernel subsystem misconfigured verifier\n");
5845 		return -EINVAL;
5846 	}
5847 
5848 	/* In case of read-only, some additional restrictions
5849 	 * need to be applied in order to prevent altering the
5850 	 * state of the map from program side.
5851 	 */
5852 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5853 	    (func_id == BPF_FUNC_map_delete_elem ||
5854 	     func_id == BPF_FUNC_map_update_elem ||
5855 	     func_id == BPF_FUNC_map_push_elem ||
5856 	     func_id == BPF_FUNC_map_pop_elem)) {
5857 		verbose(env, "write into map forbidden\n");
5858 		return -EACCES;
5859 	}
5860 
5861 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5862 		bpf_map_ptr_store(aux, meta->map_ptr,
5863 				  !meta->map_ptr->bypass_spec_v1);
5864 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5865 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5866 				  !meta->map_ptr->bypass_spec_v1);
5867 	return 0;
5868 }
5869 
5870 static int
5871 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5872 		int func_id, int insn_idx)
5873 {
5874 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5875 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5876 	struct bpf_map *map = meta->map_ptr;
5877 	struct tnum range;
5878 	u64 val;
5879 	int err;
5880 
5881 	if (func_id != BPF_FUNC_tail_call)
5882 		return 0;
5883 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5884 		verbose(env, "kernel subsystem misconfigured verifier\n");
5885 		return -EINVAL;
5886 	}
5887 
5888 	range = tnum_range(0, map->max_entries - 1);
5889 	reg = &regs[BPF_REG_3];
5890 
5891 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5892 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5893 		return 0;
5894 	}
5895 
5896 	err = mark_chain_precision(env, BPF_REG_3);
5897 	if (err)
5898 		return err;
5899 
5900 	val = reg->var_off.value;
5901 	if (bpf_map_key_unseen(aux))
5902 		bpf_map_key_store(aux, val);
5903 	else if (!bpf_map_key_poisoned(aux) &&
5904 		  bpf_map_key_immediate(aux) != val)
5905 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5906 	return 0;
5907 }
5908 
5909 static int check_reference_leak(struct bpf_verifier_env *env)
5910 {
5911 	struct bpf_func_state *state = cur_func(env);
5912 	int i;
5913 
5914 	for (i = 0; i < state->acquired_refs; i++) {
5915 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5916 			state->refs[i].id, state->refs[i].insn_idx);
5917 	}
5918 	return state->acquired_refs ? -EINVAL : 0;
5919 }
5920 
5921 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5922 				   struct bpf_reg_state *regs)
5923 {
5924 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5925 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5926 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
5927 	int err, fmt_map_off, num_args;
5928 	u64 fmt_addr;
5929 	char *fmt;
5930 
5931 	/* data must be an array of u64 */
5932 	if (data_len_reg->var_off.value % 8)
5933 		return -EINVAL;
5934 	num_args = data_len_reg->var_off.value / 8;
5935 
5936 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5937 	 * and map_direct_value_addr is set.
5938 	 */
5939 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5940 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5941 						  fmt_map_off);
5942 	if (err) {
5943 		verbose(env, "verifier bug\n");
5944 		return -EFAULT;
5945 	}
5946 	fmt = (char *)(long)fmt_addr + fmt_map_off;
5947 
5948 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5949 	 * can focus on validating the format specifiers.
5950 	 */
5951 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5952 	if (err < 0)
5953 		verbose(env, "Invalid format string\n");
5954 
5955 	return err;
5956 }
5957 
5958 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5959 			     int *insn_idx_p)
5960 {
5961 	const struct bpf_func_proto *fn = NULL;
5962 	struct bpf_reg_state *regs;
5963 	struct bpf_call_arg_meta meta;
5964 	int insn_idx = *insn_idx_p;
5965 	bool changes_data;
5966 	int i, err, func_id;
5967 
5968 	/* find function prototype */
5969 	func_id = insn->imm;
5970 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5971 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5972 			func_id);
5973 		return -EINVAL;
5974 	}
5975 
5976 	if (env->ops->get_func_proto)
5977 		fn = env->ops->get_func_proto(func_id, env->prog);
5978 	if (!fn) {
5979 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5980 			func_id);
5981 		return -EINVAL;
5982 	}
5983 
5984 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5985 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5986 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5987 		return -EINVAL;
5988 	}
5989 
5990 	if (fn->allowed && !fn->allowed(env->prog)) {
5991 		verbose(env, "helper call is not allowed in probe\n");
5992 		return -EINVAL;
5993 	}
5994 
5995 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5996 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5997 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5998 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5999 			func_id_name(func_id), func_id);
6000 		return -EINVAL;
6001 	}
6002 
6003 	memset(&meta, 0, sizeof(meta));
6004 	meta.pkt_access = fn->pkt_access;
6005 
6006 	err = check_func_proto(fn, func_id);
6007 	if (err) {
6008 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6009 			func_id_name(func_id), func_id);
6010 		return err;
6011 	}
6012 
6013 	meta.func_id = func_id;
6014 	/* check args */
6015 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6016 		err = check_func_arg(env, i, &meta, fn);
6017 		if (err)
6018 			return err;
6019 	}
6020 
6021 	err = record_func_map(env, &meta, func_id, insn_idx);
6022 	if (err)
6023 		return err;
6024 
6025 	err = record_func_key(env, &meta, func_id, insn_idx);
6026 	if (err)
6027 		return err;
6028 
6029 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6030 	 * is inferred from register state.
6031 	 */
6032 	for (i = 0; i < meta.access_size; i++) {
6033 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6034 				       BPF_WRITE, -1, false);
6035 		if (err)
6036 			return err;
6037 	}
6038 
6039 	if (func_id == BPF_FUNC_tail_call) {
6040 		err = check_reference_leak(env);
6041 		if (err) {
6042 			verbose(env, "tail_call would lead to reference leak\n");
6043 			return err;
6044 		}
6045 	} else if (is_release_function(func_id)) {
6046 		err = release_reference(env, meta.ref_obj_id);
6047 		if (err) {
6048 			verbose(env, "func %s#%d reference has not been acquired before\n",
6049 				func_id_name(func_id), func_id);
6050 			return err;
6051 		}
6052 	}
6053 
6054 	regs = cur_regs(env);
6055 
6056 	/* check that flags argument in get_local_storage(map, flags) is 0,
6057 	 * this is required because get_local_storage() can't return an error.
6058 	 */
6059 	if (func_id == BPF_FUNC_get_local_storage &&
6060 	    !register_is_null(&regs[BPF_REG_2])) {
6061 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6062 		return -EINVAL;
6063 	}
6064 
6065 	if (func_id == BPF_FUNC_for_each_map_elem) {
6066 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6067 					set_map_elem_callback_state);
6068 		if (err < 0)
6069 			return -EINVAL;
6070 	}
6071 
6072 	if (func_id == BPF_FUNC_snprintf) {
6073 		err = check_bpf_snprintf_call(env, regs);
6074 		if (err < 0)
6075 			return err;
6076 	}
6077 
6078 	/* reset caller saved regs */
6079 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6080 		mark_reg_not_init(env, regs, caller_saved[i]);
6081 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6082 	}
6083 
6084 	/* helper call returns 64-bit value. */
6085 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6086 
6087 	/* update return register (already marked as written above) */
6088 	if (fn->ret_type == RET_INTEGER) {
6089 		/* sets type to SCALAR_VALUE */
6090 		mark_reg_unknown(env, regs, BPF_REG_0);
6091 	} else if (fn->ret_type == RET_VOID) {
6092 		regs[BPF_REG_0].type = NOT_INIT;
6093 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6094 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6095 		/* There is no offset yet applied, variable or fixed */
6096 		mark_reg_known_zero(env, regs, BPF_REG_0);
6097 		/* remember map_ptr, so that check_map_access()
6098 		 * can check 'value_size' boundary of memory access
6099 		 * to map element returned from bpf_map_lookup_elem()
6100 		 */
6101 		if (meta.map_ptr == NULL) {
6102 			verbose(env,
6103 				"kernel subsystem misconfigured verifier\n");
6104 			return -EINVAL;
6105 		}
6106 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6107 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6108 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6109 			if (map_value_has_spin_lock(meta.map_ptr))
6110 				regs[BPF_REG_0].id = ++env->id_gen;
6111 		} else {
6112 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6113 		}
6114 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6115 		mark_reg_known_zero(env, regs, BPF_REG_0);
6116 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6117 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6118 		mark_reg_known_zero(env, regs, BPF_REG_0);
6119 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6120 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6121 		mark_reg_known_zero(env, regs, BPF_REG_0);
6122 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6123 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6124 		mark_reg_known_zero(env, regs, BPF_REG_0);
6125 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6126 		regs[BPF_REG_0].mem_size = meta.mem_size;
6127 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6128 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6129 		const struct btf_type *t;
6130 
6131 		mark_reg_known_zero(env, regs, BPF_REG_0);
6132 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6133 		if (!btf_type_is_struct(t)) {
6134 			u32 tsize;
6135 			const struct btf_type *ret;
6136 			const char *tname;
6137 
6138 			/* resolve the type size of ksym. */
6139 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6140 			if (IS_ERR(ret)) {
6141 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6142 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6143 					tname, PTR_ERR(ret));
6144 				return -EINVAL;
6145 			}
6146 			regs[BPF_REG_0].type =
6147 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6148 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6149 			regs[BPF_REG_0].mem_size = tsize;
6150 		} else {
6151 			regs[BPF_REG_0].type =
6152 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6153 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6154 			regs[BPF_REG_0].btf = meta.ret_btf;
6155 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6156 		}
6157 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6158 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6159 		int ret_btf_id;
6160 
6161 		mark_reg_known_zero(env, regs, BPF_REG_0);
6162 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6163 						     PTR_TO_BTF_ID :
6164 						     PTR_TO_BTF_ID_OR_NULL;
6165 		ret_btf_id = *fn->ret_btf_id;
6166 		if (ret_btf_id == 0) {
6167 			verbose(env, "invalid return type %d of func %s#%d\n",
6168 				fn->ret_type, func_id_name(func_id), func_id);
6169 			return -EINVAL;
6170 		}
6171 		/* current BPF helper definitions are only coming from
6172 		 * built-in code with type IDs from  vmlinux BTF
6173 		 */
6174 		regs[BPF_REG_0].btf = btf_vmlinux;
6175 		regs[BPF_REG_0].btf_id = ret_btf_id;
6176 	} else {
6177 		verbose(env, "unknown return type %d of func %s#%d\n",
6178 			fn->ret_type, func_id_name(func_id), func_id);
6179 		return -EINVAL;
6180 	}
6181 
6182 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6183 		regs[BPF_REG_0].id = ++env->id_gen;
6184 
6185 	if (is_ptr_cast_function(func_id)) {
6186 		/* For release_reference() */
6187 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6188 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6189 		int id = acquire_reference_state(env, insn_idx);
6190 
6191 		if (id < 0)
6192 			return id;
6193 		/* For mark_ptr_or_null_reg() */
6194 		regs[BPF_REG_0].id = id;
6195 		/* For release_reference() */
6196 		regs[BPF_REG_0].ref_obj_id = id;
6197 	}
6198 
6199 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6200 
6201 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6202 	if (err)
6203 		return err;
6204 
6205 	if ((func_id == BPF_FUNC_get_stack ||
6206 	     func_id == BPF_FUNC_get_task_stack) &&
6207 	    !env->prog->has_callchain_buf) {
6208 		const char *err_str;
6209 
6210 #ifdef CONFIG_PERF_EVENTS
6211 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6212 		err_str = "cannot get callchain buffer for func %s#%d\n";
6213 #else
6214 		err = -ENOTSUPP;
6215 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6216 #endif
6217 		if (err) {
6218 			verbose(env, err_str, func_id_name(func_id), func_id);
6219 			return err;
6220 		}
6221 
6222 		env->prog->has_callchain_buf = true;
6223 	}
6224 
6225 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6226 		env->prog->call_get_stack = true;
6227 
6228 	if (changes_data)
6229 		clear_all_pkt_pointers(env);
6230 	return 0;
6231 }
6232 
6233 /* mark_btf_func_reg_size() is used when the reg size is determined by
6234  * the BTF func_proto's return value size and argument.
6235  */
6236 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6237 				   size_t reg_size)
6238 {
6239 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6240 
6241 	if (regno == BPF_REG_0) {
6242 		/* Function return value */
6243 		reg->live |= REG_LIVE_WRITTEN;
6244 		reg->subreg_def = reg_size == sizeof(u64) ?
6245 			DEF_NOT_SUBREG : env->insn_idx + 1;
6246 	} else {
6247 		/* Function argument */
6248 		if (reg_size == sizeof(u64)) {
6249 			mark_insn_zext(env, reg);
6250 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6251 		} else {
6252 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6253 		}
6254 	}
6255 }
6256 
6257 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6258 {
6259 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6260 	struct bpf_reg_state *regs = cur_regs(env);
6261 	const char *func_name, *ptr_type_name;
6262 	u32 i, nargs, func_id, ptr_type_id;
6263 	const struct btf_param *args;
6264 	int err;
6265 
6266 	func_id = insn->imm;
6267 	func = btf_type_by_id(btf_vmlinux, func_id);
6268 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6269 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6270 
6271 	if (!env->ops->check_kfunc_call ||
6272 	    !env->ops->check_kfunc_call(func_id)) {
6273 		verbose(env, "calling kernel function %s is not allowed\n",
6274 			func_name);
6275 		return -EACCES;
6276 	}
6277 
6278 	/* Check the arguments */
6279 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6280 	if (err)
6281 		return err;
6282 
6283 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6284 		mark_reg_not_init(env, regs, caller_saved[i]);
6285 
6286 	/* Check return type */
6287 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6288 	if (btf_type_is_scalar(t)) {
6289 		mark_reg_unknown(env, regs, BPF_REG_0);
6290 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6291 	} else if (btf_type_is_ptr(t)) {
6292 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6293 						   &ptr_type_id);
6294 		if (!btf_type_is_struct(ptr_type)) {
6295 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6296 							   ptr_type->name_off);
6297 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6298 				func_name, btf_type_str(ptr_type),
6299 				ptr_type_name);
6300 			return -EINVAL;
6301 		}
6302 		mark_reg_known_zero(env, regs, BPF_REG_0);
6303 		regs[BPF_REG_0].btf = btf_vmlinux;
6304 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6305 		regs[BPF_REG_0].btf_id = ptr_type_id;
6306 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6307 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6308 
6309 	nargs = btf_type_vlen(func_proto);
6310 	args = (const struct btf_param *)(func_proto + 1);
6311 	for (i = 0; i < nargs; i++) {
6312 		u32 regno = i + 1;
6313 
6314 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6315 		if (btf_type_is_ptr(t))
6316 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6317 		else
6318 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6319 			mark_btf_func_reg_size(env, regno, t->size);
6320 	}
6321 
6322 	return 0;
6323 }
6324 
6325 static bool signed_add_overflows(s64 a, s64 b)
6326 {
6327 	/* Do the add in u64, where overflow is well-defined */
6328 	s64 res = (s64)((u64)a + (u64)b);
6329 
6330 	if (b < 0)
6331 		return res > a;
6332 	return res < a;
6333 }
6334 
6335 static bool signed_add32_overflows(s32 a, s32 b)
6336 {
6337 	/* Do the add in u32, where overflow is well-defined */
6338 	s32 res = (s32)((u32)a + (u32)b);
6339 
6340 	if (b < 0)
6341 		return res > a;
6342 	return res < a;
6343 }
6344 
6345 static bool signed_sub_overflows(s64 a, s64 b)
6346 {
6347 	/* Do the sub in u64, where overflow is well-defined */
6348 	s64 res = (s64)((u64)a - (u64)b);
6349 
6350 	if (b < 0)
6351 		return res < a;
6352 	return res > a;
6353 }
6354 
6355 static bool signed_sub32_overflows(s32 a, s32 b)
6356 {
6357 	/* Do the sub in u32, where overflow is well-defined */
6358 	s32 res = (s32)((u32)a - (u32)b);
6359 
6360 	if (b < 0)
6361 		return res < a;
6362 	return res > a;
6363 }
6364 
6365 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6366 				  const struct bpf_reg_state *reg,
6367 				  enum bpf_reg_type type)
6368 {
6369 	bool known = tnum_is_const(reg->var_off);
6370 	s64 val = reg->var_off.value;
6371 	s64 smin = reg->smin_value;
6372 
6373 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6374 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6375 			reg_type_str[type], val);
6376 		return false;
6377 	}
6378 
6379 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6380 		verbose(env, "%s pointer offset %d is not allowed\n",
6381 			reg_type_str[type], reg->off);
6382 		return false;
6383 	}
6384 
6385 	if (smin == S64_MIN) {
6386 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6387 			reg_type_str[type]);
6388 		return false;
6389 	}
6390 
6391 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6392 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6393 			smin, reg_type_str[type]);
6394 		return false;
6395 	}
6396 
6397 	return true;
6398 }
6399 
6400 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6401 {
6402 	return &env->insn_aux_data[env->insn_idx];
6403 }
6404 
6405 enum {
6406 	REASON_BOUNDS	= -1,
6407 	REASON_TYPE	= -2,
6408 	REASON_PATHS	= -3,
6409 	REASON_LIMIT	= -4,
6410 	REASON_STACK	= -5,
6411 };
6412 
6413 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6414 			      u32 *alu_limit, bool mask_to_left)
6415 {
6416 	u32 max = 0, ptr_limit = 0;
6417 
6418 	switch (ptr_reg->type) {
6419 	case PTR_TO_STACK:
6420 		/* Offset 0 is out-of-bounds, but acceptable start for the
6421 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6422 		 * offset where we would need to deal with min/max bounds is
6423 		 * currently prohibited for unprivileged.
6424 		 */
6425 		max = MAX_BPF_STACK + mask_to_left;
6426 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6427 		break;
6428 	case PTR_TO_MAP_VALUE:
6429 		max = ptr_reg->map_ptr->value_size;
6430 		ptr_limit = (mask_to_left ?
6431 			     ptr_reg->smin_value :
6432 			     ptr_reg->umax_value) + ptr_reg->off;
6433 		break;
6434 	default:
6435 		return REASON_TYPE;
6436 	}
6437 
6438 	if (ptr_limit >= max)
6439 		return REASON_LIMIT;
6440 	*alu_limit = ptr_limit;
6441 	return 0;
6442 }
6443 
6444 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6445 				    const struct bpf_insn *insn)
6446 {
6447 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6448 }
6449 
6450 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6451 				       u32 alu_state, u32 alu_limit)
6452 {
6453 	/* If we arrived here from different branches with different
6454 	 * state or limits to sanitize, then this won't work.
6455 	 */
6456 	if (aux->alu_state &&
6457 	    (aux->alu_state != alu_state ||
6458 	     aux->alu_limit != alu_limit))
6459 		return REASON_PATHS;
6460 
6461 	/* Corresponding fixup done in do_misc_fixups(). */
6462 	aux->alu_state = alu_state;
6463 	aux->alu_limit = alu_limit;
6464 	return 0;
6465 }
6466 
6467 static int sanitize_val_alu(struct bpf_verifier_env *env,
6468 			    struct bpf_insn *insn)
6469 {
6470 	struct bpf_insn_aux_data *aux = cur_aux(env);
6471 
6472 	if (can_skip_alu_sanitation(env, insn))
6473 		return 0;
6474 
6475 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6476 }
6477 
6478 static bool sanitize_needed(u8 opcode)
6479 {
6480 	return opcode == BPF_ADD || opcode == BPF_SUB;
6481 }
6482 
6483 struct bpf_sanitize_info {
6484 	struct bpf_insn_aux_data aux;
6485 	bool mask_to_left;
6486 };
6487 
6488 static struct bpf_verifier_state *
6489 sanitize_speculative_path(struct bpf_verifier_env *env,
6490 			  const struct bpf_insn *insn,
6491 			  u32 next_idx, u32 curr_idx)
6492 {
6493 	struct bpf_verifier_state *branch;
6494 	struct bpf_reg_state *regs;
6495 
6496 	branch = push_stack(env, next_idx, curr_idx, true);
6497 	if (branch && insn) {
6498 		regs = branch->frame[branch->curframe]->regs;
6499 		if (BPF_SRC(insn->code) == BPF_K) {
6500 			mark_reg_unknown(env, regs, insn->dst_reg);
6501 		} else if (BPF_SRC(insn->code) == BPF_X) {
6502 			mark_reg_unknown(env, regs, insn->dst_reg);
6503 			mark_reg_unknown(env, regs, insn->src_reg);
6504 		}
6505 	}
6506 	return branch;
6507 }
6508 
6509 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6510 			    struct bpf_insn *insn,
6511 			    const struct bpf_reg_state *ptr_reg,
6512 			    const struct bpf_reg_state *off_reg,
6513 			    struct bpf_reg_state *dst_reg,
6514 			    struct bpf_sanitize_info *info,
6515 			    const bool commit_window)
6516 {
6517 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6518 	struct bpf_verifier_state *vstate = env->cur_state;
6519 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6520 	bool off_is_neg = off_reg->smin_value < 0;
6521 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6522 	u8 opcode = BPF_OP(insn->code);
6523 	u32 alu_state, alu_limit;
6524 	struct bpf_reg_state tmp;
6525 	bool ret;
6526 	int err;
6527 
6528 	if (can_skip_alu_sanitation(env, insn))
6529 		return 0;
6530 
6531 	/* We already marked aux for masking from non-speculative
6532 	 * paths, thus we got here in the first place. We only care
6533 	 * to explore bad access from here.
6534 	 */
6535 	if (vstate->speculative)
6536 		goto do_sim;
6537 
6538 	if (!commit_window) {
6539 		if (!tnum_is_const(off_reg->var_off) &&
6540 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6541 			return REASON_BOUNDS;
6542 
6543 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6544 				     (opcode == BPF_SUB && !off_is_neg);
6545 	}
6546 
6547 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6548 	if (err < 0)
6549 		return err;
6550 
6551 	if (commit_window) {
6552 		/* In commit phase we narrow the masking window based on
6553 		 * the observed pointer move after the simulated operation.
6554 		 */
6555 		alu_state = info->aux.alu_state;
6556 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6557 	} else {
6558 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6559 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6560 		alu_state |= ptr_is_dst_reg ?
6561 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6562 	}
6563 
6564 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6565 	if (err < 0)
6566 		return err;
6567 do_sim:
6568 	/* If we're in commit phase, we're done here given we already
6569 	 * pushed the truncated dst_reg into the speculative verification
6570 	 * stack.
6571 	 *
6572 	 * Also, when register is a known constant, we rewrite register-based
6573 	 * operation to immediate-based, and thus do not need masking (and as
6574 	 * a consequence, do not need to simulate the zero-truncation either).
6575 	 */
6576 	if (commit_window || off_is_imm)
6577 		return 0;
6578 
6579 	/* Simulate and find potential out-of-bounds access under
6580 	 * speculative execution from truncation as a result of
6581 	 * masking when off was not within expected range. If off
6582 	 * sits in dst, then we temporarily need to move ptr there
6583 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6584 	 * for cases where we use K-based arithmetic in one direction
6585 	 * and truncated reg-based in the other in order to explore
6586 	 * bad access.
6587 	 */
6588 	if (!ptr_is_dst_reg) {
6589 		tmp = *dst_reg;
6590 		*dst_reg = *ptr_reg;
6591 	}
6592 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6593 					env->insn_idx);
6594 	if (!ptr_is_dst_reg && ret)
6595 		*dst_reg = tmp;
6596 	return !ret ? REASON_STACK : 0;
6597 }
6598 
6599 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6600 {
6601 	struct bpf_verifier_state *vstate = env->cur_state;
6602 
6603 	/* If we simulate paths under speculation, we don't update the
6604 	 * insn as 'seen' such that when we verify unreachable paths in
6605 	 * the non-speculative domain, sanitize_dead_code() can still
6606 	 * rewrite/sanitize them.
6607 	 */
6608 	if (!vstate->speculative)
6609 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6610 }
6611 
6612 static int sanitize_err(struct bpf_verifier_env *env,
6613 			const struct bpf_insn *insn, int reason,
6614 			const struct bpf_reg_state *off_reg,
6615 			const struct bpf_reg_state *dst_reg)
6616 {
6617 	static const char *err = "pointer arithmetic with it prohibited for !root";
6618 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6619 	u32 dst = insn->dst_reg, src = insn->src_reg;
6620 
6621 	switch (reason) {
6622 	case REASON_BOUNDS:
6623 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6624 			off_reg == dst_reg ? dst : src, err);
6625 		break;
6626 	case REASON_TYPE:
6627 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6628 			off_reg == dst_reg ? src : dst, err);
6629 		break;
6630 	case REASON_PATHS:
6631 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6632 			dst, op, err);
6633 		break;
6634 	case REASON_LIMIT:
6635 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6636 			dst, op, err);
6637 		break;
6638 	case REASON_STACK:
6639 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6640 			dst, err);
6641 		break;
6642 	default:
6643 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6644 			reason);
6645 		break;
6646 	}
6647 
6648 	return -EACCES;
6649 }
6650 
6651 /* check that stack access falls within stack limits and that 'reg' doesn't
6652  * have a variable offset.
6653  *
6654  * Variable offset is prohibited for unprivileged mode for simplicity since it
6655  * requires corresponding support in Spectre masking for stack ALU.  See also
6656  * retrieve_ptr_limit().
6657  *
6658  *
6659  * 'off' includes 'reg->off'.
6660  */
6661 static int check_stack_access_for_ptr_arithmetic(
6662 				struct bpf_verifier_env *env,
6663 				int regno,
6664 				const struct bpf_reg_state *reg,
6665 				int off)
6666 {
6667 	if (!tnum_is_const(reg->var_off)) {
6668 		char tn_buf[48];
6669 
6670 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6671 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6672 			regno, tn_buf, off);
6673 		return -EACCES;
6674 	}
6675 
6676 	if (off >= 0 || off < -MAX_BPF_STACK) {
6677 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6678 			"prohibited for !root; off=%d\n", regno, off);
6679 		return -EACCES;
6680 	}
6681 
6682 	return 0;
6683 }
6684 
6685 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6686 				 const struct bpf_insn *insn,
6687 				 const struct bpf_reg_state *dst_reg)
6688 {
6689 	u32 dst = insn->dst_reg;
6690 
6691 	/* For unprivileged we require that resulting offset must be in bounds
6692 	 * in order to be able to sanitize access later on.
6693 	 */
6694 	if (env->bypass_spec_v1)
6695 		return 0;
6696 
6697 	switch (dst_reg->type) {
6698 	case PTR_TO_STACK:
6699 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6700 					dst_reg->off + dst_reg->var_off.value))
6701 			return -EACCES;
6702 		break;
6703 	case PTR_TO_MAP_VALUE:
6704 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6705 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6706 				"prohibited for !root\n", dst);
6707 			return -EACCES;
6708 		}
6709 		break;
6710 	default:
6711 		break;
6712 	}
6713 
6714 	return 0;
6715 }
6716 
6717 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6718  * Caller should also handle BPF_MOV case separately.
6719  * If we return -EACCES, caller may want to try again treating pointer as a
6720  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6721  */
6722 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6723 				   struct bpf_insn *insn,
6724 				   const struct bpf_reg_state *ptr_reg,
6725 				   const struct bpf_reg_state *off_reg)
6726 {
6727 	struct bpf_verifier_state *vstate = env->cur_state;
6728 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6729 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6730 	bool known = tnum_is_const(off_reg->var_off);
6731 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6732 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6733 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6734 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6735 	struct bpf_sanitize_info info = {};
6736 	u8 opcode = BPF_OP(insn->code);
6737 	u32 dst = insn->dst_reg;
6738 	int ret;
6739 
6740 	dst_reg = &regs[dst];
6741 
6742 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6743 	    smin_val > smax_val || umin_val > umax_val) {
6744 		/* Taint dst register if offset had invalid bounds derived from
6745 		 * e.g. dead branches.
6746 		 */
6747 		__mark_reg_unknown(env, dst_reg);
6748 		return 0;
6749 	}
6750 
6751 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6752 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6753 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6754 			__mark_reg_unknown(env, dst_reg);
6755 			return 0;
6756 		}
6757 
6758 		verbose(env,
6759 			"R%d 32-bit pointer arithmetic prohibited\n",
6760 			dst);
6761 		return -EACCES;
6762 	}
6763 
6764 	switch (ptr_reg->type) {
6765 	case PTR_TO_MAP_VALUE_OR_NULL:
6766 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6767 			dst, reg_type_str[ptr_reg->type]);
6768 		return -EACCES;
6769 	case CONST_PTR_TO_MAP:
6770 		/* smin_val represents the known value */
6771 		if (known && smin_val == 0 && opcode == BPF_ADD)
6772 			break;
6773 		fallthrough;
6774 	case PTR_TO_PACKET_END:
6775 	case PTR_TO_SOCKET:
6776 	case PTR_TO_SOCKET_OR_NULL:
6777 	case PTR_TO_SOCK_COMMON:
6778 	case PTR_TO_SOCK_COMMON_OR_NULL:
6779 	case PTR_TO_TCP_SOCK:
6780 	case PTR_TO_TCP_SOCK_OR_NULL:
6781 	case PTR_TO_XDP_SOCK:
6782 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6783 			dst, reg_type_str[ptr_reg->type]);
6784 		return -EACCES;
6785 	default:
6786 		break;
6787 	}
6788 
6789 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6790 	 * The id may be overwritten later if we create a new variable offset.
6791 	 */
6792 	dst_reg->type = ptr_reg->type;
6793 	dst_reg->id = ptr_reg->id;
6794 
6795 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6796 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6797 		return -EINVAL;
6798 
6799 	/* pointer types do not carry 32-bit bounds at the moment. */
6800 	__mark_reg32_unbounded(dst_reg);
6801 
6802 	if (sanitize_needed(opcode)) {
6803 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6804 				       &info, false);
6805 		if (ret < 0)
6806 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6807 	}
6808 
6809 	switch (opcode) {
6810 	case BPF_ADD:
6811 		/* We can take a fixed offset as long as it doesn't overflow
6812 		 * the s32 'off' field
6813 		 */
6814 		if (known && (ptr_reg->off + smin_val ==
6815 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6816 			/* pointer += K.  Accumulate it into fixed offset */
6817 			dst_reg->smin_value = smin_ptr;
6818 			dst_reg->smax_value = smax_ptr;
6819 			dst_reg->umin_value = umin_ptr;
6820 			dst_reg->umax_value = umax_ptr;
6821 			dst_reg->var_off = ptr_reg->var_off;
6822 			dst_reg->off = ptr_reg->off + smin_val;
6823 			dst_reg->raw = ptr_reg->raw;
6824 			break;
6825 		}
6826 		/* A new variable offset is created.  Note that off_reg->off
6827 		 * == 0, since it's a scalar.
6828 		 * dst_reg gets the pointer type and since some positive
6829 		 * integer value was added to the pointer, give it a new 'id'
6830 		 * if it's a PTR_TO_PACKET.
6831 		 * this creates a new 'base' pointer, off_reg (variable) gets
6832 		 * added into the variable offset, and we copy the fixed offset
6833 		 * from ptr_reg.
6834 		 */
6835 		if (signed_add_overflows(smin_ptr, smin_val) ||
6836 		    signed_add_overflows(smax_ptr, smax_val)) {
6837 			dst_reg->smin_value = S64_MIN;
6838 			dst_reg->smax_value = S64_MAX;
6839 		} else {
6840 			dst_reg->smin_value = smin_ptr + smin_val;
6841 			dst_reg->smax_value = smax_ptr + smax_val;
6842 		}
6843 		if (umin_ptr + umin_val < umin_ptr ||
6844 		    umax_ptr + umax_val < umax_ptr) {
6845 			dst_reg->umin_value = 0;
6846 			dst_reg->umax_value = U64_MAX;
6847 		} else {
6848 			dst_reg->umin_value = umin_ptr + umin_val;
6849 			dst_reg->umax_value = umax_ptr + umax_val;
6850 		}
6851 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6852 		dst_reg->off = ptr_reg->off;
6853 		dst_reg->raw = ptr_reg->raw;
6854 		if (reg_is_pkt_pointer(ptr_reg)) {
6855 			dst_reg->id = ++env->id_gen;
6856 			/* something was added to pkt_ptr, set range to zero */
6857 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6858 		}
6859 		break;
6860 	case BPF_SUB:
6861 		if (dst_reg == off_reg) {
6862 			/* scalar -= pointer.  Creates an unknown scalar */
6863 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6864 				dst);
6865 			return -EACCES;
6866 		}
6867 		/* We don't allow subtraction from FP, because (according to
6868 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6869 		 * be able to deal with it.
6870 		 */
6871 		if (ptr_reg->type == PTR_TO_STACK) {
6872 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6873 				dst);
6874 			return -EACCES;
6875 		}
6876 		if (known && (ptr_reg->off - smin_val ==
6877 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6878 			/* pointer -= K.  Subtract it from fixed offset */
6879 			dst_reg->smin_value = smin_ptr;
6880 			dst_reg->smax_value = smax_ptr;
6881 			dst_reg->umin_value = umin_ptr;
6882 			dst_reg->umax_value = umax_ptr;
6883 			dst_reg->var_off = ptr_reg->var_off;
6884 			dst_reg->id = ptr_reg->id;
6885 			dst_reg->off = ptr_reg->off - smin_val;
6886 			dst_reg->raw = ptr_reg->raw;
6887 			break;
6888 		}
6889 		/* A new variable offset is created.  If the subtrahend is known
6890 		 * nonnegative, then any reg->range we had before is still good.
6891 		 */
6892 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6893 		    signed_sub_overflows(smax_ptr, smin_val)) {
6894 			/* Overflow possible, we know nothing */
6895 			dst_reg->smin_value = S64_MIN;
6896 			dst_reg->smax_value = S64_MAX;
6897 		} else {
6898 			dst_reg->smin_value = smin_ptr - smax_val;
6899 			dst_reg->smax_value = smax_ptr - smin_val;
6900 		}
6901 		if (umin_ptr < umax_val) {
6902 			/* Overflow possible, we know nothing */
6903 			dst_reg->umin_value = 0;
6904 			dst_reg->umax_value = U64_MAX;
6905 		} else {
6906 			/* Cannot overflow (as long as bounds are consistent) */
6907 			dst_reg->umin_value = umin_ptr - umax_val;
6908 			dst_reg->umax_value = umax_ptr - umin_val;
6909 		}
6910 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6911 		dst_reg->off = ptr_reg->off;
6912 		dst_reg->raw = ptr_reg->raw;
6913 		if (reg_is_pkt_pointer(ptr_reg)) {
6914 			dst_reg->id = ++env->id_gen;
6915 			/* something was added to pkt_ptr, set range to zero */
6916 			if (smin_val < 0)
6917 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6918 		}
6919 		break;
6920 	case BPF_AND:
6921 	case BPF_OR:
6922 	case BPF_XOR:
6923 		/* bitwise ops on pointers are troublesome, prohibit. */
6924 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6925 			dst, bpf_alu_string[opcode >> 4]);
6926 		return -EACCES;
6927 	default:
6928 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6929 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6930 			dst, bpf_alu_string[opcode >> 4]);
6931 		return -EACCES;
6932 	}
6933 
6934 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6935 		return -EINVAL;
6936 
6937 	__update_reg_bounds(dst_reg);
6938 	__reg_deduce_bounds(dst_reg);
6939 	__reg_bound_offset(dst_reg);
6940 
6941 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6942 		return -EACCES;
6943 	if (sanitize_needed(opcode)) {
6944 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6945 				       &info, true);
6946 		if (ret < 0)
6947 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6948 	}
6949 
6950 	return 0;
6951 }
6952 
6953 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6954 				 struct bpf_reg_state *src_reg)
6955 {
6956 	s32 smin_val = src_reg->s32_min_value;
6957 	s32 smax_val = src_reg->s32_max_value;
6958 	u32 umin_val = src_reg->u32_min_value;
6959 	u32 umax_val = src_reg->u32_max_value;
6960 
6961 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6962 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6963 		dst_reg->s32_min_value = S32_MIN;
6964 		dst_reg->s32_max_value = S32_MAX;
6965 	} else {
6966 		dst_reg->s32_min_value += smin_val;
6967 		dst_reg->s32_max_value += smax_val;
6968 	}
6969 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6970 	    dst_reg->u32_max_value + umax_val < umax_val) {
6971 		dst_reg->u32_min_value = 0;
6972 		dst_reg->u32_max_value = U32_MAX;
6973 	} else {
6974 		dst_reg->u32_min_value += umin_val;
6975 		dst_reg->u32_max_value += umax_val;
6976 	}
6977 }
6978 
6979 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6980 			       struct bpf_reg_state *src_reg)
6981 {
6982 	s64 smin_val = src_reg->smin_value;
6983 	s64 smax_val = src_reg->smax_value;
6984 	u64 umin_val = src_reg->umin_value;
6985 	u64 umax_val = src_reg->umax_value;
6986 
6987 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6988 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6989 		dst_reg->smin_value = S64_MIN;
6990 		dst_reg->smax_value = S64_MAX;
6991 	} else {
6992 		dst_reg->smin_value += smin_val;
6993 		dst_reg->smax_value += smax_val;
6994 	}
6995 	if (dst_reg->umin_value + umin_val < umin_val ||
6996 	    dst_reg->umax_value + umax_val < umax_val) {
6997 		dst_reg->umin_value = 0;
6998 		dst_reg->umax_value = U64_MAX;
6999 	} else {
7000 		dst_reg->umin_value += umin_val;
7001 		dst_reg->umax_value += umax_val;
7002 	}
7003 }
7004 
7005 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7006 				 struct bpf_reg_state *src_reg)
7007 {
7008 	s32 smin_val = src_reg->s32_min_value;
7009 	s32 smax_val = src_reg->s32_max_value;
7010 	u32 umin_val = src_reg->u32_min_value;
7011 	u32 umax_val = src_reg->u32_max_value;
7012 
7013 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7014 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7015 		/* Overflow possible, we know nothing */
7016 		dst_reg->s32_min_value = S32_MIN;
7017 		dst_reg->s32_max_value = S32_MAX;
7018 	} else {
7019 		dst_reg->s32_min_value -= smax_val;
7020 		dst_reg->s32_max_value -= smin_val;
7021 	}
7022 	if (dst_reg->u32_min_value < umax_val) {
7023 		/* Overflow possible, we know nothing */
7024 		dst_reg->u32_min_value = 0;
7025 		dst_reg->u32_max_value = U32_MAX;
7026 	} else {
7027 		/* Cannot overflow (as long as bounds are consistent) */
7028 		dst_reg->u32_min_value -= umax_val;
7029 		dst_reg->u32_max_value -= umin_val;
7030 	}
7031 }
7032 
7033 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7034 			       struct bpf_reg_state *src_reg)
7035 {
7036 	s64 smin_val = src_reg->smin_value;
7037 	s64 smax_val = src_reg->smax_value;
7038 	u64 umin_val = src_reg->umin_value;
7039 	u64 umax_val = src_reg->umax_value;
7040 
7041 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7042 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7043 		/* Overflow possible, we know nothing */
7044 		dst_reg->smin_value = S64_MIN;
7045 		dst_reg->smax_value = S64_MAX;
7046 	} else {
7047 		dst_reg->smin_value -= smax_val;
7048 		dst_reg->smax_value -= smin_val;
7049 	}
7050 	if (dst_reg->umin_value < umax_val) {
7051 		/* Overflow possible, we know nothing */
7052 		dst_reg->umin_value = 0;
7053 		dst_reg->umax_value = U64_MAX;
7054 	} else {
7055 		/* Cannot overflow (as long as bounds are consistent) */
7056 		dst_reg->umin_value -= umax_val;
7057 		dst_reg->umax_value -= umin_val;
7058 	}
7059 }
7060 
7061 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7062 				 struct bpf_reg_state *src_reg)
7063 {
7064 	s32 smin_val = src_reg->s32_min_value;
7065 	u32 umin_val = src_reg->u32_min_value;
7066 	u32 umax_val = src_reg->u32_max_value;
7067 
7068 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7069 		/* Ain't nobody got time to multiply that sign */
7070 		__mark_reg32_unbounded(dst_reg);
7071 		return;
7072 	}
7073 	/* Both values are positive, so we can work with unsigned and
7074 	 * copy the result to signed (unless it exceeds S32_MAX).
7075 	 */
7076 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7077 		/* Potential overflow, we know nothing */
7078 		__mark_reg32_unbounded(dst_reg);
7079 		return;
7080 	}
7081 	dst_reg->u32_min_value *= umin_val;
7082 	dst_reg->u32_max_value *= umax_val;
7083 	if (dst_reg->u32_max_value > S32_MAX) {
7084 		/* Overflow possible, we know nothing */
7085 		dst_reg->s32_min_value = S32_MIN;
7086 		dst_reg->s32_max_value = S32_MAX;
7087 	} else {
7088 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7089 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7090 	}
7091 }
7092 
7093 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7094 			       struct bpf_reg_state *src_reg)
7095 {
7096 	s64 smin_val = src_reg->smin_value;
7097 	u64 umin_val = src_reg->umin_value;
7098 	u64 umax_val = src_reg->umax_value;
7099 
7100 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7101 		/* Ain't nobody got time to multiply that sign */
7102 		__mark_reg64_unbounded(dst_reg);
7103 		return;
7104 	}
7105 	/* Both values are positive, so we can work with unsigned and
7106 	 * copy the result to signed (unless it exceeds S64_MAX).
7107 	 */
7108 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7109 		/* Potential overflow, we know nothing */
7110 		__mark_reg64_unbounded(dst_reg);
7111 		return;
7112 	}
7113 	dst_reg->umin_value *= umin_val;
7114 	dst_reg->umax_value *= umax_val;
7115 	if (dst_reg->umax_value > S64_MAX) {
7116 		/* Overflow possible, we know nothing */
7117 		dst_reg->smin_value = S64_MIN;
7118 		dst_reg->smax_value = S64_MAX;
7119 	} else {
7120 		dst_reg->smin_value = dst_reg->umin_value;
7121 		dst_reg->smax_value = dst_reg->umax_value;
7122 	}
7123 }
7124 
7125 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7126 				 struct bpf_reg_state *src_reg)
7127 {
7128 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7129 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7130 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7131 	s32 smin_val = src_reg->s32_min_value;
7132 	u32 umax_val = src_reg->u32_max_value;
7133 
7134 	if (src_known && dst_known) {
7135 		__mark_reg32_known(dst_reg, var32_off.value);
7136 		return;
7137 	}
7138 
7139 	/* We get our minimum from the var_off, since that's inherently
7140 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7141 	 */
7142 	dst_reg->u32_min_value = var32_off.value;
7143 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7144 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7145 		/* Lose signed bounds when ANDing negative numbers,
7146 		 * ain't nobody got time for that.
7147 		 */
7148 		dst_reg->s32_min_value = S32_MIN;
7149 		dst_reg->s32_max_value = S32_MAX;
7150 	} else {
7151 		/* ANDing two positives gives a positive, so safe to
7152 		 * cast result into s64.
7153 		 */
7154 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7155 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7156 	}
7157 }
7158 
7159 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7160 			       struct bpf_reg_state *src_reg)
7161 {
7162 	bool src_known = tnum_is_const(src_reg->var_off);
7163 	bool dst_known = tnum_is_const(dst_reg->var_off);
7164 	s64 smin_val = src_reg->smin_value;
7165 	u64 umax_val = src_reg->umax_value;
7166 
7167 	if (src_known && dst_known) {
7168 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7169 		return;
7170 	}
7171 
7172 	/* We get our minimum from the var_off, since that's inherently
7173 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7174 	 */
7175 	dst_reg->umin_value = dst_reg->var_off.value;
7176 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7177 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7178 		/* Lose signed bounds when ANDing negative numbers,
7179 		 * ain't nobody got time for that.
7180 		 */
7181 		dst_reg->smin_value = S64_MIN;
7182 		dst_reg->smax_value = S64_MAX;
7183 	} else {
7184 		/* ANDing two positives gives a positive, so safe to
7185 		 * cast result into s64.
7186 		 */
7187 		dst_reg->smin_value = dst_reg->umin_value;
7188 		dst_reg->smax_value = dst_reg->umax_value;
7189 	}
7190 	/* We may learn something more from the var_off */
7191 	__update_reg_bounds(dst_reg);
7192 }
7193 
7194 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7195 				struct bpf_reg_state *src_reg)
7196 {
7197 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7198 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7199 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7200 	s32 smin_val = src_reg->s32_min_value;
7201 	u32 umin_val = src_reg->u32_min_value;
7202 
7203 	if (src_known && dst_known) {
7204 		__mark_reg32_known(dst_reg, var32_off.value);
7205 		return;
7206 	}
7207 
7208 	/* We get our maximum from the var_off, and our minimum is the
7209 	 * maximum of the operands' minima
7210 	 */
7211 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7212 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7213 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7214 		/* Lose signed bounds when ORing negative numbers,
7215 		 * ain't nobody got time for that.
7216 		 */
7217 		dst_reg->s32_min_value = S32_MIN;
7218 		dst_reg->s32_max_value = S32_MAX;
7219 	} else {
7220 		/* ORing two positives gives a positive, so safe to
7221 		 * cast result into s64.
7222 		 */
7223 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7224 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7225 	}
7226 }
7227 
7228 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7229 			      struct bpf_reg_state *src_reg)
7230 {
7231 	bool src_known = tnum_is_const(src_reg->var_off);
7232 	bool dst_known = tnum_is_const(dst_reg->var_off);
7233 	s64 smin_val = src_reg->smin_value;
7234 	u64 umin_val = src_reg->umin_value;
7235 
7236 	if (src_known && dst_known) {
7237 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7238 		return;
7239 	}
7240 
7241 	/* We get our maximum from the var_off, and our minimum is the
7242 	 * maximum of the operands' minima
7243 	 */
7244 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7245 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7246 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7247 		/* Lose signed bounds when ORing negative numbers,
7248 		 * ain't nobody got time for that.
7249 		 */
7250 		dst_reg->smin_value = S64_MIN;
7251 		dst_reg->smax_value = S64_MAX;
7252 	} else {
7253 		/* ORing two positives gives a positive, so safe to
7254 		 * cast result into s64.
7255 		 */
7256 		dst_reg->smin_value = dst_reg->umin_value;
7257 		dst_reg->smax_value = dst_reg->umax_value;
7258 	}
7259 	/* We may learn something more from the var_off */
7260 	__update_reg_bounds(dst_reg);
7261 }
7262 
7263 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7264 				 struct bpf_reg_state *src_reg)
7265 {
7266 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7267 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7268 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7269 	s32 smin_val = src_reg->s32_min_value;
7270 
7271 	if (src_known && dst_known) {
7272 		__mark_reg32_known(dst_reg, var32_off.value);
7273 		return;
7274 	}
7275 
7276 	/* We get both minimum and maximum from the var32_off. */
7277 	dst_reg->u32_min_value = var32_off.value;
7278 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7279 
7280 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7281 		/* XORing two positive sign numbers gives a positive,
7282 		 * so safe to cast u32 result into s32.
7283 		 */
7284 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7285 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7286 	} else {
7287 		dst_reg->s32_min_value = S32_MIN;
7288 		dst_reg->s32_max_value = S32_MAX;
7289 	}
7290 }
7291 
7292 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7293 			       struct bpf_reg_state *src_reg)
7294 {
7295 	bool src_known = tnum_is_const(src_reg->var_off);
7296 	bool dst_known = tnum_is_const(dst_reg->var_off);
7297 	s64 smin_val = src_reg->smin_value;
7298 
7299 	if (src_known && dst_known) {
7300 		/* dst_reg->var_off.value has been updated earlier */
7301 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7302 		return;
7303 	}
7304 
7305 	/* We get both minimum and maximum from the var_off. */
7306 	dst_reg->umin_value = dst_reg->var_off.value;
7307 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7308 
7309 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7310 		/* XORing two positive sign numbers gives a positive,
7311 		 * so safe to cast u64 result into s64.
7312 		 */
7313 		dst_reg->smin_value = dst_reg->umin_value;
7314 		dst_reg->smax_value = dst_reg->umax_value;
7315 	} else {
7316 		dst_reg->smin_value = S64_MIN;
7317 		dst_reg->smax_value = S64_MAX;
7318 	}
7319 
7320 	__update_reg_bounds(dst_reg);
7321 }
7322 
7323 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7324 				   u64 umin_val, u64 umax_val)
7325 {
7326 	/* We lose all sign bit information (except what we can pick
7327 	 * up from var_off)
7328 	 */
7329 	dst_reg->s32_min_value = S32_MIN;
7330 	dst_reg->s32_max_value = S32_MAX;
7331 	/* If we might shift our top bit out, then we know nothing */
7332 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7333 		dst_reg->u32_min_value = 0;
7334 		dst_reg->u32_max_value = U32_MAX;
7335 	} else {
7336 		dst_reg->u32_min_value <<= umin_val;
7337 		dst_reg->u32_max_value <<= umax_val;
7338 	}
7339 }
7340 
7341 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7342 				 struct bpf_reg_state *src_reg)
7343 {
7344 	u32 umax_val = src_reg->u32_max_value;
7345 	u32 umin_val = src_reg->u32_min_value;
7346 	/* u32 alu operation will zext upper bits */
7347 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7348 
7349 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7350 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7351 	/* Not required but being careful mark reg64 bounds as unknown so
7352 	 * that we are forced to pick them up from tnum and zext later and
7353 	 * if some path skips this step we are still safe.
7354 	 */
7355 	__mark_reg64_unbounded(dst_reg);
7356 	__update_reg32_bounds(dst_reg);
7357 }
7358 
7359 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7360 				   u64 umin_val, u64 umax_val)
7361 {
7362 	/* Special case <<32 because it is a common compiler pattern to sign
7363 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7364 	 * positive we know this shift will also be positive so we can track
7365 	 * bounds correctly. Otherwise we lose all sign bit information except
7366 	 * what we can pick up from var_off. Perhaps we can generalize this
7367 	 * later to shifts of any length.
7368 	 */
7369 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7370 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7371 	else
7372 		dst_reg->smax_value = S64_MAX;
7373 
7374 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7375 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7376 	else
7377 		dst_reg->smin_value = S64_MIN;
7378 
7379 	/* If we might shift our top bit out, then we know nothing */
7380 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7381 		dst_reg->umin_value = 0;
7382 		dst_reg->umax_value = U64_MAX;
7383 	} else {
7384 		dst_reg->umin_value <<= umin_val;
7385 		dst_reg->umax_value <<= umax_val;
7386 	}
7387 }
7388 
7389 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7390 			       struct bpf_reg_state *src_reg)
7391 {
7392 	u64 umax_val = src_reg->umax_value;
7393 	u64 umin_val = src_reg->umin_value;
7394 
7395 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7396 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7397 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7398 
7399 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7400 	/* We may learn something more from the var_off */
7401 	__update_reg_bounds(dst_reg);
7402 }
7403 
7404 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7405 				 struct bpf_reg_state *src_reg)
7406 {
7407 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7408 	u32 umax_val = src_reg->u32_max_value;
7409 	u32 umin_val = src_reg->u32_min_value;
7410 
7411 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7412 	 * be negative, then either:
7413 	 * 1) src_reg might be zero, so the sign bit of the result is
7414 	 *    unknown, so we lose our signed bounds
7415 	 * 2) it's known negative, thus the unsigned bounds capture the
7416 	 *    signed bounds
7417 	 * 3) the signed bounds cross zero, so they tell us nothing
7418 	 *    about the result
7419 	 * If the value in dst_reg is known nonnegative, then again the
7420 	 * unsigned bounds capture the signed bounds.
7421 	 * Thus, in all cases it suffices to blow away our signed bounds
7422 	 * and rely on inferring new ones from the unsigned bounds and
7423 	 * var_off of the result.
7424 	 */
7425 	dst_reg->s32_min_value = S32_MIN;
7426 	dst_reg->s32_max_value = S32_MAX;
7427 
7428 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7429 	dst_reg->u32_min_value >>= umax_val;
7430 	dst_reg->u32_max_value >>= umin_val;
7431 
7432 	__mark_reg64_unbounded(dst_reg);
7433 	__update_reg32_bounds(dst_reg);
7434 }
7435 
7436 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7437 			       struct bpf_reg_state *src_reg)
7438 {
7439 	u64 umax_val = src_reg->umax_value;
7440 	u64 umin_val = src_reg->umin_value;
7441 
7442 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7443 	 * be negative, then either:
7444 	 * 1) src_reg might be zero, so the sign bit of the result is
7445 	 *    unknown, so we lose our signed bounds
7446 	 * 2) it's known negative, thus the unsigned bounds capture the
7447 	 *    signed bounds
7448 	 * 3) the signed bounds cross zero, so they tell us nothing
7449 	 *    about the result
7450 	 * If the value in dst_reg is known nonnegative, then again the
7451 	 * unsigned bounds capture the signed bounds.
7452 	 * Thus, in all cases it suffices to blow away our signed bounds
7453 	 * and rely on inferring new ones from the unsigned bounds and
7454 	 * var_off of the result.
7455 	 */
7456 	dst_reg->smin_value = S64_MIN;
7457 	dst_reg->smax_value = S64_MAX;
7458 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7459 	dst_reg->umin_value >>= umax_val;
7460 	dst_reg->umax_value >>= umin_val;
7461 
7462 	/* Its not easy to operate on alu32 bounds here because it depends
7463 	 * on bits being shifted in. Take easy way out and mark unbounded
7464 	 * so we can recalculate later from tnum.
7465 	 */
7466 	__mark_reg32_unbounded(dst_reg);
7467 	__update_reg_bounds(dst_reg);
7468 }
7469 
7470 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7471 				  struct bpf_reg_state *src_reg)
7472 {
7473 	u64 umin_val = src_reg->u32_min_value;
7474 
7475 	/* Upon reaching here, src_known is true and
7476 	 * umax_val is equal to umin_val.
7477 	 */
7478 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7479 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7480 
7481 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7482 
7483 	/* blow away the dst_reg umin_value/umax_value and rely on
7484 	 * dst_reg var_off to refine the result.
7485 	 */
7486 	dst_reg->u32_min_value = 0;
7487 	dst_reg->u32_max_value = U32_MAX;
7488 
7489 	__mark_reg64_unbounded(dst_reg);
7490 	__update_reg32_bounds(dst_reg);
7491 }
7492 
7493 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7494 				struct bpf_reg_state *src_reg)
7495 {
7496 	u64 umin_val = src_reg->umin_value;
7497 
7498 	/* Upon reaching here, src_known is true and umax_val is equal
7499 	 * to umin_val.
7500 	 */
7501 	dst_reg->smin_value >>= umin_val;
7502 	dst_reg->smax_value >>= umin_val;
7503 
7504 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7505 
7506 	/* blow away the dst_reg umin_value/umax_value and rely on
7507 	 * dst_reg var_off to refine the result.
7508 	 */
7509 	dst_reg->umin_value = 0;
7510 	dst_reg->umax_value = U64_MAX;
7511 
7512 	/* Its not easy to operate on alu32 bounds here because it depends
7513 	 * on bits being shifted in from upper 32-bits. Take easy way out
7514 	 * and mark unbounded so we can recalculate later from tnum.
7515 	 */
7516 	__mark_reg32_unbounded(dst_reg);
7517 	__update_reg_bounds(dst_reg);
7518 }
7519 
7520 /* WARNING: This function does calculations on 64-bit values, but the actual
7521  * execution may occur on 32-bit values. Therefore, things like bitshifts
7522  * need extra checks in the 32-bit case.
7523  */
7524 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7525 				      struct bpf_insn *insn,
7526 				      struct bpf_reg_state *dst_reg,
7527 				      struct bpf_reg_state src_reg)
7528 {
7529 	struct bpf_reg_state *regs = cur_regs(env);
7530 	u8 opcode = BPF_OP(insn->code);
7531 	bool src_known;
7532 	s64 smin_val, smax_val;
7533 	u64 umin_val, umax_val;
7534 	s32 s32_min_val, s32_max_val;
7535 	u32 u32_min_val, u32_max_val;
7536 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7537 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7538 	int ret;
7539 
7540 	smin_val = src_reg.smin_value;
7541 	smax_val = src_reg.smax_value;
7542 	umin_val = src_reg.umin_value;
7543 	umax_val = src_reg.umax_value;
7544 
7545 	s32_min_val = src_reg.s32_min_value;
7546 	s32_max_val = src_reg.s32_max_value;
7547 	u32_min_val = src_reg.u32_min_value;
7548 	u32_max_val = src_reg.u32_max_value;
7549 
7550 	if (alu32) {
7551 		src_known = tnum_subreg_is_const(src_reg.var_off);
7552 		if ((src_known &&
7553 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7554 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7555 			/* Taint dst register if offset had invalid bounds
7556 			 * derived from e.g. dead branches.
7557 			 */
7558 			__mark_reg_unknown(env, dst_reg);
7559 			return 0;
7560 		}
7561 	} else {
7562 		src_known = tnum_is_const(src_reg.var_off);
7563 		if ((src_known &&
7564 		     (smin_val != smax_val || umin_val != umax_val)) ||
7565 		    smin_val > smax_val || umin_val > umax_val) {
7566 			/* Taint dst register if offset had invalid bounds
7567 			 * derived from e.g. dead branches.
7568 			 */
7569 			__mark_reg_unknown(env, dst_reg);
7570 			return 0;
7571 		}
7572 	}
7573 
7574 	if (!src_known &&
7575 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7576 		__mark_reg_unknown(env, dst_reg);
7577 		return 0;
7578 	}
7579 
7580 	if (sanitize_needed(opcode)) {
7581 		ret = sanitize_val_alu(env, insn);
7582 		if (ret < 0)
7583 			return sanitize_err(env, insn, ret, NULL, NULL);
7584 	}
7585 
7586 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7587 	 * There are two classes of instructions: The first class we track both
7588 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7589 	 * greatest amount of precision when alu operations are mixed with jmp32
7590 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7591 	 * and BPF_OR. This is possible because these ops have fairly easy to
7592 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7593 	 * See alu32 verifier tests for examples. The second class of
7594 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7595 	 * with regards to tracking sign/unsigned bounds because the bits may
7596 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7597 	 * the reg unbounded in the subreg bound space and use the resulting
7598 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7599 	 */
7600 	switch (opcode) {
7601 	case BPF_ADD:
7602 		scalar32_min_max_add(dst_reg, &src_reg);
7603 		scalar_min_max_add(dst_reg, &src_reg);
7604 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7605 		break;
7606 	case BPF_SUB:
7607 		scalar32_min_max_sub(dst_reg, &src_reg);
7608 		scalar_min_max_sub(dst_reg, &src_reg);
7609 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7610 		break;
7611 	case BPF_MUL:
7612 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7613 		scalar32_min_max_mul(dst_reg, &src_reg);
7614 		scalar_min_max_mul(dst_reg, &src_reg);
7615 		break;
7616 	case BPF_AND:
7617 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7618 		scalar32_min_max_and(dst_reg, &src_reg);
7619 		scalar_min_max_and(dst_reg, &src_reg);
7620 		break;
7621 	case BPF_OR:
7622 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7623 		scalar32_min_max_or(dst_reg, &src_reg);
7624 		scalar_min_max_or(dst_reg, &src_reg);
7625 		break;
7626 	case BPF_XOR:
7627 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7628 		scalar32_min_max_xor(dst_reg, &src_reg);
7629 		scalar_min_max_xor(dst_reg, &src_reg);
7630 		break;
7631 	case BPF_LSH:
7632 		if (umax_val >= insn_bitness) {
7633 			/* Shifts greater than 31 or 63 are undefined.
7634 			 * This includes shifts by a negative number.
7635 			 */
7636 			mark_reg_unknown(env, regs, insn->dst_reg);
7637 			break;
7638 		}
7639 		if (alu32)
7640 			scalar32_min_max_lsh(dst_reg, &src_reg);
7641 		else
7642 			scalar_min_max_lsh(dst_reg, &src_reg);
7643 		break;
7644 	case BPF_RSH:
7645 		if (umax_val >= insn_bitness) {
7646 			/* Shifts greater than 31 or 63 are undefined.
7647 			 * This includes shifts by a negative number.
7648 			 */
7649 			mark_reg_unknown(env, regs, insn->dst_reg);
7650 			break;
7651 		}
7652 		if (alu32)
7653 			scalar32_min_max_rsh(dst_reg, &src_reg);
7654 		else
7655 			scalar_min_max_rsh(dst_reg, &src_reg);
7656 		break;
7657 	case BPF_ARSH:
7658 		if (umax_val >= insn_bitness) {
7659 			/* Shifts greater than 31 or 63 are undefined.
7660 			 * This includes shifts by a negative number.
7661 			 */
7662 			mark_reg_unknown(env, regs, insn->dst_reg);
7663 			break;
7664 		}
7665 		if (alu32)
7666 			scalar32_min_max_arsh(dst_reg, &src_reg);
7667 		else
7668 			scalar_min_max_arsh(dst_reg, &src_reg);
7669 		break;
7670 	default:
7671 		mark_reg_unknown(env, regs, insn->dst_reg);
7672 		break;
7673 	}
7674 
7675 	/* ALU32 ops are zero extended into 64bit register */
7676 	if (alu32)
7677 		zext_32_to_64(dst_reg);
7678 
7679 	__update_reg_bounds(dst_reg);
7680 	__reg_deduce_bounds(dst_reg);
7681 	__reg_bound_offset(dst_reg);
7682 	return 0;
7683 }
7684 
7685 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7686  * and var_off.
7687  */
7688 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7689 				   struct bpf_insn *insn)
7690 {
7691 	struct bpf_verifier_state *vstate = env->cur_state;
7692 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7693 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7694 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7695 	u8 opcode = BPF_OP(insn->code);
7696 	int err;
7697 
7698 	dst_reg = &regs[insn->dst_reg];
7699 	src_reg = NULL;
7700 	if (dst_reg->type != SCALAR_VALUE)
7701 		ptr_reg = dst_reg;
7702 	else
7703 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7704 		 * incorrectly propagated into other registers by find_equal_scalars()
7705 		 */
7706 		dst_reg->id = 0;
7707 	if (BPF_SRC(insn->code) == BPF_X) {
7708 		src_reg = &regs[insn->src_reg];
7709 		if (src_reg->type != SCALAR_VALUE) {
7710 			if (dst_reg->type != SCALAR_VALUE) {
7711 				/* Combining two pointers by any ALU op yields
7712 				 * an arbitrary scalar. Disallow all math except
7713 				 * pointer subtraction
7714 				 */
7715 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7716 					mark_reg_unknown(env, regs, insn->dst_reg);
7717 					return 0;
7718 				}
7719 				verbose(env, "R%d pointer %s pointer prohibited\n",
7720 					insn->dst_reg,
7721 					bpf_alu_string[opcode >> 4]);
7722 				return -EACCES;
7723 			} else {
7724 				/* scalar += pointer
7725 				 * This is legal, but we have to reverse our
7726 				 * src/dest handling in computing the range
7727 				 */
7728 				err = mark_chain_precision(env, insn->dst_reg);
7729 				if (err)
7730 					return err;
7731 				return adjust_ptr_min_max_vals(env, insn,
7732 							       src_reg, dst_reg);
7733 			}
7734 		} else if (ptr_reg) {
7735 			/* pointer += scalar */
7736 			err = mark_chain_precision(env, insn->src_reg);
7737 			if (err)
7738 				return err;
7739 			return adjust_ptr_min_max_vals(env, insn,
7740 						       dst_reg, src_reg);
7741 		}
7742 	} else {
7743 		/* Pretend the src is a reg with a known value, since we only
7744 		 * need to be able to read from this state.
7745 		 */
7746 		off_reg.type = SCALAR_VALUE;
7747 		__mark_reg_known(&off_reg, insn->imm);
7748 		src_reg = &off_reg;
7749 		if (ptr_reg) /* pointer += K */
7750 			return adjust_ptr_min_max_vals(env, insn,
7751 						       ptr_reg, src_reg);
7752 	}
7753 
7754 	/* Got here implies adding two SCALAR_VALUEs */
7755 	if (WARN_ON_ONCE(ptr_reg)) {
7756 		print_verifier_state(env, state);
7757 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7758 		return -EINVAL;
7759 	}
7760 	if (WARN_ON(!src_reg)) {
7761 		print_verifier_state(env, state);
7762 		verbose(env, "verifier internal error: no src_reg\n");
7763 		return -EINVAL;
7764 	}
7765 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7766 }
7767 
7768 /* check validity of 32-bit and 64-bit arithmetic operations */
7769 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7770 {
7771 	struct bpf_reg_state *regs = cur_regs(env);
7772 	u8 opcode = BPF_OP(insn->code);
7773 	int err;
7774 
7775 	if (opcode == BPF_END || opcode == BPF_NEG) {
7776 		if (opcode == BPF_NEG) {
7777 			if (BPF_SRC(insn->code) != 0 ||
7778 			    insn->src_reg != BPF_REG_0 ||
7779 			    insn->off != 0 || insn->imm != 0) {
7780 				verbose(env, "BPF_NEG uses reserved fields\n");
7781 				return -EINVAL;
7782 			}
7783 		} else {
7784 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7785 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7786 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7787 				verbose(env, "BPF_END uses reserved fields\n");
7788 				return -EINVAL;
7789 			}
7790 		}
7791 
7792 		/* check src operand */
7793 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7794 		if (err)
7795 			return err;
7796 
7797 		if (is_pointer_value(env, insn->dst_reg)) {
7798 			verbose(env, "R%d pointer arithmetic prohibited\n",
7799 				insn->dst_reg);
7800 			return -EACCES;
7801 		}
7802 
7803 		/* check dest operand */
7804 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7805 		if (err)
7806 			return err;
7807 
7808 	} else if (opcode == BPF_MOV) {
7809 
7810 		if (BPF_SRC(insn->code) == BPF_X) {
7811 			if (insn->imm != 0 || insn->off != 0) {
7812 				verbose(env, "BPF_MOV uses reserved fields\n");
7813 				return -EINVAL;
7814 			}
7815 
7816 			/* check src operand */
7817 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7818 			if (err)
7819 				return err;
7820 		} else {
7821 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7822 				verbose(env, "BPF_MOV uses reserved fields\n");
7823 				return -EINVAL;
7824 			}
7825 		}
7826 
7827 		/* check dest operand, mark as required later */
7828 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7829 		if (err)
7830 			return err;
7831 
7832 		if (BPF_SRC(insn->code) == BPF_X) {
7833 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7834 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7835 
7836 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7837 				/* case: R1 = R2
7838 				 * copy register state to dest reg
7839 				 */
7840 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7841 					/* Assign src and dst registers the same ID
7842 					 * that will be used by find_equal_scalars()
7843 					 * to propagate min/max range.
7844 					 */
7845 					src_reg->id = ++env->id_gen;
7846 				*dst_reg = *src_reg;
7847 				dst_reg->live |= REG_LIVE_WRITTEN;
7848 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7849 			} else {
7850 				/* R1 = (u32) R2 */
7851 				if (is_pointer_value(env, insn->src_reg)) {
7852 					verbose(env,
7853 						"R%d partial copy of pointer\n",
7854 						insn->src_reg);
7855 					return -EACCES;
7856 				} else if (src_reg->type == SCALAR_VALUE) {
7857 					*dst_reg = *src_reg;
7858 					/* Make sure ID is cleared otherwise
7859 					 * dst_reg min/max could be incorrectly
7860 					 * propagated into src_reg by find_equal_scalars()
7861 					 */
7862 					dst_reg->id = 0;
7863 					dst_reg->live |= REG_LIVE_WRITTEN;
7864 					dst_reg->subreg_def = env->insn_idx + 1;
7865 				} else {
7866 					mark_reg_unknown(env, regs,
7867 							 insn->dst_reg);
7868 				}
7869 				zext_32_to_64(dst_reg);
7870 			}
7871 		} else {
7872 			/* case: R = imm
7873 			 * remember the value we stored into this reg
7874 			 */
7875 			/* clear any state __mark_reg_known doesn't set */
7876 			mark_reg_unknown(env, regs, insn->dst_reg);
7877 			regs[insn->dst_reg].type = SCALAR_VALUE;
7878 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7879 				__mark_reg_known(regs + insn->dst_reg,
7880 						 insn->imm);
7881 			} else {
7882 				__mark_reg_known(regs + insn->dst_reg,
7883 						 (u32)insn->imm);
7884 			}
7885 		}
7886 
7887 	} else if (opcode > BPF_END) {
7888 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7889 		return -EINVAL;
7890 
7891 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7892 
7893 		if (BPF_SRC(insn->code) == BPF_X) {
7894 			if (insn->imm != 0 || insn->off != 0) {
7895 				verbose(env, "BPF_ALU uses reserved fields\n");
7896 				return -EINVAL;
7897 			}
7898 			/* check src1 operand */
7899 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7900 			if (err)
7901 				return err;
7902 		} else {
7903 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7904 				verbose(env, "BPF_ALU uses reserved fields\n");
7905 				return -EINVAL;
7906 			}
7907 		}
7908 
7909 		/* check src2 operand */
7910 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7911 		if (err)
7912 			return err;
7913 
7914 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7915 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7916 			verbose(env, "div by zero\n");
7917 			return -EINVAL;
7918 		}
7919 
7920 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7921 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7922 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7923 
7924 			if (insn->imm < 0 || insn->imm >= size) {
7925 				verbose(env, "invalid shift %d\n", insn->imm);
7926 				return -EINVAL;
7927 			}
7928 		}
7929 
7930 		/* check dest operand */
7931 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7932 		if (err)
7933 			return err;
7934 
7935 		return adjust_reg_min_max_vals(env, insn);
7936 	}
7937 
7938 	return 0;
7939 }
7940 
7941 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7942 				     struct bpf_reg_state *dst_reg,
7943 				     enum bpf_reg_type type, int new_range)
7944 {
7945 	struct bpf_reg_state *reg;
7946 	int i;
7947 
7948 	for (i = 0; i < MAX_BPF_REG; i++) {
7949 		reg = &state->regs[i];
7950 		if (reg->type == type && reg->id == dst_reg->id)
7951 			/* keep the maximum range already checked */
7952 			reg->range = max(reg->range, new_range);
7953 	}
7954 
7955 	bpf_for_each_spilled_reg(i, state, reg) {
7956 		if (!reg)
7957 			continue;
7958 		if (reg->type == type && reg->id == dst_reg->id)
7959 			reg->range = max(reg->range, new_range);
7960 	}
7961 }
7962 
7963 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7964 				   struct bpf_reg_state *dst_reg,
7965 				   enum bpf_reg_type type,
7966 				   bool range_right_open)
7967 {
7968 	int new_range, i;
7969 
7970 	if (dst_reg->off < 0 ||
7971 	    (dst_reg->off == 0 && range_right_open))
7972 		/* This doesn't give us any range */
7973 		return;
7974 
7975 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7976 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7977 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7978 		 * than pkt_end, but that's because it's also less than pkt.
7979 		 */
7980 		return;
7981 
7982 	new_range = dst_reg->off;
7983 	if (range_right_open)
7984 		new_range--;
7985 
7986 	/* Examples for register markings:
7987 	 *
7988 	 * pkt_data in dst register:
7989 	 *
7990 	 *   r2 = r3;
7991 	 *   r2 += 8;
7992 	 *   if (r2 > pkt_end) goto <handle exception>
7993 	 *   <access okay>
7994 	 *
7995 	 *   r2 = r3;
7996 	 *   r2 += 8;
7997 	 *   if (r2 < pkt_end) goto <access okay>
7998 	 *   <handle exception>
7999 	 *
8000 	 *   Where:
8001 	 *     r2 == dst_reg, pkt_end == src_reg
8002 	 *     r2=pkt(id=n,off=8,r=0)
8003 	 *     r3=pkt(id=n,off=0,r=0)
8004 	 *
8005 	 * pkt_data in src register:
8006 	 *
8007 	 *   r2 = r3;
8008 	 *   r2 += 8;
8009 	 *   if (pkt_end >= r2) goto <access okay>
8010 	 *   <handle exception>
8011 	 *
8012 	 *   r2 = r3;
8013 	 *   r2 += 8;
8014 	 *   if (pkt_end <= r2) goto <handle exception>
8015 	 *   <access okay>
8016 	 *
8017 	 *   Where:
8018 	 *     pkt_end == dst_reg, r2 == src_reg
8019 	 *     r2=pkt(id=n,off=8,r=0)
8020 	 *     r3=pkt(id=n,off=0,r=0)
8021 	 *
8022 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8023 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8024 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8025 	 * the check.
8026 	 */
8027 
8028 	/* If our ids match, then we must have the same max_value.  And we
8029 	 * don't care about the other reg's fixed offset, since if it's too big
8030 	 * the range won't allow anything.
8031 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8032 	 */
8033 	for (i = 0; i <= vstate->curframe; i++)
8034 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8035 					 new_range);
8036 }
8037 
8038 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8039 {
8040 	struct tnum subreg = tnum_subreg(reg->var_off);
8041 	s32 sval = (s32)val;
8042 
8043 	switch (opcode) {
8044 	case BPF_JEQ:
8045 		if (tnum_is_const(subreg))
8046 			return !!tnum_equals_const(subreg, val);
8047 		break;
8048 	case BPF_JNE:
8049 		if (tnum_is_const(subreg))
8050 			return !tnum_equals_const(subreg, val);
8051 		break;
8052 	case BPF_JSET:
8053 		if ((~subreg.mask & subreg.value) & val)
8054 			return 1;
8055 		if (!((subreg.mask | subreg.value) & val))
8056 			return 0;
8057 		break;
8058 	case BPF_JGT:
8059 		if (reg->u32_min_value > val)
8060 			return 1;
8061 		else if (reg->u32_max_value <= val)
8062 			return 0;
8063 		break;
8064 	case BPF_JSGT:
8065 		if (reg->s32_min_value > sval)
8066 			return 1;
8067 		else if (reg->s32_max_value <= sval)
8068 			return 0;
8069 		break;
8070 	case BPF_JLT:
8071 		if (reg->u32_max_value < val)
8072 			return 1;
8073 		else if (reg->u32_min_value >= val)
8074 			return 0;
8075 		break;
8076 	case BPF_JSLT:
8077 		if (reg->s32_max_value < sval)
8078 			return 1;
8079 		else if (reg->s32_min_value >= sval)
8080 			return 0;
8081 		break;
8082 	case BPF_JGE:
8083 		if (reg->u32_min_value >= val)
8084 			return 1;
8085 		else if (reg->u32_max_value < val)
8086 			return 0;
8087 		break;
8088 	case BPF_JSGE:
8089 		if (reg->s32_min_value >= sval)
8090 			return 1;
8091 		else if (reg->s32_max_value < sval)
8092 			return 0;
8093 		break;
8094 	case BPF_JLE:
8095 		if (reg->u32_max_value <= val)
8096 			return 1;
8097 		else if (reg->u32_min_value > val)
8098 			return 0;
8099 		break;
8100 	case BPF_JSLE:
8101 		if (reg->s32_max_value <= sval)
8102 			return 1;
8103 		else if (reg->s32_min_value > sval)
8104 			return 0;
8105 		break;
8106 	}
8107 
8108 	return -1;
8109 }
8110 
8111 
8112 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8113 {
8114 	s64 sval = (s64)val;
8115 
8116 	switch (opcode) {
8117 	case BPF_JEQ:
8118 		if (tnum_is_const(reg->var_off))
8119 			return !!tnum_equals_const(reg->var_off, val);
8120 		break;
8121 	case BPF_JNE:
8122 		if (tnum_is_const(reg->var_off))
8123 			return !tnum_equals_const(reg->var_off, val);
8124 		break;
8125 	case BPF_JSET:
8126 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8127 			return 1;
8128 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8129 			return 0;
8130 		break;
8131 	case BPF_JGT:
8132 		if (reg->umin_value > val)
8133 			return 1;
8134 		else if (reg->umax_value <= val)
8135 			return 0;
8136 		break;
8137 	case BPF_JSGT:
8138 		if (reg->smin_value > sval)
8139 			return 1;
8140 		else if (reg->smax_value <= sval)
8141 			return 0;
8142 		break;
8143 	case BPF_JLT:
8144 		if (reg->umax_value < val)
8145 			return 1;
8146 		else if (reg->umin_value >= val)
8147 			return 0;
8148 		break;
8149 	case BPF_JSLT:
8150 		if (reg->smax_value < sval)
8151 			return 1;
8152 		else if (reg->smin_value >= sval)
8153 			return 0;
8154 		break;
8155 	case BPF_JGE:
8156 		if (reg->umin_value >= val)
8157 			return 1;
8158 		else if (reg->umax_value < val)
8159 			return 0;
8160 		break;
8161 	case BPF_JSGE:
8162 		if (reg->smin_value >= sval)
8163 			return 1;
8164 		else if (reg->smax_value < sval)
8165 			return 0;
8166 		break;
8167 	case BPF_JLE:
8168 		if (reg->umax_value <= val)
8169 			return 1;
8170 		else if (reg->umin_value > val)
8171 			return 0;
8172 		break;
8173 	case BPF_JSLE:
8174 		if (reg->smax_value <= sval)
8175 			return 1;
8176 		else if (reg->smin_value > sval)
8177 			return 0;
8178 		break;
8179 	}
8180 
8181 	return -1;
8182 }
8183 
8184 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8185  * and return:
8186  *  1 - branch will be taken and "goto target" will be executed
8187  *  0 - branch will not be taken and fall-through to next insn
8188  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8189  *      range [0,10]
8190  */
8191 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8192 			   bool is_jmp32)
8193 {
8194 	if (__is_pointer_value(false, reg)) {
8195 		if (!reg_type_not_null(reg->type))
8196 			return -1;
8197 
8198 		/* If pointer is valid tests against zero will fail so we can
8199 		 * use this to direct branch taken.
8200 		 */
8201 		if (val != 0)
8202 			return -1;
8203 
8204 		switch (opcode) {
8205 		case BPF_JEQ:
8206 			return 0;
8207 		case BPF_JNE:
8208 			return 1;
8209 		default:
8210 			return -1;
8211 		}
8212 	}
8213 
8214 	if (is_jmp32)
8215 		return is_branch32_taken(reg, val, opcode);
8216 	return is_branch64_taken(reg, val, opcode);
8217 }
8218 
8219 static int flip_opcode(u32 opcode)
8220 {
8221 	/* How can we transform "a <op> b" into "b <op> a"? */
8222 	static const u8 opcode_flip[16] = {
8223 		/* these stay the same */
8224 		[BPF_JEQ  >> 4] = BPF_JEQ,
8225 		[BPF_JNE  >> 4] = BPF_JNE,
8226 		[BPF_JSET >> 4] = BPF_JSET,
8227 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8228 		[BPF_JGE  >> 4] = BPF_JLE,
8229 		[BPF_JGT  >> 4] = BPF_JLT,
8230 		[BPF_JLE  >> 4] = BPF_JGE,
8231 		[BPF_JLT  >> 4] = BPF_JGT,
8232 		[BPF_JSGE >> 4] = BPF_JSLE,
8233 		[BPF_JSGT >> 4] = BPF_JSLT,
8234 		[BPF_JSLE >> 4] = BPF_JSGE,
8235 		[BPF_JSLT >> 4] = BPF_JSGT
8236 	};
8237 	return opcode_flip[opcode >> 4];
8238 }
8239 
8240 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8241 				   struct bpf_reg_state *src_reg,
8242 				   u8 opcode)
8243 {
8244 	struct bpf_reg_state *pkt;
8245 
8246 	if (src_reg->type == PTR_TO_PACKET_END) {
8247 		pkt = dst_reg;
8248 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8249 		pkt = src_reg;
8250 		opcode = flip_opcode(opcode);
8251 	} else {
8252 		return -1;
8253 	}
8254 
8255 	if (pkt->range >= 0)
8256 		return -1;
8257 
8258 	switch (opcode) {
8259 	case BPF_JLE:
8260 		/* pkt <= pkt_end */
8261 		fallthrough;
8262 	case BPF_JGT:
8263 		/* pkt > pkt_end */
8264 		if (pkt->range == BEYOND_PKT_END)
8265 			/* pkt has at last one extra byte beyond pkt_end */
8266 			return opcode == BPF_JGT;
8267 		break;
8268 	case BPF_JLT:
8269 		/* pkt < pkt_end */
8270 		fallthrough;
8271 	case BPF_JGE:
8272 		/* pkt >= pkt_end */
8273 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8274 			return opcode == BPF_JGE;
8275 		break;
8276 	}
8277 	return -1;
8278 }
8279 
8280 /* Adjusts the register min/max values in the case that the dst_reg is the
8281  * variable register that we are working on, and src_reg is a constant or we're
8282  * simply doing a BPF_K check.
8283  * In JEQ/JNE cases we also adjust the var_off values.
8284  */
8285 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8286 			    struct bpf_reg_state *false_reg,
8287 			    u64 val, u32 val32,
8288 			    u8 opcode, bool is_jmp32)
8289 {
8290 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8291 	struct tnum false_64off = false_reg->var_off;
8292 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8293 	struct tnum true_64off = true_reg->var_off;
8294 	s64 sval = (s64)val;
8295 	s32 sval32 = (s32)val32;
8296 
8297 	/* If the dst_reg is a pointer, we can't learn anything about its
8298 	 * variable offset from the compare (unless src_reg were a pointer into
8299 	 * the same object, but we don't bother with that.
8300 	 * Since false_reg and true_reg have the same type by construction, we
8301 	 * only need to check one of them for pointerness.
8302 	 */
8303 	if (__is_pointer_value(false, false_reg))
8304 		return;
8305 
8306 	switch (opcode) {
8307 	case BPF_JEQ:
8308 	case BPF_JNE:
8309 	{
8310 		struct bpf_reg_state *reg =
8311 			opcode == BPF_JEQ ? true_reg : false_reg;
8312 
8313 		/* JEQ/JNE comparison doesn't change the register equivalence.
8314 		 * r1 = r2;
8315 		 * if (r1 == 42) goto label;
8316 		 * ...
8317 		 * label: // here both r1 and r2 are known to be 42.
8318 		 *
8319 		 * Hence when marking register as known preserve it's ID.
8320 		 */
8321 		if (is_jmp32)
8322 			__mark_reg32_known(reg, val32);
8323 		else
8324 			___mark_reg_known(reg, val);
8325 		break;
8326 	}
8327 	case BPF_JSET:
8328 		if (is_jmp32) {
8329 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8330 			if (is_power_of_2(val32))
8331 				true_32off = tnum_or(true_32off,
8332 						     tnum_const(val32));
8333 		} else {
8334 			false_64off = tnum_and(false_64off, tnum_const(~val));
8335 			if (is_power_of_2(val))
8336 				true_64off = tnum_or(true_64off,
8337 						     tnum_const(val));
8338 		}
8339 		break;
8340 	case BPF_JGE:
8341 	case BPF_JGT:
8342 	{
8343 		if (is_jmp32) {
8344 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8345 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8346 
8347 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8348 						       false_umax);
8349 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8350 						      true_umin);
8351 		} else {
8352 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8353 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8354 
8355 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8356 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8357 		}
8358 		break;
8359 	}
8360 	case BPF_JSGE:
8361 	case BPF_JSGT:
8362 	{
8363 		if (is_jmp32) {
8364 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8365 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8366 
8367 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8368 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8369 		} else {
8370 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8371 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8372 
8373 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8374 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8375 		}
8376 		break;
8377 	}
8378 	case BPF_JLE:
8379 	case BPF_JLT:
8380 	{
8381 		if (is_jmp32) {
8382 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8383 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8384 
8385 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8386 						       false_umin);
8387 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8388 						      true_umax);
8389 		} else {
8390 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8391 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8392 
8393 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8394 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8395 		}
8396 		break;
8397 	}
8398 	case BPF_JSLE:
8399 	case BPF_JSLT:
8400 	{
8401 		if (is_jmp32) {
8402 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8403 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8404 
8405 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8406 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8407 		} else {
8408 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8409 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8410 
8411 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8412 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8413 		}
8414 		break;
8415 	}
8416 	default:
8417 		return;
8418 	}
8419 
8420 	if (is_jmp32) {
8421 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8422 					     tnum_subreg(false_32off));
8423 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8424 					    tnum_subreg(true_32off));
8425 		__reg_combine_32_into_64(false_reg);
8426 		__reg_combine_32_into_64(true_reg);
8427 	} else {
8428 		false_reg->var_off = false_64off;
8429 		true_reg->var_off = true_64off;
8430 		__reg_combine_64_into_32(false_reg);
8431 		__reg_combine_64_into_32(true_reg);
8432 	}
8433 }
8434 
8435 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8436  * the variable reg.
8437  */
8438 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8439 				struct bpf_reg_state *false_reg,
8440 				u64 val, u32 val32,
8441 				u8 opcode, bool is_jmp32)
8442 {
8443 	opcode = flip_opcode(opcode);
8444 	/* This uses zero as "not present in table"; luckily the zero opcode,
8445 	 * BPF_JA, can't get here.
8446 	 */
8447 	if (opcode)
8448 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8449 }
8450 
8451 /* Regs are known to be equal, so intersect their min/max/var_off */
8452 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8453 				  struct bpf_reg_state *dst_reg)
8454 {
8455 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8456 							dst_reg->umin_value);
8457 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8458 							dst_reg->umax_value);
8459 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8460 							dst_reg->smin_value);
8461 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8462 							dst_reg->smax_value);
8463 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8464 							     dst_reg->var_off);
8465 	/* We might have learned new bounds from the var_off. */
8466 	__update_reg_bounds(src_reg);
8467 	__update_reg_bounds(dst_reg);
8468 	/* We might have learned something about the sign bit. */
8469 	__reg_deduce_bounds(src_reg);
8470 	__reg_deduce_bounds(dst_reg);
8471 	/* We might have learned some bits from the bounds. */
8472 	__reg_bound_offset(src_reg);
8473 	__reg_bound_offset(dst_reg);
8474 	/* Intersecting with the old var_off might have improved our bounds
8475 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8476 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8477 	 */
8478 	__update_reg_bounds(src_reg);
8479 	__update_reg_bounds(dst_reg);
8480 }
8481 
8482 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8483 				struct bpf_reg_state *true_dst,
8484 				struct bpf_reg_state *false_src,
8485 				struct bpf_reg_state *false_dst,
8486 				u8 opcode)
8487 {
8488 	switch (opcode) {
8489 	case BPF_JEQ:
8490 		__reg_combine_min_max(true_src, true_dst);
8491 		break;
8492 	case BPF_JNE:
8493 		__reg_combine_min_max(false_src, false_dst);
8494 		break;
8495 	}
8496 }
8497 
8498 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8499 				 struct bpf_reg_state *reg, u32 id,
8500 				 bool is_null)
8501 {
8502 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8503 	    !WARN_ON_ONCE(!reg->id)) {
8504 		/* Old offset (both fixed and variable parts) should
8505 		 * have been known-zero, because we don't allow pointer
8506 		 * arithmetic on pointers that might be NULL.
8507 		 */
8508 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8509 				 !tnum_equals_const(reg->var_off, 0) ||
8510 				 reg->off)) {
8511 			__mark_reg_known_zero(reg);
8512 			reg->off = 0;
8513 		}
8514 		if (is_null) {
8515 			reg->type = SCALAR_VALUE;
8516 			/* We don't need id and ref_obj_id from this point
8517 			 * onwards anymore, thus we should better reset it,
8518 			 * so that state pruning has chances to take effect.
8519 			 */
8520 			reg->id = 0;
8521 			reg->ref_obj_id = 0;
8522 
8523 			return;
8524 		}
8525 
8526 		mark_ptr_not_null_reg(reg);
8527 
8528 		if (!reg_may_point_to_spin_lock(reg)) {
8529 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8530 			 * in release_reg_references().
8531 			 *
8532 			 * reg->id is still used by spin_lock ptr. Other
8533 			 * than spin_lock ptr type, reg->id can be reset.
8534 			 */
8535 			reg->id = 0;
8536 		}
8537 	}
8538 }
8539 
8540 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8541 				    bool is_null)
8542 {
8543 	struct bpf_reg_state *reg;
8544 	int i;
8545 
8546 	for (i = 0; i < MAX_BPF_REG; i++)
8547 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8548 
8549 	bpf_for_each_spilled_reg(i, state, reg) {
8550 		if (!reg)
8551 			continue;
8552 		mark_ptr_or_null_reg(state, reg, id, is_null);
8553 	}
8554 }
8555 
8556 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8557  * be folded together at some point.
8558  */
8559 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8560 				  bool is_null)
8561 {
8562 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8563 	struct bpf_reg_state *regs = state->regs;
8564 	u32 ref_obj_id = regs[regno].ref_obj_id;
8565 	u32 id = regs[regno].id;
8566 	int i;
8567 
8568 	if (ref_obj_id && ref_obj_id == id && is_null)
8569 		/* regs[regno] is in the " == NULL" branch.
8570 		 * No one could have freed the reference state before
8571 		 * doing the NULL check.
8572 		 */
8573 		WARN_ON_ONCE(release_reference_state(state, id));
8574 
8575 	for (i = 0; i <= vstate->curframe; i++)
8576 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8577 }
8578 
8579 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8580 				   struct bpf_reg_state *dst_reg,
8581 				   struct bpf_reg_state *src_reg,
8582 				   struct bpf_verifier_state *this_branch,
8583 				   struct bpf_verifier_state *other_branch)
8584 {
8585 	if (BPF_SRC(insn->code) != BPF_X)
8586 		return false;
8587 
8588 	/* Pointers are always 64-bit. */
8589 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8590 		return false;
8591 
8592 	switch (BPF_OP(insn->code)) {
8593 	case BPF_JGT:
8594 		if ((dst_reg->type == PTR_TO_PACKET &&
8595 		     src_reg->type == PTR_TO_PACKET_END) ||
8596 		    (dst_reg->type == PTR_TO_PACKET_META &&
8597 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8598 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8599 			find_good_pkt_pointers(this_branch, dst_reg,
8600 					       dst_reg->type, false);
8601 			mark_pkt_end(other_branch, insn->dst_reg, true);
8602 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8603 			    src_reg->type == PTR_TO_PACKET) ||
8604 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8605 			    src_reg->type == PTR_TO_PACKET_META)) {
8606 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8607 			find_good_pkt_pointers(other_branch, src_reg,
8608 					       src_reg->type, true);
8609 			mark_pkt_end(this_branch, insn->src_reg, false);
8610 		} else {
8611 			return false;
8612 		}
8613 		break;
8614 	case BPF_JLT:
8615 		if ((dst_reg->type == PTR_TO_PACKET &&
8616 		     src_reg->type == PTR_TO_PACKET_END) ||
8617 		    (dst_reg->type == PTR_TO_PACKET_META &&
8618 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8619 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8620 			find_good_pkt_pointers(other_branch, dst_reg,
8621 					       dst_reg->type, true);
8622 			mark_pkt_end(this_branch, insn->dst_reg, false);
8623 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8624 			    src_reg->type == PTR_TO_PACKET) ||
8625 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8626 			    src_reg->type == PTR_TO_PACKET_META)) {
8627 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8628 			find_good_pkt_pointers(this_branch, src_reg,
8629 					       src_reg->type, false);
8630 			mark_pkt_end(other_branch, insn->src_reg, true);
8631 		} else {
8632 			return false;
8633 		}
8634 		break;
8635 	case BPF_JGE:
8636 		if ((dst_reg->type == PTR_TO_PACKET &&
8637 		     src_reg->type == PTR_TO_PACKET_END) ||
8638 		    (dst_reg->type == PTR_TO_PACKET_META &&
8639 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8640 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8641 			find_good_pkt_pointers(this_branch, dst_reg,
8642 					       dst_reg->type, true);
8643 			mark_pkt_end(other_branch, insn->dst_reg, false);
8644 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8645 			    src_reg->type == PTR_TO_PACKET) ||
8646 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8647 			    src_reg->type == PTR_TO_PACKET_META)) {
8648 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8649 			find_good_pkt_pointers(other_branch, src_reg,
8650 					       src_reg->type, false);
8651 			mark_pkt_end(this_branch, insn->src_reg, true);
8652 		} else {
8653 			return false;
8654 		}
8655 		break;
8656 	case BPF_JLE:
8657 		if ((dst_reg->type == PTR_TO_PACKET &&
8658 		     src_reg->type == PTR_TO_PACKET_END) ||
8659 		    (dst_reg->type == PTR_TO_PACKET_META &&
8660 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8661 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8662 			find_good_pkt_pointers(other_branch, dst_reg,
8663 					       dst_reg->type, false);
8664 			mark_pkt_end(this_branch, insn->dst_reg, true);
8665 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8666 			    src_reg->type == PTR_TO_PACKET) ||
8667 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8668 			    src_reg->type == PTR_TO_PACKET_META)) {
8669 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8670 			find_good_pkt_pointers(this_branch, src_reg,
8671 					       src_reg->type, true);
8672 			mark_pkt_end(other_branch, insn->src_reg, false);
8673 		} else {
8674 			return false;
8675 		}
8676 		break;
8677 	default:
8678 		return false;
8679 	}
8680 
8681 	return true;
8682 }
8683 
8684 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8685 			       struct bpf_reg_state *known_reg)
8686 {
8687 	struct bpf_func_state *state;
8688 	struct bpf_reg_state *reg;
8689 	int i, j;
8690 
8691 	for (i = 0; i <= vstate->curframe; i++) {
8692 		state = vstate->frame[i];
8693 		for (j = 0; j < MAX_BPF_REG; j++) {
8694 			reg = &state->regs[j];
8695 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8696 				*reg = *known_reg;
8697 		}
8698 
8699 		bpf_for_each_spilled_reg(j, state, reg) {
8700 			if (!reg)
8701 				continue;
8702 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8703 				*reg = *known_reg;
8704 		}
8705 	}
8706 }
8707 
8708 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8709 			     struct bpf_insn *insn, int *insn_idx)
8710 {
8711 	struct bpf_verifier_state *this_branch = env->cur_state;
8712 	struct bpf_verifier_state *other_branch;
8713 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8714 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8715 	u8 opcode = BPF_OP(insn->code);
8716 	bool is_jmp32;
8717 	int pred = -1;
8718 	int err;
8719 
8720 	/* Only conditional jumps are expected to reach here. */
8721 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8722 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8723 		return -EINVAL;
8724 	}
8725 
8726 	if (BPF_SRC(insn->code) == BPF_X) {
8727 		if (insn->imm != 0) {
8728 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8729 			return -EINVAL;
8730 		}
8731 
8732 		/* check src1 operand */
8733 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8734 		if (err)
8735 			return err;
8736 
8737 		if (is_pointer_value(env, insn->src_reg)) {
8738 			verbose(env, "R%d pointer comparison prohibited\n",
8739 				insn->src_reg);
8740 			return -EACCES;
8741 		}
8742 		src_reg = &regs[insn->src_reg];
8743 	} else {
8744 		if (insn->src_reg != BPF_REG_0) {
8745 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8746 			return -EINVAL;
8747 		}
8748 	}
8749 
8750 	/* check src2 operand */
8751 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8752 	if (err)
8753 		return err;
8754 
8755 	dst_reg = &regs[insn->dst_reg];
8756 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8757 
8758 	if (BPF_SRC(insn->code) == BPF_K) {
8759 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8760 	} else if (src_reg->type == SCALAR_VALUE &&
8761 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8762 		pred = is_branch_taken(dst_reg,
8763 				       tnum_subreg(src_reg->var_off).value,
8764 				       opcode,
8765 				       is_jmp32);
8766 	} else if (src_reg->type == SCALAR_VALUE &&
8767 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8768 		pred = is_branch_taken(dst_reg,
8769 				       src_reg->var_off.value,
8770 				       opcode,
8771 				       is_jmp32);
8772 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8773 		   reg_is_pkt_pointer_any(src_reg) &&
8774 		   !is_jmp32) {
8775 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8776 	}
8777 
8778 	if (pred >= 0) {
8779 		/* If we get here with a dst_reg pointer type it is because
8780 		 * above is_branch_taken() special cased the 0 comparison.
8781 		 */
8782 		if (!__is_pointer_value(false, dst_reg))
8783 			err = mark_chain_precision(env, insn->dst_reg);
8784 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8785 		    !__is_pointer_value(false, src_reg))
8786 			err = mark_chain_precision(env, insn->src_reg);
8787 		if (err)
8788 			return err;
8789 	}
8790 
8791 	if (pred == 1) {
8792 		/* Only follow the goto, ignore fall-through. If needed, push
8793 		 * the fall-through branch for simulation under speculative
8794 		 * execution.
8795 		 */
8796 		if (!env->bypass_spec_v1 &&
8797 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8798 					       *insn_idx))
8799 			return -EFAULT;
8800 		*insn_idx += insn->off;
8801 		return 0;
8802 	} else if (pred == 0) {
8803 		/* Only follow the fall-through branch, since that's where the
8804 		 * program will go. If needed, push the goto branch for
8805 		 * simulation under speculative execution.
8806 		 */
8807 		if (!env->bypass_spec_v1 &&
8808 		    !sanitize_speculative_path(env, insn,
8809 					       *insn_idx + insn->off + 1,
8810 					       *insn_idx))
8811 			return -EFAULT;
8812 		return 0;
8813 	}
8814 
8815 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8816 				  false);
8817 	if (!other_branch)
8818 		return -EFAULT;
8819 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8820 
8821 	/* detect if we are comparing against a constant value so we can adjust
8822 	 * our min/max values for our dst register.
8823 	 * this is only legit if both are scalars (or pointers to the same
8824 	 * object, I suppose, but we don't support that right now), because
8825 	 * otherwise the different base pointers mean the offsets aren't
8826 	 * comparable.
8827 	 */
8828 	if (BPF_SRC(insn->code) == BPF_X) {
8829 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8830 
8831 		if (dst_reg->type == SCALAR_VALUE &&
8832 		    src_reg->type == SCALAR_VALUE) {
8833 			if (tnum_is_const(src_reg->var_off) ||
8834 			    (is_jmp32 &&
8835 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8836 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8837 						dst_reg,
8838 						src_reg->var_off.value,
8839 						tnum_subreg(src_reg->var_off).value,
8840 						opcode, is_jmp32);
8841 			else if (tnum_is_const(dst_reg->var_off) ||
8842 				 (is_jmp32 &&
8843 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8844 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8845 						    src_reg,
8846 						    dst_reg->var_off.value,
8847 						    tnum_subreg(dst_reg->var_off).value,
8848 						    opcode, is_jmp32);
8849 			else if (!is_jmp32 &&
8850 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8851 				/* Comparing for equality, we can combine knowledge */
8852 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8853 						    &other_branch_regs[insn->dst_reg],
8854 						    src_reg, dst_reg, opcode);
8855 			if (src_reg->id &&
8856 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8857 				find_equal_scalars(this_branch, src_reg);
8858 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8859 			}
8860 
8861 		}
8862 	} else if (dst_reg->type == SCALAR_VALUE) {
8863 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8864 					dst_reg, insn->imm, (u32)insn->imm,
8865 					opcode, is_jmp32);
8866 	}
8867 
8868 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8869 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8870 		find_equal_scalars(this_branch, dst_reg);
8871 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8872 	}
8873 
8874 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8875 	 * NOTE: these optimizations below are related with pointer comparison
8876 	 *       which will never be JMP32.
8877 	 */
8878 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8879 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8880 	    reg_type_may_be_null(dst_reg->type)) {
8881 		/* Mark all identical registers in each branch as either
8882 		 * safe or unknown depending R == 0 or R != 0 conditional.
8883 		 */
8884 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8885 				      opcode == BPF_JNE);
8886 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8887 				      opcode == BPF_JEQ);
8888 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8889 					   this_branch, other_branch) &&
8890 		   is_pointer_value(env, insn->dst_reg)) {
8891 		verbose(env, "R%d pointer comparison prohibited\n",
8892 			insn->dst_reg);
8893 		return -EACCES;
8894 	}
8895 	if (env->log.level & BPF_LOG_LEVEL)
8896 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8897 	return 0;
8898 }
8899 
8900 /* verify BPF_LD_IMM64 instruction */
8901 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8902 {
8903 	struct bpf_insn_aux_data *aux = cur_aux(env);
8904 	struct bpf_reg_state *regs = cur_regs(env);
8905 	struct bpf_reg_state *dst_reg;
8906 	struct bpf_map *map;
8907 	int err;
8908 
8909 	if (BPF_SIZE(insn->code) != BPF_DW) {
8910 		verbose(env, "invalid BPF_LD_IMM insn\n");
8911 		return -EINVAL;
8912 	}
8913 	if (insn->off != 0) {
8914 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8915 		return -EINVAL;
8916 	}
8917 
8918 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8919 	if (err)
8920 		return err;
8921 
8922 	dst_reg = &regs[insn->dst_reg];
8923 	if (insn->src_reg == 0) {
8924 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8925 
8926 		dst_reg->type = SCALAR_VALUE;
8927 		__mark_reg_known(&regs[insn->dst_reg], imm);
8928 		return 0;
8929 	}
8930 
8931 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8932 		mark_reg_known_zero(env, regs, insn->dst_reg);
8933 
8934 		dst_reg->type = aux->btf_var.reg_type;
8935 		switch (dst_reg->type) {
8936 		case PTR_TO_MEM:
8937 			dst_reg->mem_size = aux->btf_var.mem_size;
8938 			break;
8939 		case PTR_TO_BTF_ID:
8940 		case PTR_TO_PERCPU_BTF_ID:
8941 			dst_reg->btf = aux->btf_var.btf;
8942 			dst_reg->btf_id = aux->btf_var.btf_id;
8943 			break;
8944 		default:
8945 			verbose(env, "bpf verifier is misconfigured\n");
8946 			return -EFAULT;
8947 		}
8948 		return 0;
8949 	}
8950 
8951 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8952 		struct bpf_prog_aux *aux = env->prog->aux;
8953 		u32 subprogno = insn[1].imm;
8954 
8955 		if (!aux->func_info) {
8956 			verbose(env, "missing btf func_info\n");
8957 			return -EINVAL;
8958 		}
8959 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8960 			verbose(env, "callback function not static\n");
8961 			return -EINVAL;
8962 		}
8963 
8964 		dst_reg->type = PTR_TO_FUNC;
8965 		dst_reg->subprogno = subprogno;
8966 		return 0;
8967 	}
8968 
8969 	map = env->used_maps[aux->map_index];
8970 	mark_reg_known_zero(env, regs, insn->dst_reg);
8971 	dst_reg->map_ptr = map;
8972 
8973 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8974 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8975 		dst_reg->type = PTR_TO_MAP_VALUE;
8976 		dst_reg->off = aux->map_off;
8977 		if (map_value_has_spin_lock(map))
8978 			dst_reg->id = ++env->id_gen;
8979 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8980 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8981 		dst_reg->type = CONST_PTR_TO_MAP;
8982 	} else {
8983 		verbose(env, "bpf verifier is misconfigured\n");
8984 		return -EINVAL;
8985 	}
8986 
8987 	return 0;
8988 }
8989 
8990 static bool may_access_skb(enum bpf_prog_type type)
8991 {
8992 	switch (type) {
8993 	case BPF_PROG_TYPE_SOCKET_FILTER:
8994 	case BPF_PROG_TYPE_SCHED_CLS:
8995 	case BPF_PROG_TYPE_SCHED_ACT:
8996 		return true;
8997 	default:
8998 		return false;
8999 	}
9000 }
9001 
9002 /* verify safety of LD_ABS|LD_IND instructions:
9003  * - they can only appear in the programs where ctx == skb
9004  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9005  *   preserve R6-R9, and store return value into R0
9006  *
9007  * Implicit input:
9008  *   ctx == skb == R6 == CTX
9009  *
9010  * Explicit input:
9011  *   SRC == any register
9012  *   IMM == 32-bit immediate
9013  *
9014  * Output:
9015  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9016  */
9017 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9018 {
9019 	struct bpf_reg_state *regs = cur_regs(env);
9020 	static const int ctx_reg = BPF_REG_6;
9021 	u8 mode = BPF_MODE(insn->code);
9022 	int i, err;
9023 
9024 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9025 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9026 		return -EINVAL;
9027 	}
9028 
9029 	if (!env->ops->gen_ld_abs) {
9030 		verbose(env, "bpf verifier is misconfigured\n");
9031 		return -EINVAL;
9032 	}
9033 
9034 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9035 	    BPF_SIZE(insn->code) == BPF_DW ||
9036 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9037 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9038 		return -EINVAL;
9039 	}
9040 
9041 	/* check whether implicit source operand (register R6) is readable */
9042 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9043 	if (err)
9044 		return err;
9045 
9046 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9047 	 * gen_ld_abs() may terminate the program at runtime, leading to
9048 	 * reference leak.
9049 	 */
9050 	err = check_reference_leak(env);
9051 	if (err) {
9052 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9053 		return err;
9054 	}
9055 
9056 	if (env->cur_state->active_spin_lock) {
9057 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9058 		return -EINVAL;
9059 	}
9060 
9061 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9062 		verbose(env,
9063 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9064 		return -EINVAL;
9065 	}
9066 
9067 	if (mode == BPF_IND) {
9068 		/* check explicit source operand */
9069 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9070 		if (err)
9071 			return err;
9072 	}
9073 
9074 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9075 	if (err < 0)
9076 		return err;
9077 
9078 	/* reset caller saved regs to unreadable */
9079 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9080 		mark_reg_not_init(env, regs, caller_saved[i]);
9081 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9082 	}
9083 
9084 	/* mark destination R0 register as readable, since it contains
9085 	 * the value fetched from the packet.
9086 	 * Already marked as written above.
9087 	 */
9088 	mark_reg_unknown(env, regs, BPF_REG_0);
9089 	/* ld_abs load up to 32-bit skb data. */
9090 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9091 	return 0;
9092 }
9093 
9094 static int check_return_code(struct bpf_verifier_env *env)
9095 {
9096 	struct tnum enforce_attach_type_range = tnum_unknown;
9097 	const struct bpf_prog *prog = env->prog;
9098 	struct bpf_reg_state *reg;
9099 	struct tnum range = tnum_range(0, 1);
9100 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9101 	int err;
9102 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
9103 
9104 	/* LSM and struct_ops func-ptr's return type could be "void" */
9105 	if (!is_subprog &&
9106 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9107 	     prog_type == BPF_PROG_TYPE_LSM) &&
9108 	    !prog->aux->attach_func_proto->type)
9109 		return 0;
9110 
9111 	/* eBPF calling convention is such that R0 is used
9112 	 * to return the value from eBPF program.
9113 	 * Make sure that it's readable at this time
9114 	 * of bpf_exit, which means that program wrote
9115 	 * something into it earlier
9116 	 */
9117 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9118 	if (err)
9119 		return err;
9120 
9121 	if (is_pointer_value(env, BPF_REG_0)) {
9122 		verbose(env, "R0 leaks addr as return value\n");
9123 		return -EACCES;
9124 	}
9125 
9126 	reg = cur_regs(env) + BPF_REG_0;
9127 	if (is_subprog) {
9128 		if (reg->type != SCALAR_VALUE) {
9129 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9130 				reg_type_str[reg->type]);
9131 			return -EINVAL;
9132 		}
9133 		return 0;
9134 	}
9135 
9136 	switch (prog_type) {
9137 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9138 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9139 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9140 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9141 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9142 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9143 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9144 			range = tnum_range(1, 1);
9145 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9146 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9147 			range = tnum_range(0, 3);
9148 		break;
9149 	case BPF_PROG_TYPE_CGROUP_SKB:
9150 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9151 			range = tnum_range(0, 3);
9152 			enforce_attach_type_range = tnum_range(2, 3);
9153 		}
9154 		break;
9155 	case BPF_PROG_TYPE_CGROUP_SOCK:
9156 	case BPF_PROG_TYPE_SOCK_OPS:
9157 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9158 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9159 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9160 		break;
9161 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9162 		if (!env->prog->aux->attach_btf_id)
9163 			return 0;
9164 		range = tnum_const(0);
9165 		break;
9166 	case BPF_PROG_TYPE_TRACING:
9167 		switch (env->prog->expected_attach_type) {
9168 		case BPF_TRACE_FENTRY:
9169 		case BPF_TRACE_FEXIT:
9170 			range = tnum_const(0);
9171 			break;
9172 		case BPF_TRACE_RAW_TP:
9173 		case BPF_MODIFY_RETURN:
9174 			return 0;
9175 		case BPF_TRACE_ITER:
9176 			break;
9177 		default:
9178 			return -ENOTSUPP;
9179 		}
9180 		break;
9181 	case BPF_PROG_TYPE_SK_LOOKUP:
9182 		range = tnum_range(SK_DROP, SK_PASS);
9183 		break;
9184 	case BPF_PROG_TYPE_EXT:
9185 		/* freplace program can return anything as its return value
9186 		 * depends on the to-be-replaced kernel func or bpf program.
9187 		 */
9188 	default:
9189 		return 0;
9190 	}
9191 
9192 	if (reg->type != SCALAR_VALUE) {
9193 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9194 			reg_type_str[reg->type]);
9195 		return -EINVAL;
9196 	}
9197 
9198 	if (!tnum_in(range, reg->var_off)) {
9199 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9200 		return -EINVAL;
9201 	}
9202 
9203 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9204 	    tnum_in(enforce_attach_type_range, reg->var_off))
9205 		env->prog->enforce_expected_attach_type = 1;
9206 	return 0;
9207 }
9208 
9209 /* non-recursive DFS pseudo code
9210  * 1  procedure DFS-iterative(G,v):
9211  * 2      label v as discovered
9212  * 3      let S be a stack
9213  * 4      S.push(v)
9214  * 5      while S is not empty
9215  * 6            t <- S.pop()
9216  * 7            if t is what we're looking for:
9217  * 8                return t
9218  * 9            for all edges e in G.adjacentEdges(t) do
9219  * 10               if edge e is already labelled
9220  * 11                   continue with the next edge
9221  * 12               w <- G.adjacentVertex(t,e)
9222  * 13               if vertex w is not discovered and not explored
9223  * 14                   label e as tree-edge
9224  * 15                   label w as discovered
9225  * 16                   S.push(w)
9226  * 17                   continue at 5
9227  * 18               else if vertex w is discovered
9228  * 19                   label e as back-edge
9229  * 20               else
9230  * 21                   // vertex w is explored
9231  * 22                   label e as forward- or cross-edge
9232  * 23           label t as explored
9233  * 24           S.pop()
9234  *
9235  * convention:
9236  * 0x10 - discovered
9237  * 0x11 - discovered and fall-through edge labelled
9238  * 0x12 - discovered and fall-through and branch edges labelled
9239  * 0x20 - explored
9240  */
9241 
9242 enum {
9243 	DISCOVERED = 0x10,
9244 	EXPLORED = 0x20,
9245 	FALLTHROUGH = 1,
9246 	BRANCH = 2,
9247 };
9248 
9249 static u32 state_htab_size(struct bpf_verifier_env *env)
9250 {
9251 	return env->prog->len;
9252 }
9253 
9254 static struct bpf_verifier_state_list **explored_state(
9255 					struct bpf_verifier_env *env,
9256 					int idx)
9257 {
9258 	struct bpf_verifier_state *cur = env->cur_state;
9259 	struct bpf_func_state *state = cur->frame[cur->curframe];
9260 
9261 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9262 }
9263 
9264 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9265 {
9266 	env->insn_aux_data[idx].prune_point = true;
9267 }
9268 
9269 enum {
9270 	DONE_EXPLORING = 0,
9271 	KEEP_EXPLORING = 1,
9272 };
9273 
9274 /* t, w, e - match pseudo-code above:
9275  * t - index of current instruction
9276  * w - next instruction
9277  * e - edge
9278  */
9279 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9280 		     bool loop_ok)
9281 {
9282 	int *insn_stack = env->cfg.insn_stack;
9283 	int *insn_state = env->cfg.insn_state;
9284 
9285 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9286 		return DONE_EXPLORING;
9287 
9288 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9289 		return DONE_EXPLORING;
9290 
9291 	if (w < 0 || w >= env->prog->len) {
9292 		verbose_linfo(env, t, "%d: ", t);
9293 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9294 		return -EINVAL;
9295 	}
9296 
9297 	if (e == BRANCH)
9298 		/* mark branch target for state pruning */
9299 		init_explored_state(env, w);
9300 
9301 	if (insn_state[w] == 0) {
9302 		/* tree-edge */
9303 		insn_state[t] = DISCOVERED | e;
9304 		insn_state[w] = DISCOVERED;
9305 		if (env->cfg.cur_stack >= env->prog->len)
9306 			return -E2BIG;
9307 		insn_stack[env->cfg.cur_stack++] = w;
9308 		return KEEP_EXPLORING;
9309 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9310 		if (loop_ok && env->bpf_capable)
9311 			return DONE_EXPLORING;
9312 		verbose_linfo(env, t, "%d: ", t);
9313 		verbose_linfo(env, w, "%d: ", w);
9314 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9315 		return -EINVAL;
9316 	} else if (insn_state[w] == EXPLORED) {
9317 		/* forward- or cross-edge */
9318 		insn_state[t] = DISCOVERED | e;
9319 	} else {
9320 		verbose(env, "insn state internal bug\n");
9321 		return -EFAULT;
9322 	}
9323 	return DONE_EXPLORING;
9324 }
9325 
9326 static int visit_func_call_insn(int t, int insn_cnt,
9327 				struct bpf_insn *insns,
9328 				struct bpf_verifier_env *env,
9329 				bool visit_callee)
9330 {
9331 	int ret;
9332 
9333 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9334 	if (ret)
9335 		return ret;
9336 
9337 	if (t + 1 < insn_cnt)
9338 		init_explored_state(env, t + 1);
9339 	if (visit_callee) {
9340 		init_explored_state(env, t);
9341 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9342 				env, false);
9343 	}
9344 	return ret;
9345 }
9346 
9347 /* Visits the instruction at index t and returns one of the following:
9348  *  < 0 - an error occurred
9349  *  DONE_EXPLORING - the instruction was fully explored
9350  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9351  */
9352 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9353 {
9354 	struct bpf_insn *insns = env->prog->insnsi;
9355 	int ret;
9356 
9357 	if (bpf_pseudo_func(insns + t))
9358 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9359 
9360 	/* All non-branch instructions have a single fall-through edge. */
9361 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9362 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9363 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9364 
9365 	switch (BPF_OP(insns[t].code)) {
9366 	case BPF_EXIT:
9367 		return DONE_EXPLORING;
9368 
9369 	case BPF_CALL:
9370 		return visit_func_call_insn(t, insn_cnt, insns, env,
9371 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9372 
9373 	case BPF_JA:
9374 		if (BPF_SRC(insns[t].code) != BPF_K)
9375 			return -EINVAL;
9376 
9377 		/* unconditional jump with single edge */
9378 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9379 				true);
9380 		if (ret)
9381 			return ret;
9382 
9383 		/* unconditional jmp is not a good pruning point,
9384 		 * but it's marked, since backtracking needs
9385 		 * to record jmp history in is_state_visited().
9386 		 */
9387 		init_explored_state(env, t + insns[t].off + 1);
9388 		/* tell verifier to check for equivalent states
9389 		 * after every call and jump
9390 		 */
9391 		if (t + 1 < insn_cnt)
9392 			init_explored_state(env, t + 1);
9393 
9394 		return ret;
9395 
9396 	default:
9397 		/* conditional jump with two edges */
9398 		init_explored_state(env, t);
9399 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9400 		if (ret)
9401 			return ret;
9402 
9403 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9404 	}
9405 }
9406 
9407 /* non-recursive depth-first-search to detect loops in BPF program
9408  * loop == back-edge in directed graph
9409  */
9410 static int check_cfg(struct bpf_verifier_env *env)
9411 {
9412 	int insn_cnt = env->prog->len;
9413 	int *insn_stack, *insn_state;
9414 	int ret = 0;
9415 	int i;
9416 
9417 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9418 	if (!insn_state)
9419 		return -ENOMEM;
9420 
9421 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9422 	if (!insn_stack) {
9423 		kvfree(insn_state);
9424 		return -ENOMEM;
9425 	}
9426 
9427 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9428 	insn_stack[0] = 0; /* 0 is the first instruction */
9429 	env->cfg.cur_stack = 1;
9430 
9431 	while (env->cfg.cur_stack > 0) {
9432 		int t = insn_stack[env->cfg.cur_stack - 1];
9433 
9434 		ret = visit_insn(t, insn_cnt, env);
9435 		switch (ret) {
9436 		case DONE_EXPLORING:
9437 			insn_state[t] = EXPLORED;
9438 			env->cfg.cur_stack--;
9439 			break;
9440 		case KEEP_EXPLORING:
9441 			break;
9442 		default:
9443 			if (ret > 0) {
9444 				verbose(env, "visit_insn internal bug\n");
9445 				ret = -EFAULT;
9446 			}
9447 			goto err_free;
9448 		}
9449 	}
9450 
9451 	if (env->cfg.cur_stack < 0) {
9452 		verbose(env, "pop stack internal bug\n");
9453 		ret = -EFAULT;
9454 		goto err_free;
9455 	}
9456 
9457 	for (i = 0; i < insn_cnt; i++) {
9458 		if (insn_state[i] != EXPLORED) {
9459 			verbose(env, "unreachable insn %d\n", i);
9460 			ret = -EINVAL;
9461 			goto err_free;
9462 		}
9463 	}
9464 	ret = 0; /* cfg looks good */
9465 
9466 err_free:
9467 	kvfree(insn_state);
9468 	kvfree(insn_stack);
9469 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9470 	return ret;
9471 }
9472 
9473 static int check_abnormal_return(struct bpf_verifier_env *env)
9474 {
9475 	int i;
9476 
9477 	for (i = 1; i < env->subprog_cnt; i++) {
9478 		if (env->subprog_info[i].has_ld_abs) {
9479 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9480 			return -EINVAL;
9481 		}
9482 		if (env->subprog_info[i].has_tail_call) {
9483 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9484 			return -EINVAL;
9485 		}
9486 	}
9487 	return 0;
9488 }
9489 
9490 /* The minimum supported BTF func info size */
9491 #define MIN_BPF_FUNCINFO_SIZE	8
9492 #define MAX_FUNCINFO_REC_SIZE	252
9493 
9494 static int check_btf_func(struct bpf_verifier_env *env,
9495 			  const union bpf_attr *attr,
9496 			  bpfptr_t uattr)
9497 {
9498 	const struct btf_type *type, *func_proto, *ret_type;
9499 	u32 i, nfuncs, urec_size, min_size;
9500 	u32 krec_size = sizeof(struct bpf_func_info);
9501 	struct bpf_func_info *krecord;
9502 	struct bpf_func_info_aux *info_aux = NULL;
9503 	struct bpf_prog *prog;
9504 	const struct btf *btf;
9505 	bpfptr_t urecord;
9506 	u32 prev_offset = 0;
9507 	bool scalar_return;
9508 	int ret = -ENOMEM;
9509 
9510 	nfuncs = attr->func_info_cnt;
9511 	if (!nfuncs) {
9512 		if (check_abnormal_return(env))
9513 			return -EINVAL;
9514 		return 0;
9515 	}
9516 
9517 	if (nfuncs != env->subprog_cnt) {
9518 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9519 		return -EINVAL;
9520 	}
9521 
9522 	urec_size = attr->func_info_rec_size;
9523 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9524 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9525 	    urec_size % sizeof(u32)) {
9526 		verbose(env, "invalid func info rec size %u\n", urec_size);
9527 		return -EINVAL;
9528 	}
9529 
9530 	prog = env->prog;
9531 	btf = prog->aux->btf;
9532 
9533 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9534 	min_size = min_t(u32, krec_size, urec_size);
9535 
9536 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9537 	if (!krecord)
9538 		return -ENOMEM;
9539 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9540 	if (!info_aux)
9541 		goto err_free;
9542 
9543 	for (i = 0; i < nfuncs; i++) {
9544 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9545 		if (ret) {
9546 			if (ret == -E2BIG) {
9547 				verbose(env, "nonzero tailing record in func info");
9548 				/* set the size kernel expects so loader can zero
9549 				 * out the rest of the record.
9550 				 */
9551 				if (copy_to_bpfptr_offset(uattr,
9552 							  offsetof(union bpf_attr, func_info_rec_size),
9553 							  &min_size, sizeof(min_size)))
9554 					ret = -EFAULT;
9555 			}
9556 			goto err_free;
9557 		}
9558 
9559 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9560 			ret = -EFAULT;
9561 			goto err_free;
9562 		}
9563 
9564 		/* check insn_off */
9565 		ret = -EINVAL;
9566 		if (i == 0) {
9567 			if (krecord[i].insn_off) {
9568 				verbose(env,
9569 					"nonzero insn_off %u for the first func info record",
9570 					krecord[i].insn_off);
9571 				goto err_free;
9572 			}
9573 		} else if (krecord[i].insn_off <= prev_offset) {
9574 			verbose(env,
9575 				"same or smaller insn offset (%u) than previous func info record (%u)",
9576 				krecord[i].insn_off, prev_offset);
9577 			goto err_free;
9578 		}
9579 
9580 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9581 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9582 			goto err_free;
9583 		}
9584 
9585 		/* check type_id */
9586 		type = btf_type_by_id(btf, krecord[i].type_id);
9587 		if (!type || !btf_type_is_func(type)) {
9588 			verbose(env, "invalid type id %d in func info",
9589 				krecord[i].type_id);
9590 			goto err_free;
9591 		}
9592 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9593 
9594 		func_proto = btf_type_by_id(btf, type->type);
9595 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9596 			/* btf_func_check() already verified it during BTF load */
9597 			goto err_free;
9598 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9599 		scalar_return =
9600 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9601 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9602 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9603 			goto err_free;
9604 		}
9605 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9606 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9607 			goto err_free;
9608 		}
9609 
9610 		prev_offset = krecord[i].insn_off;
9611 		bpfptr_add(&urecord, urec_size);
9612 	}
9613 
9614 	prog->aux->func_info = krecord;
9615 	prog->aux->func_info_cnt = nfuncs;
9616 	prog->aux->func_info_aux = info_aux;
9617 	return 0;
9618 
9619 err_free:
9620 	kvfree(krecord);
9621 	kfree(info_aux);
9622 	return ret;
9623 }
9624 
9625 static void adjust_btf_func(struct bpf_verifier_env *env)
9626 {
9627 	struct bpf_prog_aux *aux = env->prog->aux;
9628 	int i;
9629 
9630 	if (!aux->func_info)
9631 		return;
9632 
9633 	for (i = 0; i < env->subprog_cnt; i++)
9634 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9635 }
9636 
9637 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9638 		sizeof(((struct bpf_line_info *)(0))->line_col))
9639 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9640 
9641 static int check_btf_line(struct bpf_verifier_env *env,
9642 			  const union bpf_attr *attr,
9643 			  bpfptr_t uattr)
9644 {
9645 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9646 	struct bpf_subprog_info *sub;
9647 	struct bpf_line_info *linfo;
9648 	struct bpf_prog *prog;
9649 	const struct btf *btf;
9650 	bpfptr_t ulinfo;
9651 	int err;
9652 
9653 	nr_linfo = attr->line_info_cnt;
9654 	if (!nr_linfo)
9655 		return 0;
9656 
9657 	rec_size = attr->line_info_rec_size;
9658 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9659 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9660 	    rec_size & (sizeof(u32) - 1))
9661 		return -EINVAL;
9662 
9663 	/* Need to zero it in case the userspace may
9664 	 * pass in a smaller bpf_line_info object.
9665 	 */
9666 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9667 			 GFP_KERNEL | __GFP_NOWARN);
9668 	if (!linfo)
9669 		return -ENOMEM;
9670 
9671 	prog = env->prog;
9672 	btf = prog->aux->btf;
9673 
9674 	s = 0;
9675 	sub = env->subprog_info;
9676 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9677 	expected_size = sizeof(struct bpf_line_info);
9678 	ncopy = min_t(u32, expected_size, rec_size);
9679 	for (i = 0; i < nr_linfo; i++) {
9680 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9681 		if (err) {
9682 			if (err == -E2BIG) {
9683 				verbose(env, "nonzero tailing record in line_info");
9684 				if (copy_to_bpfptr_offset(uattr,
9685 							  offsetof(union bpf_attr, line_info_rec_size),
9686 							  &expected_size, sizeof(expected_size)))
9687 					err = -EFAULT;
9688 			}
9689 			goto err_free;
9690 		}
9691 
9692 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9693 			err = -EFAULT;
9694 			goto err_free;
9695 		}
9696 
9697 		/*
9698 		 * Check insn_off to ensure
9699 		 * 1) strictly increasing AND
9700 		 * 2) bounded by prog->len
9701 		 *
9702 		 * The linfo[0].insn_off == 0 check logically falls into
9703 		 * the later "missing bpf_line_info for func..." case
9704 		 * because the first linfo[0].insn_off must be the
9705 		 * first sub also and the first sub must have
9706 		 * subprog_info[0].start == 0.
9707 		 */
9708 		if ((i && linfo[i].insn_off <= prev_offset) ||
9709 		    linfo[i].insn_off >= prog->len) {
9710 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9711 				i, linfo[i].insn_off, prev_offset,
9712 				prog->len);
9713 			err = -EINVAL;
9714 			goto err_free;
9715 		}
9716 
9717 		if (!prog->insnsi[linfo[i].insn_off].code) {
9718 			verbose(env,
9719 				"Invalid insn code at line_info[%u].insn_off\n",
9720 				i);
9721 			err = -EINVAL;
9722 			goto err_free;
9723 		}
9724 
9725 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9726 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9727 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9728 			err = -EINVAL;
9729 			goto err_free;
9730 		}
9731 
9732 		if (s != env->subprog_cnt) {
9733 			if (linfo[i].insn_off == sub[s].start) {
9734 				sub[s].linfo_idx = i;
9735 				s++;
9736 			} else if (sub[s].start < linfo[i].insn_off) {
9737 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9738 				err = -EINVAL;
9739 				goto err_free;
9740 			}
9741 		}
9742 
9743 		prev_offset = linfo[i].insn_off;
9744 		bpfptr_add(&ulinfo, rec_size);
9745 	}
9746 
9747 	if (s != env->subprog_cnt) {
9748 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9749 			env->subprog_cnt - s, s);
9750 		err = -EINVAL;
9751 		goto err_free;
9752 	}
9753 
9754 	prog->aux->linfo = linfo;
9755 	prog->aux->nr_linfo = nr_linfo;
9756 
9757 	return 0;
9758 
9759 err_free:
9760 	kvfree(linfo);
9761 	return err;
9762 }
9763 
9764 static int check_btf_info(struct bpf_verifier_env *env,
9765 			  const union bpf_attr *attr,
9766 			  bpfptr_t uattr)
9767 {
9768 	struct btf *btf;
9769 	int err;
9770 
9771 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9772 		if (check_abnormal_return(env))
9773 			return -EINVAL;
9774 		return 0;
9775 	}
9776 
9777 	btf = btf_get_by_fd(attr->prog_btf_fd);
9778 	if (IS_ERR(btf))
9779 		return PTR_ERR(btf);
9780 	if (btf_is_kernel(btf)) {
9781 		btf_put(btf);
9782 		return -EACCES;
9783 	}
9784 	env->prog->aux->btf = btf;
9785 
9786 	err = check_btf_func(env, attr, uattr);
9787 	if (err)
9788 		return err;
9789 
9790 	err = check_btf_line(env, attr, uattr);
9791 	if (err)
9792 		return err;
9793 
9794 	return 0;
9795 }
9796 
9797 /* check %cur's range satisfies %old's */
9798 static bool range_within(struct bpf_reg_state *old,
9799 			 struct bpf_reg_state *cur)
9800 {
9801 	return old->umin_value <= cur->umin_value &&
9802 	       old->umax_value >= cur->umax_value &&
9803 	       old->smin_value <= cur->smin_value &&
9804 	       old->smax_value >= cur->smax_value &&
9805 	       old->u32_min_value <= cur->u32_min_value &&
9806 	       old->u32_max_value >= cur->u32_max_value &&
9807 	       old->s32_min_value <= cur->s32_min_value &&
9808 	       old->s32_max_value >= cur->s32_max_value;
9809 }
9810 
9811 /* If in the old state two registers had the same id, then they need to have
9812  * the same id in the new state as well.  But that id could be different from
9813  * the old state, so we need to track the mapping from old to new ids.
9814  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9815  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9816  * regs with a different old id could still have new id 9, we don't care about
9817  * that.
9818  * So we look through our idmap to see if this old id has been seen before.  If
9819  * so, we require the new id to match; otherwise, we add the id pair to the map.
9820  */
9821 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9822 {
9823 	unsigned int i;
9824 
9825 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9826 		if (!idmap[i].old) {
9827 			/* Reached an empty slot; haven't seen this id before */
9828 			idmap[i].old = old_id;
9829 			idmap[i].cur = cur_id;
9830 			return true;
9831 		}
9832 		if (idmap[i].old == old_id)
9833 			return idmap[i].cur == cur_id;
9834 	}
9835 	/* We ran out of idmap slots, which should be impossible */
9836 	WARN_ON_ONCE(1);
9837 	return false;
9838 }
9839 
9840 static void clean_func_state(struct bpf_verifier_env *env,
9841 			     struct bpf_func_state *st)
9842 {
9843 	enum bpf_reg_liveness live;
9844 	int i, j;
9845 
9846 	for (i = 0; i < BPF_REG_FP; i++) {
9847 		live = st->regs[i].live;
9848 		/* liveness must not touch this register anymore */
9849 		st->regs[i].live |= REG_LIVE_DONE;
9850 		if (!(live & REG_LIVE_READ))
9851 			/* since the register is unused, clear its state
9852 			 * to make further comparison simpler
9853 			 */
9854 			__mark_reg_not_init(env, &st->regs[i]);
9855 	}
9856 
9857 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9858 		live = st->stack[i].spilled_ptr.live;
9859 		/* liveness must not touch this stack slot anymore */
9860 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9861 		if (!(live & REG_LIVE_READ)) {
9862 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9863 			for (j = 0; j < BPF_REG_SIZE; j++)
9864 				st->stack[i].slot_type[j] = STACK_INVALID;
9865 		}
9866 	}
9867 }
9868 
9869 static void clean_verifier_state(struct bpf_verifier_env *env,
9870 				 struct bpf_verifier_state *st)
9871 {
9872 	int i;
9873 
9874 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9875 		/* all regs in this state in all frames were already marked */
9876 		return;
9877 
9878 	for (i = 0; i <= st->curframe; i++)
9879 		clean_func_state(env, st->frame[i]);
9880 }
9881 
9882 /* the parentage chains form a tree.
9883  * the verifier states are added to state lists at given insn and
9884  * pushed into state stack for future exploration.
9885  * when the verifier reaches bpf_exit insn some of the verifer states
9886  * stored in the state lists have their final liveness state already,
9887  * but a lot of states will get revised from liveness point of view when
9888  * the verifier explores other branches.
9889  * Example:
9890  * 1: r0 = 1
9891  * 2: if r1 == 100 goto pc+1
9892  * 3: r0 = 2
9893  * 4: exit
9894  * when the verifier reaches exit insn the register r0 in the state list of
9895  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9896  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9897  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9898  *
9899  * Since the verifier pushes the branch states as it sees them while exploring
9900  * the program the condition of walking the branch instruction for the second
9901  * time means that all states below this branch were already explored and
9902  * their final liveness marks are already propagated.
9903  * Hence when the verifier completes the search of state list in is_state_visited()
9904  * we can call this clean_live_states() function to mark all liveness states
9905  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9906  * will not be used.
9907  * This function also clears the registers and stack for states that !READ
9908  * to simplify state merging.
9909  *
9910  * Important note here that walking the same branch instruction in the callee
9911  * doesn't meant that the states are DONE. The verifier has to compare
9912  * the callsites
9913  */
9914 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9915 			      struct bpf_verifier_state *cur)
9916 {
9917 	struct bpf_verifier_state_list *sl;
9918 	int i;
9919 
9920 	sl = *explored_state(env, insn);
9921 	while (sl) {
9922 		if (sl->state.branches)
9923 			goto next;
9924 		if (sl->state.insn_idx != insn ||
9925 		    sl->state.curframe != cur->curframe)
9926 			goto next;
9927 		for (i = 0; i <= cur->curframe; i++)
9928 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9929 				goto next;
9930 		clean_verifier_state(env, &sl->state);
9931 next:
9932 		sl = sl->next;
9933 	}
9934 }
9935 
9936 /* Returns true if (rold safe implies rcur safe) */
9937 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9938 		    struct bpf_id_pair *idmap)
9939 {
9940 	bool equal;
9941 
9942 	if (!(rold->live & REG_LIVE_READ))
9943 		/* explored state didn't use this */
9944 		return true;
9945 
9946 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9947 
9948 	if (rold->type == PTR_TO_STACK)
9949 		/* two stack pointers are equal only if they're pointing to
9950 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9951 		 */
9952 		return equal && rold->frameno == rcur->frameno;
9953 
9954 	if (equal)
9955 		return true;
9956 
9957 	if (rold->type == NOT_INIT)
9958 		/* explored state can't have used this */
9959 		return true;
9960 	if (rcur->type == NOT_INIT)
9961 		return false;
9962 	switch (rold->type) {
9963 	case SCALAR_VALUE:
9964 		if (rcur->type == SCALAR_VALUE) {
9965 			if (!rold->precise && !rcur->precise)
9966 				return true;
9967 			/* new val must satisfy old val knowledge */
9968 			return range_within(rold, rcur) &&
9969 			       tnum_in(rold->var_off, rcur->var_off);
9970 		} else {
9971 			/* We're trying to use a pointer in place of a scalar.
9972 			 * Even if the scalar was unbounded, this could lead to
9973 			 * pointer leaks because scalars are allowed to leak
9974 			 * while pointers are not. We could make this safe in
9975 			 * special cases if root is calling us, but it's
9976 			 * probably not worth the hassle.
9977 			 */
9978 			return false;
9979 		}
9980 	case PTR_TO_MAP_KEY:
9981 	case PTR_TO_MAP_VALUE:
9982 		/* If the new min/max/var_off satisfy the old ones and
9983 		 * everything else matches, we are OK.
9984 		 * 'id' is not compared, since it's only used for maps with
9985 		 * bpf_spin_lock inside map element and in such cases if
9986 		 * the rest of the prog is valid for one map element then
9987 		 * it's valid for all map elements regardless of the key
9988 		 * used in bpf_map_lookup()
9989 		 */
9990 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9991 		       range_within(rold, rcur) &&
9992 		       tnum_in(rold->var_off, rcur->var_off);
9993 	case PTR_TO_MAP_VALUE_OR_NULL:
9994 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9995 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9996 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9997 		 * checked, doing so could have affected others with the same
9998 		 * id, and we can't check for that because we lost the id when
9999 		 * we converted to a PTR_TO_MAP_VALUE.
10000 		 */
10001 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10002 			return false;
10003 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10004 			return false;
10005 		/* Check our ids match any regs they're supposed to */
10006 		return check_ids(rold->id, rcur->id, idmap);
10007 	case PTR_TO_PACKET_META:
10008 	case PTR_TO_PACKET:
10009 		if (rcur->type != rold->type)
10010 			return false;
10011 		/* We must have at least as much range as the old ptr
10012 		 * did, so that any accesses which were safe before are
10013 		 * still safe.  This is true even if old range < old off,
10014 		 * since someone could have accessed through (ptr - k), or
10015 		 * even done ptr -= k in a register, to get a safe access.
10016 		 */
10017 		if (rold->range > rcur->range)
10018 			return false;
10019 		/* If the offsets don't match, we can't trust our alignment;
10020 		 * nor can we be sure that we won't fall out of range.
10021 		 */
10022 		if (rold->off != rcur->off)
10023 			return false;
10024 		/* id relations must be preserved */
10025 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10026 			return false;
10027 		/* new val must satisfy old val knowledge */
10028 		return range_within(rold, rcur) &&
10029 		       tnum_in(rold->var_off, rcur->var_off);
10030 	case PTR_TO_CTX:
10031 	case CONST_PTR_TO_MAP:
10032 	case PTR_TO_PACKET_END:
10033 	case PTR_TO_FLOW_KEYS:
10034 	case PTR_TO_SOCKET:
10035 	case PTR_TO_SOCKET_OR_NULL:
10036 	case PTR_TO_SOCK_COMMON:
10037 	case PTR_TO_SOCK_COMMON_OR_NULL:
10038 	case PTR_TO_TCP_SOCK:
10039 	case PTR_TO_TCP_SOCK_OR_NULL:
10040 	case PTR_TO_XDP_SOCK:
10041 		/* Only valid matches are exact, which memcmp() above
10042 		 * would have accepted
10043 		 */
10044 	default:
10045 		/* Don't know what's going on, just say it's not safe */
10046 		return false;
10047 	}
10048 
10049 	/* Shouldn't get here; if we do, say it's not safe */
10050 	WARN_ON_ONCE(1);
10051 	return false;
10052 }
10053 
10054 static bool stacksafe(struct bpf_func_state *old,
10055 		      struct bpf_func_state *cur,
10056 		      struct bpf_id_pair *idmap)
10057 {
10058 	int i, spi;
10059 
10060 	/* walk slots of the explored stack and ignore any additional
10061 	 * slots in the current stack, since explored(safe) state
10062 	 * didn't use them
10063 	 */
10064 	for (i = 0; i < old->allocated_stack; i++) {
10065 		spi = i / BPF_REG_SIZE;
10066 
10067 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10068 			i += BPF_REG_SIZE - 1;
10069 			/* explored state didn't use this */
10070 			continue;
10071 		}
10072 
10073 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10074 			continue;
10075 
10076 		/* explored stack has more populated slots than current stack
10077 		 * and these slots were used
10078 		 */
10079 		if (i >= cur->allocated_stack)
10080 			return false;
10081 
10082 		/* if old state was safe with misc data in the stack
10083 		 * it will be safe with zero-initialized stack.
10084 		 * The opposite is not true
10085 		 */
10086 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10087 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10088 			continue;
10089 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10090 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10091 			/* Ex: old explored (safe) state has STACK_SPILL in
10092 			 * this stack slot, but current has STACK_MISC ->
10093 			 * this verifier states are not equivalent,
10094 			 * return false to continue verification of this path
10095 			 */
10096 			return false;
10097 		if (i % BPF_REG_SIZE)
10098 			continue;
10099 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10100 			continue;
10101 		if (!regsafe(&old->stack[spi].spilled_ptr,
10102 			     &cur->stack[spi].spilled_ptr,
10103 			     idmap))
10104 			/* when explored and current stack slot are both storing
10105 			 * spilled registers, check that stored pointers types
10106 			 * are the same as well.
10107 			 * Ex: explored safe path could have stored
10108 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10109 			 * but current path has stored:
10110 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10111 			 * such verifier states are not equivalent.
10112 			 * return false to continue verification of this path
10113 			 */
10114 			return false;
10115 	}
10116 	return true;
10117 }
10118 
10119 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10120 {
10121 	if (old->acquired_refs != cur->acquired_refs)
10122 		return false;
10123 	return !memcmp(old->refs, cur->refs,
10124 		       sizeof(*old->refs) * old->acquired_refs);
10125 }
10126 
10127 /* compare two verifier states
10128  *
10129  * all states stored in state_list are known to be valid, since
10130  * verifier reached 'bpf_exit' instruction through them
10131  *
10132  * this function is called when verifier exploring different branches of
10133  * execution popped from the state stack. If it sees an old state that has
10134  * more strict register state and more strict stack state then this execution
10135  * branch doesn't need to be explored further, since verifier already
10136  * concluded that more strict state leads to valid finish.
10137  *
10138  * Therefore two states are equivalent if register state is more conservative
10139  * and explored stack state is more conservative than the current one.
10140  * Example:
10141  *       explored                   current
10142  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10143  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10144  *
10145  * In other words if current stack state (one being explored) has more
10146  * valid slots than old one that already passed validation, it means
10147  * the verifier can stop exploring and conclude that current state is valid too
10148  *
10149  * Similarly with registers. If explored state has register type as invalid
10150  * whereas register type in current state is meaningful, it means that
10151  * the current state will reach 'bpf_exit' instruction safely
10152  */
10153 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10154 			      struct bpf_func_state *cur)
10155 {
10156 	int i;
10157 
10158 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10159 	for (i = 0; i < MAX_BPF_REG; i++)
10160 		if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch))
10161 			return false;
10162 
10163 	if (!stacksafe(old, cur, env->idmap_scratch))
10164 		return false;
10165 
10166 	if (!refsafe(old, cur))
10167 		return false;
10168 
10169 	return true;
10170 }
10171 
10172 static bool states_equal(struct bpf_verifier_env *env,
10173 			 struct bpf_verifier_state *old,
10174 			 struct bpf_verifier_state *cur)
10175 {
10176 	int i;
10177 
10178 	if (old->curframe != cur->curframe)
10179 		return false;
10180 
10181 	/* Verification state from speculative execution simulation
10182 	 * must never prune a non-speculative execution one.
10183 	 */
10184 	if (old->speculative && !cur->speculative)
10185 		return false;
10186 
10187 	if (old->active_spin_lock != cur->active_spin_lock)
10188 		return false;
10189 
10190 	/* for states to be equal callsites have to be the same
10191 	 * and all frame states need to be equivalent
10192 	 */
10193 	for (i = 0; i <= old->curframe; i++) {
10194 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10195 			return false;
10196 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10197 			return false;
10198 	}
10199 	return true;
10200 }
10201 
10202 /* Return 0 if no propagation happened. Return negative error code if error
10203  * happened. Otherwise, return the propagated bit.
10204  */
10205 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10206 				  struct bpf_reg_state *reg,
10207 				  struct bpf_reg_state *parent_reg)
10208 {
10209 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10210 	u8 flag = reg->live & REG_LIVE_READ;
10211 	int err;
10212 
10213 	/* When comes here, read flags of PARENT_REG or REG could be any of
10214 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10215 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10216 	 */
10217 	if (parent_flag == REG_LIVE_READ64 ||
10218 	    /* Or if there is no read flag from REG. */
10219 	    !flag ||
10220 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10221 	    parent_flag == flag)
10222 		return 0;
10223 
10224 	err = mark_reg_read(env, reg, parent_reg, flag);
10225 	if (err)
10226 		return err;
10227 
10228 	return flag;
10229 }
10230 
10231 /* A write screens off any subsequent reads; but write marks come from the
10232  * straight-line code between a state and its parent.  When we arrive at an
10233  * equivalent state (jump target or such) we didn't arrive by the straight-line
10234  * code, so read marks in the state must propagate to the parent regardless
10235  * of the state's write marks. That's what 'parent == state->parent' comparison
10236  * in mark_reg_read() is for.
10237  */
10238 static int propagate_liveness(struct bpf_verifier_env *env,
10239 			      const struct bpf_verifier_state *vstate,
10240 			      struct bpf_verifier_state *vparent)
10241 {
10242 	struct bpf_reg_state *state_reg, *parent_reg;
10243 	struct bpf_func_state *state, *parent;
10244 	int i, frame, err = 0;
10245 
10246 	if (vparent->curframe != vstate->curframe) {
10247 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10248 		     vparent->curframe, vstate->curframe);
10249 		return -EFAULT;
10250 	}
10251 	/* Propagate read liveness of registers... */
10252 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10253 	for (frame = 0; frame <= vstate->curframe; frame++) {
10254 		parent = vparent->frame[frame];
10255 		state = vstate->frame[frame];
10256 		parent_reg = parent->regs;
10257 		state_reg = state->regs;
10258 		/* We don't need to worry about FP liveness, it's read-only */
10259 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10260 			err = propagate_liveness_reg(env, &state_reg[i],
10261 						     &parent_reg[i]);
10262 			if (err < 0)
10263 				return err;
10264 			if (err == REG_LIVE_READ64)
10265 				mark_insn_zext(env, &parent_reg[i]);
10266 		}
10267 
10268 		/* Propagate stack slots. */
10269 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10270 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10271 			parent_reg = &parent->stack[i].spilled_ptr;
10272 			state_reg = &state->stack[i].spilled_ptr;
10273 			err = propagate_liveness_reg(env, state_reg,
10274 						     parent_reg);
10275 			if (err < 0)
10276 				return err;
10277 		}
10278 	}
10279 	return 0;
10280 }
10281 
10282 /* find precise scalars in the previous equivalent state and
10283  * propagate them into the current state
10284  */
10285 static int propagate_precision(struct bpf_verifier_env *env,
10286 			       const struct bpf_verifier_state *old)
10287 {
10288 	struct bpf_reg_state *state_reg;
10289 	struct bpf_func_state *state;
10290 	int i, err = 0;
10291 
10292 	state = old->frame[old->curframe];
10293 	state_reg = state->regs;
10294 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10295 		if (state_reg->type != SCALAR_VALUE ||
10296 		    !state_reg->precise)
10297 			continue;
10298 		if (env->log.level & BPF_LOG_LEVEL2)
10299 			verbose(env, "propagating r%d\n", i);
10300 		err = mark_chain_precision(env, i);
10301 		if (err < 0)
10302 			return err;
10303 	}
10304 
10305 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10306 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10307 			continue;
10308 		state_reg = &state->stack[i].spilled_ptr;
10309 		if (state_reg->type != SCALAR_VALUE ||
10310 		    !state_reg->precise)
10311 			continue;
10312 		if (env->log.level & BPF_LOG_LEVEL2)
10313 			verbose(env, "propagating fp%d\n",
10314 				(-i - 1) * BPF_REG_SIZE);
10315 		err = mark_chain_precision_stack(env, i);
10316 		if (err < 0)
10317 			return err;
10318 	}
10319 	return 0;
10320 }
10321 
10322 static bool states_maybe_looping(struct bpf_verifier_state *old,
10323 				 struct bpf_verifier_state *cur)
10324 {
10325 	struct bpf_func_state *fold, *fcur;
10326 	int i, fr = cur->curframe;
10327 
10328 	if (old->curframe != fr)
10329 		return false;
10330 
10331 	fold = old->frame[fr];
10332 	fcur = cur->frame[fr];
10333 	for (i = 0; i < MAX_BPF_REG; i++)
10334 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10335 			   offsetof(struct bpf_reg_state, parent)))
10336 			return false;
10337 	return true;
10338 }
10339 
10340 
10341 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10342 {
10343 	struct bpf_verifier_state_list *new_sl;
10344 	struct bpf_verifier_state_list *sl, **pprev;
10345 	struct bpf_verifier_state *cur = env->cur_state, *new;
10346 	int i, j, err, states_cnt = 0;
10347 	bool add_new_state = env->test_state_freq ? true : false;
10348 
10349 	cur->last_insn_idx = env->prev_insn_idx;
10350 	if (!env->insn_aux_data[insn_idx].prune_point)
10351 		/* this 'insn_idx' instruction wasn't marked, so we will not
10352 		 * be doing state search here
10353 		 */
10354 		return 0;
10355 
10356 	/* bpf progs typically have pruning point every 4 instructions
10357 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10358 	 * Do not add new state for future pruning if the verifier hasn't seen
10359 	 * at least 2 jumps and at least 8 instructions.
10360 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10361 	 * In tests that amounts to up to 50% reduction into total verifier
10362 	 * memory consumption and 20% verifier time speedup.
10363 	 */
10364 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10365 	    env->insn_processed - env->prev_insn_processed >= 8)
10366 		add_new_state = true;
10367 
10368 	pprev = explored_state(env, insn_idx);
10369 	sl = *pprev;
10370 
10371 	clean_live_states(env, insn_idx, cur);
10372 
10373 	while (sl) {
10374 		states_cnt++;
10375 		if (sl->state.insn_idx != insn_idx)
10376 			goto next;
10377 		if (sl->state.branches) {
10378 			if (states_maybe_looping(&sl->state, cur) &&
10379 			    states_equal(env, &sl->state, cur)) {
10380 				verbose_linfo(env, insn_idx, "; ");
10381 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10382 				return -EINVAL;
10383 			}
10384 			/* if the verifier is processing a loop, avoid adding new state
10385 			 * too often, since different loop iterations have distinct
10386 			 * states and may not help future pruning.
10387 			 * This threshold shouldn't be too low to make sure that
10388 			 * a loop with large bound will be rejected quickly.
10389 			 * The most abusive loop will be:
10390 			 * r1 += 1
10391 			 * if r1 < 1000000 goto pc-2
10392 			 * 1M insn_procssed limit / 100 == 10k peak states.
10393 			 * This threshold shouldn't be too high either, since states
10394 			 * at the end of the loop are likely to be useful in pruning.
10395 			 */
10396 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10397 			    env->insn_processed - env->prev_insn_processed < 100)
10398 				add_new_state = false;
10399 			goto miss;
10400 		}
10401 		if (states_equal(env, &sl->state, cur)) {
10402 			sl->hit_cnt++;
10403 			/* reached equivalent register/stack state,
10404 			 * prune the search.
10405 			 * Registers read by the continuation are read by us.
10406 			 * If we have any write marks in env->cur_state, they
10407 			 * will prevent corresponding reads in the continuation
10408 			 * from reaching our parent (an explored_state).  Our
10409 			 * own state will get the read marks recorded, but
10410 			 * they'll be immediately forgotten as we're pruning
10411 			 * this state and will pop a new one.
10412 			 */
10413 			err = propagate_liveness(env, &sl->state, cur);
10414 
10415 			/* if previous state reached the exit with precision and
10416 			 * current state is equivalent to it (except precsion marks)
10417 			 * the precision needs to be propagated back in
10418 			 * the current state.
10419 			 */
10420 			err = err ? : push_jmp_history(env, cur);
10421 			err = err ? : propagate_precision(env, &sl->state);
10422 			if (err)
10423 				return err;
10424 			return 1;
10425 		}
10426 miss:
10427 		/* when new state is not going to be added do not increase miss count.
10428 		 * Otherwise several loop iterations will remove the state
10429 		 * recorded earlier. The goal of these heuristics is to have
10430 		 * states from some iterations of the loop (some in the beginning
10431 		 * and some at the end) to help pruning.
10432 		 */
10433 		if (add_new_state)
10434 			sl->miss_cnt++;
10435 		/* heuristic to determine whether this state is beneficial
10436 		 * to keep checking from state equivalence point of view.
10437 		 * Higher numbers increase max_states_per_insn and verification time,
10438 		 * but do not meaningfully decrease insn_processed.
10439 		 */
10440 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10441 			/* the state is unlikely to be useful. Remove it to
10442 			 * speed up verification
10443 			 */
10444 			*pprev = sl->next;
10445 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10446 				u32 br = sl->state.branches;
10447 
10448 				WARN_ONCE(br,
10449 					  "BUG live_done but branches_to_explore %d\n",
10450 					  br);
10451 				free_verifier_state(&sl->state, false);
10452 				kfree(sl);
10453 				env->peak_states--;
10454 			} else {
10455 				/* cannot free this state, since parentage chain may
10456 				 * walk it later. Add it for free_list instead to
10457 				 * be freed at the end of verification
10458 				 */
10459 				sl->next = env->free_list;
10460 				env->free_list = sl;
10461 			}
10462 			sl = *pprev;
10463 			continue;
10464 		}
10465 next:
10466 		pprev = &sl->next;
10467 		sl = *pprev;
10468 	}
10469 
10470 	if (env->max_states_per_insn < states_cnt)
10471 		env->max_states_per_insn = states_cnt;
10472 
10473 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10474 		return push_jmp_history(env, cur);
10475 
10476 	if (!add_new_state)
10477 		return push_jmp_history(env, cur);
10478 
10479 	/* There were no equivalent states, remember the current one.
10480 	 * Technically the current state is not proven to be safe yet,
10481 	 * but it will either reach outer most bpf_exit (which means it's safe)
10482 	 * or it will be rejected. When there are no loops the verifier won't be
10483 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10484 	 * again on the way to bpf_exit.
10485 	 * When looping the sl->state.branches will be > 0 and this state
10486 	 * will not be considered for equivalence until branches == 0.
10487 	 */
10488 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10489 	if (!new_sl)
10490 		return -ENOMEM;
10491 	env->total_states++;
10492 	env->peak_states++;
10493 	env->prev_jmps_processed = env->jmps_processed;
10494 	env->prev_insn_processed = env->insn_processed;
10495 
10496 	/* add new state to the head of linked list */
10497 	new = &new_sl->state;
10498 	err = copy_verifier_state(new, cur);
10499 	if (err) {
10500 		free_verifier_state(new, false);
10501 		kfree(new_sl);
10502 		return err;
10503 	}
10504 	new->insn_idx = insn_idx;
10505 	WARN_ONCE(new->branches != 1,
10506 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10507 
10508 	cur->parent = new;
10509 	cur->first_insn_idx = insn_idx;
10510 	clear_jmp_history(cur);
10511 	new_sl->next = *explored_state(env, insn_idx);
10512 	*explored_state(env, insn_idx) = new_sl;
10513 	/* connect new state to parentage chain. Current frame needs all
10514 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10515 	 * to the stack implicitly by JITs) so in callers' frames connect just
10516 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10517 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10518 	 * from callee with its full parentage chain, anyway.
10519 	 */
10520 	/* clear write marks in current state: the writes we did are not writes
10521 	 * our child did, so they don't screen off its reads from us.
10522 	 * (There are no read marks in current state, because reads always mark
10523 	 * their parent and current state never has children yet.  Only
10524 	 * explored_states can get read marks.)
10525 	 */
10526 	for (j = 0; j <= cur->curframe; j++) {
10527 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10528 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10529 		for (i = 0; i < BPF_REG_FP; i++)
10530 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10531 	}
10532 
10533 	/* all stack frames are accessible from callee, clear them all */
10534 	for (j = 0; j <= cur->curframe; j++) {
10535 		struct bpf_func_state *frame = cur->frame[j];
10536 		struct bpf_func_state *newframe = new->frame[j];
10537 
10538 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10539 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10540 			frame->stack[i].spilled_ptr.parent =
10541 						&newframe->stack[i].spilled_ptr;
10542 		}
10543 	}
10544 	return 0;
10545 }
10546 
10547 /* Return true if it's OK to have the same insn return a different type. */
10548 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10549 {
10550 	switch (type) {
10551 	case PTR_TO_CTX:
10552 	case PTR_TO_SOCKET:
10553 	case PTR_TO_SOCKET_OR_NULL:
10554 	case PTR_TO_SOCK_COMMON:
10555 	case PTR_TO_SOCK_COMMON_OR_NULL:
10556 	case PTR_TO_TCP_SOCK:
10557 	case PTR_TO_TCP_SOCK_OR_NULL:
10558 	case PTR_TO_XDP_SOCK:
10559 	case PTR_TO_BTF_ID:
10560 	case PTR_TO_BTF_ID_OR_NULL:
10561 		return false;
10562 	default:
10563 		return true;
10564 	}
10565 }
10566 
10567 /* If an instruction was previously used with particular pointer types, then we
10568  * need to be careful to avoid cases such as the below, where it may be ok
10569  * for one branch accessing the pointer, but not ok for the other branch:
10570  *
10571  * R1 = sock_ptr
10572  * goto X;
10573  * ...
10574  * R1 = some_other_valid_ptr;
10575  * goto X;
10576  * ...
10577  * R2 = *(u32 *)(R1 + 0);
10578  */
10579 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10580 {
10581 	return src != prev && (!reg_type_mismatch_ok(src) ||
10582 			       !reg_type_mismatch_ok(prev));
10583 }
10584 
10585 static int do_check(struct bpf_verifier_env *env)
10586 {
10587 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10588 	struct bpf_verifier_state *state = env->cur_state;
10589 	struct bpf_insn *insns = env->prog->insnsi;
10590 	struct bpf_reg_state *regs;
10591 	int insn_cnt = env->prog->len;
10592 	bool do_print_state = false;
10593 	int prev_insn_idx = -1;
10594 
10595 	for (;;) {
10596 		struct bpf_insn *insn;
10597 		u8 class;
10598 		int err;
10599 
10600 		env->prev_insn_idx = prev_insn_idx;
10601 		if (env->insn_idx >= insn_cnt) {
10602 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10603 				env->insn_idx, insn_cnt);
10604 			return -EFAULT;
10605 		}
10606 
10607 		insn = &insns[env->insn_idx];
10608 		class = BPF_CLASS(insn->code);
10609 
10610 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10611 			verbose(env,
10612 				"BPF program is too large. Processed %d insn\n",
10613 				env->insn_processed);
10614 			return -E2BIG;
10615 		}
10616 
10617 		err = is_state_visited(env, env->insn_idx);
10618 		if (err < 0)
10619 			return err;
10620 		if (err == 1) {
10621 			/* found equivalent state, can prune the search */
10622 			if (env->log.level & BPF_LOG_LEVEL) {
10623 				if (do_print_state)
10624 					verbose(env, "\nfrom %d to %d%s: safe\n",
10625 						env->prev_insn_idx, env->insn_idx,
10626 						env->cur_state->speculative ?
10627 						" (speculative execution)" : "");
10628 				else
10629 					verbose(env, "%d: safe\n", env->insn_idx);
10630 			}
10631 			goto process_bpf_exit;
10632 		}
10633 
10634 		if (signal_pending(current))
10635 			return -EAGAIN;
10636 
10637 		if (need_resched())
10638 			cond_resched();
10639 
10640 		if (env->log.level & BPF_LOG_LEVEL2 ||
10641 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10642 			if (env->log.level & BPF_LOG_LEVEL2)
10643 				verbose(env, "%d:", env->insn_idx);
10644 			else
10645 				verbose(env, "\nfrom %d to %d%s:",
10646 					env->prev_insn_idx, env->insn_idx,
10647 					env->cur_state->speculative ?
10648 					" (speculative execution)" : "");
10649 			print_verifier_state(env, state->frame[state->curframe]);
10650 			do_print_state = false;
10651 		}
10652 
10653 		if (env->log.level & BPF_LOG_LEVEL) {
10654 			const struct bpf_insn_cbs cbs = {
10655 				.cb_call	= disasm_kfunc_name,
10656 				.cb_print	= verbose,
10657 				.private_data	= env,
10658 			};
10659 
10660 			verbose_linfo(env, env->insn_idx, "; ");
10661 			verbose(env, "%d: ", env->insn_idx);
10662 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10663 		}
10664 
10665 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10666 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10667 							   env->prev_insn_idx);
10668 			if (err)
10669 				return err;
10670 		}
10671 
10672 		regs = cur_regs(env);
10673 		sanitize_mark_insn_seen(env);
10674 		prev_insn_idx = env->insn_idx;
10675 
10676 		if (class == BPF_ALU || class == BPF_ALU64) {
10677 			err = check_alu_op(env, insn);
10678 			if (err)
10679 				return err;
10680 
10681 		} else if (class == BPF_LDX) {
10682 			enum bpf_reg_type *prev_src_type, src_reg_type;
10683 
10684 			/* check for reserved fields is already done */
10685 
10686 			/* check src operand */
10687 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10688 			if (err)
10689 				return err;
10690 
10691 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10692 			if (err)
10693 				return err;
10694 
10695 			src_reg_type = regs[insn->src_reg].type;
10696 
10697 			/* check that memory (src_reg + off) is readable,
10698 			 * the state of dst_reg will be updated by this func
10699 			 */
10700 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10701 					       insn->off, BPF_SIZE(insn->code),
10702 					       BPF_READ, insn->dst_reg, false);
10703 			if (err)
10704 				return err;
10705 
10706 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10707 
10708 			if (*prev_src_type == NOT_INIT) {
10709 				/* saw a valid insn
10710 				 * dst_reg = *(u32 *)(src_reg + off)
10711 				 * save type to validate intersecting paths
10712 				 */
10713 				*prev_src_type = src_reg_type;
10714 
10715 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10716 				/* ABuser program is trying to use the same insn
10717 				 * dst_reg = *(u32*) (src_reg + off)
10718 				 * with different pointer types:
10719 				 * src_reg == ctx in one branch and
10720 				 * src_reg == stack|map in some other branch.
10721 				 * Reject it.
10722 				 */
10723 				verbose(env, "same insn cannot be used with different pointers\n");
10724 				return -EINVAL;
10725 			}
10726 
10727 		} else if (class == BPF_STX) {
10728 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10729 
10730 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10731 				err = check_atomic(env, env->insn_idx, insn);
10732 				if (err)
10733 					return err;
10734 				env->insn_idx++;
10735 				continue;
10736 			}
10737 
10738 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10739 				verbose(env, "BPF_STX uses reserved fields\n");
10740 				return -EINVAL;
10741 			}
10742 
10743 			/* check src1 operand */
10744 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10745 			if (err)
10746 				return err;
10747 			/* check src2 operand */
10748 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10749 			if (err)
10750 				return err;
10751 
10752 			dst_reg_type = regs[insn->dst_reg].type;
10753 
10754 			/* check that memory (dst_reg + off) is writeable */
10755 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10756 					       insn->off, BPF_SIZE(insn->code),
10757 					       BPF_WRITE, insn->src_reg, false);
10758 			if (err)
10759 				return err;
10760 
10761 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10762 
10763 			if (*prev_dst_type == NOT_INIT) {
10764 				*prev_dst_type = dst_reg_type;
10765 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10766 				verbose(env, "same insn cannot be used with different pointers\n");
10767 				return -EINVAL;
10768 			}
10769 
10770 		} else if (class == BPF_ST) {
10771 			if (BPF_MODE(insn->code) != BPF_MEM ||
10772 			    insn->src_reg != BPF_REG_0) {
10773 				verbose(env, "BPF_ST uses reserved fields\n");
10774 				return -EINVAL;
10775 			}
10776 			/* check src operand */
10777 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10778 			if (err)
10779 				return err;
10780 
10781 			if (is_ctx_reg(env, insn->dst_reg)) {
10782 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10783 					insn->dst_reg,
10784 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10785 				return -EACCES;
10786 			}
10787 
10788 			/* check that memory (dst_reg + off) is writeable */
10789 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10790 					       insn->off, BPF_SIZE(insn->code),
10791 					       BPF_WRITE, -1, false);
10792 			if (err)
10793 				return err;
10794 
10795 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10796 			u8 opcode = BPF_OP(insn->code);
10797 
10798 			env->jmps_processed++;
10799 			if (opcode == BPF_CALL) {
10800 				if (BPF_SRC(insn->code) != BPF_K ||
10801 				    insn->off != 0 ||
10802 				    (insn->src_reg != BPF_REG_0 &&
10803 				     insn->src_reg != BPF_PSEUDO_CALL &&
10804 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10805 				    insn->dst_reg != BPF_REG_0 ||
10806 				    class == BPF_JMP32) {
10807 					verbose(env, "BPF_CALL uses reserved fields\n");
10808 					return -EINVAL;
10809 				}
10810 
10811 				if (env->cur_state->active_spin_lock &&
10812 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10813 				     insn->imm != BPF_FUNC_spin_unlock)) {
10814 					verbose(env, "function calls are not allowed while holding a lock\n");
10815 					return -EINVAL;
10816 				}
10817 				if (insn->src_reg == BPF_PSEUDO_CALL)
10818 					err = check_func_call(env, insn, &env->insn_idx);
10819 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10820 					err = check_kfunc_call(env, insn);
10821 				else
10822 					err = check_helper_call(env, insn, &env->insn_idx);
10823 				if (err)
10824 					return err;
10825 			} else if (opcode == BPF_JA) {
10826 				if (BPF_SRC(insn->code) != BPF_K ||
10827 				    insn->imm != 0 ||
10828 				    insn->src_reg != BPF_REG_0 ||
10829 				    insn->dst_reg != BPF_REG_0 ||
10830 				    class == BPF_JMP32) {
10831 					verbose(env, "BPF_JA uses reserved fields\n");
10832 					return -EINVAL;
10833 				}
10834 
10835 				env->insn_idx += insn->off + 1;
10836 				continue;
10837 
10838 			} else if (opcode == BPF_EXIT) {
10839 				if (BPF_SRC(insn->code) != BPF_K ||
10840 				    insn->imm != 0 ||
10841 				    insn->src_reg != BPF_REG_0 ||
10842 				    insn->dst_reg != BPF_REG_0 ||
10843 				    class == BPF_JMP32) {
10844 					verbose(env, "BPF_EXIT uses reserved fields\n");
10845 					return -EINVAL;
10846 				}
10847 
10848 				if (env->cur_state->active_spin_lock) {
10849 					verbose(env, "bpf_spin_unlock is missing\n");
10850 					return -EINVAL;
10851 				}
10852 
10853 				if (state->curframe) {
10854 					/* exit from nested function */
10855 					err = prepare_func_exit(env, &env->insn_idx);
10856 					if (err)
10857 						return err;
10858 					do_print_state = true;
10859 					continue;
10860 				}
10861 
10862 				err = check_reference_leak(env);
10863 				if (err)
10864 					return err;
10865 
10866 				err = check_return_code(env);
10867 				if (err)
10868 					return err;
10869 process_bpf_exit:
10870 				update_branch_counts(env, env->cur_state);
10871 				err = pop_stack(env, &prev_insn_idx,
10872 						&env->insn_idx, pop_log);
10873 				if (err < 0) {
10874 					if (err != -ENOENT)
10875 						return err;
10876 					break;
10877 				} else {
10878 					do_print_state = true;
10879 					continue;
10880 				}
10881 			} else {
10882 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10883 				if (err)
10884 					return err;
10885 			}
10886 		} else if (class == BPF_LD) {
10887 			u8 mode = BPF_MODE(insn->code);
10888 
10889 			if (mode == BPF_ABS || mode == BPF_IND) {
10890 				err = check_ld_abs(env, insn);
10891 				if (err)
10892 					return err;
10893 
10894 			} else if (mode == BPF_IMM) {
10895 				err = check_ld_imm(env, insn);
10896 				if (err)
10897 					return err;
10898 
10899 				env->insn_idx++;
10900 				sanitize_mark_insn_seen(env);
10901 			} else {
10902 				verbose(env, "invalid BPF_LD mode\n");
10903 				return -EINVAL;
10904 			}
10905 		} else {
10906 			verbose(env, "unknown insn class %d\n", class);
10907 			return -EINVAL;
10908 		}
10909 
10910 		env->insn_idx++;
10911 	}
10912 
10913 	return 0;
10914 }
10915 
10916 static int find_btf_percpu_datasec(struct btf *btf)
10917 {
10918 	const struct btf_type *t;
10919 	const char *tname;
10920 	int i, n;
10921 
10922 	/*
10923 	 * Both vmlinux and module each have their own ".data..percpu"
10924 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10925 	 * types to look at only module's own BTF types.
10926 	 */
10927 	n = btf_nr_types(btf);
10928 	if (btf_is_module(btf))
10929 		i = btf_nr_types(btf_vmlinux);
10930 	else
10931 		i = 1;
10932 
10933 	for(; i < n; i++) {
10934 		t = btf_type_by_id(btf, i);
10935 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10936 			continue;
10937 
10938 		tname = btf_name_by_offset(btf, t->name_off);
10939 		if (!strcmp(tname, ".data..percpu"))
10940 			return i;
10941 	}
10942 
10943 	return -ENOENT;
10944 }
10945 
10946 /* replace pseudo btf_id with kernel symbol address */
10947 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10948 			       struct bpf_insn *insn,
10949 			       struct bpf_insn_aux_data *aux)
10950 {
10951 	const struct btf_var_secinfo *vsi;
10952 	const struct btf_type *datasec;
10953 	struct btf_mod_pair *btf_mod;
10954 	const struct btf_type *t;
10955 	const char *sym_name;
10956 	bool percpu = false;
10957 	u32 type, id = insn->imm;
10958 	struct btf *btf;
10959 	s32 datasec_id;
10960 	u64 addr;
10961 	int i, btf_fd, err;
10962 
10963 	btf_fd = insn[1].imm;
10964 	if (btf_fd) {
10965 		btf = btf_get_by_fd(btf_fd);
10966 		if (IS_ERR(btf)) {
10967 			verbose(env, "invalid module BTF object FD specified.\n");
10968 			return -EINVAL;
10969 		}
10970 	} else {
10971 		if (!btf_vmlinux) {
10972 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10973 			return -EINVAL;
10974 		}
10975 		btf = btf_vmlinux;
10976 		btf_get(btf);
10977 	}
10978 
10979 	t = btf_type_by_id(btf, id);
10980 	if (!t) {
10981 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10982 		err = -ENOENT;
10983 		goto err_put;
10984 	}
10985 
10986 	if (!btf_type_is_var(t)) {
10987 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10988 		err = -EINVAL;
10989 		goto err_put;
10990 	}
10991 
10992 	sym_name = btf_name_by_offset(btf, t->name_off);
10993 	addr = kallsyms_lookup_name(sym_name);
10994 	if (!addr) {
10995 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10996 			sym_name);
10997 		err = -ENOENT;
10998 		goto err_put;
10999 	}
11000 
11001 	datasec_id = find_btf_percpu_datasec(btf);
11002 	if (datasec_id > 0) {
11003 		datasec = btf_type_by_id(btf, datasec_id);
11004 		for_each_vsi(i, datasec, vsi) {
11005 			if (vsi->type == id) {
11006 				percpu = true;
11007 				break;
11008 			}
11009 		}
11010 	}
11011 
11012 	insn[0].imm = (u32)addr;
11013 	insn[1].imm = addr >> 32;
11014 
11015 	type = t->type;
11016 	t = btf_type_skip_modifiers(btf, type, NULL);
11017 	if (percpu) {
11018 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11019 		aux->btf_var.btf = btf;
11020 		aux->btf_var.btf_id = type;
11021 	} else if (!btf_type_is_struct(t)) {
11022 		const struct btf_type *ret;
11023 		const char *tname;
11024 		u32 tsize;
11025 
11026 		/* resolve the type size of ksym. */
11027 		ret = btf_resolve_size(btf, t, &tsize);
11028 		if (IS_ERR(ret)) {
11029 			tname = btf_name_by_offset(btf, t->name_off);
11030 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11031 				tname, PTR_ERR(ret));
11032 			err = -EINVAL;
11033 			goto err_put;
11034 		}
11035 		aux->btf_var.reg_type = PTR_TO_MEM;
11036 		aux->btf_var.mem_size = tsize;
11037 	} else {
11038 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11039 		aux->btf_var.btf = btf;
11040 		aux->btf_var.btf_id = type;
11041 	}
11042 
11043 	/* check whether we recorded this BTF (and maybe module) already */
11044 	for (i = 0; i < env->used_btf_cnt; i++) {
11045 		if (env->used_btfs[i].btf == btf) {
11046 			btf_put(btf);
11047 			return 0;
11048 		}
11049 	}
11050 
11051 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11052 		err = -E2BIG;
11053 		goto err_put;
11054 	}
11055 
11056 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11057 	btf_mod->btf = btf;
11058 	btf_mod->module = NULL;
11059 
11060 	/* if we reference variables from kernel module, bump its refcount */
11061 	if (btf_is_module(btf)) {
11062 		btf_mod->module = btf_try_get_module(btf);
11063 		if (!btf_mod->module) {
11064 			err = -ENXIO;
11065 			goto err_put;
11066 		}
11067 	}
11068 
11069 	env->used_btf_cnt++;
11070 
11071 	return 0;
11072 err_put:
11073 	btf_put(btf);
11074 	return err;
11075 }
11076 
11077 static int check_map_prealloc(struct bpf_map *map)
11078 {
11079 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11080 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11081 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11082 		!(map->map_flags & BPF_F_NO_PREALLOC);
11083 }
11084 
11085 static bool is_tracing_prog_type(enum bpf_prog_type type)
11086 {
11087 	switch (type) {
11088 	case BPF_PROG_TYPE_KPROBE:
11089 	case BPF_PROG_TYPE_TRACEPOINT:
11090 	case BPF_PROG_TYPE_PERF_EVENT:
11091 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11092 		return true;
11093 	default:
11094 		return false;
11095 	}
11096 }
11097 
11098 static bool is_preallocated_map(struct bpf_map *map)
11099 {
11100 	if (!check_map_prealloc(map))
11101 		return false;
11102 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11103 		return false;
11104 	return true;
11105 }
11106 
11107 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11108 					struct bpf_map *map,
11109 					struct bpf_prog *prog)
11110 
11111 {
11112 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11113 	/*
11114 	 * Validate that trace type programs use preallocated hash maps.
11115 	 *
11116 	 * For programs attached to PERF events this is mandatory as the
11117 	 * perf NMI can hit any arbitrary code sequence.
11118 	 *
11119 	 * All other trace types using preallocated hash maps are unsafe as
11120 	 * well because tracepoint or kprobes can be inside locked regions
11121 	 * of the memory allocator or at a place where a recursion into the
11122 	 * memory allocator would see inconsistent state.
11123 	 *
11124 	 * On RT enabled kernels run-time allocation of all trace type
11125 	 * programs is strictly prohibited due to lock type constraints. On
11126 	 * !RT kernels it is allowed for backwards compatibility reasons for
11127 	 * now, but warnings are emitted so developers are made aware of
11128 	 * the unsafety and can fix their programs before this is enforced.
11129 	 */
11130 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11131 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11132 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11133 			return -EINVAL;
11134 		}
11135 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11136 			verbose(env, "trace type programs can only use preallocated hash map\n");
11137 			return -EINVAL;
11138 		}
11139 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11140 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11141 	}
11142 
11143 	if (map_value_has_spin_lock(map)) {
11144 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11145 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11146 			return -EINVAL;
11147 		}
11148 
11149 		if (is_tracing_prog_type(prog_type)) {
11150 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11151 			return -EINVAL;
11152 		}
11153 
11154 		if (prog->aux->sleepable) {
11155 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11156 			return -EINVAL;
11157 		}
11158 	}
11159 
11160 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11161 	    !bpf_offload_prog_map_match(prog, map)) {
11162 		verbose(env, "offload device mismatch between prog and map\n");
11163 		return -EINVAL;
11164 	}
11165 
11166 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11167 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11168 		return -EINVAL;
11169 	}
11170 
11171 	if (prog->aux->sleepable)
11172 		switch (map->map_type) {
11173 		case BPF_MAP_TYPE_HASH:
11174 		case BPF_MAP_TYPE_LRU_HASH:
11175 		case BPF_MAP_TYPE_ARRAY:
11176 		case BPF_MAP_TYPE_PERCPU_HASH:
11177 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11178 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11179 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11180 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11181 			if (!is_preallocated_map(map)) {
11182 				verbose(env,
11183 					"Sleepable programs can only use preallocated maps\n");
11184 				return -EINVAL;
11185 			}
11186 			break;
11187 		case BPF_MAP_TYPE_RINGBUF:
11188 			break;
11189 		default:
11190 			verbose(env,
11191 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11192 			return -EINVAL;
11193 		}
11194 
11195 	return 0;
11196 }
11197 
11198 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11199 {
11200 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11201 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11202 }
11203 
11204 /* find and rewrite pseudo imm in ld_imm64 instructions:
11205  *
11206  * 1. if it accesses map FD, replace it with actual map pointer.
11207  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11208  *
11209  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11210  */
11211 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11212 {
11213 	struct bpf_insn *insn = env->prog->insnsi;
11214 	int insn_cnt = env->prog->len;
11215 	int i, j, err;
11216 
11217 	err = bpf_prog_calc_tag(env->prog);
11218 	if (err)
11219 		return err;
11220 
11221 	for (i = 0; i < insn_cnt; i++, insn++) {
11222 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11223 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11224 			verbose(env, "BPF_LDX uses reserved fields\n");
11225 			return -EINVAL;
11226 		}
11227 
11228 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11229 			struct bpf_insn_aux_data *aux;
11230 			struct bpf_map *map;
11231 			struct fd f;
11232 			u64 addr;
11233 			u32 fd;
11234 
11235 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11236 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11237 			    insn[1].off != 0) {
11238 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11239 				return -EINVAL;
11240 			}
11241 
11242 			if (insn[0].src_reg == 0)
11243 				/* valid generic load 64-bit imm */
11244 				goto next_insn;
11245 
11246 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11247 				aux = &env->insn_aux_data[i];
11248 				err = check_pseudo_btf_id(env, insn, aux);
11249 				if (err)
11250 					return err;
11251 				goto next_insn;
11252 			}
11253 
11254 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11255 				aux = &env->insn_aux_data[i];
11256 				aux->ptr_type = PTR_TO_FUNC;
11257 				goto next_insn;
11258 			}
11259 
11260 			/* In final convert_pseudo_ld_imm64() step, this is
11261 			 * converted into regular 64-bit imm load insn.
11262 			 */
11263 			switch (insn[0].src_reg) {
11264 			case BPF_PSEUDO_MAP_VALUE:
11265 			case BPF_PSEUDO_MAP_IDX_VALUE:
11266 				break;
11267 			case BPF_PSEUDO_MAP_FD:
11268 			case BPF_PSEUDO_MAP_IDX:
11269 				if (insn[1].imm == 0)
11270 					break;
11271 				fallthrough;
11272 			default:
11273 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11274 				return -EINVAL;
11275 			}
11276 
11277 			switch (insn[0].src_reg) {
11278 			case BPF_PSEUDO_MAP_IDX_VALUE:
11279 			case BPF_PSEUDO_MAP_IDX:
11280 				if (bpfptr_is_null(env->fd_array)) {
11281 					verbose(env, "fd_idx without fd_array is invalid\n");
11282 					return -EPROTO;
11283 				}
11284 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11285 							    insn[0].imm * sizeof(fd),
11286 							    sizeof(fd)))
11287 					return -EFAULT;
11288 				break;
11289 			default:
11290 				fd = insn[0].imm;
11291 				break;
11292 			}
11293 
11294 			f = fdget(fd);
11295 			map = __bpf_map_get(f);
11296 			if (IS_ERR(map)) {
11297 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11298 					insn[0].imm);
11299 				return PTR_ERR(map);
11300 			}
11301 
11302 			err = check_map_prog_compatibility(env, map, env->prog);
11303 			if (err) {
11304 				fdput(f);
11305 				return err;
11306 			}
11307 
11308 			aux = &env->insn_aux_data[i];
11309 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11310 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11311 				addr = (unsigned long)map;
11312 			} else {
11313 				u32 off = insn[1].imm;
11314 
11315 				if (off >= BPF_MAX_VAR_OFF) {
11316 					verbose(env, "direct value offset of %u is not allowed\n", off);
11317 					fdput(f);
11318 					return -EINVAL;
11319 				}
11320 
11321 				if (!map->ops->map_direct_value_addr) {
11322 					verbose(env, "no direct value access support for this map type\n");
11323 					fdput(f);
11324 					return -EINVAL;
11325 				}
11326 
11327 				err = map->ops->map_direct_value_addr(map, &addr, off);
11328 				if (err) {
11329 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11330 						map->value_size, off);
11331 					fdput(f);
11332 					return err;
11333 				}
11334 
11335 				aux->map_off = off;
11336 				addr += off;
11337 			}
11338 
11339 			insn[0].imm = (u32)addr;
11340 			insn[1].imm = addr >> 32;
11341 
11342 			/* check whether we recorded this map already */
11343 			for (j = 0; j < env->used_map_cnt; j++) {
11344 				if (env->used_maps[j] == map) {
11345 					aux->map_index = j;
11346 					fdput(f);
11347 					goto next_insn;
11348 				}
11349 			}
11350 
11351 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11352 				fdput(f);
11353 				return -E2BIG;
11354 			}
11355 
11356 			/* hold the map. If the program is rejected by verifier,
11357 			 * the map will be released by release_maps() or it
11358 			 * will be used by the valid program until it's unloaded
11359 			 * and all maps are released in free_used_maps()
11360 			 */
11361 			bpf_map_inc(map);
11362 
11363 			aux->map_index = env->used_map_cnt;
11364 			env->used_maps[env->used_map_cnt++] = map;
11365 
11366 			if (bpf_map_is_cgroup_storage(map) &&
11367 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11368 				verbose(env, "only one cgroup storage of each type is allowed\n");
11369 				fdput(f);
11370 				return -EBUSY;
11371 			}
11372 
11373 			fdput(f);
11374 next_insn:
11375 			insn++;
11376 			i++;
11377 			continue;
11378 		}
11379 
11380 		/* Basic sanity check before we invest more work here. */
11381 		if (!bpf_opcode_in_insntable(insn->code)) {
11382 			verbose(env, "unknown opcode %02x\n", insn->code);
11383 			return -EINVAL;
11384 		}
11385 	}
11386 
11387 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11388 	 * 'struct bpf_map *' into a register instead of user map_fd.
11389 	 * These pointers will be used later by verifier to validate map access.
11390 	 */
11391 	return 0;
11392 }
11393 
11394 /* drop refcnt of maps used by the rejected program */
11395 static void release_maps(struct bpf_verifier_env *env)
11396 {
11397 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11398 			     env->used_map_cnt);
11399 }
11400 
11401 /* drop refcnt of maps used by the rejected program */
11402 static void release_btfs(struct bpf_verifier_env *env)
11403 {
11404 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11405 			     env->used_btf_cnt);
11406 }
11407 
11408 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11409 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11410 {
11411 	struct bpf_insn *insn = env->prog->insnsi;
11412 	int insn_cnt = env->prog->len;
11413 	int i;
11414 
11415 	for (i = 0; i < insn_cnt; i++, insn++) {
11416 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11417 			continue;
11418 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11419 			continue;
11420 		insn->src_reg = 0;
11421 	}
11422 }
11423 
11424 /* single env->prog->insni[off] instruction was replaced with the range
11425  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11426  * [0, off) and [off, end) to new locations, so the patched range stays zero
11427  */
11428 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11429 				struct bpf_prog *new_prog, u32 off, u32 cnt)
11430 {
11431 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11432 	struct bpf_insn *insn = new_prog->insnsi;
11433 	u32 old_seen = old_data[off].seen;
11434 	u32 prog_len;
11435 	int i;
11436 
11437 	/* aux info at OFF always needs adjustment, no matter fast path
11438 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11439 	 * original insn at old prog.
11440 	 */
11441 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11442 
11443 	if (cnt == 1)
11444 		return 0;
11445 	prog_len = new_prog->len;
11446 	new_data = vzalloc(array_size(prog_len,
11447 				      sizeof(struct bpf_insn_aux_data)));
11448 	if (!new_data)
11449 		return -ENOMEM;
11450 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11451 	memcpy(new_data + off + cnt - 1, old_data + off,
11452 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11453 	for (i = off; i < off + cnt - 1; i++) {
11454 		/* Expand insni[off]'s seen count to the patched range. */
11455 		new_data[i].seen = old_seen;
11456 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11457 	}
11458 	env->insn_aux_data = new_data;
11459 	vfree(old_data);
11460 	return 0;
11461 }
11462 
11463 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11464 {
11465 	int i;
11466 
11467 	if (len == 1)
11468 		return;
11469 	/* NOTE: fake 'exit' subprog should be updated as well. */
11470 	for (i = 0; i <= env->subprog_cnt; i++) {
11471 		if (env->subprog_info[i].start <= off)
11472 			continue;
11473 		env->subprog_info[i].start += len - 1;
11474 	}
11475 }
11476 
11477 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11478 {
11479 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11480 	int i, sz = prog->aux->size_poke_tab;
11481 	struct bpf_jit_poke_descriptor *desc;
11482 
11483 	for (i = 0; i < sz; i++) {
11484 		desc = &tab[i];
11485 		if (desc->insn_idx <= off)
11486 			continue;
11487 		desc->insn_idx += len - 1;
11488 	}
11489 }
11490 
11491 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11492 					    const struct bpf_insn *patch, u32 len)
11493 {
11494 	struct bpf_prog *new_prog;
11495 
11496 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11497 	if (IS_ERR(new_prog)) {
11498 		if (PTR_ERR(new_prog) == -ERANGE)
11499 			verbose(env,
11500 				"insn %d cannot be patched due to 16-bit range\n",
11501 				env->insn_aux_data[off].orig_idx);
11502 		return NULL;
11503 	}
11504 	if (adjust_insn_aux_data(env, new_prog, off, len))
11505 		return NULL;
11506 	adjust_subprog_starts(env, off, len);
11507 	adjust_poke_descs(new_prog, off, len);
11508 	return new_prog;
11509 }
11510 
11511 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11512 					      u32 off, u32 cnt)
11513 {
11514 	int i, j;
11515 
11516 	/* find first prog starting at or after off (first to remove) */
11517 	for (i = 0; i < env->subprog_cnt; i++)
11518 		if (env->subprog_info[i].start >= off)
11519 			break;
11520 	/* find first prog starting at or after off + cnt (first to stay) */
11521 	for (j = i; j < env->subprog_cnt; j++)
11522 		if (env->subprog_info[j].start >= off + cnt)
11523 			break;
11524 	/* if j doesn't start exactly at off + cnt, we are just removing
11525 	 * the front of previous prog
11526 	 */
11527 	if (env->subprog_info[j].start != off + cnt)
11528 		j--;
11529 
11530 	if (j > i) {
11531 		struct bpf_prog_aux *aux = env->prog->aux;
11532 		int move;
11533 
11534 		/* move fake 'exit' subprog as well */
11535 		move = env->subprog_cnt + 1 - j;
11536 
11537 		memmove(env->subprog_info + i,
11538 			env->subprog_info + j,
11539 			sizeof(*env->subprog_info) * move);
11540 		env->subprog_cnt -= j - i;
11541 
11542 		/* remove func_info */
11543 		if (aux->func_info) {
11544 			move = aux->func_info_cnt - j;
11545 
11546 			memmove(aux->func_info + i,
11547 				aux->func_info + j,
11548 				sizeof(*aux->func_info) * move);
11549 			aux->func_info_cnt -= j - i;
11550 			/* func_info->insn_off is set after all code rewrites,
11551 			 * in adjust_btf_func() - no need to adjust
11552 			 */
11553 		}
11554 	} else {
11555 		/* convert i from "first prog to remove" to "first to adjust" */
11556 		if (env->subprog_info[i].start == off)
11557 			i++;
11558 	}
11559 
11560 	/* update fake 'exit' subprog as well */
11561 	for (; i <= env->subprog_cnt; i++)
11562 		env->subprog_info[i].start -= cnt;
11563 
11564 	return 0;
11565 }
11566 
11567 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11568 				      u32 cnt)
11569 {
11570 	struct bpf_prog *prog = env->prog;
11571 	u32 i, l_off, l_cnt, nr_linfo;
11572 	struct bpf_line_info *linfo;
11573 
11574 	nr_linfo = prog->aux->nr_linfo;
11575 	if (!nr_linfo)
11576 		return 0;
11577 
11578 	linfo = prog->aux->linfo;
11579 
11580 	/* find first line info to remove, count lines to be removed */
11581 	for (i = 0; i < nr_linfo; i++)
11582 		if (linfo[i].insn_off >= off)
11583 			break;
11584 
11585 	l_off = i;
11586 	l_cnt = 0;
11587 	for (; i < nr_linfo; i++)
11588 		if (linfo[i].insn_off < off + cnt)
11589 			l_cnt++;
11590 		else
11591 			break;
11592 
11593 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11594 	 * last removed linfo.  prog is already modified, so prog->len == off
11595 	 * means no live instructions after (tail of the program was removed).
11596 	 */
11597 	if (prog->len != off && l_cnt &&
11598 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11599 		l_cnt--;
11600 		linfo[--i].insn_off = off + cnt;
11601 	}
11602 
11603 	/* remove the line info which refer to the removed instructions */
11604 	if (l_cnt) {
11605 		memmove(linfo + l_off, linfo + i,
11606 			sizeof(*linfo) * (nr_linfo - i));
11607 
11608 		prog->aux->nr_linfo -= l_cnt;
11609 		nr_linfo = prog->aux->nr_linfo;
11610 	}
11611 
11612 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11613 	for (i = l_off; i < nr_linfo; i++)
11614 		linfo[i].insn_off -= cnt;
11615 
11616 	/* fix up all subprogs (incl. 'exit') which start >= off */
11617 	for (i = 0; i <= env->subprog_cnt; i++)
11618 		if (env->subprog_info[i].linfo_idx > l_off) {
11619 			/* program may have started in the removed region but
11620 			 * may not be fully removed
11621 			 */
11622 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11623 				env->subprog_info[i].linfo_idx -= l_cnt;
11624 			else
11625 				env->subprog_info[i].linfo_idx = l_off;
11626 		}
11627 
11628 	return 0;
11629 }
11630 
11631 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11632 {
11633 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11634 	unsigned int orig_prog_len = env->prog->len;
11635 	int err;
11636 
11637 	if (bpf_prog_is_dev_bound(env->prog->aux))
11638 		bpf_prog_offload_remove_insns(env, off, cnt);
11639 
11640 	err = bpf_remove_insns(env->prog, off, cnt);
11641 	if (err)
11642 		return err;
11643 
11644 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11645 	if (err)
11646 		return err;
11647 
11648 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11649 	if (err)
11650 		return err;
11651 
11652 	memmove(aux_data + off,	aux_data + off + cnt,
11653 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11654 
11655 	return 0;
11656 }
11657 
11658 /* The verifier does more data flow analysis than llvm and will not
11659  * explore branches that are dead at run time. Malicious programs can
11660  * have dead code too. Therefore replace all dead at-run-time code
11661  * with 'ja -1'.
11662  *
11663  * Just nops are not optimal, e.g. if they would sit at the end of the
11664  * program and through another bug we would manage to jump there, then
11665  * we'd execute beyond program memory otherwise. Returning exception
11666  * code also wouldn't work since we can have subprogs where the dead
11667  * code could be located.
11668  */
11669 static void sanitize_dead_code(struct bpf_verifier_env *env)
11670 {
11671 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11672 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11673 	struct bpf_insn *insn = env->prog->insnsi;
11674 	const int insn_cnt = env->prog->len;
11675 	int i;
11676 
11677 	for (i = 0; i < insn_cnt; i++) {
11678 		if (aux_data[i].seen)
11679 			continue;
11680 		memcpy(insn + i, &trap, sizeof(trap));
11681 	}
11682 }
11683 
11684 static bool insn_is_cond_jump(u8 code)
11685 {
11686 	u8 op;
11687 
11688 	if (BPF_CLASS(code) == BPF_JMP32)
11689 		return true;
11690 
11691 	if (BPF_CLASS(code) != BPF_JMP)
11692 		return false;
11693 
11694 	op = BPF_OP(code);
11695 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11696 }
11697 
11698 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11699 {
11700 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11701 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11702 	struct bpf_insn *insn = env->prog->insnsi;
11703 	const int insn_cnt = env->prog->len;
11704 	int i;
11705 
11706 	for (i = 0; i < insn_cnt; i++, insn++) {
11707 		if (!insn_is_cond_jump(insn->code))
11708 			continue;
11709 
11710 		if (!aux_data[i + 1].seen)
11711 			ja.off = insn->off;
11712 		else if (!aux_data[i + 1 + insn->off].seen)
11713 			ja.off = 0;
11714 		else
11715 			continue;
11716 
11717 		if (bpf_prog_is_dev_bound(env->prog->aux))
11718 			bpf_prog_offload_replace_insn(env, i, &ja);
11719 
11720 		memcpy(insn, &ja, sizeof(ja));
11721 	}
11722 }
11723 
11724 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11725 {
11726 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11727 	int insn_cnt = env->prog->len;
11728 	int i, err;
11729 
11730 	for (i = 0; i < insn_cnt; i++) {
11731 		int j;
11732 
11733 		j = 0;
11734 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11735 			j++;
11736 		if (!j)
11737 			continue;
11738 
11739 		err = verifier_remove_insns(env, i, j);
11740 		if (err)
11741 			return err;
11742 		insn_cnt = env->prog->len;
11743 	}
11744 
11745 	return 0;
11746 }
11747 
11748 static int opt_remove_nops(struct bpf_verifier_env *env)
11749 {
11750 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11751 	struct bpf_insn *insn = env->prog->insnsi;
11752 	int insn_cnt = env->prog->len;
11753 	int i, err;
11754 
11755 	for (i = 0; i < insn_cnt; i++) {
11756 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11757 			continue;
11758 
11759 		err = verifier_remove_insns(env, i, 1);
11760 		if (err)
11761 			return err;
11762 		insn_cnt--;
11763 		i--;
11764 	}
11765 
11766 	return 0;
11767 }
11768 
11769 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11770 					 const union bpf_attr *attr)
11771 {
11772 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11773 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11774 	int i, patch_len, delta = 0, len = env->prog->len;
11775 	struct bpf_insn *insns = env->prog->insnsi;
11776 	struct bpf_prog *new_prog;
11777 	bool rnd_hi32;
11778 
11779 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11780 	zext_patch[1] = BPF_ZEXT_REG(0);
11781 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11782 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11783 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11784 	for (i = 0; i < len; i++) {
11785 		int adj_idx = i + delta;
11786 		struct bpf_insn insn;
11787 		int load_reg;
11788 
11789 		insn = insns[adj_idx];
11790 		load_reg = insn_def_regno(&insn);
11791 		if (!aux[adj_idx].zext_dst) {
11792 			u8 code, class;
11793 			u32 imm_rnd;
11794 
11795 			if (!rnd_hi32)
11796 				continue;
11797 
11798 			code = insn.code;
11799 			class = BPF_CLASS(code);
11800 			if (load_reg == -1)
11801 				continue;
11802 
11803 			/* NOTE: arg "reg" (the fourth one) is only used for
11804 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11805 			 *       here.
11806 			 */
11807 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11808 				if (class == BPF_LD &&
11809 				    BPF_MODE(code) == BPF_IMM)
11810 					i++;
11811 				continue;
11812 			}
11813 
11814 			/* ctx load could be transformed into wider load. */
11815 			if (class == BPF_LDX &&
11816 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11817 				continue;
11818 
11819 			imm_rnd = get_random_int();
11820 			rnd_hi32_patch[0] = insn;
11821 			rnd_hi32_patch[1].imm = imm_rnd;
11822 			rnd_hi32_patch[3].dst_reg = load_reg;
11823 			patch = rnd_hi32_patch;
11824 			patch_len = 4;
11825 			goto apply_patch_buffer;
11826 		}
11827 
11828 		/* Add in an zero-extend instruction if a) the JIT has requested
11829 		 * it or b) it's a CMPXCHG.
11830 		 *
11831 		 * The latter is because: BPF_CMPXCHG always loads a value into
11832 		 * R0, therefore always zero-extends. However some archs'
11833 		 * equivalent instruction only does this load when the
11834 		 * comparison is successful. This detail of CMPXCHG is
11835 		 * orthogonal to the general zero-extension behaviour of the
11836 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11837 		 */
11838 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11839 			continue;
11840 
11841 		if (WARN_ON(load_reg == -1)) {
11842 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11843 			return -EFAULT;
11844 		}
11845 
11846 		zext_patch[0] = insn;
11847 		zext_patch[1].dst_reg = load_reg;
11848 		zext_patch[1].src_reg = load_reg;
11849 		patch = zext_patch;
11850 		patch_len = 2;
11851 apply_patch_buffer:
11852 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11853 		if (!new_prog)
11854 			return -ENOMEM;
11855 		env->prog = new_prog;
11856 		insns = new_prog->insnsi;
11857 		aux = env->insn_aux_data;
11858 		delta += patch_len - 1;
11859 	}
11860 
11861 	return 0;
11862 }
11863 
11864 /* convert load instructions that access fields of a context type into a
11865  * sequence of instructions that access fields of the underlying structure:
11866  *     struct __sk_buff    -> struct sk_buff
11867  *     struct bpf_sock_ops -> struct sock
11868  */
11869 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11870 {
11871 	const struct bpf_verifier_ops *ops = env->ops;
11872 	int i, cnt, size, ctx_field_size, delta = 0;
11873 	const int insn_cnt = env->prog->len;
11874 	struct bpf_insn insn_buf[16], *insn;
11875 	u32 target_size, size_default, off;
11876 	struct bpf_prog *new_prog;
11877 	enum bpf_access_type type;
11878 	bool is_narrower_load;
11879 
11880 	if (ops->gen_prologue || env->seen_direct_write) {
11881 		if (!ops->gen_prologue) {
11882 			verbose(env, "bpf verifier is misconfigured\n");
11883 			return -EINVAL;
11884 		}
11885 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11886 					env->prog);
11887 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11888 			verbose(env, "bpf verifier is misconfigured\n");
11889 			return -EINVAL;
11890 		} else if (cnt) {
11891 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11892 			if (!new_prog)
11893 				return -ENOMEM;
11894 
11895 			env->prog = new_prog;
11896 			delta += cnt - 1;
11897 		}
11898 	}
11899 
11900 	if (bpf_prog_is_dev_bound(env->prog->aux))
11901 		return 0;
11902 
11903 	insn = env->prog->insnsi + delta;
11904 
11905 	for (i = 0; i < insn_cnt; i++, insn++) {
11906 		bpf_convert_ctx_access_t convert_ctx_access;
11907 
11908 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11909 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11910 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11911 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11912 			type = BPF_READ;
11913 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11914 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11915 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11916 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11917 			type = BPF_WRITE;
11918 		else
11919 			continue;
11920 
11921 		if (type == BPF_WRITE &&
11922 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11923 			struct bpf_insn patch[] = {
11924 				/* Sanitize suspicious stack slot with zero.
11925 				 * There are no memory dependencies for this store,
11926 				 * since it's only using frame pointer and immediate
11927 				 * constant of zero
11928 				 */
11929 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11930 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11931 					   0),
11932 				/* the original STX instruction will immediately
11933 				 * overwrite the same stack slot with appropriate value
11934 				 */
11935 				*insn,
11936 			};
11937 
11938 			cnt = ARRAY_SIZE(patch);
11939 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11940 			if (!new_prog)
11941 				return -ENOMEM;
11942 
11943 			delta    += cnt - 1;
11944 			env->prog = new_prog;
11945 			insn      = new_prog->insnsi + i + delta;
11946 			continue;
11947 		}
11948 
11949 		switch (env->insn_aux_data[i + delta].ptr_type) {
11950 		case PTR_TO_CTX:
11951 			if (!ops->convert_ctx_access)
11952 				continue;
11953 			convert_ctx_access = ops->convert_ctx_access;
11954 			break;
11955 		case PTR_TO_SOCKET:
11956 		case PTR_TO_SOCK_COMMON:
11957 			convert_ctx_access = bpf_sock_convert_ctx_access;
11958 			break;
11959 		case PTR_TO_TCP_SOCK:
11960 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11961 			break;
11962 		case PTR_TO_XDP_SOCK:
11963 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11964 			break;
11965 		case PTR_TO_BTF_ID:
11966 			if (type == BPF_READ) {
11967 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11968 					BPF_SIZE((insn)->code);
11969 				env->prog->aux->num_exentries++;
11970 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11971 				verbose(env, "Writes through BTF pointers are not allowed\n");
11972 				return -EINVAL;
11973 			}
11974 			continue;
11975 		default:
11976 			continue;
11977 		}
11978 
11979 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11980 		size = BPF_LDST_BYTES(insn);
11981 
11982 		/* If the read access is a narrower load of the field,
11983 		 * convert to a 4/8-byte load, to minimum program type specific
11984 		 * convert_ctx_access changes. If conversion is successful,
11985 		 * we will apply proper mask to the result.
11986 		 */
11987 		is_narrower_load = size < ctx_field_size;
11988 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11989 		off = insn->off;
11990 		if (is_narrower_load) {
11991 			u8 size_code;
11992 
11993 			if (type == BPF_WRITE) {
11994 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11995 				return -EINVAL;
11996 			}
11997 
11998 			size_code = BPF_H;
11999 			if (ctx_field_size == 4)
12000 				size_code = BPF_W;
12001 			else if (ctx_field_size == 8)
12002 				size_code = BPF_DW;
12003 
12004 			insn->off = off & ~(size_default - 1);
12005 			insn->code = BPF_LDX | BPF_MEM | size_code;
12006 		}
12007 
12008 		target_size = 0;
12009 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12010 					 &target_size);
12011 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12012 		    (ctx_field_size && !target_size)) {
12013 			verbose(env, "bpf verifier is misconfigured\n");
12014 			return -EINVAL;
12015 		}
12016 
12017 		if (is_narrower_load && size < target_size) {
12018 			u8 shift = bpf_ctx_narrow_access_offset(
12019 				off, size, size_default) * 8;
12020 			if (ctx_field_size <= 4) {
12021 				if (shift)
12022 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12023 									insn->dst_reg,
12024 									shift);
12025 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12026 								(1 << size * 8) - 1);
12027 			} else {
12028 				if (shift)
12029 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12030 									insn->dst_reg,
12031 									shift);
12032 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12033 								(1ULL << size * 8) - 1);
12034 			}
12035 		}
12036 
12037 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12038 		if (!new_prog)
12039 			return -ENOMEM;
12040 
12041 		delta += cnt - 1;
12042 
12043 		/* keep walking new program and skip insns we just inserted */
12044 		env->prog = new_prog;
12045 		insn      = new_prog->insnsi + i + delta;
12046 	}
12047 
12048 	return 0;
12049 }
12050 
12051 static int jit_subprogs(struct bpf_verifier_env *env)
12052 {
12053 	struct bpf_prog *prog = env->prog, **func, *tmp;
12054 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12055 	struct bpf_map *map_ptr;
12056 	struct bpf_insn *insn;
12057 	void *old_bpf_func;
12058 	int err, num_exentries;
12059 
12060 	if (env->subprog_cnt <= 1)
12061 		return 0;
12062 
12063 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12064 		if (bpf_pseudo_func(insn)) {
12065 			env->insn_aux_data[i].call_imm = insn->imm;
12066 			/* subprog is encoded in insn[1].imm */
12067 			continue;
12068 		}
12069 
12070 		if (!bpf_pseudo_call(insn))
12071 			continue;
12072 		/* Upon error here we cannot fall back to interpreter but
12073 		 * need a hard reject of the program. Thus -EFAULT is
12074 		 * propagated in any case.
12075 		 */
12076 		subprog = find_subprog(env, i + insn->imm + 1);
12077 		if (subprog < 0) {
12078 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12079 				  i + insn->imm + 1);
12080 			return -EFAULT;
12081 		}
12082 		/* temporarily remember subprog id inside insn instead of
12083 		 * aux_data, since next loop will split up all insns into funcs
12084 		 */
12085 		insn->off = subprog;
12086 		/* remember original imm in case JIT fails and fallback
12087 		 * to interpreter will be needed
12088 		 */
12089 		env->insn_aux_data[i].call_imm = insn->imm;
12090 		/* point imm to __bpf_call_base+1 from JITs point of view */
12091 		insn->imm = 1;
12092 	}
12093 
12094 	err = bpf_prog_alloc_jited_linfo(prog);
12095 	if (err)
12096 		goto out_undo_insn;
12097 
12098 	err = -ENOMEM;
12099 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12100 	if (!func)
12101 		goto out_undo_insn;
12102 
12103 	for (i = 0; i < env->subprog_cnt; i++) {
12104 		subprog_start = subprog_end;
12105 		subprog_end = env->subprog_info[i + 1].start;
12106 
12107 		len = subprog_end - subprog_start;
12108 		/* BPF_PROG_RUN doesn't call subprogs directly,
12109 		 * hence main prog stats include the runtime of subprogs.
12110 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12111 		 * func[i]->stats will never be accessed and stays NULL
12112 		 */
12113 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12114 		if (!func[i])
12115 			goto out_free;
12116 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12117 		       len * sizeof(struct bpf_insn));
12118 		func[i]->type = prog->type;
12119 		func[i]->len = len;
12120 		if (bpf_prog_calc_tag(func[i]))
12121 			goto out_free;
12122 		func[i]->is_func = 1;
12123 		func[i]->aux->func_idx = i;
12124 		/* the btf and func_info will be freed only at prog->aux */
12125 		func[i]->aux->btf = prog->aux->btf;
12126 		func[i]->aux->func_info = prog->aux->func_info;
12127 
12128 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12129 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
12130 			int ret;
12131 
12132 			if (!(insn_idx >= subprog_start &&
12133 			      insn_idx <= subprog_end))
12134 				continue;
12135 
12136 			ret = bpf_jit_add_poke_descriptor(func[i],
12137 							  &prog->aux->poke_tab[j]);
12138 			if (ret < 0) {
12139 				verbose(env, "adding tail call poke descriptor failed\n");
12140 				goto out_free;
12141 			}
12142 
12143 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
12144 
12145 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
12146 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
12147 			if (ret < 0) {
12148 				verbose(env, "tracking tail call prog failed\n");
12149 				goto out_free;
12150 			}
12151 		}
12152 
12153 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12154 		 * Long term would need debug info to populate names
12155 		 */
12156 		func[i]->aux->name[0] = 'F';
12157 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12158 		func[i]->jit_requested = 1;
12159 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12160 		func[i]->aux->linfo = prog->aux->linfo;
12161 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12162 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12163 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12164 		num_exentries = 0;
12165 		insn = func[i]->insnsi;
12166 		for (j = 0; j < func[i]->len; j++, insn++) {
12167 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12168 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12169 				num_exentries++;
12170 		}
12171 		func[i]->aux->num_exentries = num_exentries;
12172 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12173 		func[i] = bpf_int_jit_compile(func[i]);
12174 		if (!func[i]->jited) {
12175 			err = -ENOTSUPP;
12176 			goto out_free;
12177 		}
12178 		cond_resched();
12179 	}
12180 
12181 	/* Untrack main program's aux structs so that during map_poke_run()
12182 	 * we will not stumble upon the unfilled poke descriptors; each
12183 	 * of the main program's poke descs got distributed across subprogs
12184 	 * and got tracked onto map, so we are sure that none of them will
12185 	 * be missed after the operation below
12186 	 */
12187 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12188 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12189 
12190 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12191 	}
12192 
12193 	/* at this point all bpf functions were successfully JITed
12194 	 * now populate all bpf_calls with correct addresses and
12195 	 * run last pass of JIT
12196 	 */
12197 	for (i = 0; i < env->subprog_cnt; i++) {
12198 		insn = func[i]->insnsi;
12199 		for (j = 0; j < func[i]->len; j++, insn++) {
12200 			if (bpf_pseudo_func(insn)) {
12201 				subprog = insn[1].imm;
12202 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12203 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12204 				continue;
12205 			}
12206 			if (!bpf_pseudo_call(insn))
12207 				continue;
12208 			subprog = insn->off;
12209 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12210 				    __bpf_call_base;
12211 		}
12212 
12213 		/* we use the aux data to keep a list of the start addresses
12214 		 * of the JITed images for each function in the program
12215 		 *
12216 		 * for some architectures, such as powerpc64, the imm field
12217 		 * might not be large enough to hold the offset of the start
12218 		 * address of the callee's JITed image from __bpf_call_base
12219 		 *
12220 		 * in such cases, we can lookup the start address of a callee
12221 		 * by using its subprog id, available from the off field of
12222 		 * the call instruction, as an index for this list
12223 		 */
12224 		func[i]->aux->func = func;
12225 		func[i]->aux->func_cnt = env->subprog_cnt;
12226 	}
12227 	for (i = 0; i < env->subprog_cnt; i++) {
12228 		old_bpf_func = func[i]->bpf_func;
12229 		tmp = bpf_int_jit_compile(func[i]);
12230 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12231 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12232 			err = -ENOTSUPP;
12233 			goto out_free;
12234 		}
12235 		cond_resched();
12236 	}
12237 
12238 	/* finally lock prog and jit images for all functions and
12239 	 * populate kallsysm
12240 	 */
12241 	for (i = 0; i < env->subprog_cnt; i++) {
12242 		bpf_prog_lock_ro(func[i]);
12243 		bpf_prog_kallsyms_add(func[i]);
12244 	}
12245 
12246 	/* Last step: make now unused interpreter insns from main
12247 	 * prog consistent for later dump requests, so they can
12248 	 * later look the same as if they were interpreted only.
12249 	 */
12250 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12251 		if (bpf_pseudo_func(insn)) {
12252 			insn[0].imm = env->insn_aux_data[i].call_imm;
12253 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12254 			continue;
12255 		}
12256 		if (!bpf_pseudo_call(insn))
12257 			continue;
12258 		insn->off = env->insn_aux_data[i].call_imm;
12259 		subprog = find_subprog(env, i + insn->off + 1);
12260 		insn->imm = subprog;
12261 	}
12262 
12263 	prog->jited = 1;
12264 	prog->bpf_func = func[0]->bpf_func;
12265 	prog->aux->func = func;
12266 	prog->aux->func_cnt = env->subprog_cnt;
12267 	bpf_prog_jit_attempt_done(prog);
12268 	return 0;
12269 out_free:
12270 	for (i = 0; i < env->subprog_cnt; i++) {
12271 		if (!func[i])
12272 			continue;
12273 
12274 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12275 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12276 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12277 		}
12278 		bpf_jit_free(func[i]);
12279 	}
12280 	kfree(func);
12281 out_undo_insn:
12282 	/* cleanup main prog to be interpreted */
12283 	prog->jit_requested = 0;
12284 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12285 		if (!bpf_pseudo_call(insn))
12286 			continue;
12287 		insn->off = 0;
12288 		insn->imm = env->insn_aux_data[i].call_imm;
12289 	}
12290 	bpf_prog_jit_attempt_done(prog);
12291 	return err;
12292 }
12293 
12294 static int fixup_call_args(struct bpf_verifier_env *env)
12295 {
12296 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12297 	struct bpf_prog *prog = env->prog;
12298 	struct bpf_insn *insn = prog->insnsi;
12299 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12300 	int i, depth;
12301 #endif
12302 	int err = 0;
12303 
12304 	if (env->prog->jit_requested &&
12305 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12306 		err = jit_subprogs(env);
12307 		if (err == 0)
12308 			return 0;
12309 		if (err == -EFAULT)
12310 			return err;
12311 	}
12312 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12313 	if (has_kfunc_call) {
12314 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12315 		return -EINVAL;
12316 	}
12317 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12318 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12319 		 * have to be rejected, since interpreter doesn't support them yet.
12320 		 */
12321 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12322 		return -EINVAL;
12323 	}
12324 	for (i = 0; i < prog->len; i++, insn++) {
12325 		if (bpf_pseudo_func(insn)) {
12326 			/* When JIT fails the progs with callback calls
12327 			 * have to be rejected, since interpreter doesn't support them yet.
12328 			 */
12329 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12330 			return -EINVAL;
12331 		}
12332 
12333 		if (!bpf_pseudo_call(insn))
12334 			continue;
12335 		depth = get_callee_stack_depth(env, insn, i);
12336 		if (depth < 0)
12337 			return depth;
12338 		bpf_patch_call_args(insn, depth);
12339 	}
12340 	err = 0;
12341 #endif
12342 	return err;
12343 }
12344 
12345 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12346 			    struct bpf_insn *insn)
12347 {
12348 	const struct bpf_kfunc_desc *desc;
12349 
12350 	/* insn->imm has the btf func_id. Replace it with
12351 	 * an address (relative to __bpf_base_call).
12352 	 */
12353 	desc = find_kfunc_desc(env->prog, insn->imm);
12354 	if (!desc) {
12355 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12356 			insn->imm);
12357 		return -EFAULT;
12358 	}
12359 
12360 	insn->imm = desc->imm;
12361 
12362 	return 0;
12363 }
12364 
12365 /* Do various post-verification rewrites in a single program pass.
12366  * These rewrites simplify JIT and interpreter implementations.
12367  */
12368 static int do_misc_fixups(struct bpf_verifier_env *env)
12369 {
12370 	struct bpf_prog *prog = env->prog;
12371 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12372 	struct bpf_insn *insn = prog->insnsi;
12373 	const struct bpf_func_proto *fn;
12374 	const int insn_cnt = prog->len;
12375 	const struct bpf_map_ops *ops;
12376 	struct bpf_insn_aux_data *aux;
12377 	struct bpf_insn insn_buf[16];
12378 	struct bpf_prog *new_prog;
12379 	struct bpf_map *map_ptr;
12380 	int i, ret, cnt, delta = 0;
12381 
12382 	for (i = 0; i < insn_cnt; i++, insn++) {
12383 		/* Make divide-by-zero exceptions impossible. */
12384 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12385 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12386 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12387 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12388 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12389 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12390 			struct bpf_insn *patchlet;
12391 			struct bpf_insn chk_and_div[] = {
12392 				/* [R,W]x div 0 -> 0 */
12393 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12394 					     BPF_JNE | BPF_K, insn->src_reg,
12395 					     0, 2, 0),
12396 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12397 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12398 				*insn,
12399 			};
12400 			struct bpf_insn chk_and_mod[] = {
12401 				/* [R,W]x mod 0 -> [R,W]x */
12402 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12403 					     BPF_JEQ | BPF_K, insn->src_reg,
12404 					     0, 1 + (is64 ? 0 : 1), 0),
12405 				*insn,
12406 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12407 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12408 			};
12409 
12410 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12411 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12412 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12413 
12414 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12415 			if (!new_prog)
12416 				return -ENOMEM;
12417 
12418 			delta    += cnt - 1;
12419 			env->prog = prog = new_prog;
12420 			insn      = new_prog->insnsi + i + delta;
12421 			continue;
12422 		}
12423 
12424 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12425 		if (BPF_CLASS(insn->code) == BPF_LD &&
12426 		    (BPF_MODE(insn->code) == BPF_ABS ||
12427 		     BPF_MODE(insn->code) == BPF_IND)) {
12428 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12429 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12430 				verbose(env, "bpf verifier is misconfigured\n");
12431 				return -EINVAL;
12432 			}
12433 
12434 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12435 			if (!new_prog)
12436 				return -ENOMEM;
12437 
12438 			delta    += cnt - 1;
12439 			env->prog = prog = new_prog;
12440 			insn      = new_prog->insnsi + i + delta;
12441 			continue;
12442 		}
12443 
12444 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12445 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12446 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12447 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12448 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12449 			struct bpf_insn *patch = &insn_buf[0];
12450 			bool issrc, isneg, isimm;
12451 			u32 off_reg;
12452 
12453 			aux = &env->insn_aux_data[i + delta];
12454 			if (!aux->alu_state ||
12455 			    aux->alu_state == BPF_ALU_NON_POINTER)
12456 				continue;
12457 
12458 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12459 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12460 				BPF_ALU_SANITIZE_SRC;
12461 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12462 
12463 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12464 			if (isimm) {
12465 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12466 			} else {
12467 				if (isneg)
12468 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12469 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12470 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12471 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12472 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12473 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12474 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12475 			}
12476 			if (!issrc)
12477 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12478 			insn->src_reg = BPF_REG_AX;
12479 			if (isneg)
12480 				insn->code = insn->code == code_add ?
12481 					     code_sub : code_add;
12482 			*patch++ = *insn;
12483 			if (issrc && isneg && !isimm)
12484 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12485 			cnt = patch - insn_buf;
12486 
12487 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12488 			if (!new_prog)
12489 				return -ENOMEM;
12490 
12491 			delta    += cnt - 1;
12492 			env->prog = prog = new_prog;
12493 			insn      = new_prog->insnsi + i + delta;
12494 			continue;
12495 		}
12496 
12497 		if (insn->code != (BPF_JMP | BPF_CALL))
12498 			continue;
12499 		if (insn->src_reg == BPF_PSEUDO_CALL)
12500 			continue;
12501 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12502 			ret = fixup_kfunc_call(env, insn);
12503 			if (ret)
12504 				return ret;
12505 			continue;
12506 		}
12507 
12508 		if (insn->imm == BPF_FUNC_get_route_realm)
12509 			prog->dst_needed = 1;
12510 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12511 			bpf_user_rnd_init_once();
12512 		if (insn->imm == BPF_FUNC_override_return)
12513 			prog->kprobe_override = 1;
12514 		if (insn->imm == BPF_FUNC_tail_call) {
12515 			/* If we tail call into other programs, we
12516 			 * cannot make any assumptions since they can
12517 			 * be replaced dynamically during runtime in
12518 			 * the program array.
12519 			 */
12520 			prog->cb_access = 1;
12521 			if (!allow_tail_call_in_subprogs(env))
12522 				prog->aux->stack_depth = MAX_BPF_STACK;
12523 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12524 
12525 			/* mark bpf_tail_call as different opcode to avoid
12526 			 * conditional branch in the interpreter for every normal
12527 			 * call and to prevent accidental JITing by JIT compiler
12528 			 * that doesn't support bpf_tail_call yet
12529 			 */
12530 			insn->imm = 0;
12531 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12532 
12533 			aux = &env->insn_aux_data[i + delta];
12534 			if (env->bpf_capable && !expect_blinding &&
12535 			    prog->jit_requested &&
12536 			    !bpf_map_key_poisoned(aux) &&
12537 			    !bpf_map_ptr_poisoned(aux) &&
12538 			    !bpf_map_ptr_unpriv(aux)) {
12539 				struct bpf_jit_poke_descriptor desc = {
12540 					.reason = BPF_POKE_REASON_TAIL_CALL,
12541 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12542 					.tail_call.key = bpf_map_key_immediate(aux),
12543 					.insn_idx = i + delta,
12544 				};
12545 
12546 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12547 				if (ret < 0) {
12548 					verbose(env, "adding tail call poke descriptor failed\n");
12549 					return ret;
12550 				}
12551 
12552 				insn->imm = ret + 1;
12553 				continue;
12554 			}
12555 
12556 			if (!bpf_map_ptr_unpriv(aux))
12557 				continue;
12558 
12559 			/* instead of changing every JIT dealing with tail_call
12560 			 * emit two extra insns:
12561 			 * if (index >= max_entries) goto out;
12562 			 * index &= array->index_mask;
12563 			 * to avoid out-of-bounds cpu speculation
12564 			 */
12565 			if (bpf_map_ptr_poisoned(aux)) {
12566 				verbose(env, "tail_call abusing map_ptr\n");
12567 				return -EINVAL;
12568 			}
12569 
12570 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12571 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12572 						  map_ptr->max_entries, 2);
12573 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12574 						    container_of(map_ptr,
12575 								 struct bpf_array,
12576 								 map)->index_mask);
12577 			insn_buf[2] = *insn;
12578 			cnt = 3;
12579 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12580 			if (!new_prog)
12581 				return -ENOMEM;
12582 
12583 			delta    += cnt - 1;
12584 			env->prog = prog = new_prog;
12585 			insn      = new_prog->insnsi + i + delta;
12586 			continue;
12587 		}
12588 
12589 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12590 		 * and other inlining handlers are currently limited to 64 bit
12591 		 * only.
12592 		 */
12593 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12594 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12595 		     insn->imm == BPF_FUNC_map_update_elem ||
12596 		     insn->imm == BPF_FUNC_map_delete_elem ||
12597 		     insn->imm == BPF_FUNC_map_push_elem   ||
12598 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12599 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12600 		     insn->imm == BPF_FUNC_redirect_map)) {
12601 			aux = &env->insn_aux_data[i + delta];
12602 			if (bpf_map_ptr_poisoned(aux))
12603 				goto patch_call_imm;
12604 
12605 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12606 			ops = map_ptr->ops;
12607 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12608 			    ops->map_gen_lookup) {
12609 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12610 				if (cnt == -EOPNOTSUPP)
12611 					goto patch_map_ops_generic;
12612 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12613 					verbose(env, "bpf verifier is misconfigured\n");
12614 					return -EINVAL;
12615 				}
12616 
12617 				new_prog = bpf_patch_insn_data(env, i + delta,
12618 							       insn_buf, cnt);
12619 				if (!new_prog)
12620 					return -ENOMEM;
12621 
12622 				delta    += cnt - 1;
12623 				env->prog = prog = new_prog;
12624 				insn      = new_prog->insnsi + i + delta;
12625 				continue;
12626 			}
12627 
12628 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12629 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12630 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12631 				     (int (*)(struct bpf_map *map, void *key))NULL));
12632 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12633 				     (int (*)(struct bpf_map *map, void *key, void *value,
12634 					      u64 flags))NULL));
12635 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12636 				     (int (*)(struct bpf_map *map, void *value,
12637 					      u64 flags))NULL));
12638 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12639 				     (int (*)(struct bpf_map *map, void *value))NULL));
12640 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12641 				     (int (*)(struct bpf_map *map, void *value))NULL));
12642 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12643 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12644 
12645 patch_map_ops_generic:
12646 			switch (insn->imm) {
12647 			case BPF_FUNC_map_lookup_elem:
12648 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12649 					    __bpf_call_base;
12650 				continue;
12651 			case BPF_FUNC_map_update_elem:
12652 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12653 					    __bpf_call_base;
12654 				continue;
12655 			case BPF_FUNC_map_delete_elem:
12656 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12657 					    __bpf_call_base;
12658 				continue;
12659 			case BPF_FUNC_map_push_elem:
12660 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12661 					    __bpf_call_base;
12662 				continue;
12663 			case BPF_FUNC_map_pop_elem:
12664 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12665 					    __bpf_call_base;
12666 				continue;
12667 			case BPF_FUNC_map_peek_elem:
12668 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12669 					    __bpf_call_base;
12670 				continue;
12671 			case BPF_FUNC_redirect_map:
12672 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12673 					    __bpf_call_base;
12674 				continue;
12675 			}
12676 
12677 			goto patch_call_imm;
12678 		}
12679 
12680 		/* Implement bpf_jiffies64 inline. */
12681 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12682 		    insn->imm == BPF_FUNC_jiffies64) {
12683 			struct bpf_insn ld_jiffies_addr[2] = {
12684 				BPF_LD_IMM64(BPF_REG_0,
12685 					     (unsigned long)&jiffies),
12686 			};
12687 
12688 			insn_buf[0] = ld_jiffies_addr[0];
12689 			insn_buf[1] = ld_jiffies_addr[1];
12690 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12691 						  BPF_REG_0, 0);
12692 			cnt = 3;
12693 
12694 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12695 						       cnt);
12696 			if (!new_prog)
12697 				return -ENOMEM;
12698 
12699 			delta    += cnt - 1;
12700 			env->prog = prog = new_prog;
12701 			insn      = new_prog->insnsi + i + delta;
12702 			continue;
12703 		}
12704 
12705 patch_call_imm:
12706 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12707 		/* all functions that have prototype and verifier allowed
12708 		 * programs to call them, must be real in-kernel functions
12709 		 */
12710 		if (!fn->func) {
12711 			verbose(env,
12712 				"kernel subsystem misconfigured func %s#%d\n",
12713 				func_id_name(insn->imm), insn->imm);
12714 			return -EFAULT;
12715 		}
12716 		insn->imm = fn->func - __bpf_call_base;
12717 	}
12718 
12719 	/* Since poke tab is now finalized, publish aux to tracker. */
12720 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12721 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12722 		if (!map_ptr->ops->map_poke_track ||
12723 		    !map_ptr->ops->map_poke_untrack ||
12724 		    !map_ptr->ops->map_poke_run) {
12725 			verbose(env, "bpf verifier is misconfigured\n");
12726 			return -EINVAL;
12727 		}
12728 
12729 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12730 		if (ret < 0) {
12731 			verbose(env, "tracking tail call prog failed\n");
12732 			return ret;
12733 		}
12734 	}
12735 
12736 	sort_kfunc_descs_by_imm(env->prog);
12737 
12738 	return 0;
12739 }
12740 
12741 static void free_states(struct bpf_verifier_env *env)
12742 {
12743 	struct bpf_verifier_state_list *sl, *sln;
12744 	int i;
12745 
12746 	sl = env->free_list;
12747 	while (sl) {
12748 		sln = sl->next;
12749 		free_verifier_state(&sl->state, false);
12750 		kfree(sl);
12751 		sl = sln;
12752 	}
12753 	env->free_list = NULL;
12754 
12755 	if (!env->explored_states)
12756 		return;
12757 
12758 	for (i = 0; i < state_htab_size(env); i++) {
12759 		sl = env->explored_states[i];
12760 
12761 		while (sl) {
12762 			sln = sl->next;
12763 			free_verifier_state(&sl->state, false);
12764 			kfree(sl);
12765 			sl = sln;
12766 		}
12767 		env->explored_states[i] = NULL;
12768 	}
12769 }
12770 
12771 /* The verifier is using insn_aux_data[] to store temporary data during
12772  * verification and to store information for passes that run after the
12773  * verification like dead code sanitization. do_check_common() for subprogram N
12774  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12775  * temporary data after do_check_common() finds that subprogram N cannot be
12776  * verified independently. pass_cnt counts the number of times
12777  * do_check_common() was run and insn->aux->seen tells the pass number
12778  * insn_aux_data was touched. These variables are compared to clear temporary
12779  * data from failed pass. For testing and experiments do_check_common() can be
12780  * run multiple times even when prior attempt to verify is unsuccessful.
12781  *
12782  * Note that special handling is needed on !env->bypass_spec_v1 if this is
12783  * ever called outside of error path with subsequent program rejection.
12784  */
12785 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12786 {
12787 	struct bpf_insn *insn = env->prog->insnsi;
12788 	struct bpf_insn_aux_data *aux;
12789 	int i, class;
12790 
12791 	for (i = 0; i < env->prog->len; i++) {
12792 		class = BPF_CLASS(insn[i].code);
12793 		if (class != BPF_LDX && class != BPF_STX)
12794 			continue;
12795 		aux = &env->insn_aux_data[i];
12796 		if (aux->seen != env->pass_cnt)
12797 			continue;
12798 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12799 	}
12800 }
12801 
12802 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12803 {
12804 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12805 	struct bpf_verifier_state *state;
12806 	struct bpf_reg_state *regs;
12807 	int ret, i;
12808 
12809 	env->prev_linfo = NULL;
12810 	env->pass_cnt++;
12811 
12812 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12813 	if (!state)
12814 		return -ENOMEM;
12815 	state->curframe = 0;
12816 	state->speculative = false;
12817 	state->branches = 1;
12818 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12819 	if (!state->frame[0]) {
12820 		kfree(state);
12821 		return -ENOMEM;
12822 	}
12823 	env->cur_state = state;
12824 	init_func_state(env, state->frame[0],
12825 			BPF_MAIN_FUNC /* callsite */,
12826 			0 /* frameno */,
12827 			subprog);
12828 
12829 	regs = state->frame[state->curframe]->regs;
12830 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12831 		ret = btf_prepare_func_args(env, subprog, regs);
12832 		if (ret)
12833 			goto out;
12834 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12835 			if (regs[i].type == PTR_TO_CTX)
12836 				mark_reg_known_zero(env, regs, i);
12837 			else if (regs[i].type == SCALAR_VALUE)
12838 				mark_reg_unknown(env, regs, i);
12839 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12840 				const u32 mem_size = regs[i].mem_size;
12841 
12842 				mark_reg_known_zero(env, regs, i);
12843 				regs[i].mem_size = mem_size;
12844 				regs[i].id = ++env->id_gen;
12845 			}
12846 		}
12847 	} else {
12848 		/* 1st arg to a function */
12849 		regs[BPF_REG_1].type = PTR_TO_CTX;
12850 		mark_reg_known_zero(env, regs, BPF_REG_1);
12851 		ret = btf_check_subprog_arg_match(env, subprog, regs);
12852 		if (ret == -EFAULT)
12853 			/* unlikely verifier bug. abort.
12854 			 * ret == 0 and ret < 0 are sadly acceptable for
12855 			 * main() function due to backward compatibility.
12856 			 * Like socket filter program may be written as:
12857 			 * int bpf_prog(struct pt_regs *ctx)
12858 			 * and never dereference that ctx in the program.
12859 			 * 'struct pt_regs' is a type mismatch for socket
12860 			 * filter that should be using 'struct __sk_buff'.
12861 			 */
12862 			goto out;
12863 	}
12864 
12865 	ret = do_check(env);
12866 out:
12867 	/* check for NULL is necessary, since cur_state can be freed inside
12868 	 * do_check() under memory pressure.
12869 	 */
12870 	if (env->cur_state) {
12871 		free_verifier_state(env->cur_state, true);
12872 		env->cur_state = NULL;
12873 	}
12874 	while (!pop_stack(env, NULL, NULL, false));
12875 	if (!ret && pop_log)
12876 		bpf_vlog_reset(&env->log, 0);
12877 	free_states(env);
12878 	if (ret)
12879 		/* clean aux data in case subprog was rejected */
12880 		sanitize_insn_aux_data(env);
12881 	return ret;
12882 }
12883 
12884 /* Verify all global functions in a BPF program one by one based on their BTF.
12885  * All global functions must pass verification. Otherwise the whole program is rejected.
12886  * Consider:
12887  * int bar(int);
12888  * int foo(int f)
12889  * {
12890  *    return bar(f);
12891  * }
12892  * int bar(int b)
12893  * {
12894  *    ...
12895  * }
12896  * foo() will be verified first for R1=any_scalar_value. During verification it
12897  * will be assumed that bar() already verified successfully and call to bar()
12898  * from foo() will be checked for type match only. Later bar() will be verified
12899  * independently to check that it's safe for R1=any_scalar_value.
12900  */
12901 static int do_check_subprogs(struct bpf_verifier_env *env)
12902 {
12903 	struct bpf_prog_aux *aux = env->prog->aux;
12904 	int i, ret;
12905 
12906 	if (!aux->func_info)
12907 		return 0;
12908 
12909 	for (i = 1; i < env->subprog_cnt; i++) {
12910 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12911 			continue;
12912 		env->insn_idx = env->subprog_info[i].start;
12913 		WARN_ON_ONCE(env->insn_idx == 0);
12914 		ret = do_check_common(env, i);
12915 		if (ret) {
12916 			return ret;
12917 		} else if (env->log.level & BPF_LOG_LEVEL) {
12918 			verbose(env,
12919 				"Func#%d is safe for any args that match its prototype\n",
12920 				i);
12921 		}
12922 	}
12923 	return 0;
12924 }
12925 
12926 static int do_check_main(struct bpf_verifier_env *env)
12927 {
12928 	int ret;
12929 
12930 	env->insn_idx = 0;
12931 	ret = do_check_common(env, 0);
12932 	if (!ret)
12933 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12934 	return ret;
12935 }
12936 
12937 
12938 static void print_verification_stats(struct bpf_verifier_env *env)
12939 {
12940 	int i;
12941 
12942 	if (env->log.level & BPF_LOG_STATS) {
12943 		verbose(env, "verification time %lld usec\n",
12944 			div_u64(env->verification_time, 1000));
12945 		verbose(env, "stack depth ");
12946 		for (i = 0; i < env->subprog_cnt; i++) {
12947 			u32 depth = env->subprog_info[i].stack_depth;
12948 
12949 			verbose(env, "%d", depth);
12950 			if (i + 1 < env->subprog_cnt)
12951 				verbose(env, "+");
12952 		}
12953 		verbose(env, "\n");
12954 	}
12955 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12956 		"total_states %d peak_states %d mark_read %d\n",
12957 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12958 		env->max_states_per_insn, env->total_states,
12959 		env->peak_states, env->longest_mark_read_walk);
12960 }
12961 
12962 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12963 {
12964 	const struct btf_type *t, *func_proto;
12965 	const struct bpf_struct_ops *st_ops;
12966 	const struct btf_member *member;
12967 	struct bpf_prog *prog = env->prog;
12968 	u32 btf_id, member_idx;
12969 	const char *mname;
12970 
12971 	if (!prog->gpl_compatible) {
12972 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12973 		return -EINVAL;
12974 	}
12975 
12976 	btf_id = prog->aux->attach_btf_id;
12977 	st_ops = bpf_struct_ops_find(btf_id);
12978 	if (!st_ops) {
12979 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12980 			btf_id);
12981 		return -ENOTSUPP;
12982 	}
12983 
12984 	t = st_ops->type;
12985 	member_idx = prog->expected_attach_type;
12986 	if (member_idx >= btf_type_vlen(t)) {
12987 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12988 			member_idx, st_ops->name);
12989 		return -EINVAL;
12990 	}
12991 
12992 	member = &btf_type_member(t)[member_idx];
12993 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12994 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12995 					       NULL);
12996 	if (!func_proto) {
12997 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12998 			mname, member_idx, st_ops->name);
12999 		return -EINVAL;
13000 	}
13001 
13002 	if (st_ops->check_member) {
13003 		int err = st_ops->check_member(t, member);
13004 
13005 		if (err) {
13006 			verbose(env, "attach to unsupported member %s of struct %s\n",
13007 				mname, st_ops->name);
13008 			return err;
13009 		}
13010 	}
13011 
13012 	prog->aux->attach_func_proto = func_proto;
13013 	prog->aux->attach_func_name = mname;
13014 	env->ops = st_ops->verifier_ops;
13015 
13016 	return 0;
13017 }
13018 #define SECURITY_PREFIX "security_"
13019 
13020 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13021 {
13022 	if (within_error_injection_list(addr) ||
13023 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13024 		return 0;
13025 
13026 	return -EINVAL;
13027 }
13028 
13029 /* list of non-sleepable functions that are otherwise on
13030  * ALLOW_ERROR_INJECTION list
13031  */
13032 BTF_SET_START(btf_non_sleepable_error_inject)
13033 /* Three functions below can be called from sleepable and non-sleepable context.
13034  * Assume non-sleepable from bpf safety point of view.
13035  */
13036 BTF_ID(func, __add_to_page_cache_locked)
13037 BTF_ID(func, should_fail_alloc_page)
13038 BTF_ID(func, should_failslab)
13039 BTF_SET_END(btf_non_sleepable_error_inject)
13040 
13041 static int check_non_sleepable_error_inject(u32 btf_id)
13042 {
13043 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13044 }
13045 
13046 int bpf_check_attach_target(struct bpf_verifier_log *log,
13047 			    const struct bpf_prog *prog,
13048 			    const struct bpf_prog *tgt_prog,
13049 			    u32 btf_id,
13050 			    struct bpf_attach_target_info *tgt_info)
13051 {
13052 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13053 	const char prefix[] = "btf_trace_";
13054 	int ret = 0, subprog = -1, i;
13055 	const struct btf_type *t;
13056 	bool conservative = true;
13057 	const char *tname;
13058 	struct btf *btf;
13059 	long addr = 0;
13060 
13061 	if (!btf_id) {
13062 		bpf_log(log, "Tracing programs must provide btf_id\n");
13063 		return -EINVAL;
13064 	}
13065 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13066 	if (!btf) {
13067 		bpf_log(log,
13068 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13069 		return -EINVAL;
13070 	}
13071 	t = btf_type_by_id(btf, btf_id);
13072 	if (!t) {
13073 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13074 		return -EINVAL;
13075 	}
13076 	tname = btf_name_by_offset(btf, t->name_off);
13077 	if (!tname) {
13078 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13079 		return -EINVAL;
13080 	}
13081 	if (tgt_prog) {
13082 		struct bpf_prog_aux *aux = tgt_prog->aux;
13083 
13084 		for (i = 0; i < aux->func_info_cnt; i++)
13085 			if (aux->func_info[i].type_id == btf_id) {
13086 				subprog = i;
13087 				break;
13088 			}
13089 		if (subprog == -1) {
13090 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13091 			return -EINVAL;
13092 		}
13093 		conservative = aux->func_info_aux[subprog].unreliable;
13094 		if (prog_extension) {
13095 			if (conservative) {
13096 				bpf_log(log,
13097 					"Cannot replace static functions\n");
13098 				return -EINVAL;
13099 			}
13100 			if (!prog->jit_requested) {
13101 				bpf_log(log,
13102 					"Extension programs should be JITed\n");
13103 				return -EINVAL;
13104 			}
13105 		}
13106 		if (!tgt_prog->jited) {
13107 			bpf_log(log, "Can attach to only JITed progs\n");
13108 			return -EINVAL;
13109 		}
13110 		if (tgt_prog->type == prog->type) {
13111 			/* Cannot fentry/fexit another fentry/fexit program.
13112 			 * Cannot attach program extension to another extension.
13113 			 * It's ok to attach fentry/fexit to extension program.
13114 			 */
13115 			bpf_log(log, "Cannot recursively attach\n");
13116 			return -EINVAL;
13117 		}
13118 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13119 		    prog_extension &&
13120 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13121 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13122 			/* Program extensions can extend all program types
13123 			 * except fentry/fexit. The reason is the following.
13124 			 * The fentry/fexit programs are used for performance
13125 			 * analysis, stats and can be attached to any program
13126 			 * type except themselves. When extension program is
13127 			 * replacing XDP function it is necessary to allow
13128 			 * performance analysis of all functions. Both original
13129 			 * XDP program and its program extension. Hence
13130 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13131 			 * allowed. If extending of fentry/fexit was allowed it
13132 			 * would be possible to create long call chain
13133 			 * fentry->extension->fentry->extension beyond
13134 			 * reasonable stack size. Hence extending fentry is not
13135 			 * allowed.
13136 			 */
13137 			bpf_log(log, "Cannot extend fentry/fexit\n");
13138 			return -EINVAL;
13139 		}
13140 	} else {
13141 		if (prog_extension) {
13142 			bpf_log(log, "Cannot replace kernel functions\n");
13143 			return -EINVAL;
13144 		}
13145 	}
13146 
13147 	switch (prog->expected_attach_type) {
13148 	case BPF_TRACE_RAW_TP:
13149 		if (tgt_prog) {
13150 			bpf_log(log,
13151 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13152 			return -EINVAL;
13153 		}
13154 		if (!btf_type_is_typedef(t)) {
13155 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13156 				btf_id);
13157 			return -EINVAL;
13158 		}
13159 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13160 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13161 				btf_id, tname);
13162 			return -EINVAL;
13163 		}
13164 		tname += sizeof(prefix) - 1;
13165 		t = btf_type_by_id(btf, t->type);
13166 		if (!btf_type_is_ptr(t))
13167 			/* should never happen in valid vmlinux build */
13168 			return -EINVAL;
13169 		t = btf_type_by_id(btf, t->type);
13170 		if (!btf_type_is_func_proto(t))
13171 			/* should never happen in valid vmlinux build */
13172 			return -EINVAL;
13173 
13174 		break;
13175 	case BPF_TRACE_ITER:
13176 		if (!btf_type_is_func(t)) {
13177 			bpf_log(log, "attach_btf_id %u is not a function\n",
13178 				btf_id);
13179 			return -EINVAL;
13180 		}
13181 		t = btf_type_by_id(btf, t->type);
13182 		if (!btf_type_is_func_proto(t))
13183 			return -EINVAL;
13184 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13185 		if (ret)
13186 			return ret;
13187 		break;
13188 	default:
13189 		if (!prog_extension)
13190 			return -EINVAL;
13191 		fallthrough;
13192 	case BPF_MODIFY_RETURN:
13193 	case BPF_LSM_MAC:
13194 	case BPF_TRACE_FENTRY:
13195 	case BPF_TRACE_FEXIT:
13196 		if (!btf_type_is_func(t)) {
13197 			bpf_log(log, "attach_btf_id %u is not a function\n",
13198 				btf_id);
13199 			return -EINVAL;
13200 		}
13201 		if (prog_extension &&
13202 		    btf_check_type_match(log, prog, btf, t))
13203 			return -EINVAL;
13204 		t = btf_type_by_id(btf, t->type);
13205 		if (!btf_type_is_func_proto(t))
13206 			return -EINVAL;
13207 
13208 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13209 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13210 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13211 			return -EINVAL;
13212 
13213 		if (tgt_prog && conservative)
13214 			t = NULL;
13215 
13216 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13217 		if (ret < 0)
13218 			return ret;
13219 
13220 		if (tgt_prog) {
13221 			if (subprog == 0)
13222 				addr = (long) tgt_prog->bpf_func;
13223 			else
13224 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13225 		} else {
13226 			addr = kallsyms_lookup_name(tname);
13227 			if (!addr) {
13228 				bpf_log(log,
13229 					"The address of function %s cannot be found\n",
13230 					tname);
13231 				return -ENOENT;
13232 			}
13233 		}
13234 
13235 		if (prog->aux->sleepable) {
13236 			ret = -EINVAL;
13237 			switch (prog->type) {
13238 			case BPF_PROG_TYPE_TRACING:
13239 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13240 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13241 				 */
13242 				if (!check_non_sleepable_error_inject(btf_id) &&
13243 				    within_error_injection_list(addr))
13244 					ret = 0;
13245 				break;
13246 			case BPF_PROG_TYPE_LSM:
13247 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13248 				 * Only some of them are sleepable.
13249 				 */
13250 				if (bpf_lsm_is_sleepable_hook(btf_id))
13251 					ret = 0;
13252 				break;
13253 			default:
13254 				break;
13255 			}
13256 			if (ret) {
13257 				bpf_log(log, "%s is not sleepable\n", tname);
13258 				return ret;
13259 			}
13260 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13261 			if (tgt_prog) {
13262 				bpf_log(log, "can't modify return codes of BPF programs\n");
13263 				return -EINVAL;
13264 			}
13265 			ret = check_attach_modify_return(addr, tname);
13266 			if (ret) {
13267 				bpf_log(log, "%s() is not modifiable\n", tname);
13268 				return ret;
13269 			}
13270 		}
13271 
13272 		break;
13273 	}
13274 	tgt_info->tgt_addr = addr;
13275 	tgt_info->tgt_name = tname;
13276 	tgt_info->tgt_type = t;
13277 	return 0;
13278 }
13279 
13280 BTF_SET_START(btf_id_deny)
13281 BTF_ID_UNUSED
13282 #ifdef CONFIG_SMP
13283 BTF_ID(func, migrate_disable)
13284 BTF_ID(func, migrate_enable)
13285 #endif
13286 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13287 BTF_ID(func, rcu_read_unlock_strict)
13288 #endif
13289 BTF_SET_END(btf_id_deny)
13290 
13291 static int check_attach_btf_id(struct bpf_verifier_env *env)
13292 {
13293 	struct bpf_prog *prog = env->prog;
13294 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13295 	struct bpf_attach_target_info tgt_info = {};
13296 	u32 btf_id = prog->aux->attach_btf_id;
13297 	struct bpf_trampoline *tr;
13298 	int ret;
13299 	u64 key;
13300 
13301 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13302 		if (prog->aux->sleepable)
13303 			/* attach_btf_id checked to be zero already */
13304 			return 0;
13305 		verbose(env, "Syscall programs can only be sleepable\n");
13306 		return -EINVAL;
13307 	}
13308 
13309 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13310 	    prog->type != BPF_PROG_TYPE_LSM) {
13311 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13312 		return -EINVAL;
13313 	}
13314 
13315 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13316 		return check_struct_ops_btf_id(env);
13317 
13318 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13319 	    prog->type != BPF_PROG_TYPE_LSM &&
13320 	    prog->type != BPF_PROG_TYPE_EXT)
13321 		return 0;
13322 
13323 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13324 	if (ret)
13325 		return ret;
13326 
13327 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13328 		/* to make freplace equivalent to their targets, they need to
13329 		 * inherit env->ops and expected_attach_type for the rest of the
13330 		 * verification
13331 		 */
13332 		env->ops = bpf_verifier_ops[tgt_prog->type];
13333 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13334 	}
13335 
13336 	/* store info about the attachment target that will be used later */
13337 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13338 	prog->aux->attach_func_name = tgt_info.tgt_name;
13339 
13340 	if (tgt_prog) {
13341 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13342 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13343 	}
13344 
13345 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13346 		prog->aux->attach_btf_trace = true;
13347 		return 0;
13348 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13349 		if (!bpf_iter_prog_supported(prog))
13350 			return -EINVAL;
13351 		return 0;
13352 	}
13353 
13354 	if (prog->type == BPF_PROG_TYPE_LSM) {
13355 		ret = bpf_lsm_verify_prog(&env->log, prog);
13356 		if (ret < 0)
13357 			return ret;
13358 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13359 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13360 		return -EINVAL;
13361 	}
13362 
13363 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13364 	tr = bpf_trampoline_get(key, &tgt_info);
13365 	if (!tr)
13366 		return -ENOMEM;
13367 
13368 	prog->aux->dst_trampoline = tr;
13369 	return 0;
13370 }
13371 
13372 struct btf *bpf_get_btf_vmlinux(void)
13373 {
13374 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13375 		mutex_lock(&bpf_verifier_lock);
13376 		if (!btf_vmlinux)
13377 			btf_vmlinux = btf_parse_vmlinux();
13378 		mutex_unlock(&bpf_verifier_lock);
13379 	}
13380 	return btf_vmlinux;
13381 }
13382 
13383 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13384 {
13385 	u64 start_time = ktime_get_ns();
13386 	struct bpf_verifier_env *env;
13387 	struct bpf_verifier_log *log;
13388 	int i, len, ret = -EINVAL;
13389 	bool is_priv;
13390 
13391 	/* no program is valid */
13392 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13393 		return -EINVAL;
13394 
13395 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13396 	 * allocate/free it every time bpf_check() is called
13397 	 */
13398 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13399 	if (!env)
13400 		return -ENOMEM;
13401 	log = &env->log;
13402 
13403 	len = (*prog)->len;
13404 	env->insn_aux_data =
13405 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13406 	ret = -ENOMEM;
13407 	if (!env->insn_aux_data)
13408 		goto err_free_env;
13409 	for (i = 0; i < len; i++)
13410 		env->insn_aux_data[i].orig_idx = i;
13411 	env->prog = *prog;
13412 	env->ops = bpf_verifier_ops[env->prog->type];
13413 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13414 	is_priv = bpf_capable();
13415 
13416 	bpf_get_btf_vmlinux();
13417 
13418 	/* grab the mutex to protect few globals used by verifier */
13419 	if (!is_priv)
13420 		mutex_lock(&bpf_verifier_lock);
13421 
13422 	if (attr->log_level || attr->log_buf || attr->log_size) {
13423 		/* user requested verbose verifier output
13424 		 * and supplied buffer to store the verification trace
13425 		 */
13426 		log->level = attr->log_level;
13427 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13428 		log->len_total = attr->log_size;
13429 
13430 		ret = -EINVAL;
13431 		/* log attributes have to be sane */
13432 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13433 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13434 			goto err_unlock;
13435 	}
13436 
13437 	if (IS_ERR(btf_vmlinux)) {
13438 		/* Either gcc or pahole or kernel are broken. */
13439 		verbose(env, "in-kernel BTF is malformed\n");
13440 		ret = PTR_ERR(btf_vmlinux);
13441 		goto skip_full_check;
13442 	}
13443 
13444 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13445 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13446 		env->strict_alignment = true;
13447 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13448 		env->strict_alignment = false;
13449 
13450 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13451 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13452 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13453 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13454 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13455 	env->bpf_capable = bpf_capable();
13456 
13457 	if (is_priv)
13458 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13459 
13460 	env->explored_states = kvcalloc(state_htab_size(env),
13461 				       sizeof(struct bpf_verifier_state_list *),
13462 				       GFP_USER);
13463 	ret = -ENOMEM;
13464 	if (!env->explored_states)
13465 		goto skip_full_check;
13466 
13467 	ret = add_subprog_and_kfunc(env);
13468 	if (ret < 0)
13469 		goto skip_full_check;
13470 
13471 	ret = check_subprogs(env);
13472 	if (ret < 0)
13473 		goto skip_full_check;
13474 
13475 	ret = check_btf_info(env, attr, uattr);
13476 	if (ret < 0)
13477 		goto skip_full_check;
13478 
13479 	ret = check_attach_btf_id(env);
13480 	if (ret)
13481 		goto skip_full_check;
13482 
13483 	ret = resolve_pseudo_ldimm64(env);
13484 	if (ret < 0)
13485 		goto skip_full_check;
13486 
13487 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13488 		ret = bpf_prog_offload_verifier_prep(env->prog);
13489 		if (ret)
13490 			goto skip_full_check;
13491 	}
13492 
13493 	ret = check_cfg(env);
13494 	if (ret < 0)
13495 		goto skip_full_check;
13496 
13497 	ret = do_check_subprogs(env);
13498 	ret = ret ?: do_check_main(env);
13499 
13500 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13501 		ret = bpf_prog_offload_finalize(env);
13502 
13503 skip_full_check:
13504 	kvfree(env->explored_states);
13505 
13506 	if (ret == 0)
13507 		ret = check_max_stack_depth(env);
13508 
13509 	/* instruction rewrites happen after this point */
13510 	if (is_priv) {
13511 		if (ret == 0)
13512 			opt_hard_wire_dead_code_branches(env);
13513 		if (ret == 0)
13514 			ret = opt_remove_dead_code(env);
13515 		if (ret == 0)
13516 			ret = opt_remove_nops(env);
13517 	} else {
13518 		if (ret == 0)
13519 			sanitize_dead_code(env);
13520 	}
13521 
13522 	if (ret == 0)
13523 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13524 		ret = convert_ctx_accesses(env);
13525 
13526 	if (ret == 0)
13527 		ret = do_misc_fixups(env);
13528 
13529 	/* do 32-bit optimization after insn patching has done so those patched
13530 	 * insns could be handled correctly.
13531 	 */
13532 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13533 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13534 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13535 								     : false;
13536 	}
13537 
13538 	if (ret == 0)
13539 		ret = fixup_call_args(env);
13540 
13541 	env->verification_time = ktime_get_ns() - start_time;
13542 	print_verification_stats(env);
13543 
13544 	if (log->level && bpf_verifier_log_full(log))
13545 		ret = -ENOSPC;
13546 	if (log->level && !log->ubuf) {
13547 		ret = -EFAULT;
13548 		goto err_release_maps;
13549 	}
13550 
13551 	if (ret)
13552 		goto err_release_maps;
13553 
13554 	if (env->used_map_cnt) {
13555 		/* if program passed verifier, update used_maps in bpf_prog_info */
13556 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13557 							  sizeof(env->used_maps[0]),
13558 							  GFP_KERNEL);
13559 
13560 		if (!env->prog->aux->used_maps) {
13561 			ret = -ENOMEM;
13562 			goto err_release_maps;
13563 		}
13564 
13565 		memcpy(env->prog->aux->used_maps, env->used_maps,
13566 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13567 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13568 	}
13569 	if (env->used_btf_cnt) {
13570 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13571 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13572 							  sizeof(env->used_btfs[0]),
13573 							  GFP_KERNEL);
13574 		if (!env->prog->aux->used_btfs) {
13575 			ret = -ENOMEM;
13576 			goto err_release_maps;
13577 		}
13578 
13579 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13580 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13581 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13582 	}
13583 	if (env->used_map_cnt || env->used_btf_cnt) {
13584 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13585 		 * bpf_ld_imm64 instructions
13586 		 */
13587 		convert_pseudo_ld_imm64(env);
13588 	}
13589 
13590 	adjust_btf_func(env);
13591 
13592 err_release_maps:
13593 	if (!env->prog->aux->used_maps)
13594 		/* if we didn't copy map pointers into bpf_prog_info, release
13595 		 * them now. Otherwise free_used_maps() will release them.
13596 		 */
13597 		release_maps(env);
13598 	if (!env->prog->aux->used_btfs)
13599 		release_btfs(env);
13600 
13601 	/* extension progs temporarily inherit the attach_type of their targets
13602 	   for verification purposes, so set it back to zero before returning
13603 	 */
13604 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13605 		env->prog->expected_attach_type = 0;
13606 
13607 	*prog = env->prog;
13608 err_unlock:
13609 	if (!is_priv)
13610 		mutex_unlock(&bpf_verifier_lock);
13611 	vfree(env->insn_aux_data);
13612 err_free_env:
13613 	kfree(env);
13614 	return ret;
13615 }
13616